
M A N N I N G

Tamir Dresher
FOREWORD BY Erik Meijer

www.allitebooks.com

http://www.allitebooks.org

Catalog of Rx operators

 My goal is . . . How? What? Rx operator

Creating observables By explicit logic Create
Defer

By specification Range
Repeat
Generate
Timer
Interval
Return

Predefined primitives Throw
Never
Empty

From other types FromEventPattern
FromEvent
FromTask
FromAsync

Transforming To single value Select
Materialize/Dematerialize
Timestamp
TimeInterval

Flattening inner collections/observables SelectMany

Splitting to subsequences By coincidence/time Buffer
Window

By common key GroupBy
GroupByUntil

Controlling the observer-
observable relationship

The observed sequence Take
TakeUntil
TakeWhile
Skip
SkipWhile
SkipUntil
StartWith

The subscription Publish/PublishLast
Multicast
Replay
RefCount
Subscribe/
DelaySubscription

Combining Values from multiple CombineLatest
WithLatestFrom
Zip
Merge
GroupJoin

Values from one at a time Concat
Switch
Join
Amb

Table continues on the inside back cover

 www.allitebooks.com

http://www.allitebooks.org

Rx.NET in Action

TAMIR DRESHER

M A N N I N G
SHELTER ISLAND
 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Lesley Trites
20 Baldwin Road Review editor: Donna Clements
PO Box 761 Technical development editor: Michael Lund
Shelter Island, NY 11964 Copyeditor: Sharon Wilkey

Proofreader: Elizabeth Martin
Technical proofreader: Cody Sand

Typesetter: Marija Tudor
Cover designer: Marija Tudor

ISBN 9781617293061
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17
 www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To Gabi, my wife and best friend, who made this dream a reality

 www.allitebooks.com

http://www.allitebooks.org

iv

 www.allitebooks.com

http://www.allitebooks.org

contents
foreword xi
preface xiii
acknowledgments xv
about this book xvii
about the author xxi
about the cover illustration xxii

PART 1 GETTING STARTED WITH REACTIVE
EXTENSIONS .. 1

1 Reactive programming 3
1.1 Being reactive 4

Reactiveness in your application 6

1.2 Introducing Reactive Extensions 7
Rx history 8 ■ Rx on the client and server 9
Observables 10 ■ Operators 12 ■ The composable
nature of Rx operators 13 ■ Marble diagrams 14
Pull model vs. push model 15

1.3 Working with reactive systems and the Reactive
Manifesto 17
Responsiveness 17 ■ Resiliency 18 ■ Elasticity 18
Message driven 19 ■ Where is Rx? 20
v

 www.allitebooks.com

http://www.allitebooks.org

CONTENTSvi
1.4 Understanding asynchronicity 20
It’s all about resource use 21 ■ Asynchronicity and Rx 23

1.5 Understanding events and streams 24
Everything is a stream 24

1.6 Summary 26

2 Hello, Rx 27
2.1 Working with traditional .NET events 28

Dealing with concurrency 33 ■ Retrospective on the solution
and looking at the future 35

2.2 Creating your first Rx application 39
Selecting Rx packages 39 ■ Installing from NuGet 42

2.3 Writing the event-processing flow 44
Subscribing to the event 44 ■ Grouping stocks by symbol 45
Finding the difference between ticks 46 ■ Cleaning
resources 49 ■ Dealing with concurrency 50
Wrapping up 50

2.4 Summary 52

3 Functional thinking in C# 54
3.1 The advantages of thinking functionally 55

Declarative programming style 55 ■ Immutability and side
effects 56 ■ First-class functions 58 ■ Being concise 59

3.2 First-class and higher-order functions using
delegates and lambdas 59
Delegates 60 ■ Anonymous methods 61 ■ Lambda
expressions 63 ■ Func and Action 64 ■ Using it all
together 66

3.3 Method chaining with extension methods 70
Extending type behavior with extension methods 70
Fluent interfaces and method chaining 72 ■ Creating a
language 74

3.4 Querying collections with LINQ 75
What does LINQ look like? 77 ■ Nested queries and joins 78
Anonymous types 79 ■ LINQ operators 81 ■ Efficiency by
deferred execution 83

3.5 Summary 86
 www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii
PART 2 CORE IDEAS ... 87

4 Creating observable sequences 89
4.1 Creating streams of data and events with observables 90

Implementing the IObservable<T> interface 90 ■ The problem with
handcrafted observables 93 ■ The ObservableBase 93
Creating observables with Observable.Create 96 ■ Deferring the
observable creation 97

4.2 Creating observables from events 99
Creating observables that conform to the EventPattern 99
Events that aren’t following the event pattern 102
Events with multiple parameters 102 ■ Dealing with events
that have no arguments 104

4.3 From enumerables to observables and back 104
Enumerable to observable 105 ■ Observable to enumerable 107

4.4 Using Rx creational operators 110
Generating an observable loop 110 ■ Reading a file 111
The primitive observables 112

4.5 Summary 113

5 Creating observables from .NET asynchronous types 115
5.1 Bridging .NET asynchronous types with Rx 116

Changing the synchronous method to asynchronous 117
Creating the primes observable 117 ■ Using async-await in
observable creation 121 ■ Converting tasks to observables 122
Running asynchronous code as part of the pipeline 124
Controlling the results order 128

5.2 Creating observables of periodic behavior 130
Emitting values in time intervals 130 ■ Creating an observable
timer 131 ■ Scheduling an emission with a timer 132

5.3 Summary 134

6 Controlling the observer-observable relationship 135
6.1 Creating observers 136

The observable-observer communication 136 ■ Creating observers
without leaving the pipeline 137 ■ Not passing OnError and
asynchronous observables 139 ■ Replacing the subscription
disposal with cancellation 140 ■ Creating an observer
instance 141
 www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
6.2 Controlling the observable-observer relationship lifetime 142
Delaying subscription 143 ■ Stop emitting notifications at a
scheduled time 145 ■ Discarding items when another observable
emits 145 ■ Skipping notifications 147 ■ Taking or stopping
when a condition is met 148 ■ Resubscribing 150 ■ Adding
side effects in the observable pipeline 151

6.3 Putting it all together 153
6.4 Summary 155

7 Controlling the observable temperature 157
7.1 Multicasting with subjects 158

Simple broadcasting with Subject<T> 160 ■ Representing
asynchronous computation with AsyncSubject 163
Preserving the latest state with BehaviorSubject 165
Caching the sequence with ReplaySubject 166 ■ Hiding your
subjects 167 ■ Following best practices and guidelines 169

7.2 Introducing temperature: cold and hot observables 169
Explaining cold and hot observables 170 ■ Cold observable 171
Hot observables 171

7.3 Heating and cooling an observable 171
Turning cold into hot 171 ■ Using ConnectableObservable 174
Publishing and multicasting 175 ■ Using Multicast 178
Managing the ConnectableObservable connection 179
Cooling a hot observable to allow replaying 181

7.4 Summary 183

8 Working with basic query operators 184
8.1 Selecting what’s important (mapping) 185
8.2 Flattening observables 187

Flattening observables of enumerables 187 ■ Flattening observables
of observables 190

8.3 Filtering an observable 192
Filtering with the Where operator 192 ■ Creating a distinct
sequence 193 ■ Removing duplicate contiguous values 195

8.4 Aggregating the observable sequence 196
Using basic aggregation operators 196 ■ Finding the maximum
and minimum items by condition 200 ■ Writing your aggregation
logic with Aggregate and Scan 201

8.5 Summary 203
 www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
9 Partitioning and combining observables 205
9.1 Combining observables 206

Pairing items from observables (zipping) 206 ■ Combining
the latest emitted values 207 ■ Concatenating
observables 208 ■ Merging observables 209 ■ Dynamic
concatenating and merging 210 ■ Switching to the next
observable 212

9.2 Grouping elements from the observable 214
9.3 Joining observables (coincidence-based combining) 215

Joining to a flat stream 215 ■ Joining into groups 219

9.4 Buffers and sliding windows 221
Buffering 222 ■ Windowing the observable sequence 226

9.5 Summary 229

10 Working with Rx concurrency and synchronization 231
10.1 Controlling concurrency with schedulers 231

Defining the scheduler 232 ■ Parameterizing concurrency 235
Types of schedulers 237

10.2 Using time-based operators 241
Adding a timestamp to a notification 242 ■ Adding the time
interval between notifications 243 ■ Adding a time-out
policy 244 ■ Delaying the notifications 245 ■ Throttling
the notifications 247 ■ Sampling the observable
in intervals 249

10.3 Synchronizing the observable emissions 250
Changing the observation’s execution context 250 ■ Changing the
subscription/unsubscription execution context 251 ■ Using
SubscribeOn and ObserveOn together 253 ■ Synchronizing
notifications 255

10.4 Summary 257

11 Error handling and recovery 259
11.1 Reacting to errors 260

Errors from the observable side 260 ■ Catching errors 262
Retrying to subscribe in case of an error 264

11.2 Controlling the lifetime of resources 265
Disposing in a deterministic way 266 ■ Deterministic
finalization 269 ■ Dangling observers 270

CONTENTSx
11.3 Dealing with backpressure 276
Observables of different rates 276 ■ Mitigating backpressure 278

11.4 Summary 279

appendix A Writing asynchronous code in .NET 281
appendix B The Rx Disposables library 291
appendix C Testing Rx queries and operators 298

index 313

foreword
This book, Rx.NET in Action, does a great job in explaining the details and back-
ground that .NET developers need to effectively use Rx. In particular, it explains how
to connect the plethora of asynchronous types in .NET to Rx observables, and how to
deal with errors, resource allocation, and last but not least, concurrency.

 Since its inception, the .NET Framework has emphasized the importance of asyn-
chronous execution and nonblocking I/O. Through delegates, the .NET Framework
has emphasized higher-order functional programming from the beginning, and by
automatically defining the BeginInvoke and EndInvoke methods on delegates, devel-
opers may call any method asynchronously.

 But the BeginInvoke/EndInvoke pattern for asynchronous operations is tedious
and verbose, because it requires converting your code into continuation-passing style.
As an alternative, the .NET Framework introduced the event-based asynchronous pat-
tern that uses the built-in support of .NET for events and event handlers. Although the
event-based pattern was a big step forward compared to asynchronous delegates, more
opportunities remained to streamline the development experience.

 For synchronous streams of values, modeled by the standard interfaces of Enumer-
able/IEnumerator, the LINQ standard query operators provide a beautiful and ele-
gant algebra for processing streams in a high-level and declarative manner. Wouldn’t
it be nice if we could use the fact that events are conceptually also streams of values
and hence provide a similar LINQ-based programming model for events?

 Another disadvantage of using events for asynchronous calls is that this ignores the
fact that unlike most other events, such as mouse clicks, the events wired up to asyn-
chronous operations produce at most one value. Wouldn’t it be nice if we could use
the fact that asynchronous methods return only a single value and hence provide a
xi

FOREWORDxii
similar imperative programming model that supports regular control-flow-like condi-
tionals, loops, and exception handling for asynchronous methods?

 As it turns out, the answer to both questions is a resounding yes! By using the
mathematical trick of equalization, we can mechanically convert the IEnumerable
/IEnumerator interfaces for synchronous pull-based streams into the monadic
IObservable/IObserver interfaces for asynchronous push-based streams. The
async/await syntax in C# and Visual Basic allows developers to use regular imperative
syntax to write both synchronous and asynchronous methods, and the LINQ query
comprehensions allow developers to write queries over both synchronous and asyn-
chronous data streams

 This is the heart of Rx. Many languages outside the .NET world have now adopted
the magic square of one/many × sync/async, making developers happy and produc-
tive no matter what language they’re using.

 If you’re a .NET developer, you’ll want to keep a copy of this book handy to put
Rx.NET into action!

 —ERIK MEIJER

 INVENTOR OF RX, FOUNDER OF APPLIED DUALITY

preface
Reactive Extensions (Rx) for .NET was first published in November 2009 under the
short description “Rx is a .NET Library that allows programmers to write succinct
declarative code to orchestrate and coordinate asynchronous and event-based pro-
grams based on familiar .NET idioms and patterns.” (See http://mng.bz/gQ31.)

 I remember watching the first examples and reading the discussions. I was amazed
by the elegance of the solutions and how simple they looked. Unfortunately, when I
sat down and tried to use Rx, things were harder than I thought, and the mental
change I needed to make toward reactive programming was significant. In those days,
there wasn’t a lot of material on the subject, and I had to struggle to solve my issues
and learn things the hard way with a lot of trial and error.

 In 2012, at end of my military service and upon joining CodeValue (www.code-
value.net), I had two major projects that enabled me to really appreciate my Rx knowl-
edge. The first was about a cybersecurity application that needed to react to multiple
events and coordinate them in order to show the end user the state of various inci-
dents all happening in parallel. The second was a video chat application, running on
mobile and PC devices. The video chat application reacted to events such as users log-
ging in and out of the system and receiving messages of various types that had to be
dealt with differently. Though these two systems were different, they shared the same
problems of writing a flow based on events—a flow that involves filtering of received
values, dealing with asynchronicity and concurrency, and identifying patterns of recur-
ring events so that the application could respond efficiently and correctly. I intro-
duced Rx to both of those systems, and it was one of the things that made each a
success. We exceeded expectations and preceded our schedule.

 Still, even though I had knowledge of Rx, problems still happened from time to
time, and little material on Rx, such as books and guides, was available. Many times
xiii

http://mng.bz/gQ31
www.codevalue.net
www.codevalue.net

PREFACExiv
problems originated because of my colleagues’ lack of knowledge or situations that
were new to us. Luckily, after I identified the problem source, it would be easy to fix,
mostly because of the flexibility of Rx operators. In the following years, I started to
blog and speak about Rx and how it made solving complex problems easy. That is
when the idea for this book started to grow. My vision was to create a step-by-step
guide that holds the pieces needed for the .NET programmer to get the maximum out
of the Rx library and the reactive programming paradigm. I also wanted to write about
the practices that I acquired over the years, as well as the pitfalls and their solutions.

 It took hard and careful work to make sure the book fulfills its aim. Some chapters
had to be rewritten, topics were changed, and some material had to be left out in
order to concentrate on the important and fundamental features. The result of this
hard work is Rx.NET in Action, a book that you can read front to back or go directly to
a specific chapter to solve a problem or refresh your memory.

 Rx is an evolving technology that was also ported to numerous other platforms and
languages. It is an open source project and part of the .NET Foundation (www.dotnet-
foundation.org). My hope is that Rx will become the de facto way to program, orches-
trate, and coordinate asynchronous and event-based programs in .NET and that this
book will give you everything you need to be ready for this new and exciting world of Rx.

https://dotnetfoundation.org
https://dotnetfoundation.org

acknowledgments
I dedicate this book to my marvelous wife Gabriela. Your support, love, and care
throughout my writing process is what allowed me to turn this book into a reality. I
love you and admire you for your many efforts while I was busy writing.

 To my beautiful children Shira and Yonatan, you bring joy and light to my life; I
love you dearly. Sitting by you while you fell asleep gave me the inspiration for many
chapters.

 To my parents Ester and Shlomo, who bought me my first computer and lit the fire
of my passion for computer science, I thank you.

 To my cousin, Guy, who had an enormous effect on my life and the way I see things
today, much of my software capabilities are rooted in what you taught me.

 To the rest of my family, who had to put up with me while my mind drifted to the
book while I was talking with them, I appreciate everything you’ve done.

 A special thanks to my good friend Dror Helper, who without even knowing gave
me advice that contributed to this book.

 Thanks also to all my colleagues at CodeValue, who supported me throughout the
process.

 A special appreciation goes to Erik Meijer for contributing the wonderful fore-
word to my book and of course for helping to create Rx.

 Thank you to the staff at Manning. Everyone who worked with me in editorial, pro-
duction, and promotion, both directly and behind the scenes, helped to create the
best book possible. It was truly a team effort.

 Thanks to the many reviewers who provided feedback during the writing and
development process: Bruno Sonnino, Bachir Chihani, Carsten Jørgensen, Dror
Helper, Edgar Knapp, Fabrizio Cucci, Goetz Heller, Ignacio Rigoni, Jason Hales, Joel
xv

ACKNOWLEDGMENTSxvi
Kotarski, Jorge Branco, Mattias Lundell, Michele Mauro, Oscar Vargas, Rohit Sharma,
and Stephen Byrne. Thanks also to Cody Sand, the technical proofreader, who metic-
ulously reviewed the sample code of the final manuscript.

 Finally, much gratitude to the Rx team and contributors who built a wonderful
technology.

about this book
Rx.NET in Action is a full guide for the Reactive Extensions library for .NET developers.
It delivers explanations, best practices, and tips and tricks that will allow you to fully
use Rx in your applications.

Who should read this book

Rx.NET in Action is for .NET developers who write event-based and asynchronous
applications and need powerful consuming and querying capabilities over events and
push-based sources.

 Rx.NET in Action is also suitable for developers who are curious about reactive pro-
gramming and the Rx library techniques, but who may not have an immediate need to
use it. Adding Rx know-how to your toolbox is valuable for future projects; reactive
programing is a hot topic and will continue to be in the future.

 This book primarily uses the .NET version of Rx, and the code examples use the C#
language. Readers familiar with C# will be right at home.

 This book is suitable for any platform supported by .NET (including .NET Core).

How this book is organized

The book’s 11 chapters are divided into two sections.
Part 1 provides an introduction to reactive programming and to the .NET skills you
need in order to understand the functional aspects of the library.

 Chapter 1 explores the reactive programming paradigm and Reactive Mani-
festo concepts. The chapter introduces the building blocks of Rx and explains
when and why it should be used.
xvii

ABOUT THIS BOOKxviii
 Chapter 2 is where you really meet Rx and the steps needed to incorporate it into
your application. It shows a simple case-study of using Rx inside an application
and compares two versions of the same application, before and after Rx is used.

 Chapter 3 provides an overview of the functional programming concepts and
techniques that Rx uses and how they’re provided with the .NET Framework
and the C# language.

Part 2 dives into each of the tasks you’ll do with Rx—from creating observables and
observers, to controlling their lifetimes and reacting to queries you create on top of
them.

 Chapter 4 teaches ways to create observable sequences and it shows how syn-
chronous observables can be created from enumerables and built-in creation
operators.

 Chapter 5 explains the way Rx handles asynchronous code and how to bridge
the native .NET asynchronous types into observables. This chapter also discusses
the importance of asynchronous code in the modern application and how to
add periodic behavior to your programs.

 Chapter 6 concentrates on the observable-observer relationship and how to
control it. In this chapter, I explain the best way to create observers for various
scenarios and how to limit the lifetime of the observer subscription.

 Chapter 7 explains the differences between hot and cold observables and intro-
duces Rx subjects. This chapter teaches you how to control the state of the
observable when observers subscribe to it and how to share emissions between
the observers.

 Chapter 8 provides a catalog of the basic query operators provided in the Rx
library. Rx is often referred to as LINQ to Events, and knowing the details of the
Rx operators will help you build powerful queries that will save you time and
effort.

 Chapter 9 continues where chapter 8 leaves off and shows advanced ways to par-
tition and combine observables. You’ll learn how to group elements by condi-
tion or by coincidence and how to react to correlations between observables.

 Chapter 10 delves deep into the Rx concurrency model and synchronization. I
introduce the concept of schedulers and explain the schedulers Rx has to
offer. Then I explain how to control the time and computation location of
your Rx queries.

 Chapter 11 teaches you to protect your Rx queries from faults and to react to
errors that might happen in the query processing. This chapter also covers ways
to manage resources that are consumed by the observables and the Rx queries.

The book also has three appendices:

 Appendix A summarizes the concepts of asynchronous programming in .NET.
 www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOK xix
 Appendix B presents the Rx Disposables library and explains how to use the
utilities it provides.

 Appendix C explains how to test Rx operators and queries.

The book is intended to be used as a guide and as a reference. If you’re new to Rx, I
recommend reading from the beginning. If you’re already familiar with Rx concepts,
you might find it useful to read a specific chapter based on the task you’re trying to
accomplish.

About the code

This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 The source code for this book is available to download from the publisher’s web-
site (www.manning.com/books/rx-dot-net-in-action) and from GitHub (https://
github.com/tamirdresher/RxInAction). Instructions for using this code are provided
in the README file included in the repository root.

 In the e-book, color is used in some listings and code snippets. Blue is used for
primitive types and saved keywords. Aqua highlights user-defined types, and red is
used for string literals. Brown is used for string parameters placeholders, and green is
for comments. As always, black is user code.

