

Python Data Analytics

With Pandas, NumPy, and Matplotlib

Second Edition

Fabio Nelli

Python Data Analytics

With Pandas, NumPy, and Matplotlib

Second Edition

Fabio Nelli

apress®

Python Data Analytics

Fabio Nelli Rome, Italy

ISBN-13 (pbk): 978-1-4842-3912-4

https://doi.org/10.1007/978-1-4842-3913-1

Library of Congress Control Number: 2018957991

Copyright © 2018 by Fabio Nelli

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

ISBN-13 (electronic): 978-1-4842-3913-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Todd Green Development Editor: James Markham Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a **Delaware** corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book's product page, located at www.apress.com/9781484239124. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

"Science leads us forward in knowledge, but only analysis makes us more aware"

This book is dedicated to all those who are constantly looking for awareness

Table of Contents

About the Author	
About the Technical Reviewer	xix
Chapter 1: An Introduction to Data Analysis	1
Data Analysis	1
Knowledge Domains of the Data Analyst	3
Computer Science	
Mathematics and Statistics	4
Machine Learning and Artificial Intelligence	5
Professional Fields of Application	5
Understanding the Nature of the Data	5
When the Data Become Information	6
When the Information Becomes Knowledge	6
Types of Data	6
The Data Analysis Process	6
Problem Definition	8
Data Extraction	9
Data Preparation	10
Data Exploration/Visualization	10
Predictive Modeling	12
Model Validation	13
Deployment	13
Quantitative and Qualitative Data Analysis	14
Open Data	15
Python and Data Analysis	17
Conclusions	

Chapter 2: Introduction to the Python World	19
Python—The Programming Language	19
Python—The Interpreter	21
Python 2 and Python 3	23
Installing Python	23
Python Distributions	24
Using Python	26
Writing Python Code	28
IPython	35
PyPI—The Python Package Index	39
The IDEs for Python	40
SciPy	46
NumPy	47
Pandas	47
matplotlib	48
Conclusions	48
Chapter 3: The NumPy Library	49
NumPy: A Little History	49
The NumPy Installation	50
Ndarray: The Heart of the Library	50
Create an Array	52
Types of Data	53
The dtype Option	54
Intrinsic Creation of an Array	55
Basic Operations	57
Arithmetic Operators	57
The Matrix Product	59
Increment and Decrement Operators	60
Universal Functions (ufunc)	61
Aggregate Functions	62

Indexing, Slicing, and Iterating	62
Indexing	63
Slicing	65
Iterating an Array	67
Conditions and Boolean Arrays	69
Shape Manipulation	70
Array Manipulation	71
Joining Arrays	71
Splitting Arrays	72
General Concepts	74
Copies or Views of Objects	75
Vectorization	76
Broadcasting	76
Structured Arrays	79
Reading and Writing Array Data on Files	82
Loading and Saving Data in Binary Files	82
Reading Files with Tabular Data	83
Conclusions	84
Chapter 4: The pandas Library—An Introduction	87
pandas: The Python Data Analysis Library	87
Installation of pandas	88
Installation from Anaconda	88
Installation from PyPI	89
Installation on Linux	90
Installation from Source	90
A Module Repository for Windows	90
Testing Your pandas Installation	91
Getting Started with pandas	92
Introduction to pandas Data Structures	92
The Series	Q3

The DataFrame	102
The Index Objects	112
Other Functionalities on Indexes	114
Reindexing	114
Dropping	117
Arithmetic and Data Alignment	118
Operations Between Data Structures	120
Flexible Arithmetic Methods	120
Operations Between DataFrame and Series	121
Function Application and Mapping	122
Functions by Element	123
Functions by Row or Column	123
Statistics Functions	125
Sorting and Ranking	126
Correlation and Covariance	129
"Not a Number" Data	131
Assigning a NaN Value	131
Filtering Out NaN Values	132
Filling in NaN Occurrences	133
Hierarchical Indexing and Leveling	134
Reordering and Sorting Levels	137
Summary Statistic by Level	138
Conclusions	139
Chapter 5: pandas: Reading and Writing Data	141
I/O API Tools	
CSV and Textual Files	
Reading Data in CSV or Text Files	
Using RegExp to Parse TXT Files	
Reading TXT Files Into Parts	
Writing Data in CSV	150

	Reading and Writing HTML Files	152
	Writing Data in HTML	153
	Reading Data from an HTML File	155
	Reading Data from XML	157
	Reading and Writing Data on Microsoft Excel Files	159
	JSON Data	162
	The Format HDF5	166
	Pickle—Python Object Serialization	168
	Serialize a Python Object with cPickle	168
	Pickling with pandas	169
	Interacting with Databases	170
	Loading and Writing Data with SQLite3	171
	Loading and Writing Data with PostgreSQL	174
	Reading and Writing Data with a NoSQL Database: MongoDB	178
	Conclusions	180
C	Chapter 6: pandas in Depth: Data Manipulation	181
C	Chapter 6: pandas in Depth: Data Manipulation	
G		181
G	Data Preparation	181 182
G	Data Preparation	181 182 188
G	Data Preparation Merging Concatenating	181 182 188 191
G	Data Preparation Merging Concatenating Combining	181 182 188 191 193
	Data Preparation Merging Concatenating Combining Pivoting	181 182 188 191 193
	Data Preparation Merging Concatenating Combining Pivoting. Removing.	181 182 188 191 193 196
	Data Preparation Merging Concatenating Combining Pivoting. Removing. Data Transformation	181 182 188 191 193 196 197
	Data Preparation Merging Concatenating Combining Pivoting. Removing. Data Transformation Removing Duplicates	181 182 188 191 193 196 197 198
	Data Preparation Merging Concatenating Combining Pivoting Removing Data Transformation Removing Duplicates Mapping	181 182 188 191 193 196 197 198 199
	Data Preparation Merging Concatenating Combining Pivoting Removing Data Transformation Removing Duplicates Mapping Discretization and Binning	181 182 188 191 193 196 197 198 199 204

	String Manipulation	. 212
	Built-in Methods for String Manipulation	. 212
	Regular Expressions	. 214
	Data Aggregation	. 217
	GroupBy	. 21 8
	A Practical Example	. 219
	Hierarchical Grouping	. <mark>22</mark> 0
	Group Iteration	. <mark>222</mark>
	Chain of Transformations	. 222
	Functions on Groups	. 224
	Advanced Data Aggregation	. <mark>225</mark>
	Conclusions	. 229
C	Chapter 7: Data Visualization with matplotlib	231
	The matplotlib Library	
	Installation	
	The IPython and IPython QtConsole	
	The matplotlib Architecture	
	Backend Layer	
	Artist Layer	
	Scripting Layer (pyplot)	
	pylab and pyplot	
	pyplot	. 239
	A Simple Interactive Chart	
	The Plotting Window	. 241
	Set the Properties of the Plot	
	matplotlib and NumPy	
	Using the kwargs	. 248
	Working with Multiple Figures and Axes	
	Adding Elements to the Chart	
	Adding Text	

Adding a Grid	256
Adding a Legend	257
Saving Your Charts	260
Saving the Code	260
Converting Your Session to an HTML File	262
Saving Your Chart Directly as an Image	264
Handling Date Values	264
Chart Typology	267
Line Charts	267
Line Charts with pandas	276
Histograms	277
Bar Charts	278
Horizontal Bar Charts	281
Multiserial Bar Charts	282
Multiseries Bar Charts with pandas Dataframe	285
Multiseries Stacked Bar Charts	286
Stacked Bar Charts with a pandas Dataframe	290
Other Bar Chart Representations	291
Pie Charts	292
Pie Charts with a pandas Dataframe	296
Advanced Charts	297
Contour Plots	297
Polar Charts	299
The mplot3d Toolkit	302
3D Surfaces	302
Scatter Plots in 3D	304
Bar Charts in 3D	306
Multi-Panel Plots	307
Display Subplots Within Other Subplots	307
Grids of Subplots	
Conclusions	312

Chapter 8: Machine Learning with scikit-learn	. 313
The scikit-learn Library	313
Machine Learning	313
Supervised and Unsupervised Learning	314
Training Set and Testing Set	315
Supervised Learning with scikit-learn	315
The Iris Flower Dataset	316
The PCA Decomposition	320
K-Nearest Neighbors Classifier	322
Diabetes Dataset	327
Linear Regression: The Least Square Regression	328
Support Vector Machines (SVMs)	334
Support Vector Classification (SVC)	334
Nonlinear SVC	339
Plotting Different SVM Classifiers Using the Iris Dataset	342
Support Vector Regression (SVR)	345
Conclusions	347
Chapter 9: Deep Learning with TensorFlow	. 349
Artificial Intelligence, Machine Learning, and Deep Learning	
Artificial intelligence	
Machine Learning Is a Branch of Artificial Intelligence	351
Deep Learning Is a Branch of Machine Learning	351
The Relationship Between Artificial Intelligence, Machine Learning, and Deep Learning.	351
Deep Learning	352
Neural Networks and GPUs	352
Data Availability: Open Data Source, Internet of Things, and Big Data	353
Python	354
Deep Learning Python Frameworks	354
Artificial Neural Networks	355
How Artificial Neural Networks Are Structured	355
Single Layer Perceptron (SLP)	357

Multi Layer Perceptron (MLP)	360
Correspondence Between Artificial and Biological Neural Networks	361
TensorFlow	362
TensorFlow: Google's Framework	362
TensorFlow: Data Flow Graph	362
Start Programming with TensorFlow	363
Installing TensorFlow	363
Programming with the IPython QtConsole	364
The Model and Sessions in TensorFlow	364
Tensors	366
Operation on Tensors	370
Single Layer Perceptron with TensorFlow	371
Before Starting	372
Data To Be Analyzed	372
The SLP Model Definition	374
Learning Phase	378
Test Phase and Accuracy Calculation	383
Multi Layer Perceptron (with One Hidden Layer) with TensorFlow	386
The MLP Model Definition	387
Learning Phase	389
Test Phase and Accuracy Calculation	395
Multi Layer Perceptron (with Two Hidden Layers) with TensorFlow	397
Test Phase and Accuracy Calculation	402
Evaluation of Experimental Data	404
Conclusions	407
Chapter 10: An Example— Meteorological Data	409
A Hypothesis to Be Tested: The Influence of the Proximity of the Sea	409
The System in the Study: The Adriatic Sea and the Po Valley	
Finding the Data Source	
Data Analysis on Jupyter Notebook	
Analysis of Processed Meteorological Data	

The RoseWind	436
Calculating the Mean Distribution of the Wind Speed	441
Conclusions	443
Chapter 11: Embedding the JavaScript D3 Library in the IPython Notebook	445
The Open Data Source for Demographics	445
The JavaScript D3 Library	449
Drawing a Clustered Bar Chart	454
The Choropleth Maps	459
The Choropleth Map of the U.S. Population in 2014	464
Conclusions	471
Chapter 12: Recognizing Handwritten Digits	473
Handwriting Recognition	473
Recognizing Handwritten Digits with scikit-learn	474
The Digits Dataset	
Learning and Predicting	478
Recognizing Handwritten Digits with TensorFlow	480
Learning and Predicting	482
Conclusions	486
Chapter 13: Textual Data Analysis with NLTK	487
Text Analysis Techniques	487
The Natural Language Toolkit (NLTK)	488
Import the NLTK Library and the NLTK Downloader Tool	489
Search for a Word with NLTK	493
Analyze the Frequency of Words	494
Selection of Words from Text	497
Bigrams and Collocations	498
Use Text on the Network	500
Extract the Text from the HTML Pages	501
Sentimental Analysis	502
Conclusions	506

Chapter 14: Image Analysis and Computer Vision with OpenCV	507
Image Analysis and Computer Vision	507
OpenCV and Python	508
OpenCV and Deep Learning	509
Installing OpenCV	509
First Approaches to Image Processing and Analysis	509
Before Starting	510
Load and Display an Image	510
Working with Images	512
Save the New Image	514
Elementary Operations on Images	514
Image Blending	520
Image Analysis	521
Edge Detection and Image Gradient Analysis	522
Edge Detection	522
The Image Gradient Theory	523
A Practical Example of Edge Detection with the Image Gradient Analysis	525
A Deep Learning Example: The Face Detection	532
Conclusions	535
Appendix A: Writing Mathematical Expressions with LaTeX	537
With matplotlib	537
With IPython Notebook in a Markdown Cell	537
With IPython Notebook in a Python 2 Cell	538
Subscripts and Superscripts	538
Fractions, Binomials, and Stacked Numbers	538
Radicals	
Fonts	
Accents	540

Appendix B: Open Data Sources	549
Political and Government Data	549
Health Data	550
Social Data	550
Miscellaneous and Public Data Sets	551
Financial Data	552
Climatic Data	552
Sports Data	553
Publications, Newspapers, and Books	553
Musical Data	553
Index	555

About the Author

Fabio Nelli is a data scientist and Python consultant, designing and developing Python applications for data analysis and visualization. He has experience with the scientific world, having performed various data analysis roles in pharmaceutical chemistry for private research companies and universities. He has been a computer consultant for many years at IBM, EDS, and Hewlett-Packard, along with several banks and insurance companies. He has an organic chemistry master's degree and a bachelor's degree in information technologies and automation systems, with many years of experience in life sciences (as as Tech Specialist at Beckman Coulter, Tecan, Sciex).

For further info and other examples, visit his page at https://www.meccanismocomplesso.org and the GitHub page https://github.com/meccanismocomplesso.

About the Technical Reviewer

Raul Samayoa is a senior software developer and machine learning specialist with many years of experience in the financial industry. An MSc graduate from the Georgia Institute of Technology, he's never met a neural network or dataset he did not like. He's fond of evangelizing the use of DevOps tools for data science and software development.

Raul enjoys the energy of his hometown of Toronto, Canada, where he runs marathons, volunteers as a technology instructor with the University of Toronto coders, and likes to work with data in Python and R.

An Introduction to Data Analysis

In this chapter, you begin to take the first steps in the world of data analysis, learning in detail about all the concepts and processes that make up this discipline. The concepts discussed in this chapter are helpful background for the following chapters, where these concepts and procedures will be applied in the form of Python code, through the use of several libraries that will be discussed in just as many chapters.

Data Analysis

In a world increasingly centralized around information technology, huge amounts of data are produced and stored each day. Often these data come from automatic detection systems, sensors, and scientific instrumentation, or you produce them daily and unconsciously every time you make a withdrawal from the bank or make a purchase, when you record various blogs, or even when you post on social networks.

But what are the data? The data actually are not information, at least in terms of their form. In the formless stream of bytes, at first glance it is difficult to understand their essence if not strictly the number, word, or time that they report. Information is actually the result of processing, which, taking into account a certain dataset, extracts some conclusions that can be used in various ways. This process of extracting information from raw data is called *data analysis*.

The purpose of data analysis is to extract information that is not easily deducible but that, when understood, leads to the possibility of carrying out studies on the mechanisms of the systems that have produced them, thus allowing you to forecast possible responses of these systems and their evolution in time.

CHAPTER 1 AN INTRODUCTION TO DATA ANALYSIS

Starting from a simple methodical approach on data protection, data analysis has become a real discipline, leading to the development of real methodologies generating *models*. The model is in fact the translation into a mathematical form of a system placed under study. Once there is a mathematical or logical form that can describe system responses under different levels of precision, you can then make predictions about its development or response to certain inputs. Thus the aim of data analysis is not the model, but the quality of its *predictive power*.

The predictive power of a model depends not only on the quality of the modeling techniques but also on the ability to choose a good dataset upon which to build the entire data analysis process. So the *search for data*, their *extraction*, and their subsequent *preparation*, while representing preliminary activities of an analysis, also belong to data analysis itself, because of their importance in the success of the results.

So far we have spoken of data, their handling, and their processing through calculation procedures. In parallel to all stages of processing of data analysis, various methods of *data visualization* have been developed. In fact, to understand the data, both individually and in terms of the role they play in the entire dataset, there is no better system than to develop the techniques of graphic representation capable of transforming information, sometimes implicitly hidden, in figures, which help you more easily understand their meaning. Over the years lots of display modes have been developed for different modes of data display: the *charts*.

At the end of the data analysis process, you will have a model and a set of graphical displays and then you will be able to predict the responses of the system under study; after that, you will move to the test phase. The model will be tested using another set of data for which you know the system response. These data are, however, not used to define the predictive model. Depending on the ability of the model to replicate real observed responses, you will have an error calculation and knowledge of the validity of the model and its operating limits.

These results can be compared with any other models to understand if the newly created one is more efficient than the existing ones. Once you have assessed that, you can move to the last phase of data analysis—*deployment*. This consists of implementing the results produced by the analysis, namely, implementing the decisions to be taken based on the predictions generated by the model and the associated risks.

Data analysis is well suited to many professional activities. So, knowledge of it and how it can be put into practice is relevant. It allows you to test hypotheses and to understand more deeply the systems analyzed.

Knowledge Domains of the Data Analyst

Data analysis is basically a discipline suitable to the study of problems that may occur in several fields of applications. Moreover, data analysis includes many tools and methodologies that require good knowledge of computing, mathematical, and statistical concepts.

A good data analyst must be able to move and act in many different disciplinary areas. Many of these disciplines are the basis of the methods of data analysis, and proficiency in them is almost necessary. Knowledge of other disciplines is necessary depending on the area of application and study of the particular data analysis project you are about to undertake, and, more generally, sufficient experience in these areas can help you better understand the issues and the type of data needed.

Often, regarding major problems of data analysis, it is necessary to have an interdisciplinary team of experts who can contribute in the best possible way in their respective fields of competence. Regarding smaller problems, a good analyst must be able to recognize problems that arise during data analysis, inquire to determine which disciplines and skills are necessary to solve these problems, study these disciplines, and maybe even ask the most knowledgeable people in the sector. In short, the analyst must be able to know how to search not only for data, but also for information on how to treat that data.

Computer Science

Knowledge of computer science is a basic requirement for any data analyst. In fact, only when you have good knowledge of and experience in computer science can you efficiently manage the necessary tools for data analysis. In fact, every step concerning data analysis involves using calculation software (such as IDL, MATLAB, etc.) and programming languages (such as C ++, Java, and Python).

The large amount of data available today, thanks to information technology, requires specific skills in order to be managed as efficiently as possible. Indeed, data research and extraction require knowledge of these various formats. The data are structured and stored in files or database tables with particular formats. XML, JSON, or simply XLS or CSV files, are now the common formats for storing and collecting data, and many applications allow you to read and manage the data stored on them. When it comes to extracting data contained in a database, things are not so immediate, but you need to know the SQL query language or use software specially developed for the extraction of data from a given database.

CHAPTER 1 AN INTRODUCTION TO DATA ANALYSIS

Moreover, for some specific types of data research, the data are not available in an explicit format, but are present in text files (documents and log files) or web pages, and shown as charts, measures, number of visitors, or HTML tables. This requires specific technical expertise for the parsing and the eventual extraction of these data (called *web scraping*).

So, knowledge of information technology is necessary to know how to use the various tools made available by contemporary computer science, such as applications and programming languages. These tools, in turn, are needed to perform data analysis and data visualization.

The purpose of this book is to provide all the necessary knowledge, as far as possible, regarding the development of methodologies for data analysis. The book uses the Python programming language and specialized libraries that provide a decisive contribution to the performance of all the steps constituting data analysis, from data research to data mining, to publishing the results of the predictive model.

Mathematics and Statistics

As you will see throughout the book, data analysis requires a lot of complex math during the treatment and processing of data. You need to be competent in all of this, at least to understand what you are doing. Some familiarity with the main statistical concepts is also necessary because all the methods that are applied in the analysis and interpretation of data are based on these concepts. Just as you can say that computer science gives you the tools for data analysis, so you can say that the statistics provide the concepts that form the basis of data analysis.

This discipline provides many tools to the analyst, and a good knowledge of how to best use them requires years of experience. Among the most commonly used statistical techniques in data analysis are

- Bayesian methods
- Regression
- Clustering

Having to deal with these cases, you'll discover how mathematics and statistics are closely related. Thanks to the special Python libraries covered in this book, you will be able to manage and handle them.

Machine Learning and Artificial Intelligence

One of the most advanced tools that falls in the data analysis camp is machine learning. In fact, despite the data visualization and techniques such as clustering and regression, which should help you find information about the dataset, during this phase of research, you may often prefer to use special procedures that are highly specialized in searching patterns within the dataset.

Machine learning is a discipline that uses a whole series of procedures and algorithms that analyze the data in order to recognize patterns, clusters, or trends and then extracts useful information for data analysis in an automated way.

This discipline is increasingly becoming a fundamental tool of data analysis, and thus knowledge of it, at least in general, is of fundamental importance to the data analyst.

Professional Fields of Application

Another very important point is the domain of competence of the data (its source—biology, physics, finance, materials testing, statistics on population, etc.). In fact, although analysts have had specialized preparation in the field of statistics, they must also be able to document the source of the data, with the aim of perceiving and better understanding the mechanisms that generated the data. In fact, the data are not simple strings or numbers; they are the expression, or rather the measure, of any parameter observed. Thus, better understanding where the data came from can improve their interpretation. Often, however, this is too costly for data analysts, even ones with the best intentions, and so it is good practice to find consultants or key figures to whom you can pose the right questions.

Understanding the Nature of the Data

The object of study of data analysis is basically the data. The data then will be the key player in all processes of data analysis. The data constitute the raw material to be processed, and thanks to their processing and analysis, it is possible to extract a variety of information in order to increase the level of knowledge of the system under study, that is, one from which the data came.

When the Data Become Information

Data are the events recorded in the world. Anything that can be measured or categorized can be converted into data. Once collected, these data can be studied and analyzed, both to understand the nature of the events and very often also to make predictions or at least to make informed decisions.

When the Information Becomes Knowledge

You can speak of knowledge when the information is converted into a set of rules that helps you better understand certain mechanisms and therefore make predictions on the evolution of some events.

Types of Data

Data can be divided into two distinct categories:

- Categorical (nominal and ordinal)
- Numerical (discrete and continuous)

Categorical data are values or observations that can be divided into groups or categories. There are two types of categorical values: *nominal* and *ordinal*. A nominal variable has no intrinsic order that is identified in its category. An ordinal variable instead has a predetermined order.

Numerical data are values or observations that come from measurements. There are two types of numerical values: *discrete* and *continuous* numbers. Discrete values can be counted and are distinct and separated from each other. Continuous values, on the other hand, are values produced by measurements or observations that assume any value within a defined range.

The Data Analysis Process

Data analysis can be described as a process consisting of several steps in which the raw data are transformed and processed in order to produce data visualizations and make predictions thanks to a mathematical model based on the collected data. Then, data

analysis is nothing more than a sequence of steps, each of which plays a key role in the subsequent ones. So, data analysis is schematized as a process chain consisting of the following sequence of stages:

- Problem definition
- Data extraction
- Data preparation Data cleaning
- Data preparation Data transformation
- Data exploration and visualization
- Predictive modeling
- Model validation/test
- Deploy Visualization and interpretation of results
- Deploy Deployment of the solution

Figure 1-1 shows a schematic representation of all the processes involved in the data analysis.

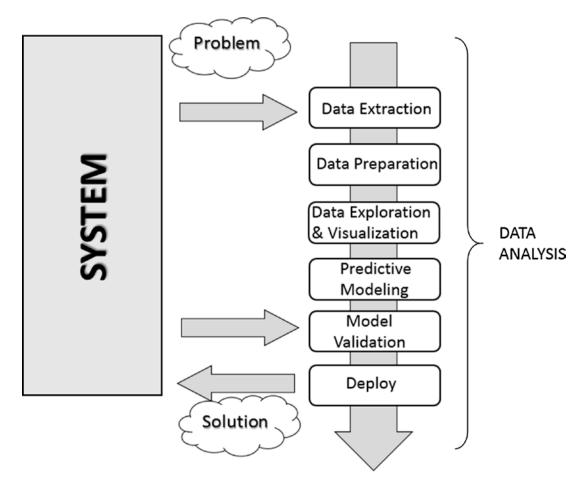


Figure 1-1. The data analysis process

Problem Definition

The process of data analysis actually begins long before the collection of raw data. In fact, data analysis always starts with a problem to be solved, which needs to be defined.

The problem is defined only after you have focused the system you want to study; this may be a mechanism, an application, or a process in general. Generally this study can be in order to better understand its operation, but in particular the study will be designed to understand the principles of its behavior in order to be able to make predictions or choices (defined as an informed choice).

The definition step and the corresponding documentation (*deliverables*) of the scientific problem or business are both very important in order to focus the entire analysis strictly on getting results. In fact, a comprehensive or exhaustive study of the

system is sometimes complex and you do not always have enough information to start with. So the definition of the problem and especially its planning can determine the guidelines to follow for the whole project.

Once the problem has been defined and documented, you can move to the *project planning* stage of data analysis. Planning is needed to understand which professionals and resources are necessary to meet the requirements to carry out the project as efficiently as possible. So you're going to consider the issues in the area involving the resolution of the problem. You will look for specialists in various areas of interest and install the software needed to perform data analysis.

Also during the planning phase, you choose an effective team. Generally, these teams should be cross-disciplinary in order to solve the problem by looking at the data from different perspectives. So, building a good team is certainly one of the key factors leading to success in data analysis.

Data Extraction

Once the problem has been defined, the first step is to obtain the data in order to perform the analysis. The data must be chosen with the basic purpose of building the predictive model, and so data selection is crucial for the success of the analysis as well. The sample data collected must reflect as much as possible the real world, that is, how the system responds to stimuli from the real world. For example, if you're using huge datasets of raw data and they are not collected competently, these may portray false or unbalanced situations.

Thus, poor choice of data, or even performing analysis on a dataset that's not perfectly representative of the system, will lead to models that will move away from the system under study.

The search and retrieval of data often require a form of intuition that goes beyond mere technical research and data extraction. This process also requires a careful understanding of the nature and form of the data, which only good experience and knowledge in the problem's application field can provide.

Regardless of the quality and quantity of data needed, another issue is using the best *data sources*.

If the studio environment is a laboratory (technical or scientific) and the data generated are experimental, then in this case the data source is easily identifiable. In this case, the problems will be only concerning the experimental setup.

CHAPTER 1 AN INTRODUCTION TO DATA ANALYSIS

But it is not possible for data analysis to reproduce systems in which data are gathered in a strictly experimental way in every field of application. Many fields require searching for data from the surrounding world, often relying on external experimental data, or even more often collecting them through interviews or surveys. So in these cases, finding a good data source that is able to provide all the information you need for data analysis can be quite challenging. Often it is necessary to retrieve data from multiple data sources to supplement any shortcomings, to identify any discrepancies, and to make the dataset as general as possible.

When you want to get the data, a good place to start is the Web. But most of the data on the Web can be difficult to capture; in fact, not all data are available in a file or database, but might be content that is inside HTML pages in many different formats. To this end, a methodology called *web scraping* allows the collection of data through the recognition of specific occurrence of HTML tags within web pages. There is software specifically designed for this purpose, and once an occurrence is found, it extracts the desired data. Once the search is complete, you will get a list of data ready to be subjected to data analysis.

Data Preparation

Among all the steps involved in data analysis, data preparation, although seemingly less problematic, in fact requires more resources and more time to be completed. Data are often collected from different data sources, each of which will have data in it with a different representation and format. So, all of these data will have to be prepared for the process of data analysis.

The preparation of the data is concerned with obtaining, cleaning, normalizing, and transforming data into an optimized dataset, that is, in a prepared format that's normally tabular and is suitable for the methods of analysis that have been scheduled during the design phase.

Many potential problems can arise, including invalid, ambiguous, or missing values, replicated fields, and out-of-range data.

Data Exploration/Visualization

Exploring the data involves essentially searching the data in a graphical or statistical presentation in order to find patterns, connections, and relationships. Data visualization is the best tool to highlight possible patterns.

In recent years, data visualization has been developed to such an extent that it has become a real discipline in itself. In fact, numerous technologies are utilized exclusively to display data, and many display types are applied to extract the best possible information from a dataset.

Data exploration consists of a preliminary examination of the data, which is important for understanding the type of information that has been collected and what it means. In combination with the information acquired during the definition problem, this categorization will determine which method of data analysis will be most suitable for arriving at a model definition.

Generally, this phase, in addition to a detailed study of charts through the visualization data, may consist of one or more of the following activities:

- · Summarizing data
- Grouping data
- Exploring the relationship between the various attributes
- Identifying patterns and trends
- Constructing regression models
- Constructing classification models

Generally, data analysis requires summarizing statements regarding the data to be studied. *Summarization* is a process by which data are reduced to interpretation without sacrificing important information.

Clustering is a method of data analysis that is used to find groups united by common attributes (also called *grouping*).

Another important step of the analysis focuses on the *identification* of relationships, trends, and anomalies in the data. In order to find this kind of information, you often have to resort to the tools as well as perform another round of data analysis, this time on the data visualization itself.

Other methods of data mining, such as decision trees and association rules, automatically extract important facts or rules from the data. These approaches can be used in parallel with data visualization to uncover relationships between the data.

Predictive Modeling

Predictive modeling is a process used in data analysis to create or choose a suitable statistical model to predict the probability of a result.

After exploring the data, you have all the information needed to develop the mathematical model that encodes the relationship between the data. These models are useful for understanding the system under study, and in a specific way they are used for two main purposes. The first is to make predictions about the data values produced by the system; in this case, you will be dealing with *regression models*. The second purpose is to classify new data products, and in this case, you will be using *classification models* or *clustering models*. In fact, it is possible to divide the models according to the type of result they produce:

- Classification models: If the result obtained by the model type is categorical.
- *Regression models*: If the result obtained by the model type is numeric.
- *Clustering models*: If the result obtained by the model type is descriptive.

Simple methods to generate these models include techniques such as linear regression, logistic regression, classification and regression trees, and k-nearest neighbors. But the methods of analysis are numerous, and each has specific characteristics that make it excellent for some types of data and analysis. Each of these methods will produce a specific model, and then their choice is relevant to the nature of the product model.

Some of these models will provide values corresponding to the real system and according to their structure. They will explain some characteristics of the system under study in a simple and clear way. Other models will continue to give good predictions, but their structure will be no more than a "black box" with limited ability to explain characteristics of the system.

Model Validation

Validation of the model, that is, the test phase, is an important phase that allows you to validate the model built on the basis of starting data. That is important because it allows you to assess the validity of the data produced by the model by comparing them directly with the actual system. But this time, you are coming out from the set of starting data on which the entire analysis has been established.

Generally, you will refer to the data as the *training set* when you are using them for building the model, and as the *validation set* when you are using them for validating the model.

Thus, by comparing the data produced by the model with those produced by the system, you will be able to evaluate the error, and using different test datasets, you can estimate the limits of validity of the generated model. In fact the correctly predicted values could be valid only within a certain range, or have different levels of matching depending on the range of values taken into account.

This process allows you not only to numerically evaluate the effectiveness of the model but also to compare it with any other existing models. There are several techniques in this regard; the most famous is the *cross-validation*. This technique is based on the division of the training set into different parts. Each of these parts, in turn, will be used as the validation set and any other as the training set. In this iterative manner, you will have an increasingly perfected model.

Deployment

This is the final step of the analysis process, which aims to present the results, that is, the conclusions of the analysis. In the deployment process of the business environment, the analysis is translated into a benefit for the client who has commissioned it. In technical or scientific environments, it is translated into design solutions or scientific publications. That is, the deployment basically consists of putting into practice the results obtained from the data analysis.

There are several ways to deploy the results of data analysis or data mining. Normally, a data analyst's deployment consists in writing a report for management or for the customer who requested the analysis. This document will conceptually describe the results obtained from the analysis of data. The report should be directed to the managers, who are then able to make decisions. Then, they will put into practice the conclusions of the analysis.

CHAPTER 1 AN INTRODUCTION TO DATA ANALYSIS

In the documentation supplied by the analyst, each of these four topics will be discussed in detail:

- Analysis results
- Decision deployment
- Risk analysis
- Measuring the business impact

When the results of the project include the generation of predictive models, these models can be deployed as stand-alone applications or can be integrated into other software.

Quantitative and Qualitative Data Analysis

Data analysis is completely focused on data. Depending on the nature of the data, it is possible to make some distinctions.

When the analyzed data have a strictly numerical or categorical structure, then you are talking about *quantitative analysis*, but when you are dealing with values that are expressed through descriptions in natural language, then you are talking about *qualitative analysis*.

Precisely because of the different nature of the data processed by the two types of analyses, you can observe some differences between them.

Quantitative analysis has to do with data with a logical order or that can be categorized in some way. This leads to the formation of structures within the data. The order, categorization, and structures in turn provide more information and allow further processing of the data in a more mathematical way. This leads to the generation of models that provide *quantitative predictions*, thus allowing the data analyst to draw more objective conclusions.

Qualitative analysis instead has to do with data that generally do not have a structure, at least not one that is evident, and their nature is neither numeric nor categorical. For example, data under qualitative study could include written textual, visual, or audio data. This type of analysis must therefore be based on methodologies, often *ad hoc*, to extract information that will generally lead to models capable of providing *qualitative predictions*, with the result that the conclusions to which the data analyst can arrive may also include *subjective interpretations*. On the other hand, qualitative analysis

can explore more complex systems and draw conclusions that are not possible using a strictly mathematical approach. Often this type of analysis involves the study of systems such as social phenomena or complex structures that are not easily measurable.

Figure 1-2 shows the differences between the two types of analysis.

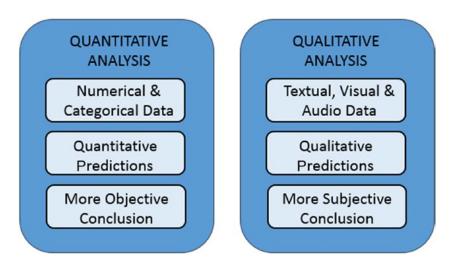


Figure 1-2. Quantitative and qualitative analyses

Open Data

In support of the growing demand for data, a huge number of data sources are now available on the Internet. These data sources freely provide information to anyone in need, and they are called *open data*.

Here is a list of some open data available online. You can find a more complete list and details of the open data available online in Appendix B.

- DataHub (http://datahub.io/dataset)
- World Health Organization (http://www.who.int/research/en/)
- Data.gov (http://data.gov)
- European Union Open Data Portal (http://open-data.europa.eu/en/data/)
- Amazon Web Service public datasets (http://aws.amazon.com/datasets)
- Facebook Graph (http://developers.facebook.com/docs/graph-api)

CHAPTER 1 AN INTRODUCTION TO DATA ANALYSIS

- Healthdata.gov (http://www.healthdata.gov)
- Google Trends (http://www.google.com/trends/explore)
- Google Finance (https://www.google.com/finance)
- Google Books Ngrams (http://storage.googleapis.com/books/ ngrams/books/datasetsv2.html)
- Machine Learning Repository (http://archive.ics.uci.edu/ml/)

As an idea of open data sources available online, you can look at the *LOD cloud diagram* (http://lod-cloud.net), which displays the connections of the data link among several open data sources currently available on the network (see Figure 1-3).

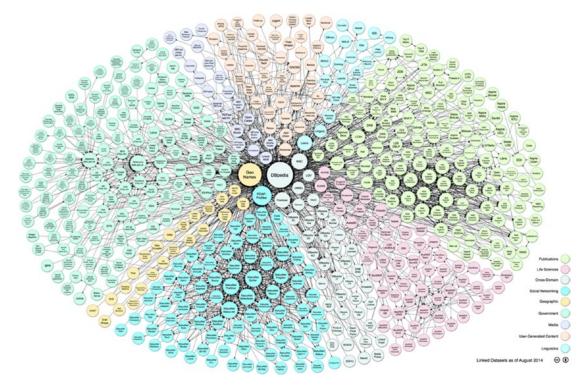


Figure 1-3. Linking open data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch, and Richard Cyganiak. http://lod-cloud.net/[CC-BY-SA license]

Python and Data Analysis

The main argument of this book is to develop all the concepts of data analysis by treating them in terms of Python. The Python programming language is widely used in scientific circles because of its large number of libraries that provide a complete set of tools for analysis and data manipulation.

Compared to other programming languages generally used for data analysis, such as R and MATLAB, Python not only provides a platform for processing data, but also has features that make it unique compared to other languages and specialized applications. The development of an ever-increasing number of support libraries, the implementation of algorithms of more innovative methodologies, and the ability to interface with other programming languages (C and Fortran) all make Python unique among its kind.

Furthermore, Python is not only specialized for data analysis, but also has many other applications, such as generic programming, scripting, interfacing to databases, and more recently web development, thanks to web frameworks like Django. So it is possible to develop data analysis projects that are compatible with the web server with the possibility to integrate it on the Web.

So, for those who want to perform data analysis, Python, with all its packages, is considered the best choice for the foreseeable future.

Conclusions

In this chapter, you learned what data analysis is and, more specifically, the various processes that comprise it. Also, you have begun to see the role that data play in building a prediction model and how their careful selection is at the basis of a careful and accurate data analysis.

In the next chapter, you will take this vision of Python and the tools it provides to perform data analysis.

Introduction to the Python World

The Python language, and the world around it, is made by interpreters, tools, editors, libraries, notebooks, etc. This Python world has expanded greatly in recent years, enriching and taking forms that developers who approach it for the first time can sometimes find complicated and somewhat misleading. Thus if you are approaching Python for the first time, you might feel lost among so many choices, especially on where to start.

This chapter gives you an overview of the entire Python world. First you will read a description of the Python language and its unique characteristics. You'll see where to start, what an interpreter is, and how to begin writing the first lines of code in Python. Then you are presented with some new, more advanced, forms of interactive writing with respect to the shells, such as IPython and IPython Notebook.

Python—The Programming Language

The Python programming language was created by Guido Von Rossum in 1991 and started with a previous language called ABC. This language can be characterized by a series of adjectives:

- Interpreted
- Portable
- Object-oriented
- Interactive
- Interfaced
- Open source
- Easy to understand and use

Python is an *interpreted* programming language, that is, it's pseudo-compiled. Once you write the code, you need an *interpreter* to run it. The interpreter is a program that is installed on each machine that has the task of interpreting the source code and running it. Unlike with languages such as C, C++, and Java, there is no compile time with Python.

Python is a highly *portable* programming language. The decision to use an interpreter as an interface for reading and running code has a key advantage: portability. In fact, you can install an interpreter on any platform (Linux, Windows, and Mac) and the Python code will not change. Because of this, Python is often used as the programming language for many small-form devices, such as the Raspberry Pi and other microcontrollers.

Python is an *object-oriented* programming language. In fact, it allows you to specify classes of objects and implement their inheritance. But unlike C++ and Java, there are no constructors or destructors. Python also allows you to implement specific constructs in your code to manage exceptions. However, the structure of the language is so flexible that it allows you to program with alternative approaches with respect to the object-oriented one. For example, you can use functional or vectorial approaches.

Python is an *interactive* programming language. Thanks to the fact that Python uses an interpreter to be executed, this language can take on very different aspects depending on the context in which it is used. In fact, you can write code made of a lot of lines, similar to what you might do in languages like C++ or Java, and then launch the program, or you can enter the command line at once and execute it, immediately getting the results of the command. Then, depending on the results, you can decide what command to run next. This highly interactive way to execute code makes the Python computing environment similar to MATLAB. This feature of Python is one reason it's popular with the scientific community.

Python is a programming language that can be *interfaced*. In fact, this programming language can be interfaced with code written in other programming languages such as C/C++ and FORTRAN. Even this was a winning choice. In fact, thanks to this aspect, Python can compensate for what is perhaps its only weak point, the speed of execution. The nature of Python, as a highly dynamic programming language, can sometimes lead to execution of programs up to 100 times slower than the corresponding static programs compiled with other languages. Thus the solution to this kind of performance problem is to interface Python to the compiled code of other languages by using it as if it were its own.

Python is an *open-source* programming language. CPython, which is the reference implementation of the Python language, is completely free and open source. Additionally every module or library in the network is open source and their code is available online. Every month, an extensive developer community includes improvements to make this language and all its libraries even richer and more efficient. CPython is managed by the nonprofit Python Software Foundation, which was created in 2001 and has given itself the task of promoting, protecting, and advancing the Python programming language.

Finally, Python is a simple language to use and learn. This aspect is perhaps the most important, because it is the most direct aspect that a developer, even a novice, faces. The high intuitiveness and ease of reading of Python code often leads to "sympathy" for this programming language, and consequently it is the choice of most newcomers to programming. However, its simplicity does not mean narrowness, since Python is a language that is spreading in every field of computing. Furthermore, Python is doing all of this so simply, in comparison to existing programming languages such as C++, Java, and FORTRAN, which by their nature are very complex.

Python—The Interpreter

As described in the previous sections, each time you run the python command, the Python interpreter starts, characterized by a >>> prompt.

The Python interpreter is simply a program that reads and interprets the commands passed to the prompt. You have seen that the interpreter can accept either a single command at a time or entire files of Python code. However the approach by which it performs this is always the same.

Each time you press the Enter key, the interpreter begins to scan the code (either a row or a full file of code) token by token (called *tokenization*). These tokens are fragments of text that the interpreter arranges in a tree structure. The tree obtained is the logical structure of the program, which is then converted to *bytecode* (.pyc or .pyo). The process chain ends with the bytecode that will be executed by a *Python virtual machine* (*PVM*). See Figure 2-1.

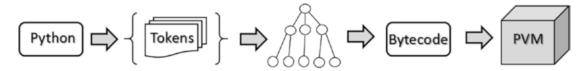


Figure 2-1. The steps performed by the Python interpreter

You can find very good documentation on this process at https://www.ics.uci.edu/~pattis/ICS-31/lectures/tokens.pdf.

The standard Python interpreter is reported as Cython, since it was written in C. There are other areas that have been developed using other programming languages, such as Jython, developed in Java; IronPython, developed in C# (only for Windows); and PyPy, developed entirely in Python.

Cython

The Cython project is based on creating a compiler that translates Python code into C. This code is then executed within a Cython environment at runtime. This type of compilation system has made it possible to introduce C semantics into the Python code to make it even more efficient. This system has led to the merging of two worlds of programming language with the birth of *Cython*, which can be considered a new programming language. You can find a lot of documentation about it online; I advise you to visit http://docs.cython.org.

Jython

In parallel to Cython, there is a version totally built and compiled in Java, named *Jython*. It was created by Jim Hugunin in 1997 (http://www.jython.org). Jython is an implementation of the Python programming language in Java; it is further characterized by using Java classes instead of Python modules to implement extensions and packages of Python.

PyPy

The PyPy interpreter is a JIT (just-in-time) compiler, and it converts the Python code directly in machine code at runtime. This choice was made to speed up the execution of Python. However, this choice has led to the use of a smaller subset of Python commands, defined as *RPython*. For more information on this, consult the official website at http://pypy.org.

Python 2 and Python 3

The Python community is still in transition from interpreters of the Series 2 to Series 3. In fact, you will currently find two releases of Python that are used in parallel (version 2.7 and version 3.6). This kind of ambiguity can create confusion, especially in terms of choosing which version to use and the differences between these two versions. One question that you surely must be asking is why version 2.x is still being released if it is distributed around a much more enhanced version such as 3.x.

When Guido Van Rossum (the creator of Python) decided to bring significant changes to the Python language, he soon found that these changes would make the new version incompatible with a lot of existing code. Thus he decided to start with a new version of Python called Python 3.0. To overcome the problem of incompatibility and avoid creating huge amounts of unusable code, it was decided to maintain a compatible version, 2.7 to be precise.

Python 3.0 made its first appearance in 2008, while version 2.7 was released in 2010 with a promise that it would not be followed by big releases, and at the moment the current version is 3.6.5 (2018).

In the book we refer to the Python 3.x version; however, with a few exceptions, there should be no problem with the Python 2.7.x version (the last version is 2.7.14 and was released in September 2017).

Installing Python

In order to develop programs in Python you have to install it on your operating system. Linux distributions and MacOS X machines should already have a preinstalled version of Python. If not, or if you would like to replace that version with another, you can easily install it. The installation of Python differs from operating system to operating system; however, it is a rather simple operation.

On Debian-Ubuntu Linux systems, run this command

apt-get install python

On Red Hat Fedora Linux systems working with rpm packages, run this command yum install python

If you are running Windows or MacOS X, you can go to the official Python site (http://www.python.org) and download the version you prefer. The packages in this case are installed automatically.

However, today there are distributions that provide a number of tools that make the management and installation of Python, all libraries, and associated applications easier. I strongly recommend you choose one of the distributions available online.

Python Distributions

Due to the success of the Python programming language, many Python tools have been developed to meet various functionalities over the years. There are so many that it's virtually impossible to manage all of them manually.

In this regard, many Python distributions efficiently manage hundreds of Python packages. In fact, instead of individually downloading the interpreter, which includes only the standard libraries, and then needing to individually install all the additional libraries, it is much easier to install a Python distribution.

At the heart of these distributions are the *package managers*, which are nothing more than applications that automatically manage, install, upgrade, configure, and remove Python packages that are part of the distribution.

Their functionality is very useful, since the user simply makes a request on a particular package (which could be an installation for example), and the package manager, usually via the Internet, performs the operation by analyzing the necessary version, alongside all dependencies with any other packages, and downloading them if they not present.

Anaconda

Anaconda is a free distribution of Python packages distributed by Continuum Analytics (https://www.anaconda.com). This distribution supports Linux, Windows, and MacOS X operating systems. Anaconda, in addition to providing the latest packages released in the Python world, comes bundled with most of the tools you need to set up a Python development environment.

Indeed, when you install the Anaconda distribution on your system, you can use many tools and applications described in this chapter, without worrying about having to install and manage each separately. The basic distribution includes Spyder as the IDE, IPython QtConsole, and Notebook.

The management of the entire Anaconda distribution is performed by an application called *conda*. This is the package manager and the environment manager of the Anaconda distribution and it handles all of the packages and their versions.

conda install <package name>

One of the most interesting aspects of this distribution is the ability to manage multiple development environments, each with its own version of Python. Indeed, when you install Anaconda, the Python version 2.7 is installed by default. All installed packages then will refer to that version. This is not a problem, because Anaconda offers the possibility to work simultaneously and independently with other Python versions by creating a new environment. You can create, for instance, an environment based on Python 3.6.

conda create -n py36 python=3.6 anaconda

This will generate a new Anaconda environment with all the packages related to the Python 3.6 version. This installation will not affect in any way the environment built with Python 2.7. Once it's installed, you can activate the new environment by entering the following command.

source activate py36

On Windows, use this instead:

activate py36

C:\Users\Fabio>activate py36
(py36) C:\Users\Fabio>

You can create as many versions of Python as you want; you need only to change the parameter passed with the python option in the conda create command. When you want to return to work with the original Python version, you have to use the following command:

source deactivate

On Windows, use this:

(py36) C:\Users\Fabio>deactivate
Deactivating environment "py36"...
C:\Users\Fabio>

Enthought Canopy

There is another distribution very similar to Anaconda and it is the Canopy distribution provided by Enthought, a company founded in 2001 and known for the SciPy project (https://www.enthought.com/products/canopy/). This distribution supports Linux, Windows, and MacOS X systems and it consists of a large amount of packages, tools, and applications managed by a package manager. The package manager of Canopy, as opposed to conda, is graphical.

Unfortunately, only the basic version of this distribution, called *Canopy Express*, is free; in addition to the package normally distributed, it also includes IPython and an IDE of Canopy that has a special feature that is not present in other IDEs. It has embedded the IPython in order to use this environment as a window for testing and debugging code.

Python(x,y)

Python(x,y) is a free distribution that works only on Windows and is downloadable from http://code.google.com/p/pythonxy/. This distribution uses Spyder as the IDE.

Using Python

Python is rich but simple and very flexible. It allows expansion of your development activities in many areas of work (data analysis, scientific, graphic interfaces, etc.). Precisely for this reason, Python can be used in many different contexts, often according to the taste and ability of the developer. This section presents the various approaches to using Python in the course of the book. According to the various topics discussed in different chapters, these different approaches will be used specifically, as they will be more suited to the task at hand.

Python Shell

The easiest way to approach the Python world is to open a session in the Python shell, which is a terminal running a command line. In fact, you can enter one command at a time and test its operation immediately. This mode makes clear the nature of the interpreter that underlies Python. In fact, the interpreter can read one command at a time, keeping the status of the variables specified in the previous lines, a behavior similar to that of MATLAB and other calculation software.

This approach is helpful when approaching Python the first time. You can test commands one at a time without having to write, edit, and run an entire program, which could be composed of many lines of code.

This mode is also good for testing and debugging Python code one line at a time, or simply to make calculations. To start a session on the terminal, simply type this on the command line:

```
>>> python
Python 3.6.3 (default, Oct 15 2017, 03:27:45) [MSC v.1900 64 bit (AMD64)]
on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
```

Now the Python shell is active and the interpreter is ready to receive commands in Python. Start by entering the simplest of commands, but a classic for getting started with programming.

```
>>> print("Hello World!")
Hello World!
```

Run an Entire Program

The best way to become familiar with Python is to write an entire program and then run it from the terminal. First write a program using a simple text editor. For example, you can use the code shown in Listing 2-1 and save it as MyFirstProgram.py.

```
Listing 2-1. MyFirstProgram.py
```

```
myname = input("What is your name? ")
print("Hi " + myname + ", I'm glad to say: Hello world!")
```

Now you've written your first program in Python, and you can run it directly from the command line by calling the python command and then the name of the file containing the program code.

```
python MyFirstProgram.py
What is your name? Fabio Nelli
Hi Fabio Nelli, I'm glad to say: Hello world!
```

Implement the Code Using an IDE

A more comprehensive approach than the previous ones is the use of an IDE (an *Integrated Development Environment*). These editors provide a work environment on which to develop your Python code. They are rich in tools that make developers' lives easier, especially when debugging. In the following sections, you will see in detail what IDEs are currently available.

Interact with Python

The last approach, and in my opinion, perhaps the most innovative, is the interactive one. In fact, in addition to the three previous approaches, this approach provides you the opportunity to interact directly with the Python code.

In this regard, the Python world has been greatly enriched with the introduction of *IPython*. IPython is a very powerful tool, designed specifically to meet the needs of interacting between the Python interpreter and the developer, which under this approach takes the role of analyst, engineer, or researcher. IPython and its features are explained in more detail in a later section.

Writing Python Code

In the previous section you saw how to write a simple program in which the string "Hello World" was printed. Now in this section you will get a brief overview of the basics of the Python language.

This section is not intended to teach you to program in Python, or to illustrate syntax rules of the programming language, but just to give you a quick overview of some basic principles of Python necessary to continue with the topics covered in this book.

If you already know the Python language, you can safely skip this introductory section. Instead if you are not familiar with programming and you find it difficult to understand the topics, I highly recommend that you visit online documentation, tutorials, and courses of various kinds.

Make Calculations

You have already seen that the print() function is useful for printing almost anything. Python, in addition to being a printing tool, is also a great calculator. Start a session on the Python shell and begin to perform these mathematical operations:

```
>>> 1 + 2
3
>>> (1.045 * 3)/4
0.78375
>>> 4 ** 2
16
>>> ((4 + 5j) * (2 + 3j))
(-7+22j)
>>> 4 < (2*3)
True</pre>
```

Python can calculate many types of data including complex numbers and conditions with Boolean values. As you can see from these calculations, the Python interpreter directly returns the result of the calculations without the need to use the print() function. The same thing applies to values contained in variables. It's enough to call the variable to see its contents.

```
>>> a = 12 * 3.4
>>> a
40.8
```

Import New Libraries and Functions

You saw that Python is characterized by the ability to extend its functionality by importing numerous packages and modules. To import a module in its entirety, you have to use the import command.

```
>>> import math
```

In this way all the functions contained in the math package are available in your Python session so you can call them directly. Thus you have extended the standard set of functions available when you start a Python session. These functions are called with the following expression.

```
library name.function name()
```

For example, you can now calculate the sine of the value contained in the variable a.

```
>>> math.sin(a)
```

As you can see, the function is called along with the name of the library. Sometimes you might find the following expression for declaring an import.

```
>>> from math import *
```

Even if this works properly, it is to be avoided for good practice. In fact, writing an import in this way involves the importation of all functions without necessarily defining the library to which they belong.

```
>>> sin(a)
0.040693257349864856
```

This form of import can lead to very large errors, especially if the imported libraries are numerous. In fact, it is not unlikely that different libraries have functions with the same name, and importing all of these would result in an override of all functions with the same name previously imported. Therefore the behavior of the program could generate numerous errors or worse, abnormal behavior.

Actually, this way to import is generally used for only a limited number of functions, that is, functions that are strictly necessary for the functioning of the program, thus avoiding the importation of an entire library when it is completely unnecessary.

```
>>> from math import sin
```

Data Structure

You saw in the previous examples how to use simple variables containing a single value. Python provides a number of extremely useful data structures. These data structures are able to contain lots of data simultaneously and sometimes even data of different types.

The various data structures provided are defined differently depending on how their data are structured internally.

- List
- Set
- Strings
- Tuples
- Dictionary
- Deque
- Heap

This is only a small part of all the data structures that can be made with Python. Among all these data structures, the most commonly used are *dictionaries* and *lists*.

The type *dictionary*, defined also as *dicts*, is a data structure in which each particular value is associated with a particular label, called a *key*. The data collected in a dictionary have no internal order but are only definitions of key/value pairs.

```
>>> dict = {'name':'William', 'age':25, 'city':'London'}
```

If you want to access a specific value within the dictionary, you have to indicate the name of the associated key.

```
>>> dict["name"]
'William'
```

If you want to iterate the pairs of values in a dictionary, you have to use the for-in construct. This is possible through the use of the items() function.

```
>>> for key, value in dict.items():
... print(key,value)
...
name William
age 25
city London
```

The type *list* is a data structure that contains a number of objects in a precise order to form a sequence to which elements can be added and removed. Each item is marked with a number corresponding to the order of the sequence, called the *index*.

```
>>> list = [1,2,3,4]
>>> list
[1, 2, 3, 4]
```

If you want to access the individual elements, it is sufficient to specify the index in square brackets (the first item in the list has 0 as its index), while if you take out a portion of the list (or a sequence), it is sufficient to specify the range with the indices i and j corresponding to the extremes of the portion.

```
>>> list[2]
3
>>> list[1:3]
[2, 3]
```

If you are using negative indices instead, this means you are considering the last item in the list and gradually moving to the first.

```
>>> list[-1]
4
```

In order to do a scan of the elements of a list, you can use the for-in construct.

Functional Programming

The for-in loop shown in the previous example is very similar to loops found in other programming languages. But actually, if you want to be a "Python" developer, you have to avoid using explicit loops. Python offers alternative approaches, specifying programming techniques such as *functional programming* (expression-oriented programming).

The tools that Python provides to develop functional programming comprise a series of functions:

- map(function, list)
- filter(function, list)
- reduce(function, list)
- lambda
- list comprehension

The for loop that you have just seen has a specific purpose, which is to apply an operation on each item and then somehow gather the result. This can be done by the map() function.

```
>>> items = [1,2,3,4,5]
>>> def inc(x): return x+1
...
>>> list(map(inc,items))
[2, 3, 4, 5, 6]
```

In the previous example, it first defines the function that performs the operation on every single element, and then it passes it as the first argument to map(). Python allows you to define the function directly within the first argument using lambda as a function. This greatly reduces the code and compacts the previous construct into a single line of code.

```
>>> list(map((lambda x: x+1),items))
[2, 3, 4, 5, 6]
```

Two other functions working in a similar way are filter() and reduce(). The filter() function extracts the elements of the list for which the function returns True. The reduce() function instead considers all the elements of the list to produce a single result. To use reduce(), you must import the module functions.

Both of these functions implement other types by using the for loop. They replace these cycles and their functionality, which can be alternatively expressed with simple functions. That is what constitutes *functional programming*.

The final concept of functional programming is *list comprehension*. This concept is used to build lists in a very natural and simple way, referring to them in a manner similar to how mathematicians describe datasets. The values in the sequence are defined through a particular function or operation.

```
>>> S = [x**2 for x in range(5)]
>>> S
[0, 1, 4, 9, 16]
```

Indentation

A peculiarity for those coming from other programming languages is the role that *indentation* plays. Whereas you used to manage the indentation for purely aesthetic reasons, making the code somewhat more readable, in Python indentation assumes an integral role in the implementation of the code, by dividing it into logical blocks. In fact, while in Java, C, and C++, each line of code is separated from the next by a semicolon (;), in Python you should not specify any symbol that separates them, included the braces to indicate a logical block.

These roles in Python are handled through indentation; that is, depending on the starting point of the code line, the interpreter determines whether it belongs to a logical block or not.

In this example you can see that depending on how the else command is indented, the conditions assume two different meanings (specified by me in the strings themselves).

IPython

IPython is a further development of Python that includes a number of tools:

- The IPython shell, which is a powerful interactive shell resulting in a greatly enhanced Python terminal.
- A QtConsole, which is a hybrid between a shell and a GUI, allowing you to display graphics inside the console instead of in separate windows.
- The IPython Notebook, which is a web interface that allows you to mix text, executable code, graphics, and formulas in a single representation.

IPython Shell

This shell apparently resembles a Python session run from a command line, but actually, it provides many other features that make this shell much more powerful and versatile than the classic one. To launch this shell, just type ipython on the command line.

```
> ipython
Python 3.6.3 (default, Oct 15 2017, 3:27:45) [MSC v.1900 64bit (AMD64)]
Type "copyright", "credits", or "license" for more information.

IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help
In [1]:
```

As you can see, a particular prompt appears with the value In [1]. This means that it is the first line of input. Indeed, IPython offers a system of numbered prompts (indexed) with input and output caching.

```
In [1]: print("Hello World!")
Hello World!
In [2]: 3/2
Out[2]: 1.5
In [3]: 5.0/2
Out[3]: 2.5
In [4]:
```

The same thing applies to values in output that are indicated with the values Out[1], Out [2], and so on. IPython saves all inputs that you enter by storing them as variables. In fact, all the inputs entered were included as fields in a list called In.

```
In [4]: In
Out[4]: [", 'print "Hello World!"', '3/2', '5.0/2', 'In']
```

The indices of the list elements are the values that appear in each prompt. Thus, to access a single line of input, you can simply specify that value.

```
In [5]: In[3]
Out[5]: '5.0/2'
```

For output, you can apply the same concept.

```
In [6]: Out
Out[6]:
{2: 1,
    3: 2.5,
    4: ['',
        u'print "Hello World!"',
        u'3/2',
        u'5.0/2',
        u'In',
        u'In[3]',
        u'Out'],
5: u'5.0/2'}
```

The Jupyter Project

IPython is a project that has grown enormously in recent times, and with the release of IPython 3.0, everything is moving toward a new project called Jupyter (https://jupyter.org)—see Figure 2-2.

Figure 2-2. The Jupyter project logo

IPython will continue to exist as a Python shell and as a kernel of Jupyter, but the Notebook and the other language-agnostic components belonging to the IPython project will move to form the new Jupyter project.

Jupyter QtConsole

In order to launch this application from the command line, you must enter the following command:

ipython qtconsole
or
jupyter qtconsole

The application consists of a GUI that has all the functionality present in the IPython shell. See Figure 2-3.

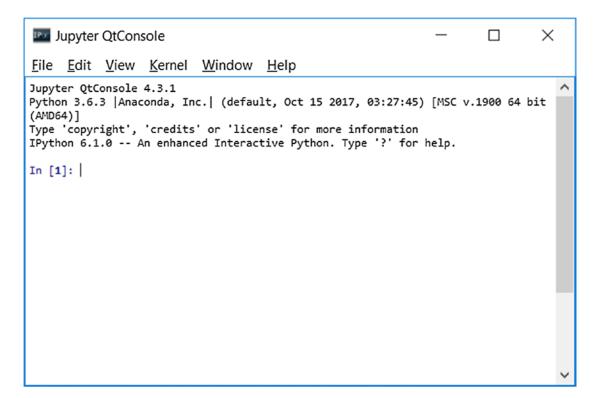


Figure 2-3. The IPython QtConsole

Jupyter Notebook

Jupyter Notebook is the latest evolution of this interactive environment (see Figure 2-4). In fact, with Jupyter Notebook, you can merge executable code, text, formulas, images, and animations into a single Web document. This is useful for many purposes such as presentations, tutorials, debug, and so forth.

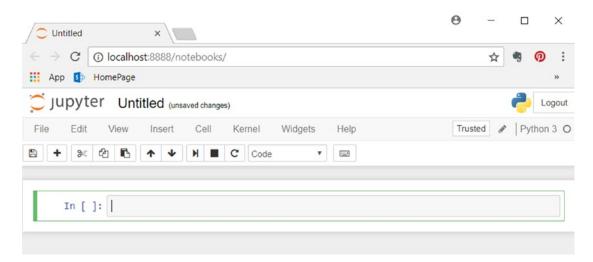


Figure 2-4. The web page showing the Jupyter Notebook

PyPI—The Python Package Index

The Python Package Index (PyPI) is a software repository that contains all the software needed for programming in Python, for example, all Python packages belonging to other Python libraries. The content repository is managed directly by the developers of individual packages that deal with updating the repository with the latest versions of their released libraries. For a list of the packages contained in the repository, go to the official page of PyPI at https://pypi.python.org/pypi.

As far as the administration of these packages, you can use the pip application, which is the package manager of PyPI.

By launching it from the command line, you can manage all the packages and individually decide if a package should be installed, upgraded, or removed. Pip will check if the package is already installed, or if it needs to be updated, to control dependencies, and to assess whether other packages are necessary. Furthermore, it manages the downloading and installation processes.

```
$ pip install <<package_name>>
$ pip search <<package_name>>
$ pip show <<package_name>>
$ pip unistall <<package_name>>
```

Regarding the installation, if you have Python 3.4+ (released March 2014) and Python 2.7.9+ (released December 2014) already installed on your system, the pip software is already included in these releases of Python. However, if you are still using an older version of Python, you need to install pip on your system. The installation of pip on your system depends on the operating system on which you are working.

On Linux Debian-Ubuntu, use this command:

```
$ sudo apt-get install python-pip
```

On Linux Fedora, use this command:

```
$ sudo yum install python-pip
```

On Windows, visit https://pip.pypa.io/en/latest/installing/ and download get-pip.py onto your PC. Once the file is downloaded, run this command:

```
python get-pip.py
```

This way, you will install the package manager. Remember to add C:\Python3.X\ Scripts to the PATH environment variable.

The IDEs for Python

Although most of the Python developers are used to implementing their code directly from the shell (Python or IPython), some IDEs (Interactive Development Environments) are also available. In fact, in addition to a text editor, these graphics editors also provide a series of tools that are very useful during the drafting of the code. For example, the auto-completion of code, viewing the documentation associated with the commands, debugging, and breakpoints are only some of the tools that this kind of application can provide.

Spyder

Spyder (Scientific Python Development Environment) is an IDE that has similar features to the IDE of MATLAB (see Figure 2-5). The text editor is enriched with syntax highlighting and code analysis tools. Also, you can integrate ready-to-use widgets in your graphic applications.

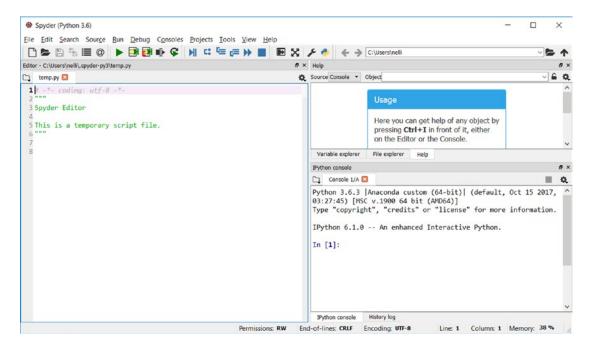


Figure 2-5. The Spyder IDE

Eclipse (pyDev)

Those of you who have developed in other programming languages certainly know Eclipse, a universal IDE developed entirely in Java (therefore requiring Java installation on your PC) that provides a development environment for many programming languages (see Figure 2-6). There is also an Eclipse version for developing in Python, thanks to the installation of an additional plugin called *pyDev*.

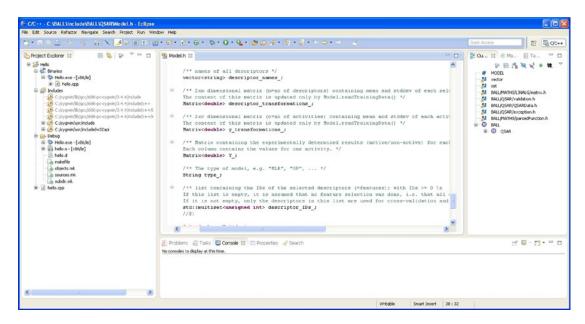


Figure 2-6. The Eclipse IDE

Sublime

This text editor is one of the preferred environments for Python programmers (see Figure 2-7). In fact, there are several plugins available for this application that make Python implementation easy and enjoyable.

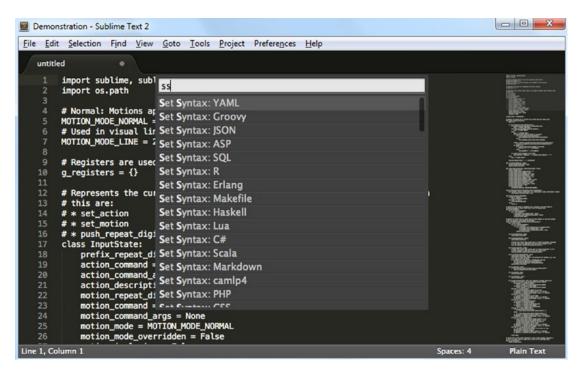


Figure 2-7. The Sublime IDE

Liclipse

Liclipse, similarly to Spyder, is a development environment specifically designed for the Python language (see Figure 2-8). It is very similar to the Eclipse IDE but it is fully adapted for a specific use in Python, without needing to install plugins like PyDev. So its installation and settings are much simpler than Eclipse.

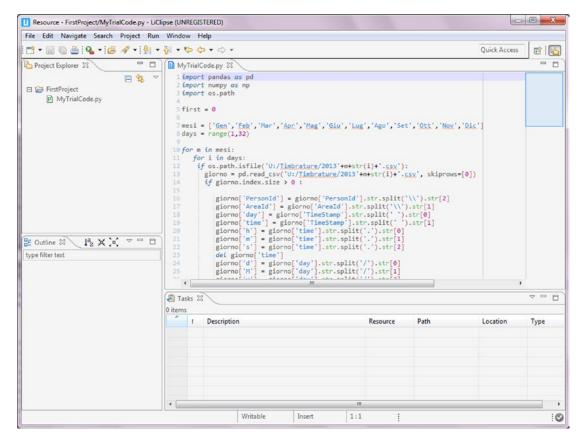


Figure 2-8. The Liclipse IDE

NinjaIDE

NinjaIDE (NinjaIDE is "Not Just Another IDE"), which characterized by a name that is a recursive acronym, is a specialized IDE for the Python language (see Figure 2-9). It's a very recent application on which the efforts of many developers are focused. Already very promising, it is likely that in the coming years, this IDE will be a source of many surprises.

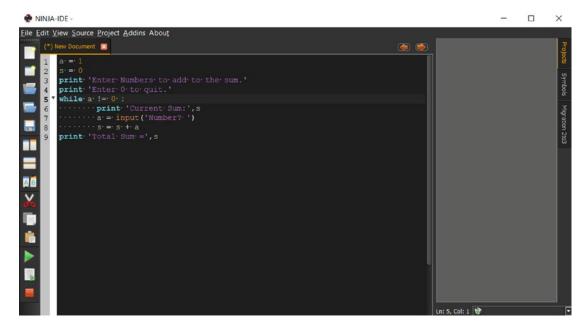


Figure 2-9. The Ninja IDE

Komodo IDE

Komodo is a very powerful IDE full of tools that make it a complete and professional development environment (see Figure 2-10). Paid software and written in C++, the Komodo development environment is adaptable to many programming languages, including Python.

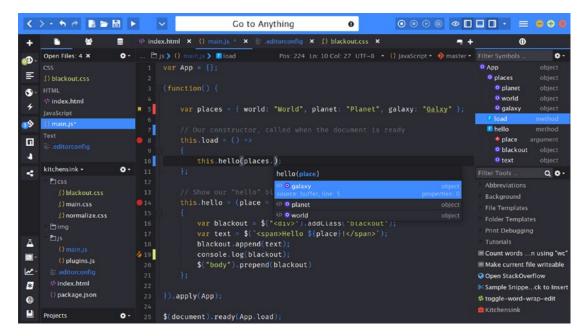


Figure 2-10. The Komodo IDE

SciPy

SciPy (pronounced "sigh pie") is a set of open-source Python libraries specialized for scientific computing. Many of these libraries are the protagonists of many chapters of the book, given that their knowledge is critical to data analysis. Together they constitute a set of tools for calculating and displaying data. It has little to envy from other specialized environments for calculation and data analysis (such as R or MATLAB). Among the libraries that are part of the SciPy group, there are three in particular that are discussed in the following chapters:

- NumPy
- · matplotlib
- Pandas

NumPy

This library, whose name means *numerical Python*, constitutes the core of many other Python libraries that have originated from it. Indeed, NumPy is the foundation library for scientific computing in Python since it provides data structures and high-performing functions that the basic package of the Python cannot provide. In fact, as you will see later in the book, NumPy defines a specific data structure that is an *N*-dimensional array defined as *ndarray*.

Knowledge of this library is essential in terms of numerical calculations since its correct use can greatly influence the performance of your computations. Throughout the book, this library is almost omnipresent because of its unique characteristics, so an entire chapter is devoted to it (Chapter 3).

This package provides some features that will be added to the standard Python:

- *Ndarray*: A multidimensional array much faster and more efficient than those provided by the basic package of Python.
- *Element-wise computation*: A set of functions for performing this type of calculation with arrays and mathematical operations between arrays.
- *Reading-writing datasets*: A set of tools for reading and writing data stored in the hard disk.
- Integration with other languages such as C, C++, and FORTRAN: A set of tools to integrate code developed with these programming languages.

Pandas

This package provides complex data structures and functions specifically designed to make the work on them easy, fast, and effective. This package is the core of data analysis in Python. Therefore, the study and application of this package is the main goal on which you will work throughout the book (especially in Chapters 4, 5, and 6). Knowledge of its every detail, especially when it is applied to data analysis, is a fundamental objective of this book.

The fundamental concept of this package is the *DataFrame*, a two-dimensional tabular data structure with row and column labels.

Pandas applies the high-performance properties of the NumPy library to the manipulation of data in spreadsheets or in relational databases (SQL databases). In fact, by using sophisticated indexing, it will be easy to carry out many operations on this kind of data structure, such as reshaping, slicing, aggregations, and the selection of subsets.

matplotlib

This package is the Python library that is currently most popular for producing plots and other data visualizations in 2D. Since data analysis requires visualization tools, this is the library that best suits this purpose. In Chapter 7, you learn about this rich library in detail so you will know how to represent the results of your analysis in the best way.

Conclusions

During the course of this chapter, all the fundamental aspects characterizing the Python world have been illustrated. The basic concepts of the Python programming language were introduced, with brief examples explaining its innovative aspects and how it stands out compared to other programming languages. In addition, different ways of using Python at various levels were presented. First you saw how to use a simple command-line interpreter, then a set of simple graphical user interfaces were shown until you got to complex development environments, known as IDEs, such as Spyder, Liclipse, and NinjaIDE.

Even the highly innovative project Jupyter (IPython) was presented, showing you how you can develop Python code interactively, in particular with the Jupyter Notebook.

Moreover, the modular nature of Python was highlighted with the ability to expand the basic set of standard functions provided by Python's external libraries. In this regard, the PyPI online repository was shown along with other Python distributions such as Anaconda and Enthought Canopy.

In the next chapter, you deal with the first library that is the basis of all numerical calculations in Python: NumPy. You learn about the ndarray, a data structure which is the basis of the more complex data structures used in data analysis in the following chapters.

The NumPy Library

NumPy is a basic package for scientific computing with Python and especially for data analysis. In fact, this library is the basis of a large amount of mathematical and scientific Python packages, and among them, as you will see later in the book, the pandas library. This library, specialized for data analysis, is fully developed using the concepts introduced by NumPy. In fact, the built-in tools provided by the standard Python library could be too simple or inadequate for most of the calculations in data analysis.

Having knowledge of the NumPy library is important to being able to use all scientific Python packages, and particularly, to use and understand the pandas library. The pandas library is the main subject of the following chapters.

If you are already familiar with this library, you can proceed directly to the next chapter; otherwise you may see this chapter as a way to review the basic concepts or to regain familiarity with it by running the examples in this chapter.

NumPy: A Little History

At the dawn of the Python language, the developers needed to perform numerical calculations, especially when this language was being used by the scientific community.

The first attempt was Numeric, developed by Jim Hugunin in 1995, which was followed by an alternative package called Numarray. Both packages were specialized for the calculation of arrays, and each had strengths depending on in which case they were used. Thus, they were used differently depending on the circumstances. This ambiguity led then to the idea of unifying the two packages. Travis Oliphant started to develop the NumPy library for this purpose. Its first release (v 1.0) occurred in 2006.

From that moment on, NumPy proved to be the extension library of Python for scientific computing, and it is currently the most widely used package for the calculation of multidimensional arrays and large arrays. In addition, the package comes with a range of functions that allow you to perform operations on arrays in a highly efficient way and perform high-level mathematical calculations.

Currently, NumPy is open source and licensed under BSD. There are many contributors who have expanded the potential of this library.

The NumPy Installation

Generally, this module is present as a basic package in most Python distributions; however, if not, you can install it later.

On Linux (Ubuntu and Debian), use:

sudo apt-get install python-numpy

On Linux (Fedora)

sudo yum install numpy scipy

On Windows with Anaconda, use:

conda install numpy

Once NumPy is installed on your distribution, to import the NumPy module within your Python session, write the following:

>>> import numpy as np

Ndarray: The Heart of the Library

The NumPy library is based on one main object: *ndarray* (which stands for N-dimensional array). This object is a multidimensional homogeneous array with a predetermined number of items: homogeneous because virtually all the items in it are of the same type and the same size. In fact, the data type is specified by another NumPy object called *dtype* (data-type); each ndarray is associated with only one type of dtype.

The number of the dimensions and items in an array is defined by its *shape*, a tuple of *N*-positive integers that specifies the size for each dimension. The dimensions are defined as *axes* and the number of axes as *rank*.

Moreover, another peculiarity of NumPy arrays is that their size is fixed, that is, once you define their size at the time of creation, it remains unchanged. This behavior is different from Python lists, which can grow or shrink in size.

The easiest way to define a new ndarray is to use the array() function, passing a Python list containing the elements to be included in it as an argument.

```
>>> a = np.array([1, 2, 3])
>>> a
array([1, 2, 3])
```

You can easily check that a newly created object is an ndarray by passing the new variable to the type() function.

```
>>> type(a)
<type 'numpy.ndarray'>
```

In order to know the associated dtype to the newly created ndarray, you have to use the dtype attribute.

Note The result of dtype, shape, and other attributes can vary among different operating systems and Python distributions.

```
>>> a.dtype
dtype('int64')
```

The just-created array has one axis, and then its rank is 1, while its shape should be (3,1). To obtain these values from the corresponding array, it is sufficient to use the ndim attribute for getting the axes, the size attribute to know the array length, and the shape attribute to get its shape.

```
>>> a.ndim
1
>>> a.size
3
>>> a.shape
(3,)
```

CHAPTER 3 THE NUMPY LIBRARY

What you have just seen is the simplest case of a one-dimensional array. But the use of arrays can be easily extended to several dimensions. For example, if you define a two-dimensional array 2x2:

```
>>> b = np.array([[1.3, 2.4],[0.3, 4.1]])
>>> b.dtype
dtype('float64')
>>> b.ndim
2
>>> b.size
4
>>> b.shape
(2, 2)
```

This array has rank 2, since it has two axes, each of length 2.

Another important attribute is itemsize, which can be used with ndarray objects. It defines the size in bytes of each item in the array, and data is the buffer containing the actual elements of the array. This second attribute is still not generally used, since to access the data within the array you will use the indexing mechanism that you will see in the next sections.

```
>>> b.itemsize
8
>>> b.data
<read-write buffer for 0x000000002D34DF0, size 32, offset 0 at
0x0000000002D5FEA0>
```

Create an Array

To create a new array, you can follow different paths. The most common path is the one you saw in the previous section through a list or sequence of lists as arguments to the array() function.

The array() function, in addition to lists, can accept tuples and sequences of tuples.

It can also accept sequences of tuples and interconnected lists .

Types of Data

So far you have seen only simple integer and float numeric values, but NumPy arrays are designed to contain a wide variety of data types (see Table 3-1). For example, you can use the data type string:

Table 3-1. Data Types Supported by NumPy

Data Type	Description
bool_	Boolean (true or false) stored as a byte
int_	Default integer type (same as C long; normally either int64 or int32)
intc	Identical to C int (normally int32 or int64)
intp	Integer used for indexing (same as C size_t; normally either int32 or int64)
int8	Byte (-128 to 127)
int16	Integer (-32768 to 32767)
int32	Integer (-2147483648 to 2147483647)
int64	Integer (-9223372036854775808 to 9223372036854775807)
uint8	Unsigned integer (0 to 255)
uint16	Unsigned integer (0 to 65535)
uint32	Unsigned integer (0 to 4294967295)
uint64	Unsigned integer (0 to 18446744073709551615)
float_	Shorthand for float64
float16	Half precision float: sign bit, 5-bit exponent, 10-bit mantissa
float32	Single precision float: sign bit, 8-bit exponent, 23-bit mantissa
float64	Double precision float: sign bit, 11-bit exponent, 52-bit mantissa
complex_	Shorthand for complex128
complex64	Complex number, represented by two 32-bit floats (real and imaginary components)
complex128	Complex number, represented by two 64-bit floats (real and imaginary components)

The dtype Option

The array() function does not accept a single argument. You have seen that each ndarray object is associated with a dtype object that uniquely defines the type of data that will occupy each item in the array. By default, the array() function can associate the most suitable type according to the values contained in the sequence of lists or tuples. Actually, you can explicitly define the dtype using the dtype option as argument of the function.

For example, if you want to define an array with complex values, you can use the dtype option as follows:

Intrinsic Creation of an Array

The NumPy library provides a set of functions that generate ndarrays with initial content, created with different values depending on the function. Throughout the chapter, and throughout the book, you'll discover that these features will be very useful. In fact, they allow a single line of code to generate large amounts of data.

The zeros() function, for example, creates a full array of zeros with dimensions defined by the shape argument. For example, to create a two-dimensional array 3x3, you can use:

While the ones () function creates an array full of ones in a very similar way.

By default, the two functions created arrays with the float64 data type. A feature that will be particularly useful is arange(). This function generates NumPy arrays with numerical sequences that respond to particular rules depending on the passed arguments. For example, if you want to generate a sequence of values between 0 and 10, you will be passed only one argument to the function, that is the value with which you want to end the sequence.

```
>>> np.arange(0, 10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

CHAPTER 3 THE NUMPY LIBRARY

If instead of starting from zero you want to start from another value, you simply specify two arguments: the first is the starting value and the second is the final value.

```
>>> np.arange(4, 10)
array([4, 5, 6, 7, 8, 9])
```

It is also possible to generate a sequence of values with precise intervals between them. If the third argument of the arange() function is specified, this will represent the gap between one value and the next one in the sequence of values.

```
>>> np.arange(0, 12, 3) array([0, 3, 6, 9])
```

In addition, this third argument can also be a float.

```
>>> np.arange(0, 6, 0.6)
array([ 0. , 0.6, 1.2, 1.8, 2.4, 3. , 3.6, 4.2, 4.8, 5.4])
```

So far you have only created one-dimensional arrays. To generate two-dimensional arrays you can still continue to use the arange() function but combined with the reshape() function. This function divides a linear array in different parts in the manner specified by the shape argument.

Another function very similar to arange() is linspace(). This function still takes as its first two arguments the initial and end values of the sequence, but the third argument, instead of specifying the distance between one element and the next, defines the number of elements into which we want the interval to be split.

```
>>> np.linspace(0,10,5)
array([ 0. , 2.5, 5. , 7.5, 10. ])
```

Finally, another method to obtain arrays already containing values is to fill them with random values. This is possible using the random() function of the numpy.random module. This function will generate an array with many elements as specified in the argument.

```
>>> np.random.random(3)
array([ 0.78610272,  0.90630642,  0.80007102])
```

The numbers obtained will vary with every run. To create a multidimensional array, you simply pass the size of the array as an argument.

Basic Operations

So far you have seen how to create a new NumPy array and how items are defined in it. Now it is the time to see how to apply various operations to them.

Arithmetic Operators

The first operations that you will perform on arrays are the arithmetic operators. The most obvious are adding and multiplying an array by a scalar.

```
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> a+4
array([4, 5, 6, 7])
>>> a*2
array([0, 2, 4, 6])
```

These operators can also be used between two arrays. In NumPy, these operations are *element-wise*, that is, the operators are applied only between corresponding elements. These are objects that occupy the same position, so that the end result will be a new array containing the results in the same location of the operands (see Figure 3-1).

CHAPTER 3 THE NUMPY LIBRARY

```
>>> b = np.arange(4,8)
>>> b
array([4, 5, 6, 7])
>>> a + b
array([ 4,  6,  8, 10])
>>> a - b
array([-4, -4, -4, -4])
>>> a * b
array([ 0,  5, 12, 21])
```

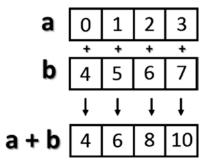


Figure 3-1. Element-wise addition

Moreover, these operators are also available for functions, provided that the value returned is a NumPy array. For example, you can multiply the array by the sine or the square root of the elements of array $\bf b$.

Moving on to the multidimensional case, even here the arithmetic operators continue to operate element-wise.

The Matrix Product

The choice of operating element-wise is a peculiar aspect of the NumPy library. In fact, in many other tools for data analysis, the * operator is understood as a *matrix product* when it is applied to two matrices. Using NumPy, this kind of product is instead indicated by the dot() function. This operation is not element-wise.

The result at each position is the sum of the products of each element of the corresponding row of the first matrix with the corresponding element of the corresponding column of the second matrix. Figure 3-2 illustrates the process carried out during the matrix product (run for two elements).

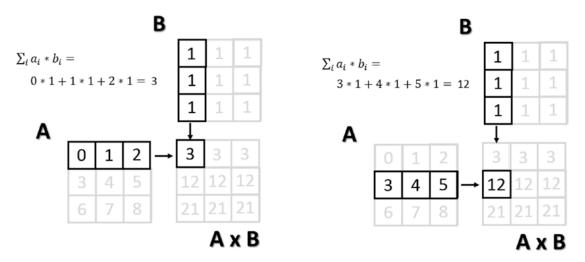


Figure 3-2. Calculating matrix elements as a result of a matrix product

An alternative way to write the matrix product is to see the dot() function as an object's function of one of the two matrices.

Note that since the matrix product is not a commutative operation, the order of the operands is important. Indeed, A * B is not equal to B * A.

Increment and Decrement Operators

Actually, there are no such operators in Python, since there are no operators called ++ or --. To increase or decrease values, you have to use operators such as += and -=. These operators are not different from ones you saw earlier, except that instead of creating a new array with the results, they will reassign the results to the same array.

```
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> a += 1
>>> a
array([1, 2, 3, 4])
>>> a -= 1
>>> a
array([0, 1, 2, 3])
```

Therefore, using these operators is much more extensive than the simple incremental operators that increase the values by one unit, and they can be applied in many cases. For instance, you need them every time you want to change the values in an array without generating a new one.

