
M A N N I N G

Gavin M. Roy

IN DEPTH

www.allitebooks.com

http://www.allitebooks.org

RabbitMQ in Depth
 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

RabbitMQ in Depth

GAVIN ROY

M A N N I N G
SHELTER ISLAND
 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical editor: James Titcumb
PO Box 761 Technical development editor: Phillip Warner
Shelter Island, NY 11964 Copyeditor: Andy Carroll

Proofreader: Alyson Brener
Technical proofreader: Karsten Strøbæk

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617291005
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17
 www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 RABBITMQ AND APPLICATION ARCHITECTURE1

1 ■ Foundational RabbitMQ 3

2 ■ How to speak Rabbit: the AMQ Protocol 18

3 ■ An in-depth tour of message properties 38

4 ■ Performance trade-offs in publishing 58

5 ■ Don’t get messages; consume them 79

6 ■ Message patterns via exchange routing 101

PART 2 MANAGING RABBITMQ IN THE DATA CENTER
OR THE CLOUD..133

7 ■ Scaling RabbitMQ with clusters 135

8 ■ Cross-cluster message distribution 148

PART 3 INTEGRATIONS AND CUSTOMIZATION.........................175

9 ■ Using alternative protocols 177

10 ■ Database integrations 205
v

contents
preface xiii
acknowledgments xiv
about this book xv

PART 1 RABBITMQ AND APPLICATION ARCHITECTURE......1

1 Foundational RabbitMQ 3
1.1 RabbitMQ’s features and benefits 4

RabbitMQ and Erlang 5 ■ RabbitMQ and AMQP 6

1.2 Who’s using RabbitMQ, and how? 7
1.3 The advantages of loosely coupled architectures 8

Decoupling your application 10 ■ Decoupling database
writes 11 ■ Seamlessly adding new functionality 12
Replication of data and events 12 ■ Multi-master federation
of data and events 13 ■ The Advanced Message
Queuing model 14

1.4 Summary 16
vii

CONTENTSviii
2 How to speak Rabbit: the AMQ Protocol 18
2.1 AMQP as an RPC transport 19

Kicking off the conversation 20 ■ Tuning in to the right channel 20

2.2 AMQP’s RPC frame structure 21
AMQP frame components 21 ■ Types of frames 22
Marshaling messages into frames 23 ■ The anatomy of
a method frame 24 ■ The content header frame 26
The body frame 26

2.3 Putting the protocol to use 27
Declaring an exchange 27 ■ Declaring a queue 28
Binding a queue to an exchange 29 ■ Publishing a message
to RabbitMQ 29 ■ Consuming messages from RabbitMQ 30

2.4 Writing a message publisher in Python 32
2.5 Getting messages from RabbitMQ 36
2.6 Summary 37

3 An in-depth tour of message properties 38
3.1 Using properties properly 39
3.2 Creating an explicit message contract with

content-type 41
3.3 Reducing message size with gzip and

content-encoding 43
3.4 Referencing messages with message-id and

correlation-id 45
Message-id 45 ■ Correlation-id 45

3.5 Born-on dating: the timestamp property 46
3.6 Automatically expiring messages 47
3.7 Balancing speed with safety using delivery-mode 48
3.8 Validating message origin with app-id and user-id 49

app-id 50 ■ user-id 51

3.9 Getting specific with the message type property 51
3.10 Using reply-to for dynamic workflows 52
3.11 Custom properties using the headers property 53
3.12 The priority property 54
3.13 A property you can’t use: cluster-id/reserved 54
3.14 Summary 55

CONTENTS ix
4 Performance trade-offs in publishing 58
4.1 Balancing delivery speed with guaranteed delivery 59

What to expect with no guarantees 60 ■ RabbitMQ won’t accept
non-routable messages with mandatory set 62 ■ Publisher
Confirms as a lightweight alternative to transactions 64
Using alternate exchanges for unroutable messages 66
Batch processing with transactions 68 ■ Surviving node failures
with HA queues 70 ■ HA queues with transactions 72
Persisting messages to disk via delivery-mode 2 72

4.2 When RabbitMQ pushes back 75
Checking the connection status with rabbitpy 77 ■ Using the
management API for connection status 77

4.3 Summary 78

5 Don’t get messages; consume them 79
5.1 Basic.Get vs. Basic.Consume 80

Basic.Get 80 ■ Basic.Consume 82

5.2 Performance-tuning consumers 84
Using no-ack mode for faster throughput 85 ■ Controlling
consumer prefetching via quality of service settings 86
Using transactions with consumers 89

5.3 Rejecting messages 90
Basic.Reject 90 ■ Basic.Nack 91 ■ Dead letter exchanges 92

5.4 Controlling queues 94
Temporary queues 94 ■ Permanent queues 97 ■ Arbitrary
queue settings 99

5.5 Summary 99

6 Message patterns via exchange routing 101
6.1 Simple message routing using the direct exchange 102

Creating the application architecture 103 ■ Creating the
RPC worker 107 ■ Writing a simple RPC publisher 110

6.2 Broadcasting messages via the fanout exchange 115
Modifying the facial detection consumer 116 ■ Creating a simple
image-hashing consumer 117

6.3 Selectively routing messages with the topic exchange 119
6.4 Selective routing with the headers exchange 122

CONTENTSx
6.5 Exchange performance benchmarking 124
6.6 Going meta: exchange-to-exchange routing 125
6.7 Routing messages with the consistent-hashing

exchange 127
6.8 Summary 131

PART 2 MANAGING RABBITMQ IN THE DATA CENTER
OR THE CLOUD..133

7 Scaling RabbitMQ with clusters 135
7.1 About clusters 136

Clusters and the management UI 137 ■ Cluster node types 138
Clusters and queue behavior 139

7.2 Cluster setup 142
Virtual machine setup 143 ■ Adding nodes to the cluster 144

7.3 Summary 147

8 Cross-cluster message distribution 148
8.1 Federating exchanges and queues 149

Federated exchanges 149 ■ Federated queues 152

8.2 Creating the RabbitMQ virtual machines 153
Creating the first instance 153 ■ Duplicating the EC2
instance 159

8.3 Connecting upstream 162
Defining federation upstreams 162 ■ Defining a policy 164
Leveraging upstream sets 167 ■ Bidirectional federated
exchanges 170 ■ Federation for cluster upgrades 171

8.4 Summary 173

PART 3 INTEGRATIONS AND CUSTOMIZATION175

9 Using alternative protocols 177
9.1 MQTT and RabbitMQ 178

The MQTT protocol 178 ■ Publishing via MQTT 182
MQTT subscribers 184 ■ MQTT plugin configuration 187

CONTENTS xi
9.2 STOMP and RabbitMQ 189
The STOMP protocol 190 ■ Publishing messages 191
Consuming messages 195 ■ Configuring the STOMP
plugin 198 ■ Using STOMP in the web browser 199

9.3 Stateless publishing via HTTP 200
How statelessd came to be 200 ■ Using statelessd 201
Operational architecture 202 ■ Publishing messages
via statelessd 203

9.4 Summary 203

10 Database integrations 205
10.1 The pg_amqp PostgreSQL extension 206

Installing the pg_amqp extension 207 ■ Configuring the pg_amqp
extension 209 ■ Publishing a message via pg_amqp 210

10.2 Listening to PostgreSQL notifications 212
Installing the PostgreSQL LISTEN exchange 213 ■ Policy-based
configuration 215 ■ Creating the exchange 217 ■ Creating
and binding a test queue 217 ■ Publishing via NOTIFY 218

10.3 Storing messages in InfluxDB 219
InfluxDB installation and setup 220 ■ Installing the InfluxDB
storage exchange 222 ■ Creating a test exchange 223
Testing the exchange 224

10.4 Summary 227

appendix Getting set up 228

index 237

preface
When Manning Publications published RabbitMQ in Action back in April 2012, RabbitMQ
was gaining popularity rapidly. As of today, it is one of the stalwart leaders in the world
of message brokers and is ideal for a variety of application uses. Facilitating communi-
cation through distributed applications, using micro-services in a service oriented
architecture, and enabling logical separation of CQRS and Event Sourcing compo-
nents are just some of the common uses of RabbitMQ.

 We now present a new, in-depth exploration of RabbitMQ itself, digging deep
under the surface by examining things like how the Advanced Message Queuing
Protocol is structured, progressive exploration into the various exchanges, and exami-
nation of various performance aspects. RabbitMQ in Depth aims to take your under-
standing of RabbitMQ to a new level, enabling you to further apply this knowledge in
real-world applications today.
xiii

acknowledgments
This book has been some time in the making, and so first and foremost a big thank
you goes out to all of our families and friends who tirelessly stood by us all, put up with
us, and made those late evening coffees to keep us going through the many additional
long hours of work required to write such a book – thank you!

 To Alvaro Videla and Jason J.W. Williams, authors of RabbitMQ in Action (also pub-
lished by Manning Publications, in April 2012), for laying the foundation for count-
less developers’ insight and interest in RabbitMQ itself.

 To Karen, our development editor, for her endless patience and understanding
with us all over this entire period, plus the entire Manning team for the fantastic effort
involved by all to finally get us to this point. It was hard work, and we ended up doing
a fair few rounds, but we are grateful for the solid production effort which has
emerged as a result!

 Thanks, too, to technical proofreader, Karsten Strøbæk, whose contribution helped
the book immensely, as did the comments of the reviewers: Phillip Warner, Jerry Kuch,
Nadia Saad Noori, Bruce Snyder, Robert Kielty, Milos Milivojevic, Arathi Maddula, Ian
Dallas, George Harley, Dimitri Aivaliotis, Hechen Gao, Stefan Turalski, Andrew
Meredith, Artem Dayneko, David Paccoud, Barry Alexander, Biju Kunjummen, Adolfo
Pérez Álvarez, Brandon Wilhite, David Pull, and Ray Lugo.

 There are a great many others which have helped contribute in various ways to this
book as well. We cannot mention everyone by name as this would just mean the
acknowledgements roll on and on, but a big thank you goes out to everyone else who
had a hand in helping make this possible!
xiv

about this book
RabbitMQ is an open source message broker written in Erlang, currently under the
wing of Pivotal Software. It’s based around the AMQP open protocol, with official cli-
ent libraries in Java, .NET, Erlang, as well as libraries for most other popular program-
ming languages.

 This book is up-to-date with RabbitMQ 3.6.3, so with the erratic release schedule of
RabbitMQ itself, by the time this book reaches you there may be newer versions
released. Not to fret though, as in our experience RabbitMQ has rarely broken fea-
tures with releases, only added new features and fixed issues!

 The code examples used throughout the book are written with Python, but if you
don’t have a working setup with Python and RabbitMQ, or you’d just like to experi-
ment without setting up the whole environment, we’ve included instructions on set-
ting up a Vagrant box with everything pre-installed. Make sure you check out the
appendix for instructions on how to get this up and running first.

Road Map
Chapter 1 looks at the foundation of RabbitMQ: the various features of RabbitMQ
itself and the foundation of RabbitMQ, the Advanced Messaging Queuing model.

 Chapter 2 explores the AMQ protocol, looking at the frame structure, and the low-
level process that occurs when a message is published or retrieved from RabbitMQ.

 Chapter 3 goes even further and looks at the message properties, including the
headers that add important meta-data to messages, such as content-type and encod-
ing, and how you can leverage these headers in your applications.
xv

ABOUT THIS BOOKxvi
 Chapter 4 considers performance trade-offs which must be made. With each level
of guarantee, your applications risk taking a hit on performance. This chapter explores
what these options are and will help you balance your environments’ need for guaran-
teed message assurance versus lightning fast delivery, the Goldilocks Principle.

 Chapter 5 explores the concept of consuming messages, looking at the fundamen-
tal difference between Basic.Get and Basic.Consume at a low level (and why the latter
is usually better), as well as pre-fetching and Quality of Service, message acknowledge-
ments, dead letter exchanges, temporary queues, and message expiry.

 Chapter 6 takes an in-depth look into the four core exchange types in RabbitMQ
and how they can benefit your application architecture.

 Chapter 7 looks at how you can scale up RabbitMQ by managing clusters, crash
recovery in a cluster, and further performance considerations when working with a
clustered environment.

 Chapter 8 builds on the core concepts of clustering by taking a look at federated
exchanges and queues, integrating RabbitMQ clusters with Amazon Web Services, and
applying policies.

 Chapter 9 looks at other ways of talking to RabbitMQ: using MQTT and STOMP as
alternative protocols, or using statelessd-based HTTP messaging.

 Finally, Chapter 10 looks at database integration into both PostgreSQL and
InfluxDB for further interesting integrations.

Code
Just about all of the code shown in the book can be found in various forms in the sam-
ple source code which accompanies this book. The sample code can be downloaded
free of charge from the Manning website (https://www.manning.com/books/rabbitmq-
in-depth), as well as from this Github repository: https://github.com/gmr/RabbitMQ-
in-Depth.

Book forum
Purchase of RabbitMQ in Depth includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://forums.manning.com/forums/rabbitmq-in-depth. You can also learn more
about Manning’s forums and the rules of conduct at https://forums.manning.com/
forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://www.manning.com/books/rabbitmq-in-depth
https://www.manning.com/books/rabbitmq-in-depth
https://github.com/gmr/RabbitMQ-in-Depth
https://github.com/gmr/RabbitMQ-in-Depth
https://forums.manning.com/forums/rabbitmq-in-depth
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

ABOUT THIS BOOK xvii
About the author
GAVIN M. ROY is an active open-source evangelist and advocate who has been working
with internet and Enterprise technologies since the mid-90’s.

About the cover
The figure on the cover of RabbitMQ in Depth is captioned “A man from Mikanovac,
Srijem, Croatia.” The illustration is taken from a reproduction of an album of Croa-
tian traditional costumes from the mid-nineteenth century by Nikola Arsenovic, pub-
lished by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were
obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated
in the Roman core of the medieval center of the town: the ruins of Emperor Diocle-
tian’s retirement palace from around AD 304. The book includes finely colored illus-
trations of figures from different regions of Croatia, accompanied by descriptions of
the costumes and of everyday life.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of
different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life. Manning celebrates the inven-
tiveness and initiative of the computer business with book covers based on the rich
diversity of regional life of two centuries ago, brought back to life by illustrations from
old books and collections like this one.

Part 1

RabbitMQ and
application architecture

In this part of the book, we’ll explore the structure of the AMQ protocol,
which is how your application communicates with RabbitMQ. We’ll also look at
the messages themselves, leveraging features such as message headers, priority,
and more, to enhance message interactions. We’ll explore performance trade-offs,
balancing stability and transactional safety against high-performance throughput
with no guarantees. Additionally, we’ll investigate the different exchange types
and why they work the way they do.

Foundational RabbitMQ
Whether your application is in the cloud or in your own data center, RabbitMQ is a
lightweight and extremely powerful tool for creating distributed software architec-
tures that range from the very simple to the incredibly complex. In this chapter
you’ll learn how RabbitMQ, as messaging-oriented middleware, allows tremendous
flexibility in how you approach and solve problems. You’ll learn how some compa-
nies are using it and about key features that make RabbitMQ one of the most popu-
lar message brokers today.

This chapter covers
 Unique features of RabbitMQ

 Why RabbitMQ is becoming a popular choice for
the centerpiece of messaging-based
architectures

 The basics of the Advanced Messaging Queuing
model, RabbitMQ’s foundation
3

4 CHAPTER 1 Foundational RabbitMQ
1.1 RabbitMQ’s features and benefits
RabbitMQ has many features and benefits, the most important of which are

 Open source—Originally developed in a partnership between LShift, LTD, and
Cohesive FT as RabbitMQ Technologies, RabbitMQ is now owned by Pivotal Soft-
ware Inc. and is released under the Mozilla Public License. As an open-source
project written in Erlang, RabbitMQ enjoys freedom and flexibility, while leverag-
ing the strength of Pivotal standing behind it as a product. Developers and engi-
neers in the RabbitMQ community are able to contribute enhancements and
add-ons, and Pivotal is able to offer commercial support and a stable home for
ongoing product maturation.

 Platform and vendor neutral—As a message broker that implements the platform-
and vendor-neutral Advanced Message Queuing Protocol (AMQP) specifica-
tion, there are clients available for almost any programming language and on
all major computer platforms.

 Lightweight—It is lightweight, requiring less than 40 MB of RAM to run the core
RabbitMQ application along with plugins, such as the Management UI. Note
that adding messages to queues can and will increase its memory usage.

 Client libraries for most modern languages—With client libraries targeting most mod-
ern programming languages on multiple platforms, RabbitMQ makes a compel-
ling broker to program for. There’s no vendor or language lock-in when choosing
how you’ll write programs that will talk to RabbitMQ. In fact, it’s not uncom-
mon to see RabbitMQ used as the centerpiece between applications written in
different languages. RabbitMQ provides a useful bridge that allows for lan-
guages such as Java, Ruby, Python, PHP, JavaScript, and C# to share data across
operating systems and environments.

 Flexibility in controlling messaging trade-offs—RabbitMQ provides flexibility in con-
trolling the trade-offs of reliable messaging with message throughput and per-
formance. Because it’s not a “one size fits all” type of application, messages can
designate whether they should be persisted to disk prior to delivery, and, if set
up in a cluster, queues can be set to be highly available, spanning multiple serv-
ers to ensure that messages aren’t lost in case of server failure.

 Plugins for higher-latency environments—Because not all network topologies and
architectures are the same, RabbitMQ provides for messaging in low-latency
environments and plugins for higher-latency environments, such as the inter-
net. This allows for RabbitMQ to be clustered on the same local network and
share federated messages across multiple data centers.

 Third-party plugins—As a center point for application integrations, RabbitMQ
provides a flexible plugin system. For example, there are third-party plugins
for storing messages directly into databases, using RabbitMQ directly for data-
base writes.

5RabbitMQ’s features and benefits
 Layers of security—In RabbitMQ, security is provided in multiple layers. Client
connections can be secured by enforcing SSL-only communication and client
certificate validation. User access can be managed at the virtual-host level, pro-
viding isolation of messages and resources at a high level. In addition, access to
configuration capabilities, reading from queues, and writing to exchanges is
managed by regular expression (regex) pattern matching. Finally, plugins can
be used for integration into external authentication systems like LDAP.

We’ll explore the features on this list in later chapters, but I’d like to focus right now
on the two most foundational features of RabbitMQ: the language it’s programmed in
(Erlang), and the model it’s based on (the Advanced Message Queuing model), a
specification that defines much of the RabbitMQ lexicon and its behavior.

1.1.1 RabbitMQ and Erlang

As a highly performant, stable, and clusterable message broker, it’s no surprise that
RabbitMQ has found a home in such mission-critical environments as the centerpiece
of large-scale messaging architectures. It was written in Erlang, the telco-grade, func-
tional programming language designed at the Ericsson Computer Science Laboratory
in the mid-to-late 1980s. Erlang was designed to be a distributed, fault-tolerant, soft
real-time system for applications that require 99.999% uptime. As a language and run-
time system, Erlang focuses on lightweight processes that pass messages between each
other, providing a high level of concurrency with no shared state.

REAL-TIME SYSTEM A real-time system is a hardware platform, software plat-
form, or combination of both that has requirements defined for when it must
return a response from an event. A soft real-time system will sacrifice less
important deadlines for executing tasks in favor of more important ones.

Erlang’s design, which focused on concurrent processing and message passing, made
it a natural choice for a message broker like RabbitMQ: As an application, a message
broker maintains concurrent connections, routes messages, and manages their states.
In addition, Erlang’s distributed communication architecture makes it a natural for
RabbitMQ’s clustering mechanism. Servers in a RabbitMQ cluster make use of Erlang’s
inter-process communication (IPC) system, offloading the functionality that many compet-
ing message brokers have to implement to add clustering capabilities (figure 1.1).

 Despite the advantages RabbitMQ gains by using Erlang, the Erlang environment
can be a stumbling block. It may be helpful to learn some Erlang so you’re confident
in managing RabbitMQ’s configuration files and using Erlang to gather information
about RabbitMQ’s current runtime state.

6 CHAPTER 1 Foundational RabbitMQ
1.1.2 RabbitMQ and AMQP

RabbitMQ was originally released in 2007, and interoperability, performance, and sta-
bility were the primary goals in mind during its development. RabbitMQ was one of
the first message brokers to implement the AMQP specification. By all appearances, it
set out to be the reference implementation. Split into two parts, the AMQP specifica-
tion defines not only the wire protocol for talking to RabbitMQ, but also the logical
model that outlines RabbitMQ’s core functionality.

NOTE There are multiple versions of the AMQP specification. For the pur-
poses of this book, we’ll focus only on AMQP 0-9-1. Although newer versions
of RabbitMQ support AMQP 1.0 as a plugin extension, the core RabbitMQ
architecture is more closely related to AMQP 0-8 and 0-9-1. The AMQP speci-
fication is primarily comprised of two documents: a top-level document that
describes both the AMQ model and the AMQ protocol, and a more detailed
document that provides varying levels of information about every class,
method, property, and field. More information about AMQP, including the
specification documents, may be found at http://www.amqp.org.

There are multiple popular message brokers and messaging protocols, and it’s impor-
tant that you consider the impact that the protocol and broker will have on your appli-
cation. RabbitMQ supports AMQP, but it also supports other protocols, such as MQTT,

Server 3

Erlang

virtual machine

In a cluster, RabbitMQ uses
Erlang’s inter-process communication
(IPC) system to communicate between

different servers.

The Erlang IPC system uses TCP/IP to
communicate between two RabbitMQ servers.

RabbitMQ communicates messages,
status, and configuration via the
Erlang IPC, synchronizing servers

with each other.

Server 1

Erlang

virtual machine

Server 2

Erlang

virtual machine

Figure 1.1 RabbitMQ clusters use the native Erlang inter-process communication mechanism in
the VM for cross-node communication, sharing state information and allowing for messages to be
published and consumed across the entire cluster.

http://www.amqp.org

7Who’s using RabbitMQ, and how?
Stomp, and XMPP. RabbitMQ’s protocol neutrality and plugin extensibility make it a
good choice for multiprotocol application architectures when compared to other
popular message brokers.

 It’s RabbitMQ’s roots in the AMQP specification that outline its primary architec-
ture and communication methodologies. This is an important distinction when evalu-
ating RabbitMQ against other message brokers. As with AMQP, RabbitMQ set out to
be a vendor-neutral, platform-independent solution for the complex needs that mes-
saging oriented architectures demand, such as flexible message routing, configurable
message durability, and inter-datacenter communication, to name a few.

1.2 Who’s using RabbitMQ, and how?
As an open-source software package, RabbitMQ is rapidly gaining mainstream adop-
tion, and it powers some of the largest, most trafficked websites on the internet.
Today, RabbitMQ is known to run in many different environments and at many differ-
ent types of companies and organizations:

 Reddit, the popular online community, uses RabbitMQ heavily in the core of
their application platform, which serves billions of web pages per month.
When a user registers on the site, submits a news post, or votes on a link, a
message is published into RabbitMQ for asynchronous processing by consumer
applications.

 NASA chose RabbitMQ to be the message broker for their Nebula platform, a
centralized server management platform for their server infrastructure, which
grew into the OpenStack platform, a very popular software platform for build-
ing private and public cloud services.

 RabbitMQ sits at the core of Agoura Games’ community-oriented online gam-
ing platform, and it routes large volumes of real-time single and multiplayer
game data and events.

 For the Ocean Observations Initiative, RabbitMQ routes mission-critical physi-
cal, chemical, geological, and biological data to a distributed network of research
computers. The data, collected from sensors in the Southern, Pacific, and Atlan-
tic Oceans, is integral to a National Science Foundation project that involves
building a large-scale network of sensors in the ocean and seafloor.

 Rapportive, a Gmail add-on that places detailed contact information right
inside the inbox, uses RabbitMQ as the glue for its data processing systems. Bil-
lions of messages pass through RabbitMQ monthly to provide data to Rapport-
ive’s web-crawling engine and analytics system and to offload long-running
operations from its web servers.

 MercadoLibre, the largest e-commerce ecosystem in Latin America, uses
RabbitMQ at the heart of their Enterprise Service Bus (ESB) architecture,
decoupling their data from tightly coupled applications, allowing for flexible
integrations with various components in their application architecture.

8 CHAPTER 1 Foundational RabbitMQ
 Google’s AdMob mobile advertising network uses RabbitMQ at the core of their
RockSteady project to do real-time metrics analysis and fault-detection by fun-
neling a fire hose of messages through RabbitMQ into Esper, the complex-
event-processing system.

 India’s biometric database system, Aandhaar leverages RabbitMQ to process
data at various stages in its workflow, delivering data to their monitoring tools,
data warehouse, and Hadoop-based data processing system. Aandhaar is designed
to provide an online portable identity system for every single resident of India,
covering 1.2 billion people.

As you can see, RabbitMQ isn’t only used by some of the largest sites on the internet,
it’s also found its way into academia for large-scale scientific research, and NASA
found it fitting to use RabbitMQ at the core of their network infrastructure manage-
ment stack. As these examples show, RabbitMQ has been used in mission-critical appli-
cations in many different environments and industries with tremendous success.

1.3 The advantages of loosely coupled architectures
When I first started to implement a messaging based architecture, I was looking for a
way to decouple database updates related to when a member logged in to a website.
The website had grown very quickly, and due to the way we’d written it, it wasn’t ini-
tially designed to scale well. When a user logged in to the website, several database
servers had tables that needed to be updated with a login timestamp (figure 1.2). This
timestamp needed to be updated in real time, as the most engaging activities on the
site were driven in part by the timestamp value. Upon login, members were given pref-
erential status in social games compared to those users who were actively online at any
given time.

 As the site continued to grow, the amount of time it took for a member to log in
also grew. The reason for this was fairly straightforward: When adding a new applica-
tion that used the member’s last login timestamp, its database tables would carry the
value to make it as fast as possible by removing cross database joins. To keep the data
up to date and accurate, the new data tables would also be updated when the mem-
ber logged in. It wasn’t long before there were quite a few tables that were being
maintained this way. The performance issue began to creep up because the database
updates were being performed serially. Each query updating the member’s last login
timestamp would have to finish before the next began. Ten queries that were consid-
ered performant, each finishing within 50 ms, would add up to half a second in
database updates alone. All of these queries would have to finish prior to sending
the authorization response and redirect back to the user. In addition, any opera-
tional issues on a database server compounded the problem. If one database server
started responding slowly or became unresponsive, members could no longer log in
to the site.

 To decouple the user-facing login application from directly writing to the database,
I looked into publishing messages to message-oriented middleware or a centralized

9The advantages of loosely coupled architectures
message broker that would then distribute the messages to any number of consumer
applications that would do the database writes required. I experimented with several dif-
ferent message brokers, and ultimately I landed on RabbitMQ as my broker of choice.

DEFINITION Message-oriented middleware (MOM) is defined as software or
hardware infrastructure that allows for the sending and receiving of messages
from distributed systems. RabbitMQ fills this role handily with functionality
that provides advanced routing and message distribution, even with wide area
network (WAN) tolerances to support reliable, distributed systems that inter-
connect with other systems easily.

After decoupling the login process from the database updates that were required, I
discovered a new level of freedom. Members were able to quickly log in because we
were no longer updating the database as part of the authentication process. Instead, a
member login message was published containing all of the information needed to
update any database, and consumer applications were written that updated each data-
base table independently (figure 1.3). This login message didn’t contain authentication
information for the member, but instead, only the information needed to maintain the

Login application Database servers

Upon authentication,

update member data.

Update member data record

with last login timestamp.

Update game #1 data.

Update game #2 data.

Update last login timestamp

in table for game #1.

Update last login timestamp

in table for game #2.

Redirect the

now-authenticated member.

Figure 1.2 Before: once a user has logged in, each database is updated with a timestamp
sequentially and dependently. The more tables you add, the longer this takes.

10 CHAPTER 1 Foundational RabbitMQ
member’s last login status in our various databases and applications. This allowed us to
horizontally scale database writes with more control. By controlling the number of
consumer applications writing to a specific database server, we were able to throttle
database writes for servers that had started to strain under the load created by new site
growth while we worked through their own unique scaling issues.

 As I detail the advantages of a messaging-based architecture, it’s important to note
that these advantages could also impact the performance of systems like the login
architecture described. Any number of problems may impact publisher performance,
from networking issues to RabbitMQ throttling message publishers. When such events
happen, your application will see degraded performance. In addition to horizontally
scaling consumers, it’s wise to plan for horizontal scaling of message brokers to allow
for better message throughput and publisher performance.

1.3.1 Decoupling your application

The use of messaging-oriented middleware can provide tremendous advantages for
organizations looking to create flexible application architectures that are data centric.
By moving to a loosely coupled design using RabbitMQ, application architectures are no

Login application

1. The member authenticates
and a message is published to

RabbitMQ. Then the application
redirects the authenticated

member to the logged-in URL.

C

DB DB

C C

DB

2. RabbitMQ publishes the
login event message to all

of the consumers who
should receive it.

3. Each consumer independently
performs its own database task.

Figure 1.3 After: using RabbitMQ, loosely coupled data is published to each database asynchronously
and independently, allowing the login application to proceed without waiting on any database writes.

11The advantages of loosely coupled architectures
longer bound to database write performance and can easily add new applications to act
upon the data without touching any of the core applications. Consider figure 1.4, dem-
onstrating the design of a tightly coupled application communicating with a database.

1.3.2 Decoupling database writes

In a tightly coupled architecture, the application must wait for the database server to
respond before it can finish a transaction. This design has the potential to create per-
formance bottlenecks in both synchronous and asynchronous applications. Should
the database server slow down due to poor tuning or hardware issues, the application
will slow. Should the database stop responding or crash, the application will poten-
tially crash as well.

 By decoupling the database from the application, a loosely coupled architecture is
created. In this architecture, RabbitMQ, as messaging-oriented middleware, acts as an
intermediary for the data prior to some action being taken with it in the database. A
consumer application picks up the data from the RabbitMQ server, performing the
database action (figure 1.5).

 In this model, should a database need to be taken offline for maintenance, or
should the write workload become too heavy, you can throttle the consumer applica-
tion or stop it. Until the consumer is able to receive the message, the data will persist

Application DB

In a tightly coupled application,
database writes are communicated

directly with the database.

Figure 1.4 When communicating with a
database, a tightly coupled application must
wait for the database server to respond
before it can continue processing.

Application C DB

In a loosely coupled application,
the application publishes a message

with the data to RabbitMQ.

RabbitMQ delivers the message to
subscribed consumer applications.

The consumer application communicates
the database writes to the database

as it receives each message.

Figure 1.5 A loosely coupled application allows the application that would have saved the data
directly in the database to publish the data to RabbitMQ, allowing for the asynchronous processing
of data.

12 CHAPTER 1 Foundational RabbitMQ
in the queue. The ability to pause or throttle consumer application behavior is just
one advantage of using this type of architecture.

1.3.3 Seamlessly adding new functionality

Loosely coupled architectures leveraging RabbitMQ allow data to be repurposed as
well. The data that originally was only going to be written to a database can also be
used for other purposes. RabbitMQ will handle all of the duplication of message con-
tent and can route it to multiple consumers for multiple purposes (figure 1.6).

1.3.4 Replication of data and events

Expanding upon this model, RabbitMQ provides built-in tools for cross–data center
distribution of data, allowing for federated delivery and synchronization of applica-
tions. Federation allows RabbitMQ to push messages to remote RabbitMQ instances,
accounting for WAN tolerances and network splits. Using the RabbitMQ federation
plugin, it’s easy to add a RabbitMQ server or cluster in a second data center. This is
illustrated in figure 1.7, where the data from the original application can now be pro-
cessed in two different locations over the internet.

Application

DB

RabbitMQ is now delivering the data
to two consumers instead of one.

C

A new consumer can deliver the same
data to a third-party, cloud-based service.

The original consumer still manages the
database writes for the application.

C
Cloud

service

Nothing has changed with the
application; it’s still publishing

the data to RabbitMQ the same way.

Figure 1.6 By using RabbitMQ, the publishing application doesn’t need to be changed in order to
deliver the same data to both a new cloud-based service and the original database.

13The advantages of loosely coupled architectures
1.3.5 Multi-master federation of data and events

Expanding upon this concept by adding the same front-end application to a second
data center and setting the RabbitMQ servers to bidirectionally federate data, you can
have highly available applications in different physical locations. Messages from the
application in either data center are sent to consumers in both data centers, allowing
for redundancy in data storage and processing (figure 1.8). This approach to applica-
tion architecture can allow applications to scale horizontally, also providing geographic
proximity for users and a cost-effective way to distribute your application infrastructure.

NOTE As with any architecture decision, using messaging-oriented middleware
introduces a degree of operational complexity. Because a message broker
becomes a center point in your application design, a new single point of failure
is introduced. There are strategies, which we’ll cover in this book, to create
highly available solutions to minimize this risk. In addition, adding a message
broker creates a new application to manage. Configuration, server resources,
and monitoring must be taken into account when weighing the tradeoffs of
introducing a message broker to your architecture. I’ll teach you how to
account for these and other concerns as you proceed through the book.

By adding federation, the same data
that is going to the consumer is now

delivered to a RabbitMQ server
in another data center.

Data center #1

Application

DB

C

Internet

Data center #2

DB

C

Another instance of the consumer
application performs the data
operations in data center #2.

The original consumer application
is processing the same way it

was previously.

Figure 1.7 By leveraging RabbitMQ’s federation plugin, messages can be duplicated to perform the
same work in multiple data centers.

14 CHAPTER 1 Foundational RabbitMQ
1.3.6 The Advanced Message Queuing model

Many of RabbitMQ’s strengths, including its flexibility, come from the AMQP specifi-
cation. Unlike protocols like HTTP and SMTP, the AMQP specification defines not
only a network protocol but also server-side services and behaviors. I’ll refer to this
information as the Advanced Message Queuing (AMQ) model. The AMQ model logi-
cally defines three abstract components in broker software that define the routing
behavior of messages:

 Exchange—The component of the message broker that routes messages to queues
 Queue—A data structure on disk or in memory that stores messages
 Binding—A rule that tells the exchange which queue the messages should be

stored in

The flexibility of RabbitMQ comes from the dynamic nature of how messages can be
routed through exchanges to queues. The bindings between exchanges and queues,
and the message routing dynamics they create, are a foundational component of
implementing a messaging-based architecture. Creating the right structure using these
basic tools in RabbitMQ allows your applications to scale and easily change with the
underlying business needs.

Federation is now bidirectional and
the data is sent from data center #1

to data center #2 and from
data center #2 to data center #1.

Data center #1

Application

DB

C

Internet

Data center #2

Application

DB

C

Both consumers are now
processing data from

both data centers.

Figure 1.8 Bidirectional federation of data allows for the same data events to be received and
processed in both data centers.

15The advantages of loosely coupled architectures
 The first piece of information that RabbitMQ needs in order to route messages to
their proper destination is an exchange to route them through.

EXCHANGES

Exchanges are one of three components defined by the AMQ model. An exchange
receives messages sent into RabbitMQ and determines where to send them. Exchanges
define the routing behaviors that are applied to messages, usually by examining data
attributes passed along with the message or that are contained within the message’s
properties.

 RabbitMQ has multiple exchange types, each with different routing behaviors. In
addition, it offers a plugin-based architecture for custom exchanges. Figure 1.9 shows
a logical view of a publisher sending a message to RabbitMQ, routing a message
through an exchange.

QUEUES

A queue is responsible for storing received messages and may contain configuration
information that defines what it’s able to do with a message. A queue may hold mes-
sages in RAM only, or it may persist them to disk prior to delivering them in first-in,
first-out (FIFO) order.

BINDINGS

To define a relationship between queues and exchanges, the AMQ model defines a
binding. In RabbitMQ, bindings or binding keys, tell an exchange which queues to deliver
messages to. For some exchange types, the binding will also instruct the exchange to
filter which messages it can deliver to a queue.

 When publishing a message to an exchange, applications use a routing-key attri-
bute. This may be a queue name or it may be a string that semantically describes the
message. When a message is evaluated by an exchange to determine the appropriate
queues it should be routed to, the message’s routing key is evaluated against the binding

1. A publishing application sends
a message into RabbitMQ.

P X

2. RabbitMQ receives the message and
routes it through an exchange.

3. The message is routed through the
exchange to the next component of

the AMQ model, the queue.

Figure 1.9 When a publisher sends a message into RabbitMQ, it first goes to an exchange.

16 CHAPTER 1 Foundational RabbitMQ
key (figure 1.10). In other words, the binding key is the glue that binds a queue to an
exchange, and the routing key is the criteria that’s evaluated against it.

In the most simple of scenarios, the routing key may be the queue name, though this
varies with each exchange type. In RabbitMQ, each exchange type is likely to treat
routing keys in a different way, with some exchanges invoking simple equality checks
and others using more complex pattern extractions from the routing key. There’s
even an exchange type that ignores the routing key outright in favor of other informa-
tion in the message properties.

 In addition to binding queues to exchanges, as defined in the AMQ model,
RabbitMQ extends the AMQP specification to allow exchanges to bind to other
exchanges. This feature creates a great deal of flexibility in creating different routing
patterns for messages. In addition to the various routing patterns available when you
use exchanges, you’ll learn more about exchange-to-exchange bindings in chapter 6.

1.4 Summary
RabbitMQ, as messaging-oriented middleware, is an exciting technology that enables
operational flexibility that’s difficult to achieve without the loosely coupled application
architecture it enables. By diving deep into RabbitMQ’s AMQP foundation and behav-
iors, this book should prove to be a valuable reference, providing insight into how your
applications can leverage its robust and powerful features. In particular, you’ll soon
learn how to publish messages and use the dynamic routing features in RabbitMQ to
selectively sip from the fire hose of data your application can send, data that once may
have been deeply buried in tightly coupled code and processes in your environment.

1. A publishing application sends
a message into RabbitMQ.

P X

2. RabbitMQ receives the
message and routes it
through an exchange.

Queue

The binding connects a queue to an exchange,
providing configuration that enables it to

deliver messages to the queue.

3. The exchange, after evaluating
its bindings, delivers the message

to the queue.

Figure 1.10 A queue is bound to an exchange, providing the information the exchange needs to route
a message to it.

17Summary
 Whether you’re an application developer or a high-level application architect,
it’s advantageous to have a deep level of knowledge about how your applications can
benefit from RabbitMQ’s diverse functionality. Thus far, you’ve learned the most
foundational concepts that comprise the AMQ model. I’ll expand on these concepts
in the remainder of part 1 of this book: You’ll learn about AMQP and how it defines
the core of RabbitMQ’s behavior.

 Because this book will be hands-on, with the goal of imparting the knowledge
required to use RabbitMQ in the most demanding of environments, you’ll start work-
ing with code in the next chapter. By learning “how to speak Rabbit,” you’ll be lever-
aging the fundamentals of AMQP, writing code to send and receive messages with
RabbitMQ. To speak Rabbit, you’ll be using a Python-based library called rabbitpy, a
library that was written specifically for the code examples in this book; I’ll introduce it
to you in the next chapter. Even if you’re an experienced developer who has written
applications that communicate with RabbitMQ, you should at least browse through
the next chapter to understand what’s happening at the protocol level when you’re
using RabbitMQ via the AMQP protocol.

How to speak Rabbit:
the AMQ Protocol
The process that RabbitMQ and client libraries go through in order to get a mes-
sage from your application into RabbitMQ and from RabbitMQ into consumer
applications can be complex. If you’re processing critical information, such as sales
data, reliably delivering the canonical source of information about the sale should
be a top priority. At the protocol level, the AMQP specification defines the seman-
tics for client and broker to negotiate and speak to each other about the process
for relaying your information. Oftentimes the lexicon defined in the AMQP spec-
ification bubbles its way up into RabbitMQ client libraries, with the classes and
methods used by applications communicating with RabbitMQ mirroring the
protocol-level classes and methods. Understanding how this communication takes
place will help you learn not just the “how” of communicating with RabbitMQ but
also the “why.”

This chapter covers
 Communicating with RabbitMQ via the AMQ

Protocol

 Framing the AMQ Protocol at a low level

 Publishing messages into RabbitMQ

 Getting messages from RabbitMQ
18

19AMQP as an RPC transport
 Even though the commands in client libraries tend to resemble or even directly
copy the actions defined in the AMQP specification, most client libraries attempt to
hide the complexity of communicating via the AMQ Protocol. This tends to be a good
thing when you’re looking to write an application and you don’t want to worry about
the intricacies of how things work. But skipping over the technical foundation of what
RabbitMQ clients are doing isn’t very helpful when you want to truly understand
what’s going on with your application. Whether you want to know why your applica-
tion is slower to publish than you might expect, or you just want to know what steps a
client must take in order to establish that first connection with RabbitMQ, knowing
how your client is talking to RabbitMQ will make that process much easier.

 To better illustrate the how and why, in this chapter you’ll learn how AMQP splits
communication between the client and broker into chunks of data called frames, and
how these frames detail the actions your client application wants RabbitMQ to take
and the actions RabbitMQ wants your client application to take. In addition, you’ll
learn how these frames are constructed at the protocol level, and how they provide
the mechanism by which messages are delivered and consumed.

 Building on this information, you’ll write your first application in Python using a
RabbitMQ client library written as a teaching aid for this book. This application will
use AMQP to define an exchange and queue and then bind them together. Finally,
you’ll write a consumer application that will read the messages from the newly defined
queue and print the contents of the message. If you’re already comfortable doing
these things, you should still dive into this chapter. I found that it was only after I fully
understood the semantics of AMQP, the “why” instead of just the “how,” that I under-
stood RabbitMQ.

2.1 AMQP as an RPC transport
As an AMQP broker, RabbitMQ speaks a strict dialect for communication, utilizing a
remote procedure call (RPC) pattern in nearly every aspect of communication with the
core product. A remote procedure call is a type of communication between comput-
ers that allows one computer to execute a program or its methods on the other. If
you’ve done web programming where you’re talking to a remote API, you’re using a
common RPC pattern.

 However, the RPC conversations that take place when communicating with
RabbitMQ are unlike most web-based API calls. In most web API definitions, there are
RPC conversations where the client issues commands and the server responds—the
server doesn’t issue commands back to the client. In the AMQP specification, both
the server and the client can issue commands. For a client application, this means that
it should be listening for communication from the server that may have little to do
with what the client application is doing.

 To illustrate how RPC works when a client is talking to RabbitMQ, let’s consider
the connection negotiation process.

20 CHAPTER 2 How to speak Rabbit: the AMQ Protocol
2.1.1 Kicking off the conversation

When you’re communicating with someone new in a foreign country, it’s inevitable
that one of you will kick off the conversation with a greeting, something that lets you
and the other person know if you’re both capable of speaking the same language.
When speaking AMQP, this greeting is the protocol header, and it’s sent by the client to
the server. This greeting shouldn’t be considered a request, however, as unlike the rest
of the conversation that will take place, it’s not a command. RabbitMQ starts the com-
mand/response sequence by replying to the greeting with a Connection.Start com-
mand, and the client responds to the RPC request with Connection.StartOk response
frame (figure 2.1).

The full conversation for initiating a connection isn’t terribly important unless you’re
writing a client library, but it’s worth noting that to fully connect to RabbitMQ, there’s
a sequence of three synchronous RPC requests to start, tune, and open the connec-
tion. Once this sequence has finished, RabbitMQ will be ready for your application to
make requests.

 There are a whole range of different commands your application can send to Rab-
bitMQ and that RabbitMQ can send to your client. You’ll learn a small subset of these
commands later in the chapter, but before that happens, you have to open a channel.

2.1.2 Tuning in to the right channel

Similar in concept to channels on a two-way radio, the AMQP specification defines
channels for communicating with RabbitMQ. Two-way radios transmit information to
each other using the airwaves as the connection between them. In AMQP, channels
use the negotiated AMQP connection as the conduit for transmitting information to
each other, and like channels on a two-way radio, they isolate their transmissions from
other conversations that are happening. A single AMQP connection can have multiple

Client Server

Protocol header

Connection.Start

Connection.StartOk

...

Figure 2.1 The initial communication negotiation with RabbitMQ demonstrates the
RPC process in AMQP.

21AMQP’s RPC frame structure
channels, allowing multiple conversations between a client and server to take place. In
technical terms, this is called multiplexing, and it can be useful for multithreaded or
asynchronous applications that perform multiple tasks.

TIP In creating your client applications, it’s important not to overcomplicate
things with too many channels. On the wire in marshaled frames, channels
are nothing more than an integer value that’s assigned to the messages that
are passed between a server and client; in the RabbitMQ server and client,
they represent more. There are memory structures and objects set up for
each channel. The more channels you have in a connection, the more mem-
ory RabbitMQ must use to manage the message flow for that connection. If
you use them judiciously, you’ll have a happier RabbitMQ server and a less
complicated client application.

2.2 AMQP’s RPC frame structure
Very similar in concept to object-oriented programming in languages such as C++,
Java, and Python, AMQP uses classes and methods, referred to as AMQP commands, to
create a common language between clients and servers. The classes in AMQP define a
scope of functionality, and each class contains methods that perform different tasks.
In the connection negotiation process, the RabbitMQ server sends a Connection
.Start command, marshaled into a frame, to the client. As illustrated in figure 2.2,
the Connection.Start command is composed of two components: the AMQP class
and method.

There are many commands in the AMQP specification, but if you’re like me, you’ll
want to skip through all of that and get to the important bits of sending and receiving
messages. It’s important, however, to understand how the commands you’ll be send-
ing and receiving with RabbitMQ are represented on the wire to truly appreciate
what’s happening in your applications.

2.2.1 AMQP frame components

When commands are sent to and from RabbitMQ, all of the arguments required to
execute them are encapsulated in data structures called frames that encode the data
for transmission. Frames provide an efficient way for the command and its arguments
to be encoded and delimited on the wire. You can think of frames as being like freight
cars on a train. As a generalization, freight cars have the same basic structure and are

Connection.Start

Class

Method

Figure 2.2 The AMQP Connection class and the
Start method comprise the Connection.Start
RPC request.

22 CHAPTER 2 How to speak Rabbit: the AMQ Protocol
differentiated by what they contain. The same is true with low-level AMQP frames. As
figure 2.3 illustrates, a low-level AMQP frame is composed of five distinct components:

1 Frame type
2 Channel number
3 Frame size in bytes
4 Frame payload
5 End-byte marker (ASCII value 206)

A low-level AMQP frame starts off with three fields, referred to as a frame header when
combined. The first field is a single byte indicating the frame type, and the second
field specifies the channel the frame is for. The third field carries the byte size of the
frame payload. The frame header, along with the end-byte marker, creates the struc-
ture for the frame.

 Carried inside the frame, after the header and before the end-byte marker, is the
frame payload. Much like the freight car protecting its contents on a train, the frame
is designed to protect the integrity of the content it carries.

2.2.2 Types of frames

The AMQP specification defines five types of frames: a protocol header frame, a method
frame, a content header frame, a body frame, and a heartbeat frame. Each frame type
has a distinct purpose, and some are used much more frequently than others:

 The protocol header frame is only used once, when connecting to RabbitMQ.
 A method frame carries with it the RPC request or response that’s being sent to

or received from RabbitMQ.
 A content header frame contains the size and properties for a message.

0 335 0xce1 Frame payload

The frame header is composed
of three parts: the frame type,

channel number, and frame size.

The frame payload varies
depending on the frame type.

There is a single byte marker to
specify the end of the frame.

Figure 2.3 The anatomy of a low-level AMQP frame

23AMQP’s RPC frame structure
 Body frames contain the content of messages.
 The heartbeat frame is sent to and from RabbitMQ as a check to ensure that

both sides of the connection are available and working properly.

Whereas the protocol header and heartbeat frames are generally abstracted away
from developers when using a client library, the method, content header, and body
frames and their constructs are usually surfaced when writing applications that com-
municate with RabbitMQ. In the next section, you’ll learn how messages that are sent
into and received from RabbitMQ are marshaled into a method frame, a content
header frame, and one or more body frames.

NOTE The heartbeat behavior in AMQP is used to ensure that both client
and server are responding to each other, and it's a perfect example of how
AMQP is a bidirectional RPC protocol. If RabbitMQ sends a heartbeat to your
client application, and it doesn’t respond, RabbitMQ will disconnect it.
Oftentimes developers in single-threaded or asynchronous development envi-
ronments will want to increase the timeout to some large value. If you find
your application blocks communication in a way that makes heartbeats diffi-
cult to work with, you can turn them off by setting the heartbeat interval to 0
when creating your client connection. If, instead, you choose to use a much
higher value than the default of 600 seconds, you can change RabbitMQ’s
maximum heartbeat interval value by changing the heartbeat value in the
rabbitmq.config file.

2.2.3 Marshaling messages into frames

When publishing a message to RabbitMQ, the method, header, and body frames are
used. The first frame sent is the method frame carrying the command and the
parameters required to execute it, such as the exchange and routing key. Following
the method frame are the content frames: a content header and body. The content
header frame contains the message properties along with the body size. AMQP has a
maximum frame size, and if the body of your message exceeds that size, the content
will be split into multiple body frames. These frames are always sent in the same order
over the wire: a method frame, content header frame, and one or more body frames
(figure 2.4).

 As figure 2.4 illustrates, when sending a message to RabbitMQ, a Basic.Publish
command is sent in the method frame, and that’s followed by a content header frame
with the message’s properties, such as the message’s content type and the time when
the message was sent. These properties are encapsulated in a data structure defined in
the AMQP specification as Basic.Properties. Finally, the content of the message is
marshaled into the appropriate number of body frames.

NOTE Although the default frame size is 131 KB, client libraries can negoti-
ate a larger or smaller maximum frame size during the connection process,
up to a 32-bit value for the number of bytes in a frame.

24 CHAPTER 2 How to speak Rabbit: the AMQ Protocol
In order to be more efficient and minimize the size of the data being transferred, the
content in the method frame and content header frame is binary packed data and is
not human-readable. Unlike the method and header frames, the message content car-
ried inside the body frame isn’t packed or encoded in any way and may be anything
from plain text to binary image data.

 To further illustrate the anatomy of an AMQP message, let’s examine these three
frame types in more detail.

2.2.4 The anatomy of a method frame

Method frames carry with them the class and method your RPC request is going to
make as well as the arguments that are being passed along for processing. In figure 2.5,
the method frame carrying a Basic.Publish command carries the binary packed data
describing the command, and the request arguments that are passing along with it.
The first two fields are numeric representations of the Basic class and the Publish

The method frame tells RabbitMQBasic.Publish
that a client is going to publish a message and

that it should expect a header frame
with in it.Basic.Properties

The content header frame carries the message
properties and tells RabbitMQ how big the message
body is so that it can process the correct number

of body frames that are going to be sent.

A single message published may contain
multiple body frames, depending on

the size of the content and the
maximum frame size setting.

1 41 0xce1 Basic.Publish

1 82 0xce2 Content header

1 56 0xce3 Body

Frame type, channel,
and byte size

Frame type, channel,
and byte size

Frame type, channel,
and byte size

Figure 2.4 A single message published into RabbitMQ is composed of three frame types: the method
frame for the Basic.Publish RPC call, a header frame, and one or more body frames.

25AMQP’s RPC frame structure
method. These fields are followed by the string values for the exchange name and the
routing key. As previously mentioned, these attributes instruct RabbitMQ on how to
route a message. The mandatory flag tells RabbitMQ that the message must be deliv-
ered or the publishing of the message should fail.

 Each data value in the method frame payload is encoded in a data-type-specific for-
mat. This format is designed to minimize byte size on the wire, ensure data integrity,
and ensure that data marshaling and unmarshaling are as fast as possible. The actual
format varies depending on the data type, but it’s usually a single byte followed by
numeric data, or a single byte followed by a byte-size field and then text data.

NOTE Usually, sending a message using the Basic.Publish RPC request is a
single-sided conversation. In fact, the AMQP specification goes as far as to say
that success, as a general rule, is silent, whereas errors should be as noisy and
intrusive as possible. But if you’re using the mandatory flag when publishing
your messages, your application should be listening for a Basic.Return com-
mand sent from RabbitMQ. If RabbitMQ isn’t able to meet the requirements
set by the mandatory flag, it will send a Basic.Return command to your client
on the same channel. More information about Basic.Return is covered in
chapter 4.

The first two fields of the method
frame payload carry the class and
method ID, numeric values that
represent the RPC command.