Author Online

Purchase of Rx.NET in Action includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser at www.manning.com/books/rx-dot-net-
in-action. This page provides information on how to get on the forum after you’re reg-
istered, the kinds of help available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the Author Online forum remains voluntary (and
unpaid). We suggest you try asking him some challenging questions, lest his interest

http://www.manning.com/books/rx-dot-net-in-action
https://github.com/tamirdresher/RxInAction
https://github.com/tamirdresher/RxInAction
http://www.manning.com/books/rx-dot-net-in-action
http://www.manning.com/books/rx-dot-net-in-action

ABOUT THIS BOOKxx
stray! The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s website as long as the book is in print.

Other online resources

If you’re interested in Rx, you may also want to check out the Rx portal http://
reactivex.io, which provides a Developer Center. It contains the most recent informa-
tion about the library and its ports.

 Rx.NET is an open source project, and you can find the full code and discussions at
https://github.com/Reactive-Extensions/Rx.NET.

 If you want to ask a question about Rx, you can visit the gitter channel (https://
gitter.im/Reactive-Extensions/Rx.NET) or the slack #rx channel, which requires you
to subscribe through the sign-up page for the .NET Core Slack Channel (http://
tattoocoder.com/aspnet-slack-sign-up/).

http://reactivex.io
http://reactivex.io
https://gitter.im/Reactive-Extensions/Rx.NET
https://gitter.im/Reactive-Extensions/Rx.NET
http://tattoocoder.com/aspnet-slack-sign-up/
http://tattoocoder.com/aspnet-slack-sign-up/
https://github.com/Reactive-Extensions/Rx.NET

about the author
TAMIR DRESHER is a senior software architect working as a consul-
tant at CodeValue in Israel. As a prominent member of the Micro-
soft programming community, Tamir frequently speaks on software
development topics at developers conferences, and as a lecturer for
software engineering at the Ruppin Academic Center.
 As an expert in .NET Framework and software craftsmanship,
Tamir has trained hundreds of developers and helped many high-
profile clients in the commercial and public sector.

Tamir has used Rx since it was released and fell in love instantly. Being one of the early
adopters helped Tamir understand the Rx library internals, and he has the passion to
explain it to other developers and help them enhance their programming skills with
the power of the reactive programming paradigm.

 Tamir writes about his coding adventures at his blog, www.tamirdresher.com.

xxi

http://www.tamirdresher.com

about the cover illustration
The figure on the cover of Rx.NET in Action is captioned “Habit of a Bonza or Priest in
China.” The illustration is taken from publisher Thomas Jefferys’ A Collection of the
Dresses of Different Nations, Ancient and Modern (four volumes), London, published
between 1757 and 1772. The title page states that these are hand-colored copperplate
engravings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called
“Geographer to King George III.” An English cartographer, he was the leading map
supplier of his day. He engraved and printed maps for government and other official
bodies and produced a wide range of commercial maps and atlases, especially of
North America. His work as a mapmaker sparked an interest in local dress customs of
the lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century, and collections such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then, and the diversity by region and country, so rich at the time,
has faded away. It’s now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we’ve traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jefferys’ pictures.
xxii

Part 1

Getting started with
Reactive Extensions

What are reactive applications? What are they good for? How does pro-
gramming with Reactive Extensions (Rx) change the way you write code? What
should you do before you start working with Rx? And why is Rx better than tradi-
tional event-driven programming? These are the questions we’ll begin to
address in these first three chapters.

 You’ll learn what reactive systems and applications are, and why you should
care. You’ll see a real example of creating an application that uses Rx and what
you need to do to create your own Rx applications. You’ll also look at the func-
tional programming foundations that Rx is based on, to make it easier to under-
stand the rest of the concepts that this book introduces.

2 CHAPTER

Reactive programming
The reactive programming paradigm has gained increasing popularity in recent
years as a model that aims to simplify the implementation of event-driven applica-
tions and the execution of asynchronous code. Reactive programming concen-
trates on the propagation of changes and their effects—simply put, how to react to
changes and create data flows that depend on them.1

 With the rise of applications such as Facebook and Twitter, every change hap-
pening on one side of the ocean (for example, a status update) is immediately
observed on the other side, and a chain of reactions occurs instantly inside the
application. It shouldn’t come as a surprise that a simplified model to express this
reaction chain is needed. Today, modern applications are highly driven by changes
happening in the outside environment (such as in GPS location, battery and power
management, and social networking messages) as well as by changes inside the

This chapter covers
 Being reactive

 Thinking about events as streams

 Introducing Reactive Extensions (Rx)

1 This book is about reactive programming and not about functional reactive programming (FRP). FRP can
operate on continuous time, whereas Rx can operate only on discrete points of time. More info can be
found at the FRP creator’s keynote, http://mng.bz/TcB6.
3

http://mng.bz/TcB6

4 CHAPTER 1 Reactive programming
application (such as web call responses, file reading and writing, and timers). To all of
those events, the applications are reacting accordingly—for instance, by changing the
displayed view or modifying stored data.

 We see the necessity for a simplified model for reacting to events in many types of
applications: robotics, mobile apps, health care, and more. Reacting to events in a clas-
sic imperative way leads to cumbersome, hard-to-understand, and error-prone code,
because the poor programmer who is responsible for coordinating events and data
changes has to work manually with isolated islands of code that can change that same
data. These changes might happen in an unpredictable order or even at the same time.
Reactive programming provides abstractions to events and to states that change over
time so that we can free ourselves from managing the dependencies between those val-
ues when we create the chains of execution that run when those events occur.

 Reactive Extensions (Rx) is a library that provides the reactive programming model
for .NET applications. Rx makes event-handling code simpler and more expressive by
using declarative operations (in LINQ style) to create queries over a single sequence of
events. Rx also provides methods called combinators (combining operations) that
enable you to join sequences of events in order to handle patterns of event occur-
rences or the correlations between them. At the time of this writing, more than 600
operations (with overloads) are in the Rx library. Each one encapsulates recurring
event-processing code that otherwise you’d have to write yourself.

 This book’s purpose is to teach you why you should embrace the reactive program-
ming way of thinking and how to use Rx to build event-driven applications with ease
and, most important, fun. The book will teach you step by step about the various lay-
ers that Rx is built upon, from the building blocks that allow you to create reactive
data and event streams, through the rich query capabilities that Rx provides, and the
Rx concurrency model that allows you to control the asynchronicity of your code and
the processing of your reactive handlers. But first you need to understand what being
reactive means, and the difference between traditional imperative programming and
the reactive way of working with events.

1.1 Being reactive
As changes happen in an application, your code needs to react to them; that’s what
being reactive means. Changes come in many forms. The simplest one is a change of a
variable value that we’re so accustomed to in our day-to-day programming. The vari-
able holds a value that can be changed at a particular time by a certain operation. For
instance, in C# you can write something like this:

int a = 2;
int b = 3;
int c = a + b;
Console.WriteLine("before: the value of c is {0}",c);

a=7;
b=2;
Console.WriteLine("after: the value of c is {0}",c);

5Being reactive
The output is

before: the value of c is 5
after: the value of c is 5

In this small program, both printouts show the same value for the c variable. In our
imperative programming model, the value of c is 5, and it will stay 5 unless you over-
ride it explicitly.

 Sometimes you want c to be updated the moment a or b changes. Reactive pro-
gramming introduces a different type of variable that’s time varying : this variable isn’t
fixed to its assigned value, but rather the value varies by reacting to changes that hap-
pen over time.

 Look again at our little program; when it’s running in a reactive programming
model, the output is

before: the value of c is 5
after: the value of c is 9

“Magically” the value of c has changed. This is due to the change that happened to its
dependencies. This process works just like a machine that’s fed from two parallel con-
veyers and produces an item from the input on either side, as shown in figure 1.1.

5 11 8 9 5

101

a:

b:

4
1 2

+

Operator

Reactive

Machine

+

Operator

Reactive

Machine

3

27

Figure 1.1 A reactive representation of the function c = a + b. As the values of a and b
are changing, c’s value is changing as well. When a is 7 and b is 2, c automatically changes
to 9. When b changes to 1, c becomes 8 because a’s value is still 7.

6 CHAPTER 1 Reactive programming
You might find it surprising, but you’ve probably worked with reactive applications for
years. This concept of reactiveness is what makes your favorite spreadsheet application
so easy and fun to use. When you create this type of equation in a spreadsheet cell,
each time you change the value in cells that feed into the equation, the result in the
final cell changes automatically.

1.1.1 Reactiveness in your application

In a real-world application, you can spot possible time-variant variables in many cir-
cumstances—for instance, GPS location, temperature, mouse coordinates, or even
text-box content. All of these hold a value that’s changing over time, to which the
application reacts, and are, therefore, time variant. It’s also worth mentioning that
time itself is a time variant; its value is changing all the time. In an imperative pro-
gramming model such as C#, you’d use events to create the mechanism of reacting to
change, but that can lead to hard-to-maintain code because events are scattered
among various code fragments.

 Imagine a mobile application that helps users find discounts and specials in shops
located in their surrounding area. Let’s call it Shoppy. Figure 1.2 describes the Shoppy
architecture.

Figure 1.2 The Shoppy application architecture. The mobile app receives the current
location from the GPS and can query about shops and deals via the application service.
When a new deal is available, the application service sends a push notification through
the push notifications server.

One of the great features you want from Shoppy is to make the size of the shop icon
bigger on the map as the user gets closer (from a certain minimal radius), as shown in
figure 1.3. You also want the system to push new deals to the application when updates
are available.

SQL
Location

Application
server

Push
notifications

servers

New
deals

Shops
and deals

DB

7Introducing Reactive Extensions
In this scenario, you could say that the store.Location, myLocation, and icon-
Size variables are time variant. For each store, the icon size could be written:

distance = store.Location – myLocation;
iconSize = (MINIMAL_RADIUS / distance)*MinIconSize

Because you’ve used time-variant variables, each time a change occurs in the
myLocation variable, a change is triggered in the distance variable. The applica-
tion will eventually react by making the store icon appear bigger or smaller, depend-
ing on the distance from the store. Note that for simplicity, I didn’t handle the
boundary check on the minimum allowed icon size, and that distance might be 0 or
close to it.

 This is a simple example, but as you’ll see, the great power of using the reactive
programming model lies in its ability to combine and join, as well as to partition and
split the stream of values that each time-variant variable is pushing. This is because
reactive programming lets you focus on what you’re trying to achieve rather than on
the technical details of making it work. This leads to simple and readable code and
eliminates most boilerplate code (such as change tracking or state management) that
distracts you from the intent of your code logic. When the code is short and focused,
it’s less buggy and easier to grasp.

 We can now stop talking theoretically so you can see how to bring reactive pro-
gramming into action in .NET with the help of Rx.

1.2 Introducing Reactive Extensions
Now that we’ve covered reactive programming, it’s time to get to know our star: Reac-
tive Extensions, which is often shortened to Rx. Microsoft developed the Reactive
Extensions library to make it easy to work with streams of events and data. In a way, a

Figure 1.3 The Shoppy application
view of the map. When the user is far
from the Rx shop, the icon is small (on
the left), and as the user gets closer,
the icon gets bigger (on the right).

8 CHAPTER 1 Reactive programming
time-variant value is by itself a stream of events; each value change is a type of event
that you subscribe to and that updates the values that depend on it.

 Rx facilitates working with streams of events by abstracting them as observable
sequences, which is also the way Rx represents time-variant values. Observable means
that you as a user can observe the values that the sequence carries, and sequence means
an order exists to what’s carried. Rx was architected by Erik Meijer and Brian Beck-
man and drew its inspiration from the functional programming style. In Rx, a stream
is represented by observables that you can create from .NET events, tasks, or collections,
or can create by yourself from another source. Using Rx, you can query the observ-
ables with LINQ operators and control the concurrency with schedulers;2 that’s why Rx
is often defined in the Rx.NET sources as Rx = Observables + LINQ + Schedulers.3 The
layers of Rx.NET are shown in figure 1.4.

You’ll explore each component of the Rx layers as well as their interactions through-
out this book, but first let’s look at a short history of Rx origins.

1.2.1 Rx history

I believe that to get full control of something (especially technol-
ogy), you should know the history and the details behind the scenes.
Let’s start with the Rx logo which features an electric eel, shown in
figure 1.5; this eel was Microsoft Live Labs’ Volta project logo.

Figure 1.5 The Rx electric eel logo, inspired from the Volta project

2 A scheduler is a unit that holds an internal clock and is used to determine when and where (thread, task, and
even machine) notifications are emitted.

3 Reactive-Extensions/Rx.Net github repository, https://github.com/Reactive-Extensions/Rx.NET.

IObservable<T>

Joins

Projection
Timeout Recovery

Grouping Sampling
Sharing

AggregatingFiltering

LINQ operators for events

Event streams

Schedulers

Merging Throttling

Windowing

IScheduler
Threads Cloud Dispatchers Time

ISubject<T> IObserver<T>

12

6

1

5

11

7

2

4

10

8
39

Figure 1.4 The Rx
layers. In the middle are
the key interfaces that
represent event streams
and on the bottom are
the schedulers that
control the concurrency
of the stream processing.
Above all is the powerful
operators library that
enables you to create an
event-processing
pipeline in LINQ style.

https://github.com/Reactive-Extensions/Rx.NET

9Introducing Reactive Extensions
 The Volta project was an experimental developer toolset for creating multitier
applications for the cloud, before the term cloud was formally defined. Using Volta,
you could specify which portion of your application needed to run in the cloud
(server) and which on the client (desktop, JavaScript, or Silverlight), and the Volta
compiler would do the hard work for you. Soon it became apparent that a gap existed
in transferring events arising from the server to the clients. Because .NET events aren’t
first-class citizens, they couldn’t be serialized and pushed to the clients, so the observ-
able and observer pair was formed (though it wasn’t called that at the time).

 Rx isn’t the only technology that came out of project Volta. An intermediate lan-
guage (IL) to the JavaScript compiler was also invented and is the origin of Microsoft
TypeScript. The same team that worked on Volta is the one that brought Rx to life.

 Since its release in 2010, Rx has been a success story that’s been adopted by many
companies. Its success was seen in other communities outside .NET, and it was soon
being ported to other languages and technologies. Netflix, for example, uses Rx
extensively in its service layer and is responsible for the RxJava port.4 Microsoft also
uses Rx internally to run Cortana—the intelligent personal assistant that’s hosted
inside every Windows Phone device; when you create an event, an observable is cre-
ated in the background.

 At the time of this writing, Rx is supported in more than 10 languages, including
JavaScript, C++, Python, and Swift. Reactive Extensions is now a collection of open
source projects. You can find information about them as well as documentation and
news at http://reactivex.io/. Reactive Extensions for .NET is hosted under the GitHub
repo at https://github.com/Reactive-Extensions/Rx.NET.

 Now that we’ve covered a bit of the history and survived to tell about it, let’s start
exploring the Rx internals.

1.2.2 Rx on the client and server

Rx is a good fit with event-driven applications. This makes sense because events (as
you saw earlier) are the imperative way to create time-variant values. Historically,
event-driven programming was seen mainly in client-side technologies because of the
user interaction that was implemented as events. For example, you may have worked
with OnMouseMove or OnKeyPressed events. For that reason, it’s no wonder that you
see many client applications using Rx. Furthermore, some client frameworks are
based on Rx, such as ReactiveUI (http://reactiveui.net).

 But let me assure you that Rx isn’t client-side-only technology. On the contrary,
many scenarios exist for server-side code that Rx will fit perfectly. In addition, as I said
before, Rx is used for large applications such as Microsoft Cortana, Netflix, and com-
plex event processing (CEP) using Microsoft StreamInsight. Rx is an excellent library
for dealing with messages that the application receives, and it doesn’t matter whether
it’s running on a service layer or a client layer.

4 See “Reactive Programming in the Netflix API with RxJava” by Ben Christensen and Jafar Husain (http://
techblog.netflix.com/2013/02/rxjava-netflix-api.html) for details.

http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://reactivex.io/
https://github.com/Reactive-Extensions/Rx.NET
http://reactiveui.net

10 CHAPTER 1 Reactive programming

No
obse
an e
has
1.2.3 Observables

Observables are used to implement time-variant values (which we defined as observable
sequences) in Rx. They represent the push model, in which new data is pushed to (or
notifies) the observers.

 Observables are defined as the source of the events (or notifications) or, if you pre-
fer, the publishers of a stream of data. And the push model means that instead of hav-
ing the observers fetch data from the source and always checking whether there’s new
data that wasn’t already taken (the pull model), the data is delivered to the observers
when it’s available.

 Observables implement the IObservable<T> interface that has resided in the
System namespace since version 4.0 of the .NET Framework.

public interface IObservable<T>
{
 IDisposable Subscribe(IObserver<T> observer);
}

The IObservable<T> interface has only one method, Subscribe, that allows
observers to be subscribed for notifications. The Subscribe method returns an
IDisposable object that represents the subscription and allows the observer to
unsubscribe at any time by calling the Dispose method. Observables hold the collec-
tion of subscribed observers and notify them when there’s something worth notifying.
This is done using the IObserver<T> interface, which also has resided in the System
namespace since version 4.0 of the .NET Framework, as shown here.

public interface IObserver<T>
{
 void OnNext(T value);
 void OnError(Exception error);
 void OnCompleted();
}

The basic flow of using IObservable and IObserver is shown in figure 1.6. Observ-
ables don’t always complete; they can be providers of a potentially unbounded num-
ber of sequenced elements (such as an infinite collection). An observable also can be
“quiet,” meaning it never pushed any element and never will. Observables can also
fail; the failure can occur after the observable has already pushed elements or it can
happen without any element ever being pushed.

 This observable algebra is formalized in the following expression (where * indi-
cates zero or more times, ? indicates zero or one time, and | is an OR operator):

OnNext(t)* (OnCompleted() | OnError(e))?

Listing 1.1 The IObservable interface

Listing 1.2 The IObserver interface

Subscribes an observer to
the observable sequence

Notifies the observer of a new
element in the observable sequence

tifies the
rver that
xception
occurred

Notifies the observer that the observable
sequence has completed and no more
notifications will be emitted

11Introducing Reactive Extensions
When failing, the observers will be notified using the OnError method, and the
exception object will be delivered to the observers to be inspected and handled (see
figure 1.7). After an error (as well as after completion), no more messages will be
pushed to the observers. The default strategy Rx uses when the observer doesn’t pro-
vide an error handler is to escalate the exception and cause a crash. You’ll learn about
the ways to handle errors gracefully in chapter 10.

Figure 1.7 In the case of an error in the observable, the observers will be notified through the OnError
method with the exception object of the failure.

The Observer design pattern
In certain programming languages, events are sometimes offered as first-class citi-
zens, meaning that you can define and register events with the language-provided
keywords and types and even pass events as parameters to functions.

For languages that don’t support events as first-class citizens, the Observer pattern
is a useful design pattern that allows you to add event-like support to your applica-
tion. Furthermore, the .NET implementation of events is based on this pattern.

Application Observable<string> anObserver:
Observer<string>

Subscribe(anObserver)

OnNext("Hello")

OnNext("Reactive")

OnNext("World")

OnCompleted()

Figure 1.6 A sequence diagram of the happy path of the observable and observer
flow of interaction. In this scenario, an observer is subscribed to the observable by
the application; the observable “pushes” three messages to the observers (only one
in this case), and then notifies the observers that it has completed.

Application Observable<string> anObserver:
Observer<string>

Subscribe(anObserver)

OnNext("Hello")

OnNext("Reactive")

OnError(Exception)

12 CHAPTER 1 Reactive programming
1.2.4 Operators

Reactive Extensions also brings a rich set of operators. In Rx, an operator is a nice way
to say operation, but with the addition that it’s also part of a domain-specific language
(DSL) that describes event processing in a declarative way. The Rx operators allow you
to take the observables and observers and create pipelines of querying, transforma-
tion, projections, and other event processors you may know from LINQ. The Rx
library also includes time-based operations and Rx-specific operations for queries, syn-
chronization, error handling, and so on.

 For example, this is how you subscribe to an observable sequence of strings that
will show only strings that begin with A and will transform them to uppercase:

IObservable<string> strings= ...

IDisposable subscription =
 strings.Where(str => str.StartsWith("A"))

(continued)

The Observer pattern was introduced by the Gang of Four (GoF) in Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley Professional, 1994).
The pattern defines two components: subject and observer (not to be confused with
IObserver of Rx). The observer is the participant that’s interested in an event and
subscribes itself to the subject that raises the events. This is how it looks in a Unified
Modeling Language (UML) class diagram:

The observer pattern is useful but has several problems. The observer has only one
method to accept the event. If you want to attach to more than one subject or more
than one event, you need to implement more update methods. Another problem is
that the pattern doesn’t specify the best way to handle errors, and it’s up to the devel-
oper to find a way to notify of errors, if at all. Last but not least is the problem of how
to know when the subject is done, meaning that there will be no more notifications,
which might be crucial for correct resource management. The Rx IObservable and
IObserver are based on the Observer design pattern but extend it to solve these
shortcomings.