```
array([0, 1, 2, 3])
>>> a += 4
>>> a
array([4, 5, 6, 7])
>>> a *= 2
>>> a
array([ 8, 10, 12, 14])
```

Universal Functions (ufunc)

A universal function, generally called ufunc, is a function operating on an array in an element-by-element fashion. This means that it acts individually on each single element of the input array to generate a corresponding result in a new output array. In the end, you obtain an array of the same size as the input.

There are many mathematical and trigonometric operations that meet this definition; for example, calculating the square root with sqrt(), the logarithm with log(), or the sin with sin().

```
>>> a = np.arange(1, 5)
>>> a
array([1, 2, 3, 4])
```

Many functions are already implemented in the library NumPy.

Aggregate Functions

Aggregate functions perform an operation on a set of values, an array for example, and produce a single result. Therefore, the sum of all the elements in an array is an aggregate function. Many functions of this kind are implemented within the class ndarray.

```
>>> a = np.array([3.3, 4.5, 1.2, 5.7, 0.3])
>>> a.sum()
15.0
>>> a.min()
0.299999999999999
>>> a.max()
5.70000000000000002
>>> a.mean()
3.0
>>> a.std()
2.0079840636817816
```

Indexing, Slicing, and Iterating

In the previous sections, you saw how to create an array and how to perform operations on it. In this section, you will see how to manipulate these objects. You'll learn how to select elements through indexes and slices, in order to obtain the values contained in them or to make assignments in order to change their values. Finally, you will also see how you can make iterations within them.

Indexing

Array indexing always uses square brackets ([]) to index the elements of the array so that the elements can then be referred individually for various, uses such as extracting a value, selecting items, or even assigning a new value.

When you create a new array, an appropriate scale index is also automatically created (see Figure 3-3).

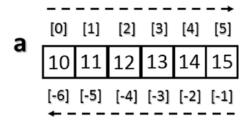


Figure 3-3. Indexing a monodimensional ndarray

In order to access a single element of an array, you can refer to its index.

```
>>> a = np.arange(10, 16)
>>> a
array([10, 11, 12, 13, 14, 15])
>>> a[4]
14
```

The NumPy arrays also accept negative indexes. These indexes have the same incremental sequence from 0 to -1, -2, and so on, but in practice they cause the final element to move gradually toward the initial element, which will be the one with the more negative index value.

```
>>> a[-1]
15
>>> a[-6]
10
```

To select multiple items at once, you can pass array of indexes in square brackets.

```
>>> a[[1, 3, 4]]
array([11, 13, 14])
```

CHAPTER 3 THE NUMPY LIBRARY

Moving on to the two-dimensional case, namely the matrices, they are represented as rectangular arrays consisting of rows and columns, defined by two axes, where axis 0 is represented by the rows and axis 1 is represented by the columns. Thus, indexing in this case is represented by a pair of values: the first value is the index of the row and the second is the index of the column. Therefore, if you want to access the values or select elements in the matrix, you will still use square brackets, but this time there are two values [row index, column index] (see Figure 3-4).

Α	[,0]	[,1]	[,2]
[0,]	10	11	12
[1,]	13	14	15
[2,]	16	17	18

Figure 3-4. Indexing a bidimensional array

If you want to remove the element of the third column in the second row, you have to insert the pair [1, 2].

```
>>> A[1, 2]
```

Slicing

Slicing allows you to extract portions of an array to generate new arrays. When when you use the Python lists to slice arrays, the resulting arrays are copies, but in NumPy, the arrays are views of the same underlying buffer.

Depending on the portion of the array that you want to extract (or view), you must use the slice syntax; that is, you will use a sequence of numbers separated by colons (:) within square brackets.

If you want to extract a portion of the array, for example one that goes from the second to the sixth element, you have to insert the index of the starting element, that is 1, and the index of the final element, that is 5, separated by :.

```
>>> a = np.arange(10, 16)
>>> a
array([10, 11, 12, 13, 14, 15])
>>> a[1:5]
array([11, 12, 13, 14])
```

Now if you want to extract an item from the previous portion and skip a specific number of following items, then extract the next and skip again, you can use a third number that defines the gap in the sequence of the elements. For example, with a value of 2, the array will take the elements in an alternating fashion.

```
>>> a[1:5:2]
array([11, 13])
```

To better understand the slice syntax, you also should look at cases where you do not use explicit numerical values. If you omit the first number, NumPy implicitly interprets this number as 0 (i.e., the initial element of the array). If you omit the second number, this will be interpreted as the maximum index of the array; and if you omit the last number this will be interpreted as 1. All the elements will be considered without intervals.

CHAPTER 3 THE NUMPY LIBRARY

```
>>> a[::2]
array([10, 12, 14])
>>> a[:5:2]
array([10, 12, 14])
>>> a[:5:]
array([10, 11, 12, 13, 14])
```

In the case of a two-dimensional array, the slicing syntax still applies, but it is separately defined for the rows and columns. For example, if you want to extract only the first row:

As you can see in the second index, if you leave only the colon without defining a number, you will select all the columns. Instead, if you want to extract all the values of the first column, you have to write the inverse.

```
>>> A[:,0]
array([10, 13, 16])
```

Instead, if you want to extract a smaller matrix, you need to explicitly define all intervals with indexes that define them.

If the indexes of the rows or columns to be extracted are not contiguous, you can specify an array of indexes.

```
>>> A[[0,2], 0:2] array([[10, 11], [16, 17]])
```

Iterating an Array

In Python, the iteration of the items in an array is really very simple; you just need to use the for construct.

Of course, even here, moving to the two-dimensional case, you could think of applying the solution of two nested loops with the for construct. The first loop will scan the rows of the array, and the second loop will scan the columns. Actually, if you apply the for loop to a matrix, it will always perform a scan according to the first axis.

```
>>> for row in A:
... print(row)
...
[10 11 12]
[13 14 15]
[16 17 18]
```

If you want to make an iteration element by element, you can use the following construct, using the for loop on A.flat.

CHAPTER 3 THE NUMPY LIBRARY

16 17

18

However, despite all this, NumPy offers an alternative and more elegant solution than the for loop. Generally, you need to apply an iteration to apply a function on the rows or on the columns or on an individual item. If you want to launch an aggregate function that returns a value calculated for every single column or on every single row, there is an optimal way that leaves it to NumPy to manage the iteration: the apply_along axis() function.

This function takes three arguments: the aggregate function, the axis on which to apply the iteration, and the array. If the option axis equals 0, then the iteration evaluates the elements column by column, whereas if axis equals 1 then the iteration evaluates the elements row by row. For example, you can calculate the average values first by column and then by row.

```
>>> np.apply_along_axis(np.mean, axis=0, arr=A)
array([ 13., 14., 15.])
>>> np.apply_along_axis(np.mean, axis=1, arr=A)
array([ 11., 14., 17.])
```

In the previous case, you used a function already defined in the NumPy library, but nothing prevents you from defining your own functions. You also used an aggregate function. However, nothing forbids you from using an ufunc. In this case, iterating by column and by row produces the same result. In fact, using a ufunc performs one iteration element-by-element.

```
>>> def foo(x):
... return x/2
...
>>> np.apply_along_axis(foo, axis=1, arr=A)
array([[5., 5.5, 6.],
        [6.5, 7., 7.5],
        [8., 8.5, 9.]])
>>> np.apply_along_axis(foo, axis=0, arr=A)
array([[5., 5.5, 6.],
        [6.5, 7., 7.5],
        [8., 8.5, 9.]])
```

As you can see, the ufunc function halves the value of each element of the input array regardless of whether the iteration is performed by row or by column.

Conditions and Boolean Arrays

So far you have used indexing and slicing to select or extract a subset of an array. These methods use numerical indexes. An alternative way to selectively extract the elements in an array is to use the conditions and Boolean operators.

Suppose you wanted to select all the values that are less than 0.5 in a 4x4 matrix containing random numbers between 0 and 1.

Once a matrix of random numbers is defined, if you apply an operator condition, you will receive as a return value a Boolean array containing true values in the positions in which the condition is satisfied. In this example, that is all the positions in which the values are less than 0.5.

Actually, the Boolean arrays are used implicitly for making selections of parts of arrays. In fact, by inserting the previous condition directly inside the square brackets, you will extract all elements smaller than 0.5, so as to obtain a new array.

```
>>> A[A < 0.5]
array([ 0.03536295,  0.0035115 ,  0.21264709,  0.17121982,  0.43408927,  0.04523647,  0.42582897,  0.22286282])
```

Shape Manipulation

You already saw, during the creation of a two-dimensional array, how it is possible to convert a one-dimensional array into a matrix, thanks to the reshape() function.

The reshape() function returns a new array and can therefore create new objects. However if you want to modify the object by modifying the shape, you have to assign a tuple containing the new dimensions directly to its shape attribute.

As you can see, this time it is the starting array to change shape and there is no object returned. The inverse operation is also possible, that is, you can convert a two-dimensional array into a one-dimensional array, by using the ravel() function.

Or even here acting directly on the shape attribute of the array itself.

Another important operation is transposing a matrix, which is inverting the columns with the rows. NumPy provides this feature with the transpose() function.

Array Manipulation

Often you need to create an array using already created arrays. In this section, you will see how to create new arrays by joining or splitting arrays that are already defined.

Joining Arrays

You can merge multiple arrays to form a new one that contains all of the arrays. NumPy uses the concept of *stacking*, providing a number of functions in this regard. For example, you can perform vertical stacking with the vstack() function, which combines the second array as new rows of the first array. In this case, the array grows in a vertical direction. By contrast, the hstack() function performs horizontal stacking; that is, the second array is added to the columns of the first array.

```
[ 0., 0., 0.],
      [ 0., 0., 0.],
      [ 0., 0., 0.]])
>>> np.hstack((A,B))
array([[ 1., 1., 1., 0., 0., 0.],
      [ 1., 1., 1., 0., 0., 0.]])
```

Two other functions performing stacking between multiple arrays are column_stack() and row_stack(). These functions operate differently than the two previous functions. Generally these functions are used with one-dimensional arrays, which are stacked as columns or rows in order to form a new two-dimensional array.

Splitting Arrays

In the previous section, you saw how to assemble multiple arrays through stacking. Now you will see how to divide an array into several parts. In NumPy, you use splitting to do this. Here too, you have a set of functions that work both horizontally with the hsplit() function and vertically with the vsplit() function.

Thus, if you want to split the array horizontally, meaning the width of the array is divided into two parts, the 4x4 matrix A will be split into two 2x4 matrices.

Instead, if you want to split the array vertically, meaning the height of the array is divided into two parts, the 4x4 matrix A will be split into two 4x2 matrices.

A more complex command is the split() function, which allows you to split the array into nonsymmetrical parts. Passing the array as an argument, you have also to specify the indexes of the parts to be divided. If you use the option axis = 1, then the indexes will be columns; if instead the option is axis = 0, then they will be row indexes.

For example, if you want to divide the matrix into three parts, the first of which will include the first column, the second will include the second and the third column, and the third will include the last column, you must specify three indexes in the following way.

CHAPTER 3 THE NUMPY LIBRARY

```
[ 8],
      [12]])
>>> A2
array([[ 1,  2],
      [ 5,  6],
      [ 9,  10],
      [13,  14]])
>>> A3
array([[ 3],
      [ 7],
      [11],
      [15]])
```

You can do the same thing by row.

This feature also includes the functionalities of the vsplit() and hsplit() functions.

General Concepts

This section describes the general concepts underlying the NumPy library. The difference between copies and views is when they return values. The mechanism of broadcasting, which occurs implicitly in many NumPy functions, is also covered in this section.

Copies or Views of Objects

As you may have noticed with NumPy, especially when you are manipulating an array, you can return a copy or a view of the array. None of the NumPy assignments produces copies of arrays, nor any element contained in them.

```
>>> a = np.array([1, 2, 3, 4])
>>> b = a
>>> b
array([1, 2, 3, 4])
>>> a[2] = 0
>>> b
array([1, 2, 0, 4])
```

If you assign one array a to another array b, you are not copying it; array b is just another way to call array a. In fact, by changing the value of the third element, you change the third value of b too. When you slice an array, the object returned is a view of the original array.

```
>>> c = a[0:2]
>>> c
array([1, 2])
>>> a[0] = 0
>>> c
array([0, 2])
```

As you can see, even when slicing, you are actually pointing to the same object. If you want to generate a complete and distinct array, use the copy() function.

```
>>> a = np.array([1, 2, 3, 4])
>>> c = a.copy()
>>> c
array([1, 2, 3, 4])
>>> a[0] = 0
>>> c
array([1, 2, 3, 4])
```

In this case, even when you change the items in array a, array c remains unchanged.

Vectorization

Vectorization, along with the *broadcasting*, is the basis of the internal implementation of NumPy. Vectorization is the absence of an explicit loop during the developing of the code. These loops actually cannot be omitted, but are implemented internally and then are replaced by other constructs in the code. The application of vectorization leads to a more concise and readable code, and you can say that it will appear more "Pythonic" in its appearance. In fact, thanks to the vectorization, many operations take on a more mathematical expression. For example, NumPy allows you to express the multiplication of two arrays as shown:

```
a * b
```

Or even two matrices:

```
A * B
```

In other languages, such operations would be expressed with many nested loops and the for construct. For example, the first operation would be expressed in the following way:

```
for (i = 0; i < rows; i++){
  c[i] = a[i]*b[i];
}</pre>
```

While the product of matrices would be expressed as follows:

```
for( i=0; i < rows; i++){
  for(j=0; j < columns; j++){
    c[i][j] = a[i][j]*b[i][j];
  }
}</pre>
```

You can see that using NumPy makes the code more readable and more mathematical.

Broadcasting

Broadcasting allows an operator or a function to act on two or more arrays to operate even if these arrays do not have the same shape. That said, not all the dimensions can be subjected to broadcasting; they must meet certain rules.

You saw that using NumPy, you can classify multidimensional arrays through a shape that is a tuple representing the length of the elements of each dimension.

Two arrays can be subjected to broadcasting when all their dimensions are compatible, i.e., the length of each dimension must be equal or one of them must be equal to 1. If neither of these conditions is met, you get an exception that states that the two arrays are not compatible.

In this case, you obtain two arrays:

```
4 × 4
4
```

There are two rules of broadcasting. First you must add a 1 to each missing dimension. If the compatibility rules are now satisfied, you can apply broadcasting and move to the second rule. For example:

```
4 × 4
4 × 1
```

The rule of compatibility is met. Then you can move to the second rule of broadcasting. This rule explains how to extend the size of the smallest array so that it's the size of the biggest array, so that the element-wise function or operator is applicable.

The second rule assumes that the missing elements (size, length 1) are filled with replicas of the values contained in extended sizes (see Figure 3-5).

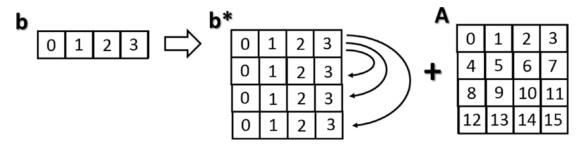


Figure 3-5. Applying the second broadcasting rule

Now that the two arrays have the same dimensions, the values inside may be added together.

This is a simple case in which one of the two arrays is smaller than the other. There may be more complex cases in which the two arrays have different shapes and each is smaller than the other only in certain dimensions.

Even in this case, by analyzing the shapes of the two arrays, you can see that they are compatible and therefore the rules of broadcasting can be applied.

```
3 x 1 x 2
3 x 2 x 1
```

In this case, both arrays undergo the extension of dimensions (broadcasting).

Then you can apply, for example, the addition operator between the two arrays, operating element-wise.

Structured Arrays

So far in the various examples in the previous sections, you saw monodimensional and two-dimensional arrays. NumPy allows you to create arrays that are much more complex not only in size, but in the structure, called *structured arrays*. This type of array contains structs or records instead of individual items.

For example, you can create a simple array of structs as items. Thanks to the dtype option, you can specify a list of comma-separated specifiers to indicate the elements that will constitute the struct, along with data type and order.

CHAPTER 3 THE NUMPY LIBRARY

```
bytes b1
int i1, i2, i4, i8
unsigned ints u1, u2, u4, u8
floats f2, f4, f8
complex c8, c16
fixed length strings a<n>
```

For example, if you want to specify a struct consisting of an integer, a character string of length 6 and a Boolean value, you will specify the three types of data in the dtype option with the right order using the corresponding specifiers.

Note The result of dtype and other format attributes can vary among different operating systems and Python distributions.

You can also use the data type explicitly specifying int8, uint8, float16, complex64, and so forth.

Both cases have the same result. Inside the array, you see a dtype sequence containing the name of each item of the struct with the corresponding data type.

Writing the appropriate reference index, you obtain the corresponding row, which contains the struct.

```
>>> structured[1]
(2, 'bSecond', 1.3, 2.-2.j)
```

The names that are assigned automatically to each item of struct can be considered as the names of the columns of the array. Using them as a structured index, you can refer to all the elements of the same type, or of the same column.

As you have just seen, the names are assigned automatically with an **f** (which stands for field) and a progressive integer that indicates the position in the sequence. In fact, it would be more useful to specify the names with something more meaningful. This is possible and you can do it at the time of array declaration:

Or you can do it at a later time, redefining the tuples of names assigned to the dtype attribute of the structured array.

```
>>> structured.dtype.names = ('id','order','value','complex')
```

Now you can use meaningful names for the various field types:

Reading and Writing Array Data on Files

A very important aspect of NumPy that has not been discussed yet is the process of reading data contained in a file. This procedure is very useful, especially when you have to deal with large amounts of data collected in arrays. This is a very common data analysis operation, since the size of the dataset to be analyzed is almost always huge, and therefore it is not advisable or even possible to manage it manually.

NumPy provides a set of functions that allow data analysts to save the results of their calculations in a text or binary file. Similarly, NumPy allows you to read and convert written data in a file into an array.

Loading and Saving Data in Binary Files

NumPy provides a pair of functions called save() and load() that enable you to save and then later retrieve data stored in binary format.

Once you have an array to save, for example, one that contains the results of your data analysis processing, you simply call the save() function and specify as arguments the name of the file and the array. The file will automatically be given the .npy extension.

When you need to recover the data stored in a .npy file, you use the load() function by specifying the filename as the argument, this time adding the extension .npy.

Reading Files with Tabular Data

Many times, the data that you want to read or save are in textural format (TXT or CSV, for example). You might save the data in this format, instead of binary, because the files can then be accessed outside independently if you are working with NumPy or with any other application. Take for example the case of a set of data in the CSV (Comma-Separated Values) format, in which data are collected in a tabular format where the values are separated by commas (see Listing 3-1).

Listing 3-1. ch3_data.csv

```
id,value1,value2,value3
1,123,1.4,23
2,110,0.5,18
3,164,2.1,19
```

To be able to read your data in a text file and insert values into an array, NumPy provides a function called genfromtxt(). Normally, this function takes three arguments—the name of the file containing the data, the character that separates the values from each other (in this case is a comma), and whether the data contain column headers.

As you can see from the result, you get a structured array in which the column headings have become the field names.

This function implicitly performs two loops: the first loop reads a line at a time, and the second loop separates and converts the values contained in it, inserting the consecutive elements created specifically. One positive aspect of this feature is that if some data are missing, the function can handle them.

Take for example the previous file (see Listing 3-2) with some items removed. Save it as data2.csv.

Listing 3-2. ch3_data2.csv

```
id,value1,value2,value3
1,123,1.4,23
2,110,,18
3,,2.1,19
```

Launching these commands, you can see how the genfromtxt() function replaces the blanks in the file with nan values.

At the bottom of the array, you can find the column headings contained in the file. These headers can be considered labels that act as indexes to extract the values by column:

```
>>> data2['id']
array([ 1., 2., 3.])
```

Instead, by using the numerical indexes in the classic way, you will extract data corresponding to the rows.

```
>>> data2[0]
(1.0, 123.0, 1.4, 23.0)
```

Conclusions

In this chapter, you learned about all the main aspects of the NumPy library and became familiar with a range of features that form the basis of many other aspects you'll face in the course of the book. In fact, many of these concepts will be taken from other scientific and computing libraries that are more specialized, but that have been structured and developed on the basis of this library.

You saw how, thanks to the ndarray, you can extend the functionalities of Python, making it a suitable language for scientific computing and data analysis.

Knowledge of NumPy is therefore crucial to anyone who wants to take on the world of data analysis.

In the next chapter, we begin to introduce a new library, called pandas, that is structured on NumPy and so encompasses all the basic concepts illustrated in this chapter. However, pandas extends these concepts so they are more suitable to data analysis.

The pandas Library—An Introduction

This chapter gets into the heart of this book: the pandas library. This fantastic Python library is a perfect tool for anyone who wants to perform data analysis using Python as a programming language.

First you will learn about the fundamental aspects of this library and how to install it on your system, and then you will become familiar with the two data structures called *series* and *dataframes*. During the course of the chapter, you will work with a basic set of functions provided by the pandas library, in order to perform the most common data processing tasks. Getting familiar with these operations is a key goal of the rest of the book. This is why it is very important to repeat this chapter until you feel comfortable with its content.

Furthermore, with a series of examples you will learn some particularly new concepts introduced in the pandas library: indexing data structures. You will learn how to get the most of this feature for data manipulation in this chapter and in the next chapters.

Finally, you will see how to extend the concept of indexing to multiple levels at the same time, through the process called hierarchical indexing.

pandas: The Python Data Analysis Library

pandas is an open source Python library for highly specialized data analysis. It is currently the reference point that all professionals using the Python language need to study for the statistical purposes of analysis and decision making.

This library was designed and developed primarily by Wes McKinney starting in 2008. In 2012, Sien Chang, one of his colleagues, was added to the development. Together they set up one of the most used libraries in the Python community.

pandas arises from the need to have a specific library to analyze data that provides, in the simplest possible way, all the instruments for data processing, data extraction, and data manipulation.

This Python package is designed on the basis of the NumPy library. This choice, we can say, was critical to the success and the rapid spread of pandas. In fact, this choice not only makes this library compatible with most other modules, but also takes advantage of the high quality of the NumPy module.

Another fundamental choice was to design ad hoc data structures for data analysis. In fact, instead of using existing data structures built into Python or provided by other libraries, two new data structures were developed.

These data structures are designed to work with relational data or labeled data, thus allowing you to manage data with features similar to those designed for SQL relational databases and Excel spreadsheets.

Throughout the book in fact, you will see a series of basic operations for data analysis, which are normally used on database tables and spreadsheets. pandas in fact provides an extended set of functions and methods that allow you to perform these operations efficiently.

So pandas' main purpose is to provide all the building blocks for anyone approaching the data analysis world.

Installation of pandas

The easiest and most general way to install the pandas library is to use a prepackaged solution, i.e., installing it through an Anaconda or Enthought distribution.

Installation from Anaconda

For those who choose to use the Anaconda distribution, managing the installation is very simple. First you have to see if the pandas module is installed and, if so, which version. To do this, type the following command from the terminal:

```
conda list pandas
```

Since I have the module installed on my PC (Windows), I get the following result:

```
# packages in environment at C:\Users\Fabio\Anaconda:
#
```

pandas 0.20.3 py36hce827b7_2

If you do not have pandas installed, you will need to install it. Enter the following command:

conda install pandas

Anaconda will immediately check all dependencies, managing the installation of other modules, without you having to worry too much.

Solving environment: done
Package Plan
Environment location: C:\Users\Fabio\Anaconda3
added / updated specs:

pandas

The following new packages will be installed:

Pandas: 0.22.0-py36h6538335_0

Proceed ([y]/n)?

Press the y key on your keyboard to continue the installation.

Preparing transaction: done Verifying transaction: done Executing transaction: done

If you want to upgrade your package to a newer version, the command to do so is very simple and intuitive:

conda update pandas

The system will check the version of pandas and the version of all the modules on which it depends and then suggest any updates. It will then ask if you want to proceed to the update.

Installation from PyPI

pandas can also be installed by PyPI using this command:

pip install pandas

Installation on Linux

If you're working on a Linux distribution, and you choose not to use any of these prepackaged distributions, you can install the pandas module like any other package.

On Debian and Ubuntu distributions, use this command:

```
sudo apt-get install python-pandas
```

While on OpenSuse and Fedora, enter the following command:

```
zypper in python-pandas
```

Installation from Source

If you want to compile your pandas module from the source code, you can find what you need on GitHub at https://github.com/pandas-dev/pandas:

```
git clone git://github.com/pydata/pandas.git
cd pandas
python setup.py install
```

Make sure you have installed Cython at compile time. For more information, read the documentation available on the Web, including the official page (http://pandas.pydata.org/pandas-docs/stable/install.html).

A Module Repository for Windows

If you are working on Windows and prefer to manage your packages in order to always have the most current modules, there is also a resource on the Internet where you can download many third-party modules—Christoph Gohlke's Python Extension Packages for Windows repository (www.lfd.uci.edu/~gohlke/pythonlibs/). Each module is supplied with the format archival WHL (wheel) in both 32-bit and 64-bit. To install each module, you have to use the pip application (see PyPI in Chapter 2).

```
pip install SomePackege-1.0.whl
```

For example, for pandas you can find and download the following package:

```
pip install pandas-0.22.0-cp36-cp36m-win_amd64.whl
```

When choosing the module, be careful to choose the correct version for your version of Python and the architecture on which you're working. Furthermore, while NumPy does not require the installation of other packages, on the contrary, pandas has many dependencies. So make sure you get them all. The installation order is not important.

The disadvantage of this approach is that you need to install the packages individually without a package manager that can help manage versioning and interdependencies between the various packages. The advantage is greater mastery of the modules and their versions, so you have the most current modules possible without depending on the choices of the distributions.

Testing Your pandas Installation

The pandas library can run a check after it's installed to verify the internal controls (the official documentation states that the test provides a 97% coverage of all the code inside).

First, make sure you have installed the nose module in your Python distribution (see the "Nose Module" sidebar). If you did, you can start the test by entering the following command:

nosetests pandas

The test will take several minutes and in the end it will show a list of any problems encountered.

NOSE MODULE

This module is designed for testing Python code during the development phases of a project or a Python module in particular. This module extends the capabilities of the unittest module. The Python module involved in testing the code, however, making its coding much simpler and easier.

I suggest you read this article at http://pythontesting.net/framework/nose/nose-introduction/ for more information.

Getting Started with pandas

The best way to get started with pandas is to open a Python shell and type commands one by one. This way, you have the opportunity to become familiar with the individual functions and data structures that are explained in this chapter.

Furthermore, the data and functions defined in the various examples remain valid throughout the chapter, which means you don't have to to define them each time. You are invited, at the end of each example, to repeat the various commands, modify them if appropriate, and control how the values in the data structures vary during operation. This approach is great for getting familiar with the different topics covered in this chapter, leaving you the opportunity to interact freely with what you are reading.

Note This chapter assumes that you have some familiarity with Python and NumPy in general. If you have any difficulty, read Chapters 2 and 3 of this book.

First, open a session on the Python shell and then import the pandas library. The general practice for importing the pandas module is as follows:

```
>>> import pandas as pd
>>> import numpy as np
```

Thus, in this chapter and throughout the book, every time you see pd and np, you'll make reference to an object or method referring to these two libraries, even though you will often be tempted to import the pandas module in this way:

```
>>> from pandas import *
```

Thus, you no longer have to reference a function, object, or method with pd; this approach is not considered good practice by the Python community in general.

Introduction to pandas Data Structures

The heart of pandas is the two primary data structures on which all transactions, which are generally made during the analysis of data, are centralized:

- Series
- Dataframes

The *series*, as you will see, constitutes the data structure designed to accommodate a sequence of one-dimensional data, while the *dataframe*, a more complex data structure, is designed to contain cases with several dimensions.

Although these data structures are not the universal solution to all problems, they do provide a valid and robust tool for most applications. In fact, they remain very simple to understand and use. In addition, many cases of more complex data structures can still be traced to these simple two cases.

However, their peculiarities are based on a particular feature—integration in their structure of index objects and labels. You will see that this feature causes these data structures to be easily manipulated.

The Series

The *series* is the object of the pandas library designed to represent one-dimensional data structures, similar to an array but with some additional features. Its internal structure is simple (see Figure 4-1) and is composed of two arrays associated with each other. The main array holds the data (data of any NumPy type) to which each element is associated with a label, contained within the other array, called the *index*.

Series			
index	value		
0	12		
1	-4		
2	7		
3	9		

Figure 4-1. The structure of the series object

Declaring a Series

To create the series specified in Figure 4-1, you simply call the Series() constructor and pass as an argument an array containing the values to be included in it.

```
>>> s = pd.Series([12,-4,7,9])
>>> s
0    12
1    -4
2    7
3    9
dtype: int64
```

As you can see from the output of the series, on the left there are the values in the index, which is a series of labels, and on the right are the corresponding values.

If you do not specify any index during the definition of the series, by default, pandas will assign numerical values increasing from 0 as labels. In this case, the labels correspond to the indexes (position in the array) of the elements in the series object.

Often, however, it is preferable to create a series using meaningful labels in order to distinguish and identify each item regardless of the order in which they were inserted into the series.

In this case it will be necessary, during the constructor call, to include the index option and assign an array of strings containing the labels.

```
>>> s = pd.Series([12,-4,7,9], index=['a','b','c','d'])
>>> s
a    12
b    -4
c    7
d    9
dtype: int64
```

If you want to individually see the two arrays that make up this data structure, you can call the two attributes of the series as follows: index and values.

```
>>> s.values
array([12, -4, 7, 9], dtype=int64)
>>> s.index
Index([u'a', u'b', u'c', u'd'], dtype='object')
```

Selecting the Internal Elements

You can select individual elements as ordinary numpy arrays, specifying the key.

Or you can specify the label corresponding to the position of the index.

```
>>> s['b']
```

In the same way you select multiple items in a numpy array, you can specify the following:

```
>>> s[0:2]
a    12
b    -4
dtype: int64
```

In this case, you can use the corresponding labels, but specify the list of labels in an array.

```
>>> s[['b','c']]
b -4
c 7
dtype: int64
```

Assigning Values to the Elements

Now that you understand how to select individual elements, you also know how to assign new values to them. In fact, you can select the value by index or by label.

```
>>> s[1] = 0
>>> s
a     12
b     0
c     7
d     9
dtype: int64
```

```
>>> s['b'] = 1
>>> s
a    12
b    1
c    7
d    9
dtype: int64
```

Defining a Series from NumPy Arrays and Other Series

You can define a new series starting with NumPy arrays or with an existing series.

```
>>> arr = np.array([1,2,3,4])
>>> s3 = pd.Series(arr)
>>> s3
0
     1
     2
1
2
     3
3
     4
dtype: int64
>>> s4 = pd.Series(s)
>>> $4
a
     12
b
      4
C
      7
d
      9
dtype: int64
```

Always keep in mind that the values contained in the NumPy array or in the original series are not copied, but are passed by reference. That is, the object is inserted dynamically within the new series object. If it changes, for example its internal element varies in value, then those changes will also be present in the new series object.

```
>>> s3
0 1
1 2
2 3
3 4
```

96

```
dtype: int64
>>> arr[2] = -2
>>> s3
0     1
1     2
2     -2
3     4
dtype: int64
```

As you can see in this example, by changing the third element of the arr array, we also modified the corresponding element in the s3 series.

Filtering Values

Thanks to the choice of the NumPy library as the base of the pandas library and, as a result, for its data structures, many operations that are applicable to NumPy arrays are extended to the series. One of these is filtering values contained in the data structure through conditions.

For example, if you need to know which elements in the series are greater than 8, you write the following:

```
>>> s[s > 8]
a     12
d     9
dtype: int64
```

Operations and Mathematical Functions

Other operations such as operators (+, -, *, and /) and mathematical functions that are applicable to NumPy array can be extended to series.

You can simply write the arithmetic expression for the operators.

```
>>> s / 2
a    6.0
b    -2.0
c    3.5
d    4.5
dtype: float64
```

However, with the NumPy mathematical functions, you must specify the function referenced with np and the instance of the series passed as an argument.

Evaluating Vales

There are often duplicate values in a series. Then you may need to have more information about the samples, including existence of any duplicates and whether a certain value is present in the series.

In this regard, you can declare a series in which there are many duplicate values.

```
>>> serd = pd.Series([1,0,2,1,2,3], index=['white','white','blue','green','
green','yellow'])
>>> serd
white
          1
white
          0
blue
          2
green
          1
green
          2
yellow
          3
dtype: int64
```

To know all the values contained in the series, excluding duplicates, you can use the unique() function. The return value is an array containing the unique values in the series, although not necessarily in order.

```
>>> serd.unique()
array([1, 0, 2, 3], dtype=int64)
```

A function that's similar to unique() is value_counts(), which not only returns unique values but also calculates the occurrences within a series.

```
>>> serd.value_counts()
2     2
1     2
3     1
0     1
dtype: int64
```

Finally, isin() evaluates the membership, that is, the given a list of values. This function tells you if the values are contained in the data structure. Boolean values that are returned can be very useful when filtering data in a series or in a column of a dataframe.

```
>>> serd.isin([0,3])
white
          False
white
           True
blue
          False
          False
green
green
          False
vellow
           True
dtype: bool
>>> serd[serd.isin([0,3])]
white
yellow
dtype: int64
```

NaN Values

As you can see in the previous case, we tried to run the logarithm of a negative number and received NaN as a result. This specific value NaN (Not a Number) is used in pandas data structures to indicate the presence of an empty field or something that's not definable numerically.

Generally, these NaN values are a problem and must be managed in some way, especially during data analysis. These data are often generated when extracting data from a questionable source or when the source is missing data. Furthermore, as you have just seen, the NaN values can also be generated in special cases, such as calculations of logarithms of negative values, or exceptions during execution of some calculation or function. In later chapters, you see how to apply different strategies to address the problem of NaN values.

CHAPTER 4 THE PANDAS LIBRARY—AN INTRODUCTION

Despite their problematic nature, however, pandas allows you to explicitly define NaNs and add them to a data structure, such as a series. Within the array containing the values, you enter np. NaN wherever you want to define a missing value.

```
>>> s2 = pd.Series([5,-3,np.NaN,14])
>>> s2
0     5.0
1    -3.0
2     NaN
3     14.0
dtype: float64
```

The isnull() and notnull() functions are very useful to identify the indexes without a value.

```
>>> s2.isnull()
     False
0
     False
1
2
      True
     False
3
dtype: bool
>>> s2.notnull()
      True
0
      True
1
2
     False
3
      True
dtype: bool
```

In fact, these functions return two series with Boolean values that contain the True and False values, depending on whether the item is a NaN value or less. The <code>isnull()</code> function returns True at NaN values in the series; inversely, the <code>notnull()</code> function returns True if they are not NaN. These functions are often placed inside filters to make a condition.

```
>>> s2[s2.notnull()]
0     5.0
1     -3.0
3     14.0
```

```
dtype: float64
>>> s2[s2.isnull()]
2  NaN
dtype: float64
```

Series as Dictionaries

An alternative way to think of a series is to think of it as an object dict (dictionary). This similarity is also exploited during the definition of an object series. In fact, you can create a series from a previously defined dict.

As you can see from this example, the array of the index is filled with the keys while the data are filled with the corresponding values. You can also define the array indexes separately. In this case, controlling correspondence between the keys of the dict and labels array of indexes will run. If there is a mismatch, pandas will add the NaN value.

Operations Between Series

We have seen how to perform arithmetic operations between series and scalar values. The same thing is possible by performing operations between two series, but in this case even the labels come into play.

In fact, one of the great potentials of this type of data structures is that series can align data addressed differently between them by identifying their corresponding labels.

In the following example, you add two series having only some elements in common with the label.

```
>>> mydict2 = {'red':400,'yellow':1000,'black':700}
>>> myseries2 = pd.Series(mydict2)
>>> myseries + myseries2
black
           NaN
blue
           NaN
green
           NaN
           NaN
orange
red
          2400.0
yellow
          1500.0
dtype: float64
```

You get a new object series in which only the items with the same label are added. All other labels present in one of the two series are still added to the result but have a NaN value.

The DataFrame

The *dataframe* is a tabular data structure very similar to a spreadsheet. This data structure is designed to extend series to multiple dimensions. In fact, the dataframe consists of an ordered collection of columns (see Figure 4-2), each of which can contain a value of a different type (numeric, string, Boolean, etc.).

DataFrame				
	columns			
index	color	object	price	
0	blue	ball	1.2	
1	green	pen	1.0	
2	yellow	pencil	0.6	
3	red	paper	0.9	
4	white	mug	1.7	

Figure 4-2. The dataframe structure

Unlike series, which have an index array containing labels associated with each element, the dataframe has two index arrays. The first index array, associated with the lines, has very similar functions to the index array in series. In fact, each label is associated with all the values in the row. The second array contains a series of labels, each associated with a particular column.

A dataframe may also be understood as a dict of series, where the keys are the column names and the values are the series that will form the columns of the dataframe. Furthermore, all elements in each series are mapped according to an array of labels, called the *index*.

Defining a Dataframe

The most common way to create a new dataframe is precisely to pass a dict object to the DataFrame() constructor. This dict object contains a key for each column that you want to define, with an array of values for each of them.

CHAPTER 4 THE PANDAS LIBRARY—AN INTRODUCTION

```
2 yellow pencil 0.6
3 red paper 0.9
4 white mug 1.7
```

If the dict object from which you want to create a dataframe contains more data than you are interested in, you can make a selection. In the constructor of the dataframe, you can specify a sequence of columns using the columns option. The columns will be created in the order of the sequence regardless of how they are contained in the dict object.

```
>>> frame2 = pd.DataFrame(data, columns=['object','price'])
>>> frame2
   object price
0
     ball
            1.2
            1.0
1
      pen
2
   pencil
            0.6
3
    paper
            0.9
4
      mug
            1.7
```

Even for dataframe objects, if the labels are not explicitly specified in the Index array, pandas automatically assigns a numeric sequence starting from 0. Instead, if you want to assign labels to the indexes of a dataframe, you have to use the index option and assign it an array containing the labels.

```
>>> frame2 = pd.DataFrame(data, index=['one', 'two', 'three', 'four', 'five'])
>>> frame2
        color
              object price
         blue
                  ball
one
                          1.2
two
        green
                   pen
                          1.0
three yellow
                pencil
                          0.6
four
          red
                 paper
                          0.9
five
        white
                   mug
                          1.7
```

Now that we have introduced the two new options called index and columns, it is easy to imagine an alternative way to define a dataframe. Instead of using a dict object, you can define three arguments in the constructor, in the following order—a data matrix, an array containing the labels assigned to the index option, and an array containing the names of the columns assigned to the columns option.

In many examples, as you will see from now on in this book, to create a matrix of values quickly and easily, you can use np.arange(16).reshape((4,4)), which generates a 4x4 matrix of numbers increasing from 0 to 15.

```
>>> frame3 = pd.DataFrame(np.arange(16).reshape((4,4)),
                      index=['red','blue','yellow','white'],
                      columns=['ball','pen','pencil','paper'])
>>> frame3
        ball pen pencil
                          paper
           0
                        2
red
               1
                               3
blue
          4
                       6
                              7
yellow
          8
               9
                      10
                              11
white
         12
               13
                      14
                              15
```

Selecting Elements

If you want to know the name of all the columns of a dataframe, you can is specify the columns attribute on the instance of the dataframe object.

```
>>> frame.columns
Index(['colors', 'object', 'price'], dtype='object')
```

Similarly, to get the list of indexes, you should specify the index attribute.

```
>>> frame.index
RangeIndex(start=0, stop=5, step=1)
```

You can also get the entire set of data contained within the data structure using the values attribute.

CHAPTER 4 THE PANDAS LIBRARY—AN INTRODUCTION

Or, if you are interested in selecting only the contents of a column, you can write the name of the column.

```
>>> frame['price']
0    1.2
1    1.0
2    0.6
3    0.9
4    1.7
Name: price, dtype: float64
```

As you can see, the return value is a series object. Another way to do this is to use the column name as an attribute of the instance of the dataframe.

```
>>> frame.price
0    1.2
1    1.0
2    0.6
3    0.9
4    1.7
Name: price, dtype: float64
```

For rows within a dataframe, it is possible to use the loc attribute with the index value of the row that you want to extract.

```
>>> frame.loc[2]
color yellow
object pencil
price 0.6
Name: 2, dtype: object
```

The object returned is again a series in which the names of the columns have become the label of the array index, and the values have become the data of series.

To select multiple rows, you specify an array with the sequence of rows to insert:

```
>>> frame.loc[[2,4]]
    color object price
2 yellow pencil     0.6
4 white     mug     1.7
```

If you need to extract a portion of a DataFrame, selecting the lines that you want to extract, you can use the reference numbers of the indexes. In fact, you can consider a row as a portion of a dataframe that has the index of the row as the source (in the next 0) value and the line above the one we want as a second value (in the next one).

```
>>> frame[0:1]
  color object price
0 blue ball 1.2
```

As you can see, the return value is an object dataframe containing a single row. If you want more than one line, you must extend the selection range.

```
>>> frame[1:3]
    color object price
1 green pen 1.0
2 yellow pencil 0.6
```

Finally, if what you want to achieve is a single value within a dataframe, you first use the name of the column and then the index or the label of the row.

```
>>> frame['object'][3]
'paper'
```

Assigning Values

Once you understand how to access the various elements that make up a dataframe, you follow the same logic to add or change the values in it.

For example, you have already seen that within the dataframe structure, an array of indexes is specified by the index attribute, and the row containing the name of the columns is specified with the columns attribute. Well, you can also assign a label, using the name attribute, to these two substructures to identify them.

```
>>> frame.index.name = 'id'
>>> frame.columns.name = 'item'
>>> frame
```

CHAPTER 4 THE PANDAS LIBRARY—AN INTRODUCTION

```
item
       color
              object price
id
0
        blue
                 ball
                          1.2
1
       green
                  pen
                          1.0
      yellow
              pencil
2
                          0.6
3
         red
                paper
                          0.9
4
       white
                          1.7
                  mug
```

One of the best features of the data structures of pandas is their high flexibility. In fact, you can always intervene at any level to change the internal data structure. For example, a very common operation is to add a new column.

You can do this by simply assigning a value to the instance of the dataframe and specifying a new column name.

```
>>> frame['new'] = 12
>>> frame
   colors
           object price
                           new
              ball
0
     blue
                     1.2
                            12
1
                     1.0
                            12
    green
               pen
  yellow
           pencil
2
                     0.6
                            12
3
      red
            paper
                     0.9
                            12
4
    white
               mug
                     1.7
                            12
```

As you can see from this result, there is a new column called new with the value within 12 replicated for each of its elements.

If, however, you want to update the contents of a column, you have to use an array.

```
>>> frame['new'] = [3.0,1.3,2.2,0.8,1.1]
>>> frame
    color
           object
                  price new
0
     blue
             ball
                     1.2 3.0
                     1.0 1.3
1
    green
              pen
  yellow
          pencil
                     0.6 2.2
2
3
      red
            paper
                     0.9 0.8
    white
4
              mug
                     1.7 1.1
```

You can follow a similar approach if you want to update an entire column, for example, by using the np.arange() function to update the values of a column with a predetermined sequence.

The columns of a dataframe can also be created by assigning a series to one of them, for example by specifying a series containing an increasing series of values through the use of np.arange().

```
>>> ser = pd.Series(np.arange(5))
>>> ser
     0
0
1
     1
2
     2
3
     3
4
     4
dtype: int64
>>> frame['new'] = ser
>>> frame
    color object price new
     blue
             ball
0
                      1.2
                             0
1
    green
                      1.0
              pen
2
  yellow pencil
                      0.6
                             2
      red
3
            paper
                      0.9
                             3
4
   white
              mug
                      1.7
                             4
```

Finally, to change a single value, you simply select the item and give it the new value.

```
>>> frame['price'][2] = 3.3
```

Membership of a Value

You have already seen the isin() function applied to the series to determine the membership of a set of values. Well, this feature is also applicable to dataframe objects.

```
>>> frame.isin([1.0,'pen'])
   color object   price   new
0  False  False  False  False
1  False   True   True   True
2  False  False  False  False
3  False  False  False  False
4  False  False  False  False
```

You get a dataframe containing Boolean values, where True indicates values that meet the membership. If you pass the value returned as a condition, then you'll get a new dataframe containing only the values that satisfy the condition.

```
>>> frame[frame.isin([1.0,'pen'])]
  color object
                price
                        new
0
    NaN
            NaN
                   NaN
                         NaN
1
    NaN
                   1.0
                         1.0
            pen
2
    NaN
            NaN
                   NaN
                        NaN
            NaN
3
    NaN
                   NaN
                         NaN
    NaN
            NaN
                   NaN
                        NaN
```

Deleting a Column

If you want to delete an entire column and all its contents, use the del command.

```
>>> del frame['new']
>>> frame
           object price
   colors
     blue
              ball
                     1.2
0
1
    green
                     1.0
               pen
           pencil
   yellow
                    3.3
3
      red
            paper
                     0.9
    white
4
               mug
                     1.7
```

Filtering

Even when a dataframe, you can apply the filtering through the application of certain conditions. For example, say you want to get all values smaller than a certain number, for example 1.2.

```
>>> frame[frame < 1.2]</pre>
>>> frame
   colors
            object price
     blue
               ball
0
                      NaN
1
    green
                      1.0
                pen
   yellow
            pencil
2
                      NaN
3
      red
             paper
                      0.9
    white
                mug
                      NaN
```

You will get a dataframe containing values less than 1.2, keeping their original position. All others will be replaced with NaN.

DataFrame from Nested dict

A very common data structure used in Python is a nested dict, as follows:

This data structure, when it is passed directly as an argument to the DataFrame() constructor, will be interpreted by pandas to treat external keys as column names and internal keys as labels for the indexes.

During the interpretation of the nested structure, it is possible that not all fields will find a successful match. pandas compensates for this inconsistency by adding the NaN value to missing values.

```
>>> nestdict = {'red':{2012: 22, 2013: 33},
                'white':{2011: 13, 2012: 22, 2013: 16},
                'blue': {2011: 17, 2012: 27, 2013: 18}}
>>> frame2 = pd.DataFrame(nestdict)
>>> frame2
     blue
           red white
2011
            NaN
       17
                     13
2012
       27
            22.0
                     22
2013
       18
            33.0
                     16
```

Transposition of a Dataframe

An operation that you might need when you're dealing with tabular data structures is transposition (that is, columns become rows and rows become columns). pandas allows you to do this in a very simple way. You can get the transposition of the dataframe by adding the T attribute to its application.

```
>>> frame2.T

2011 2012 2013

blue 17.0 27.0 18.0

red NaN 22.0 33.0

white 13.0 22.0 16.0
```

The Index Objects

Now that you know what the series and the dataframe are and how they are structured, you can likely perceive the peculiarities of these data structures. Indeed, the majority of their excellent characteristics are due to the presence of an Index object that's integrated in these data structures.

The Index objects are responsible for the labels on the axes and other metadata as the name of the axes. You have already seen how an array containing labels is converted into an Index object and that you need to specify the index option in the constructor.

```
>>> ser = pd.Series([5,0,3,8,4], index=['red','blue','yellow','white','green'])
>>> ser.index
Index(['red', 'blue', 'yellow', 'white', 'green'], dtype='object')
```

Unlike all the other elements in the pandas data structures (series and dataframe), the Index objects are immutable. Once declared, they cannot be changed. This ensures their secure sharing between the various data structures.

Each Index object has a number of methods and properties that are useful when you need to know the values they contain.

Methods on Index

There are some specific methods for indexes available to get some information about indexes from a data structure. For example, idmin() and idmax() are two functions that return, respectively, the index with the lowest value and the index with the highest value.

```
>>> ser.idxmin()
'blue'
>>> ser.idxmax()
'white'
```

Index with Duplicate Labels

So far, you have met all cases in which indexes within a single data structure have a unique label. Although many functions require this condition to run, this condition is not mandatory on the data structures of pandas.

Define by way of example, a series with some duplicate labels.

```
>>> serd = pd.Series(range(6), index=['white','white','blue','green',
'green', 'yellow'])
>>> serd
white
          0
white
          1
blue
          2
green
          3
green
          4
yellow
          5
dtype: int64
```

Regarding the selection of elements in a data structure, if there are more values in correspondence of the same label, you will get a series in place of a single element.

```
>>> serd['white']
white    0
white    1
dtype: int64
```

The same logic applies to the dataframe, with duplicate indexes that will return the dataframe.

With small data structures, it is easy to identify any duplicate indexes, but if the structure becomes gradually larger, this starts to become difficult. In this respect, pandas provides you with the <code>is_unique</code> attribute belonging to the Index objects. This attribute will tell you if there are indexes with duplicate labels inside the structure data (both series and dataframe).

```
>>> serd.index.is_unique
False
>>> frame.index.is_unique
True
```

Other Functionalities on Indexes

Compared to data structures commonly used with Python, you saw that pandas, as well as taking advantage of the high-performance quality offered by NumPy arrays, has chosen to integrate indexes in them.

This choice has proven somewhat successful. In fact, despite the enormous flexibility given by the dynamic structures that already exist, using the internal reference to the structure, such as that offered by the labels, allows developers who must perform operations to carry them out in a simpler and more direct way.

This section analyzes in detail a number of basic features that take advantage of this mechanism.

- Reindexing
- Dropping
- Alignment

Reindexing

It was previously stated that once it's declared in a data structure, the Index object cannot be changed. This is true, but by executing a reindexing, you can also overcome this problem.

In fact it is possible to obtain a new data structure from an existing one where indexing rules can be defined again.

```
>>> ser = pd.Series([2,5,7,4], index=['one','two','three','four'])
>>> ser
one    2
two    5
three    7
four    4
dtype: int64
```

In order to reindex this series, pandas provides you with the reindex() function. This function creates a new series object with the values of the previous series rearranged according to the new sequence of labels.

During reindexing, it is possible to change the order of the sequence of indexes, delete some of them, or add new ones. In the case of a new label, pandas adds NaN as the corresponding value.

```
>>> ser.reindex(['three','four','five','one'])
three 7.0
four 4.0
five NaN
one 2.0
dtype: float64
```

As you can see from the value returned, the order of the labels has been completely rearranged. The value corresponding to the label two has been dropped and a new label called five is present in the series.

However, to measure the reindexing process, defining the list of the labels can be awkward, especially with a large dataframe. So you could use some method that allows you to fill in or interpolate values automatically.

To better understand the functioning of this mode of automatic reindexing, define the following series.

```
>>> ser3 = pd.Series([1,5,6,3],index=[0,3,5,6])
>>> ser3
0     1
3     5
5     6
6     3
dtype: int64
```

As you can see in this example, the index column is not a perfect sequence of numbers; in fact there are some missing values (1, 2, and 4). A common need would be to perform interpolation in order to obtain the complete sequence of numbers. To achieve this, you will use reindexing with the method option set to ffill. Moreover, you need to set a range of values for indexes. In this case, to specify a set of values between 0 and 5, you can use range (6) as an argument.

```
>>> ser3.reindex(range(6),method='ffill')
0    1
1    1
```

CHAPTER 4 THE PANDAS LIBRARY—AN INTRODUCTION

```
2 1
3 5
4 5
5 6
dtype: int64
```

As you can see from the result, the indexes that were not present in the original series were added. By interpolation, those with the lowest index in the original series have been assigned as values. In fact, the indexes 1 and 2 have the value 1, which belongs to index 0.

If you want this index value to be assigned during the interpolation, you have to use the bfill method.

```
>>> ser3.reindex(range(6),method='bfill')
0     1
1     5
2     5
3     5
4     6
5     6
dtype: int64
```

In this case, the value assigned to the indexes 1 and 2 is the value 5, which belongs to index 3.

Extending the concepts of reindexing with series to the dataframe, you can have a rearrangement not only for indexes (rows), but also with regard to the columns, or even both. As previously mentioned, adding a new column or index is possible, but since there are missing values in the original data structure, pandas adds NaN values to them.

```
>>> frame.reindex(range(5), method='ffill',columns=['colors','price','new',
'object'])
   colors price new
                         object
0
     blue
          1.2 blue
                         ball
    green
          1.0 green
1
                         pen
                         pencil
  yellow
           3.3 yellow
2
3
      red
           0.9 red
                         paper
    white
           1.7 white
                         mug
```

Dropping

Another operation that is connected to Index objects is dropping. Deleting a row or a column becomes simple, due to the labels used to indicate the indexes and column names.

Also in this case, pandas provides a specific function for this operation, called drop(). This method will return a new object without the items that you want to delete.

For example, take the case where we want to remove a single item from a series. To do this, define a generic series of four elements with four distinct labels.

Now say, for example, that you want to delete the item corresponding to the label yellow. Simply specify the label as an argument of the function drop() to delete it.

```
>>> ser.drop('yellow')
red     0.0
blue     1.0
white     3.0
dtype: float64
```

To remove more items, just pass an array with the corresponding labels.

```
>>> ser.drop(['blue','white'])
red      0.0
yellow    2.0
dtype: float64
```

Regarding the dataframe instead, the values can be deleted by referring to the labels of both axes. Declare the following frame by way of example.

```
>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
... index=['red','blue','yellow','white'],
... columns=['ball','pen','pencil','paper'])
```

>>> frame

	ball	pen	pencil	paper
red	0	1	2	3
blue	4	5	6	7
yellow	8	9	10	11
white	12	13	14	15

To delete rows, you just pass the indexes of the rows.

To delete columns, you always need to specify the indexes of the columns, but you must specify the axis from which to delete the elements, and this can be done using the axis option. So to refer to the column names, you should specify axis = 1.

Arithmetic and Data Alignment

Perhaps the most powerful feature involving the indexes in a data structure, is that pandas can align indexes coming from two different data structures. This is especially true when you are performing an arithmetic operation on them. In fact, during these operations, not only can the indexes between the two structures be in a different order, but they also can be present in only one of the two structures.

As you can see from the examples that follow, pandas proves to be very powerful in aligning indexes during these operations. For example, you can start considering two series in which they are defined, respectively, two arrays of labels not perfectly matching each other.

```
>>> s1 = pd.Series([3,2,5,1],['white','yellow','green','blue'])
>>> s2 = pd.Series([1,4,7,2,1],['white','yellow','black','blue','brown'])
```

Now among the various arithmetic operations, consider the simple sum. As you can see from the two series just declared, some labels are present in both, while other labels are present only in one of the two. When the labels are present in both operators, their values will be added, while in the opposite case, they will also be shown in the result (new series), but with the value NaN.

```
>>> s1 + s2
black NaN
blue 3.0
brown NaN
green NaN
white 4.0
yellow 6.0
dtype: float64
```

In the case of the dataframe, although it may appear more complex, the alignment follows the same principle, but is carried out both for the rows and for the columns.

```
>>> frame1 = pd.DataFrame(np.arange(16).reshape((4,4)),
                       index=['red','blue','yellow','white'],
                       columns=['ball','pen','pencil','paper'])
>>> frame2 = pd.DataFrame(np.arange(12).reshape((4,3)),
                       index=['blue','green','white','yellow'],
                       columns=['mug','pen','ball'])
. . .
>>> frame1
        ball
               pen pencil
                             paper
red
           0
                 1
                          2
blue
                 5
                         6
                                 7
           4
yellow
                                11
           8
                 9
                        10
white
           12
                13
                        14
                                15
>>> frame2
             pen
                   ball
        mug
blue
          0
                      2
                      5
green
          3
                4
white
          6
                      8
                7
yellow
          9
               10
                     11
```

```
>>> frame1 + frame2
        ball mug
                                pencil
                   paper
                           pen
blue
         6.0 NaN
                      NaN
                          6.0
                                   NaN
green
         NaN NaN
                     NaN
                          NaN
                                   NaN
red
         NaN NaN
                     NaN
                           NaN
                                   NaN
white
                     NaN 20.0
                                   NaN
         20.0 NaN
yellow
         19.0 NaN
                     NaN
                                   NaN
                          19.0
```

Operations Between Data Structures

Now that you are familiar with the data structures such as series and dataframe and you have seen how various elementary operations can be performed on them, it's time to go to operations involving two or more of these structures.

For example, in the previous section, you saw how the arithmetic operators apply between two of these objects. Now in this section you will deepen more the topic of operations that can be performed between two data structures.

Flexible Arithmetic Methods

You've just seen how to use mathematical operators directly on the pandas data structures. The same operations can also be performed using appropriate methods, called *flexible arithmetic methods*.

- add()
- sub()
- div()
- mul()

In order to call these functions, you need to use a specification different than what you're used to dealing with mathematical operators. For example, instead of writing a sum between two dataframes, such as frame1 + frame2, you have to use the following format:

>>> frame1.add(frame2)

```
ball mug paper pen pencil
blue 6.0 NaN NaN 6.0 NaN
green NaN NaN NaN NaN NaN
```

```
red
          NaN NaN
                       NaN
                             NaN
                                    NaN
white
         20.0
               NaN
                       NaN
                            20.0
                                    NaN
yellow
                                    NaN
         19.0 NaN
                       NaN
                            19.0
```

As you can see, the results are the same as what you'd get using the addition operator +. You can also note that if the indexes and column names differ greatly from one series to another, you'll find yourself with a new dataframe full of NaN values. You'll see later in this chapter how to handle this kind of data.

Operations Between DataFrame and Series

Coming back to the arithmetic operators, pandas allows you to make transactions between different structures. For example, between a dataframe and a series. For example, you can define these two structures in the following way.

```
>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
                       index=['red','blue','yellow','white'],
                       columns=['ball','pen','pencil','paper'])
>>> frame
        ball
             pen pencil
                            paper
red
           0
                 1
                         2
                                 3
blue
                         6
                                7
yellow
           8
                 9
                        10
                               11
white
          12
                        14
                               15
               13
>>> ser = pd.Series(np.arange(4), index=['ball','pen','pencil','paper'])
>>> ser
ball
          0
pen
          1
pencil
          2
paper
          3
dtype: int64
```

The two newly defined data structures have been created specifically so that the indexes of series match the names of the columns of the dataframe. This way, you can apply a direct operation.

CHAPTER 4 THE PANDAS LIBRARY—AN INTRODUCTION

>>> frame - ser				
	ball	pen	pencil	paper
red	0	0	0	0
blue	4	4	4	4
yellow	8	8	8	8
white	12	12	12	12

As you can see, the elements of the series are subtracted from the values of the dataframe corresponding to the same index on the column. The value is subtracted for all values of the column, regardless of their index.

If an index is not present in one of the two data structures, the result will be a new column with that index only that all its elements will be NaN.

```
>>> ser['mug'] = 9
>>> ser
ball
         0
pen
         1
pencil
         2
         3
paper
mug
         9
dtype: int64
>>> frame - ser
       ball mug paper pen pencil
red
          0 NaN
                      0
                           0
blue
           4 NaN
                      4
                           4
                                   4
          8 NaN
yellow
                      8
                           8
                                   8
white
         12 NaN
                     12
                          12
                                  12
```

Function Application and Mapping

This section covers the pandas library functions.

Functions by Element

The pandas library is built on the foundations of NumPy and then extends many of its features by adapting them to new data structures as series and dataframe. Among these are the *universal functions*, called ufunc. This class of functions operates by element in the data structure.

```
>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
                       index=['red','blue','yellow','white'],
                       columns=['ball','pen','pencil','paper'])
>>> frame
        ball
              pen pencil
                            paper
red
           0
                 1
                         2
blue.
                         6
           4
                 5
                                7
yellow
           8
                 9
                        10
                                11
white
          12
               13
                                15
                        14
```

For example, you could calculate the square root of each value in the dataframe using the NumPy np.sqrt().

Functions by Row or Column

The application of the functions is not limited to the ufunc functions, but also includes those defined by the user. The important point is that they operate on a one-dimensional array, giving a single number as a result. For example, you can define a lambda function that calculates the range covered by the elements in an array.

```
>>> f = lambda x: x.max() - x.min()
```

It is possible to define the function this way as well:

```
>>> def f(x):
... return x.max() - x.min()
```

Using the apply() function, you can apply the function just defined on the dataframe.

```
>>> frame.apply(f)
ball 12
pen 12
pencil 12
paper 12
dtype: int64
```

The result this time is one value for the column, but if you prefer to apply the function by row instead of by column, you have to set the axis option to 1.

```
>>> frame.apply(f, axis=1)
red     3
blue     3
yellow     3
white     3
dtype: int64
```

It is not mandatory that the method apply() return a scalar value. It can also return a series. A useful case would be to extend the application to many functions simultaneously. In this case, we will have two or more values for each feature applied. This can be done by defining a function in the following manner:

```
>>> def f(x):
... return pd.Series([x.min(), x.max()], index=['min', 'max'])
...
```

Then, you apply the function as before. But in this case as an object returned you get a dataframe instead of a series, in which there will be as many rows as the values returned by the function.

```
>>> frame.apply(f)
    ball pen pencil paper
min 0 1 2 3
max 12 13 14 15
```

Statistics Functions

Most of the statistical functions for arrays are still valid for dataframe, so using the apply() function is no longer necessary. For example, functions such as sum() and mean() can calculate the sum and the average, respectively, of the elements contained within a dataframe.

```
>>> frame.sum()
ball
          24
          28
pen
pencil
          32
paper
          36
dtype: int64
>>> frame.mean()
ball
          6.0
          7.0
pen
pencil
          8.0
paper
          9.0
dtype: float64
```

There is also a function called describe() that allows you to obtain summary statistics at once.

>>> frame.describe()

		* /		
paper	pencil	pen	ball	
4.000000	4.000000	4.000000	4.000000	count
9.000000	8.000000	7.000000	6.000000	mean
5.163978	5.163978	5.163978	5.163978	std
3.000000	2.000000	1.000000	0.000000	min
6.000000	5.000000	4.000000	3.000000	25%
9.000000	8.000000	7.000000	6.000000	50%
12.000000	11.000000	10.000000	9.000000	75%
15.000000	14.000000	13.000000	12.000000	max

Sorting and Ranking

Another fundamental operation that uses indexing is sorting. Sorting the data is often a necessity and it is very important to be able to do it easily. pandas provides the sort_index() function, which returns a new object that's identical to the start, but in which the elements are ordered.

Let's start by seeing how you can sort items in a series. The operation is quite trivial since the list of indexes to be ordered is only one.

```
>>> ser = pd.Series([5,0,3,8,4],
        index=['red','blue','yellow','white','green'])
>>> ser
red
          5
blue
          0
vellow
          3
white
green
dtype: int64
>>> ser.sort index()
blue
          0
green
          4
red
          5
white
          8
yellow
          3
dtype: int64
```

As you can see, the items were sorted in ascending alphabetical order based on their labels (from A to Z). This is the default behavior, but you can set the opposite order by setting the ascending option to False.

```
>>> ser.sort_index(ascending=False)
yellow 3
white 8
red 5
green 4
blue 0
dtype: int64
```

With the dataframe, the sorting can be performed independently on each of its two axes. So if you want to order by row following the indexes, you just continue to use the sort_index() function without arguments as you've seen before, or if you prefer to order by columns, you need to set the axis options to 1.

```
>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
                       index=['red','blue','yellow','white'],
                       columns=['ball','pen','pencil','paper'])
>>> frame
        ball pen pencil
                             paper
red
           0
                 1
                          2
                                 3
blue
           4
                 5
                         6
                                 7
yellow
                 9
                                11
                        10
white
          12
                13
                        14
                                15
>>> frame.sort index()
        ball pen pencil
                            paper
blue
                 5
           4
                         6
                                 7
red
           0
                 1
                         2
                                 3
white
          12
                13
                        14
                                15
yellow
           8
                 9
                        10
                                11
>>> frame.sort index(axis=1)
        ball paper pen pencil
red
           0
                   3
                                 2
blue
                   7
                        5
                                 6
           4
yellow
           8
                  11
                        9
                                10
white
          12
                  15
                       13
                                14
```

So far, you have learned how to sort the values according to the indexes. But very often you may need to sort the values contained in the data structure. In this case, you have to differentiate depending on whether you have to sort the values of a series or a dataframe.

If you want to order the series, you need to use the sort_values() function.

```
>>> ser.sort_values()
blue     0
yellow     3
green     4
```

CHAPTER 4 THE PANDAS LIBRARY—AN INTRODUCTION

red 5 white 8 dtype: int64

If you need to order the values in a dataframe, use the sort_values() function seen previously but with the by option. Then you have to specify the name of the column on which to sort.

```
>>> frame.sort values(by='pen')
        ball pen pencil paper
red
           0
                 1
                         2
                                 3
blue
                 5
                         6
                                 7
           4
vellow
           8
                 9
                                11
                        10
white
          12
               13
                        14
                                15
```

If the sorting criteria will be based on two or more columns, you can assign an array containing the names of the columns to the by option.

```
>>> frame.sort values(by=['pen','pencil'])
        ball pen pencil paper
red
           0
                 1
                         2
                                3
blue
                         6
           4
                 5
                                7
yellow
           8
                 9
                        10
                               11
white
          12
               13
                        14
                               15
```

The ranking is an operation closely related to sorting. It mainly consists of assigning a rank (that is, a value that starts at 0 and then increase gradually) to each element of the series. The rank will be assigned starting from the lowest value to the highest.

```
>>> ser.rank()
red      4.0
blue     1.0
yellow     2.0
white     5.0
green     3.0
dtype: float64
```

The rank can also be assigned in the order in which the data are already in the data structure (without a sorting operation). In this case, you just add the method option with the first value assigned.

```
>>> ser.rank(method='first')
red      4.0
blue     1.0
yellow     2.0
white     5.0
green     3.0
dtype: float64
```

By default, even the ranking follows an ascending sort. To reverse this criteria, set the ascending option to False.

```
>>> ser.rank(ascending=False)
red     2.0
blue     5.0
yellow     4.0
white     1.0
green     3.0
dtype: float64
```

Correlation and Covariance

Two important statistical calculations are correlation and covariance, expressed in pandas by the corr() and cov() functions. These kind of calculations normally involve two series.

```
>>> seq2 = pd.Series([3,4,3,4,5,4,3,2],['2006','2007','2008',
'2009','2010','2011','2012','2013'])
>>> seq = pd.Series([1,2,3,4,4,3,2,1],['2006','2007','2008',
'2009','2010','2011','2012','2013'])
>>> seq.corr(seq2)
0.7745966692414835
>>> seq.cov(seq2)
0.8571428571428571
```

Covariance and correlation can also be applied to a single dataframe. In this case, they return their corresponding matrices in the form of two new dataframe objects.

```
>>> frame2 = pd.DataFrame([[1,4,3,6],[4,5,6,1],[3,3,1,5],[4,1,6,4]],
                        index=['red','blue','yellow','white'],
                        columns=['ball','pen','pencil','paper'])
>>> frame2
        ball
              pen
                   pencil
                           paper
red
           1
                4
                        3
                               6
blue
           4
                5
                        6
                               1
yellow
                3
                        1
           3
white
           4
                1
                        6
                               4
>>> frame2.corr()
            ball
                              pencil
                       pen
                                         paper
ball
        1.000000 -0.276026 0.577350 -0.763763
pen
       -0.276026 1.000000 -0.079682 -0.361403
pencil 0.577350 -0.079682 1.000000 -0.692935
paper -0.763763 -0.361403 -0.692935 1.000000
>>> frame2.cov()
            ball
                              pencil
                       pen
                                         paper
        2.000000 -0.666667 2.000000 -2.333333
ball
       -0.666667 2.916667 -0.333333 -1.333333
pen
pencil 2.000000 -0.333333 6.000000 -3.666667
paper -2.333333 -1.333333 -3.666667 4.666667
```

Using the corrwith() method, you can calculate the pairwise correlations between the columns or rows of a dataframe with a series or another DataFrame().

```
>>> frame2.corrwith(ser)
ball
          0.730297
pen
         -0.831522
pencil
          0.210819
paper
         -0.119523
dtype: float64
>>> frame2.corrwith(frame)
ball
          0.730297
pen
         -0.831522
pencil
          0.210819
paper
         -0.119523
dtype: float64
```

"Not a Number" Data

In the previous sections, you saw how easily missing data can be formed. They are recognizable in the data structures by the NaN (Not a Number) value. So, having values that are not defined in a data structure is quite common in data analysis.

However, pandas is designed to better manage this eventuality. In fact, in this section, you will learn how to treat these values so that many issues can be obviated. For example, in the pandas library, calculating descriptive statistics excludes NaN values implicitly.

Assigning a NaN Value

If you need to specifically assign a NaN value to an element in a data structure, you can use the np.NaN (or np.nan) value of the NumPy library.

CHAPTER 4 THE PANDAS LIBRARY—AN INTRODUCTION

Filtering Out NaN Values

There are various ways to eliminate the NaN values during data analysis. Eliminating them by hand, element by element, can be very tedious and risky, and you're never sure that you eliminated all the NaN values. This is where the dropna() function comes to your aid.

```
>>> ser.dropna()
red     0.0
blue     1.0
yellow     2.0
green     9.0
dtype: float64
```

You can also directly perform the filtering function by placing notnull() in the selection condition.

```
>>> ser[ser.notnull()]
red     0.0
blue     1.0
yellow     2.0
green     9.0
dtype: float64
```

If you're dealing with a dataframe, it gets a little more complex. If you use the dropna() function on this type of object, and there is only one NaN value on a column or row, it will eliminate it.

```
>>> frame3 = pd.DataFrame([[6,np.nan,6],[np.nan,np.nan,np.nan],[2,np.nan,5]],
                           index = ['blue', 'green', 'red'],
                           columns = ['ball','mug','pen'])
>>> frame3
       ball
            mug
                 pen
blue
        6.0 NaN 6.0
green
        NaN
             NaN NaN
red
        2.0
             NaN
                 5.0
>>> frame3.dropna()
Empty DataFrame
Columns: [ball, mug, pen]
Index: []
```

Therefore, to avoid having entire rows and columns disappear completely, you should specify the how option, assigning a value of all to it. This tells the dropna() function to delete only the rows or columns in which *all* elements are NaN.

Filling in NaN Occurrences

Rather than filter NaN values within data structures, with the risk of discarding them along with values that could be relevant in the context of data analysis, you can replace them with other numbers. For most purposes, the fillna() function is a great choice. This method takes one argument, the value with which to replace any NaN. It can be the same for all cases.

Or you can replace NaN with different values depending on the column, specifying one by one the indexes and the associated values.

Hierarchical Indexing and Leveling

Hierarchical indexing is a very important feature of pandas, as it allows you to have multiple levels of indexes on a single axis. It gives you a way to work with data in multiple dimensions while continuing to work in a two-dimensional structure.

Let's start with a simple example, creating a series containing two arrays of indexes, that is, creating a structure with two levels.

```
>>> mser = pd.Series(np.random.rand(8),
           index=[['white','white','blue','blue','red','red',
           'red'],
                  ['up','down','right','up','down','up','down','left']])
>>> mser
white up
                0.461689
       down
                0.643121
       right
                0.956163
blue
       up
                0.728021
       down
                0.813079
red
       up
                0.536433
       down
                0.606161
       left
                0.996686
dtype: float64
>>> mser.index
Pd.MultiIndex(levels=[['blue', 'red', 'white'], ['down',
'left', 'right', 'up']],
           labels=[[2, 2, 2, 0, 0, 1, 1, 1],
           [3, 0, 2, 3, 0, 3, 0, 1]])
```

Through the specification of hierarchical indexing, selecting subsets of values is in a certain way simplified.

In fact, you can select the values for a given value of the first index, and you do it in the classic way:

Or you can select values for a given value of the second index, in the following manner:

```
>>> mser[:,'up']
white     0.461689
blue     0.728021
red     0.536433
dtype: float64
```

Intuitively, if you want to select a specific value, you specify both indexes.

```
>>> mser['white','up']
0.46168915430531676
```

Hierarchical indexing plays a critical role in reshaping data and group-based operations such as a pivot-table. For example, the data could be rearranged and used in a dataframe with a special function called unstack(). This function converts the series with a hierarchical index to a simple dataframe, where the second set of indexes is converted into a new set of columns.

CHAPTER 4 THE PANDAS LIBRARY—AN INTRODUCTION

If what you want is to perform the reverse operation, which is to convert a dataframe to a series, you use the **stack()** function.

```
>>> frame
        ball
              pen
                    pencil
                             paper
red
            0
                 1
                          2
                                  3
blue
                 5
                          6
                                  7
            4
vellow
            8
                 9
                         10
                                 11
white
           12
                13
                         14
                                 15
>>> frame.stack()
        ball
red
                    0
        pen
                    1
        pencil
                    2
        paper
                     3
blue
        ball
                    4
        pen
                     5
        pencil
        paper
                    7
yellow
        ball
                    8
        pen
                    9
        pencil
                   10
        paper
                    11
white
        ball
                   12
        pen
                   13
        pencil
                   14
        paper
                   15
dtype: int64
```

With dataframe, it is possible to define a hierarchical index both for the rows and for the columns. At the time the dataframe is declared, you have to define an array of arrays for the index and columns options.

```
>>> mframe = pd.DataFrame(np.random.randn(16).reshape(4,4),
... index=[['white','white','red','red'], ['up','down','up','down']],
... columns=[['pen','pen','paper'],[1,2,1,2]])
```

2

```
>>> mframe
                 pen
                                   paper
                   1
                             2
white up
           -1.964055
                      1.312100 -0.914750 -0.941930
                      1.700858 -1.060846 -0.197669
      down -1.886825
```

-1.561761 1.225509 -0.244772 0.345843

down 2.668155 0.528971 -1.633708 0.921735

Reordering and Sorting Levels

red

Occasionally, you might need to rearrange the order of the levels on an axis or sort for values at a specific level.

The swaplevel() function accepts as arguments the names assigned to the two levels that you want to interchange and returns a new object with the two levels interchanged between them, while leaving the data unmodified.

```
>>> mframe.columns.names = ['objects','id']
>>> mframe.index.names = ['colors','status']
>>> mframe
objects
                    pen
                                      paper
id
                      1
                                2
                                                    2
                                          1
colors status
white
       up
              -1.964055 1.312100 -0.914750 -0.941930
       down
             -1.886825 1.700858 -1.060846 -0.197669
red
       up
              -1.561761 1.225509 -0.244772 0.345843
       down
               2.668155 0.528971 -1.633708 0.921735
>>> mframe.swaplevel('colors','status')
objects
                    pen
                                      paper
id
                      1
                                2
                                          1
                                                    2
status colors
      white -1.964055 1.312100 -0.914750 -0.941930
up
down
      white -1.886825 1.700858 -1.060846 -0.197669
       red
              -1.561761 1.225509 -0.244772 0.345843
up
down
      red
               2.668155 0.528971 -1.633708 0.921735
```

Instead, the **sort_index()** function orders the data considering only those of a certain level by specifying it as parameter

```
>>> mframe.sort index(level='colors')
objects
                    pen
                                      paper
id
                      1
                                2
                                                    2
                                          1
colors status
red
       down
               2.668155
                         0.528971 -1.633708 0.921735
              -1.561761 1.225509 -0.244772 0.345843
       up
white down
              -1.886825
                         1.700858 -1.060846 -0.197669
              -1.964055 1.312100 -0.914750 -0.941930
       up
```

Summary Statistic by Level

Many descriptive statistics and summary statistics performed on a dataframe or on a series have a level option, with which you can determine at what level the descriptive and summary statistics should be determined.

For example, if you create a statistic at row level, you have to simply specify the level option with the level name.

If you want to create a statistic for a given level of the column, for example, the id, you must specify the second axis as an argument through the axis option set to 1.

Conclusions

This chapter introduced the pandas library. You learned how to install it and saw a general overview of its characteristics.

You learned about the two basic structures data, called the series and dataframe, along with their operation and their main characteristics. Especially, you discovered the importance of indexing within these structures and how best to perform operations on them. Finally, you looked at the possibility of extending the complexity of these structures by creating hierarchies of indexes, thus distributing the data contained in them into different sublevels.

In the next chapter, you learn how to capture data from external sources such as files, and inversely, how to write the analysis results on them.

pandas: Reading and Writing Data

In the previous chapter, you became familiar with the pandas library and with the basic functionalities that it provides for data analysis. You saw that dataframe and series are the heart of this library. These are the material on which to perform all data manipulations, calculations, and analysis.

In this chapter, you will see all of the tools provided by pandas for reading data stored in many types of media (such as files and databases). In parallel, you will also see how to write data structures directly on these formats, without worrying too much about the technologies used.

This chapter focuses on a series of I/O API functions that pandas provides to read and write data directly as dataframe objects. We start by looking at text files, then move gradually to more complex binary formats.

At the end of the chapter, you'll also learn how to interface with all common databases, both SQL and NoSQL, including examples that show how to store data in a dataframe. At the same time, you learn how to read data contained in a database and retrieve them as a dataframe.

I/O API Tools

pandas is a library specialized for data analysis, so you expect that it is mainly focused on calculation and data processing. The processes of writing and reading data from/to external files can be considered part of data processing. In fact, you will see how, even at this stage, you can perform some operations in order to prepare the incoming data for manipulation.

CHAPTER 5 PANDAS: READING AND WRITING DATA

Thus, this step is very important for data analysis and therefore a specific tool for this purpose must be present in the library pandas—a set of functions called I/O API. These functions are divided into two main categories: *readers* and *writers*.

Readers	Writers
read_csv	to_csv
read_excel	to_excel
read_hdf	to_hdf
read_sql	to_sql
read_json	to_json
read_html	to_html
read_stata	to_stata
read_clipboard	to_clipboard
read_pickle	to_pickle
read_msgpack	to_msgpack (experimental)
read_gbq	to_gbq (experimental)

CSV and Textual Files

Everyone has become accustomed over the years to writing and reading files in text form. In particular, data are generally reported in tabular form. If the values in a row are separated by commas, you have the CSV (comma-separated values) format, which is perhaps the best-known and most popular format.

Other forms of tabular data can be separated by spaces or tabs and are typically contained in text files of various types (generally with the .txt extension).

This type of file is the most common source of data and is easier to transcribe and interpret. In this regard, pandas provides a set of functions specific for this type of file.

- read_csv
- read_table
- to_csv

Reading Data in CSV or Text Files

From experience, the most common operation of a person approaching data analysis is to read the data contained in a CSV file, or at least in a text file.

But before you start dealing with files, you need to import the following libraries.

```
>>> import numpy as np
>>> import pandas as pd
```

In order to see how pandas handles this kind of data, we'll start by creating a small CSV file in the working directory, as shown in Listing 5-1, and save it as ch05_01.csv.

Listing 5-1. ch05_01.csv

```
white, red, blue, green, animal
1,5,2,3, cat
2,7,8,5, dog
3,3,6,7, horse
2,2,8,3, duck
4,4,2,1, mouse
```

Since this file is comma-delimited, you can use the read_csv() function to read its content and convert it to a dataframe object.

```
>>> csvframe = pd.read csv('ch05 01.csv')
>>> csvframe
   white red
               blue green animal
0
       1
                   2
                          3
                               cat
       2
            7
                  8
                               dog
1
                          5
                          7 horse
2
       3
            3
                  6
3
       2
            2
                  8
                          3
                             duck
                   2
4
       4
            4
                          1 mouse
```

As you can see, reading the data in a CSV file is rather trivial. CSV files are tabulated data in which the values on the same column are separated by commas. Since CSV files are considered text files, you can also use the read_table() function, but specify the delimiter.

CHAPTER 5 PANDAS: READING AND WRITING DATA

```
>>> pd.read table('ch05 01.csv',sep=',')
   white red blue green animal
                   2
0
       1
            5
                          3
                               cat
1
       2
            7
                   8
                          5
                               dog
2
       3
            3
                   6
                          7
                             horse
       2
            2
                   8
3
                          3
                             duck
4
       4
            4
                   2
                          1
                             mouse
```

In this example, you can see that in the CSV file, headers that identify all the columns are in the first row. But this is not a general case; it often happens that the tabulated data begin directly in the first line (see Listing 5-2).

Listing 5-2. ch05_02.csv

```
1,5,2,3,cat
2,7,8,5,dog
3,3,6,7,horse
2,2,8,3,duck
4,4,2,1, mouse
>>> pd.read csv('ch05 02.csv')
    5 2
          3
               cat
  2 7 8 5
0
               dog
1 3 3 6 7 horse
2 2 2 8
          3
              duck
3 4 4 2
          1 mouse
```

In this case, you could make sure that it is pandas that assigns the default names to the columns by setting the header option to None.

```
>>> pd.read_csv('ch05_02.csv', header=None)
     1
       2
          3
                 4
0
  1
     5 2
          3
               cat
  2 7 8 5
               dog
1
2 3 3 6 7 horse
  2 2 8
          3
              duck
  4
          1 mouse
    4 2
```

In addition, you can specify the names directly by assigning a list of labels to the names option.

```
>>> pd.read csv('ch05 02.csv', names=['white','red','blue','green','animal'])
          red blue green animal
   white
0
       1
            5
                   2
                          3
                                cat
1
       2
            7
                   8
                          5
                                dog
                          7 horse
2
       3
            3
                   6
       2
            2
                   8
3
                          3
                              duck
4
       4
            4
                   2
                          1
                             mouse
```

In more complex cases, in which you want to create a dataframe with a hierarchical structure by reading a CSV file, you can extend the functionality of the read_csv() function by adding the index col option, assigning all the columns to be converted into indexes.

To better understand this possibility, create a new CSV file with two columns to be used as indexes of the hierarchy. Then, save it in the working directory as ch05_03.csv (see Listing 5-3).

Listing **5-3.** ch05_03.csv

2

1

red

up

down

2

1

2

4

```
color, status, item1, item2, item3
black,up,3,4,6
black, down, 2, 6, 7
white, up, 5, 5, 5
white, down, 3, 3, 2
white, left, 1, 2, 1
red, up, 2, 2, 2
red, down, 1, 1, 4
>>> pd.read csv('ch05 03.csv', index col=['color','status'])
                item1 item2 item3
color status
black up
                    3
                            4
                                    6
      down
                    2
                            6
                                    7
white up
                    5
                            5
                                    5
      down
                    3
                            3
                                    2
      left
                    1
                            2
                                    1
```

Using RegExp to Parse TXT Files

In other cases, it is possible that the files on which to parse the data do not show separators well defined as a comma or a semicolon. In these cases, the regular expressions come to our aid. In fact, you can specify a regexp within the read_table() function using the sep option.

To better understand regexp and understand how you can apply it as criteria for value separation, let's start with a simple case. For example, suppose that your TXT file has values that are separated by spaces or tabs in an unpredictable order. In this case, you have to use the regexp, because that's the only way to take into account both separator types. You can do that using the wildcard $/s^*$. /s stands for the space or tab character (if you want to indicate a tab, you use /t), while the asterisk indicates that there may be multiple characters (see Table 5-1 for other common wildcards). That is, the values may be separated by more spaces or more tabs.

Table 5-1. Metacharacters

•	Single character, except newline
\d	Digit
\D	Non-digit character
\s	Whitespace character
\ S	Non-whitespace character
\n	New line character
\t	Tab character
\uxxxx	Unicode character specified by the hexadecimal number xxxx

Take for example an extreme case in which we have the values separated by tabs or spaces in a random order (see Listing 5-4).

Listing 5-4. ch05_04.txt

```
white red blue green
   1
            2
                  3
   2 7
            8
   3
       3
            6
                  7
>>> pd.read table('ch05 04.txt',sep='\s+', engine='python')
  white red blue green
0
           5
                 2
      2
           7
                 8
                        5
1
2
      3
           3
                 6
                        7
```

As you can see, the result is a perfect dataframe in which the values are perfectly ordered.

Now you will see an example that may seem strange or unusual, but it is not as rare as it may seem. This example can be very helpful in understanding the high potential of a regexp. In fact, you might typically think of separators as special characters like commas, spaces, tabs, etc., but in reality you can consider separator characters like alphanumeric characters, or for example, integers such as 0.

In this example, you need to extract the numeric part from a TXT file, in which there is a sequence of characters with numerical values and the literal characters are completely fused.

Remember to set the header option to None whenever the column headings are not present in the TXT file (see Listing 5-5).

Listing 5-5. ch05_05.txt

Another fairly common event is to exclude lines from parsing. In fact you do not always want to include headers or unnecessary comments contained in a file (see Listing 5-6). With the skiprows option, you can exclude all the lines you want, just assigning an array containing the line numbers to not consider in parsing.

Pay attention when you are using this option. If you want to exclude the first five lines, you have to write skiprows = 5, but if you want to rule out the fifth line, you have to write skiprows = [5].

Listing 5-6. ch05_06.txt

```
This file has been generated by automatic system
white, red, blue, green, animal
12-Feb-2015: Counting of animals inside the house
1,5,2,3,cat
2,7,8,5,dog
13-Feb-2015: Counting of animals outside the house
3,3,6,7,horse
2,2,8,3,duck
4,4,2,1, mouse
>>> pd.read table('ch05 06.txt',sep=',',skiprows=[0,1,3,6])
  white red blue green animal
0
      1
           5
                2
                       3
                           cat
      2
           7
                8
1
                       5
                           dog
                6
          3
2
      3
                       7 horse
      2
           2
                8
                         duck
3
                       3
4
      4
                2
                       1 mouse
```

Reading TXT Files Into Parts

When large files are processed, or when you are only interested in portions of these files, you often need to read the file into portions (chunks). This is both to apply any iterations and because we are not interested in parsing the entire file.

If, for example, you wanted to read only a portion of the file, you can explicitly specify the number of lines on which to parse. Thanks to the nrows and skiprows options, you can select the starting line n (n = SkipRows) and the lines to be read after it (nrows = i).