The next part of the method frame
carries the first argument for the
method, in this case, the name of

the exchange to publish to.

The routing key value is the next
argument and provides information

for the exchange to route the message
into the appropriate queue or queues.

Exchange name Routing key value Mandatory flag

The mandatory flag tells RabbitMQ
that it must be able to route the

message or it should send a
frame indicating theBasic.Return

message could not be routed.

Basic Publish

1 41 0xce1 Method frame

Figure 2.5 The Basic.Publish method frame is composed of five components: the class type and method type
that identifies it as a Basic.Publish RPC request, the exchange name, a routing key value, and a mandatory flag.

26 CHAPTER 2 How to speak Rabbit: the AMQ Protocol
2.2.5 The content header frame

The headers that are sent along after the method frame carry more than the data that
tells RabbitMQ how big your message is. As illustrated in figure 2.6, the header frame
also carries attributes about your message that describe the message to both the
RabbitMQ server and to any application that may receive it. These attributes, as values
in a Basic.Properties table, may contain data that describes the content of your mes-
sage or they may be completely blank. Most client libraries will prepopulate a minimal
set of fields, such as the content type and the delivery mode.

Properties are powerful tools in composing your message. They can be used to create
a contract between publishers and consumers about the content of the message,
allowing for a large amount of specificity about the message. You’ll learn about Basic
.Properties and the various possible uses for each field the data structure can carry
in chapter 3.

2.2.6 The body frame

The body frame for a message is agnostic to the type of data being transferred, and it
may contain either binary or text data. Whether you’re sending binary data such as a
JPEG image or serialized data in a JSON or XML format, the message body frame is
the structure in the message that carries the actual message data (figure 2.7).

 Together, the message properties and body form a powerful encapsulation format for
your data. Marrying the descriptive attributes of the message with the content-agnostic
body ensures you can use RabbitMQ for any type of data you deem appropriate.

The first field in a content header is the
body size, but this value is not

considered a property of the message.

The flag values specify
which properties are set.

The first property of the
message, the content type,

is specified.

The app_id property
is also specified.

55 application/json Test 1144, 200 1014206880

The timestamp property is
specified but is carried

as a binary packed value.

The delivery-mode property with a value of
tells RabbitMQ to persist the message1
to disk when publishing to a queue.

1 45 0xce2 Content header frame

Figure 2.6 A message header carries the body size and a Basic.Properties table.

27Putting the protocol to use
2.3 Putting the protocol to use
There are a few configuration-related steps you must take care of before you can pub-
lish messages into a queue. At a minimum, you must set up both an exchange and a
queue, and then bind them together.

 But before you actually perform those steps, let’s look at what needs to happen at a
protocol level to enable a message to be published, routed, queued, and delivered,
starting with setting up an exchange for routing messages.

2.3.1 Declaring an exchange

Exchanges, like queues, are first-rate citizens in the AMQ model. As such, each has its
own class in the AMQP specification. Exchanges are created using the Exchange
.Declare command, which has arguments that define the name of the exchange, its
type, and other metadata that may be used for message processing.

 Once the command has been sent and RabbitMQ has created the exchange, an
Exchange.DeclareOk method frame is sent in response (figure 2.8). If, for whatever
reason, the command should fail, RabbitMQ will close the channel that the Exchange
.Declare command was sent on by sending a Channel.Close command. This response
will include a numeric reply code and text value indicating why the Exchange.Declare
failed and the channel was closed.

1 55 0xce3 Body

{"foo": "bar", "baz": "qux", "quux", "corge": "grault"}

The message body is opaque to the
AMQP protocol and is not decoded,

inspected, or evaluated by RabbitMQ.

Figure 2.7 A message body embedded in an AMQP frame

Client Server

Exchange.Declare

Exchange.DeclareOk

Figure 2.8 The communication sequence that occurs when declaring an exchange

28 CHAPTER 2 How to speak Rabbit: the AMQ Protocol
2.3.2 Declaring a queue

Once the exchange has been created, it’s time to create a queue by sending a
Queue.Declare command to RabbitMQ. Like the Exchange.Declare command, there’s
a simple communication sequence that takes place (figure 2.9), and should the Queue
.Declare command fail, the channel will be closed.

When declaring a queue, there’s no harm in issuing the same Queue.Declare com-
mand more than once. RabbitMQ will consider subsequent queue declares to be pas-
sive and will return useful information about the queue, such as the number of
pending messages in the queue and the number of consumers subscribed to it.

Client Server

Queue.Declare

Queue.DeclareOk

Figure 2.9 A queue-declare communication sequence consists of a
Queue.Declare command and a Queue.DeclareOk response.

Handling errors gracefully
When you try to declare a queue with different properties than an existing queue with
the same name, RabbitMQ will close the channel that the RPC request was issued
on. This behavior is consistent with any other type of error that your client application
may make in issuing commands to the broker. For example, if you issue a Queue
.Declare command with a user that doesn’t have configuration access on the virtual
host, the channel will close with a 403 error.

To correctly handle errors, your client application should be listening for a Channel
.Close command from RabbitMQ so it can respond appropriately. Some client librar-
ies may present this information as an exception for your application to handle,
whereas others may use a callback passing style where you register a method that’s
called when a Channel.Close command is sent.

If your client application isn’t listening for or handling events coming from the server,
you may lose messages. If you’re publishing on a non-existent or closed channel,
RabbitMQ may close the connection. If your application is consuming messages and
doesn’t know that RabbitMQ closed the channel, it may not know that RabbitMQ
stopped sending your client messages and could still think that it’s functioning prop-
erly and is subscribed to an empty queue.

29Putting the protocol to use
2.3.3 Binding a queue to an exchange

Once the exchange and queue have been created, it’s time to bind them together.
Like with Queue.Declare, the command to bind a queue to an exchange, Queue.Bind,
can only specify one queue at a time. Much like the Exchange.Declare and Queue
.Declare commands, after you issue a Queue.Bind command, your application will
receive a Queue.BindOk method frame if it was processed successfully (figure 2.10).

As basic examples of RPC interactions between a RabbitMQ server and client, the
Exchange.Declare, Queue.Declare, and Queue.Bind commands illustrate a common
pattern that’s mimicked by all synchronous commands in the AMQP specification.
But there are a few asynchronous commands that break from the simple “Action” and
“ActionOk” pattern. These commands deal with sending and receiving messages from
RabbitMQ.

2.3.4 Publishing a message to RabbitMQ

As you previously learned, when publishing messages to RabbitMQ, multiple frames
encapsulate the message data that’s sent to the server. Before the actual message con-
tent ever reaches RabbitMQ, the client application sends a Basic.Publish method
frame, a content header frame, and at least one body frame (figure 2.11).

 When RabbitMQ receives all of the frames for a message, it will inspect the infor-
mation it needs from the method frame before determining the next steps. The
Basic.Publish method frame carries with it the exchange name and routing key for

Client Server

Queue.Bind

Queue.BindOk

Figure 2.10 After the
client successfully issues a
Queue.Bind command to
bind a queue to an exchange
with a routing key, the client
will receive a Queue.BindOk
method frame in response.

Client Server

Basic.Publish

Content header

Body Figure 2.11 When publishing a
message to RabbitMQ, at least three
frames are sent: the Basic.Publish
method frame, a content header frame,
and a body frame.

30 CHAPTER 2 How to speak Rabbit: the AMQ Protocol
the message. When evaluating this data, RabbitMQ will try to match the exchange
name in the Basic.Publish frame against its database of configured exchanges.

TIP By default, if you’re publishing messages with an exchange that doesn’t
exist in RabbitMQ’s configuration, it will silently drop the messages. To
ensure your messages are delivered, either set the mandatory flag to true
when publishing, or use delivery confirmations. These options are detailed in
chapter 4. Be aware that using either of these methods may negatively impact
the message publishing speed of your application.

When RabbitMQ finds a match to the exchange name in the Basic.Properties
method frame, it evaluates the bindings in the exchange, looking to match queues
with the routing key. When the criterion for a message matches any bound queues,
the RabbitMQ server will enqueue the message in a FIFO order. Instead of putting
the actual message into a queue data structure, a reference to the message is added
to the queue. When RabbitMQ is ready to deliver the message, it will use the refer-
ence to compose the marshaled message and send it over the wire. This provides a
substantial optimization for messages that are published to multiple queues. Holding
only one instance of the message takes less physical memory when it’s published to
multiple destinations. The disposition of a message in a queue, whether consumed,
expired, or sitting idle, will not impact the disposition of that message in any other
queue. Once RabbitMQ no longer needs the message, because all copies of it have
been delivered or removed, the single copy of the message data will be removed from
memory in RabbitMQ.

 By default, as long as there are no consumers listening to the queue, messages will be
stored in the queue. As you add more messages, the queue will grow in size. RabbitMQ
can keep these messages in memory or write them to disk, depending on the delivery-
mode property specified in the message’s Basic.Properties. The delivery-mode prop-
erty is so important that it will be discussed in the next chapter and in even more
detail in chapter 4.

2.3.5 Consuming messages from RabbitMQ

Once a published message has been routed and enqueued to one or more queues,
there’s not much left to discuss but its consumption. To consume messages from a
queue in RabbitMQ, a consumer application subscribes to the queue in RabbitMQ by
issuing a Basic.Consume command. Like the other synchronous commands, the
server will respond with Basic.ConsumeOk to let the client know it’s going to open the
floodgates and release a torrent of messages, or at least a trickle. At RabbitMQ’s dis-
cretion, the consumer will start receiving messages in the unsurprising form of
Basic.Deliver methods and their content header and body frame counterparts (fig-
ure 2.12).

 Once the Basic.Consume has been issued, it will stay active until one of a few things
occurs. If a consumer wants to stop receiving messages, it can issue a Basic.Cancel

31Putting the protocol to use
command. It’s worth noting that this command is issued asynchronously while
RabbitMQ may still be sending messages, so a consumer can still receive any number
of messages RabbitMQ has preallocated for it prior to receiving a Basic.CancelOk
response frame.

 When consuming messages, there are several settings that let RabbitMQ know how
you want to receive them. One such setting is the no_ack argument for the Basic
.Consume command. When set to true, RabbitMQ will send messages continuously
until the consumer sends a Basic.Cancel command or the consumer is disconnected.
If the no_ack flag is set to false, a consumer must acknowledge each message that it
receives by sending a Basic.Ack RPC request (figure 2.13).

Client Server

Basic.Deliver

Basic.Consume

Basic.ConsumeOk

Header

Body

Figure 2.12 The logical frame delivery order between client and server
when subscribing to a queue and receiving messages

Client Server

Basic.Deliver

Basic.Consume

Basic.Ack

Basic.ConsumeOk

Header

Body

Figure 2.13 Each message successfully delivered by RabbitMQ to the
client will be responded to with a Basic.Ack, until a Basic.Cancel
command is sent. If no_ack is specified, the Basic.Ack step is omitted.

32 CHAPTER 2 How to speak Rabbit: the AMQ Protocol
When the Basic.Ack response frame is sent, the consumer must pass with it an argu-
ment from the Basic.Deliver method frame called the delivery tag. RabbitMQ uses
the delivery tag along with the channel as a unique identifier to communicate mes-
sage acknowledgement, rejection, and negative acknowledgement. You’ll learn more
about these options in chapter 5.

2.4 Writing a message publisher in Python
Now that you have a healthy knowledge of AMQP fundamentals under your belt, it’s
time to turn theory into practice and write both a publisher and consumer. To do this
we’ll use the rabbitpy library. There are many libraries for communicating with Rab-
bitMQ, but I created rabbitpy as a teaching aid for this book to keep the programming
examples simple and concise while attempting to stay true to the AMQP command
syntax. If you haven’t done so yet, please install rabbitpy by following the VM installa-
tion instructions in the appendix.

 To start this exercise, you’ll make use of the IPython Notebook Server installed as
part of the RabbitMQ in Depth virtual machine. If you’ve yet to do so, please follow
the steps outlined in the appendix to set up the virtual machine on your local com-
puter. Open your browser to http://localhost:8888 and you should see a page similar
to figure 2.14.

Figure 2.14 The IPython Notebook index page

http://localhost:8888/

33Writing a message publisher in Python
The “2.4 Publisher Example” notebook in the index contains all of the code outlined
in this page in order to communicate with RabbitMQ. You must import the rabbitpy
library so that the Python interpreter allows you to use it:

If you press the Play button or the Run Cell button in the toolbar or if you press Shift-
Enter, the cell containing that code will execute. In the first cell of the notebook, the
rabbitpy library will be imported.

 You should also have seen the asterisk (*) change to the number 1. The active cell
has automatically advanced from the first to the next one. As you read through this
example code, you should execute each cell as you encounter it, advancing through
the code in the IPython Notebook.

 Now, with the rabbitpy library imported, you’ll need to create an AMQP connec-
tion URL. The format for the URL is very similar to the format used for HTTP
requests:

This AMQP URL specifies that you’ll connect over a normal AMQP connection using
the username “guest” and the password “guest”. It will connect you to localhost on
port number 5672 with the default “/” vhost. This URL expects that you’ll be connect-
ing to RabbitMQ on your local machine with the default configuration. If you’ve set
up RabbitMQ on a remote server or have changed the configuration of the RabbitMQ
broker, you’ll have to change the values accordingly.

 Now that the URL has been defined, it’s time to open a connection to RabbitMQ:

If you didn’t receive an exception, you’re now connected to RabbitMQ. If you did
receive one, the most likely scenario is that RabbitMQ isn’t running on your local
machine. Please ensure that it’s running and try again.

 If you’re successfully connected, it’s time to open a channel to communicate with
RabbitMQ:

34 CHAPTER 2 How to speak Rabbit: the AMQ Protocol
With the channel open, you can now declare an exchange by creating a new instance
of the rabbitpy.Exchange class. Pass in the channel and the name of the exchange
you’d like to create. I suggest using chapter2-example for now.

Once it’s constructed, use the exchange object’s declare method to send the com-
mand, declaring the exchange in RabbitMQ:

Now that you’ve declared the exchange, you can set up the queue and bind it to the
exchange. To do this, you first create the Queue object, passing in the channel and
the name of the queue. In the example that follows, the name of the queue is example.

Once the object has been created and the instance returned as the queue variable, you
can send the Queue.Declare command to RabbitMQ using the declare method.
What you should see is an output line that has a Python tuple data structure with the
number of messages in the queue and the number of consumers for the queue. A
tuple is an immutable set of Python objects. In this case they are integer values.

Now that the queue has been created, you must bind it in order for it to receive mes-
sages. To bind the queue to the exchange, send the Queue.Bind command by invok-
ing the queue object’s bind method, passing in the exchange and the routing key. In
the following example, the routing key is example-routing-key. When the execution
of this cell returns, you should see the output True, indicating that the binding was
successful.

35Writing a message publisher in Python
In your application, I recommend that you use semantically appropriate period-
delimited keywords to namespace your routing keys. The Zen of Python states that
“Namespaces are one honking great idea—let’s do more of those!” and this is true
in RabbitMQ as well. By using period-delimited keywords, you’ll be able to route mes-
sages based upon patterns and subsections of the routing key. You’ll learn more about
this in chapter 6.

TIP Queue and exchange names, along with routing keys, can include Uni-
code characters.

With your exchange and queue created and bound, you can now publish test mes-
sages into RabbitMQ that will be stored in the example queue. To make sure you have
enough messages to play with, the following example publishes 10 test messages into
the queue.

To publish test messages, a new rabbitpy.Message object is created in each loop iter-
ation, passing in the channel, a message body, and a dictionary of message properties.
Once the message is created, the publish method is invoked, creating the Basic
.Publish method frame, the content header frame, and one body frame, and deliver-
ing them all to RabbitMQ.

TIP When you write publishers for your production environment, use a data
serialization format such as JSON or XML so that your consumers can easily
deserialize the messages and so they’re easier to read when you’re trouble-
shooting any problems that may arise.

You should now go to the RabbitMQ web management console and see if your mes-
sages made it into the queue: Open your web browser and visit the management UI at
http://localhost:15672/#/queues/%2F/example (if your broker is on a different
machine, change localhost in the URL to the appropriate server). Once authenticated,
you should see a page resembling the screenshot in figure 2.15.

 If you look toward the bottom of the page, you’ll see a Get Messages section. If you
change the Messages field value from 1 to 10 and click Get Messages, you should see
each of the 10 messages you previously published. Make sure you leave the Requeue
field value set to Yes. It tells RabbitMQ to add the messages back into the queue when
RabbitMQ retrieves them for display in the management UI. If you didn’t, don’t
worry; just go back and rerun the publishing code.

http://localhost:15672/#/queues/%2F/example

36 CHAPTER 2 How to speak Rabbit: the AMQ Protocol
2.5 Getting messages from RabbitMQ
Now that you know how to publish messages, it’s time to retrieve them. The following
listing pulls together the repetitive, yet import, connection elements from the publish-
ing code discussed in the last section, allowing you to get messages from RabbitMQ.
This code is in the “2.5 Basic.Get Example” notebook. This notebook has six cells in it
when using the IPython Notebook interface. You can click the Cell dropdown and
then Run All instead of running each cell as in the previous example.

import rabbitpy

url = 'amqp://guest:guest@localhost:5672/%2F'
connection = rabbitpy.Connection(url)
channel = connection.channel()
queue = rabbitpy.Queue(channel, 'example')

while len(queue) > 0:
 message = queue.get()
 print 'Message:'

Figure 2.15 The RabbitMQ web management UI showing 10 messages in the order-processing queue.

Creates a new connection
object, connecting to RabbitMQ

Opens a channel to
communicate on

Creates a new queue
object for getting
messages withLoops while there

are messages in
the queueRetrieves the

message

37Summary

 print ' ID: %s' % message.properties['message_id']
 print ' Time: %s' % message.properties['timestamp'].isoformat()
 print ' Body: %s' % message.body
 message.ack()

After typing in and executing the preceding consumer code, you should see each of
the 10 messages you previously published. If you were looking closely, you may have
noticed that although you didn’t specify the message_id or timestamp properties
when publishing the messages, each message printed from the consumer has them.
The rabbitpy client library will automatically populate these properties for you if you
don’t specify them. In addition, had you sent a Python dict as the message, rabbitpy
would automatically serialize the data as JSON and set the content-type property as
application/json.

2.6 Summary
The AMQP 0.9.1 specification defines a communication protocol that uses RPC-
style commands to communicate between the RabbitMQ server and client. Now that
you know how these commands are framed and how the protocol functions, you
should be better equipped for writing and troubleshooting applications that interact
with RabbitMQ. You’ve already covered a large majority of the process of communi-
cating with RabbitMQ for publishing and consuming messages. Many applications
contain little more code than what you’ve already implemented to work with your
RabbitMQ instance.

 In the next chapter you’ll learn even more about using message properties, allow-
ing your publishers and consumers to use a common contract for the messages your
applications exchange.

Gets a
message
from the
queuePrints the timestamp

property formatted as an
ISO 8601 timestamp

Prints the
message bodyAcknowledges receipt of the

message with RabbitMQ

An in-depth tour
of message properties
In chapter 1, I detailed how I set out to decouple member login events from data-
base writes that were causing delays for members logging into a website. The
advantages of doing so quickly became clear to our entire engineering organiza-
tion, and using a loosely coupled architecture for database writes took on a life of
its own. Over time, we began to leverage this architecture in new applications we
were developing. No longer were we just processing member login events, we
were using this architecture for account deletions, email message generation,
and any application event that could be performed asynchronously. Events were
being published through the message bus to consumer applications, each per-
forming its own unique task. At first we put little thought into what the message
contained and how it was formatted, but it soon became apparent that standard-
ization was needed.

 With the different message types and no standardization of message format, it
became difficult to predict how a specific message type would be serialized and what

This chapter covers
 Message properties and their impact on message

delivery

 Using message properties to create a contract
with publishers and consumers
38

39Using properties properly
data a particular message type would contain. Developers would publish messages in a
format that made sense for their application and their application alone. Although they
accomplished their own tasks, this mindset was shortsighted. We began to observe that
messages could be reused across multiple applications, and the arbitrary formatting
decisions were becoming problematic. In an effort to ease the growing pains around
these and related issues, we paid more attention to describing the message being sent,
both in documentation and as part of the message itself.

 To provide a consistent method for self-describing our messages, we looked to
AMQP’s Basic.Properties, a data structure that’s passed along with every message
published via AMQP into RabbitMQ. Leveraging Basic.Properties opened the doors
to more intelligent consumers—consumer applications that could automatically dese-
rialize messages, validate the origin of a message and its type prior to processing, and
much more. In this chapter we’ll look at Basic.Properties in depth, covering each
property and its intended use.

3.1 Using properties properly
You’ll recall from chapter 2 that when you’re publishing a message with RabbitMQ,
your message is composed of three low-level frame types from the AMQP specifica-
tion: the Basic.Publish method frame, the content header frame, and the body
frame. These three frame types work together in sequence to get your messages
where they’re supposed to go and to ensure that they’re intact when they get there
(figure 3.1).

The message properties contained in the header frame are a predefined set of values
specified by the Basic.Properties data structure (figure 3.2). Some properties, such
as delivery-mode, have well-defined meanings in the AMQP specification, whereas
others, such as type, have no exact specification.

 In some cases, RabbitMQ uses well-defined properties to implement specific
behaviors with regard to the message. An example of this is the previously mentioned
delivery-mode property. The value of delivery-mode will tell RabbitMQ if it’s allowed

Header frame BodyBasic.Publish

Published message

The published message contains three
frames: the method frame,Basic.Publish

the header frame, and the body frame.

Figure 3.1 The three components of a message published into RabbitMQ

40 CHAPTER 3 An in-depth tour of message properties
to keep the message in memory when the message is placed in a queue or if it must
store the message to disk first.

TIP Although it’s advisable to use message properties to describe your mes-
sage, you should ensure that all data needed by applications consuming
messages is contained in the message body. Should you eventually venture to
bridging protocols, such as MQTT with RabbitMQ, you’ll want to make sure
your messages don’t lose meaning when AMQP-specific message semantics
aren’t available.

As we went through the message standardization process, the AMQP message proper-
ties provided a useful starting point for defining and carrying metadata about a mes-
sage. That metadata, in turn, allows the reader to create strict contracts between
publishers and consumers. Many of the attributes, from the content-type and mes-
sage type (type) to the timestamp and application ID (app-id), have proven to be
very useful not just for consistency in the engineering process but in day-to-day opera-
tional use. In short, by using message properties, you can create self-describing mes-
sages, similar to how XML is considered self-describing data markup.

Header frame BodyBasic.Publish

Published message

The message properties are embedded
in the header frame and contain information

that describes the message.

expirationcontent-type reply-to

delivery-modecontent-encoding headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

Basic.Properties

typetimestamp

Figure 3.2 Basic.Properties, including the deprecated cluster-id property from AMQP-0-8

41Creating an explicit message contract with content-type
 In this chapter, we’ll look at each of the basic properties outlined in figure 3.2:

 Using the content-type property to let consumers know how to interpret the
message body

 Using content-encoding to indicate that the message body may be compressed
or encoded in some special way

 Populating message-id and correlation-id to uniquely identify messages and
message responses, tracking the message through your workflow

 Leveraging the timestamp property to reduce message size and create a canoni-
cal definition of when a message was created

 Expiring messages with the expiration property
 Telling RabbitMQ to write your messages to disk-backed or in-memory queues

using delivery-mode
 Using app-id and user-id to help track down troublesome publishers
 Using the type property to define a contract with publishers and consumers
 Routing reply messages when implementing a pattern using the reply-to property
 Using the headers table property for free-form property definitions and Rab-

bitMQ routing

We’ll also touch on why you’ll want to avoid using the priority property and on what
happened to the cluster-id property and why you can’t use it.

 I’ll discuss the properties in the order of this list, but I’ve also included a handy
table at the end of the chapter listing each property in alphabetical order along with
its data type, an indication of whether it’s used by a broker or application, and instruc-
tions for its use.

NOTE When I use the term “contract” with regard to messaging, I’m refer-
ring to a specification for the format and contents of a message. In program-
ming, the term is often used to describe the predefined specification of APIs,
objects, and systems. Contract specifications often contain precise informa-
tion about the data transmitted and received, such as the data type, its format,
and any conditions that should be applied to it.

3.2 Creating an explicit message contract with
content-type
As I quickly found, it’s easy to come up with new uses for messages that are published
through RabbitMQ. Our initial consumer applications were written in Python, but
soon messages were being consumed by applications written in PHP, Java, and C.

 When messages are not self-describing about their payload format, your applica-
tions are more likely to break due to the use of implicit contracts, which are inher-
ently error-prone. By using self-describing messages, programmers and consumer
applications don’t need to guess how to deserialize the data received by messages or if
deserialization is even necessary.

42 CHAPTER 3 An in-depth tour of message properties
 The Basic.Properties data structure specifies the content-type property for
conveying the format of the data in the message body (figure 3.3).

Like in the various standardized HTTP specifications, content-type conveys the
MIME type of the message body. If your application is sending a JSON-serialized data
value, for example, setting the content-type property to application/json will allow
for yet-to-be-developed consumer applications to inspect the message type upon
receipt and correctly decode the message.

If you’re using a framework for your consumer code, you may want to make it smart
about how it deals with the messages it receives. By having the framework preprocess

expirationcontent-type reply-to

delivery-modecontent-encoding headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

Basic.Properties

typetimestamp

The property specifies what kindcontent-type
of content the message body contains.

Figure 3.3 The content-type property is the first property in Basic.Properties.

Thoughts on self-describing messages and message content
It’s wise to use a standard serialization format such as JSON, Msgpack (http://
msgpack.org/), or XML. These formats allow for any number of consumer applica-
tions to be written in just about any programming language. Because the data is self-
describing in these formats, it’s easier to write future consumer applications and it’s
easier to decode messages on the wire outside of your core application.

In addition, by specifying the serialization format in the content-type property, you
can future-proof your consumer applications. When consumers can automatically rec-
ognize the serialization formats that they support and can selectively process mes-
sages, you don’t have to worry about what happens when a new serialization format
is used and routed to the same queues.

http://msgpack.org/
http://msgpack.org/

43Reducing message size with gzip and content-encoding
the message prior to handing it off to your consumer code, message bodies can auto-
matically be deserialized and loaded into native data structures in your programming
language. For example, in Python your framework could detect the message serializa-
tion type from the content-type header and, using this information, it could auto-
matically deserialize the message body and place the contents into a dict, list, or
other native data type. This would ultimately reduce the complexity of your code in
the consumer application.

3.3 Reducing message size with gzip and
content-encoding
Messages sent over AMQP aren’t compressed by default. This can be problematic with
overly verbose markup such as XML, or even with large messages using less markup-
heavy formats like JSON or YAML. Your publishers can compress messages prior to
publishing them and decompress them upon receipt, similarly to how web pages can
be compressed on the server with gzip and the browser can decompress them on the
fly prior to rendering.

 To make this process explicit, AMQP specifies the content-encoding property
(figure 3.4).

It’s preferable not to change the contract of the message being published and consumed
in production, thus minimizing any potential effects on preexisting code. But if message
size is impacting overall performance and stability, using the content-encoding header

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

typetimestamp

content-encoding

The property calls outcontent-encoding
special encoding on the message body,

such as base64 or gzip.

Figure 3.4 The content-encoding property indicates whether special encodings
have been applied to the message body.

44 CHAPTER 3 An in-depth tour of message properties
will allow your consumers to prequalify messages, ensuring they can decode whatever
format the message body is sent as.

NOTE Don’t confuse content-encoding with content-type. Like in the HTTP
specification, content-encoding is used to indicate some level of encoding
beyond the content-type. It’s a modifier field that’s often used to indicate
that the content of the message body has been compressed using gzip or
some other form of compression. Some AMQP clients automatically set the
content-encoding value to UTF-8, but this is incorrect behavior. The AMQP
specification states that content-encoding is for storing the MIME content
encoding.

To draw a parallel, MIME email markup uses a content-encoding field to indicate
the encoding for each of the different parts of the email. In email, the most common
encoding types are Base64 and Quoted-Printable. Base64 encoding is used to ensure
binary data transferred in the message doesn’t violate the text-only SMTP protocol.
For example, if you’re creating an HTML-based email message with embedded
images, the embedded images are likely to be Base64 encoded.

 Unlike SMTP, however, AMQP is a binary protocol. The content in the message
body is transferred as is and isn’t encoded or transformed in the message marshaling
and remarshaling process. Without regard to format, any content may be passed with-
out concern of violating the protocol.

Combined with the content-type property, the content-encoding property empow-
ers consumer applications to operate in an explicit contract with the publishers.
This allows you to write future-proof code, hardening it against unexpected errors
caused by changes in message format. For example, at some point in your applica-
tion’s lifetime you may find that bzip2 compression is better for your message con-
tent. If you code your consumer applications to examine the content-encoding
property, they can then reject messages that they can’t decode. Consumers that only
know how to decompress using zlib or deflate would reject the new bzip2 com-
pressed messages, leaving them in a queue for other consumer applications that can
decompress bzip2 messages.

Leveraging consumer frameworks
If you’re using a framework to write your consumer code, it can use the content-
encoding property to automatically decode messages upon receipt. By preprocess-
ing, deserializing, and decompressing messages prior to calling your consumer code,
the logic and code in a consumer application can be simplified. Your consumer-
specific code will be able to focus on the task of processing the message body.

We’ll discuss consumer frameworks in more detail in chapter 5.

45Referencing messages with message-id and correlation-id
3.4 Referencing messages with message-id and correlation-id
In the AMQP specification, message-id and correlation-id are specified “for appli-
cation use” and have no formally defined behavior (figure 3.5). This means that as far
as the specification is concerned, you can use them for whatever purpose you like.
Both fields allow for up to 255 bytes of UTF-8 encoded data and are stored as uncom-
pressed values embedded in the Basic.Properties data structure.

3.4.1 Message-id

Some message types, such as a login event, aren’t likely to need a unique message ID
associated with them, but it’s easy to imagine types of messages that would, such as
sales orders or support requests. The message-id property enables the message to
carry data in the header that uniquely identifies it as it flows through the various com-
ponents in a loosely coupled system.

3.4.2 Correlation-id

Although there’s no formal definition for the correlation-id in the AMQP specifica-
tion, one use is to indicate that the message is a response to another message by hav-
ing it carry the message-id of the related message. Another option is to use it to carry
a transaction ID or other similar data that the message is referencing.

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

typetimestamp

content-encoding

The can be used tomessage-id
uniquely identify the message.

The can indicate that the message iscorrelation-id
in response to another message, and, in this case,

would contain the from the previous message.message-id

Figure 3.5 The message-id and correlation-id properties can be used to track
individual messages and response messages as they flow through your systems.

46 CHAPTER 3 An in-depth tour of message properties
3.5 Born-on dating: the timestamp property
One of the more useful fields in Basic.Properties is the timestamp property (fig-
ure 3.6). Like message-id and correlation-id, timestamp is specified as “for
application use.” Even if your message doesn’t use it, the timestamp property is very
helpful when you’re trying to diagnose any type of unexpected behavior in the flow of
messages through RabbitMQ. By using the timestamp property to indicate when a
message was created, consumers can gauge performance in message delivery.

Is there a service level agreement (SLA) that your processes need to enforce? By eval-
uating the timestamp from the message properties, your consumer applications can
decide whether they will process a message, discard it, or even publish an alert mes-
sage to a monitoring application to let someone know that the age of a message is
exceeding a desired value.

 The timestamp is sent as a Unix epoch or integer-based timestamp indicating the
number of seconds since midnight on January 1, 1970. For example, February 2,
2002, at midnight would be represented as the integer value 1329696000. As an
encoded integer value, the timestamp only takes up 8 bytes of overhead in the mes-
sage. Unfortunately there’s no time zone context for the timestamp, so it’s advis-
able to use UTC or another consistent time zone across all of your messages. By
standardizing on the time zone up front, you’ll avoid any future problems that may
result from your messages traveling across time zones to geographically distributed
RabbitMQ brokers.

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

typetimestamp

content-encoding

The property has no formaltimestamp
definition but can be used to define
when the message was constructed.

Figure 3.6 The timestamp property can carry an epoch value to specify when the
message was created.

47Automatically expiring messages
3.6 Automatically expiring messages
The expiration property tells RabbitMQ when it should discard a message if it hasn’t
been consumed. Although the expiration property (figure 3.7) existed in both the 0-8
and 0-9-1 versions of the AMQP specification, it wasn’t supported in RabbitMQ until
the release of version 3.0. In addition, the specification of the expiration property is a
bit odd; it’s specified “for implementation use, no formal behavior,” meaning RabbitMQ
can implement its use however it sees fit. One final oddity is that it’s specified as a
short string, allowing for up to 255 characters, whereas the other property that repre-
sents a unit of time, timestamp, is an integer value.

Because of the ambiguity in the specification, the expiration value is likely to have
different implications when using different message brokers or even different ver-
sions of the same message broker. To auto-expire messages in RabbitMQ using the
expiration property, it must contain a Unix epoch or integer-based timestamp, but
stored as a string. Instead of storing an ISO-8601 formatted timestamp such as
"2002-02-20T00:00:00-00", you must set the string value to the equivalent value of
"1329696000".

 When using the expiration property, if a message is published to the server with
an expiration timestamp that has already passed, the message will not be routed to any
queues, but instead will be discarded.

 It’s also worth noting that RabbitMQ has other functionality to expire your messages
only under certain circumstances. In declaring a queue, you can pass an x-message-ttl

If specified, the property will instructexpiration
RabbitMQ to discard a message if the current

time is greater than the specified value.

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

typetimestamp

content-encoding

Figure 3.7 To use the expiration property in RabbitMQ, set the string value to a Unix
epoch timestamp designating the maximum value for which the message is still valid.

48 CHAPTER 3 An in-depth tour of message properties
argument along with the queue definition. This value should also be a Unix epoch
timestamp, but it uses millisecond precision (value*1000) as an integer value. This
value instructs the queue to automatically discard messages once the specified time
has passed. The x-message-ttl queue argument and the merits of its use will be dis-
cussed in more detail in chapter 5.

3.7 Balancing speed with safety using delivery-mode
The delivery-mode property is a byte field that indicates to the message broker that
you’d like to persist the message to disk prior to it being delivered to any awaiting con-
sumers (figure 3.8). In RabbitMQ, persisting a message means that it will remain in
the queue until it’s consumed, even if the RabbitMQ server is restarted. The delivery-
mode property has two possible values: 1 for a non-persisted message and 2 for a per-
sisted message.

NOTE When you’re first learning the various terms and settings in RabbitMQ,
message persistence can often be confused with the durable setting in a
queue. A queue’s durability attribute indicates to RabbitMQ whether the defi-
nition of a queue should survive a restart of the RabbitMQ server or cluster.
Only the delivery-mode of a message will indicate to RabbitMQ whether a
message should be persisted or not. A queue may contain persisted and non-
persisted messages. Queue durability is discussed in chapter 4.

As illustrated in figure 3.9, specifying your message as a non-persisted message will
allow RabbitMQ to use memory-only queues.

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

typetimestamp

content-encoding

If set to “2” the property tellsdelivery-mode
RabbitMQ to persist the message to disk.

Figure 3.8 The delivery-mode property instructs RabbitMQ whether it must
store the message on disk when placing it in a queue or if it may keep the message
only in memory.

49Validating message origin with app-id and user-id
Because memory IO is inherently faster than disk IO, specifying delivery-mode as 1
will deliver your messages with as little latency as possible. In my web application login
use case, the choice of delivery mode may be easier than in other use cases. Although
it’s desirable not to lose any login events if a RabbitMQ server fails, it’s usually not a
hard requirement. If member login event data is lost, it’s not likely the business will
suffer. In that case, we’d use delivery-mode:1. But if you’re using RabbitMQ to pub-
lish financial transaction data, and your application architecture is focused on guaran-
teed delivery instead of message throughput, you can enable persistence by specifying
delivery-mode:2. As illustrated in figure 3.10, when specifying a delivery mode of 2,
messages are persisted to a disk-backed queue.

Although this provides some guarantee that messages won’t be lost in the event of a
message broker crash, it comes with potential performance and scaling concerns. The
delivery-mode property has such a significant impact on delivery and performance
that it’s covered in more detail in chapter 4.

3.8 Validating message origin with app-id and user-id
The app-id and user-id properties provide another level of information about a mes-
sage and have many potential uses (figure 3.11). As with other properties that can be
used to specify a behavioral contract in the message, these two properties can carry
information that your consumer applications can validate prior to processing.

P Message X
Memory-only

queue

delivery-mode: 1

Figure 3.9 Publishing messages to memory-only queues

P Message X
Disk-backed

queue

delivery-mode: 2

Disk

Figure 3.10 Publishing messages to disk-backed queues

50 CHAPTER 3 An in-depth tour of message properties
3.8.1 app-id

The app-id property is defined in the AMQP specification as a “short-string,” allowing
for up to 255 UTF-8 characters. If your application has an API-centric design with ver-
sioning, you could use the app-id to convey the specific API and version that were
used to generate the message. As a method of enforcing a contract between publisher
and consumer, examining the app-id prior to processing allows the application to dis-
card the message if it’s from an unknown or unsupported source.

 Another possible use for app-id is in gathering statistical data. For example, if
you’re using messages to convey login events, you could set the app-id property to the
platform and version of the application triggering the login event. In an environment
where you may have web-based, desktop, and mobile client applications, this would be
a great way to transparently both enforce a contract and extract data to keep track of
logins by platform, without ever inspecting the message body. This is especially handy
if you want to have single-purposed consumers allowing for a stats-gathering consumer
listening to the same messages as your login processing consumer. By providing the
app-id property, the stats-gathering consumer wouldn’t have to deserialize or decode
the message body.

TIP When trying to track down the source of rogue messages in your queues,
enforcing the use of app-id can make it easier to trace back the source of the

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

typetimestamp

content-encoding

The property is a free-form stringapp-id
value that you can use to specify

the publishing application.

RabbitMQ validates the propertyuser-id
against the authenticated RabbitMQ

user publishing the message.

Figure 3.11 The user-id and app-id properties are the last of the Basic
.Properties values, and they can be used to identify the message source.

51Getting specific with the message type property
bad messages. This is especially useful in larger environments where many
applications share the same RabbitMQ infrastructure, and a new publisher
may erroneously use the same exchange and routing key as an existing pub-
lishing application.

3.8.2 user-id

In the use case of user authentication, it may seem obvious to use the user-id property
to identify the user who has logged in, but in most cases this isn’t advisable. RabbitMQ
checks every message published with a value in the user-id property against the
RabbitMQ user publishing the message, and if the two values don’t match, the message
is rejected. For example, if your application is authenticating with RabbitMQ as the user
“www”, and the user-id property is set to “linus”, the message will be rejected.

 Of course, if your application is something like a chat room or instant messaging
service, you may very well want a user in RabbitMQ for every user of your application,
and you would indeed want to use user-id to identify the actual user logging into
your application.

3.9 Getting specific with the message type property
The 0-9-1 version of the AMQP specification defines the Basic.Properties type prop-
erty as the “message type name,” saying that it’s for application use and has no formal
behavior (figure 3.12). Although the routing-key value, in combination with the
exchange, may often convey as much information about the message as is needed to
determine the content of a message, the type property adds another tool your appli-
cations can use to determine how to process a message.

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

typetimestamp

content-encoding

The property may be used totype
describe the content in the message.

Figure 3.12 The type property is a free-form string value that can be used to define
the message type.

52 CHAPTER 3 An in-depth tour of message properties
In my example of publishing member login events, when it came time to store the
events in a data warehouse, we found it useful to carry the message type with the mes-
sage. To prepare the events for storage in the data warehouse, they’re first stored in a
temporary location, and then a batch process reads them and stores them in the data-
base. Because this is a very generic process, a single consumer performs the extract
phase of the extract-transform-load (ETL) process using a generic queue to process
all the messages. The ETL queue consumer processes multiple types of messages and
uses the type property to decide which system, table, or cluster to store the extracted
data in.

NOTE ETL processing is a standard practice where OLTP data is extracted
and eventually loaded into a data warehouse for reporting purposes. If you’d
like to learn more about ETL processing, Wikipedia has a very good article
describing each phase, ETL performance, common challenges, and related
subjects (http://en.wikipedia.org/wiki/Extract,_transform,_load).

3.10 Using reply-to for dynamic workflows
In a confusing and terse definition in the AMQP specification, the reply-to prop-
erty has no formally defined behavior and is also specified for application use (fig-
ure 3.13). Unlike the previously mentioned proprieties, it has a caveat: reply-to
may be used to designate a private response queue for replies to a message. Although
the exact definition of a private response queue isn’t stated in the AMQP specification,

When self-describing serialization formats aren’t fast enough
The type property can be very useful when creating self-describing messages, espe-
cially when the message body isn’t serialized in a self-describing data format. Self-
describing formats like JSON and XML are considered by some to be too verbose. They
can also carry unnecessary overhead on the wire or in memory, as well as being slower
to serialize and deserialize in some languages. If any of these concerns ring true to
you, you can choose a serialization format like Apache Thrift (http://thrift.apache.org/)
or Google’s Protobuf (https://code.google.com/p/protobuf/). Unlike MessagePack
(http://msgpack.org/), these binary encoded message formats aren’t self-describing
and require an external definition file for serialization and deserialization. This exter-
nal dependency and the lack of self-description allows for smaller payloads on the
wire but has tradeoffs of its own.

When trying to create self-describing AMQP messages that allow for an enforceable
contract between publisher and consumer, a message payload that isn’t self-
describing requires the message payload to be deserialized prior to determining
whether the message is OK for the consumer to process. In this case, the type prop-
erty can be used to specify the record type or the external definition file, enabling the
consumer to reject messages it can’t process if it doesn’t have access to the proper
.thrift or .proto file required to process the message.

http://en.wikipedia.org/wiki/Extract,_transform,_load
http://thrift.apache.org/
https://code.google.com/p/protobuf/
http://msgpack.org/

53Custom properties using the headers property
this property could easily carry either a specific queue name or a routing key for replies
in the same exchange through which the message was originally published.

WARNING There’s a caveat in the 0-9-1 version of the AMQP specification for
reply-to that states it “may hold the name of a private response queue, when
used in request messages.” There’s enough ambiguity in the definition of this
property that it should be used with caution. Although it’s not likely that
future versions of RabbitMQ will enforce routability of response messages at
publishing time, it’s better to be safe than sorry. Given RabbitMQ’s behavior
with regard to the user-id property and the ambiguity of the specification
with regard to this property, it wouldn’t be unreasonable for RabbitMQ to
deny publishing of a message if response messages wouldn’t be routable due
to information in the reply-to property.

3.11 Custom properties using the headers property
The headers property is a key/value table that allows for arbitrary, user-defined keys
and values (figure 3.14). Keys can be ASCII or Unicode strings that have a maximum
length of 255 characters. Values can be any valid AMQP value type.

 Unlike the other properties, the headers property allows you to add whatever data
you’d like to the headers table. It also has another unique feature: RabbitMQ can
route messages based upon the values populated in the headers table instead of rely-
ing on the routing key. Routing messages via the headers property is covered in chap-
ter 6.

The property can be used to carry thereply-to
routing key a consumer should use when replying

to a message implementing an RPC pattern.

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

typetimestamp

content-encoding

Figure 3.13 The reply-to property has no formal definition but can carry a routing
key or queue name value that can be used for replies to the message.

54 CHAPTER 3 An in-depth tour of message properties
3.12 The priority property
As of RabbitMQ 3.5.0, the priority field has been implemented as per the AMQP spec-
ification. It’s defined as an integer with possible values of 0 through 9 to be used for
message prioritization in queues. As specified, if a message with a priority of 9 is pub-
lished, and subsequently a message with a priority of 0 is published, a newly connected
consumer would receive the message with the priority of 0 before the message with a
priority of 9. Interestingly, RabbitMQ implements the priority field as an unsigned
byte, so priorities could be anywhere from 0 to 255, but the priority should be limited to
0 through 9 to maintain interoperability with the specification. See figure 3.15.

3.13 A property you can’t use: cluster-id/reserved
There’s only one more property to call to your attention, and only for the purpose of
letting you know that you can’t use it. You most likely noticed the cluster-id prop-
erty that’s crossed out in the previous figures (figure 3.16).

 The cluster-id property was defined in AMQP 0-8 but was subsequently removed,
and RabbitMQ never implemented any sort of behavior around it. AMQP 0-9-1 renamed
it to reserved and states that it must be empty. Although RabbitMQ currently doesn’t
enforce the specification requiring it to be empty, you’re better off avoiding it altogether.

typetimestamp

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

content-encoding

The property is a key/valueheaders
table in the message properties.

garply

corge

foo

grault

Key

1921-08-19

True

1

bar

Value

Values can be any
AMQP data type.

Keys can be ASCII
or Unicode

strings.

Figure 3.14 The headers property allows for arbitrary key/value pairs in the message properties.

55Summary
3.14 Summary
By using Basic.Properties properly, your messaging architecture can create strict
behavioral contracts between publishers and consumers. In addition, you’ll be able to
future-proof your messages for integration projects that you may not have considered
in your initial application and message specifications.

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

typetimestamp

content-encoding

priority is a well-defined property
that is not supported in RabbitMQ.

Figure 3.15 The priority property can be used to designate priority in queues for
the message.

content-type

Basic.Properties

expiration reply-to

delivery-mode headers

app-idmessage-id priority

user-idcorrelation-id cluster-id

typetimestamp

content-encoding

cluster-id was defined in AMQP 0-8
and removed in AMQP 0-9-1.

Figure 3.16 The cluster-id property was renamed as reserved in AMQP 0-9-1 and
must not be used.

56 CHAPTER 3 An in-depth tour of message properties
 Table 3.1 provides a quick overview of these properties. You can come back and ref-
erence it as you’re figuring out the appropriate use of properties in your applications.

Beyond using properties for self-describing messages, these properties can carry valu-
able metadata about your message that will allow you to create sophisticated routing

Table 3.1 Properties made available by Basic.Properties, including their type, whether the broker
or application can use them, and either the specified use or suggestions for use.

Property Type For use by Suggested or specified use

app-id short-string Application Useful for defining the application publishing
the messages.

content-
encoding

short-string Application Specify whether your message body is
encoded in some special way, such as zlib,
deflate, or Base64.

content-type short-string Application Specify the type of the message body using
mime-types.

correlation-id short-string Application If the message is in reference to some
other message or uniquely identifiable
item, the correlation-id is a good
way to indicate what the message is
referencing.

delivery-mode octet RabbitMQ A value of 1 tells RabbitMQ it can keep the
message in memory; 2 indicates it should
also write it to disk.

expiration short-string RabbitMQ An epoch or Unix timestamp value as a text
string that indicates when the message
should expire.

headers table Both A free-form key/value table that you can use
to add additional metadata about your mes-
sage; RabbitMQ can route based upon this if
desired.

message-id short-string Application A unique identifier such as a UUID that your
application can use to identify the message.

priority octet RabbitMQ A property for priority ordering in queues.

timestamp timestamp Application An epoch or Unix timestamp value that can
be used to indicate when the message was
created.

type short-string Application A text string your application can use to
describe the message type or payload.

user-id short-string Both A free-form string that, if used, RabbitMQ will
validate against the connected user and drop
messages if they don’t match.

57Summary
and transactional mechanisms, without having to pollute the message body with con-
textual information that pertains to the message. When evaluating the message for
delivery, RabbitMQ will leverage specific properties, such as the delivery-mode and
the headers table, to ensure that your messages are delivered how and where you
specify. But these values are just the tip of the iceberg when it comes to making sure
your message delivery is bulletproof.

Performance trade-offs
in publishing
Message publishing is one of the core activities in a messaging-based architecture,
and there are many facets to message publishing in RabbitMQ. Many of the message-
publishing options available to your applications can have a large impact on your
application’s performance and reliability. Although any message broker is mea-
sured by its performance and throughput, reliable message delivery is of para-
mount concern. Imagine what would happen if there were no guarantees when you
used an ATM to deposit money into your bank account. You’d deposit money with
no certainty that your account balance would increase. This would inevitably be a
problem for you and for your bank. Even in non-mission-critical applications, mes-
sages are published for an intended purpose, and silently dropping them could eas-
ily create problems.

 Although not every system has such hard requirements around message delivery
guarantees as banking applications do, it’s important for software like RabbitMQ to
ensure the messages it receives are delivered. The AMQP specification provides for
transactions in message publishing, and for the optional persistence of messages, to

This chapter covers
 Message delivery guarantees in RabbitMQ

 Publisher vs. performance trade-offs
58

59Balancing delivery speed with guaranteed delivery
provide a higher level of reliable messaging than normal message publishing provides
on its own. RabbitMQ has additional functionality, such as delivery confirmations, that
provide different levels of message delivery guarantees for you to choose from, includ-
ing highly available (HA) queues that span multiple servers. In this chapter you’ll
learn about the performance and publishing guarantee trade-offs involved in using
these functionalities and how to find out if RabbitMQ is silently throttling your mes-
sage publisher.

4.1 Balancing delivery speed with guaranteed delivery
When it comes to RabbitMQ, the Goldilocks Principle applies to the different levels of
guarantees in message delivery. Abstracted as a takeaway from the “Story of the Three
Bears,” the Goldilocks Principle describes where something is just right. In the case of
reliable message delivery, you should apply this principle to the trade-offs encoun-
tered when using the delivery guarantee mechanisms in RabbitMQ. Some of the fea-
tures may be too slow for your application, such as the ability to ensure messages
survive the reboot of a RabbitMQ server. On the other hand, publishing messages
without asking for additional guarantees is much faster, though it may not provide a
safe enough environment for mission-critical applications (figure 4.1).

In RabbitMQ, each mechanism designed to create delivery guarantees will come
with some impact on performance. On their own, you may not notice a significant
difference in throughput, but when they’re used in combination there can be a sig-
nificant impact on message throughput. Only by performing your own performance
benchmarks can you determine the acceptable trade-off of performance versus
guaranteed delivery.

 When creating application architectures using RabbitMQ, you should keep the
Goldilocks Principle in mind. The following questions can help find the right balance
between high performance and message safety for a solution that’s just right.

 How important is it that messages are guaranteed to be enqueued when published?
 Should a message be returned to a publisher if it can’t be routed?

P
ersisted m

essages

Transactions

H
A

queues

P
ublisher confirm

s

N
o guarantees

N
otification on failure

A
lternate exchanges

H
A

queues w
ith transactions

Figure 4.1 Performance will suffer when using each delivery guarantee mechanism, and even more
so when they’re used in combination.

60 CHAPTER 4 Performance trade-offs in publishing
 If a message can’t be routed, should it be sent somewhere else where it can later
be reconciled?

 Is it okay if messages are lost when a RabbitMQ server crashes?
 Should RabbitMQ confirm that it has performed all requested routing and per-

sistence tasks to a publisher when it processes a new message?
 Should a publisher be able to batch message deliveries and then receive confir-

mation from RabbitMQ that all requested routing and persistence tasks have
been applied to all of the messages in the batch?

 If you’re batching the publishing of messages that require confirmation of rout-
ing and persistence, is there a need for true atomic commits to the destination
queues for a message?

 Are there acceptable trade-offs in reliable delivery that your publishers can use
to achieve higher performance and message throughput?

 What other aspects of message publishing will impact message throughput and
performance?

In this section we’ll cover how these questions relate to RabbitMQ and what techniques
and functionality your applications can employ to implement just the right level of reli-
able delivery and performance. Over the course of this chapter, you’ll be presented
with the options that RabbitMQ provides for finding the right balance of performance
and delivery guarantees. You can pick and choose what makes the most sense for your
environment and your application, as there’s no one right solution. You could choose
to combine mandatory routing with highly available queues, or you may choose trans-
actional publishing along with delivery mode 2, persisting your messages to disk. If
you’re flexible in how you approach your application development process, I recom-
mend trying each of the different techniques on its own and in combination with oth-
ers until you find a balance that you’re comfortable with—something that’s just right.

4.1.1 What to expect with no guarantees

In a perfect world, RabbitMQ reliably delivers messages without any additional config-
uration or steps. Simply publish your message via Basic.Publish with the correct
exchange and routing information, and your message will be received and sent to the
proper queue. There are no network issues, server hardware is reliable and does not
crash, and operating systems never have issues that will impact the runtime state of the
RabbitMQ broker. Rounding out a utopian application environment, your consumer
applications will never face performance constraints by interacting with services that
may slow their processing. Queues never back up and messages are processed as
quickly as they’re published. Publishing isn’t throttled in any way.