The Observer design
pattern class diagram

Subject

Attach(Observer)
Detach(Observer)
Notify()

Observer

Update()

For each observer in observers
observer.Update()

*Observers

Observable of strings
that will push strings
to observers Saving the subscription

enables you to
unsubscribe later.

Allows only strings that start with
A to be passed to the observer

13Introducing Reactive Extensions

transfo
upperca

co

observa
stores a
every tim

Th
O
ev
 .Select(str => str.ToUpper())
 .Subscribe(...);

//Rest of the code
:
subscription.Dispose();

NOTE Don’t be scared if you don’t understand all the syntax or the meaning
of each keyword. I explain all of them in the next chapters.

In this simple example, you can see the declarative style of the Rx operators—say what
you want and not how you want it—and so the code reads like a story. Because I want
to focus on the querying operators in this example, I don’t show how the observable is
created. You can create observables in many ways: from events, enumerables, asyn-
chronous types, and more. Those are discussed in chapters 4 and 5. For now, you can
assume that the observables were created for you behind the scenes.

 The operators and combinators (operators that combine multiple observables)
can help you create even more complex scenarios that involve multiple observables.
To achieve the resizable icon for the shops in the Shoppy example, you can write the
following Rx expressions:

IObservable<Store> stores = ...
IObservable<Location> myLocation = ...
IObservable<StoreIconSize> iconSize =
 from store in stores
 from currentLocation in myLocation
 let distance = store.Location.DistanceFrom(currentLocation)
 let size = (MINIMAL_RADIUS / dist) * MIN_ICON_SIZE
 select new StoreIconSize { Store=store , Size=size };

iconSize.Subscribe(iconInfo => iconInfo.Store.Icon = iconInfo.Size);

Even without knowing all the fine details of Reactive Extensions, you can see that the
amount of code needed to implement this feature in the Shoppy application is small,
and it’s easy to read. All the boilerplate of combining the various streams of data was
done by Rx and saved you the burden of writing the isolated code fragments required
to handle the events of data change.

1.2.5 The composable nature of Rx operators

Most Rx operators have the following format:

IObservable<T> OperatorName(arguments)

String is
rmed to

se before
ntinuing.

Observer is subscribed to receive
strings that passed through the
filtering and transformation.Dispose of the subscription

when you no longer want
to receive the strings.

Observable that delivers the
information about stores in the system Observable that

carries the
information on our
current geolocation

Handles each store
and assigns it the
store variable (which
is of type Store
because stores is an
observable of Store)

Similar to the stores
ble. Gets all the pairs of
nd the current location,
e the location changes.

Allows you to create a new variable for each pair
of store and location. You create two variables

in that way to calculate the distance from
the store and then the size of the store icon.

e lambda expression acts as the observer’s
nNext implementation and will be called
ery time a store icon has a new size.

14 CHAPTER 1 Reactive programming
Note that the return type is an observable. This allows the composable nature of Rx
operators; you can add operators to the observable pipeline, and each one produces
an observable that encapsulates the behavior that’s been applied to the notification
from the moment it was emitted from the original source.

 Another important takeaway is that from the observer point of view, an observable
with or without operators that are added to it is still an observable, as shown in figure 1.8.

 Because you can add operators to the pipeline not only when the observable is cre-
ated, but also when the observer is subscribed, it gives you the power to control the
observable even if you don’t have access to the code that created it.

1.2.6 Marble diagrams

A picture is worth a thousand words. That’s why, when explaining reactive programming
and Rx in particular, it’s important to show the execution pipeline of the observable
sequences. In this book, I use marble diagrams to help you understand the operations
and their relationships.

 Marble diagrams use a horizontal axis to represent the observable sequence. Each
notification that’s carried on the observable is marked with a symbol, usually a circle
(although other symbols are used from time to time), to distinguish between values.
The value of the notification is written inside the symbol or as a note above it, as
shown in figure 1.9.

Observer

Subscribe

Creates an IObservable<T3>

Creates an IObservable<T2>

Original source

Operator1

Operator2

IObservable<T>

Figure 1.8 The composable
nature of Rx operators allows you
to encapsulate what happens to
the notification since it was
emitted from the original source.

A notification with its value
A label describing the
observable sequence

A notification with a value that
doesn’t fit inside the symbol

27

Location:

Temperature: 28 29

(3,0) (4,0) (8,0) Figure 1.9
Marble diagram with two
observable sequences

15Introducing Reactive Extensions
In the marble diagram, time goes from left to right, and the distance between the sym-
bols shows the amount of time that has passed between the two events. The longer the
distance, the more time has passed, but only in a relative way. There’s no way to know
whether the time is in seconds, hours, or another measurement unit. If this informa-
tion is important, it’ll be written as a note.

 To show that the observable has completed, you use the | symbol. To show that an
error occurred (which also ends the observable), you use X. Figure 1.10 shows examples.

Figure 1.10 An observable can end because it has completed or because an error occurred.

To show the output of an operator (or multiple operators) on an observable, you can
use an arrow that indicates the relationship between the source event and the result.
Remember that each operator (at least the vast majority of operators) returns observ-
ables of its own, so in the diagram I’m writing the operator that’s part of the pipeline
on the left side and the line that represents the observable returned from it on the
right side. Figure 1.11 shows a marble diagram for the previous example of an observ-
able sequence of strings that shows only the strings that begin with A and transforms
them to uppercase.

Figure 1.11 Marble diagram that shows the output of various operators on the observable

Marble diagrams are used in this book to show the effects of operators as well as exam-
ples of combining operators to create observable pipelines. At this point, you might
be wondering how observable sequences relate to nonobservable sequences. The
answer is next.

1.2.7 Pull model vs. push model

Nonobservable sequences are what we normally call enumerables (or collections), which
implement the IEnumerable interface and return an iterator that implements the

OnCompleted

OnError(Exception)

Strings

.Where(s => s.StartsWith("A"))

.Select(s => s.ToUpper())

Abcaa Ba Ac

Abc Ac

ABC AC

16 CHAPTER 1 Reactive programming
IEnumerator interface. When using enumerables, you pull values out of the collec-
tion, usually with a loop. Rx observables behave differently: instead of pulling, the
values are pushed to the observer. Tables 1.1 and 1.2 show how the pull and push
models correspond to each other. This relationship between the two is called the dual-
ity principle.5

a There’s one exception to the duality here, because the twin of the GetEnumerator parameter (which is void) should have been
transformed to the Subscribe method return type (and stay void), but instead IDisposable was used.

Observables and observers fill the gap .NET had when dealing with an asynchronous
operation that needs to return a sequence of values in a push model (pushing each
item in the sequence). Unlike Task<T> that provides a single value asynchronously,
or IEnumerable that gives multiple values but in a synchronous pull model, observ-
ables emit a sequence of values asynchronously. This is summarized in table 1.3.

Because a reverse correspondence exists between observables and enumerables (the
duality), you can move from one representation of a sequence of values to the other.
A fixed collection, such as List<T>, can be transformed to an observable that emits
all its values by pushing them to the observers. The more surprising fact is that observ-
ables can be transformed to pull-based collections. You’ll dive into the details of how
and when to make those transformations in later chapters. For now, the important

Table 1.1 How IEnumerator and IObserver correspond to each other

IEnumerator IObserver

MoveNext—when false OnCompleted

MoveNext—when exception OnError(Exception exception)

Current OnNext(T)

5 This observation was made by Erik Meijer; see http://mng.bz/0jO4.

Table 1.2 How IEnumerable and IObservable correspond to each other

IEnumerable IObservable

IEnumerator GetEnumerator(void) IDisposable Subscribe(IObserver)a

Table 1.3 Push model and pull model data types

Single value Multiple values

Pull/Synchronous/Interactive T IEnumerable<T>

Push/Asynchronous/Reactive Task<T> IObservable<T>

http://mng.bz/0jO4

17Working with reactive systems and the Reactive Manifesto
thing to understand is that because you can transform one model into the other,
everything you can do with a pull-based model can also be done with the push-based
model. So when you face a problem, you can solve it in the easiest model and then
transform the result if needed.

 The last point I’ll make here is that because you can look at a single value as if it
were a collection of one item, you can by the same logic take the asynchronous single
item—the Task<T>—and look at it as an observable of one item, and vice versa. Keep
that in mind, because it’s an important point in understanding that “everything is an
observable.”

1.3 Working with reactive systems and
the Reactive Manifesto
So far, we’ve discussed how Rx adds reactiveness to an application. Many applications
aren’t standalone, but rather part of a whole system that’s composed of more applica-
tions (desktop, mobile, web), servers, databases, queues, service buses, and other com-
ponents that you need to connect in order to create a working organism. The reactive
programming model (and Rx as an implementation of that model) simplifies the way
an application handles the propagation of changes and the consumption of events,
thus making the application reactive. But how can you make a whole system reactive?

 As a system, reactiveness is defined by being responsive, resilient, elastic, and
message-driven. These four traits of reactive systems are defined in the Reactive Mani-
festo (www.reactivemanifesto.org), a collaborative effort of the software community to
define the best architectural style for building a reactive system. You can join the
effort of raising awareness about reactive systems by signing the manifesto and spread-
ing the word.

 It’s important to understand that the Reactive Manifesto didn’t invent anything
new; reactive applications existed long before it was published. An example is the tele-
phone system that has existed for decades. This type of distributed system needs to
react to a dynamic amount of load (the calls), recover from failures, and stay available
and responsive to the caller and the callee 24/7, and all this by passing signals (mes-
sages) from one operator to the other.

 The manifesto is here to put the reactive systems term on the map and to collect
the best practices of creating such a system. Let’s drill into those concepts.

1.3.1 Responsiveness

When you go to your favorite browser and enter a URL, you expect that the page you
were browsing to will load in a short time. When the loading time is longer than a few
milliseconds, you get a bad feeling (and may even get angry). You might decide to
leave that site and browse to another. If you’re the website owner, you’ve lost a cus-
tomer because your website wasn’t responsive.

 Responsiveness of a system is determined by the time it takes for the system to
respond to the request it received. Obviously, a shorter time to respond means that
the system is more responsive. A response from a system can be a positive result, such

www.reactivemanifesto.org

18 CHAPTER 1 Reactive programming
as the page you tried to load or the data you tried to get from a web service or the
chart you wanted to see in the financial client application. A response can also be
negative, such as an error message specifying that one of the values you gave as input
was invalid.

 In either case, if the time that it takes the system to respond is reasonable, you can
say that the application is responsive. But a reasonable time is a problematic thing to
define, because it depends on the context and on the system you’re measuring. For a
client application that has a button, it’s assumed that the time it takes the application
to respond to the button click will be a few milliseconds. For a web service that needs
to make a heavy calculation, one or two seconds might also be reasonable. When
you’re designing your application, you need to analyze the operations you have and
define the bounds of the time it should take for an operation to complete and
respond. Being responsive is a goal that reactive systems are trying to achieve.

1.3.2 Resiliency

Every once in a while, your system might face failures. Networks disconnect, hard
drives fail, electricity shuts down, or an inner component experiences an exceptional
situation. A resilient system is one that stays responsive in the case of a failure. In other
words, when you write your application, you want to handle failures in a way that
doesn’t prevent the user from getting a response.

 The way you add resiliency to an application is different from one application to
another. One application might catch an exception and return the application to a
consistent state. Another application might add more servers so that if one server
crashes, another one will compensate and handle the request. A good principle you
should follow to increase the resiliency of your system is to avoid a single point of fail-
ure. This can be done by making each part of your application isolated from the other
parts; you might separate parts into different AppDomains, different processes, differ-
ent containers, or different machines. By isolating the parts, you reduce the risk that
the system will be unavailable as a whole.

1.3.3 Elasticity

The application that you’re writing will be used by a number of users—hopefully, a
large number of users. Each user will make requests to your system that may result in a
high load that your system will need to deal with. Each component in your system has
a limit on the load level it can deal with, and when the load goes above that limit,
requests will start failing and the component itself may crash. This situation of increas-
ing load can also be caused by a distributed denial of service (DDoS) attack that your
system is experiencing.

 To overcome the causes of overload, your system needs to be elastic: it needs to
span instances as the load increases and remove instances as the load decreases. This
kind of automatic behavior has been much more apparent since the cloud entered
our lives. When running on the cloud, you get the illusion of infinite resources; with a

19Working with reactive systems and the Reactive Manifesto
few simple configurations, you can set your application to scale up or down, depend-
ing on the threshold you define. You need to remember only that a cost is associated
with running extra servers.

1.3.4 Message driven

At this point, you can say that responsiveness is your goal, resiliency is the way to
ensure that you keep being responsive, and elasticity is one method for being resil-
ient. The missing piece of the puzzle of reactive systems is the way that the parts of a
system communicate with each other to allow for the type of reactiveness we’ve
explored.

 Asynchronous message passing is the communication process that best suits our
needs, because it allows us to control the load level on each component without limit-
ing producers—normally with an intermediate channel such as a queue or service
bus. It allows routing of messages to the right destination and resending of failing
messages in case a component crashes. It also adds transparency to the inner system
components, because users don’t need to know the internal system structure except
the type of messages it can handle. Being message driven is what makes all the other
reactive concepts possible. Figure 1.12 shows how the message-driven approach using
a message queue helps level the rate of message processing in the system and enables
resiliency and elasticity.

Figure 1.12 The relationship of a message-driven approach to load leveling and elasticity. On the left,
messages are arriving at a high frequency, but system processing is leveled to a constant rate, and the
queue is filling faster than it’s emptied. On the right, even if the processing worker role has crashed, users
can still fill the queue; and when the system recovers and adds a new worker, the processing continues.

In the figure, the participants are communicating in a message-driven approach
through the message queue. The client sends a message that’s later retrieved by the
server. This asynchronous communication model provides greater control over the
processing in the system—controlling the rate and dealing with failures. Many imple-
mentations for message queuing exist, with different feature sets. Some allow the per-
sistence of the messages, which provides durability, and some also give a “transactional”

Messages

Time

Messages

Time

MSG

Users System

Leveling Resiliency with elasticity

Users

20 CHAPTER 1 Reactive programming
delivery mode that locks the message until the consumer signals that the processing
completed successfully. No matter which message queue (or message-driven platform)
you choose, you’ll need to somehow get ahold of the messages that were sent and start
processing them. This is where Rx fits in.

1.3.5 Where is Rx?

The Reactive Extensions library comes into play inside the applications that compose
a reactive system, and it relates to the message-driven concept. Rx isn’t the mechanism
to move messages between applications or servers, but rather it’s the mechanism that’s
responsible for handling the messages when they arrive and passing them along the
chain of execution inside the application. It’s important to state that working with Rx
is something you can do even if you’re not developing a full system with many compo-
nents. Even a single application can find Rx useful for reacting to events and the types
of messages that the application may want to process. The relationships between all
the Reactive Manifesto concepts and Rx are captured in figure 1.13.

To get a fully reactive system, all the concepts in the diagram must exist. Each one can
be implemented differently in different systems. Rx is one way to allow easier con-
sumption of messages, so it’s shown as part of the message-driven block. Rx was intro-
duced as a way to handle asynchronous and event-based programs, as in the case of
messages, so it’s important that I explain what it means to be asynchronous and why
it’s important.

1.4 Understanding asynchronicity
Asynchronous message passing is a key trait of a reactive system. But what exactly is
asynchronicity, and why is it so important to a reactive application? Our lives are made
up of many asynchronous tasks. You may not be aware of it, but your everyday activities
would be annoying if they weren’t asynchronous by nature. To understand what asyn-
chronicity is, you first need to understand nonasynchronous execution, or synchro-
nous execution.

DEFINITION Synchronous: Happening, existing, or arising at precisely the
same time

Responsive

Elastic Resilience

Message driven
Rx

Figure 1.13 The relationships between
the Reactive Manifesto core concepts.
Rx is positioned inside the message-
driven concept, because Rx provides
abstractions to handle messages as they
enter the application.

21Understanding asynchronicity
Synchronous execution means that you have
to wait for a task to complete before you
can continue to the next task. A real-life
example of synchronous execution takes
place at a fast-food restaurant: you
approach the staff at the counter, decide
what to order while the clerk waits, order
your food, and wait until the meal is ready.
The clerk waits until you hand over the
payment and then gives you the food. Only
then you can continue the next task of
going to your table to eat. This sequence is
shown in figure 1.14.

 This type of sequence feels like a waste
of time (or, better said, a waste of
resources), so imagine how your applica-
tions feel when you do the same for them.
The next section demonstrates this.

1.4.1 It’s all about resource use

Imagine what your life would be like if you had to wait for every single operation to
complete before you could do something else. Think of the resources that would be
waiting and used at that time. The same issues are also relevant in computer science:

writeResult = LongDiskWrite();
response = LongWebRequest();
entities = LongDatabaseQuery();

In this synchronous code fragment, LongDatabaseQuery won’t start execution until
LongWebRequest and LongDiskWrite complete. During the time that each method
is executed, the calling thread is blocked and the resources it holds are practically
wasted and can’t be used to serve other requests or handle other events. If this were
happening on the UI thread, the application would look frozen until the execution
finishes. If this were happening on a server application, at some point you might run
out of free threads and requests would start being rejected. In both cases, the applica-
tion stops being responsive.

 The total time it takes to run the preceding code fragment is as follows:

total_time = LongDiskWritetime + LongWebRequesttime + LongDatabaseQuerytime

The total completion time is the sum of the completion time of its components. If you
could start an operation without waiting for a previous operation to complete, you
could use your resources much better. This is what asynchronous execution is for.

A hamburger please.

How may I help you?

Your order is ready.

:

:

Figure 1.14 Synchronous food order in which
every step must be completed before going to
the next one

22 CHAPTER 1 Reactive programming
 Asynchronous execution means that an operation is started, but its execution is hap-
pening in the background and the caller isn’t blocked. Instead, the caller is notified
when the operation is completed. In that time, the caller can continue to do useful work.

 In the food-ordering example, an asynchronous approach would be similar to sit-
ting at the table and being served by a waiter. First, you sit at the table, and the waiter
comes to hand you the menu and leaves. While you’re deciding what to order, the
waiter is still available to other customers. When you’ve decided what meal you want,
the waiter comes back and takes your order. While the food is being prepared, you’re
free to chat, use your phone, or enjoy the view. You’re not blocked (and neither is the
waiter). When the food is ready, the waiter brings it to your table and goes back to
serve other customers until you request the bill and pay.

 This model is asynchronous: tasks are executed concurrently, and the time of exe-
cution is different from the time of the request. This way, the resources (such as the
waiter) are free to handle more requests.

There’s more than one way to run code asynchronously, and it depends on the lan-
guage that’s used. Appendix A shows the ways this can be done in C# and dives deeper
into bits and bytes of each one. For now, let’s look at one example of doing asynchro-
nous work by using the .NET implementation of futures—the Task class:

 The asynchronous version of the preceding code fragment looks like the following:

taskA = LongDiskWriteAsync();
taskB = LongWebRequestAsync();
taskC = LongDatabaseQueryAsync();

Task.WaitAll(taskA, taskB, taskC);

In this version, each method returns Task<T>. This class represents an operation that’s
being executed in the background. When each method is called, the calling thread isn’t
blocked, and the method returns immediately. Then the next method is called while

Where does the asynchronous execution happen?
In a computer program, we can differentiate between two types of asynchronous oper-
ations: CPU-based and I/O-based.

In a CPU-based operation, the asynchronous code runs on another thread, and the
result is returned when the execution on the other thread finishes.

In an I/O-based operation, the operation is made on an I/O device such as a hard
drive or network. On a network, a request is made to another machine (by using TCP
or UDP or another network protocol), and when the OS on your machine gets a signal
from the network hardware by an interrupt that the result came back, then the oper-
ation will be completed.

In both cases, the calling thread is free to execute other tasks and handle other
requests and events.

23Understanding asynchronicity
the previous method is still executing. When all the methods are called, you wait for
their completion by using the Task.WaitAll method that gets a collection of tasks
and blocks until all of them are completed. Another way to write this is as follows:

taskA = LongDiskWriteAsync();
taskB = LongWebRequestAsync();
taskC = LongDatabaseQueryAsync();

taskA.Wait();
taskB.Wait();
taskC.Wait();

This way, you get the same result; you wait for each task to complete (while they’re still
running in the background). If a task is already completed when you call the Wait
method, it will return immediately.