```
>>> pd.read csv('ch05 02.csv',skiprows=[2],nrows=3,header=None)
  0
     1
         2
                  4
            3
  1 5
         2
            3
                cat
         8
            5
                dog
2
  2
      2
         8
            3
               duck
```

Another interesting and fairly common operation is to split into portions that part of the text on which you want to parse. Then, for each portion a specific operation may be carried out, in order to obtain an iteration, portion by portion.

For example, you want to add the values in a column every three rows and then insert these sums in a series. This example is trivial and impractical but is very simple to understand, so once you have learned the underlying mechanism, you will be able to apply it in more complex cases.

```
>>> out = pd.Series()
>>> i = 0
>>> pieces = pd.read csv('ch05 01.csv',chunksize=3)
>>> for piece in pieces:
       out.set value(i,piece['white'].sum())
       i = i + 1
0
     6
dtype: int64
0
     6
     6
dtype: int64
>>> out
0
     6
     6
1
dtype: int64
```

Writing Data in CSV

In addition to reading the data contained in a file, it's also common to write a data file produced by a calculation, or in general the data contained in a data structure.

For example, you might want to write the data contained in a dataframe to a CSV file. To do this writing process, you will use the to_csv() function, which accepts as an argument the name of the file you generate (see Listing 5-7).

If you open the new file called ch05_07.csv generated by the pandas library, you will see data as in Listing 5-7.

```
Listing 5-7. ch05_07.csv
```

```
,ball,pen,pencil,paper
0,1,2,3
4,5,6,7
8,9,10,11
12,13,14,15
```

As you can see from the previous example, when you write a dataframe to a file, indexes and columns are marked on the file by default. This default behavior can be changed by setting the two options index and header to False (see Listing 5-8).

```
>>> frame.to_csv('ch05_07b.csv', index=False, header=False)
```

Listing 5-8. ch05_07b.csv

```
1,2,3
5,6,7
9,10,11
13,14,15
```

One point to remember when writing files is that NaN values present in a data structure are shown as empty fields in the file (see Listing 5-9).

```
>>> frame3 = pd.DataFrame([[6,np.nan,np.nan,6,np.nan],
              [np.nan,np.nan,np.nan,np.nan],
              [np.nan,np.nan,np.nan,np.nan],
              [20, np.nan, np.nan, 20.0, np.nan],
              [19, np.nan, np.nan, 19.0, np.nan]
              ],
                     index=['blue','green','red','white','yellow'],
                     columns=['ball','mug','paper','pen','pencil'])
>>> frame3
        ball
                               pencil
              mug paper pen
         6.0 NaN
blue
                     NaN 6.0
                                  NaN
         NaN NaN
                     NaN NaN
                                  NaN
green
red
         NaN NaN
                     NaN NaN
                                  NaN
white
        20.0 NaN
                     NaN 20.0
                                  NaN
yellow 19.0 NaN
                     NaN 19.0
                                  NaN
>>> frame3.to csv('ch05 08.csv')
Listing 5-9. ch05_08.csv
,ball,mug,paper,pen,pencil
blue,6.0,,,6.0,
green,,,,,
red,,,,,
white, 20.0, ,, 20.0,
yellow, 19.0, ,, 19.0,
```

However, you can replace this empty field with a value to your liking using the na_rep option in the to_csv() function. Common values may be NULL, 0, or the same NaN (see Listing 5-10).

```
>>> frame3.to csv('ch05 09.csv', na rep ='NaN')
```

Listing 5-10. ch05_09.csv

,ball,mug,paper,pen,pencil blue,6.0,NaN,NaN,6.0,NaN green,NaN,NaN,NaN,NaN,NaN red,NaN,NaN,NaN,NaN,NaN white,20.0,NaN,NaN,20.0,NaN yellow,19.0,NaN,NaN,19.0,NaN

Note In the cases specified, dataframe has always been the subject of discussion since these are the data structures that are written to the file. But all these functions and options are also valid with regard to the series.

Reading and Writing HTML Files

pandas provides the corresponding pair of I/O API functions for the HTML format.

- read_html()
- to html()

These two functions can be very useful. You will appreciate the ability to convert complex data structures such as dataframes directly into HTML tables without having to hack a long listing in HTML, especially if you're dealing with the Web.

The inverse operation can be very useful, because now the major source of data is just the web world. In fact, a lot of data on the Internet does not always have the form "ready to use," that is packaged in some TXT or CSV file. Very often, however, the data are reported as part of the text of web pages. So also having available a function for reading could prove to be really useful.

This activity is so widespread that it is currently identified as *web scraping*. This process is becoming a fundamental part of the set of processes that will be integrated in the first part of data analysis: data mining and data preparation.

Note Many websites have now adopted the HTML5 format, to avoid any issues of missing modules and error messages. I strongly recommend you install the module html5lib. Anaconda specified:

```
conda install html5lib
```

Writing Data in HTML

Now you learn how to convert a dataframe into an HTML table. The internal structure of the dataframe is automatically converted into nested tags <TH>, <TR>, and <TD> retaining any internal hierarchies. You do not need to know HTML to use this kind of function.

Because the data structures as the dataframe can be quite complex and large, it's great to have a function like this when you need to develop web pages.

To better understand this potential, here's an example. You can start by defining a simple dataframe.

Thanks to the to_html() function, you can directly convert the dataframe into an HTML table.

```
>>> frame = pd.DataFrame(np.arange(4).reshape(2,2))
```

Since the I/O API functions are defined in the pandas data structures, you can call the to_html() function directly on the instance of the dataframe.

```
    0

    1

    >1

    >1

    >1

     2
```

As you can see, the whole structure formed by the HTML tags needed to create an HTML table was generated correctly in order to respect the internal structure of the dataframe.

In the next example, you'll see how the table appears automatically generated within an HTML file. In this regard, we create a dataframe a bit more complex than the previous one, where there are the labels of the indexes and column names.

Now you focus on writing an HTML page through the generation of a string. This is a simple and trivial example, but it is very useful to understand and to test the functionality of pandas directly on the web browser.

First of all we create a string that contains the code of the HTML page.

```
>>> s = ['<HTML>']
>>> s.append('<HEAD><TITLE>My DataFrame</TITLE></HEAD>')
>>> s.append('<BODY>')
>>> s.append(frame.to_html())
>>> s.append('</BODY></HTML>')
>>> html = ".join(s)
```

Now that all the listing of the HTML page is contained within the html variable, you can write directly on the file that will be called myFrame.html:

```
>>> html_file = open('myFrame.html','w')
>>> html_file.write(html)
>>> html_file.close()
```

Now in your working directory will be a new HTML file, myFrame.html. Double-click it to open it directly from the browser. An HTML table will appear in the upper left, as shown in Figure 5-1.

	ир	down	right	left
white	0.292434	0.457176	0.905139	0.737622
black	0.794233	0.949371	0.540191	0.367835
red	0.204529	0.981573	0.118329	0.761552
blue	0.628790	0.585922	0.039153	0.461598

Figure 5-1. The dataframe is shown as an HTML table in the web page

Reading Data from an HTML File

As you just saw, pandas can easily generate HTML tables starting from the dataframe. The opposite process is also possible; the function read_html () will perform a parsing an HTML page looking for an HTML table. If found, it will convert that table into an object dataframe ready to be used in our data analysis.

CHAPTER 5 PANDAS: READING AND WRITING DATA

More precisely, the read_html() function returns a list of dataframes even if there is only one table. The source that will be parsed can be different types. For example, you may have to read an HTML file in any directory. For example you can parse the HTML file you created in the previous example:

As you can see, all of the tags that have nothing to do with HTML table are not considered absolutely. Furthermore web_frames is a list of dataframes, although in your case, the dataframe that you are extracting is only one. However, you can select the item in the list that you want to use, calling it in the classic way. In this case, the item is unique and therefore the index will be 0.

However, the mode most commonly used regarding the read_html() function is that of a direct parsing of an URL on the Web. In this way the web pages in the network are directly parsed with the extraction of the tables in them.

For example, now you will call a web page where there is an HTML table that shows a ranking list with some names and scores.

```
>>> ranking = pd.read_html('https://www.meccanismocomplesso.org/en/
meccanismo-complesso-sito-2/classifica-punteggio/')
```

>>> ranking[0]

	Member	points	levels	Unnamed: 3
0	1	BrunoOrsini	1075	NaN
1	2	Berserker	700	NaN
2	3	albertosallu	275	NaN
3	4	Mr.Y	180	NaN
4	5	Jon	170	NaN
5	6	michele sisi	120	NaN
6	7	STEFANO GUST	120	NaN
7	8	Davide Alois	105	NaN
8	9	Cecilia Lala	105	NaN

. . .

The same operation can be run on any web page that has one or more tables.

Reading Data from XML

In the list of I/O API functions, there is no specific tool regarding the XML (Extensible Markup Language) format. In fact, although it is not listed, this format is very important, because many structured data are available in XML format. This presents no problem, since Python has many other libraries (besides pandas) that manage the reading and writing of data in XML format.

One of these libraries is the lxml library, which stands out for its excellent performance during the parsing of very large files. In this section you learn how to use this module for parsing XML files and how to integrate it with pandas to finally get the dataframe containing the requested data. For more information about this library, I highly recommend visiting the official website of lxml at http://lxml.de/index.html.

Take for example the XML file shown in Listing 5-11. Write down and save it with the name books.xml directly in your working directory.

Listing 5-11. books.xml

```
<?xml version="1.0"?>
<Catalog>
   <Book id="ISBN9872122367564">
      <Author>Ross, Mark</Author>
      <Title>XML Cookbook</Title>
      <Genre>Computer</Genre>
      <Price>23.56</Price>
      <PublishDate>2014-22-01</PublishDate>
   </Book>
   <Book id="ISBN9872122367564">
      <Author>Bracket, Barbara</Author>
      <Title>XML for Dummies</Title>
      <Genre>Computer</Genre>
      <Price>35.95</Price>
      <PublishDate>2014-12-16</PublishDate>
   </Book>
</Catalog>
```

In this example, you will take the data structure described in the XML file to convert it directly into a dataframe. The first thing to do is use the sub-module objectify of the lxml library, importing it in the following way.

```
>>> from lxml import objectify
```

Now you can do the parser of the XML file with just the parse() function.

```
>>> xml = objectify.parse('books.xml')
>>> xml
<lxml.etree. ElementTree object at 0x0000000009734E08>
```

You got an object tree, which is an internal data structure of the 1xml module.

Look in more detail at this type of object. To navigate in this tree structure, so as to select element by element, you must first define the root. You can do this with the getroot() function.

```
>>> root = xml.getroot()
```

Now that the root of the structure has been defined, you can access the various nodes of the tree, each corresponding to the tag contained in the original XML file. The items will have the same name as the corresponding tags. So to select them, simply write the various separate tags with points, reflecting in a certain way the hierarchy of nodes in the tree.

```
>>> root.Book.Author
'Ross, Mark'
>>> root.Book.PublishDate
'2014-22-01'
```

In this way you access nodes individually, but you can access various elements at the same time using getchildren(). With this function, you'll get all the child nodes of the reference element.

```
>>> root.getchildren()
[<Element Book at 0x9c66688>, <Element Book at 0x9c66e08>]
```

With the tag attribute you get the name of the tag corresponding to the child node.

```
>>> [child.tag for child in root.Book.getchildren()]
['Author', 'Title', 'Genre', 'Price', 'PublishDate']
```

While with the text attribute you get the value contained between the corresponding tags.

```
>>> [child.text for child in root.Book.getchildren()]
['Ross, Mark', 'XML Cookbook', 'Computer', '23.56', '2014-22-01']
```

However, regardless of the ability to move through the lxml.etree tree structure, what you need is to convert it into a dataframe. Define the following function, which has the task of analyzing the contents of an eTree to fill a dataframe line by line.

```
>>> def etree2df(root):
       column names = []
       for i in range(0,len(root.getchildren()[0].getchildren())):
          column names.append(root.getchildren()[0].getchildren()[i].tag)
       xml:frame = pd.DataFrame(columns=column names)
       for j in range(0, len(root.getchildren())):
          obj = root.getchildren()[j].getchildren()
          texts = []
          for k in range(0, len(column names)):
             texts.append(obj[k].text)
          row = dict(zip(column names, texts))
          row s = pd.Series(row)
          row s.name = j
          xml:frame = xml:frame.append(row s)
       return xml:frame
. . .
>>> etree2df(root)
             Author
                               Title
                                         Genre Price PublishDate
0
         Ross, Mark
                        XML Cookbook
                                      Computer
                                                23.56 2014-22-01
  Bracket, Barbara XML for Dummies
                                      Computer
                                                35.95 2014-12-16
```

Reading and Writing Data on Microsoft Excel Files

In the previous section, you saw how the data can be easily read from CSV files. It is not uncommon, however, that there are data collected in tabular form in an Excel spreadsheet.

CHAPTER 5 PANDAS: READING AND WRITING DATA

pandas provides specific functions for this type of format. You have seen that the I/O API provides two functions to this purpose:

- to excel()
- read excel()

The read_excel() function can read Excel 2003 (.xls) files and Excel 2007 (.xlsx) files. This is possible thanks to the integration of the internal module xlrd.

First, open an Excel file and enter the data as shown in Figure 5-2. Copy the data in sheet1 and sheet2. Then save it as ch05 data.xlsx.

4	Α	В	С	D	E
1		white	red	green	black
2	a	12	23	17	18
3	b	22	16	19	18
4	С	14	23	22	21
5		<u> </u>			
6					
á	Δ	В	С	D	E
1	А	B yellow	C purple	D blue	E orange
	A				
1 2 3		yellow	purple	blue	orange
2	A	yellow 11	purple 16	blue 44	orange 22
2	A B	yellow 11 20	purple 16 22	blue 44 23	orange 22 44

Figure 5-2. The two datasets in sheet1 and sheet2 of an Excel file

To read the data contained in the XLS file and convert it into a dataframe, you only have to use the read excel() function.

```
>>> pd.read excel('ch05 data.xlsx')
   white red green
                      black
      12
           23
                          18
a
                   17
b
      22
           16
                   19
                          18
                          21
C
      14
           23
                   22
```

As you can see, by default, the returned dataframe is composed of the data tabulated in the first spreadsheets. If, however, you need to load the data in the second spreadsheet, you must then specify the name of the sheet or the number of the sheet (index) just as the second argument.

```
>>> pd.read excel('ch05 data.xlsx','Sheet2')
   yellow purple blue
                         orange
Α
       11
               16
                      44
                              22
B
       20
               22
                      23
                              44
C
       30
                31
                      37
                              32
>>> pd.read excel('ch05 data.xlsx',1)
   yellow purple blue
                         orange
Α
       11
                16
                              22
                      44
В
       20
               22
                      23
                              44
C
       30
                31
                              32
                      37
```

The same applies for writing. To convert a dataframe into a spreadsheet on Excel, you have to write the following.

CHAPTER 5 PANDAS: READING AND WRITING DATA

In the working directory, you will find a new Excel file containing the data, as shown in Figure 5-3.

4	Α	В	С	D	E
1		Jan2015	Fab2015	Mar2015	Apr2005
2	exp1	0,030083	0,065339	0,960494	0,510847
3	exp2	0,531885	0,706945	0,964943	0,085642
4	exp3	0,981325	0,868894	0,947871	0,3876
5	exp4	0,832527	0,357885	0,538138	0,35799
6					

Figure 5-3. The dataframe in the Excel file

JSON Data

JSON (JavaScript Object Notation) has become one of the most common standard formats, especially for the transmission of data on the Web. So it is normal to work with this data format if you want to use data on the Web.

The special feature of this format is its great flexibility, although its structure is far from being the one to which you are well accustomed, i.e., tabular.

In this section you will see how to use the read_json() and to_json() functions to stay within the I/O API functions discussed in this chapter. But in the second part you will see another example in which you will have to deal with structured data in JSON format much more related to real cases.

In my opinion, a useful online application for checking the JSON format is JSONViewer, available at http://jsonviewer.stack.hu/. This web application, once you enter or copy data in JSON format, allows you to see if the format you entered is valid. Moreover it displays the tree structure so that you can better understand its structure (see Figure 5-4).

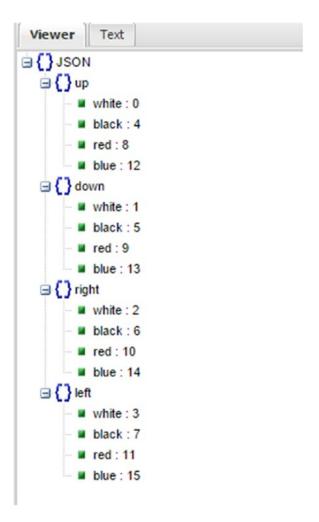


Figure 5-4. JSONViewer

Let's begin with the more useful case, that is, when you have a dataframe and you need to convert it into a JSON file. So, define a dataframe and then call the to_json() function on it, passing as an argument the name of the file that you want to create.

In the working directory, you will find a new JSON file (see Listing 5-12) containing the dataframe data translated into JSON format.

Listing 5-12. frame.json

```
{"up":{"white":0,"black":4,"red":8,"blue":12},"down":{"white":1,"black":5,
"red":9,"blue":13},"right":{"white":2,"black":6,"red":10,"blue":14},
"left":{"white":3,"black":7,"red":11,"blue":15}}
```

The converse is possible, using the read_json() with the name of the file passed as an argument.

```
>>> pd.read json('frame.json')
       down left right up
black
          5
                7
                       6
                           4
blue
         13
               15
                      14 12
red
          9
                           8
               11
                      10
white
          1
                3
                       2
```

The example you have seen is a fairly simple case in which the JSON data were in tabular form (since the file frame.json comes from a dataframe). Generally, however, the JSON files do not have a tabular structure. Thus, you will need to somehow convert the structure dict file into tabular form. This process is called *normalization*.

The library pandas provides a function, called json_normalize(), that is able to convert a dict or a list in a table. First you have to import the function:

```
>>> from pandas.io.json import json_normalize
```

Then you write a JSON file as described in Listing 5-13 with any text editor. Save it in the working directory as books.json.

Listing 5-13. books.json

As you can see, the file structure is no longer tabular, but more complex. Then the approach with the read_json() function is no longer valid. As you learn from this example, you can still get the data in tabular form from this structure. First you have to load the contents of the JSON file and convert it into a string.

```
>>> import json
>>> file = open('books.json','r')
>>> text = file.read()
>>> text = json.loads(text)
```

Now you are ready to apply the json_normalize() function. From a quick look at the contents of the data within the JSON file, for example, you might want to extract a table that contains all the books. Then write the books key as the second argument.

The function will read the contents of all the elements that have books as the key. All properties will be converted into nested column names while the corresponding values will fill the dataframe. For the indexes, the function assigns a sequence of increasing numbers.

CHAPTER 5 PANDAS: READING AND WRITING DATA

However, you get a dataframe containing only some internal information. It would be useful to add the values of other keys on the same level. In this case you can add other columns by inserting a key list as the third argument of the function.

<pre>>>> json_normalize(text, 'books',['nationality', 'writer'])</pre>								
	price	title	nationality	writer				
0	23.56	XML Cookbook	USA	Mark Ross				
1	50.70	Python Fundamentals	USA	Mark Ross				
2	12.30	The NumPy library	USA	Mark Ross				
3	28.60	Java Enterprise	UK	Barbara Bracket				
4	31.35	HTML5	UK	Barbara Bracket				
5	28.00	Python for Dummies	UK	Barbara Bracket				

Now as a result you get a dataframe from a starting tree structure.

The Format HDF5

So far you have seen how to write and read data in text format. When your data analysis involves large amounts of data, it is preferable to use them in binary format. There are several tools in Python to handle binary data. A library that is having some success in this area is the HDF5 library.

The HDF term stands for *hierarchical data format*, and in fact this library is concerned with reading and writing HDF5 files containing a structure with nodes and the possibility to store multiple datasets.

This library, fully developed in C, however, has also interfaces with other types of languages like Python, MATLAB, and Java. It is very efficient, especially when using this format to save huge amounts of data. Compared to other formats that work more simply in binary, HDF5 supports compression in real time, thereby taking advantage of repetitive patterns in the data structure to compress the file size.

At present, the possible choices in Python are PyTables and h5py. These two forms differ in several aspects and therefore their choice depends very much on the needs of those who use it.

h5py provides a direct interface with the high-level APIs HDF5, while PyTables makes abstract many of the details of HDF5 to provide more flexible data containers, indexed tables, querying capabilities, and other media on the calculations.

pandas has a class-like dict called HDFStore, using PyTables to store pandas objects. So before working with the format HDF5, you must import the HDFStore class:

```
>>> from pandas.io.pytables import HDFStore
```

Now you're ready to store the data of a dataframe within an . h5 file. First, create a dataframe.

```
>>> frame = pd.DataFrame(np.arange(16).reshape(4,4),
... index=['white','black','red','blue'],
... columns=['up','down','right','left'])
```

Now create a file HDF5 calling it mydata.h5, then enter the data inside of the dataframe.

```
>>> store = HDFStore('mydata.h5')
>>> store['obj1'] = frame
```

From here, you can guess how you can store multiple data structures within the same HDF5 file, specifying for each of them a label.

>>> frame

```
up down right left
white 0 0.5 1 1.5
black 2 2.5 3 3.5
red 4 4.5 5 5.5
blue 6 6.5 7 7.5
>>> store['obj2'] = frame
```

So with this type of format, you can store multiple data structures in a single file, represented by the store variable.

```
>>> store
<class 'pandas.io.pytables.HDFStore'>
File path: mydata.h5
/obj1 frame (shape->[4,4])
```

Even the reverse process is very simple. Taking account of having an HDF5 file containing various data structures, objects inside can be called in the following way:

>>> st	ore['obj2']	
	up	down	right	left
white	0	0.5	1	1.5
black	2	2.5	3	3.5
red	4	4.5	5	5.5
blue	6	6.5	7	7.5

Pickle—Python Object Serialization

The pickle module implements a powerful algorithm for serialization and deserialization of a data structure implemented in Python. Pickling is the process in which the hierarchy of an object is converted into a stream of bytes.

This allows an object to be transmitted and stored, and then to be rebuilt by the receiver itself retaining all the original features.

In Python, the picking operation is carried out by the pickle module, but currently there is a module called cPickle which is the result of an enormous amount of work optimizing the pickle module (written in C). This module can be in fact in many cases even 1,000 times faster than the pickle module. However, regardless of which module you do use, the interfaces of the two modules are almost the same.

Before moving to explicitly mention the I/O functions of pandas that operate on this format, let's look in more detail at the cPickle module and see how to use it.

Serialize a Python Object with cPickle

The data format used by the pickle (or cPickle) module is specific to Python. By default, an ASCII representation is used to represent it, in order to be readable from the human point of view. Then, by opening a file with a text editor, you may be able to understand its contents. To use this module, you must first import it:

```
>>> import pickle
```

Then create an object sufficiently complex to have an internal data structure, for example a dict object.

```
>>> data = { 'color': ['white','red'], 'value': [5, 7]}
```

Now you will perform a serialization of the data object through the dumps() function of the cPickle module.

```
>>> pickled data = pickle.dumps(data)
```

Now, to see how it serialized the dict object, you need to look at the contents of the pickled_data variable.

```
>>> print(pickled_data)
(dp1
S'color'
p2
(lp3
S'white'
p4
aS'red'
p5
asS'value'
p6
(lp7
I5
aI7
as.
```

Once you have serialized data, they can easily be written on a file or sent over a socket, pipe, etc.

After being transmitted, it is possible to reconstruct the serialized object (deserialization) with the loads() function of the cPickle module.

```
>>> nframe = pickle.loads(pickled_data)
>>> nframe
{'color': ['white', 'red'], 'value': [5, 7]}
```

Pickling with pandas

When it comes to pickling (and unpickling) with the pandas library, everything is much easier. There is no need to import the cPickle module in the Python session and the whole operation is performed implicitly.

Also, the serialization format used by pandas is not completely in ASCII.

```
>>> frame = pd.DataFrame(np.arange(16).reshape(4,4), index =
['up','down','left','right'])
>>> frame.to_pickle('frame.pkl')
```

There is a new file called frame.pkl in your working directory that contains all the information about the frame dataframe.

To open a PKL file and read the contents, simply use this command:

```
>>> pd.read pickle('frame.pkl')
               2
                   3
up
           1
               2
                   3
down
           5
               6 7
left
       8
           9 10 11
right
     12
          13
              14
                 15
```

As you can see, all the implications on the operation of pickling and unpickling are completely hidden from the pandas user, making the job as easy and understandable as possible, for those who must deal specifically with data analysis.

Note When you use this format make sure that the file you open is safe. Indeed, the pickle format was not designed to be protected against erroneous and maliciously constructed data.

Interacting with Databases

In many applications, the data rarely come from text files, given that this is certainly not the most efficient way to store data.

The data are often stored in an SQL-based relational database, and also in many alternative NoSQL databases that have become very popular in recent times.

Loading data from SQL in a dataframe is sufficiently simple and pandas has some functions to simplify the process.

The pandas.io.sql module provides a unified interface independent of the DB, called sqlalchemy. This interface simplifies the connection mode, since regardless of the DB, the commands will always be the same. To make a connection you use the create_engine() function. With this feature you can configure all the properties necessary to use the driver, as a user, password, port, and database instance.

Here is a list of examples for the various types of databases:

```
>>> from sqlalchemy import create_engine
    For PostgreSQL:
>>> engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')
For MySQL
>>> engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')
For Oracle
>>> engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname')
For MSSQL
>>> engine = create_engine('mssql+pyodbc://mydsn')
For SQLite
>>> engine = create_engine('sqlite:///foo.db')
```

Loading and Writing Data with SQLite3

As a first example, you will use a SQLite database using the driver's built-in Python sqlite3. SQLite3 is a tool that implements a DBMS SQL in a very simple and lightweight way, so it can be incorporated in any application implemented with the Python language. In fact, this practical software allows you to create an embedded database in a single file.

This makes it the perfect tool for anyone who wants to have the functions of a database without having to install a real database. SQLite3 could be the right choice for anyone who wants to practice before going on to a real database, or for anyone who needs to use the functions of a database to collect data, but remaining within a single program, without having to interface with a database.

CHAPTER 5 PANDAS: READING AND WRITING DATA

Create a dataframe that you will use to create a new table on the SQLite3 database.

```
>>> frame = pd.DataFrame( np.arange(20).reshape(4,5),
                           columns=['white','red','blue','black','green'])
>>> frame
   white red blue black
                             green
       0
                   2
                          3
0
            1
                                  4
                   7
                          8
1
       5
            6
                                  9
2
      10
           11
                  12
                         13
                                 14
3
      15
           16
                  17
                         18
                                 19
```

Now it's time to implement the connection to the SQLite3 database.

```
>>> engine = create engine('sqlite:///foo.db')
```

Convert the dataframe in a table within the database.

```
>>> frame.to sql('colors',engine)
```

Instead, to read the database, you have to use the read_sql() function with the name of the table and the engine.

```
>>> pd.read sql('colors',engine)
   index white red
                       blue
                             black
                                     green
0
       0
              0
                    1
                          2
                                  3
                                         4
                                  8
       1
               5
                    6
                          7
                                         9
1
2
       2
                   11
                         12
              10
                                 13
                                        14
3
       3
                   16
                                 18
              15
                         17
                                        19
```

As you can see, even in this case, the writing operation on the database has become very simple thanks to the I/O APIs available in the pandas library.

Now you'll see instead the same operations, but not using the I/O API. This can be useful to get an idea of how pandas proves to be an effective tool for reading and writing data to a database.

First, you must establish a connection to the DB and create a table by defining the corrected data types, so as to accommodate the data to be loaded.

```
>>> import sqlite3
>>> query = """
... CREATE TABLE test
```

```
... (a VARCHAR(20), b VARCHAR(20),
... c REAL, d INTEGER
...);"""
>>> con = sqlite3.connect(':memory:')
>>> con.execute(query)
<sqlite3.Cursor object at 0x0000000009E7D730>
>>> con.commit()
```

Now you can enter data using the SQL INSERT statement.

Now that you've seen how to load the data on a table, it is time to see how to query the database to get the data you just recorded. This is possible using an SQL SELECT statement.

```
>>> cursor = con.execute('select * from test')
>>> cursor
<sqlite3.Cursor object at 0x000000009E7D730>
>>> rows = cursor.fetchall()
>>> rows
[(u'white', u'up', 1.0, 3), (u'black', u'down', 2.0, 8), (u'green', u'up', 4.0, 4), (u'red', 5.0, 5)]
```

You can pass the list of tuples to the constructor of the dataframe, and if you need the name of the columns, you can find them within the description attribute of the cursor.

```
>>> cursor.description
(('a', None, None, None, None, None, None, None, None, None, None), ('b', None, None, None, None, None), ('c
```

```
one, None, No
```

As you can see, this approach is quite laborious.

Loading and Writing Data with PostgreSQL

From pandas 0.14, the PostgreSQL database is also supported. So double-check if the version on your PC corresponds to this version or greater.

```
>>> pd.__version__
>>> '0.22.0'
```

To run this example, you must have installed on your system a PostgreSQL database. In my case I created a database called postgres, with postgres as the user and password as the password. Replace these values with the values corresponding to your system.

The first thing to do is install the psycopg2 library, which is designed to manage and handle the connection with the databases.

With Anaconda:

```
conda install psycopg2
   Or if you are using PyPi:
pip install psycopg2
   Now you can establish a connection with the database:
>>> import psycopg2
>>> engine = create_engine('postgresql://postgres:password@localhost:5432/postgres')
```

Note In this example, depending on how you installed the package on Windows, often you get the following error message:

```
from psycopg2._psycopg import BINARY, NUMBER, STRING, DATETIME, ROWID
```

ImportError: DLL load failed: The specified module could not be found.

This probably means you don't have the PostgreSQL DLLs (libpq.dll in particular) in your PATH. Add one of the postgres\x.x\bin directories to your PATH and you should be able to connect from Python to your PostgreSQL installations.

Create a dataframe object:

Now we see how easily you can transfer this data to a table. With to_sql() you will record the data in a table called dataframe.

```
>>> frame.to_sql('dataframe',engine)
```

pgAdmin III is a graphical application for managing PostgreSQL databases. It's a very useful tool and is present on Linux and Windows. With this application, it is easy to see the table dataframe you just created (see Figure 5-5).

CHAPTER 5 PANDAS: READING AND WRITING DATA

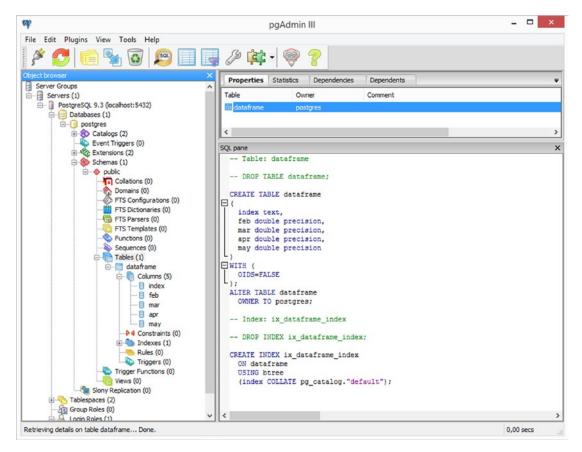


Figure 5-5. The pgAdmin III application is a perfect graphical DB manager for PostgreSQL

If you know the SQL language well, a more classic way to see the new created table and its contents is using a psql session.

>>> psql -U postgres

In my case, I am connected to the postgres user; it may be different in your case. Once you're connected to the database, perform an SQL query on the newly created table.

Even the conversion of a table in a dataframe is a trivial operation. Even here there is a read_sql_table() function that reads directly on the database and returns a dataframe.

```
>>> pd.read_sql_table('dataframe',engine)
  index     feb     mar     apr     may
0  exp1  0.757871  0.422583  0.979086  0.332289
1  exp2  0.124354  0.273461  0.049434  0.027141
2  exp3  0.538089  0.097041  0.905980  0.123449
3  exp4  0.736585  0.982332  0.958015  0.448064
```

But when you want to read data in a database, the conversion of a whole and single table into a dataframe is not the most useful operation. In fact, those who work with relational databases prefer to use the SQL language to choose what data and in what form to export the data by inserting an SQL query.

The text of an SQL query can be integrated in the read sql query() function.

```
>>> pd.read_sql_query('SELECT index,apr,may FROM DATAFRAME WHERE apr >
0.5',engine)
```

```
index apr may
0 exp1 0.979086 0.332289
1 exp3 0.905980 0.123449
2 exp4 0.958015 0.448064
```

Reading and Writing Data with a NoSQL Database: MongoDB

Among all the NoSQL databases (BerkeleyDB, Tokyo Cabinet, and MongoDB), MongoDB is becoming the most widespread. Given its diffusion in many systems, it seems appropriate to consider the possibility of reading and writing data produced with the pandas library during data analysis.

First, if you have MongoDB installed on your PC, you can start the service to point to a given directory.

```
mongod --dbpath C:\MongoDB_data
```

Now that the service is listening on port 27017, you can connect to this database using the official driver for MongoDB: pymongo.

```
>>> import pymongo
>>> client = MongoClient('localhost',27017)
```

A single instance of MongoDB is able to support multiple databases at the same time. So now you need to point to a specific database.

```
>>> db = client.mydatabase
>>> db
Database(MongoClient('localhost', 27017), u'mycollection')
In order to refer to this object, you can also use
>>> client['mydatabase']
Database(MongoClient('localhost', 27017), u'mydatabase')
```

Now that you have defined the database, you have to define the collection. The collection is a group of documents stored in MongoDB and can be considered the equivalent of the tables in an SQL database.

```
>>> collection = db.mycollection
>>> db['mycollection']
Collection(Database(MongoClient('localhost', 27017), u'mydatabase'),
u'mycollection')
>>> collection
Collection(Database(MongoClient('localhost', 27017), u'mydatabase'),
u'mycollection')
```

```
Now it is the time to load the data in the collection. Create a DataFrame.
>>> frame = pd.DataFrame( np.arange(20).reshape(4,5),
                           columns=['white','red','blue','black','green'])
>>> frame
   white
          red
               blue black green
       0
            1
                   2
                          3
0
                                 4
1
       5
            6
                  7
                          8
                                 9
2
                  12
      10
           11
                         13
                                14
3
      15
           16
                  17
                         18
                                19
```

Before being added to a collection, it must be converted into a JSON format. The conversion process is not as direct as you might imagine; this is because you need to set the data to be recorded on DB in order to be re-extract as DataFrame as fairly and as simply as possible.

```
>>> import json
>>> record = json.loads(frame.T.to_json()).values()
>>> record
[{u'blue': 7, u'green': 9, u'white': 5, u'black': 8, u'red': 6},
{u'blue': 2, u'green': 4, u'white':
0, u'black': 3, u'red': 1}, {u'blue': 17, u'green': 19, u'white': 15,
u'black': 18, u'red': 16}, {u
'blue': 12, u'green': 14, u'white': 10, u'black': 13, u'red': 11}]
Now you are finally ready to insert a document in the collection,
and you can do this with the insert() function.
>>> collection.mydocument.insert(record)
[ObjectId('54fc3afb9bfbee47f4260357'), ObjectId('54fc3afb9bfbee47f4260358'),
ObjectId('54fc3afb9bfbee47f4260359'), ObjectId('54fc3afb9bfbee47f426035a')]
```

As you can see, you have an object for each line recorded. Now that the data has been loaded into the document within the MongoDB database, you can execute the reverse process, i.e., reading data in a document and then converting them to a dataframe.

CHAPTER 5 PANDAS: READING AND WRITING DATA

```
>>> cursor = collection['mydocument'].find()
>>> dataframe = (list(cursor))
>>> del dataframe[' id']
>>> dataframe
   black blue green red white
       8
             7
                     9
                          6
                                 5
0
1
       3
             2
                    4
                        1
                                 0
2
      18
            17
                   19
                         16
                                15
3
                                10
      13
            12
                   14
                         11
```

You have removed the column containing the ID numbers for the internal reference of MongoDB.

Conclusions

In this chapter, you saw how to use the features of the I/O API of the pandas library in order to read and write data to files and databases while preserving the structure of the dataframes. In particular, several modes of writing and reading data according to the type of format were illustrated.

In the last part of the chapter, you saw how to interface to the most popular models of databases to record and/or read data into it directly as a dataframe ready to be processed with the pandas tools.

In the next chapter, you'll see the most advanced features of the library pandas. Complex instruments like the GroupBy and other forms of data processing are discussed in detail.

pandas in Depth: Data Manipulation

In the previous chapter you saw how to acquire data from data sources such as databases and files. Once you have the data in the dataframe format, they are ready to be manipulated. It's important to prepare the data so that they can be more easily subjected to analysis and manipulation. Especially in preparation for the next phase, the data must be ready for visualization.

In this chapter you will go in depth into the functionality that the pandas library offers for this stage of data analysis. The three phases of data manipulation will be treated individually, illustrating the various operations with a series of examples and on how best to use the functions of this library for carrying out such operations. The three phases of data manipulation are:

- Data preparation
- Data transformation
- Data aggregation

Data Preparation

Before you start manipulating data, it is necessary to prepare the data and assemble them in the form of data structures such that they can be manipulated later with the tools made available by the pandas library. The different procedures for data preparation are listed here.

- Loading
- Assembling

CHAPTER 6 PANDAS IN DEPTH: DATA MANIPULATION

- Merging
- Concatenating
- Combining
- Reshaping (pivoting)
- Removing

The previous chapter covered loading. In the loading phase, there is also that part of the preparation that concerns the conversion from many different formats into a data structure such as a dataframe. But even after you have the data, probably from different sources and formats, and unified it into a dataframe, you will need to perform further operations of preparation. In this chapter, and in particular in this section, you'll see how to perform all the operations necessary to get the data into a unified data structure.

The data contained in the pandas objects can be assembled in different ways:

- Merging—The pandas.merge() function connects the rows in a
 dataframe based on one or more keys. This mode is very familiar
 to those who are confident with the SQL language, since it also
 implements join operations.
- Concatenating—The pandas.concat() function concatenates the objects along an axis.
- Combining—The pandas.DataFrame.combine_first() function
 is a method that allows you to connect overlapped data in order to
 fill in missing values in a data structure by taking data from another
 structure.

Furthermore, part of the preparation process is also pivoting, which consists of the exchange between rows and columns.

Merging

The merging operation, which corresponds to the JOIN operation for those who are familiar with SQL, consists of a combination of data through the connection of rows using one or more keys.

In fact, anyone working with relational databases usually uses the JOIN query with SQL to get data from different tables using some reference values (keys) shared between them. On the basis of these keys, it is possible to obtain new data in a tabular form as the result of the combination of other tables. This operation with the library pandas is called *merging*, and merge() is the function to perform this kind of operation.

First, you have to import the pandas library and define two dataframes that will serve as examples for this section.

```
>>> import numpy as np
>>> import pandas as pd
>>> frame1 = pd.DataFrame( {'id':['ball','pencil','pen','mug','ashtray'],
                          'price': [12.33,11.44,33.21,13.23,33.62]})
>>> frame1
        id price
0
      ball
            12.33
    pencil 11.44
1
2
       pen
            33.21
3
       mug
            13.23
   ashtray
            33.62
>>> frame2 = pd.DataFrame( {'id':['pencil','pencil','ball','pen'],
                         'color': ['white','red','red','black']})
>>> frame2
   color
              id
  white
          pencil
     red
          pencil
1
2
            ball
     red
3
  black
             pen
```

Carry out the merging by applying the merge() function to the two dataframe objects.

CHAPTER 6 PANDAS IN DEPTH: DATA MANIPULATION

As you can see from the result, the returned dataframe consists of all rows that have an ID in common. In addition to the common column, the columns from the first and the second dataframe are added.

In this case, you used the merge() function without specifying any column explicitly. In fact, in most cases you need to decide which is the column on which to base the merging.

To do this, add the on option with the column name as the key for the merging.

```
>>> frame1 = pd.DataFrame( {'id':['ball','pencil','pen','mug','ashtray'],
                          'color': ['white','red','red','black','green'],
                          'brand': ['OMG','ABC','ABC','POD','POD']})
>>> frame1
  brand color
                      id
    OMG white
                   ball
0
1
    ABC
           red
                 pencil
2
    ABC
           red
                    pen
    POD black
3
                    mug
    POD green ashtray
>>> frame2 = pd.DataFrame( {'id':['pencil','pencil','ball','pen'],
                          'brand': ['OMG', 'POD', 'ABC', 'POD']})
>>> frame2
  brand
             id
    OMG pencil
0
1
    POD pencil
2
    ABC
           ball.
    POD
3
            pen
```

Now in this case you have two dataframes having columns with the same name. So if you launch a merge, you do not get any results.

```
>>> pd.merge(frame1,frame2)
Empty DataFrame
Columns: [brand, color, id]
Index: []
```

It is necessary to explicitly define the criteria for merging that pandas must follow, specifying the name of the key column in the on option.

```
>>> pd.merge(frame1,frame2,on='id')
  brand x color
                       id brand y
      OMG
                               ABC
0
           white
                     ball
      ABC
                               OMG
1
                   pencil
             red
2
      ABC
             red
                   pencil
                               POD
                               POD
3
      ABC
             red
                      pen
>>> pd.merge(frame1,frame2,on='brand')
  brand color
                    id x
                             id y
0
    OMG white
                    ball
                          pencil
    ABC
                            ball
1
                  pencil
           red
    ABC
                            ball
2
           red
                     pen
3
    POD black
                     mug
                          pencil
4
    POD black
                     mug
                              pen
    POD
5
         green
                 ashtray
                          pencil
    POD
         green
                 ashtray
                              pen
```

As expected, the results vary considerably depending on the criteria of merging. Often, however, the opposite problem arises, that is, to have two dataframes in which the key columns do not have the same name. To remedy this situation, you have to use the left_on and right_on options, which specify the key column for the first and for the second dataframe. Now you can see an example.

```
>>> frame2.columns = ['brand','sid']
>>> frame2
  brand
            sid
0
    OMG
        pencil
1
    POD
         pencil
    ABC
           ball
2
    POD
3
            pen
>>> pd.merge(frame1, frame2, left on='id', right on='sid')
                       id brand y
  brand x
           color
                                       sid
      OMG
                     ball
                                      ball
0
          white
                               ABC
1
      ABC
             red
                   pencil
                               OMG
                                    pencil
2
      ABC
             red
                   pencil
                               POD
                                    pencil
      ABC
                               POD
3
             red
                      pen
                                       pen
```

CHAPTER 6 PANDAS IN DEPTH: DATA MANIPULATION

By default, the merge() function performs an *inner join*; the keys in the result are the result of an intersection.

Other possible options are the *left join*, the *right join*, and the *outer join*. The outer join produces the union of all keys, combining the effect of a left join with a right join. To select the type of join you have to use the how option.

```
>>> frame2.columns = ['brand','id']
>>> pd.merge(frame1,frame2,on='id')
  brand x color
                       id brand y
      OMG
           white
                     ball
                              ABC
0
                  pencil
                              OMG
1
      ABC
             red
2
      ABC
             red
                   pencil
                              POD
      ABC
             red
                              POD
3
                      pen
>>> pd.merge(frame1,frame2,on='id',how='outer')
  brand x color
                        id brand y
0
      OMG
           white
                      ball
                               ABC
1
      ABC
             red
                    pencil
                               OMG
2
      ABC
             red
                    pencil
                               POD
      ABC
                               POD
3
             red
                       pen
      POD
          black
                       mug
                               NaN
4
           green ashtray
5
      POD
                               NaN
>>> pd.merge(frame1,frame2,on='id',how='left')
  brand x
          color
                        id brand y
0
      OMG
           white
                      ball
                               ABC
      ABC
1
             red
                    pencil
                               OMG
      ABC
                    pencil
                               POD
2
             red
3
      ABC
             red
                       pen
                               POD
4
      POD
          black
                       mug
                               NaN
      POD
                  ashtray
           green
                               NaN
5
>>> pd.merge(frame1,frame2,on='id',how='right')
                       id brand y
  brand x color
0
      OMG
           white
                     ball
                              ABC
1
      ABC
             red
                   pencil
                              OMG
      ABC
                   pencil
                              POD
2
             red
      ABC
                              POD
3
             red
                      pen
```

To merge multiple keys, you simply add a list to the on option.

```
>>> pd.merge(frame1,frame2,on=['id','brand'],how='outer')
  brand color
                      id
0
    OMG
         white
                    ball
1
    ABC
           red
                  pencil
2
    ABC
           red
                     pen
    POD
3
        black
                     mug
    POD
         green
                 ashtray
4
                  pencil
    OMG
5
           NaN
6
    POD
                  pencil
           NaN
7
    ABC
           NaN
                    ball
8
    POD
           NaN
                     pen
```

Merging on an Index

In some cases, instead of considering the columns of a dataframe as keys, indexes could be used as keys for merging. Then in order to decide which indexes to consider, you set the left_index or right_index options to True to activate them, with the ability to activate them both.

```
>>> pd.merge(frame1,frame2,right index=True, left index=True)
  brand x color
                     id x brand y
                                      id y
      OMG
           white
                     ball
0
                               OMG
                                    pencil
1
      ABC
             red
                   pencil
                               POD
                                    pencil
                                      ball
2
      ABC
             red
                               ABC
                      pen
      POD
           black
                               POD
3
                      mug
                                       pen
```

But the dataframe objects have a join() function, which is much more convenient when you want to do the merging by indexes. It can also be used to combine many dataframe objects having the same or the same indexes but with no columns overlapping.

```
In fact, if you launch
>>> frame1.join(frame2)
```

You will get an error code because some columns in frame1 have the same name as frame2. Then rename the columns in frame2 before launching the **join()** function.

```
>>> frame2.columns = ['brand2','id2']
>>> frame1.join(frame2)
  brand color
                     id brand2
                                   id2
    OMG white
                   ball
                           OMG pencil
0
    ABC
1
           red
                 pencil
                           POD pencil
2
    ABC
           red
                    pen
                           ABC
                                  ball
    POD black
3
                           POD
                    mug
                                   pen
    POD
               ashtray
4
       green
                           NaN
                                   NaN
```

Here you've performed a merge, but based on the values of the indexes instead of the columns. This time there is also the index 4 that was present only in frame1, but the values corresponding to the columns of frame2 report NaN as a value.

Concatenating

Another type of data combination is referred to as *concatenation*. NumPy provides a concatenate() function to do this kind of operation with arrays.

With the pandas library and its data structures like series and dataframe, having labeled axes allows you to further generalize the concatenation of arrays. The concat() function is provided by pandas for this kind of operation.

```
>>> ser1 = pd.Series(np.random.rand(4), index=[1,2,3,4])
>>> ser1
1
     0.636584
2
     0.345030
3
     0.157537
     0.070351
dtype: float64
>>> ser2 = pd.Series(np.random.rand(4), index=[5,6,7,8])
>>> ser2
     0.411319
5
6
    0.359946
7
     0.987651
     0.329173
dtype: float64
>>> pd.concat([ser1,ser2])
1
     0.636584
2
     0.345030
3
     0.157537
4
    0.070351
5
    0.411319
6
     0.359946
7
     0.987651
8
     0.329173
dtype: float64
```

CHAPTER 6 PANDAS IN DEPTH: DATA MANIPULATION

By default, the concat() function works on axis = 0, having as a returned object a series. If you set the axis = 1, then the result will be a dataframe.

```
>>> pd.concat([ser1,ser2],axis=1)
          0
1 0.636584
                  NaN
2 0.345030
                  NaN
3 0.157537
                  NaN
  0.070351
                  NaN
4
5
        NaN 0.411319
6
        NaN 0.359946
7
        NaN 0.987651
8
        NaN
             0.329173
```

The problem with this kind of operation is that the concatenated parts are not identifiable in the result. For example, you want to create a hierarchical index on the axis of concatenation. To do this, you have to use the keys option.

```
>>> pd.concat([ser1,ser2], keys=[1,2])
1
   1
        0.636584
   2
        0.345030
   3
       0.157537
      0.070351
   5 0.411319
   6
       0.359946
   7
        0.987651
   8
        0.329173
dtype: float64
```

In the case of combinations between series along the axis = 1 the keys become the column headers of the dataframe.

```
4 0.070351 NaN
5 NaN 0.411319
6 NaN 0.359946
7 NaN 0.987651
8 NaN 0.329173
```

So far you have seen the concatenation applied to the series, but the same logic can be applied to the dataframe.

```
>>> frame1 = pd.DataFrame(np.random.rand(9).reshape(3,3), index=[1,2,3],
columns=['A','B','C'])
>>> frame2 = pd.DataFrame(np.random.rand(9).reshape(3,3), index=[4,5,6],
columns=['A','B','C'])
>>> pd.concat([frame1, frame2])
         Α
                   В
                             C
1 0.400663 0.937932 0.938035
2 0.202442 0.001500 0.231215
3 0.940898 0.045196 0.723390
4 0.568636 0.477043 0.913326
5 0.598378 0.315435 0.311443
6 0.619859 0.198060 0.647902
>>> pd.concat([frame1, frame2], axis=1)
                             C
                                                           C
         Α
                   В
                                       Α
                                                 В
 0.400663 0.937932 0.938035
                                     NaN
                                               NaN
                                                         NaN
2
 0.202442
            0.001500 0.231215
                                     NaN
                                               NaN
                                                         NaN
  0.940898
                      0.723390
3
            0.045196
                                     NaN
                                               NaN
                                                         NaN
4
       NaN
                 NaN
                           NaN 0.568636 0.477043 0.913326
5
       NaN
                 NaN
                           NaN 0.598378 0.315435 0.311443
6
       NaN
                 NaN
                           NaN 0.619859
                                          0.198060 0.647902
```

Combining

There is another situation in which there is combination of data that cannot be obtained either with merging or with concatenation. Take the case in which you want the two datasets to have indexes that overlap in their entirety or at least partially.

CHAPTER 6 PANDAS IN DEPTH: DATA MANIPULATION

One applicable function to series is combine_first(), which performs this kind of operation along with data alignment.

```
>>> ser1 = pd.Series(np.random.rand(5),index=[1,2,3,4,5])
>>> ser1
1
    0.942631
2
    0.033523
3
    0.886323
4
    0.809757
5
     0.800295
dtype: float64
>>> ser2 = pd.Series(np.random.rand(4),index=[2,4,5,6])
>>> ser2
2
    0.739982
    0.225647
4
5
    0.709576
6
    0.214882
dtype: float64
>>> ser1.combine first(ser2)
    0.942631
2
    0.033523
    0.886323
3
4
    0.809757
5
    0.800295
     0.214882
dtype: float64
>>> ser2.combine first(ser1)
    0.942631
1
2
    0.739982
3
    0.886323
4
    0.225647
    0.709576
5
6
     0.214882
dtype: float64
```

Instead, if you want a partial overlap, you can specify only the portion of the series you want to overlap.

```
>>> ser1[:3].combine_first(ser2[:3])
1     0.942631
2     0.033523
3     0.886323
4     0.225647
5     0.709576
dtype: float64
```

Pivoting

In addition to assembling the data in order to unify the values collected from different sources, another fairly common operation is *pivoting*. In fact, arrangement of the values by row or by column is not always suited to your goals. Sometimes you would like to rearrange the data by column values on rows or vice versa.

Pivoting with Hierarchical Indexing

You have already seen that a dataframe can support hierarchical indexing. This feature can be exploited to rearrange the data in a dataframe. In the context of pivoting, you have two basic operations:

- Stacking—Rotates or pivots the data structure converting columns to rows
- *Unstacking*—Converts rows into columns

```
>>> frame1 = pd.DataFrame(np.arange(9).reshape(3,3),
                      index=['white','black','red'],
                      columns=['ball','pen','pencil'])
>>> frame1
       ball pen pencil
white
         0
              1
                      2
black
         3
                      5
         6
red
              7
                      8
```

CHAPTER 6 PANDAS IN DEPTH: DATA MANIPULATION

Using the stack() function on the dataframe, you will get the pivoting of the columns in rows, thus producing a series:

```
>>> ser5 = frame1.stack()
white ball
                 0
       pen
                 1
       pencil
                 2
black ball
                 3
       pen
                 4
       pencil
                 5
       ball
red
                 6
       pen
                 7
       pencil
                 8
dtype: int32
```

From this hierarchically indexed series, you can reassemble the dataframe into a pivoted table by use of the unstack() function.

You can also do the unstack on a different level, specifying the number of levels or its name as the argument of the function.

Pivoting from "Long" to "Wide" Format

The most common way to store datasets is produced by the punctual registration of data that will fill a line of the text file, for example, CSV, or a table of a database. This happens especially when you have instrumental readings, calculation results iterated over time, or the simple manual input of a series of values. A similar case of these files is for example the logs file, which is filled line by line by accumulating data in it.

The peculiar characteristic of this type of dataset is to have entries on various columns, often duplicated in subsequent lines. Always remaining in tabular format of data, when you are in such cases you can refer them to as *long* or *stacked* format.

To get a clearer idea about that, consider the following dataframe.

```
>>> longframe = pd.DataFrame({ 'color':['white','white','white',
                                      'red', 'red', 'red',
                                      'black', 'black', 'black'],
                             'item':['ball','pen','mug',
                                     'ball','pen','mug',
                                     'ball', 'pen', 'mug'],
. . .
                             'value': np.random.rand(9)})
>>> longframe
   color
          item
                   value
  white
          ball
                0.091438
 white
               0.495049
           pen
  white
2
           mug
                0.956225
          ball
               0.394441
3
     red
4
     red
           pen 0.501164
5
     red
           mug 0.561832
          ball 0.879022
  black
  black
                0.610975
           pen
8
  black
           mug
                0.093324
```

This mode of data recording has some disadvantages. One, for example, is the multiplicity and repetition of some fields. Considering the columns as keys, the data in this format will be difficult to read, especially in fully understanding the relationships between the key values and the rest of the columns.

Instead of the long format, there is another way to arrange the data in a table that is called *wide*. This mode is easier to read, allowing easy connection with other tables, and it occupies much less space. So in general it is a more efficient way of storing the data, although less practical, especially if during the filling of the data.

As a criterion, select a column, or a set of them, as the primary key; then, the values contained in it must be unique.

In this regard, pandas gives you a function that allows you to make a transformation of a dataframe from the long type to the wide type. This function is pivot() and it accepts as arguments the column, or columns, which will assume the role of key.

Starting from the previous example, you choose to create a dataframe in wide format by choosing the color column as the key, and item as a second key, the values of which will form the new columns of the dataframe.

As you can now see, in this format, the dataframe is much more compact and the data contained in it are much more readable.

Removing

The last stage of data preparation is the removal of columns and rows. You have already seen this part in Chapter 4. However, for completeness, the description is reiterated here. Define a dataframe by way of example.

```
>>> frame1 = pd.DataFrame(np.arange(9).reshape(3,3),
... index=['white','black','red'],
... columns=['ball','pen','pencil'])
```

In order to remove a column, you simply use the del command applied to the dataframe with the column name specified.

Instead, to remove an unwanted row, you have to use the drop() function with the label of the corresponding index as an argument.

Data Transformation

So far you have seen how to prepare data for analysis. This process in effect represents a reassembly of the data contained in a dataframe, with possible additions by other dataframe and removal of unwanted parts.

Now we begin the second stage of data manipulation: the *data transformation*. After you arrange the form of data and their disposal within the data structure, it is important to transform their values. In fact, in this section, you will see some common issues and the steps required to overcome them using functions of the pandas library.

Some of these operations involve the presence of duplicate or invalid values, with possible removal or replacement. Other operations relate instead by modifying the indexes. Other steps include handling and processing the numerical values of the data and strings.

Removing Duplicates

Duplicate rows might be present in a dataframe for various reasons. In dataframes of enormous size, the detection of these rows can be very problematic. In this case, pandas provides a series of tools to analyze the duplicate data present in large data structures.

First, create a simple dataframe with some duplicate rows.

The duplicated() function applied to a dataframe can detect the rows that appear to be duplicated. It returns a series of Booleans where each element corresponds to a row, with True if the row is duplicated (i.e., only the other occurrences, not the first), and with False if there are no duplicates in the previous elements.

```
>>> dframe.duplicated()
0    False
1    False
2    False
3    True
4    True
dtype: bool
```

Having a Boolean series as a return value can be useful in many cases, especially for the filtering. In fact, if you want to know which are the duplicate rows, just type the following:

```
>>> dframe[dframe.duplicated()]
  color value
3  red  3
4  white  2
```

Generally, all duplicated rows are to be deleted from the dataframe; to do that, pandas provides the drop_duplicates() function, which returns the dataframes without duplicate rows.

```
>>> dframe[dframe.duplicated()]
  color value
3  red  3
4 white  2
```

Mapping

The pandas library provides a set of functions which, as you shall see in this section, exploit mapping to perform some operations. Mapping is nothing more than the creation of a list of matches between two different values, with the ability to bind a value to a particular label or string.

To define mapping there is no better object than dict objects.

```
map = {
    'label1' : 'value1,
    'label2' : 'value2,
    ...
}
```

The functions that you will see in this section perform specific operations, but they all accept a dict object.

- replace()—Replaces values
- map()—Creates a new column
- rename()—Replaces the index values

Replacing Values via Mapping

Often in the data structure that you have assembled there are values that do not meet your needs. For example, the text may be in a foreign language, or may be a synonym of another value, or may not be expressed in the desired shape. In such cases, a replace operation of various values is often a necessary process.

CHAPTER 6 PANDAS IN DEPTH: DATA MANIPULATION

Define, as an example, a dataframe containing various objects and colors, including two colors that are not in English. Often during the assembly operations is likely to keep maintaining data with values in an undesirable form.

```
>>> frame = pd.DataFrame({ 'item':['ball','mug','pen','pencil','ashtray'],
                         'color':['white','rosso','verde','black','yellow'],
                         'price':[5.56,4.20,1.30,0.56,2.75]})
>>> frame
    color
              item
                       price
    white
                        5.56
              ball
0
                        4.20
1
    rosso
               mug
2
   verde
               pen
                        1.30
    black
            pencil
                        0.56
3
  yellow
           ashtray
                        2.75
```

To be able to replace the incorrect values with new values, it is necessary to define a mapping of correspondences, containing as a key the new values.

```
>>> newcolors = {
... 'rosso': 'red',
... 'verde': 'green'
... }
```

Now the only thing you can do is use the replace() function with the mapping as an argument.

```
>>> frame.replace(newcolors)
     color
               item
                     price
0
     white
               ball
                      5.56
                       4.20
1
       red
                mug
2
     green
                 pen
                       1.30
3
     black
             pencil
                       0.56
    yellow
           ashtray
                       2.75
```

As you can see from the result, the two colors have been replaced with the correct values within the dataframe. A common case, for example, is the replacement of NaN values with another value, for example 0. You can use replace(), which performs its job very well.

```
>>> ser = pd.Series([1,3,np.nan,4,6,np.nan,3])
>>> ser
    1.0
0
1
    3.0
2
    NaN
3
   4.0
4
   6.0
5
    NaN
6
    3.0
dtype: float64
>>> ser.replace(np.nan,0)
0
1
     3.0
2
     0.0
3
     4.0
4
     6.0
5
     0.0
6
     3.0
dtype: float64
```

Adding Values via Mapping

In the previous example, you saw how to substitute values by mapping correspondences. In this case you continue to exploit the mapping of values with another example. In this case you are exploiting mapping to add values in a column depending on the values contained in another. The mapping will always be defined separately.

```
>>> frame = pd.DataFrame({ 'item':['ball','mug','pen','pencil','ashtray'],
                         'color':['white','red','green','black','yellow']})
>>> frame
    color
              item
0
    white
              ball
1
      red
               mug
2
    green
               pen
3
    black
            pencil
  yellow
           ashtray
```

Let's suppose you want to add a column to indicate the price of the item shown in the dataframe. Before you do this, it is assumed that you have a price list available somewhere, in which the price for each type of item is described. Define then a dict object that contains a list of prices for each type of item.

```
>>> prices = {
...     'ball' : 5.56,
...     'mug' : 4.20,
...     'bottle' : 1.30,
...     'scissors' : 3.41,
...     'pen' : 1.30,
...     'pencil' : 0.56,
...     'ashtray' : 2.75
... }
```

The map() function applied to a series or to a column of a dataframe accepts a function or an object containing a dict with mapping. So in your case you can apply the mapping of the prices on the column item, making sure to add a column to the price dataframe.

```
>>> frame['price'] = frame['item'].map(prices)
>>> frame
    color
              item price
    white
              ball
0
                    5.56
      red
                     4.20
1
               mug
               pen 1.30
2
    green
    black
            pencil
                     0.56
3
  yellow
           ashtray
                     2.75
```

Rename the Indexes of the Axes

In a manner very similar to what you saw for the values contained within the series and the dataframe, even the axis label can be transformed in a very similar way using the mapping. So to replace the label indexes, pandas provides the rename() function, which takes the mapping as an argument, that is, a dict object.

```
>>> frame
    color
              item price
   white
              ball
                     5.56
0
      red
1
               mug
                     4.20
2
               pen
                    1.30
    green
    black
            pencil
                     0.56
3
  yellow ashtray
                     2.75
>>> reindex = {
      0: 'first',
      1: 'second',
      2: 'third',
      3: 'fourth',
      4: 'fifth'}
>>> frame.rename(reindex)
         color
                   item price
first
         white
                   ball
                          5.56
second
           red
                    mug
                          4.20
third
         green
                         1.30
                    pen
fourth
         black
                 pencil
                         0.56
fifth
        yellow
                ashtray
                          2.75
```

As you can see, by default, the indexes are renamed. If you want to rename columns you must use the columns option. This time you assign various mapping explicitly to the two index and columns options.

```
>>> recolumn = {
       'item':'object',
       'price': 'value'}
>>> frame.rename(index=reindex, columns=recolumn)
         color
                 object value
first
         white
                   ball
                          5.56
second
           red
                          4.20
                    mug
third
         green
                    pen
                        1.30
fourth
         black
                 pencil
                        0.56
fifth
        yellow
                ashtray
                          2.75
```

Also here, for the simplest cases in which you have a single value to be replaced, you can avoid having to write and assign many variables.

```
>>> frame.rename(index={1:'first'}, columns={'item':'object'})
        color
                 object
                        price
                          5.56
0
        white
                   ball
first
          red
                          4.20
                    mug
2
        green
                    pen
                          1.30
3
        black
                 pencil
                          0.56
       vellow
                ashtray
                          2.75
4
```

So far you have seen that the rename() function returns a dataframe with the changes, leaving unchanged the original dataframe. If you want the changes to take effect on the object on which you call the function, you will set the inplace option to True.

```
>>> frame.rename(columns={'item':'object'}, inplace=True)
>>> frame
    color
            object price
    white
              ball
                      5.56
0
      red
                     4.20
1
               mug
2
                     1.30
    green
               pen
    black
            pencil
                      0.56
3
  yellow
           ashtray
                      2.75
```

Discretization and Binning

A more complex process of transformation that you will see in this section is *discretization*. Sometimes it can be used, especially in some experimental cases, to handle large quantities of data generated in sequence. To carry out an analysis of the data, however, it is necessary to transform this data into discrete categories, for example, by dividing the range of values of such readings into smaller intervals and counting the occurrence or statistics in them. Another case might be when you have a huge number of samples due to precise readings on a population. Even here, to facilitate analysis of the data, it is necessary to divide the range of values into categories and then analyze the occurrences and statistics related to each.

In your case, for example, you may have a reading of an experimental value between 0 and 100. These data are collected in a list.

```
>>> results = [12,34,67,55,28,90,99,12,3,56,74,44,87,23,49,89,87]
```

You know that the experimental values have a range from 0 to 100; therefore you can uniformly divide this interval, for example, into four equal parts, i.e., bins. The first contains the values between 0 and 25, the second between 26 and 50, the third between 51 and 75, and the last between 76 and 100.

To do this binning with pandas, first you have to define an array containing the values of separation of bin:

```
>>> bins = [0,25,50,75,100]
```

Then you use a special function called cut() and apply it to the array of results also passing the bins.

```
>>> cat = pd.cut(results, bins)
>>> cat
   (0, 25]
  (25, 50]
  (50, 75]
  (50, 75]
  (25, 50]
 (75, 100]
 (75, 100]
   (0, 25]
   (0, 25]
  (50, 75]
  (50, 75]
  (25, 50]
 (75, 100]
   (0, 25]
  (25, 50]
 (75, 100]
 (75, 100]
Levels (4): Index(['(0, 25]', '(25, 50]', '(50, 75]', '(75, 100]'],
dtype=object)
```

The object returned by the cut() function is a special object of *Categorical* type. You can consider it as an array of strings indicating the name of the bin. Internally it contains a categories array indicating the names of the different internal categories and a codes array that contains a list of numbers equal to the elements of results (i.e., the array subjected to binning). The number corresponds to the bin to which the corresponding element of results is assigned.

Finally to know the occurrences for each bin, that is, how many results fall into each category, you have to use the value_counts() function.

```
>>> pd.value_counts(cat)
(75, 100] 5
(0, 25] 4
(25, 50] 4
(50, 75] 4
dtype: int64
```

As you can see, each class has the lower limit with a bracket and the upper limit with a parenthesis. This notation is consistent with mathematical notation that is used to indicate the intervals. If the bracket is square, the number belongs to the range (limit closed), and if it is round, the number does not belong to the interval (limit open).

You can give names to various bins by calling them first in an array of strings and then assigning to the labels options inside the cut() function that you have used to create the Categorical object.

```
>>> bin_names = ['unlikely','less likely','likely','highly likely']
>>> pd.cut(results, bins, labels=bin_names)
     unlikely
    less likely
        likely
        likely
        likely
```

```
less likely
highly likely
unlikely
unlikely
likely
likely
likely
less likely
highly likely
unlikely
Less likely
highly likely
less likely
highly likely
highly likely
highly likely
highly likely
```

If the cut() function is passed as an argument to an integer instead of explicating the bin edges, this will divide the range of values of the array in many intervals as specified by the number.

The limits of the interval will be taken by the minimum and maximum of the sample data, namely, the array subjected to binning.

```
>>> pd.cut(results, 5)
(2.904, 22.2]
(22.2, 41.4]
(60.6, 79.8]
(41.4, 60.6]
(22.2, 41.4]
(79.8, 99]
(79.8, 99]
(2.904, 22.2]
(41.4, 60.6]
(60.6, 79.8]
(41.4, 60.6]
(79.8, 99]
```

In addition to cut(), pandas provides another method for binning: qcut(). This function divides the sample directly into quintiles. In fact, depending on the distribution of the data sample, by using cut(), you will have a different number of occurrences for each bin. Instead qcut() will ensure that the number of occurrences for each bin is equal, but the edges of each bin vary.

```
>>> quintiles = pd.qcut(results, 5)
>>> quintiles
    [3, 24]
   (24, 46]
 (62.6, 87]
 (46, 62.6]
   (24, 46]
   (87, 99]
   (87, 99]
    [3, 24]
    [3, 24]
 (46, 62.6]
 (62.6, 87]
   (24, 46]
 (62.6, 87]
    [3, 24]
 (46, 62.6]
   (87, 99]
 (62.6, 87]
Levels (5): Index(['[3, 24]', '(24, 46]', '(46, 62.6]', '(62.6, 87]',
                    '(87, 99]'], dtype=object)
```

As you can see, in the case of quintiles, the intervals bounding the bin differ from those generated by the cut() function. Moreover, if you look at the occurrences for each bin will find that qcut() tried to standardize the occurrences for each bin, but in the case of quintiles, the first two bins have an occurrence in more because the number of results is not divisible by five.

Detecting and Filtering Outliers

During data analysis, the need to detect the presence of abnormal values in a data structure often arises. By way of example, create a dataframe with three columns from 1,000 completely random values:

```
>>> randframe = pd.DataFrame(np.random.randn(1000,3))
```

With the describe() function you can see the statistics for each column.

>>> randframe.describe()

	0	1	2
count	1000.000000	1000.000000	1000.000000
mean	0.021609	-0.022926	-0.019577
std	1.045777	0.998493	1.056961
min	-2.981600	-2.828229	-3.735046
25%	-0.675005	-0.729834	-0.737677
50%	0.003857	-0.016940	-0.031886
75%	0.738968	0.619175	0.718702
max	3.104202	2.942778	3.458472

For example, you might consider outliers those that have a value greater than three times the standard deviation. To have only the standard deviation of each column of the dataframe, use the std() function.

Now you apply the filtering of all the values of the dataframe, applying the corresponding standard deviation for each column. Thanks to the any() function, you can apply the filter on each column.

Permutation

The operations of permutation (random reordering) of a series or the rows of a dataframe are easy to do using the numpy.random.permutation() function.

For this example, create a dataframe containing integers in ascending order.

```
>>> nframe = pd.DataFrame(np.arange(25).reshape(5,5))
>>> nframe
   0
       1
           2
               3
                   4
           2
0
       1
               3
                   4
      6
1
   5
          7
               8
                   9
2
  10 11
          12 13 14
              18
  15
      16
          17
                  19
  20 21
          22
              23
                 24
```

Now create an array of five integers from 0 to 4 arranged in random order with the permutation() function. This will be the new order in which to set the values of a row of the dataframe.

```
>>> new_order = np.random.permutation(5)
>>> new_order
array([2, 3, 0, 1, 4])
```

Now apply it to the dataframe on all lines, using the take() function.

```
>>> nframe.take(new_order)
      0     1     2     3     4
2     10     11     12     13     14
3     15     16     17     18     19
0     0     1     2     3     4
1     5     6     7     8     9
4     20     21     22     23     24
```

As you can see, the order of the rows has changed; now the indices follow the same order as indicated in the new_order array.

You can submit even a portion of the entire dataframe to a permutation. It generates an array that has a sequence limited to a certain range, for example, in our case from 2 to 4.

Random Sampling

You have just seen how to extract a portion of the dataframe determined by subjecting it to permutation. Sometimes, when you have a huge dataframe, you may need to sample it randomly, and the quickest way to do this is by using the np.random.randint() function.

As you can see from this random sampling, you can get the same sample even more often.

String Manipulation

Python is a popular language thanks to its ease of use in the processing of strings and text. Most operations can easily be made by using built-in functions provided by Python. For more complex cases of matching and manipulation, it is necessary to use regular expressions.

Built-in Methods for String Manipulation

In many cases you have composite strings in which you would like to separate the various parts and then assign them to the correct variables. The split() function allows you to separate parts of the text, taking as a reference point a separator, for example, a comma.

```
>>> text = '16 Bolton Avenue , Boston'
>>> text.split(',')
['16 Bolton Avenue ', 'Boston']
```

As you can see in the first element, you have a string with a space character at the end. To overcome this common problem, you have to use the split() function along with the **strip()** function, which trims the whitespace (including newlines).

```
>>> tokens = [s.strip() for s in text.split(',')]
>>> tokens
['16 Bolton Avenue', 'Boston']
```

The result is an array of strings. If the number of elements is small and always the same, a very interesting way to make assignments may be this:

```
>>> address, city = [s.strip() for s in text.split(',')]
>>> address
'16 Bolton Avenue'
>>> city
'Boston'
```

So far you have seen how to split text into parts, but often you also need the opposite, namely concatenating various strings between them to form a more extended text.

The most intuitive and simple way is to concatenate the various parts of the text with the + operator.

```
>>> address + ',' + city
'16 Bolton Avenue, Boston'
```

This can be useful when you have only two or three strings to be concatenated. If you have many parts to be concatenated, a more practical approach in this case is to use the join() function assigned to the separator character, with which you want to join the various strings.

```
>>> strings = ['A+','A','A-','B','BB','BBB','C+']
>>> ';'.join(strings)
'A+;A;A-;B;BB;BBB;C+'
```

Another category of operations that can be performed on the string is searching for pieces of text in them, i.e., substrings. Python provides the keyword that represents the best way of detecting substrings.

```
>>> 'Boston' in text
True
```

However, there are two functions that could serve to this purpose: index() and find().

```
>>> text.index('Boston')
19
>>> text.find('Boston')
19
```

In both cases, it returns the number of the corresponding characters in the text where you have the substring. The difference in the behavior of these two functions can be seen, however, when the substring is not found:

```
>>> text.index('New York')
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
ValueError: substring not found
>>> text.find('New York')
-1
```

In fact, the index() function returns an error message, and find() returns -1 if the substring is not found. In the same area, you can know how many times a character or combination of characters (substring) occurs within the text. The count() function provides you with this number.

```
>>> text.count('e')
2
>>> text.count('Avenue')
1
```

Another operation that can be performed on strings is replacing or eliminating a substring (or a single character). In both cases you will use the replace() function, where if you are prompted to replace a substring with a blank character, the operation will be equivalent to the elimination of the substring from the text.

```
>>> text.replace('Avenue','Street')
'16 Bolton Street , Boston'
>>> text.replace('1',")
'16 Bolton Avenue, Boston'
```

Regular Expressions

Regular expressions provide a very flexible way to search and match string patterns within text. A single expression, generically called *regex*, is a string formed according to the regular expression language. There is a built-in Python module called re, which is responsible for the operation of the regex.

First of all, when you want to use regular expressions, you will need to import the module:

```
>>> import re
```

The re module provides a set of functions that can be divided into three categories:

- Pattern matching
- Substitution
- Splitting

Now you start with a few examples. For example, the regex for expressing a sequence of one or more whitespace characters is \s+. As you saw in the previous section, to split text into parts through a separator character, you used split(). There is a split() function even for the re module that performs the same operations, only it can accept a regex pattern as the criteria of separation, which makes it considerably more flexible.

```
>>> text = "This is an\t odd \n text!"
>>> re.split('\s+', text)
['This', 'is', 'an', 'odd', 'text!']
```

Let's analyze more deeply the mechanism of re module. When you call the re.split() function, the regular expression is first compiled, then subsequently calls the split() function on the text argument. You can compile the regex function with the re.compile() function, thus obtaining a reusable object regex and so gaining in terms of CPU cycles.

This is especially true in the operations of iterative search of a substring in a set or an array of strings.

```
>>> regex = re.compile('\s+')
```

So if you make a regex object with the compile() function, you can apply split() directly to it in the following way.

```
>>> regex.split(text)
['This', 'is', 'an', 'odd', 'text!']
```

To match a regex pattern to any other business substrings in the text, you can use the findall() function. It returns a list of all the substrings in the text that meet the requirements of the regex.

For example, if you want to find in a string all the words starting with "A" uppercase, or for example, with "a" regardless whether upper- or lowercase, you need to enter thr following:

```
>>> text = 'This is my address: 16 Bolton Avenue, Boston'
>>> re.findall('A\w+',text)
['Avenue']
>>> re.findall('[A,a]\w+',text)
['address', 'Avenue']
```

There are two other functions related to the findall() function—match() and search(). While findall() returns all matches within a list, the search() function returns only the first match. Furthermore, the object returned by this function is a particular object:

```
>>> re.search('[A,a]\w+',text)
<_sre.SRE_Match object; span=(11, 18), match='address'>
```

This object does not contain the value of the substring that responds to the regex pattern, but returns its start and end positions within the string.

```
>>> search = re.search('[A,a]\w+',text)
>>> search.start()
11
>>> search.end()
18
>>> text[search.start():search.end()]
'address'
```

The match() function performs matching only at the beginning of the string; if there is no match to the first character, it goes no farther in research within the string. If you do not find any match then it will not return any objects.

```
>>> re.match('[A,a]\w+',text)
>>>
```

If match() has a response, it returns an object identical to what you saw for the search() function.

```
>>> re.match('T\w+',text)
<_sre.SRE_Match object; span=(0, 4), match='This'>
>>> match = re.match('T\w+',text)
>>> text[match.start():match.end()]
'This'
```

Data Aggregation

The last stage of data manipulation is data aggregation. Data aggregation involves a transformation that produces a single integer from an array. In fact, you have already made many operations of data aggregation, for example, when you calculated the sum(), mean(), and count(). In fact, these functions operate on a set of data and perform a calculation with a consistent result consisting of a single value. However, a more formal manner and the one with more control in data aggregation is that which includes the categorization of a set.

The categorization of a set of data carried out for grouping is often a critical stage in the process of data analysis. It is a process of transformation since, after the division into different groups, you apply a function that converts or transforms the data in some way depending on the group they belong to. Very often the two phases of grouping and application of a function are performed in a single step.

Also for this part of the data analysis, pandas provides a tool that's very flexible and high performance: GroupBy.

Again, as in the case of join, those familiar with relational databases and the SQL language can find similarities. Nevertheless, languages such as SQL are quite limited when applied to operations on groups. In fact, given the flexibility of a programming language like Python, with all the libraries available, especially pandas, you can perform very complex operations on groups.

GroupBy

Now you will analyze in detail the process of GroupBy and how it works. Generally, it refers to its internal mechanism as a process called *split-apply-combine*. In its pattern of operation you may conceive this process as divided into three phases expressed by three operations:

- Splitting—Division into groups of datasets
- Applying—Application of a function on each group
- Combining—Combination of all the results obtained by different groups

Analyze the three different phases (see Figure 6-1). In the first phase, that of splitting, the data contained within a data structure, such as a series or a dataframe, are divided into several groups, according to given criteria, which is often linked to indexes or to certain values in a column. In the jargon of SQL, values contained in this column are reported as keys. Furthermore, if you are working with two-dimensional objects such as a dataframe, the grouping criterion may be applied both to the line (axis = 0) for that column (axis = 1).

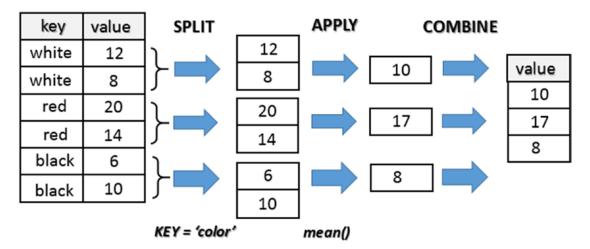


Figure 6-1. The split-apply-combine mechanism

The second phase, that of applying, consists of applying a function, or better a calculation expressed precisely by a function, which will produce a new and single value that's specific to that group.

The last phase, that of combining, will collect all the results obtained from each group and combine them to form a new object.

A Practical Example

You have just seen that the process of data aggregation in pandas is divided into various phases called split-apply-combine. With these pandas are not expressed explicitly with the functions as you would expect, but by a groupby() function that generates an GroupBy object then that is the core of the whole process.

To better understand this mechanism, let's switch to a practical example. First define a dataframe containing numeric and string values.

```
>>> frame = pd.DataFrame({ 'color': ['white','red','green','red','green'],
                        'object': ['pen','pencil','pencil','ashtray','pen'],
                        'price1': [5.56,4.20,1.30,0.56,2.75],
                        'price2': [4.75,4.12,1.60,0.75,3.15]})
>>> frame
  color
          object price1
                           price2
0 white
                             4.75
              pen
                     5.56
          pencil
    red
                    4.20
                             4.12
          pencil
                             1.60
2
  green
                    1.30
3
         ashtray
                    0.56
                             0.75
    red
4 green
                     2.75
                             3.15
              pen
```

Suppose you want to calculate the average of the price1 column using group labels listed in the color column. There are several ways to do this. You can for example access the price1 column and call the groupby() function with the color column.

```
>>> group = frame['price1'].groupby(frame['color'])
>>> group
<pandas.core.groupby.SeriesGroupBy object at 0x00000000098A2A20>
```

The object that we got is a GroupBy object. In the operation that you just did, there was not really any calculation; there was just a collection of all the information needed to calculate the average. What you have done is group, in which all rows having the same value of color are grouped into a single item.

To analyze in detail how the dataframe was divided into groups of rows, you call the attribute groups' GroupBy object.

```
>>> group.groups
{'green': Int64Index([2, 4], dtype='int64'),
  'red': Int64Index([1, 3], dtype='int64'),
  'white': Int64Index([0], dtype='int64')}
```

As you can see, each group is listed and explicitly specifies the rows of the dataframe assigned to each of them. Now it is sufficient to apply the operation on the group to obtain the results for each individual group.

```
>>> group.mean()
color
green
         2.025
red
         2.380
white
         5.560
Name: price1, dtype: float64
>>> group.sum()
color
green
         4.05
red
         4.76
white
         5.56
Name: price1, dtype: float64
```

Hierarchical Grouping

You have seen how to group the data according to the values of a column as a key choice. The same thing can be extended to multiple columns, i.e., make a grouping of multiple keys hierarchical.

```
>>> ggroup = frame['price1'].groupby([frame['color'],frame['object']])
>>> ggroup.groups
{('green', 'pen'): Int64Index([4], dtype='int64'),
 ('green', 'pencil'): Int64Index([2], dtype='int64'),
('red', 'ashtray'): Int64Index([3], dtype='int64'),
 ('red', 'pencil'): Int64Index([1], dtype='int64'),
('white', 'pen'): Int64Index([0], dtype='int64')}
>>> ggroup.sum()
color object
       pen
green
                  2.75
       pencil
                  1.30
       ashtray
red
                  0.56
       pencil
                  4.20
white
       pen
                  5.56
Name: price1, dtype: float64
```

So far you have applied the grouping to a single column of data, but in reality it can be extended to multiple columns or to the entire dataframe. Also if you do not need to reuse the object GroupBy several times, it is convenient to combine in a single passing all of the grouping and calculation to be done, without defining any intermediate variable.

```
>>> frame[['price1','price2']].groupby(frame['color']).mean()
       price1 price2
color
green
        2.025
                2.375
red
        2.380
                2.435
white
        5.560
                4.750
>>> frame.groupby(frame['color']).mean()
       price1
               price2
color
green
        2.025
                2.375
red
                2.435
        2.380
white
        5.560
                4.750
```

Group Iteration

The GroupBy object supports the operation of an iteration to generate a sequence of twotuples containing the name of the group together with the data portion.

```
>>> for name, group in frame.groupby('color'):
        print(name)
        print(group)
green
   color object price1 price2
                             1.60
  green pencil
                    1.30
4
  green
             pen
                    2.75
                             3.15
red
  color
         object price1
                         price2
          pencil
1
    red
                    4.20
                             4.12
    red
         ashtray
                    0.56
                             0.75
white
   color object price1
                         price2
  white
            pen
                   5.56
                           4.75
```

In the example you just saw, you only applied the print variable for illustration. In fact, you replace the printing operation of a variable with the function to be applied on it.

Chain of Transformations

From these examples, you have seen that for each grouping, when subjected to some function calculation or other operations in general, regardless of how it was obtained and the selection criteria, the result will be a data structure series (if we selected a single column data) or a dataframe, which then retains the index system and the name of the columns.