 Unfortunately, in a world where Murphy’s Law is a rule of thumb, the things that
would never occur in a perfect world occur regularly.

 In non-mission-critical applications, normal message publishing doesn’t have to
handle every possible point of failure; finding the right balance will get you most of

61Balancing delivery speed with guaranteed delivery
the way toward reliable and predictable uptime. In a closed-loop environment where
you don’t have to worry about network or hardware failures and you don’t have to
worry about consumers not consuming quickly enough, RabbitMQ’s architecture and
feature set demonstrate a level of reliable messaging that’s good enough for most
non-mission-critical applications. For example, Graphite, the popular, highly scalable
graphing system originally developed by Orbitz, has an AMQP interface for submit-
ting your statistical data into Graphite. Individual servers running metric collection
services, such as collectd, gather information about their runtime states and publish
messages on a per-minute basis (figure 4.2).

These messages carry information such as the CPU load, memory, and network utiliza-
tion of the server. Graphite has a collector service called carbon that consumes these
messages and stores the data in its internal data store. In most environments, this data
isn’t considered mission-critical, even though it may be very important in the overall
operational management of the network. If data for a given minute isn’t received by
carbon and stored in Graphite, it wouldn’t be a failure on the same level as, say, a finan-
cial transaction. Missing sample data may in fact indicate a problem with a server or pro-
cess that publishes the data to Graphite, and that can be used by systems like Rocksteady
to trigger events in Nagios or other similar applications to alert to the problem.

 When publishing data like this, you need to be aware of the trade-offs. Delivering
the monitoring data without additional publishing guarantees requires fewer configu-
ration options, has lower processing overhead, and is simpler than making sure the

Collectd on web servers publishes runtime
state information such as CPU usage, load,

and memory utilization into RabbitMQ.
RabbitMQ delivers the messages to

monitoring applications like
Rocksteady to alert on problems.

RabbitMQ delivers the messages to Graphite’s
carbon consumer to store the data that is used
for statistical dashboards, with graphs detailing

server heath information.

!

Figure 4.2 Web server collectd's statistic-gathering daemons publish monitoring data to
RabbitMQ for delivery to Graphite and Rocksteady consumers.

62 CHAPTER 4 Performance trade-offs in publishing
messages will be delivered. In this case, just right is a simple setup with no additional
message delivery guarantees. The collectd process is able to fire and forget the mes-
sages it sends. If it’s disconnected from RabbitMQ, it will try to reconnect the next
time it needs to send stats data. Likewise, the consumer applications will reconnect
when they’re disconnected and go back to consuming from the same queues they
were consuming from before.

 This works well under most circumstances, until Murphy’s Law comes into play
and something goes wrong. If you’re looking to make sure your messages are always
delivered, RabbitMQ can change gears and go from good enough to mission critical.

4.1.2 RabbitMQ won’t accept non-routable messages with mandatory set

If you needed the server monitoring data to always be routed to RabbitMQ prior to
collectd moving on, all collectd would need to do is tell RabbitMQ that the message
being published is mandatory. The mandatory flag is an argument that’s passed along
with the Basic.Publish RPC command and tells RabbitMQ that if a message isn’t
routable, it should send the message back to the publisher via a Basic.Return RPC
(figure 4.3). The mandatory flag can be thought of as turning on fault detection
mode; it will only cause RabbitMQ to notify you of failures, not successes. Should the
message route correctly, your publisher won’t be notified.

 To publish a message with the mandatory flag, you simply pass in the argument
after passing in the exchange, routing key, message, and properties, as shown in the
following example. To trigger the expected exception for the unroutable message,
you can use the same exchange as in chapter 2. When the message is published, there’s

Unroutable

messageP Basic.Publish

A publisher sends an unroutable
message with the RPC commandBasic.Publish

with .mandatory=True

When the exchange can’t route the message, RabbitMQ
will send a back to the serverBasic.Return

with the full message as it was sent.

X

Unroutable

message
Basic.Publish

Figure 4.3 When an unroutable message is published with mandatory=True,
RabbitMQ returns it via the Basic.Return RPC call to the client.

63Balancing delivery speed with guaranteed delivery

O
chan

commu
o
c

m

no bound destination and an exception should be raised when it’s executed. The
code is in the “4.1.2 Publish Failure” notebook.

import datetime
import rabbitpy

Connect to the default URL of amqp://guest:guest@localhost:15672/%2F

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 body = 'server.cpu.utilization 25.5 1350884514'
 message = rabbitpy.Message(channel,
 body,
 {'content_type': 'text/plain',
 ' timestamp': datetime.datetime.now(),
 'message_type': 'graphite metric'})
 message.publish('chapter2-example',
 'server-metrics',
 mandatory=True)

When you execute this example, you should receive an exception similar to the fol-
lowing one. RabbitMQ can’t route the message because there’s no queue bound to
the exchange and routing key.

rabbitpy.exceptions.MessageReturnedException:
 (312, 'NO_ROUTE', 'chapter2-example')

NOTE In the previous example, a new way of invoking the Connection and
Channel objects is used: Both objects are created as a context manager. In
Python, if an object is a context manager, it will automatically handle the
shutdown of the object instance when you exit the scope or indentation level
that you use the object in. In the case of rabbitpy, when you exit the scope, it
will correctly close the channel and connection, without you having to explic-
itly call Channel.close or Connection.close respectively.

The Basic.Return call is an asynchronous call from RabbitMQ, and it may happen at
any time after the message is published. For example, when collectd is publishing sta-
tistical data to RabbitMQ, it may publish multiple data points before receiving the
Basic.Return call, should a publish fail. If the code isn’t set up to listen for this call, it
will fall on deaf ears, and collectd will never know that the message wasn’t published
correctly. This would be problematic if you wanted to ensure the delivery of messages
to the proper queues.

 In the rabbitpy library, Basic.Return calls are automatically received by the client
library and will raise a MessageReturnedException upon receipt at the channel scope.
In the following example, the same message will be sent to the same exchange using
the same routing key. The code for publishing the message has been slightly refac-
tored to wrap the channel scope in a try/except block. When the exception is raised,
the code will print the message ID and return the reason extracted from the reply-text

Connects to RabbitMQ
using the connection as a

context manager
pens a
nel to
nicate
n as a
ontext
anager

Creates the message
body to deliverCreates the

message to
publish,

passing the
channel,

body, and
properties Publishes the message

with mandatory
turned on

64 CHAPTER 4 Performance trade-offs in publishing

m

co
c

bo
pr

P
m

attribute of the Basic.Return frame. You’ll still be publishing to the chapter2-example
exchange, but you’ll now intercept the exception being raised. This example is in the
“4.1.2 Handling Basic.Return” notebook.

import datetime
import rabbitpy

connection = rabbitpy.Connection()
try:
 with connection.channel() as channel:
 properties = {'content_type': 'text/plain',
 'timestamp': datetime.datetime.now(),
 'message_type': 'graphite metric'}
 body = 'server.cpu.utilization 25.5 1350884514'
 message = rabbitpy.Message(channel, body, properties)
 message.publish('chapter2-example',
 'server-metrics',
 mandatory=True)
except rabbitpy.exceptions.MessageReturnedException as error:
 print('Publish failure: %s' % error)

When you execute this example, instead of the exception from the previous example,
you should see a friendlier message, like this:

Message was returned by RabbitMQ: (312) NO_ROUTE for exchange chapter2-example

With other libraries, you may have to register a callback method that will be invoked if
the Basic.Return RPC call is received from RabbitMQ when your message is pub-
lished. In an asynchronous programming model where you are actually processing the
Basic.Return message itself, you’ll receive a Basic.Return method frame, the con-
tent header frame, and the body frame, just as if you were consuming messages. If this
seems too complex, don’t worry. There are other ways to simplify the process and deal
with message routing failures. One is by using Publisher Confirms in RabbitMQ.

NOTE The rabbitpy library and the examples in this section only use up to
three arguments when sending a Basic.Publish command. This is in con-
trast to the AMQP specification, which includes an additional argument, the
immediate flag. The immediate flag directs a broker to issue a Basic.Return
if the message can’t be immediately routed to its destination. This flag is dep-
recated as of RabbitMQ 2.9 and will raise an exception and close the channel
if used.

4.1.3 Publisher Confirms as a lightweight alternative to transactions

The Publisher Confirms feature in RabbitMQ is an enhancement to the AMQP specifi-
cation and is only supported by client libraries that support RabbitMQ-specific exten-
sions. Although storing messages on disk is an important step in preventing message
loss, doing so doesn’t create a contract between the publisher and RabbitMQ server that

Connects to RabbitMQ
on localhost port 5672
as guest

Opens channel to
communicate on

Creates message
properties

Creates
message body

Creates
essage
object

mbining
hannel,
dy, and

operties

ublishes
essage Catches the

exception as a
variable called
errorPrints exception

information

65Balancing delivery speed with guaranteed delivery
assures the publisher that a message was delivered. Prior to publishing any messages, a
message publisher must issue a Confirm.Select RPC request to RabbitMQ and wait for
a Confirm.SelectOk response to know that delivery confirmations are enabled. At
that point, for each message that a publisher sends to RabbitMQ, the server will respond
with an acknowledgement response (Basic.Ack) or a negative acknowledgement
response (Basic.Nack), either including an integer value specifying the offset of the
message that it is confirming (figure 4.4). The confirmation number references the mes-
sage by the order in which it was received after the Confirm.Select RPC request.

A Basic.Ack request is sent to a publisher when a message that it has published has
been directly consumed by consumer applications on all queues it was routed to, or
when the message was enqueued and persisted if requested. If a message can’t be
routed, the broker will send a Basic.Nack RPC request indicating the failure. It’s then
up to the publisher to decide what to do with the message.

 In the following example, contained in the “4.1.3 Publisher Confirms” notebook,
the publisher enables Publisher Confirms and then evaluates the response from the
Message.publish call.

Publisher RabbitMQ

Send .Confirm.Select

Respond with

Confirm.SelectOk.

Publish message

using .Basic.Publish

Publish message

using .Basic.Publish

Respond with Basic.Ack
or .Basic.Nack

Respond with Basic.Ack
or .Basic.Nack

Figure 4.4 The sequence of messages sent to and from RabbitMQ for delivery
confirmations

66 CHAPTER 4 Performance trade-offs in publishing

C
exchan

for
the

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 exchange = rabbitpy.Exchange(channel, 'chapter4-example')
 exchange.declare()
 channel.enable_publisher_confirms()
 message = rabbitpy.Message(channel,
 'This is an important message',
 {'content_type': 'text/plain',
 'message_type': 'very important'})

 if message.publish('chapter4-example', 'important.message'):
 print('The message was confirmed')

As you can see, it’s fairly easy to use Publisher Confirms in rabbitpy. In other libraries,
you’ll most likely need to create a callback handler that will asynchronously respond
to the Basic.Ack or Basic.Nack request. There are benefits to each style: rabbitpy’s
implementation is easier, but it’s slower because it will block until the confirmation
is received.

NOTE Regardless of whether you use Publisher Confirms or not, if you pub-
lish to an exchange that doesn’t exist, the channel you’re publishing on will
be closed by RabbitMQ. In rabbitpy, this will cause a rabbitpy.exceptions
.RemoteClosedChannelException exception to be raised.

Publisher Confirms don’t work in conjunction with transactions and is considered a
lightweight and more performant alternative to the AMQP TX process (discussed in
section 4.1.5). In addition, as an asynchronous response to the Basic.Publish RPC
request, there are no guarantees made as to when the confirmations will be received.
Therefore, any application that has enabled Publisher Confirms should be able to
receive a confirmation at any point after sending the message.

4.1.4 Using alternate exchanges for unroutable messages

Alternate exchanges are another extension to the AMQ model, created by the Rab-
bitMQ team as a way to handle unroutable messages. An alternate exchange is speci-
fied when declaring an exchange for the first time, and it specifies a preexisting
exchange in RabbitMQ that the new exchange will route messages to, should the
exchange not be able to route them (figure 4.5).

NOTE If you set the mandatory flag for a message when sending it to an
exchange with an alternate exchange, a Basic.Return won’t be issued to the
publisher if the intended exchange can’t route the message normally. The act
of sending an unroutable message to the alternate exchange satisfies the con-
ditions for a published message when the mandatory flag is true. It’s also
important to realize that RabbitMQ’s message routing patterns are applied to

Connects to
RabbitMQ Opens the channel to

communicate on
reates an
ge object
declaring
exchange

Declares the
exchange

Enables
Publisher
Confirms with
RabbitMQ

Creates the
rabbitpy

Message object
to publish

Publishes the message, evaluating
the response for confirmation

67Balancing delivery speed with guaranteed delivery

e

E
f

exc
alternate exchanges just like any other exchange. If a queue isn’t bound to
receive the message with its original routing key, it won’t be enqueued, and
the message will be lost.

To use an alternate exchange, you must first set up the exchange that unroutable mes-
sages will be sent to. Then, when setting up the primary exchange you’ll be publishing
messages to, add the alternate-exchange argument to the Exchange.Declare com-
mand. This process is demonstrated in the following example, which goes one step
further to create a message queue that will store any unroutable messages. This exam-
ple is in the “4.1.4 Alternate-Exchange Example” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 my_ae = rabbitpy.Exchange(channel,
 'my-ae',
 exchange_type='fanout')
 my_ae.declare()

 args = {'alternate-exchange': my_ae.name}

 exchange = rabbitpy.Exchange(channel,
 'graphite',
 exchange_type='topic',
 arguments=args)
 exchange.declare()

Unroutable

messageP

X

Basic.Publish

A publisher sends an
unroutable message.

The routing key binding
the dead-letter queue to
the alternate exchange

The dead-letter queue
where the unroutable

message will be delivered

Queue

X

#

The exchange specified
by the publisher

The alternate exchange setup
when the primary exchange

was defined

Figure 4.5 When an unroutable message is published to an exchange that has an alternate
exchange defined, it will then be routed to the alternate exchange.

Connects to
RabbitMQ

Opens a channel to
communicate on

Creates a rabbitpy
Exchange object for th
alternate exchange

Declares the
exchange on

the RabbitMQ
server Defines the dict that

specifies the alternate
exchange for the
graphite exchange

Creates
the rabbitpy

xchange object
or the graphite
hange, passing
in the args dict Declares the

graphite exchange

68 CHAPTER 4 Performance trade-offs in publishing
 queue = rabbitpy.Queue(channel, 'unroutable-messages')
 queue.declare()
 if queue.bind(my_ae, '#'):
 print('Queue bound to alternate-exchange')

When declaring the alternate exchange, a fanout exchange type was selected, whereas
the graphite exchange uses a topic exchange. A fanout exchange delivers messages
to all the queues it knows about; a topic exchange can selectively route messages
based upon parts of a routing key. These two exchange types are discussed in detail in
chapter 5. Once the two exchanges are declared, the unroutable-messages queue is
bound to the alternate exchange. Any messages that are subsequently published to
the graphite exchange and that can’t be routed will end up in the unroutable-
messages queue.

4.1.5 Batch processing with transactions

Before there were delivery confirmations, the only way you could be sure a message
was delivered was through transactions. The AMQP transaction, or TX, class provides
a mechanism by which messages can be published to RabbitMQ in batches and then
committed to a queue or rolled back. The following example, contained in the “4.1.5
Transactional Publishing” notebook, shows that writing code that takes advantage of
transactions is fairly trivial.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:

 tx = rabbitpy.Tx(channel)
 tx.select()

 message = rabbitpy.Message(channel,
 'This is an important message',
 {'content_type': 'text/plain',
 'delivery_mode': 2,
 'message_type': 'important'})
 message.publish('chapter4-example', 'important.message')
 try:
 if tx.commit():
 print('Transaction committed')
 except rabbitpy.exceptions.NoActiveTransactionError:
 print('Tried to commit without active transaction')

The transactional mechanism provides a method by which a publisher can be notified
of the successful delivery of a message to a queue on the RabbitMQ broker. To begin a
transaction, the publisher sends a TX.Select RPC request to RabbitMQ, and Rab-
bitMQ will respond with a TX.SelectOk response. Once the transaction has been
opened, the publisher may send one or more messages to RabbitMQ (figure 4.6).

Creates a
rabbitpy

Queue
object

Declares the
queue on the
RabbitMQ server

Binds the queue to the
alternate exchange

Connects to
RabbitMQ

Opens a channel to
communicate over

Creates a new
instance of the
rabbitpy.Tx object

Starts the
transaction

Creates the
message to

publish

Publishes
message

Commits
transaction Catches a TX

exception if
it’s raised

69Balancing delivery speed with guaranteed delivery
When RabbitMQ is unable to route a message due to an error, such as a non-existent
exchange, it will return the message with a Basic.Return response prior to sending
a TX.CommitOk response. Publishers wishing to abort a transaction should send a
TX.Rollback RPC request and wait for a TX.RollbackOk response from the broker
prior to continuing.

Publisher RabbitMQ

Send .TX.Select

Respond with .TX.SelectOk

Publish message

using .Basic.Publish

Commit message

with .TX.Commit

May respond with .Basic.Return

Respond with .TX.CommitOk

Figure 4.6 A publisher begins a transaction by sending a TX.Select command, publishes
messages, and commits the messages with a TX.Commit command.

RabbitMQ and atomic transactions
Atomicity ensures that all actions in a transaction are complete as part of committing
the transaction. In AMQP, this means your client won’t receive the TX.CommitOk
response frame until all actions in the transaction are complete. Unfortunately for
those looking for true atomicity, RabbitMQ only implements atomic transactions
when every command issued affects a single queue. If more than one queue is
impacted by any of the commands in the transaction, the commit won’t be atomic.

Although RabbitMQ will perform atomic transactions if all of the commands in a trans-
action only impact the same queue, publishers generally don’t have much control
over whether the message is delivered to more than one queue. With RabbitMQ’s

70 CHAPTER 4 Performance trade-offs in publishing

cha
comm
As implemented, transactions in RabbitMQ allow for batch-like operations in delivery
confirmation, allowing publishers more control over the sequence in which they con-
firm delivery with RabbitMQ. If you’re considering transactions as a method of deliv-
ery confirmation, consider using Publisher Confirms as a lightweight alternative—it's
faster and can provide both positive and negative confirmation.

 In many cases, however, it’s not publishing confirmation that is required but rather
a guarantee that messages won’t be lost while they’re sitting in a queue. This is where
HA queues come into play.

4.1.6 Surviving node failures with HA queues

As you look to strengthen the contract between publishers and RabbitMQ to guaran-
tee message delivery, don’t overlook the important role that highly available queues
(HA queues) can play in mission-critical messaging architectures. HA queues—an
enhancement the RabbitMQ team created that’s not part of the AMQP specifica-
tion—is a feature that allows queues to have redundant copies across multiple servers.

 HA queues require a clustered RabbitMQ environment and can be set up in one of
two ways: using AMQP or using the web-based management interface. In chapter 8,
we’ll revisit HA queues and use the management interface to define policies for HA
queues, but for now we’ll focus on using AMQP.

 In the following example, you’ll set up a new queue that spans every node in a
RabbitMQ cluster using arguments passed to the Queue.Declare AMQP command.
This code is in the “4.1.6 HA-Queue Declaration” notebook.

import rabbitpy

connection = rabbitpy.Connection()
try:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel,
 'my-ha-queue',
 arguments={'x-ha-policy': 'all'})

(continued)

advanced routing methods, it’s easy to imagine an application starting off with atomic
commits when publishing to a single queue, but then someone may add an additional
queue bound to the same routing key. Any publishing transactions with that routing
key would no longer be atomic.

It’s also worth pointing out that true atomic transactions with persisted messages
using delivery-mode 2 can cause performance issues for publishers. If RabbitMQ
is waiting on an I/O-bound server for the write to complete prior to sending the
TX.CommitOk frame, your client could be waiting longer than if the commands
weren’t wrapped in a transaction in the first place.

Connects to
RabbitMQ on
localhost as guest

Opens a
nnel to
unicate

over

Creates a new
instance of the
Queue object,
passing in the
HA policy

71Balancing delivery speed with guaranteed delivery

D
th

y
 if queue.declare():
 print('Queue declared')
except rabbitpy.exceptions.RemoteClosedChannelException as error:
 print('Queue declare failed: %s' % error)

When a message is published into a queue that’s set up as an HA queue, it’s sent to
each server in the cluster that’s responsible for the HA queue (figure 4.7). Once a
message is consumed from any node in the cluster, all copies of the message will be
immediately removed from the other nodes.

HA queues can span every server in a cluster, or only individual nodes. To specify
individual nodes, instead of passing in an argument of x-ha-policy: all, pass in an
x-ha-policy of nodes and then another argument, x-ha-nodes containing a list of
the nodes the queue should be configured on. The following example is in the “4.1.6
Selective HA Queue Declaration” notebook.

import rabbitpy

connection = rabbitpy.Connection()
try:
 with connection.channel() as channel:

eclares
e queue

Catches an
exception
raised on
error

Queue

Queue

Queue

P

RabbitMQ cluster
1. A publisher sends to any
node in a RabbitMQ cluster.

2. The RabbitMQ nodes
in the cluster synchronize
the state of the message

in the queue.

3. The message that was published
is put in the queue and is stored

on each server.

Figure 4.7 A message published into an HA queue is stored on each server that’s configured for it.

Connects to
RabbitMQ

Opens a channel to
communicate over

72 CHAPTER 4 Performance trade-offs in publishing
 arguments = {'x-ha-policy': 'nodes',
 'x-ha-nodes': ['rabbit@node1',
 'rabbit@node2',
 'rabbit@node3']}
 queue = rabbitpy.Queue(channel,
 'my-2nd-ha-queue',
 arguments=arguments)
 if queue.declare():
 print('Queue declared')
except rabbitpy.exceptions.RemoteClosedChannelException as error:
 print('Queue declare failed: %s' % error)

NOTE Even if you don’t have node1, node2, or node3 defined, RabbitMQ
will allow you to define the queue, and if you were to publish a message
that’s routed to my-2nd-ha-queue, it would be delivered. In the event that
one or more of the nodes listed do exist, the message would live on those
servers instead.

HA queues have a single primary server node, and all the other nodes are secondary.
Should the primary node fail, one of the secondary nodes will take over the role of
primary node. Should a secondary node be lost in an HA queue configuration, the
other nodes would continue to operate as they were, sharing the state of operations
that take place across all configured nodes. When a lost node is added back, or a new
node is added to the cluster, it won’t contain any messages that are already in the
queue across the existing nodes. Instead, it will receive all new messages and only be
in sync once all the previously published messages are consumed.

4.1.7 HA queues with transactions

HA queues operate like any other queue with regard to protocol semantics. If you’re
using transactions or delivery confirmations, RabbitMQ won’t send a successful response
until the message has been confirmed to be in all active nodes in the HA queue defini-
tion. This can create a delay in responding to your publishing application.

4.1.8 Persisting messages to disk via delivery-mode 2

You learned earlier how to use alternate exchanges for messages that weren’t able to
be routed. Now it’s time to add another level of delivery guarantee for them. If the
RabbitMQ broker dies for any reason prior to consuming the messages, they’ll be lost
forever unless you tell RabbitMQ when publishing the message that you want the mes-
sages persisted to disk while they’re in its care.

 As you learned in chapter 3, delivery-mode is one of the message properties spec-
ified as part of AMQP’s Basic.Properties definition. If a message has delivery-mode
set to 1, which is the default, RabbitMQ is instructed that it doesn’t need to store the
message to disk and that it may keep it in memory at all times. Thus, if RabbitMQ is

Specifies the HA
policy the queue
should use

Creates a new instance
of the Queue object,
passing in the HA policy
and node list

Declares
the queue

Catches the exception if
RabbitMQ closes the channel

73Balancing delivery speed with guaranteed delivery
restarted, the non-persisted messages won’t be available when RabbitMQ is back up
and running.

 On the other hand, if delivery-mode is set to 2, RabbitMQ will ensure that the
message is stored to disk. Referred to as message persistence, storing the message to disk
ensures that if the RabbitMQ broker is restarted for any reason, the message will still
be in the queue once RabbitMQ is running again.

NOTE In addition to delivery-mode of 2, for messages to truly survive a
restart of a RabbitMQ broker, your queues must be declared as durable when
they’re created. Durable queues will be covered in detail in chapter 5.

For servers that don’t have sufficient I/O performance, message persistence can
cause dramatic performance issues. Similar to a high-velocity web application’s data-
base server, a high-velocity RabbitMQ instance must go to disk often with persistent
messages.

 For most dynamic web applications, the read-to-write ratio for OLTP databases is
heavily read-biased (figure 4.8). This is especially true for content sites like Wikipedia.
In their case, there are millions of articles, many of which are actively being either cre-
ated or updated, but the majority of users are reading the content, not writing it.

When persisting messages in RabbitMQ, you can expect a fairly heavy write bias (fig-
ure 4.9). In a high-throughput messaging environment, RabbitMQ writes persisted
messages to disk and keeps track of them by reference until they’re no longer in any
queue. Once all of the references for a message are gone, RabbitMQ will then remove
the message from disk. When doing high-velocity writes, it’s not uncommon to expe-
rience performance issues on under-provisioned hardware, because in most cases
the disk write cache is much smaller than the read cache. In most operating sys-
tems, the kernel will use free RAM to buffer pages read from disk, whereas the only
components caching writes to disk are the disk controller and the disks. Because of this,

OLTP database Web application Web browser

There are generally fewer writes
from most web applications.

In most cases, web applications are
very read-heavy from databases.

Figure 4.8 Although it’s not always the case, most web applications
read more from a database than write to it when generating web pages.

74 CHAPTER 4 Performance trade-offs in publishing
it’s important to correctly size your hardware needs when using persisted messages. An
undersized server that’s tasked with a heavy write workload can bring a whole RabbitMQ
server to a crawl.

Disk

Queue

Message Queue

Queue

1. Messages with
delivery-mode 2

sent into RabbitMQ are
persisted to disk.

2. Pointers to the message
are placed in the queue

data structures.

3. When the message is no
longer in a queue, it is
removed from disk.

Figure 4.9 RabbitMQ stores a persisted message once and keeps track of its references across all
queues it’s stored in. If possible, disk reads will be avoided and the message will be removed from
disk once all references are gone.

Hardware provisioning for persisted messages in RabbitMQ
To properly provision hardware for RabbitMQ servers that will be persisting mes-
sages, you can apply the same rules you would for an OLTP database.

RAM is king; beyond sizing the RAM on the server for your normal messaging work-
load, consider additional RAM for the operating system, to keep disk pages in the
kernel disk cache. This will improve the response time of reads for messages that
have already been read from disk.

The more spindles the better; although SSDs may be changing the paradigm a bit,
the concept still applies. The more hard drives you have available, the better your
write throughput will be. Because the system can spread the write workload across
all of the disks in a RAID setup, the amount of time each physical device is blocked
will be greatly reduced.

Find an appropriately sized RAID card with battery backup that has large amounts of
read and write cache. This will allow the writes to be buffered by the RAID card and
allow for temporary spikes in write activity that otherwise would be blocked by physi-
cal device limitations.

75When RabbitMQ pushes back
In I/O-bound servers, the operating system will block processes on I/O operations
while the data is transferred to and from the storage device via the operating system.
When the RabbitMQ server is trying to perform I/O operations, such as saving a mes-
sage to disk, and the operating system kernel is blocked while waiting for the storage
device to respond, there’s little RabbitMQ can do but wait. If the RabbitMQ broker is
waiting too often for the operating system to respond to read and write requests, mes-
sage throughput will be greatly depressed (figure 4.10).

Although message persistence is one of the most important ways to guarantee that
your messages will ultimately be delivered, it’s also one of the most costly. Poor disk
performance can greatly degrade your RabbitMQ message publishing velocity. In
extreme scenarios, I/O delays caused by improperly provisioned hardware can cause
messages to be lost. Simply stated, if RabbitMQ can’t respond to publishers or con-
sumers because the operating system is blocking on I/O, your messages can’t be pub-
lished or delivered.

4.2 When RabbitMQ pushes back
In the AMQP specification, assumptions were made about publishers that weren’t favor-
able for server implementations. Prior to version 2.0 of RabbitMQ, if your publishing
application started to overwhelm RabbitMQ by publishing messages too quickly, it would
send the Channel.Flow RPC method (figure 4.11) to instruct your publisher to block
and not send any more messages until another Channel.Flow command was received.

Disk

MessageP

OS

Basic.Publish

A publisher sends a message
with the propertydelivery-mode

set to to RabbitMQ.2

RabbitMQ must submit write and read requests
to the operating system to write messages to

and read them from disk.

If the disk is slow to respond due to heavy
I/O, the operating system is blocked on the

request and must wait for a response.

Figure 4.10 When a message is received with the delivery-mode property set to 2,
RabbitMQ must write the message to disk.

76 CHAPTER 4 Performance trade-offs in publishing
This proved to be a fairly ineffective method of slowing abusive or “impolite” publish-
ers who weren’t required to respect the Channel.Flow command. If a publisher con-
tinued to publish messages, RabbitMQ could eventually be overwhelmed, causing
performance and throughput issues, possibly even causing the broker to crash. Before
RabbitMQ 3.2, the RabbitMQ team deprecated the use of Channel.Flow, replacing it
with a mechanism called TCP Backpressure to address the issue. Instead of politely
asking the publisher to stop, RabbitMQ would stop accepting low-level data on the
TCP socket (figure 4.12). This method works well to protect RabbitMQ from being
overwhelmed by a single publisher.

Internally, RabbitMQ uses the notion of credits to manage when it’s going to push
back against a publisher. When a new connection is made, the connection is allotted a
predetermined amount of credits it can use. Then, as each RPC command is received
by RabbitMQ, a credit is decremented. Once the RPC request has been internally pro-
cessed, the connection is given the credit back. A connection’s credit balance is evalu-
ated by RabbitMQ to determine if it should read from a connection’s socket. If a
connection is out of credits, it’s simply skipped until it has enough credits.

 As of RabbitMQ 3.2, the RabbitMQ team extended the AMQP specification, add-
ing notifications that are sent when the credit thresholds are reached for a connec-
tion, notifying a client that its connection has been blocked. Connection.Blocked
and Connection.Unblocked are asynchronous methods that can be sent at any time to
notify the client when RabbitMQ has blocked the publishing client and when that
block has been removed. Most major client libraries implement this functionality; you
should check with the specific client library you’re using to see how your application
should determine the connection state. In the next section you’ll see how to perform
this check with rabbitpy and how the management API can be leveraged for versions
of RabbitMQ prior to 3.2 to check if a connection’s channels are blocked.

“I say, would you
please stop sending

me messages?”

Figure 4.11 When RabbitMQ
asked for Channel.Flow,
there were no guarantees
publishers were listening.

Figure 4.12 RabbitMQ applies
TCP Backpressure to stop impolite
publishers from oversaturating it.

77When RabbitMQ pushes back
NOTE Ultimately, TCP Backpressure and connection blocking aren’t issues
you should run into every day, and they could be an indication that the server
hardware you have RabbitMQ on is not properly sized. If you find that this is
becoming an issue, it’s time to evaluate your scaling strategy and perhaps
implement some of the concepts covered in chapter 8.

4.2.1 Checking the connection status with rabbitpy

Whether you’re using a version of RabbitMQ that supports the Connection.Blocked
notification or not, the rabbitpy library wraps up this functionality into one easy-to-use
API. When connected to a version of RabbitMQ that supports Connection.Blocked
notifications, rabbitpy will receive the notification and will set an internal flag stating
that the connection is blocked.

 When you use the following example from the “4.2.1 Connection Blocked” note-
book, the output should report that the connection isn’t blocked.

import rabbitpy

connection = rabbitpy.Connection()
print('Connection is Blocked? %s' % connection.blocked)

4.2.2 Using the management API for connection status

If you’re using a version of RabbitMQ prior to 3.2, your application can poll for the
status of its connection using the web-based management API. Doing this is fairly
straightforward, but if it’s used too frequently, it can cause unwanted load on the
RabbitMQ server. Depending on the size of your cluster and the number of queues
you have, this API request can take multiple seconds to return.

 The API provides RESTful URL endpoints for querying the status of a connection,
channel, queue, or just about any other externally exposed object in RabbitMQ. In the
management API, the blocked status applies to a channel in a connection, not to the
connection itself. There are multiple fields available when querying the status of a chan-
nel: name, node, connection_details, consumer_count, and client_flow_blocked, to
name a few. The client_flow_blocked flag indicates whether RabbitMQ is applying
TCP Backpressure to the connection.

 To get the status of a channel, you must first construct the appropriate name for it.
A channel’s name is based upon the connection name and its channel ID. To con-
struct the connection name you need the following:

 The local host IP address and outgoing TCP port
 The remote host IP address and TCP port

The format is "LOCAL_ADDR: PORT -> REMOTE_ADDDR: PORT". Expanding on that, the
format for the name of a channel is "LOCAL_ADDR: PORT -> REMOTE_ADDDR: PORT
(CHANNEL_ID)".

 The API endpoint for querying RabbitMQ’s management API for channel status is
http://host:port/api/channels/[CHANNEL_NAME]. When queried, the management

Connects to
RabbitMQ

Checks to see
if the client is
blocked

http://host:port/api/channels/[CHANNEL_NAME]

78 CHAPTER 4 Performance trade-offs in publishing
API will return the result as a JSON-serialized object. The following is an abbreviated
example of what the API returns for a channel status query:

{
 "connection_details": {…},
 "publishes": […],
 "message_stats": {…},
 "consumer_details": [],
 "transactional": false,
 "confirm": false,
 "consumer_count": 0,
 "messages_unacknowledged": 0,
 "messages_unconfirmed": 0,
 "messages_uncommitted": 0,
 "acks_uncommitted": 0,
 "prefetch_count": 0,
 "client_flow_blocked": false,
 "node": "rabbit@localhost",
 "name": "127.0.0.1:45250 -> 127.0.0.1:5672 (1)",
 "number": 1,
 "user": "guest",
 "vhost": "guest"
}

In addition to the channel_flow_blocked field, the management API returns rate
and state information about the channel.

4.3 Summary
One of the major steps in creating your application architecture is defining the role and
behavior of publishers. Questions you should be asking yourself include the following:

 Should publishers request that messages are persisted to disk?
 What guarantees do the various components of my application need that a mes-

sage published will be a message received?
 What will happen in my environment if my application is blocked by TCP Backpres-

sure or when the connection is blocked while publishing messages to RabbitMQ?
 How important are my messages? Can I sacrifice delivery guarantees for higher

message throughput?

By asking yourself these questions, you’ll be well on the way to creating an application
architecture that’s just right. RabbitMQ provides a large amount of flexibility—perhaps
too much in some instances. But by taking advantage of its customization capabilities,
you’re empowered to make trade-offs between performance and high reliability and to
decide what the right level of metadata is for your messages. Which properties you use
and what mechanisms you use for reliable delivery are better decided by you than any-
one else, and RabbitMQ will be a solid foundation for whatever you choose.

Don’t get messages;
consume them
Having gone deep into the world of message publishers in the last chapter, it’s now
time to talk about consuming the messages your publishers are sending. Consumer
applications can be dedicated applications with the sole purpose of receiving mes-
sages and acting on them, or receiving messages may be a very small part of a much
bigger application. For example, if you’re implementing an RPC pattern with
RabbitMQ, the application publishing an RPC request is also consuming the RPC
reply (figure 5.1).

 With so many patterns available for implementing messaging in your applica-
tions, it’s only appropriate that RabbitMQ has various settings for finding the right
balance between performance and reliable messaging. Deciding how your applica-
tions will consume messages is the first step in finding this balance, and it starts off

This chapter covers
 Consuming messages

 Tuning consumer throughput

 When consumers and queues are exclusive

 Specifying a quality of service for your
consumers
79

80 CHAPTER 5 Don’t get messages; consume them
with one easy choice: Do you get messages, or do you consume messages? In this chapter
you’ll learn

 Why you should avoid getting messages in favor of consuming them
 How to balance message delivery guarantees with delivery performance
 How to use RabbitMQ’s per-queue settings to automatically delete queues, limit

the age of messages, and more

5.1 Basic.Get vs. Basic.Consume
RabbitMQ implements two different AMQP RPC commands for retrieving messages
from a queue: Basic.Get and Basic.Consume. As the title of this chapter implies,
Basic.Get is not the ideal way to retrieve messages from the server. In the simplest
terms, Basic.Get is a polling model, whereas Basic.Consume is a push model.

5.1.1 Basic.Get

When your application uses a Basic.Get request to retrieve messages, it must send a new
request each time it wants to receive a message, even if there are multiple messages in the
queue. If the queue you’re retrieving a message from has a message pending when issu-
ing a Basic.Get, RabbitMQ responds with a Basic.GetOk RPC response (figure 5.2).

P C

An RPC publisher publishes
a message and waits for
a reply from RabbitMQ.

A consumer application receives the
message and processes it, returning

an RPC response to RabbitMQ.

The RPC response message

The RPC request message

Figure 5.1 An RPC publisher that publishes a message to RabbitMQ and waits as a consumer
for the RPC reply from the RPC consumer

Client Server

Basic.GetOk

Basic.Get

Header

Body

Figure 5.2 If there’s a
message available when you
issue a Basic.Get RPC
request, RabbitMQ replies
with a Basic.GetOk reply
and the message.

81Basic.Get vs. Basic.Consume

D
th

Ra

at
ge
If there are no messages pending in the queue, it will reply with Basic.GetEmpty, indi-
cating that there are no messages in the queue (figure 5.3).

When using Basic.Get, your application should evaluate the RPC response from
RabbitMQ to determine if a message has been received. For most long-running pro-
cesses that are receiving messages from RabbitMQ, this isn’t an efficient way to receive
and process messages.

 Consider the code in the “5.1.1 Basic.Get Example” notebook. After it connects to
RabbitMQ and opens the channel, it infinitely loops while requesting messages from
RabbitMQ.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'test-messages')
 queue.declare()
 while True:
 message = queue.get()
 if message:
 message.pprint()
 message.ack()
 if message.body == 'stop':
 break

Although this is the simplest way of interacting with RabbitMQ to retrieve your mes-
sages, in most cases the performance will be underwhelming at best. In simple message
velocity tests, using Basic.Consume is at least twice as fast as using Basic.Get. The
most obvious reason for the speed difference is that with Basic.Get, each message deliv-
ered carries with it the overhead of the synchronous communication with RabbitMQ,
consisting of the client application sending a request frame and RabbitMQ sending
the reply. A potentially less obvious reason to avoid Basic.Get, yet one with more
impact on throughput, is that due to the ad hoc nature of Basic.Get, RabbitMQ can’t

Basic.GetEmpty

Basic.Get

Client Server

Figure 5.3 If no messages
are available when you issue
a Basic.Get request,
RabbitMQ replies with
Basic.GetEmpty.

Connects to
RabbitMQ

Opens a
channel on the
connection

Creates a new
instance of a queue
object to interact
with RabbitMQ

eclares
e queue

on the
bbitMQ
server

Loops
infinitely,

tempting to
t messages

Gets a message
from RabbitMQ

Evaluates whether
a message was
returned

Acknowledges
the message

If the message body is
“stop”, exits the loop

82 CHAPTER 5 Don’t get messages; consume them
optimize the delivery process in any way because it never knows when an application is
going to ask for a message.

5.1.2 Basic.Consume

In contrast, by consuming messages with the Basic.Consume RPC command, you’re
registering your application with RabbitMQ and telling it to send messages asynchro-
nously to your consumer as they become available. This is commonly referred to as a
publish-subscribe pattern, or pub-sub. Instead of the synchronous conversation with
RabbitMQ that occurs when using Basic.Get, consuming messages with Basic.Consume
means your application automatically receives messages from RabbitMQ as they become
available until the client issues a Basic.Cancel (figure 5.4).

Consuming messages from RabbitMQ also requires one less step in your code when you
receive a message. As illustrated in the following example, when your application receives
a message from RabbitMQ as a consumer, it doesn’t need to evaluate the message to
determine whether the value is a message or an empty response (Basic.GetEmpty). But
like with Basic.Get, your application still needs to acknowledge the message to let

Client Server

Basic.Deliver

Basic.Consume

Header

Body

Basic.ConsumeOk

Basic.Deliver

Header

Body

Basic.Cancel

Basic.CancelOk

Basic.Ack

Basic.Ack

Figure 5.4 When a client issues a Basic.Consume, RabbitMQ sends
messages to it as they become available until the client issues a
Basic.Cancel.

83Basic.Get vs. Basic.Consume

t

RabbitMQ know the message has been processed. This code is contained in the “5.1.2
Basic.Consume Example” notebook.

import rabbitpy

for message in rabbitpy.consume('amqp://guest:guest@localhost:5672/%2f',
 'test-messages'):
 message.pprint()
 message.ack()

NOTE You might have noticed that the code in the preceding example is
shorter than that in previous examples. This is because rabbitpy has short-
hand methods that encapsulate much of the logic required to connect to
RabbitMQ and use channels.

CONSUMER-TAG

When your application issues Basic.Consume, a unique string is created that identifies
the application on the open channel with RabbitMQ. This string, called a consumer
tag, is sent to your application with each message from RabbitMQ.

 The consumer tag can be used to cancel any future receipt of messages from
RabbitMQ by issuing a Basic.Cancel RPC command. This is especially useful if your
application consumes from multiple queues at the same time, because each message
received contains the consumer tag it’s being delivered for in its method frame.
Should your application need to perform different actions for messages received
from different queues, it can use the consumer tag used in the Basic.Consume
request to identify how it should process a message. However, in most cases, the con-
sumer tag is handled under the covers by the client library, and you don’t need to
worry about it.

 In the “5.1.2 Consumer with Stop” notebook, the following consumer code will lis-
ten for messages until it receives a message with the message body that only contains
the word “stop”.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 for message in rabbitpy.Queue(channel, 'test-messages'):
 message.pprint()
 message.ack()
 if message.body == 'stop':
 break

Once you have the consumer running, you can publish messages to it using the code
in the “5.1.2 Message Publisher” notebook in a new browser tab:

Iterates through the messages in
the test-messages queue

Acknowledges receipt
of the message

Connects to
RabbitMQ Opens a channel

on the connection

Iterates
through the
messages in
he queue as
a consumer

Pretty-prints the
message attributes

Acknowledges
the messageEvaluates the message body,

breaking if it’s “stop”

84 CHAPTER 5 Don’t get messages; consume them
import rabbitpy

for iteration in range(10):
 rabbitpy.publish('amqp://guest:guest@localhost:5672/%2f',
 '', 'test-messages', 'go')
rabbitpy.publish('amqp://guest:guest@localhost:5672/%2f',
 '', 'test-messages', 'stop')

When you run the publisher, the running code in the “5.1 Consumer with Stop
Example” notebook will stop once it receives the stop message by exiting the Queue
.consume_messages iterator. A few things are happing under the covers in the rab-
bitpy library when you exit the iterator. First, the library sends a Basic.Cancel com-
mand to RabbitMQ. Once the Basic.CancelOk RPC response is received, if RabbitMQ
has sent any messages to your client that weren’t processed, rabbitpy will send a nega-
tive acknowledgment command (Basic.Nack) and instruct RabbitMQ to requeue
the messages.

 Choosing between the synchronous Basic.Get and the asynchronous Basic.Consume
is the first of several choices you’ll need to make when writing your consumer applica-
tion. Like the trade-offs involved when publishing messages, the choices you make for
your application can directly impact message delivery guarantees and performance.

5.2 Performance-tuning consumers
As when publishing messages, there are trade-offs in consuming messages that bal-
ance throughput with message delivery guarantees. As figure 5.5 points out, there are
several options that can be used to speed message delivery from RabbitMQ to your
application. Also as when publishing messages, RabbitMQ offers fewer guarantees for
message delivery with the faster delivery throughput options.

 In this section you’ll learn how you can tune RabbitMQ’s message delivery through-
put to consumers by toggling the requirements for message acknowledgments, how to
adjust RabbitMQ’s message preallocation thresholds, and how to assess the impact trans-
actions have when used with a consumer.

Loops 10
times

Publishes the
same message
to RabbitMQ

Publishes the
stop message
to RabbitMQ

G
etting m

essages

C
onsum

ing and using
transactions

C
onsum

ing w
ith

acknow
ledgm

ents

C
onsum

ing w
ith no-ack m

ode enabled

C
onsum

ing w
ith

acknow
ledgm

ents and Q
oS

 > 1

Figure 5.5 Consumer-tuning performance scale

85Performance-tuning consumers

q

5.2.1 Using no-ack mode for faster throughput

When consuming messages, your application registers itself with RabbitMQ and asks
for messages to be delivered as they become available. Your application sends a Basic
.Consume RPC request, and with it, there’s a no-ack flag. When enabled, this flag tells
RabbitMQ that your consumer won’t acknowledge the receipt of messages and that
RabbitMQ should just send them as quickly as it is able.

 The following example in the “5.2.1 No-Ack Consumer” notebook demonstrates
how to consume messages without having to acknowledge them. By passing True as an
argument to the Queue.consumer method, rabbitpy sends a Basic.Consume RPC request
with no_ack=True.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'test-messages')
 for message in queue.consume_messages(no_ack=True):
 message.pprint()

Consuming messages with no_ack=True is the fastest way to have RabbitMQ deliver
messages to your consumer, but it’s also the least reliable way to send messages. To
understand why this is, it’s important to consider each step a message must go through
prior to being received by your consumer application (figure 5.6).

Connects to
RabbitMQ Opens a channel

on the connection

Creates a
ueue object
to consume

with

Consumes
messages with
no_ack=TruePretty-prints the

message attributes

Operating system

Consumer

application

Socket buffer

Network cardNetwork

Client library

RabbitMQ sends messages
to network destination.

The messages are received
by the network card, where

they are buffered in memory.

Physical hardware

The operating system reads from
the physical hardware and stores

packets in the socket buffer.

A client library reads the packets from the
socket buffer for your consumer application,
potentially buffering messages as well until

your application is ready.

Messages are processed
by your consumer application.

Figure 5.6 There are multiple data buffers that receive the message data prior to your consumer
application.

86 CHAPTER 5 Don’t get messages; consume them
When RabbitMQ sends a message over an open connection, it’s communicating to the
client via a TCP socket connection. If this connection is open and writable, RabbitMQ
assumes that everything is in proper working order and that the message was deliv-
ered. Should there be a network issue when RabbitMQ tries to write to the socket to
deliver the message, the operating system will raise a socket error letting RabbitMQ
know there was a problem. If no errors are raised, RabbitMQ assumes the message has
been delivered. A message acknowledgment, sent via a Basic.Ack RPC response, is
one way for a client to let RabbitMQ know that it has successfully received and, in
most cases, processed the message. But if you turn off message acknowledgments,
RabbitMQ will send another message without waiting, if one is available. In fact,
RabbitMQ will continue to send messages, if they’re available, to your consumer until
the socket buffers are filled.

It’s because RabbitMQ isn’t waiting for an acknowledgment that this method of con-
suming messages can often provide the highest throughput. For messages that are dis-
posable, this is an ideal way to create the highest possible message velocity, but it’s not
without major risks. Consider what would happen if a consumer application crashed
with a hundred 1 KB messages in the operating system’s socket receive buffer. RabbitMQ
believes that it has already sent these messages, and it will receive no indication of how
many messages were to be read from the operating system when the application
crashed and the socket closed. The exposure your application faces depends on mes-
sage size and quantity in combination with the size of the socket receive buffer in your
operating system.

 If this method of consuming messages doesn’t suit your application architecture
but you want faster message throughput than a single message delivery and subse-
quent acknowledgment can provide, you’ll want to look at controlling the quality of
service prefetch settings on your consumer’s channel.

5.2.2 Controlling consumer prefetching via quality of service settings

The AMQP specification calls for channels to have a quality of service (QoS) setting
where a consumer can ask for a prespecified number of messages to be received prior

Increasing receive socket buffers in Linux
To increase the number of receive socket buffers in Linux operating systems, the
net.core.rmem_default and net.core.rmem_max values should be increased from
their default 128 KB values. A 16 MB (16777216) value should be adequate for most
environments. Most distributions have you change this value in /etc/sysctl.conf,
though you could set the value manually by issuing the following commands:

echo 16777216 > /proc/sys/net/core/rmem_default
echo 16777216 > /proc/sys/net/core/rmem_max

87Performance-tuning consumers

S
Q

 a
to the consumer acknowledging receipt of the messages. The QoS setting allows
RabbitMQ to more efficiently send messages by specifying how many messages to pre-
allocate for the consumer.

 Unlike a consumer with acknowledgments disabled (no_ack=True), if your con-
sumer application crashes before it can acknowledge the messages, all the prefetched
messages will be returned to the queue when the socket closes.

 At the protocol level, sending a Basic.QoS RPC request on a channel specifies the
quality of service. As part of this RPC request, you can specify whether the QoS setting
is for the channel it’s sent on or all channels open on the connection. The Basic.QoS
RPC request can be sent at any time, but as illustrated in the following code from the
“5.2.2 Specifying QoS” notebook, it’s usually performed prior to a consumer issuing
the Basic.Consume RPC request.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 channel.prefetch_count(10)
 for message in rabbitpy.Queue(channel, 'test-messages'):
 message.pprint()
 message.ack()

NOTE Although the AMQP specification calls for both a prefetch count and a
prefetch size for the Basic.QoS method, the prefetch size is ignored if the
no-ack option is set.

CALIBRATING YOUR PREFETCH VALUES TO AN OPTIMAL LEVEL

It’s also important to realize that over-allocating the prefetch count can have a nega-
tive impact on message throughput. Multiple consumers on the same queue will receive
messages in a round-robin fashion from RabbitMQ, but it’s important to benchmark
prefetch count performance in high-velocity consumer applications. The benefit of
particular settings can vary based on the message composition, consumer behavior,
and other factors such as operating system and language.

 In figure 5.7, a simple message was benchmarked with a single consumer, showing
that in these circumstances, a prefetch count value of 2,500 was the best setting for
peak message velocity.

ACKNOWLEDGING MULTIPLE MESSAGES AT ONCE

One of the nice things about using the QoS setting is that you don’t need to acknowledge
each message received with a Basic.Ack RPC response. Instead, the Basic.Ack RPC
response has an attribute named multiple, and when it’s set to True it lets RabbitMQ
know that your application would like to acknowledge all previous unacknowledged

Connects to
RabbitMQ

Opens a channel
on the connection

pecifies the
oS prefetch
count of 10

messages

Iterates
through the
messages in
the queue as
consumer

Pretty-prints
the message
attributes

Acknowledges
the message

88 CHAPTER 5 Don’t get messages; consume them

Q

ed
ter

s
messages. This is demonstrated in the following example from the “5.2.2 Multi-Ack
Consumer” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 channel.prefetch_count (10)
 unacknowledged = 0
 for message in rabbitpy.Queue(channel, 'test-messages')
 message.pprint()
 unacknowledged += 1
 if unacknowledged == 10:
 message.ack(all_previous=True)
 unacknowledged = 0

Acknowledging multiple messages at the same time allows you to minimize the network
communications required to process your messages, improving message throughput
(figure 5.8). It is worth noting that this type of acknowledgment carries with it some
level of risk. Should you successfully process some messages and your application dies
prior to acknowledging them, all the unacknowledged messages will return to the
queue to be processed by another consumer process.

 As with publishing messages, the Goldilocks principle applies to consuming mes-
sages—you need to find the sweet spot between acceptable risk and peak performance.
In addition to QoS, you should consider transactions as a way to improve message deliv-
ery guarantees for your application. The source code for these benchmarks is available
on the book’s website at http://www.manning.com/roy.

0

2,000

4,000

6,000

8,000

10,000

12,000

Not
set

0 1 10 100 1000 2500 5000 10000

QoS setting

M
e

s
s
a

g
e

s
 p

e
r

s
e

c
o

n
d

Figure 5.7 Simple benchmark results for consuming with no QoS set and different prefetch
count values

Connects to
RabbitMQ

Opens a channel
on the connection

Specifies a
oS prefetch
count of 10

messages

Initializes an
unacknowledg
message coun

Consumes
messages from

RabbitMQ
messages

Pretty-prints the
message attribute
message counter

Increments the
unacknowledged
message counter

Checks to see if the
unacknowledged
message count matches
the prefetch_count

Acknowledges all previous
unacknowledged messages

Resets the
unacknowledged
message counter

http://www.manning.com/roy

89Performance-tuning consumers
5.2.3 Using transactions with consumers

Like when publishing messages into RabbitMQ, transactions allows your consumer
applications to commit and roll back batches of operations. Transactions (AMQP TX
class) can have a negative impact on message throughput with one exception. If you
aren’t using QoS settings, you may actually see a slight performance improvement
when using transactions to batch your message acknowledgments (figure 5.9).