 The total time it takes to run the asynchronous version of the code fragment is as
follows:

total_time = MAX(LongDiskWritetime, LongWebRequesttime, LongDatabaseQuerytime)

Because all of the methods are running concurrently (and maybe even in parallel),
the time it takes to run the code will be the time of the longest operation.

1.4.2 Asynchronicity and Rx

Asynchronous execution isn’t limited to being handled only by using Task<T>. In
appendix A, you’ll be introduced to other patterns used inside the .NET Framework to
provide asynchronous execution.

 Looking back at IObservable<T>, the Rx representation of a time-variant vari-
able, you can use it to represent any asynchronous pattern, so when the asynchronous
execution completes (successfully or with an error), the chain of execution will run
and the dependencies will be evaluated. Rx provides methods for transforming the
various types of asynchronous execution (such as Task<T>) to IObservable<T>.

 For example, in the Shoppy app, you want to get new discounts not only when your
location changes, but also when your connectivity state changes to online—for exam-
ple, if your phone loses its signal for a short time and then reconnects. The call to the
Shoppy web service is done in an asynchronous way, and when it completes, you want
to update your view to show the new items:

IObservable<Connectivity> myConnectivity=...
IObservable<IEnumerable<Discount>> newDiscounts =
 from connectivity in myConnectivity
 where connectivity == Connectivity.Online
 from discounts in GetDiscounts()
 select discounts;

newDiscounts.Subscribe(discounts => RefreshView(discounts));
private Task<IEnumerable<Discount>> GetDiscounts()

GetDiscounts returns a Task
that’s implicitly converted
to an observable.

RefreshView
displays
the discounts.

24 CHAPTER 1 Reactive programming
{
 //Sends request to the server and receives the collection of discounts
}

In this example, you’re reacting to the connectivity changes that are carried on the
myConnectivity observable. Each time a change in connectivity occurs, you check
to see whether it’s because you’re online, and if so, you call the asynchronous Get-
Discounts method. When the method execution is complete, you select the result
that was returned. This result is what will be pushed to the observers of the new-
Discounts observable that was created from your code.

1.5 Understanding events and streams
In a software system, an event is a type of message that’s used to indicate that some-
thing has happened. The event might represent a technical occurrence—for exam-
ple, in a GUI application you might see events on each key that was pressed or each
mouse movement. The event can also represent a business occurrence, such as a
money transaction that was completed in a financial system.

 An event is raised by an event source and consumed by an event handler. As you’ve seen,
events are one way to represent time-variant values. And in Rx, the event source can be
represented by the observable, and an event handler can be represented by the
observer. But what about the simple data that our application is using, such as data sit-
ting in a database or fetched from a web server. Does it have a place in the reactive world?

1.5.1 Everything is a stream

The application you write will ultimately deal with some kind of data, as shown in fig-
ure 1.15. Data can be of two types: data at rest and data in motion. Data at rest is stored

This is where you create
the observable.

This is where you create
the observable.

Data at rest source

Data in motion source

This is the merged observable. Abstracting
the sources from the inner module.

Data stream Inner
module

Startup
moduleDB

Receiving
module

Your application

Figure 1.15 Data in motion and data at rest as one data stream. The connection points
from the outside environment are a perfect fit for creating observables. Those observables
can be merged easily with Rx to create a merged observable that the inner module can
subscribe to without knowing the exact source of a data element.

25Understanding events and streams
in a digital format, and you usually read it from persisted storage such as a database or
files. Data in motion is moving on the network (or other medium) and is being pushed
to your application or pulled by your application from any external source.

 No matter what type of data you use in your application, it’s time to understand
that everything can be observed as a stream, even data at rest and data that looks static
to your application. For example, configuration data is perceived as static, but even
configuration changes at some point, either after a long time or short time. From your
application’s perspective, it doesn’t matter; you want to be reactive and handle those
changes as they happen. When you look at the data at rest as another data stream, you
can more easily combine both types of data. For your application, it doesn’t matter
where the data came from.

 For example, application startup usually loads data from its persisted storage to
restore its state (the one that was saved before the application was closed). This state
can, of course, change during the application run. The inner parts of your application
that care about the state can look at the data stream that carries it. When the applica-
tion starts, the stream will deliver the data that was loaded, and when the state
changes, the stream will carry the updates.

 A nice analogy I like to use for explaining streams is a water hose, but this hose has
data packets going through it, just like the one you see in figure 1.16. When using a
water hose, you can do many things with it. You can put filters at the end. You can add
different hose heads that give different functionality. You can add pressure monitors
to help you regulate the flow. You can do the same things with your data stream. You’ll
want to build a pipeline that lets the information flow through it, to eventually give an
end result that suits your logic; this includes filtering, transformations, grouping,
merging, and so on.

 The data and event streams are a perfect fit for Rx observables. Abstracting them
with an IObservable enables you to make a composition of the operators and create
a complex pipeline of execution. This is similar to what you did with the Shoppy
example, where a call to a server obtained the discounts as part of a more complex
pipeline of execution that also used filtering (on the connectivity) and eventually
refreshed the view (like a sprinkler splashing water).

Pressuremonitor
Pref

ilte
r Sprinkler

Figure 1.16 A data stream is like a hose: every drop of water is a data packet that needs to go
through stations until it reaches the end. Your data also needs to be filtered and transformed until
it gets to the real handler that does something useful with it.

26 CHAPTER 1 Reactive programming
1.6 Summary
This chapter covered what being reactive means and how you can use Rx to imple-
ment reactive programming in your applications.

 In reactive programming, you use time-variant variables that hold values that
change by reacting to changes happening to their dependencies. You saw exam-
ples of these variables in the Shoppy example: location, connectivity,
iconSize, and so on.

 Rx is a library developed by Microsoft to implement reactive programming in
.NET applications.

 In Rx, time-variant variables are abstracted by observable sequences that imple-
ment the IObservable<T> interface.

 The observable is a producer of notifications, and observers subscribe to it to
receive those notifications.

 Each observer subscription is represented as IDisposable that allows unsub-
scribing at any time.

 Observers implement the IObserver<T> interface.
 Observables can emit a notification with a payload, notify on its completion,

and notify on an error.
 After an observable notifies an observer on its completions or about an error,

no more notifications will be emitted.
 Observables don’t always complete; they can be providers of potentially

unbounded notifications.
 Observables can be “quiet,” meaning they have never pushed any element and

never will.
 Rx provides operators that are used to create pipelines of querying, transforma-

tion, projections, and more in the same syntax that LINQ uses.
 Marble diagrams are used to visualize the Rx pipelines.
 Reactive systems are defined as being responsive, resilient, elastic, and message

driven. These traits of reactive systems are defined in the Reactive Manifesto.
 In a reactive system, Rx is placed in the message-driven slot, as the way you want

to handle the messages the application is receiving.
 Asynchronicity is one of the most important parts of being reactive, because it

allows you to better use your resources and thus makes the application more
responsive.

 “Everything is a stream” explains why Rx makes it easy to work with any source,
even if it’s a data source such as a database.

In the next chapter, you’ll get the chance to build your first Rx application, and you’ll
compare it with writing the same application in the traditional event-handling way.
You’ll see for yourself how awesome Rx is.
 www.allitebooks.com

http://www.allitebooks.org

Hello, Rx
The goal of Rx is to coordinate and orchestrate event-based and asynchronous
computations that come from various sources, such as social networks, sensors, UI
events, and others. For instance, security cameras around a building, together with
movement sensors that trigger when someone might be near the building, send us
photos from the closest camera. Rx can also count tweets that contain the names of
election candidates to estimate a candidate’s popularity. This is done by calling an
external web service in an asynchronous way. For those scenarios and other similar
ones, the orchestrations tend to lead to complex programs, and Rx definitely eases
that effort, as you’ll see.

 In this chapter, you’ll look at an example to see how working with and without
Rx makes a difference in how the application is structured, how readable it is, and
how easy it is to extend and evolve. Imagine you receive a letter from Mr. Penny, the
well-known chief technology officer of the Stocks R Us company. Stocks R Us is a
stock-trading company that advises its clients where to invest their money and col-
lect interest from earnings. This is why it’s important to the company to react

This chapter covers
 Working without Rx

 Adding Rx to a project

 Creating your first Rx application
27

28 CHAPTER 2 Hello, Rx
quickly to changes in the stock market. Recently, Stocks R Us found out that it can
save money by using a system that provides alerts about stocks that have experi-
enced—as Mr. Penny calls it—a drastic change. Mr. Penny’s definition of a drastic
change is a price change of more than 10%. When these changes happen, Stocks R Us
wants to know as fast as possible so it can react by selling or buying the stock.

 Mr. Penny comes to you because he knows he can count on you to deliver a high-
quality application quickly. Your job (and the target of this chapter) is to create an
application that notifies users about stocks that experience a drastic change. A drastic
change occurs when the value of the stock increases or decreases by a certain thresh-
old (10% in this case) between two readings. When this happens, you want to notify
users by sending a push notification to their mobile phones or displaying an alert on
the screen of an application, showing a red flashing bar, for example.

 In the first part of the chapter, you’ll explore the steps that usually occur when cre-
ating an application with the traditional .NET events approach. We’ll then analyze the
solution and discuss its weaknesses.

 The second part of this chapter introduces Rx into your application. You’ll first
add the libraries to the project and then work step by step to make the application for
Stocks R Us in the Rx style.

2.1 Working with traditional .NET events
Stock information comes from a stock-trading source, and many services provide this
information. Each has its own API and data formats, and several of those sources are
free, such as Yahoo Finance (http://finance.yahoo.com) and Google Finance
(www.google.com/finance). For your application, the most important properties are
the stock’s quote symbol and price. The stock’s quote symbol is a series of characters
that uniquely identifies traded shares or stock (for example, MSFT is the Microsoft
stock symbol).

 The flowchart in figure 2.1 describes the logical flow of the application.

Stock update
received

Calculate price change between
current and previous price

Notify user> 10% Yes

No

Wait for
next update

Figure 2.1 Flowchart of the Stock R Us
application logic. We notify the user of drastic
change—a change of more than 10% in price.

http://finance.yahoo.com
www.google.com/finance

29Working with traditional .NET events
For each piece of stock information the application receives, it calculates the price dif-
ference of the stock as a change ratio between the new price and the previous price.
Say you receive an update that the price of MSFT has changed from $50 to $40, a
change of 20%. This is considered a drastic change and causes an alert to be shown in
the application.

 In real life, the ticks arrive at a variable rate. For now, to keep from confusing you,
you can assume that the ticks arrive at a constant rate; you’ll deal with time aspects later.

 To keep the source of the stock information abstract, it’s exposed through the class
StockTicker. The class exposes only an event about a StockTick that’s raised every
time new information about a stock is available.

class StockTicker
{
 public event EventHandler<StockTick> StockTick;
}

The StockTick class holds the information about the stock, such as its quote symbol
and price.

class StockTick
{
 public string QuoteSymbol { get; set; }
 public decimal Price { get; set; }

 //other properties
}

You’ll usually see traditional .NET events in these types of scenarios. When notifica-
tions need to be provided to an application, .NET is a standard way of delivering data
into an application. To work with the stock ticks, you’ll create a StockMonitor class
that will listen to stock changes by hooking up to the StockTick event via the +=
operator.

class StockMonitor
{
 public StockMonitor(StockTicker ticker)
 {
 ticker.StockTick += OnStockTick;
 }
...
 //rest of the code
}

Listing 2.1 StockTicker class

Listing 2.2 StockTick class

Listing 2.3 StockMonitor class

The OnStockTick method is
called each time the
event is raised.

30 CHAPTER 2 Hello, Rx
The core of the example is in the OnStockTick method. This is where you’ll check
for each stock tick if you already have its previous tick so that you can compare the
new price with the old price. For this, you need a container to hold all the informa-
tion about previous ticks. Because each tick contains the QuoteSymbol, it makes
sense to use a dictionary to hold that information, with QuoteSymbol as the key. To
hold the information about the previous ticks, you define a new class with the name
StockInfo (listing 2.4), and then you can declare the dictionary member in your
StockMonitor class (listing 2.5).

class StockInfo
{

 public StockInfo(string symbol, decimal price)
 {
 Symbol = symbol;
 PrevPrice = price;
 }
 public string Symbol { get; set; }
 public decimal PrevPrice { get; set; }
}

Every time OnStockTick is called with a new tick, the application needs to check
whether an old price has already been saved to the dictionary. You use the TryGet-
Value method that returns true if the key you’re looking for exists in the dictionary,
and then you set the out parameter with the value stored under that key.

Dictionary<string,StockInfo> _stockInfos=new Dictionary<string, StockInfo>();

void OnStockTick(object sender, StockTick stockTick)
{
 StockInfo stockInfo ;
 var quoteSymbol = stockTick.QuoteSymbol;
 var stockInfoExists = _stockInfos.TryGetValue(quoteSymbol, out stockInfo);
...
}

If the stock info exists, you can check the stock’s current and previous prices, as shown
in the following listing, to see whether the change was bigger than the threshold
defining a drastic change.

const decimal maxChangeRatio = 0.1m;
...
var quoteSymbol = stockTick.QuoteSymbol;
var stockInfoExists = _stockInfos.TryGetValue(quoteSymbol, out stockInfo);

Listing 2.4 StockInfo class

Listing 2.5 OnStockTick event handler checking the existence of a stock

Listing 2.6 OnStockTick event handler handling drastic price change

31Working with traditional .NET events

The pe
o

S
price

nex
if (stockInfoExists)
{
 var priceDiff = stockTick.Price-stockInfo.PrevPrice;
 var changeRatio = Math.Abs(priceDiff/stockInfo.PrevPrice);
 if (changeRatio > maxChangeRatio)
 {
 //Do something with the stock – notify users or display on screen
 Console.WriteLine("Stock:{0} has changed with {1} ratio,
 Old Price:{2} New Price:{3}",
 quoteSymbol,
 changeRatio,
 stockInfo.PrevPrice,
 stockTick.Price);
 }
 _stockInfos[quoteSymbol].PrevPrice = stockTick.Price;
}

If the stock info isn’t in the dictionary (because this is the first time you got a tick
about it), you need to add it to the dictionary with

_stockInfos[quoteSymbol]=new StockInfo(quoteSymbol,stockTick.Price);

When no more updates are required (for example, when the user decides to stop
receiving notifications or closes the page), you need to unregister from the event by
using the -= operator. But where should you do that? One option is to create a
method in the StockMonitor class that you can call when you want to stop. But luck-
ily, .NET provides a mechanism for handling this type of “cleanup” by implementing
the IDisposable interface that includes the single method Dispose for freeing
resources. This is how it looks in StockMonitor:

public void Dispose()
{
 _ticker.StockTick -= OnStockTick;
 _stockInfos.Clear();
}

The full code is shown in listing 2.7. I ran it on the following series:

Symbol: "MSFT" Price: 100
Symbol: "INTC" Price: 150
Symbol: "MSFT" Price: 170
Symbol: "MSFT" Price: 195

and I got these results:

Stock:MSFT has changed with 0.7 ratio, Old Price:100 New Price:170
Stock:MSFT has changed with 0.15 ratio, Old Price:170 New Price:195.5

class StockMonitor : IDisposable
{
 private readonly StockTicker _ticker;

Listing 2.7 StockMonitor full code

stockInfo variable holds the
information about the stock; because
stockInfoExists is true, you know for

sure that stockInfo isn’t null.

rcentage
f change

ave the
 for the
t event.

32 CHAPTER 2 Hello, Rx

Cal
cha
to
mo

ew

rst

 the
re it.
 Dictionary<string, StockInfo> _stockInfos =
 new Dictionary<string, StockInfo>();
 public StockMonitor(StockTicker ticker)
 {
 _ticker = ticker;
 ticker.StockTick += OnStockTick;
 }

 void OnStockTick(object sender, StockTick stockTick)
 {
 const decimal maxChangeRatio = 0.1m;
 StockInfo stockInfo;
 var quoteSymbol = stockTick.QuoteSymbol;
 var stockInfoExists =
 _stockInfos.TryGetValue(quoteSymbol, out stockInfo);
 if (stockInfoExists)
 {
 var priceDiff = stockTick.Price - stockInfo.PrevPrice;
 var changeRatio = Math.Abs(priceDiff / stockInfo.PrevPrice);
 if (changeRatio > maxChangeRatio)
 {
 Debug.WriteLine("Stock:{0} has changed with {1} ratio
 OldPrice:{2} newPrice:{3}",
 quoteSymbol,
 changeRatio,
 stockInfo.PrevPrice,
 stockTick.Price);
 }
 _stockInfos[quoteSymbol].PrevPrice = stockTick.Price;
 }
 else
 {
 _stockInfos[quoteSymbol] =
 new StockInfo(quoteSymbol, stockTick.Price);
 }
 }

 public void Dispose()
 {
 _ticker.StockTick -= OnStockTick;
 _stockInfos.Clear();
 }
}

Mr. Penny is satisfied, Stock R Us staff is using the application, and the effects are
already shown in their reports. The application receives the stock updates, can calculate
the difference ratio between the old and the new price, and sends an alert to the user.

 Like everything in life, change is inevitable, and Stocks R Us decides to change its
stock information source. Luckily, you abstracted the source with your StockTicker
class so the StockTicker is the only class that needs to be changed.

Registration to the
stock update notification

Checking whether the stock
price information already
exists in the application

culating the price
nge in percentages

see whether it’s
re than 10%

Storing the n
stock price

If this is the fi
time you get
information on
stock, you sto

Disposing of the resources and
unregistering from the event. You
won’t get any more notifications
from this point forward.

33Working with traditional .NET events
 After the source change, you start to receive complaints on crashes and other bugs
such as missing alerts or unnecessary alerts. And so you start to investigate the prob-
lem and find it has something to do with concurrency.

2.1.1 Dealing with concurrency

It may not seem obvious, but the code hides a problem: concurrency. Nothing in the
StockTicker interface promises anything about the thread in which the tick event
will be raised, and nothing guarantees that a tick won’t be raised while another one is
processed by your StockMonitor, as shown in figure 2.2.

The StockMonitor class you wrote uses a dictionary to keep the information about
the stocks, but the dictionary you’re using isn’t thread-safe.

The dictionary you’re using does support multiple readers at the same time, but if the
dictionary is read while it’s being modified, an exception is thrown. This situation is
illustrated in table 2.1. Thread1 (on the left) reaches the marked code, where it tries
to get the StockInfo for a stock with the symbol symbol1. At the same time,
Thread2 (on the right) reaches the line of code that adds a new StockInfo (with a
symbol2 symbol) to the dictionary. Both the reading and the mutating of the diction-
ary is happening at the same time and leads to an exception.

Thread safety
Thread safety of a code portion means that the code works correctly when called from
more than one thread, no matter the order in which those threads execute the code
and without any need for synchronization of the calling code.

A class is called thread-safe if any one of its methods is thread-safe, even if different
methods are called from different threads simultaneously. This usually means the
inner data structures are protected from modifications at the same time.

Time

MSFT

GOOG

MSFT

Thread 1

Thread 2

Thread 3
Figure 2.2 Multiple threads executing the event-
handler code at the same time. Each box represents
the execution time of a stock. While the first thread is
running the code for MSFT, the second thread starts
executing for the GOOG stock. Then the third thread
starts for the same stock symbol as the first thread.

http://www.dotnetfoundation.org/projects
http://www.dotnetfoundation.org/projects

ter a
 code
read
er
nter
 will

.

34 CHAPTER 2 Hello, Rx

You can overcome this problem by using the .NET ConcurrentDictionary. This
lock-free collection internally synchronizes the readers and writers so no exception
will be thrown.