```
>>> result1 = frame['price1'].groupby(frame['color']).mean()
>>> type(result1)
<class 'pandas.core.series.Series'>
>>> result2 = frame.groupby(frame['color']).mean()
>>> type(result2)
<class 'pandas.core.frame.DataFrame'>
```

It is therefore possible to select a single column at any point in the various phases of this process. Here are three cases in which the selection of a single column in three different stages of the process applies. This example illustrates the great flexibility of this system of grouping provided by pandas.

```
>>> frame['price1'].groupby(frame['color']).mean()
color
green
         2.025
red
         2.380
white
         5.560
Name: price1, dtype: float64
>>> frame.groupby(frame['color'])['price1'].mean()
color
green
         2.025
red
         2.380
white
         5.560
Name: price1, dtype: float64
>>> (frame.groupby(frame['color']).mean())['price1']
color
green
         2.025
red
         2.380
white
         5.560
Name: price1, dtype: float64
```

In addition, after an operation of aggregation, the names of some columns may not be very meaningful. In fact it is often useful to add a prefix to the column name that describes the type of business combination. Adding a prefix, instead of completely replacing the name, is very useful for keeping track of the source data from which they derive aggregate values. This is important if you apply a process of transformation chain (a series or dataframe is generated from each other) in which it is important to keep some reference with the source data.

```
color
green 2.025 2.375
red 2.380 2.435
white 5.560 4.750
```

Functions on Groups

Although many methods have not been implemented specifically for use with GroupBy, they actually work correctly with data structures as the series. You saw in the previous section how easy it is to get the series by a GroupBy object, by specifying the name of the column and then by applying the method to make the calculation. For example, you can use the calculation of quantiles with the quantiles() function.

```
>>> group = frame.groupby('color')
>>> group['price1'].quantile(0.6)
color
green    2.170
red    2.744
white    5.560
Name: price1, dtype: float64
```

You can also define their own aggregation functions. Define the function separately and then you pass as an argument to the mark() function. For example, you could calculate the range of the values of each group.

```
>>> def range(series):
... return series.max() - series.min()
...
>>> group['price1'].agg(range)
color
green    1.45
red    3.64
white    0.00
Name: price1, dtype: float64
```

The agg() function allows you to use aggregate functions on an entire dataframe.

You can also use more aggregate functions at the same time, with the mark() function passing an array containing the list of operations to be done, which will become the new columns.

Advanced Data Aggregation

In this section, you will be introduced to the transform() and apply() functions, which allow you to perform many kinds of group operations, some very complex.

Now suppose we want to bring together in the same dataframe the following: the dataframe of origin (the one containing the data) and that obtained by the calculation of group aggregation, for example, the sum.

```
>>> frame = pd.DataFrame({ 'color':['white','red','green','red','green'],
                        'price1':[5.56,4.20,1.30,0.56,2.75],
                        'price2':[4.75,4.12,1.60,0.75,3.15]})
>>> frame
   color price1 price2
0 white
            5.56
                    4.75
            4.20
1
     red
                    4.12
2
  green
            1.30
                    1.60
     red
            0.56
                    0.75
3
```

```
2.75
                    3.15
4 green
>>> sums = frame.groupby('color').sum().add prefix('tot ')
>>> sums
       tot price1 tot price2
color
green
             4.05
                         4.75
                         4.87
red
             4.76
white
             5.56
                         4.75
>>> merge(frame,sums,left on='color',right index=True)
   color price1 price2 tot price1 tot price2
  white
0
            5.56
                    4.75
                                5.56
                                             4.75
1
     red
            4.20
                    4.12
                                4.76
                                             4.87
3
     red
         0.56
                    0.75
                                4.76
                                             4.87
2 green
            1.30
                    1.60
                                4.05
                                             4.75
  green
            2.75
                    3.15
                                4.05
                                             4.75
```

Thanks to merge(), can add the results of the aggregation in each line of the dataframe to start. But there is another way to do this type of operation. That is by using transform(). This function performs aggregation as you have seen before, but at the same time shows the values calculated based on the key value on each line of the dataframe to start.

```
>>> frame.groupby('color').transform(np.sum).add prefix('tot ')
   tot price1 tot price2
         5.56
0
                      4.75
1
         4.76
                     4.87
2
         4.05
                     4.75
3
         4.76
                     4.87
4
         4.05
                     4.75
```

As you can see, the transform() method is a more specialized function that has very specific requirements: the function passed as an argument must produce a single scalar value (aggregation) to be broadcasted.

The method to cover more general GroupBy is applicable to apply(). This method applies in its entirety the split-apply-combine scheme. In fact, this function divides the object into parts in order to be manipulated, invokes the passage of functions on each piece, and then tries to chain together the various parts.

```
>>> frame = pd.DataFrame( { 'color':['white','black','white','white','black',',
}
                        'status':['up','up','down','down','down','up'],
                        'value1':[12.33,14.55,22.34,27.84,23.40,18.33],
. . .
                        'value2':[11.23,31.80,29.99,31.18,18.25,22.44]})
>>> frame
  color status value1 value2
0 white
                12.33 11.23
            up
1 black
                14.55 31.80
            up
2 white
          down
                22.34 29.99
3 white
         down 27.84 31.18
4 black
         down 23.40 18.25
>>> frame.groupby(['color','status']).apply( lambda x: x.max())
             color status value1 value2
color status
black down
            black
                     down
                            23.40
                                   18.25
             black
     up
                       up
                            18.33
                                   31.80
white down
            white
                     down 27.84
                                   31.18
     up
            white
                       up
                            12.33
                                   11.23
5 black
            up 18.33
                         22.44
>>> frame.rename(index=reindex, columns=recolumn)
        color
                object value
first
        white
                  ball
                       5.56
second
          red
                       4.20
                   mug
third
        green
                   pen
                       1.30
fourth
       black
                pencil
                       0.56
fifth
       yellow ashtray
                         2.75
>>> temp = pd.date range('1/1/2015', periods=10, freq= 'H')
>>> temp
DatetimeIndex(['2015-01-01 00:00:00', '2015-01-01 01:00:00',
              '2015-01-01 02:00:00', '2015-01-01 03:00:00',
              '2015-01-01 04:00:00', '2015-01-01 05:00:00',
              '2015-01-01 06:00:00', '2015-01-01 07:00:00',
              '2015-01-01 08:00:00', '2015-01-01 09:00:00'],
             dtype='datetime64[ns]', freq='H')
```

CHAPTER 6 PANDAS IN DEPTH: DATA MANIPULATION

```
Length: 10, Freq: H, Timezone: None
>>> timeseries = pd.Series(np.random.rand(10), index=temp)
>>> timeseries
2015-01-01 00:00:00
                       0.368960
2015-01-01 01:00:00
                       0.486875
2015-01-01 02:00:00
                       0.074269
2015-01-01 03:00:00
                       0.694613
2015-01-01 04:00:00
                       0.936190
2015-01-01 05:00:00
                       0.903345
2015-01-01 06:00:00
                       0.790933
2015-01-01 07:00:00
                       0.128697
2015-01-01 08:00:00
                       0.515943
2015-01-01 09:00:00
                       0.227647
Freq: H, dtype: float64
>>> timetable = pd.DataFrame( {'date': temp, 'value1' : np.random.rand(10),
                                          'value2' : np.random.rand(10)})
>>> timetable
                 date
                         value1
                                   value2
0 2015-01-01 00:00:00
                       0.545737 0.772712
1 2015-01-01 01:00:00
                       0.236035 0.082847
2 2015-01-01 02:00:00
                       0.248293 0.938431
3 2015-01-01 03:00:00
                       0.888109 0.605302
4 2015-01-01 04:00:00
                      0.632222 0.080418
5 2015-01-01 05:00:00
                       0.249867 0.235366
6 2015-01-01 06:00:00
                       0.993940 0.125965
7 2015-01-01 07:00:00
                       0.154491 0.641867
8 2015-01-01 08:00:00
                       0.856238 0.521911
                       0.307773 0.332822
9 2015-01-01 09:00:00
```

You then add to the dataframe preceding a column that represents a set of text values that you will use as key values.

```
>>> timetable['cat'] = ['up','down','left','left','up','up','down','right',
'right','up']
```

>>> timetable

cat	value2	value1	date		
up	0.772712	0.545737	00:00:00	2015-01-01	0
down	0.082847	0.236035	01:00:00	2015-01-01	1
left	0.938431	0.248293	02:00:00	2015-01-01	2
left	0.605302	0.888109	03:00:00	2015-01-01	3
up	0.080418	0.632222	04:00:00	2015-01-01	4
up	0.235366	0.249867	05:00:00	2015-01-01	5
down	0.125965	0.993940	06:00:00	2015-01-01	6
right	0.641867	0.154491	07:00:00	2015-01-01	7
right	0.521911	0.856238	08:00:00	2015-01-01	8
up	0.332822	0.307773	09:00:00	2015-01-01	9

The example shown here, however, has duplicate key values.

Conclusions

In this chapter, you saw the three basic parts that divide the data manipulation: preparation, processing, and data aggregation. Thanks to a series of examples, you learned about a set of library functions that allow pandas to perform these operations.

You saw how to apply these functions on simple data structures so that you can become familiar with how they work and understand their applicability to more complex cases.

Eventually, you now have the knowledge you need to prepare a dataset for the next phase of data analysis: data visualization.

In the next chapter, you will be presented with the Python library matplotlib, which can convert data structures in any chart.

Data Visualization with matplotlib

After discussing in the previous chapters Python libraries that were responsible for data processing, now it is time for you to see a library that takes care of visualization. This library is matplotlib.

Data visualization is often underestimated in data analysis, but it is actually a very important factor because incorrect or inefficient data representation can ruin an otherwise excellent analysis. In this chapter, you will discover the various aspects of the matplotlib library, including how it is structured, and how to maximize the potential that it offers.

The matplotlib Library

matplotlib is a Python library specializing in the development of two-dimensional charts (including 3D charts). In recent years, it has been widespread in scientific and engineering circles (http://matplolib.org).

Among all the features that have made it the most used tool in the graphical representation of data, there are a few that stand out:

- Extreme simplicity in its use
- Gradual development and interactive data visualization
- Expressions and text in LaTeX
- Greater control over graphic elements
- Export to many formats, such as PNG, PDF, SVG, and EPS

CHAPTER 7 DATA VISUALIZATION WITH MATPLOTLIB

matplotlib is designed to reproduce as much as possible an environment similar to MATLAB in terms of both graphical view and syntactic form. This approach has proved successful, as it has been able to exploit the experience of software (MATLAB) that has been on the market for several years and is now widespread in all professional technical-scientific circles. Not only is matplotlib based on a scheme known and quite familiar to most experts in the field, but also it also exploits those optimizations that over the years have led to a deducibility and simplicity in its use, which makes this library also an excellent choice for those approaching data visualization for the first time, especially those without any experience with applications such as MATLAB or similar.

In addition to simplicity and deducibility, the matplotlib library inherited *interactivity* from MATLAB as well. That is, the analyst can insert command after command to control the gradual development of a graphical representation of data. This mode is well suited to the more interactive approaches of Python as the IPython QtConsole and IPython Notebook (see Chapter 2), thus providing an environment for data analysis that has little to envy from other tools such as Mathematica, IDL, or MATLAB.

The genius of those who developed this beautiful library was to use and incorporate the good things currently available and in use in science. This is not only limited, as we have seen, to the operating mode of MATLAB and similar, but also to models of textual formatting of scientific expressions and symbols represented by LaTeX. Because of its great capacity for display and presentation of scientific expressions, LaTeX has been an irreplaceable element in any scientific publication or documentation, where the need to visually represent expressions like integrals, summations, and derivatives is mandatory. Therefore matplotlib integrates this remarkable instrument in order to improve the representative capacity of charts.

In addition, you must not forget that matplotlib is not a separate application but a library of a programming language like Python. So it also takes full advantage of the potential that programming languages offer. matplotlib looks like a graphics library that allows you to programmatically manage the graphic elements that make up a chart so that the graphical display can be controlled in its entirety. The ability to program the graphical representation allows management of the reproducibility of the data representation across multiple environments and especially when you make changes or when the data is updated.

Moreover, since matplotlib is a Python library, it allows you to exploit the full potential of other libraries available to any developer that implements with this language. In fact, with regard to data analysis, matplotlib normally cooperates with a set of other libraries such as NumPy and pandas, but many other libraries can be integrated without any problem.

Finally, graphical representations obtained through encoding with this library can be exported in the most common graphic formats (such as PNG and SVG) and then be used in other applications, documentation, web pages, etc.

Installation

There are many options for installing the matplotlib library. If you choose to use a distribution of packages like Anaconda or Enthought Canopy, installing the matplotlib package is very simple. For example, with the conda package manager, you have to enter the following:

conda install matplotlib

If you want to directly install this package, the commands to insert vary depending on the operating system.

On Debian-Ubuntu Linux systems, use this:

sudo apt-get install python-matplotlib

On Fedora-Redhat Linux systems, use this:

sudo yum install python-matplotlib

On Windows or MacOS, you should use pip for installing matplotlib.

The IPython and IPython QtConsole

In order to get familiar with all the tools provided by the Python world, I chose to use IPython both from a terminal and from the QtConsole. This is because IPython allows you to exploit the interactivity of its enhanced terminal and, as you will see, IPython QtConsole also allows you to integrate graphics directly inside the console.

CHAPTER 7 DATA VISUALIZATION WITH MATPLOTLIB

To run an IPython session, simply run the following command:

ipython

```
Python 3.6.3 (default, Oct 15 2017, 03:27:45) [MSC v.1900 64 bit (AMD64)] Type "copyright", "credits" or "license" for more information.

IPython 3.6.3 -- An enhanced Interactive Python. Type '?' for help.

In [1]:
```

Whereas if you want to run the Jupyter QtConsole with the ability to display graphics within the line commands of the session, you use:

jupyter qtconsole

A window with a new open IPython session will immediately appear on the screen, as shown in Figure 7-1.

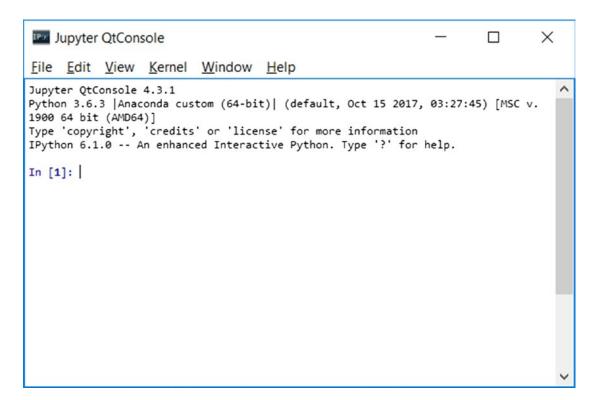


Figure 7-1. The IPython QtConsole

However, if you want to continue using a standard Python session you are free to do so. If you do not like working with IPython and want to continue to use Python from the terminal, all the examples in this chapter will still be valid.

The matplotlib Architecture

One of the key tasks that matplotlib must take on is provide a set of functions and tools that allow representation and manipulation of a *Figure* (the main object), along with all internal objects of which it is composed. However, matplotlib not only deals with graphics but also provides all the tools for the event handling and the ability to animate graphics. So, thanks to these additional features, matplotlib proves to be capable of producing interactive charts based on the events triggered by pressing a key on the keyboard or on mouse movement.

The architecture of matplotlib is logically structured into three layers, which are placed at three different levels (see Figure 7-2). The communication is unidirectional, that is, each layer can communicate with the underlying layer, while the lower layers cannot communicate with the top ones.

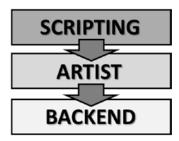


Figure 7-2. The three layers of the matplotlib architecture

The three layers are as follows:

- Scripting
- Artist
- Backend

Backend Layer

In the diagram of the matplotlib architecture, the layer that works at the lowest level is the *Backend* layer. This layer contains the matplotlib APIs, a set of classes that play the role of implementation of the graphic elements at a low level.

- FigureCanvas is the object that embodies the concept of drawing area.
- Renderer is the object that draws on FigureCanvas.
- Event is the object that handles user inputs (keyboard and mouse events).

Artist Layer

As an intermediate layer, we have a layer called *Artist*. All the elements that make up a chart, such as the title, axis labels, markers, etc., are instances of the Artist object. Each of these instances plays its role within a hierarchical structure (as shown in Figure 7-3).

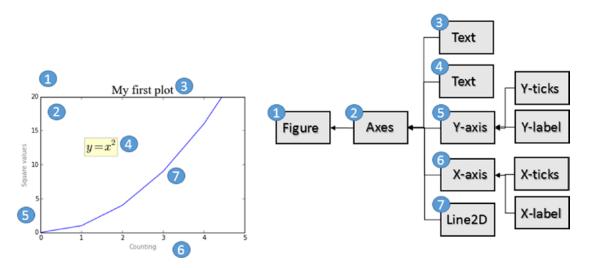


Figure 7-3. Each element of a chart corresponds to an instance of Artist structured in a hierarchy

There are two Artist classes: primitive and composite.

- The *primitive artists* are individual objects that constitute the basic elements to form a graphical representation in a plot, for example a Line2D, or as a geometric figure such as a Rectangle or Circle, or even pieces of text.
- The *composite artists* are those graphic elements present in a chart that are composed of several base elements, namely, the primitive artists. Composite artists are for example the Axis, Ticks, Axes, and Figures (see Figure 7-4).

Generally, working at this level you will have to deal often with objects in higher hierarchy as Figure, Axes, and Axis. So it is important to fully understand what these objects are and what role they play within the graphical representation. Figure 7-4 shows the three main Artist objects (composite artists) that are generally used in all implementations performed at this level.

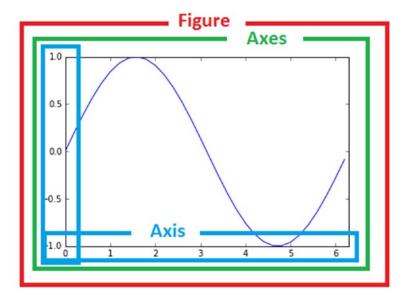


Figure 7-4. The three main artist objects in the hierarchy of the Artist layer

• *Figure* is the object with the highest level in the hierarchy. It corresponds to the entire graphical representation and generally can contain many Axes.

CHAPTER 7 DATA VISUALIZATION WITH MATPLOTLIB

- Axes is generally what you mean as plot or chart. Each Axis object
 belongs to only one Figure, and is characterized by two Artist Axis
 (three in the three-dimensional case). Other objects, such as the title,
 the x label, and the y label, belong to this composite artist.
- Axis objects that take into account the numerical values to be represented on Axes, define the limits and manage the ticks (the mark on the axes) and tick labels (the label text represented on each tick). The position of the tick is adjusted by an object called a *Locator* while the formatting tick label is regulated by an object called a *Formatter*.

Scripting Layer (pyplot)

Artist classes and their related functions (the matplotlib API) are particularly suitable to all developers, especially for those who work on web application servers or develop the GUI. But for purposes of calculation, and in particular for the analysis and visualization of data, the scripting layer is best. This layer consists of an interface called *pyplot*.

pylab and pyplot

In general there is talk of *pylab* and *pyplot*. But what is the difference between these two packages? Pylab is a module that is installed along with matplotlib, while pyplot is an internal module of matplotlib. Often you will find references to one or the other approach.

```
from pylab import *
and
import matplotlib.pyplot as plt
import numpy as np
```

Pylab combines the functionality of pyplot with the capabilities of NumPy in a single namespace, and therefore you do not need to import NumPy separately. Furthermore, if you import pylab, pyplot and NumPy functions can be called directly without any reference to a module (namespace), making the environment more similar to MATLAB.

The *pyplot* package provides the classic Python interface for programming the matplotlib library, has its own namespace, and requires the import of the NumPy package separately. This approach is the one chosen for this book; it is the main topic of this chapter; and it will be used for the rest of the book. In fact this choice is shared and approved by most Python developers.

pyplot

The pyplot module is a collection of command-style functions that allow you to use matplotlib much like MATLAB. Each pyplot function will operate or make some changes to the Figure object, for example, the creation of the Figure itself, the creation of a plotting area, representation of a line, decoration of the plot with a label, etc.

Pyplot also is *stateful*, in that it tracks the status of the current figure and its plotting area. The functions called act on the current figure.

A Simple Interactive Chart

To get familiar with the matplotlib library and in a particular way with Pyplot, you will start creating a simple interactive chart. Using matplotlib, this operation is very simple; in fact, you can achieve it using only three lines of code.

But first you need to import the pyplot package and rename it as plt.

```
In [1]: import matplotlib.pyplot as plt
```

In Python, the constructors generally are not necessary; everything is already implicitly defined. In fact when you import the package, the plt object with all its graphics capabilities have already been instantiated and ready to use. In fact, you simply use the plot() function to pass the values to be plotted.

Thus, you can simply pass the values that you want to represent as a sequence of integers.

```
In [2]: plt.plot([1,2,3,4])
Out[2]: [<matplotlib.lines.Line2D at 0xa3eb438>]
```

As you can see, a Line2D object has been generated. The object is a line that represents the linear trend of the points included in the chart.

Now it is all set. You just have to give the command to show the plot using the show() function.

The result will be the one shown in Figure 7-5. It looks just a window, called the *plotting window,* with a toolbar and the plot represented within it, just as with MATLAB.

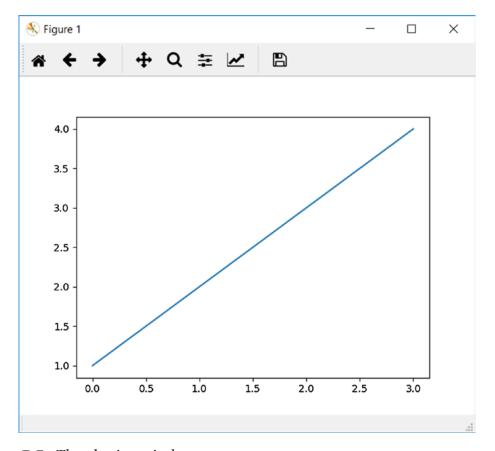


Figure 7-5. The plotting window

The Plotting Window

The plotting window is characterized by a toolbar at the top in which there are a series of buttons.

- Resets the original view
- Goes to the previous/next view
- Pans axes with left mouse, zoom with right
- Zooms to rectangle
- Configures subplots
- Saves/exports the figure
- Edits the axis, curve, and image parameters

The code entered into the IPython console corresponds on the Python console to the following series of commands:

```
>>> import matplotlib.pyplot as plt
>>> plt.plot([1,2,3,4])
[<matplotlib.lines.Line2D at 0x000000007DABFD0>]
>>> plt.show()
```

If you are using the IPython QtConsole, you may have noticed that after calling the plot() function the chart is displayed directly without explicitly invoking the show() function (see Figure 7-6).

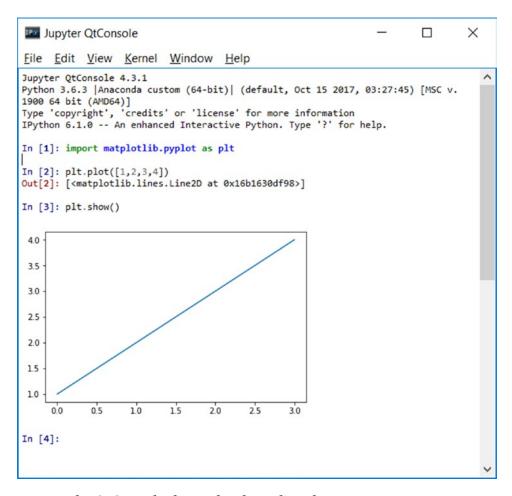


Figure 7-6. The QtConsole shows the chart directly as output

If you pass only a list of numbers or an array to the plt.plot() function, matplotlib assumes it is the sequence of y values of the chart, and it associates them to the natural sequence of values x: 0,1,2,3,...

Generally a plot represents value pairs (x, y), so if you want to define a chart correctly, you must define two arrays, the first containing the values on the x-axis and the second containing the values on the y-axis. Moreover, the plot() function can accept a third argument, which describes the specifics of how you want the point to be represented on the chart.

Set the Properties of the Plot

As you can see in Figure 7-6, the points were represented by a blue line. In fact, if you do not specify otherwise, the plot is represented taking into account a default configuration of the plt.plot() function:

- The size of the axes matches perfectly with the range of the input data
- There is neither a title nor axis labels
- There is no legend
- A blue line connecting the points is drawn

Therefore you need to change this representation to have a real plot in which each pair of values (x, y) is represented by a red dot (see Figure 7-7).

If you're working on IPython, close the window to get back to the active prompt for entering new commands. Then you have to call back the show() function to observe the changes made to the plot.

```
In [4]: plt.plot([1,2,3,4],[1,4,9,16],'ro')
Out[4]: [<matplotlib.lines.Line2D at 0x93e6898>]
In [5]: plt.show()
```

Instead, if you're working on Jupyter QtConsole you see a different plot for each new command you enter.

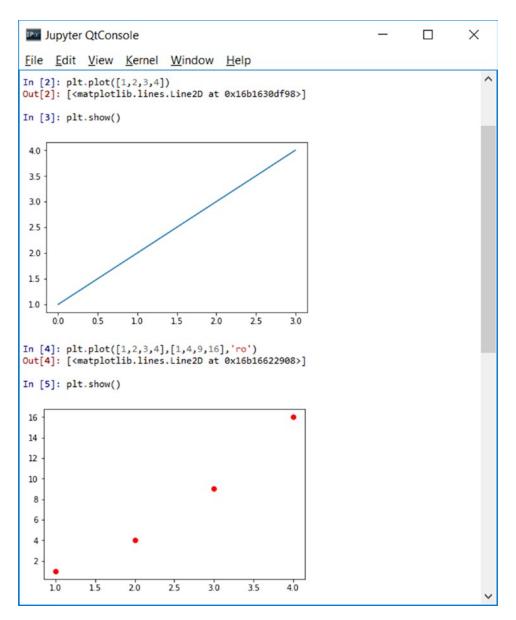


Figure 7-7. The pairs of (x,y) values are represented in the plot by red circles

Note At this point in the book, you already have a very clear idea about the difference between the various environments. To avoid confusion from this point, I will consider the IPython QtConsole as the sole development environment.

You can define the range both on the x-axis and on the y-axis by defining the details of a list [xmin, xmax, ymin, ymax] and then passing it as an argument to the axis() function.

Note In the IPython QtConsole, to generate a chart it is sometimes necessary to enter more rows of commands. To avoid generating a chart every time you press Enter (start a new line) along with losing the setting previously specified, you have to press Ctrl+Enter. When you want to finally generate the chart, just press Enter twice.

You can set several properties, one of which is the title that can be entered using the title() function.

```
In [4]: plt.axis([0,5,0,20])
    ...: plt.title('My first plot')
    ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')
Out[4]: [<matplotlib.lines.Line2D at 0x97f1c18>]
```

In Figure 7-8 you can see how the new settings made the plot more readable. In fact, the end points of the dataset are now represented within the plot rather than at the edges. Also the title of the plot is now visible at the top.

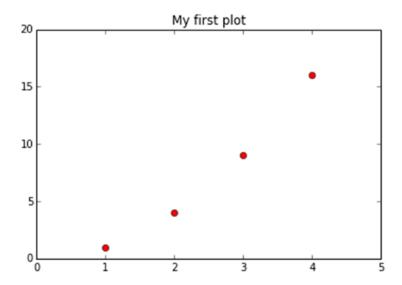


Figure 7-8. The plot after the properties have been set

matplotlib and NumPy

Even the matplot library, despite being a fully graphical library, has its foundation as the NumPy library. In fact, you have seen so far how to pass lists as arguments, both to represent the data and to set the extremes of the axes. Actually, these lists have been converted internally in NumPy arrays.

Therefore, you can directly enter NumPy arrays as input data. This array of data, which have been processed by pandas, can be directly used with matplotlib without further processing.

As an example, you see how it is possible to plot three different trends in the same plot (see Figure 7-9). You can choose for this example the sin() function belonging to the math module. So you will need to import it. To generate points following a sinusoidal trend, you will use the NumPy library. Generate a series of points on the x-axis using the arange() function, while for the values on the y-axis you will use the map() function to apply the sin() function on all the items of the array (without using a for loop).

```
In [5]: import math
In [6]: import numpy as np
In [7]: t = np.arange(0,2.5,0.1)
    ...: y1 = np.sin(math.pi*t)
    ...: y2 = np.sin(math.pi*t+math.pi/2)
    ...: y3 = np.sin(math.pi*t-math.pi/2)
In [8]: plt.plot(t,y1,'b*',t,y2,'g^',t,y3,'ys')
Out[8]:
[<matplotlib.lines.Line2D at Oxcbd2e48>,
    <matplotlib.lines.Line2D at Oxcbe10b8>,
    <matplotlib.lines.Line2D at Oxcbe15co>]
```

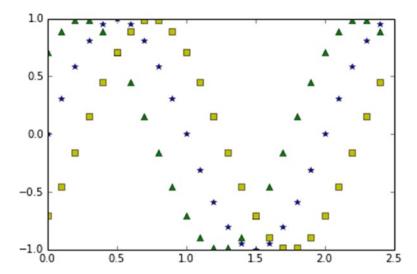


Figure 7-9. Three sinusoidal trends phase-shifted by $\pi / 4$ represented by markers

Note If you are not using the IPython QtConsole set with matplotlib inline or you are implementing this code on a simple Python session, insert the plt.show() command at the end of the code to obtain the chart shown in Figure 7-10.

As you can see in Figure 7-9, the plot represents the three different temporal trends with three different colors and markers. In these cases, when the trend of a function is so obvious, the plot is perhaps not the most appropriate representation, but it is better to use the lines (see Figure 7-10). To differentiate the three trends with something other than color, you can use the pattern composed of different combinations of dots and dashes (- and .).

Note If you are not using the IPython QtConsole set with matplotlib inline or you are implementing this code on a simple Python session, insert the plt.show() command at the end of the code to obtain the chart shown in Figure 7-10.

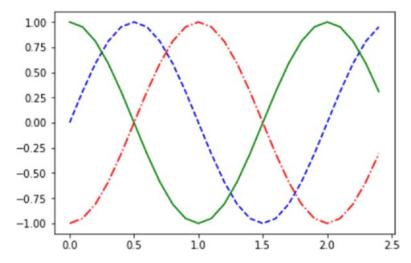


Figure 7-10. This chart represents the three sinusoidal patterns with colored lines

Using the kwargs

The objects that make up a chart have many attributes that characterize them. These attributes are all default values, but can be set through the use of *keyword args*, often referred as *kwargs*.

These keywords are passed as arguments to functions. In reference documentation of the various functions of the matplotlib library, you will always find them referred to as *kwargs* in the last position. For example the plot() function that you are using in these examples is referred to in the following way.

```
matplotlib.pyplot.plot(*args, **kwargs)
```

For a practical example, the thickness of a line can be changed if you set the linewidth keyword (see Figure 7-11).

```
In [10]: plt.plot([1,2,4,2,1,0,1,2,1,4],linewidth=2.0)
Out[10]: [<matplotlib.lines.Line2D at 0xc909da0>]
```

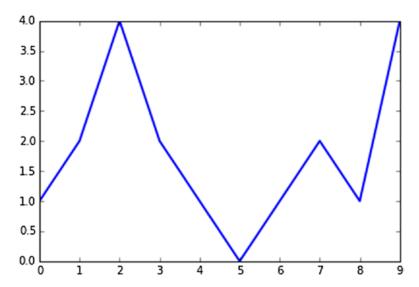


Figure 7-11. The thickness of a line can be set directly from the plot() function

Working with Multiple Figures and Axes

So far you have seen how all pyplot commands are routed to the display of a single figure. Actually, matplotlib allows you to manage multiple figures simultaneously, and within each figure, it offers the ability to view different plots defined as subplots.

So when you are working with pyplot, you must always keep in mind the concept of the current Figure and current Axes (that is, the plot shown within the figure).

Now you will see an example where two subplots are represented in a single figure. The subplot() function, in addition to subdividing the figure in different drawing areas, is used to focus the commands on a specific subplot.

The argument passed to the subplot() function sets the mode of subdivision and determines which is the current subplot. The current subplot will be the only figure that will be affected by the commands. The argument of the subplot() function is composed of three integers. The first number defines how many parts the figure is split into vertically. The second number defines how many parts the figure is divided into horizontally. The third issue selects which is the current subplot on which you can direct commands.

Now you will display two sinusoidal trends (sine and cosine) and the best way to do that is to divide the canvas vertically in two horizontal subplots (as shown in Figure 7-12). So the numbers to pass as an argument are 211 and 212.

```
In [11]: t = np.arange(0,5,0.1)
    ...: y1 = np.sin(2*np.pi*t)
    ...: y2 = np.sin(2*np.pi*t)
In [12]: plt.subplot(211)
    ...: plt.plot(t,y1,'b-.')
    ...: plt.subplot(212)
    ...: plt.plot(t,y2,'r--')
Out[12]: [<matplotlib.lines.Line2D at Oxd47f518>]
```

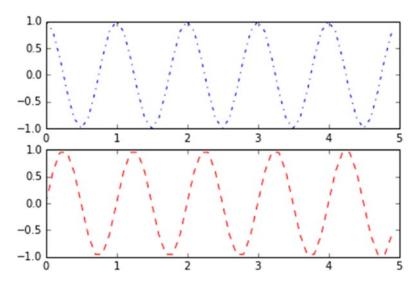


Figure 7-12. The figure has been divided into two horizontal subplots

Now you do the same thing by dividing the figure in two vertical subplots. The numbers to be passed as arguments to the subplot() function are 121 and 122 (as shown in Figure 7-13).

```
In [ ]: t = np.arange(0.,1.,0.05)
    ...: y1 = np.sin(2*np.pi*t)
    ...: y2 = np.cos(2*np.pi*t)
In [ ]: plt.subplot(121)
    ...: plt.plot(t,y1,'b-.')
    ...: plt.subplot(122)
    ...: plt.plot(t,y2,'r--')
Out[94]: [<matplotlib.lines.Line2D at OxedOc208>]
```

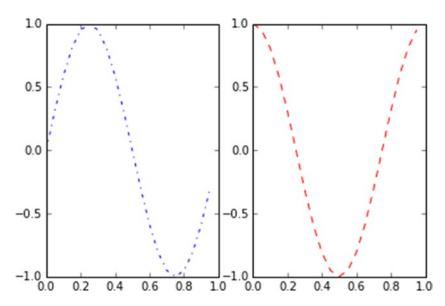


Figure 7-13. The figure has been divided into two vertical subplots

Adding Elements to the Chart

In order to make a chart more informative, many times it is not enough to represent the data using lines or markers and assign the range of values using two axes. In fact, there are many other elements that can be added to a chart in order to enrich it with additional information.

In this section you will see how to add elements to the chart as text labels, a legend, and so on.

Adding Text

You've already seen how you can add the title to a chart with the title() function. Two other textual indications you can add the *axis labels*. This is possible through the use of two other specific functions, called xlabel() and ylabel(). These functions take as an argument a string, which will be the shown text.

Note Command lines forming the code to represent your chart are growing in number. You do not need to rewrite all the commands each time, but using the arrow keys on the keyboard, you can call up the list of commands previously passed and edit them by adding new rows (in the text are indicated in bold).

Now add two axis labels to the chart. They will describe which kind of value is assigned to each axis (as shown in Figure 7-14).

```
In [10]: plt.axis([0,5,0,20])
    ...: plt.title('My first plot')
    ...: plt.xlabel('Counting')
    ...: plt.ylabel('Square values')
    ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')
Out[10]: [<matplotlib.lines.Line2D at 0x990f3c8>]
```

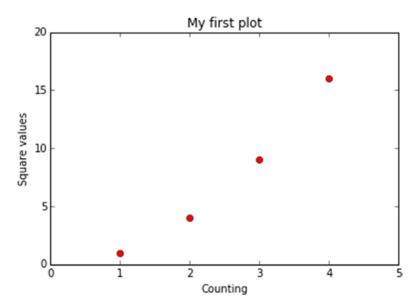


Figure 7-14. A plot is more informative by adding axis labels

Thanks to the keywords, you can change the characteristics of the text. For example, you can modify the title by changing the font and increasing the size of the characters. You can also modify the color of the axis labels to accentuate the title of the plot (as shown in Figure 7-15).

```
In []: plt.axis([0,5,0,20])
    ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')
    ...: plt.xlabel('Counting',color='gray')
    ...: plt.ylabel('Square values',color='gray')
    ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')
Out[116]: [<matplotlib.lines.Line2D at Ox11f17470>]
```

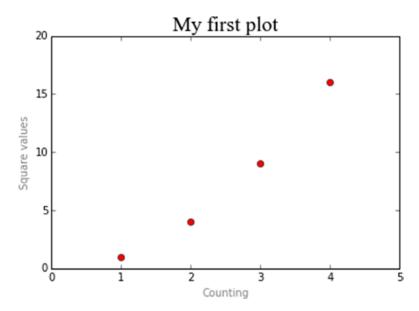


Figure 7-15. The text can be modified by setting the keywords

But matplotlib is not limited to this: pyplot allows you to add text to any position within a chart. This feature is performed by a specific function called text().

```
text(x,y,s, fontdict=None, **kwargs)
```

The first two arguments are the coordinates of the location where you want to place the text. **s** is the string of text to be added, and fontdict (optional) is the font that you want to use. Finally, you can add the keywords.

Add the label to each point of the plot. Because the first two arguments to the text() function are the coordinates of the graph, you have to use the coordinates of the four points of the plot shifted slightly on the y-axis.

```
In []: plt.axis([0,5,0,20])
    ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')
    ...: plt.xlabel('Counting',color='gray')
    ...: plt.ylabel('Square values',color='gray')
    ...: plt.text(1,1.5,'First')
    ...: plt.text(2,4.5,'Second')
    ...: plt.text(3,9.5,'Third')
    ...: plt.text(4,16.5,'Fourth')
    ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')
Out[108]: [<matplotlib.lines.Line2D at 0x10f76898>]
```

As you can see in Figure 7-16, now each point of the plot has a label.

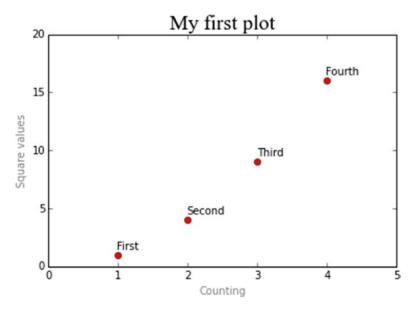


Figure 7-16. Every point of the plot has an informative label

Since matplotlib is a graphics library designed to be used in scientific circles, it must be able to exploit the full potential of scientific language, including mathematical expressions. matplotlib offers the possibility to integrate LaTeX expressions, thereby allowing you to insert mathematical expressions within the chart.

To do this, you can add a LaTeX expression to the text, enclosing it between two \$ characters. The interpreter will recognize them as LaTeX expressions and convert them to the corresponding graphic, which can be a mathematical expression, a formula, mathematical characters, or just Greek letters. Generally you have to precede the string containing LaTeX expressions with an r, which indicates raw text, in order to avoid unintended escape sequences.

Here, you can also use the keywords to further enrich the text to be shown in the plot. Therefore, as an example, you can add the formula describing the trend followed by the point of the plot and enclose it in a colored bounding box (see Figure 7-17).

```
In [ ]: plt.axis([0,5,0,20])
    ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')
    ...: plt.xlabel('Counting',color='gray')
    ...: plt.ylabel('Square values',color='gray')
    ...: plt.text(1,1.5,'First')
    ...: plt.text(2,4.5,'Second')
    ...: plt.text(3,9.5,'Third')
    ...: plt.text(4,16.5,'Fourth')
    ...: plt.text(4,16.5,'Fourth')
    ...: plt.text(1.1,12,r'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow', 'alpha':0.2})
    ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')
```

Out[130]: [<matplotlib.lines.Line2D at 0x13920860>]

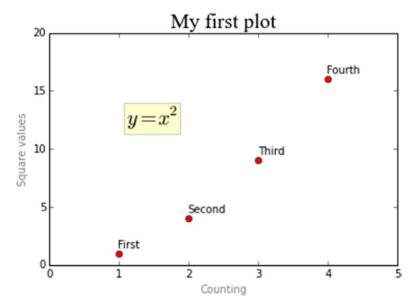


Figure 7-17. Any mathematical expression can be seen in the context of a chart

To get a complete view on the potential offered by LaTeX, consult Appendix A of this book.

Adding a Grid

Another element you can add to a plot is a grid. Often its addition is necessary in order to better understand the position occupied by each point on the chart.

Adding a grid to a chart is a very simple operation: just add the grid() function, passing True as an argument (see Figure 7-18).

```
In [ ]: plt.axis([0,5,0,20])
    ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')
    ...: plt.xlabel('Counting',color='gray')
    ...: plt.ylabel('Square values',color='gray')
    ...: plt.text(1,1.5,'First')
    ...: plt.text(2,4.5,'Second')
    ...: plt.text(3,9.5,'Third')
    ...: plt.text(4,16.5,'Fourth')
    ...: plt.text(1.1,12,r'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow', 'alpha':0.2})
    ...: plt.grid(True)
    ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')
Out[108]: [<matplotlib.lines.Line2D at 0x10f76898>]
```

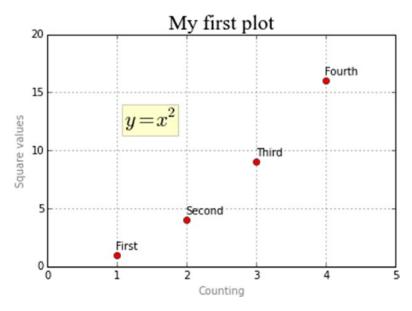


Figure 7-18. A grid makes it easier to read the values of the data points represented on a chart

Adding a Legend

Another very important component that should be present in any chart is the legend. pyplot also provides a specific function for this type of object: legend().

Add a legend to your chart with the legend() function and a string indicating the words with which you want the series to be shown. In this example, you assign the First series name to the input data array (see Figure 7-19).

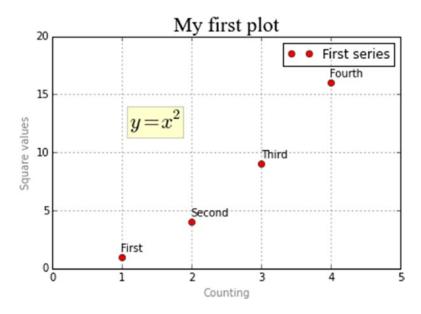


Figure 7-19. A legend is added in the upper-right corner by default

As you can see in Figure 7-19, the legend is added in the upper-right corner by default. Again if you want to change this behavior you will need to add a few kwargs. For example, the position occupied by the legend is set by assigning numbers from 0 to 10 to the loc kwarg. Each of these numbers characterizes one of the corners of the chart (see Table 7-1). A value of 1 is the default, that is, the upper-right corner. In the next example, you will move the legend in the upper-left corner so it will not overlap with the points represented in the plot.

Table 7-1. The Possible Values for the loc Keyword

Location Code	Location String	
0	best	
1	upper-right	
2	upper-left	
3	lower-right	
4	lower-left	
5	right	
6	center-left	
7	center-right	
8	lower-center	
9	upper-center	
10	center	

Before you begin to modify the code to move the legend, I want to add a small notice. Generally, the legends are used to indicate the definition of a series to the reader via a label associated with a color and/or a marker that distinguishes it in the plot. So far in the examples, you have used a single series that was expressed by a single plot() function. Now, you have to focus on a more general case in which the same plot shows more series simultaneously. Each series in the chart will be characterized by a specific color and a specific marker (see Figure 7-20). In terms of code, instead, each series will be characterized by a call to the plot() function and the order in which they are defined will correspond to the order of the text labels passed as an argument to the legend() function.

```
In [ ]: import matplotlib.pyplot as plt
   ...: plt.axis([0,5,0,20])
   ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')
   ...: plt.xlabel('Counting',color='gray')
   ...: plt.ylabel('Square values',color='gray')
   ...: plt.text(1,1.5,'First')
   ...: plt.text(2,4.5, 'Second')
   ...: plt.text(3,9.5,'Third')
   ...: plt.text(4,16.5, 'Fourth')
   ...: plt.text(1.1,12,'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow',
        'alpha':0.2})
   ...: plt.grid(True)
   ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')
   ...: plt.plot([1,2,3,4],[0.8,3.5,8,15],'g^')
   ...: plt.plot([1,2,3,4],[0.5,2.5,4,12],'b*')
   ...: plt.legend(['First series','Second series','Third series'],loc=2)
Out[170]: <matplotlib.legend.Legend at 0x1828d7b8>
```

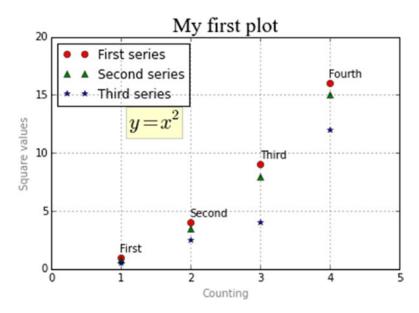


Figure 7-20. A legend is necessary in every multiseries chart

Saving Your Charts

In this section you will learn how to save your chart in different ways depending on your needs. If you need to reproduce your chart in different notebooks or Python sessions, or reuse them in future projects, it is a good practice to save the Python code. On the other hand, if you need to make reports or presentations, it can be very useful to save your chart as an image. Moreover, it is possible to save your chart as a HTML page, and this could be very useful when you need to share your work on Web.

Saving the Code

As you can see from the examples in the previous sections, the code concerning the representation of a single chart is growing into a fair number of rows. Once you think you've reached a good point in your development process, you can choose to save all rows of code in a .py file that you can recall at any time.

You can use the magic command save% followed by the name of the file you want to save followed by the number of input prompts containing the row of code that you want to save. If all the code is written in only one prompt, as your case, you have to add only its number; otherwise if you want to save the code written in many prompts, for example from 10 to 20, you have to indicate this range with the two numbers separated by a -, that is, 10-20.

In your case, you would save the Python code underlying the representation of your first chart contained into the input prompt with the number 171.

```
In [171]: import matplotlib.pyplot as plt
...
```

You need to insert the following command to save the code into a new .py file.

```
%save my_first_chart 171
```

After you launch the command, you will find the my_first_chart.py file in your working directory (see Listing 7-1).

Listing 7-1. my_first_chart.py

```
# coding: utf-8
import matplotlib.pyplot as plt
plt.axis([0,5,0,20])
plt.title('My first plot',fontsize=20,fontname='Times New Roman')
plt.xlabel('Counting',color='gray')
plt.ylabel('Square values',color='gray')
plt.text(1,1.5,'First')
plt.text(2,4.5,'Second')
plt.text(3,9.5,'Third')
plt.text(4,16.5, 'Fourth')
plt.text(1.1,12,'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow',
'alpha':0.2})
plt.grid(True)
plt.plot([1,2,3,4],[1,4,9,16],'ro')
plt.plot([1,2,3,4],[0.8,3.5,8,15],'g^')
plt.plot([1,2,3,4],[0.5,2.5,4,12],'b*')
plt.legend(['First series','Second series','Third series'],loc=2)
```

Later, when you open a new IPython session, you will have your chart and start to change the code at the point where you had saved it by entering the following command:

```
ipython qtconsole --matplotlib inline -m my_first_chart.py
```

Or you can reload the entire code in a single prompt in the QtConsole using the magic command %load.

```
%load my_first_chart.py
```

Or you can run it during a session with the magic command %run.

```
%run my_first_chart.py
```

Note On my system, this command works only after launching the two previous commands.

Converting Your Session to an HTML File

Using the IPython QtConsole, you can convert all the code and graphics present in your current session to an HTML page. Simply choose *File-->Save to HTML/XHTML* from the menu (as shown in Figure 7-21).

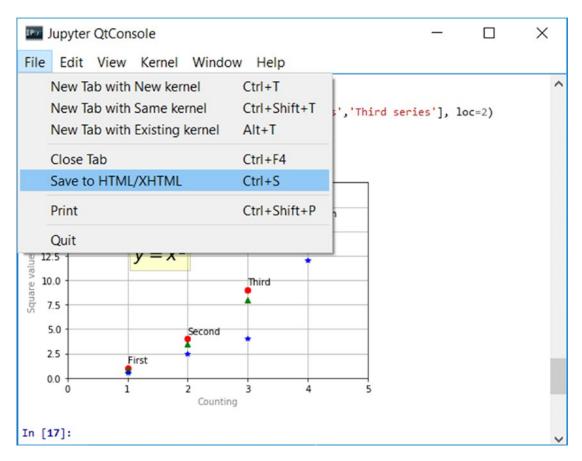


Figure 7-21. You can save your current session as a web page

You will be asked to save your session in two different formats: HTML and XHMTL. The difference between the two formats is based on the image conversion type. If you select HTML as the output file format, the images contained in your session will be converted to PNG format. If you select XHTML as the output file format instead, the images will be converted to SVG format.

In this example, save your session as an HTML file and name it my_session.html, as shown in Figure 7-22.

Figure 7-22. You can select the type of file between HTML and XHTML

At this point, you will be asked if you want to save your images in an external directory or inline (see Figure 7-23).

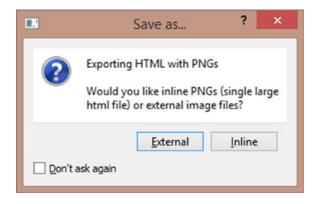


Figure 7-23. You can choose between creating external image files and embedding the PNG format directly into the HTML page

By choosing the external option, the images will be collected into a directory called my_session_files. By choosing inline, the graphical information concerning the image is embedded into the HTML code.

Saving Your Chart Directly as an Image

If you are interested in saving only the figure of a chart as an image file, ignoring all the code you've written during the session, this is also possible. In fact, thanks to the savefig() function, you can directly save the chart in a PNG format, although you should take care to add this function to the end of the same series of commands (otherwise you'll get a blank PNG file).

```
In [ ]: plt.axis([0,5,0,20])
   ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')
   ...: plt.xlabel('Counting',color='gray')
   ...: plt.ylabel('Square values',color='gray')
   ...: plt.text(1,1.5,'First')
   ...: plt.text(2,4.5, 'Second')
   ...: plt.text(3,9.5, 'Third')
   ...: plt.text(4,16.5, 'Fourth')
   ...: plt.text(1.1,12,'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow',
        'alpha':0.2})
   ...: plt.grid(True)
   ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')
   ...: plt.plot([1,2,3,4],[0.8,3.5,8,15],'g^')
   ...: plt.plot([1,2,3,4],[0.5,2.5,4,12],'b*')
   ...: plt.legend(['First series','Second series','Third series'],loc=2)
   ...: plt.savefig('my_chart.png')
```

Executing the previous code, a new file will be created in your working directory. This file will be named my_chart.png and will contain the image of your chart.

Handling Date Values

One of the most common problems encountered when doing data analysis is handling data of the date-time type. Displaying that data along an axis (normally the x-axis) can be problematic, especially when managing ticks (see Figure 7-24).

Take for example the display of a linear chart with a dataset of eight points in which you have to represent date values on the x-axis with the following format: day-month-year.

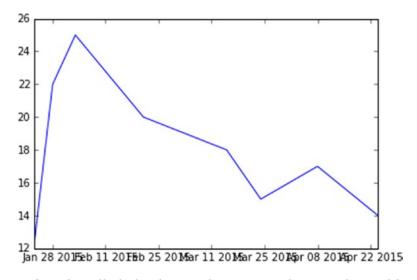


Figure 7-24. If not handled, displaying date-time values can be problematic

As you can see in Figure 7-24, automatic management of ticks, and especially the tick labels, can be a disaster. The dates expressed in this way are difficult to read, there are no clear time intervals elapsed between one point and another, and there is also overlap.

To manage dates it is therefore advisable to define a time scale with appropriate objects. First you need to import matplotlib.dates, a module specialized for this type of data. Then you define the scales of the times, as in this case, a scale of days and one of the months, through the MonthLocator() and DayLocator() functions. In these cases, the formatting is also very important, and to avoid overlap or unnecessary references, you have to limit the tick labels to the essential, which in this case is year-month. This format can be passed as an argument to the DateFormatter() function.

After you defined the two scales, one for the days and one for the months, you can set two different kinds of ticks on the x-axis, using the set_major_locator() and set_minor_locator() functions on the xaxis object. Instead, to set the text format of the tick labels referred to the months you have to use the set_major_formatter() function.

Changing all these settings you finally obtain the plot as shown in Figure 7-25.

```
In [ ]: import datetime
   ...: import numpy as np
   ...: import matplotlib.pyplot as plt
   ...: import matplotlib.dates as mdates
   ...: months = mdates.MonthLocator()
   ...: days = mdates.DayLocator()
   ...: timeFmt = mdates.DateFormatter('%Y-%m')
   ...: events = [datetime.date(2015,1,23),datetime.
        date(2015,1,28),datetime.date(2015,2,3),datetime.
        date(2015,2,21),datetime.date(2015,3,15),datetime.
        date(2015,3,24),datetime.date(2015,4,8),datetime.date(2015,4,24)]
readings = [12,22,25,20,18,15,17,14]
   ...: fig, ax = plt.subplots()
   ...: plt.plot(events, readings)
   ...: ax.xaxis.set major locator(months)
   ...: ax.xaxis.set major formatter(timeFmt)
   ...: ax.xaxis.set minor locator(days)
```

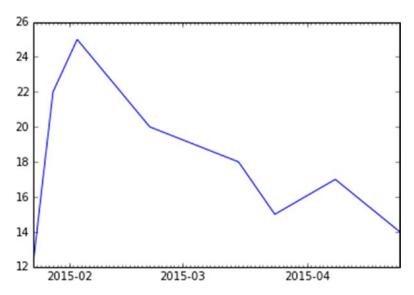


Figure 7-25. Now the tick labels of the x-axis refer only to the months, making the plot more readable

Chart Typology

In the previous sections you saw a number of examples relating to the architecture of the matplotlib library. Now that you are familiar with the use of the main graphic elements in a chart, it is time to see a series of examples treating different types of charts, starting from the most common ones such as linear charts, bar charts, and pie charts, up to a discussion about some that are more sophisticated but commonly used nonetheless.

This part of the chapter is very important since the purpose of this library is the visualization of the results produced by data analysis. Thus, knowing how to choose the proper type of chart is a fundamental choice. Remember that excellent data analysis represented incorrectly can lead to a wrong interpretation of the experimental results.

Line Charts

Among all the chart types, the linear chart is the simplest. A line chart is a sequence of data points connected by a line. Each data point consists of a pair of values (x,y), which will be reported in the chart according to the scale of values of the two axes (x and y).

By way of example, you can begin to plot the points generated by a mathematical function. Then, you can consider a generic mathematical function such as this:

$$y = \sin(3 * x) / x$$

Therefore, if you want to create a sequence of data points, you need to create two NumPy arrays. First you create an array containing the x values to be referred to the x-axis. In order to define a sequence of increasing values you will use the np.arange() function. Since the function is sinusoidal you should refer to values that are multiples and submultiples of the Greek pi (np.pi). Then, using these sequence of values, you can obtain the y values applying the np.sin() function directly to these values (thanks to NumPy!).

After all this, you have only to plot them by calling the plot() function. You will obtain a line chart, as shown in Figure 7-26.

```
In []: import matplotlib.pyplot as plt
...: import numpy as np
...: x = np.arange(-2*np.pi,2*np.pi,0.01)
...: y = np.sin(3*x)/x
...: plt.plot(x,y)
Out[393]: [<matplotlib.lines.Line2D at 0x22404358>]
```

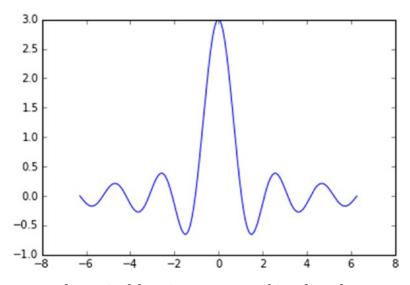


Figure 7-26. A mathematical function represented in a line chart

Now you can extend the case in which you want to display a family of functions, such as this:

$$y = \sin(n * x) / x$$

varying the parameter n.

```
In [ ]: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: x = np.arange(-2*np.pi,2*np.pi,0.01)
    ...: y = np.sin(3*x)/x
    ...: y2 = np.sin(2*x)/x
    ...: y3 = np.sin(3*x)/x
    ...: plt.plot(x,y)
    ...: plt.plot(x,y2)
    ...: plt.plot(x,y3)
```

As you can see in Figure 7-27, a different color is automatically assigned to each line. All the plots are represented on the same scale; that is, the data points of each series refer to the same x-axis and y-axis. This is because each call of the plot() function takes into account the previous calls to same function, so the Figure applies the changes keeping memory of the previous commands until the Figure is not displayed (using show() with Python and Enter with the IPython QtConsole).

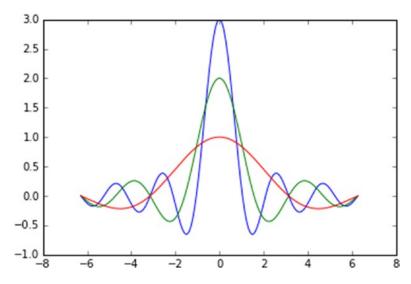


Figure 7-27. Three different series are drawn with different colors in the same chart

As you saw in the previous sections, regardless of the default settings, you can select the type of stroke, color, etc. As the third argument of the plot() function you can specify some codes that correspond to the color (see Table 7-2) and other codes that correspond to line styles, all included in the same string. Another possibility is to use two kwargs separately, color to define the color, and linestyle to define the stroke (see Figure 7-28).

```
In [ ]: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: x = np.arange(-2*np.pi,2*np.pi,0.01)
    ...: y = np.sin(3*x)/x
    ...: y2 = np.sin(2*x)/x
    ...: y3 = np.sin(3*x)/x
    ...: plt.plot(x,y,'k--',linewidth=3)
    ...: plt.plot(x,y2,'m-.')
    ...: plt.plot(x,y3,color='#87a3cc',linestyle='--')
```

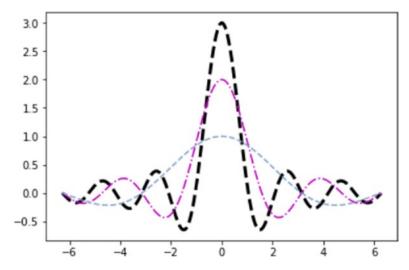


Figure 7-28. You can define colors and line styles using character codes

/m . 1 . 1	0	1 0 1	
Table 7-	2. Col	ior Coae	S

Code	Color
b	blue
g	green
r	red
С	cyan
m	magenta
у	yellow
k	black
W	white

You have just defined a range from -2π to 2π on the x-axis, but by default, values on ticks are shown in numerical form. Therefore you need to replace the numerical values with multiple of π . You can also replace the ticks on the y-axis. To do all this, you have to use xticks() and yticks() functions, passing to each of them two lists of values. The first list contains values corresponding to the positions where the ticks are to be placed, and the second contains the tick labels. In this particular case, you have to use strings containing LaTeX format in order to correctly display the symbol π . Remember to define them within two \$ characters and to add a r as the prefix.

In the end, you will get a clean and pleasant line chart showing Greek characters, as in Figure 7-29.

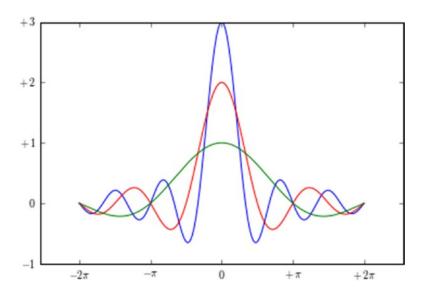


Figure 7-29. The tick label can be improved adding text with LaTeX format

In all the linear charts you have seen so far, you always have the x-axis and y-axis placed at the edge of the figure (corresponding to the sides of the bounding border box). Another way of displaying axes is to have the two axes passing through the origin (0, 0), i.e., the two Cartesian axes.

To do this, you must first capture the Axes object through the gca() function. Then through this object, you can select each of the four sides making up the bounding box, specifying for each one its position: right, left, bottom, and top. Crop the sides that do not match any axis (right and bottom) using the set_color() function and indicating none for color. Then, the sides corresponding to the x- and y-axes are moved to pass through the origin (0,0) with the set_position() function.

```
In [ ]: import matplotlib.pyplot as plt
   ...: import numpy as np
   ...: x = np.arange(-2*np.pi, 2*np.pi, 0.01)
   \dots: y = np.sin(3*x)/x
   ...: y2 = np.sin(2*x)/x
   \dots: y3 = np.sin(x)/x
   ...: plt.plot(x,y,color='b')
  ...: plt.plot(x,y2,color='r')
   ...: plt.plot(x,y3,color='g')
   ...: plt.xticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi],
           [r'$-2\pi$',r'$-\pi$',r'$0$',r'$+\pi$',r'$+2\pi$'])
   ...: plt.yticks([-1,0,+1,+2,+3],
           [r'$-1$',r'$0$',r'$+1$',r'$+2$',r'$+3$'])
   ...: ax = plt.gca()
   ...: ax.spines['right'].set color('none')
   ...: ax.spines['top'].set color('none')
  ...: ax.xaxis.set ticks position('bottom')
   ...: ax.spines['bottom'].set position(('data',0))
   ...: ax.yaxis.set ticks position('left')
   ...: ax.spines['left'].set position(('data',0))
```

Now the chart will show the two axes crossing in the middle of the figure, that is, the origin of the Cartesian axes, as shown in Figure 7-30.

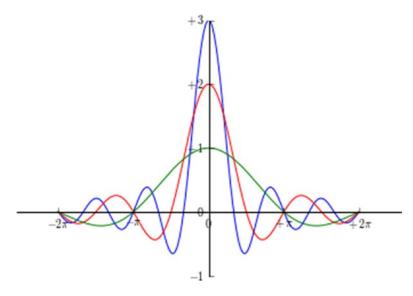


Figure 7-30. The chart shows two Cartesian axes

Often, it is very useful to be able to specify a particular point of the line using a notation and optionally add an arrow to better indicate the position of the point. For example, this notation may be a LaTeX expression, such as the formula for the limit of the function sinx/x with x tends to 0.

In this regard, matplotlib provides a function called annotate(), which is especially useful in these cases, even if the numerous kwargs needed to obtain a good result can make its settings quite complex. The first argument is the string to be represented containing the expression in LaTeX; then you can add the various kwargs. The point of the chart to note is indicated by a list containing the coordinates of the point [x, y] passed to the xy kwarg. The distance of the textual notation from the point to be highlighted is defined by the xytext kwarg and represented by means of a curved arrow whose characteristics are defined in the arrowprops kwarg.

```
In [ ]: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: x = np.arange(-2*np.pi,2*np.pi,0.01)
    ...: y = np.sin(3*x)/x
    ...: y2 = np.sin(2*x)/x
    ...: y3 = np.sin(x)/x
    ...: plt.plot(x,y,color='b')
    ...: plt.plot(x,y2,color='r')
```

```
...: plt.plot(x,y3,color='g')
...: plt.xticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi],
        [r'$-2\pi$',r'$-\pi$',r'$0$',r'$+\pi$',r'$+2\pi$'])
...: plt.yticks([-1,0,+1,+2,+3],
        [r'$-1$',r'$0$',r'$+1$',r'$+2$',r'$+3$'])
...: plt.annotate(r'\ {x\to 0}\frac{\sin(x)}{x}= 1$',
                                                            xy=[0,1],
     xycoords='data',xytext=[30,30],fontsize=16,textcoords='offset points',
     arrowprops=dict(arrowstyle="->",connectionstyle="arc3,rad=.2"))
...: ax = plt.gca()
...: ax.spines['right'].set_color('none')
...: ax.spines['top'].set color('none')
...: ax.xaxis.set ticks position('bottom')
...: ax.spines['bottom'].set position(('data',0))
...: ax.yaxis.set ticks position('left')
...: ax.spines['left'].set position(('data',0))
```

Running this code, you will get the chart with the mathematical notation of the limit, which is the point shown by the arrow in Figure 7-31.

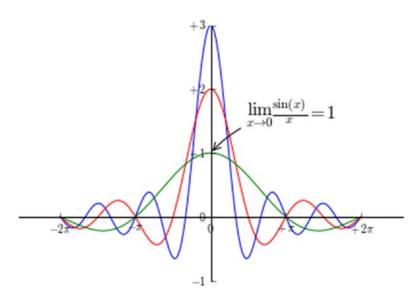


Figure 7-31. Mathematical expressions can be added to a chart with the annotate() function

Line Charts with pandas

Moving to more practical cases, or at least more closely related to data analysis, now is the time to see how easy it is to apply the matplotlib library to the dataframes of the pandas library. The visualization of the data in a dataframe as a linear chart is a very simple operation. It is sufficient to pass the dataframe as an argument to the plot() function to obtain a multiseries linear chart (see Figure 7-32).

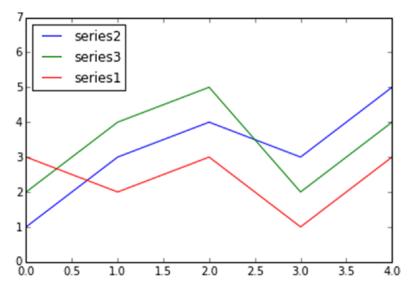


Figure 7-32. The multiseries line chart displays the data within a pandas dataframe

Histograms

A *histogram* consists of adjacent rectangles erected on the x-axis, split into discrete intervals called *bins*, and with an area proportional to the frequency of the occurrences for that bin. This kind of visualization is commonly used in statistical studies about distribution of samples.

In order to represent a histogram, pyplot provides a special function called hist(). This graphic function also has a feature that other functions producing charts do not have. The hist() function, in addition to drawing the histogram, returns a tuple of values that are the results of the calculation of the histogram. In fact the hist() function can also implement the calculation of the histogram, that is, it is sufficient to provide a series of samples of values as an argument and the number of bins in which to be divided, and it will take care of dividing the range of samples in many intervals (bins), and then calculate the occurrences for each bin. The result of this operation, in addition to being shown in graphical form (see Figure 7-33), will be returned in the form of a tuple.

```
(n, bins, patches)
```

To understand this operation, a practical example is best. Then you can generate a population of 100 random values from 0 to 100 using the random.randint() function.

Now, create the histogram of these samples by passing as an argument the hist() function. For example, you want to divide the occurrences in 20 bins (if not specified, the default value is 10 bins) and to do that you have to use the kwarg bin (as shown in Figure 7-33).

```
In [ ]: n,bins,patches = plt.hist(pop,bins=20)
```

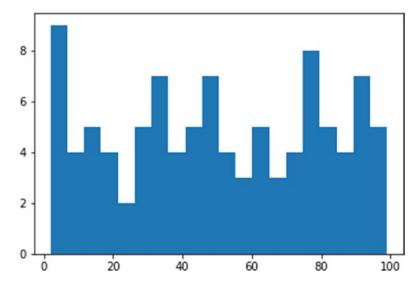


Figure 7-33. The histogram shows the occurrences in each bin

Bar Charts

Another very common type of chart is the bar chart. It is very similar to a histogram but in this case the x-axis is not used to reference numerical values but categories. The realization of the bar chart is very simple with matplotlib, using the bar() function.

```
In [ ]: import matplotlib.pyplot as plt
    ...: index = [0,1,2,3,4]
    ...: values = [5,7,3,4,6]
    ...: plt.bar(index,values)
Out[15]: <Container object of 5 artists>
```

With this few rows of code, you will obtain a bar chart as shown in Figure 7-34.

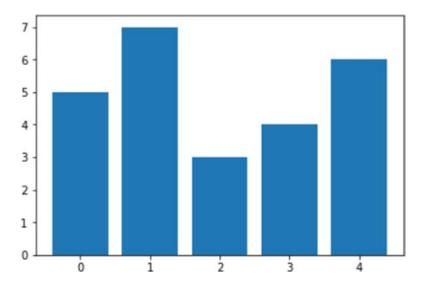


Figure 7-34. The simplest bar chart with matplotlib

If you look at Figure 7-34 you can see that the indices are drawn on the x-axis at the beginning of each bar. Actually, because each bar corresponds to a category, it would be better if you specify the categories through the tick label, defined by a list of strings passed to the xticks() function. As for the location of these tick labels, you have to pass a list containing the values corresponding to their positions on the x-axis as the first argument of the xticks() function. At the end you will get a bar chart, as shown in Figure 7-35.

```
In [ ]: import numpy as np
...: index = np.arange(5)
...: values1 = [5,7,3,4,6]
...: plt.bar(index,values1)
...: plt.xticks(index+0.4,['A','B','C','D','E'])
```

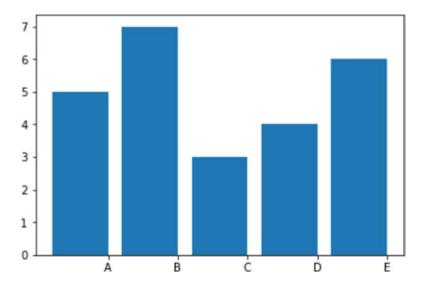


Figure 7-35. A simple bar chart with categories on the x-axis

Actually there are many other steps you can take to further refine the bar chart. Each of these finishes is set by adding a specific kwarg as an argument in the bar() function. For example, you can add the standard deviation values of the bar through the yerr kwarg along with a list containing the standard deviations. This kwarg is usually combined with another kwarg called error_kw, which, in turn, accepts other kwargs specialized for representing error bars. Two very specific kwargs used in this case are eColor, which specifies the color of the error bars, and capsize, which defines the width of the transverse lines that mark the ends of the error bars.

Another kwarg that you can use is alpha, which indicates the degree of transparency of the colored bar. Alpha is a value ranging from 0 to 1. When this value is 0 the object is completely transparent to become gradually more significant with the increase of the value, until arriving at 1, at which the color is fully represented.

As usual, the use of a legend is recommended, so in this case you should use a kwarg called label to identify the series that you are representing.

At the end you will get a bar chart with error bars, as shown in Figure 7-36.

```
In [ ]: import numpy as np
    ...: index = np.arange(5)
    ...: values1 = [5,7,3,4,6]
    ...: std1 = [0.8,1,0.4,0.9,1.3]
    ...: plt.title('A Bar Chart')
```

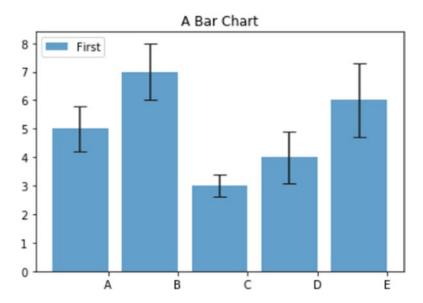


Figure 7-36. A bar chart with error bars

Horizontal Bar Charts

So far you have seen the bar chart oriented vertically. There are also bar chart oriented horizontally. This mode is implemented by a special function called barh(). The arguments and the kwargs valid for the bar() function remain the same for this function. The only change that you have to take into account is that the roles of the axes are reversed. Now, the categories are represented on the y-axis and the numerical values are shown on the x-axis (see Figure 7-37).

```
In [ ]: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: index = np.arange(5)
    ...: values1 = [5,7,3,4,6]
    ...: std1 = [0.8,1,0.4,0.9,1.3]
    ...: plt.title('A Horizontal Bar Chart')
```

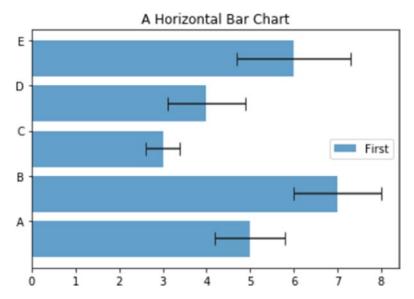


Figure 7-37. A simple horizontal bar chart

Multiserial Bar Charts

As line charts, bar charts also generally are used to simultaneously display larger series of values. But in this case it is necessary to make some clarifications on how to structure a multiseries bar chart. So far you have defined a sequence of indexes, each corresponding to a bar, to be assigned to the x-axis. These indices should represent categories. In this case, however, you have more bars that must share the same category.

One approach used to overcome this problem is to divide the space occupied by an index (for convenience its width is 1) in as many parts as are the bars sharing that index and that we want to display. Moreover, it is advisable to add space, which will serve as a gap to separate a category with respect to the next (as shown in Figure 7-38).

```
In []: import matplotlib.pyplot as plt
...: import numpy as np
...: index = np.arange(5)
...: values1 = [5,7,3,4,6]
...: values2 = [6,6,4,5,7]
...: values3 = [5,6,5,4,6]
...: bw = 0.3
...: plt.axis([0,5,0,8])
...: plt.title('A Multiseries Bar Chart',fontsize=20)
...: plt.bar(index,values1,bw,color='b')
...: plt.bar(index+bw,values2,bw,color='g')
...: plt.bar(index+2*bw,values3,bw,color='r')
...: plt.xticks(index+1.5*bw,['A','B','C','D','E'])
```

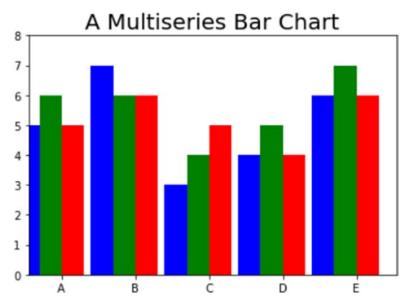


Figure 7-38. A multiseries bar chart displaying three series

CHAPTER 7 DATA VISUALIZATION WITH MATPLOTLIB

Regarding the multiseries horizontal bar chart (see Figure 7-39), things are very similar. You have to replace the bar() function with the corresponding barh() function and remember to replace the xticks() function with the yticks() function. You need to reverse the range of values covered by the axes in the axis() function.

```
In []: import matplotlib.pyplot as plt
...: import numpy as np
...: index = np.arange(5)
...: values1 = [5,7,3,4,6]
...: values2 = [6,6,4,5,7]
...: values3 = [5,6,5,4,6]
...: bw = 0.3
...: plt.axis([0,8,0,5])
...: plt.title('A Multiseries Horizontal Bar Chart',fontsize=20)
...: plt.barh(index,values1,bw,color='b')
...: plt.barh(index+bw,values2,bw,color='g')
...: plt.barh(index+2*bw,values3,bw,color='r')
...: plt.yticks(index+0.4,['A','B','C','D','E'])
```

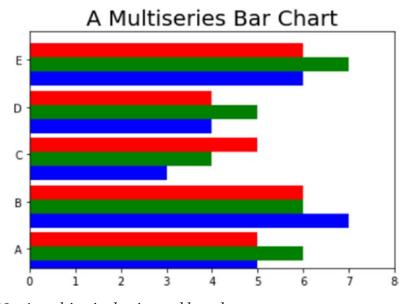


Figure 7-39. A multiseries horizontal bar chart

Multiseries Bar Charts with pandas Dataframe

As you saw in the line charts, the matplotlib library also provides the ability to directly represent the dataframe objects containing the results of data analysis in the form of bar charts. And even here it does it quickly, directly, and automatically. The only thing you need to do is use the plot() function applied to the dataframe object and specify inside a kwarg called kind to which you have to assign the type of chart you want to represent, which in this case is bar. Thus, without specifying any other settings, you will get the bar chart shown in Figure 7-40.

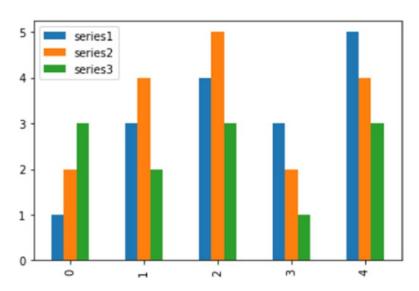


Figure 7-40. The values in a dataframe can be directly displayed as a bar chart

CHAPTER 7 DATA VISUALIZATION WITH MATPLOTLIB

However, if you want to get more control, or if your case requires it, you can still extract portions of the dataframe as NumPy arrays and use them as illustrated in the previous examples in this section. That is, by passing them separately as arguments to the matplotlib functions.

Moreover, regarding the horizontal bar chart, the same rules can be applied, but remember to set barh as the value of the kind kwarg. You'll get a multiseries horizontal bar chart, as shown in Figure 7-41.

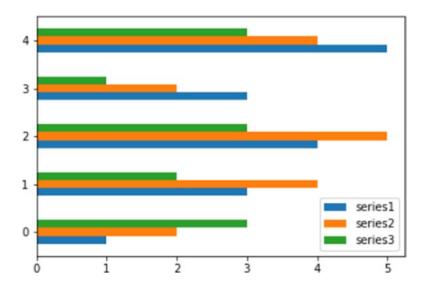


Figure 7-41. A horizontal bar chart could be a valid alternative to visualize your dataframe values

Multiseries Stacked Bar Charts

Another form to represent a multiseries bar chart is in the stacked form, in which the bars are stacked one on the other. This is especially useful when you want to show the total value obtained by the sum of all the bars.

To transform a simple multiseries bar chart in a stacked one, you add the bottom kwarg to each bar() function. Each series must be assigned to the corresponding bottom kwarg. At the end you will obtain the stacked bar chart, as shown in Figure 7-42.

```
In []: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: series1 = np.array([3,4,5,3])
    ...: series2 = np.array([1,2,2,5])
    ...: series3 = np.array([2,3,3,4])
    ...: index = np.arange(4)
    ...: plt.axis([-0.5,3.5,0,15])
    ...: plt.title('A Multiseries Stacked Bar Chart')
    ...: plt.bar(index,series1,color='r')
    ...: plt.bar(index,series2,color='b',bottom=series1)
    ...: plt.bar(index,series3,color='g',bottom=(series2+series1))
    ...: plt.xticks(index+0.4,['Jan18','Feb18','Mar18','Apr18'])
```

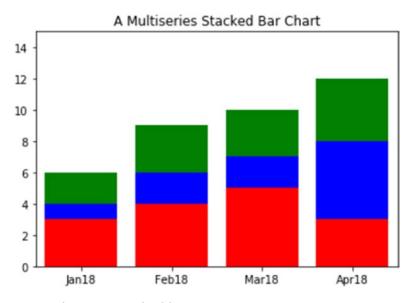


Figure 7-42. A multiseries stacked bar

Here too, in order to create the equivalent horizontal stacked bar chart, you need to replace the bar() function with barh() function, being careful to change the other parameters as well. Indeed the xticks() function should be replaced with the yticks() function because the labels of the categories must now be reported on the y-axis. After making all these changes, you will obtain the horizontal stacked bar chart as shown in Figure 7-43.

CHAPTER 7 DATA VISUALIZATION WITH MATPLOTLIB

```
In []: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: index = np.arange(4)
    ...: series1 = np.array([3,4,5,3])
    ...: series2 = np.array([1,2,2,5])
    ...: series3 = np.array([2,3,3,4])
    ...: plt.axis([0,15,-0.5,3.5])
    ...: plt.title('A Multiseries Horizontal Stacked Bar Chart')
    ...: plt.barh(index,series1,color='r')
    ...: plt.barh(index,series2,color='g',left=series1)
    ...: plt.barh(index,series3,color='b',left=(series1+series2))
    ...: plt.yticks(index+0.4,['Jan18','Feb18','Mar18','Apr18'])
```

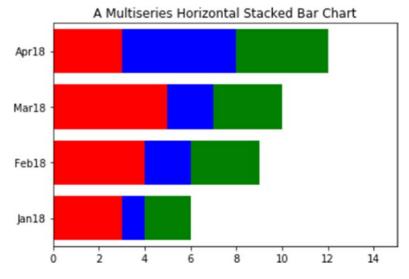


Figure 7-43. A multiseries horizontal stacked bar chart

So far the various series have been distinguished by using different colors. Another mode of distinction between the various series is to use hatches that allow you to fill the various bars with strokes drawn in a different way. To do this, you have first to set the color of the bar as white and then you have to use the hatch kwarg to define how the hatch is to be set. The various hatches have codes distinguishable among these characters $(|, /, -, \setminus, *, -)$ corresponding to the line style filling the bar. The more a symbol is replicated, the denser the lines forming the hatch will be. For example, /// is more dense than //, which is more dense than / (see Figure 7-44).

```
In [ ]: import matplotlib.pyplot as plt
   ...: import numpy as np
   ...: index = np.arange(4)
   ...: series1 = np.array([3,4,5,3])
   ...: series2 = np.array([1,2,2,5])
   ...: series3 = np.array([2,3,3,4])
   ...: plt.axis([0,15,-0.5,3.5])
   ...: plt.title('A Multiseries Horizontal Stacked Bar Chart')
   ...: plt.barh(index,series1,color='w',hatch='xx')
   ...: plt.barh(index,series2,color='w',hatch='///', left=series1)
   ...: plt.barh(index,series3,color='w',hatch='\\\\',left=(series1+series2))
   ...: plt.yticks(index+0.4,['Jan18','Feb18','Mar18','Apr18'])
Out[453]:
([<matplotlib.axis.YTick at 0x2a9f0748>,
  <matplotlib.axis.YTick at 0x2a9e1f98>,
  <matplotlib.axis.YTick at 0x2ac06518>,
  <matplotlib.axis.YTick at 0x2ac52128>],
 <a list of 4 Text yticklabel objects>)
```

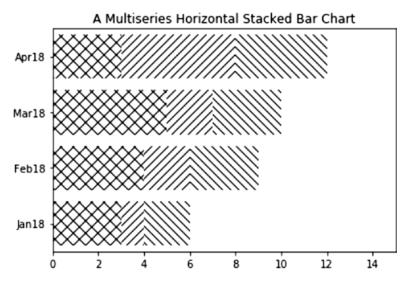


Figure 7-44. The stacked bars can be distinguished by their hatches

Stacked Bar Charts with a pandas Dataframe

Also with regard to stacked bar charts, it is very simple to directly represent the values contained in the dataframe object by using the plot() function. You need only to add as an argument the stacked kwarg set to True (see Figure 7-45).

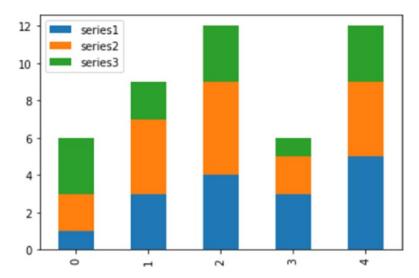


Figure 7-45. The values of a dataframe can be directly displayed as a stacked bar chart

Other Bar Chart Representations

Another type of very useful representation is that of a bar chart for comparison, where two series of values sharing the same categories are compared by placing the bars in opposite directions along the y-axis. In order to do this, you have to put the y values of one of the two series in a negative form. Also in this example, you will see the possibility of coloring the inner color of the bars in a different way. In fact, you can do this by setting the two different colors on a specific kwarg: facecolor.

Furthermore, in this example, you will see how to add the y value with a label at the end of each bar. This could be useful to increase the readability of the bar chart. You can do this using a for loop in which the text() function will show the y value. You can adjust the label position with the two kwargs called ha and va, which control the horizontal and vertical alignment, respectively. The result will be the chart shown in Figure 7-46.