As with specific QoS settings, you should benchmark your consumer application per-
formance as part of your evaluation in determining whether transactions should play
a role in your consumer application. Whether you’re using them to batch message
acknowledgments or to ensure that you can roll back RPC responses when consuming
messages, knowing the true performance impact of transactions will help you find the
proper balance between message delivery guarantees and message throughput.

NOTE Transactions don’t work for consumers with acknowledgments disabled.

14,000

0

2,000

4,000

6,000

8,000

10,000

12,000

Not
set

0 1 10 100 1000 2500 5000 10000

QoS setting

M
e

s
s
a

g
e

s
 p

e
r

s
e

c
o

n
d

Figure 5.8 Acknowledging multiple messages at the same time improves throughput.

0

2,000

4,000

6,000

8,000

10,000

12,000

G
et

G
et

 n
o_

ac
k

no
_a

ck

Q
oS

 s
et

tin
g

Tx
10

0

Tx
25

00

Q
oS

 2
50

0Tx

Different methods of consuming

M
e
s
s
a
g
e
s
 p

e
r

s
e
c
o
n
d

Figure 5.9 Message velocities when using transactions compared to non-transactional
message velocities

90 CHAPTER 5 Don’t get messages; consume them
5.3 Rejecting messages
Acknowledging messages is a great way to ensure that RabbitMQ knows the consumer
has received and processed a message before it discards it, but what happens when a
problem is encountered, either with the message or while processing the message? In
these scenarios, RabbitMQ provides two mechanisms for kicking a message back to
the broker: Basic.Reject and Basic.Nack (figure 5.10). In this section we’ll cover
the difference between the two, as well as dead-letter exchanges, a RabbitMQ-specific
extension to the AMQP specification that can help identify systemic problems with
batches of rejected messages.

5.3.1 Basic.Reject

Basic.Reject is an AMQP-specified RPC response to a delivered message that informs
the broker that the message couldn’t be processed. Like Basic.Ack, it carries with it
the delivery tag created by RabbitMQ to uniquely identify the message on the channel
on which your consumer is communicating with RabbitMQ. When a consumer rejects

C

Did the
message process

successfully?

No

Basic.Reject

or Basic.Nack

YesBasic.Ack

QueueP

A publisher sends a
message into RabbitMQ.

The message is routed
into a queue.

The consumer receives and
processes the message.

If the message processed successfully,
it will send an acknowledgment.

If the message failed processing, both rejecting it and
negatively acknowledging it will perform the same
task, letting RabbitMQ know the consumer did not

successfully process the message.

Figure 5.10 A consumer can acknowledge, reject, or negatively acknowledge a message.
Basic.Nack allows for multiple messages to be rejected at once, whereas Basic.Reject
allows just one message to be rejected at a time.

91Rejecting messages

Pre
the

a

a message, you can instruct RabbitMQ to either discard the message or to requeue the
message with the requeue flag. When the requeue flag is enabled, RabbitMQ will put
the message back into the queue to be processed again.

 I often use this feature in writing consumer applications that communicate with
other services, such as databases or remote APIs. Instead of writing logic in my con-
sumer for retrying on failure due to a remote exception, such as a disconnected data-
base cursor or failure to contact a remote API, I simply catch the exception and reject
the message with requeue set to True. This allows me to simplify my code paths in a
consumer, and when used in conjunction with a stats program such as Graphite, I can
see trends in exception behavior by watching the requeue velocity.

 The following example, from the “5.3.1 Message Rejection” notebook, demonstrates
how when a message is requeued, the redelivered flag is set in the message, informing
the message’s next consumer that it had been previously delivered. I’ve used this func-
tionality to implement a “two-strikes and you’re out” policy. A malformed message may
cause havoc in a consumer, but if you’re uncertain whether the problem is due to the
message or something else in the consumer, inspecting the redelivered flag is a good
way to determine if you should reject the message to be requeued or discarded when an
error is encountered.

import rabbitpy

for message in rabbitpy.consume('amqp://guest:guest@localhost:5672/%2f',
 'test-messages'):
 message.pprint()
 print('Redelivered: %s' % message.redelivered)
 message.reject(True)

Like Basic.Ack, using Basic.Reject releases the hold on a message after it has been
delivered without no-ack enabled. Although you can confirm the receipt or process-
ing of multiple messages at once with Basic.Ack, you can’t reject multiple messages at
the same time using Basic.Reject—that’s where Basic.Nack comes in.

5.3.2 Basic.Nack

Basic.Reject allows for a single message to be rejected, but if you are using a work-
flow that leverages Basic.Ack’s multiple mode, you may want to leverage the same
type of functionality when rejecting messages. Unfortunately, the AMQP specification
doesn’t provide for this behavior. The RabbitMQ team saw this as a shortcoming in the
specification and implemented a new RPC response method called Basic.Nack. Short
for “negative acknowledgment,” the similarity of the Basic.Nack and Basic.Reject
response methods may be understandably confusing upon first inspection. To summa-
rize, the Basic.Nack method implements the same behavior as the Basic.Reject

Iterates over messages
as a consumer

tty-prints
 message
ttributes

Prints out the
redelivered attribute
of the message

Rejects the message and
requeues the message to
be consumed again

92 CHAPTER 5 Don’t get messages; consume them
response method but it adds the missing multiple argument to complement the Basic
.Ack multiple behavior.

WARNING As with any proprietary RabbitMQ extension to the AMQP proto-
col, Basic.Nack isn’t guaranteed to exist in other AMQP brokers such as
QPID or ActiveMQ. In addition, generic AMQP clients that don’t have the
RabbitMQ-specific protocol extensions won’t support it.

5.3.3 Dead letter exchanges

RabbitMQ’s dead-letter exchange (DLX) feature is an extension to the AMQP specifi-
cation and is an optional behavior that can be tied to rejecting a delivered message.
This feature is helpful when trying to diagnose why there are problems consuming
certain messages.

 For example, one type of consumer application I’ve written takes XML-based mes-
sages and turns them into PDF files using a standard markup language called XSL:FO.
By combining the XSL:FO document and the XML from the message, I was able to
use Apache’s FOP application to generate a PDF file and subsequently file it electron-
ically. The process worked pretty well, but every now and then it would fail. By using a
dead-letter exchange on the queue, I was able to inspect the failing XML documents
and manually run them against the XSL:FO document to troubleshoot the failures.
Without the dead-letter exchange, I would have had to add code to my consumer that
wrote out the XML document to some place where I could then manually process it
via the command line. Instead, I was able to interactively run my consumer by point-
ing it at a different queue, and I was able to figure out that the problem was related to
how Unicode characters were being treated when the message publisher was generat-
ing the document.

 Although it may sound like a special type of exchange in RabbitMQ, a dead-letter
exchange is a normal exchange. Nothing special is required or performed when creat-
ing it. The only thing that makes an exchange a dead-letter exchange is the declared
use of the exchange for rejected messages when creating a queue. Upon rejecting a
message that isn’t requeued, RabbitMQ will route the message to the exchanged spec-
ified in the queue’s x-dead-letter-exchange argument (figure 5.11).

NOTE Dead-letter exchanges aren’t the same as the alternate exchanges dis-
cussed in chapter 4. An expired or rejected message is delivered via a dead-
letter exchange, whereas an alternate exchange routes messages that otherwise
couldn’t be routed by RabbitMQ.

Specifying a dead-letter exchange when declaring a queue is fairly trivial. Simply pass
in the exchange name as the dead_letter_exchange argument when creating the
rabbitpy Queue object or as the x-dead-letter-exchange argument when issuing the
Queue.Declare RPC request. Custom arguments allow you to specify arbitrary key/
value pairs that are stored with the queue definition. You’ll learn more about them in

93Rejecting messages

D

section 5.4.6. The following example is in the “5.3.3 Specifying a Dead Letter Exchange”
notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 rabbitpy.Exchange(channel, 'rejected-messages').declare()
 queue = rabbitpy.Queue(channel, 'dlx-example',
 dead_letter_exchange='rejected-messages')
 queue.declare()

In addition to the exchange, the dead-lettering functionality allows you to override
the routing key with a prespecified value. This allows you to use the same exchange
for your dead-lettered messages as your non-dead-lettered messages but to ensure that
the dead-lettered messages aren’t delivered to the same queue. Setting the prespeci-
fied routing key requires an additional argument, x-dead-letter-routing-key, to be
specified when declaring the queue.

NOTE Per the AMQP standard, all queue settings in RabbitMQ are immuta-
ble, meaning they can’t be changed after a queue has been declared. In order

Queue C

X Queue

RabbitMQ delivers a message
from a queue with a specified

dead-letter exchange.

The consumer rejects the
message, with RabbitMQ

specifying not to redeliver
the message.

RabbitMQ routes the message through the dead-letter
exchange to bound queues just as it would any other

message published to the exchange normally.

P

Figure 5.11 A rejected message can be routed as a dead-letter message through another exchange.

Connects to
RabbitMQ Opens a channel

on the connection

eclares the
dead-letter

exchange

Creates the
rabbitpy

Queue object

Declares the “example” queue
with the “rejected-messages”
dead-letter exchange

94 CHAPTER 5 Don’t get messages; consume them
to change the dead-letter exchange for a queue, you’d have to delete it and
redeclare it.

There are many ways dead-letter exchanges can be leveraged in your application
architecture. From providing a safe place to store malformed messages to more
directly integrating workflow concepts such as processing rejected credit card authori-
zations, the dead-letter exchange feature is very powerful, yet it’s often overlooked
due to its secondary placement as a custom argument for a queue.

5.4 Controlling queues
There are many different use cases for consumer applications. For some applications,
it’s acceptable for multiple consumers to listen to the same queue, and for others a
queue should only have a single consumer. A chat application may create a queue per
room or user, where the queues are considered temporary, whereas a credit card pro-
cessing application may create one durable queue that’s always present. With such a
wide set of use cases, it’s difficult to provide for every option that may be desired when
dealing with queues. Surprisingly RabbitMQ provides enough flexibility for almost
any use case when creating queues.

 When defining a queue, there are multiple settings that determine a queue’s
behavior. Queues can do the following, and more:

 Auto-delete themselves
 Allow only one consumer to consume from them
 Automatically expire messages
 Keep a limited number of messages
 Push old messages off the stack

It’s important to realize that per the AMQP specification, a queue’s settings are immu-
table. Once you’ve declared a queue, you can’t change any of the settings you used to
create it. To change queue settings, you must delete the queue and re-create it.

 To explore the various settings available for creating a queue, let’s first explore
options for temporary queues, starting with queues that delete themselves.

5.4.1 Temporary queues

AUTOMATICALLY DELETING QUEUES

Like a briefcase from Mission Impossible, RabbitMQ provides for queues that will delete
themselves once they’ve been used and are no longer needed. Like a dead drop from
a spy movie, queues that automatically delete themselves can be created and popu-
lated with messages. Once a consumer connects, retrieves the messages, and discon-
nects, the queue will be removed.

 Creating an auto-delete queue is as easy as setting the auto_delete flag to True in
the Queue.Declare RPC request, as in this example from the “5.4.1 Auto-Delete Queue”
IPython notebook.

95Controlling queues

Q

rab
import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'ad-example',
 auto_delete=True)
 queue.declare()

It’s important to note that any number of consumers can consume from an automati-
cally deleting queue; the queue will only delete itself when there are no more consum-
ers listening to it. It’s a fun use case to think of automatically deleting queues as a
form of spy craft, but that’s not the only use of automatically deleting queues.

 One use case is a chat style application where each queue represents a user’s
inbound chat buffer. If a user’s connection is severed, it’s not unreasonable for such
an application to expect that the queue and any unread messages should be deleted.

 Another example use is with RPC-style applications. For an application that sends
RPC requests to consumers and expects the responses to be delivered by RabbitMQ,
creating a queue that deletes itself when the application terminates or disconnects
allows RabbitMQ to automatically clean up after the application. In this use case, it’s
important that the RPC reply queue be only consumable by the application that’s pub-
lishing the original RPC request.

ALLOWING ONLY A SINGLE CONSUMER

Without the exclusive setting enabled on a queue, RabbitMQ allows for very promis-
cuous consumer behavior. It sets no restrictions on the number of consumers that can
connect to a queue and consume from it. In fact, it encourages multiple consumers by
implementing a round-robin delivery behavior to all consumers who are able to receive
messages from the queue.

 There are certain scenarios, such as the RPC reply queue in an RPC workflow,
where you’ll want to ensure that only a single consumer is able to consume the mes-
sages in a queue. Enabling the exclusive use of a queue involves passing an argument
during queue creation, and, like the auto_delete argument, enabling exclusive
queues automatically removes the queue once the consumer has disconnected. This is
demonstrated in the following example from the “5.4.1 Exclusive Queue” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'exclusive-example',
 exclusive=True)
 queue.declare()

A queue that’s declared as exclusive may only be consumed by the same connection
and channel that it was declared on, unlike queues that are declared with auto_delete

Connects to
RabbitMQ Opens a channel

on the connection

Creates the
rabbitpy

ueue object
Declares the “ad-example”
queue with auto_delete
set to True

Connects to
RabbitMQ Opens a channel

on the connection

Creates the
bitpy.Queue

object Declares the “exclusive-
example” queue with
exclusive set to True

96 CHAPTER 5 Don’t get messages; consume them

i

q
wh
aft

r
set to True, which can have any number of consumers from any number of connec-
tions. An exclusive queue will also automatically be deleted when the channel that the
queue was created on is closed, which is similar to how a queue that has auto-delete
set will be removed once there are no more consumers subscribed to it. Unlike an
auto_delete queue, you can consume and cancel the consumer for an exclusive
queue as many times as you like, until the channel is closed. It’s also important to note
that the auto-deletion of an exclusive queue occurs without regard to whether a
Basic.Consume request has been issued, unlike an auto-delete queue.

AUTOMATICALLY EXPIRING QUEUES

While we’re on the subject of queues that are automatically deleted, RabbitMQ allows
for an optional argument when declaring a queue that will tell RabbitMQ to delete
the queue if it has gone unused for some length of time. Like exclusive queues that
delete themselves, automatically expiring queues are easy to imagine for RPC reply
queues.

 Suppose you have a time-sensitive operation and you don’t want to wait around
indefinitely for an RPC reply. You could create an RPC reply queue that has an expira-
tion value, and when that queue expires the queue is deleted. Using a passive queue
declare, you can poll for the presence of the queue and act when you either see there
are messages pending or when the queue no longer exists.

 Creating an automatically expiring queue is as simple as declaring a queue with an
x-expires argument with the queue’s time to live (TTL) specified in milliseconds, as
is demonstrated in this example from the “5.4.1 Expiring Queue” notebook.

import rabbitpy
import time

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'expiring-queue',
 arguments={'x-expires': 1000})
 queue.declare()
 messages, consumers = queue.declare(passive=True)
 time.sleep(2)
 try:
 messages, consumers = queue.declare(passive=True)
 except rabbitpy.exceptions.AMQPNotFound:
 print('The queue no longer exists')

There are some strict rules around automatically expiring queues:

 The queue will only expire if it has no consumers. If you have a queue with con-
nected consumers, it will only be automatically removed once they issue a Basic
.Cancel or disconnect.

Connects to
RabbitMQ

Opens a channel
on the connection

Creates an
object to

nteract with
the queue

Declares the
“expiring-

ueue” queue,
ich will expire
er 1 second of

being idle

Uses a passive queue
declare to get the
message and consume
counts for the queue

Sleeps for
2 seconds

Uses a passive
queue declare to
get the message
and consumer
counts for the
queue

Catches the AMQPNotFound
exception for the expired queue

97Controlling queues
 The queue will only expire if there has been no Basic.Get request for the TTL
duration. Once a single Basic.Get request has been made of a queue with an
expiration value, the expiration setting is nullified and the queue won’t be auto-
matically deleted.

 As with any other queue, the settings and arguments declared with an x-expires
argument can’t be redeclared or changed. If you were able to redeclare the
queue, extending the expiration by the value of the x-expires argument, you’d
be violating a hard-set rule in the AMQP specification that a client must not
attempt to redeclare a queue with different settings.

 RabbitMQ makes no guarantees about how promptly it will remove the queue
post expiration.

5.4.2 Permanent queues

QUEUE DURABILITY

When declaring a queue that should persist across server restarts, the durable flag
should be set to True. Often queue durability is confused with message persistence. As
we discussed in the previous chapter, messages are stored on disk when a message is
published with the delivery-mode property set to 2. The durable flag, in contrast,
instructs RabbitMQ that you want the queue to be configured until a Queue.Delete
request is called.

 Whereas RPC-style applications generally want queues that come and go with con-
sumers, durable queues are very handy for application workflows where multiple
consumers connect to the same queue, and the routing and message flow don't
change dynamically. The “5.4.2 Durable Queue” notebook demonstrates how a dura-
ble queue is declared.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'durable-queue',
 durable=True)
 if queue.declare():
 print('Queue declared')

AUTO-EXPIRATION OF MESSAGES IN A QUEUE

With non-mission-critical messages, sometimes it’s better to have them automati-
cally go away if they hang around too long without being consumed. Whether
you’re accounting for stale data that should be removed after its usefulness has
expired or you want to make sure that you can recover easily should a consumer appli-
cation die with a high-velocity queue, per-message TTL settings allow for server-side
constraints on the maximum age of a message. Queues declared with both a dead-
letter exchange and a TTL value will result in the dead-lettering of messages in the
queue at time of expiration.

Connects to
RabbitMQ Opens a channel

on the connection

Creates an object
to interact with
the queueDeclares the

durable queue

98 CHAPTER 5 Don’t get messages; consume them

C

C

 In contrast to the expiration property of a message, which can vary from message
to message, the x-message-ttl queue setting enforces a maximum age for all mes-
sages in the queue. This is demonstrated in the following example from the “5.4.2
Queue with Message TTL” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'expiring-msg-queue',
 arguments={'x-message-ttl': 1000})
 queue.declare()

Using per-message TTLs with queues provides inherent value for messages that may
have different value to different consumers. For some consumers, a message may hold
transactional value that has monetary value, and it must be applied to a customer’s
account. Creating a queue that automatically expires messages would prevent a real-
time dashboard listening on a queue from receiving stale information.

MAXIMUM LENGTH QUEUES

As of RabbitMQ 3.1.0, queues may be declared with a maximum size. If you set the
x-max-length argument on a queue, once it reaches the maximum size, RabbitMQ
will drop messages from the front of the queue as new messages are added. In a chat
room with a scroll-back buffer, a queue declared with an x-max-length will ensure
that a client asking for the n most recent messages always has them available.

 Like the per message expiration setting and the dead-letter settings, the maximum
length setting is set as a queue argument and can’t be changed after declaration. Mes-
sages that are removed from the front of the queue can be dead-lettered if the queue
is declared with a dead-letter exchange. The following example shows a queue with a
predefined maximum length. You’ll find it in the “5.4.2 Queue with a Maximum
Length” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'max-length-queue',
 arguments={'x-max-length': 1000})
 queue.declare()

Connects to
RabbitMQ Opens a channel

on the connection

reates an object
to interact with

the queue Declares
the queue

Connects to
RabbitMQ Opens a channel

on the connection

reates an object
to interact with

the queue Declares the queue with a maximum
length of 1000 messages

99Summary
5.4.3 Arbitrary queue settings

As the RabbitMQ team implements new features that extend the AMQP specification
with regard to queues, queue arguments are used to carry the setting for each feature
set. Queue arguments are used for highly available queues, dead-letter exchanges,
message expiration, queue expiration, and queues with a maximum length.

 The AMQP specification defines queue arguments as a table where the syntax and
semantics of the values are to be determined by the server. RabbitMQ has reserved
arguments, listed in table 5.1, and it ignores any other arguments passed in. Argu-
ments can be any valid AMQP data type and can be used for whatever purpose you
like. Personally, I have found arguments to be a very useful way to set per-queue moni-
toring settings and thresholds.

5.5 Summary
Performance-tuning your RabbitMQ consumer applications requires benchmarking
and consideration of the trade-offs between fast throughput and guaranteed delivery
(much like tuning for publishing messages). When setting out to write consumer
applications, consider the following questions in order to find the sweet spot for your
application:

 Do you need to ensure that all messages are received, or can they be discarded?
 Can you receive messages and then acknowledge or reject them as a batch

operation?
 If not, can you use transactions to improve performance by automatically batch-

ing your individual operations?
 Do you really need transactional commit and rollback functionality in your

consumers?

Table 5.1 Reserved queue arguments

Argument name Purpose

x-dead-letter-exchange An exchange to which non-requeued rejected messages are routed

x-dead-letter-routing-key An optional routing key for dead-lettered messages

x-expires Queue is removed after the specified number of milliseconds

x-ha-policy When creating HA queues, specifies the mode for enforcing HA
across nodes

x-ha-nodes The nodes that an HA queue is distributed across (see section 4.1.6)

x-max-length The maximum message count for a queue

x-message-ttl Message expiration in milliseconds, enforced at the queue level

x-max-priority Enables priority sorting of a queue with a maximum priority value of
255 (RabbitMQ versions 3.5.0 and greater)

100 CHAPTER 5 Don’t get messages; consume them
 Does your consumer need exclusive access to the messages in the queues it’s
consuming from?

 What should happen when your consumer encounters an error? Should the
message be discarded? Requeued? Dead-lettered?

These questions provide the starting points for creating a solid messaging architecture
that helps enforce the contract between your publishing and consuming applications.

 Now that you have the basics of publishing and consuming under your belt, we’ll
examine how you can put them into practice with several different messaging patterns
and use cases in the next chapter.

Message patterns via
exchange routing
Perhaps RabbitMQ’s greatest strength is the flexibility it offers for routing messages
to different queues based upon routing information provided by the publisher.
Whether it’s sending messages to a single queue, multiple queues, exchanges, or
another external source provided by an exchange plugin, RabbitMQ’s routing
engine is both extremely fast and highly flexible. Although your initial application
may not need complex routing logic, starting with the right type of exchange can
have a dramatic impact on your application architecture.

 In this chapter, we’ll take a look at four basic types of exchanges and the types of
architectures that can benefit from them:

 Direct exchange
 Fanout exchange

This chapter covers
 The four basic types of exchanges available

through RabbitMQ, plus a plugin exchange

 Which type of exchange is appropriate for your
application architecture

 How the use of exchange-to-exchange routing can
add numerous routing options for your messages
101

102 CHAPTER 6 Message patterns via exchange routing
 Topic exchange
 Headers exchange

We’ll start with some simple message routing using the direct exchange. From there,
we’ll use a fanout exchange to send images to both a facial-recognition consumer and
an image-hashing consumer. A topic exchange will allow us to selectively route messages
based upon wildcard matching in the routing key, and a headers exchange presents an
alternative approach to message routing using the message itself. I’ll dispel the myth
that certain exchanges aren’t as performant as others, and then I’ll show you how
exchange-to-exchange binding can open up an Inception-like reality, but for message
routing, not dreams. Finally, we’ll cover the consistent-hashing exchange, a plugin exchange
type that should help if your consumer throughput needs to grow beyond the capabil-
ities of multiple consumers sharing a single queue.

6.1 Simple message routing using the direct exchange
The direct exchange is useful when you’re going to deliver a message with a specific
target, or a set of targets. Any queue that’s bound to an exchange with the same rout-
ing key that’s being used to publish a message will receive the message. RabbitMQ
uses string equality when checking the binding and doesn’t allow any type of pattern
matching when using a direct exchange (figure 6.1).

P1 X

Queue 1

Queue 2

Queue 3

rk-a

rk-a

rk-a, rk-b

rk-b

P2

rk-b

Publisher publishes messages1
with a routing key of “rk-a”.

Publisher 2 publishes messages
with a routing key of “rk-b”.

Queue is bound to the exchange1
with the routing key “rk-a”.

Queue 2 is bound to the exchange
with both “rk-a” and “rk-b”.

Queue 3 is bound to the exchange
with the routing key “rk-b”.

Figure 6.1 Using a direct exchange, messages published by publisher 1 will be routed to queue 1 and
queue 2, whereas messages published by publisher 2 will be routed to queues 2 and 3.

103Simple message routing using the direct exchange
As illustrated in figure 6.1, multiple queues can be bound to a direct exchange using
the same routing key. Every queue bound with the same routing key will receive all of
the messages published with that routing key.

 The direct exchange type is built into RabbitMQ and doesn’t require any addi-
tional plugins. Creating a direct exchange is as simple as declaring an exchange type
as “direct,” as demonstrated in this snippet in the “6.1 Direct Exchange” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 exchange = rabbitpy.Exchange(channel, 'direct-example',
 exchange_type='direct')
 exchange.declare()

Because of its simplicity, the direct exchange is a good choice for routing reply mes-
sages used in RPC messaging patterns. Writing decoupled applications using RPC is
an excellent way to create highly scalable applications with different components that
are provisioned across multiple servers.

 This architecture is the basis for our first example. You’ll write an RPC worker that
consumes images to perform facial recognition and then publishes them back to the
publishing application. In computationally complex processes such as image or video
processing, leveraging remote RPC workers is a great way to scale an application. If
this application were running in the cloud, for example, the application publishing
the request could live on small-scale virtual machines, and the image processing
worker could make use of larger hardware—or, if the workload supported it, on GPU-
based processing.

 To get started building the example application, you’ll write the worker, a single
purpose image-processing consumer.

6.1.1 Creating the application architecture

Suppose you wanted to implement a web-based API service that processes photos
uploaded by mobile phones. The pattern illustrated in figure 6.1 can be implemented
as a lightweight, highly scalable, asynchronous front-end web application by leverag-
ing a technology like the Tornado web framework (http://tornadoweb.org) or Node.js
(http://nodejs.org). When the front-end application starts up, it will create a queue in
RabbitMQ using a name that’s unique to that process for RPC responses.

 As illustrated in figure 6.2, the request process begins when a mobile client appli-
cation uploads the image and your application receives the content. The application
then creates a message with a unique ID that identifies the remote request. When
publishing the image to the exchange, the response queue name will be set in the
reply-to field in the message’s properties and the request ID will be placed in

Connects to
RabbitMQ

Opens a
channel on the
connection

Creates a
rabbitpy
.Exchange
objectDeclares the

exchange

http://tornadoweb.org
http://nodejs.org

104 CHAPTER 6 Message patterns via exchange routing
the correlation-id field. The body of the message will contain only the opaque
binary data of the image.

 We discussed some low-level frame structures in chapter 2. Let’s review the frames
required to create such an RPC request (figure 6.3).

 In figure 6.3, the reply-to and correlation-id field values are carried in the
Content-Headers property payload. The image that’s being sent as the message body
is split up into three chunks, sent in AMQP body frames. RabbitMQ’s maximum frame
size of 131,072 bytes means that any message body that exceeds that size must be
chunked at the AMQP protocol level. Because there are 7 bytes of overhead that must
be taken into account, each body frame may only carry 131,065 bytes of the opaque
binary image data.

 Once the message is published and routed, a consumer subscribed to the work
queue consumes it, as you learned in chapter 5. This consumer can do the heavy lift-
ing and perform the blocking, computationally expensive, or I/O intensive opera-
tions that the front-end web application wouldn’t be able to perform without blocking
other clients. Instead, by offloading the computationally or I/O intensive tasks to a
consumer, an asynchronous front end is free to process other client requests while it’s
waiting for a response from the RPC worker. Once a worker has completed its process-
ing of the image, the result of the RPC request is sent back to the web front end,

C / PC / PC / PResponse queue

X

X

Worker

queue

1. Front-end web app
receives a request

Internet

2. Web app publishes
RPC request

3. One of the subscribed
worker consumers receives

the RPC request.

4. After processing the
request, the worker
publishes the reply.

5. The web app receives
the reply from the
response queue.

6. Web app
replies to client

P/C

Figure 6.2 A simple RPC pattern where a publisher sends a request using a direct exchange and a
worker consumes the message, publishing the result to be consumed by the original publisher

105Simple message routing using the direct exchange
enabling it to send a reply to the remote mobile client, completing the client’s origi-
nal request.

 We won’t write the full web application in the following listings, but we will write a
simple consumer that will attempt to detect faces in images that are published to it
and then return the same image to the publisher with boxes drawn around the
detected faces. To demonstrate how the publishing side operates, we’ll write a pub-
lisher that will dispatch work requests for every image located in a prespecified direc-
tory. As you can see in figure 6.4, the abbreviated workflow you’ll be implementing is
most of the application; it’s just missing the web application.

Body size Flag values specifying
which properties

are set

The propertyreply_to
with the queue name

for RPC replies

The correlation-id
to identify the unique

RPC request

385911 app-responsesee68abee-05f1-4279-a5b5-e69a216a92db 1227

1 45 0xce2 Content header frame

1 41 0xce1 Basic.Publish

1 131065 0xce3 Body [binary image data]

Method frame

Content header frame

Body frames carrying the
chunks of image data

1 131065 0xce3 Body [binary image data]

1 123781 0xce3 Body [binary image data]

Figure 6.3 The low-level frame structure for an RPC message carrying a 385,911 byte image

106 CHAPTER 6 Message patterns via exchange routing

 the
e
o be

Crea
exc
With the structure outlined, we now need to do a bit of preparation before we get to
the code.

DECLARING THE EXCHANGES

Before writing the consumer and publisher, you need to declare a few exchanges. In
the following code, the URL to connect to isn’t specified, so the application will con-
nect to RabbitMQ using the default URL of amqp://guest:guest@localhost:5672/%2F.
Once connected, it will then declare an exchange to route RPC requests through and
an exchange to route RPC replies through. The following code to declare the direct
RPC exchange is in the “6.1 RPC Exchange Declaration” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 for exchange_name in ['rpc-replies', 'direct-rpc-requests']:
 exchange = rabbitpy.Exchange(channel, exchange_name,
 exchange_type='direct')
 exchange.declare()

Unlike previous examples for declaring an exchange, this code declares multiple
exchanges instead of just one. To limit the amount of code required to perform this

C / PC / P

P/C

C / PResponse queue

X

X

Worker

queue

1. Publisher generates
the RPC request

2. One of the subscribed
worker consumers receives

the RPC request.

3. After processing the request,
the worker publishes the reply.

4. Publisher receives
the reply from

response queue

Figure 6.4 The abbreviated application flow implemented in this section

Connects to
RabbitMQ

Opens a
channel on the
connection

Iterates
through
exchang
names t
created

tes the
hange
object

Declares the
exchange

amqp://guest:guest@localhost:5672/%2F

107Simple message routing using the direct exchange
task, a Python list or array of exchange names is iterated upon. For each iteration of
the loop, a rabbitpy Exchange object is created, and then the exchange is declared
with RabbitMQ.

 Once you’ve declared the RPC exchanges for the RPC workflow, go ahead and
move on to creating the RPC worker.

6.1.2 Creating the RPC worker

We’ll create the RPC worker as a consumer application that will receive messages con-
taining image files and perform image recognition on them using the excellent
OpenCV (http://opencv.org), drawing a box around each face in the photo. Once
an image has been processed, the new image will be published back through
RabbitMQ, using the routing information provided in the original message’s prop-
erties (figure 6.5).

The RPC consumer is a more complex example than those we’ve looked at so far, so it
deserves a bit more than a single code listing. To keep us from getting sidetracked by
the details of facial recognition, all of the code that performs the facial recognition is
imported as a module named detect in the ch6 Python package. In addition, the
ch6.utils module provides functionality to manage the image file on disk, for the
consumer’s use. The consumer code is in the “6.1.2 RPC Worker” notebook.

IMPORTING THE PROPER LIBRARIES

To start building the facial recognition consumer, you must first import the Python
packages or modules required by the application. These include the modules from
the previously mentioned ch6 package, rabbitpy, os, and time.

Figure 6.5 A photo processed by the RPC facial recognition worker

http://opencv.org

108 CHAPTER 6 Message patterns via exchange routing
import os
import rabbitpy
import time
from ch6 import detect
from ch6 import utils

The os package is used to remove the image file from disk and get the current process
ID, whereas the time package supplies timing information while providing processing
information to the system console.

CONNECTING, DECLARING, AND BINDING A QUEUE

With the imports out of the way, you can use rabbitpy to connect to RabbitMQ and
open a channel:

connection = rabbitpy.Connection()
channel = connection.channel()

As with previous consumer examples, a rabbitpy.Queue object is required to declare,
bind, and consume from the RabbitMQ queue that will receive the messages. Unlike
previous examples, this queue is temporary and exclusive to a single instance of the
consumer application. To let RabbitMQ know that the queue should go away as soon
as the consumer application does, the auto_delete flag is set to True and the durable
flag is set to False. To let RabbitMQ know that no other consumer should be able to
access the messages in the queue, the exclusive flag is set to True. If another con-
sumer should attempt to consume from the queue, RabbitMQ will prevent the con-
sumer from doing so, and it will send it an AMQP Channel.Close frame.

 To create a meaningful name for the queue, an easily identifiable string name is cre-
ated, including the operating system’s process ID for the Python consumer application.

queue_name = 'rpc-worker-%s' % os.getpid()
queue = rabbitpy.Queue(channel, queue_name,
 auto_delete=True,
 durable=False,
 exclusive=True)

NOTE If you omit a queue name when creating the queue, RabbitMQ will
automatically create a queue name for you. You should recognize these
queues in the RabbitMQ management interface as they follow a pattern simi-
lar to amq.gen-oCv2kwJ2H0KYxIunVI-xpQ.

Once the Queue object has been created, the AMQP Queue.Declare RPC request is
issued to RabbitMQ. That’s followed by the AMQP Queue.Bind RPC request to bind
the queue to the proper exchange, using the detect-faces routing key, so you only
get messages sent as facial recognition RPC requests from the publisher you’ll write in
the next section.

if queue.declare():
 print('Worker queue declared')
if queue.bind('direct-rpc-requests', 'detect-faces'):
 print('Worker queue bound')

109Simple message routing using the direct exchange
CONSUMING THE RPC REQUESTS

With the queue created and bound, the application is ready to consume messages.
To consume messages from RabbitMQ, the consumer will use the rabbitpy.Queue
.consume_messages iterator method that also acts as a Python context manager. A
Python context manager is a language construct that’s invoked by the with state-
ment. For an object to provide context manager support, it defines magic methods
(__enter__ and __exit__) that execute when a code block is entered or exited using
the with statement.

 Using a content manager allows rabbitpy to deal with sending the Basic.Consume
and the Basic.Cancel AMQP RPC requests so you can focus on your own code:

for message in queue.consume_messages():

As you iterate through each message that RabbitMQ delivers, you’ll have a look at the
message’s timestamp property in order to display how long the message was sitting in
the queue before the consumer received it. The publishing code will automatically set
this value on every message, providing a source of information outside of RabbitMQ
that details when the message was first created and published.

 Because rabbitpy will automatically transform the timestamp property into a
Python datetime object, the consumer needs to transform the value back into a UNIX
epoch to calculate the number of seconds since the message was published:

duration = (time.time() –
 int(message.properties['timestamp'].strftime('%s')))
print('Received RPC request published %.2f seconds ago' %
 duration)

PROCESSING AN IMAGE MESSAGE

Next, to perform the facial recognition, the message body containing the image file
must be written to disk. Because these files are only needed for a short time, the image
will be written out as a temporary file. The content-type of the message is also passed
in, so the proper file extension can be used when naming the file.

temp_file = utils.write_temp_file(message.body,
 message.properties['content_type'])

With the file written to the filesystem, the consumer can now perform the facial rec-
ognition using the ch6.detect.faces method. The method returns the path to a
new file on disk that contains the original image with the detected faces in box
overlays:

result_file = detect.faces(temp_file)

110 CHAPTER 6 Message patterns via exchange routing
SENDING THE RESULT BACK
Now that the hard work is done, it’s time to publish the result of the RPC request back
to the original publisher. To do so, you must first construct the properties of the
response message, which will contain the correlation-id of the original message, so
the publisher knows which image to correlate with the response. In addition, the
headers property is used to set the timestamp for when the message was first pub-
lished. This will allow the publisher to gauge total time from request to response,
which could be used for monitoring purposes.

properties = {'app_id': 'Chapter 6 Listing 2 Consumer',
 'content_type': message.properties['content_type'],
 'correlation_id':
 message.properties['correlation_id'],
 'headers': {
 'first_publish':
 message.properties['timestamp']}}

With the response properties defined, the result file with the image is read from
disk, and both the original temp file and the result file are removed from the file-
system:

body = utils.read_image(result_file)
os.unlink(temp_file)
os.unlink(result_file)

Finally, it’s time to create and publish the response message and then acknowledge
the original RPC request message so that RabbitMQ can remove it from the queue:

response = rabbitpy.Message(channel, body, properties)
response.publish('rpc-replies', message.properties['reply_to'])
message.ack()

RUNNING THE CONSUMER APPLICATION

With the consumer code done, it’s time to run the consumer application. Like with
previous examples, you can select Cell > Run All to bypass having to run each cell
independently. Note that the last cell of this application in the IPython notebook will
keep running until you stop it. You’ll know it’s running when the Kernel Busy indica-
tor is displayed (figure 6.6). You can leave this browser tab open and go back to the
IPython dashboard for the next section.

6.1.3 Writing a simple RPC publisher

You now have a running RPC consumer application that will receive messages, per-
form facial recognition on them, and return the result. It’s time to write an applica-
tion that can publish messages to it. In this sample use case, our goal is to move
blocking and slow processes to external consumers so that a high-performance,

111Simple message routing using the direct exchange
asynchronous web application can receive requests and process them without block-
ing other requests while the processing is taking place.

 Because it’s outside the scope of this book to write a full asynchronous web applica-
tion, the publisher code will simply publish the RPC request message and display the
RPC response message once it has been received. Also, the images used for this exam-
ple are already in the Vagrant virtual machine and are all in the public domain.

SPECIFYING THE IMPORTED LIBRARIES

To get started, you must first import the requisite Python packages and modules to
perform the task at hand. In the case of the publisher, all of the same packages and
modules are used, with the exception of the ch6.detect module.

import os
import rabbitpy
import time
from ch6 import utils

Figure 6.6 The IPython notebook running the RPC worker

112 CHAPTER 6 Message patterns via exchange routing
Similar to the consumer’s use of the os package, the publisher uses the os.getpid()
method to create a uniquely named response queue from which the publisher will
retrieve processed images. Like the consumer’s request queue, the publisher’s response
queue will have auto_delete and exclusive set to True and durable set to False.

queue_name = 'response-queue-%s' % os.getpid()
response_queue = rabbitpy.Queue(channel,
 queue_name,
 auto_delete=True,
 durable=False,
 exclusive=True)

DECLARING AND BINDING THE EXCHANGE

Once the response queue’s rabbitpy.Queue object has been created, it will also need
to be declared and bound, but this time to the rpc-replies exchange, using its name
for the routing key:

if response_queue.declare():
 print('Response queue declared')
if response_queue.bind('rpc-replies', queue_name):
 print('Response queue bound')

With the queue declared and bound, it’s time to iterate through the images that are
available.

ITERATING THROUGH THE AVAILABLE IMAGES
To iterate through the images, the ch6.utils module provides a function named
get_images() that returns a list of images on disk that should be published. The
method is wrapped with the Python enumerate iterator function, which will return a
tuple of the current index of the value in the list and its associated value. A tuple is a
common data structure. In Python, it’s an immutable sequence of objects.

for img_id, filename in enumerate(utils.get_images()):

Inside this control block, you’ll construct the message and publish to RabbitMQ. But
before the publisher creates the message, let’s have it print out information that tells
you about the image being published for processing:

print('Sending request for image #%s: %s' % (img_id, filename))

CONSTRUCTING THE REQUEST MESSAGE

Creating the message is a fairly straightforward one-liner. The rabbitpy.Message
object is constructed, with the first argument passed in being the channel, and then it
uses the ch6.utils.read_image() method to read the raw image data from disk and
passes it in as the message body argument.

113Simple message routing using the direct exchange
 Finally, the message properties are created. The content-type for the message is
set using the ch6.utils.mime_time() method, which returns the mime type for the
image. The correlation-id property is set using the img_id value provided by the
enumerate iterator function. In an asynchronous web application, this might be a con-
nection ID for the client or a socket file descriptor number. Finally the message’s
reply_to property is set to the publisher’s response queue name. The rabbitpy library
automatically sets the timestamp property if it’s omitted by setting the opinionated
flag to True.

message = rabbitpy.Message(channel,
 utils.read_image(filename),
 {'content_type':
 utils.mime_type(filename),
 'correlation_id': str(img_id),
 'reply_to': queue_name},
 opinionated=True)

With the message object created, it’s time to publish it to the direct-rpc-requests
exchange using the detect-faces routing key:

message.publish('direct-rpc-requests', 'detect-faces')

As soon as this is run, the message is sent and should quickly be received by the RPC
consumer application.

WAITING FOR A REPLY
In an asynchronous web application, the application would handle another client
request while waiting for a response from the RPC consumer. For the purposes of this
example, we’ll create a blocking application instead of an asynchronous server. Instead
of consuming the response queue and performing other work asynchronously, our
publisher will use the Basic.Get AMQP RPC method to check whether a message is in
the queue and receive it, as follows:

message = None
while not message:
 time.sleep(0.5)
 message = response_queue.get()

ACKNOWLEDGING THE MESSAGE

Once a message is received, the publisher should acknowledge so RabbitMQ can
remove it from the queue:

message.ack()

114 CHAPTER 6 Message patterns via exchange routing
PROCESSING THE RESPONSE

If you’re like me, you’ll want to know how long the facial recognition and message
routing took, so add a line that prints out the total duration from original publishing
until the response is received. In complex applications, the message properties can be
used to carry metadata like this, that’s used for everything from debugging informa-
tion to data that’s used for monitoring, trending, and analytics.

duration = (time.time() -
 time.mktime(message.properties['headers']['first_publish']))
print('Facial detection RPC call for image %s duration %.2f sec' %
 (message.properties['correlation_id'], duration))

This code that prints out the duration uses the first_publish timestamp value set
in the message properties header table that was set by the consumer. That way you
know the full round-trip time from initial RPC request publishing to the receipt of
the RPC reply.

 Finally, you can display the image in the IPython notebook using the ch6.utils
.display_image() function:

utils.display_image(message.body,
 message.properties['content_type'])

CLOSING UP

With the main publisher code block complete, the following lines close the channel
and connection and should no longer be indented by four spaces:

channel.close()
connection.close()

TESTING THE WHOLE APPLICATION

It’s time to test. Open up “6.1.3 RPC Publisher” in the IPython notebook and click the
Run Code play button to fire off the messages and see the results (figure 6.7).

 As you may have noticed, the facial recognition code isn’t perfect, but it performs
pretty well for a low-powered virtual machine. To improve the quality of the facial rec-
ognition, additional algorithms can be employed to look for a quorum of results from
each algorithm. Such work is way too slow for a real-time web app, but not for an army
of RPC consumer applications on specialty hardware. Fortunately, RabbitMQ provides
multiple ways to route the same message to different queues. In the next section, we’ll
tap the messages sent by the RPC publisher without impacting the already established
workflow. To achieve this, we’ll use a fanout exchange instead of a direct exchange for
RPC requests.

115Broadcasting messages via the fanout exchange
6.2 Broadcasting messages via the fanout exchange
Where a direct exchange allows for queues to receive targeted messages, a fanout
exchange doesn’t discriminate. All messages published through a fanout exchange
are delivered to all queues in the fanout exchange. This provides significant perfor-
mance advantages because RabbitMQ doesn’t need to evaluate the routing keys when
delivering messages, but the lack of selectivity means all applications consuming from
queues bound to a fanout exchange should be able to consume messages delivered
through it.

 Suppose that, in addition to detecting faces, you wanted to create tools so your
mobile application could identify spammers in real time. Using a fanout exchange
that the web application publishes to when it performs a facial recognition RPC
request, you could bind the RPC consumer queues and any other consumer applica-
tions you’d like to act on the messages. The facial recognition consumer would be the

Figure 6.7 The RPC publisher receiving results from the consumer

116 CHAPTER 6 Message patterns via exchange routing
only consumer to provide RPC replies to the web application, but your other con-
sumer applications could perform other types of analysis on the images published, for
internal purposes only (figure 6.8).

In my experience, spammers often use the same images when registering for a service
or submitting content to the service. One way to mitigate spam attacks is to finger-
print images and keep a database of image fingerprints identified as spam, taking
action when a new image is uploaded with the same fingerprint. In the following code
examples, we’ll use an RPC request message that triggers the facial recognition con-
sumer to fingerprint images.

6.2.1 Modifying the facial detection consumer

In the examples that follow, we’ll build upon the examples in section 6.1, making
some small modifications and adding a new image-hashing consumer that will create a
hash of an image when the RPC request is made.

X

Detection worker

queue

Web app publishes RPC
request to the fanout

exchange

C

Hashing

queue

The hashing consumer
receives the same RPC

request message.

C / PC/PX

One of the subscribed
workers consumes the

RPC request.

The worker publishes
the RPC response
after processing.

RPC Response

The fanout exchange
publishes the messages

to both queues.

P/C

Figure 6.8 Adding another consumer that receives the same message as the RPC consumer by
using a fanout exchange

117Broadcasting messages via the fanout exchange
 To get started, you first need to create the fanout exchange. The following snippet
is from the “6.2.1 Fanout Exchange Declaration” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 exchange = rabbitpy.Exchange(channel,
 'fanout-rpc-requests',
 exchange_type='fanout')
 exchange.declare()

In addition, the original consumer code from section 6.1 needs a slight modification
in how the queue is bound. Instead of binding to the direct-rpc-requests exchange
with a routing key, the consumer will need to bind to fanout-rpc-requests without a
routing key. The change is already made in the “6.2.1 RPC Worker” notebook, and it
changes this line:

if queue.bind('direct-rpc-requests', 'detect-faces'):

to use the new fanout exchange:

if queue.bind('fanout-rpc-requests'):

The only modification you need to make to the publisher code is to change the
exchange that’s being published to. Again, the code is already modified in the IPy-
thon notebook as “6.2.1 RPC Publisher,” and changes this line:

message.publish('direct-rpc-requests', 'detect-faces')

to use the new exchange as follows:

message.publish('fanout-rpc-requests')

Before you publish and consume the messages, let’s write the image-hashing or finger-
printing consumer.

6.2.2 Creating a simple image-hashing consumer

For the sake of simplicity, the consumer will use a simple binary hashing algorithm,
MD5. There are much more sophisticated algorithms that do a much better job of
creating image hashes, allowing for variations in cropping, resolution, and bit depth,
but the point of this example is to illustrate RabbitMQ exchanges, not cool image-
recognition algorithms.

Connects to
RabbitMQ Opens a

channel on the
connection

Creates
the fanout
exchange
objectDeclares the

exchange

118 CHAPTER 6 Message patterns via exchange routing
IMPORTING THE BASE LIBRARIES AND CONNECTING TO RABBITMQ
To get started, the consumer in the “6.2.2 Hashing Consumer” notebook shares much
of the same code as the RPC consumer. Most notably, though, instead of importing
ch6.detect, this consumer imports Python’s hashlib package:

import os
import hashlib
import rabbitpy

Similar to the RPC publisher and worker previously discussed, the image-hashing con-
sumer will need to connect to RabbitMQ and create a channel:

connection = rabbitpy.Connection()
channel = connection.channel()

CREATING AND BINDING A QUEUE TO WORK OFF OF

Once the channel is open, you can create a queue that’s automatically removed when
the consumer goes away and that’s exclusive to this consumer:

queue_name = 'hashing-worker-%s' % os.getpid()
queue = rabbitpy.Queue(channel, queue_name,
 auto_delete=True,
 durable=False,
 exclusive=True)

if queue.declare():
 print('Worker queue declared')
if queue.bind('fanout-rpc-requests'):
 print('Worker queue bound')

HASHING THE IMAGES

The consumer is very straightforward. It will iterate through each message received
and create a hashlib.md5 object, passing in the binary message data. It will then
print a line with the hash. The output line could just as easily be a database insert
or an RPC request to compare the hash against the database of existing hashes.
Finally, the message is acknowledged and the consumer will wait for the next message
to be delivered.

for message in queue.consume_messages():
 hash_obj = hashlib.md5(message.body)
 print('Image with correlation-id of %s has a hash of %s' %
 (message.properties['correlation_id'],
 hash_obj.hexdigest()))
message.ack()

NOTE For storing a materialized set of hashes, Redis (http://redis.io) is an
excellent choice of database. It provides quick, in-memory data structures for
hash lookups and can provide very quick responses to inquiries with this type
of data.

http://redis.io

119Selectively routing messages with the topic exchange
TESTING THE NEW WORKFLOW

With the new consumer written and the other applications modified, it’s time to test
things out. Open the “6.2.2 Hashing Consumer,” “6.2.1 RPC Worker,” and “6.2.1 RPC
Publisher” notebooks in their own tabs in your web browser. Start by running all the
cells in the “6.2.2 Hashing Consumer” notebook, then all the cells in the “6.2.1 RPC
Worker” notebook, and finally send the images to kick off the process by running all
the cells in the “6.2.1 RPC Publisher” notebook. You should see the same responses to
the RPC publisher and consumer applications as when you ran the examples in the
previous section. In addition, you should now have output similar to figure 6.9 in your
“6.2.2 Hashing Consumer” application output.

Fanout exchanges provide a great way to allow every consumer access to the fire hose
of data. This can be a double-edged sword, however, because consumers can’t be
selective about the messages they receive. For example, let’s say you wanted a single
exchange that allowed different types of RPC requests to be routed through it but that
performs common tasks, such as auditing each RPC request without regard to type. In
such a scenario, a topic exchange would allow your RPC worker consumers to bind to
routing keys specific to their task and for request audit consumers to bind with wild-
card matching to all messages or a subset of them.

6.3 Selectively routing messages with the topic exchange
Like direct exchanges, topic exchanges will route messages to any queue bound with a
matching routing key. But by using a period-delimited format, queues may bind to
routing keys using wildcard-based pattern matching. By using the asterisk (*) and
pound (#) characters, you can match specific parts of the routing key or even multiple
parts at the same time. An asterisk will match all characters up to a period in the rout-
ing key, and the pound character will match all characters that follow, including any
subsequent periods.

 Figure 6.10 shows a topic exchange routing key with three parts that you can use
for new profile images that have been uploaded. The first part indicates the message

Figure 6.9 Example output of the hashing consumer in an IPython notebook

120 CHAPTER 6 Message patterns via exchange routing
should be routed to consumers that know how to act on image-related messages. The
second part indicates that the message contains a new image, and the third contains
additional data that can be used to route the message to queues for consumers that
are specific to profile-related functionality.

 If we were to build out upon the image-upload process, creating a messaging-based
architecture for managing all of the image-related tasks on the website, the following
routing keys could describe a few of the messages that would be published.

 image.new.profile—For messages containing a new profile image
 image.new.gallery—For messages containing a new photo gallery image
 image.delete.profile—For messages with metadata for deleting a profile image
 image.delete.gallery—For messages with metadata for deleting a gallery image
 image.resize—For messages requesting the resizing of an image

In the preceding example routing keys, the semantic importance of the routing key
should clearly stand out, describing the intent or content of the message. By using
semantically named keys for messages routed through the topic exchange, a single
message can be routed by subsections of the routing key, delivering the message to
task-specific queues. In figure 6.11, the topic exchange determines which consumer
application queues will receive a message based on how they were bound to the
exchange.