 Unfortunately, ConcurrentDictionary isn’t enough, because the ticks aren’t syn-
chronized by StockTicker. If you handle two (or more) ticks of the same stock at the
same time, what’s the value of the PrevPrice property? There’s a nondeterministic
answer to that question: the last one wins. But the last one isn’t necessarily the last tick
that was raised, because the order in which the threads are running is determined by
the OS and isn’t deterministic.1 This makes your code unreliable, because the end user
could be notified on an incorrect conclusion that your code makes. The OnStockTick
event handler holds a critical section, and the way to protect it is by using a lock.

object _stockTickLocker = new object();
void OnStockTick(object sender, StockTick stockTick)
{
 const decimal maxChangeRatio = 0.1m;
 StockInfo stockInfo;
 var quoteSymbol = stockTick.QuoteSymbol;
 lock (_stockTickLocker)
 {
 var stockInfoExists =
 _stockInfos.TryGetValue(quoteSymbol, out stockInfo);
 if (stockInfoExists)
 {
 var priceDiff = stockTick.Price - stockInfo.PrevPrice;
 var changeRatio =
 Math.Abs(priceDiff/stockInfo.PrevPrice);

Table 2.1 Reading and modifying the dictionary at the same time from two threads

Thread 1 Thread 2

:
:
var stockInfoExists =
_stockInfos.TryGetValue(symbol1,
out stockInfo);
if (stockInfoExists)
{
:
:
}
else
{
 _stockInfos[symbol1] = new
StockInfo(symbol1, price);
}

:
:
var stockInfoExists =
_stockInfos.TryGetValue(symbol2,out
stockInfo);
if (stockInfoExists)
{
:
:
}
else
{
 _stockInfos[symbol2] = new
StockInfo(symbol2, price);
}

1 Deterministic means that no randomness is involved in the development of future states of the system.

Listing 2.8 Locked version of OnStockTick

An object that acts as a
mutual-exclusion lock that
you’ll use in the lock statement

Ensures that one
thread doesn’t en
critical section of
while another th
is there. If anoth
thread tries to e
a locked code, it
block until the
object is released

35Working with traditional .NET events
 if (changeRatio > maxChangeRatio)
 {
 Debug.WriteLine("Stock:{0} has changed with {1} ratio
 OldPrice:{2} newPrice:{3}",
 quoteSymbol,
 changeRatio,
 stockInfo.PrevPrice,
 stockTick.Price);
 }
 _stockInfos[quoteSymbol].PrevPrice = stockTick.Price;
 }
 else
 {
 _stockInfos[quoteSymbol] =
 new StockInfo(quoteSymbol, stockTick.Price);
 }
 }
}

Using locks is a perfect solution for many cases.
But when you start to add locks in various places
in an application, you can end up with a perfor-
mance hit, because locks can increase execution
time as well as the time that threads wait for the
critical section to become available. The harder
problem is that locks can cause your application
to get into a deadlock, as shown in figure 2.3.
Each thread is holding a resource that another
thread needs, while at the same time they each
are waiting for a resource that the other holds.

 Working with multithreaded applications is
difficult, and no magic solution exists. The only
reasonable thing to do is to make the code that
will run multithreaded easier to understand, and
make going into the trap of working with concur-
rent code more difficult.

 Rx provides operators to run concurrent code, as you’ll see later in this chapter.
For now, let’s step back, look at what you’ve created, and analyze it to see whether you
can do better.

2.1.2 Retrospective on the solution and looking at the future

Thus far, our code gives a solution to the requirements Mr. Penny described at the
beginning of the chapter. Functionally, the code does everything it needs to do. But
what’s your feeling about it? Is it readable? Does it seem to be maintainable? Is it easy
to extend? I’d like to point your attention to a few things.

R1

R2

Thread 2Thread 1

Holding Waiting

HoldingWaiting

Figure 2.3 A deadlock: Thread 1 is
holding the resource R1 and waiting
for the resource R2 to be available.
At the same time, Thread 2 is
holding resource R2 and waiting
for resource R1. Both threads will
remain locked forever if no external
intervention occurs.

36 CHAPTER 2 Hello, Rx

s

CODE SCATTERING

Let’s start with the scattering of the code. It’s a well-known fact that scattered code
makes a program harder to maintain, review, and test. In our example, the main logic
of the program is in the OnStockTick event handler that’s “far” from the registration
of the event:

class StockMonitor
{
 public StockMonitor(StockTicker ticker)
 {
 ...
 ticker.StockTick += OnStockTick;
 }

 void OnStockTick(object sender, StockTick stockTick)
 {
 ...
 }

 public void Dispose()
 {
 ...
 }
}

It’s common to see classes that handle more than one event (or even many more),
with each one in its own event handler, and you can start to lose sight of what’s related
to what:

class SomeClass
{
 public SomeClass(StockTicker ticker)
 {
 ...
 eventSource.event1 += OnEvent1;
 ...
 eventSource.event2 += OnEvent2;
 ...
 eventSource.event3 += OnEvent3;
 ...

 }

 void OnEvent1(object sender, EventArgs args)
 {
 ...
 }

 //Other methods

 void OnEvent2(object sender, EventArgs args)
 {

Register
the event.

Handle the event.

Unregister and clean up.

Register events and
initialize the object.

An event handler for each event;
several might need to do
something related to another
event. Methods that deal with clas
logic, with or without a connection
to the events, might be present.

37Working with traditional .NET events

 ...
 }

 //Other methods

 void OnEvent2(object sender, EventArgs args)
 {
 ...
 }

 //Other methods

 public void Dispose()
 {
 ...
 }
}

Many times developers choose to change the event-handler registration to a lambda
expression such as

anObject.SomeEvent += (sender, eventArgs)=>{...};

Although you moved the event-handler logic to the registration, you added a bug to
your resource cleaning. How do you unregister? The -= operator expects you to
unregister the same delegate that you registered. A lambda expression can be unregis-
tered only as follows:

eventHandler = (sender, eventArgs)=>{...};
anObject.SomeEvent += eventHandler;
:
anObject.SomeEvent -= eventHandler;

This looks unclean, so now you need to save the eventHandler as a member if you
need to unregister from it, which leads me to the next point.

RESOURCE HANDLING

The unregistration from the event and the rest of the resources cleanup that you
added to support your code (such as the dictionary) took place in the Dispose
method. This is a well-used pattern, but more frequently than not, developers forget
to free the resources that their code uses. Even though C# and .NET as a whole are
managed and use garbage collection, many times you’ll still need to properly free
resources to avoid memory leaks and other types of bugs. Events are often left regis-
tered, which is one of the main causes of memory leaks. The reason (at least for some)
is that the way we unregister doesn’t feel natural for many developers, and deciding
the correct place and time to unregister isn’t always straightforward—especially
because many developers prefer to use the lambda style of registering events, as I
stated previously. Beside the event itself, you added code and state management (such
as our dictionary) to support your logic. Many more types of applications handle the
same scenarios, such as filtering, grouping, buffering, and, of course, the cleaning of
what they bring. This brings us to the next point.

An event handler for each event;
several might need to do
something related to another
event. Methods that deal with class
logic, with or without a connection
to the events, might be present.

Unregister and clean up the class, with
or without a relation to the events.

38 CHAPTER 2 Hello, Rx
REPEATABILITY AND COMPOSABILITY

To me, our logic also feels repeatable. I swear I wrote this code (or similar code) in a
past application, saving a previous state by a key and updating it each time an update
comes in, and I bet you feel the same. Moreover, I also feel that this code isn’t compos-
able, and the more conditions you have, the more inner if statements you’ll see and
the less readable your code will be. It’s common to see this kind of code in an applica-
tion, and with its arrowhead-like structure, it’s becoming harder to understand and
follow what it does:

if (some condition)
{
 if (another condition)
 {
 if (another inner condition)
 {
 //some code
 }
 }
}
else
{
 if (one more condition)
 {
 //some code
 }
 else
 {
 //some code
 }
}

Composition
Composition is the ability to compose a complex structure from simpler constructs.

This definition is similar to that in mathematics, where you can compose a complex
expression from a set of other functions: f(x) = x2 + sin(x)

Composition also allows us to use a function as the argument of another function:

g(x) = x + 1
f(g(x)) = (x + 1)2 + sin(x + 1)

In computer science, we use composition to express complex code with simpler func-
tions. This allows us to make higher abstractions and concentrate on the purpose of
the code and less on the details, making it easier to grasp.

39Creating your first Rx application
If you were given new requirements to your code, such as calculating the change ratio
by looking at more than two consecutive events, your code would have to change
dramatically. The change would be even more dramatic if the new requirement was
time based, such as looking at the change ratio in a time interval.

SYNCHRONIZATION

Synchronization is another thing that developers tend to forget, resulting in the same
problems that we had: unreliable code due to improperly calculated values, and
crashes that might occur when working with non-thread-safe classes. Synchronization
is all about making sure that if multiple threads reach the same code at the same time
(virtually, not necessarily in parallel, because a context switch might be involved),
then only one thread will get access. Locks are one way to implement synchronization,
but other ways exist and do require knowledge and care.

 It’s easy to write code that isn’t thread-safe, but it’s even easier to write code with
locks that lead to deadlocks or starvation. The main issue with those types of bugs is
that they’re hard to find. Your code could run for ages (literally), until you run into a
crash or other error.

 With so many points from such a small program, it’s no wonder people say that
programming is hard. It’s time to see the greatness of Rx and how it makes the issues
we’ve discussed easier to overcome. Let’s see the Rx way and start adding Rx to your
application.

2.2 Creating your first Rx application
In this section, the Rx example uses the same StockTicker that you saw in the previ-
ous section, but this time you won’t work with the traditional standard .NET event.
Instead you’ll use IObservable<T>, which you’ll create, and then write your event-
processing flow around it. You’ll go slowly and add layer after layer to the solution
until you have a fully running application that’s easier to read and extend.

 Every journey starts with the first step. You’ll begin this journey by creating a new
project (a console application will do) and adding the Rx libraries.

2.2.1 Selecting Rx packages

The first step in working with Reactive Extensions is adding the library to your project.
No matter whether you write a Windows Presentation Foundation (WPF) application,
ASP.NET website, Windows Communication Foundation (WCF) service, or a simple
console application, Rx can be used inside your code to benefit you. But you do need
to select the correct libraries to reference from your project.

40 CHAPTER 2 Hello, Rx
The Rx library is deployed as a set of a portable class libraries (PCLs)2 and platform-
specific providers that you install depending on your project platform. This is shown
in figure 2.4.

 To add the necessary references to your project, you need to select the appropriate
packages from NuGet, a .NET package manager from which you can easily search and
install packages (which usually contain libraries). Table 2.2 describes the Rx packages
you can choose from at the time of this writing and figure 2.5 shows the NuGet pack-
age manager.

Figure 2.5 Reactive Extensions NuGet packages. Many packages add things on top of Rx
to identify the Rx.NET-specific libraries. Look for a package ID with the prefix System.Reactive
and make sure the publisher is Microsoft.

2 The Portable Class Library project enables you to build assemblies that work on more than one .NET Frame-
work platform. For details, see http://mng.bz/upA5.

System.Reactive.Providers
IObservable<T> query providers

Platform-specific
Schedulers, services

S
ys

te
m

.R
ea

ct
iv

e.
P

la
tfo

rm
S

er
vi

ce
s

P
la

tfo
rm

 e
nl

ig
ht

en
m

en
ts

 a
nd

 e
xt

ra
 s

ch
ed

ul
er

s

System.Reactive.Linq
LINQ query providers

System.Reactive.Core
Scheduler infrastructure, common types, and base classes

System.Reactive.Interfaces
Additional interface; e.g., IScheduler

Figure 2.4 Rx assemblies are a
set of portable class libraries
(middle and bottom) and platform-
specific libraries (top left). The
PlatformServices assembly
holds the platform enlightments that
are the glue between the two.

http://mng.bz/upA5

41Creating your first Rx application
NOTE Rx 3.0, published in June 2016, added Rx support to the .NET Core and
Universal Windows Platform (UWP). Rx.NET also joined the .NET Foundation
(www.dotnetfoundation.org/projects). To conform with the naming conven-
tion used by .NET Core, the Rx packages were renamed to match their library
names, and the previous Rx packages are now hidden in the NuGet gallery.

Table 2.2 Rx packages

Package name Description

System.Reactive.Interfaces
(Rx-Interfaces prior to Rx 3.0)

Installs the System.Reactive.Interfaces
assembly that holds only interfaces that other Rx
packages depend on.

System.Reactive.Core
(Rx-Core prior to Rx 3.0)

Installs the System.Reactive.Core assembly
that includes portable implementations of schedul-
ers, disposables, and others.

System.Reactive.Linq
(Rx-Linq prior to Rx 3.0)

Installs the System.Reactive.Linq assembly.
This is where the query operators are implemented.

System.Reactive.PlatformServices
(Rx-PlatformServices prior to Rx 3.0)

Installs the
System.Reactive.PlatformServices
assembly. This is the glue between the portable and
nonportable Rx packages.

System.Reactive
(Rx-Main prior to Rx 3.0)

This is the main package of Rx and what you’ll
install in most cases. It includes
System.Reactive.Interfaces,
System.Reactive.Core,
System.Reactive.Linq, and
System.Reactive.PlatformServices (the
specific enlightenments provider that will be used
depends on the project platform).

System.Reactive.Providers
(Rx-Providers prior to Rx 3.0)

Installs System.Reactive.Providers together
with the System.Reactive.Core package. This
package adds the IQbservable LINQ API opera-
tors that allow creating the expression tree on the
event tree so that the query provider can translate to
a target query language. This is the Rx
IQueryable counterpart.

System.Reactive.Windows.Threading
(Rx-Xaml prior to Rx 3.0)

Installs the System.Reactive.Windows
.Threading assembly together with the
System.Reactive.Core package. Use this
package when you need to add UI synchronization
classes for any platform that supports the XAML
dispatcher (WPF, Silverlight, Windows Phone, and
Windows Store apps).

System.Reactive.Runtime.Remoting
(Rx-Remoting prior to Rx 3.0)

Installs System.Reactive.Runtime.Remoting
together with the System.Reactive.Core
package. Use this package to add extensions to
.NET Remoting and expose it as an observable
sequence.

www.dotnetfoundation.org/projects

42 CHAPTER 2 Hello, Rx
Most of the time, you’ll add the System.Reactive package to your project because it
contains the types that are most used. When you’re writing to a specific platform or
technology, you’ll add the complementary package.3

2.2.2 Installing from NuGet

After you decide which package you need, you can install it from the Package Man-
ager dialog box or the Package Manager console. To use the Package Manager con-
sole, choose Tools > NuGet Package Manager > Package Manager Console. In the
console, select the destination project from the Default Project drop-down list, shown
in figure 2.6.

 In the console, write the installation command of the package you need:

Install-Package [Package Name]

Figure 2.6 Installing the Rx libraries through the Package Manager console. Make sure you select the
correct project for installation from the Default Project drop-down list. You can also define the project by
typing -ProjectName [project name].

System.Reactive.Windows.Forms /
System.Reactive.WindowsRuntime
(Rx-WPF/Rx-Silverlight/Rx-WindowsStore/
Rx-WinForms prior to Rx 3.0)

Subset of packages that’s specific to the platform.
Add UI synchronization classes and Rx utilities for
the platform types (such as IAsyncAction and
IAsyncOperationWithProgress in WinRT).

Microsoft.Reactive.Testing
(Rx-Testing prior to Rx 3.0)

The Rx testing library that enables writing reactive
unit tests. Appendix C includes explanations and
examples of reactive unit tests.

System.Reactive.Observable.Aliases
(Rx-Aliases prior to Rx 3.0)

Provides aliases for some of the query operators
such as Map, FlatMap, and Filter.

3 Although the examples in the book are in C#, you can use Rx with other .NET languages. Also, if you’re using
F#, look at http://fsprojects.github.io/FSharp.Control.Reactive, which provides F# wrappers for Rx.

Table 2.2 Rx packages (continued)

Package name Description

http://fsprojects.github.io/FSharp.Control.Reactive

43Creating your first Rx application
Figure 2.7 NuGet Package Manager from VS 2015. Search for the package you want by typing its name
b and then select the package and click Install c.

Another option for installing the packages is through the Package Manager dialog
box, shown in figure 2.7. This UI enables you to search for packages and see their
information in a more user-friendly way. Right-click your project and choose Manage
NuGet Packages. Type in the package name, select the package you want to install
from the drop-down list, and then click Install.

 After the NuGet package is installed, you can write the Rx version of Stock-
Monitor. You can find the entire code at the book’s source code in the GitHub repos-
itory: http://mng.bz/18Pr.

Instructions for running the examples with .NET Core
Microsoft recently announced that the format I describe here is deprecated (but will
be supported in the transition time). Microsoft recommends using the normal csproj
file with the new MSBuild additions (PackageReference for example). To use .NET
Core, you first need to install the latest version from www.microsoft .com/net/core.
Then, create a new project in your favorite tool, such as Visual Studio 2015 or Visual
Studio Code (https://code.visualstudio.com/docs/runtimes/dotnet).

Add a reference to the System.Reactive NuGet package by updating the depen-
dencies section inside the project.json file, as shown here:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "debugType": "portable",
 "emitEntryPoint": true

http://mng.bz/18Pr
https://code.visualstudio.com/docs/runtimes/dotnet
www.microsoft.com/net/core

44 CHAPTER 2 Hello, Rx

t

2.3 Writing the event-processing flow
After you install the Rx package that adds the needed references to the Rx libraries, you
can start building your application around it. To start creating the event-processing
flow, you need the source of the events. In Rx, the source of events (the publisher, if you
prefer) is the object that implements the IObservable<T> interface.

 To recap, the IObservable<T> interface defines the single method Subscribe
that allows observers to subscribe to notifications. Observers implement the
IObserver interface that defines the methods that will be called by the observable
when there are notifications.

 Rx provides all kinds of tools to convert various types of sources to IObserv-
able<T>, and the most fundamental tool that’s included is the one that converts a
standard .NET event into an observable.

 In our example of creating an application that provides notifications of drastic
stock changes, you’ll continue to work with the StockTick event. You’ll see how to
make it into an observable that you can use to do magic.

2.3.1 Subscribing to the event

StockTicker exposes the event StockTick that’s raised each time an update occurs
on a stock. But to work with Rx, you need to convert this event into an observable.
Luckily, Rx provides the FromEventPattern method that enables you to do just that:

IObservable<EventPattern<StockTick>> ticks =
 Observable.FromEventPattern<EventHandler<StockTick>, StockTick>(
 h => ticker.StockTick += h,
 h => ticker.StockTick -= h)

(continued)
 },
 "dependencies": { "System.Reactive": "3.0.0" },
 "frameworks": {
 "netcoreapp1.0": {
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 },
 },
 "imports": "dnxcore50"
 }
 }
}

Finally, run the dotnet restore command at the command prompt. You now have
a configured Rx project.

In most cases, you’d use
var instead of the full

variable type name.

Attaching
he Rx event

handler
Detaching the
Rx event
handler

45Writing the event-processing flow
Figure 2.8 FromEventPattern method signature

The FromEventPattern method has a couple of overloads. The one you’re using
here takes two generic parameters and two method parameters. Figure 2.8 shows the
method signature explanation.

 The addHandler and removeHandler parameters register and unregister the Rx
handler to the event; the Rx handler will be called by the event and then will call the
OnNext method of the observers.

UNWRAPPING THE EVENTARGS

The ticks variable now holds an observable of type IObservable<EventPattern
<StockTick>>. Each time the event is raised, the Rx handler is called and wraps the
event-args and the event source into an object of EventPattern type that will be
delivered to the observers through the OnNext method. Because you care only for the
StockTick (the EventArgs in the EventPattern type) of each notification, you
can add the Select operator that will transform the notification and unwrap the
EventArgs so that only the StockTick will be pushed down the stream:

var ticks = Observable.FromEventPattern<EventHandler<StockTick>, StockTick>(
 h => ticker.StockTick += h,
 h => ticker.StockTick -= h)
 .Select(tickEvent => tickEvent.EventArgs)

2.3.2 Grouping stocks by symbol

Now that you have an observable that carries the ticks (updates on the stocks), you
can start writing your query around it. The first thing to do is to group the ticks by
their symbols so you can handle each group (stock) separately. With Rx, this is an easy
task, as shown in figure 2.9.

A delegate (a lambda expression
in our example) that makes the
registration of the Rx event handler
from the event

A delegate (a lambda expression
in our example) that makes the
unregistration of the Rx
event handler from the event

The type of the EventArgs
that the event is carrying
—StockTick in our case

The type of the delegate
that can register to the
event, in our case
EventHandler<StockTick>

FromEventPattern<TDelegate, TEventArgs>(Action<TDelegate> addHandler,
 Action<TDelegate> removeHandler)

Select gets a delegate (such as a lambda
expression) that takes the input

notification and returns the value you’re
interested in—EventArgs in this case.

46 CHAPTER 2 Hello, Rx
Figure 2.9 A simple grouping of the stock ticks by the quote symbol

This expression creates an observable that provides the groups. Each group repre-
sents a company and is an observable that will push only the ticks of that group. Each
tick from the ticks source observable is routed to the correct observable group by its
symbol. This is shown in figure 2.10.

Figure 2.10 The ticks observable is grouped into two company groups, each one for a different
symbol. As the notifications are pushed on the ticks observable, they’re routed to their group
observable. If it’s the first time the symbol appears, a new observable is created for the group.