```
In [ ]: import matplotlib.pyplot as plt
...: x0 = np.arange(8)
...: y1 = np.array([1,3,4,6,4,3,2,1])
...: y2 = np.array([1,2,5,4,3,3,2,1])
...: plt.ylim(-7,7)
```

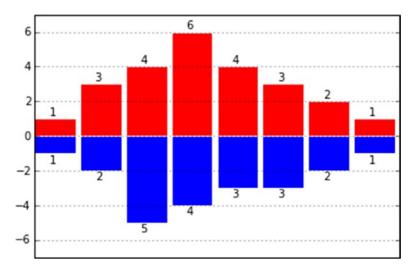


Figure 7-46. Two series can be compared using this kind of bar chart

Pie Charts

An alternative way to display data to the bar charts is the pie chart, easily obtainable using the pie() function.

Even for this type of function, you pass as the main argument a list containing the values to be displayed. I chose the percentages (their sum is 100), but you can use any kind of value. It will be up to the pie() function to inherently calculate the percentage occupied by each value.

Also with this type of representation, you need to define some key features making use of the kwargs. For example, if you want to define the sequence of the colors, which will be assigned to the sequence of input values correspondingly, you have to use the colors kwarg. Therefore, you have to assign a list of strings, each containing the name of the desired color. Another important feature is to add labels to each slice of the pie. To do this, you have to use the labels kwarg to which you will assign a list of strings containing the labels to be displayed in sequence.

In addition, in order to draw the pie chart in a perfectly spherical way, you have to add the axis() function to the end, specifying the string 'equal' as an argument. You will get a pie chart as shown in Figure 7-47.

```
In []: import matplotlib.pyplot as plt
...: labels = ['Nokia','Samsung','Apple','Lumia']
...: values = [10,30,45,15]
...: colors = ['yellow','green','red','blue']
...: plt.pie(values,labels=labels,colors=colors)
...: plt.axis('equal')
```

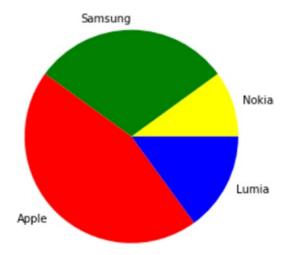


Figure 7-47. A very simple pie chart

CHAPTER 7 DATA VISUALIZATION WITH MATPLOTLIB

To add complexity to the pie chart, you can draw it with a slice extracted from the pie. This is usually done when you want to focus on a specific slice. In this case, for example, you would highlight the slice referring to Nokia. In order to do this, there is a special kwarg named explode. It is nothing but a sequence of float values of 0 or 1, where 1 corresponds to the fully extended slice and 0 corresponds to slices completely in the pie. All intermediate values correspond to an intermediate degree of extraction (see Figure 7-48).

You can also add a title to the pie chart with the title() function. You can also adjust the angle of rotation of the pie by adding the startangle kwarg, which takes an integer value between 0 and 360, which are the degrees of rotation precisely (0 is the default value).

The modified chart should appear as shown in Figure 7-48.

```
In [ ]: import matplotlib.pyplot as plt
    ...: labels = ['Nokia','Samsung','Apple','Lumia']
    ...: values = [10,30,45,15]
    ...: colors = ['yellow','green','red','blue']
    ...: explode = [0.3,0,0,0]
    ...: plt.title('A Pie Chart')
    ...:plt.pie(values,labels=labels,colors=colors,explode=explode,startangle=180)
    ...: plt.axis('equal')
```

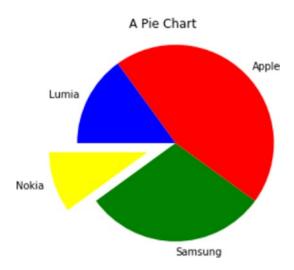


Figure 7-48. A more advanced pie chart

But the possible additions that you can insert in a pie chart do not end here. For example, a pie chart does not have axes with ticks and so it is difficult to imagine the perfect percentage represented by each slice. To overcome this, you can use the autopct kwarg, which adds to the center of each slice a text label showing the corresponding value.

If you want to make it an even more appealing image, you can add a shadow with the shadow kwarg setting it to True. In the end you will get a pie chart as shown in Figure 7-49.

```
In []: import matplotlib.pyplot as plt
    ...: labels = ['Nokia', 'Samsung', 'Apple', 'Lumia']
    ...: values = [10,30,45,15]
    ...: colors = ['yellow', 'green', 'red', 'blue']
    ...: explode = [0.3,0,0,0]
    ...: plt.title('A Pie Chart')
    ...: plt.pie(values, labels = labels, colors = colors, explode = explode, shadow = True, autopct = '%1.1f%', startangle = 180)
    ...: plt.axis('equal')
```

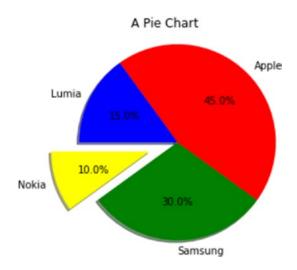


Figure 7-49. An even more advanced pie chart

Pie Charts with a pandas Dataframe

Even for the pie chart, you can represent the values contained within a dataframe object. In this case, however, the pie chart can represent only one series at a time, so in this example you will display only the values of the first series specifying df['series1']. You have to specify the type of chart you want to represent through the kind kwarg in the plot() function, which in this case is pie. Furthermore, because you want to represent a pie chart as perfectly circular, it is necessary that you add the figsize kwarg. At the end you will obtain a pie chart as shown in Figure 7-50.

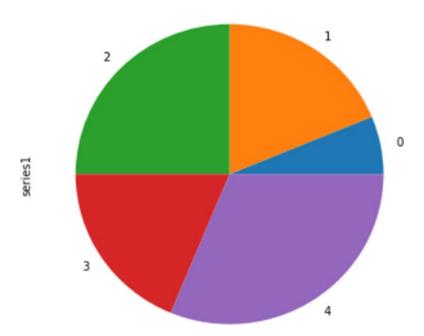


Figure 7-50. The values in a pandas dataframe can be directly drawn as a pie chart

Advanced Charts

In addition to the more classical charts such as bar charts or pie charts, you might want to represent your results in an alternative ways. On the Internet and in various publications there are many examples in which many alternative graphics solutions are discussed and proposed, some really brilliant and captivating. This section only shows some graphic representations; a more detailed discussion about this topic is beyond the purpose of this book. You can use this section as an introduction to a world that is constantly expanding: data visualization.

Contour Plots

A quite common type of chart in the scientific world is the *contour plot* or *contour map*. This visualization is in fact suitable for displaying three-dimensional surfaces through a contour map composed of curves closed showing the points on the surface that are located at the same level, or that have the same z value.

Although visually the contour plot is a very complex structure, its implementation is not so difficult, thanks to the matplotlib library. First, you need the function z = f(x, y) for generating a three-dimensional surface. Then, once you have defined a range of values x, y that will define the area of the map to be displayed, you can calculate the z values for each pair (x, y), applying the function f(x, y) just defined in order to obtain a matrix of z values. Finally, thanks to the contour() function, you can generate the contour map of the surface. It is often desirable to add also a color map along with a contour map. That is, the areas delimited by the curves of level are filled by a color gradient, defined by a color map. For example, as in Figure 7-51, you may indicate negative values with increasingly dark shades of blue, and move to yellow and then red with the increase of positive values.

```
In [ ]: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: dx = 0.01; dy = 0.01
    ...: x = np.arange(-2.0,2.0,dx)
    ...: y = np.arange(-2.0,2.0,dy)
    ...: X,Y = np.meshgrid(x,y)
    ...: def f(x,y):
        return (1 - y**5 + x**5)*np.exp(-x**2-y**2)
```

```
...: C = plt.contour(X,Y,f(X,Y),8,colors='black')
...: plt.contourf(X,Y,f(X,Y),8)
...: plt.clabel(C, inline=1, fontsize=10)
```

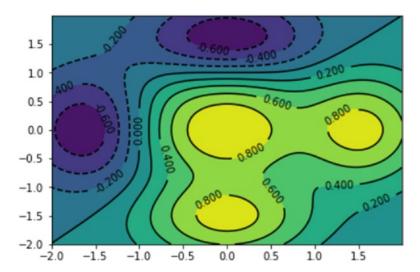


Figure 7-51. A contour map can describe the z values of a surface

The standard color gradient (color map) is represented in Figure 7-51. Actually you choose among a large number of color maps available just specifying them with the cmap kwarg.

Furthermore, when you have to deal with this kind of representation, adding a color scale as a reference to the side of the graph is almost a must. This is possible by simply adding the colorbar() function at the end of the code. In Figure 7-52 you can see another example of color map that starts from black, passes through red, then turns yellow until reaching white for the highest values. This color map is plt.cm.hot.

```
In [ ]: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: dx = 0.01; dy = 0.01
    ...: x = np.arange(-2.0,2.0,dx)
    ...: y = np.arange(-2.0,2.0,dy)
    ...: X,Y = np.meshgrid(x,y)
    ...: def f(x,y):
        return (1 - y**5 + x**5)*np.exp(-x**2-y**2)
```

```
...: C = plt.contour(X,Y,f(X,Y),8,colors='black')
...: plt.contourf(X,Y,f(X,Y),8,cmap=plt.cm.hot)
...: plt.clabel(C, inline=1, fontsize=10)
...: plt.colorbar()
```

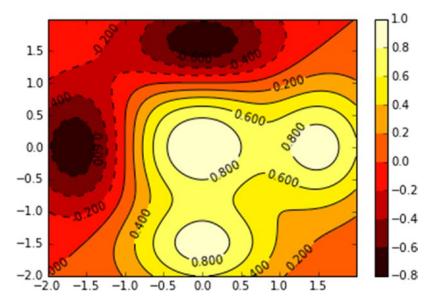


Figure 7-52. The "hot" color map gradient gives an attractive look to the contour map

Polar Charts

Another type of advanced chart that is popular is the *polar chart*. This type of chart is characterized by a series of sectors that extend radially; each of these areas will occupy a certain angle. Thus you can display two different values assigning them to the magnitudes that characterize the polar chart: the extension of the radius r and the angle θ occupied by the sector. These in fact are the polar coordinates (r,θ) , an alternative way of representing functions at the coordinate axes. From the graphical point of view, you could imagine it as a kind of chart that has characteristics both of the pie chart and of the bar chart. In fact as the pie chart, the angle of each sector gives percentage information represented by that category with respect to the total. As for the bar chart, the radial extension is the numerical value of that category.

So far we have used the standard set of colors using single characters as the color code (e.g., r to indicate red). In fact you can use any sequence of colors you want. You have to define a list of string values that contain RGB codes in the #rrggbb format corresponding to the colors you want.

CHAPTER 7 DATA VISUALIZATION WITH MATPLOTLIB

Oddly, to get a polar chart you have to use the bar() function and pass the list containing the angles θ and a list of the radial extension of each sector. The result will be a polar chart, as shown in Figure 7-53.

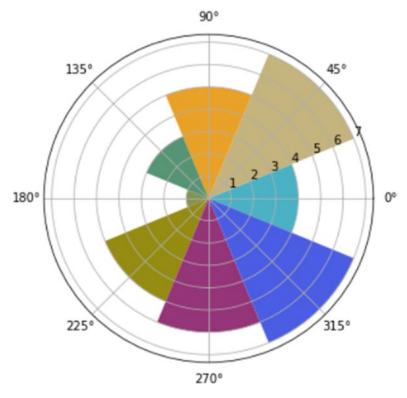


Figure 7-53. A polar chart

In this example, you have defined the sequence of colors using the format #rrggbb, but you can also specify a sequence of colors as strings with their actual name (see Figure 7-54).

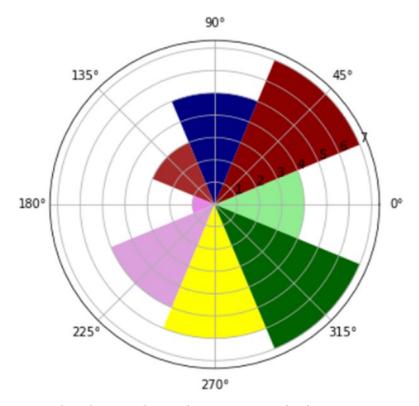


Figure 7-54. A polar chart with another sequence of colors

The mplot3d Toolkit

The mplot3d toolkit is included with all standard installations of matplotlib and allows you to extend the capabilities of visualization to 3D data. If the figure is displayed in a separate window, you can rotate the axes of the three-dimensional representation with the mouse.

With this package you are still using the Figure object, only that instead of the Axes object you will define a new kind of object, called Axes3D, and introduced by this toolkit. Thus, you need to add a new import to the code, if you want to use the Axes3D object.

```
from mpl_toolkits.mplot3d import Axes3D
```

3D Surfaces

In a previous section, you used the contour plot to represent the three-dimensional surfaces through the level lines. Using the mplot3D package, surfaces can be drawn directly in 3D. In this example, you will use the same function z = f(x, y) you have used in the contour map.

Once you have calculated the meshgrid, you can view the surface with the plot_surface() function. A three-dimensional blue surface will appear, as in Figure 7-55.

```
In []: from mpl_toolkits.mplot3d import Axes3D
...: import matplotlib.pyplot as plt
...: fig = plt.figure()
...: ax = Axes3D(fig)
...: X = np.arange(-2,2,0.1)
...: Y = np.arange(-2,2,0.1)
...: X,Y = np.meshgrid(X,Y)
...: def f(x,y):
...: return (1 - y**5 + x**5)*np.exp(-x**2-y**2)
...: ax.plot_surface(X,Y,f(X,Y), rstride=1, cstride=1)
```

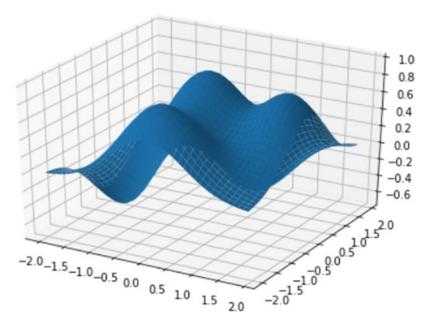


Figure 7-55. A 3D surface can be represented with the mplot3d toolkit

A 3D surface stands out most by changing the color map, for example by setting the cmap kwarg. You can also rotate the surface using the view_init() function. In fact, this function adjusts the view point from which you see the surface, changing the two kwargs called elev and azim. Through their combination you can get the surface displayed from any angle. The first kwarg adjusts the height at which the surface is seen, while azim adjusts the angle of rotation of the surface.

For instance, you can change the color map using plt.cm.hot and moving the view point to elev=30 and azim=125. The result is shown in Figure 7-56.

```
In [ ]: from mpl_toolkits.mplot3d import Axes3D
    ...: import matplotlib.pyplot as plt
    ...: fig = plt.figure()
    ...: ax = Axes3D(fig)
    ...: X = np.arange(-2,2,0.1)
    ...: Y = np.arange(-2,2,0.1)
    ...: X,Y = np.meshgrid(X,Y)
    ...: def f(x,y):
    return (1 - y**5 + x**5)*np.exp(-x**2-y**2)
    ...: ax.plot_surface(X,Y,f(X,Y), rstride=1, cstride=1, cmap=plt.cm.hot)
    ...: ax.view init(elev=30,azim=125)
```

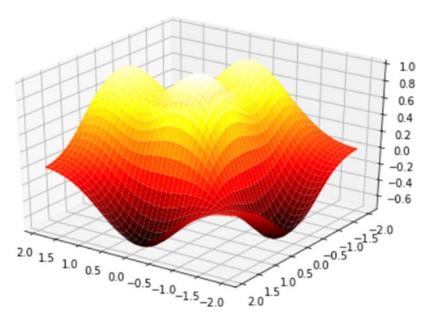


Figure 7-56. The 3D surface can be rotated and observed from a higher viewpoint

Scatter Plots in 3D

The mode most used among all 3D views remains the 3D scatter plot. With this type of visualization, you can identify if the points follow particular trends, but above all if they tend to cluster.

In this case, you will use the scatter() function as the 2D case but applied on the Axes3D object. By doing this, you can visualize different series, expressed by the calls to the scatter() function, all together in the same 3D representation (see Figure 7-57).

```
In []: import matplotlib.pyplot as plt
...: import numpy as np
...: from mpl_toolkits.mplot3d import Axes3D
...: xs = np.random.randint(30,40,100)
...: ys = np.random.randint(20,30,100)
...: zs = np.random.randint(10,20,100)
...: xs2 = np.random.randint(50,60,100)
...: ys2 = np.random.randint(30,40,100)
...: zs2 = np.random.randint(50,70,100)
...: xs3 = np.random.randint(10,30,100)
```

```
...: ys3 = np.random.randint(40,50,100)
...: zs3 = np.random.randint(40,50,100)
...: fig = plt.figure()
\dots: ax = Axes3D(fig)
...: ax.scatter(xs,ys,zs)
...: ax.scatter(xs2,ys2,zs2,c='r',marker='^')
...: ax.scatter(xs3,ys3,zs3,c='g',marker='*')
...: ax.set xlabel('X Label')
...: ax.set ylabel('Y Label')
...: ax.set zlabel('Z Label')
```

Out[34]: <matplotlib.text.Text at 0xe1c2438>

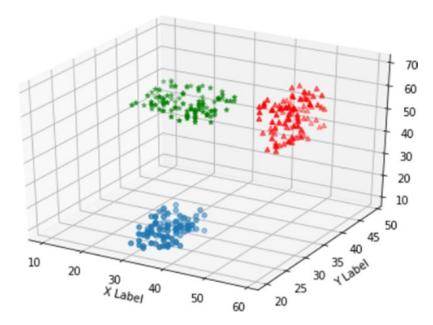


Figure 7-57. This 3D scatter plot shows three different clusters

Bar Charts in 3D

Another type of 3D plot widely used in data analysis is the 3D bar chart. Also in this case, you use the bar() function applied to the object Axes3D. If you define multiple series, you can accumulate several calls to the bar() function in the same 3D visualization (see Figure 7-58).

```
In [ ]: import matplotlib.pyplot as plt
   ...: import numpy as np
   ...: from mpl toolkits.mplot3d import Axes3D
   \dots: x = np.arange(8)
   \dots: y = np.random.randint(0,10,8)
   ...: y2 = y + np.random.randint(0,3,8)
   \dots: y3 = y2 + np.random.randint(0,3,8)
   \dots: y4 = y3 + np.random.randint(0,3,8)
   ...: y5 = y4 + np.random.randint(0,3,8)
   ...: clr = ['#4bb2c5', '#c5b47f', '#EAA228', '#579575', '#839557',
        '#958c12', '#953579', '#4b5de4']
   ...: fig = plt.figure()
   \dots: ax = Axes3D(fig)
   ...: ax.bar(x,y,0,zdir='y',color=clr)
   ...: ax.bar(x,y2,10,zdir='y',color=clr)
   ...: ax.bar(x,y3,20,zdir='y',color=clr)
   ...: ax.bar(x,y4,30,zdir='y',color=clr)
   ...: ax.bar(x,y5,40,zdir='y',color=clr)
   ...: ax.set xlabel('X Axis')
   ...: ax.set ylabel('Y Axis')
   ...: ax.set zlabel('Z Axis')
   ...: ax.view init(elev=40)
```

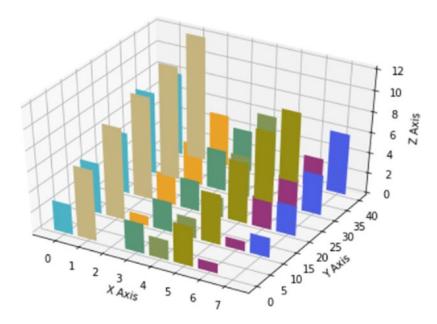


Figure 7-58. A 3D bar chart

Multi-Panel Plots

So far you've had the chance to see different ways of representing data through a chart. You saw how to see more charts in the same figure by separating them with subplots. In this section, you will deepen your understanding of this topic by analyzing more complex cases.

Display Subplots Within Other Subplots

Now an even more advanced method will be explained: the ability to view charts within others, enclosed within frames. Since we are talking of frames, i.e., Axes objects, you need to separate the main Axes (i.e., the general chart) from the frame you want to add that will be another instance of Axes. To do this, you use the figures() function to get the Figure object on which you will define two different Axes objects using the add_axes() function. See the result of this example in Figure 7-59.

```
In [ ]: import matplotlib.pyplot as plt
    ...: fig = plt.figure()
    ...: ax = fig.add_axes([0.1,0.1,0.8,0.8])
    ...: inner ax = fig.add axes([0.6,0.6,0.25,0.25])
```

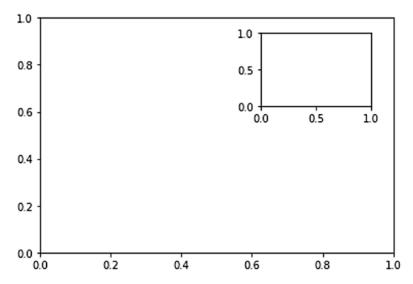


Figure 7-59. A subplot is displayed within another plot

To better understand the effect of this mode of display, you can fill the previous Axes with real data, as shown in Figure 7-60.

```
In [ ]: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: fig = plt.figure()
    ...: ax = fig.add_axes([0.1,0.1,0.8,0.8])
    ...: inner_ax = fig.add_axes([0.6,0.6,0.25,0.25])
    ...: x1 = np.arange(10)
    ...: y1 = np.array([1,2,7,1,5,2,4,2,3,1])
    ...: x2 = np.arange(10)
    ...: y2 = np.array([1,3,4,5,4,5,2,6,4,3])
    ...: ax.plot(x1,y1)
    ...: inner_ax.plot(x2,y2)
Out[95]: [<matplotlib.lines.Line2D at Ox14acf6d8>]
```

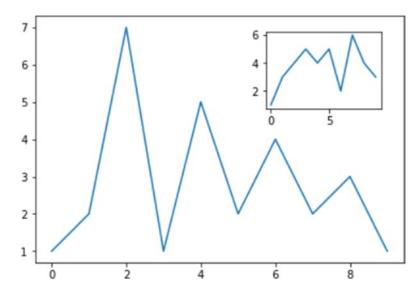


Figure 7-60. A more realistic visualization of a subplot within another plot

Grids of Subplots

You have already seen the creation of subplots. It is quite simple to add subplots using the subplots() function and by dividing a plot into sectors. matplotlib allows you to manage even more complex cases using another function called GridSpec(). This subdivision allows splitting the drawing area into a grid of sub-areas, to which you can assign one or more of them to each subplot, so that in the end you can obtain subplots with different sizes and orientations, as you can see in Figure 7-61.

```
In []: import matplotlib.pyplot as plt
    ...: gs = plt.GridSpec(3,3)
    ...: fig = plt.figure(figsize=(6,6))
    ...: fig.add_subplot(gs[1,:2])
    ...: fig.add_subplot(gs[0,:2])
    ...: fig.add_subplot(gs[2,0])
    ...: fig.add_subplot(gs[:2,2])
    ...: fig.add_subplot(gs[:2,2])
    ...: fig.add_subplot(gs[:2,1:])
Out[97]: <matplotlib.axes. subplots.AxesSubplot at 0x12717438>
```

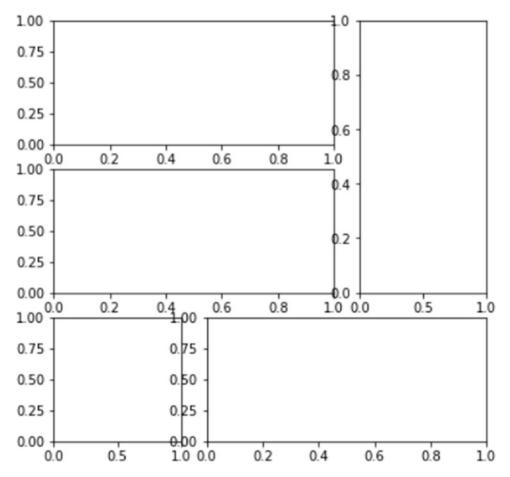


Figure 7-61. Subplots with different sizes can be defined on a grid of sub-areas

Now that it's clear to you how to manage the grid by assigning the various sectors to the subplot, it's time to see how to use these subplots. In fact, you can use the Axes object returned by each add_subplot() function to call the plot() function to draw the corresponding plot (see Figure 7-62).

```
In [ ]: import matplotlib.pyplot as plt
...: import numpy as np
...: gs = plt.GridSpec(3,3)
...: fig = plt.figure(figsize=(6,6))
...: x1 = np.array([1,3,2,5])
...: y1 = np.array([4,3,7,2])
...: x2 = np.arange(5)
```

```
...: y2 = np.array([3,2,4,6,4])
...: s1 = fig.add_subplot(gs[1,:2])
...: s1.plot(x,y,'r')
...: s2 = fig.add_subplot(gs[0,:2])
...: s2.bar(x2,y2)
...: s3 = fig.add_subplot(gs[2,0])
...: s3.barh(x2,y2,color='g')
...: s4 = fig.add_subplot(gs[:2,2])
...: s4.plot(x2,y2,'k')
...: s5 = fig.add_subplot(gs[2,1:])
...: s5.plot(x1,y1,'b^',x2,y2,'yo')
```

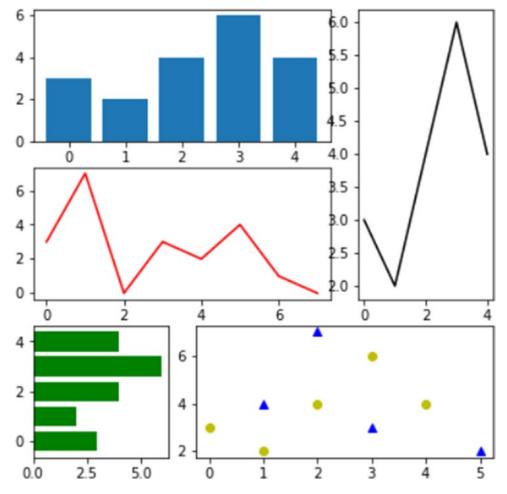


Figure 7-62. A grid of subplots can display many plots at the same time

Conclusions

In this chapter, you received all the fundamental aspects of the matplotlib library, and through a series of examples, you have learned about the basic tools for handling data visualization. You have become familiar with various examples of how to develop different types of charts with a few lines of code.

With this chapter, we conclude the part about the libraries that provides the basic tools to perform data analysis. In the next chapter, you will begin to treat topics most closely related to data analysis.

Machine Learning with scikit-learn

In the chain of processes that make up data analysis, the construction phase of predictive models and their validation are done by a powerful library called scikit-learn. In this chapter, you see some examples that illustrate the basic construction of predictive models with some different methods.

The scikit-learn Library

scikit-learn is a Python module that integrates many of machine learning algorithms. This library was developed initially by Cournapeu in 2007, but the first real release was in 2010.

This library is part of the SciPy (Scientific Python) group, a set of libraries created for scientific computing and especially for data analysis, many of which are discussed in this book. Generally these libraries are defined as *SciKits*, hence the first part of the name of this library. The second part of the library's name is derived from *machine learning*, the discipline pertaining to this library.

Machine Learning

Machine learning is a discipline that deals with the study of methods for pattern recognition in datasets undergoing data analysis. In particular, it deals with the development of algorithms that learn from data and make predictions. Each methodology is based on building a specific model.

There are very many methods that belong to the learning machine, each with its unique characteristics, which are specific to the nature of the data and the predictive model that you want to build. The choice of which method is to be applied is called a *learning problem*.

The data to be subjected to a pattern in the learning phase can be arrays composed by a single value per element, or by a multivariate value. These values are often referred to as *features* or *attributes*.

Supervised and Unsupervised Learning

Depending on the type of the data and the model to be built, you can separate the learning problems into two broad categories:

Supervised Learning

They are the methods in which the training set contains additional attributes that you want to predict (the *target*). Thanks to these values, you can instruct the model to provide similar values when you have to submit new values (the *test set*).

- Classification—The data in the training set belong to two or more classes or categories; then, the data, already being labeled, allow you to teach the system to recognize the characteristics that distinguish each class. When you will need to consider a new value unknown to the system, the system will evaluate its class according to its characteristics.
- Regression—When the value to be predicted is a continuous variable.
 The simplest case to understand is when you want to find the line
 that describes the trend from a series of points represented in a
 scatterplot.

Unsupervised Learning

These are the methods in which the training set consists of a series of input values x without any corresponding target value.

 Clustering—The goal of these methods is to discover groups of similar examples in a dataset. • *Dimensionality reduction*—Reduction of a high-dimensional dataset to one with only two or three dimensions is useful not just for data visualization, but for converting data of very high dimensionality into data of much lower dimensionality such that each of the lower dimensions conveys much more information.

In addition to these two main categories, there is a further group of methods that have the purpose of validation and evaluation of the models.

Training Set and Testing Set

Machine learning enables learning some properties by a model from a dataset and applying them to new data. This is because a common practice in machine learning is to evaluate an algorithm. This valuation consists of splitting the data into two parts, one called the *training set*, with which we will learn the properties of the data, and the other called the *testing set*, on which to test these properties.

Supervised Learning with scikit-learn

In this chapter, you will see a number of examples of supervised learning.

- Classification, using the Iris Dataset
 - K-Nearest Neighbors Classifier
 - Support Vector Machines (SVC)
- Regression, using the Diabetes Dataset
 - Linear Regression
 - Support Vector Machines (SVR)

Supervised learning consists of learning possible patterns between two or more features reading values from a training set; the learning is possible because the training set contains known results (target or labels). All models in scikit-learn are referred to as $supervised\ estimators$, using the fit(x, y) function that makes their training. x comprises the features observed, while y indicates the target. Once the estimator has carried out the training, it will be able to predict the value of y for any new observation x not labeled. This operation will make it through the predict(x) function.

The Iris Flower Dataset

The *Iris Flower Dataset* is a particular dataset used for the first time by Sir Ronald Fisher in 1936. It is often also called Anderson Iris Dataset, after the person who collected the data directly measuring the size of the various parts of the iris flowers. In this dataset, data from three different species of iris (Iris silky, virginica Iris, and Iris versicolor) are collected and these data correspond to the length and width of the sepals and the length and width of the petals (see Figure 8-1).

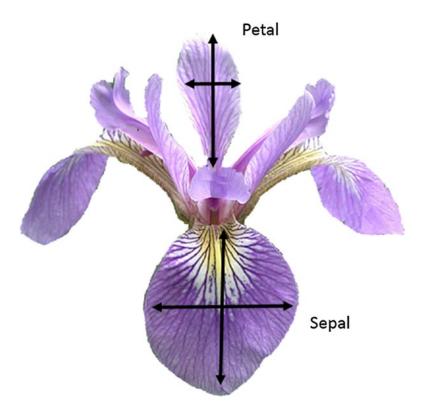


Figure 8-1. Iris versicolor and the petal and sepal width and length

This dataset is currently being used as a good example for many types of analysis, in particular for the problems of *classification*, which can be approached by means of machine learning methodologies. It is no coincidence then that this dataset is provided along with the scikit-learn library as a 150x4 NumPy array.

Now you will study this dataset in detail importing it in the IPython QtConsole or in a normal Python session.

```
In [ ]: from sklearn import datasets
...: iris = datasets.load_iris()
```

In this way you loaded all the data and metadata concerning the Iris Dataset in the iris variable. In order to see the values of the data collected in it, it is sufficient to call the attribute data of the variable iris.

As you can see, you will get an array of 150 elements, each containing four numeric values: the size of sepals and petals respectively.

To know instead what kind of flower belongs each item you will refer to the target attribute.

You obtain 150 items with three possible integer values (0, 1, and 2), which correspond to the three species of iris. To know the correspondence between the species and number, you have to call the target_names attribute.

To better understand this dataset you can use the matplotlib library, using the techniques you learned in Chapter 7. Therefore create a scatterplot that displays the three different species in three different colors. The x-axis will represent the length of the sepal while the y-axis will represent the width of the sepal.

```
In [ ]: import matplotlib.pyplot as plt
   ...: import matplotlib.patches as mpatches
   ...: from sklearn import datasets
   . . . :
   ...: iris = datasets.load iris()
   ...: x = iris.data[:,0] #X-Axis - sepal length
   ...: y = iris.data[:,1] #Y-Axis - sepal length
   ...: species = iris.target
                                   #Species
   ...: x min, x max = x.min() - .5, x.max() + .5
   ...: y \min, y \max = y.\min() - .5, y.\max() + .5
   . . . :
   ...: #SCATTERPLOT
   ...: plt.figure()
   ...: plt.title('Iris Dataset - Classification By Sepal Sizes')
   ...: plt.scatter(x,y, c=species)
   ...: plt.xlabel('Sepal length')
   ...: plt.ylabel('Sepal width')
   ...: plt.xlim(x min, x max)
   ...: plt.ylim(y min, y max)
   ...: plt.xticks(())
   ...: plt.yticks(())
   ...: plt.show()
```

As a result, you get the scatterplot shown in Figure 8-2. The blue ones are the Iris setosa, flowers, green ones are the Iris versicolor, and red ones are the Iris virginica.

From Figure 8-2 you can see how the Iris setosa features differ from the other two, forming a cluster of blue dots separate from the others.

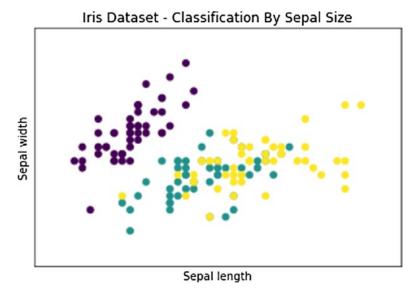


Figure 8-2. The different species of irises are shown with different colors

Try to follow the same procedure, but this time using the other two variables, that is the measure of the length and width of the petal. You can use the same code and change just a few values.

```
In [ ]: import matplotlib.pyplot as plt
   ...: import matplotlib.patches as mpatches
   ...: from sklearn import datasets
   ...: iris = datasets.load iris()
   ...: x = iris.data[:,2] #X-Axis - petal length
   ...: y = iris.data[:,3] #Y-Axis - petal length
   ...: species = iris.target
                                   #Species
   ...: x \min, x \max = x.\min() - .5, x.\max() + .5
   ...: y \min, y \max = y.\min() - .5, y.\max() + .5
   ...: #SCATTERPLOT
   ...: plt.figure()
   ...: plt.title('Iris Dataset - Classification By Petal Sizes', size=14)
   ...: plt.scatter(x,y, c=species)
   ...: plt.xlabel('Petal length')
   ...: plt.ylabel('Petal width')
```

```
...: plt.xlim(x_min, x_max)
...: plt.ylim(y_min, y_max)
...: plt.xticks(())
...: plt.yticks(())
```

The result is the scatterplot shown in Figure 8-3. In this case the division between the three species is much more evident. As you can see, you have three different clusters.

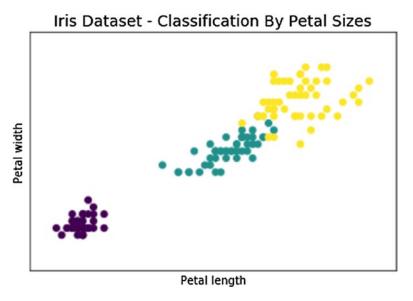


Figure 8-3. The different species of irises are shown with different colors

The PCA Decomposition

You have seen how the three species could be characterized, taking into account four measurements of the petals and sepals size. We represented two scatterplots, one for the petals and one for sepals, but how can you can unify the whole thing? Four dimensions are a problem that even a Scatterplot 3D is not able to solve.

In this regard a special technique called *Principal Component Analysis (PCA)* has been developed. This technique allows you to reduce the number of dimensions of a system keeping all the information for the characterization of the various points, the new dimensions generated are called *principal components*. In our case, so you can reduce the system from four to three dimensions and then plot the results within a 3D scatterplot. In this way you can use measures both of sepals and of petals for characterizing the various species of iris of the test elements in the dataset.

The scikit-learn function that allows you to do the dimensional reduction is the fit_transform() function. It belongs to the PCA object. In order to use it, first you need to import the PCA sklearn.decomposition module. Then you have to define the object constructor using PCA() and define the number of new dimensions (principal components) as a value of the n_components option. In your case, it is 3. Finally you have to call the fit_transform() function by passing the four-dimensional Iris Dataset as an argument.

```
from sklearn.decomposition import PCA
x reduced = PCA(n components=3).fit transform(iris.data)
```

In addition, in order to visualize the new values you will use a scatterplot 3D using the mpl_toolkits.mplot3d module of matplotlib. If you don't remember how to do it, see the Scatterplot 3D section in Chapter 7.

```
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D
from sklearn import datasets
from sklearn.decomposition import PCA
iris = datasets.load iris()
                          #Species
species = iris.target
x reduced = PCA(n components=3).fit transform(iris.data)
#SCATTERPLOT 3D
fig = plt.figure()
ax = Axes3D(fig)
ax.set title('Iris Dataset by PCA', size=14)
ax.scatter(x reduced[:,0],x reduced[:,1],x reduced[:,2], c=species)
ax.set xlabel('First eigenvector')
ax.set ylabel('Second eigenvector')
ax.set zlabel('Third eigenvector')
ax.w xaxis.set ticklabels(())
ax.w yaxis.set ticklabels(())
ax.w zaxis.set ticklabels(())
```

The result will be the scatterplot shown in Figure 8-4. The three species of iris are well characterized with respect to each other to form a cluster.

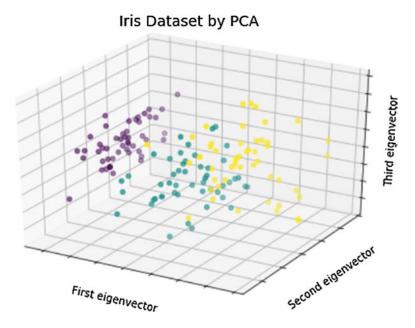


Figure 8-4. 3D scatterplot with three clusters representative of each species of iris

K-Nearest Neighbors Classifier

Now, you will perform a *classification*, and to do this operation with the scikit-learn library you need a *classifier*.

Given a new measurement of an iris flower, the task of the classifier is to figure out to which of the three species it belongs. The simplest possible classifier is the *nearest neighbor*. This algorithm will search within the training set for the observation that most closely approaches the new test sample.

A very important thing to consider at this point are the concepts of *training set* and *testing set* (already seen in Chapter 1). Indeed, if you have only a single dataset of data, it is important not to use the same data both for the test and for the training. In this regard, the elements of the dataset are divided into two parts, one dedicated to train the algorithm and the other to perform its validation.

Thus, before proceeding further you have to divide your Iris Dataset into two parts. However, it is wise to randomly mix the array elements and then make the division. In fact, often the data may have been collected in a particular order, and in your case the Iris Dataset contains items sorted by species. So to make a blending of elements of the dataset you will use a NumPy function called random.permutation(). The mixed dataset consists of 150 different observations; the first 140 will be used as the training set, the remaining 10 as the test set.

```
import numpy as np
from sklearn import datasets
np.random.seed(0)
iris = datasets.load_iris()
x = iris.data
y = iris.target
i = np.random.permutation(len(iris.data))
x_train = x[i[:-10]]
y_train = y[i[:-10]]
x_test = x[i[-10:]]
y_test = y[i[-10:]]
```

Now you can apply the K-Nearest Neighbor algorithm. Import the KNeighborsClassifier, call the constructor of the classifier, and then train it with the fit() function.

Now that you have a predictive model that consists of the knn classifier, trained by 140 observations, you will find out how it is valid. The classifier should correctly predict the species of iris of the 10 observations of the test set. In order to obtain the prediction you have to use the predict() function, which will be applied directly to the predictive model, knn. Finally, you will compare the results predicted with the actual observed contained in y test.

```
knn.predict(x_test)
Out[100]: array([1, 2, 1, 0, 0, 0, 2, 1, 2, 0])
y_test
Out[101]: array([1, 1, 1, 0, 0, 0, 2, 1, 2, 0])
```

You can see that you obtained a 10% error. Now you can visualize all this using decision boundaries in a space represented by the 2D scatterplot of sepals.

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
iris = datasets.load iris()
x = iris.data[:,:2]  #X-Axis - sepal length-width
                        #Y-Axis - species
y = iris.target
x \min, x \max = x[:,0].\min() - .5,x[:,0].\max() + .5
y min, y max = x[:,1].min() - .5,x[:,1].max() + .5
#MESH
cmap light = ListedColormap(['#AAAAFF','#AAFFAA','#FFAAAA'])
h = .02
xx, yy = np.meshgrid(np.arange(x min, x max, h), np.arange(y min, y max, h))
knn = KNeighborsClassifier()
knn.fit(x,y)
Z = knn.predict(np.c [xx.ravel(),yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx,yy,Z,cmap=cmap light)
#Plot the training points
plt.scatter(x[:,0],x[:,1],c=y)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
Out[120]: (1.5, 4.90000000000000)
```

You get a subdivision of the scatterplot in decision boundaries, as shown in Figure 8-5.

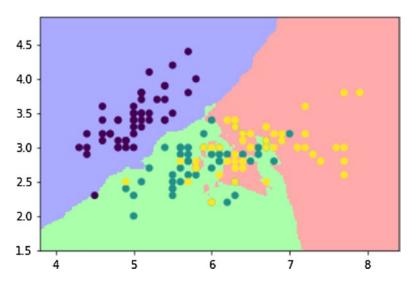


Figure 8-5. The three decision boundaries are represented by three different colors

You can do the same thing considering the size of the petals.

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
iris = datasets.load iris()
                          #X-Axis - petals length-width
x = iris.data[:,2:4]
y = iris.target
                          #Y-Axis - species
x \min, x \max = x[:,0].\min() - .5,x[:,0].\max() + .5
y \min, y \max = x[:,1].\min() - .5,x[:,1].\max() + .5
#MESH
cmap light = ListedColormap(['#AAAAFF','#AAFFAA','#FFAAAA'])
h = .02
xx, yy = np.meshgrid(np.arange(x min, x max, h), np.arange(y min, y max, h))
knn = KNeighborsClassifier()
```

```
knn.fit(x,y)
Z = knn.predict(np.c_[xx.ravel(),yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx,yy,Z,cmap=cmap_light)

#Plot the training points
plt.scatter(x[:,0],x[:,1],c=y)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())

Out[126]: (-0.40000000000000000, 2.980000000000031)
```

As shown in Figure 8-6, you will have the corresponding decision boundaries regarding the characterization of iris flowers taking into account the size of the petals.

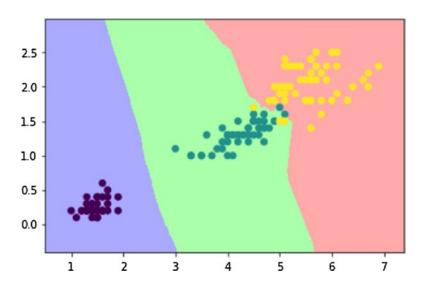


Figure 8-6. The decision boundaries on a 2D scatterplot describing the petal sizes

Diabetes Dataset

Among the various datasets available within the scikit-learn library, there is the diabetes dataset. This dataset was used for the first time in 2004 (*Annals of Statistics*, by Efron, Hastie, Johnston, and Tibshirani). Since then it has become an example widely used to study various predictive models and their effectiveness.

To upload the data contained in this dataset, before you have to import the datasets module of the scikit-learn library and then you call the load_diabetes() function to load the dataset into a variable that will be called diabetes.

```
In [ ]: from sklearn import datasets
...: diabetes = datasets.load_diabetes()
```

This dataset contains physiological data collected on 442 patients and as a corresponding target an indicator of the disease progression after a year. The physiological data occupy the first 10 columns with values that indicate respectively the following:

- Age
- Sex
- Body mass index
- Blood pressure
- S1, S2, S3, S4, S5, and S6 (six blood serum measurements)

These measurements can be obtained by calling the data attribute. But going to check the values in the dataset, you will find values very different from what you would have expected. For example, we look at the 10 values for the first patient.

These values are in fact the result of a processing. Each of the 10 values was mean centered and subsequently scaled by the standard deviation times the number of samples. Checking will reveal that the sum of squares of each column is equal to 1. Try doing this calculation with the age measurements; you will obtain a value very close to 1.

```
np.sum(diabetes.data[:,0]**2)
Out[143]: 1.000000000000746
```

Even though these values are normalized and therefore difficult to read, they continue to express the 10 physiological characteristics and therefore have not lost their value or statistical information.

As for the indicators of the progress of the disease, that is, the values that must correspond to the results of your predictions, these are obtainable by means of the target attribute.

You obtain a series of 442 integer values between 25 and 346.

Linear Regression: The Least Square Regression

Linear regression is a procedure that uses data contained in the training set to build a linear model. The most simple is based on the equation of a rect with the two parameters a and b to characterize it. These parameters will be calculated so as to make the sum of squared residuals as small as possible.

$$y = a^*x + c$$

In this expression, x is the training set, y is the target, b is the slope, and c is the intercept of the rect represented by the model. In scikit-learn, to use the predictive model for the linear regression, you must import the linear_model module and then use the manufacturer LinearRegression() constructor to create the predictive model, which you call linreg.

```
from sklearn import linear_model
linreg = linear_model.LinearRegression()
```

To practice with an example of linear regression you can use the diabetes dataset described earlier. First you will need to break the 442 patients into a training set (composed of the first 422 patients) and a test set (the last 20 patients).

```
from sklearn import datasets
diabetes = datasets.load_diabetes()
x_train = diabetes.data[:-20]
y_train = diabetes.target[:-20]
x_test = diabetes.data[-20:]
y_test = diabetes.target[-20:]
```

Now apply the training set to the predictive model through the use of the fit() function.

```
linreg.fit(x_train,y_train)
Out[]: LinearRegression(copy X=True, fit intercept=True, normalize=False)
```

Once the model is trained you can get the 10 b coefficients calculated for each physiological variable, using the coef attribute of the predictive model.

If you apply the test set to the linreg prediction model you will get a series of targets to be compared with the values actually observed.

However, a good indicator of what prediction should be perfect is the *variance*. The closer the variance is to 1 the more perfect the prediction.

```
linreg.score(x_test, y_test)
Out[]: 0.58507530226905713
```

Now you will start with the linear regression, taking into account a single physiological factor, for example, you can start from age.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear model
from sklearn import datasets
diabetes = datasets.load diabetes()
x train = diabetes.data[:-20]
y train = diabetes.target[:-20]
x test = diabetes.data[-20:]
y test = diabetes.target[-20:]
x0 \text{ test} = x \text{ test}[:,0]
x0 train = x train[:,0]
x0 test = x0 test[:,np.newaxis]
x0 train = x0 train[:,np.newaxis]
linreg = linear model.LinearRegression()
linreg.fit(x0 train,y train)
y = linreg.predict(x0 test)
plt.scatter(x0 test,y test,color='k')
plt.plot(x0 test,y,color='b',linewidth=3)
Out[230]: [<matplotlib.lines.Line2D at 0x380b1908>]
```

Figure 8-7 shows the blue line representing the linear correlation between the ages of patients and the disease progression.

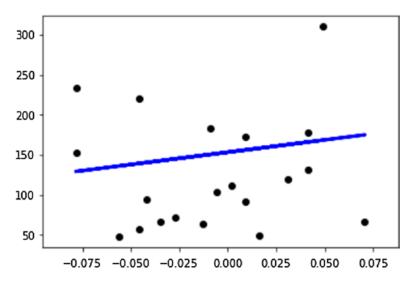


Figure 8-7. A linear regression represents a linear correlation between a feature and the targets

Actually, you have 10 physiological factors within the diabetes dataset. Therefore, to have a more complete picture of all the training set, you can make a linear regression for every physiological feature, creating 10 models and seeing the result for each of them through a linear chart.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn import datasets
diabetes = datasets.load_diabetes()
x_train = diabetes.data[:-20]
y_train = diabetes.target[:-20]
x_test = diabetes.data[-20:]
y_test = diabetes.target[-20:]
plt.figure(figsize=(8,12))
for f in range(0,10):
    xi_test = x_test[:,f]
    xi_train = x_train[:,f]
    xi_test = xi_test[:,np.newaxis]
```

```
xi_train = xi_train[:,np.newaxis]
linreg.fit(xi_train,y_train)
y = linreg.predict(xi_test)
plt.subplot(5,2,f+1)
plt.scatter(xi_test,y_test,color='k')
plt.plot(xi_test,y,color='b',linewidth=3)
```

Figure 8-8 shows 10 linear charts, each of which represents the correlation between a physiological factor and the progression of diabetes.

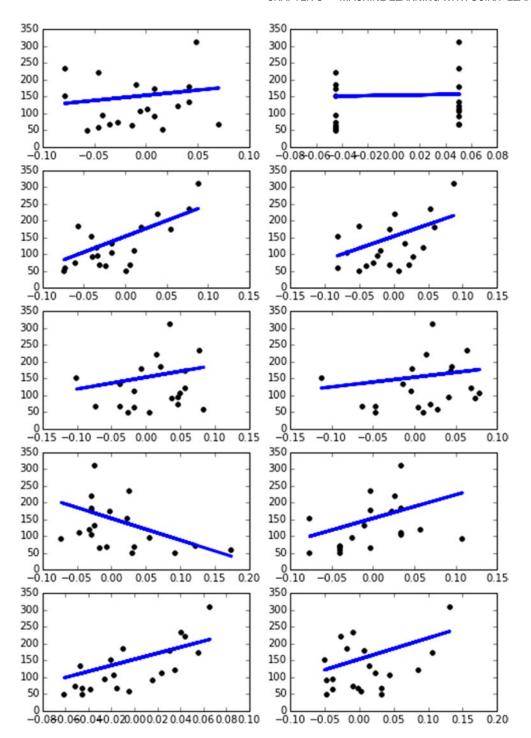


Figure 8-8. Ten linear charts showing the correlations between physiological factors and the progression of diabetes

Support Vector Machines (SVMs)

Support Vector Machines are a number of machine learning techniques that were first developed in the AT&T laboratories by Vapnik and colleagues in the early 90s. The basis of this class of procedures is in fact an algorithm called *Support Vector*, which is a generalization of a previous algorithm called Generalized Portrait, developed in Russia in 1963 by Vapnik as well.

In simple words, the SVM classifiers are binary or discriminating models, working on two classes of differentiation. Their main task is basically to discriminate against new observations between two classes. During the learning phase, these classifiers project the observations in a multidimensional space called *decisional space* and build a separation surface called the *decision boundary* that divides this space into two areas of belonging. In the simplest case, that is, the linear case, the decision boundary will be represented by a plane (in 3D) or by a straight line (in 2D). In more complex cases, the separation surfaces are curved shapes with increasingly articulated shapes.

The SVM can be used both in regression with the *SVR* (*Support Vector Regression*) and in classification with the *SVC* (*Support Vector Classification*).

Support Vector Classification (SVC)

If you want to better understand how this algorithm works, you can start by referring to the simplest case, that is the linear 2D case, where the decision boundary will be a straight line separating into two parts the decisional area. Take for example a simple training set where some points are assigned to two different classes. The training set will consist of 11 points (observations) with two different attributes that will have values between 0 and 4. These values will be contained within a NumPy array called x. Their belonging to one of two classes will be defined by 0 or 1 values contained in another array called y.

Visualize distribution of these points in space with a scatterplot which will then be defined as a decision space (see Figure 8-9).

```
y = [0]*6 + [1]*5
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)
Out[360]: <matplotlib.collections.PathCollection at 0x545634a8>
```

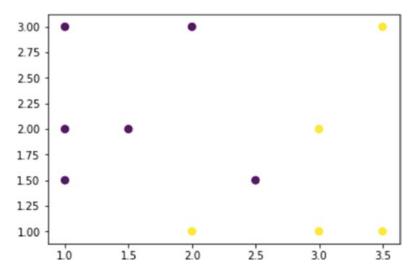


Figure 8-9. The scatterplot of the training set displays the decision space

Now that you have defined the training set, you can apply the SVC (Support Vector Classification) algorithm. This algorithm will create a line (decision boundary) in order to divide the decision area into two parts (see Figure 8-10), and this straight line will be placed so as to maximize its distance of closest observations contained in the training set. This condition should produce two different portions in which all points of a same class should be contained.

Then you apply the SVC algorithm to the training set and to do so, first you define the model with the SVC() constructor defining the kernel as linear. (A kernel is a class of algorithms for pattern analysis.) Then you will use the fit() function with the training set as an argument. Once the model is trained you can plot the decision boundary with the decision_function() function. Then you draw the scatterplot and provide a different color to the two portions of the decision space.

```
y = [0]*6 + [1]*5
svc = svm.SVC(kernel='linear').fit(x,y)
X,Y = np.mgrid[0:4:200j,0:4:200j]
Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z > 0,alpha=0.4)
plt.contour(X,Y,Z,colors=['k'], linestyles=['-'],levels=[0])
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)
Out[363]: <matplotlib.collections.PathCollection at 0x54acae10>
```

In Figure 8-10, you can see the two portions containing the two classes. It can be said that the division is successful except for a blue dot in the red portion.

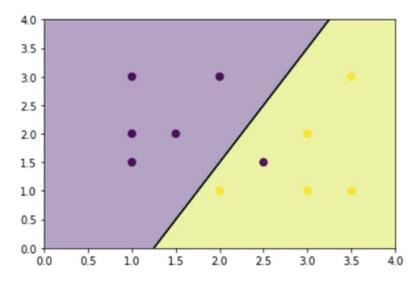


Figure 8-10. The decision area is split into two portions

So once the model has been trained, it is simple to understand how the predictions operate. Graphically, depending on the position occupied by the new observation, you will know its corresponding membership in one of the two classes.

Instead, from a more programmatic point of view, the predict() function will return the number of the corresponding class of belonging (0 for class in blue, 1 for the class in red).

```
svc.predict([[1.5,2.5]])
Out[56]: array([0])
svc.predict([[2.5,1]])
Out[57]: array([1])
```

A related concept with the SVC algorithm is *regularization*. It is set by the parameter C: a small value of C means that the margin is calculated using many or all of the observations around the line of separation (greater regularization), while a large value of C means that the margin is calculated on the observations near to the line separation (lower regularization). Unless otherwise specified, the default value of C is equal to 1. You can highlight points that participated in the margin calculation, identifying them through the support vectors array.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],
     [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])
y = [0]*6 + [1]*5
svc = svm.SVC(kernel='linear',C=1).fit(x,y)
X,Y = np.mgrid[0:4:200j,0:4:200j]
Z = svc.decision_function(np.c [X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z > 0,alpha=0.4)
plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--'],
levels=[-1,0,1])
plt.scatter(svc.support vectors [:,0],svc.support vectors [:,1],s=120,
facecolors='r')
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)
Out[23]: <matplotlib.collections.PathCollection at 0x177066a0>
```

These points are represented by rimmed circles in the scatterplot. Furthermore, they will be within an evaluation area in the vicinity of the separation line (see the dashed lines in Figure 8-11).

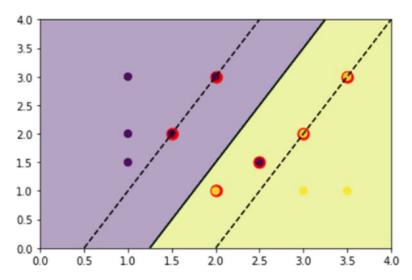


Figure 8-11. The number of points involved in the calculation depends on the C parameter

To see the effect on the decision boundary, you can restrict the value to C = 0.1. Let's see how many points will be taken into consideration.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],
     [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])
y = [0]*6 + [1]*5
svc = svm.SVC(kernel='linear', C=0.1).fit(x,y)
X,Y = np.mgrid[0:4:200j,0:4:200j]
Z = svc.decision function(np.c [X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z > 0,alpha=0.4)
plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--
'],levels=[-1,0,1])
plt.scatter(svc.support_vectors_[:,0],svc.support_vectors_
[:,1],s=120,facecolors='w')
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)
Out[24]: <matplotlib.collections.PathCollection at 0x1a01ecc0>
```

The points taken into consideration are increased and consequently the separation line (decision boundary) has changed orientation. But now there are two points that are in the wrong decision areas (see Figure 8-12).

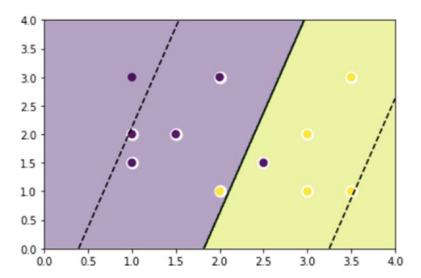


Figure 8-12. The number of points involved in the calculation grows with decreasing of C

Nonlinear SVC

So far you have seen the SVC linear algorithm defining a line of separation that was intended to split the two classes. There are also more complex SVC algorithms that can establish curves (2D) or curved surfaces (3D) based on the same principles of maximizing the distances between the points closest to the surface. Let's see the system using a polynomial kernel.

As the name implies, you can define a polynomial curve that separates the area decision in two portions. The degree of the polynomial can be defined by the degree option. Even in this case C is the coefficient of regularization. So try to apply an SVC algorithm with a polynomial kernel of third degree and with a C coefficient equal to 1.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],
```

```
[2,1],[3,1],[3,2],[3.5,1],[3.5,3]]
y = [0]*6 + [1]*5
svc = svm.SVC(kernel='poly',C=1, degree=3).fit(x,y)
X,Y = np.mgrid[0:4:200j,0:4:200j]
Z = svc.decision function(np.c [X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z > 0,alpha=0.4)
plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--
'],levels=[-1,0,1])
plt.scatter(svc.support vectors [:,0],svc.support vectors
[:,1],s=120,facecolors='w')
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)
```

Out[34]: <matplotlib.collections.PathCollection at 0x1b6a9198>

As you can see, you get the situation shown in Figure 8-13.

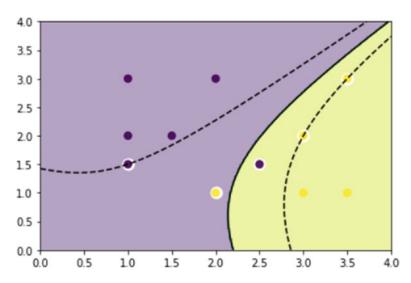


Figure 8-13. The decision space using an SVC with a polynomial kernel

Another type of nonlinear kernel is the *Radial Basis Function (RBF)*. In this case the separation curves tend to define the zones radially with respect to the observation points of the training set.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],
     [2,1],[3,1],[3,2],[3.5,1],[3.5,3]]
y = [0]*6 + [1]*5
svc = svm.SVC(kernel='rbf', C=1, gamma=3).fit(x,y)
X,Y = np.mgrid[0:4:200j,0:4:200j]
Z = svc.decision function(np.c [X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z > 0,alpha=0.4)
plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--
'],levels=[-1,0,1])
plt.scatter(svc.support vectors [:,0],svc.support vectors
[:,1],s=120,facecolors='w')
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)
Out[43]: <matplotlib.collections.PathCollection at 0x1cb8d550>
```

In Figure 8-14, you can see the two portions of the decision with all points of the

training set correctly positioned.

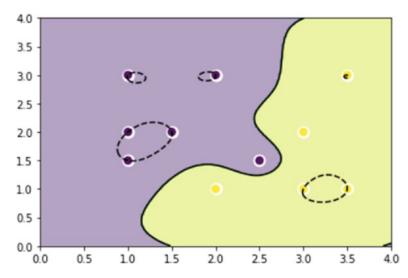


Figure 8-14. The decisional area using an SVC with the RBF kernel

Plotting Different SVM Classifiers Using the Iris Dataset

The SVM example that you just saw is based on a very simple dataset. This section uses more complex datasets for a classification problem with SVC. In fact, it uses the previously used dataset: the Iris Dataset.

The SVC algorithm used before learned from a training set containing only two classes. In this case you will extend the case to three classifications, as the Iris Dataset is split into three classes, corresponding to the three different species of flowers.

In this case the decision boundaries intersect each other, subdividing the decision area (in the case 2D) or the decision volume (3D) in several portions.

Both linear models have linear decision boundaries (intersecting hyperplanes), while models with nonlinear kernels (polynomial or Gaussian RBF) have nonlinear decision boundaries. These boundaries are more flexible with figures that are dependent on the type of kernel and its parameters.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
iris = datasets.load iris()
x = iris.data[:,:2]
y = iris.target
h = .05
svc = svm.SVC(kernel='linear',C=1.0).fit(x,y)
x \min_{x \in X} \max_{x \in X} = x[:,0].\min() - .5, x[:,0].\max() + .5
y \min_{y \in X} \max = x[:,1].\min() - .5, x[:,1].\max() + .5
h = .02
X, Y = np.meshgrid(np.arange(x min, x max, h), np.arange(y min,y max,h))
Z = svc.predict(np.c [X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z,alpha=0.4)
plt.contour(X,Y,Z,colors='k')
plt.scatter(x[:,0],x[:,1],c=y)
Out[49]: <matplotlib.collections.PathCollection at 0x1f2bd828>
```

In Figure 8-15, the decision space is divided into three portions separated by decisional boundaries.

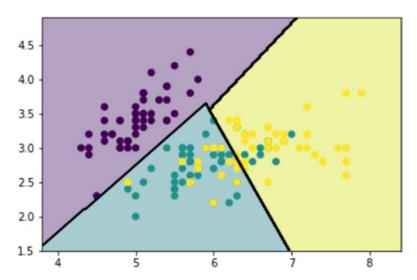


Figure 8-15. The decisional boundaries split the decisional area into three different portions

Now it's time to apply a nonlinear kernel for generating nonlinear decision boundaries, such as the polynomial kernel.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets

iris = datasets.load_iris()
x = iris.data[:,:2]
y = iris.target
h = .05
svc = svm.SVC(kernel='poly',C=1.0,degree=3).fit(x,y)
x_min,x_max = x[:,0].min() - .5, x[:,0].max() + .5
y_min,y_max = x[:,1].min() - .5, x[:,1].max() + .5
h = .02
X, Y = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max,h))
```

```
Z = svc.predict(np.c_[X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z,alpha=0.4)
plt.contour(X,Y,Z,colors='k')
plt.scatter(x[:,0],x[:,1],c=y)
```

Out[50]: <matplotlib.collections.PathCollection at Ox1f4cc4e0>

Figure 8-16 shows how the polynomial decision boundaries split the area in a very different way compared to the linear case.

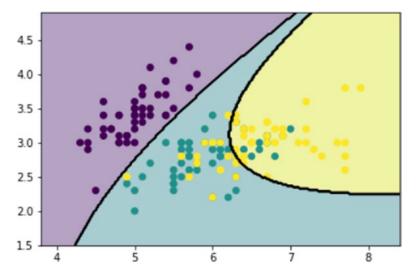


Figure 8-16. In the polynomial case the blue portion is not directly connected with the red portion

Now you can apply the RBF kernel to see the difference in the distribution of areas.

```
svc = svm.SVC(kernel='rbf', gamma=3, C=1.0).fit(x,y)
```

Figure 8-17 shows how the RBF kernel generates radial areas.

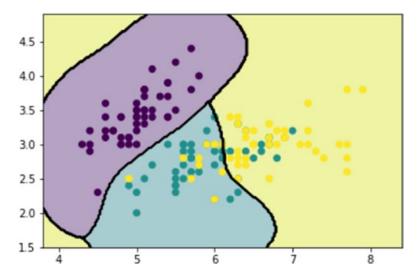


Figure 8-17. The kernel RBF defines radial decisional areas

Support Vector Regression (SVR)

The SVC method can be extended to solve even regression problems. This method is called *Support Vector Regression*.

The model produced by SVC actually does not depend on the complete training set, but uses only a subset of elements, i.e., those closest to the decisional boundary. In a similar way, the model produced by SVR also depends only on a subset of the training set.

We will demonstrate how the SVR algorithm will use the diabetes dataset that you have already seen in this chapter. By way of example, you will refer only to the third physiological data. You will perform three different regressions, a linear and two nonlinear (polynomial). The linear case will produce a straight line as the linear predictive model is very similar to the linear regression seen previously, whereas polynomial regressions will be built of the second and third degrees. The SVR() function is almost identical to the SVC()function seen previously.

The only aspect to consider is that the test set of data must be sorted in ascending order.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn import datasets
diabetes = datasets.load diabetes()
x train = diabetes.data[:-20]
y train = diabetes.target[:-20]
x test = diabetes.data[-20:]
y test = diabetes.target[-20:]
x0 \text{ test} = x \text{ test}[:,2]
x0 train = x train[:,2]
x0 test = x0 test[:,np.newaxis]
x0 train = x0 train[:,np.newaxis]
x0 test.sort(axis=0)
x0 \text{ test} = x0 \text{ test*}100
x0 train = x0 train*100
svr = svm.SVR(kernel='linear',C=1000)
svr2 = svm.SVR(kernel='poly',C=1000,degree=2)
svr3 = svm.SVR(kernel='poly',C=1000,degree=3)
svr.fit(x0 train,y train)
svr2.fit(x0 train,y train)
svr3.fit(x0 train,y train)
y = svr.predict(x0 test)
y2 = svr2.predict(x0 test)
y3 = svr3.predict(x0 test)
plt.scatter(x0 test,y test,color='k')
plt.plot(x0 test,y,color='b')
plt.plot(x0 test,y2,c='r')
plt.plot(x0 test,y3,c='g')
Out[155]: [<matplotlib.lines.Line2D at 0x262e10b8>]
```

The three regression curves will be represented with three colors. The linear regression will be blue; the polynomial of second degree that is, a parabola, will be red; and the polynomial of third degree will be green (see Figure 8-18).

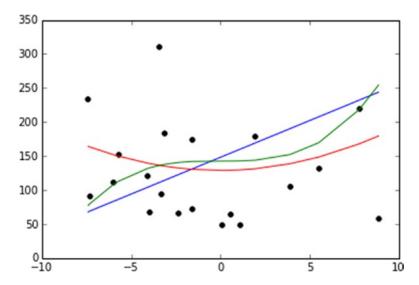


Figure 8-18. The three regression curves produce very different trends starting from the training set

Conclusions

In this chapter you saw the simplest cases of regression and classification problems solved using the scikit-learn library. Many concepts of the validation phase for a predictive model were presented in a practical way through some practical examples.

In the next chapter you will see a complete case in which all steps of data analysis are discussed by way of a single practical example. Everything will be implemented on IPython Notebook, an interactive and innovative environment well suited for sharing every step of the data analysis with the form of an interactive documentation useful as a report or as a web presentation.

Deep Learning with TensorFlow

2017 was a special year for *deep learning*. In addition to the great experimental results obtained thanks to the algorithms developed, deep learning has seen its glory in the release of many frameworks with which to develop numerous projects. Some of you will certainly already know this branch of machine learning, others you have certainly heard someone mention it. Given the great importance that deep learning is taking in data processing and analysis techniques, I found it important to add this new chapter in the second edition of this book.

In this chapter you can have an introductory overview of the world of deep learning, and the artificial neural networks on which its techniques are based. Furthermore, among the new Python frameworks for deep learning, you will use *TensorFlow*, which is proving to be an excellent tool for research and development of deep learning analysis techniques. With this library you will see how to develop different models of neural networks that are the basis of deep learning.

Artificial Intelligence, Machine Learning, and Deep Learning

For anyone dealing with the world of data analysis, these three terms are ultimately very common on the web, in text, and on seminars related to the subject. But what is the relationship between them? And what do they really consist of?

In this section you will see the detailed definitions of these three terms. You will discover how in recent decades, the need to create more and more elaborate algorithms, and to be able to make predictions and classify data more and more efficiently, has led to

machine learning. Then you will discover how, thanks to new technological innovations, and in particular to the computing power achieved by the GPU, deep learning techniques have been developed based on neural networks.

Artificial intelligence

The term *artificial intelligence* was first used by John McCarthy in 1956, at a time full of great hopes and enthusiasm for the technology world. They were at the dawn of electronics and computers as large as whole rooms that could do a few simple calculations, but they did so efficiently and quickly compared to humans that they already glimpsed possible future developments of electronic intelligence.

But without going into the world of science fiction, the current definition best suited to artificial intelligence, often referred to as AI, could be summarized briefly with the following sentence:

Automatic processing on a computer capable of performing operations that would seem to be exclusively relevant to human intelligence.

Hence the concept of artificial intelligence is a variable concept that varies with the progress of the machines themselves and with the concept of "exclusive human relevance". While in the 60s and 70s we saw artificial intelligence as the ability of computers to perform calculations and find mathematical solutions of complex problems "of exclusive relevance of great scientists," in the 80s and 90s it matured in the ability to assess risks, resources, and making decisions. In the year 2000, with the continuous growth of computer computing potential, the possibility of these systems to learn with machine learning was added to the definition.

Finally, in the last few years, the concept of artificial intelligence has focused on visual and auditory recognition operations, which until recently were thought of as "exclusive human relevance".

These operations include:

- Image recognition
- Object detection
- Object segmentation
- Language translation

- Natural language understanding
- Speech recognition

These are the problems still under study thanks to the deep learning techniques.

Machine Learning Is a Branch of Artificial Intelligence

In the previous chapter you saw machine learning in detail, with many examples of the different techniques for classifying or predicting data.

Machine learning (ML), with all its techniques and algorithms, is a large branch of artificial intelligence. In fact, you refer to it, while remaining within the ambit of artificial intelligence when you use systems that are able to learn (learning systems) to solve various problems that shortly before had been "considered exclusive to humans".

Deep Learning Is a Branch of Machine Learning

Within the machine learning techniques, a further subclass can be defined, called *deep learning*. You saw in Chapter 8 that machine learning uses systems that can learn, and this can be done through features inside the system (often parameters of a fixed model) that are modified in response to input data intended for learning (training set).

Deep learning techniques take a step forward. In fact, deep learning systems are structured so as not to have these intrinsic characteristics in the model, but these characteristics are extracted and detected by the system automatically as a result of learning itself. Among these systems that can do this, we refer in particular to *artificial neural networks*.

The Relationship Between Artificial Intelligence, Machine Learning, and Deep Learning

To sum up, in this section you have seen that machine learning and deep learning are actually subclasses of artificial intelligence. Figure 9-1 shows a schematization of classes in this relationship.

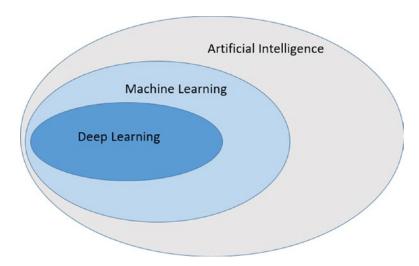


Figure 9-1. Schematization of the relationship between artificial intelligence, machine learning, and deep learning

Deep Learning

In this section, you will learn about some significant factors that led to the development of deep learning and read why only in these last years have there been so many steps forward.

Neural Networks and GPUs

In the previous section, you learned that in the field of artificial intelligence, deep learning has become popular only in the last few years precisely to solve problems of visual and auditory recognition.

In the context of deep learning, a lot of calculation techniques and algorithms have been developed in recent years, making the most of the potential of the Python language. But the theory behind deep learning actually dates back many years. In fact, the concept of the neural network was introduced in 1943, and the first theoretical studies on artificial neural networks and their applications were developed in the 60s.

The fact is that only in recent years the neural networks, with the related deep learning techniques that use them, have proved useful to solve many problems of artificial intelligence. This is due to the fact that only now are there technologies that can be implemented in a useful and efficient way.

In fact, at the application level, deep learning requires very complex mathematical operations that require millions or even billions of parameters. The CPUs of the 90s, even if powerful, were not able to perform these kinds of operations in efficient times. Even today the calculation with the CPUs, although considerably improved, requires long processing times. This inefficiency is due to the particular architecture of the CPUs, which have been designed to efficiently perform mathematical operations that are not those required by neural networks.

But a new kind of hardware has developed in recent decades, the *Graphics Processing Unit (GPU)*, thanks to the enormous commercial drive of the videogames market. In fact this type of processor has been designed to manage more and more efficient vector calculations, such as multiplications between matrices, which is necessary for 3D reality simulations and rendering.

Thanks to this technological innovation, many deep learning techniques have been realized. In fact, to realize the neural networks and their learning, the tensors (multidimensional matrices) are used, carrying out many mathematical operations. It is precisely this kind of work that GPUs are able to do more efficiently. Thanks to their contribution, the processing speed of deep learning is increased by several orders of magnitude (days instead of months).

Data Availability: Open Data Source, Internet of Things, and Big Data

Another very important factor affecting the development of deep learning is the huge amount of data that can be accessed. In fact, the data are the fundamental ingredient for the functioning of neural networks, both for the learning phase and for their verification phase.

Thanks to the spread of the Internet all over the world, now everyone can access and produce data. While a few years ago only a few organizations were providing data for analysis, today, thanks to the IoT (Internet of Things), many sensors and devices acquire data and make them available on networks. Not only that, even social networks and search engines (like Facebook, Google, and so on) can collect huge amounts of data, analyzing in real time millions of users connected to their services (called *Big Data*).

So today a lot of data related to the problems we want to solve with the deep learning techniques, are easily available not only for a fee, but also in free form (open data source).

Python

Another factor that contributed to the great success and diffusion of deep learning techniques was the Python programming language.

In the past, planning neural network systems was very complex. The only language able to carry out this task was C ++, a very complex language, difficult to use and known only to a few specialists. Moreover, in order to work with the GPU (necessary for this type of calculation), it was necessary to know CUDA (Compute Unified Device Architecture), the hardware development architecture of NVIDIA graphics cards with all their technical specifications.

Today, thanks to Python, the programming of neural networks and deep learning techniques has become high level. In fact, programmers no longer have to think about the architecture and the technical specifications of the graphics card (GPU), but can focus exclusively on the part related to deep learning. Moreover the characteristics of the Python language enable programmers to develop simple and intuitive code. You have already tried this with machine learning in the previous chapter, and the same applies to deep learning.

Deep Learning Python Frameworks

Over the past two years many developer organizations and communities have been developing Python frameworks that are greatly simplifying the calculation and application of deep learning techniques. There is a lot of excitement about it, and many of these libraries perform the same operations almost competitively, but each of them is based on different internal mechanisms. We will see which in the next few years will be more successful or not.

Among these frameworks available today for free, it is worth mentioning some that are gaining some success.

TensorFlow is an open source library for numerical calculation that
bases its use on data flow graphs. These are graphs where the nodes
represent the mathematical operations and the edges represent
tensors (multidimensional data arrays). Its architecture is very
flexible and can distribute the calculations both on multiple CPUs
and on multiple GPUs.

- Caffe2 is a framework developed to provide an easy and simple way
 to work on deep learning. It allows you to test model and algorithm
 calculations using the power of GPUs in the cloud.
- PyTorch is a scientific framework completely based on the use of GPUs. It works in a highly efficient way and was recently developed and is still not well consolidated. It is still proving a powerful tool for scientific research.
- Theano is the most used Python library in the scientific field for the development, definition, and evaluation of mathematical expressions and physical models. Unfortunately, the development team announced that new versions will no longer be released. However, it remains a reference framework thanks to the number of programs developed with this library, both in literature and on the web.

Artificial Neural Networks

Artificial neural networks are a fundamental element for deep learning and their use is the basis of many, if not almost all, deep learning techniques. In fact, these systems are able to learn, thanks to their particular structure that refers to the biological neural circuits.

In this section, you will see in more detail what artificial neural networks are and how they are structured.

How Artificial Neural Networks Are Structured

Artificial neural networks are complex structures created by connecting simple basic components that are repeated within the structure. Depending on the number of these basic components and the type of connections, more and more complex networks will be formed, with different architectures, each of which will present peculiar characteristics regarding the ability to learn and solve different problems of deep learning.

Figure 9-2 shows an example of how a generic artificial neural network is structured.

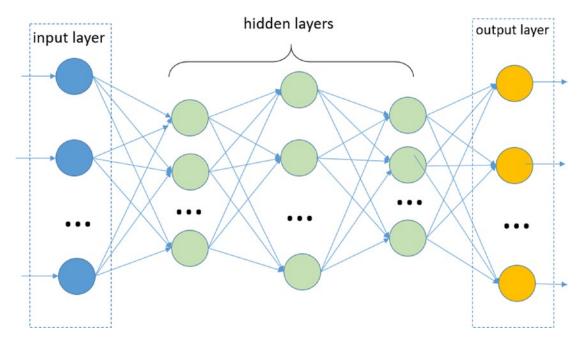


Figure 9-2. A schematization of how a generic artificial neural network is structured

The basic units are called *nodes* (the colored circles shown in Figure 9-2), which in the biological model simulate the functioning of a neuron within a neural network. These artificial neurons perform very simple operations, similar to the biological counterparts. They are activated when the total sum of the input signals they receive exceeds an activation threshold.

These nodes can transmit signals between them by means of connections, called *edges*, which simulate the functioning of biological synapses (the blue arrows shown in Figure 9-2). Through these edges, the signals sent by a neuron pass to the next one, behaving as a filter. That is, an edge converts the output message from a neuron, into an inhibitory or excitant signal, decreasing or increasing its intensity, according to pre-established rules (a different *weight* is generally applied for each edge).

The neural network has a certain number of nodes used to receive the input signal from the outside (see Figure 9-2). This first group of nodes is usually represented in a column at the far left end of the neural network schema. This group of nodes represents the first layer of the neural network (*input layer*). Depending on the input signals received, some (or all) of these neurons will be activated by processing the received signal and transmitting the result as output to another group of neurons, through edges.

This second group is in an intermediate position in the neural network, and is called the *hidden layer*. This is because the neurons of this group do not communicate with the outside neither in input nor in output and are therefore hidden. As you can see in Figure 9-2, each of these neurons has lots of incoming edges, often with all the neurons of the previous layer. Even these hidden neurons will be activated whether the total incoming signal will exceed a certain threshold. If affirmative, they will process the signal and transmit it to another group of neurons (in the right direction of the scheme shown in Figure 9-2). This group can be another hidden layer or the *output layer*, that is, the last layer that will send the results directly to the outside.

So in general we will have a flow of data that will enter the neural network (from left to right), and that will be processed in a more or less complex way depending on the structure, and will produce an output result.

The behavior, capabilities, and efficiency of a neural network will depend exclusively on how the nodes are connected and the total number of layers and neurons assigned to each of them. All these factors define the *neural network architecture*.

Single Layer Perceptron (SLP)

The *Single Layer Perceptron (SLP)* is the simplest model of neural network and was designed by Frank Rosenblatt in 1958. Its architecture is represented in Figure 9-3.

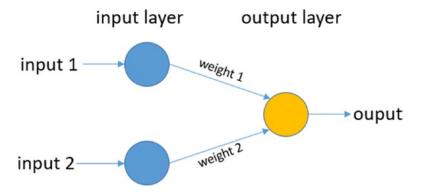


Figure 9-3. The Single Layer Perceptron (SLP) architecture

The Single Layer Perceptron (SLP) structure is very simple; it is a two-layer neural network, without hidden layers, in which a number of input neurons send signals to an output neuron through different connections, each with its own weight. Figure 9-4 shows in more detail the inner workings of this type of neural network.

CHAPTER 9 DEEP LEARNING WITH TENSORFLOW

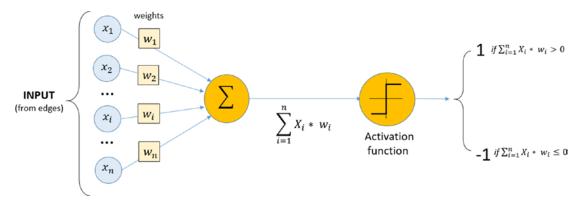


Figure 9-4. A more detailed Single Layer Perceptron (SLP) representation with the internal operation expressed mathematically

The edges of this structure are represented in this mathematic model by means of a weight vector consisting of the local memory of the neuron.

$$W = (w1, w2,..., wn)$$

The output neuron receives an input vector signals xi each coming from a different neuron.

$$X = (x1, x2,..., xn)$$

Then it processes the input signals via a weighed sum.

$$\sum_{i=0}^{n} \mathbf{W}_{i} \ \mathbf{X}_{i} = \mathbf{W}_{1} \mathbf{X}_{1} + \mathbf{W}_{2} \mathbf{X}_{2} + \dots + \mathbf{W}_{n} \mathbf{X}_{n} = \mathbf{S}$$

The total signal s is that perceived by the output neuron. If the signal exceeds the activation threshold of the neuron, it will activate, sending 1 as a value, otherwise it will remain inactive, sending -1.

Output =
$$\begin{cases} 1, & if \ s > 0 \\ -1, \ otherwise \end{cases}$$

This is the simplest *activation function* (see function A shown Figure 9-5), but you can also use other more complex ones, such as the sigmoid (see function D shown in Figure 9-5).

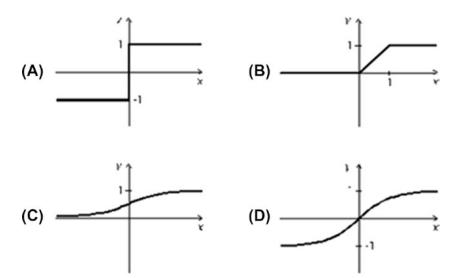


Figure **9-5.** *Some examples of activation functions*

Now that you've seen the structure of the SLP neural network, you can switch to see how they can learn.

The learning procedure of a neural network, called the *learning phase*, works iteratively. That is, a predetermined number of cycles of operation of the neural network are carried out, in each of which the weights of the wi synapses are slightly modified. Each learning cycle is called an *epoch*. In order to carry out the learning you will have to use appropriate input data, called the *training sets* (you have already used them in depth in the Chapter 8).

In the training sets, for each input value, the expected output value is obtained. By comparing the output values produced by the neural network with the expected ones you can analyze the differences and modify the weight values, and you can also reduce them. In practice this is done by minimizing a *cost function* (*loss*) that is specific of the problem of deep learning. In fact the weights of the different connections will be modified for each epoch in order to minimize the cost (*loss*).

In conclusion, supervised learning is applied to neural networks.

At the end of the learning phase, you will pass to the *evaluation phase*, in which the learned SLP perceptron must analyze another set of inputs (test set) whose results are also known here. By evaluating the differences between the values obtained and those expected, the degree of ability of the neural network to solve the problem of deep learning will be known. Often the percentage of cases guessed with the wrong ones is used to indicate this value, and it is called *accuracy*.

Multi Layer Perceptron (MLP)

A more complex and efficient architecture is the *Multi Layer Perceptron (MLP)*. In this structure, there are one or more hidden layers interposed between the input layer and the output layer. The architecture is represented in Figure 9-6.

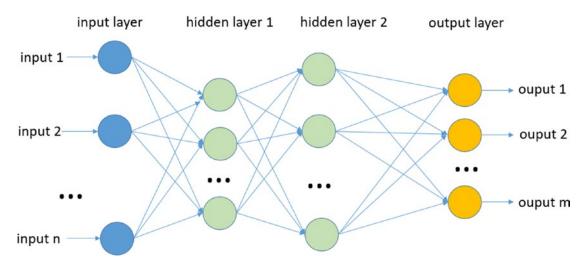


Figure 9-6. The Multi Layer Perceptron (MLP) architecture

At the end of the learning phase, you will pass to the *evaluation phase*, in which the learned SLP perceptron must analyze another set of inputs (test set) whose results are also known here. By evaluating the differences between the values obtained and those expected, the degree of ability of the neural network to solve the problem of deep learning will be known. Often, the percentage of cases guessed with the wrong ones is used to indicate this value, and it is called accuracy.

Although more complex, the models of MLP neural networks are based primarily on the same concepts as the models of the SLP neural networks. Even in MLPs, weights are assigned to each connection. These weights must be minimized based on the evaluation of a training set, much like the SLPs. Here, too, each node must process all incoming signals through an activation function, even if this time the presence of several hidden layers, will make the neural network able to learn more, *adapting more effectively* to the type of problem deep learning is trying to solve.

On the other hand, from a practical point of view, the greater complexity of this system requires more complex algorithms both for the learning phase and for the evaluation phase. One of these is the *back propagation algorithm*, used to effectively modify the weights of the various connections to minimize the cost function, in order to quickly and progressively converge the output values with the expected ones.

Other algorithms are used specifically for the minimization phase of the cost (or error) function and are generally referred to as *gradient descent* techniques.

The study and detailed analysis of these algorithms is outside the scope of this text, which has only an introductory function of the argument, with the goal of trying to keep the topic of deep learning as simple and clear as possible. If you are so inclined, I suggest you go deeper into the subject both in various books and on the Internet.

Correspondence Between Artificial and Biological Neural Networks

So far you have seen how deep learning uses basic structures, called artificial neural networks, to simulate the functioning of the human brain, particularly in the way it processes information.