 A topic exchange is excellent for routing a message to queues so that single-purpose
consumers can perform different actions with it. In figure 6.11, the queue for the
facial-detection RPC worker is bound to image.new.profile, behaving as if it were
bound to a direct exchange, receiving only new profile image requests. The queue for
the image-hashing consumer is bound to image.new.#, and will receive new images
regardless of origin. A consumer that maintains a materialized user directory could
consume from a queue bound to #.profile and receive all messages ending in .profile
to perform its materialization tasks. Image-deletion messages would be published to a
queue bound to image.delete.*, allowing a single consumer to remove all images
uploaded to the site. Finally, an auditing consumer bound to image.# would receive
every image-related message so it could log information to help with troubleshooting
or behavioral analysis.

image.new.profile

Additional categorization
data for the message

The type of message
for the application

Top-level categorization
of the message

Figure 6.10 A topic exchange
routing key with three parts

121Selectively routing messages with the topic exchange
Single-purpose consumers leveraging architecture like this can be both easier to main-
tain and to scale, compared to a monolithic application performing the same actions on
messages delivered to a single queue. A monolithic application increases operational
and code complexity. Consider how a modular approach to writing consumer code sim-
plifies what would otherwise be complex actions, such as moving hardware, increasing
processing throughput by adding new consumers, or even just adding or removing
application functionality. With a single-purpose, modular approach using a topic
exchange, appropriate new functionality can be composed of a new consumer and
queue without impacting the workflow and processing of other consumer applications.

NOTE It can be useful to create routing keys that are semantically relevant to
the message, describing either its intent or content. Instead of thinking about
the message and its routing key as an application-specific detail, a generic,
event-based approach to messaging encourages message reusability. Reduced
code complexity and reduced message throughput are key benefits when

X

Image hashing

Facial-detection

RPC worker
P / C

image.new.profile

User directory

materialization

image.new.*

Auditing worker

image.*.profile

image.#
Image removal

image.delete.*

Web app publishes messages with
complex routing keys indicating

actions to take on images

The topic exchange evaluates the routing
key and routes the message to each queue

that is bound to a matching pattern.

image.new.profile

Figure 6.11 Messages are selectively routed to different queues based on the composition of their
routing keys.

122 CHAPTER 6 Message patterns via exchange routing
developers are able to reuse existing messages in their applications. Along
with virtual hosts and exchanges, routing keys should be able to provide
enough semantic data about messages for any number of applications to use
them without any awkward namespace-related issues.

The use of a topic exchange instead of a direct exchange is demonstrated in the “6.3
Topic Exchange Declaration,” “6.3 RPC Publisher,” and “6.3 RPC Worker” notebooks.
The only major difference in these notebooks, as compared to the notebooks from
section 6.1, is the exchange type that’s declared and the routing key that’s used. Run-
ning these examples should demonstrate that there’s little difference between using
the topic and direct exchanges when you’re matching on the full routing key. But by
using the topic exchange, you’ll be able to perform partial pattern matching on the
routing key for any other purpose in the future without having to change your messag-
ing architecture.

 Using a topic exchange with namespaced routing keys is a good choice for future-
proofing your applications. Even if the pattern matching in routing is overkill for your
needs at the start, a topic exchange (used with the right queue bindings) can emulate
the behavior of both direct and fanout exchanges. To emulate the direct exchange
behavior, bind queues with the full routing key instead of using pattern matching.
Fanout exchange behavior is even easier to emulate, as queues bound with # as the
routing key will receive all messages published to a topic exchange. With such flexibil-
ity, it’s easy to see why the topic exchange can be a powerful tool in your messaging-
based architecture.

 RabbitMQ has another built-in exchange type that allows similar flexibility in rout-
ing but also allows messages to be self-describing as part of the routing process, doing
away with the need for structured routing keys. The headers exchange uses a com-
pletely different routing paradigm than the direct and topic exchanges, offering an
alternative view of message routing.

6.4 Selective routing with the headers exchange
The fourth built-in exchange type is the headers exchange. It allows for arbitrary rout-
ing in RabbitMQ by using the headers table in the message properties. Queues that
are bound to the headers exchange use the Queue.Bind arguments parameter to pass
in an array of key/value pairs to route on and an x-match argument. The x-match
argument is a string value that’s set to any or all. If the value is any, messages will be
routed if any of the headers table values match any of the binding values. If the value
of x-match is all, all values passed in as Queue.Bind arguments must be matched.
This doesn’t preclude the message from having additional key/value pairs in the
headers table.

 To demonstrate how the headers exchange is used, we’ll modify the RPC worker
and publisher examples from section 6.1, moving the routing key to headers table val-
ues. Unlike using a topic exchange, the message itself will contain the values that com-
pose the routing criteria.

123Selective routing with the headers exchange
 Before we modify the RPC publisher and worker to use the headers exchange,
let’s first declare the headers exchange. The following example creates a headers
exchange named headers-rpc-requests; it's in the “6.4 Headers Exchange Declara-
tion” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 exchange = rabbitpy.Exchange(channel,
 'headers-rpc-requests',
 exchange_type=' headers')
 exchange.declare()

With the exchange declared, let’s examine the changes to the RPC publisher code
contained in the “6.4 RPC Publisher” notebook. There are two primary changes. The
first is in constructing the message that will be published. In this example, the mes-
sage’s headers property is being populated:

message = rabbitpy.Message(channel,
 utils.read_image(filename),
 {'content_type': utils.mime_type(filename),
 'correlation_id': str(img_id),
 'headers': {'source': 'profile',
 'object': 'image'
 'action': 'new'},
 'reply_to': queue_name})

You can see that three values are being set: A value is assigned to the source, object,
and action entries in the headers property. These are the values that will be routed on
when the messages are published. Because we’ll be routing on these values, there’s no
need for a routing key, so the message.publish() call is changed to only name the
headers exchange the message will be routed through:

message.publish('headers-rpc-requests')

Before you run the code in this notebook, let’s examine the changes to the RPC
worker in the “6.4 RPC Worker” notebook and run the code there to start the con-
sumer. The primary change is with the Queue.Bind call. Instead of binding to a rout-
ing key, the Queue.Bind call specifies the type of match required to route images to
the queue and each attribute that will be matched on:

if queue.bind('headers-rpc-requests',
 arguments={'x-match': 'all',
 'source': 'profile',
 'object': 'image',
 'action': 'new'}):

Connects to
RabbitMQ Opens a

channel on the
connection

Creates the
exchange
object

Declares the
exchange

124 CHAPTER 6 Message patterns via exchange routing
The value of the x-match argument is specified as all, indicating that the values of
source, object, and action in the message headers must all match the values speci-
fied in the binding arguments. If you now run the “6.4 RPC Worker” notebook and
then the “6.4 RPC Publisher” notebook, you should see the same results you saw with
both the direct and topic exchange examples.

 Is the extra metadata in the message properties worth the flexibility that the head-
ers exchange offers? Although the headers exchange does create additional flexibility
with the any and all matching capabilities, it comes with additional computational
overhead in routing. When using the headers exchange, all of the values in the head-
ers property have to be sorted by key name prior to evaluating the values when rout-
ing the message. Conventional wisdom is that the headers exchange is significantly
slower than the other exchange types due to the additional computational complexity.
But in benchmarking for this chapter, I found that there was no significant difference
between any of the built-in exchanges with regard to performance when using the
same quantity of values in the headers property.

NOTE If you’re interested in the internal behavior RabbitMQ employs for
sorting the headers table, check the rabbit_misc module in the rabbit-
server Git repository for the sort_field_table function. The code is avail-
able on GitHub: https://github.com/rabbitmq/rabbitmq-server/blob/master/
src/rabbit_misc.erl.

6.5 Exchange performance benchmarking
It’s worth noting that the use of the headers property directly impacts the perfor-
mance of message publishing regardless of the exchange type it’s being published
into (figure 6.12).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5 25 45 65 85 105

Size of headers table

Direct

Fanout

Headers

Topic

M
e
s
s
a
g
e
s
 p

e
r

s
e
c
o
n
d

Figure 6.12 Overall publishing velocity by exchange type and header table size

https://github.com/rabbitmq/rabbitmq-server/blob/master/src/rabbit_misc.erl
https://github.com/rabbitmq/rabbitmq-server/blob/master/src/rabbit_misc.erl

125Going meta: exchange-to-exchange routing
As you can see, performance across the four built-in exchange types is relatively con-
sistent. This benchmark shows that when comparing the same message with the same
message headers, you won’t see a dramatic difference in message publishing velocity,
regardless of the exchange type.

 What about a more ideal test case for the topic and the headers exchanges? Fig-
ure 6.13 compares the publishing velocity for the same message body with an empty
headers table for the topic exchange and the routing key values in the headers prop-
erty for the headers exchange. In this scenario, it’s clear that the topic exchange is
more performant than the headers exchange when doing an apples-to-apples compar-
ison of only publishing the baseline requirements to route the message.

If you use the headers property, it appears your overall message-publishing velocity
won’t be dramatically impacted by choosing the headers exchange, unless you end up
with a fairly large table of values in the headers property. But this performance pen-
alty applies to all of the built-in exchange types.

 Now that you have a good idea of the capabilities of the built-in exchange types
and how they perform in comparison to each other, it’s time to learn how you can
leverage multiple types of exchanges for a single message published to RabbitMQ.

6.6 Going meta: exchange-to-exchange routing
If you don’t think you’ve been presented with enough message-routing flexibility and
find that your application needs a little of one exchange type and a little of another
for the exact same message, you’re in luck. The RabbitMQ team added a very flexible
mechanism in RabbitMQ that’s not in the AMQP specification, allowing you to route

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Headers match all Topic equality match Headers match any Topic partial match

M
e
s
s
a
g
e
s
 p

e
r

s
e
c
o
n
d

Figure 6.13 Publishing velocity of the headers and topic exchanges

126 CHAPTER 6 Message patterns via exchange routing
messages through any combination of exchanges. The mechanism for exchange-to-
exchange binding is very similar to queue binding, but instead of binding a queue to
an exchange, you bind an exchange to another exchange using the Exchange.Bind
RPC method.

 When using exchange-to-exchange binding, the routing logic that’s applied to a
bound exchange is the same as it would be if the bound object were a queue. Any
exchange can be bound to another exchange, including all of the built-in exchange
types. This functionality allows you to chain exchanges in all sorts of imaginative ways.
Do you want to route messages using namespaced keys through a topic exchange and
then distribute them based upon the properties header table? If so, an exchange-to-
exchange binding is the tool for you (figure 6.14).

 In the following example from the “6.6 Exchange Binding” notebook, a consistent-
hashing exchange named distributed-events is bound to a topic exchange named

MessageMessage

X

Message

X

X

Queue

Queue

Queue

Queue

Queue

Queue

Messages published into a topic
exchange are routed to two

other exchanges and a queue.

Messages published into the
consistent-hashing exchange are
distributed among three queues.

Messages published into
the direct exchange are
routed to two queues.

Figure 6.14 A small example of the flexibility that exchange-to-exchange binding offers

127Routing messages with the consistent-hashing exchange

D
t
e

events to distribute messages routed with the any routing key among the queues
bound to the consistent-hashing exchange.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 tpc = rabbitpy.Exchange(channel, 'events',
 exchange_type='topic')
 tpc.declare()
 xch = rabbitpy.Exchange(channel, 'distributed-events',
 exchange_type='x-consistent-hash')
 xch.declare()
 xch.bind(foo, '#') #H

As a tool, exchange-to-exchange bindings create a huge amount of flexibility in the
messaging patterns available to you. But with that flexibility comes extra complexity
and overhead. Before you go crazy with super-complex exchange-to-exchange binding
patterns, remember that simple architectures are easier to maintain and diagnose
when things go wrong. If you’re considering using exchange-to-exchange bindings,
you should make sure that you have a use case for the functionality that warrants the
extra complexity and overhead.

6.7 Routing messages with the consistent-hashing
exchange
The consistent-hashing exchange, a plugin that’s distributed with RabbitMQ, distrib-
utes data among the queues that are bound to it. It can be used to load-balance the
queues that receive messages published into it. You can use it to distribute messages to
queues on different physical servers in a cluster or to queues with single consumers,
providing the potential for faster throughput than if RabbitMQ were distributing mes-
sages to multiple consumers in a single queue. When using databases or other systems
that can directly integrate with RabbitMQ as a consumer, the consistent-hashing
exchange can provide a way to shard out data without having to write middleware.

NOTE If you’re considering using the consistent-hashing exchange to improve
consumer throughput, you should benchmark the difference between multi-
ple consumers on a single queue and single consumers on multiple queues
before deciding which is right for your environment.

The consistent-hashing exchange uses a consistent-hashing algorithm to pick which
queue will receive which message, with all queues being potential destinations. Instead of
queues being bound with a routing key or header values, they’re bound with an integer-
based weight that’s used as part of the algorithm for determining message delivery.
Consistent-hashing algorithms are commonly used in clients for network-based caching

Connects to
RabbitMQ

Opens a
channel on the
connection

Creates a topic
exchange

eclares
he topic
xchange

Creates a
consistent-

hashing
exchange Declares the

consistent-
hashing

exchange

Binds the consistent-
hashing exchange to the
topic exchange, using a
wildcard match

128 CHAPTER 6 Message patterns via exchange routing
systems like memcached and in distributed database systems like Riak and Cassandra,
and in PostgreSQL (when using the PL/Proxy sharding methodology). For data sets
or in the case of messages with a high level of entropy in the string values for routing,
the consistent-hashing exchange provides a fairly uniform method of distributing
data. With two queues bound to a consistent-hashing exchange, each with an equal
weight, the distribution of messages will be approximately split in half (figure 6.15).

When selecting a destination for a message, there’s no explicit effort made to ensure
an even distribution of the messages. The consistent-hashing exchange doesn’t round-
robin the messages, but rather deterministically routes messages based upon a hash
value of the routing key or a message properties header-type value. But a queue with a
higher weight than any other queue should receive a higher percentage of the mes-
sages published into the exchange. Of course, the distribution of messages across mul-
tiple queues assumes that you’re publishing messages with different routing keys or
header table values. The differences in those values provide the entropy required to
distribute the messages. Five messages sent with the same routing key would all end up
in the same queue.

MessageMessage

X

Message

Each message sent into a consistent-hashing
exchange will only be enqueued into one

of the bound queues.

Queue #1

weight 10

Message

B

Message

C

Message

A

Queue #1

weight 10

Queue #1

weight 10

As messages are published into the exchange,
it determines which queue to send the messages
to based upon the hash value for the messages.

Figure 6.15 Messages published into the consistent-hashing exchange are distributed among the
bound queues.

129Routing messages with the consistent-hashing exchange

has

ha
he
v

 In our image-processing RPC system, it’s likely that images will need to be stored in
some fashion to be served to other HTTP clients. At some point in dealing with the
scaling demands of image storage, it’s common to need to use a distributed storage
solution. In the following examples, we’ll employ the consistent-hashing exchange to
distribute messages across four queues that could be used to store the images on four
different storage servers.

 By default, the routing key is the value that’s hashed for distributing the messages.
For an image, one possible routing key value is a hash of the image itself, similar to the
hash that’s generated in the “6.2.2 Hashing Consumer” notebook. If you intend to dis-
tribute messages via hashes of the routing key values, nothing special is required when
declaring the exchange. This is demonstrated in the “6.7 A Consistent-Hashing
Exchange that Routes on a Routing Key” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 exchange = rabbitpy.Exchange(channel, 'image-storage',
 exchange_type='x-consistent-hash')
 exchange.declare()

Alternatively, you could hash on a value in the headers property table. To route this
way, you must pass a hash-header value in when declaring the exchange. The hash-
header value contains the single key in the headers table that will contain the value to
hash the message with. This is demonstrated in the following code snippet from the
“6.7 A Consistent-Hashing Exchange that Routes on a Header” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 exchange = rabbitpy.Exchange(channel, 'image-storage',
 exchange_type='x-consistent-hash',
 arguments={'hash-header':
 'image-hash'})
 exchange.declare()

When binding a queue to the consistent-hash exchange, you enter the weight of the
queue for the hashing algorithm as a string value. For example, if you’d like to declare
a queue with a weight of 10, you’d pass in the string value of 10 as the binding key in
the Queue.Bind AMQP RPC request. Using the image storage example, suppose that
your servers for storing the images each have different storage capacities. You could

Connects to
RabbitMQ Opens a

channel on the
connection

Creates the
consistent-

hash
exchange

object
Declares the
exchange

Connects to
RabbitMQ Opens a

channel on the
connection

Creates the
consistent-
h exchange
object that
shes on the
aders table
alue for key

Declares
exchange

130 CHAPTER 6 Message patterns via exchange routing

C
nu

I
1

tring
 the
date Cre

C

use the weight value to prefer larger servers over smaller ones. You could even specify
the weights as the capacity size in gigabytes or terabytes to try to balance the distribu-
tion as closely as possible. The following example, from the “6.7 Creating Multiple
Bound Queues” notebook, will create four queues named q0, q1, q2, and q3 and bind
all of them equally against an exchange named image-storage.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 for queue_num in range(4):
 queue = rabbitpy.Queue (channel, 'server%s' % queue_num)
 queue.declare()
 queue.bind('image-storage', '10')

It’s important to note that, because of the way the consistent-hashing algorithm works,
should you change the number of queues that are bound to the exchange, the distri-
bution of messages will most likely change. If a message with a specific routing key or
header table value always goes into q0, and you add a new queue named q4, it may
end up in any of the five queues, and messages with the same routing key will consis-
tently go to that queue until the number of queues changes again.

 To further illustrate how the distribution of data with a consistent-hashing exchange
works, the following code, from the “6.7 Simulated Image Publisher” notebook, pub-
lishes 100,000 messages to the image-storage exchange. The routing keys are MD5
hashes of the current time and message number concatenated, because providing
100,000 images would be a bit excessive for this example. The results of the distribu-
tion are shown in the bar graph in figure 6.16.

import datetime
import hashlib
import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 for iteration in range(100000):
 timestamp = datetime.datetime.now().isoformat()
 hash_value = hashlib.md5('%s:%s' % (timestamp, iteration))
 msg = rabbitpy.Message(channel, 'Image # %i' % iteration,
 {'headers':
 {'image-hash':
 str(hash_value.hexdigest()}})
 msg.publish('image-storage')

Connects to
RabbitMQ

Opens a
channel on the
connection

Iterates
4 times

reates a
mbered

queue
name

Declares
the queue Binds the queue

with a weight of 10

Connects to
RabbitMQ Opens a

channel on the
connection

terates
00,000

times

Gets a s
value for
current
and time

ates an MD5
hash object

reates a rabbitpy
Message object Publishes the message

with the MD5 hash as
the routing key

131Summary
As you can see, the distribution is close but not exact. This is because the decision of
where to place the queue is determined by the value used in routing, and it can’t truly
load-balance messages in a round-robin way without very specific routing key values
being crafted to ensure this behavior. If you’re looking to load-balance your messages
among multiple queues but don’t want to use the consistent hashing approach,
take a look at John Brisbin’s random exchange (https://github.com/jbrisbin/random-
exchange). Instead of looking at the routing key to distribute the message among the
queues, it uses random number generation. Given RabbitMQ’s plugin flexibility, it
wouldn’t be surprising if a true round-robin exchange were to surface in the future. If
this is something that interests you, perhaps it’s something you’ll be able to write.

 If you’re looking to leverage a consistent-hashing exchange to increase through-
put, you should look before you leap, as it’s not typically required to increase perfor-
mance or message throughput. But if you need to perform tasks like distributing
subsets of messages across data centers or RabbitMQ clusters, the consistent-hashing
exchange can be a valuable tool.

6.8 Summary
By now you should have a good understanding of the various routing mechanisms
built into RabbitMQ. If you need to come back for reference, table 6.1 contains a
quick summary of the exchanges and their descriptions. Each exchange type offers
distinct functionality that can be leveraged in your applications to ensure that mes-
sages are routed to the proper consumers as quickly as possible.

 Remember that messages can often be reused in ways that aren’t initially evident
when creating your architecture, so I recommend incorporating as much flexibility as
possible when creating your messaging architecture. By using topic exchanges with
namespaced semantic routing keys, you can easily tap into the flow of messages, a task

0

500

1000

1500

2000

2500

3000

q0 q1 q2 q3

M
e
s
s
a
g
e
 q

u
a
n
ti
ty

22075 25774 26058 26093

Figure 6.16 The distribution of 100,000 messages with fairly random hashes

https://github.com/jbrisbin/random-exchange
https://github.com/jbrisbin/random-exchange

132 CHAPTER 6 Message patterns via exchange routing
that may be more difficult than if you use a direct exchange as your main routing
mechanism. Topic exchanges should be able to provide almost the same level of flexi-
bility that the headers exchange allows for, without the protocol lock-in of having to
have AMQP message properties for routing.

 At their core, exchanges are simply routing mechanisms for the messages that
flow through RabbitMQ. A wide variety of exchange plugins exist, from exchanges
that store messages in databases, like the Riak exchange (https://github.com/jbrisbin/
riak-exchange), to exchanges with a memory, like the Message History exchange
(https://github.com/videlalvaro/rabbitmq-recent-history-exchange).

 In the next chapter you’ll learn how to join two or more RabbitMQ servers into a
cohesive messaging cluster, providing a way to scale out your messaging throughput
and add stronger message guarantees using highly available queues.

Table 6.1 Summary of exchange types

Name Plugin Description

Direct No Routes to bound queues based upon the value of a routing key.
Performs equality matches only.

Fanout No Routes to all bound queues regardless of the routing key presented
with a message.

Topic No Routes to all bound queues using routing key pattern matching and
string equality.

Headers No Routes messages to bound queues based upon the values in the
message properties headers table.

Consistent-hashing Yes Behaves like a fanout exchange but routes to bound queues, dis-
tributing messages based on the hashed value of a routing key or
message properties header value.

https://github.com/jbrisbin/riak-exchange
https://github.com/jbrisbin/riak-exchange
https://github.com/videlalvaro/rabbitmq-recent-history-exchange

Part 2

Managing RabbitMQ
in the data center

or the cloud

Introducing RabbitMQ in the early stages of an application’s development
lifecycle is a real boost to the application’s architecture. But code isn’t thrown
“over the fence” to production infrastructure teams anymore; as developers, it’s
our responsibility to have a good understanding of the setup in our infrastructure.

 This part of the book deals with using RabbitMQ in clusters: setting up clus-
ters, exploring how they behave, and managing them. We’ll also look at message
distribution and replication across the web: dealing with federated exchanges
and queues allowing the physical separation of two or more clusters, and repli-
cating through these clusters.

Scaling RabbitMQ
with clusters
As a message broker, RabbitMQ is perfect for standalone applications. But suppose
your application needs additional delivery guarantees that only highly available
queues will satisfy. Or maybe you want to use RabbitMQ as a central messaging hub
for many applications. RabbitMQ’s built-in clustering capabilities provide a robust,
cohesive environment that can span multiple servers.

 I’ll start by describing the features and behaviors of RabbitMQ clusters, and
then you’ll set up a two-node RabbitMQ cluster in the Vagrant virtual machine
(VM) environment. In addition, you’ll learn how queue placement is important for
a performant cluster and how to set up HA queues. You’ll also learn how RabbitMQ’s
clustering works at a low level and what server resources are most important to
ensure cluster performance and stability. Closing out the chapter, you’ll learn how
to recover from crashes and node failures.

This chapter covers
 Cluster management

 How queue location can impact performance

 The steps involved in setting up a cluster

 What to do when nodes crash
135

136 CHAPTER 7 Scaling RabbitMQ with clusters
7.1 About clusters
A RabbitMQ cluster creates a seamless view of RabbitMQ across two or more servers.
In a RabbitMQ cluster, runtime state containing exchanges, queues, bindings, users,
virtual hosts, and policies are available to every node. Because of this shared runtime
state, every node in a cluster can bind, publish, or delete an exchange that was created
when connected to the first node (figure 7.1).

 RabbitMQ’s cohesive clusters create a compelling way to scale RabbitMQ. In addi-
tion, clusters provide a mechanism that allows you to create a structured architecture
for your publishers and consumers. In larger cluster environments, it’s not uncom-
mon to have nodes dedicated to specific tasks or queues. For example, you might have
cluster nodes that act strictly as publishing front ends and others that are strictly used
for queues and consumers. If you’re looking to create fault tolerance in your RabbitMQ
environment, clusters provide an excellent way to create HA queues. HA queues span
multiple cluster nodes and share a synchronized queue state, including message data.
Should any node with an HA queue fail, the other nodes in the cluster will still con-
tain the messages and queue state. When the failed node rejoins the cluster, the newly
rejoined node will fully synchronize once any messages that were added while the
node was down are consumed.

 Despite the advantages of using RabbitMQ’s built-in clustering, it’s important to
recognize the limitations and downsides of RabbitMQ clustering. First, clusters are
designed for low-latency environments. You should never create RabbitMQ clusters
across a WAN or internet connection. State synchronization and cross-node message
delivery demand low-latency communication that can only be achieved on a LAN. You
can run RabbitMQ in cloud environments such as Amazon EC2, but not across avail-
ability zones. To synchronize RabbitMQ messages in high-latency environments, you’ll
want to look at the Shovel and Federation tools outlined in the next chapter.

 Another important issue to consider with RabbitMQ clusters is cluster size. The work
and overhead of maintaining the shared state of a cluster is directly proportionate to

RabbitMQ cluster

Queue

P

Node 1

Node 2

A publisher publishes
to node 1.

The message is routed to a
queue defined on node 2.

Figure 7.1 Cross-node publishing of messages in a cluster

137About clusters
the number of nodes in the cluster. For example, using the management API to
gather statistical data in a large cluster can take considerably longer than in a single
node. Such actions can only be as fast as the slowest node to respond. Conventional
wisdom in the RabbitMQ community calls for an upper bound of 32 to 64 nodes in a
cluster. Remember, as you add a node to a cluster, you’re adding complexity to the
synchronization of the cluster. Each node in a cluster must know about every other
node in the cluster. This non-linear complexity can slow down cross-node message deliv-
ery and cluster management. Fortunately, even with this complexity, the RabbitMQ
management UI can handle large clusters.

7.1.1 Clusters and the management UI

The RabbitMQ management UI is built to perform all of the same actions on a cluster
that it performs with a single node, and it’s a great tool for understanding your Rab-
bitMQ clusters once they’ve been created. The Overview page of the management UI
contains top-level information about a RabbitMQ cluster and its nodes (figure 7.2).

Figure 7.2 The management interface, highlighting cluster status with a single node

138 CHAPTER 7 Scaling RabbitMQ with clusters
In the highlighted area of figure 7.2, cluster nodes are listed with columns that describe
their general health and state. As you add nodes to a cluster, they’ll be added to the
table. In larger clusters, this table may take more time to refresh, as each time the API
is called to gather the information, each node in the cluster is queried for updated
information prior to returning a response.

 But before we go too deep into the management UI with regard to clusters, it’s
important to understand the types of nodes in a RabbitMQ cluster.

7.1.2 Cluster node types

There are multiple node types with different behavior in a RabbitMQ cluster. When a
node is added to a cluster, it carries with it one of two primary designations: disk node
or RAM node.

 Disk nodes store the runtime state of a cluster to both RAM and disk. In RabbitMQ,
runtime state includes the definition of exchanges, queues, bindings, virtual hosts,
users, and policies. Because of this, in clusters with large amounts of runtime state,
disk I/O may be more of an issue with disk nodes than with RAM nodes.

 RAM nodes only store the runtime state information in an in-memory database.

NODE TYPES AND MESSAGE PERSISTENCE

Designation of a disk node or a RAM node doesn’t control the behavior of persistent
message storage. When a message is marked as persistent in the delivery-mode mes-
sage property, the message will be written to disk regardless of the node type. Because
of this, it’s important to consider the impact that disk I/O may have on your Rab-
bitMQ cluster nodes. If you require persisted messages, you should provide a disk sub-
system that can handle the write velocity required by the queues that live on your
cluster nodes.

NODE TYPES AND CRASH BEHAVIOR

If a node or cluster crashes, disk nodes will be used to reconstruct the runtime state of
the cluster as they’re started and rejoin the cluster. RAM nodes, on the other hand,
won’t contain any runtime state data when they join a cluster. Upon rejoining a clus-
ter, other nodes in the cluster will send it information such as queue definitions.

 You should always have at least one disk node when creating a cluster, and in some
cases more. Having more than one disk node in a cluster can provide more resilience
in the event of hardware failures. But having multiple disk nodes can be a double-
edged sword in some failure scenarios. If you have multiple node failures in a cluster
with two disk nodes that don’t agree about the shared state of the cluster, you’ll have
problems trying to recover the cluster to its previous state. If this happens, shutting
down the entire cluster and restarting the nodes in order can help. Start the disk node
with the most correct state data, and then add the other nodes. Later in this chapter
we’ll discuss additional strategies for troubleshooting and recovering clusters.

139About clusters
THE STATS NODE

If you use the rabbitmq-management plugin, there’s an additional node type that only
works in conjunction with disk nodes: the stats node. The stats node is responsible for
gathering all of the statistical and state data from each node in a cluster. Only one
node in a cluster can be the stats node at any given time. A good strategy for larger
cluster setups is to have a dedicated management node that’s your primary disk node
and the stats node, and to have at least one more disk node to provide failover capabil-
ities (figure 7.3).

 Depending on the frequency and use of the management API and the quantity of
resources used in RabbitMQ, there can be a high CPU cost for running the manage-
ment API. Running a dedicated management node ensures that message delivery
doesn’t slow statistics gathering, and statistics gathering doesn’t impact message deliv-
ery rates.

In a cluster topology setup with two disk nodes, if the primary node fails, the stats
node designation will be transferred to the secondary disk node. Should the primary
disk node come back up, it will not regain the stats node designation unless the sec-
ondary disk node with the stats node designation stops or leaves the cluster.

 The stats node plays an important part in managing your RabbitMQ clusters. With-
out the rabbitmq-management plugin and a stats node, it can be difficult to get cluster-
wide visibility of performance, connections, queue depths, and operational issues.

7.1.3 Clusters and queue behavior

A message published into any cluster node will be properly routed to a queue without
regard to where that queue exists in the cluster. When a queue is declared, it’s created
on the cluster node the Queue.Declare RPC request was sent to. Which node a queue
is declared on can have an impact on message throughput and performance. A node
with too many queues, publishers, and consumers can be slower than if the queues,
publishers, and consumers were balanced across nodes in a cluster. In addition to not
evenly distributing resource utilization, not considering the location of a queue in a
cluster can have an impact on both publishing and consuming.

Disk node

Stats node

Disk node RAM nodeRAM node

Primary
disk node

Secondary
disk node

Non-management
nodes

Figure 7.3 A cluster with a secondary disk node and two RAM-only
nodes

140 CHAPTER 7 Scaling RabbitMQ with clusters
PUBLISHING CONSIDERATIONS

You might recognize figure 7.4, which is slightly modified from a figure in chapter 4.
When publishing to a cluster, this scale becomes even more important than on a sin-
gle RabbitMQ server.

As you move from left to right on the scale, the amount of cross-cluster communica-
tion between nodes is amplified. If you’re publishing messages on one node that are
routed to queues on another, the two nodes will have to coordinate on a delivery guar-
antee method.

 For example, consider figure 7.5, which illustrates the logical steps for messages
published across nodes while using publisher confirmations.

 Although the steps outlined in figure 7.5 wouldn’t greatly reduce message through-
put, you should consider the complexity of confirmation behavior when creating your
messaging architecture using clusters. Benchmark the various methods with publishers

Transactions

H
A

queues

P
ublisher confirm

s

N
o guarantees

N
otification on failure

A
lternate exchanges

H
A

queues w
ith transactions

Figure 7.4 Performance of delivery guarantee options in RabbitMQ

P

Node 1

X

Node 2

Queue

2. Node routes through1
an exchange.

1. Publisher sends
message to node 1

3. Exchange on node routes1
to node 2 queue

4. Node 2 enqueues
the message.

5. Node 2 tells node the1
message was queued.

6. Node sends1
confirmation.

Figure 7.5 Multi-node publishing with consumer confirmations

141About clusters
and consumers on the various nodes, and see what works best for you. Throughput
might not be the best indicator of the successful implementation of a messaging archi-
tecture; poor performance can surely have a negative impact.

 As with a single node, publishing is only one side of the coin when it comes to
message throughput. Clusters can have an impact on message throughput for con-
sumers too.

NODE-SPECIFIC CONSUMERS

To improve message throughput in a cluster, RabbitMQ tries to route newly pub-
lished messages to pre-existing consumers whenever possible. But in queues with a
backlog of messages, new messages are published across the cluster into the nodes
where the queues are defined. In this scenario, performance can suffer when you
connect a consumer to a node that’s different than the node where the queue is
defined (figure 7.6).

In this scenario, messages are published into a queue located on node 2, and a con-
sumer is connected to node 1. When messages are retrieved from the queue for the
consumer connected to node 1, they must first travel through the cluster to node 1
before being delivered to the consumer. If you consider where the queue lives when
connecting a consumer, you can reduce the overhead required to send the message to
the consumer. Instead of having messages travel through the cluster to your consum-
ers, the node where the queue lives can directly deliver messages to consumers con-
nected to it (figure 7.7).

 By considering queue locality and connecting to the appropriate node for consum-
ers and publishers alike, you can reduce cross-cluster communication and improve

RabbitMQ cluster

Queue

Node 1

Node 2

C

A consumer connected to node 1
that is consuming from

a queue on node 2

A queued message is sent to node 1
before being sent to the consumer.

Figure 7.6 Cross-cluster node message consuming

142 CHAPTER 7 Scaling RabbitMQ with clusters
overall message throughput. High-velocity publishers and consumers will see the great-
est impact on directly connecting to the appropriate nodes for their queues. That is,
of course, unless you’re using HA queues.

HIGHLY AVAILABLE QUEUES

It should be no surprise that using HA queues can come with a performance penalty.
When placing a message in a queue or consuming a message from a queue, RabbitMQ
must coordinate among all the nodes that the HA queue lives on. The more nodes an
HA queue lives on, the more coordination there is among nodes.

 In large clusters, you should consider just how many nodes your queue should use
prior to declaring it. If you’re asking for all nodes on a 24-node cluster, you’re likely
creating a lot of work for RabbitMQ with very little reward. Because HA queues have a
copy of each message on each node, you should ask yourself if you need more than
two or three nodes to ensure that you don’t lose any messages.

7.2 Cluster setup
A RabbitMQ cluster requires two or more nodes. In this section, you’ll set up a cluster
using two Vagrant VMs. The Vagrant configuration you downloaded in the appendix
(while doing the setup for chapter 2) has a configuration for both VMs used in the fol-
lowing examples. The primary VM you’ve used to this point will be the first server in
the cluster, and you’ll use the secondary VM definition in Vagrant for this chapter.

 To start the process of setting up a cluster, you’ll boot the secondary VM and log
into it via a secure shell.

RabbitMQ cluster

Queue

Node 1

Node 2

C

Consumers connected
directly to the node where

their queue lives

Queue

C

Figure 7.7 By connecting to the same node that a queue lives on, consumers can see improved
throughput.

143Cluster setup
7.2.1 Virtual machine setup

Change to the location where you unzipped the rmqid-vagrant.zip file when setting up
the environment for the book. Start the second VM by telling Vagrant to start the VM:

vagrant up secondary

This will start a second VM that you’ll use to set up and experiment with RabbitMQ
clustering. When it has finished setting up the VM, you should see output similar to
figure 7.8.

With the VM running, you can now open a secure shell by running the following
Vagrant command in the same directory:

vagrant ssh secondary

You should now be connected into the second VM as the vagrant user. You’ll need to
run your commands as the root user, however, so switch to the root user with the fol-
lowing command:

sudo su –

Figure 7.8 Output of vagrant up secondary

144 CHAPTER 7 Scaling RabbitMQ with clusters
When you run this command, the prompt you see in the secure shell should change
from vagrant@secondary:~$ to root@secondary:~# indicating that you’re now logged
in as the root user in the VM. As the root user, you’ll have permission to run the rabbit-
mqctl script to communicate with the local RabbitMQ server instance on the box.

 Now it’s time to set up the cluster.

7.2.2 Adding nodes to the cluster

There are two ways to add nodes to a cluster with RabbitMQ.
 The first involves editing the rabbitmq.config configuration file and defining each

node in a cluster. This method is preferred if you’re using an automated configura-
tion management tool, such as Chef (www.getchef.com) or Puppet (www.puppet-
labs.com) and you have a well-defined cluster from the outset. Before you create a
cluster via the rabbitmq.config file, it’s useful to create one manually.

 Alternatively, you can add and remove nodes from a cluster in an ad hoc manner
by using the rabbitmqctl command-line tool. This method provides a less rigid struc-
ture for learning about RabbitMQ cluster behavior and is good to know for trouble-
shooting degraded clusters. You’ll use rabbitmqctl to create a cluster between the
VMs in this section, but prior to doing so, you should know something about Erlang
cookies and their impact on RabbitMQ clustering.

ERLANG COOKIES

To communicate between nodes, RabbitMQ uses the built-in, multi-node communica-
tion mechanisms in Erlang. To secure this multi-node communication, Erlang and the
RabbitMQ process have a shared secret file called a cookie. The Erlang cookie file
for RabbitMQ is contained in the RabbitMQ data directory. On *NIX platforms, the
file is usually at /var/lib/rabbitmq/.erlang.cookie, though this can vary by distribu-
tion and package. The cookie file contains a short string and should be the same on
every node in a cluster. If the cookie file isn’t the same on each node in the cluster, the
nodes won’t be able to communicate with each other.

 The cookie file will be created the first time you run RabbitMQ on any given
server, or if the file is missing. When setting up a cluster, you should ensure that
RabbitMQ isn’t running and you overwrite the cookie file with the shared cookie file
prior to starting RabbitMQ again. The Chef cookbooks that set up the Vagrant VMs
for this book have already set up the Erlang cookie to match on both machines. That
means you can get started creating a cluster using rabbitmqctl.

NOTE Using rabbitmqctl is an easy way to add and remove nodes in a clus-
ter. It can also be used to change a node from a disk node to a RAM node and
back. rabbitmqctl is a wrapper to an Erlang application that communicates
with RabbitMQ. As such, it also needs access to the Erlang cookie. When you
run the command as root, it knows where to look for the cookie file and will
use it if it can. If you have trouble using rabbitmqctl in your production envi-
ronment, make sure the user you’re running rabbitmqctl as either has access
to the RabbitMQ Erlang cookie, or has a copy of the file in its home directory.

http://www.getchef.com
http://www.puppetlabs.com
http://www.puppetlabs.com

145Cluster setup
CREATING AD HOC CLUSTERS

With RabbitMQ running on the node, and you logged in as the root user, you can now
add the secondary VM node, creating a cluster with the primary VM node.

 To do so, you must first tell RabbitMQ on the secondary node to stop using
rabbitmqctl. You won’t be stopping the RabbitMQ server process itself, but using
rabbitmq to instruct RabbitMQ to halt internal processes in Erlang that allow it to pro-
cess connections. Run the following command in the terminal:

rabbitmqctl stop_app

You should see output similar to the following:

Stopping node rabbit@secondary ...
...done.

Now that the process has stopped, you need to erase the state in this RabbitMQ node,
making it forget any runtime configuration data or state that it has. To do this, you’ll
instruct it to reset its internal database:

rabbitmqctl reset

You should see a response similar to this:

Resetting node rabbit@secondary ...
...done.

Now you can join it to the primary node and form the cluster:

rabbitmqctl join_cluster rabbit@primary

This should return with the following output:

Clustering node rabbit@secondary with rabbit@primary ...
...done.

Finally, start the server again using the following command:

rabbitmqctl start_app

You should see the output that follows:

Starting node rabbit@secondary ...
...done.

Congratulations! You now have a running RabbitMQ cluster with two nodes. If you
open the management UI in your browser at http://localhost:15672 you should see an
Overview page similar to figure 7.9.

http://localhost:15672

146 CHAPTER 7 Scaling RabbitMQ with clusters
CONFIGURATION-BASED CLUSTERS

Creating a cluster using the configuration file can be a little trickier. When you set up
the cluster using rabbitmqctl, you issued the reset command to the server, telling it
to forget all of its state and internal data. With configuration-file-based clusters, you
can’t do this, as RabbitMQ attempts to join a node to the cluster when the server
starts. If you install RabbitMQ and the server starts before you create the configura-
tion file that has the cluster definition in it, the node will fail to join the cluster.

 If you’re using a configuration management tool, one way around this is to cre-
ate the /etc/rabbitmq.config file prior to installing RabbitMQ. The new installation
shouldn’t overwrite the pre-existing configuration file. During this same phase of con-
figuration, it’s a good idea to write the Erlang cookie file that’s shared across all nodes
of the cluster.

Figure 7.9 A two-node RabbitMQ cluster

147Summary
 Defining a cluster in configuration is straightforward. In the /etc/rabbitmq.config
file, there’s a stanza named cluster_nodes that carries the list of nodes in the cluster
and indicates whether the node is a disk node or a RAM node. The following configu-
ration snippet would be used to define the VM cluster you previously created:

[{rabbit,
 [{cluster_nodes, {['rabbit@primary', 'rabbit@secondary'], disc}}]
}].

If you were to use this configuration on both nodes, they’d both be set up as disk
nodes in the cluster. If you wanted to make the secondary node a RAM node, you
could change the configuration, substituting the disc keyword with ram:

[{rabbit,
 [{cluster_nodes, {['rabbit@primary', 'rabbit@secondary'], ram}}]
}].

A downside to configuration-based clusters is that because they’re defined in the con-
figuration file, adding and removing nodes requires updating the configuration of all
nodes in the cluster prior to a node being added or removed. It’s also worth noting
that cluster information is ultimately stored as state data in the disk nodes in a cluster.
Defining the cluster in the configuration file tells RabbitMQ nodes to join a cluster
the first time they start up. This means that if you change your topology or configura-
tion, it won’t impact that node’s membership in a cluster.

7.3 Summary
Clustering in RabbitMQ is a powerful way to scale your messaging architecture and
create redundancy in your publishing and consuming endpoints. Although RabbitMQ’s
cohesive cluster topology allows for publishing and consuming from any node in a
cluster, publishers and consumers should consider the location of the queues they’re
working with to achieve the highest throughput.

 For LAN environments, clusters provide a solid platform for the growth of your
messaging platform, but clusters aren’t meant for high-latency networks such as WANs
and the internet. To connect RabbitMQ nodes across WANs or the internet, RabbitMQ
comes with two plugins that we’ll discuss in the next chapter.

Cross-cluster
message distribution
Whether you’re looking to implement messaging across data centers, upgrade
RabbitMQ, or provide transparent access to messages in different RabbitMQ clus-
ters, you’ll want to take a look at the federation plugin. Distributed with RabbitMQ
as a stock plugin, the federation plugin provides two different ways to get messages
from one cluster to another. By using a federated exchange, messages published to
an exchange in another RabbitMQ server or cluster are automatically routed to
bound exchanges and queues on the downstream host. Alternatively, if your needs
are more specific, federated queues provide a way to target the messages in a single
queue instead of an exchange. In either scenario, the goal is to transparently relay
messages from the upstream node where they were originally published to the
downstream node (figure 8.1).

This chapter covers
 Federated exchanges and queues

 How to set up multiple federated RabbitMQ
nodes in Amazon Web Services

 Different patterns of use for RabbitMQ federation
148

149Federating exchanges and queues
8.1 Federating exchanges and queues
To figure out if federation has a place in your message topology, it helps to under-
stand how federation works and what you can expect when you use the federation
plugin. Provided as part of the core RabbitMQ distribution, the federation plugin pro-
vides flexible ways to transparently relay messages between nodes and clusters. The
functionality of the plugin is divided into two main components: federated exchanges
and federated queues.

 Federated exchanges allow for messages published to an exchange on an upstream
node to transparently be published to an exchange of the same name on the down-
stream node. Federated queues, on the other hand, allow for downstream nodes to
act as consumers of shared queues on upstream nodes, providing the ability to round-
robin messages across multiple downstream nodes.

 Later in this chapter you’ll set up a test environment where you can experiment
with both types of federation, but first let’s explore how each works.

8.1.1 Federated exchanges

Suppose you’re tasked with adding the ability to do large-scale data processing of user
behavior related to your pre-existing web application running in the cloud. The appli-
cation is a large-scale, user-driven news site, like Reddit or Slashdot, and the applica-
tion already uses a messaging-based topology where events are raised when the user
takes actions on your site. When users log in, post articles, or leave comments, instead
of directly writing the content to the database, messages are published to RabbitMQ
and consumers perform the database writes (figure 8.2).

 Because the web application’s database write operations are decoupled using
RabbitMQ as the middleware between the application and the consumer that writes to
the database, you can easily tap into the message stream to write the data to a data
warehouse for analysis as well. One way you could go about this is to add a consumer
local to the web application that writes to the data warehouse. But what do you do
when the infrastructure and storage for your data warehouse is located elsewhere?

 As we discussed in the last chapter, RabbitMQ’s built-in clustering capabilities
require low-latency networks where network partitions are rare. The term network par-
tition refers to nodes on a network being unable to communicate with each other.

Messages are sent from the upstream
node to the downstream node’s

exchanges or queues.

Message

DownstreamUpstream

Figure 8.1 Messages are sent to
the downstream node’s exchanges
and queues from the upstream node.

150 CHAPTER 8 Cross-cluster message distribution
When you’re connecting over high-latency network connections, such as the internet,
network partitions aren’t uncommon and should be accounted for. Fortunately,
RabbitMQ has a bundled plugin for federating nodes that can be used in these very
situations. The federation plugin allows for a downstream RabbitMQ server that feder-
ates messages from the pre-existing RabbitMQ server (figure 8.3).

Web application

DB C

Content

Instead of writing logins, articles, or comments
directly to the database from the web application,

they are published to RabbitMQ.

The web application
reads all content from

the local database.

A local consumer writes the
content to the database.

Figure 8.2 A web application with decoupled writes, prior to adding federation

Web application

DB C

The downstream RabbitMQ
server delivers the messages

to a consumer that writes them
to the data warehouse.

CInternet

The same messages that are published to
the local consumer are federated across the
internet to a downstream RabbitMQ server.

Downstream
server

Upstream
server

Figure 8.3 The same web application with a federated downstream RabbitMQ server storing
messages in the data warehouse

151Federating exchanges and queues
When the federated server is set up, all you have to do is create policies that apply to
the exchanges you need the messages from. If the upstream RabbitMQ server has an
exchange called events that the login, article, and comment messages are published
into, your downstream RabbitMQ server should create a federation policy matching
that exchange name. When you create the exchange on the downstream RabbitMQ
and bind a queue to it, the policy will tell RabbitMQ to connect to the upstream server
and start publishing messages to the downstream queue.

 Once RabbitMQ is publishing messages from the upstream server to the down-
stream queue, you don’t have to worry about what will happen if the internet connec-
tivity is severed between the two. When connectivity is restored, RabbitMQ will
dutifully reconnect to the main RabbitMQ cluster and start locally queuing all of the
messages that were published by the website while the connection was down. After a
bit of time, the downstream consumer should catch up, and you won’t need to lift
a finger. Does this sound like magic? Perhaps, but there’s nothing magical about it
under the covers.

 An exchange with a federation policy on the host gets its own special process in
RabbitMQ. When an exchange has a policy applied, it will connect to all of the
upstream nodes defined in the policy and create a work queue where it can receive
messages. The process for that exchange then registers as a consumer of the work
queue and waits for messages to start arriving. Bindings on exchange in the down-
stream node are automatically applied to the exchange and work queue in the upstream
node, causing the upstream RabbitMQ node to publish messages to the downstream
consumer. When that consumer receives a message, it publishes the message to the
local exchange, just as any other message publisher would. The messages, with a few
extra headers attached, are routed to their proper destination (figure 8.4).

Upstream RabbitMQ node Downstream RabbitMQ node

X C / P XQueue

The downstream federation plugin creates
and binds an exclusive, automatically managed

queue for federated messages.

The federation plugin acts like both a consumer and publisher,
consuming messages from the upstream node and internally

republishing them on the same node it’s running on.

Figure 8.4 The federation plugin creates a work queue on the upstream RabbitMQ node.

152 CHAPTER 8 Cross-cluster message distribution
As you can see, federated exchanges provide a simple, reliable, and robust way to
extend your RabbitMQ infrastructure across network latencies that RabbitMQ cluster-
ing doesn’t allow. Additionally, it allows you to bridge logically separated RabbitMQ
clusters, such as two clusters in the same data center running different versions of
RabbitMQ.

 The federated exchange is a powerful tool that can cast a wide net in your messag-
ing infrastructure, but what if your needs are more specific? Federated queues can
also provide a more focused way of distributing messages across RabbitMQ clusters
that even allows for round-robin behavior among multiple downstream nodes and
RabbitMQ consumers.

8.1.2 Federated queues

A newer addition to the federation plugin—queue-based federation—provides a way to
scale out queue capacity. This is especially useful for messaging workloads where a
particular queue may have heavy spikes of publishing activity and much slower or
throttled consuming. When using a federated queue, message publishers use the
upstream node or cluster, and messages are distributed to the same-named queue
across all downstream nodes (figure 8.5).

Like the upstream queue, downstream queues can exist on a single node or as part of
an HA queue in a cluster. The federation plugin ensures that downstream queues will
only receive messages when the queues have consumers available for processing mes-
sages. By checking the consumer count for each queue and only binding to the
upstream node when consumers are present, it prevents idle messages from collecting
in consumerless queues.

 As you go through the configuration-related examples later in this chapter, you’ll
see that there’s very little difference between the configuration of federated queues

Upstream RabbitMQ server

Foo

Downstream RabbitMQ server 1

Foo

Downstream RabbitMQ server 2

Foo

Figure 8.5 The upstream “foo” queue has its messages load-balanced between two RabbitMQ servers
using the federation plugin.

153Creating the RabbitMQ virtual machines
and exchanges. In fact, the default configuration for federation targets both exchanges
and queues.

8.2 Creating the RabbitMQ virtual machines
In the rest of this chapter, we’ll use free Amazon EC2 instances to set up multiple
RabbitMQ servers that will use federation to transparently distribute messages without
clustering. If you’d rather use your own cloud provider or pre-existing network and
servers, the concepts remain the same. If you choose not to use Amazon Web Services
(AWS) for the examples in this chapter, just create your own servers and try to match
the environment setup as closely as possible. In either scenario, you should set up two
RabbitMQ servers to work with the examples.

 To set up the VMs on Amazon EC2, you’ll create the first instance, install and con-
figure RabbitMQ, and then create an image of the instance, allowing you to create
one or more copies of the server for experimentation. If you’re not providing your
own virtual servers, you’ll need an AWS account. If you don’t already have one, you
can create one for free at http://aws.amazon.com.

8.2.1 Creating the first instance

To begin, log into the AWS console and click Create Instance. You’ll be presented with a
list of image templates for creating a VM. Select Ubuntu Server from the list (figure 8.6).

Figure 8.6 Selecting an AMI to launch an Amazon EC2 instance

http://aws.amazon.com

154 CHAPTER 8 Cross-cluster message distribution
Once it’s selected, you’ll be presented with the next step, choosing the instance
type. Select the general purpose t2.micro instance, which should be labeled as Free
Tier Eligible.

 Once the instance type is selected, you’ll be presented with a configuration screen
for the instance. You can leave the defaults selected on that screen and click the
Next: Add Storage button. Leave the defaults on this screen as well, clicking on
the Next: Tag Instance button. You don’t need to do anything on this screen either.
Click Next: Configure Security Group, and you’ll be presented with the Security
Group configuration. You’ll want to modify these settings so that you can communicate
with RabbitMQ. Because this is just an example, you can open ports 5672 and 15672 to
the internet without any source restrictions. Click the Add Rule button to allow for a
new firewall rule to be defined, and create entries for each port with the Source set to
Anywhere, as illustrated in figure 8.7.

Once you’ve added the two rules, click the Review and Launch button. Once you’re
on the review screen, click Launch. You’ll be presented with a dialog box allowing
you to select an SSH key pair or create a new one. Select Create a New Key Pair
from the first drop-down box, enter a name for it, and click Download Key Pair

Figure 8.7 Configuring the Security Group’s firewall settings for RabbitMQ

155Creating the RabbitMQ virtual machines
(figure 8.8). You’ll want to save the key pair to an accessible location on your com-
puter, as it will be used to SSH into the EC2 instance.

When you’ve downloaded the key pair, click the Launch Instance button. AWS will
then begin the process of creating and starting your new VM instance. Navigate back
to the EC2 dashboard, and you should see the new instance starting up or running
(figure 8.9).

 Once the new EC2 instance has started, it will have a public IP address and DNS.
Make note of the IP address, as you’ll use it to connect to the VM to configure
RabbitMQ.