This grouping is written with a query expression. Query expressions are written in a
declarative query syntax but are a sugar syntax that the compiler turns into a real chain
of method calls. This is the same expression written in a method syntax:

ticks.GroupBy(tick => tick.QuoteSymbol);

2.3.3 Finding the difference between ticks

The next step on your way to finding any drastic changes is to compare two consecu-
tive ticks to see whether the difference between them is higher than a particular ratio.
For this, you need a way to batch the ticks inside a group so you can get two ticks
together. The batching should be done in such a way that two consecutive batches will
include a shared tick; the last tick in a batch will be the first one in the next batch. Fig-
ure 2.11 shows an example of this batching.

The group will be referred to as company.
company is an observable of all the ticks
that belong to the company.

The group of the tick is
defined by its symbol.

We are grouping
the tick objects.

from tick in ticks
group tick by tick.QuoteSymbol into company

MSFT
27.01

INTC
21.75

MSFT
27.96

MSFT
31.21

INTC
22.54

INTC
20.98

MSFT
30.73

27.01

Ticks:

MSFT:

INTC:

27.96 31.21 30.73

21.75 22.54 20.98

47Writing the event-processing flow
Figure 2.11 Ticks are batched together. Each batch has two items;
two consecutive batches have a shared item.

To create batches on an observable sequence, you use the Buffer operator. Buffer
gets as parameters the number of items you want in a batch—two, in this case—and
the number of items to skip before opening a new batch. You need to skip one item
before opening a new batch, thus making one item shared between two batches. You
need to apply the Buffer method to each group by writing the following:

company.Buffer(2, 1)

The Buffer method outputs an array that holds the two consecutive ticks, as shown in
figure 2.12. This enables you to calculate the difference between the two ticks to see
whether it’s in the allowed threshold.

Figure 2.12 After applying the Buffer(…) method on each group, you a get new type of notification
that holds an array of the two consecutive ticks.

By using the Let keyword, Rx allows you to keep the calculation in a variable that will
be carried on the observable:

from tick in ticks
group tick by tick.QuoteSymbol into company
from tickPair in company.Buffer(2, 1)
let changeRatio = Math.Abs((tickPair[1].Price - tickPair[0].Price) /

tickPair[0].Price)

This code fragment includes all your steps until now. Applying the buffering on the
company observable creates a new observable that pushes the buffers of two ticks. You

Ticks:

Batch 2

A B C D E

Batch 4

Batch 3Batch 1

MSFT
27.01

INTC
21.75

MSFT
27.96

MSFT
31.21

INTC
22.54

INTC
20.98

MSFT
30.73

Ticks:

MSFT:

INTC:

(27.01, 27.96) (27.96, 31.21) (31.21, 30.73)

(21.75, 22.54) (22.54, 20.98)

48 CHAPTER 2 Hello, Rx
observe its notifications by using the from … in … statement. Each notification is
represented by the tickPair variable.

 You then introduce the changeRatio variable that holds the ratio of change
between the two ticks; this variable will be carried on the observable to the rest of your
query, as shown in figure 2.13.

Figure 2.13 From each pair of consecutive ticks per company group, you calculate the ratio
of difference.

Now that you know the change ratio, all that’s left is filtering out all the notifications
that aren’t interesting (not a drastic change) and keeping only those that are above
your wanted ratio by applying the Where(…) operator:

var drasticChanges =
 from tick in ticks
 group tick by tick.QuoteSymbol
 into company
 from tickPair in company.Buffer(2, 1)
 let changeRatio = Math.Abs((tickPair[1].Price - tickPair[0].Price)/

tickPair[0].Price)
 where changeRatio > maxChangeRatio
 select new DrasticChange()
 {
 Symbol = company.Key,
 ChangeRatio = changeRatio,
 OldPrice = tickPair[0].Price,
 NewPrice = tickPair[1].Price
 };

The drasticChanges variable is an observable that pushes notifications only for
ticks that represent a change in a stock price that’s higher than maxChangeRatio. In
figure 2.14, the maximum change ratio is 10%.

INTC:

MSFT:

MSFT
change

ratio:

INTC
change

ratio:

0.034 0.104 0.015

0.036 0.069

(27.01, 27.96) (27.96, 31.21) (31.21, 30.73)

(21.75, 22.54) (22.54, 20.98)

Write the condition that the
notification needs to fulfill
inside the where operator.

Create an object from every
notification that’s a drastic
change. This type includes the
properties that you will use to
render a screen alert.

49Writing the event-processing flow

The
to t
tha
unr

Figure 2.14 After filtering the notifications with the Where operator, you find that only one notification
is a drastic change.

To consume the drastic change notifications, you need to subscribe to the drastic-
Change observable. Then you can notify the user by printing it to the screen.

_subscription =
 drasticChanges.Subscribe(change =>
 {
 Console.WriteLine($"Stock:{change.Symbol} has changed with
 {change.ChangeRatio} ratio,
 Old Price:{change.OldPrice}
 New Price:{change.NewPrice}");
 },
 ex => { /* code that handles errors */},
 () => {/* code that handles the observable completeness */});

2.3.4 Cleaning resources

If the user doesn’t want to receive any more notifications about drastic changes, you
need to dispose of the subscription to the drasticChanges observable. When you
subscribed to the observable, the subscription was returned to you, and you stored it
in the _subscription class member.

 As before, the StockMonitor Dispose method (which is provided because you
implemented the IDisposable interface) makes a perfect fit. The only thing you

MSFT
27.01

INTC
21.75

MSFT
27.96

MSFT
31.21

INTC
22.54

INTC
20.98

MSFT
30.73

Ticks:

Drastic
changes:

MSFT:

INTC:

0.034 0.104

MSFT
New price: 31.21
Old price: 27.96

Change ratio: 0.104

0.015

0.036 0.069

 subscription
he observable
t allows you to
egister

Every notification of a drastic change is
delivered to the lambda expression written
in the Subscribe method. The notification is
represented by the change parameter.

If something goes wrong and an exception
is thrown, or when the sequence is done,

this is where you handle those cases.

50 CHAPTER 2 Hello, Rx
need to do in your Dispose method is to call to Dispose method of the subscription
object:

public void Dispose()
{
 _subscription.Dispose();
}

Notice that you don’t need to write anything about delegates involved in the process-
ing of your query, and you don’t need to clean up any data structures related to the
storage of the previous ticks data. All of those are kept in the Rx internal operators
implementation, and when you dispose of the subscription, a chain of disposals hap-
pen, causing all the internal data structures to be disposed of as well.

2.3.5 Dealing with concurrency

In the traditional events version, you needed to add code to handle the critical section
in your application. This critical section enabled two threads to reach the event han-
dler simultaneously and read and modify your collection of past ticks at the same
time, leading to an exception and miscalculation of the change ratio. You added a
lock to synchronize the access to the critical section, which is one way to provide syn-
chronization between threads.

 With Rx, adding synchronization to the execution flow is much more declarative.
Add the Synchronize operator to where you want to start synchronizing, and Rx will
take care of the rest. In this case, you can add synchronization from the beginning, so
you add the Synchronize operator when creating the observable itself:

var ticks = Observable.FromEventPattern<EventHandler<StockTick>, StockTick>(
 h => ticker.StockTick += h,
 h => ticker.StockTick -= h)
 .Select(tickEvent => tickEvent.EventArgs)
 .Synchronize()

It doesn’t get any simpler than that, but as before, you need to remember that every
time you add synchronization of any kind, you risk adding a probable deadlock. Rx
doesn’t fix that, so developer caution is still needed. Rx only gives you tools to make
the introduction of synchronization easier and more visible. When things are easy,
explicit, and readable, chances increase that you’ll make it right, but making sure you
do it correctly is still your job as a developer.

2.3.6 Wrapping up

Listing 2.9 shows the entire code of the Rx version. The main difference from the tra-
ditional events example is that the code tells the story about what you’re trying to
achieve rather than how you’re trying to achieve it. This is the declarative program-
ming model that Rx is based on.

From here on, the execution will be
synchronized. Notification will be pushed
only after the previous one completes.

S

sho

h
cas

obse
51Writing the event-processing flow

class RxStockMonitor : IDisposable
{
 private IDisposable _subscription;

 public RxStockMonitor(StockTicker ticker)
 {
 const decimal maxChangeRatio = 0.1m;

 var ticks =
 Observable.FromEventPattern<EventHandler<StockTick>, StockTick>(
 h => ticker.StockTick += h,
 h => ticker.StockTick -= h)
 .Select(tickEvent => tickEvent.EventArgs)
 .Synchronize();

 var drasticChanges =
 from tick in ticks
 group tick by tick.QuoteSymbol
 into company
 from tickPair in company.Buffer(2, 1)
 let changeRatio = Math.Abs((tickPair[1].Price -

 ➥ tickPair[0].Price)/tickPair[0].Price)
 where changeRatio > maxChangeRatio
 select new
 {
 Symbol = company.Key,
 ChangeRatio = changeRatio,
 OldPrice = tickPair[0].Price,
 NewPrice = tickPair[1].Price
 };

 _subscription =
 drasticChanges.Subscribe(change =>
 {
 Console.WriteLine("Stock:{change.Symbol} has changed
 with {change.ChangeRatio} ratio,
 Old Price: {change.OldPrice}
 New Price: {change.NewPrice}");
 },
 ex => { /* code that handles errors */},
 () =>{/* code that handles the observable completeness */});
 }

 public void Dispose()
 {
 _subscription.Dispose();
 }
}

It’s now a good time to compare the Rx and events versions.

Listing 2.9 Locked version of OnStockTick

Creates a synchronized
observable that pushes

the stock ticks from
the StockTick event.

Groups ticks and
checks whether the
difference between two
consecutive ticks is
above a threshold.

ubscribes to the
observable of

drastic change,
wing an alert on
the screen. Also
andles the error
es and when the
rvable sequence

is complete.

52 CHAPTER 2 Hello, Rx
KEEPING THE CODE CLOSE

In the Rx example, all the code that relates to the logic of finding the drastic changes
is close together, in the same place—from the event conversion to the observable to the
subscription that displays the notifications onscreen. It’s all sitting in the same method,
which makes navigating around the solution easier. This is a small example, and even
though all the code sits together, it doesn’t create a huge method. In contrast, the tra-
ditional events version scattered the code and its data structures in the class.

PROVIDING BETTER AND LESS RESOURCE HANDLING

The Rx version is almost free of any resource handling, and those resources that you
do want to free were freed explicitly by calling Dispose. You’re unaware of the real
resources that the Rx pipeline creates because they were well encapsulated in the
operators’ implementation. The fewer resources you need to manage, the better your
code will be in managing resources. This is the opposite of the traditional events ver-
sion, in which you needed to add every resource that was involved and had to manage
its lifetime, making the code error prone.

USING COMPOSABLE OPERATORS

One of the hardest computer science problems is naming things—methods, classes,
and so on. But when you give a good name to something, it makes the process of using
it later easy and fluid. This is exactly what you get with the Rx operators. The Rx oper-
ators are a recurring named code pattern that reduces the repeatability in your code
that otherwise you’d have to write by yourself—meaning now you can write less code
and reuse existing code. With each step of building your query on the observable, you
added a new operator on the previously built expression; this is composability at its
best. Composability makes it easy to extend the query in the future and make adjust-
ments while you’re building it. This is contrary to the traditional events version, in
which no clear separation exists between the code fragments that handled each step
when building the whole process to find the drastic change.

PERFORMING SYNCHRONIZATION

Rx has a few operators dedicated specifically to concurrency management. In this
example, you used only the Synchronize operator that, as generally stated before
about Rx operators, saved you from making the incorrect use of a lock by yourself. By
default, Rx doesn’t perform any synchronization between threads—the same as regu-
lar events. But when the time calls for action, Rx makes it simple for the developer to
add the synchronization and spares the use of the low-level synchronization primi-
tives, which makes the code more attractive.

2.4 Summary
This chapter presented a simple yet powerful example of something you’ve probably
done in the past (or might find yourself doing in the future) and solved it in two ways:
the traditional events style and the Rx style of event-processing flow.

 Writing an event-driven application in .NET is very intuitive but holds caveats
regarding resource cleanup and code readability.

53Summary
 To use the Rx library, you need to install the Rx packages. Most often you’ll
install the System.Reactive package.

 You can use Rx in any type of application WPF desktop client, an ASP.NET web-
site, or a simple console application and others.

 Traditional .NET events can be converted into observables.
 Rx allows you to write query expression on top of the observable.
 Rx provides many query operators such as filtering with the Where operator,

transformation with Select operator, and others.

This doesn’t end here, of course. This is only the beginning of your journey. To use Rx
correctly in your application and to use all the rich operators, you need to learn about
them and techniques for putting them together, which is what this book is all about.
In the next chapter, you’ll learn about the functional way of thinking that, together
with the core concepts inside .NET, allowed Rx to evolve.

Functional thinking in C#
The object-oriented paradigm offers great productivity in application develop-
ment. It makes projects more manageable by decomposing complex systems into
classes, and objects are silos that you can concentrate on separately. Yet other para-
digms have gathered attention in recent years, especially the functional program-
ming paradigm. Functional programming languages, together with a functional
way of thinking, greatly influenced the way Rx was designed and used. Specifically,
the functional programming concepts of anonymous types, first-order functions,
and function composition are an integral part of Rx that you’ll see used heavily
throughout the book and in your everyday work with Rx.

 Some of the attention functional programming is receiving arises from func-
tional languages being good for multithreaded applications. Rx excels in creating
asynchronous and concurrent processing pipelines, which were also inspired by
functional thinking. Although C# is considered an object-oriented language, it has
evolved over the years and added aspects that exist in functional programming.

This chapter covers
 Blending C# with functional techniques

 Using delegates and lambda expressions

 Querying collections by using LINQ
54

55The advantages of thinking functionally
 .NET even has a functional programming language of its own, named F#, which
runs on top of the Common Language Runtime (CLR) in the same way C# does. Using
functional programming techniques can make your code cleaner and easier to read
and can change the way you think when writing code, eventually making you more
productive. Rx is highly influenced by the functional way of thinking, so it’s good to
understand those concepts in order to more easily adopt the Rx way of thinking.

 The concepts in this chapter may not be new to you. You can skip to the next chap-
ter if you wish, but I encourage you to at least briefly review the concepts to refresh
your memory.

3.1 The advantages of thinking functionally
As computer science evolves, new languages appear with new concepts and tech-
niques. All these languages share the same underlying purpose: improving developer
productivity and program robustness. Productivity and robustness have many faces:
shorter code, readable statements, internal resource management, and so on. Func-
tional programming languages also try to achieve those goals. Although many types of
functional programming languages exist, each with unique characteristics, we can see
their similarities:

 Declarative style of programming—This is based on the concept of “Tell what,
not how.”

 Immutability—Values can’t be modified; instead, new values are created.
 First-class functions—Functions are the primary building block used.

With object-oriented languages, developers think about programs as a collection of
objects that interact with each other. This allows you to create modular code by encap-
sulating data and behavior that relates to the data in an object. This modularity, again,
improves the productivity of the developer and makes your program more robust
because it’s easier for the developer to understand the code (less detail to remember)
and concentrate effort on a specific module when writing new code or changing (or
fixing) existing ones.

3.1.1 Declarative programming style

In the first two chapters, you saw examples of the declarative programming style. In
this style, you write your program statements as a description of what you want to
achieve as the result instead of specifying how you want this to be done. It’s up to the
environment to figure out how to do it best. Consider this example of an English state-
ment in an imperative style (the how) and declarative style (the what):

 Imperative—For each customer in the list of customers, take the location and
print the city name.

 Declarative—Print the city name of every customer in the list.

56 CHAPTER 3 Functional thinking in C#
A declarative style makes it easier to grasp the code you write, which leads to better
productivity and usually makes your code less error prone. The next code block shows
another example of the declarative programming style, this time using HTML that
produces what you see in figure 3.1.

 To create this page, you don’t have to write the rendering logic or the layout man-
agement and set the position for each element. Instead, all you have to do is to write
this short HTML script:

<html>
<head>
 <title>this is the page title</title>
</head>
<body>
 <h1>This is a Heading</h1>
 <p>This is a paragraph.</p>
</body>
</html>

Even if you don’t know HTML, it’s easy to see that this example only declares the out-
come you want to see and doesn’t deal with the technical details of making the
browser do it. With a declarative language such as HTML, you can create a complex
page with little effort. You want to attain the same results with the C# code you write,
and you’ll see examples of that in the rest of this chapter. One thing you need to pay
attention to is that because you’re indicating the what and not the how, how can you
know what will happen to the system? Could there be side effects? It turns out that
functional programming solves this problem from the start, as you’ll see next.

3.1.2 Immutability and side effects

Consider this method, which prints a message to the console:

public static void WriteRedMessage(string message)
{
 Console.ForegroundColor = ConsoleColor.Red;
 Console.WriteLine(message);
}

Page body with
a heading and
a paragraph

Page title

Figure 3.1 A simple
web page that has a
title, a heading, and a
paragraph
 www.allitebooks.com

http://www.allitebooks.org

57The advantages of thinking functionally
This short method causes a side effect to the program: the method changes a shared
state in the system, the console color in this case. Side effects can come in different fla-
vors and are sometimes hidden inside the code. If you change the method signature
and remove the word Red from the method name, as shown in the following code sam-
ple, the side effect still happens:

public static void WriteMessage(string message)

But now it’s far more difficult to predict that this method will cause the side effect of
changing the color of the console output. Side effects aren’t limited to console color,
of course; they also include changes to a shared object state, such as a list of items that’s
modified (as you saw in the previous chapter). Side effects can cause all kinds of bugs
in your code—for example, in concurrent execution the code is reached from two
places (like threads) at the same time and leads to race conditions. Side effects can also
cause your code to be harder to track and predict, thus making it harder to maintain.

 Functional programming languages solve the side-effect problem by preventing it
in the first place. In functional programming, every object is immutable. You can’t
modify the object state. After the value is set, it never changes; instead, new objects are
created. This concept of immutability shouldn’t be new to you. Immutability exists in
C# as well, such as in the type string. For example, try to answer what this next pro-
gram will print:

string bookTitle = "Rx.NET in Action";
bookTitle.ToUpper();
Console.WriteLine("Book Title: {0}", bookTitle);

If your answer is Rx.NET in Action, you’re correct. In C#, strings are immutable. All the
methods that transform a string’s content don’t really change it; instead, they create a
new string instance with the modifications. The previous example should’ve been
written like this:

string bookTitle = "Rx.NET in Action";
string uppercaseTitle = bookTitle.ToUpper();
Console.WriteLine("Book Title: {0}", uppercaseTitle);

This version of the code stores the result of the ToUpper call in a new variable. This
variable holds a different string instance with the uppercase value of the book title.

 The immutability implies that calling a function ends only with the function com-
puting its result, without any other effect that the programmer needs to worry about.
This takes away a major source of bugs and makes the functions idempotent—calling
a function with the same input always ends with the same result, no matter whether it
was applied once or multiple times.

A WORD ABOUT CONCURRENCY

The idempotency that you get from the immutability makes the program determinis-
tic and predictable and makes the order in which execution happens irrelevant, mak-
ing it a perfect fit for concurrent execution.

58 CHAPTER 3 Functional thinking in C#
 Writing concurrent code is hard, as you saw in the previous chapter. When you
take sequential code and try to run it in parallel, you could find yourself facing bugs.
With side effect-free and immutable code, this problem doesn’t exist. Running the
code from different threads won’t cause any synchronization issues, because you have
nothing to synchronize. Knowing that using functional programming languages
makes writing concurrent applications easier, it’s no wonder that functional program-
ming languages started to gain more interest in recent years and became the de facto
community choice for building large-scale concurrent applications. Just to name a
few, companies such as Twitter, LinkedIn, and AT&T are known to use functional pro-
gramming in their systems.

3.1.3 First-class functions

The name functional programming is used because a function is the basic construct that
you work with. It’s one of the language primitives, like an int or a string, and similar to
other primitive types, the function is a first-class citizen, which means it can be passed
as an argument and be returned from a function. Here’s an example in F# (a func-
tional programming language that’s part of .NET):

let square x = x * x
let applyAndAdd f x y = f(x) + f(y)

Here we define a function, square, that calculates the square of its argument. We then
define a new function, applyAndAdd, that takes three arguments: the first argument is
a function that’s applied to the two other arguments, and then the results are summed.

NOTE If you find this confusing, don’t worry. Read the rest of the chapter
and then come back and read this short section again.

When you call the applyAndAdd
function and pass the square func-
tion as the first argument together
with two numbers as the other argu-
ments, you get the sum of two
squares. For example, apply-

AndAdd square 5 3 outputs the
number 34, as shown in figure 3.2.