There is also a real correspondence between the two systems at the highest reading level. In fact, you've just seen that neural networks have structures based on layers of neurons. The first layer processes the incoming signal, then passes it to the next layer, which in turn processes it and so on, until it reaches a final result. For each layer of neurons, incoming information is processed in a certain way, generating *different levels of representation* of the same information.

In fact, the whole operation of elaboration of an artificial neural network is nothing more than the transformation of information to ever more abstract levels.

This functioning is identical to what happens in the cerebral cortex. For example, when the eye receives an image, the image signal passes through various processing stages (such as the layers of the neural network), in which, for example, the contours of the figures are first detected (edge detection), then the geometric shape (form perception), and then to the recognition of the nature of the object with its name. Therefore, there has been a transformation at different levels of conceptuality of an incoming information, passing from an image, to lines, to geometrical figures, to arrive at a word.

TensorFlow

In a previous section of this chapter you saw that there are several frameworks in Python that allow you to develop projects for deep learning. One of these is *TensorFlow*. In this section you learn know in detail about this framework, including how it works and how it is used to realize neural networks for deep learning.

TensorFlow: Google's Framework

TensorFlow (https://www.tensorflow.org) is a library developed by the Google Brain Team, a group of Machine Learning Intelligence, a research organization headed by Google.

The purpose of this library is to have an excellent tool in the field of research for machine learning and deep learning.

The first version of TensorFlow was released by Google in February 2017, and in a year and a half, many update versions have been released, in which the potential, stability, and usability of this library are greatly increased. This is mainly thanks to the large number of users among professionals and researchers who are fully using this framework. At the present time, TensorFlow is already a consolidated deep learning framework, rich in documentation, tutorials, and projects available on the Internet.

In addition to the main package, there are many other libraries that have been released over time, including:

- *TensorBoard*—A kit that allows the visualization of internal graphs to TensorFlow (https://github.com/tensorflow/tensorboard).
- TensorFlow Fold—Produces beautiful dynamic calculation charts (https://github.com/tensorflow/fold)
- TensorFlow Transform—Created and managed input data pipelines (https://github.com/tensorflow/transform)

TensorFlow: Data Flow Graph

TensorFlow (https://www.tensorflow.org) is a library developed by the Google Brain Team, a group of Machine Learning Intelligence, a research organization headed by Google.

TensorFlow is based entirely on the structuring and use of graphs and on the flow of data through it, exploiting them in such a way as to make mathematical calculations.

The graph created internally to the TensorFlow runtime system is called *Data Flow Graph* and it is structured in runtime according to the mathematical model that is the basis of the calculation you want to perform. In fact, Tensor Flow allows you to define any mathematical model through a series of instructions implemented in the code. TensorFlow will take care of translating that model into the Data Flow Graph internally.

So when you go to model your deep learning neural network, it will be translated into a Data Flow Graph. Given the great similarity between the structure of neural networks and the mathematical representation of graphs, it is easy to understand why this library is excellent for developing deep learning projects.

But TensorFlow is not limited to deep learning and can be used to represent artificial neural networks. Many other methods of calculation and analysis can be implemented with this library, since any physical system can be represented with a mathematical model. In fact, this library can also be used to implement other machine learning techniques, and for the study of complex physical systems through the calculation of partial differentials, etc.

The nodes of the Data Flow Graph represent mathematical operations, while the edges of the graph represent tensors (multidimensional data arrays). The name TensorFlow derives from the fact that these tensors represent the flow of data through graphs, which can be used to model artificial neural networks.

Start Programming with TensorFlow

Now that you have seen in general what the TensorFlow framework consists of, you can start working with this library. In this section, you will see how to install this framework, how to define and use tensors within a model, and how to access the internal Data Flow Graph through sessions.

Installing TensorFlow

Before starting work, you need to install this library on your computer.

On Ubuntu Linux (version 16 or more recent) system, you can use pip to install the package:

pip3 install tensorflow

On Windows systems, you can use Anaconda to install the package:

conda install tensorflow

TensorFlow is a fairly recent framework and unfortunately it is not present on some Linux distributions and in the versions of a few years ago. So in these cases the installation of TensorFlow must be done manually, following the indications suggested on the official TensorFlow website (https://www.tensorflow.org/install_linux).

For those who have Anaconda (including Linux and OS) as a system for distributing Python packages on their computers, TensorFlow installation is much simpler.

Programming with the IPython QtConsole

Once TensorFlow is installed, you can start programming with this library. In the examples in this chapter, we use IPython, but you can do the same things by opening a normal Python session (or if you prefer, by using Jupyter Notebook). Via the terminal, open an IPython session by entering the following command line.

jupyter qtconsole

After opening an IPython session, import the library:

In []: import tensorflow as tf

Note Remember that to enter multiple commands on different lines, you must use Ctrl+Enter. To execute the commands, press Enter only.

The Model and Sessions in TensorFlow

Before starting to program it is important to understand the internal operation of TensorFlow, including how it interprets the commands in Python and how it is executed internally. TensorFlow works through the concept of *model* and *sessions*, which define the structure of a program with a certain sequence of commands.

At the base of any TensorFlow project there is a model that includes a whole series of variables to be taken into consideration and that will define the system. Variables can be defined directly or parameterized through mathematical expressions on constants.

```
In [ ]: c = tf.constant(2,name='c')
    ...: x = tf.Variable(3,name='x')
    ...: y = tf.Variable(c*x,name='y')
    ...:
```

But now if you try to see the internal value of y (you expect a value of 6) with the print() function, you will see that it will give you the object and not the value.

```
In [3]: print(x)
...: print(y)
...:
<tf.Variable 'x:0' shape=() dtype=int32_ref>
<tf.Variable 'y:0' shape=() dtype=int32_ref>
```

In fact, you have defined variables belonging to the TensorFlow Data Flow Graph, that is a graph with nodes and connections that represent your mathematical model. You will see later how to access these values via sessions.

As far as the variables directly involved in the calculation of the deep learning method are concerned, *placeholders* are used, i.e. those tensors directly involved in the flow of data and in the processing of each single neuron.

Placeholders allow you to build the graph corresponding to the neural network, and to create operations inside without absolutely knowing the data to be calculated. In fact, you can build the structure of the graph (and also the neural network).

In practical cases, given a training set consisting of the value to be analyzed x (a tensor) and an expected value y (a tensor), you will define two placeholders xey, i.e., two tensors that will contain the values processed by the data for the whole neural network.

For example, define two placeholders that contain integers with the tf. placeholder() function.

```
In [ ]: X = tf.placeholder("int32")
   ...: X = tf.placeholder("int32")
   ...:
```

Once you have defined all the variables involved, i.e., you have defined the mathematical model at the base of the system, you need to perform the appropriate processing and initialize the whole model with the tf.global_variables_initializer() function.

```
In [ ]: model = tf.global_variables_initializer()
```

Now that you have a model initialized and loaded into memory, you need to start doing the calculations, but to do that you need to communicate with the TensorFlow runtime system. For this purpose a TensorFlow session is created, during which you can launch a series of commands to interact with the underlying graph corresponding to the model you have created.

You can create a new session with the tf.Session() constructor.

Within a session, you can perform the calculations and receive the values of the variables obtained as results, i.e., you can check the status of the graph during processing.

You have already seen that the operation of TensorFlow is based on the creation of an internal graph structure, in which the nodes are able to perform processing on the flow of data inside tensors that follow the connections of the graph.

So when you start a session, in practice you do nothing but instantiate this graph. A session has two main methods:

- session.extend() allows you to make changes to the graph during the calculation, such as adding new nodes or connections.
- session.run() launches the execution of the graph and allows you to obtain the results in output.

Since several operations are carried out within the same session, it is preferred to use the construct with: with all calls to methods inherent to it.

In this simple case, you simply want to see the values of the variables defined in the model and print them on the terminal.

```
In [ ]: with tf.Session() as session:
    ...: session.run(model)
    ...: print(session.run(y))
    ...:
6
```

As you can see within the session, you can access the values of the Data Flow Graph, including the y variable that you previously defined.

Tensors

The basic element of the TensorFlow library is the *tensor*. In fact, the data that follow the flow within the Data Flow Graph are tensors (see Figure 9-7).

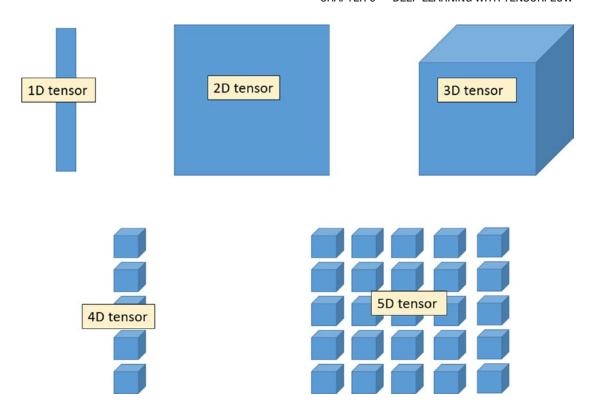


Figure 9-7. Some representations of the tensors according to the different dimensions

A tensor is identified by three parameters:

- rank—Dimension of the tensor (a matrix has rank 2, a vector has rank 1)
- **shape**—Number of rows and columns (e.g. (3.3) is a 3x3 matrix)
- **type**—Type of tensor elements.

type of tensor elements and columns (eg (3.3) is a 3x3 matrix)has rank 2, a vector has rank 1)s ic

Tensors are nothing more than multidimensional arrays. In previous chapters, you saw how easy it is to get them thanks to the NumPy library. So you can start by defining one with this library.

```
In [ ]: import numpy as np
...: t = np.arange(9).reshape((3,3))
```

CHAPTER 9 DEEP LEARNING WITH TENSORFLOW

```
...: print(t)
...:
[[0 1 2]
[3 4 5]
[6 7 8]]
```

Now you can convert this multidimensional array into a TensorFlow tensor very easily thanks to the tf.convert_to_tensor() function, which takes two parameters. The first parameter is the array t that you want to convert and the second is the type of data you want to convert it to, in this case int32.

```
In [ ]: tensor = tf.convert_to_tensor(t, dtype=tf.int32)
```

If you want to see the content of the sensor now, you have to create a TensorFlow session and run it, printing the result on the terminal thanks to the print() function.

As you can see, you have a tensor containing the same values and the same dimensions as the multidimensional array defined with NumPy. This approach is very useful for calculating deep learning, since many input values are in the form of NumPy arrays.

But tensors can be built directly from TensorFlow, without using the NumPy library. There are a number of functions that make it possible to enhance the tensors quickly and easily.

For example, if you want to initialize a tensor with all the values zero, you can use the tf.zeros() method.

```
[ 0. 0. 0.]
[ 0. 0. 0.]]
```

Likewise, if you want a tensor with all values of 1, you use the tf.ones() method.

Finally, it is also possible to create a tensor containing random values, which follow a uniform distribution (all the values within a range are equally likely to exit), thanks to the tf.random uniform() function.

For example, if you want a 3x3 tensor with float values between 0 and 1, you can write:

But it can often be useful to create a tensor containing values that follow a normal distribution with a choice of mean and standard deviation. You can do this with the tf. random_normal() function.

For example, if you want to create a tensor of 3x3 size with mean 0 and standard deviation of 3, you will write:

Operation on Tensors

Once the tensors have been defined, it will be necessary to carry out operations on them. Most mathematical calculations on tensors are based on the sum and multiplication between tensors.

Define two tensors, t1 and t2, that you will use to perform the operations between tensors.

```
In [ ]: t1 = tf.random uniform((3, 3), minval=0, maxval=1, dtype=tf.
       float32)
    ...: t2 = tf.random uniform((3, 3), minval=0, maxval=1, dtype=tf.
        float32)
    . . . :
In [ ]: with tf.Session() as sess:
    ...: print('t1 = ',sess.run(t1))
    ...: print('t2 = ',sess.run(t2))
    . . . :
t1 = [[ 0.22056699  0.15718663
                               0.11314452
0.43978345
                   0.27561605
                               0.41013181
            0.3019532
0.58318019
                               0.04094303]]
t2 = [[ 0.16032183  0.32963789
                               0.30250323
0.02322233
                                0.01091838]
                   0.79547286
0.63182664
                   0.64371264
                                0.06646919]]
```

Now to sum these two tensors, you can use the tf.add() function. To perform multiplication, you use the tf.matmul() function.

```
In [ ]: sum = tf.add(t1,t2)
    ...: mul = tf.matmul(t1,t2)
    ...:
```

```
In [ ]: with tf.Session() as sess:
   ...: print('sum =', sess.run(sum))
   ...: print('mul =', sess.run(mul))
sum = [ 0.78942883 0.73469722 ]
                                 1.0990597
0.42483664
             0.62457812 0.98524892
[ 1.30883813
                 0.75967956 0.19211888]]
mul = [[ 0.26865649 ]]
                       0.43188229
                                   0.98241472]
0.13723138
                0.25498611 0.49761111]
0.32352239
                 0.48217845 0.80896515]]
```

Another very common operation with tensors is the calculation of the determinant. TensorFlow provides the tf.matrix determinant() method for this purpose:

```
In [ ]: det = tf.matrix_determinant(t1)
    ...: with tf.Session() as sess:
    ...: print('det =', sess.run(det))
    ...:
det = 0.101594
```

With these basic operations, you can implement many mathematical expressions that use tensors.

Single Layer Perceptron with TensorFlow

To better understand how to develop neural networks with TensorFlow, you will begin to implement a single layer Perceptron (SLP) neural network that is as simple as possible. You will use the tools made available in the TensorFlow library and by using the concepts you have learned about during the chapter and gradually introducing new ones.

During the course of this section, you will see the general practice of building a neural network. Thanks to a step-by-step procedure you can become familiar with the different commands used. Then, in the next section, you will use them to create a Perceptron Multi Layer neural network.

In both cases you will work with simple but complete examples of each part, so as not to add too many technical and complex details, but focus on the central part that involves the implementation of neural networks with TensorFlow.

Before Starting

Before starting, reopen a session with IPython by starting a new kernel. Once the session is open it imports all the necessary modules:

```
In [ ]: import numpy as np
    ...: import matplotlib.pyplot as plt
    ...: import tensorflow as tf
    ...:
```

Data To Be Analyzed

For the examples that you will consider in this chapter, you will use a series of data that you used in the machine learning chapter, in particular in the section about the Support Vector Machines (SVMs) technique.

The set of data that you will study is a set of 11 points distributed in a Cartesian axis divided into two classes of membership. The first six belong to the first class, the other five to the second. The coordinates (x, y) of the points are contained within a numpy inputX array, while the class to which they belong is indicated in inputY. This is a list of two-element arrays, with an element for each class they belong to. The value 1 in the first or second element indicates the class to which it belongs.

If the element has value [1.0], it will belong to the first class. If it has value [0,1], it belongs to the second class. The fact that they are float values is due to the optimization calculation of deep learning. You will see later that the test results of the neural networks will be floating numbers, indicating the probability that an element belongs to the first or second class.

Suppose, for example, that the neural network will give you the result of an element that will have the following values:

```
[0.910, 0.090]
```

This result will mean that the neural network considers that the element under analysis belongs to 91% to the first class and to 9% to the second class. You will see this in practice at the end of the section, but it was important to explain the concept to better understand the purpose of some values.

So based on the values taken from the example of SVMs in the machine learning chapter, you can define the following values.

```
In [2]: #Training set
   ...: inputX = np.arr
ay([[1.,3.],[1.,2.],[1.,1.5],[1.5,2.],[2.,3.],[2.5,1.5])
,[2.,1.],[3.,1.],[3.,2.],[3.5,1.],[3.5,3.]])
   ...: inputY = [[1.,0.]]*6+ [[0.,1.]]*5
   ...: print(inputX)
   ...: print(inputY)
   . . . :
[[ 1. 3. ]
[ 1. 2. ]
[ 1. 1.5]
[ 1.5 2. ]
[ 2. 3. ]
[ 2.5 1.5]
[ 2. 1. ]
[ 3. 1. ]
[ 3. 2. ]
[ 3.5 1. ]
[ 3.5 3. ]]
[[1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0],
[1.0, 0.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]
```

To better see how these points are arranged spatially and which classes they belong to, there is no better approach than to plot everything with matplotlib.

```
In [3]: yc = [0]*6 + [1]*5
    ...: print(yc)
...: import matplotlib.pyplot as plt
    ...: %matplotlib inline
    ...: plt.scatter(inputX[:,0],inputX[:,1],c=yc, s=50, alpha=0.9)
    ...: plt.show()
    ...:
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
```

You will get the graph in Figure 9-8 as a result.

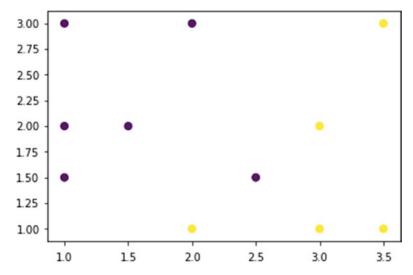


Figure 9-8. The training set is a set of Cartesian points divided into two classes of membership (yellow and dark blue)

To help in the graphic representation (as shown in Figure 9-8) of the color assignment, the inputY array has been replaced with yc array.

As you can see, the two classes are easily identifiable in two opposite regions. The first region covers the upper-left part, the second region covers the lower-right part. All this would seem to be simply subdivided by an imaginary diagonal line, but to make the system more complex, there is an exception with the point number 6 that is internal to the other points.

It will be interesting to see how and if the neural networks that we implement will be able to correctly assign the class to points of this kind.

The SLP Model Definition

For the examples that you will consider in this chapter, you will use a series of data that you have already used in the machine learning chapter, in particular in the section about the Support Vector Machines (SVMs) technique.

If you want to do a deep learning analysis, the first thing to do is define the neural network model you want to implement. So you will already have in mind the structure to be implemented, how many neurons and layers and compounds (in this case only one), the weight of the connections, and the cost function to be applied.

Following the TensorFlow practice, you can start by defining a series of parameters necessary to characterize the execution of the calculations during the learning phase. The *learning rate* is a parameter that regulates the learning speed of each neuron. This parameter is very important and plays a very important role in regulating the efficiency of a neural network during the learning phase. Establishing the optimal a priori value of the learning rate is impossible, because it depends very much on the structure of the neural network and on the particular type of data to be analyzed. It is therefore necessary to adjust this value through different learning tests, choosing the value that guarantees the best accuracy.

You can start with a generic value of 0.01, assigning this value to the learning_rate parameter.

```
In [ ]: learning_rate = 0.01
```

Another parameter to be defined is training_epochs. This defines how many epochs (learning cycles) will be applied to the neural network for the learning phase.

```
In [ ]: training epochs = 2000
```

During program execution, it will be necessary in some way to monitor the progress of learning and this can be done by printing values on the terminal. You can decide how many epochs you will have to display a printout with the results, and insert them into the display_step parameter. A reasonable value is every 50 or 100 steps.

```
In [ ]: display_step = 50
```

To make the implemented code reusable, it is necessary to add parameters that specify the number of elements that make up the training set, and how many batches must be divided. In this case you have a small training set of only 11 items. So you can use them all in one batch.

```
In [ ]: n_samples = 11
    ...: batch_size = 11
    ...: total_batch = int(n_samples/batch_size)
    ...:
```

Finally, you can add two more parameters that describe the size and number of classes to which the incoming data belongs.

```
In [ ]: n_input = 2 # size data input (# size of each element of x)
    ...: n_classes = 2 # n of classes
    ...:
```

CHAPTER 9 DEEP LEARNING WITH TENSORFLOW

Now that you have defined the parameters of the method, let's move on to building the neural network. First, define the inputs and outputs of the neural network through the use of *placeholders*.

```
In [ ]: # tf Graph input
    ...: x = tf.placeholder("float", [None, n_input])
    ...: y = tf.placeholder("float", [None, n_classes])
    ...:
```

Then you have just *implicitly* defined an SLP neural network with two neurons in the input layer and two neurons in the output layer (see Figure 9-9), defining an input placeholder x with two values and a placeholder of output y with two values. *Explicitly*, you have instead defined two tensors, the tensor x that will contain the values of the input coordinates, and a tensor y that will contain the probabilities of belonging to the two classes of each element.

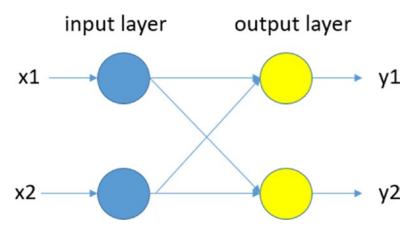


Figure 9-9. *The Single Layer Perceptron model used in this example*

But this will be much more visible in the following example, when dealing with MLP neural networks. Now that you have defined the placeholders, occupied with the weights and the bias, which, as you saw, are used to define the connections of the neural network. These tensors W and b are defined as variables by the constructor Variable() and initialized to all zero values with tf.zeros().

```
In [ ]: # Set model weights
    ...: W = tf.Variable(tf.zeros([n_input, n_classes]))
    ...: b = tf.Variable(tf.zeros([n_classes]))
    ...:
376
```

The variables weight and bias you have just defined will be used to define the evidence x * W + b, which characterizes the neural network in mathematical form. The tf.matmul() function performs a multiplication between tensors x * W, while the tf. add() function adds to the result the value of bias b.

```
In [ ]: evidence = tf.add(tf.matmul(x, W), b)
```

From the value of the evidence, you can directly calculate the probabilities of the output values with the tf.nn.softmax() function.

```
In [ ]: y_ = tf.nn.softmax(evidence)
```

The tf.nn.softmax() function performs two steps:

- It calculates the evidence that a certain Cartesian entry point xi belongs to a particular class.
- It converts the evidence into probability of belonging to each of the two possible classes and returns it as y.

Continuing with the construction of the model, now you must think about establishing the rules for the minimization of these parameters and you do so by defining the cost (or loss). In this phase you can choose many functions; one of the most common is the mean squared error loss.

```
In [ ]: cost = tf.reduce_sum(tf.pow(y-y_,2))/ (2 * n_samples)
```

But you can use any other function that you think is more convenient. Once the cost (or loss) function has been defined, an algorithm must be established to perform the minimization at each learning cycle (optimization). You can use the tf.train. GradientDescentOptimizer() function as an optimizer that bases its operation on the Gradient Descent algorithm.

```
In [ ]: optimizer =tf.train.GradientDescentOptimizer(learning_
rate=learning rate).minimize(cost)
```

With the definition of the cost optimization method (minimization), you have completed the definition of the neural network model. Now you are ready to begin to implement its learning phase.

Learning Phase

Before starting, define two lists that will serve as a container for the results obtained during the learning phase. In avg_set you will enter all the cost values for each epoch (learning cycle), while in epoch_set you will enter the relative epoch number. These data will be useful at the end to visualize the cost trend during the learning phase of the neural network, which will be very useful for understanding the efficiency of the chosen learning method for the neural network.

```
In [ ]: avg_set = []
    ...: epoch_set=[]
    ...:
```

Then before starting the session, you need to initialize all the variables with the function you've seen before, tf.global variables initializer().

```
In [ ]: init = tf.global variables initializer()
```

Now you are ready to start the session (do not press Enter at the end; you must enter other commands within the session).

You have already seen that every learning step is called an epoch. It is possible to intervene within each epoch, thanks to a for loop that scans all the values of training_epochs.

Within this cycle for each epoch, you will optimize using the sess.run (optimizer) command. Furthermore, every 50 epochs, the condition if% display_step == 0 will be satisfied. Then you will extract the cost value via sess.run(cost) and insert it in the c variable that you will use for printing on the terminal as the print() argument that stores the avg_set list, using the append() function. In the end, when the for loop has been completed, you will print a message on the terminal informing you of the end of the learning phase. (Do not press Enter, as you still have to add other commands ...)

```
sess.run(optimizer, feed dict = {x: inputX, y: inputY})
...:
             if i % display step == 0:
••••
                  c = sess.run(cost, feed_dict = {x: inputX, y: inputY})
••••
                  print("Epoch:", '%04d' % (i), "cost=", "{:.9f}".
•••
                  format(c))
                  avg set.append(c)
••••
                  epoch set.append(i + 1)
••••
• • • •
         print("Training phase finished")
••••
```

Now that the learning phase is over, it is useful to print a summary table on the terminal that shows you the trend of the cost during it. You can do this thanks to the values contained in the avg_set and epoch_set lists that you filled during the learning process.

Always in the session add these last lines of code, at the end of which you can finally press Enter and start the session by executing the learning phase.

```
In [ ]: with tf.Session() as sess:
              sess.run(init)
    . . . :
    . . . :
              for i in range(training epochs):
    . . . :
                  sess.run(optimizer, feed dict = {x: inputX, y: inputY})
    . . . :
                  if i % display step == 0:
    . . . :
                       c = sess.run(cost, feed dict = {x: inputX, y: inputY})
    . . . :
                        print("Epoch:", '%04d' % (i), "cost=", "{:.9f}".
    . . . :
                        format(c))
                       avg set.append(c)
    . . . :
                        epoch set.append(i + 1)
    . . . :
    . . . :
              print("Training phase finished")
    . . . :
    . . . :
    •••
              training_cost = sess.run(cost, feed_dict = {x: inputX, y:
              inputY})
              print("Training cost =", training cost, "\nW=", sess.run(W),
    •••
              "\nb=", sess.run(b))
              last_result = sess.run(y_, feed_dict = {x:inputX})
    ••••
              print("Last result =",last result)
    ••••
    . . . :
```

CHAPTER 9 DEEP LEARNING WITH TENSORFLOW

When the session with the learning phase of the neural network is finished, you get the following results.

```
Epoch: 0000 cost= 0.249360308
Epoch: 0050 cost= 0.221041128
Epoch: 0100 cost= 0.198898271
Epoch: 0150 cost= 0.181669712
Epoch: 0200 cost= 0.168204829
Epoch: 0250 cost= 0.157555178
Epoch: 0300 cost= 0.149002746
Epoch: 0350 cost= 0.142023861
Epoch: 0400 cost= 0.136240512
Epoch: 0450 cost= 0.131378993
Epoch: 0500 cost= 0.127239138
Epoch: 0550 cost= 0.123672642
Epoch: 0600 cost= 0.120568059
Epoch: 0650 cost= 0.117840447
Epoch: 0700 cost= 0.115424201
Epoch: 0750 cost= 0.113267884
Epoch: 0800 cost= 0.111330733
Epoch: 0850 cost= 0.109580085
Epoch: 0900 cost= 0.107989430
Epoch: 0950 cost= 0.106537104
Epoch: 1000 cost= 0.105205171
Epoch: 1050 cost= 0.103978693
Epoch: 1100 cost= 0.102845162
Epoch: 1150 cost= 0.101793952
Epoch: 1200 cost= 0.100816071
Epoch: 1250 cost= 0.099903718
Epoch: 1300 cost= 0.099050261
Epoch: 1350 cost= 0.098249927
Epoch: 1400 cost= 0.097497642
Epoch: 1450 cost= 0.096789025
Epoch: 1500 cost= 0.096120209
Epoch: 1550 cost= 0.095487759
Epoch: 1600 cost= 0.094888613
```

```
Epoch: 1650 cost= 0.094320126
Epoch: 1700 cost= 0.093779817
Epoch: 1750 cost= 0.093265578
Epoch: 1800 cost= 0.092775457
Epoch: 1850 cost= 0.092307687
Epoch: 1900 cost= 0.091860712
Epoch: 1950 cost= 0.091433071
Training phase finished
Training cost = 0.0910315
W = [[-0.70927787 \ 0.70927781]
[ 0.62999243 -0.62999237]]
b= [ 0.34513065 -0.34513068]
Last result = [[ 0.95485419 0.04514586]
[ 0.85713255 0.14286745]
[ 0.76163834 0.23836163]
[ 0.74694741 0.25305259]
[ 0.83659446 0.16340555]
[ 0.27564839 0.72435158]
[ 0.29175714 0.70824283]
[ 0.090675 0.909325 ]
[ 0.26010245 0.73989749]
[ 0.04676624 0.95323378]
[ 0.37878013 0.62121987]]
```

As you can see, the cost is gradually improving during the epoch, up to a value of 0.168. Then it is interesting to see the values of the W weights and the bias of the neural network. These values represent the parameters of the model, i.e., the neural network instructed to analyze this type of data and to carry out this type of classification.

These parameters are very important, because once they are obtained and knowing the structure of the neural network used, it will be possible to reuse them anywhere without repeating the learning phase. Do not consider this example that takes only a minute to do the calculation; in real cases it may take days to do it, and often you have to make many attempts and adjust and calibrate the different parameters before developing an efficient neural network that is very accurate at class recognition, or at performing any other task.

CHAPTER 9 DEEP LEARNING WITH TENSORFLOW

If you see the results from a graphical point of view, it may be easier and faster to understand. You can use the matplotlib to do this.

```
In [ ]: plt.plot(epoch_set,avg_set,'o',label = 'SLP Training phase')
    ...: plt.ylabel('cost')
    ...: plt.xlabel('epochs')
    ...: plt.legend()
    ...: plt.show()
    ...:
```

You can analyze the learning phase of the neural network by following the trend of the cost value, as shown in Figure 9-10.

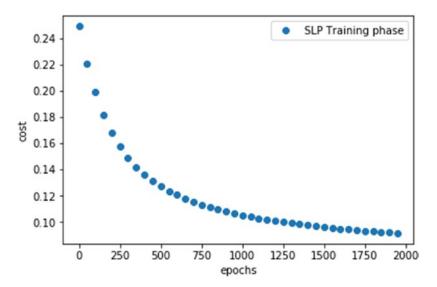


Figure 9-10. The cost value decreases during the learning phase (cost optimization)

Now you can move on to see the results of the classification during the last step of the learning phase.

```
In [ ]: yc = last_result[:,1]
    ...: plt.scatter(inputX[:,0],inputX[:,1],c=yc, s=50, alpha=1)
    ...: plt.show()
    ...:
```

You will get the representation of the points in the Cartesian plane, as shown in Figure 9-11.

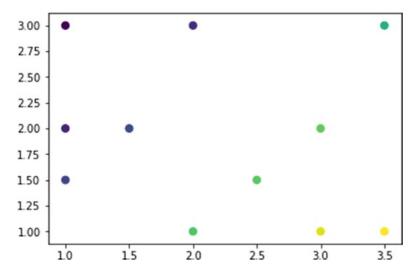


Figure 9-11. The estimate of the class to which the points belong in the last epoch of the learning phase

The graph represents the points in the Cartesian plane (see Figure 9-11), with a color ranging from blue (belonging to 100% to the first group) to yellow (belonging to 100% to the second group). As you can see, the division in the two classes of the points of the training set is quite optimal, with an uncertainty for the four points on the central diagonal (green).

This chart shows in some way the learning ability of the neural network used. As you can see, despite the learning epochs with the training set used, the neural network failed to learn that point 6 (x = 2.5, y = 1.5) belongs to the first class. This is a result you could expect, as it represents an exception and adds an effect of uncertainty to other points in the second class (the green dots).

Test Phase and Accuracy Calculation

Now that you have an educated neural network, you can create the evaluations and calculate the accuracy.

First you define a testing set with elements different than the training set. For convenience, these examples always use 11 elements.

```
In [ ]: #Testing set
    ...: testX = np.arr
ay([[1.,2.25],[1.25,3.],[2,2.5],[2.25,2.75],[2.5,3.],
[2.,0.9],[2.5,1.2],[3.,1.25],[3.,1.5],[3.5,2.],[3.5,2.5]])
    ...: testY = [[1.,0.]]*5 + [[0.,1.]]*6
    ...: print(testX)
    ...: print(testY)
    . . . :
[[1. 2.25]
[ 1.25 3. ]
[ 2. 2.5 ]
[2.25\ 2.75]
[ 2.5 3. ]
[ 2. 0.9 ]
[ 2.5 1.2 ]
[ 3. 1.25]
[ 3. 1.5 ]
[ 3.5 2. ]
[ 3.5 2.5 ]]
[[1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0],
[0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0]
```

To better understand the test set data and their membership classes, show the points on a chart using matplotlib.

```
In [ ]: yc = [0]*5 + [1]*6
    ...: print(yc)
    ...: plt.scatter(testX[:,0],testX[:,1],c=yc, s=50, alpha=0.9)
    ...: plt.show()
    ...:
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
```

You will get the representation of the points in the Cartesian plane, as shown in Figure 9-12.

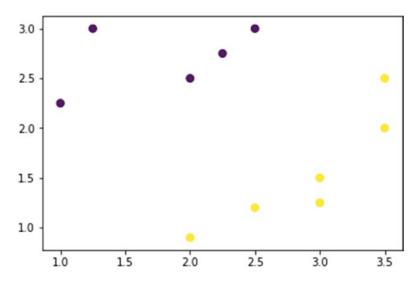


Figure 9-12. The testing set

Now you will use this testing set to evaluate the SLP neural network and calculate the accuracy.

```
In [ ]: init = tf.global variables initializer()
    ...: with tf.Session() as sess:
             sess.run(init)
    . . . :
             for i in range(training epochs):
                     sess.run(optimizer, feed dict = {x: inputX, y: inputY})
             pred = tf.nn.softmax(evidence)
             result = sess.run(pred, feed dict = {x: testX})
    . . . :
             correct prediction = tf.equal(tf.argmax(pred, 1),
    . . . :
             tf.argmax(testY, 1))
    . . . :
             # Calculate accuracy
             accuracy = tf.reduce mean(tf.cast(correct prediction, "float"))
             print("Accuracy:", accuracy.eval({x: testX, y: testY}))
    . . . :
Accuracy: 1.0
```

Apparently, the neural network was able to correctly classify all 11 past champions. It displays the points on the Cartesian plane with the same system of color gradations ranging from dark blue to yellow.

```
In [ ]: yc = result[:,1]
    ...: plt.scatter(testX[:,0],testX[:,1],c=yc, s=50, alpha=1)
    ...: plt.show()
```

You will get the representation of the points in the Cartesian plane, as shown in Figure 9-13.

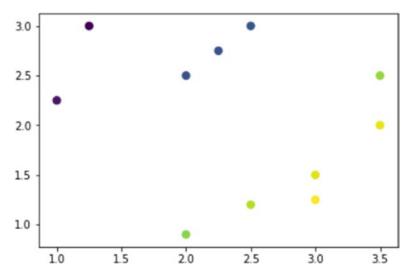


Figure 9-13. The estimate of the class to which the testing set points belong

The results can be considered optimal, given the simplicity of the model used and the small amount of data used in the training set. Now you will face the same problem with a more complex neural network, the Perceptron Multi Layer.

Multi Layer Perceptron (with One Hidden Layer) with TensorFlow

In this section, you will deal with the same problem as in the previous section, but using an MLP (Multi Layer Perceptron) neural network.

Start a new IPython session, resetting the kernel. As for the first part of the code, it remains the same as the previous example.

```
In [1]: import tensorflow as tf
    ...: import numpy as np
    ...: import matplotlib.pyplot as plt
    ...:
    ...: #Training set
    ...: inputX = np.arr
ay([[1.,3.],[1.,2.],[1.,1.5],[1.5,2.],[2.,3.],[2.5,1.5],
[2.,1.],[3.,1.],[3.,2.],[3.5,1.],[3.5,3.]])
    ...: inputY = [[1.,0.]]*6+ [[0.,1.]]*5
    ...:
    ...: learning_rate = 0.001
    ...: training_epochs = 2000
    ...: display_step = 50
    ...: n_samples = 11
    ...: batch_size = 11
    ...: total batch = int(n samples/batch size)
```

The MLP Model Definition

As you saw earlier in the chapter, a neural network MLP differs from a SLP neural network in that it can have one or more hidden layers.

Therefore, you will write parameterized code that allows you to work in the most general way possible, establishing at the time of definition the number of hidden layers present in the neural network and how many neurons they are composed of.

Define two new parameters that define the number of neurons present for each hidden layer. The n_hidden_1 parameter will indicate how many neurons are present in the first hidden layer, while n_hidden_2 will indicate how many neurons are present in the second hidden layer.

To start with a simple case, you will start with an MLP neural network with only one hidden layer consisting of only two neurons. Let's comment on the part related to the second hidden layer.

As for the n_input and n_classes parameters, they will have the same values as the previous example with the SLP neural network.

```
In [2]: # Network Parameters
...: n_hidden_1 = 2 # 1st layer number of neurons
...: #n_hidden_2 = 0 # 2nd layer number of neurons
...: n_input = 2 # size data input
...: n_classes = 2 # classes
...:
```

The definition of the placeholders is also the same as the previous example.

```
In [3]: # tf Graph input
    ...: X = tf.placeholder("float", [None, n_input])
    ...: Y = tf.placeholder("float", [None, n_classes])
    ...:
```

Now you have to deal with the definition of the various W and bias b weights for the different connections. The neural network is now much more complex, having several layers to take into account. An efficient way to parameterize them is to define them as follows, commenting out the weight and bias parameters for the second hidden layer (only for the MLP with one hidden layer as this example).

```
In [4]: # Store layers weight & bias
   ...: weights = {
             'h1': tf.Variable(tf.random normal([n input, n hidden 1])),
   . . . :
            #'h2': tf.Variable(tf.random normal([n hidden 1, n hidden 2])),
   . . . :
             'out': tf.Variable(tf.random normal([n hidden 1, n classes]))
   . . . :
   ...: }
   ...: biases = {
             'b1': tf.Variable(tf.random normal([n hidden 1])),
   . . . :
            #'b2': tf.Variable(tf.random normal([n hidden 2])),
   . . . :
             'out': tf.Variable(tf.random normal([n classes]))
   . . . :
   ...: }
   . . . :
```

To create a neural network model that takes into account all the parameters you've specified dynamically, you need to define a convenient function, which you'll call multilayer_perceptron().

```
In [5]: # Create model
    ...: def multilayer_perceptron(x):
    ...: layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
    ...: #layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    ...: # Output fully connected layer with a neuron for each class
    ...: out_layer = tf.matmul(layer_1, weights['out']) + biases['out']
    ...: return out_layer
    ...:
```

Now you can build the model by calling up the function you just defined.

```
In [6]: # Construct model
    ...: evidence = multilayer_perceptron(X)
    ...: y_ = tf.nn.softmax(evidence)
    ...:
```

The next step is to define the cost function and choose an optimization method. For MLP neural networks, a good choice is tf.train.AdamOptimizer() as an optimization method.

With these last two lines you have completed the definition of the model of the MLP neural network. Now you can move on to creating a session to implement the learning phase.

Learning Phase

As in the previous example, you will now define two lists that will contain the number of epochs and the measured cost values for each of them. You will also initialize all the variables before starting the session.

```
In [8]: avg_set = []
...: epoch_set = []
...: init = tf.global_variables_initializer()
...:
```

Now you are ready to start implementing the learning session. Open the session with the following instructions (remember not to press Enter, but Enter+Ctrl to insert other commands later):

Now it implements the code to execute for each epoch, and inside it a scan for each batch belonging to the training set. In this case you have a training set consisting of a single batch, so you will have only one iteration in which you will directly assign inputX and inputY to batch_x and batch_y. In other cases you will need to implement a function, such as next_batch(batch_size), which subdivides the entire training set (for example, inputdata) into different batches, progressively returning them as a return value.

At each batch cycle the cost function will be minimized with sess.run([optimizer, cost]), which will correspond to a partial cost. All batches will contribute to the calculation of the average cost of all the avg_cost batches. However, in this case, since you have only one batch, the avg_cost is equivalent to the cost of the entire training set.

```
In [9]: with tf.Session() as sess:
              sess.run(init)
    . . . :
             for epoch in range(training epochs):
    ••••
                 avg_cost = 0.
    ...:
                 # Loop over all batches
                 for i in range(total batch):
    • • • •
                      #batch_x, batch_y = inputdata.next_batch(batch_size)
    ...:
                      TO BE IMPLEMENTED
                      batch x = inputX
    •••
                      batch_y = inputY
                      _, c = sess.run([optimizer, cost], feed_dict={X:
    •••
                      batch_x, Y: batch_y})
```

```
...: # Compute average loss
...: avg_cost += c / total_batch
```

Every certain number of epochs, you will certainly want to display the value of the current cost on the terminal and add these values to the avg_set and epoch_set lists, as in the previous example with SLP.

```
In [9]: with tf.Session() as sess:
               sess.run(init)
    . . . :
    . . . :
              for epoch in range(training epochs):
    . . . :
                  avg cost = 0.
    . . . :
                  # Loop over all batches
    . . . :
                  for i in range(total batch):
    . . . :
                        #batch x, batch y = inputdata.next batch(batch size)
    . . . :
                        TO BE IMPLEMENTED
                       batch x = inputX
    . . . :
                       batch y = inputY
    . . . :
                        , c = sess.run([optimizer, cost], feed dict={X:
    . . . :
                        batch x, Y: batch y})
                       # Compute average loss
    . . . :
                       avg cost += c / total batch
    . . . :
                  if epoch % display step == 0:
    ••••
                      print("Epoch:", '%04d' % (epoch+1), "cost={:.9f}".
    •••
                       format(avg_cost))
                      avg set.append(avg cost)
    •••
                      epoch set.append(epoch + 1)
    ••••
    ...:
              print("Training phase finished")
    •••
```

Before running the session, add a few lines of instructions to view the results of the learning phase.

```
# Loop over all batches
 . . . :
              for i in range(total batch):
 . . . :
                    #batch x, batch y = inputdata.next
 . . . :
                    batch(batch size) TO BE IMPLEMENTED
                    batch x = inputX
 . . . :
                    batch y = inputY
                    , c = sess.run([optimizer, cost], feed
 . . . :
                    dict={X: batch x, Y: batch y})
                    # Compute average loss
 . . . :
                    avg cost += c / total batch
 . . . :
              if epoch % display step == 0:
 . . . :
                   print("Epoch:", '%04d' % (epoch+1), "cost={:.9f}".
 . . . :
                   format(avg cost))
                   avg set.append(avg cost)
 . . . :
                   epoch set.append(epoch + 1)
 . . . :
 . . . :
          print("Training phase finished")
 . . . :
          last result = sess.run(y , feed dict = {X: inputX})
          training cost = sess.run(cost, feed dict = {X:
•••
          inputX, Y: inputY})
          print("Training cost =", training cost)
••••
          print("Last result =", last result)
•••
•••
```

Finally, you can execute the session and obtain the following results of the learning phase.

```
Epoch: 0001 cost=0.454545379
Epoch: 0051 cost=0.454544961
Epoch: 0101 cost=0.454536706
Epoch: 0151 cost=0.454053283
Epoch: 0201 cost=0.391623020
Epoch: 0251 cost=0.197094142
Epoch: 0301 cost=0.145846367
Epoch: 0351 cost=0.121205062
Epoch: 0401 cost=0.106998600
Epoch: 0451 cost=0.097896501
```

```
Epoch: 0501 cost=0.091660112
Epoch: 0551 cost=0.087186322
Epoch: 0601 cost=0.083868250
Epoch: 0651 cost=0.081344165
Epoch: 0701 cost=0.079385243
Epoch: 0751 cost=0.077839941
Epoch: 0801 cost=0.076604150
Epoch: 0851 cost=0.075604357
Epoch: 0901 cost=0.074787453
Epoch: 0951 cost=0.074113965
Epoch: 1001 cost=0.073554687
Epoch: 1051 cost=0.073086999
Epoch: 1101 cost=0.072693743
Epoch: 1151 cost=0.072361387
Epoch: 1201 cost=0.072079219
Epoch: 1251 cost=0.071838818
Epoch: 1301 cost=0.071633331
Epoch: 1351 cost=0.071457185
Epoch: 1401 cost=0.071305975
Epoch: 1451 cost=0.071175829
Epoch: 1501 cost=0.071063705
Epoch: 1551 cost=0.070967078
Epoch: 1601 cost=0.070883729
Epoch: 1651 cost=0.070811756
Epoch: 1701 cost=0.070749618
Epoch: 1751 cost=0.070696011
Epoch: 1801 cost=0.070649780
Epoch: 1851 cost=0.070609920
Epoch: 1901 cost=0.070575655
Epoch: 1951 cost=0.070546091
Training phase finished
Training cost = 0.0705207
Last result = [[ 0.994959 0.00504093]
[ 0.97760069 0.02239927]
[ 0.95353836 0.04646158]
[ 0.91986829 0.0801317 ]
```

CHAPTER 9 DEEP LEARNING WITH TENSORFLOW

```
[ 0.93176246 0.06823757]
[ 0.27190316 0.7280969 ]
[ 0.40035316 0.59964687]
[ 0.04414944 0.9558506 ]
[ 0.17278962 0.82721037]
[ 0.01200284 0.98799717]
[ 0.19901533 0.80098462]]
```

Now you can view the data collected in the avg_set and epoch_set lists to analyze the progress of the learning phase.

```
In [10]: plt.plot(epoch_set,avg_set,'o',label = 'MLP Training phase')
    ...: plt.ylabel('cost')
    ...: plt.xlabel('epochs')
    ...: plt.legend()
    ...: plt.show()
    ...:
```

You can analyze the learning phase of the neural network by following the trend of the cost value, as shown in Figure 9-14.

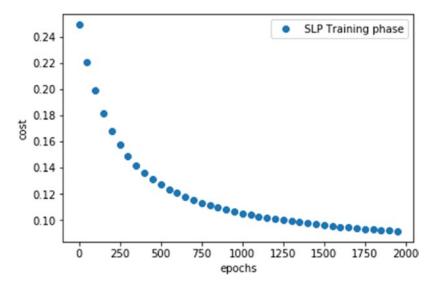


Figure 9-14. The cost value decreases during the learning phase (cost optimization)

In Figure 9-14, you can see that during the learning epochs there is a huge initial improvement as far as the cost optimization is concerned, then in the final part, the epoch improvements become smaller and then converge to zero.

From the analysis of the graph, however, it can be ascertained that the learning cycle of the neural network has been completed in the assigned epoch cycles. So you can consider the neural network as learned. Now you can move on to the evaluation phase.

Test Phase and Accuracy Calculation

Now that you have an educated neural network, you can make the evaluation text and calculate the accuracy.

Now that you have a neural network instructed to perform the assignment, you can move on to the evaluation phase. Then you will calculate the accuracy of the model you generated.

To test this MLP neural network model, you will use the same testing set used in the SLP neural network example.

```
In [11]: #Testing set
    ...: testX = np.arr
ay([[1.,2.25],[1.25,3.],[2,2.5],[2.25,2.75],[2.5,3.],
[2.,0.9],[2.5,1.2],[3.,1.25],[3.,1.5],[3.5,2.],[3.5,2.5]])
    ...: testY = [[1.,0.]]*5 + [[0.,1.]]*6
    ...:
```

It is not necessary now to view this testing set since you already did so in the previous section (you can check it if necessary).

Launch the session with the training test and evaluate the correctness of the results obtained by calculating the accuracy.

```
feed dict={X: batch x, Y: batch y})
. . . :
         # Test model
. . . :
         pred = tf.nn.softmax(evidence)
. . . :
         result = sess.run(pred, feed dict = {X: testX})
. . . :
         correct prediction = tf.equal(tf.argmax(pred, 1),
. . . :
         tf.argmax(Y, 1))
. . . :
         # Calculate accuracy
         accuracy = tf.reduce mean(tf.cast(correct prediction, "float"))
. . . :
         print("Accuracy:", accuracy.eval({X: testX, Y: testY}))
...:
         print(result)
. . . :
```

By running the entire session, you will get the following result.

```
Accuracy: 1.0

Result = [[ 0.98507893 0.0149211 ]
[ 0.99064976 0.00935023]
[ 0.86788082 0.13211915]
[ 0.83086801 0.16913196]
[ 0.78604239 0.21395761]
[ 0.36329603 0.63670397]
[ 0.19036612 0.80963391]
[ 0.06203776 0.93796223]
[ 0.0883315 0.91166848]
[ 0.05140254 0.94859749]
[ 0.10417036 0.89582968]]
```

Also in the case of the MLP neural network you have obtained 100% accuracy (11 points correctly classified on 11 points total). Now show the classification obtained by drawing points on the Cartesian plane.

```
In [13]: yc = result[:,1]
    ...: print(yc)
    ...: plt.scatter(testX[:,0],testX[:,1],c=yc, s=50, alpha=1)
    ...: plt.show()
    ...:
```

```
[ 0.0149211 0.00935023 0.13211915 0.16913196 0.21395761 0.63670397 0.80963391 0.93796223 0.91166848 0.94859749 0.89582968]
```

You will get a chart (see Figure 9-15) of the points distributed on the Cartesian plane with the color going from blue to yellow, which indicates the probability of belonging to one of the two classes.

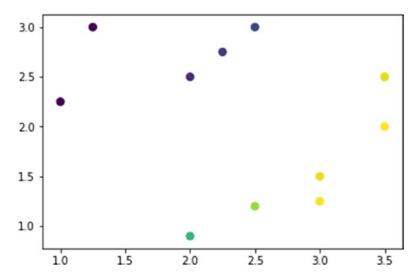


Figure 9-15. The estimate of the class to which the testing set points belong

Multi Layer Perceptron (with Two Hidden Layers) with TensorFlow

In this section, you will extend the previous structure by adding two neurons to the first hidden layer and adding a second hidden layer with two neurons.

Start a new session of IPython and rewrite the code of the previous example, which remained the same except for some parameters (you see them in the code text).

Thanks to the parameterization of the code you used, it is very easy to extend and modify the structure of the MLP neural network. In this case you only have to change the following parameters and re-run it all over again.

```
In [1]: import tensorflow as tf
    ...: import numpy as np
    ...: import matplotlib.pyplot as plt
    ...:
```

```
...: #Training set
   ...: inputX = np.arr
ay([[1.,3.],[1.,2.],[1.,1.5],[1.5,2.],[2.,3.],[2.5,1.5],
[2.,1.],[3.,1.],[3.,2.],[3.5,1.],[3.5,3.]]
   ...: inputY = [[1.,0.]]*6+[[0.,1.]]*5
   ...: learning rate = 0.001
   ...: training epochs = 2000
   ...: display step = 50
   \dots: n samples = 11
   ...: batch size = 11
   ...: total batch = int(n samples/batch size)
   . . . :
   ...: # Network Parameters
   ...: n_hidden_1 = 4 # 1st layer number of neurons
   ...: n_hidden_2 = 2 # 2nd layer number of neurons
   ...: n input = 2 # size data input
   ...: n classes = 2 # classes
   . . . :
   ...: # tf Graph input
   ...: X = tf.placeholder("float", [None, n input])
   ...: Y = tf.placeholder("float", [None, n classes])
   . . . :
   ...: # Store layers weight & bias
   ...: weights = {
            'h1': tf.Variable(tf.random normal([n input, n hidden 1])),
   . . . :
            'h2': tf.Variable(tf.random normal([n hidden 1, n hidden 2])),
   ••••
            'out': tf.Variable(tf.random normal([n hidden 2, n classes]))
   . . . :
   ...: }
   ...: biases = {
            'b1': tf.Variable(tf.random normal([n hidden 1])),
   ...:
            'b2': tf.Variable(tf.random normal([n hidden 2])),
   ••••
            'out': tf.Variable(tf.random normal([n classes]))
   . . . :
   ...: }
   . . . :
   ...: # Create model
```

```
...: def multilayer perceptron(x):
         layer 1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
. . . :
         layer 2 = tf.add(tf.matmul(layer 1, weights['h2']),
. . . :
         biases['b2'])
         # Output fully connected layer with a neuron for each class
. . . :
         out layer = tf.add(tf.matmul(layer 2, weights['out']),
. . . :
         biases['out'])
         return out layer
. . . :
. . . :
...: # Construct model
...: evidence = multilayer perceptron(X)
...: y = tf.nn.softmax(evidence)
. . . :
...: # Define cost and optimizer
...: cost = tf.reduce sum(tf.pow(Y-y ,2))/ (2 * n samples)
...: optimizer = tf.train.AdamOptimizer(learning rate=learning rate).
     minimize(cost)
. . . :
...: avg set = []
...: epoch set = []
...: init = tf.global variables initializer()
...: with tf.Session() as sess:
         sess.run(init)
. . . :
         for epoch in range(training epochs):
. . . :
               avg cost = 0.
. . . :
              # Loop over all batches
. . . :
              for i in range(total batch):
. . . :
                   #batch x, batch y = inputdata.next batch(batch size)
. . . :
                   TO BE IMPLEMENTED
                   batch x = inputX
. . . :
                   batch y = inputY
. . . :
                   _, c = sess.run([optimizer, cost],
. . . :
                   feed dict={X: batch x, Y: batch y})
                   # Compute average loss
. . . :
```

CHAPTER 9 DEEP LEARNING WITH TENSORFLOW

```
avg cost += c / total batch
. . . :
               if epoch % display step == 0:
. . . :
                   print("Epoch:", '%04d' % (epoch+1), "cost={:.9f}".
. . . :
                   format(avg cost))
                   avg set.append(avg cost)
. . . :
                   epoch set.append(epoch + 1)
. . . :
         print("Training phase finished")
. . . :
         last result = sess.run(y , feed dict = {X: inputX})
. . . :
         training cost = sess.run(cost, feed dict = {X: inputX, Y:
. . . :
         inputY})
...:
         print("Training cost =", training cost)
         print("Last result =", last result)
. . . :
. . . :
```

By running the session, the following results are obtained.

```
Epoch: 0001 cost=0.545502067
Epoch: 0051 cost=0.545424163
Epoch: 0101 cost=0.545238674
Epoch: 0151 cost=0.540347397
Epoch: 0201 cost=0.439834774
Epoch: 0251 cost=0.137688771
Epoch: 0301 cost=0.093460977
Epoch: 0351 cost=0.082653232
Epoch: 0401 cost=0.077882372
Epoch: 0451 cost=0.075265951
Epoch: 0501 cost=0.073665120
Epoch: 0551 cost=0.072624505
Epoch: 0601 cost=0.071925417
Epoch: 0651 cost=0.071447782
Epoch: 0701 cost=0.071118690
Epoch: 0751 cost=0.070890851
Epoch: 0801 cost=0.070732787
Epoch: 0851 cost=0.070622921
Epoch: 0901 cost=0.070546582
```

```
Epoch: 0951 cost=0.070493549
Epoch: 1001 cost=0.070456795
Epoch: 1051 cost=0.070431381
Epoch: 1101 cost=0.070413873
Epoch: 1151 cost=0.070401885
Epoch: 1201 cost=0.070393734
Epoch: 1251 cost=0.070388250
Epoch: 1301 cost=0.070384577
Epoch: 1351 cost=0.070382126
Epoch: 1401 cost=0.070380524
Epoch: 1451 cost=0.070379473
Epoch: 1501 cost=0.070378840
Epoch: 1551 cost=0.070378408
Epoch: 1601 cost=0.070378155
Epoch: 1651 cost=0.070378013
Epoch: 1701 cost=0.070377886
Epoch: 1751 cost=0.070377827
Epoch: 1801 cost=0.070377797
Epoch: 1851 cost=0.070377767
Epoch: 1901 cost=0.070377775
Epoch: 1951 cost=0.070377789
Training phase finished
Training cost = 0.0703778
Last result = [[ 0.99683338 0.00316658]
[ 0.98408335 0.01591668]
[ 0.96478891 0.0352111 ]
[ 0.93620235 0.06379762]
[ 0.94662082 0.05337923]
[ 0.26812935 0.73187065]
[ 0.40619871 0.59380126]
[ 0.03710628 0.96289372]
[ 0.16402677 0.83597326]
[ 0.0090636 0.99093646]
[ 0.19166829 0.80833173]]
```

View the progress of the learning phase in the usual way.

```
In [2]: plt.plot(epoch_set,avg_set,'o',label = 'MLP Training phase')
...: plt.ylabel('cost')
...: plt.xlabel('epochs')
...: plt.legend()
...: plt.show()
...:
```

You can analyze the learning phase of the neural network by following the trend of the cost value, as shown in Figure 9-16.

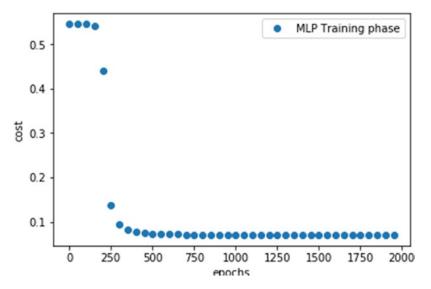


Figure 9-16. The trend of the cost during the learning phase for a MLP with two hidden layers

From what you can see in Figure 9-16, learning in this case is much faster than the previous case (at 1,000 epochs, you would be fine). The optimized cost is almost the same as in the previous neural network (0.0703778 versus 0.0705207 in the previous case).

Test Phase and Accuracy Calculation

Here you will also use the same testing set to evaluate the accuracy of the MLP neural network to classify the samples in analysis.

```
In [3]: #Testing set
    ...: testX = np.array([[1.,2.25],[1.25,3.],[2,2.5],[2.25,2.75],[2.5,3.],
402
```

```
[2.,0.9],[2.5,1.2],[3.,1.25],[3.,1.5],[3.5,2.],[3.5,2.5]]
   ...: testY = [[1.,0.]]*5 + [[0.,1.]]*6
   . . . :
In [4]: with tf.Session() as sess:
            sess.run(init)
   . . . :
   ...:
            for epoch in range(training epochs):
   . . . :
                 for i in range(total batch):
   . . . :
                     batch x = inputX
   . . . :
                     batch y = inputY
   . . . :
                     _, c = sess.run([optimizer, cost],
   . . . :
                     feed dict={X: batch x, Y: batch y})
   . . . :
           # Test model
   . . . :
           pred = tf.nn.softmax(evidence) # Apply softmax to logits
   . . . :
           result = sess.run(pred, feed dict = {X: testX})
   . . . :
           correct prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(Y, 1))
   . . . :
           # Calculate accuracy
   . . . :
           accuracy = tf.reduce mean(tf.cast(correct prediction, "float"))
   . . . :
           print("Accuracy:", accuracy.eval({X: testX, Y: testY}))
   . . . :
           print("Result = ", result)
   . . . :
   By executing the session, you will get the following result.
Accuracy: 1.0
Result = [[0.98924851 \ 0.01075149]]
[ 0.99344641 0.00655352]
[ 0.88655776 0.11344216]
[ 0.85117978 0.14882027]
[ 0.8071683 0.19283174]
[ 0.36805421 0.63194579]
[ 0.18399802 0.81600195]
[ 0.05498539 0.9450146 ]
[ 0.08029026 0.91970974]
[ 0.04467025 0.95532972]
[ 0.09523712 0.90476292]]
```

Here, too, you have 100% accuracy, and with matplotlib showing the test set points on the Cartesian plane with the usual color gradient system, you will get very similar results to the previous examples (see Figure 9-17).

```
In [5]: yc = result[:,1]
    ...: plt.scatter(testX[:,0],testX[:,1],c=yc, s=50, alpha=1)
    ...: plt.show()
    ...:
```

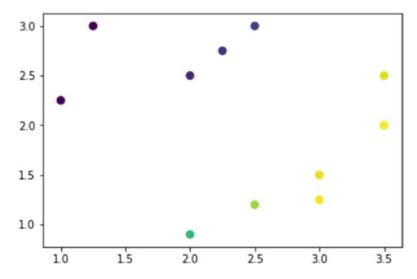


Figure 9-17. The estimate of the class to which the testing set points belong

Evaluation of Experimental Data

Now you will do something you have not done so far. So far, you have created new models of neural networks and taken care of the learning phase so that you can learn how to classify the particular type of data you chose.

Of the data you used for the training set and the test set, you knew perfectly the expected values (contained in y). In this case, the value corresponded to the class to which it belongs. So you applied *supervised learning*.

Finally, with the testing phase and the calculation of the accuracy, you evaluated the validity of the model of neural network.

Now let's move on to the proper classification, passing to the neural network a very large amount of data (points on the Cartesian plane) without knowing what class they belong to. It is in fact the moment that the neural network informs you about the possible classes.

To this end, the program simulates experimental data, creating points on the Cartesian plane that are completely random. For example, generate an array containing 1,000 random points.

```
In [ ]: test = 3*np.random.random((1000,2))
```

Then submit these points to the neural network to determine the class of membership.

```
In [7]: with tf.Session() as sess:
             sess.run(init)
   . . . :
   . . . :
             for epoch in range(training epochs):
   . . . :
                 for i in range(total batch):
   . . . :
                      batch x = inputX
   . . . :
                      batch y = inputY
   . . . :
                      _, c = sess.run([optimizer, cost],
   . . . :
                      feed dict={X: batch x, Y: batch y})
   . . . :
   ...: # Test model
   ...: pred = tf.nn.softmax(evidence)
   ...: result = sess.run(pred, feed dict = {X: test})
   . . . :
```

Finally you can visualize the experimental data based on their probability of classification, evaluated by the neural network.

```
In [8]: yc = result[:,1]
    ...: plt.scatter(test[:,0],test[:,1],c=yc, s=50, alpha=1)
    ...: plt.show()
    ...:
```

You will get a chart, as shown in Figure 9-18.

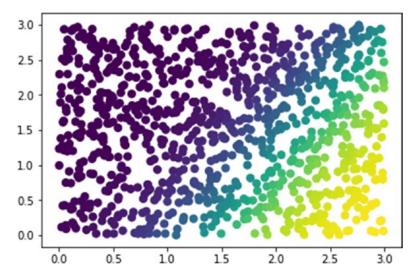


Figure 9-18. A chart with all the experimental points and the estimate of the classes to which they belong

As you can see according to the shades, two areas of classification are delimited on the plane, with the parts around the green indicating the zones of uncertainty.

The classification results can be made more comprehensible and clearer by deciding to establish based on the probability if the point belongs to one or the other class. If the probability of a point belonging to a class is greater than 0.5 then it will belong to it.

```
In [9]: yc = np.round(result[:,1])
    ...: plt.scatter(test[:,0],test[:,1],c=yc, s=50, alpha=1)
    ...: plt.show()
    ...:
```

You will get a chart, as shown in Figure 9-19.

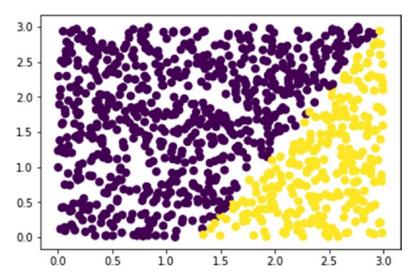


Figure 9-19. The points delimit the two regions corresponding to the two belonging classes

In the chart shown in Figure 9-19, you can clearly see the two regions of the Cartesian plane that characterize the two classes of belonging.

Conclusions

In this chapter, you learned about the branch of machine learning that uses neural networks as a computing structure, called deep learning. You read an overview of the basic concepts of deep learning, which involves neural networks and their structure. Finally, thanks to the TensorFlow library, you implemented different types of neural networks, such as Perceptron Single Layer and Perceptron Multi Layer.

Deep learning, with all its techniques and algorithms, is a very complex subject, and it is practically impossible to treat it properly in one chapter. However, you now have become familiar with deep learning and can begin implementing more complex neural networks.

An Example— Meteorological Data

One type of data that's easier to find on the net is meteorological data. Many sites provide historical data on many meteorological parameters such as pressure, temperature, humidity, rain, etc. You only need to specify the location and the date to get a file with datasets of measurements collected by weather stations. These data are a source of a wide range of information. As you read in the first chapter of this book, the purpose of data analysis is to transform the raw data into information and then convert it into knowledge.

In this chapter, you will see a simple example of how to use meteorological data. This example will be useful to get a general idea of how to apply many of the techniques seen in the previous chapters.

A Hypothesis to Be Tested: The Influence of the Proximity of the Sea

At the time of writing of this chapter, I find myself at the beginning of summer and temperatures rising. On the weekend, many inland people travel to mountain villages or cities close to the sea, in order to enjoy a little refreshment and get away from the sultry weather of the inland cities. This has always made me wonder what effect the proximity of the sea has on the climate.

This simple question can be a good starting point for data analysis. I don't want to pass this chapter off as something scientific; it's just a way for someone passionate about data analysis to put knowledge into practice in order to answer this question—what influence, if any, does the proximity of the sea have on local climate?

The System in the Study: The Adriatic Sea and the Po Valley

Now that the problem has been defined, it is necessary to look for a system that is well suited to the study of the data and to provide a setting suitable for this question.

First you need a sea. Well, I'm in Italy and I have many seas to choose from, since Italy is a peninsula surrounded by seas. Why limit myself to Italy? Well, the problem involves a behavior typical of the Italians, that is, they take refuge in places close to the sea during the summer to avoid the heat of the hinterland. Not knowing if this behavior is the same for people of other nations, I will only consider Italy as a system of study.

But what areas of Italy might we consider studying? Can we assess the effects of the sea at various distances? This creates a lot of problems. In fact, Italy is rich in mountainous areas and doesn't have a lot territory that uniformly extends for many kilometers inland. So, to assess the effects of the sea, I exclude the mountains, as they may introduce many other factors that also affect climate, such as altitude, for example.

A part of Italy that is well suited to this assessment is the Po Valley. This plain starts from the Adriatic Sea and spreads inland for hundreds of kilometers (see Figure 10-1). It is surrounded by mountains, but the width of the valley mitigates any mountain effects. It also has many towns and so it will be easy to choose a set of cities increasingly distant from the sea, to cover a distance of almost 400 km in this evaluation.

Figure 10-1. An image of the Po Valley and the Adriatic Sea (Google Maps)

CHAPTER 10 AN EXAMPLE— METEOROLOGICAL DATA

The first step is to choose a set of 10 cities that will serve as reference standards. These cities are selected in order to cover the entire range of the plain (see Figure 10-2).

Figure 10-2. The 10 cities chosen as sample (there is another one used as a reference for take distances from the sea)

In Figure 10-2 you can see the 10 cities that were chosen to analyze weather data: five cities within the first 100 km and the other five distributed in the remaining 300 km.

Here are the chosen cities:

- Ferrara
- Torino
- Mantova
- Milano
- Ravenna
- Asti
- Bologna
- Piacenza
- Cesena
- Faenza

Now we have to determine the distances of these cities from the sea. You can follow many procedures to obtain these values. In this case, you can use the service provided by the site TheTimeNow (http://www.thetimenow.com/distance-calculator.php), which is available in many languages (see Figure 10-3).

Figure 10-3. The TheTimeNow website allows you to calculate distances between two cities

Thanks to this service, it is possible to calculate the approximate distances of the cities from the sea. You can do this by selecting a city on the coast as the destination. For many of them you can choose the city of Comacchio as a reference to calculate the distance from the sea (see Figure 10-2). Once you have determined the distances from the 10 cities, you will get the values shown in Table 10-1.

Table 10-1. The Distances from the Sea of the 10 Cities

City	Diotonoo (km)	Note				
City	Distance (km)	Note				
Ravenna 8		Measured with Google Earth				
Cesena 14		Measured with Google Earth				
Faenza 37		Distance Faenza-Ravenna+8 km				
Ferrara 47 Bologna 71 Mantova 121		Distance Ferrara-Comacchio				
		Distance Bologna-Comacchio Distance Mantova-Comacchio				
						Piacenza
Milano	250	Distance Milano-Comacchio				
Asti	315	Distance Asti-Comacchio Distance Torino-Comacchio				
Torino	357					

Finding the Data Source

Once the system under study has been defined, you need to establish a data source from which to obtain the needed data. By browsing the Internet, you can discover many sites that provide meteorological data measured from various locations around the world. One such site is Open Weather Map, available at http://openweathermap.org/ (see Figure 10-4).

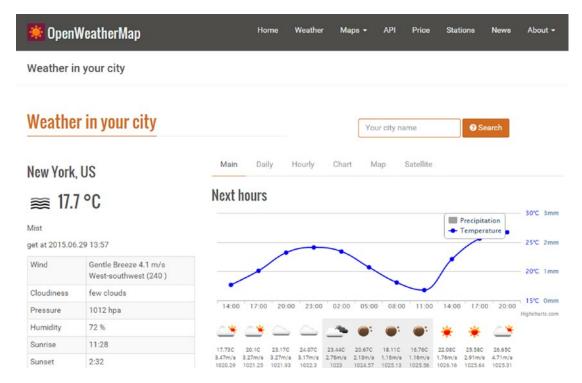


Figure 10-4. The OpenWeatherMap site

After you've signed up for an account and received an app ID code, this site enables you to capture data by specifying the city through a request via URL.

http://api.openweathermap.org/data/2.5/weather?q=Atlanta,US&appid=5807ad2a4
5eb6bf4e81d137dafe74e15

This request will return a JSON file containing all the information about the current weather situation in the city in question (see Figure 10-5). This JSON file will be submitted for data analysis using the Python pandas library.

```
← → C ① api.openweathermap.org/data/2.5/weather?q=Atlanta,US&appid=5807ad2a45eb6bf4e... ☆ »

{"coord":{"lon":-84.39,"lat":33.75},"weather":
[{"id":701,"main":"Mist","description":"mist","icon":"50n"}],"base":"stations","main":
{"temp":289.35,"pressure":1019,"humidity":82,"temp_min":287.15,"temp_max":291.15},"visibility":16093,"wind":
{"speed":1.15,"deg":296.002},"clouds":{"all":1},"dt":1526020500,"sys":
{"type":1,"id":789,"message":0.0022,"country":"US","sunrise":1526035168,"sunset":1526084930},"id":4180439,"na me":"Atlanta","cod":200}
```

Figure 10-5. The JSON file containing the meteorological data on the city requested

Data Analysis on Jupyter Notebook

This chapter will address data analysis using Jupyter Notebook. This will allow you to enter and study portions of code gradually.

To start the Jupyter Notebook application, launch the following command from the command line:

```
jupyter notebook
```

After the service has started, create a new Notebook. Let's start by importing the necessary libraries:

```
import numpy as np
import pandas as pd
import datetime
```

The first step is to study the structure of the data received from the site through a specific request.

Choose a city from those chosen for our study, for example Ferrara, and make a request for its current meteorological data, using the URL specified. Without a browser, you can get the text content of a page by using the request.get() text function. Since the content obtained is in JSON format we can directly read the text received following this format with the <code>json.load()</code> function.

```
import json
import requests
ferrara = json.loads(requests.get('http://api.openweathermap.org/data/2.5/
weather?q=Ferrara,IT&appid=5807ad2a45eb6bf4e81d137dafe74e15').text)
```

ferrara

Now you can see the contents of the JSON file with the meteorological data relating to the city of Ferrara.

```
{'base': 'stations',
 'clouds': {'all': 40},
 'cod': 200,
 'coord': {'lat': 44.84, 'lon': 11.62},
 'dt': 1525960500,
 'id': 3177090,
 'main': {'humidity': 64,
  'pressure': 1010,
  'temp': 296.58,
  'temp max': 297.15,
  'temp min': 296.15},
 'name': 'Ferrara',
 'sys': {'country': 'IT',
  'id': 5816,
  'message': 0.0051,
  'sunrise': 1525924226,
  'sunset': 1525977007,
  'type': 1},
 'visibility': 10000,
 'weather': [{'description': 'scattered clouds',
   'icon': '03d',
   'id': 802,
   'main': 'Clouds'}],
 'wind': {'deg': 240, 'speed': 3.1}}
   When you want to analyze the structure of a JSON file, a useful command can be the
following:
list(ferrara.keys())
['coord',
 'weather',
 'base',
```

```
'main',
'visibility',
'wind',
'clouds',
'dt',
'sys',
'id',
'name',
'cod']
```

This way, you can have a list of all the keys that make up the internal structure of the JSON. Once you know the name of these keys, you can easily access internal data.

```
print('Coordinates = ', ferrara['coord'])
print('Weather = ', ferrara['weather'])
print('base = ', ferrara['base'])
print('main = ', ferrara['main'])
print('visibility = ', ferrara['visibility'])
print('wind = ', ferrara['wind'])
print('clouds = ', ferrara['clouds'])
print('dt = ', ferrara['dt'])
print('sys = ', ferrara['sys'])
print('id = ', ferrara['id'])
print('name = ', ferrara['name'])
print('cod = ', ferrara['cod'])
Coordinates = {'lon': 11.62, 'lat': 44.84}
Weather = [{'id': 802, 'main': 'Clouds', 'description': 'scattered
clouds', 'icon': '03d'}]
base = stations
main = {'temp': 296.59, 'pressure': 1010, 'humidity': 64, 'temp min':
296.15, 'temp max': 297.15}
visibility = 10000
wind = {'speed': 3.1, 'deg': 240}
clouds = {'all': 40}
dt = 1525960500
```

```
sys = {'type': 1, 'id': 5816, 'message': 0.0029, 'country': 'IT',
'sunrise': 1525924227, 'sunset': 1525977006}
id = 3177090
name = Ferrara
cod = 200
```

Now you will choose the values that you consider most interesting or useful for this type of analysis. For example, an important value is temperature:

```
ferrara['main']['temp']
296.58
```

The purpose of this analysis of the initial structure is to identify the data that could be most important in the JSON structure. These data must be processed for analysis. That is, the data must be extracted from the structure, cleaned or modified according to our needs, and ordered within a dataframe. This way, you can then apply all the data analysis techniques presented in this book.

A convenient way to avoid repeating the same code is to insert some extraction procedures into a function, such as the following.

```
def prepare(city,city_name):
    temp = [ ]
    humidity = [ ]
    pressure = [ ]
    description = [ ]
    dt = [ ]
   wind speed = [ ]
   wind deg = [ ]
   temp.append(city['main']['temp']-273.15)
    humidity.append(city['main']['humidity'])
    pressure.append(city['main']['pressure'])
   description.append(city['weather'][0]['description'])
    dt.append(city['dt'])
   wind speed.append(city['wind']['speed'])
   wind deg.append(city['wind']['deg'])
    headings = ['temp', 'humidity', 'pressure', 'description', 'dt', 'wind
    speed', 'wind deg']
```

```
data = [temp,humidity,pressure,description,dt,wind_speed,wind_deg]
df = pd.DataFrame(data,index=headings)
city = df.T
city['city'] = city_name
city['day'] = city['dt'].apply(datetime.datetime.fromtimestamp)
return city
```

This function does nothing more than take the meteorological data you are interested in from the JSON structure, and once cleaned or modified (for example dates and times), that data are collected in a row of a dataframe (as shown in Figure 10-6).

```
t1 = prepare(ferrara, 'ferrara')
t1
```

t	temp	humidity	pressure	description	dt	wind_speed	wind_deg	city	day
0 1	18.39	82	1014	clear sky	1526021700	2.1	280	ferrara	2018-05-11 08:55:00

Figure 10-6. The dataframe obtained with the data processed from JSON extraction

Among all the parameters described in the JSON structure within the list column, here are the ones most appropriate for the study.

- Temperature
- Humidity
- Pressure
- Description
- Wind speed
- Wind degree

All these properties will be related to the time of acquisition expressed from the dt column, which contains a timestamp as type of data. This value is difficult to read, so you will convert it into a datetime format that allows you to express the date and time in a manner more familiar to you. The new column will be called day.

```
city['day'] = city['dt'].apply(datetime.datetime.fromtimestamp)
```

Temperature is expressed in degrees Kelvin, so you will need to convert these values to Celsius by subtracting 273.15 from each value.

Finally, you add the name of the city passed as a second argument to the prepare() function.

Data collection is performed at regular intervals to collect data during different times of the day. For example, you could use a program that executes these requests every hour. Each acquisition will have a row of the dataframe structure that will be added to a general dataframe related to the city, called for example, df_ferrara (as shown in Figure 10-7).

```
df_ferrara = t1
t2 = prepare(ferrara,'ferrara')
df_ferrara = df_ferrara.append(t2)
df ferrara
```

	temp	humidity	pressure	description	dt	wind_speed	wind_deg	city	day
0	18.39	82	1014	clear sky	1526021700	2.1	280	ferrara	2018-05-11 08:55:00
0	18.39	82	1014	clear sky	1526021700	2.1	280	ferrara	2018-05-11 08:55:00

Figure 10-7. The dataframe structure corresponding to a city

It often happens that some data useful for our analysis may not be present in the JSON source. In this case, you have to resort to other data sources and import the missing data into the structure. Within this example of analysis, the distances of cities from the sea are indispensable.

```
df_ravenna['dist'] = 8
df_cesena['dist'] = 14
df_faenza['dist'] = 37
df_ferrara['dist'] = 47
df_bologna['dist'] = 71
df_mantova['dist'] = 121
df_piacenza['dist'] = 200
df_milano['dist'] = 250
df_asti['dist'] = 315
df_torino['dist'] = 357
```

Analysis of Processed Meteorological Data

For practical purposes, I have already collected data from all the cities involved in the analysis. I have already processed and collected them in a dataframe, which I have saved as a CSV file.

If you want to refer to the data used in this chapter you have to load the 10 CSV files that I saved at the time of writing. These files contain data already processed to be used for this analysis.

```
df_ferrara=pd.read_csv('ferrara_270615.csv')
df_milano=pd.read_csv('milano_270615.csv')
df_mantova=pd.read_csv('mantova_270615.csv')
df_ravenna=pd.read_csv('ravenna_270615.csv')
df_torino=pd.read_csv('torino_270615.csv')
df_asti=pd.read_csv('asti_270615.csv')
df_bologna=pd.read_csv('bologna_270615.csv')
df_piacenza=pd.read_csv('piacenza_270615.csv')
df_cesena=pd.read_csv('cesena_270615.csv')
df_faenza=pd.read_csv('faenza_270615.csv')
```

Thanks to the read_csv() function of pandas, you can convert CSV files to the dataframe in just one step.

Once you have uploaded data for each city as a dataframe, you can easily see the content.

```
df_cesena
```

As you can see in Figure 10-8, Jupyter Notebook makes it much easier to read dataframes with the generation of graphical tables. Furthermore, you can see that each row shows the measured values for each hour of the day, covering a timeline of about 20 hours in the past.

CHAPTER 10 AN EXAMPLE— METEOROLOGICAL DATA

	Unnamed: 0	temp	humidity	pressure	description	dt	wind_speed	wind_deg	city	day	dist
0	0	23.34	82	1017	very heavy rain	1435387623	1.91	175.511	Cesena	2015-06-27 08:47:03	14
1	1	24.95	69	1018	very heavy rain	1435390801	2.01	159.500	Cesena	2015-06-27 09:40:01	14
2	2	25.67	73	1017	very heavy rain	1435394204	2.10	100.000	Cesena	2015-06-27 10:36:44	14
3	3	26.17	69	1017	very heavy rain	1435398652	3.10	120.000	Cesena	2015-06-27 11:50:52	14
4	4	27.07	61	1016	very heavy rain	1435402083	3.10	110.000	Cesena	2015-06-27 12:48:03	14
5	5	27.41	69	1016	very heavy rain	1435405721	3.60	110.000	Cesena	2015-06-27 13:48:41	14
6	6	27.38	65	1015	very heavy rain	1435409381	5.70	110.000	Cesena	2015-06-27 14:49:41	14
7	7	26.59	65	1014	very heavy rain	1435416585	5.10	110.000	Cesena	2015-06-27 16:49:45	14
8	8	27.16	65	1014	very heavy rain	1435420195	6.20	120.000	Cesena	2015-06-27 17:49:55	14
9	9	27.10	65	1014	very heavy rain	1435423927	6.70	120.000	Cesena	2015-06-27 18:52:07	14
10	10	26.01	73	1013	very heavy rain	1435427556	6.20	120.000	Cesena	2015-06-27 19:52:36	14
11	11	23.37	94	1015	very heavy rain	1435438070	2.60	90.000	Cesena	2015-06-27 22:47:50	14
12	12	22.48	83	1016	very heavy rain	1435441857	5.70	90.000	Cesena	2015-06-27 23:50:57	14
13	13	21.94	83	1016	very heavy rain	1435445495	2.10	210.000	Cesena	2015-06-28 00:51:35	14
14	14	20.26	94	1016	very heavy rain	1435452847	2.01	107.004	Cesena	2015-06-28 02:54:07	14
15	15	19.65	93	1016	very heavy rain	1435456185	2.10	330.000	Cesena	2015-06-28 03:49:45	14
16	16	19.29	93	1016	very heavy rain	1435459689	1.50	320.000	Cesena	2015-06-28 04:48:09	14
17	17	18.41	93	1016	very heavy rain	1435463462	0.50	300.000	Cesena	2015-06-28 05:51:02	14
18	18	19.48	88	1016	very heavy rain	1435466850	0.50	270.000	Cesena	2015-06-28 06:47:30	14
19	19	22.00	88	1016	very heavy rain	1435470541	2.10	260.000	Cesena	2015-06-28 07:49:01	14

Figure 10-8. The dataframe structure corresponding to a city

In the case shown in Figure 10-8, note that there are only 19 rows. In fact, observing other cities, it is possible that the meteorological measurement systems sometimes failed during the measuring process, leaving holes during the acquisition. However, if the data collected are 19, as in this case, they are sufficient to describe the trend of meteorological properties during the day. However, it is good practice to check the size of all 10 dataframes. If a city provides insufficient data to describe the daily trend, you will need to replace it with another city.

There is an easy way to check the size, without having to put one table after another. Thanks to the shape() function you can determine the number of data acquired (lines) for each city.

```
print(df_ferrara.shape)
print(df_milano.shape)
print(df_mantova.shape)
print(df_ravenna.shape)
print(df_torino.shape)
print(df_asti.shape)
```

```
print(df_bologna.shape)
print(df_piacenza.shape)
print(df_cesena.shape)
print(df_faenza.shape)
```

This will give the following result:

```
(20, 9)
(18, 9)
```

(10, 9)

(20, 9)

(18, 9)

(20, 9)

(20, 9)

(20, 9)

(20, 9)

(20, 9)

(19, 9)

As you can see, the choice of 10 cities has proved to be optimal, since the control units have provided enough data to continue in the data analysis.

A normal way to approach the analysis of the data you have just collected is to use data visualization. You saw that the matplotlib library includes a set of tools to generate charts on which to display data. In fact, data visualization helps you a lot during data analysis to discover some features of the system you are studying.

Then you activate the necessary libraries:

```
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
```

For example, a simple way to choose is to analyze the trend of the temperature during the day. Consider the city of Milan.

```
y1 = df_milano['temp']
x1 = df_milano['day']
fig, ax = plt.subplots()
plt.xticks(rotation=70)
```

```
hours = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(hours)
ax.plot(x1,y1,'r')
```

Executing this code, you will get the graph shown in Figure 10-9. As you can see, the temperature trend follows a nearly sinusoidal pattern characterized by a temperature that rises in the morning, to reach the maximum value during the heat of the afternoon (between 2:00 and 6:00 pm). Then the temperature decreases to a minimum value corresponding to just before dawn, that is, at 6:00 am.

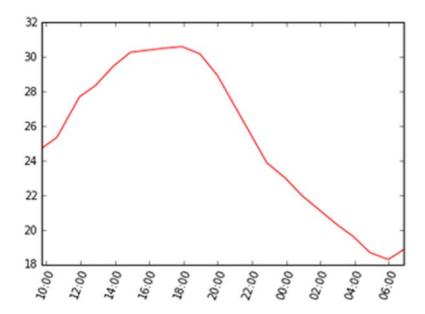


Figure 10-9. Temperature trend of Milan during the day

Since the purpose of your analysis is to try to interpret whether, it is possible to assess how and if the sea influences this trend. This time, you evaluate the trends of different cities simultaneously. This is the only way to see if the analysis is going in the right direction. Thus, choose the three cities closest to the sea and the three cities farthest from it.

```
y1 = df_ravenna['temp']
x1 = df_ravenna['day']
y2 = df_faenza['temp']
x2 = df_faenza['day']
```

```
y3 = df_cesena['temp']
x3 = df_cesena['day']
y4 = df_milano['temp']
x4 = df_milano['day']
y5 = df_asti['temp']
x5 = df_asti['day']
y6 = df_torino['temp']
x6 = df_torino['day']
fig, ax = plt.subplots()
plt.xticks(rotation=70)
hours = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(hours)
plt.plot(x1,y1,'r',x2,y2,'r',x3,y3,'r')
plt.plot(x4,y4,'g',x5,y5,'g',x6,y6,'g')
```

This code will produce the chart shown in Figure 10-10. The temperature of the three cities closest to the sea is shown in red, while the temperature of the three cities farthest away is in green.