CONNECTING TO THE EC2 INSTANCE

With the EC2 instance IP address and path to the SSH key pair in hand, you can now
SSH into the VM and begin the process of setting up RabbitMQ. Connecting as the
ubuntu user, you’ll need to specify the path to the SSH key pair. The following com-
mand references the file in the Downloads folder in my home directory.

ssh -i ~/Downloads/rabbitmq-in-depth.pem.txt ubuntu@[Public IP]

Figure 8.8 Creating a new key pair for accessing the VM

156 CHAPTER 8 Cross-cluster message distribution
NOTE If you’re in a Windows environment, there are several good applica-
tions for connecting over SSH to remote systems, including PuTTY (free, at
www.chiark.greenend.org.uk/~sgtatham/putty/) and SecureCRT (commercial,
www.vandyke.com/products/securecrt/).

Once connected, you’ll be logged in as the ubuntu user, and you should see the
MOTD banner, similar to the following:

Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-36-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Sun Jan 4 23:36:53 UTC 2015

 System load: 0.0 Memory usage: 5% Processes: 82

 Usage of /: 9.7% of 7.74GB Swap usage: 0% Users logged in: 0

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

ubuntu@ip-172-31-63-231:~$

Figure 8.9 The EC2 dashboard with the newly created instance

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.vandyke.com/products/securecrt/

157Creating the RabbitMQ virtual machines
Because there are a number of commands you need to issue as the root user, go
ahead and switch users so you’re not typing the sudo command all of the time:

sudo su –

As the root user, you can now install the Erlang runtime and RabbitMQ on the first
EC2 instance.

INSTALLING ERLANG AND RABBITMQ
To install RabbitMQ and Erlang, you can use the official RabbitMQ and Erlang Solu-
tions repositories. Although the main Ubuntu package repositories have support for
both RabbitMQ and Erlang, it’s advisable to get the latest versions of both, and the dis-
tribution repositories can often be significantly out of date. To use the external repos-
itories, you’ll need to add the package-signing keys and configuration for the external
repositories.

 First, add the RabbitMQ public key that enables Ubuntu to verify the file signa-
tures of the packages being installed:

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 \
 --recv 6B73A36E6026DFCA

You’ll see output from the apt-key application stating that it imported the “RabbitMQ
Release Signing Key <info@rabbitmq.com>.”

 With the key imported to the database of trusted packaging keys, you can now add
the official RabbitMQ package repository for Ubuntu. The following command will
add a new file to the proper location, adding the RabbitMQ repository for use:

echo "deb http://www.rabbitmq.com/debian/ testing main" \
 > /etc/apt/sources.list.d/rabbitmq.list

Now that the RabbitMQ repository has been configured, you’ll need to add the Erlang
Solutions key to the trusted keys database:

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv \
 D208507CA14F4FCA

When apt-key has completed, you’ll see that it imported the “Erlang Solutions Ltd.
<packages@erlang-solutions.com>” key.

 Now add the Erlang Solutions Ltd. repository configuration:

echo "deb http://packages.erlang-solutions.com/debian precise contrib" \
 > /etc/apt/sources.list.d/erlang-solutions.list

With the configuration and keys in place, the following command will synchronize the
local database of packages and allow you to install RabbitMQ:

apt-get update

158 CHAPTER 8 Cross-cluster message distribution
Now you can install Erlang and RabbitMQ. The rabbitmq-server package will auto-
matically resolve the Erlang dependencies and install the proper packages.

apt-get install –y rabbitmq-server

Once the command has finished, you’ll have RabbitMQ up and running, but you’ll
need to run a few more commands to enable the proper plugins and allow you to con-
nect to both the AMQP port and the management interface.

CONFIGURING RABBITMQ
RabbitMQ contains all of the functionality for both managing the server and using
federation, but it’s not enabled by default. The first step in configuring the RabbitMQ
instance is to enable the plugins that ship with RabbitMQ, which will allow you to set
up and use its federation capabilities. To do so, use the rabbitmq-plugins command:

rabbitmq-plugins enable rabbitmq_management rabbitmq_federation \
 rabbitmq_federation_management

As of RabbitMQ 3.4.0, this will automatically load the plugins without requiring a
restart of the broker. But you’ll want to enable the default guest user to allow logins
from IP addresses beyond localhost. To do so, you’ll need to create a RabbitMQ con-
figuration file at /etc/rabbitmq/rabbitmq.config with the following content:

[{rabbit, [{loopback_users, []}]}].

You now need to restart RabbitMQ for the loopback_users setting to take effect:

service rabbitmq-server restart

To prevent confusion later when using both VMs, you can update the cluster name
using the rabbitmqctl command. When you’re using the management interface, the
cluster name is displayed in the top-right corner. To set the name via the command
line, run the following command:

rabbitmqctl set_cluster_name cluster-a

You can now test that the installation and configuration worked. Open the manage-
ment interface in your web browser using the IP address of the EC2 instance on port
15672 in this URL format: http://[Public IP]:15672. Once you log in as the guest
user with the password “guest”, you should see the Overview screen (figure 8.10).

 With the first instance created, you can leverage the Amazon EC2 dashboard
to create an image from the running instance you just created, and use that image to
launch a duplicate VM. The new image will make it easy to spin up new, pre-configured,
standalone RabbitMQ servers for testing RabbitMQ’s federation capabilities.

159Creating the RabbitMQ virtual machines
8.2.2 Duplicating the EC2 instance

Instead of duplicating the previous steps to create a standalone instance of RabbitMQ,
let’s have Amazon do the work. To do so, you’ll need to tell EC2 to create a new image
or AMI from the running VM instance you just created.

 Navigate to the EC2 Instances dashboard in your web browser, and click on the
running instance. When you do, a context-sensitive menu will pop up that allows you
to perform commands on that instance. From that menu, navigate to Image > Create
Image (figure 8.11).

 Once you select Create Image, a pop-up dialog box will appear, allowing you
to set options for creating the image. Give the image a name and leave the rest of
the options alone. When you click on the Create Image button, the exiting VM will
be shut down, and the disk image for the VM will be used to create a new AMI
(figure 8.12).

 When the system has created the snapshot of the filesystem for the original VM, it
will automatically be restarted, and the task of creating a new AMI will be queued in
Amazon’s system. It will take a few minutes for the AMI to be available for use. You can

Figure 8.10 The RabbitMQ management UI Overview screen

160 CHAPTER 8 Cross-cluster message distribution
Figure 8.11 Creating a new image based on the running instance

Figure 8.12 The Create Image dialog box

161Creating the RabbitMQ virtual machines
check the status by clicking on the Images > AMIs option in the sidebar navigation
(figure 8.13).

Once your AMI is available, select it in the AMI dashboard, and then click the Launch
button on the top button bar. This will start you at step two of creating the VM. You’ll
go through all the steps you previously went through to create the original VM, but
instead of creating a new security policy and SSH key pair, select the ones you created
for the first VM.

 When you’ve completed the steps to create the VM, navigate back to the EC2
Instances dashboard. Wait for the instance to become available, making note of its
public IP address. One it’s running, you should be able to connect to its manage-
ment interface via your web browser on port 15672 using the URL format http://
[Public IP]:15672. Log in to the management interface and change the cluster
name to “cluster-b” by clicking on the Change link at the top right corner and fol-
lowing the instructions on the page you’re sent to (figure 8.14). This name change
will make it easy to distinguish which server you’re logged in to when using the man-
agement interface.

Figure 8.13 The AMI section of the EC2 dashboard

Figure 8.14 The cluster name is displayed in the top right of the management interface.

http://[Public IP]:15672
http://[Public IP]:15672

162 CHAPTER 8 Cross-cluster message distribution
With both EC2 instances up and running, you’re ready to set up federation between the
two nodes. Although we’ve used Amazon EC2 in the same availability zone for both
nodes in this example, federation is designed to work well in environments where net-
work partitions can occur, allowing RabbitMQ to share messages across data centers
and large geographic distances.

 To get started, let’s use federation to copy messages from one node to another.

8.3 Connecting upstream
Whether you’re looking to leverage federation for cross-data-center delivery of mes-
sages or you’re using federation to seamlessly migrate your consumers and publishers
to a new RabbitMQ cluster, you start in the same place: upstream configuration.
Although the upstream node is responsible for delivering the messages to the down-
stream node, it’s the downstream node where the configuration takes place.

 Federation configuration has two parts: the upstream configuration and a federa-
tion policy. First, the downstream node is configured with the information required
for the node to make an AMQP connection to the upstream node. Then policies are
created that apply upstream connections and configuration options to downstream
exchanges or queues. A single RabbitMQ server can have many federation upstreams
and many federation policies.

 To start receiving messages from the upstream node, cluster-a, to the down-
stream node, cluster-b, you must first define the upstream in the RabbitMQ man-
agement interface.

8.3.1 Defining federation upstreams

When installed, the federation management plugin adds two new Admin tabs to the
RabbitMQ management interface: Federation Status and Federation Upstreams.
Although the status screen will be blank until you create policies that configure
exchanges or queues to use federation, the Federation Upstreams tab (figure 8.15) is
the first place you’ll go to start the configuration process.

 There are multiple options for adding a new upstream connection, but only the
name and AMQP URI for the connection are required. In a production environment,
you’ll likely want to configure the other options as well. If these options look familiar,
it’s because they represent a combination of options available when defining a queue
and when consuming messages. For your first upstream connection, leave them blank
and let RabbitMQ use the default settings.

 To define the connection information for the upstream node, enter the AMQP
URI for the remote server. The AMQP URI specification allows for flexible configura-
tion of the connection, including the ability to tweak the heartbeat interval, maximum
frame size, connection port, username and password, and much more. The full speci-
fication for the AMQP URI syntax, including the available query parameters, is avail-
able on the RabbitMQ website at www.rabbitmq.com/uri-spec.html. Because the test

http://www.rabbitmq.com/uri-spec.html

163Connecting upstream
environment we’re using is as simple as possible, you can use the defaults for every-
thing but the hostname in the URL.

 In your testing environment, the node representing cluster-b will act as the
downstream node and connect to the node representing cluster-a. Open the man-
agement interface in your web browser and navigate to the Federation Upstreams
tab in the Admin section. Expand the Add a New Upstream section and enter
cluster-a as the name for the upstream. For the URI, enter amqp://[Public IP],
replacing [Public IP] with the IP address of the first node you set up in this chapter
(figure 8.16).

 The information you enter here defines a single connection to another RabbitMQ
node. The connection won’t be used until a policy is created that references the
upstream. When a policy is applied using the upstream, the federation plugin will con-
nect to the upstream node. Should it be disconnected due to a routing error or some
other network event, the default behavior is to try to reconnect once per second; you
can change this behavior when defining the upstream in the Reconnect Delay field. If
you want to change this after you’ve created an upstream, you must delete and recre-
ate the upstream.

Figure 8.15 The Federation Upstreams tab in the Admin section of the management interface

164 CHAPTER 8 Cross-cluster message distribution
Once you’ve entered the name and URI, click Add Upstream to save the upstream
configuration with RabbitMQ. After the upstream has been added, you can define the
policy and test out exchange-based federation.

NOTE Although the examples in this chapter use the management interface to
create upstream nodes, you can also use the HTTP management API and the
rabbitmqctl CLI application. For examples of using rabbitmqctl for adding
upstreams, visit the federation plugin documentation at http://rabbitmq.com.

8.3.2 Defining a policy

Federation configuration is managed using RabbitMQ’s policy system, which pro-
vides a flexible way to dynamically configure the rules that tell the federation
plugin what to do. When you create a policy, you first specify a policy name and a
pattern. The pattern can either evaluate for direct string matching or it can specify
a regular expression (regex) pattern to match against RabbitMQ objects. The pat-
tern can be compared against exchanges, queues, or both exchanges and queues.
Policies can also specify a priority that’s used to determine which policy should be
applied to queues or exchanges that match multiple policies. When a queue or
exchange is matched by multiple policies, the policy with the highest priority value

Figure 8.16 Adding a new federation upstream

http://rabbitmq.com

165Connecting upstream
wins. Finally, a policy has a definition table that allows for arbitrary key/value pairs
to be specified.

 For a first example, you’ll create a policy named federation-test that will do
string-equality checking against an exchange named test (figure 8.17). To tell the
federation plugin that you want to federate the exchange from the cluster-a
upstream, enter a key of federation-upstream with a value of cluster-a in the defi-
nition table. Once you’ve entered that information, click the Add Policy button to add
it to the system.

With the policy added, you’ll need to add the test exchange to both nodes. You can
use the Exchanges tab of each management interface to add the exchange. To pre-
vent the cluster-b node from trying to federate a non-existent exchange on the
cluster-a node, declare the exchange on the cluster-a node first. You can use any
of the built-in exchange types, but I recommend using a topic exchange for flexibility
in experimenting. Whichever type you select, you should be consistent and use the
same exchange type for the test exchange on both cluster-a and cluster-b.

 Once you’ve added the exchange to both nodes, you’ll notice in the Exchanges tab
of the management interface on the cluster-b node that the test exchange has a
label matching the federation policy in the Features column (figure 8.18). The label
indicates that you successfully matched the policy to the exchange.

Figure 8.17 Adding a new policy using the cluster-a federation upstream node

166 CHAPTER 8 Cross-cluster message distribution
After verifying that the policy was applied correctly, check the federation status to
make sure that the cluster-b node was able to connect properly to its upstream,
cluster-a. Click on the Admin tab and then the Federation Status menu item on the
right to see if everything was configured properly. If everything worked, you should
see a table with a single entry, with cluster-a in the Upstream column. The State col-
umn should indicate the upstream is running (figure 8.19).

Now that you’ve verified that RabbitMQ thinks everything is configured and running
properly, you can test it by publishing messages on cluster-a and having them
queued on cluster-b. To do so, create a test queue on cluster-b and bind it to the
test exchange with a binding key of demo. This will set up the binding both locally on
cluster-b and for the federation of messages to the test exchange on cluster-a.

 Switch to the management interface for cluster-a and select the test exchange
on the Exchanges tab. On the test exchange page, expand the Publish Message

Figure 8.18 The Exchanges table showing that the test exchange has the
federation-test policy applied to it

Figure 8.19 The Federation Status page indicates that the cluster-a upstream is running for the test
exchange.

167Connecting upstream
section. Enter the routing key demo and whatever content you’d like in the Payload
field. When you click the Publish Message button, the message will be published to
the test exchange on both cluster-a and cluster-b, and it should have been
queued in your test queue on cluster-b.

 Using the management interface for cluster-b, navigate to the Queues tab,
and then select your test queue. Expand the Get Messages section and click the Get
Message(s) button and you should see the message you published on cluster-a
(figure 8.20).

To help identify messages that were distributed via federation, the federation plugin
adds an x-received-from field to the headers table in the message properties. The
value of the field is a key/value table that includes the upstream uri, exchange,
cluster-name, and a flag indicating if the message was redelivered.

8.3.3 Leveraging upstream sets

In addition to defining individual upstream nodes, the federation plugin provides the
ability to group multiple nodes together for use in a policy. This grouping functional-
ity provides quite a bit of versatility in how you define your federation topology.

Figure 8.20 The message published from cluster-a

168 CHAPTER 8 Cross-cluster message distribution
PROVIDING REDUNDANCY

For example, imagine your upstream node is part of a cluster. You could create an
upstream set that defines each node in the upstream cluster, allowing the downstream
node to connect to every node in the cluster, ensuring that should any one node go
down, messages published into the upstream cluster won’t be missed downstream (fig-
ure 8.21).

If you’re using a federated exchange in a downstream cluster, should the node con-
necting to the upstream fail in the cluster, another node will automatically take over
the role, connecting upstream.

GEOGRAPHICALLY DISTRIBUTED APPLICATIONS

A more complex scenario could involve a geographically distributed web application.
Suppose you’re tasked with developing a service that records views of a banner adver-
tisement. The goal is to serve the banner ad as quickly as possible, so the application is
deployed to locations throughout the world, and DNS-based load balancing is
employed to distribute the traffic to the closest data center for any given user. When
the user views the advertisement, a message is published to a local RabbitMQ node
that acts as a federation upstream node for a central processing system. The central-
ized RabbitMQ node has defined a federation upstream set that contains the Rab-
bitMQ server in each geographically distributed location. As messages come into each
location, they’re relayed to the central RabbitMQ server and processed by consumer
applications (figure 8.22).

 Because the client-like behavior of the federation plugin allows for connection fail-
ures, should any of the geographically distributed nodes go offline, the processing of
traffic from the rest of the system isn’t impacted. Should it just be a regional routing
issue, all of the queued messages from the disconnected upstream will be delivered
once the downstream is able to reconnect.

Upstream set

Downstream

Cluster node 1

Cluster node 2

Cluster node has1
become unavailable.

The downstream is still receiving
messages from the cluster

via cluster node 2.

X

Figure 8.21 A cluster set can provide
redundancy for communication with
clustered upstream nodes.

169Connecting upstream
CREATING AN UPSTREAM SET

To create an upstream set, first define each upstream node either in the management
interface or via the rabbitmqctl CLI application. Because there’s no interface for
creating upstream sets in the federation management interface, you must use the
rabbitmqctl command-line tool. As with any other use of rabbitmqctl, you must run
it locally on the RabbitMQ node you wish to perform the configuration on and as a
user that has access to RabbitMQ’s Erlang cookie, which was discussed in section 7.2.2.

 With your list of upstream nodes in hand, create a JSON string that contains the
list of the names you used when creating the upstream definitions. For example, if you
created upstreams named a-rabbit1 and a-rabbit2, you’d create the following
JSON snippet:

[{"upstream": " a-rabbit1"}, [{"upstream": " a-rabbit2"}]

Then, to define an upstream set named cluster-a, run the rabbitmqctl com-
mand set_parameter, which allows you to define a federation-upstream-set named
cluster-a.

rabbitmqctl set_parameter federation-upstream-set cluster-a \
 '[{"upstream": " a-rabbit1"}, {"upstream: " a-rabbit2"}]'

Once the upstream set is defined, you can reference it by name when creating a feder-
ation policy by using the federation-upstream-set key to define the policy instead
of using the federation-upstream key you used to reference an individual node.

 It’s also worth noting that there’s an implicitly defined upstream set named all
that doesn’t require any configuration. As you might expect, the all set will include
every defined federation upstream.

Downstream

California

Brazil

New YorkEuropeRussiaChina

Japan

India

Australia

Texas

Figure 8.22 Geographically distributed upstreams in a set deliver messages to the
downstream node.

170 CHAPTER 8 Cross-cluster message distribution
8.3.4 Bidirectional federated exchanges

The examples in this chapter have thus far covered distributing messages from an
upstream exchange to a downstream exchange, but federated exchanges can be set
up to be bidirectional.

 In a bidirectional setup, messages can be published into either node, and using
the default configuration, they’ll only be routed once on each node. This setting can
be tweaked by the max-hops setting in the upstream configuration. The default value
of 1 for max-hops prevents message loops where messages received from an upstream
node are cyclically sent back to the same node. When you use a federated exchange
where each node acts as an upstream and downstream node to each other, messages
published into either node will be routed on each node, similar to how message rout-
ing behaves in a cluster (figure 8.23).

This type of federation behavior works well for creating a fault-tolerant, multi-data-
center application structure. Instead of sharding data across data centers or locations,
this type of federation allows for each location to receive the same messages for pro-
cessing data.

 Although this is a very powerful way to provide a highly available service, it also cre-
ates additional complexity. All of the complexities and concerns around multi-master
databases become concerns when trying to keep a consistent view of data across loca-
tions using federation. Consensus management becomes very important to ensure
that when data is acted upon it’s done so consistently across locations. Fortunately,
federated exchanges can provide an easy way to achieve consensus messaging across
locations. It’s also worth considering that this behavior isn’t limited to two nodes, but
can be set up in a graph where all nodes connect to all other nodes (figure 8.24). As
in a two-node setup, setting max-hops to 1 for an upstream will prevent messages from
cyclically republishing around the graph.

Cluster A

X

Cluster B

X

Messages published into cluster A are
relayed to and routed on cluster B.

Messages published into cluster B are
relayed to and routed on cluster A.

Figure 8.23 Messages published to either
node of a bidirectional federated exchange
will be routed on each node.

171Connecting upstream
It’s important to recognize that like any graph structure, the more nodes you add, the
more complex things become. As with all aspects of implementing a message-oriented
architecture, you should benchmark the performance of your architecture prior to
production use. Fortunately, cloud service providers like Amazon have different avail-
ability zones, so it’s easy to build-out and test complex federation environments with
RabbitMQ.

8.3.5 Federation for cluster upgrades

One of the more difficult operational concerns with managing a RabbitMQ cluster is
handling upgrades in a production environment where downtime is undesirable.
There are multiple strategies for dealing with such a scenario.

 If the cluster is large enough, you can move all traffic off a node, remove it from
the cluster, and upgrade it. Then you could take another node offline, remove it
from the cluster, upgrade it, and add it to a new cluster consisting of the node that
was removed first. You continue to shuffle through your cluster like this, taking
nodes offline one by one, until they’re all removed, upgraded, and re-added in
reverse order. If your publishers and consumers handle reconnection gracefully, this
approach can work, but it’s laborious. Alternatively, provided that you have the
resources to set up a mirror of the cluster setup on a new version of the cluster, fed-
eration can provide a seamless way to migrate your messaging traffic from one clus-
ter to another.

 When using federation as a means to upgrade RabbitMQ, you start by rolling out
the new cluster, creating the same runtime configuration on the new cluster, includ-
ing virtual hosts, users, exchanges, and queues. Once you’ve set up and configured
the new cluster, add the federation configuration, including the upstreams and poli-
cies to wildcard-match on all exchanges. Then you can start migrating your consumer
applications, changing their connections from the old cluster to the new cluster (fig-
ure 8.25).

Cluster A

X

Cluster B

X

Cluster C

X
Figure 8.24 More than two
nodes in a graph-like setup for
federated exchanges

172 CHAPTER 8 Cross-cluster message distribution
As you migrate the consumers off a queue, you should unbind the queue on the old
cluster, but don’t delete it. Instead, you can create a temporary policy on the new clus-
ter to federate that queue, moving the messages from the old cluster to the new one.
It’s advisable to automate this process as much as possible, because you want to mini-
mize the chance of duplicate messages being added to the new cluster’s queues due to
using both the federated exchange and the federated queue.

 Once you’ve finished moving all of the consumers off, and you’ve unbound the
queues on the old cluster, you can migrate the publishers. When all of your pub-
lishers have been moved, you should be fully migrated to the upgraded RabbitMQ
cluster. Of course, you may want to keep the federation going for a while to ensure
that no rogue publishers are connecting to the old cluster when they’re not expected
to do so. This will allow you to keep your application operating properly, and you
can use the RabbitMQ logs on the old cluster nodes to monitor for connections and
disconnections. Although the federation plugin may not have originally been intended
for such a task, it proves to be the perfect tool for zero-downtime RabbitMQ upgrades.

Old cluster

X

New cluster

X

P

C C

Queue

C

P

P

Publishers continue to
publish to the old cluster.

Consumers consume from queues on the
new cluster, receiving messages that are

routed via the federated exchange.

Figure 8.25 The second stage of using federation to upgrade a RabbitMQ cluster

173Summary
8.4 Summary
The flexibility and power provided by the federation plugin is limited only by your imag-
ination. Whether you’re looking to transparently migrate traffic from one RabbitMQ
cluster to another, or you’d like to create a multi-data-center application that shares
all messages across all nodes, the federation plugin is a reliable and efficient solution.
As a scale-out tool, federated queues provide a way to greatly increase the capacity of a
single queue by defining it on an upstream node and any number of downstream
nodes. Combined with clustering and HA queues, federation not only allows for net-
work partition tolerance between clusters, but also provides a fault-tolerance should
nodes in either the upstream set or downstream clusters fail.

 And failures do occasionally happen. In the next chapter you’ll learn multiple
strategies for monitoring and alerting when things go wrong.

Part 3

Integrations and
customization

RabbitMQ doesn’t stop at AMQP and exchanges. There are more options
allowing some interesting integration opportunities. In this part of the book, we’ll
look at the MQTT and STOMP protocols, stateless publishing using HTTP, and
integrating RabbitMQ with PostgreSQL and InfluxDB.

Using alternative protocols
While AMQP 0-9-1 is designed to be a robust protocol that supports the needs of
most applications that communicate with RabbitMQ, there are specific use cases
where there are better choices. For example, the high-latency, unreliable network-
ing of mobile devices can be problematic for AMQP. In contrast, AMQP’s state-
based protocol may be too complicated for some application environments where
client applications aren’t able to maintain long-running connections but need to
publish at a high velocity. Additionally, some applications may already contain sup-
port for messaging, but not using the AMQP protocol. In each of these scenarios,
RabbitMQ’s ecosystem of applications and plugins enables it to continue to be the
centerpiece in your messaging architecture.

This chapter covers
 The advantages of and how to use the MQTT

protocol

 How to use STOMP-based applications with
RabbitMQ

 How to communicate directly from a web browser
using Web STOMP

 How to publish messages to RabbitMQ over HTTP
using statelessd
177

178 CHAPTER 9 Using alternative protocols
 In this chapter, we’ll look at a few alternatives to the standard AMQP 0-9-1 protocol:
the MQTT protocol, which is ideal for mobile applications; STOMP, a simpler alterna-
tive to AMQP; Web STOMP, designed for use in web browsers; and statelessd for high-
velocity message publishing.

9.1 MQTT and RabbitMQ
The MQ Telemetry Transport (MQTT) protocol is a lightweight messaging protocol
that’s growing in popularity for mobile applications, and support for it is distributed
with RabbitMQ as a plugin. Created as a publish-subscribe pattern-based protocol,
MQTT was originally invented in 1999 by Andy Stanford-Clark of IBM and Arien Nip-
per of Eurotech. MQTT was designed for messaging on resource-constrained devices
and in low-bandwidth environments, without sacrificing reliable messaging con-
straints. Although it’s not as feature-rich as AMQP, the explosive growth of mobile
applications has resulted in MQTT’s growing popularity in recent years.

 From mobile applications to smart cars and home automation, MQTT’s main-
stream use has grabbed technology news headlines in recent years. Facebook uses
MQTT for real-time messaging and notifications in their mobile applications. In 2013,
the Ford Motor Company teamed up with IBM to implement smart car technology
using IBM’s MessageSight product line based on MQTT for the Ford Evo concept
cars. Commercial home-automation products may be somewhat down the road, but
there are numerous open source and open-standard-based home-automation systems
using MQTT, such as the FunTechHouse project at www.fun-tech.se/FunTechHouse/.
Also in 2013, MQTT, like AMQP 1.0 the year before, was accepted as an open standard
through OASIS, a non-profit organization that works to encourage the development
and adoption of open standards. This has provided MQTT with an open, vendor-
neutral home for its further development and stewardship.

 Should you consider MQTT as a protocol for your messaging architecture? Quite
possibly, but you should look at the benefits and drawbacks first: Will your architec-
ture benefit from MQTT’s Last Will and Testament (LWT) feature? (LWT enables cli-
ents to specify a message that should be published if the client is unintentionally
disconnected.) Or you may run into limitations with MQTT’s maximum message size
of 256 MB. Even with RabbitMQ’s MQTT plugin transparently translating between
MQTT and AMQP for your applications, to properly evaluate MQTT, as with AMQP, a
good understanding of the protocol’s communication process is quite helpful.

9.1.1 The MQTT protocol

There are some commonalities between the AMQ and MQTT protocols. After all,
most messaging protocols share many of the same concerns, such as supporting con-
nection negotiation, including authentication and message publishing. Under the
covers, however, the protocols are structured differently. Instead of having protocol
level constructs like AMQP’s exchanges and queues, MQTT is limited to publishers
and subscribers. Of course, this limitation has less impact if you’re using RabbitMQ,

http://www.fun-tech.se/FunTechHouse/

179MQTT and RabbitMQ
because MQTT messages published into RabbitMQ are treated like messages pub-
lished via AMQP, and subscribers are treated like AMQP consumers.

 Although RabbitMQ supports MQTT out of the box, there are differences in mes-
sages published via MQTT and AMQP that underscore the value proposition of each
protocol. As a lightweight protocol, MQTT is better for constrained hardware without
reliable network connections, whereas AMQP is designed to be more flexible but
requires more robust and reliable network environments. If you don’t account for
these differences, your applications may encounter interoperability problems when
using both protocols in the same messaging architecture. In this section, we’ll con-
sider the anatomy of an MQTT message and what impact it can have on your message
architecture and applications.

MESSAGE STRUCTURE

At the base of MQTT is a message structure referred to as command message, much
like AMQP’s low-level frames. Command messages are the low-level data structure that
encapsulates the data in MQTT messages (figure 9.1).

An MQTT command message has a fixed two-byte header that describes the message.
Marshaled in the first header byte are four values:

1 The message type—A four-bit value that indicates the action for a message, sim-
ilar to an AMQP method frame. Examples of message types include CONNECT,
PUBLISH, and SUBSCRIBE.

2 The DUP flag—A single bit indicating whether the message is a redelivery, with-
out regard to whether a client or server is redelivering the message.

3 The QoS flag—A two-bit value used to indicate the quality of service for a mes-
sage. In MQTT, the QoS specifies whether a message must be delivered once at
most, at least once, or exactly once.

4 The Retain flag—A single-bit flag indicating to the server whether a message
should be retained when it has been published to all current subscribers. An

RetainDUPMessage type Payload size

The first byte contains important
metadata about the message.

QoS

The second byte indicates
the size of the message.

Message payload

The message payload is
opaque to the message itself.

Figure 9.1 Anatomy of an MQTT command message

180 CHAPTER 9 Using alternative protocols
MQTT broker will only retain the last message with the Retain flag set, provid-
ing a mechanism for new subscribers to always receive the last good message.
Suppose you’re using MQTT for a mobile application. Should the application
lose its connection to the RabbitMQ server, getting the last good message via
the Retain feature allows your app to know the last good message, which will
help it resynchronize state when it reconnects.

The second byte of the MQTT message header carries the size of the message payload.
MQTT messages have a maximum payload size of 256 MB. In contrast, the maximum
message size in AMQP is 16 exabytes, and RabbitMQ limits message size to 2 GB.
MQTT’s maximum message size is something to consider when creating your messag-
ing architecture, as you’ll need to create your own protocol on top of MQTT for split-
ting up payloads larger than 256 MB into individual messages, and then reconstruct
them on the subscriber end.

NOTE According to Maslow’s Law, if all you have is a hammer, everything
looks like a nail. It’s very easy to use a protocol like MQTT or AMQP as a ham-
mer for inter-application communication. But for different types of data,
there can be better tools. For example, sending large messages such as video
or image content over MQTT can be problematic for mobile applications.
Although MQTT excels at sending smaller messages such as application-state
data, you might want to consider HTTP 1.1 when you want a mobile or
embedded device application to upload videos or photos. When using MQTT
for small messages, it can outperform HTTP, but when it comes to transfer-
ring things like files, HTTP will be faster. It may be easy to overlook HTTP,
but it supports chunked file uploads, which is perfect for large media trans-
ferred on less than reliable networks. Most mature client libraries will support
this feature without your having to create an extra layer to manage such fea-
tures, as you would with MQTT.

VARIABLE HEADERS

In the message payload of some MQTT command messages is binary packed data con-
taining message details in a data structure referred to as variable headers. The format of
variables can vary from command message to command message. For example, the
variable headers of a CONNECT message contain data allowing for connection negotia-
tion, whereas the variables of a PUBLISH message contain the topic to publish the mes-
sage to and a unique identifier. In the case of a PUBLISH command message, the
payload contains the variable headers and the opaque application-level message (fig-
ure 9.2).

 For values in variable headers that aren’t fixed in size, such as the topic name, the
values are prefixed with two bytes that indicate the size of the value (figure 9.3). This
structure allows servers and clients alike to read and decode messages as they’re being
streamed across the socket instead of having to wait for all of a message to be read
prior to decoding.

181MQTT and RabbitMQ
All values in the variable fields are specified to be UTF-8 encoded strings, and they
allow for a 32 KB length. It’s important to remember that any values in the variable
headers of a PUBLISH message subtract from the maximum message size for the mes-
sage itself. For example, if you use the topic name my/very/long/topic to publish to,
you’ve used up 23 available bytes from the message payload, so your message content
can only be 268,435,433 bytes in length.

RetainDUPMessage type Payload sizeQoS Message payload

A command payload containsPUBLISH
variable headers with publishing information

and the message content itself.

Topic name Message ID Message content

The topic name describes
where to route the message.

The message ID is a 6-bit unsigned integer1
that is unique for the MQTT connection.

Application-level content
published in the message

Figure 9.2 Message payload of a PUBLISH command message

RetainDUPMessage type Payload sizeQoS Message payload

Two bytes indicating the string
length of the topic name value

Topic name Message ID Message content

Length Value

The topic name

Figure 9.3 Structure of the topic-name field of a PUBLISH command message’s variable headers

182 CHAPTER 9 Using alternative protocols
9.1.2 Publishing via MQTT

MQTT’s topic names can provide a powerful routing tool for your messages. In fact,
they’re very similar in concept to the routing keys that are used in RabbitMQ’s topic
exchange, and when routing MQTT messages in RabbitMQ, the topic exchange is
exclusively used. MQTT topic strings are namespaced using the forward slash (/) sym-
bol as a delimiter when a message is published. To illustrate how MQTT can be used
with RabbitMQ, let’s start with an example MQTT publisher publishing a message
that will be consumed over AMQP.

CREATING THE MESSAGE DESTINATION

To create a queue for the MQTT published message to be routed to, the following
example from the “7.1.2 Setup” IPython notebook creates a queue named mqtt-
messages and binds it to the amq.topic exchange using the routing key #.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'mqtt-messages')
 queue.declare()
 queue.bind('amq.topic', '#')

The amq.topic exchange is the default exchange that MQTT clients publish to, and
when they’re published, the MQTT plugin will automatically change forward-slash
characters in the MQTT topic name value to periods for the AMQP routing key.

 Run the notebook in the IPython Notebook Server, and once it’s been run, we’ll
create a Python-based MQTT publisher.

WRITING THE MQTT PUBLISHER

For interacting with MQTT via Python, mosquitto (https://pypi.python.org/pypi/
mosquitto) is a popular choice. It’s an asynchronous library meant to be run via a
blocking I/O loop, but we’ll fake it with some inline operations that allow it to com-
municate with RabbitMQ. The following example code is in the “7.1.2 MQTT Pub-
lisher” notebook and starts by importing the mosquitto library:

import mosquitto

With the library imported, a mosquitto client class should be created with a unique
name for the client connection. In this case we’ll just use the value rmqid-test, but
for production using the string representation of the operating system’s process ID is
a good idea:

client = mosquitto.Mosquitto('rmqid-test')

The client class has a connect method where you can pass in the connection informa-
tion for the MQTT server. The connect method accepts multiple arguments, including

Creates a rabbitpy
Queue object

Declares the mqtt-
messages queue

Binds the queue to the
amq.topic exchange

https://pypi.python.org/pypi/mosquitto
https://pypi.python.org/pypi/mosquitto

183MQTT and RabbitMQ

Ackno
the m
the hostname, port, and keepalive values. In this example, only the hostname is spec-
ified, using the default values for port and keepalive.

client.connect('localhost')

The library will return a 0 if it connects successfully. A return value that’s greater than
0 indicates there was a problem connecting to the server.

 With a connected client, you can now publish a message, passing in the topic
name, message content, and a QoS value of 1, indicating that the message should be
published at least once, expecting an acknowledgment from RabbitMQ.

client.publish('mqtt/example', 'hello world from MQTT via Python', 1)

Because you’re not running a blocking I/O loop, you need to instruct the client to
process I/O events. Invoke the client.loop() method to process I/O events that
should return a 0, indicating success:

client.loop()

Now you can disconnect from RabbitMQ and run the client.loop method to process
any other I/O events.

client.disconnect()
client.loop()

When you run this notebook, you should successfully publish a message that has been
placed in the mqtt-messages queue you previously declared. Let’s validate that it’s
there with rabbitpy.

GETTING AN MQTT-PUBLISHED MESSAGE VIA AMQP
The “7.1.2 Confirm MQTT Publish” notebook contains the following code for fetch-
ing a message from the mqtt-messages queue using Basic.Get, and it uses the
Message.pprint() method to print the content of the message.

import rabbitpy

message = rabbitpy.get(queue_name='mqtt-messages')
if message:
 message.pprint(True)
 message.ack()
else:
 print('No message in queue')

When you run the code, you should see the AMQP message from RabbitMQ that was
transparently mapped from MQTT semantics to AMQP semantics.

Exchange: amq.topic

Routing Key: mqtt.example

Fetches a message from
RabbitMQ using Basic.Get

Evaluates if a message
was retrievedPrints the message,

including properties

wledges
essage

If no message,
lets user know

184 CHAPTER 9 Using alternative protocols
Properties:

{'app_id': '',
 'cluster_id': '',
 'content_encoding': '',
 'content_type': '',
 'correlation_id': '',
 'delivery_mode': None,
 'expiration': '',
 'headers': {'x-mqtt-dup': False, 'x-mqtt-publish-qos': 1},
 'message_id': '',
 'message_type': '',
 'priority': None,
 'reply_to': '',
 'timestamp': None,
 'user_id': ''}

Body:

'hello world from MQTT via Python'

The routing key is no longer mqtt/example like the topic name that was published,
but this is the message that was published. RabbitMQ replaced the forward slash with
a period to match the topic exchange semantics. Also note that the AMQP message
properties headers table contains two values—x-mqtt-dup and x-mqtt-publish-qos—
containing the values of the MQTT PUBLISH message header values.

 Now that you’ve validated the publisher, let’s explore what the MQTT subscriber
experience is like with RabbitMQ.

9.1.3 MQTT subscribers

When connecting to RabbitMQ via MQTT to subscribe for messages, RabbitMQ will
create a new queue. The queue will be named using the format mqtt-subscriber-
[NAME]qos[N], where [NAME] is the unique client name and [N] is the QoS level set on
the client connection. For example, a queue named mqtt-subscriber-facebookqos0
would be created for a subscriber named facebook with a QoS setting of 0. Once a
queue is created for a subscription request, it will be bound to the topic exchange
using the AMQP period-delimited routing-key semantics.

 Subscribers can bind to topics with string matching or pattern matching using
semantics similar to AMQP topic-exchange routing-key bindings. The pound symbol
(#) is for multilevel matching in both AMQP and MQTT. But when publishing with
MQTT clients, the plus symbol (+) is used for single-level matching in a routing key,
instead of using an asterisk (*). For example, if you were to publish new image messages
over MQTT using the topic names of image/new/profile and image/new/gallery,
MQTT subscribers could receive all image messages by subscribing to image/#, all new
image messages by subscribing to image/new/+, and only new profile images by sub-
scribing to image/new/profile.

 The following example, from the “7.1.3 MQTT Subscriber” notebook, will connect
to RabbitMQ via the MQTT protocol, set itself up as a subscriber, and loop until a

185MQTT and RabbitMQ
single message is received. Once the message is received, it will unsubscribe and dis-
connect from RabbitMQ. To start, the mosquitto and os libraries are included:

import mosquitto
import os

You can use Python’s standard library os module to get the process ID of the sub-
scriber, which allows you to create a unique MQTT client name when creating the new
mosquitto client. You may want a more random or robust method of naming your
subscriber to prevent duplicate client names in production code, but using the pro-
cess ID should work for this example.

client = mosquitto.Mosquitto('Subscriber-%s' % os.getpid())

Now you can define a few callback methods that will be invoked by the mosquitto
library during each phase of execution. To start off, you can create a callback that’s
invoked when the client connects:

def on_connect(mosq, obj, rc):
 if rc == 0:
 print('Connected')
 else:
 print('Connection Error')
client.on_connect = on_connect

When an MQTT message is delivered, the mosquitto client invokes the on_message
callback. This callback prints information about the message, and then the client will
unsubscribe.

def on_message(mosq, obj, msg):
 print('Topic: %s' % msg.topic)
 print('QoS: %s' % msg.qos)
 print('Retain: %s' % msg.retain)
 print('Payload: %s' % msg.payload)
 client.unsubscribe('mqtt/example')
client.on_message = on_message

The final callback is invoked when the client is unsubscribed, and it will disconnect
the client from RabbitMQ.

def on_unsubscribe(mosq, obj, mid):
 print("Unsubscribe with mid %s received." % mid)
 client.disconnect()
client.on_unsubscribe = on_unsubscribe

With all of the callbacks defined, you can connect to RabbitMQ and subscribe to
the topic:

client.connect("127.0.0.1")
client.subscribe("mqtt/example", 0)

186 CHAPTER 9 Using alternative protocols
Finally, you can invoke the I/O event loop by calling client.loop() and specifying a
timeout of 1 second. The following code will do this, looping until client.loop() no
longer returns 1 because it has been disconnected from RabbitMQ.

while client.loop(timeout=1) == 0:
 pass

Once you open the notebook, you can run all of the cells at once by clicking on the
Cell dropdown and choosing Run All. Click over to the “7.1.2 MQTT Publisher” tab
and choose Cell > Run All, publishing a new message. In the subscriber tab you should
now see output like what’s shown in figure 9.4.

 As you can see, the period-delimited routing key has been transformed back into
the forward-slash delimited topic name mqtt/example. With the bidirectional transfor-
mation from MQTT topic name to AMQP routing key, RabbitMQ successfully bridges
the protocols in a transparent and native way for either type of client connecting. In

Figure 9.4 Output of the “MQTT Subscriber” IPython notebook

187MQTT and RabbitMQ
doing so, not only does RabbitMQ create a compelling platform for MQTT applica-
tions but it makes for a much more robust messaging platform than brokers that are
protocol-specific.

9.1.4 MQTT plugin configuration

With the basics of MQTT out of the way, you may find that you want to customize the
MQTT behaviors to match various aspects of your RabbitMQ cluster, such as provid-
ing MQTT-specific authentication credentials or queue-specific configuration for sub-
scribers. To change these and other configuration values, you’ll need to edit the main
RabbitMQ configuration file, rabbitmq.config.

 RabbitMQ’s configuration file is typically located at /etc/rabbitmq/rabbit.config
in UNIX-based systems. Where most configuration files use a data serialization format,
the rabbitmq.config file uses the code format of native Erlang data structures. Almost
like a JSON array of objects, the RabbitMQ configuration contains a top-level stanza
for RabbitMQ itself and then a stanza for each plugin that you wish to configure. In
the following snippet, RabbitMQ’s AMQP listening port is set to 5672 and the MQTT
plugin listening port is set to 1883.

[{rabbit, [{tcp_listeners, [5672]}]},
 {rabbitmq_mqtt, [{tcp_listeners, [1883]}]}].

Many of the default settings, such as the virtual host and default username and pass-
word for the MQTT plugin, mirror the defaults for RabbitMQ. Unlike with AMQP,
MQTT clients aren’t able to select which virtual host to use. Although this behavior
may change in future versions, currently the only way to change the virtual host used
by MQTT clients is by changing the default value of the forward slash using the vhost
directive in the MQTT configuration stanza from / to the desired value:

[{rabbitmq_mqtt, [{vhost, <<"/">}]}]

Although MQTT does provide a facility for authentication, there may be use cases
where this isn’t desired. For those cases, the MQTT plugin has a default username and
password combination of guest and guest. These defaults are changed with the
default_user and default_pass configuration directives. If you’d like to require
authentication for MQTT clients, you can disable the default user behavior by setting
the allow_anonymous configuration directive to false.

TIP Your MQTT application architecture may require different settings for
different types of MQTT clients. Using a RabbitMQ cluster is one way around
the limitation imposed by a single virtual host and the default username and
password settings. By having different per-node configurations, you can share
MQTT messages in a RabbitMQ cluster, with each node accepting MQTT
connections configured with different default settings. There’s no require-
ment for uniform configuration across RabbitMQ cluster nodes.

188 CHAPTER 9 Using alternative protocols
Table 9.1 describes each of the MQTT plugin configuration directives and their default
values. These values directly impact the behavior of the MQTT plugin with regard to
MQTT clients and message routing.

Some directives, such as exchange, prefetch, and vhost, are more likely to be candi-
dates for change in your environment, whereas others like the tcp_listen_options
should be tweaked carefully.

 Table 9.2 describes the tcp_listen_options directives specified by the RabbitMQ
documentation and their effect on the TCP connection behavior for MQTT clients
and the MQTT plugin. These values are a subset of those the Erlang TCP API provides
for TCP socket tweaking. For more detailed information on what other directives are
available, consult the Erlang gen_tcp documentation at http://erlang.org/doc/man/
gen_tcp.html. Due to the way RabbitMQ configuration works, the values specified in
the configuration file are transparently passed to the Erlang gen_tcp:start_link in the
listen_option parameter. In a majority of use cases, the default values specified by
the MQTT plugin shouldn’t be changed; they are the tested and optimized values rec-
ommended by the RabbitMQ team.

Table 9.1 MQTT plugin configuration options

Directive Type Description Default value

allow_anonymous Boolean Enable MQTT clients to connect without
authentication.

true

default_user String The username to use when an MQTT client
doesn’t present authentication credentials.

guest

default_password String The password to use when an MQTT client
doesn’t present authentication credentials.

guest

exchange String The topic exchange to use when publishing
MQTT messages.

amq.topic

prefetch Integer The AMQP QoS prefetch count setting for
MQTT listener queues.

10

ssl_listeners Array TCP ports to listen on for MQTT over SSL
connections. If specified, the top-level
rabbit stanza of the configuration file
must contain the ssl_options configura-
tion stanza.

[]

subscription_ttl Integer The duration to keep a subscriber queue, in
milliseconds, after a subscriber unexpectedly
disconnects.

1800000

tcp_listeners Array TCP ports to listen on for MQTT connections. 1833

tcp_listen_options Array An array of configuration directives for altering
the TCP behavior of the MQTT plugin.

See table 9.2

http://erlang.org/doc/man/gen_tcp.html
http://erlang.org/doc/man/gen_tcp.html

189STOMP and RabbitMQ
To review, MQTT is a powerful tool for lightweight messaging in the ever-evolving
world of mobile computing and embedded devices. If you’re considering RabbitMQ
as the centerpiece of a messaging architecture that includes mobile devices, you
should strongly consider the use of MQTT and the RabbitMQ MQTT plugin. Not only
does it provide transparent translation of MQTT semantics into RabbitMQ’s AMQP
worldview, it transparently translates AMQP semantics for MQTT clients, simplifying
the development required for a unified message bus. Although the configuration
shortcomings prevent complex MQTT ecosystems on an individual node, there’s an
effort underway to expand the MQTT plugin to provide dynamic virtual host and
exchange use. In the meantime, multiple RabbitMQ nodes in a cluster may be lever-
aged to create more complex MQTT topologies.

 If your messaging architecture won’t benefit from MQTT but you’d still like a
more lightweight solution than AMQP for communicating with RabbitMQ, perhaps
STOMP is for you.

9.2 STOMP and RabbitMQ
Originally named TMPP, the Streaming Text Oriented Message Protocol (STOMP)
was first specified in 2005 by Brian McCallister. Loosely modeled after HTTP, STOMP
leverages an easy-to-read, text-based protocol. Initially implemented in Apache ActiveMQ
and designed with simplicity in mind, STOMP now enjoys support in numerous

Table 9.2 tcp_listen_options for the MQTT plugin

Directive Type Description Default value

binary Atom Indicates that the socket is a binary TCP socket. Do not
remove.

N/A

packet Atom Tweaks how the Erlang kernel handles TCP data prior to
handing off to RabbitMQ. For more information see the
Erlang gen_tcp documentation.

raw

reuseaddr Boolean Instructs the operating system to allow RabbitMQ to
reuse the listening socket if it wants to, even if the
socket is busy.

true

backlog Integer Specifies how many pending client connections can exist
before refusing new connections. Pending client connec-
tions are new TCP socket connections that RabbitMQ
hasn’t processed yet.

10

nodelay Boolean Indicates whether a TCP socket should use the Nagle
algorithm, waiting to aggregate low-level TCP data for
more efficient data transmission. By default this is
false, allowing for faster MQTT messaging in most
cases by sending TCP data when RabbitMQ wants to,
instead of buffering smaller message packets and send-
ing them grouped together.

true

190 CHAPTER 9 Using alternative protocols
message broker implementations and has client libraries in most popular program-
ming languages.

 The specification of STOMP 1.2 was released in 2012 and it’s supported by
RabbitMQ, along with both of the previous versions. STOMP support is provided by a
plugin that’s distributed as part of the core RabbitMQ package. Like with AMQP and
MQTT, understanding the STOMP protocol can help shape your opinion on its use in
your application or environment.

9.2.1 The STOMP protocol

Designed to allow for stream-based processing, STOMP frames are UTF-8 text that
consist of a command and the payload for the command, terminated with a null (0x00)
byte. Unlike the binary AMQP and MQTT protocols, STOMP is human-readable and
doesn’t require binary bit-packed information to define STOMP message frames and
their content.

 For example, the following snippet is a STOMP frame for connecting to a message
broker. It uses ^@, control-@ in ASCII, to represent the null byte at the end of a frame.

CONNECT
accept-version:1.2
host:rabbitmq-node

^@

In this example, the CONNECT command tells the receiving broker that the client would
like to connect. It’s followed by two header fields, accept-version and host, that
instruct the broker about the connection the client would like to negotiate. Finally, a
blank line is followed by the null byte, indicating the end of the CONNECT frame.

 If the request is successful, the broker will return a CONNECTED frame to the client.
This frame is very similar to the CONNECT frame:

CONNECTED
version:1.2

^@

Much like AMQP, STOMP commands are RPC-style requests of the message broker,
and some will have replies for the client. The standard set of STOMP commands cov-
ers similar concepts as AMQP and MQTT, including connection negotiation, publish-
ing messages, and subscribing to receive messages from a message broker. If you’d like
more information on the protocol itself, the specifications are available on the
STOMP protocol page at https://stomp.github.io/.

 To illustrate how you can leverage STOMP with RabbitMQ, let’s start with a simple
message publisher.

https://stomp.github.io/

191STOMP and RabbitMQ
9.2.2 Publishing messages

When publishing messages with STOMP, the generic concept of a destination is used
to describe where a message should be sent. When using RabbitMQ, a STOMP desti-
nation is one of the following:

 A queue automatically created by the STOMP plugin when a message is pub-
lished or when a client sends a subscription request

 A queue created by normal means, such as an AMQP client or via the manage-
ment API

 The combination of an exchange and routing key
 The automatically mapped amq.topic exchange using the STOMP topic

destination
 A temporary queue when using reply-to headers in a STOMP SEND command

Each of these destinations is delimited by a forward slash separating out the destina-
tion type, in most cases, and additional information specifying the exchange, routing
key, or queue.

 To illustrate the use of message destinations and publishing, let’s start by sending a
message to a STOMP queue using the stomp.py Python library.

NOTE The STOMP plugin acts as a translation or proxy layer in RabbitMQ
itself. As such, it acts as an AMQP client, creating an AMQP channel and issu-
ing AMQP RPC requests to RabbitMQ itself. STOMP publishers are subject to
the same rate limiting and connection blocking that AMQP publishers are
limited to, except there are no semantics in the STOMP protocol to let your
publisher know that it’s being blocked or throttled.

SENDING TO A STOMP-DEFINED QUEUE

Sending a message via STOMP is very similar to sending a message via MQTT or
AMQP. To send a message directly to a queue, use a destination string with a format of
/queue/<queue-name>.

 In the following example, we’ll use the destination /queue/stomp-messages. Send-
ing the message to this destination will publish messages into the stomp-messages
queue using RabbitMQ’s default exchange behavior. If the queue doesn’t exist, the
queue will automatically be created. The example code is in the “7.2.2 STOMP Pub-
lisher” notebook.

import stomp

conn = stomp.Connection()
conn.start()
conn.connect()
conn.send(body='Example Message', destination='/queue/stomp-messages')
conn.disconnect()

When the queue is created by the STOMP plugin, it will be created using default argu-
ment values by issuing the Queue.Declare RPC request internally. This means that if
you have an existing queue in the RabbitMQ server that was created using default

192 CHAPTER 9 Using alternative protocols
values, you can still publish to it using the STOMP queue destination. If you have a
queue that was created with a message TTL or other custom arguments, you’ll need to
use an AMQP-defined queue destination instead.