 Functions that receive functions
as their arguments or return func-
tions as their return values are
called higher-order functions. With
higher-order functions, you can
compose new functions and add
new behaviors to existing functions
by changing the inner function they
use, as you did in the applyAndAdd

applyAndAdd square 5 3

+

Square 3Square 5

**

5 335

Figure 3.2 In functional programming languages,
functions can be passed as arguments. This is the
expression tree of the call to applyAndAdd f x y
with f: square, x: 5, y: 3.

59First-class and higher-order functions using delegates and lambdas
example. This way, you can extend the “language” that your code uses and adapt it to
your domain.

3.1.4 Being concise

The core functional programming concepts mentioned earlier in the chapter serve
the same purpose that makes functional thinking a powerful tool you should
embrace: making your code concise and short.

 Writing declaratively means that you can hide the complexity required to achieve a
result and instead focus on the result that you want to achieve. This is done using the
compositional nature of first-class and higher-order functions that create the glue
between the various parts of your code. The expressiveness of your program is better
achieved when you know that no side effects will arise and cause uncertainty in the
outcome of the execution. Working with an immutable data structure enables you to
be certain that the function will always end the same predictable way.

 Writing code that’s concise makes you more productive when creating new code or
when changing existing code, even if it’s new to you. Figure 3.3 displays the key ele-
ments for productivity.

Figure 3.3 The key benefit of functional programming is that it makes you more productive. The key
elements for productivity are illustrated here.

The key elements shown in figure 3.3 are where the true benefits of functional pro-
gramming lie. It’s important for you to know that so you can achieve the same advan-
tages when writing programs in C#.

3.2 First-class and higher-order functions using
delegates and lambdas
When C# was introduced in 2002, it was possible to make “function pointers” that you
could pass as arguments and hold as class members. These function pointers are
known as delegates. Over the years, C# became a multi-paradigm language that sup-
ports not only object-oriented programming but also event-driven programming or
simple procedural programming. Functional programming also started to influence
language as the years went by, and delegates became the underlying mechanism to
support functions as first-class citizens in the language.

Declarative code Fewer lines of code

Functional thinking makes you productive

Reduction of
errors in code Predictable code

60 CHAPTER 3 Functional thinking in C#

3.2.1 Delegates

In C#, a delegate is a type that represents references to methods. Delegates are most
commonly used with .NET events, but in this chapter, you’ll see how to use them to
spice up code with functional programming techniques.

 The delegate type is defined with the exact signature of the methods you want the
delegate to reference. For example, if you want to create a reference to methods that
receive two string parameters and return a bool, figure 3.4 shows how to define the
delegate type.

Figure 3.4 Declaration of a delegate type for methods that receive two strings and return an integer

After creating the delegate type, you can reference methods with the same signature by
creating a new instance of the delegate and passing the method you want to reference:

ComparisonTest delegateInstance = new ComparisonTest(<the method>);

Say you have a class that holds different methods that compare strings:

class StringComparators
{
 public static bool CompareLength(string first, string second)
 {
 return first.Length == second.Length;
 }
 public bool CompareContent(string first, string second)
 {
 return first == second;
 }
}

You can then use your delegate type to reference the comparison methods:

string s1 = "Hello";
string s2 = "World";

var comparators = new StringComparators();
ComparisonTest test = new ComparisonTest(comparators.CompareContent);
Console.WriteLine("CompareContent returned: {0}", test(s1, s2));

test = new ComparisonTest(StringComparators.CompareLength);
Console.WriteLine("CompareLength returned: {0}", test(s1, s2));

The set of parameter
types for the methods
that this delegate type
can reference

The name of the
delegate type

The return type of
the methods that
this delegate type
can reference

public delegate bool ComparisonTest (string first, string second);

The delegate type can reference
instance methods that have the same

signature as the delegate definition.

The delegate type
can also reference
static methods.

61First-class and higher-order functions using delegates and lambdas

.
The sample output from the previous code is as follows:

CompareContent returned: False
CompareLength returned: True

Beginning with C# 2.0 it’s much easier to create delegates. You can simply assign the
method to the delegate variable (or parameter):

ComparisonTest test2 = comparators.CompareContent;

With delegates, you can make something similar to the higher-order functions that
functional programming languages have. The next method checks whether two string
arrays are similar by traversing the items in both collections and checking them against
each other using a comparison function that was passed to a delegate reference.

bool AreSimilar(string[] leftItems, string[] rightItems, ComparisonTest
tester)

{
 if (leftItems.Length != rightItems.Length)
 return false;

 for (int i = 0; i < leftItems.Length; i++)
 {
 if (tester(leftItems[i],rightItems[i]) == false)
 {
 return false;
 }
 }
 return true;
}

The method receives the two arrays and calls the tester on every two corresponding
items to check whether they’re similar. The tester is referencing a method that was
sent as an argument. Here you’re calling the AreSimilar method and passing the
CompareLength method as an argument:

string[] cities = new[] { "London", "Madrid", "TelAviv" };
string[] friends = new[] { "Minnie", "Goofey", "MickeyM" };
Console.WriteLine("Are friends and cities similar? {0}",
 AreSimilar(friends,cities, StringComparators.CompareLength));

The output result for this sample is as follows:

Are friend and cities similar? True

3.2.2 Anonymous methods

The problem with delegates as you’ve seen them so far is that they force you to write a
method in a class—this is called a named method. This burden slows you down and

Listing 3.1 AreSimilar method uses a delegate as a parameter type

The two arrays aren’t similar if they
have different numbers of items.

Checks the two strings
If it returns false, the
arrays aren’t similar.

If you get here, all the items
are similar in both arrays,
so you return true.

62 CHAPTER 3 Functional thinking in C#
therefore hurts your productivity. Anonymous methods are a feature in C# that enable
you to pass a code block as a delegate value:

ComparisonTest lengthComparer = delegate (string first, string second)
{
 return first.Length == second.Length;
};
Console.WriteLine("anonymous method returned: {0}",
 lengthComparer("Hello", "World"));

The anonymous method can also send the code block as an argument:

AreSimilar(friends, cities,
 delegate (string s1, string s2) { return s1 == s2; });

Anonymous methods make it far easier to create higher-order functions in your C#
program and reuse existing code, as with the AreSimilar method in the previous
example. You can use the method over and over and pass different comparison meth-
ods, improving the extendibility of your program.

CLOSURES (CAPTURED VARIABLES)
Anonymous methods are created within a scope, such as a method scope or a class
scope. The code block of your anonymous method can access anything that’s visible to
it in that scope—variables, methods, and types, to name a few. An an example:

int moduloBase = 2;
var similarByMod=AreSimilar(friends, cities, delegate (string s1, string s2)
{
 return ((str1.Length % moduloBase) == (str2.Length % moduloBase));
});

Here the anonymous method uses a variable that’s declared in the outer scope. The
variable moduloBase is called a captured variable, and its lifetime now spans the life-
time of the anonymous method that uses it.

 The anonymous method that uses captured variables is called a closure. Closures
can use the captured variable even after the scope that created it has completed:

ComparisonTest comparer;

{
 int moduloBase = 2;
 comparer = delegate (string s1, string s2)
 {
 Console.WriteLine("the modulo base is: {0}", moduloBase);
 return ((s1.Length % moduloBase) == (s2.Length % moduloBase));
 };
 moduloBase = 3;
}
var similarByMod = AreSimilar(new[] { "AB" }, new[] { "ABCD" }, comparer);

Console.WriteLine("Similar by modulo: {0}", similarByMod);

Creating an inner scope—every
variable declared in this scope
is visible only under it. Changing the value of the

variable the anonymous
method uses affects the value

that the method sees.

63First-class and higher-order functions using delegates and lambdas
When running this example, you get this interesting output

the modulo base is: 3
Similar by modulo: False

The anonymous method was created in a scope that’s different from the scope that
uses it, but the anonymous method still has access to a variable declared in that scope.
Not only that, but the value that the anonymous method sees is the last one that the
variable was holding. This leads to a powerful observation:

The value of a captured variable that a closure uses is evaluated at the time of
the method execution and not at the time of declaration.

Captured variables can cause confusion from time to time, so consider this example
and try to determine what will print:

public delegate void ActionDelegate();

var actions = new List<ActionDelegate>();
for (var i = 0; i < 5; i++)
{
 actions.Add(delegate () { Console.WriteLine(i); });
}
foreach (var act in actions) act();

The output of this example might not be what you expected. Instead of printing the
numbers 0 to 4, this code prints the number 5 five times. This is because when each
action is executed, it reads the value of i, and the value of i is the value it received in
the last iteration of the loop, which is 4.

3.2.3 Lambda expressions

To make it even simpler to create anonymous methods, you can use the lambda
expression syntax introduced in C# 3.0. Lambda expressions enable you to create
anonymous methods that are more concise and more closely resemble the functional
style.

 Here’s an example of an anonymous method written as both anonymous method
syntax and with lambda expressions:

ComparisonTest x = (s1,s2) => s1==s2 ;
ComparisonTest y = delegate (string s1,string s2) { return s1 == s2; };

The lambda expression is written as a parameter list, followed by =>, which is followed
by an expression or a block of statements.

 If the lambda expression receives only one parameter, you can omit the parentheses:

x => Console.WriteLine(x);

Defines a delegate for methods that
get no parameters and return void

Adds a new
anonymous method
to the list of actions

Executes every action in the collection.
Each action prints to the screen.

The semicolon closes the assignment and
isn’t for the inner statement. The value of
the expression is implicitly returned.

64 CHAPTER 3 Functional thinking in C#
The lambda expression also uses type inference of the parameters. You can, however,
write the types of the parameters explicitly:

ComparisonTest x = (string s1, string s2) => s1==s2 ;

Typically, you want your lambda expression to be short and concise, but it’s not always
possible to have only one statement in your lambda expression. If your lambda con-
tains more than one expression, you need to use curly braces and write the return
statement explicitly in case it needs to return a value:

() =>
{
 Console.WriteLine("Hello");
 Console.WriteLine("Lambdas");
 return true;
};

Lambda expressions are used heavily with Rx because they make your processing pipe-
line short and expressive, which is cool! But you still have the requirement to create
new delegate types each time you want to specify a method signature for the method
types to which you want to receive a reference, which is far from ideal. That’s why you
usually won’t create new delegate types but instead use Action and Func.

3.2.4 Func and Action

A delegate type is a way to enforce the method signatures you want to receive as a
parameter or set as a variable. Most of the time, you’re not interested in creating a
new type of delegate to enforce that constraint; you only want to state what you’re
expecting. For example, the following two delegate types are the same except for the
names used:

public delegate bool NameValidator(string name);
public delegate bool EmailValidator(string email);

Because the two delegate types definitions are the same, you can set both to the same
lambda expression:

NameValidator nameValidator = (name) => name.Length > 3;
EmailValidator emailValidator = (email) => email.Length > 3;

You name the two delegate types after the functionality that the assigned code needs
to have—checking the validity of a name and of an email address. You could’ve
changed the name to reflect the signature:

public delegate bool OneParameterReturnsBoolean(string parameter);

Now you have a delegate type that’s reusable, but only to code that has access to your
definition, which cries for a standard implementation. The .NET Framework contains
reusable delegate type definitions named Func<...> and Action<...>:

Lambda expression with no parameters
that contain multiple expressions

To return a value, you must write
the return statement explicitly.

65First-class and higher-order functions using delegates and lambdas

t
 Func is a delegate type that returns a value and can receive parameters.
 Action is a delegate type that can receive parameters but returns no value.

The .NET Framework contains 17 definitions of Func and Action, each for different
numbers of parameters that the referenced method receives. The Func and Action
types are located under the System namespace in the mscorlib assembly.

 To reference a method that has no parameters and doesn’t return a value, you use
the following definition of Action:

public delegate void Action();

and for a method that has two parameters and doesn’t return a value, you use this def-
inition of Action:

public delegate void Action<in T1, in T2>(T1 arg1, T2 arg2);

To use the Action delegate, you need to specify the types of parameters. Here’s an
example of a method that traverses a collection and makes an operation on each item
by using an Action of an integer:

public static void ForEachInt(IEnumerable<int> collection,
 Action<int> action)
{
 foreach (var item in collection)
 {
 action(item);
 }
}

Now you can call the ForEachInt method from your code like this:

var oddNumbers = new[] { 1, 3, 5, 7, 9 };
ForEachInt(oddNumbers, n => Console.WriteLine(n));

This code prints all the numbers in the oddNumbers collection. You can use the
ForEachInt method with a different collection and different option. Because the
Action delegate is generic, you can use that and create your generic version of
ForEach:

public static void ForEach<T>(IEnumerable<T> collection, Action<T> action)
{
 foreach (var item in collection)
 {
 action(item);
 }
}

Now you can use ForEach with any collection:

ForEach(new[] { 1, 2, 3 }, n => Console.WriteLine(n));
ForEach(new[] { "a", "b", "c" }, n => Console.WriteLine(n));
ForEach(new[] { ConsoleColor.Red, ConsoleColor.Green, ConsoleColor.Blue},
 n => Console.WriteLine(n));

The CLR uses type
inference to conclude tha
the generic parameter T
of ForEach is int.

66 CHAPTER 3 Functional thinking in C#
Because Console.WriteLine is a method that can accept any number of parame-
ters, you can write the previous example this way too:

ForEach(new[] { 1, 2, 3 }, Console.WriteLine);
ForEach(new[] { "a", "b", "c" }, Console.WriteLine);
ForEach(new[] { ConsoleColor.Red, ConsoleColor.Green, ConsoleColor.Blue},
 Console.WriteLine));

Whenever you need to create a delegate for methods that return a value, you should
use the type Func. This type (like Action) receives a variable number of generic
parameters corresponding to the types of parameters that the method referenced by
the delegate can receive. Unlike Action, in the Func definition the last generic
parameter is the type of return value:

public delegate TResult Func<in T1,…,T16, out TResult>(T1 arg,…,T16 arg16);

and there’s a definition for a Func that gets no parameters:

public delegate TResult Func<out TResult>();

Using Func, you can extend your implementation of the ForEach method so that it’ll
accept a filter (also known as a predicate). The filter is a method that accepts an item
and returns a Boolean indicating whether it’s valid:

public static void ForEach<T>(IEnumerable<T> collection, Action<T> action,
 Func<T, bool> predicate)
{
 foreach (var item in collection)
 {
 if (predicate(item))
 {
 action(item);
 }
 }
}

The filtering you added to the ForEach method can be exploited to act only on cer-
tain items in a collection—for instance, printing only even numbers:

var numbers = Enumerable.Range(1,10);
ForEach(numbers, n => Console.WriteLine(n), n => (n % 2 == 0));

With Action and Func, you can build classes and methods that can be extended with-
out modifying their code. This is a nice implementation of the Open Close Principle
(OCP) that says a type should be open for extension but closed to modifications. Fol-
lowing design principles such as the OCP can improve your code and make it more
maintainable.

3.2.5 Using it all together

It’s nice to see that known design patterns such as Strategy, Command, and Factory
(to name a few) can be expressed differently with Func and Action and demand less
code from the developer.

A delegate to a method
that accepts an item and
returns true or false

If the predicate returns
true, the item is valid.

The items 1-10

67First-class and higher-order functions using delegates and lambdas
Figure 3.5 The Strategy pattern class diagram. The context’s operation can
be extended by providing different implementations of the strategy.

Take, for example, the Strategy pattern, whose purpose is to allow extension of an
algorithm by encapsulating an operation inside an object. Figure 3.5 shows the Strat-
egy design pattern class diagram. In this design pattern, you have a Context class that
performs an operation. This operation depends on an external part that contains a
specific algorithm. The algorithm is implemented by a class that implements the
IStrategy interface.

 The Strategy design pattern is useful when you want to allow extension points in a
workflow and give the user of your code the power to control it. The pattern is used in
many applications and even in the .NET Framework itself, such as in the case of the
IComparer<T> interface.

 The IComparer<T> interface is part of the System.Collections.Generic
namespace and is used to compare two objects of the same type. A typical use of the
IComparer<T> interface is in the Sort method of List<T>, so if you want to sort a
list of strings by their length (and by lexicographical order), this is how you do it.
First, you create a new IComparer derived class:

class LengthComparer : IComparer<string>
{
 public int Compare(string x, string y)
 {
 if (x.Length == y.Length)
 {
 return 0;
 }
 return (x.Length > y.Length) ? 1 : -1;
 }
}

You run the sort like this:

var words = new List<string> { "ab", "a", "aabb", "abc" };
words.Sort(new LengthComparer());
Console.WriteLine(string.Join(", ", words));

Context

Operation()

Operation()
{
 ...
 strategy.Execute(args)
 ...
}

IStrategy

strategy * Execute(args)

StrategyA

Execute(args)

StrategyB

Execute(args)

IComparer declares a single
method to implement a
comparison between two objects.

The method should return 0 if the
objects are equal, or a negative
number if x is less than y . . .

. . . and a positive number
if x is greater than y.

68 CHAPTER 3 Functional thinking in C#
The output of this sort is the collection { "a", "ab"," abc", "aabb" };.
 This works pretty well, but it’s annoying, because each time you want a new com-

parison method, you need to create a new class. Instead, you can use the power of
Func and create a generic IComparer that you can tune to your needs:

class GenericComparer<T> : IComparer<T>
{
 private Func<T, T, int> CompareFunc { get; set; }

 public GenericComparer(Func<T,T,int> compareFunc)
 {
 CompareFunc = compareFunc;
 }

 public int Compare(T x, T y)
 {
 return CompareFunc(x,y);
 }
}

This is somehow an adapter between the IComparer and Func. To use it, you pass the
required comparison code as a lambda expression (or delegate):

var words = new List<string> { "ab", "a", "aabb", "abc" };
words.Sort(new GenericComparer<string>((x, y) =>
 (x.Length == y.Length)
 ? 0
 : (x.Length > y.Length) ? 1 : -1));

With the generic version of IComparer, you can create new comparison code quickly
and keep it close to where it’s used so it’s ready to read and is much more concise.

USING FUNC AS A FACTORY

Another pattern that the Func style can make shorter and more fun is the lazy-loading
pattern in which Func is used as a factory (an object creator). Lazy loading means that
instead of creating something in advance, you’ll create it just in time, when it’s used.

 HeavyClass can take a long time to create or holds many resources so that you
want to delay the time they take from the system. Next is an example of a heavy class
that’s used in another class. You want the object of the heavy class created only when
something in the code is trying to use it:

class HeavyClass
{
 //This is a heavy class that takes long time to create
}

class ThinClass
{
 private HeavyClass _heavy;
 public HeavyClass TheHeavy
 {

In the constructor, you
receive the Func that
knows how to compare
the two objects.

The Compare method executes the
Func you got in the constructor.

If the two strings’ lengths
are the same, return 0.

If the lengths aren’t the
same, return 1 if x is greater
than y; -1 otherwise.

69First-class and higher-order functions using delegates and lambdas
 get
 {
 if (_heavy == null)
 {
 _heavy = new HeavyClass();
 }
 return _heavy;
 }
 }

 public void SomeMethod()
 {
 var myHeavy = TheHeavy;

 //Rest of code the use myHeavy
 }
}

This code has a couple of issues. First, it’s repeatable; if you have 10 lazy-loaded types,
you need to create the same if-create-return sequence 10 times, and duplication
of code can be error prone and boring. Second, you forgot about concurrency and
synchronization again (and many do forget, so don’t feel bad). It’d be much better if
someone else took care of those things for you, and luckily a tool exists for this.

 Inside the System namespace you find the Lazy<T> class, whose purpose is to ver-
ify whether an instance was already created and, if not, to create it (once and only
once). In our example, you could use Lazy<T> as shown here:

class ClassWithLazy
{
 Lazy<HeavyClass> _lazyHeavyClass = new Lazy<HeavyClass>();

 public void SomeMethod()
 {
 var myHeavy = _lazyHeavyClass.Value;

 //Rest of code that uses myHeavy
 }
}

But what if the HeavyClass constructor needs an argument or if the process of creat-
ing it is more complex? For that, you can pass a Func that performs the creation of
the object and returns it:

Lazy<HeavyClass> _lazyHeavyClass = new Lazy<HeavyClass>(() =>
{
 var heavy = new HeavyClass(...);
 ...
 return heavy;
});

Delegates are a powerful feature of C#. For many years, their main use was when dealing
with events, but since Action and Func were introduced, you can see how to use them
to replace classic patterns by providing shorter, more readable, and concise code.

Created only the first time
something is trying to
reach the heavy object

When SomeMethod is called, the call to
the property that holds the heavy object
occurs, so you can delay the creation
until this point (if it ever happens).