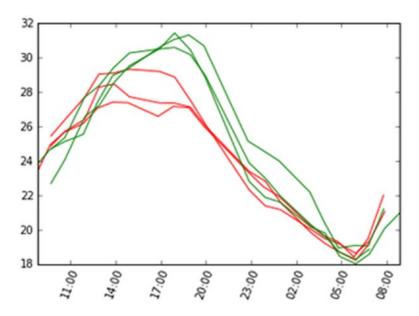


Figure 10-10. The trend of the temperatures of six different cities (red is the closest to the sea; green is the farthest)

Looking at Figure 10-10, the results seem promising. In fact, the three closest cities have maximum temperatures much lower than those farthest away, whereas there seems to be little difference in the minimum temperatures.

In order to go deep into this aspect, you can collect the maximum and minimum temperatures of all 10 cities and display a line chart that charts these temperatures compared to the distance from the sea.

```
dist = [df ravenna['dist'][0],
     df cesena['dist'][0],
     df faenza['dist'][0],
     df ferrara['dist'][0],
     df bologna['dist'][0],
     df mantova['dist'][0],
     df piacenza['dist'][0],
     df milano['dist'][0],
     df asti['dist'][0],
     df torino['dist'][0]
temp max = [df ravenna['temp'].max(),
     df cesena['temp'].max(),
     df faenza['temp'].max(),
     df ferrara['temp'].max(),
     df bologna['temp'].max(),
     df mantova['temp'].max(),
     df piacenza['temp'].max(),
     df milano['temp'].max(),
     df asti['temp'].max(),
     df torino['temp'].max()
temp min = [df ravenna['temp'].min(),
     df cesena['temp'].min(),
     df faenza['temp'].min(),
     df ferrara['temp'].min(),
     df bologna['temp'].min(),
     df mantova['temp'].min(),
     df piacenza['temp'].min(),
```

```
df_milano['temp'].min(),
    df_asti['temp'].min(),
    df_torino['temp'].min()
]
```

Start by representing the maximum temperatures.

```
plt.plot(dist,temp_max,'ro')
```

The result is shown in Figure 10-11.

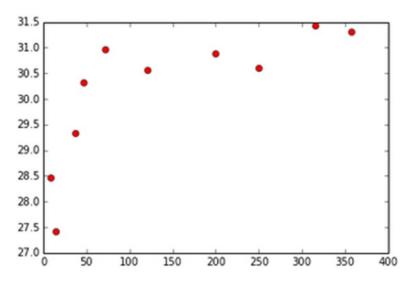


Figure 10-11. Trend of maximum temperature in relation to distance from the sea

As shown in Figure 10-11, you can affirm that the hypothesis that the presence of the sea somehow influences meteorological parameters is true (at least in the day today ②).

Furthermore, you can see that the effect of the sea decreases rapidly, and after about 60-70 km, the maximum temperatures reach a plateau.

An interesting thing would be to represent the two different trends with two straight lines obtained by linear regression. To do this, you can use the SVR method provided by the scikit-learn library.

```
x = np.array(dist)
y = np.array(temp max)
x1 = x[x<100]
x1 = x1.reshape((x1.size,1))
y1 = y[x<100]
x2 = x[x>50]
x2 = x2.reshape((x2.size,1))
y2 = y[x>50]
from sklearn.svm import SVR
svr lin1 = SVR(kernel='linear', C=1e3)
svr lin2 = SVR(kernel='linear', C=1e3)
svr lin1.fit(x1, y1)
svr lin2.fit(x2, y2)
xp1 = np.arange(10,100,10).reshape((9,1))
xp2 = np.arange(50,400,50).reshape((7,1))
yp1 = svr lin1.predict(xp1)
yp2 = svr lin2.predict(xp2)
plt.plot(xp1, yp1, c='r', label='Strong sea effect')
plt.plot(xp2, yp2, c='b', label='Light sea effect')
plt.axis((0,400,27,32))
plt.scatter(x, y, c='k', label='data')
```

This code will produce the chart shown in Figure 10-12.

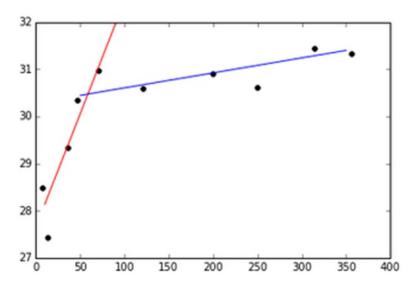


Figure 10-12. The two trends described by the maximum temperatures in relation to distance

As you can see, temperature increase in the first 60 km is very rapid, rising from 28 to 31 degrees. It then increases very mildly (if at all) over longer distances. The two trends are described by two straight lines that have the following expression

$$x = ax + b$$

where a is the slope and the b is the intercept.

```
print( svr_lin1.coef_)
print( svr_lin1.intercept_)
print( svr_lin2.coef_)
print( svr_lin2.intercept_)

[[-0.04794118]]
[ 27.65617647]
[[-0.00317797]]
[ 30.2854661]
```

CHAPTER 10 AN EXAMPLE— METEOROLOGICAL DATA

You might consider the intersection point of the two lines as the point between the area where the sea exerts its influence and the area where it doesn't, or at least not as strongly.

```
from scipy.optimize import fsolve

def line1(x):
    a1 = svr_lin1.coef_[0][0]
    b1 = svr_lin1.intercept_[0]
    return a1*x + b1

def line2(x):
    a2 = svr_lin2.coef_[0][0]
    b2 = svr_lin2.intercept_[0]
    return a2*x + b2

def findIntersection(fun1,fun2,x0):
    return fsolve(lambda x : fun1(x) - fun2(x),x0)

result = findIntersection(line1,line2,0.0)
    print("[x,y] = [ %d , %d ]" % (result,line1(result)))
    x = np.linspace(0,300,31)
    plt.plot(x,line1(x),x,line2(x),result,line1(result),'ro')
```

Executing the code, you can find the point of intersection as follows:

$$[x,y] = [58, 30]$$

This point is represented in the chart shown in Figure 10-13.

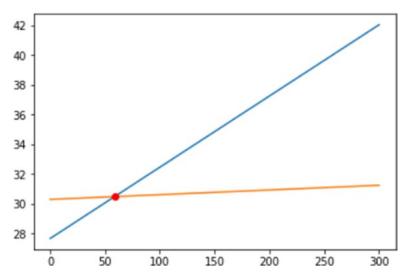


Figure 10-13. The point of intersection between two straight lines obtained by linear regression

So you can say that the average distance in which the effects of the sea vanish is $58\,\mathrm{km}$.

Now you can analyze the minimum temperatures.

```
plt.axis((0,400,15,25))
plt.plot(dist,temp_min,'bo')
```

Doing this, you'll obtain the chart shown in Figure 10-14.

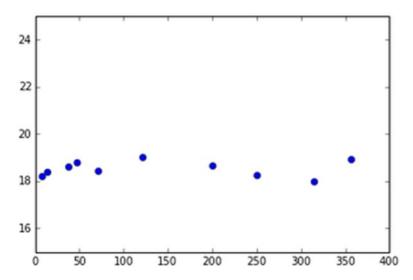


Figure 10-14. The minimum temperatures appear to be independent of the distance from the sea

In this case it appears very clear that the sea has no effect on minimum temperatures recorded during the night, or rather, around six in the morning. If I remember well, when I was a child I was taught that the sea mitigated the cold temperatures, or that the sea released the heat absorbed during the day. This does not seem to be the case. This case tracks summer in Italy; it would be interesting to see if this hypothesis is true in the winter or somewhere else.

Another meteorological measure contained in the 10 dataframes is the humidity. Even for this measure, you can see the trend of the humidity during the day for the three cities closest to the sea and for the three farthest away.

```
y1 = df_ravenna['humidity']
x1 = df_ravenna['day']
y2 = df_faenza['humidity']
x2 = df_faenza['day']
y3 = df_cesena['humidity']
x3 = df_cesena['day']
y4 = df_milano['humidity']
x4 = df milano['day']
```

```
y5 = df_asti['humidity']
x5 = df_asti['day']
y6 = df_torino['humidity']
x6 = df_torino['day']
fig, ax = plt.subplots()
plt.xticks(rotation=70)
hours = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(hours)
plt.plot(x1,y1,'r',x2,y2,'r',x3,y3,'r')
plt.plot(x4,y4,'g',x5,y5,'g',x6,y6,'g')
```

This code will create the chart shown in Figure 10-15.

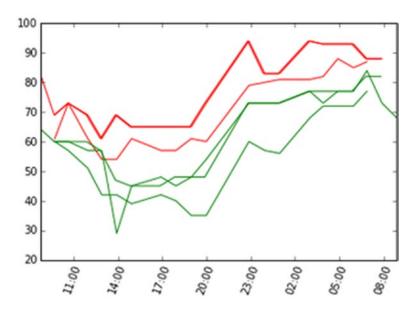


Figure 10-15. The trend of the humidity during the day for three cities nearest the sea (shown in red) and three cities farthest away (indicated in green)

At first glance, it would seem that the cities closest to the sea experience more humidity than those farthest away and that this difference in moisture (about 20%) extends throughout the day. Let's see if this remains true when we report the maximum and minimum humidity with respect to the distances from the sea.

The maximum humidity of 10 cities according to their distance from the sea are represented in the chart in Figure 10-16.

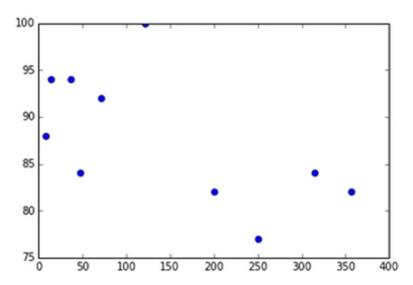


Figure 10-16. The trend of the maximum humidity function with respect to the distance from the sea

The minimum humidity of 10 cities according to their distance from the sea are represented in the chart in Figure 10-17.

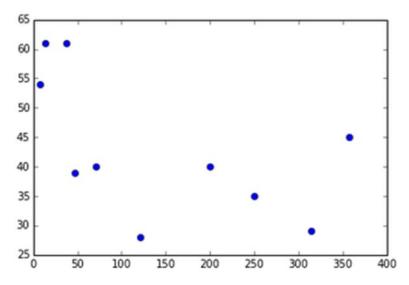


Figure 10-17. The trend of the minimum humidity as a function of distance from the sea

CHAPTER 10 AN EXAMPLE— METEOROLOGICAL DATA

Looking at Figures 10-16 and 10-17, you can certainly see that the humidity is higher, both the minimum and maximum, in the city closest to the sea. However, in my opinion, it is not possible to say that there is a linear relationship or some other kind of relation to draw a curve. The collected points (10) are too few to highlight a trend in this case.

The RoseWind

Among the various meteorological data measured that we have collected for each city are those relating to the wind:

- Wind degree (direction)
- Wind speed

If you analyze the dataframe, you will notice that the wind speed is relative to the direction it blows and the time of day. For instance, each measurement shows the direction in which the wind blows (see Figure 10-18).

	wind_deg	wind_speed	day
0	159.5000	2.01	2015-06-27 09:42:05
1	100.0000	2.10	2015-06-27 10:37:24
2	80.0000	4.60	2015-06-27 11:57:01
3	90.0000	4.60	2015-06-27 12:53:43
4	80.0000	6.20	2015-06-27 13:54:20
5	80.0000	6.70	2015-06-27 14:55:06
6	90.0000	6.70	2015-06-27 16:55:00
7	90.0000	5.70	2015-06-27 17:55:43
8	90.0000	4.60	2015-06-27 18:58:17
9	97.0000	2.06	2015-06-27 19:58:58
10	89.0000	2.06	2015-06-27 22:52:39
11	88.0147	2.86	2015-06-27 23:57:25
12	107.0040	2.01	2015-06-28 00:57:46
13	107.0040	2.01	2015-06-28 03:00:34
14	132.5030	1.06	2015-06-28 03:54:49
15	132.5030	1.06	2015-06-28 04:54:04
16	132.5030	1.06	2015-06-28 05:58:15
17	251.0000	1.54	2015-06-28 06:52:59

Figure 10-18. The wind data contained in the dataframe

To better analyze this kind of data, it is necessary to visualize them. In this case a linear chart in Cartesian coordinates is not the most optimal approach.

If you use the classic scatter plot with the points contained in a single dataframe:

CHAPTER 10 AN EXAMPLE— METEOROLOGICAL DATA

You get a chart like the one shown in Figure 10-19, which certainly is not very educational.

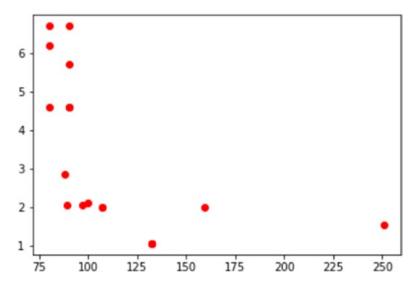


Figure 10-19. A scatter plot representing a distribution of 360 degrees

To represent a distribution of points in 360 degrees, it's best to use another type of visualization: the *polar chart*. You have already seen this kind of chart in Chapter 8.

First you need to create a histogram, whereby the data are distributed over the interval of 360 degrees divided into eight bins, each of which is 45 degrees.

```
hist, bins = np.histogram(df_ravenna['wind_deg'],8,[0,360])
print(hist)
print(bins)
```

The values returned are occurrences within each bin expressed by an array called hist:

and an array called bins, which defines the edges of each bin within the range of 360 degrees.

```
0. 45. 90. 135. 180. 225. 270. 315. 360.
```

These arrays will be useful to correctly define the polar chart to be drawn. For this purpose, you have to create a function in part by using the code contained in Chapter 8. You will call this function showRoseWind(), and it will need three different arguments: values is the array containing the values to be displayed, which in our case will be the hist array; city_name is a string containing the name of the city to be shown as the chart title; and max_value is an integer that will establish the maximum value for presenting the blue color.

Defining a function of this kind helps you avoid rewriting the same code many times, and it produces more modular code, which allows you to focus on the concepts related to a particular operation within a function.

```
def showRoseWind(values,city_name,max_value):
    N = 8
    theta = np.arange(0.,2 * np.pi, 2 * np.pi / N)
    radii = np.array(values)
    plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)
    colors = [(1-x/max_value, 1-x/max_value, 0.75) for x in radii]
    plt.bar(theta +np.pi/8, radii, width=(2*np.pi/N), bottom=0.0,
    color=colors)
    plt.title(city name,x=0.2, fontsize=20)
```

One thing that changed is the color map in colors. In this case, the closer to blue the color of the slice is, the greater the value it represents.

Once you define a function, you can use it:

```
showRoseWind(hist,'Ravenna',max(hist))
```

Executing this code, you will obtain a polar chart like the one shown in Figure 10-20.

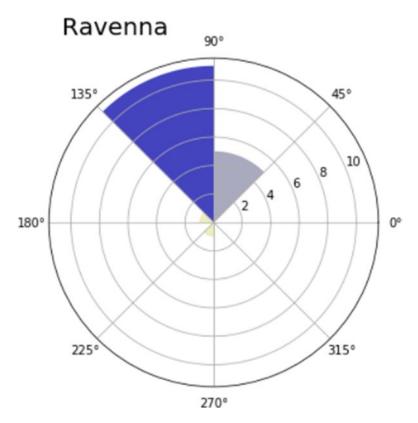


Figure 10-20. The polar chart represents the distribution of values within a range of 360 degrees

As you can see in Figure 10-20, you have a range of 360 degrees divided into eight areas of 45 degrees each (bin), in which a scale of values is represented radially. In each of the eight areas, a slice is represented with a variable length that corresponds precisely to the corresponding value. The more radially extended the slice is, the greater the value represented. In order to increase the readability of the chart, a color scale has been entered that corresponds to the extension of its slice. The wider the slice is, the more the color tends to a deep blue.

This polar chart provides you with information about how the wind direction will be distributed radially. In this case, the wind has blown purely toward the southwest/west most of the day.

Once you have defined the showRoseWind function, it is very easy to observe the winds with respect to any of the 10 sample cities.

```
hist, bin = np.histogram(df_ferrara['wind_deg'],8,[0,360])
print(hist)
showRoseWind(hist,'Ferrara', 15.0)
```

Figure 10-21 shows the polar charts of the 10 cities.

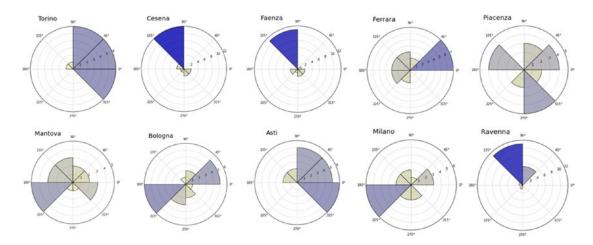


Figure 10-21. The polar charts display the distribution of the wind direction

Calculating the Mean Distribution of the Wind Speed

Even the other quantity that relates the speed of the winds can be represented as a distribution on 360 degrees.

Now define a feature called RoseWind_Speed that will allow you to calculate the mean wind speeds for each of the eight bins into which 360 degrees are divided.

```
def RoseWind_Speed(df_city):
    degs = np.arange(45,361,45)
    tmp = []
    for deg in degs:
        tmp.append(df_city[(df_city['wind_deg']>(deg-46)) & (df_city['wind_deg']<deg)]['wind_speed'].mean())
    return np.nan to num(tmp)</pre>
```

CHAPTER 10 AN EXAMPLE— METEOROLOGICAL DATA

This function returns a NumPy array containing the eight mean wind speeds. This array will be used as the first argument of the ShowRoseWind_Speed() function, which is an improved version of the previous ShowRoseWind() function used to represent the polar chart.

```
def showRoseWind_Speed(speeds,city_name):
    N = 8
    theta = np.arange(0,2 * np.pi, 2 * np.pi / N)
    radii = np.array(speeds)
    plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)
    colors = [(1-x/10.0, 1-x/10.0, 0.75) for x in radii]
    bars = plt.bar(theta+np.pi/8, radii, width=(2*np.pi/N), bottom=0.0, color=colors)
    plt.title(city_name,x=0.2, fontsize=20)

showRoseWind Speed(RoseWind Speed(df ravenna),'Ravenna')
```

Figure 10-22 represents the RoseWind corresponding to the wind speeds distributed around 360 degrees.

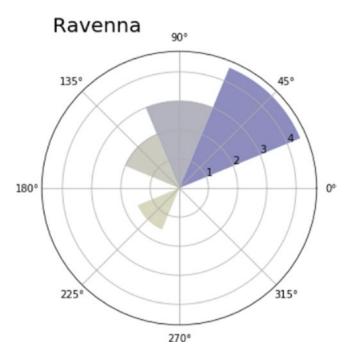


Figure 10-22. This polar chart represents the distribution of wind speeds within 360 degrees

At the end of all this work, you can save the dataframe as a CSV file, thanks to the to csv () function of the pandas library.

```
df_ferrara.to_csv('ferrara.csv')
df_milano.to_csv('milano.csv')
df_mantova.to_csv('mantova.csv')
df_ravenna.to_csv('ravenna.csv')
df_torino.to_csv('torino.csv')
df_asti.to_csv('asti.csv')
df_bologna.to_csv('bologna.csv')
df_piacenza.to_csv('piacenza.csv')
df_cesena.to_csv('cesena.csv')
df faenza.to csv('faenza.csv')
```

Conclusions

The purpose of this chapter was mainly to show how you can get information from raw data. Some of this information will not lead to important conclusions, while other information will lead to the confirmation of a hypothesis, thus increasing your state of knowledge. These are the cases in which data analysis has led to a success.

In the next chapter, you will see another case relating to real data obtained from an open data source. You'll also see how you can further enhance the graphical representation of the data using the D3 JavaScript library. This library, although not Python, can be easily integrated into Python.

Embedding the JavaScript D3 Library in the IPython Notebook

In this chapter, you will see how to extend the capabilities of the graphical representation including the JavaScript D3 library in your Jupyter Notebook. This library has enormous potential graphics and allows you to build graphical representations that even the matplotlib library cannot represent.

In the course of the various examples you will see how you can implement JavaScript code in a Python environment, using the large capacity of the integrative Jupyter Notebook. Also you'll see different ways to use the data contained in Pandas dataframes Pandas in representations based on JavaScript code.

The Open Data Source for Demographics

In this chapter, you will use demographic data as the dataset on which to perform the analysis. A good starting point is the one suggested in the Web article "Embedding Interactive Charts on an IPython Notebook," written by Agustin Barto (http://www.machinalis.com/blog/embedding-interactive-charts-on-an-ipython-nb/). This article suggested the site of the United States Census Bureau (http://www.census.gov) as the data source for demographics (see Figure 11-1).

CHAPTER 11 EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

Figure 11-1. This is the home page of the United States Census Bureau

The United States Census Bureau is part of the United States Department of Commerce, and is officially in charge of collecting demographic data on the U.S. population and reporting statistics about it. Its site provides a large amount of data as CSV files, which, as you have seen in previous chapters, are easily imported in the form of Pandas dataframes.

For the purposes of this chapter, you want the data that estimates the population of each state and counties in the United States. A CSV file that contains all of this information is CO-EST2014-alldata.csv.

So first, open Jupyter Notebook and in the first frame, import all aspects of the Python library that could later be needed in any page of IPython Notebook.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

Now that you have all the necessary libraries, you can start by importing data from Census.gov in your Notebook. So you need to upload the CO-EST2014-alldata. csv file directly in the form of a Pandas dataframe. The pd.read csv() function will

convert tabular data contained in a CSV file to a Pandas dataframe, which you will name pop2014. Using the dtype option, you can force the interpretation of some fields that could be interpreted as numbers, as strings instead.

```
url = "https://raw.githubusercontent.com/dwdii/IS608-VizAnalytics/master/
FinalProject/Data/CO-EST2014-alldata.csv"
pop2014 =pd.read_csv(url,encoding='latin-1',dtype={'STATE': 'str',
   'COUNTY': 'str'})
```

Once you have acquired and collected data in the pop2014 dataframe, you can see how they are structured by simply writing:

pop2014

You will obtain an image like that shown in Figure 11-2.

	SUMLEV	REGION	DIVISION	STATE	COUNTY	STNAME	CTYNAME	CENSUS2010POP	ESTIMATESBASE2010	POPESTIMATE2010	
0	40	3	6	01	000	Alabama	Alabama	4779736	4780127	4785822	
1	50	3	6	01	001	Alabama	Autauga County	54571	54571	54684	
2	50	3	6	01	003	Alabama	Baldwin County	182265	182265	183216	
3	50	3	6	01	005	Alabama	Barbour County	27457	27457	27336	
4	50	3	6	01	007	Alabama	Bibb County	22915	22919	22879	
5	50	3	6	01	009	Alabama	Blount County	57322	57322	57344	
6	50	3	6	01	011	Alabama	Bullock County	10914	10915	10886	
-		^	^	04	040	A1-1	Butler	00047	00040	20045	

Figure 11-2. The pop2014 dataframe contains all demographics for the years from 2010 to 2014

Carefully analyzing the nature of the data, you can see how they are organized within the dataframe. The SUMLEV column contains the geographic level of the data; for example, 40 indicates a state and 50 indicates data covering a single county.

The REGION, DIVISION, STATE, and COUNTY columns contain hierarchical subdivisions of all areas in which the U.S. territory has been divided. STNAME and CTYNAME indicate the name of the state and the county, respectively. The following columns contain the data on population. CENSUS2010POP is the column that contains the actual data on the population, that is, the data that were collected by the 2010 census. Following that are other columns with the population estimates calculated for each year. In this example, you can see 2010 (2011, 2012, 2013, and 2014 are also in the dataframe but not shown in Figure 11-2).

CHAPTER 11 EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

You will use these values of population estimates as data to be represented in the examples discussed in this chapter.

The pop2014 dataframe contains a large number of columns and rows that you are not interested in, so it is smart to eliminate unnecessary information. First, you are interested in the values of the people who relate to entire states, and so you extract only the rows with SUMLEV equal to 40. Collect these data within the pop2014_by_state dataframe.

```
pop2014_by_state = pop2014[pop2014.SUMLEV == 40]
pop2014_by_state
```

You get a	dataframe	like the	one shown	in F	igure	11-3.
Tou Sci u	uutuii uiiic	IIICC UIC	OTTO STICKET	111 1	isuic	11 U.

	SUMLEV	REGION	DIVISION	STATE	COUNTY	STNAME	CTYNAME	CENSUS2010POP	ESTIMATESBASE2010	POPESTIMATE2010	
0	40	3	6	01	000	Alabama	Alabama	4779736	4780127	4785822	
68	40	4	9	02	000	Alaska	Alaska	710231	710249	713856	
98	40	4	8	04	000	Arizona	Arizona	6392017	6392310	6411999	
114	40	3	7	05	000	Arkansas	Arkansas	2915918	2915958	2922297	
190	40	4	9	06	000	California	California	37253956	37254503	37336011	
249	40	4	8	08	000	Colorado	Colorado	5029196	5029324	5048575	
314	40	1	1	09	000	Connecticut	Connecticut	3574097	3574096	3579345	
323	40	3	5	10	000	Delaware	Delaware	897934	897936	899731	
327	40	3	5	11	000	District of Columbia	District of Columbia	601723	601767	605210	
329	40	3	5	12	000	Florida	Florida	18801310	18804623	18852220	
397	40	3	5	13	000	Georgia	Georgia	9687653	9688681	9714464	
557	40	4	9	15	000	Hawaii	Hawaii	1360301	1360301	1363950	
563	40	4	8	16	000	Idaho	Idaho	1567582	1567652	1570639	
608	40	2	3	17	000	Illinois	Illinois	12830632	12831587	12840097	
711	40	2	3	18	000	Indiana	Indiana	6483802	6484192	6490308	

Figure 11-3. The pop2014_by_state dataframe contains all demographics related to the states

However, the dataframe just obtained still contains too many columns with unnecessary information. Given the high number of columns, instead of carrying out their removal with the drop() function, it is more convenient to perform an extraction.

```
states = pop2014_by_state[['STNAME','POPESTIMATE2011', 'POPESTIMATE2012',
'POPESTIMATE2013','POPESTIMATE2014']]
```

Now that you have the essential information needed, you can start to make graphical representations. For example, you could determine the five most populated states in the country.

states.sort_values(['POPESTIMATE2014'], ascending=False)[:5]

Listing them in descending order, you will receive a dataframe as shown in Figure 11-4.

	STNAME	POPESTIMATE2011	POPESTIMATE2012	POPESTIMATE2013	POPESTIMATE2014
190	California	37701901	38062780	38431393	38802500
2566	Texas	25657477	26094422	26505637	26956958
329	Florida	19107900	19355257	19600311	19893297
1860	New York	19521745	19607140	19695680	19746227
608	Illinois	12858725	12873763	12890552	12880580

Figure 11-4. The five most populous states in the United States

For example, you could use a bar chart to represent the five most populous states in descending order. This work is easily achieved using matplotlib, but in this chapter, you will take advantage of this simple representation to see how you can use the JavaScript D3 library to create the same representation.

The JavaScript D3 Library

D3 is a JavaScript library that allows direct inspection and manipulation of the DOM object (HTML5), but it is intended solely for data visualization and it does its job excellently. In fact, the name D3 is derived from the three Ds contained in "data-driven documents." D3 was entirely developed by Mike Bostock.

This library is proving to be very versatile and powerful, thanks to the technologies upon which it is based: JavaScript, SVG, and CSS. D3 combines powerful visualization components with a data-driven approach to the DOM manipulation. In so doing, D3 takes full advantage of the capabilities of the modern browser.

Given that even Jupyter Notebooks are Web objects and use the same technologies that are the basis of the current browser, the idea of using this library, although JavaScript, within the notebook is not as preposterous as it may seem at first.

For those not familiar with the JavaScript D3 library and want to know more about this topic, I recommend reading another book, entitled "Create Web Charts with D3," by F. Nelli (Apress, 2014).

Indeed, Jupyter Notebook has the magic function **%** javascript to integrate JavaScript code within the Python code.

But the JavaScript code, in a manner similar to Python, requires you to import some libraries. The libraries are available online and must be loaded each time you launch the execution. In HTML, the process of importing library has a particular construct:

```
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js">
</script>
```

This is an HTML tag. To make the import within an Jupyter Notebook, you should instead use this different construct:

```
%%javascript
require.config({
    paths: {
        d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min'
    }
});
```

Using require.config(), you can import all the necessary JavaScript libraries.

In addition, if you are familiar with HTML code, you will know for sure that you need to define CSS styles if you want to strengthen the capacity of visualization of an HTML page. In parallel, also in the Jupyter Notebook, you can define a set of CSS styles. To do this you can write HTML code, thanks to the HTML() function belonging to the IPython. core.display module. Therefore, make the appropriate CSS definitions as follows:

```
.bar:hover{
   fill: brown;
}
.axis {
   font: 10px sans-serif;
}
.axis path,
.axis line {
   fill: none;
   stroke: #000;
}
.x.axis path {
   display: none;
}
</style>
<div id="chart d3" />
"""))
```

At the bottom of the previous code, you notice that the <div> HTML tag is identified as chart d3. This tag identifies the location where it will be represented.

Now you have to write the JavaScript code by using the functions provided by the D3 library. Using the Template object provided by the Jinja2 library, you can define dynamic JavaScript code where you can replace the text depending on the values contained in a dataframe Pandas.

If there is still not a Jinja2 library installed on your system, you can always install it with Anaconda.

```
Conda install jinja2

Or by using

pip install jinja2
```

After you have installed this library, you can define the template.

```
import jinja2
myTemplate = jinja2.Template("""
require(["d3"], function(d3){
   var data = []
   {% for row in data %}
   data.push({ 'state': '{{ row[1] }}', 'population': {{ row[5] }} });
   {% endfor %}
d3.select("#chart d3 svg").remove()
    var margin = {top: 20, right: 20, bottom: 30, left: 40},
        width = 800 - margin.left - margin.right,
        height = 400 - margin.top - margin.bottom;
    var x = d3.scale.ordinal()
        .rangeRoundBands([0, width], .25);
    var y = d3.scale.linear()
        .range([height, 0]);
    var xAxis = d3.svg.axis()
        .scale(x)
        .orient("bottom");
    var yAxis = d3.svg.axis()
        .scale(y)
        .orient("left")
        .ticks(10)
        .tickFormat(d3.format('.1s'));
    var svg = d3.select("#chart d3").append("svg")
        .attr("width", width + margin.left + margin.right)
        .attr("height", height + margin.top + margin.bottom)
        .append("g")
        .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
```

```
x.domain(data.map(function(d) { return d.state; }));
    y.domain([0, d3.max(data, function(d) { return d.population; })]);
    svg.append("g")
        .attr("class", "x axis")
        .attr("transform", "translate(0," + height + ")")
        .call(xAxis);
    svg.append("g")
        .attr("class", "y axis")
        .call(yAxis)
        .append("text")
        .attr("transform", "rotate(-90)")
        .attr("y", 6)
        .attr("dy", ".71em")
        .style("text-anchor", "end")
        .text("Population");
    svg.selectAll(".bar")
        .data(data)
        .enter().append("rect")
        .attr("class", "bar")
        .attr("x", function(d) { return x(d.state); })
        .attr("width", x.rangeBand())
        .attr("y", function(d) { return y(d.population); })
        .attr("height", function(d) { return height - y(d.population); });
});
""");
```

You aren't finished. Now is the time to launch the representation of this D3 chart you have just defined. You also need to write the commands needed to pass data contained in the Pandas dataframe to the template, so they can be directly integrated into the JavaScript code written previously. The representation of JavaScript code, or rather the template just defined, will be executed by launching the render() function.

```
display(Javascript(myTemplate.render(
    data=states.sort_values(['POPESTIMATE2012'], ascending=False)[:10].
    itertuples()
)))
```

The bar chart will appear in the previous frame in which the <div> was placed, as shown in Figure 11-5, which shows all the population estimates for the year 2014.

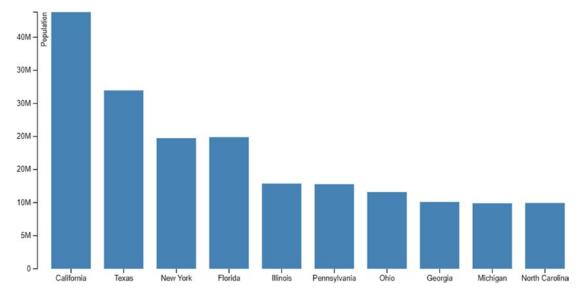


Figure 11-5. The five most populous states of the United States represented by a bar chart relative to 2014

Drawing a Clustered Bar Chart

So far you have relied broadly on what had been described in the fantastic article written by Barto. However, the type of data that you extracted has given you the trend of population estimates in the last four years for the United States. A more useful chart for visualizing data would be to show the trend of the population of each state over time.

To do that, a good choice is to use a clustered bar chart, where each cluster is one of the five most populous states and each cluster will have four bars to represent the population in a given year.

At this point you can modify the previous code or write code again in your Jupyter Notebook.

```
display(HTML("""
<style>
.bar2011 {
   fill: steelblue;
}
```

```
.bar2012 {
   fill: red;
}
.bar2013 {
   fill: yellow;
}
.bar2014 {
   fill: green;
}
.axis {
  font: 10px sans-serif;
}
.axis path,
.axis line {
   fill: none;
   stroke: #000;
}
.x.axis path {
   display: none;
</style>
<div id="chart d3" />
"""))
```

You have to modify the template as well, by adding the other three sets of data corresponding to the years 2011, 2012, and 2013. These years will be represented by a different color on the clustered bar chart.

```
import jinja2
myTemplate = jinja2.Template("""
require(["d3"], function(d3){
```

```
var data = []
   var data2 = []
   var data3 = []
   var data4 = []
   {% for row in data %}
   data.push ({ 'state': '{{ row[1] }}', 'population': {{ row[2] }}
                                                                      });
   data2.push({ 'state': '{{ row[1] }}', 'population': {{ row[3] }}
                                                                      });
   data3.push({ 'state': '{{ row[1] }}', 'population': {{ row[4] }}
                                                                      });
   data4.push({ 'state': '{{ row[1] }}', 'population': {{ row[5] }} });
   {% endfor %}
d3.select("#chart d3 svg").remove()
    var margin = {top: 20, right: 20, bottom: 30, left: 40},
        width = 800 - margin.left - margin.right,
        height = 400 - margin.top - margin.bottom;
    var x = d3.scale.ordinal()
        .rangeRoundBands([0, width], .25);
    var y = d3.scale.linear()
        .range([height, 0]);
    var xAxis = d3.svg.axis()
        .scale(x)
        .orient("bottom");
    var yAxis = d3.svg.axis()
        .scale(y)
        .orient("left")
        .ticks(10)
        .tickFormat(d3.format('.1s'));
    var svg = d3.select("#chart d3").append("svg")
        .attr("width", width + margin.left + margin.right)
        .attr("height", height + margin.top + margin.bottom)
        .append("g")
        .attr("transform", "translate(" + margin.left + "," +
        margin.top + ")");
```

```
x.domain(data.map(function(d) { return d.state; }));
y.domain([0, d3.max(data, function(d) { return d.population; })]);
svg.append("g")
    .attr("class", "x axis")
    .attr("transform", "translate(0," + height + ")")
    .call(xAxis);
svg.append("g")
    .attr("class", "y axis")
    .call(yAxis)
    .append("text")
    .attr("transform", "rotate(-90)")
    .attr("y", 6)
    .attr("dy", ".71em")
    .style("text-anchor", "end")
    .text("Population");
svg.selectAll(".bar2011")
    .data(data)
    .enter().append("rect")
    .attr("class", "bar2011")
    .attr("x", function(d) { return x(d.state); })
    .attr("width", x.rangeBand()/4)
    .attr("y", function(d) { return y(d.population); })
    .attr("height", function(d) { return height - y(d.population); });
svg.selectAll(".bar2012")
    .data(data2)
    .enter().append("rect")
    .attr("class", "bar2012")
    .attr("x", function(d) { return (x(d.state)+x.rangeBand()/4); })
    .attr("width", x.rangeBand()/4)
    .attr("y", function(d) { return y(d.population); })
    .attr("height", function(d) { return height - y(d.population); });
```

```
svg.selectAll(".bar2013")
        .data(data3)
        .enter().append("rect")
        .attr("class", "bar2013")
        .attr("x", function(d) { return (x(d.state)+2*x.rangeBand()/4); })
        .attr("width", x.rangeBand()/4)
        .attr("y", function(d) { return y(d.population); })
        .attr("height", function(d) { return height - y(d.population); });
    svg.selectAll(".bar2014")
        .data(data4)
        .enter().append("rect")
        .attr("class", "bar2014")
        .attr("x", function(d) { return (x(d.state)+3*x.rangeBand()/4); })
        .attr("width", x.rangeBand()/4)
        .attr("y", function(d) { return y(d.population); })
        .attr("height", function(d) { return height - y(d.population); });
});
""");
```

The series of data to be passed from the dataframe to the template are now four, so you have to refresh the data and the changes that you have just made to the code. Therefore, you need to rerun the code of the render() function.

```
display(Javascript(myTemplate.render(
    data=states.sort_values(['POPESTIMATE2014'], ascending=False)[:5].
    itertuples()
)))
```

Once you have launched the render() function again, you get a chart like the one shown in Figure 11-6.

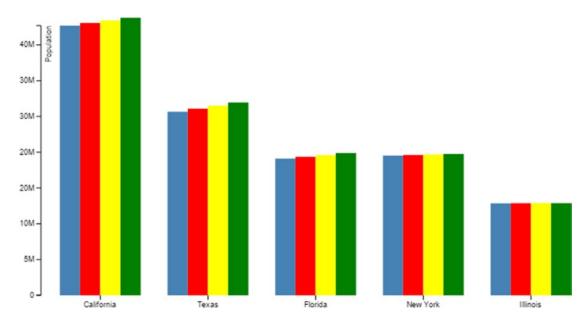


Figure 11-6. A clustered bar chart representing the populations of the five most populous states from 2011 to 2014

The Choropleth Maps

In the previous sections you saw how to use JavaScript code and the D3 library to represent a bar chart. Well, these achievements would have been easy with matplotlib and perhaps implemented in an even better way. The purpose of the previous code was only for educational purposes.

Something quite different is the use of much more complex views that are unobtainable by matplotlib. So now we will put in place the true potential made available by the D3 library. The *choropleth maps* are very complex types of representations.

The choropleth maps are geographical representations where the land areas are divided into portions characterized by different colors. The colors and the boundaries between a portion geographical and another are themselves representations of data.

This type of representation is very useful to represent the results of data analysis carried out on demographic or economic information, and this is also the case for data that correlates to their geographical distributions.

CHAPTER 11 EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

The representation of choropleth is based on a particular file called TopoJSON. This type of file contains all the inside information representing a choropleth map such as the United States (see Figure 11-7).

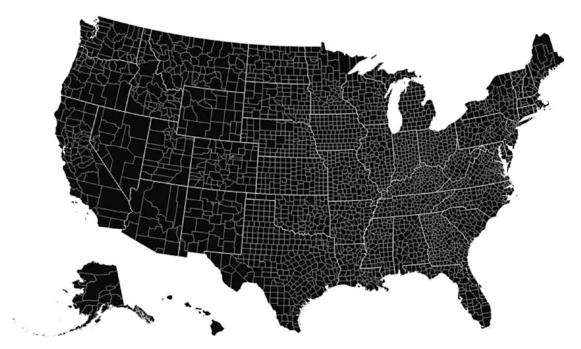


Figure 11-7. The representation of a choropleth map of U.S. territories with no value related to each county or state

A good link to find such material is the U.S. Atlas TopoJSON (https://github.com/mbostock/us-atlas), but a lot of literature about it is available online.

A representation of this kind is not only possible but is also customizable. Thanks to the D3 library, you can correlate the geographic portions based on the value of particular columns contained in a dataframe.

First, let's start with an example already on the Internet, in the D3 library, http://bl.ocks.org/mbostock/4060606, but fully developed in HTML. So now you will learn how to adapt a D3 example in HTML in an IPython Notebook.

If you look at the code shown on the web page of the example, you can see that there are three necessary JavaScript libraries. This time, in addition to the D3 library, we need to import queue and TopoJSON libraries.

```
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js">
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/queue-async/1.0.7/</pre>
queue.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/topojson/1.6.19/</pre>
topojson.min.js"></script>
   So you have to use require.config() as you did in the previous sections.
%%javascript
require.config({
    paths: {
        d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min',
        queue: '//cdnjs.cloudflare.com/ajax/libs/queue-async/1.0.7/queue.min',
        topojson: '//cdnjs.cloudflare.com/ajax/libs/topojson/1.6.19/
                    topojson.min'
    }
});
   The pertinent part of CSS is shown again, all within the HTML() function.
from IPython.core.display import display, Javascript, HTML
display(HTML("""
<style>
.counties {
  fill: none;
}
.states {
  fill: none;
  stroke: #fff;
  stroke-linejoin: round;
}
.q0-9 { fill:rgb(247,251,255); }
.q1-9 { fill:rgb(222,235,247); }
.q2-9 { fill:rgb(198,219,239); }
```

```
.q3-9 { fill:rgb(158,202,225); }
.q4-9 { fill:rgb(107,174,214); }
.q5-9 { fill:rgb(66,146,198); }
.q6-9 { fill:rgb(33,113,181); }
.q7-9 { fill:rgb(8,81,156); }
.q8-9 { fill:rgb(8,48,107); }
</style>
<div id="choropleth" />
"""))
   Here is the new template that mirrors the code shown in the Bostock example, with
some changes:
import jinja2
choropleth = jinja2.Template("""
require(["d3","queue","topojson"], function(d3,queue,topojson){
//
   var data = []
//
     {% for row in data %}
     data.push({ 'state': '{{ row[1] }}', 'population': {{ row[2] }} });
//
     {% endfor %}
//
d3.select("#choropleth svg").remove()
var width = 960,
    height = 600;
var rateById = d3.map();
var quantize = d3.scale.quantize()
    .domain([0, .15])
    .range(d3.range(9).map(function(i) { return "q" + i + "-9"; }));
var projection = d3.geo.albersUsa()
    .scale(1280)
    .translate([width / 2, height / 2]);
var path = d3.geo.path()
```

```
.projection(projection);
//row to modify
var svg = d3.select("#choropleth").append("svg")
    .attr("width", width)
    .attr("height", height);
queue()
    .defer(d3.json, "us.json")
    .defer(d3.tsv, "unemployment.tsv", function(d) { rateById.set(d.id,
    +d.rate); })
    .await(ready);
function ready(error, us) {
  if (error) throw error;
  svg.append("g")
      .attr("class", "counties")
    .selectAll("path")
      .data(topojson.feature(us, us.objects.counties).features)
    .enter().append("path")
      .attr("class", function(d) { return quantize(rateById.get(d.id)); })
      .attr("d", path);
  svg.append("path")
      .datum(topojson.mesh(us, us.objects.states, function(a, b) { return a
      !== b; }))
      .attr("class", "states")
      .attr("d", path);
}
});
""");
```

Now you launch the representation, this time without any value for the template, since all values are contained in the us.json and unemployment.tsv files (you can find them in the source code of this book).

```
display(Javascript(choropleth.render()))
```

The results are identical to those shown in the Bostock example (see Figure 11-8).

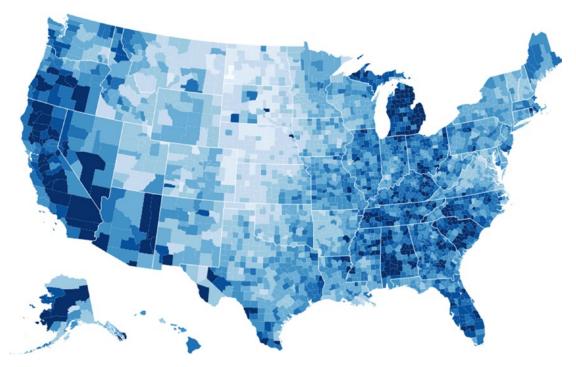


Figure 11-8. The choropleth map of the United States with the coloring of the counties based on the values contained in the file TSV

The Choropleth Map of the U.S. Population in 2014

Now that you have seen how to extract demographic information from the U.S. Census Bureau and you can create the choropleth map, you can unify both things to represent a choropleth map showing the population values. The more populous the county, the deeper blue it will be. In counties with very low population levels, the hue will tend toward white.

In the first section of the chapter, you extracted information on the states by the pop2014 dataframe. This was done by selecting the rows of the dataframe with SUMLEV values equal to 40. In this example, you instead need the values of the populations of each county and so you have to take out a new dataframe by taking pop2014 using only lines with a SUMLEV of 50.

You must instead select the rows to level 50.

```
pop2014_by_county = pop2014[pop2014.SUMLEV == 50]
pop2014_by_county
```

You get a dataframe that contains all U.S. counties, as shown in Figure 11-9.

	SUMLEV	REGION	DIVISION	STATE	COUNTY	STNAME	CTYNAME	CENSUS2010POP	ESTIMATESBASE2010	POPESTIMATE2010	
1	50	3	6	01	001	Alabama	Autauga County	54571	54571	54684	
2	50	3	6	01	003	Alabama	Baldwin County	182265	182265	183216	
3	50	3	6	01	005	Alabama	Barbour County	27457	27457	27336	
4	50	3	6	01	007	Alabama	Bibb County	22915	22919	22879	
5	50	3	6	01	009	Alabama	Blount County	57322	57322	57344	
6	50	3	6	01	011	Alabama	Bullock County	10914	10915	10886	
7	50	3	6	01	013	Alabama	Butler County	20947	20946	20945	

Figure 11-9. The pop2014_by_county dataframe contains all demographics of all U.S. counties

You must use your data instead of the TSV previously used. Inside it, there are the ID numbers corresponding to the various counties. You can use a file on the Web to determine their names. You can download it and turn it into a dataframe.

```
USJSONnames = pd.read_table('us-county-names.tsv')
USJSONnames
```

CHAPTER 11 EMBEDDING THE JAVASCRIPT D3 LIBRARY IN THE IPYTHON NOTEBOOK

Thanks to this file, you see the codes with the corresponding counties (see Figure 11-10).

	id	name
0	1000	Alabama
1	1001	Autauga
2	1003	Baldwin
3	1005	Barbour
4	1007	Bibb
5	1009	Blount
6	1011	Bullock
7	1013	Butler
8	1015	Calhoun
9	1017	Chambers
10	1019	Cherokee
11	1021	Chilton
12	1023	Choctaw
13	1025	Clarke

Figure 11-10. The codes of the counties are contained in the file TSV

If you take for example the Baldwin county"

USJSONnames[USJSONnames['name'] == 'Baldwin']

You can see that there are actually two counties with the same name, but they are identified by two different identifiers (Figure 11-11).

	id	name
2	1003	Baldwin
399	13009	Baldwin

Figure 11-11. There are two Baldwin counties

You get a table and see that there are two counties and two different codes. Now you see this in your dataframe with data taken from the data source census.gov (see Figure 11-12).

pop2014 by county[pop2014 by county['CTYNAME'] == 'Baldwin County']

	SUMLEV	REGION	DIVISION	STATE	COUNTY	STNAME	CTYNAME	CENSUS2010POP	ESTIMATESBASE2010	POPESTIMATE2010	
2	50	3	6	01	003	Alabama	Baldwin County	182265	182265	183216	
402	50	3	5	13	009	Georgia	Baldwin County	45720	45835	45685	

2 rows × 84 columns

Figure 11-12. The ID codes in the TSV files correspond to the combination of the values contained in the STATE and COUNTY columns

You can recognize that there is a match. The ID contained in TOPOJSON matches the numbers in the STATE and COUNTY columns if combined together, but removing the 0 when it is the digit at the beginning of the code. So now you can reconstruct all the data needed to replicate the TSV example of choropleth from the counties dataframe. The file will be saved as population.csv.

```
counties = pop2014_by_county[['STATE','COUNTY','POPESTIMATE2014']]
counties.is_copy = False
counties['id'] = counties['STATE'].str.lstrip('0') + "" +
counties['COUNTY']
del counties['STATE']
del counties['COUNTY']
```

```
counties.columns = ['pop','id']
counties = counties[['id','pop']]
counties.to csv('population.csv')
```

Now you rewrite the contents of the HTML() function by specifying a new <div> tag with the ID as choropleth2.

```
from IPython.core.display import display, Javascript, HTML
display(HTML("""
<style>
.counties {
  fill: none;
}
.states {
  fill: none;
  stroke: #fff;
  stroke-linejoin: round;
}
.q0-9 { fill:rgb(247,251,255); }
.q1-9 { fill:rgb(222,235,247); }
.q2-9 { fill:rgb(198,219,239); }
.q3-9 { fill:rgb(158,202,225); }
.q4-9 { fill:rgb(107,174,214); }
.q5-9 { fill:rgb(66,146,198); }
.q6-9 { fill:rgb(33,113,181); }
.q7-9 { fill:rgb(8,81,156); }
.q8-9 { fill:rgb(8,48,107); }
</style>
<div id="choropleth2" />
"""))
```

Finally, you have to define a new Template object.

```
choropleth2 = jinja2.Template("""
require(["d3", "queue", "topojson"], function(d3, queue, topojson){
   var data = []
d3.select("#choropleth2 svg").remove()
var width = 960,
    height = 600;
var rateById = d3.map();
var quantize = d3.scale.quantize()
    .domain([0, 1000000])
    .range(d3.range(9).map(function(i) { return "q" + i + "-9"; }));
var projection = d3.geo.albersUsa()
    .scale(1280)
    .translate([width / 2, height / 2]);
var path = d3.geo.path()
    .projection(projection);
var svg = d3.select("#choropleth2").append("svg")
    .attr("width", width)
    .attr("height", height);
queue()
    .defer(d3.json, "us.json")
    .defer(d3.csv,"population.csv", function(d) { rateById.set(d.id,
    +d.pop); })
    .await(ready);
function ready(error, us) {
  if (error) throw error;
  svg.append("g")
      .attr("class", "counties")
    .selectAll("path")
      .data(topojson.feature(us, us.objects.counties).features)
```

```
.enter().append("path")
    .attr("class", function(d) { return quantize(rateById.get(d.id)); })
    .attr("d", path);

svg.append("path")
    .datum(topojson.mesh(us, us.objects.states, function(a, b) { return a
    !== b; }))
    .attr("class", "states")
    .attr("d", path);
}

});

""");

Finally, you can execute the render() function to get the chart.

display(JavaScript(choropleth2.render()))
```

The choropleth map will be shown with the counties differently colored depending on their population, as shown in Figure 11-13.

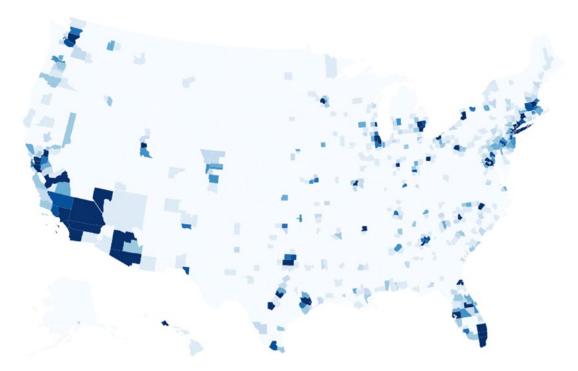


Figure 11-13. The choropleth map of the United States shows the density of the population of all counties

Conclusions

In this chapter, you have seen how it is possible to further extend the ability to display data using a JavaScript library called D3. Choropleth maps are just one of many examples of advanced graphics that are used to represent data. This is also a very good way to see the Jupyter Notebook in action. The world does not revolve around Python alone, but Python can provide additional capabilities for our work.

In the next chapter, you will see how to apply data analysis to images. You'll see how easy it is to build a model that can recognize handwritten numbers.

Recognizing Handwritten Digits

So far you have seen how to apply the techniques of data analysis to Pandas dataframes containing numbers and strings. Indeed, data analysis is not limited to numbers and strings, because images and sounds can also be analyzed and classified.

In this short but no-less-important chapter, you'll learn about handwriting recognition.

Handwriting Recognition

Recognizing handwritten text is a problem that can be traced back to the first automatic machines that needed to recognize individual characters in handwritten documents. Think about, for example, the ZIP codes on letters at the post office and the automation needed to recognize these five digits. Perfect recognition of these codes is necessary in order to sort mail automatically and efficiently.

Included among the other applications that may come to mind is OCR (Optical Character Recognition) software. OCR software must read handwritten text, or pages of printed books, for general electronic documents in which each character is well defined.

But the problem of handwriting recognition goes farther back in time, more precisely to the early 20th Century (1920s), when Emanuel Goldberg (1881–1970) began his studies regarding this issue and suggested that a statistical approach would be an optimal choice.

To address this issue in Python, the scikit-learn library provides a good example to better understand this technique, the issues involved, and the possibility of making predictions.

Recognizing Handwritten Digits with scikit-learn

The scikit-learn library (http://scikit-learn.org/) enables you to approach this type of data analysis in a way that is slightly different from what you've used in the book so far. The data to be analyzed is closely related to numerical values or strings, but can also involve images and sounds.

The problem you have to face in this chapter involves predicting a numeric value, and then reading and interpreting an image that uses a handwritten font.

So even in this case you will have an *estimator* with the task of learning through a fit() function, and once it has reached a degree of predictive capability (a model sufficiently valid), it will produce a prediction with the predict() function. Then we will discuss the training set and validation set, created this time from a series of images.

Now open a new IPython Notebook session from the command line by entering the following command:

ipython notebook

Then create a new Notebook by choosing New ➤ Python 3, as shown in Figure 12-1.

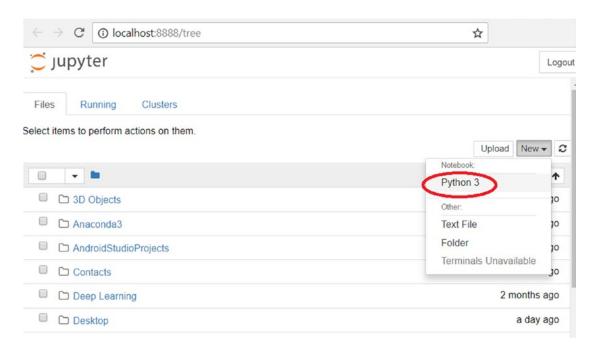


Figure 12-1. The home page of the IPython Notebook (Jupyter)

An estimator that is useful in this case is sklearn.svm.SVC, which uses the technique of Support Vector Classification (SVC).

Thus, you have to import the svm module of the scikit-learn library. You can create an estimator of SVC type and then choose an initial setting, assigning the values C and gamma generic values. These values can then be adjusted in a different way during the course of the analysis.

```
from sklearn import svm
svc = svm.SVC(gamma=0.001, C=100.)
```

The Digits Dataset

As you saw in Chapter 8, the scikit-learn library provides numerous datasets that are useful for testing many problems of data analysis and prediction of the results. Also in this case there is a dataset of images called *Digits*.

This dataset consists of 1,797 images that are 8x8 pixels in size. Each image is a handwritten digit in grayscale, as shown in Figure 12-2.

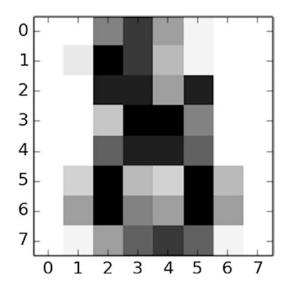


Figure 12-2. One of 1,797 handwritten number images that make up the dataset digit

CHAPTER 12 RECOGNIZING HANDWRITTEN DIGITS

Thus, you can load the Digits dataset into your Notebook.

```
from sklearn import datasets
digits = datasets.load digits()
```

After loading the dataset, you can analyze the content. First, you can read lots of information about the datasets by calling the DESCR attribute.

```
print(digits.DESCR)
```

For a textual description of the dataset, the authors who contributed to its creation and the references will appear as shown in Figure 12-3.

```
print digits.DESCR
```

```
Optical Recognition of Handwritten Digits Data Set
```

```
Notes
```

```
Data Set Characteristics:
```

:Number of Instances: 5620 :Number of Attributes: 64

:Attribute Information: 8x8 image of integer pixels in the range 0..16.

:Missing Attribute Values: None

:Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)

:Date: July; 1998

This is a copy of the test set of the UCI ML hand-written digits datasets http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

The data set contains images of hand-written digits: 10 classes where each class refers to a digit.

Preprocessing programs made available by NIST were used to extract normalized bitmaps of handwritten digits from a preprinted form. From a total of 43 people, 30 contributed to the training set and different 13 to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of 4x4 and the number of on pixels are counted in each block. This generates an input matrix of 8x8 where each element is an integer in the range 0..16. This reduces dimensionality and gives invariance to small distortions.

For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C. L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469, 1994.

Figure 12-3. Each dataset in the scikit-learn library has a field containing all the information

The images of the handwritten digits are contained in a digits.images array. Each element of this array is an image that is represented by an 8x8 matrix of numerical values that correspond to a grayscale from white, with a value of 0, to black, with the value 15.

```
digits.images[0]
```

You will get the following result:

```
array([[
         0.,
               0.,
                      5.,
                           13.,
                                  9.,
                                        1.,
                                              0.,
                                                    0.],
                    13.,
                           15., 10.,
                                       15.,
                                              5.,
                                                    0.],
               0.,
                                                    0.],
         0.,
               3., 15.,
                           2.,
                                       11.,
                                  0.,
                           0.,
                                                    0.],
          0.,
               4., 12.,
         0.,
               5., 8.,
                           0.,
                                  0.,
                                       9.,
                                                    0.],
               4., 11.,
                                                    0.],
         0.,
                           0.,
                                  1.,
                                       12.,
                                              7.,
                                                    0.],
               2., 14.,
                            5.,
                                 10.,
                                       12.,
                                              0.,
         0.,
               0., 6., 13., 10.,
                                      0.,
                                              0.,
                                                    0.11)
```

You can visually check the contents of this result using the matplotlib library.

```
import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(digits.images[0], cmap=plt.cm.gray r, interpolation='nearest')
```

By launching this command, you will obtain the grayscale image shown in Figure 12-4.

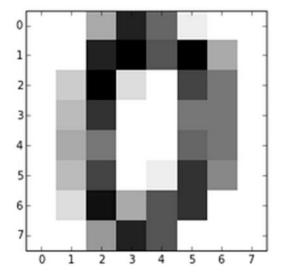


Figure 12-4. One of the 1,797 handwritten digits

The numerical values represented by images, i.e., the targets, are contained in the digit.targets array.

```
digits.target
```

You will get the following result:

```
array([0, 1, 2, ..., 8, 9, 8])
```

It was reported that the dataset is a training set consisting of 1,797 images. You can determine if that is true.

```
digits.target.size
```

This will be the result:

1797

Learning and Predicting

Now that you have loaded the Digits datasets into your notebook and have defined an SVC estimator, you can start learning.

As you learned in Chapter 8, once you define a predictive model, you must instruct it with a training set, which is a set of data in which you already know the belonging class. Given the large quantity of elements contained in the Digits dataset, you will certainly obtain a very effective model, i.e., one that's capable of recognizing with good certainty the handwritten number.

This dataset contains 1,797 elements, and so you can consider the first 1,791 as a training set and will use the last six as a validation set.

You can see in detail these six handwritten digits by using the matplotlib library:

```
import matplotlib.pyplot as plt
%matplotlib inline

plt.subplot(321)
plt.imshow(digits.images[1791], cmap=plt.cm.gray_r,
interpolation='nearest')
plt.subplot(322)
plt.imshow(digits.images[1792], cmap=plt.cm.gray_r,
interpolation='nearest')
```

```
plt.subplot(323)
plt.imshow(digits.images[1793], cmap=plt.cm.gray_r,
interpolation='nearest')
plt.subplot(324)
plt.imshow(digits.images[1794], cmap=plt.cm.gray_r,
interpolation='nearest')
plt.subplot(325)
plt.imshow(digits.images[1795], cmap=plt.cm.gray_r,
interpolation='nearest')
plt.subplot(326)
plt.imshow(digits.images[1796], cmap=plt.cm.gray_r,
interpolation='nearest')
```

This will produce an image with six digits, as shown in Figure 12-5.

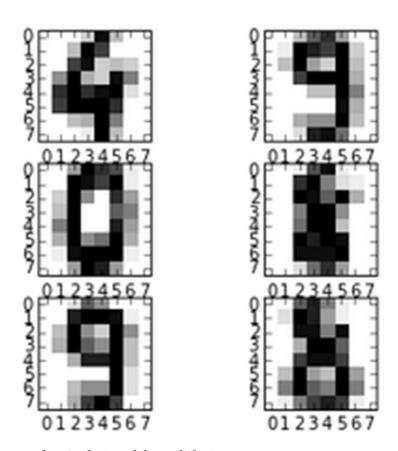


Figure 12-5. The six digits of the validation set

Now you can train the svc estimator that you defined earlier.

```
svc.fit(digits.data[1:1790], digits.target[1:1790])
```

After a short time, the trained estimator will appear with text output.

```
SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
   gamma=0.001, kernel='rbf', max_iter=-1, probability=False,
   random_state=None, shrinking=True, tol=0.001, verbose=False)
```

Now you have to test your estimator, making it interpret the six digits of the validation set.

```
svc.predict(digits.data[1791:1976])
```

You will obtain these results:

```
array([4, 9, 0, 8, 9, 8])
```

If you compare them with the actual digits, as follows:

```
digits.target[1791:1976]
array([4, 9, 0, 8, 9, 8])
```

You can see that the svc estimator has learned correctly. It is able to recognize the handwritten digits, interpreting correctly all six digits of the validation set.

Recognizing Handwritten Digits with TensorFlow

You have just seen an example of how machine learning techniques can recognize handwritten numbers. Now the same problem will be applied to the deep learning techniques that we used in Chapter 9.

Given the great value of the MNIST dataset, the TensorFlow library also contains a copy of it. It will therefore be really easy to perform studies and tests on neural networks with this dataset, without having to download or import them from other data sources.

Importing the MNIST dataset into the Jupyter Notebook (in any Python session) is very simple; you just import tensorflow.contrib.learn.python.learn.datasets. mnist directly like any other Python package. To load the dataset in a variable, you must use the read_data_sets() function. Thus, an optimal form for importing the dataset is as follows.

```
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_
sets
import numpy as np
import matplotlib.pyplot as plt
```

Since the dataset is contained in compressed files, these will automatically be downloaded to the session workspace as soon as you call the read_data_sets function. A good practice is to create a directory that contains them as MNIST_data.

```
mnist = read_data_sets ("MNIST_data/", one_hot=False)
```

In the output, the downloaded files will be shown as follows:

```
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
```

The MNIST data is split into three parts: 55,000 data points of training data (mnist. train), 10,000 points of test data (mnist.test), and 5,000 points of validation data (mnist.validation).

Given the large size of this dataset, a good practice is to break it into smaller batches, especially when it needs to be analyzed as a training set. To help you do this, TensorFlow uses the $next_batch(n)$ function, which allows you to extract n elements from the training set. Whenever the $next_batch(n)$ function is called, the n following elements will be extracted, until the end of the training set is reached.

To view the first 10 elements of the training set, enter the following code.

```
pixels,real_values = mnist.train.next_batch(10)
print("list of values loaded",real_values)
list of values loaded [2 6 8 3 4 2 0 9 8 7]
```

By releasing the same code, you will get the following 10 elements of the training set, and so on.

```
pixels,real_values = mnist.train.next_batch(10)
print("list of values loaded",real_values)
list of values loaded [6 1 8 5 0 1 8 4 7 3]
```

If you want to see the image of the handwritten digit of one of the elements contained in pixels (an array containing grayscale images), you can use matplotlib.

```
image = np.reshape(pixels[1,:],[28,28])
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()
```

You will get the black and white image of a handwritten number similar to the one shown in Figure 12-6.

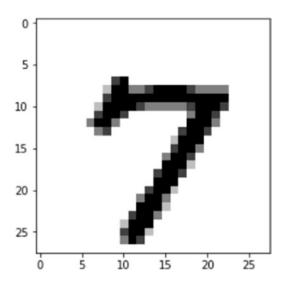


Figure 12-6. A digit of the training set in the MNIST dataset provided by the TensorFlow library

Learning and Predicting

Now that you've seen how to get the training set, the testing set, and the validation set with TensorFlow, it's time to do an analysis with a neural network very similar to the one you used in Chapter 9.

```
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
import matplotlib.pyplot as plt
```

```
# Parameters
learning rate = 0.01
training epochs = 25
batch size = 100
display step = 1
# tf Graph Input
x = tf.placeholder("float", [None, 784]) # mnist data image of shape
28*28=784
y = tf.placeholder("float", [None, 10]) # 0-9 digits recognition => 10 classes
# Create model
# Set model weights
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
evidence = tf.matmul(x, W) + b
# Construct model
activation = tf.nn.softmax(evidence) # Softmax
# Minimize error using cross entropy
cross entropy = y*tf.log(activation)
cost = tf.reduce mean(-tf.reduce sum(cross entropy, reduction indices=1))
optimizer = tf.train.GradientDescentOptimizer(learning rate).minimize(cost)
#Plot settings
avg set = []
epoch set=[]
# Initializing the variables
init = tf.global variables initializer()
# Launch the graph
with tf.Session() as sess:
    sess.run(init)
    # Training cycle
    for epoch in range(training epochs):
```

```
avg cost = 0.
    total batch = int(mnist.train.num examples/batch size)
    # Loop over all batches
    for i in range(total batch):
        batch xs, batch ys = mnist.train.next batch(batch size)
        sess.run(optimizer, feed dict={x: batch xs, y: batch ys})
        avg cost += sess.run(cost, feed dict={x: batch xs, y: batch
        ys})/total batch
    if epoch % display step == 0:
        print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".
        format(avg cost))
    avg set.append(avg cost)
    epoch set.append(epoch+1)
print("Training phase finished")
plt.plot(epoch set,avg set, 'o', label='Logistic Regression Training
phase')
plt.ylabel('cost')
plt.xlabel('epoch')
plt.legend()
plt.show()
# Test model
correct prediction = tf.equal(tf.argmax(activation, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce mean(tf.cast(correct prediction, "float"))
print("Model accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.
test.labels}))
```

By performing the analysis, you will obtain the cost trend during the learning phase (epoch cycle) and when the neural network will be properly instructed, the testing set mnist.test will be evaluated. The value of the accuracy obtained will tell you the percentage of numbers read and correctly interpreted by the neural network.

```
Extracting MNIST data/train-images-idx3-ubyte.gz
Extracting MNIST data/train-labels-idx1-ubyte.gz
Extracting MNIST data/t10k-images-idx3-ubyte.gz
Extracting MNIST data/t10k-labels-idx1-ubyte.gz
Epoch: 0001 cost= 1.176361134
Epoch: 0002 cost= 0.662538510
Epoch: 0003 cost= 0.550689667
Epoch: 0004 cost= 0.496738935
Epoch: 0005 cost= 0.463713668
Epoch: 0006 cost= 0.440845339
Epoch: 0007 cost= 0.423968329
Epoch: 0008 cost= 0.410662182
Epoch: 0009 cost= 0.399876185
Epoch: 0010 cost= 0.390923975
Epoch: 0011 cost= 0.383305770
Epoch: 0012 cost= 0.376747700
Epoch: 0013 cost= 0.371062683
Epoch: 0014 cost= 0.365925885
Epoch: 0015 cost= 0.361331244
Epoch: 0016 cost= 0.357197133
Epoch: 0017 cost= 0.353523670
Epoch: 0018 cost= 0.350157993
Epoch: 0019 cost= 0.347037680
Epoch: 0020 cost= 0.344143576
Epoch: 0021 cost= 0.341464736
Epoch: 0022 cost= 0.338996708
Epoch: 0023 cost= 0.336639690
Epoch: 0024 cost= 0.334515039
Epoch: 0025 cost= 0.332482831
Training phase finished
Model accuracy: 0.9143
```

From the data obtained, and observing Figure 12-7, you can see that the learning phase of the neural network has been completed and has an expected trend. The accuracy value of 0.91 (91%) indicates that the model you chose works quite satisfactorily (not completely).

CHAPTER 12 RECOGNIZING HANDWRITTEN DIGITS

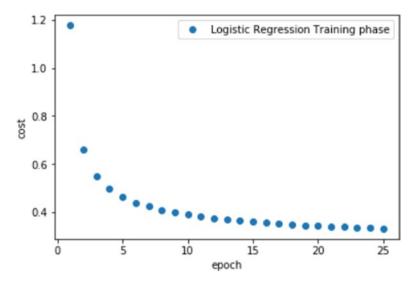


Figure 12-7. The cost trend during the learning phase of the neural network

Conclusions

In this short chapter, you learned how many application possibilities this data analysis process has. It is not limited only to the analysis of numerical or textual data but also can analyze images, such as the handwritten digits read by a camera or a scanner.

Furthermore, you have seen that predictive models can provide truly optimal results thanks to machine learning and deep learning techniques, which are easily implemented thanks to the scikit-learn library.

Textual Data Analysis with NLTK

In this book, you have seen various analysis techniques and numerous examples that worked on data in numerical or tabular form, which is easily processed through mathematical expressions and statistical techniques. But most of the data is composed of text, which responds to grammatical rules (or sometimes not even that:)) that differ from language to language. In text, the words and the meanings attributable to the words (as well as the emotions they transmit) can be a very useful source of information.

In this chapter, you will learn about some text analysis techniques using the NLTK (Natural Language Toolkit) library, which will allow you to perform otherwise complex operations. Furthermore, the topics covered will help you understand this important part of data analysis.

Text Analysis Techniques

In recent years, with the advent of Big Data and the immense amount of textual data coming from the Internet, a lot of text analysis techniques have been developed by necessity. In fact, this form of data can be very difficult to analyze, but at the same time represents a source of a lot of useful information, given also the enormous availability of data. Just think of all the literature produced, the numerous posts published on the Internet, for example. Comments on social networks and chats can also be a great source of data, especially to understand the degree of approval or disapproval of a particular topic.

CHAPTER 13 TEXTUAL DATA ANALYSIS WITH NLTK

Analyzing these texts has therefore become a source of enormous interest, and there are many techniques that have been introduced for this purpose, creating a real discipline in itself. Some of the more important techniques are the following:

- Analysis of the frequency distribution of words
- Pattern recognition
- Tagging
- Analysis of links and associations
- Sentiment analysis

The Natural Language Toolkit (NLTK)

If you program in Python and want to analyze data in text form, one of the most commonly used tools at the moment is the Python Natural Language Toolkit (NLTK).

NLTK is nothing more than a Python library (https://www.nltk.org/) in which there are many tools specialized in processing and text data analysis. NLTK was created in 2001 for educational purposes, then over time it developed to such an extent that it became a real analysis tool.

Within the NLTK library, there is also a large collection of sample texts, called *corpora*. This collection of texts is taken largely from literature and is very useful as a basis for the application of the techniques developed with the NLTK library. In particular, it's used to perform tests (a role similar to the MNIST dataset present in TensorFlow, which is discussed in Chapter 9).

Installing NLTK on your computer is a very simple operation. Being a very popular Python library, you simply need to install it using pip or conda.

On Linux systems, use this:

pip install nltk

On Windows systems (via Anaconda), use this:

conda install nltk

Import the NLTK Library and the NLTK Downloader Tool

In order to be more confident with NLTK, there is no better method than working directly with the Python code. In this way you will be able to see and gradually understand the operation of this library.

So the first thing you need to do is open a session on IPython or on a Jupyter Notebook. The first command imports the NLTK library.

import nltk

Then you need to import text from the corpora collection. To do this there is a function called nltk.download_shell(), which opens a tool called NLTK Downloader that allows you to make selections through a guided choice of options.

If you enter this command on the terminal:

```
nltk.download_shell()
```

You will see the various options in text format.

NLTK Downloader							
d)	Download	l) List	u) Update	c) Config	h) Help	q) Quit	
Downlo	naders						

Now the tool is waiting for an option. If you want to see a list of possible NLTK extensions, enter **L** for list and press Enter. You will immediately see a list of all the possible packages belonging to NLTK that you can download to extend the functionality of NLTK, including the texts of the corpora collection.

Packages:

L]	abc Australian Broadcasting Commission 2006
[]	alpino Alpino Dutch Treebank
[]	averaged_perceptron_tagger Averaged Perceptron Tagger
[]	<pre>averaged_perceptron_tagger_ru Averaged Perceptron Tagger (Russian)</pre>
[]	basque_grammars Grammars for Basque
[]	biocreative_ppi BioCreAtIvE (Critical Assessment of Information
		Extraction Systems in Biology)
Γ	1	bllip wsj no aux BLLIP Parser: WSJ Model

CHAPTER 13 TEXTUAL DATA ANALYSIS WITH NLTK

```
[ ] book_grammars..... Grammars from NLTK Book
[ ] brown...... Brown Corpus
[ ] brown_tei..... Brown Corpus (TEI XML Version)
[ ] cess_cat..... CESS-CAT Treebank
[ ] cess_esp.... CESS-ESP Treebank
[ ] chat80..... Chat-80 Data Files
[ ] city_database... City Database
[ ] cmudict.... The Carnegie Mellon Pronouncing Dictionary (0.6)
[ ] comparative_sentences Comparative Sentence Dataset
[ ] comtrans.... ComTrans Corpus Sample
[ ] conll2000.... CONLL 2000 Chunking Corpus
[ ] conll2002.... CONLL 2002 Named Entity Recognition Corpus
Hit Enter to continue:
```

Pressing Enter again will continue displaying the list by showing other packages in alphabetical order. Press Enter until the list is finished to see all the possible packages. At the end of the list, the different initial options of the NLTK Downloader will reappear.

To be able to create a series of examples to learn about the library, you need a series of texts to work on. An excellent source of texts suitable for this purpose is the Gutenberg corpus, present within the corpora collection. The Gutenberg corpus is a small selection of texts extracted from the electronic archive called the Project Gutenberg (http://www.gutenberg.org/). There are over 25,000 e-books in this archive.

To download this package, first enter the d option to download it. The tool will ask you for the package name, so you then enter the name gutenberg.

```
d) Download l) List u) Update c) Config h) Help q) Quit

Downloader> d

Download which package (l=list; x=cancel)?

Identifier> gutenberg
```

At this point the package will start to download.

For the following times, if you already know the name of the package you want to download, just enter the command nltk.download() with the package name as an argument. This will not open the NLTK Downloader tool, but will directly download the required package. So the previous operation is equivalent to writing:

```
nltk.download ('gutenberg')
```

Once it's completed you can see the contents of the package thanks to the fileids() function, which shows the names of the files contained in it.

```
gb = nltk.corpus.gutenberg
print ("Gutenberg files:", gb.fileids ())
```

An array will appear on the terminal with all the text files contained in the gutenberg package.

```
Gutenberg files: ['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt', 'blake-poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt', 'carroll-alice.txt', 'chesterton-ball.txt', 'chesterton-brown.txt', 'chesterton-thursday.txt', 'edgeworth-parents.txt', 'melville-moby_dick.txt', 'milton-paradise.txt', 'shakespeare-caesar.txt', 'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt']
```

To access the internal content of one of these files, you first select one, for example Shakespeare's Macbeth (shakespeare-macbeth.txt), and then assign it to a variable of convenience. An extraction mode is for words, that is, you want to create an array containing words as elements. In this regard, you need to use the words() function.

```
macbeth = nltk.corpus.gutenberg.words ('shakespeare-macbeth.txt')
```

If you want to see the length of this text (in words), you can use the len() function.

```
len (macbeth)
23140
```

The text used for these examples is therefore composed of 23140 words.

The macbeth variable we created is a long array containing the words of the text. For example, if you want to see the first 10 words of the text, you can write the following command.

```
macbeth [:10]
['[',
   'The',
   'Tragedie',
   'of',
   'Macbeth',
   'by',
   'William',
   'Shakespeare',
   '1603',
   ']']
```

As you can see, the first 10 words contain the title of the work, but also the square brackets, which indicate the beginning and end of a sentence. If you had used the sentence extraction mode with the sents() function, you would have obtained a more structured array, with each sentence as an element. These elements, in turn, would be arrays with words for elements.

```
macbeth sents = nltk.corpus.gutenberg.sents ('shakespeare-macbeth.txt')
macbeth sents [: 5]
[['[',
  'The',
  'Tragedie',
  'of',
  'Macbeth',
  'by',
  'William',
  'Shakespeare',
  '1603',
  ']'],
 ['Actus', 'Primus', '.'],
 ['Scoena', 'Prima', '.'],
 ['Thunder', 'and', 'Lightning', '.'],
 ['Enter', 'three', 'Witches', '.']]
```

Search for a Word with NLTK

One of the most basic things you need to do when you have an NLTK corpus (that is, an array of words extracted from a text) is to do research inside it. The concept of research is slightly different than what you are used to.

The concordance() function looks for all occurrences of a word passed as an argument within a corpus.

The first time you run this command, the system will take several seconds to return a result. The subsequent times will be faster. In fact, the first time this command is executed on a corpus it creates an indexing of the content to perform the search, which once created will be used in subsequent calls. This explains why the system takes more time the first time.

First, make sure that the corpus is an object nltk. Text, and then search internally for the word 'Stage'.

```
text = nltk.Text(macbeth)
text.concordance('Stage')
Displaying 3 of 3 matches:
nts with Dishes and Seruice ouer the Stage . Then enter Macbeth Macb . If
it we
with mans Act , Threatens his bloody Stage : byth ' Clock ' tis Day , And
yet d
  struts and frets his houre vpon the Stage , And then is heard no more . It
is
```

You have obtained three different occurrences of the text.

Another form of searching for a word present in NLTK is that of context. That is, the previous word and the next word to the one you are looking for. To do this, you must use the common contexts() function.

```
text.common_contexts(['Stage'])
the_ bloody_: the_,
```

If you look at the results of the previous research, you can see that the three results correspond to what has been said.

Once you understand how NLTK conceives the concept of the word and its context during the search, it will be easy to understand the concept of a synonym. That is, it is assumed that all words that have the same context can be possible synonyms. To

search for all words that have the same context as the searched one, you must use the similar() function.

```
text.similar('Stage')
fogge ayre bleeding reuolt good shew heeles skie other sea feare
consequence heart braine seruice herbenger lady round deed doore
```

These methods of research may seem rather strange for those who are not used to processing and analyzing text, but you will soon understand that these methods of research are perfectly suited to the words and their meaning in relation to the text in which they are present.

Analyze the Frequency of Words

One of the simplest and most basic examples for the analysis of a text is to calculate the frequency of the words contained in it. This operation is so common that it has been incorporated into a single nltk.FreqDist() function to which the variable containing the word array is passed as an argument.

So to get a statistical distribution of all the words in the text, you'll have to enter a simple command.

```
fd = nltk.FreqDist(macbeth)
```

If you want to see the first 10 most common words in the text, you can use the most common() function.

```
fd.most_common(10)
[(',', 1962),
    ('.', 1235),
    ("'", 637),
    ('the', 531),
    (':', 477),
    ('and', 376),
    ('I', 333),
    ('of', 315),
    ('to', 311),
    ('?', 241)]
```

From the result obtained, you can see that the most common elements are punctuation, prepositions, and articles, and this applies to many languages, including English. Since these have little meaning during text analysis, it is often necessary to eliminate them. These are called *stopwords*.

Stopwords are words that have little meaning in the analysis and must be filtered. There is no general rule to determine whether a word is a stopword (to be deleted) or not. However, the NLTK library comes to the rescue by providing you with an array of pre-selected stopwords. To download stopwords, you can use the nltk.download() command.

```
nltk.download('stopwords')
```

Once you have downloaded all the stopwords, you can select only those related to English, saving them in a variable sw.

```
sw = set(nltk.corpus.stopwords.words ('english'))
print(len(sw))
list(sw) [:10]
179
['through',
   'are',
   'than',
   'nor',
   'ain',
   "didn't",
   'didn't",
   'down',
   'our']
```

There are 179 stopwords in the English vocabulary according to NLTK. Now you can use these stopwords to filter the macbeth variable.

```
macbeth_filtered = [w for w in macbeth if w.lower() not in sw]
fd = nltk.FreqDist (macbeth_filtered)
fd.most_common(10)
[(',', 1962),
```

CHAPTER 13 TEXTUAL DATA ANALYSIS WITH NLTK

```
('.', 1235),

("'", 637),

(':', 477),

('?', 241),

('Macb', 137),

('haue', 117),

('-', 100),

('Enter', 80),

('thou', 63)]
```

Now that the first 10 most common words are returned, you can see that the stopwords have been eliminated, but the result is still not satisfactory. In fact, punctuation is still present in the words. To eliminate all punctuation, you can change the previous code by inserting in the filter an array of punctuation containing the punctuation symbols. This punctuation array can be obtained by importing the string function.

```
import string
punctuation = set (string.punctuation)
macbeth_filtered2 = [w.lower () for w in macbeth if w.lower () not in sw
and w.lower () not in punctuation]
```

Now you can recalculate the frequency distribution of words.

```
fd = nltk.FreqDist (macbeth_filtered2)
fd.most_common(10)
[('macb', 137),
    ('haue', 122),
    ('thou', 90),
    ('enter', 81),
    ('shall', 68),
    ('macbeth', 62),
    ('vpon', 62),
    ('thee', 61),
    ('macd', 58),
    ('vs', 57)]
```

Finally, the result is what you were looking for.

Selection of Words from Text

Another form of processing and data analysis is the process of selecting words contained in a body of text based on particular characteristics. For example, you might be interested in extracting words based on their length.

To get all the longest words, for example words that are longer than 12 characters, you enter the following command.

```
long_words = [w \text{ for } w \text{ in macbeth if } len(w) > 12]
```

All words longer than 12 characters have been entered in the long_words variable. You can list them in alphabetical order by using the sort() function.

```
sorted(long_words)
['Assassination',
'Chamberlaines',
'Distinguishes',
'Gallowgrosses',
'Metaphysicall',
'Northumberland',
'Voluptuousnesse',
'commendations',
'multitudinous',
'supernaturall',
'vnaccompanied']
```

As you can see, there are 11 words that meet this criteria.

Another example is to look for all the words that contain a certain sequence of characters, such as 'ious'. You only have to change the condition in the for in loop to get the desired selection.

```
ious_words = [w for w in macbeth if 'ious' in w]
ious_words = set(ious_words)
sorted(ious_words)
['Auaricious',
   'Gracious',
   'Industrious',
   'Iudicious',
```

```
'Luxurious',
'Malicious'.
'Obliuious',
'Pious',
'Rebellious',
'compunctious',
'furious',
'gracious',
'pernicious',
'pernitious',
'pious',
'precious',
'rebellious',
'sacrilegious',
'serious',
'spacious',
'tedious'l
```

In this case, you used sort() to make a list casting, so that it did not contain duplicate words.

These two examples are just a starting point to show you the potential of this tool and the ease with which you can filter words.

Bigrams and Collocations

Another basic element of text analysis is to consider pairs of words (*bigrams*) instead of single words. The words "is" and "yellow" are for example a bigram, since their combination is possible and meaningful. So "is yellow" can be found in textual data. We all know that some of these bigrams are so common in our literature that they are almost always used together. Examples include "fast food", "pay attention", "good morning", and so on. These bigrams are called *collocations*.