SENDING TO AN AMQP-DEFINED QUEUE

The STOMP plugin has an extended destination syntax that’s specific to RabbitMQ’s
implementation of STOMP, allowing for AMQP-defined queues with custom settings
to be published to. To achieve this, you first need to create a queue with a maximum
length, using the rabbitpy library in the “7.2.2 Queue Declare” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'custom-queue',
 arguments={'x-max-length': 10})
 queue.declare()

Now that the queue is declared, you’ll need to use the AMQP-defined queue destina-
tion syntax. By creating a destination string using the /amq/queue/<queue-name> for-
mat, the STOMP plugin will be able to route the message to the custom-queue queue.
This example is in the “7.2.2 Custom Queue” notebook.

import stomp

conn = stomp.Connection()
conn.start()
conn.connect()
conn.send(body='Example Message', destination='/amq/queue/custom-queue')
conn.disconnect()

The problem with sending to queues directly is that you don’t enjoy the benefit that
AMQP messages receive by using the various exchange types and routing keys. Fortu-
nately, the STOMP plugin allows for specially formatted destination strings, which
achieve that purpose.

SENDING TO AN EXCHANGE

To send a message to an exchange using a routing key with the RabbitMQ STOMP
plugin, you use the /exchange/<exchange-name>/<routing-key> format. This allows
you to publish via STOMP as flexibly as you would be able to using AMQP.

 The following example from the “7.2.2 Exchange and Queue Declare” notebook
will set things up so you can publish a STOMP message through a custom exchange.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 exchange = rabbitpy.Exchange(channel, 'stomp-routing')
 exchange.declare()
 queue = rabbitpy.Queue(channel, 'bound-queue',
 arguments={'x-max-length': 10})
 queue.declare()
 queue.bind(exchange, 'example')

193STOMP and RabbitMQ
With an exchange and queue declared, and the queue bound to the exchange, it’s
time to publish a message to the new queue. The following example is from the “7.2.2
Exchange Publishing” notebook.

import stomp

conn = stomp.Connection()
conn.start()
conn.connect()
conn.send(body='Example Message',
 destination='/exchange/stomp-routing/example')
conn.disconnect()

With this example under your belt, the flexibility of exchange routing should be
apparent. But you can benefit from the flexibility of topic exchange routing without
having to declare an exchange or use the longer exchange destination string. Instead,
you can send your messages using a STOMP topic destination string.

SENDING TO A STOMP TOPIC

Topic destination strings, like queue destination strings, use a common format recog-
nized by all message brokers that support the STOMP protocol. By formatting a desti-
nation string using a format of /topic/<routing-key>, messages sent to RabbitMQ
via STOMP will be routed through the amq.topic exchange to all queues bound to
the routing key.

 Instead of creating a new queue, you can bind the previously created bound-queue
queue to the amq.topic exchange using a routing key of # to receive all messages sent
to that exchange. The following example code to bind the queue is in the “7.2.2 Bind
Topic” notebook.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'bound-queue')
 queue.bind('amq.topic', '#')

With the queue bound, you can now publish via STOMP by sending a message to the
/topic/routing.key routing key using the example from the “7.2.2 Topic Publish-
ing” notebook.

import stomp

conn = stomp.Connection()
conn.start()
conn.connect()
conn.send(body='Example Message',
 destination='/exchange/stomp-routing/example')
conn.disconnect()

Between the queue, amq queue, exchange, and topic destination strings, a large por-
tion of message-publishing use cases are covered. But STOMP adds one nice feature
that replicates some of the work we did in chapter 6. If you publish a message via

194 CHAPTER 9 Using alternative protocols
STOMP and set a reply-to header value, the STOMP plugin will automatically create
an RPC reply queue for your publisher to consume messages from.

USING TEMPORARY REPLY QUEUES

When your messaging architecture calls for RPC behavior between your publishers
and consumers, if you use STOMP there is convenient behavior built into the RabbitMQ
STOMP plugin. By setting the reply-to header when you send a message via STOMP,
the reply queue will automatically be created, setting both the exclusive and auto-
delete flags on the queue so that the publishing STOMP connection is the only con-
nection that can consume messages from the reply queue. In addition, the reply
queue will automatically be deleted from RabbitMQ should your publishing applica-
tion be disconnected.

 The following example from the “7.2.2 Reply-To” notebook demonstrates how to
set the reply-to header. We’ll be covering how to consume messages via STOMP in
the next section of this chapter, so for now we’ll let the reply queue be automatically
removed once the message is published.

import stomp

conn = stomp.Connection()
conn.start()
conn.connect()
conn.send(body='Example Message',
 destination='/exchange/stomp-routing/example',
 headers={'reply-to': 'my-reply-queue'})
conn.disconnect()

A major take-away from setting the reply-to header is that STOMP messages can
have arbitrary message headers. These header values are most analogous to AMQP
message properties.

AMQP MESSAGE PROPERTIES VIA STOMP
STOMP message headers allow you to pass arbitrary message header values to a mes-
sage broker. This functionality is what enables the reply-to functionality of auto-creation
of reply queues for publishers. Although arbitrary message header values can be use-
ful for your applications, if you’re considering a mixed protocol environment that
leverages both STOMP and AMQP, you’ll want to consider a more limited set of mes-
sage headers that will be available in both protocols. If you use message headers that
map to the AMQP message property names, the STOMP plugin will automatically
map the header values to AMQP message properties.

 The following example, from the “7.2.2 Send with Message Headers” notebook,
sets message headers that will be converted to AMQP message properties.

import stomp
import time

conn = stomp.Connection()
conn.start()
conn.connect()

195STOMP and RabbitMQ
conn.send(body='Example message with Headers',
 destination='/queue/stomp-messages',
 headers={'app-id': '7.2.2 Example',
 'priority': 5,
 'reply-to': 'reply-to-example',
 'timestamp': int(time.time())})
conn.disconnect()

If you set STOMP message headers that don’t map to AMQP message properties, the
AMQP headers message property will be populated with those values. As you might
expect, when you consume messages with AMQP message properties populated, those
values will come through as STOMP message header values.

 There’s one exception to this behavior—the message-id AMQP message property.
This value is automatically set as part of the STOMP protocol and shouldn’t be manu-
ally set when sending a message to RabbitMQ using the STOMP protocol.

 Publishing messages to RabbitMQ using STOMP has a little more overhead than doing
so via AMQP, but there are some nice features of doing so, such as automatic queue cre-
ation and auto-creation of reply-to queues. By leveraging the different destination string
formats, your messages can be sent directly to a queue or published to an exchange just
like with AMQP message publishing. The STOMP plugin automatically maps AMQP
semantics into STOMP messages, and STOMP semantics into AMQP messages.

 To see this automatic mapping in action, you can consume the messages published
in the previous examples. In the next section, we’ll consume messages via STOMP
subscribers, including messages with header values.

9.2.3 Consuming messages

Similar to MQTT, STOMP clients are considered subscribers instead of consumers.
But because RabbitMQ is first and foremost an AMQP broker, the STOMP plugin
treats STOMP subscribers as AMQP consumers that get their messages from RabbitMQ
queues. What happens in most cases when you subscribe via STOMP is that a queue
will be created for messages to be consumed from.

 One of the neater features of the STOMP plugin is that all of the destination
string types for sending messages via STOMP exist for subscribing to messages in
STOMP. In this section you’ll leverage destination strings in a STOMP subscriber to
do the following:

 Consume messages from an automatically created queue
 Consume messages from a predefined AMQP queue
 Consume messages by subscribing to an exchange
 Consume messages by subscribing to a STOMP topic

When sending a message via STOMP, you can set a reply-to header that will automati-
cally create an exclusive auto-delete queue for the STOMP connection. In contrast,
consuming the reply-to messages is handled the same way as consuming messages
when subscribing to a STOMP-defined queue.

196 CHAPTER 9 Using alternative protocols
 Let’s start by subscribing to the same queue we sent messages to in the last section,
the stomp-messages queue.

SUBSCRIBING TO A STOMP-DEFINED QUEUE

STOMP-defined queues are queues that are created by RabbitMQ when messages are
published using the /queue/<queue-name> formatted destination string. In the previ-
ous section, we published messages into RabbitMQ using the STOMP send command
in the “7.2.2 Stomp Publisher” notebook. In the following example from the “7.2.3
Queue Subscriber” notebook, you’ll consume those messages, printing out the mes-
sage body for each message sent. Because the subscriber code is a bit more complex,
let’s step through it in sections.

 First, you’ll import all of the Python libraries required to run the subscriber:

import stomp
import pprint
import time

The Python stomp.py library requires a ConnectionListener object to process mes-
sages received from a message broker. This object should contain an on_message
method that will be invoked whenever the subscriber receives a message. In this exam-
ple, you’ll print out headers if there are any, and the message. In addition, you only
want to receive one message and then quit. In the demo listener, you’ll add a flag
named can_stop that will let the example know when to stop.

class Listener(stomp.ConnectionListener):

 can_stop = False
 def on_message(self, headers, message):
 if headers:
 print('\nHeaders:\n')
 pprint.pprint(headers)
 print('\nMessage Body:\n')
 print(message)
 self.can_stop = True

With the Listener class defined, you can create an instance of the object, a STOMP
connection, set the connections listener object, start the connection, and then con-
nect to RabbitMQ:

listener = Listener()

conn = stomp.Connection()
conn.set_listener('', listener)
conn.start()
conn.connect()

Once a connection is established, the Connection.subscribe method sends a STOMP
subscription request to RabbitMQ that will automatically acknowledge any received
messages.

conn.subscribe('/queue/stomp-messages', id=1, ack='auto')

197STOMP and RabbitMQ
To ensure that the code waits until a message is received, you’ll loop, sleeping one sec-
ond at a time until Listener.can_stop is set to True:

while not listener.can_stop:
 time.sleep(1)

Finally, once a message is received, you disconnect from the connection:

conn.disconnect()

Run the code until you receive the message with defined message headers, from the
“7.2.2 Send with Message Headers” notebook. Once it’s received, you should see out-
put similar to figure 9.5.

 What you’ll notice is that the AMQP message properties are merged with the
STOMP message headers, including content-length and destination. If there are

Figure 9.5 Output from the “7.2.3 Queue Subscriber” IPython notebook

198 CHAPTER 9 Using alternative protocols
any values in the AMQP message properties of a message that’s received, they too will
be flattened down into the headers that are received as part of a STOMP message.

 Like when sending a STOMP message, if you send to a queue destination for a
queue that was declared via AMQP using custom arguments, the subscription will fail
and you won’t receive any messages. Fortunately, the RabbitMQ team added the AMQ
queue destination string format for such scenarios.

SUBSCRIBING TO AN AMQP-DEFINED QUEUE

If you need to intermix STOMP subscribers and AMQP consumers that consume
from the same queue with custom arguments, or if you need a single STOMP sub-
scriber that receives messages from a queue with custom arguments, you can use the
/amq/queue/<queue-name> destination format when using your STOMP subscriber.

SUBSCRIBING TO AN EXCHANGE OR TOPIC

Another neat feature of the STOMP plugin is that it allows you to subscribe to an
exchange using the /exchange/<exchange-name>/<binding-key> format. When you
do so, an exclusive, temporary queue will be created and bound for your subscriber
that will automatically be removed when your subscriber disconnects. Your subscriber
will then be transparently created as a consumer of the queue and receive any mes-
sages that are routed to it.

 Similarly, if you subscribe to using the /topic/<binding-key> format, an exclu-
sive, temporary queue will be created for your subscriber, and it will be automatically
bound using the binding key specified. As the binding key is for a topic exchange, it
can use the period-delimited namespace with # and * wildcard semantics, just like
when binding a queue using AMQP. Once the temporary queue is created and bound,
your subscriber will be set up to receive any messages routed to it.

 STOMP subscribers connected to RabbitMQ are proxied into AMQP consumers in
the STOMP plugin. By leveraging the various destination string formats, you can
bypass the steps required to consume messages via AMQP, but at a cost. The slight
overhead of bridging STOMP communications to AMQP will allow your STOMP sub-
scribers to automatically create and bind queues without any additional action
required on the part of your code. In addition, by using the AMQ queue destination
string, your STOMP subscribers can consume messages from queues shared with
AMQP consumers. Of course, with the simplicity of the STOMP protocol, there are
some things that the STOMP plugin must do via configuration to successfully support
both STOMP and AMQP. In the next section you’ll learn how to configure the
STOMP plugin to change client behaviors and connection parameters.

9.2.4 Configuring the STOMP plugin

The STOMP plugin is configured in the core rabbitmq.config file. Like the MQTT
plugin, it has its own stanza in the configuration file and uses an Erlang data-
structure format. Changes to this file aren’t immediate and require a restart of the
RabbitMQ broker.

199STOMP and RabbitMQ
 As the following snippet shows, the top-level configuration of the STOMP plugin is
placed in the rabbitmq_stomp configuration section.

[{rabbit, [{tcp_listeners, [5672]}]},
 {rabbitmq_stomp, [{tcp_listeners, [61613]}]}].

Table 9.3 details the configuration options for the STOMP plugin.

9.2.5 Using STOMP in the web browser

Bundled with RabbitMQ is the Web STOMP plugin. Leveraging the SockJS library,
Web STOMP is a RabbitMQ-specific extension that adds a websocket-compatible
HTTP server that allows web browsers to communicate directly with RabbitMQ. The
Web STOMP plugin listens, by default, to port 15670 and supports the entire STOMP
protocol, with one small exception—the STOMP heartbeat feature. Due to the nature
of SockJS, the library used by Web STOMP to communicate with RabbitMQ, heart-
beats can’t be used.

 Web STOMP is enabled in the Vagrant virtual machine and includes examples that
show you how it can be used. To see multiple examples demonstrating the Web
STOMP library and service, visit http://localhost:15670/web-stomp-examples/.

 Before you run out and implement Web STOMP as a solution for your application,
consider the security implications of opening up your RabbitMQ server to the inter-
net, just as you would with any other application or service. It may make sense to isolate

Table 9.3 STOMP plugin configuration options

Directive Type Description Default value

default_user String The username to use when a
STOMP client doesn’t present
authentication credentials.

[{login, "guest",
 passcode, "guest"}]

implicit_connect Integer Allows for STOMP connections to
not send the CONNECT frames
upon connection. If enabled, a
CONNECTED frame won’t be sent
upon connection.

False

ssl_listeners Array TCP ports to listen on for STOMP
over SSL connections. If specified,
the top-level rabbit stanza of the
configuration file must contain the
ssl_options configuration
stanza.

[]

ssl_cert_login Boolean Allows for SSL certificate-based
authentication.

False

tcp_listeners Array TCP ports to listen on for STOMP
connections.

[61613]

http://localhost:15670/web-stomp-examples/

200 CHAPTER 9 Using alternative protocols
RabbitMQ Web STOMP servers as standalone clusters or servers that bridge to your
main servers using tools like the Shovel and Federation plugins to mitigate the impact
of malicious or abusive clients. For more information on Web STOMP, visit the plugin
page at www.rabbitmq.com/web-stomp.html.

 The STOMP protocol is a human-readable, text-based streaming protocol designed
to be simple and easy to implement. Although binary protocols such as AMQP and
MQTT may be more efficient on the wire, using less data to transfer the same message,
the STOMP protocol has some advantages, especially when using the STOMP plugin
with RabbitMQ. The queue creation and binding behaviors require less code on your
end, but they also come at a cost. The proxied AMQP connections created by the
STOMP plugin that are used to communicate the translated STOMP data with
RabbitMQ have overhead that direct AMQP connections do not have.

 As with the various options that are available to you in publishing and consuming
AMQP messages, I highly recommend that you benchmark the use of STOMP with
RabbitMQ prior to using it in production. Each protocol has its advantages and disad-
vantages, and in some cases, neither is ideal.

 In the next section, we’ll cover statelessd, a web application used for high-
performance, stateless publishing into RabbitMQ. It was created for scenarios where
both the AMQP and STOMP protocols carry too much protocol overhead for single-
transaction, fire-and-forget publishing.

9.3 Stateless publishing via HTTP
In some scenarios, AMQP, MQTT, STOMP, and other stateful protocols are expensive
for environments with high message velocities that can’t maintain long-running con-
nections to RabbitMQ. Because these protocols have a bit of overhead related to
connecting prior to being able to take message-related actions, they can be less than
ideal, from a performance perspective, for short-lived connections. It was this realiza-
tion that led to the development of statelessd, an HTTP-to-AMQP publishing proxy
that enables high-performance, fire-and-forget message publishing for client applica-
tions without requiring the overhead of connection state management.

9.3.1 How statelessd came to be

Sometime in mid-2008 we started to build out our asynchronous messaging architec-
ture at MeetMe.com (then myYearbook.com) as a way to decouple database writes
from our PHP-based web application. Initially we built this architecture using Apache
ActiveMQ, a Java-based message broker service with support for the STOMP protocol.
As foundationally important as memcached was to the success of our database-read
scaling, messaging, STOMP, and ActiveMQ allowed us to create consumer applica-
tions that fundamentally changed how we thought about database writes, constraining
workloads, and scaling out computationally expensive workloads.

 As our traffic grew, we encountered scaling issues with ActiveMQ and started to
evaluate other brokers. At the time, RabbitMQ showed a lot of promise and supported

http://www.rabbitmq.com/web-stomp.html

201Stateless publishing via HTTP
the same STOMP protocol we used with ActiveMQ. As we migrated to RabbitMQ, we
found it to be a good choice for our environment, but it introduced new issues.

 One of the things we immediately discovered when we started using RabbitMQ was
that the stateful AMQ protocol was very expensive for our PHP application stack. We
found that PHP couldn’t maintain the state of open connections and channels across
client requests. Every request that a PHP application processed required a new con-
nection to RabbitMQ in order to publish any messages that needed to be sent.

 Don’t get me wrong, the amount of time required to create an AMQP connection
with RabbitMQ isn’t terribly substantial and can be measured in milliseconds. But
when you’re publishing tens of thousands of messages per second, usually once or
twice per web request, you’re turning over tens of thousands of connections to
RabbitMQ per second. To address this we eventually created statelessd, an HTTP-to-
AMQP publishing gateway. This application needed to accept a high velocity of HTTP
requests while managing the connection stack required for our message publishing.
In addition, it couldn’t be a bottleneck for performance and needed to reliably get
messages into RabbitMQ.

 After releasing statelessd as open source, we found that we weren’t unique in fac-
ing this issue. In 2013, the folks over at Weebly created a statelessd clone named Hare
(https://github.com/Weebly/Hare) that’s written in Go.

9.3.2 Using statelessd

Designed to require as little overhead as possible, statelessd expects that clients pub-
lishing messages through it via HTTP will use native HTTP conventions to convey all
the information required to publish native AMQP messages. The first part of the path
in the HTTP URI contains the virtual host in RabbitMQ that a message should be pub-
lished to. Additionally, the exchange and routing key to be used are path components
in the request:

http://host[:port]/<virtual-host>/<exchange>/<routing-key>

For the username and password, HTTP Basic Authentication headers are used. When
a request comes in, the statelessd daemon will look to see if the combination of the
RabbitMQ username, password, and virtual host exists in its stack of open connec-
tions. If it does, the daemon will use that open connection to publish the message
posted down to it, returning a “request processed, no content returned” (204) status
to the client.

 Because statelessd is generally run in a controlled environment where authentica-
tion issues are very rare, a design tradeoff for optimum request efficiency was made. If
the connection isn’t established, statelessd will internally buffer the message, start an
asynchronous process to connect to RabbitMQ, and return a 204 status to the client.
Once the connection is established, any buffered messages for the specific combina-
tion of credentials will be sent. Should there be a problem connecting, the combination

https://github.com/Weebly/Hare

202 CHAPTER 9 Using alternative protocols
of credentials will be marked as bad, and any subsequent requests will receive a 424 or
“request failed due to the nature of a previous request” error.

 Statelessd requests use HTTP POST to send standard form-encoded key/value pairs
that carry the body and properties of the message to be published. Valid keys for state-
lessd requests include body, the value of the actual message body itself, and the stan-
dard AMQP message property names, with the dash character replaced with an
underscore. For example, to set the message-id property, the payload of the request
should include a value assigned to the message_id key. For a full list of the valid keys
in a statelessd request payload, refer to the documentation at https://github.com/
gmr/statelessd.

9.3.3 Operational architecture

Statelessd is designed to be run on the same server as the RabbitMQ servers that mes-
sages should be published to. It’s a Python-based daemon that’s usually configured to
have a backend process running for each CPU core on the server. Each backend pro-
cess has its own HTTP port that it listens on. These processes are aggregated and can
be proxied by a single port using a reverse proxy server like Nginx (figure 9.6), provid-
ing a scale-out solution that has benchmarked up to hundreds of thousands of mes-
sages per second per server.

If you need to run statelessd on multiple servers, each server’s Nginx instance can be
added to a load balancer, distributing the publishing requests across multiple servers in
a cluster. Statelessd includes a URL endpoint for gathering statistical data that can be
used to compare message-throughput rates between a cluster of statelessd nodes and
RabbitMQ servers. Refer to the statelessd documentation at https://github.com/gmr/
statelessd for information on installing and configuring statelessd.

statelessd
backend

statelessd
backend

Nginx

statelessd
backend

Additional statelessd
backends

Persistent AMQP
connections & channelsProxied requests

Client requests

Figure 9.6 Statelessd operational architecture

https://github.com/gmr/statelessd
https://github.com/gmr/statelessd
https://github.com/gmr/statelessd
https://github.com/gmr/statelessd

203Summary
9.3.4 Publishing messages via statelessd

To publish a message to RabbitMQ, any standard HTTP library should do. For this
example, we’ll use the Python library named requests. Prior to publishing a message,
you should create and bind a queue to publish messages to. The following code from
the “7.4.4 Queue Setup” notebook does just that.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'statelessd-messages')
 queue.declare()
 queue.bind('amq.topic', '#')

With the queue declared, all that’s left is to publish a message. Statelessd should
already be running in the Vagrant virtual machine, so running the following code
from “7.4.4 Publish Message” will publish a message to the “statelessd-messages”
queue.

import requests

payload = {'body': 'from statelessd', 'app_id': 'example'}
response = requests.post('http://localhost:8900/%2f/amq.topic/example',
 auth=('guest', 'guest'),
 data=payload)

To verify that the message is published, navigate to the RabbitMQ management inter-
face at http://localhost:15672/#/queues/%2F/statelessd-messages.

 Now that you’ve published a message through statelessd, it’s worth reiterating that
statelessd solves a specific use case for publishing messages to RabbitMQ. As you think
about where it may fit into your messaging architecture, consider the goals and per-
formance of statelessd. It was designed to enable high-velocity publishing from many
different publishing applications. It doesn’t support the full AMQP protocol and
doesn’t support many of the more advanced publishing features in RabbitMQ, like
Publisher Confirms or transactional publishing. It isn’t for every project, but it’s worth
keeping in the back of your mind for projects were it does add tremendous value.

9.4 Summary
RabbitMQ goes beyond the AMQP goal of vendor and platform neutrality by support-
ing additional protocols such as STOMP and MQTT. In addition, there’s a vibrant eco-
system of plugins and applications that allow applications to speak to RabbitMQ in
different ways. For example, instead of using a protocol like AMQP for mobile appli-
cations that may be prone to network interruptions and slow transfer speeds, use
MQTT, a protocol designed for such a task. Applications like Hare and statelessd exist
to allow for more efficient message publishing.

http://localhost:15672/#/queues/%2F/statelessd-messages

204 CHAPTER 9 Using alternative protocols
 Additionally, here’s a list of plugins that add additional protocol support to
RabbitMQ:

 rabbithub—Adds PubSubHubBub support to RabbitMQ (https://github.com/
tonyg/rabbithub)

 udp_exchange—Uses UDP to publish messages to RabbitMQ (https://github
.com/tonyg/udp-exchange)

 rabbitmq-smtp—An SMTP-to-AMQP gateway for RabbitMQ (https://github.com
/rabbitmq/rabbitmq-smtp)

 rabbitmq-xmpp—An XMPP-to-AMQP gateway for RabbitMQ (https://github
.com/tonyg/rabbitmq-xmpp)

These examples demonstrate the variety of messaging protocols that can be used with
RabbitMQ. Although the rabbitmq-smtp plugin may have limited use cases compared
to the Web STOMP plugin, your application may have unique requirements, and I
encourage you to make sure you’re using the right tool for the job when it comes to
communicating with RabbitMQ.

https://github.com/tonyg/udp-exchange
https://github.com/tonyg/udp-exchange
https://github.com/rabbitmq/rabbitmq-smtp
https://github.com/rabbitmq/rabbitmq-smtp
https://github.com/tonyg/rabbithub
https://github.com/tonyg/rabbithub
https://github.com/tonyg/rabbitmq-xmpp
https://github.com/tonyg/rabbitmq-xmpp

Database integrations
Using RabbitMQ to decouple write operations against OLTP databases is a com-
mon way to achieve great data warehousing and event-stream processing tech-
niques. When you publish messages with serialized data that will be written to the
database, a simple consumer application can act as the bridge between events and
your database. But it’s possible to skip the consumer step altogether and use a
RabbitMQ plugin, such as the InfluxDB storage exchange, and automatically store
messages in your database, directly from RabbitMQ.

 The integration of RabbitMQ with an external database doesn’t stop there.
Another powerful pattern is for your database to directly publish messages to
RabbitMQ. This can be achieved by using extensions or plugins in the database, or
by having a RabbitMQ plugin that acts as a database client, publishing messages
whenever database events occur.

This chapter covers
 Publishing AMQP messages from PostgreSQL

 Making RabbitMQ listen to PostgreSQL
notifications

 Using the InfluxDB storage exchange to store
messages
205

206 CHAPTER 10 Database integrations
NOTE Both of these patterns of database integration can simplify operational
complexity, reducing the need for external consumer applications to per-
form the same type of work. But this simplification comes at a price. With
your database and RabbitMQ more tightly coupled, failure scenarios can
become more complex. For example, what happens if your database server
becomes slow or unresponsive when RabbitMQ is trying to insert records into
it? It’s important to answer questions like this by testing your integrations for
failure scenarios and determining proper troubleshooting and recovery steps
prior to production use.

This chapter explores both these patterns of database integration with RabbitMQ.
First you’ll learn how the PostgreSQL pg_amqp extension can be employed to publish
messages using stored procedures. Then you’ll learn how you can achieve the same
type of behavior using PostgreSQL’s LISTEN/NOTIFY functionality with the Postgre-
SQL LISTEN exchange. We’ll then move from the relational world to the NoSQL
world, and you’ll see how the InfluxDB storage exchange can be leveraged to store
messages as time-series data as they’re published into RabbitMQ.

10.1 The pg_amqp PostgreSQL extension
The idea of publishing messages directly from PostgreSQL when triggers are executed
is neither new nor novel. It was as early as 2003 that the Slony replication system
(http://slony.info) used PostgreSQL’s trigger functions to send event messages, imple-
menting master-slave replication. In 2008, to create a loosely coupled replication sys-
tem offering more flexibility than the existing replication systems, I created Golconde.
Golconde (https://code.google.com/p/golconde) leveraged POST COMMIT trig-
gers and PL/Python to send transactional data to other PostgreSQL servers via the
STOMP messaging protocol. The latest versions of PostgreSQL use event messaging to
stream transactional data to hot-standby PostgreSQL instances that act as read-only
slaves with the ability to failover if a master becomes unresponsive.

 Given this solid history of event-based replication for PostgreSQL, it seems only
natural that someone would add flexible messaging capabilities to its ecosystem. In
2009, Theo Schlossnagle of OmniTI released pg_amqp, a PostgreSQL extension that
exposes AMQP publishing via PostgreSQL functions. Although pg_amqp only exposes
a subset of the AMQP 0-8 specification, it performs solidly when publishing messages
from PostgreSQL’s trigger functions. The functionality exposed by pg_amqp is accessi-
ble just like any other PostgreSQL function and can be invoked in SQL statements
and stored procedures alike. Pg_amqp exposes a simple AMQP with two methods for
interacting with RabbitMQ: amqp.publish and amqp.disconnect. The amqp.publish
method creates an AMQP message and delivers it using the Basic.Publish RPC
method, just like any other AMQP publisher (figure 10.1). Connections are automati-
cally established and destroyed, but if you want to directly terminate a connection
after publishing a message, you can invoke the amqp.disconnect function.

http://slony.info
https://code.google.com/p/golconde

207The pg_amqp PostgreSQL extension
When you use pg_amqp, you’re invoking synchronous communication with RabbitMQ,
and care should be taken to ensure that your use doesn’t impact your overall query
velocity. As with any tightly coupled integration, benchmarking should be performed
and failure scenarios should be tested prior to putting a system into production. For
example, if you wrap your use of amqp.publish in a transaction, what happens if
pg_amqp can’t connect to the RabbitMQ broker? Will your database transactions
complete if there’s a publishing failure?

 To find out, you must first install the pg_amqp extension.

10.1.1 Installing the pg_amqp extension

There are two ways to install the pg_amqp extension: You can install it by download-
ing and compiling the source manually or by using the PostgreSQL Extension Net-
work (PGXN) client. PGXN (http://pgxn.org) is a package repository for PostgreSQL
extensions. PGXN-based installation is dramatically easier, but it doesn’t work with
PostgreSQL 9.3 installations. Unless you’re using PostgreSQL 9.3 or later, I recom-
mend that you start with the PGXN install and fall back to manual installation if
that fails.

NOTE Before you attempt to install pg_amqp, you should first ensure that
you have fully installed PostgreSQL version 9.1 or greater, including the
development files, because the extension is compiled as part of the installa-
tion process. In addition, you’ll need the tool chain for compiling Postgre-
SQL from source. If you need help installing PostgreSQL or the developer
tool chain required for compiling PostgreSQL, you can find installation guides
on the official Wiki at https://wiki.postgresql.org/wiki/Detailed_installation
_guides.

Queue

1. When the amqp.publish
function is invoked, a message

is published to RabbitMQ.

2. RabbitMQ routes the message
just like any other AMQP message

that is published into it.

X

Figure 10.1 pg_amqp.publish uses Basic.Publish to send a message to RabbitMQ.

http://pgxn.org
https://wiki.postgresql.org/wiki/Detailed_installation_guides
https://wiki.postgresql.org/wiki/Detailed_installation_guides

208 CHAPTER 10 Database integrations
INSTALLATION VIA PGXN

To install the pg_amqp extension via PGXN, you first need to ensure that the PGXN
client is installed on your system. It’s written in Python and can be installed with
easy_install:

easy_install pgxnclient

With the pgxnclient application installed, you can now attempt to automatically
install the extension. As a user with permission to write to PostgreSQL’s lib directory,
run the following command:

pgxnclient install pg_amqp

If everything worked as expected, the command won’t have returned an error. But
don’t worry if you encountered an error. Although the manual installation has more
steps, it’s nearly as easy.

MANUAL INSTALLATION

The source code for pg_amqp is available on GitHub at https://github.com/omniti-
labs/pg_amqp. If you’re not familiar with Git, you can download the source code
from https://github.com/omniti-labs/pg_amqp/archive/v0.3.0.zip and extract it to a
directory for compilation. The following code listing, written in BASH script, fixes the
installation for PostgreSQL 9.3 or later systems and should be run in the top-level
directory of the extracted source.

#!/bin/bash
LIBDIR=`pg_config --libdir`
INSTALLSH="$LIBDIR/pgxs/config/install-sh"
make && make INSTALL=$INSTALLSH install

Once you’ve successfully installed the pg_amqp extension, you’ll need to load it into a
PostgreSQL database. For ease of illustration, the following example uses the default
postgres superuser and postgres database; this is not required for use, though the
user must be a superuser.

 To load the extension, connect to the PostgreSQL database using psql:

$ psql -U postgres postgres

When you’ve connected, you should see output similar to the following:

psql (9.3.5)
Type "help" for help.

postgres=>

Now you can load the extension using the CREATE EXTENSION syntax:

postgres=> CREATE EXTENSION amqp;

Listing 10.1 Compiling and installing pg_amqp

https://github.com/omniti-labs/pg_amqp
https://github.com/omniti-labs/pg_amqp
https://github.com/omniti-labs/pg_amqp/archive/v0.3.0.zip

209The pg_amqp PostgreSQL extension
If the extension was loaded successfully, you’ll receive a confirmation similar to the
following:

CREATE EXTENSION

With the extension loaded, you can move on to configuring the extension and then
publishing messages.

10.1.2 Configuring the pg_amqp extension

The extension is configured by populating the amqp.broker table that was automati-
cally created when you ran the CREATE EXTENSION query in the previous section. As
shown in table 10.1, amqp.broker contains the normal AMQP connection settings
along with a broker_id field that’s used when invoking both the amqp.publish and
amqp.disconnect functions.

If you’re running PostgreSQL locally and RabbitMQ in the Vagrant VM used in earlier
chapters, you should be able to connect on localhost. The following SQL statement
will configure pg_amqp by inserting a row into the table that connects to RabbitMQ
on localhost, port 5672, using the / virtual host and the guest/guest username and
password combination. If the connection settings won’t work due to differences in
your testing environment, adjust the SQL accordingly.

INSERT INTO amqp.broker (host, port, vhost, username, password)
 VALUES ('localhost', 5672, '/', 'guest', 'guest')
 RETURNING broker_id;

When you execute the command, you’ll get the broker_id value back, confirming
successful insertion into the table:

broker_id

 1
(1 row)

INSERT 0 1

Table 10.1 The amqp.broker table definition

Column Type Modifiers

broker_id Integer not null default nextval('broker_broker_id_seq')

host Text not null

port Integer not null default 5672

vhost Text

username Text

password Text

210 CHAPTER 10 Database integrations
Remember the broker_id value because you’ll be using that to publish messages into
RabbitMQ.

10.1.3 Publishing a message via pg_amqp

With pg_amqp installed and configured, it’s nearly time to publish your first message.
Before you do, you should set up a queue in the RabbitMQ management UI to receive
the message. Open your web browser to http://localhost:15672/#/queues and create
a queue named pg_amqp-test, as in figure 10.2.

Once you’ve created the queue, you can test publishing to the queue from Postgre-
SQL via the default direct exchange using the queue name (pg_amqp-test) as the
routing key. Using psql connected to the postgres database, issue the following
query that passes the broker ID, exchange, routing key, and message:

SELECT amqp.publish(1, '', 'pg_amqp-test',
 'Test message from PostgreSQL');

Once it’s submitted, you should receive confirmation that the query executed suc-
cessfully:

publish

 t
(1 row)

Figure 10.2 Creating the pg_amqp-test queue

http://localhost:15672/#/queues

211The pg_amqp PostgreSQL extension
Although PostgreSQL has said the message was published, a better validation would
be to use the management UI to retrieve the published message. On the queue detail
page at http://localhost:15672/#/queues/%2F/pg_amqp-test you can use the Get
Messages section to retrieve and inspect the message. As shown in figure 10.3, once
you click the Get Message(s) button, you should see the message that was published
via the PostgreSQL amqp.publish function.

As you can see, publishing messages via pg_amqp is a fairly trivial exercise once you
have it set up and configured. It’s worth noting that you can’t set the AMQP message
properties as of version 0.3. Additionally, message publishing is wrapped in an AMQP
transaction. Should you invoke the amqp.publish function in a PostgreSQL transac-
tion and then roll back the transaction, the RabbitMQ transaction will be rolled back
as well. In most cases, publish will be wrapped within a stored procedure, either along
with other actions inside the stored procedure, or as a trigger function that’s executed
on the INSERT, UPDATE, or DELETE of rows in a table.

NOTE The management UI warns you that the Get Messages(s) operation is a
destructive action. What it means by this is that the message is actually
removed from the queue to display it, and if the Requeue option is set to Yes,
it will republish the message back into the queue, so it will now be at the end
of the queue instead of at the front.

Figure 10.3 Using the
management UI to confirm
the message was published

http://localhost:15672/#/queues/%2F/pg_amqp-test

212 CHAPTER 10 Database integrations
DEALING WITH FAILURE

You may have noticed that when you called the amqp.publish function, it returned a
Boolean value. In the case of success, it returned a t or true, but what happens if it
can’t connect to RabbitMQ? Issuing the same statement in a new transaction with a
new connection attempt will return f or false and log a warning:

postgres=# SELECT amqp.publish(1, '', 'pg_amqp-test',
 'Test message from PostgreSQL');

WARNING: amqp[localhost:5672] login socket/connect failed: Connection refused

 publish

 f
(1 row)

In this scenario it’s pretty easy to test for the result of the amqp.publish call, and if it’s
false, you weren’t able to publish. But what if something happens inside a long-running
transaction and RabbitMQ disconnects? In this scenario, the call will invoke true but
log a warning that the AMQP transaction couldn’t be committed:

postgres=# SELECT amqp.publish(1, '', 'pg_amqp-test',
 'Test message from PostgreSQL');
WARNING: amqp could not commit tx mode on broker 1
 publish

 t
(1 row)

Unfortunately, as of version 0.3.0 of pg_amqp, you can’t catch this error, and if you’re
not watching your PostgreSQL logs, you could be losing messages without knowing it.
Although this is problematic behavior, it’s better than losing your database transac-
tion. Like with all operational systems, monitoring is key. If you use a system like
Splunk, you can create a job that periodically searches for AMQP errors in Postgre-
SQL’s logs. Alternatively, you could write your own app or plugin for systems like Nagios
that scans the logs looking for such warnings.

10.2 Listening to PostgreSQL notifications
Although pg_amqp provides a convenient and fast way of publishing messages directly
from PostgreSQL, it creates a tightly coupled integration between the server instances.
Should your RabbitMQ cluster become unavailable for any reason, it could have an
adverse impact on your PostgreSQL server. To avoid such tight coupling while retain-
ing the direct integration, I created the PostgreSQL LISTEN exchange.

 The PostgreSQL LISTEN exchange acts as a PostgreSQL client, listening for notifi-
cations issued in PostgreSQL by the NOTIFY SQL statement. PostgreSQL notifications
are sent to a channel, a text value that clients subscribe to. This value is used in the
PostgreSQL LISTEN exchange as the routing key for the published message. When

213Listening to PostgreSQL notifications
notifications are sent on a channel that the LISTEN exchange has registered on, the
notification will be turned into a message that’s then published using direct-exchange-
like behavior (figure 10.4).

Of course, with any technology decision there are trade-offs. With pg_amqp, should
PostgreSQL be unable to connect to RabbitMQ, the calls to amqp.publish will fail.
With the LISTEN exchange, should the PostgreSQL connection fail, it can’t register
for notifications and, in turn, it won’t publish any messages. You can watch for such a
scenario by monitoring the throughput rate of the exchange using the RabbitMQ
management API.

10.2.1 Installing the PostgreSQL LISTEN exchange

The PostgreSQL LISTEN exchange can be downloaded from its GitHub project page
at https://github.com/AWeber/pgsql-listen-exchange. In the README displayed on
the project page are downloads of precompiled binary plugins for specific RabbitMQ
versions. When you download and install the plugin, make sure you’re getting the lat-
est version for your version of RabbitMQ.

 The download is a zip file with two RabbitMQ plugins: the exchange and a Postgre-
SQL driver. The following code listing will download and install the plugin on an OS
X system running RabbitMQ 3.3.5 installed via Homebrew. For other systems, you’ll
need to alter the RABBITMQ_DIR assignment, specifying the correct path to the Rab-
bitMQ base directory.

Queue

1. The plugin connects as a client and
issues LISTEN on a given notification channel.

2. PostgreSQL notifies the plugin every
time a notification is sent on that channel.

X

3. The plugin routes the notification
as if it were a message sent to

a direct exchange.

Figure 10.4 The LISTEN exchange acts as a PostgreSQL client, publishing notifications as messages.

https://github.com/AWeber/pgsql-listen-exchange

214 CHAPTER 10 Database integrations

Downl

exch

Gi

Extrac
the z

f e
L

n
#!/bin/bash
RABBITMQ_DIR=/usr/local/Cellar/rabbitmq/3.3.5/
PLUGIN_DIR=$RABBITMQ_DIR/plugins/
cd /tmp
curl -L -o pgsql-listen-exchange.zip http://bit.ly/1ndl8eK
unzip pgsql-listen-exchange.zip
rm pgsql-listen-exchange. zip
mv epgsql-1.4.1-rmq3.3.x-0.2.0-git3318bd5.ez $PLUGIN_DIR
mv pgsql_listen_exchange-3.3.x-0.2.0.ez $PLUGIN_DIR
$RABBITMQ_DIR/sbin/rabbitmq-plugins enable pgsql_listen_exchange

NOTE In Ubuntu and RedHat/CentOS systems, RabbitMQ is typically installed
to a version-specific subdirectory under /usr/lib/rabbitmq. In Windows, Rab-
bitMQ is typically installed to a version-specific directory under C:\Program
Files\RabbitMQ. Precompiled binary plugins are platform independent and
can be run on any platform that runs RabbitMQ.

To verify that the plugin has been installed correctly, navigate to the management
UI’s Exchanges tab at http://localhost:15672/#/exchanges. In the Add a New
Exchange section, you should see the x-pgsql-listen value in the Type drop-down
list (figure 10.5).

 After validating that the plugin was installed correctly, you can now move on to
configuring the exchange. If you don’t see the option in the drop-down list, it’s possible

Listing 10.2 OS X installation script for the LISTEN exchange

Sets the base directory for
the RabbitMQ installation

Sets the plugin
directory path

Changes to a
temporary directory

oads
the

ange
from
tHub

ts
ip
ile

Removes the
downloaded zip file

Moves th
PostgreSQ
driver to
the plugi
directoryMoves the LISTEN

exchange plugin to
the plugin directory

Enables the LISTEN
exchange plugin

Figure 10.5 Validating that the x-pgsql-listen option exists in the Type drop-down list

http://localhost:15672/#/exchanges

215Listening to PostgreSQL notifications
that either the plugins weren’t copied to the appropriate directory or that you’re run-
ning an older version of Erlang than the plugins were compiled with. It’s recommended
that you use Erlang R16 or later.

 There are multiple ways to configure the plugin: by directly configuring the
exchange with connection arguments passed in during exchange declaration, by con-
figuring the exchange in the rabbitmq.config file, or via a policy that’s applied to the
exchange. Policies provide the most flexible way of configuring the exchange and
should be used until you have experience with the plugin and are confident about
how it behaves.

10.2.2 Policy-based configuration

To get started, navigate to the Admin tab of the management UI. From there, click
Policies on the right side of the page (figure 10.6).

To create the policy required for connecting to PostgreSQL, specify a name for the
policy, a regular expression pattern for matching the exchange name, and the Postgre-
SQL host, port, database name, user name, and optionally password. Additionally, you

Figure 10.6 The management UI Policies page

216 CHAPTER 10 Database integrations
can narrow down the policy by specifying that it only applies to exchanges. Figure 10.7
shows a policy that will connect to PostgreSQL on localhost, port 5432, using the
postgres database and username.

Once you click Add Policy, you’ll see the policy listed on the same page, as in figure 10.8.
 When you add the policy, the connection information that you provide will be

checked for type correctness but not validity. You won’t know if the connection infor-
mation is valid until the exchange is created.

Figure 10.7 Declaring a policy for the notification exchange

Figure 10.8 The policy added to the All Policies section

217Listening to PostgreSQL notifications
10.2.3 Creating the exchange

With the policy created, navigate to the Exchanges tab of the management UI at
http://localhost:15672/#/exchanges. Add a new exchange using the Add a New
Exchange form at the bottom of the page. Name the exchange notification so that
the policy will match, and set the exchange type to x-pgsql-listen (figure 10.9).

Once you add the exchange, it will connect to PostgreSQL, but it won’t start listening
for notifications. To have it start listening to exchanges, you must bind to the exchange
with a routing key that matches the PostgreSQL notification channel string.

10.2.4 Creating and binding a test queue

The last setup step for testing the LISTEN exchange is creating a test queue that your
notifications will be sent to. If you navigate to the Queues tab of the management UI
(http://localhost:15672/#/queues), you can create a queue with the Add a New
Queue section. For the purposes of this test, call the queue notification-test. You
don’t need to specify any custom attributes or change any of the default properties in
the form when adding the queue.

 Once you’ve added the queue, navigate to the queue’s page in the management
UI at http://localhost:15672/#/queues/%2F/notification-test. In the Bindings sec-
tion of the page, you can create a new binding to the notification exchange with a
routing key of example (figure 10.10).

 Once added, the exchange will connect to PostgreSQL and execute a LISTEN state-
ment, registering for all notifications sent on the example channel. You’re now ready
to send a test notification.

Figure 10.9 Adding the notification PostgreSQL LISTEN exchange

http://localhost:15672/#/exchanges
http://localhost:15672/#/queues
http://localhost:15672/#/queues/%2F/notification-test

218 CHAPTER 10 Database integrations
10.2.5 Publishing via NOTIFY

To validate that the exchange setup is correct, you can now send a notification in
PostgreSQL using the NOTIFY SQL statement. To do so, use psql, connecting as post-
gres to the postgres database:

$ psql -U postgres postgres

When you’ve connected, you can send the notification:

psql (9.3.5)
Type "help" for help.
postgres=# NOTIFY example, 'This is a test from PostgreSQL';
NOTIFY

With the notification sent, switch back to the RabbitMQ management UI to get the
message from the notification-test queue in the Get Messages section (figure 10.11).

 As you can see, the LISTEN exchange adds metadata about the message that’s not
populated when using pg_amqp. The message properties specify the app_id, noting
that the message originated from the pgsql-listen-exchange plugin. The timestamp is
also shown, taken from the current local time of the RabbitMQ server. Additionally,
headers are set that specify the PostgreSQL notification channel, database, server,
and name of the source exchange.

 Although this example was a plain text string, functions sending notifications can
serialize data in a variety of formats, making notifications a versatile part of your appli-
cation. Perhaps you want to use them for debugging complex stored procedures, mak-
ing it easy to trace the state of data as it travels through your database. Or maybe you
want to use them to update disparate systems in the cloud, using the exchange in com-
bination with the RabbitMQ federation plugin. In either circumstance, the LISTEN
exchange adds loosely coupled integration with PostgreSQL with very little overhead
for either system.

Figure 10.10 Binding the test queue to the notification exchange

219Storing messages in InfluxDB
10.3 Storing messages in InfluxDB
InfluxDB (http://influxdb.com) is an open source, distributed, time-series database
written in Go. It’s very easy to set up for both Linux and OS X systems. It’s a compel-
ling system for storing time-series data for analytical purposes, as it provides multiple
easy-to-use protocols for populating data and a built-in web-based query interface
for querying the data it stores. It’s quickly becoming an alternative to systems like
Graphite because it provides more scalable storage that’s accessible via a cohesive,
scale-out cluster.

 Messages that are routed through the InfluxDB storage exchange are examined to
determine whether they should be stored in InfluxDB. If the content type of a mes-
sage is specified and it’s set to application/json, the message will be transformed
into the proper format and stored in InfluxDB using the routing key as the InfluxDB
event name. Additionally, if the timestamp is specified, it will automatically be mapped
to the InfluxDB event time column.

Figure 10.11 Getting
the message from the
notification-test queue

http://influxdb.com

220 CHAPTER 10 Database integrations
10.3.1 InfluxDB installation and setup

To get started with RabbitMQ and InfluxDB, you must first ensure that you have
InfluxDB installed. There are detailed installation instructions on the project docu-
mentation page at http://influxdb.com/docs/. Pick the latest version from the docu-
mentation index, and then follow the installation instructions and the getting started
instructions to check that the system is installed and set up correctly.

 Alternatively, for learning about InfluxDB, the project provides a public play-
ground server at http://play.influxdb.org. If you’re using Windows or you don’t want
to install a server locally on your computer, you can use the public playground with
the InfluxDB storage exchange to test the integration. The examples in this section of
the chapter will assume a local installation, but you should only need to change the
connection and authentication information to use the public playground server.

 If you’re setting up a local instance of InfluxDB, you’ll need to create both a data-
base and a user for RabbitMQ. To do so, open your web browser to http://local-
host:8083 and log in to the administration interface using the username root and the
password root (figure 10.12).

 Once you log in for the first time, you’ll be prompted to create a database. For val-
idating the InfluxDB storage exchange, create an exchange called rabbitmq-test
(figure 10.13).

Figure 10.12 Logging into the InfluxDB administration interface

http://influxdb.com/docs/
http://play.influxdb.org
http://localhost:8083
http://localhost:8083

221Storing messages in InfluxDB
Once you’ve created the database, it will appear in a list at the top of the web page.
Click on rabbitmq-test in that list and you’ll be taken to a page where you can add a
user for RabbitMQ that the plugin will use to authenticate to RabbitMQ (figure 10.14).
On that form, enter the username rabbitmq and the password test, and then click
the Create button.

Once you’ve created the user, it will show up in the Database Users table at the top of
the page. Then you’re ready to install and configure the InfluxDB storage exchange.

Figure 10.13 Creating the rabbitmq-test database

Figure 10.14 Creating the rabbitmq user for the rabbitmq-test database

222 CHAPTER 10 Database integrations

Downl

exch

Gi

Extrac
the z

f s
TTP
r to
lugin
ory
10.3.2 Installing the InfluxDB storage exchange

Installing and configuring the InfluxDB storage exchange is very similar to the pro-
cess for the PostgreSQL LISTEN Exchange. The plugin can be downloaded from its
GitHub project page at https://github.com/aweber/influxdb-storage-exchange. The
README displayed on the project page lists download links for precompiled binary
plugins for specific RabbitMQ versions. When you download and install the plugin,
make sure you’re getting the latest version for your version of RabbitMQ.

 The download is a zip file with two RabbitMQ plugins: the exchange and an HTTP
client library. The following code listing will download and install the plugin on an OS
X system running RabbitMQ 3.3.5 installed via Homebrew. For other systems, you’ll
need to alter the RABBITMQ_DIR assignment, specifying the correct path to the RabbitMQ
base directory.

#!/bin/bash
RABBITMQ_DIR=/usr/local/Cellar/rabbitmq/3.3.5/
PLUGIN_DIR=$RABBITMQ_DIR/plugins/
cd /tmp
curl -L -o influxdb-storage-exchange.zip http://bit.ly/1j7UvXf
unzip influxdb-storage-exchange.zip
rm influxdb-storage-exchange.zip
mv ibrowse-4.0.2-rmqv3.3.x-git7871e2e.ez $PLUGIN_DIR
mv influxdb_storage_exchange-v3.3.x-0.1.1.ez $PLUGIN_DIR
$RABBITMQ_DIR/sbin/rabbitmq-plugins enable influxdb_storage_exchange

NOTE As a reminder, in Ubuntu and RedHat/CentOS systems, RabbitMQ is
typically installed to a version-specific subdirectory under /usr/lib/rabbitmq.
In Windows, RabbitMQ is typically installed to a version-specific directory
under C:\Program Files\RabbitMQ. Precompiled binary plugins are platform
independent and can be run on any platform that runs RabbitMQ.

To verify that the plugin has been installed correctly, navigate to the management UI
Exchanges tab at http://localhost:15672/#/exchanges. In the Add a New Exchange
section, you should see the x-influxdb-storage value in the Type drop-down list (fig-
ure 10.15).

 With the installation properly verified, you can now create an instance of the
InfluxDB storage exchange.

Listing 10.3 OS X installation script for the LISTEN exchange

Sets the base directory for
the RabbitMQ installation

Sets the plugin
directory path

Changes to a
temporary directory

oads
the

ange
from
tHub

ts
ip
ile

Removes the
downloaded zip file

Move
the H
drive
the p
directMoves the exchange

plugin to the plugin
directory

Enables the InfluxDB
storage exchange plugin

https://github.com/aweber/influxdb-storage-exchange
http://localhost:15672/#/exchanges

223Storing messages in InfluxDB
10.3.3 Creating a test exchange

Like the PostgreSQL LISTEN Exchange, the InfluxDB storage exchange can be con-
figured by policy, by rabbitmq.config, or by passing custom arguments when declaring
the exchange. For the various configuration options and variables used for each con-
figuration method, check the README on GitHub at https://github.com/aweber/
influxdb-storage-exchange. To illustrate the difference between the policy-based con-
figuration used with the PostgreSQL LISTEN exchange and argument-based configu-
ration, the following example will use an argument-based configuration when creating
the exchange.