Textual analysis can also involve the search for any bigrams within the text under examination. To find them, simply use the bigrams() function. In order to exclude stopwords and punctuation from the bigrams, you must use the set of words already filtered previously, such as macbeth_filtered2.

```
bgrms = nltk.FreqDist(nltk.bigrams(macbeth filtered2))
bgrms.most common(15)
[(('enter', 'macbeth'), 16),
(('exeunt', 'scena'), 15),
(('thane', 'cawdor'), 13),
(('knock', 'knock'), 10),
(('st', 'thou'), 9),
(('thou', 'art'), 9),
(('lord', 'macb'), 9),
(('haue', 'done'), 8),
(('macb', 'haue'), 8),
(('good', 'lord'), 8),
(('let', 'vs'), 7),
(('enter', 'lady'), 7),
(('wee', 'l'), 7),
(('would', 'st'), 6),
(('macbeth', 'macb'), 6)]
```

By displaying the most common bigrams in the text, linguistic locations can be found. In addition to the bigrams, there can also be placements based on trigrams, which are combinations of three words. In this case, the trigrams() function is used.

```
tgrms = nltk.FreqDist(nltk.trigrams (macbeth_filtered2))
tgrms.most_common(10)
[(('knock', 'knock', 'knock'), 6),
  (('enter', 'macbeth', 'macb'), 5),
  (('enter', 'three', 'witches'), 4),
  (('exeunt', 'scena', 'secunda'), 4),
  (('good', 'lord', 'macb'), 4),
  (('three', 'witches', '1'), 3),
  (('three', 'witches', '1'), 3),
  (('exeunt', 'scena', 'tertia'), 3),
  (('thunder', 'enter', 'three'), 3),
  (('exeunt', 'scena', 'quarta'), 3),
  (('scena', 'prima', 'enter'), 3)]
```

Use Text on the Network

So far you have seen a series of examples that use already ordered and included text (called a corpus) within the NLTK library as gutenberg. But in reality, you will need to access the Internet to extract the text and collect it as a corpus to be used for analysis with NLTK.

In this section, you will see how simple this kind of operation is. First, you need to import a library that allows you to connect to the contents of web pages. The urllib library is an excellent candidate for this purpose, as it allows you to download the text content from the Internet, including HTML pages.

So first you import the request() function, which specializes in this kind of operation, from the urllib library.

```
from urllib import request
```

Then you have to write the URL of the page that contains the text to be extracted. Still referring to the gutenberg project, you can choose, for example, a book written by Dostoevsky (http://www.gutenberg.org). On the site there is text in different formats; at this point we will choose the one in the raw format (.txt).

```
url = "http://www.gutenberg.org/files/2554/2554-0.txt"
response = request.urlopen(url)
raw = response.read().decode('utf8')
```

Within the raw text is all the textual content of the book, downloaded from the Internet. Always check the contents of what you have downloaded. To do this, the first 75 characters are enough.

```
raw[:75]
'\ufeffThe Project Gutenberg EBook of Crime and Punishment, by Fyodor
Dostoevsky\r'
```

As you can see, these characters correspond to the title of the text. We see that there is also an error in the first word of the text. In fact there is the Unicode character BOM \ufeff. This happened because we used the utf8 decoding system, which is valid in most cases, but not in this case. The most suitable system in this case is utf-8-sig. Replace the incorrect value with the correct one.

```
raw = response.read().decode('utf8-sig')
raw[:75]
'The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\
r\n'
```

Now to be able to work on it, you have to convert it into a corpus compatible with NLTK. To do this, enter the following conversion commands.

```
tokens = nltk.word_tokenize (raw)
webtext = nltk.Text (tokens)
```

These commands do nothing more than split into tokens (that is, words) the character text with the function nltk.word_tokenize() and then convert tokens into a textual body suitable for NLTK with nltk.Text().

You can see the title by entering this command

```
webtext[:12]
['The',
  'Project',
  'Gutenberg',
  'EBook',
  'of',
  'Crime',
  'and',
  'Punishment',
  ',',
  'by',
  'Fyodor',
  'Dostoevsky']
```

Now you have a correct corpus on which to begin to carry out your analysis.

Extract the Text from the HTML Pages

In the previous example, you created a NLTK corpus from text downloaded from the Internet. But most of the documentation on the Internet is in the form of HTML pages. In this section, you will see how to extract text from HTML pages.

You always use the request() function of the urllib library to download the HTML content of a web page.

```
url = "http://news.bbc.co.uk/2/hi/health/2284783.stm"
html = request.urlopen(url).read().decode('utf8')
html[:120]
'<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">\r\n<html>\r\n<hea'</pre>
```

Now, however, the conversion into NLTK corpus requires an additional library, bs4 (BeautifulSoup), which provides you with suitable parsers that can recognize HTML tags and extract the text contained in them.

```
from bs4 import BeautifulSoup
raw = BeautifulSoup(html, "lxml").get_text()
tokens = nltk.word_tokenize(raw)
text = nltk.Text(tokens)
```

Now you also have a corpus in this case, even if you often have to perform more complex cleaning operations than the previous case to eliminate the words that do not interest you.

Sentimental Analysis

Sentimental analysis is a new field of research that has developed very recently in order to evaluate people's opinions about a particular topic. This discipline is based on different techniques that use text analysis and its field of work in the world of social media and forums (*opinion mining*).

Thanks to comments and reviews by users, sentimental analysis algorithms can evaluate the degree of appreciation or evaluation based on certain keywords. This degree of appreciation is called *opinion* and has three possible values: positive, neutral, or negative. The assessment of this opinion thus becomes a form of classification.

So many sentimental analysis techniques are actually classification algorithms similar to those you saw in previous chapters covering machine learning and deep learning (see Chapters 8 and 9).

As an example to better understand this methodology, we reference a classification tutorial using the Naïve Bayes algorithm on the official website (https://www.nltk.org/book/ch06.html), where it is possible to find many other very useful examples to better understand this library.

As a training set, this example uses another corpus present in NLTK, which is very useful for these types of classification problems: movie_reviews. This corpus contains numerous film reviews in which there is text of a discrete length together with another field that specifies whether the criticism is positive or negative. Therefore, it serves as great learning material.

The purpose of this tutorial is to find the words that recur most in negative documents, or words that recur more in positive ones, so as to focus on the keywords related to an opinion. This evaluation will be carried out through a Naïve Bayes Classification integrated into NLTK.

First of all, the corpus called movie reviews is important.

```
nltk.download('movie reviews')
```

Then you build the training set from the corpus obtained, creating an array of element pairs called documents. This array contains in the first field the text of the single review, and in the second field the negative or positive evaluation. At the end, you will mix all the elements of the array in random order.

To better understand, see the contents of documents in detail. The first element contains two fields; the first is the review containing all the words used.

```
first_review = ' '.join(documents[0][0])
print(first_review)
topless women talk about their lives falls into that category that i
mentioned in the devil ' s advocate : movies that have a brilliant beginning
but don ' t know how to end . it begins by introducing us to a selection of
```

characters who all know each other . there is liz , who oversleeps and so is running late for her appointment , prue who is getting married ,...

The second field instead contains the evaluation of the review:

```
documents[0][1]
'neg'
```

But the training set is not yet ready; in fact you have to create a frequency distribution of all the words in the corpus. This distribution will be converted into a casting list with the list() function.

```
all_words = nltk.FreqDist(w.lower() for w in reviews.words())
word features = list(all words)
```

Then the next step is to define a function for the calculation of the features, i.e., words that are important enough to establish the opinion of a review.

```
def document_features(document, word_features):
    document_words = set(document)
    features = {}
    for word in word_features:
        features ['{}'.format(word)] = (word in document_words)
    return features
```

Once you have defined the document_features() function, you can create feature sets from documents.

```
featuresets = [(document_features (d, c)) for (d, c) in documents]
```

The aim is to create a set of all the words contained in the whole movie corpus, analyze whether they are present (True or False) in each single review, and see how much they contribute to the positive or negative judgment of it. The more often a word is present in the negative reviews and the less often it's present in the positive ones, the more it's evaluated as a "bad" word. The opposite is true for a "good" word evaluation.

To determine how to subdivide this feature set for the training set and the testing set, you must first see how many elements it contains.

```
len (featuresets)
2000
```

Then you use the first 1,500 elements of the set for the training set, and the last 500 items for the testing set, in order to evaluate the accuracy of the model.

```
train_set, test_set = featuresets[1500:], featuresets[: 500]
```

Finally, you apply the Naïve Bayes classifier provided by the NLTK library to classify this problem. Then you calculate its accuracy, submitting the test set to the model.

```
classifier = nltk.NaiveBayesClassifier.train(train_set)
print (nltk.classify.accuracy(classifier, test_set))
0.85
```

The accuracy is not as high as in the examples from the previous chapters, but we are working with words contained in text, and therefore it is very difficult to create accurate models relative to numerical problems.

Now that you have completed the analysis, you can see which words have the most weight in evaluating the negative or positive opinion of a review.

```
classifier.show_most_informative_features(10)
Most Informative Features
```

```
badly = True
                              neg: pos
                                                11.1:1.0
    julie = True
                              neg: pos
                                                 9.5 : 1.0
   finest = True
                              pos : neg
                                                 9.0:1.0
   forgot = True
                                                 8.8:1.0
                              neg: pos
    naked = True
                              neg: pos
                                                 8.8:1.0
refreshing = True
                              pos : neg
                                                 7.9:1.0
   stolen = True
                              pos : neg
                                                 7.3:1.0
  luckily = True
                              pos : neg
                                                 7.3 : 1.0
  directs = True
                              pos : neg
                                                 7.3:1.0
     rain = True
                              neg: pos
                                                 7.3:1.0
                                           =
```

Looking at the results, you will not be surprised to find that the word "badly" is a bad opinion word and that "finest" is a good opinion word. The interesting thing here is that "julie" is a bad opinion word.

Conclusions

In this chapter, you took a small glimpse of the text analysis world. In fact, there are many other techniques and examples that could be discussed. However, at the end of this chapter, you should be familiar with this branch of analysis and especially have begun to learn about the NLTK (Natural Language Toolkit) library, a powerful tool for text analysis.

Image Analysis and Computer Vision with OpenCV

In the previous chapters, the analysis of data was centered entirely on numerical and tabulated data, while in the previous one we saw how to process and analyze data in textual form. This book rightfully closes by introducing the last aspect of data analysis: *image analysis*.

During the chapter, topics such as computer vision and face recognition will be introduced. You will see how the techniques of deep learning are at the base of this king of analysis. Furthermore, another library will be introduced, called openCV, which has always been the reference point for image analysis.

Image Analysis and Computer Vision

Throughout the book, you have seen how the purpose of the analysis is to extract new information, to draw new concepts and characteristics from a system under investigation. You did it with numerical and textual data, but the same can be done with images.

This branch of analysis is called *image analysis* and is based on some calculation techniques applied to them (image filters), which you will see in the next sections.

In recent years, especially because of the development of deep learning, image analysis has experienced huge development in solving problems that were previously impossible, giving rise to a new discipline called *computer vision*.

In Chapter 9, you learned about artificial intelligence, which is the branch of calculation that deals with solving problems of pure "human relevance". Computer vision is part of this, since its purpose is to reproduce the way the human brain perceives images.

In fact, seeing is not just the acquisition of a two-dimensional image, but above all it is the interpretation of the content of that area. The captured image is decomposed and elaborated into levels of representation that are gradually more abstract (contours, figures, objects, and words) and therefore recognizable by the human mind.

In the same way, computer vision intends to process a two-dimensional image and extract the same levels of representation from it. This is done through various operations that can be classified as follows:

- Detection: Detect shapes, objects, or other subjects of investigation in an image (for example finding cars)
- Recognition: The identified subjects are then led back to generic classes (for example, subdividing cars by brands and types)
- *Identification*: An instance of the previous class is identified (for example, find my car)

OpenCV and Python

OpenCV (Open Source Computer Vision) is a library written in C++ that is specialized for computer vision and image analysis (https://opencv.org/). This powerful library, designed by Gary Bradsky, was born as an Intel project and in 2000 the first version was released. Then with the passage of time, it was released under an open source license, and since then has gradually becoming more widespread, reaching the version 3.3 (2017). At this time, OpenCV supports many algorithms related to computer vision and machine learning and is expanding day by day.

Its usefulness and spread is due precisely to its antagonist: MATLAB. In fact, those who need to work with image analysis can follow only two ways: purchase MATLAB packages or compile and install the open source version of OpenCV. Well, it is easy to see why many have opted for the second choice.

OpenCV and Deep Learning

There is a close relationship between computer vision and deep learning. Since 2017 was a significant year for the development of deep learning (read my article about it at http://www.meccanismocomplesso.org/en/2017-year-of-deep-learning-frameworks/), the release of the new version of OpenCV 3.3 has seen the enhancement of the library with many new features of deep learning and neural networks in general. In fact, the library has a module called dnn (deep neural networks) dedicated to this aspect. This module has been specifically developed for use with many deep learning frameworks, including Caffe2, TensorFlow, and PyTorch (for information on these frameworks see Chapter 9).

Installing OpenCV

Installing a OpenCV package on many operating systems (Windows, iOS, and Android) is done through the official website (https://opencv.org/releases.html).

If you use Anaconda as a distribution medium, I recommend using this approach. The installation is very simple and clean.

conda install opencv

Unfortunately for Linux systems there is no official PyPI package (with pip to be clear) to be installed. Manual installation is required and may vary depending on the distribution and version used. Many procedures are present on the Internet, some more or less valid. For those with Ubuntu 16, I recommend this installation procedure (see https://github.com/BVLC/caffe/wiki/OpenCV-3.3-Installation-Guide-on-Ubuntu-16.04).

First Approaches to Image Processing and Analysis

In this section, you will begin to familiarize yourself with the OpenCV library. First you will start to see how to upload and view images. Then you will pass some simple operations to them, add and subtract two images, and see an example of image blending. All these operations will be very useful as they will serve as a basis for any other image analysis operation.

Before Starting

Once the OpenCV library is installed, you can open an IPython session on the Jupyter QtConsole or Jupyter Notebook.

Then before you start programming, you need to import the openCV library.

```
import numpy as np
import cv2
```

Load and Display an Image

First, mainly because OpenCV works on pictures, it is important to know how to load them in a program in Python, manipulate them again, and finally view them to see the results.

The first thing you need to do is read the file containing the image using the OpenCV library. You can do this using the imread() method. This method reads the file in a compressed format such as JPG and translates it into a data structure that's made of a numerical matrix corresponding to color gradations and position.

Note You can find the images and files in the source code of this book.

```
img = cv2.imread('italy2018.jpg')
```

If you are interested in more details, you can see the content of an image directly. You will notice an array of arrays, each corresponding to a specific position of the image, and each characterized by numbers between 0 and 255.

In fact, if you see the content of the first element of the image, you will get the following.

Continuing with the code, you will now use the imshow() method to create a window with the image loaded in the variable img. This method takes two parameters—the window name and the image variable. Once you have created the window, you can use the waitKey() method.

```
cv2.imshow('Image', img)
cv2.waitKey(0)
```

Executing this command, a new window opens and shows the image, as shown in Figure 14-1.

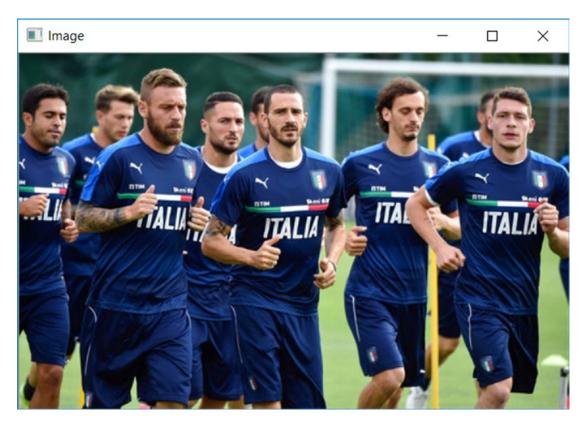


Figure 14-1. The photo of the Italian national football team during training

The waitKey() method starts to display the window and allows you to control the waiting time of the program before continuing with the next command. This example used 0 as an argument, which means that the wait will be infinite as long as you press any key on the keyboard.

If you wanted to keep open the window only for a specific period, you need to write the number of milliseconds as a parameter. Try to replace the value in the program, for example 2000 (two seconds), and run the program.

Note This behavior can vary greatly from system to system. Sometimes the IPython kernel could give problems. Then use waitKey(0).

```
cv2.imshow('Image', img)
cv2.waitKey(2000)
```

The window with the image (as shown in Figure 14-1) should appear and then disappear after two seconds.

However, for examples that are more complex, it is useful to have direct control over the closure of a window, without the use of waiting times. The destroyWindow() method allows you to close the desired window (could be several open) by specifying as an argument the name of the window, which in your case is Image.

```
cv2.imshow('Image', img)
cv2.waitKey(2000)
cv2.destroyWindow('Image')
```

If there are multiple windows open and you want to close them all at once, you can use a single command, the call to destroyAllWindows() method.

Working with Images

Now that you've seen how to view existing images in your file system, you can proceed to the next step: processing the image by performing an operation on it and saving the result to a new file.

Continuing with the previous example, you will use the same code. This time, however, you will perform a simple image manipulation, for example, by decomposing the three RGB channels. Then you will exchange the channels to form a new image. This new image will have all altered colors.

After loading the image, decompose it into the three RGB channels. You can do this easily by using the split() method.

```
b,r,g = cv2.split(img)
```

Now reassemble the three channels, but change the order, for example by exchanging the red channel with the green channel. You can easily recombine the channels using the merge() method.

```
img2 = cv2.merge((b,g,r))
```

The new image is contained in the img2 variable. Display it along with the original in a new window.

```
cv2.imshow('Image2', img2)
cv2.waitKey(0)
```

By running the program, a new window appears with altered colors (as shown in Figure 14-2).

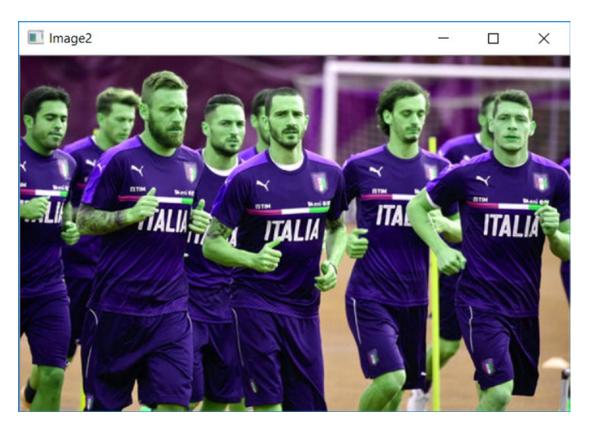


Figure 14-2. The processed image has altered colors

Save the New Image

Finally you have to save your new image by saving the file system.

At the end of the program, add an imwrite() method with the name of the new file that you want to save, which can also be of another format, such as PNG.

```
cv2.imwrite('italy2018altered.png', img2)
```

Execute this command and you will notice a new italy2018altered.png file in the workspace.

Elementary Operations on Images

The most basic operation is the addition of two images. With the openCV library, this operation is very simple and you can do it using the cv2.add() function. The result obtained will be the combination of the two images.

But do not forget that the two images must have the same dimensions to be added together. In this case, the images are both 512x331 pixels.

The first thing you need to do is load a second image with the same dimensions, in our case soccer.jpg (you can find it in the source code).

```
img2 = cv2.imread('soccer.jpg')
cv2.imshow('Image2', img2)
cv2.waitKey(0)
```

By executing the code, you will get the image shown in Figure 14-3.

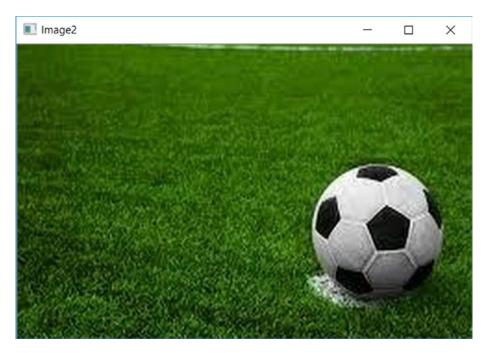


Figure 14-3. A new image that's the same size (512x331 pixels)

Now you just have to add the two images using the add() function.

```
img = cv2.add(img,img2)
cv2.imshow('Sum',img)
```

By executing this code, you will receive a combination of the two images (as shown in Figure 14-4). Unfortunately, the effect is not very appealing.

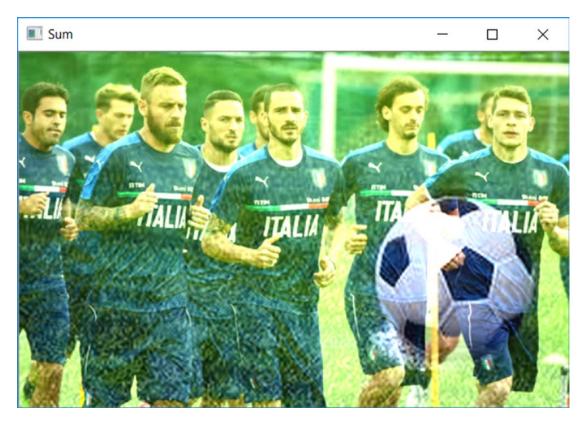


Figure 14-4. A new image obtained by adding the two images

The result is not what we expected. The prevalence of white is in fact the result of the simple arithmetic sum of the three RGB values, which is calculated for each individual pixel.

In fact, you know that each of the three RGB components takes values from 0 to 255. Therefore, if the sum of the values of a given pixel is greater than 255 (which is quite likely) the value will still be 255. Therefore, the simple task of adding the images does not lead to an image that's a merger of the two, but instead shifts gradually more and more toward white.

Later you will see how the concept of adding two images to create a new image that is half of the two (it is not the arithmetic sum).

You can do the same thing by subtracting two images. This operation can be performed with the cv2.subtract() function. This time we would expect an image that will tend more and more toward the black. Replace the cv2.add() function with the following.

```
img3 = cv2.subtract(img, img2)
cv2.imshow('Sub1',img3)
cv2.waitKey(0)
```

By running the program you will find a picture tending to the darkness (even if you do not see much), as shown in Figure 14-5.

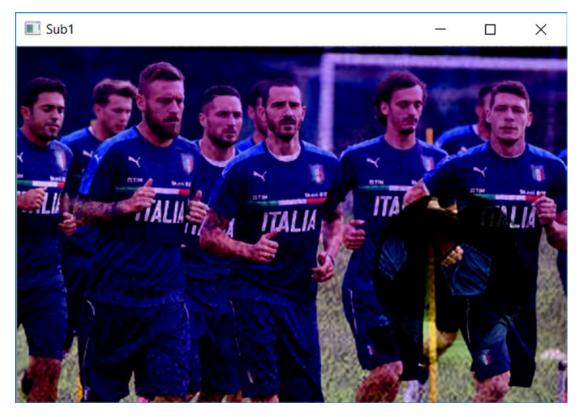


Figure 14-5. A new image obtained by subtracting one image from another

CHAPTER 14 IMAGE ANALYSIS AND COMPUTER VISION WITH OPENCY

Please note that this effect is even worse if you do the reverse.

```
img3 = cv2.subtract(img2, img)
cv2.imshow('Sub1',img3)
cv2.waitKey(0)
```

You get a blackish image, as shown in Figure 14-6.

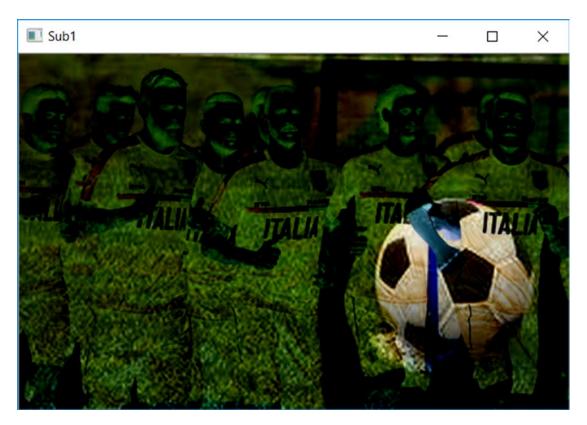


Figure 14-6. A new image obtained by subtracting one image from another

However, this is useful to know that the order of the operators is important for the result.

More concretely, you have already seen that an image object created with the OpenCV library is nothing more than an array of arrays that respond perfectly to the canons of NumPy. Thus, you can use the operations between matrices provided by NumPy, such as the addition of matrices. But be careful, the result will certainly not be the same.

```
img = img1 + img2
```

In fact, the cv2.add() and cv2.subtract() functions maintain the values between 0 and 255, regardless of the value of the operators. If the sum exceeds 255 the result is interpreted differently, thus creating a very strange color effect (maybe as a module of 255). The same thing happens when the removal produces a negative value; the result would be 0. Arithmetic operations do not have this feature.

However, you can try it directly.

```
img3 = img + img2
cv2.imshow('numpy',img3)
cv2.waitKey(0)
```

Executing it, you will get an image with a very strong color contrast (they are the points over 255), as shown in Figure 14-7.

Figure 14-7. An image obtained by adding two images as two NumPy matrices

Image Blending

In the previous example, you saw that the addition or subtraction of two images does not produce an intermediate image between the two, but instead changes the coloration toward whites or blacks.

The correct operation is called *blending*. That is, you can consider the operation of superimposing the two images, one above the other, making the one placed above gradually more and more transparent. By adjusting the transparency gradually, you get a mixture of the two images, creating a new one that is the intermediate.

The blending operation does not correspond to a simple addition, but the formula corresponds to the following equation.

```
img = \alpha \cdot \text{img1} + (1 - \alpha) \cdot \text{img2} with 0 \ge \alpha \ge 1
```

As you can see from the previous equation, the two images have two numerical coefficients that take values between 0 and 1. With the growth of the α parameter you will have a smooth transition from the first image to the second.

The OpenCV library provides the operation of blending with the cv2.addWeighted() function.

Therefore, if you want to create an intermediate image between two source images, you can use the following code.

```
img3 = cv2.addWeighted(img, 0.3, img2, 0.7, 0)
cv2.imshow('numpy',img3)
cv2.waitKey(0)
```

The result will be an image like the one shown in Figure 14-8.

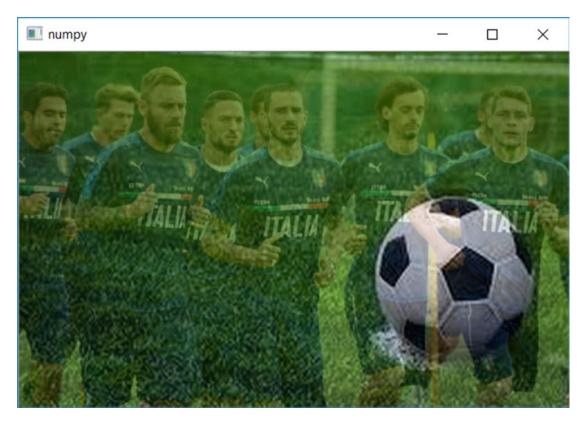


Figure 14-8. An image obtained with image blending

Image Analysis

The purpose of the examples in the previous section was to understand that images are nothing but NumPy arrays. As such, these numerical matrices can be processed. Therefore, you can implement many mathematical functions that will process the numbers within these matrices to get new images. These new images, obtained from operations, will serve to provide new information.

This is the concept underlying *image analysis*. The mathematical operations carried out by a starting image (matrix) to a resultant image (matrix) are called image filters (see Figure 14-9). To help you understand this process, you will certainly have to deal with photo editing applications (like Photoshop). In any case, you have certainly seen

that filters that can be applied to photos. These filters are nothing more than algorithms (sequences of mathematical operations) that modify the numerical values in the matrix of the starting image.

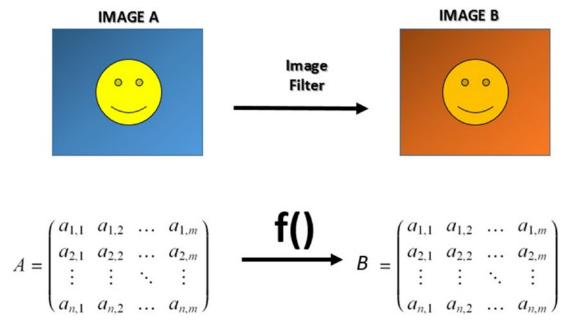


Figure 14-9. A representation of the image filters that are the basis of image analysis

Edge Detection and Image Gradient Analysis

In the previous sections, you saw how to perform some basic operations that are useful for image analysis. In this section, you start with a real case of image analysis, called *edge detection*.

Edge Detection

While analyzing an image, and especially during computer vision, one of the fundamental operations is to understand the content of the image, such as objects and people. It is necessary first to understand what possible forms are represented in the image. Nevertheless, to understand the geometries represented, it is necessary to recognize the outlines that delimit an object from the background or from other objects. This is precisely the task of the edge detection.

In edge detection, a great many algorithms and techniques have been developed and they exploit different principles in order to determine the contours of objects correctly. Many of these techniques are based on the principle of color gradients, and exploit the image gradient analysis process.

The Image Gradient Theory

Among the various operations that can be applied to images, there are the *convolutions* of an image in which certain filters are applied to edit the image in order to obtain information or some other utility. You have already seen that an image is represented as a large numerical matrix in which the colors of each pixel are represented by a number from 0 to 255 in the matrix. The convolutions process all these numerical values by applying a mathematical operation (*image filter*) to produce new values in a new matrix of the same size.

One of these operations is the *derivative*. In simple words, the derivative is a mathematical operation that allows you to get the numerical values indicating the speed at which a value changes (in space, time, etc.).

How could the derivative be important in the case of the images? It has to do with color variation, called a *gradient*.

Being able to calculate the gradient of a color is an excellent tool to calculate the edges of an image. In fact, your eye can distinguish the outlines of a figure present in an image, thanks to the jumps between one color to another. In addition, your eye can perceive the depths thanks to the various shades of color ranging from light to dark, which is the gradient.

From all this, it is quite clear that measuring a gradient in an image is crucial to being able to detect the edges of the image. It's done with a simple operation (filter) that is carried out on the image.

To get a better look at it from a mathematical point of view, look at Figure 14-10.

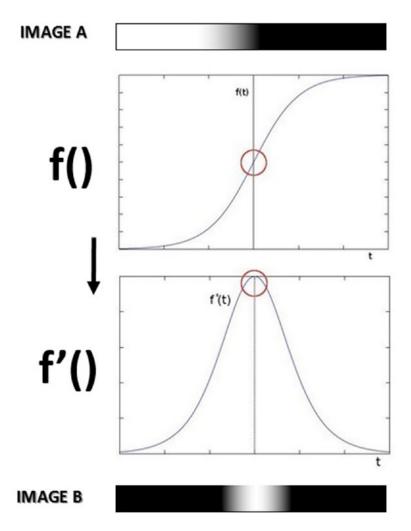


Figure 14-10. The image gradient theory representation

As you can see in Figure 14-10, an edge is no more than a quick transition from one hue to another. To simplify, 0 is black and 1 is white. All shades of gray are floating values between 0 and 1.

If you chart all corresponding values to the gradient values, you get the function f(). As you can see, there is a sudden transition from 0 to 1, which indicates the edge.

The derivative of the function f() results in the function f'(). As you can see, the maximum variation of the hue leads to values close to 1. So when converting colors, you will get a figure in which white will indicate the edge.

A Practical Example of Edge Detection with the Image Gradient Analysis

Moving on to the practical part, you will use two images created specifically to test the analysis of the contours, since they have several important characteristics in them.

The first image (as shown in Figure 14-11) consists of two arrows in black and white and corresponds to the blackandwhite.jpg file. In this image, the color contrast is very strong and the contours of the arrows have all the possible orientations (horizontal, vertical, and diagonal). This test image will serve to evaluate the effect of edge detection in a black and white system.

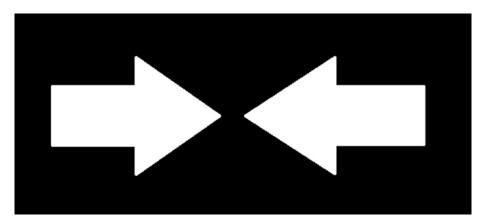


Figure 14-11. A black and white image representing two arrows

The second image, gradients.jpg, shows different gradients of gray, which, when placed next to each other, create rectangles whose edges have all the possible gradations and combinations of shades (as shown in Figure 14-12). This image is a good test to evaluate the true edge detection capabilities of the system.

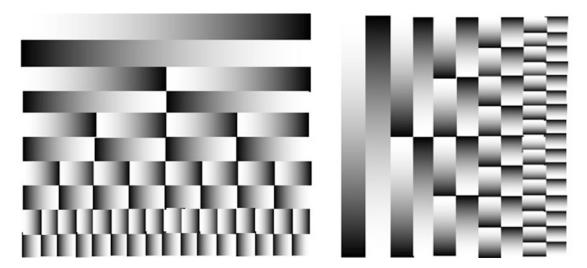


Figure 14-12. A set of gray gradients placed next to each other

Now you can start to develop the code needed for edge detection. You will use matplotlib to display different images in the same window. In this test, we will use two different types of image filters provided by opency: *sobel* and *laplacian*. In fact, their names correspond to the name of the mathematical operations performed on the matrices (images). The openCV library provides cv2.Sobel() and cv2.Laplacian() to apply these two calculations.

First it starts by analyzing the edge detection applied to the blackandwhite. jpg image.

```
from matplotlib import pyplot as plt
%matplotlib inline
img = cv2.imread('blackandwhite.jpg',0)
laplacian = cv2.Laplacian(img, cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
```

```
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()
```

When you run this code, you get a window with four boxes (as shown in Figure 14-13). The first box is the original image in black and white, while the other three are the result of the three filters applied to the image.

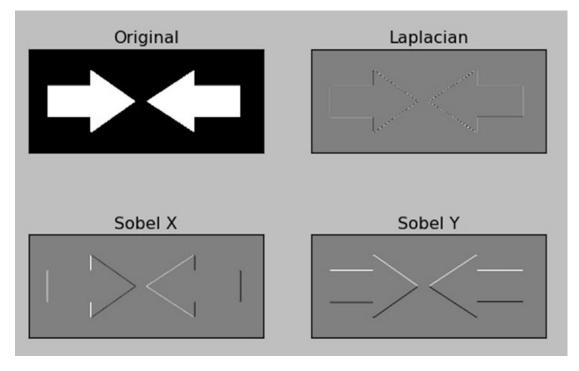


Figure 14-13. The result from the edge detection applied to the blackandwhite.jpg image

In regards to the Sobel filters, edge detection is perfect, even if limited horizontally or vertically. The diagonal lines are visible in both cases, since they have both horizontal and vertical components, but the horizontal edges in the Sobel X and those in the vertical Sobel Y are not detected in any way.

Combining the two filters (the calculation of two derivatives) to obtain the Laplacian filter, the determination of the edges is omnidirectional but has some loss of resolution. In fact, you can see that the ripples corresponding to the edges are more subdued.

CHAPTER 14 IMAGE ANALYSIS AND COMPUTER VISION WITH OPENCY

The coloring in gray is very useful for detecting edges and gradients, but if you are interested in only detecting edges, you have to set as output an image file in cv2.CV_8U.

Therefore, you can change the type of output data from cv2.CV_64F to cv2.CV_8U in the filters function of the previous code. Replace the arguments passed to the two image filters as follows.

```
laplacian = cv2.Laplacian(img, cv2.CV_8U)
sobelx = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_8U,0,1,ksize=5)
```

By running the code, you will get similar results (as shown in Figure 14-14), but this time only in black and white, where the edges are displayed in white on a black background.

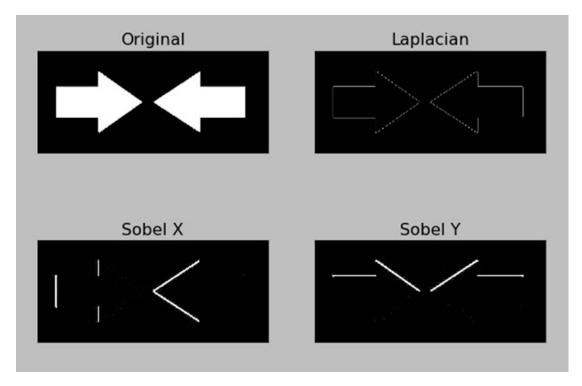


Figure 14-14. The result from the edge detection applied to the blackandwhite.jpg image

But if you look carefully at the panels of the Sobel filter X and Y, you will notice right away that something is wrong. Where are the missing edges? Note this issue in Figure 14-15.

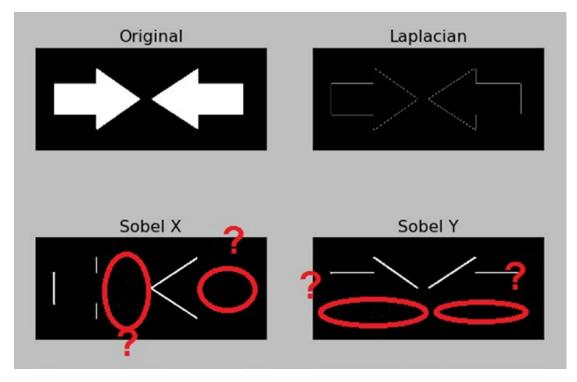


Figure 14-15. Missing edges in the blackandwhite.jpg image

In fact, there was a problem while converting the data. The gradients reported in the grayscale with cv2.CV_64F values are represented by positive values (positive slope) when changing from black to white. However, they are represented by negative values (negative slope) when switching from white to black. In the conversion from cv2.CV_64F to cv2.CV_8U, all negative slopes are reduced to 0, and then the information relating to those edges is lost. When the program will display the image, the edges from white to black will not be shown.

To overcome this, you should keep the data in the output of the filter in cv2.CV_64F (instead of cv2.CV_8U), then calculate the absolute value, and finally do the conversion in cv2.CV_8U.

Make these changes to the code.

```
laplacian64 = cv2.Laplacian(img, cv2.CV_64F)
sobelx64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely64 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
laplacian = np.uint8(np.absolute(laplacian64))
sobelx = np.uint8(np.absolute(sobelx64))
sobely = np.uint8(np.absolute(sobely64))

plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()
```

Now, if you execute it, you will get the right representation in white on the black edges of the arrows (as shown in Figure 14-16). As you can see, the edges do not appear in Sobel X and Sobel Y because they are parallel to the direction of detection (horizontal and vertical).

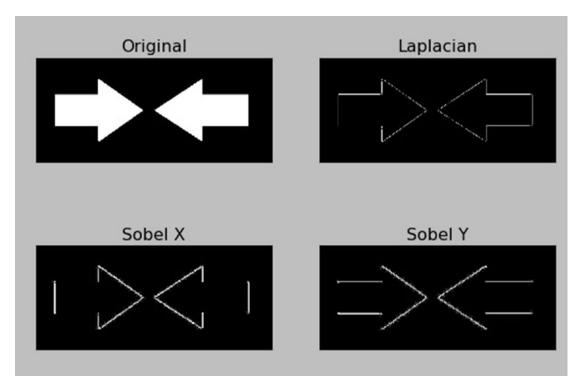


Figure 14-16. The result from the edge detection applied to the blackandwhite.jpg image

In addition to the edges, you see that the Laplacian and Sobel filters are also able to detect the level of gradients across a grayscale. Apply what you've seen to the gradient.jpg image. You have to make some changes to the previous code, leaving only one image (Laplacian) to be shown.

```
from matplotlib import pyplot as plt
img = cv2.imread('gradients.jpg',0)
laplacian = cv2.Laplacian(img, cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
laplacian64 = cv2.Laplacian(img, cv2.CV_64F)
sobelx64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
```

```
laplacian = np.uint8(np.absolute(laplacian64))
sobelx = np.uint8(np.absolute(sobelx64))
sobely = np.uint8(np.absolute(sobely64))

plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.show()
```

By executing this code, you will get an image showing the white borders on a black background (as shown in Figure 14-17).

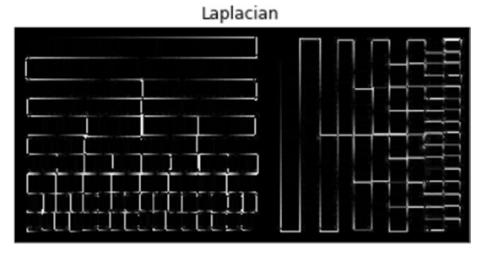


Figure 14-17. The result from the edge detection applied to the gradients.jpg image

A Deep Learning Example: The Face Detection

In this last section of the chapter, you will shift your attention to another highly studied and used case in computer vision, face detection.

This is a far more complex case than edge detection, and it is based on identifying human faces in an image. Given the complexity of the problem, face detection uses deep learning. In fact at the base of this technique, there are neural networks that are specially designed to recognize different subjects, including the faces of a person, in a photo. Object detection techniques also work very similarly. So this example will be very useful to fully understand the heart of computer vision, that of interpreting the subjects present in a photo.

In this example, you will use an already learned neural network. In fact, educating a neural network for this kind of problem can be a complex operation and require a great deal of time and resources.

Fortunately, on the web, there are some neural networks already trained to perform these kinds of operations, and for this test you will use a model developed using the Caffe2 framework (see Chapter 9 for more information).

When you want to use a deep neural network module with Caffe models in the OpenCV environment, you need two types of files, as follows:

- A prototxt file, which defines the model architecture (i.e., the layers themselves). You will use a deploy.prototxt.txt file downloaded from the web (https://github.com/opencv/opencv/blob/master/ samples/dnn/face_detector/deploy.prototxt).
- The second type of file is a *caffemodel* file, which contains the weights for the actual layers in the deep neural network. This file is the most important because it contains all the "learning" of that neural network to perform a given task. For your purposes, a caffemodel file is available at https://github.com/opencv/opencv_3rdparty/tree/dnn_samples_face_detector_20170830.

Note You can also find these files in the source code of the book.

Now that you have everything you need, start by uploading the neural network model and all the information about your learning.

The OpenCV library supports many deep learning frameworks, and it has many features in it that help you with this. In particular (mentioned at the beginning of the chapter), OpenCV has the dnn module, which specializes in these kinds of operations.

To load a learned neural network you can use the dnn.readNetFromCaffe() function.

net = cv2.dnn.readNetFromCaffe('deploy.prototxt.txt', 'res10_300x300_ssd_
iter_140000.caffemodel')

As a test image, you can use the photo with the players of the Italian national team, italy2018.jpg. This image is a great example, as there are many faces inside.

```
image = cv2.imread('italy2018.jpg')
(h, w) = image.shape[:2]
```

Another function, called dnn.blobFromImage(), takes care of preprocessing the image to be adapted to neural networks. For example, resize the image to 300x300 pixels so that it can be used by the caffemodel file that has been trained for images of this size.

```
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
```

Then define a confidence threshold with an optimal value of 0.5.

```
confidence threshold = 0.5
```

And finally perform the face detection test.

```
net.setInput(blob)
detections = net.forward()

for i in range(0, detections.shape[2]):
    confidence = detections[0, 0, i, 2]
    if confidence > confidence_threshold:
        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
        (startX, startY, endX, endY) = box.astype("int")
        text = "{:.2f}%".format(confidence * 100)
        y = startY - 10 if startY - 10 > 10 else startY + 10
        cv2.rectangle(image, (startX, startY), (endX, endY),(0, 0, 255), 2)
        cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX,
        0.45, (0, 0, 255), 2)
cv2.imshow("Output", image)
```

By executing the code, a window will appear with the results of processing the face detection (shown in Figure 14-18). The results are incredible, since the faces of all the players have been detected. You can see the faces surrounded by a red square that

cv2.waitKey(0)

highlights them in the image with a percentage of confidence. Confidence percentages are all greater than 50% for the confidence_threshold parameter that we specified at the start of the test.



Figure 14-18. The faces of the national football players have all been accurately recognized

Conclusions

In this chapter, you saw some simple examples of techniques that form the basis of image analysis and in particular of computer vision. In fact, you saw how images are processed through image filters, and how some complex techniques can be built using edge detection. You also saw how computer vision works by using deep learning neural networks to recognize faces in an image (face detection).

I hope this chapter is a good starting point for your further insights on the subject. If you are interested, you will find in-depth information on this topic on my website at https://meccanismocomplesso.org.

Writing Mathematical Expressions with LaTeX

LaTeX is extensively used in Python. In this appendix there are many examples that can be useful to represent LaTeX expressions inside Python implementations. This same information can be found at the link http://matplotlib.org/users/mathtext.html.

With matplotlib

You can enter the LaTeX expression directly as an argument of various functions that can accept it. For example, the title() function that draws a chart title.

```
import matplotlib.pyplot as plt
%matplotlib inline
plt.title(r'$\alpha > \beta$')
```

With IPython Notebook in a Markdown Cell

You can enter the LaTeX expression between two '\$\$'.

$$sc = \sqrt{a^2 + b^2}$$

With IPython Notebook in a Python 2 Cell

You can enter the LaTeX expression within the Math() function.

```
from IPython.display import display, Math, Latex display(Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx')
```

Subscripts and Superscripts

To make subscripts and superscripts, use the '_' and '^' symbols:

$$r'$$
alpha_i > \beta_i\$'

$$\alpha_i > \beta_i$$

This could be very useful when you have to write summations: $r's\sum_{i=0}^{i=0} x_i$

$$\sum_{i=0}^{\infty} x_i$$

Fractions, Binomials, and Stacked Numbers

Fractions, binomials, and stacked numbers can be created with the \frac{}{}, \binom{}{}, and \stackrel{}{} commands, respectively:

 $r'\$ frac{3}{4} \land m{3}{4} \land stackrel{3}{4}$'$

$$\frac{3}{4} \binom{3}{4}^{4}$$

Fractions can be arbitrarily nested:

$$\frac{5-\frac{1}{x}}{4}$$

Note that special care needs to be taken to place parentheses and brackets around fractions. You have to insert \left and \right preceding the bracket in order to inform the parser that those brackets encompass the entire object:

$$\left(\frac{5-\frac{1}{x}}{4}\right)$$

Radicals

Radicals can be produced with the \sqrt[]{} command.

$$r'$$
\$\sqrt{2}\$'

 $\sqrt{2}$

Fonts

The default font is italics for mathematical symbols. To change fonts, for example with trigonometric functions as sin:

$$s(t) = Asin(2\omega t)$$

The choices available with all fonts are

```
from IPython.display import display, Math, Latex
display(Math(r'\mathrm{Roman}'))
display(Math(r'\mathit{Italic}'))
display(Math(r'\mathtt{Typewriter}'))
display(Math(r'\mathcal{CALLIGRAPHY}'))
```

Roman

Italic

Typewriter

CALLIGRAPHY

Accents

An accent command may precede any symbol to add an accent above it. There are long and short forms for some of them.

\acute a or \'a	\acute{a}
\bar a	\bar{a}
\breve a	$reve{a}$
\ddot a or \"a	\ddot{a}
\dot a or \.a	\dot{a}
\grave a or \`a	\grave{a}
\hat a or \^a	\hat{a}
\tilde a or \~a	\tilde{a}
\vec a	\vec{a}
\overline{abc}	\overline{abc}

Symbols

You can also use a large number of the TeX symbols.

Lowercase Greek

$lpha$ \alpha	$oldsymbol{eta}$ \beta	χ \chi	δ \delta	F\digamma
$\epsilon_{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	$\eta_{ ackslash$ eta	γ \gamma	$oldsymbol{\iota}$ \iota	κ \kappa
$\lambda_{ackslash ext{lambda}}$	μ \mu	$ u$ \nu	ω \omega	ϕ \phi
π \pi	ψ \psi	$ ho$ $_{ ext{ho}}$	σ \sigma	$ au$ \tau
$ heta$ \theta	v \upsilon	$arepsilon$ \varepsilon		$arphi$ \varphi
 w√varpi	$arrho_{ackslash ext{varrho}}$	√ \varsigma	$artheta$ \vartheta	$\xi_{ ackslash ext{xi}}$
ζ ∖zeta				

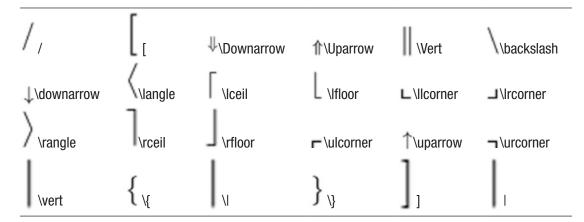
Uppercase Greek

∆\Delta	Γ \Gamma	Λ \Lambda	Ω \0mega	Φ_{Phi}	Π\Pi
Ψ \Psi	Σ \Sigma	⊖\Theta	Υ \Upsilon	$\Xi_{\lambda Xi}$	び ∖mho
∇ \nabla					

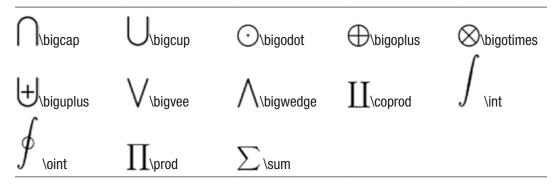
Hebrew

□ \beth	7 \daleth	入 \gimel
	□ \beth	□ \beth □ \daleth

Delimiters



Big Symbols



Standard Function Names

\Pr \Pr	arccos\arccos	arcsin\arcsin	$rctan$ \arctan
rg $_{ar{a}rg}$	COS \cos	cosh \cosh	cot \cot
coth \coth	CSC \csc	$\deg_{\setminus \deg}$	\det \det
$\dim \dim$	exp \exp	$\gcd_{\setminus gcd}$	hom \hom
\inf \inf	\ker \ker	$\lg_{\setminus \lg}$	$\lim_{ a \in A} a $
$\underline{liminf} \setminus liminf$	$limsup_{\text{\limsup}}$	\ln \ln	\log_{\log}
max \max	\min \min	Sec \sec	\sin \sin
\sinh \sinh	\sup \sup	tan \tan	tanh \tanh

Binary Operation and Relation Symbols

⇒ \Bumpeq	⋓ ∖Cap	⋒ /Cup
≑ ∖Doteq	⋈ ∖Join	
⇒ \Supset	I⊢ \Vdash	II⊢ \Vvdash
≈ \approx	≊ \approxeq	* \ast
≍ \asymp	∃ \backepsilon	
≤ \backsimeq	$ar{w}edge$ $ar{b}$ arwedge	•• \because
≬ \between	○ \bigcirc	∇\bigtriangledown
△\bigtriangleup	\blacktriangleleft	\blacktriangleright
⊥ \bot	⋈ \bowtie	□ \boxdot
□\boxminus	⊞ \boxplus	
\bullet	≏ \bumpeq	∩ \cap
_ \cdot	○ \circ	≗ \circeq
:= \coloneq	≅ \cong	U \cup
⟨curlyeqprec	> \curlyeqsucc	
人 ∖curlywedge	† _{\dag}	⊣ \dashv

(continued)

‡ _{\ddag}	♦ \diamond	÷ \div
X \divideontimes	$\dot{e}q$ $_{ackslash$ doteq	$\dot{e}qdot$ \doteqdot
$\dot{p}lus$ $_{ackslash$ dotplus	₹ \doublebarwedge	≖ \eqcirc
=: \eqcolon	≂ \eqsim	> \eqslantgtr
<pre><\eqslantless</pre>	≡ \equiv	≒ \fallingdotseq
	≥\geq	≧ \geqq
≥ \geqslant	≫\gg	>>> \ggg
★ \gnapprox	≩ \gneqq	
≷\gtrapprox	>\gtrdot	≥ \gtreqless
≧ \gtreqqless	≷ \gtrless	≳ \gtrsim
∈∖in	T \intercal	≻∖leftthreetimes
≤∖leq	≦ ∖leqq	≤ \leqslant
≅ \lessapprox	√ \lessdot	≦ \lesseqgtr
≦ \lesseqqgtr	≶ ∖lessgtr	≲ ∖lesssim
«\II	<=< \	≈ \Inapprox
≨ ∖Ineqq	≨ ∖Insim	
 \mid	⊨ \models	∓ \mp
⊯ \nVDash	⊮ \nVdash	* \napprox
≇ \ncong	≠ \ne	≠ \neq
≠ \neq	≢ ∖nequiv	≱ \ngeq
≯ \ngtr	∋ \ni	≰ \nleq
≮ \nless	∤ ∖nmid	∉ ∖notin
₩ \nparallel	✓ \nprec	~ ∖noun ~ \nsim
·· \IIpaiaiiei	/ libiec	∞ ///9////

(continued)

APPENDIX A WRITING MATHEMATICAL EXPRESSIONS WITH LATEX

⊄ \nsubset	⊈ ∖nsubseteq	
		4
→ \nsupset		^\ntriangleleft
⊅ \ntrianglelefteq		∠ ∖ntrianglerighteq
⊭ \nvDash	√ \nvdash	⊙ \odot
⊖ \ominus	⊕ \oplus	
⊗ \otimes	\parallel	⊥ \perp
↑ \pitchfork	$\pm \pm$	≺\prec
≈ \precapprox		≤\preceq
≨ \precnapprox	≯ \precnsim	≾ ∖precsim
∝ \propto	√\rightthreetimes	≓ \risingdotseq
	~ \sim	$\simeq \$
/\slash		□\sqcap
□ \sqcup	□ \sqsubset	□ \sqsubset
	□ \sqsupset	□ \sqsupset
	★ \star	⊂\subset
⊆\subseteq	⊆\subseteqq	⊊ \subsetneq
≨∖subsetneqq	≻\succ	≈ \succapprox
≥ \succcurlyeq	≿\succeq	≈ \succnapprox
	≿\succsim	⊃\supset
⊇∖supseteq	⊇ \supseteqq	⊋ \supsetneq
 ≥ \supsetneqq	· · \therefore	× \times
⊤ \top	√ \triangleleft	≤\trianglelefteq
≜ \triangleq	\triangleright	
⊎ \uplus	⊨ \vDash	∝ \varpropto
√\vartriangleleft	▶\vartriangleright	⊢ \vdash
∨ \vee		^ \wedge
∕ \wr		

Arrow Symbols

↓ \Downarrow	← \Leftarrow
♦ \Leftrightarrow	← \Lleftarrow
← \Longleftarrow	\iff \Longleftrightarrow
⇒ \Longrightarrow	¶ ∖Lsh
	Nwarrow Nwarrow
⇒ \Rightarrow	⇒ \Rrightarrow
\Rsh	
	↑\Uparrow
1 \Updownarrow	
ひ \circlearrowright	
→ \curvearrowright	← \dashleftarrow
> \dashrightarrow	↓ \downarrow
	1
↓ \downdownarrows	\downharpoonleft
\downharpoonright	← \hookleftarrow
\hookrightarrow	→ \leadsto
← \leftarrow	← \leftarrowtail
	\leftharpoonup
← \leftleftarrows	↔ \leftrightarrow
⇒ \leftrightarrows	⇒ \leftrightharpoons
√ \leftrightsquigarrow	\leftsquigarrow
← \longleftarrow	$\longleftrightarrow \setminus longleftrightarrow$
→ \longmapsto	→ \longrightarrow
√P \looparrowleft	→ \looparrowright
→ \mapsto	→ \multimap
⟨ \nLeftarrow	♦ \nLeftrightarrow
≯\nRightarrow	
← \nleftarrow	√ \nleftrightarrow

(continued)

APPENDIX A WRITING MATHEMATICAL EXPRESSIONS WITH LATEX

→ \nrightarrow	\\nwarrow
→ \rightarrow	→ \rightarrowtail
→ \rightharpoondown	\rightharpoonup
→ \rightleftarrows	→ \rightleftarrows
⇒ \rightleftharpoons	⇒ \rightleftharpoons
⇒ \rightrightarrows	⇒ \rightrightarrows
→ \rightsquigarrow	>\searrow
√\swarrow	\rightarrow \to
	> \twoheadrightarrow
↑\uparrow	↑ \updownarrow
↑ \updownarrow	$1_{\text{upharpoonleft}}$
\upharpoonright	11 \upuparrows

Miscellaneous Symbols

\$ \\$	Å VAA	Ⅎ ∖Finv
9 \Game	③ ∖Im	$\P_{\setminus P}$
ℜ \Re ■ \backprime	§ \S ★ \bigstar	∠ \angle ■\blacksquare
▲\blacktriangle	▼\blacktriangledown	\cdots
✓ \checkmark	® \circledR	S \circledS
♣ \clubsuit	C \complement	© \copyright
$\ddot{s}_{ ext{ \ddots}}$	♦ \diamondsuit	$oldsymbol{\ell}$ \ell
	$oldsymbol{\check{\partial}}$ \eth	∃∖exists
b \flat	∀ \forall	\hbar \hbar
♡ \heartsuit	ħ ∖hslash	∭ \iiint

(continued)

APPENDIX A WRITING MATHEMATICAL EXPRESSIONS WITH LATEX

∬ \iint	∬ \iint	$oldsymbol{\imath}_{ ext{ inmath}}$
∞ \infty	\jmath $_{ m ar{l}math}$	···\ldots
∡\measuredangle	h \natural	¬ \neg
∄ ∖nexists	<i>∰</i> ∖oiiint	$oldsymbol{\partial}$ \partial
/ \prime	\sharp	•\spadesuit
√sphericalangle	$oldsymbol{eta}$ \ss	√\triangledown
Ø \varnothing	△ \vartriangle ¥ \yen	\vdots

APPENDIX B

Open Data Sources

Political and Government Data

Data.gov

http://data.gov

This is the resource for most government-related data.

Socrata

http://www.socrata.com/resources/

Socrata is a good place to explore government-related data. Furthermore, it provides some visualization tools for exploring data.

US Census Bureau

http://www.census.gov/data.html

This site provides information about US citizens covering population data, geographic data, and education.

UN3ta

https://data.un.org/

UNdata is an Internet-based data service which brings UN statistical databases.

European Union Open Data Portal

http://open-data.europa.eu/en/data/

This site provides a lot of data from European Union institutions.

Data.gov.uk

```
http://data.gov.uk/
```

This site of the UK Government includes the British National Bibliography: metadata on all UK books and publications since 1950.

The CIA World Factbook

```
https://www.cia.gov/library/publications/the-world-factbook/
```

This site of the Central Intelligence Agency provides a lot of information on history, population, economy, government, infrastructure, and military of 267 countries.

Health Data

Healthdata.gov

```
https://www.healthdata.gov/
```

This site provides medical data about epidemiology and population statistics.

NHS Health and Social Care Information Centre

```
http://www.hscic.gov.uk/home
```

Health data sets from the UK National Health Service.

Social Data

Facebook Graph

```
https://developers.facebook.com/docs/graph-api
```

Facebook provides this API which allows you to query the huge amount of information that users are sharing with the world.

Topsy

```
http://topsy.com/
```

Topsy provides a searchable database of public tweets going back to 2006 as well as several tools to analyze the conversations.

Google Trends

http://www.google.com/trends/explore

Statistics on search volume (as a proportion of total search) for any given term, since 2004.

Likebutton

http://likebutton.com/

Mines Facebook's public data—globally and from your own network—to give an overview of what people "Like" at the moment.

Miscellaneous and Public Data Sets

Amazon Web Services public datasets

http://aws.amazon.com/datasets

The public data sets on Amazon Web Services provide a centralized repository of public data sets. An interesting dataset is the 1000 Genome Project, an attempt to build the most comprehensive database of human genetic information. Also a NASA database of satellite imagery of Earth is available.

DBPedia

http://wiki.dbpedia.org

Wikipedia contains millions of pieces of data, structured and unstructured, on every subject. DBPedia is an ambitious project to catalogue and create a public, freely distributable database allowing anyone to analyze this data.

Freebase

http://www.freebase.com/

This community database provides information about several topics, with over 45 million entries.

Gapminder

http://www.gapminder.org/data/

This site provides data coming from the World Health Organization and World Bank covering economic, medical, and social statistics from around the world.

Financial Data

Google Finance

https://www.google.com/finance

Forty years' worth of stock market data, updated in real time.

Climatic Data

National Climatic Data Center

http://www.ncdc.noaa.gov/data-access/quick-links#loc-clim

Huge collection of environmental, meteorological, and climate data sets from the US National Climatic Data Center. The world's largest archive of weather data.

WeatherBase

http://www.weatherbase.com/

This site provides climate averages, forecasts, and current conditions for over 40,000 cities worldwide.

Wunderground

http://www.wunderground.com/

This site provides climatic data from satellites and weather stations, allowing you to get all information about the temperature, wind, and other climatic measurements.

Sports Data

Pro-Football-Reference

http://www.pro-football-reference.com/

This site provides data about football and several other sports.

Publications, Newspapers, and Books

New York Times

http://developer.nytimes.com/docs

Searchable, indexed archive of news articles going back to 1851.

Google Books Ngrams

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

This source searches and analyzes the full text of any of the millions of books digitized as part of the Google Books project.

Musical Data

Million Song Data Set

http://aws.amazon.com/datasets/6468931156960467

Metadata on over a million songs and pieces of music. Part of Amazon Web Services.

Index

A	В
Accents, LaTeX, 540–547	Bar chart
Advanced Data aggregation	3D, 306-307
apply() functions, 225	error bars, 281
transform() function, 226	horizontal, 281-282
Anaconda, 24, 88	matplotlib, 278
Anderson Iris Dataset, see Iris flower	multiserial, 282-284
dataset	multiseries stacked bar, 286-290
Array manipulation	pandas DataFrame, 285-286
joining arrays	representations, 291
column_stack() and row_stack(), 72	stacked bar charts, 290
hstack() function, 71	x-axis, 280
vstack() function, 71	xticks() function, 279
splitting arrays	Bayesian methods, 4
hsplit() function, 72	Big Data, 353
split() function, 73-74	Bigrams, 498
vsplit() function, 72	Biological neural networks, 361
Artificial intelligence, 5, 350	Blending operation, 520
schematization of, 352	
Artificial neural networks	
biological networks, 361	С
edges, 356	Caffe2, 355
hidden layer, 357	Chart typology, 267
input and output layer, 357	Choropleth maps
multi layer perceptron, 360	D3 library, 459
nodes, 356	geographical representations, 459
schematization of, 355-356	HTML() function, 461-462
SLP (see Single layer perceptron (SLP))	jinja2, 462–463
weight, 356	JSON and TSV, 463

Choropleth maps (<i>cont</i> .)	Cross-validation, 13
JSON TopoJSON, 460	Cython, 22
require.config(), 461	
results, 464	D
US population, 2014	D
data source census.gov, 467	Data aggregation
file TSV, codes, 466	apply() functions, 226, 228-229
HTML() function, 468	GroupBy, 217
jinja2.Template, 469	groupby() function, 219
pop2014_by_county	operations, 218
dataframe, 465–466	output of, 220
population.csv, 467-468	SPLIT-APPLY-COMBINE, 218
render() function, 470-471	hierarchical grouping, 220–221
SUMLEV values, 464	merge(), 226
Classification and regression trees, 12	numeric and string values, 219
Classification models, 12	price1 column, 219
Climatic data, 552	transform() function, 225
Clustered bar chart	Data analysis
IPython Notebook, 454–455	charts, 2
jinja2, 455, 457-458	data visualization, 2
render() function, 458–459	definition, 1
Clustering models, 4, 11–12	deployment phase, 2
Collocations, 498	information, 6
Computer vision, 507	knowledge, 6
Concatenation	knowledge domains
arrays, 188	computer science, 3
combining, 191, 193	disciplines, 3
concat() function, 189-190	fields of application, 5
dataframe, 191	machine learning and artificial
keys option, 190	intelligence, 5
pivoting, 193	mathematics and statistics, 4
hierarchical indexing, 193	problems of, 3
long to wide format, 195	open data, 15–16
stack() function, 194	predictive model, 2
unstack() function, 194	process
removing, 196	data sources, 9
Correlation, 129–131	deployment, 13
Covariance, 129–131	exploration/visualization, 10-1

extraction, 9–10	pandas.merge(), 182
model validation, 13	procedures of, 181
planning phase, 9	Data structures, operations
predictive modeling, 12	DataFrame and series, 121-122
preparation, 10	flexible arithmetic
problem definition, 8	methods, 120-121
stages, 6–8	Data transformation
purpose of, 1	drop_duplicates() function, 199
Python and, 17	mapping
quantitative and qualitative, 14	adding values, 201
types	axes, 202
categorical data, 6	dict objects, 199
numerical data, 6	replacing values, 199
DataFrame	remove duplicates, 198-199
pandas	Data visualization
definition, 103-105	adding text
nested dict, 111	axis labels, 251-252
operations, 121	informative label, 254
structure, 103	mathematical expression, 254-255
transposition, 111	modified of, 252
structure, 102	text() function, 253
Data manipulation	bar chart (see Bar chart)
aggregation (see Data aggregation)	chart typology, 267
concatenation, 188	contour plot/map, 297–299
discretization and binning, 204	data analysis, 231
group iteration, 222	3D surfaces, 302, 304
permutation, 210	grid, 256
phases of, 181	grids, subplots, 309
preparation (see Data preparation)	handling date values, 264-267
string (see String manipulation)	histogram, 277–278
transformation, 197	installation, 233
Data preparation, 181	IPython and IPython
DataFrame, 182	QtConsole, 233, 235
merging operation, 182	kwargs
pandas.concat(), 182	figures and axes, 249
pandas.DataFrame.combine_	horizontal subplots, 249–250
first(), 182	linewidth, 248

Data visualization (cont.)	Deep learning, 349, 532
plot() function, 249	artificial (see Artificial neural
vertical subplots, 250–251	networks)
legend	artificial intelligence, 350
chart of, 258	data availability, 353
legend() function, 257, 258	machine learning, 351
multiseries chart, 259	neural networks and GPUs, 352
upper-right corner, 257	Python
line chart (see Line chart)	frameworks, 354
matplotlib architecture and	programming language, 354
NumPy, 247	schematization of, 352
matplotlib library (see matplotlib	TensorFlow (see TensorFlow)
library)	Digits dataset
mplot3d, 302	definition, 475
multi-panel plots	digits.images array, 477
grids, subplots, 309, 311	digit.targets array, 478
subplots, 307-309	handwritten digits, 477
pie charts, 292	handwritten number images, 475
axis() function, 293	matplotlib library, 477
modified chart, 294	scikit-learn library, 476
pandas Dataframe, 296	Discretization and binning, 204
pie() function, 292	any() function, 210
shadow kwarg, 295	categorical type, 206
plotting window	cut() function, 205–206, 208–209
buttons of, 241	describe() function, 209
commands, 241	detecting and filtering
matplotlib and NumPy, 246	outliers, 209
plt.plot() function, 242, 243	qcut(), 208-209
properties, 243	std() function, 210
QtConsole, 241–242	value_counts() function, 206
polar chart, 299, 301	Django, 17
pyplot module, 239	Dropping, 117–118
saving, charts	
HTML file, 262–263	E
image file, 264	_
source code, 260-261	Eclipse (pyDev), 41–42
scatter plot, 3D, 304–305	Element-wise computation, 47
Decision trees, 11	Expression-oriented programming, 33

F	l
Financial data, 552	IDEs, see Interactive development
Flexible arithmetic methods, 120–121	environments (IDEs)
Fonts, LaTeX, 539	Image analysis
	concept of, 521
G	convolutions, 523
	definition, 507
Gradient theory, 523	edge detection, 522, 525
Graphics Processing Unit (GPU), 353	blackandwhite.jpg
Grouping, 11	image, 526–529, 531
Group iteration	black and white system, 525
chain of transformations, 222, 224	filters function, 528
functions on groups	gradients.jpg image, 532
mark() function, 224–225	gray gradients, 525
quantiles() function, 224	Laplacian and Sobel filters, 531
GroupBy object, 222	results, 528
	source code, 530
Н	face detection, 532
Handwriting recognition	gradient theory, 523
digits dataset, 475–478	OpenCV (see Open Source Computer
handwritten digits, matplotlib	Vision (OpenCV))
library, 478	operations, 508
learning and predicting, 478, 480, 482	representation of, 522
OCR software, 473	Indexing functionalities
scikit-learn, 474–475	arithmetic and data
svc estimator, 480	alignment, 118, 120
TensorFlow, 480	dropping, 117–118
validation set, six digits, 479	reindexing, 114, 116
Health data, 550	Integration, 47
Hierarchical indexing	Interactive development environments
arrays, 136-137	(IDEs)
DataFrame, 135	Eclipse (pyDev), 41-42
reordering and sorting levels, 137-138	Komodo, 45
stack() function, 136	Liclipse, 43–46
statistic levels, 138	NinjaIDE, 44–45
structure, 134	Spyder, 41
two-dimensional structure, 134	Sublime, 42–43

Interactive programming language, 20 Interfaced programming language, 20 Internet of Things (IoT), 353	IPython Notebooks, 449 Jinja2 library, 451–453 pandas dataframe, 453
Interpreted programming language, 20	render() function, 453
Interpreter	require.config() method, 450
characterization, 21	web chart creation, 450
Cython, 22	Jinja2 library, 451–453
Jython, 22	Jython, 22
PVM, 21	, , c
PyPy, 22	
tokenization, 21	K
IPython	K-nearest neighbors classification
and IPython QtConsole, 233–234	decision boundaries, 325–326
Jupyter project logo, 37	2D scatterplot, sepals, 324
Notebook, 39, 474	predict() function, 323
DataFrames, 420	random.permutation(), 323
QtConsole, 38	training and testing set, 322
shell, 36	
tools of, 35	
Iris flower dataset	L
Anderson Iris Dataset, 316	LaTeX
IPython QtConsole, 316	accents, 540-547
Iris setosa features, 318–319	fonts, 539
length and width,	fractions, binomials, and stacked
petal, 319–320	numbers, 538-539
matplotlib library, 318	with IPython Notebook
PCA decomposition, 320	in Markdown Cell, 537
target attribute, 317	in Python 2 Cell, 538
types of analysis, 316	with matplotlib, 537
variables, 319–320	radicals, 539
	subscripts and superscripts, 538
	symbols
J	arrow symbols, 540, 545-546
JavaScript D3 Library	big symbols, 542
bar chart, 454	binary operation and relation
CSS definitions, 450–451	symbols, 542-543
data-driven documents, 449	Delimiters, 540–541
HTML importing library, 450	Hebrew, 541

lowercase Greek, 540	coef_ attribute, 329
miscellaneous symbols, 540	fit() function, 329
standard function names, 542	linear correlation, 330
uppercase Greek, 541	parameters, 328
Learning phase, 378	physiological factors and
Liclipse, 43–46	progression of diabetes, 332-333
Linear regression, 12	single physiological factor, 330
Line chart	schematization of, 352
annotate(), 274	supervised learning, 314
arrowprops kwarg, 274	SVM (see Support vector machines
Cartesian axes, 273	(SVMs))
color codes, 270–271	training and testing set, 315
data points, 267	unsupervised learning, 314–315
different series, 269	Mapping
gca() function, 273	adding values, 201–202
Greek characters, 272	inplace option, 204
LaTeX expression, 274	rename() function, 204
line and color styles, 270	renaming, axes, 202, 204
mathematical expressions, 275	replacing values, 199, 201
mathematical function, 268	Mathematical expressions with LaTeX,
pandas, 276	see LaTeX
plot() function, 268	MATLAB, 17
set_position() function, 273	matplotlib, 48
xticks() and yticks() functions, 271	matplotlib library
Linux distribution, 90	architecture
LOD cloud diagram, 16	artist layer, 236–238
Logistic regression, 12	backend layer, 236
	functions and tools, 235
M	layers, 235
	pylab and pyplot, 238-239
Machine learning (ML), 5	scripting layer (pyplot), 238
algorithm development process, 313	artist layer
deep learning, 351	graphical representation, 237
diabetes dataset, 327-328	hierarchical structure, 236
features/attributes, 314	primitive and composite, 237
Iris flower dataset, 316	graphical representation, 231, 233
learning problem, 314	LaTeX, 232
linear/least square regression	NumPy, 246

Matrix product, 60	Jupyter Notebook, 415
Merging operation	access internal data, 417
DataFrame, 183–184	command line, 415
dataframe objects, 183	dataframe, 419-420
index, 187	extraction procedures, 418
join() function, 187-188	Ferrara, 416
JOIN operation, 182	JSON file, 416
left_index/right_index	json.load() function, 415
options, 187	parameters, 419
left join, right join and	prepare() function, 420
outer join, 186	RoseWind (see RoseWind)
left_on and right_on, 185, 187	wind speed, 441
merge() function, 183, 184	Microsoft excel files
Meteorological data, 409	dataframe, 162
Adriatic Sea and Po Valley, 410	data.xls, 160, 162
cities, 412	internal module xlrd, 160
Comacchio, 413	read_excel() function, 161
image of, 411	MongoDB, 178-179
mountainous areas, 410	Multi Layer Perceptron (MLP)
reference standards, 412	artificial networks, 360
TheTimeNow website, 413	evaluation of, 404
climate, 409	experimental data, 404
data source	hidden layers, 397
JSON file, 414	IPython session, 387
Weather Map site, 414	learning phase, 389
IPython Notebook	model definition, 387
chart representation, 425, 429, 431	test phase and accuracy
CSV files, 421	calculation, 395, 402
DataFrames, 422, 432	Musical data, 553
humidity function, 433-435	
linear regression, 431	NI.
matplotlib library, 423	N
Milan, 423	Natural Language Toolkit (NLTK)
read_csv() function, 421	bigrams and collocations, 498
result, 423	common_contexts() function, 493
shape() function, 422	concordance() function, 493
SVR method, 428-429	corpora, 488
temperature, 424, 426-427, 432	downloader tool, 489

fileids() function, 491	increment and decrement
HTML pages, text, 501	operators, 60–61
len() function, 491	matrix product, 59-60
library, 489	ufunc, 61
macbeth variable, 491	broadcasting
Python library, 488	compatibility, 77
request() function, 502	complex cases, 78–79
selecting words, 497	operator/function, 76
sentimental analysis, 502	BSD, 50
sents() function, 492	conditions and Boolean arrays, 69
similar() function, 494	copies/views of objects, 75
text, network, 500	data analysis, 49
word frequency, 494	indexing, 63
macbeth variable, 495	bidimensional array, 64
most_common() function, 494	monodimensional ndarray, 63
nltk.download() function, 495	negative index value, 63
nltk.FreqDist() function, 494	installation, 50
stopwords, 495	iterating an array, 67–69
string() function, 496	ndarray (see Ndarray)
word search, 493	Numarray, 49
Ndarray, 47	python language, 49
array() function, 51–53	reading and writing array data, 82
data, types, 53-54	shape manipulation, 70-71
dtype (data-type), 50, 54	slicing, 65–66
intrinsic creation, 55–57	structured arrays, 79
type() function, 51-52	vectorization, 76
NOSE MODULE, 91	
"Not a Number" data	0
filling, NaN occurrences, 133	
filtering out NaN	Object-oriented programming language, 20
values, 132–133	OCR, see Optical Character Recognition
NaN value, 131-132	(OCR) software
NumPy library	Open data, 15–16
array manipulation (see Array	Open data sources, 353
manipulation)	climatic data, 552
basic operations	demographics
aggregate functions, 62	IPython Notebook, 446
arithmetic operators, 57-59	matplotlib, 449

Open data sources (cont.)	Optical Character Recognition (OCR)
pandas dataframes, 446-447	software, 473
pop2014_by_state dataframe, 448	order() function, 127
pop2014 dataframe, 447-448	
United States Census	Р
Bureau, 445-446	P
financial data, 552	Pandas dataframes, 446, 453
health data, 550	Pandas data structures
miscellaneous and public	DataFrame, 102–105
data sets, 551-552	assigning values, 107–109
musical data, 553	deleting column, 110
political and government	element selection, 105–107
data, 549-550	filtering, 110
publications, newspapers,	membership value, 109-110
and books, 553	nested dict, 111
social data, 550–551	transposition, 111
sports data, 553	evaluating values, 98–99
Open Source Computer Vision (OpenCV)	index objects, 112
deep learning, 509	duplicate labels, 112-113
image processing and analysis, 509	methods, 112
add() function, 515	NaN values, 99, 101
blackish image, 518	NumPy arrays and existing
blending, 520	series, 96–97
destroyWindow() method, 512	operations, 120–122
elementary operations, 514	operations and mathematical
imread() method, 510	functions, 97-98
imshow() method, 511	series, 93
load and display, 510	assigning values, 95
merge() method, 513	declaration, 94
NumPy matrices, 519	dictionaries, 101
saving option, 514	filtering values, 97
waitKey() method, 511	index, 93
working process, 512	internal elements, selection, 95
installation, 509	operations, 102
MATLAB packages, 508	Pandas library, 87
start programming, 510	correlation and covariance, 129-131
Open-source programming	data structures (see Pandas data
language, 21	structures)

function application and mapping	PostgreSQL, 174
element, 123	Principal component analysis
row/column, 123, 125	(PCA), 320, 322
statistics, 125	Public data sets, 551–552
getting started, 92	PVM, see Python virtual machine (PVM)
hierarchical indexing and	pyplot module
leveling, 134-135, 137-138	interactive chart, 239
indexes (see Indexing functionalities)	Line2D object, 240
installation	plotting window, 240
Anaconda, 88–89	show() function, 240
development phases, 91	PyPy interpreter, 22
Linux, 90	Python, 17
module repository, Windows, 90	data analysis library, 87-88
PyPI, 89	deep learning, 354
source, 90	frameworks, 354
testing, 91	module, 91
"Not a Number" data, 131-134	OpenCV, 508
python data analysis, 87-88	Python Package Index (PyPI), 39, 89
sorting and ranking, 126-129	Python's world
Permutation	code implementation, 28
new_order array, 211	distributions, 24
np.random.randint() function, 211	Anaconda, 24
numpy.random.permutation()	Enthought Canopy, 26
function, 210	Python(x,y), 26
random sampling, 211	IDEs (see Interactive development
DataFrame, 211	environments (IDEs))
take() function, 211	installation, 23-24
Pickle—python object serialization	interact, 28
cPickle, 168	interpreter (see Interpreter)
frame.pkl, 170	IPython (see IPython)
pandas library, 169	programming language, 19-21
stream of bytes, 168	PyPI, 39
Political and government	Python 2, 23
data, 549-550	Python 3, 23
pop2014_by_county dataframe, 465	running, entire program code, 27
pop2014_by_state dataframe, 448-449	SciPy
pop2014 dataframe, 447–448	libraries, 46
Portable programming language, 20	matplotlib, 48

Python's world (cont.)	myCSV_03.csv, 145
NumPy, 47	names option, 145
pandas, 47	read_csv() function, 143, 145
shell, 26	read_table() function, 143
source code	.txt extension, 142
data structure, 30	databases
dictionaries and lists, 31	create_engine() function, 171
functional programming, 33	dataframe, 175
Hello World, 28	pandas.io.sql module, 171
index, 32	pgAdmin III, 175-176
libraries and functions, 30	PostgreSQL, 174
map() function, 33	read_sql() function, 172
mathematical operations, 29	read_sql_query() function, 177
print() function, 29	read_sql_table() function, 177
writing python code,	sqlalchemy, 171
indentation, 34–35	sqlite3, 171
Python virtual machine (PVM), 21	DataFrame objects, 141
PyTorch, 355	functionalities, 141
	HDF5 library
0	data structures, 167
Q	HDFStore, 167
Qualitative analysis, 14	hierarchical data format, 166
Quantitative analysis, 14	mydata.h5, 167
	HTML files
R	data structures, 152
	read_html (), 155
R, 17	web_frames, 156
Radial Basis Function (RBF), 340	web pages, 152
Radicals, LaTeX, 539	web scraping, 152
Ranking, 128–129	I/O API Tools, 141–142
Reading and writing array	JSON data
binary files, 82	books.json, 164
tabular data, 83–84	frame.json, 164
Reading and writing data	json_normalize() function, 165
CSV and textual files	JSONViewer, 162–163
header option, 144	normalization, 164
index_col option, 145	read_json() and to_json(), 162
myCSV_01.csv, 143	read_json() function, 164–165

Microsoft excel files, 159	Sentimental analysis, 502
NoSQL database	document_features()
insert() function, 179	function, 504
MongoDB, 178–180	documents, 503
pickle—python object serialization, 168	list() function, 504
RegExp	movie_reviews, 503
metacharacters, 146	negative/positive opinion, 505
read_table(), 146	opinion mining, 502
skiprows, 148	Shape manipulation
TXT files, 147–148	reshape() function, 70
nrows and skiprows options, 149	shape attribute, 70
portion by portion, 149	transpose() function, 71
writing (see Writing data)	Single layer perceptron (SLP), 371
XML (see XML)	accuracy, 359
Regression models, 4, 12	activation function, 358, 359
Reindexing, 114–116	architecture, 357
RoseWind	cost optimization, 382
DataFrame, 436–437	data analysis, 372
hist array, 438-439	evaluation phase, 359
polar chart, 438, 440-441	learning phase, 359, 378
scatter plot representation, 438	model definition, 374
showRoseWind() function, 439, 441	explicitly, 376
	implicitly, 376
S	learning phase, 375
	placeholders, 376
Scikit-learn library, 473	tf.add() function, 377
data analysis, 474	tf.nn.softmax() function, 377
k-nearest neighbors classification, 322	modules, 372
PCA, 320	representation, 358
Python module, 313	testing set, 385
sklearn.svm.SVC, 475	test phase and accuracy
supervised learning, 315	calculation, 383
svm module, 475	training sets, 359
SciPy	Social data, 550
libraries, 46	sort_index() function, 126-128, 138
matplotlib, 48	Sports data, 553
NumPy, 47	SQLite3, 171
pandas, 47	stack() function, 136

String manipulation	decision boundaries, 342
built-in methods	linear decision boundaries, 342-343
count() function, 214	polynomial decision boundaries, 344
error message, 214	polynomial kernel, 343–344
index() and find(), 213	RBF kernel, 344
join() function, 213	training set, 342
replace() function, 214	SVC (see Support vector classification
split() function, 212	(SVC))
strip() function, 212	SVR (see Support vector regression
regular expressions	(SVR))
findall() function, 215-216	Support vector regression (SVR)
match() function, 216	curves, 347
re.compile() function, 215	diabetes dataset, 345
regex, 214	linear predictive model, 345
re.split() function, 215	test set, data, 345
split() function, 215	swaplevel() function, 137
Structured arrays	
dtype option, 79, 81	Т
structs/records, 79	1
Subjective interpretations, 14	TensorFlow, 349, 354, 362, 480
Subscripts and superscripts,	data flow graph, 362
LaTeX, 538	Google's framework, 362
Supervised learning	installation, 363
machine learning, 314	IPython QtConsole, 364
scikit-learn, 315	MLP (see Multi Layer Perceptron
Support vector classification (SVC), 475	(MLP))
decision area, 336	model and sessions, 364
effect, decision boundary, 338-339	SLP (see Single layer perceptron (SLP))
nonlinear, 339–341	tensors
number of points, C parameter, 337-338	operation, 370
predict() function, 336-337	parameters, 366
regularization, 337	print() function, 368
support_vectors array, 337	representations of, 367
training set, decision space, 334–336	tf.convert_to_tensor() function, 368
Support vector machines (SVMs)	tf.ones() method, 369
decisional space, 334	tf.random_normal() function, 369
decision boundary, 334	tf.random_uniform() function, 369
Iris Dataset	tf.zeros() method, 368

Text analysis techniques	ShowRoseWind_Speed() function, 442
definition, 487	to_csv () function, 443
NLTK (see Natural Language Toolkit	Writing data
(NLTK))	HTML files
techniques, 488	myFrame.html, 155
Theano, 355	to_html() function, 153-154
trigrams() function, 499	na_rep option, 151
	to_csv() function, 150-151
U, V	
United States Census Bureau, 445–446	X, Y, Z
Universal functions (ufunc), 61	XML
Unsupervised learning, 314	books.xml, 157-158
	getchildren(), 158
W	getroot() function, 158
	lxml.etree tree structure, 159
Web Scraping, 4, 10	lxml library, 157
Wind speed	objectify, 158
polar chart representation, 442	parse() function, 158
RoseWind_Speed() function, 441	tag attribute, 158
ShowRoseWind() function, 442	text attribute, 159