 First, navigate to the Exchanges tab of the RabbitMQ management UI at
http://localhost:15672/#/exchanges and go to the Add a New Exchange section.
Configuring the exchange with custom arguments is done with variables that have a
prefix of x-, indicating that each of these arguments aren’t standard AMQP or Rab-
bitMQ variables. You’ll need to configure the host, port, database name, user, and
password for the InfluxDB connection. Each of these values is prefixed with x-, as
illustrated in figure 10.16. Failure to prefix the variables with x- will cause the exchange
to use the default values for each of the settings you provide.

 When you add the exchange, the parameters will be checked for type validity, but
the connection information won’t be tested. Due to the immutable nature of AMQP
exchanges, if you misconfigure the exchange, it will need to be deleted and re-added.

 Messages published into the exchange will first be stored in InfluxDB and
then routed to any queues or exchanges bound to the exchange using the topic
exchange routing key behavior. Misconfigured exchanges won’t prevent messages
from being routed through them, but they won’t be able to store the messages in
InfluxDB.

Figure 10.15 Validating that the InfluxDB storage exchange is installed properly

http://localhost:15672/#/exchanges
https://github.com/aweber/influxdb-storage-exchange
https://github.com/aweber/influxdb-storage-exchange

224 CHAPTER 10 Database integrations
With the exchange created, you can now test the exchange by publishing messages
into it. If you’re using rabbitmq.config or policy-based configuration, you could
leave the arguments empty and the values of either method would be applied to the
exchange’s configuration.

10.3.4 Testing the exchange

To test the proper integration of the exchange, navigate to the new exchange’s page
in the RabbitMQ management UI at http://localhost:15672/#/exchanges/%2F/
influx-test. In the Publish a Message section, specify a message that has a content_
type of application/json, a valid timestamp value, and a well-formed JSON body
(figure 10.17).

 Because you didn’t bind a queue to the exchange, you’ll receive a warning that
the message was published but not routed when you publish the message. That’s
OK for this test because you only want to verify that the data point made it into
InfluxDB.

 To validate that the event was stored properly, open the administration interface in
your web browser by navigating to http://localhost:8083 and logging in as root using
the password root. As illustrated in figure 10.18, you’ll be presented with a list of data-
bases. Click on the Explore Data link for the rabbitmq-test database.

Figure 10.16 Adding a new InfluxDB exchange with argument-based configuration

http://localhost:15672/#/exchanges/%2F/influx-test
http://localhost:15672/#/exchanges/%2F/influx-test
http://localhost:8083

225Storing messages in InfluxDB
Figure 10.17 Publishing a JSON message to the InfluxDB storage exchange

Figure 10.18 The InfluxDB administration interface showing a list of databases

226 CHAPTER 10 Database integrations
When you click on Explore Data, you’ll be taken to an interface where you can query
the data. Entering the simple query SELECT * FROM pageview should return a single
row, as illustrated in figure 10.19.

If you don’t see your data as a result of the query, perhaps there was a typo in your
message headers or the message. Ensure that the content type is specified and that it’s
set to application/json. Additionally, ensure that the message you published is well-
formed JSON. You can check your message body using http://jsonlint.com. Finally,
validate that InfluxDB is running and that the configuration data provided when cre-
ating the exchange is accurate.

 If everything worked as expected, the InfluxDB storage exchange demonstrates
the flexibility and power that direct database integrations with RabbitMQ can create.
If you use systems such as Sensu (http://sensuapp.org) for monitoring your infrastruc-
ture, you now have a powerful way to transparently tap into your event stream and
store it in a database for further analysis, or for providing the information in a dash-
board using Grafana (http://grafana.org).

Figure 10.19 Verifying that the row was inserted in the database

http://jsonlint.com
http://sensuapp.org
http://grafana.org

227Summary
10.4 Summary
Integrating databases with RabbitMQ reduces the operational overhead of running
consumer or publisher applications outside of your database or RabbitMQ stack. Such
simplification comes with a cost, however. Because RabbitMQ and your database are
more tightly coupled, failure scenarios can become more complex.

 In this chapter you learned how PostgreSQL can be used as a source of messages
that are routed through RabbitMQ either by using the pg_amqp PostgreSQL exten-
sion or by using the PostgreSQL LISTEN exchange. Installing and using the InfluxDB
storage exchange was detailed, demonstrating how messages published into Rab-
bitMQ can be stored in a database by RabbitMQ itself.

 The database integrations in this chapter are just the tip of the iceberg. There are
other projects that directly integrate RabbitMQ with a database, such as the Riak
exchange (https://github.com/jbrisbin/riak-exchange) and its counterpart, a project
that implements Riak RabbitMQ commit hooks (https://github.com/jbrisbin/riak-
rabbitmq-commit-hooks), publishing messages into RabbitMQ when write transac-
tions occur in Riak. To see if there’s a plugin for your database of choice, check out
the RabbitMQ Community Plugins page at https://www.rabbitmq.com/community-
plugins.html and the RabbitMQ Clients & Developer Tools page at https://www.rabbitmq
.com/devtools.html.

 Can’t find what you’re looking for? Perhaps you can contribute the next plugin
providing database integration with RabbitMQ.

https://github.com/jbrisbin/riak-exchange
https://github.com/jbrisbin/riak-rabbitmq-commit-hooks
https://github.com/jbrisbin/riak-rabbitmq-commit-hooks
https://www.rabbitmq.com/community-plugins.html
https://www.rabbitmq.com/community-plugins.html
https://www.rabbitmq.com/devtools.html
https://www.rabbitmq.com/devtools.html

appendix
Getting set up

This appendix covers setting up VirtualBox, Vagrant, and the RabbitMQ in Depth
Vagrant virtual machine (VM) that contains everything needed to test code sam-
ples, experiment, and follow along with the book.

 VirtualBox is the virtualization software we’ll use to run all of the examples,
and Vagrant is an automation tool for setting up the VM. You’ll need to install
these two applications, and then you’ll be able to set up the RabbitMQ in Depth
VM by downloading a zip file containing the Vagrant configuration and Chef
cookbooks. Once they’re downloaded and extracted, you can start the VM by run-
ning a single command, and you’ll be able to interactively test the code listings
and examples in the book.

 It’s a fairly straightforward process in Windows, OS X, and Linux designed to
keep the steps for following along with the book to a minimum. To get started,
you’ll need to download and install VirtualBox.

A.1 Installing VirtualBox
VirtualBox is a free virtualization product originally developed by Sun Micro-
systems and now made available by Oracle. It runs on Windows, Linux, Macin-
tosh, and Solaris systems and provides the underlying VM that will be used for
this book.

 Setting up VirtualBox is very straightforward. You can download it from http://
virtualbox.org. Just navigate to the Downloads page, chose the VirtualBox platform
package for your operating system type, and download the installation package for
your computer (figure A.1).

228

http://virtualbox.org
http://virtualbox.org

229Installing VirtualBox
NOTE At the time of this writing, Vagrant supports VirtualBox versions 4.0.x,
4.1.x, 4.2.x, 4.3.x, 5.0.x, and 5.1.x. It’s a safe assumption that with the popular-
ity of both VirtualBox and Vagrant that Vagrant will continue to support new
releases from the VirtualBox project shortly after they’re released. In other
words, you should be able to download the most current version of Virtual-
Box without concern for Vagrant incompatibility.

With the package downloaded, run the installer. Although each operating system
will look slightly different, the installation process should be the same. It’s safe in
most circumstances to follow the default installation options when running the wiz-
ard (figure A.2).

 If you’d like a more in-depth walkthrough of the options available for installing
VirtualBox, chapter 2 of the VirtualBox user manual covers installation in a very detailed
manner and is available at www.virtualbox.org/manual/ch02.html.

 Should you run into problems installing VirtualBox, the best place for support is
the VirtualBox community. The mailing lists, forums, and #vbox IRC channel on
www.Freenode.net are all excellent resources to get you up and running if you run
into any issues.

Figure A.1 The VirtualBox download page includes downloads for Windows, OS X, Linux, and Solaris.

http://www.virtualbox.org/manual/ch02.html
http://www.Freenode.net

230 APPENDIX Getting set up
Assuming that you didn’t run into any problems installing VirtualBox, you should now
install Vagrant, the virtual environment automation tool.

A.2 Installing Vagrant
Vagrant is an automation tool for managing virtual environments. It allows for VMs to
be provisioned from scratch, providing a structure for downloading and installing a
base VM image, and it integrates with configuration management tools like Chef and
Puppet. The result is a consistently deployed VM that makes for a solid development
environment. In addition, because it’s run on your local machine, it maps network
access to the services running in the VM to your local computer’s localhost network
interface. This functionally makes it appear as if RabbitMQ and the other network-
based tools you’ll be using in this book are running natively on your computer instead
of in a VM.

 To get started, visit www.vagrantup.com (figure A.3) in your web browser and
download the version of Vagrant appropriate for your computer.

 When you click on the Download button, you’ll be presented with a list of versions
to download. Click on the latest version at the top of the list, and then you’ll be pre-
sented with a list of installers and packages for specific operating systems (figure A.4).
Select the version that’s appropriate for your computer and download it.

NOTE Although VirtualBox supports Solaris as a host operating system, Vagrant
only supports Windows, OS X, and a handful of Linux distributions.

Figure A.2 The VirtualBox installation wizard

http://www.vagrantup.com

231Installing Vagrant
Figure A.3 VagrantUp.com, home of the Vagrant project

Figure A.4 The Vagrant download page

232 APPENDIX Getting set up
Setting up Vagrant is a straightforward process. Windows and OS X users will run the
installation tool (figure A.5), whereas Linux users will install the package appropriate
for their distribution using a package tool like dpkg or rpm. If you have any installa-
tion issues, the Vagrant website has support documentation available at http://docs
.vagrantup.com/.

When the installation is complete, the Vagrant command-line application should be
added to the system path. If you find that it’s not available in your terminal or shell
(PowerShell in Windows), you may have to log out and back in to your computer. If
you aren’t able to run the Vagrant command-line application after logging out and
back in, there’s both professional and community-based support for Vagrant. It’s best
to start with the community options via the mailing list or in the #vagrant IRC channel
on www.Freenode.net.

 If you’ve not used Vagrant before, it’s a great tool and is really helpful in the devel-
opment process. I highly recommend reading the documentation and playing around
with the various commands it has available. Try typing vagrant help to see a list of
what you can do with a Vagrant-controlled VM.

 If you’ve successfully installed Vagrant, you should now set up the VM for RabbitMQ
in Depth by downloading the appropriate files and running a few simple commands.

Figure A.5 The Vagrant installation wizard

http://docs.vagrantup.com/
http://docs.vagrantup.com/
http://www.Freenode.net

233Setting up the Vagrant virtual machine
A.3 Setting up the Vagrant virtual machine
For this next step, you’ll need to download a small zip file containing the Vagrant con-
figuration and support files required for the virtual environments used in the book.
There are multiple VMs defined in the Vagrant file for the clustering tutorials in part 2
of the book. You’ll be using the primary VM unless instructed otherwise in a chapter.

 To get started, you’ll need to download the Vagrant configuration file, rmqid-
vagrant.zip, from the code files in order to configure the environment.

 Once you have the zip file downloaded, extract the contents of the file to a direc-
tory that will be easy for you to remember and access via your terminal, or PowerShell
if you’re a Windows user. When you extract the zip file, the files will be located in a
directory named rmqid-vagrant. Open your terminal and navigate to this directory,
and start the Vagrant setup of the primary VM by typing the following:

vagrant up primary

This process will take 10 to 15 minutes on average but can vary depending on the
speed of your computer and internet connection. When you first start the process,
you should see output on your console indicating the progress of the VM, looking
something similar to the following:

Bringing machine 'primary' up with 'virtualbox' provider...
==> primary: Box 'gmr/rmqid-primary' could not be found. Attempting to find

and install...
 primary: Box Provider: virtualbox
 primary: Box Version: >= 0
==> primary: Loading metadata for box 'gmr/rmqid-primary'
 primary: URL: https://atlas.hashicorp.com/gmr/rmqid-primary
==> primary: Forwarding ports...
 primary: 1883 => 1883 (adapter 1)
 primary: 22 => 2222 (adapter 1)
==> primary: Booting VM...
==> primary: Waiting for machine to boot. This may take a few minutes...
 primary: SSH address: 127.0.0.1:2222
 primary: SSH username: vagrant
 primary: SSH auth method: private key
==> primary: Running provisioner: shell...
 primary: Running: inline script
==> primary: stdin: is not a tty
==> primary: From https://github.com/gmr/RabbitMQ-in-Depth
==> primary: * branch master -> FETCH_HEAD
==> primary: 80e7615..469fc8c master -> origin/master
==> primary: Updating 80e7615..469fc8c
==> primary: Fast-forward

If you didn’t see output similar to this, you may have an application on your computer
that’s already bound to and listening on one of the ports the VM is trying to use. If
you’re running RabbitMQ already on your local machine, shut it down before trying
to run vagrant up again. The VM will attempt to use ports 1883, 2222, 5671, 5672,

234 APPENDIX Getting set up
8883, 8888, 9001, 15670, 15671, 15672, and 61613. That’s a lot of ports, but in this
machine you’re running a virtual server with several services for the examples in this
book. You’ll need to stop any applications that are listening on these ports in order to
get the VM working properly.

 Additionally, if you’re setting up on a Windows machine, you may be prompted by
your firewall to allow connections to and from the VM. Make sure you allow this, or
you’ll be unable to connect to the VM, and Vagrant won't even be able to configure it.

 If everything started OK and the machine has booted, there may be points while it
is configuring the VM when it appears stalled or not doing anything. Once the setup
of the VM is complete, you should be back at the prompt in your console.

 Finally, if you need to stop the VM, use the command vagrant halt.
 Now you can test a few URLs in your browser to confirm that everything was set

up properly.

A.4 Confirming your installation
There are two applications you need to ensure are properly set up. If they’re set up
properly, it’s an indication that everything worked as expected and you can go ahead
and start with the examples in the book.

 The first is RabbitMQ. To test that RabbitMQ is set up properly, open your browser
to http://localhost:15672. You should see a screen similar to figure A.6.

Figure A.6 The RabbitMQ management interface login

http://localhost:15672

235Confirming your installation
The username and password for logging into the management UI are the default
“guest” and “guest”. If you log in, you’ll get the main screen of the management UI,
which gives an overview of the server configuration and status.

 With RabbitMQ confirmed, the other application to test is the IPython Notebook
server. This application allows you to run the Python-based code samples interactively
in your web browser. With this VM, all of the code listings and samples are organized
in the IPython Notebook server, allowing you to open each and run them indepen-
dently of each other. The IPython Notebook server should be listening on port 8888,
so open a new tab in your web browser and visit http://localhost:8888. You should see
a page similar to the one in figure A.7.

If you’re interested in the capabilities of or in documentation for the IPython Note-
book server, the project’s website contains a wealth of information (http://ipython.org).
It’s a tremendously useful application and is gaining popularity in scientific and data-
processing communities as an interface for crunching datasets and performing data
visualization.

Figure A.7 The IPython Notebook server index page with the RabbitMQ in Depth notebooks

http://ipython.org
http://localhost:8888

236 APPENDIX Getting set up
A.5 Summary
At this point you should have the RabbitMQ in Depth VM up and running. You
installed VirtualBox, the virtual environment automation tool. By downloading the
RabbitMQ in Depth Vagrant configuration and Chef cookbooks, you should have
been able to start up a new VM using the vagrant up command. With these steps
done, you can now proceed to using the tools in the VM to follow along with the
examples in the book.

index
Symbols

* (asterisk) character 33, 119
/ (forward slash) symbol 182
(pound) character 119
+ (plus) symbol 184

A

AD HOC clusters, creating 145
Advanced Message Queuing

model. See AMQ model
Advanced Message Queuing Pro-

tocol. See AMQP
allow_anonymous directive

188
alternate exchanges, for non-

routable messages 66–68
alternative protocols 177–204

MQTT 178–189
plugin configuration

187–189
protocol 178–181
publishing via 182–184
subscribers 184–187
variable headers 180–181

stateless publishing via
HTTP 200–204

STOMP 189–200
consuming messages

195–198
plugin configurations

198–199
protocols 190
publishing messages

191–195

using in web browsers
199–200

AMQ (Advanced Message Queu-
ing) model 14–17

bindings 15–17
exchanges 15
queues 15

AMQP (Advanced Message
Queuing Protocol) 4, 6–7,
18, 27–37

as RPC transport 19–21
channels 20–21
protocol headers 20

binding queues to
exchanges 29

declaring exchanges 27
declaring queues 28
getting MQTT-published mes-

sages via 183–184
message properties, via

STOMP 194–195
messages

consuming 30–32
publishing 29–30
retrieving 36–37

queues
sending messages to 192
subscribing to 198

RPC frames 21–26
body 26
components of 21–22
content header 26
marshaling messages

into 23–24
method, anatomy of 24–25
types of 22–23

writing message publishers in
Python 32–35

AMQP TX class 89
amqp.disconnect function 206,

209
amqp.publish function 206,

209, 211–212
amq.topic exchange 182, 191,

193
app-id property, validating mes-

sage origin with 49–51
applications

consumer, running 110
creating architecture 103–107
decoupling 10–11
geographically distributed

168
testing 114

architectures
advantages of 8–17

adding functionality 12
AMQ model 14–17
decoupling applications

10–11
decoupling database

writes 11–12
federating data 13
federating events 13
replicating data 12
replicating events 12

creating 103–107
asterisk (*) character 33, 119
atomic transactions 69
auto_delete flag 94–95, 108
AWS (Amazon Web Services)

153
237

INDEX238
B

backlog directive 189
base libraries, importing 118
Basic class 24
Basic.Ack 65
Basic.Cancel command 31
Basic.Consume command

consumer tags 83–84
overview 30–31
vs. Basic.Get command

80–84
Basic.Get command 80–84
Basic.GetEmpty command 81
Basic.Nack command 65, 90–92
Basic.Properties command 23
Basic.Publish command 23–24,

64
Basic.Publish RPC method 206
Basic.Reject command 90–91
Basic.Return command 25
batch processing, with

transactions 68–70
benchmarking exchange

performance 124–125
bidirectional federated

exchanges 170–171
binary directive 189
bind method 34
binding keys 15
bindings

exchanges 112
in AMQ model 15–17
queues 108, 118
queues to exchanges 29
test queues, for LISTEN

exchanges 217
body frames 26
broadcasting messages, via

fanout exchanging
115–119

creating simple image-hashing
consumers 117–119

modifying facial detection
consumers 116–117

browsers. See web browsers
buffers 86

C

calibrating prefetch values 87
can_stop flag 196
Channel.Close command 27–28,

63, 108
Channel.Flow command 75–76

channels
closing 114
overview 20–21

client_flow_blocked flag 77
client.loop() method 183
closing channels and

connections 114
cluster-id property 40–41, 54–55
clusters 135–147

AD HOC, creating 145
adding nodes to 144–147

configuration-based
clusters 146–147

creating AD HOC
clusters 145

Erlang cookies 144
federation for upgrades

171–173
management UI and 137–138
node types 138–139

crash behavior and 138
message persistence

and 138
stats nodes 139

overview 136–142
queue behavior and 139–142

highly available queues 142
node-specific

consumers 141–142
publishing

considerations 140–141
setting up 142–147
See also cross-cluster message

distribution
components, of frames 21–22
configuration

MQTT plugins 187–189
pg_amqp extensions

209–210
policy-based, for

PostgreSQL 215–216
RabbitMQ 158
STOMP plugins 198–199

configuration-based
clusters 146–147

confirming installations
234–235

CONNECTED frame 190
connecting

queues 108
upstream 162–173

bidirectional federated
exchanges 170–171

defining federation
upstreams 162–164

defining policies 164–167
federation for cluster

upgrades 171–173
leveraging sets 167–169

Connection class 21
connection status

checking with rabbitpy 77
using management API

for 77–78
Connection.Blocked 76
Connection.close 63
ConnectionListener object

196
connections, closing 114
Connection.Start command

20–21
Connection.StartOk

command 20
Connection.subscribe

method 196
Connection.Unblocked 76
consistent-hashing exchanges

overview 102
routing messages with

127–132
consumer applications,

running 110
consumer tags 83–84
consumers

facial detection,
modifying 116–117

image-hashing 117–119
binding queues 118
connecting to

RabbitMQ 118
creating queues 118
hashing images 117–118
importing base libraries

118
testing new workflows

119
node-specific 141–142
tuning message delivery

to 84–89
controlling consumer

prefetching via QoS
settings 86–88

using no-ack mode for
faster throughput
85–86

using transactions with 89
consuming messages 30–32,

79–100
Basic.Get vs. Basic.Consume

80–84

INDEX 239
consuming messages (continued)
controlling queues 94–100

arbitrary settings 99–100
permanent 97–98
temporary 94–97

in STOMP 195–198
rejecting messages 90–94

Basic.Nack 91–92
Basic.Reject 90–91
DLX 92–94

tuning message delivery
84–89
controlling consumer

prefetching via QoS
settings 86–88

using no-ack mode for
faster throughput 85–86

using transactions with
consumers 89

content header frames 26
content-encoding property,

reducing message size
with 43–44

Content-Headers property 104
content-type property 41–44
contracts. See message contracts
cookies, Erlang 144
correlation-id field 104
correlation-id property

overview 113
referencing messages

with 45–48
crashes, node types and 138
CREATE EXTENSION

syntax 208
cross-cluster message

distribution 148–173
connecting upstream 162–173

bidirectional federated
exchanges 170–171

defining federation
upstreams 162–164

defining policies 164–167
federation for cluster

upgrades 171–173
leveraging upstream

sets 167–169
creating virtual

machines 153–162
creating first

instances 153–158
duplicating EC2

instances 159–162
federating exchanges 149–153
federating queues 149–153

D

database integrations 205–227
listening to PostgreSQL

notifications 212–218
binding test queues 217
creating exchanges 217
creating test queues 217
installing LISTEN

exchanges 213–215
policy-based

configurations 215–216
publishing via NOTIFY 218

pg_amqp PostgreSQL
extensions 206–212
configuring 209–210
installing 207–209
publishing messages

via 210–212
storing messages in

InfluxDB 219–227
creating test exchanges

223–224
installing 220–221
installing storage

exchanges 222
setup 220–221
testing exchanges 224–227

database writes, decoupling
11–12

dead-letter exchanges. See DLX
declare method 34
declaring

exchanges 27, 106–107, 112
queues 28, 108

decoupling
applications 10–11
database writes 11–12

default_password directive 188
default_user directive 188, 199
deleting queues

automatically 94–96
delivery tag 32
delivery-mode 2 property, per-

sisting messages to disk
via 72–75

delivery-mode property 30,
39–49, 75

destinations of messages,
creating 182

detect.faces method 109
detect-faces routing key 108,

113
direct exchanges, message rout-

ing using 102–114

creating application
architecture 103–107

creating RPC workers 107–110
writing simple RPC

publishers 110–114
direct-rpc-requests

exchange 117
distributed-events exchange

126
DLX (dead-letter

exchanges) 92–94
download page, Vagrant 231
DUP flag 179
duplicating EC2 instances

159–162
durable flag 97
durable setting 48
dynamic workflows, using reply-

to property for 52–53

E

EC2 (Elastic Cloud Compute),
instances

connecting first instances
to 155–157

duplicating 159–162
enumerate function 112
Erlang programming

language 5
cookies 144
installing 157–158

errors, handling 28
ESB (Enterprise Service Bus) 7
ETL (extract-transform-load) 52
events

federating 13
replicating 12

exchange directive 188
exchange routing 101–132

broadcasting messages via
fanout exchanges 115–119
creating simple image-

hashing consumers
117–119

modifying facial detection
consumers 116–117

exchange performance
benchmarking 124–125

exchange-to-exchange
routing 125–127

message routing using direct
exchanges 102–114
creating application

architecture 103–107

INDEX240
exchange routing (continued)
creating RPC workers

107–110
writing simple RPC

publishers 110–114
message routing with

consistent-hashing
exchanges 127–132

message routing with topic
exchanges 119–122

with headers exchanges
122–124

Exchange.Bind method 126
Exchange.Declare command

27–28, 67
exchanges

benchmarking performance
of 124–125

bidirectional federated
170–171

binding 112
binding queues to 29
consistent-hashing, routing

messages with 127–132
declaring 27, 106–107, 112
federating 149–153
headers, exchange routing

with 122–124
in AMQ model 15
routing to exchanges 125–127
sending messages to 192–193
subscribing to 198
test, creating for InfluxDB

223–224
testing 224, 227
topic, routing messages

with 119–122
See also direct exchanges;

LISTEN exchanges
expiration property 41, 47
expiring

messages, automatically in
queues 97–98

queues, automatically 96–97
explicit message contracts, creat-

ing with content-type 41, 43
Explore Data link 224

F

facial detection consumers,
modifying 116–117

fanout exchanges
broadcasting messages

via 115–119

creating simple image-
hashing consumers
117–119

modifying facial detection
consumers 116–117

overview 68, 102
fanout-rpc-requests 117
federated exchanges,

bidirectional 170–171
federating

cluster upgrades 171–173
data 13
events 13
exchanges 149–153
queues 149–153

Federation Upstreams tab
162

federation upstreams,
defining 162–164

federation-test policy 165–166
FIFO (first-in, first-out) 15, 30
forward slash (/) symbol 182
frame header 22
frames 21–26

body 26
components of 21–22
content header 26
marshaling messages into

23–24
method, anatomy of 24–25
types of 22–23

functionality, adding 12
FunTechHouse project 178

G

geographically distributed
applications 168

get_images() function 112
Golconde 206
graphite exchange 67–68
guaranteed delivery 59–75

batch processing with
transactions 68–70

HA queues with transactions
72

persisting messages to disk via
delivery-mode 2 72–75

RabbitMQ won’t accept non-
routable messages with
mandatory set 62–64

surviving node failures with
HA queues 70–72

trade-offs when using no
guarantees 60–62

using alternate exchanges for
non-routable messages
66–68

using Publisher Confirms fea-
ture as alternative to
transactions 64–66

guarantees, trade-offs 60–62
gzip compression, reducing mes-

sage size with 43–44

H

HA (highly available) queues
surviving node failures

with 70–72
transactions with 72

hardware provisioning 74
hash-header value 129
hashing images 118
headers exchanges

exchange routing with
122–124

overview 102
headers property 53–57, 110,

123–125, 129
headers table property 41
headers, variable 180–181
headers-rpc-requests

exchange 123
HTTP (hyper text transfer pro-

tocol), stateless publishing
via 200–204

I

I/O intensive tasks 104
image messages, processing

109
image.delete.gallery routing

key 120
image.delete.profile routing

key 120
image-hashing consumers

117–119
binding queues 118
connecting to RabbitMQ 118
creating queues 118
hashing images 118
importing base libraries 118
testing new workflows 119

image.new.gallery routing
key 120

image.new.profile routing
key 120

image.resize routing key 120

INDEX 241
images
hashing 118
iterating through

available 112
image-storage exchange 130
img_id value 113
immediate flag 64
implicit_connect directive 199
importing libraries

base 118
overview 107–108
specifying 111–112

InfluxDB database
installing 220–221
installing storage

exchanges 222
setting up 220–221
storing messages in 219–227

creating test exchanges
223–224

testing exchanges
224–227

installation 228–235
confirming 234–235
Erlang programming

language 157–158
InfluxDB database 220–221
pg_amqp extensions

207–209
installation via PGXN 208
manually 208–209

RabbitMQ 157–158
Vagrant 230, 232–234
VirtualBox 228–230

integrating databases 205–227
listening to PostgreSQL

notifications 212–218
creating exchanges 217
creating test queues 217
installing LISTEN

exchanges 213–215
policy-based configurations

215–216
publishing via NOTIFY

218
pg_amqp PostgreSQL

extensions 206–212
configuring 209–210
installing 207–209
publishing messages

via 210–212
storing messages in

InfluxDB 219–227
creating test exchanges

223–224

installing 220–221
installing storage

exchanges 222
testing exchanges 224–227

IPC (inter-process communica-
tion) system 5

IPython Notebook Server 32
iterating images 112

L

leveraging upstream sets
167–169

creating upstream set 169
geographically distributed

applications 168
providing redundancy 168

libraries
importing 107–108, 118
specifying imported

111–112
Linux, receive socket buffers 86
LISTEN exchanges

binding test queues 217
creating 217
creating test queues 217
installing 213–215

Listener class 196
listening to PostgreSQL

notifications 212–218
binding test queues 217
creating exchanges 217
creating test queues 217
installing LISTEN

exchanges 213–215
policy-based configurations

215–216
publishing via NOTIFY 218

localhost network interface
230

loopback_users setting 158
loosely coupled architectures,

advantages of 8–17
adding functionality 12
AMQ model 14–17
decoupling applications

10–11
decoupling database

writes 11–12
federating data 13
federating events 13
replicating data 12
replicating events 12

LWT (Last Will and Testament)
feature 178

M

management API, using for con-
nection status 77–78

management interface login,
RabbitMQ 234

management UI, clusters
and 137–138

mandatory flag, non-routable
messages with

overview 25, 30
RabbitMQ won’t accept

62–66
marshaling messages into

frames 23–24
max-hops setting 170
message contracts, explicit

41–43
message distribution 148–173

connecting upstream
162–173
bidirectional federated

exchanges 170–171
defining federation

upstreams 162–164
defining policies 164–167
federation for cluster

upgrades 171–173
leveraging upstream

sets 167–169
creating virtual

machines 153–162
creating first

instances 153–158
duplicating EC2

instances 159–162
federating exchanges

149–153
message persistence 73–75
message properties 38–57

AMQP, via STOMP 194–195
creating explicit message

contracts with content-
type 41–43

reducing message size 43–44
referencing messages 45–48
using 39–41
using delivery-mode 48–49
using headers property

53, 57
using reply-to for dynamic

workflows 52–53
using type property 51–52
validating message origin

49–51

INDEX242
message publishing 58–78
checking connection status

with rabbitpy 77
using guaranteed delivery

59–75
batch processing with

transactions 68–70
HA queues with

transactions 72
persisting messages to

disk via delivery-mode 2
72–75

RabbitMQ won’t accept
non-routable messages
with mandatory set
62–64

surviving node failures
with HA queues
70–72

trade-offs when using no
guarantees 60–62

using alternate exchanges
for non-routable
messages 66–68

using Publisher Confirms
feature as alternative to
transactions 64–66

using management API for
connection status 77–78

message routing
using direct exchanges

102–114
creating application

architecture 103–107
creating RPC workers

107–110
writing simple RPC

publishers 110–114
with consistent-hashing

exchanges 127–132
with topic exchanges

119–122
message-id property,

referencing messages
with 45–48

message.publish() function 123
MessageReturnedException 63
messages 79–100

acknowledging 87–88, 113
AMQP properties via

STOMP 194–195
Basic.Get vs. Basic.Consume

80–84
broadcasting via fanout

exchanges 115–119

creating simple image-
hashing consumers
117–119

modifying facial detection
consumers 116–117

consuming 30–32, 195–198
controlling queues 94–100

arbitrary settings 99–100
permanent 97–98
temporary 94–97

creating destinations 182
image processing 109
marshaling into frames 23–24
MQTT

getting via AMQP 183–184
structure 179–180

non-routable 62–64, 66–68
persistence, node types

and 138
persisting to disk via delivery-

mode 2 72–75
publishing 29–30

via pg_amqp extensions
210–212

via statelessd 203–204
with STOMP 191–195

reducing size 43–44
referencing 45–48
rejecting 90–94

Basic.Nack 91–92
Basic.Reject 90–91
DLX 92–94

request, constructing
112–113

retrieving 36–37
sending

to AMQP-defined
queues 192

to exchanges 192–193
to STOMP topics 193–194
to STOMP-defined

queues 191–192
storing in InfluxDB 219–227

creating test exchanges
223–224

InfluxDB setup 220–221
installing InfluxDB 220–221
installing InfluxDB storage

exchanges 222
testing exchanges 224–227

tuning delivery to
consumers 84–89
controlling consumer

prefetching via QoS
settings 86–88

using no-ack mode for
faster throughput
85–86

using transactions with
consumers 89

tuning message delivery
84–89
controlling consumer

prefetching via QoS
settings 86–88

using no-ack mode for
faster throughput 85–86

using transactions with
consumers 89

using temporary reply
queues 194

validating origin 49–51
writing publishers in

Python 32–35
See also message distribution;

message publishing; mes-
sage routing

method frames, anatomy of
24–25

modifying facial detection
consumers 116–117

MOM (message-oriented
middleware) 9

mosquitto library 182
MQTT (MQ Telemetry

Transport) 178–189
getting published messages

via AMQP 183–184
plugin configuration

187–189
protocol 178–181
publishing via 182–184
subscribers 184–187
variable headers 180–181
writing publishers 182–183

N

namespaced routing keys 122
negative acknowledgment 91
network partition 149
Nginx 202
no-ack mode

overview 31
using for faster throughput

85–86
node failures, surviving with HA

queues 70–72
Node.js 103
nodelay directive 189

INDEX 243
nodes
adding to clusters 144–147

configuration-based
clusters 146–147

creating AD HOC
clusters 145

Erlang cookies 144
types of 138–139

crash behavior and 138
message persistence

and 138
stats nodes 139

node-specific consumers 141–142
non-routable messages

alternate exchanges for 66–68
with mandatory set 62–64

notifications, PostgreSQL, listen-
ing to 212–218

binding test queues 217
creating exchanges 217
creating test queues 217
installing LISTEN

exchanges 213–215
policy-based configurations

215–216
publishing via NOTIFY 218

notification-test queue 218–219
NOTIFY SQL statement

overview 212
publishing via 218

O

on_message method 196
os package 108, 112
os.getpid() method 112
oversaturation 76

P

packet directive 189
pattern matching 5
permanent queues 97–98

automatically expiring mes-
sages in 97–98

durability of 97
maximum length 98

persisting messages 74
pg_amqp extensions 206–212

configuring 209–210
installing 207–209

installation via PGXN 208
manually 208–209

publishing messages via
210–212

PGXN (PostgreSQL Extension
Network) 208

pgxnclient application 208
plugin configurations

for MQTT 187–189
for STOMP 198–199

plugins, third-party 4
plus (+) symbol 184
policies, defining 164–167
policy-based configurations, for

PostgreSQL 215–216
postgres database 216
PostgreSQL database manage-

ment system
listening to notifications

212–218
binding test queues 217
creating exchanges 217
creating test queues 217
installing LISTEN

exchanges 213–215
policy-based configurations

215–216
publishing via NOTIFY 218

pg_amqp extensions 206–212
configuring 209–210
installing 207–209
publishing messages

via 210–212
PostgreSQL Extension Network.

See PGXN
pound (#) character 119
prefetch directive 188
prefetched messages 87
prefetching, controlling via QoS

settings 86–88
acknowledging multiple mes-

sages at once 87–88
calibrating prefetch values 87

priority property 41, 54–55
processing responses 114
properties. See message proper-

ties
protocol header 20–23
protocols 177–204

MQTT 178–189
message structure 179–180
plugin configuration

187–189
protocol 178–181
publishing via 182–184
subscribers 184–187
variable headers 180–181

stateless publishing via
HTTP 200–204

STOMP 189–200
consuming messages

195–198
plugin configurations

198–199
protocols 190
publishing messages

191–195
using in web browsers

199–200
PUBLISH command

message 180–181
Publish method 25
Publisher Confirms feature, as

alternative to
transactions 64–66

publishers
MQTT, writing 182–183
RPC 110–114

acknowledging
messages 113

binding exchanges 112
closing up 114
constructing request

messages 112–113
declaring exchanges 112
iterating through available

images 112
processing responses 114
specifying imported

libraries 111–112
testing whole applications

114
waiting for reply 113

publishing 58–78
checking connection status

with rabbitpy 77
clusters 140–141
messages 29–30

via pg_amqp extensions
210–212

via statelessd 203–204
with STOMP 191–195
writing in Python 32–35

using guaranteed delivery
59–75
batch processing with

transactions 68–70
HA queues with

transactions 72
persisting messages to disk

via delivery-mode 2 72–75
RabbitMQ won’t accept non-

routable messages with
mandatory set 62–64

INDEX244
publishing (continued)
surviving node failures with

HA queues 70–72
trade-offs when using no

guarantees 60–62
using alternate exchanges

for non-routable
messages 66–68

using Publisher Confirms
feature as alternative to
transactions 64–66

using management API for
connection status 77–78

via MQTT 182–184
creating message

destinations 182
getting MQTT-published

messages via AMQP
183–184

writing MQTT publishers
182–183

via NOTIFY SQL
statement 218

See also stateless publishing
Python, writing message

publishers in 32–35

Q

QoS (quality of service)
settings 86–88

acknowledging multiple mes-
sages at once 87–88

calibrating prefetch values 87
QoS flag 179
queue arguments 99
queue-based federation 152
Queue.Bind command 29, 34
Queue.consumer method 85
Queue.Declare command 28,

34, 70, 92
queues 94–100

AMQP-defined
sending messages to 192
subscribing to 198

arbitrary settings 99–100
behavior of 139–142

highly available queues 142
node-specific consumers

141–142
publishing considerations

140–141
binding 108, 118
binding to exchanges 29
connecting 108

creating 118
declaring 28, 108
federating 149–153
in AMQ model 15
permanent 97–98

automatically expiring mes-
sages in 97–98

durability of 97
maximum length 98

STOMP-defined
sending messages to

191–192
subscribing to 196–198

temporary 94–97
automatically deleting

94–96
automatically expiring

96–97
temporary reply 194
test

binding for LISTEN
exchanges 217

creating for LISTEN
exchanges 217

Queues tab 167

R

RabbitMQ
benefits of 4–7

AMQP 6–7
Erlang programming

language 5
configuring 158
installing 157–158
users of 7–8

rabbitmq.config file 23, 144
rabbitmqctl command-line

tool 144, 169
RABBITMQ_DIR

assignment 213, 222
rabbitpy library 33

checking connection status
with 77

overview 32–33
rabbitpy.Exchange class 34
rabbitpy.Queue object 108, 112
receive socket buffers 86
redelivered flag 91
redundancy, providing 168
referencing messages 45–48
regex (regular expression) 5,

164
rejecting messages 90–94

Basic.Nack 91–92

Basic.Reject 90–91
DLX 92–94

remote call procedure. See RPC
replicating data and events 12
replies, waiting for 113
reply-to header 194–195
reply-to property 41, 52–53
requests

constructing messages
112–113

RPC, consuming 109
reserved queue arguments 99
responses, processing 114
results, sending back 110
Retain flag 179
retrieving messages 36–37
reuseaddr directive 189
rmqid-vagrant.zip file 233
routing keys 120
routing, exchange-to-

exchange 125–127
routing-key value 51
RPC (remote procedure call)

consuming requests 109
creating workers 107–110

binding queues 108
connecting queues 108
consuming RPC

requests 109
declaring queues 108
importing libraries 107–108
processing image

messages 109
running consumer

applications 110
sending results back 110

frames 21–26
body 26
components of 21–22
content header 26
marshaling messages

into 23–24
method, anatomy of 24–25
types of 22–23

transport 19–21
channels 20–21
protocol headers 20

writing publishers 110–114
acknowledging

messages 113
binding exchanges 112
closing up 114
constructing request

messages 112–113
declaring exchanges 112

INDEX 245
RPC (remote procedure call)
(continued)
iterating through available

images 112
processing responses 114
specifying imported

libraries 111–112
testing whole

applications 114
waiting for reply 113

rpc-replies exchange 112

S

security 5
self-describing messages 42
setting up

Vagrant 230–234
VirtualBox 228–230

shorthand methods 83
SLA (service level

agreement) 46
ssl_cert_login directive 199
ssl_listeners directive 188, 199
Start method 21
stateless publishing, via

HTTP 200–204
statelessd

operational architecture
of 202

overview 200–201
publishing messages via

203–204
using 201–202

stats nodes 139
STOMP (streaming text ori-

ented message protocol)
189–200

AMQP message properties
via 194–195

configuring plugins 198–199
consuming messages 195–198

subscribing to AMQP-
defined queues 198

subscribing to
exchanges 198

subscribing to STOMP-
defined queues 196–198

subscribing to topics 198
protocol 190
publishing messages 191–195

AMQP message properties
via STOMP 194–195

sending to AMQP-defined
queues 192

sending to exchanges
192–193

sending to STOMP
topics 193–194

sending to STOMP-defined
queues 191–192

using temporary reply
queues 194

queues
sending messages to

191–192
subscribing to 196–198

topics
sending messages to

193–194
using in web browsers

199–200
STOMP SEND command 191
storing messages in InfluxDB

219–227
creating test exchanges

223–224
InfluxDB setup 220–221
installing InfluxDB 220–221
installing InfluxDB storage

exchanges 222
testing exchanges 224–227

streaming text oriented message
protocol. See STOMP

subscribing
to AMQP-defined queues

198
to exchanges 198
to STOMP-defined queues

196–198
to topics 198

subscription_ttl directive 188
sudo command 157

T

tcp_listeners directive 188, 199
tcp_listen_options directive 188
temporary queues 94–97

automatically deleting 94–96
automatically expiring 96–97

temporary reply queues 194
testing

applications 114
exchanges 224–227
new workflows 119

third-party plugins 4
time package 108
timestamp property 37, 41, 46,

109, 113

topic exchanges
overview 102
routing messages with

119–122
topics

STOMP, sending messages
to 193–194

subscribing to 198
Tornado web framework 103
transactions

batch processing with 68–70
Publisher Confirms feature as

alternative to 64–66
using with consumers 89
with HA queues 72

TTL (time to live) 96–97
tuple 34
TX.Commit command 69
TX.Select command 68–69
type property 41, 51–52

U

ubuntu user 155–156
unroutable messages 66
upstreams

connecting 162–173
bidirectional federated

exchanges 170–171
defining federation

upstreams 162–164
defining policies 164–167
federation for cluster

upgrades 171–173
leveraging upstream

sets 167–169
creating sets 169
leveraging sets 167–169

geographically distributed
applications 168

providing redundancy 168
See also federation upstreams

user-id property, validating mes-
sage origin with 49–51

V

vagrant help command 232
vagrant up command 233
Vagrant, installing 230–234
validating

message origin with app-id
49–51

message origin with user-id
49–51

INDEX246
variable headers 180–181
vhost directive 187
virtual machines, setting

up 143–144
VirtualBox, installing 228–230
VM (virtual machines),

creating 153–162
creating first instances

153–158
duplicating EC2

instances 159–162

W

WAN (wide area network) 9
web browsers, using STOMP

in 199–200
workers, RPC 107–110

binding queues 108
connecting queues 108
consuming RPC requests 109
declaring queues 108
importing libraries 107–108

processing image messages
109

running consumer
applications 110

sending results back 110
workflows

dynamic, using reply-to prop-
erty for 52–53

testing new 119
writing

message publishers in
Python 32–35

MQTT publishers 182–183
RPC publishers 110–114

acknowledging messages
113

binding exchanges 112
closing up 114
constructing request

messages 112–113
declaring exchanges 112
iterating through available

images 112

processing responses
114

specifying imported
libraries 111–112

testing whole
applications 114

waiting for reply 113

X

x-dead-letter-exchange
argument 92, 99

x-dead-letter-routing-key
argument 93, 99

x-expires argument 96–97,
99

x-ha-nodes argument 99
x-ha-policy argument 99
x-match argument 122, 124
x-max-length argument 99
x-max-priority argument 99
x-message-ttl argument 99
x-pgsql-listen value 214

Gavin M. Roy ● Technical Editor James Titcumb

A
t the heart of most modern distributed applications is a
queue that buffers, prioritizes, and routes message traf-
fi c. RabbitMQ is a high-performance message broker

based on the Advanced Message Queueing Protocol. It’s battle
tested, ultrafast, and powerful enough to handle anything you
can throw at it. It requires a few simple setup steps, and you
can instantly start using it to manage low-level service com-
munication, application integration, and distributed system
message routing.

RabbitMQ in Depth is a practical guide to building and main-
taining message-based applications. This book provides
detailed coverage of RabbitMQ with an emphasis on why
it works the way it does. You’ll fi nd examples and detailed
explanations based in real-world systems ranging from simple
networked services to complex distributed designs. You’ll also
fi nd the insights you need to make core architectural choices
and develop procedures for effective operational management.

What’s Inside
● AMQP, the Advanced Message Queueing Protocol
● Communicating via MQTT, Stomp, and HTTP
● Valuable troubleshooting techniques
● Database integration

Written for programmers with a basic understanding of
messaging-oriented systems.

Gavin M. Roy is an active, open source evangelist and advocate
who has been working with internet and enterprise technolo-
gies since the mid-90s. Technical editor James Titcumb is a
freelance developer, trainer, speaker, and active contributor to
open source projects.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/books/rabbitmq-in-depth

$59.99 / Can $79.99 [INCLUDING eBOOK]

RabbitMQ IN DEPTH

SOFTWARE DEVELOPMENT

M A N N I N G

“An excellent resource for
beginners and experts alike ...

shows how to integrate
RabbitMQ into a successful

enterprise application.”
—Ian Dallas, Hewlett-Packard

“The most comprehensive
source for everything

RabbitMQ. From terms to
code to patterns, it’s all here!”

—Andrew Meredith
Quantum Metric

“A cheat sheet for getting
started and troubleshooting

the migration process
to RabbitMQ.”—Nadia Noori

La Salle University Barcelona

“Filled with pragmatic advice
and pearls of wisdom.”—Miloš Milivojevic, Mozzart Bet

SEE INSERT

´

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Road Map
	Code
	Book forum
	About the author
	About the cover

	Part 1—RabbitMQ and application architecture
	1 Foundational RabbitMQ
	1.1 RabbitMQ’s features and benefits
	1.1.1 RabbitMQ and Erlang
	1.1.2 RabbitMQ and AMQP

	1.2 Who’s using RabbitMQ, and how?
	1.3 The advantages of loosely coupled architectures
	1.3.1 Decoupling your application
	1.3.2 Decoupling database writes
	1.3.3 Seamlessly adding new functionality
	1.3.4 Replication of data and events
	1.3.5 Multi-master federation of data and events
	1.3.6 The Advanced Message Queuing model

	1.4 Summary

	2 How to speak Rabbit: the AMQ Protocol
	2.1 AMQP as an RPC transport
	2.1.1 Kicking off the conversation
	2.1.2 Tuning in to the right channel

	2.2 AMQP’s RPC frame structure
	2.2.1 AMQP frame components
	2.2.2 Types of frames
	2.2.3 Marshaling messages into frames
	2.2.4 The anatomy of a method frame
	2.2.5 The content header frame
	2.2.6 The body frame

	2.3 Putting the protocol to use
	2.3.1 Declaring an exchange
	2.3.2 Declaring a queue
	2.3.3 Binding a queue to an exchange
	2.3.4 Publishing a message to RabbitMQ
	2.3.5 Consuming messages from RabbitMQ

	2.4 Writing a message publisher in Python
	2.5 Getting messages from RabbitMQ
	2.6 Summary

	3 An in-depth tour of message properties
	3.1 Using properties properly
	3.2 Creating an explicit message contract with content-type
	3.3 Reducing message size with gzip and content-encoding
	3.4 Referencing messages with message-id and correlation-id
	3.4.1 Message-id
	3.4.2 Correlation-id

	3.5 Born-on dating: the timestamp property
	3.6 Automatically expiring messages
	3.7 Balancing speed with safety using delivery-mode
	3.8 Validating message origin with app-id and user-id
	3.8.1 app-id
	3.8.2 user-id

	3.9 Getting specific with the message type property
	3.10 Using reply-to for dynamic workflows
	3.11 Custom properties using the headers property
	3.12 The priority property
	3.13 A property you can’t use: cluster-id/reserved
	3.14 Summary

	4 Performance trade-offs in publishing
	4.1 Balancing delivery speed with guaranteed delivery
	4.1.1 What to expect with no guarantees
	4.1.2 RabbitMQ won’t accept non-routable messages with mandatory set
	4.1.3 Publisher Confirms as a lightweight alternative to transactions
	4.1.4 Using alternate exchanges for unroutable messages
	4.1.5 Batch processing with transactions
	4.1.6 Surviving node failures with HA queues
	4.1.7 HA queues with transactions
	4.1.8 Persisting messages to disk via delivery-mode 2

	4.2 When RabbitMQ pushes back
	4.2.1 Checking the connection status with rabbitpy
	4.2.2 Using the management API for connection status

	4.3 Summary

	5 Don’t get messages; consume them
	5.1 Basic.Get vs. Basic.Consume
	5.1.1 Basic.Get
	5.1.2 Basic.Consume

	5.2 Performance-tuning consumers
	5.2.1 Using no-ack mode for faster throughput
	5.2.2 Controlling consumer prefetching via quality of service settings
	5.2.3 Using transactions with consumers

	5.3 Rejecting messages
	5.3.1 Basic.Reject
	5.3.2 Basic.Nack
	5.3.3 Dead letter exchanges

	5.4 Controlling queues
	5.4.1 Temporary queues
	5.4.2 Permanent queues
	5.4.3 Arbitrary queue settings

	5.5 Summary

	6 Message patterns via exchange routing
	6.1 Simple message routing using the direct exchange
	6.1.1 Creating the application architecture
	6.1.2 Creating the RPC worker
	6.1.3 Writing a simple RPC publisher

	6.2 Broadcasting messages via the fanout exchange
	6.2.1 Modifying the facial detection consumer
	6.2.2 Creating a simple image-hashing consumer

	6.3 Selectively routing messages with the topic exchange
	6.4 Selective routing with the headers exchange
	6.5 Exchange performance benchmarking
	6.6 Going meta: exchange-to-exchange routing
	6.7 Routing messages with the consistent-hashing exchange
	6.8 Summary

	Part 2—Managing RabbitMQ in the data center or the cloud
	7 Scaling RabbitMQ with clusters
	7.1 About clusters
	7.1.1 Clusters and the management UI
	7.1.2 Cluster node types
	7.1.3 Clusters and queue behavior

	7.2 Cluster setup
	7.2.1 Virtual machine setup
	7.2.2 Adding nodes to the cluster

	7.3 Summary

	8 Cross-cluster message distribution
	8.1 Federating exchanges and queues
	8.1.1 Federated exchanges
	8.1.2 Federated queues

	8.2 Creating the RabbitMQ virtual machines
	8.2.1 Creating the first instance
	8.2.2 Duplicating the EC2 instance

	8.3 Connecting upstream
	8.3.1 Defining federation upstreams
	8.3.2 Defining a policy
	8.3.3 Leveraging upstream sets
	8.3.4 Bidirectional federated exchanges
	8.3.5 Federation for cluster upgrades

	8.4 Summary

	Part 3—Integrations and customization
	9 Using alternative protocols
	9.1 MQTT and RabbitMQ
	9.1.1 The MQTT protocol
	9.1.2 Publishing via MQTT
	9.1.3 MQTT subscribers
	9.1.4 MQTT plugin configuration

	9.2 STOMP and RabbitMQ
	9.2.1 The STOMP protocol
	9.2.2 Publishing messages
	9.2.3 Consuming messages
	9.2.4 Configuring the STOMP plugin
	9.2.5 Using STOMP in the web browser

	9.3 Stateless publishing via HTTP
	9.3.1 How statelessd came to be
	9.3.2 Using statelessd
	9.3.3 Operational architecture
	9.3.4 Publishing messages via statelessd

	9.4 Summary

	10 Database integrations
	10.1 The pg_amqp PostgreSQL extension
	10.1.1 Installing the pg_amqp extension
	10.1.2 Configuring the pg_amqp extension
	10.1.3 Publishing a message via pg_amqp

	10.2 Listening to PostgreSQL notifications
	10.2.1 Installing the PostgreSQL LISTEN exchange
	10.2.2 Policy-based configuration
	10.2.3 Creating the exchange
	10.2.4 Creating and binding a test queue
	10.2.5 Publishing via NOTIFY

	10.3 Storing messages in InfluxDB
	10.3.1 InfluxDB installation and setup
	10.3.2 Installing the InfluxDB storage exchange
	10.3.3 Creating a test exchange
	10.3.4 Testing the exchange

	10.4 Summary

	Appendix—Getting set up
	A.1 Installing VirtualBox
	A.2 Installing Vagrant
	A.3 Setting up the Vagrant virtual machine
	A.4 Confirming your installation
	A.5 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back cover