The heavy object is created with
arguments and code that initializes it.

70 CHAPTER 3 Functional thinking in C#
 Still, something was missing. When you added new methods such as ForEach, it
felt a bit like procedural code. You created a method that was exposed as a static from
a class and when used, it didn’t feel like the natural object-oriented style. You’d prefer
to use a regular method on the object you wanted to run it on. This is exactly the
point of extension methods.

3.3 Method chaining with extension methods
One of the things that allows functional programming to be concise and declarative is
the use of function composition and chaining, where functions are called one after
the other such that the output of the first function becomes the input of the next one.
Because the functions are first-class citizens, the output of a function can be a func-
tion by itself. The queries you write with Rx are written in the same compositional way
and make the query look as if it’s a sentence in English, which makes it appealing to
use. To understand how to add this kind of chaining behavior in your C# code, you
first need to understand extension methods.

3.3.1 Extending type behavior with extension methods

In object-oriented programming, you create classes that contain both states (fields,
properties, and so forth) and methods. After you create your class and compile it, you
can’t extend it and add more methods or members unless you change its code and
recompile it. At times, however, you’ll want to add methods that work on a class you
already have—whether it’s a class you created or a class that you have access to, such as
the types from the .NET Framework. To add those methods, you can create a new class
and add methods that accept the class you want to extend as a parameter that resem-
bles the programming style of procedural languages.

 Extension methods, a feature added to .NET, enable you to “add” methods to a
type. Adding a method to a type doesn’t mean you’re changing the type; instead,
extension methods allow you to use the same syntax of calling a method on an object
but let the compiler convert it to a call on an external method. Let’s revise our imple-
mentation of ForEach:

static class Tools
{
 public static void ForEach<T>(IEnumerable<T> collection,

 Action<T> action)
 {
 //ForEach implementation
 }
}

To use the ForEach method, you need to pass the collection on which you want to
iterate as a parameter. With extension methods, the call for ForEach looks like the
following example. Note that this won’t compile just yet, because you haven’t defined
an extension method:

var numbers = Enumerable.Range(1,10);
numbers.ForEach(x=>Console.WriteLine(x));

71Method chaining with extension methods
At compile time, the compiler changes the given call to the regular static method call.
To create extension methods, this is what you need to do:

1 Create a static class.
2 Create a public or internal static method.
3 Add the word this before the first parameter.

The type of the first parameter in your method is the type that the extension method
can work against. Let’s change the ForEach method to be an extension method:

public static void ForEach<T>(this IEnumerable<T> collection,
 Action<T> action)
{
 //ForEach implementation
}

Now you can run the ForEach method on every type that implements the IEnumera-
ble<T> interface.

 Extension methods are regular methods at their base, and as such, they can receive
parameters and return values. Test yourself to see if you can create an extension
method that checks whether an integer is even. Here’s my solution:

namespace ExtensionMethodsExample
{
 static class IntExtensions
 {
 public static bool IsEven(this int number)
 {
 return number % 2 == 0;
 }
 }
}

As a convention, classes that hold extension methods are named with a suffix of
Extensions (such as StringExtensions and CollectionExtensions).

 To use the extension method you created, you must add the namespace in which
the extension class is declared to the using statements where the calling code is
(unless they’re in the same namespace):

using ExtensionMethodsExample;
namespace ProgramNamespace
{
 class Program
 {
 static void Main(string[] args)
 {
 int meaningOfLife = 42;
 Console.WriteLine("is the meaning of life even:{0}",
 meaningOfLife.IsEven());
 }
 }
}

72 CHAPTER 3 Functional thinking in C#
WORKING WITH NULL

Because extension methods are regular methods, they can work even on null values.
Let me show you what I mean. To check whether a string is null or empty, you can use
the static method IsNullOrEmpty of String:

string str = "";
Console.WriteLine("is str empty: {0}", string.IsNullOrEmpty(str));

You can create a new extension method that performs the same check on the object
itself:

static class StringExtensions
{
 public static bool IsNullOrEmpty(this string str)
 {
 return string.IsNullOrEmpty(str);
 }
}

Now you can use it like this:

string str = "";
Console.WriteLine("is str empty: {0}", str.IsNullOrEmpty());

Note that the call is on the variable str itself. Now think about what will happen in
this case:

string str = null;
Console.WriteLine("is str empty: {0}", str.IsNullOrEmpty());

The code won’t crash, and you can see this message printed:

is str empty: True

That’s pretty neat, even though you execute the IsNullOrEmpty like an instance
method, it still runs correctly if there’s no instance. Let’s take this a step further and
discuss the way extension methods can help you create fluent interfaces.

3.3.2 Fluent interfaces and method chaining

The term fluent interface was introduced by Eric Evans and Martin Fowler to describe a
style of interface that allows subsequent calls of methods. The System.Text.String-
Builder class, for example, provides an interface such as the following:

StringBuilder sbuilder = new StringBuilder();
var result = sbuilder
 .AppendLine("Fluent")
 .AppendLine("Interfaces")
 .AppendLine("Are")
 .AppendLine("Awesome")
 .ToString();

StringBuilder offers an efficient way to build strings and provide methods for
appending and inserting the substrings into the end result. In the previous code

73Method chaining with extension methods
sample, you can keep calling methods on the string builder without adding the vari-
able name until you reach a method that ends the sequence of calls—in this case,
ToString. This sequence of calls is also known as method chaining.

 With fluent interfaces, you get much more fluid code that feels natural and read-
able. StringBuilder allows you to create the method chains, because this is how it’s
defined. If you look at its methods signature, you’ll see that it returns the type
StringBuilder:

public StringBuilder AppendLine(string value);
public StringBuilder Insert(int index, string value, int count);
:
public StringBuilder AppendFormat(string format, params object[] args);

What’s returned from the StringBuilder methods is StringBuilder itself—the
same instance. StringBuilder acts as a container of the final string, and every oper-
ation changes the internal data structure that forms the final string. Returning the
same instance of StringBuilder from the methods allows continuation of the calls.

 That’s all good, and we should thank the .NET team for creating such a nice inter-
face, but what happens if the class you need to deal with doesn’t provide such an inter-
face? And what happens if you don’t have access to the source code, and you can't
change it? This is where extension methods come in handy. Let’s look at List<T> as
an example.

 List<T> provides a method to add items into it:

public class List<T> : IList<T>,...
{
 . . .
 public void Add(T item);
 . . .
}

The list’s Add method accepts the item you want to add and returns void, so to add
items, you have to write it as shown here:

var words = new List<string>();
words.Add("This");
words.Add("Feels");
words.Add("Weird");

You can also omit the variable name to reduce your typing and save energy. First,
you’ll create an extension method on the type of List<T> that executes the Add but
returns the list afterward:

public static class ListExtensions
{
 public static List<T> AddItem<T>(this List<T> list, T item)
 {
 list.Add(item);
 return list;
 }
}

74 CHAPTER 3 Functional thinking in C#
Now you can add to the list in the fluent way:

var words = new List<string>();
words.AddItem("This")
 .AddItem("Feels")
 .AddItem("Weird");

This looks much cleaner, and if you change the this parameter to be more abstract,
your extension method will be applicable to more types. You can change the AddItem
extension method so you can run it on all collection types that implement the
ICollection<T> interface:

public static ICollection<T> AddItem<T>(this ICollection<T> list, T item)

This ability to add methods on abstract types is interesting, because in object-oriented
languages, you can’t add method implementation in an interface. If you want all types
that implement an interface (such as ICollection) to have a method (such as
AddItem), you have to either implement the method yourself in every one of the sub-
types or create a shared base-class from which they all inherit. Both alternatives aren’t
ideal and sometimes aren’t possible, because you don’t have multiple class inheritance
in .NET.1 Not having multiple inheritance means that if you implement multiple inter-
faces, each with one or more methods, and you want to share an implementation
between all subtypes, you couldn’t make a base class from each interface and inherit
from them all. It’s not possible.

 The extension methods, on the other hand, make this ability possible. When you
make an extension method on an interface, it’s available on all the types that imple-
ment the interface, and if the type implements more interfaces and they have exten-
sion methods of their own, the subtype will provide all those methods as well—a kind
of virtual multiple inheritance.

 It’s important to emphasize that to create a fluent interface, you don’t have to
return the same instance or even the same type that the method chain started from.
Each method call can return a different type, and the next method call will operate
on it.

 As you add more and more extension methods on concrete and abstract types, you
can use them to create your own language, as you’ll see next.

3.3.3 Creating a language

The extension methods allow you to add new methods on existing types without open-
ing the type code and modifying it. Together with the technique of method chaining,
you can build methods that express what you’re trying to achieve in a language that
describes your domain.

1 A class can implement multiple interfaces even though it can derive from only a single direct base class.

75Querying collections with LINQ
 Take the way you write your assertion in unit tests, for example. A unit test is a piece
of code that executes code and then asserts that the result was as expected. Here’s a
simple test you can write with MSTest to check a string result:

[TestMethod]
public void NonFluentTest()
{
 ...
 string actual = "ABCDEFGHI";

 Assert.IsTrue(actual.StartsWith("AB"));
 Assert.IsTrue(actual.EndsWith("HI"));
 Assert.IsTrue(actual.Contains("EF"));
 Assert.AreEqual(9,actual.Length);
}

The assertions you use are technical and generic, and you can improve them by using a
more fluent interface, such as the one provided by the excellent FluentAssertions library
(www.fluentassertions.com). This is the same test after you add FluentAssertion syntax:

[TestMethod]
public void FluentTest()
{
 ...
 string actual = "ABCDEFGHI";
 actual.Should().StartWith("AB")
 .And.EndWith("HI")
 .And.Contain("EF")
 .And.HaveLength(9);
}

This version of the test checks the same conditions, but uses a much more sentence-
like syntax because of the fluent interface. The FluentAssertions library added a DSL
for assertions. It does that by adding an extension method for the string type that
returns an object with a fluent interface that acts as an assertion builder.

public static StringAssertions Should(this string actualValue);

When the Should method is called, an object of type StringAssertion is created
and the string you’re checking is passed to it. From that point, all the assertions are
maintained by the StringAssertion.

 A DSL, like the one used here for assertions, makes the code concise and declara-
tive. Another important and powerful DSL is the one provided by LINQ that provides
generic querying capabilities for collections in .NET.

3.4 Querying collections with LINQ
Extension methods, together with the method-chaining technique, enable you to cre-
ate DSLs for various domains, even if the original types don’t implement the fluent
interface themselves. An area for which a domain language existed for a long time is
relational database querying. In relational databases, you can use SQL to query tables

actual holds the result of the operation
you’re testing. You want to make sure it
holds the result you expected.

Each assert checks a single condition. In
this unit test, you want to verify that the
result string fulfills all the conditions.

76 CHAPTER 3 Functional thinking in C#
in a short and declarative way. Here’s an example of SQL that fetches all the employ-
ees who live in the United States, sorted by their last name:

SELECT * --
FROM Employees
WHERE Country=’USA’
ORDER BY LastName

As you can see, the syntax used in SQL is short and declarative; you state the desired
result and let the database perform the process of fetching the wanted result for you.
Wouldn’t it be great if .NET had the same capability? It does.

 LINQ is a set of standard operators that can be used on any data source to make
queries. The data source can be an XML document, a database, a string, or any .NET
collection. As long as the data source is a class that implements the IEnumerable
interface, you can query it using LINQ.

Figure 3.6 LINQ architecture: for each type of data source, a LINQ provider translates the LINQ
query to a query language that best fits the source.

Figure 3.6 shows the LINQ architecture and its support for various data sources. The
way the LINQ architecture is layered makes it possible to write a query once and run it
over different sources without any change. The right query “translation” will depend

IQueryable
IEnumerable isn’t the only interface that LINQ is targeting. IQueryable is a spe-
cial interface that makes it possible to evaluate the query against the data source
directly so that LINQ queries performed against a database will be translated to SQL.

In SQL, * means you
want to fetch all the
fields from the table.

Objects
(list, array, etc.)

XML
documents

Database Any data source
(Twitter, SharePoint, etc.)

LINQ to
objects

LINQ to
XML

LINQ to
entities

LINQ to
anything

OtherVB.NET

LINQ query

LINQ providers

C#

77Querying collections with LINQ

Ch
wh
pa
ite
on what the collection really is, but because the collection is abstracted by IEnumera-
ble, you don’t need to know the source that the collection is mapped to.

3.4.1 What does LINQ look like?

LINQ is made out of extension methods that operate on the source to build a query.
Those methods are generally referred to as operators. Here’s a simple program that
uses a LINQ query against a list of integers to find all the odd numbers that are larger
than 10 and returns them sorted and without repetitions after adding the value 2 to
each one:

using System;
using System.Collections.Generic;
using System.Linq;

namespace LINQExamples
{
 class Program
 {
 static void Main(string[] args)
 {
 var numbers = new List<int> { 1, 35, 22, 6, 10, 11 };
 var result = numbers.Where(x => x % 2 == 1)
 .Where(x => x > 10)
 .Select(x => x+2)
 .Distinct()
 .OrderBy(x => x);

 foreach (var number in result)
 {
 Console.Write("{0}", number);
 }
 Console.WriteLine();
 }
 }
}

The query is performed by creating a method chain of operators, so that each item
goes through the operators in the chain one by one and is collected in the final result.
The final result is printed as 1337 in our case, because only 35 and 11 will survive the
filters and then will be sorted after they’re transformed to 37 and 13. The composabil-
ity nature of creating the method chains in LINQ is described in the query flow that
you see in figure 3.7.

Figure 3.7 Composability of LINQ queries. LINQ is structured as a set of pipes and filters. Conceptually,
the output of each operator becomes the input of the next one until you reach the end result.

Adds the using statement for
the LINQ namespace to
import all LINQ operators.

ecks a condition
ich is received as a
rameter against each
m in the collection.

Performs projection of the collection
items by applying a Func that

returns the transformation of the
item. In this case, the value plus 2.

Returns distinct items
based on the default
equals operator.

Sorts the elements in the result
based on a key; the key is
determined by the Func that
OrderBy receives. In this case, each
item is compared based on its value.

{1,35,11} {35,11} {37,13} {37,13}

Where
(x=>x%2==1)

{1,35,22,6,10,11} {13,37}Where
(x=>x>10) Select(x=>x+2) Distinct OrderBy(x=>x)

78 CHAPTER 3 Functional thinking in C#
Using the LINQ operators to create method chains is powerful but not always clear
and intuitive. Instead, you can use query expression syntax that provides a declarative
syntax resembling the SQL structure. The following example shows the same query
from earlier in the chapter, only this time as a query expression:

using System;
using System.Collections.Generic;
using System.Linq;

namespace LINQExamples
{
 class Program
 {
 static void Main(string[] args)
 {
 var numbers = new List<int> { 1, 35, 22, 6, 10, 11 };
 var result =
 from number in numbers
 where number % 2 == 1
 where number > 10
 orderby number
 select number+2;

 var distinct = result.Distinct();

 foreach (var number in distinct)
 {
 Console.Write("{0}", number);
 }
 }
 }
}

Note a few things in the example. First, it starts with the from . . . in clause and
finishes with select; this is the standard structure. Second, not all operators can be
embedded in the query expression syntax like Distinct. You’ll need to add them as
method calls inside or outside the query expression. Generally, you can call any
method inside the query expression. Eventually, the query expression is syntactic
sugar provided by the compiler, but using it makes things much simpler, such as in the
case of nested queries and joins.

3.4.2 Nested queries and joins

The query expression syntax enables you to easily create readable nested queries and
joins between two collections. Suppose you create a program that takes a collection of
books and a collection of authors and displays the name of each author next to the
name of that author’s book. This is how you could do it with LINQ:

var authors = new[] {
 new Author(1, "Tamir Dresher"),
 new Author(2, "John Skeet")
};

The LINQ query expression begins with
from … in, helping IntelliSense know

the type the query is working on.

The select keyword specifies the
elements in the end result and must be
located at the end of the query syntax.

LINQ operators that can’t be
embedded (such as Distinct)
should be used as a regular
extension method.

79Querying collections with LINQ
var books = new[] {
 new Book("Rx.NET in Action", 1),
 new Book("C# in Depth", 2),
 new Book("Real-World Functional Programming", 2)
};

var authorsBooks =
 from author in authors
 from book in books
 where book.AuthorID == author.ID
 select author.Name + " wrote the book: " + book.Name;

foreach (var authorBooks in authorsBooks)
{
 Console.WriteLine(authorBooks);
}

The query checks each author from the author’s collection against each book in the
book collection, similar to a Cartesian product. If the book’s author ID is the same as
the author ID, you select a string that says that. The output of this program is as fol-
lows:

Tamir Dresher wrote the book: Rx.NET in Action
John Skeet wrote the book: C# in Depth
John Skeet wrote the book: Real-World Functional Programming

What you did here is a type of grouping, and for that you can use the group operator
of LINQ, but that’s beyond the scope of this chapter.

 Selecting a string isn’t always what you want; another option is to select the author
together with the book inside a new object. But do you need to create a new type each
time you want to encapsulate properties together to make simple queries? The answer
is no. For that you can use anonymous types.

3.4.3 Anonymous types

One of the great features added to C# as part of the support for LINQ was the ability to
create anonymous types. An anonymous type is a type that’s defined in place in your
code when its object is created and in advance. The type is generated by the compiler
based on the properties you assign to the object. Figure 3.8 shows how to create an
anonymous type with two properties, a string and a DateTime.

 The anonymous type is generated by the compiler, and you can’t use it by yourself.
The compiler is smart enough to know that if two anonymous types are generated

Secondary from … in clauses are the
same as making nested foreach loops.

var anonObj = new { Name = "Bugs Bunny", Birthday = DateTime.Today };

A string property
named "Name"

A DateTime property
named "Birthday"

Figure 3.8 Anonymous type with two properties

80 CHAPTER 3 Functional thinking in C#
with the same properties, they’re the same type. In our example of finding the
authors’ books, you created a string for each author and book pair; instead you can
create an object that encapsulates the two properties together:

var authors = new[] {
 new Author(1, "Tamir Dresher"),
 new Author(2, "John Skeet"),
};
var books = new[] {
 new Book("Rx.NET in Action", 1),
 new Book("C# in Depth", 2),
 new Book("Real-World Functional Programming", 2),
};

var authorsBooks =
 from author in authors
 from book in books
 where book.AuthorID == author.ID
 select new {author, book};

foreach (var authorBook in authorsBooks)
{
 Console.WriteLine("{0} wrote the book: {1}" ,
 authorBook.author.Name,
 authorBook.book.Name);
}

The anonymous type is visible only in the scope in which it was created, so you can’t
return it from a method or send it to another method as an argument unless you cast
it to its only base class: object.

 Anonymous types are one of the main reasons for the keyword var that’s used to
create implicitly typed local variables. Because the anonymous type is generated by the
compiler, you can’t create variables of that type; var allows you to make those vari-
ables and let the compiler deduce the type, as you see in figure 3.9.

Figure 3.9 Using var on an anonymous type. The compiler and IntelliSense
know how to deduce the real type generated.

Anonymous type vs. Tuple
.NET offers another type that can be used to create bags of properties (which are
referred to as items) on the fly: the Tuple<> class. The .NET Framework supports a

Creates an anonymous type that holds the
author and the book as two properties. Without
explicit names, the compiler will generate the
name to be the same as the variables’ names.

Because you’re in the scope as the
definition of the anonymous type,
the IntelliSense and the compiler
give access to the inner properties.

var anonObj = new { Name = "Bugs Bunny", Birthday = DateTime.Today };

 (local variable) 'a anonObj

Anonymous types:
 'a is new { string Name, DateTime Birthday }

81Querying collections with LINQ
3.4.4 LINQ operators

LINQ operators give LINQ its power and make it attractive. Most of the operators
work on collections that implement the IEnumerable<T> interface, which makes it
broad and generic. The number of standard query operators is large. It would take
more than a chapter to cover them all, so this section presents several of the most
commonly used operators. If you find this subject interesting, I recommend that you
look at the 101 LINQ Sample on the MSDN site (https://code.msdn.microsoft.com/
101-LINQ-Samples-3fb9811b). Rx has always been referred to as LINQ to Events, and,
in fact, the LINQ operators were adapted to support observables, so you can expect to
see and learn more about those operators in the rest of the book. Table 3.1 presents
the ones that I believe are important, clustered by categories that describe their
purpose.

tuple of up to seven elements, but you can pass eight elements as a tuple so you
can get an infinite number of items.

This is how to create a tuple that has two items: a string and a DateTime:

Tuple<string, DateTime> tuple = Tuple.Create("Bugs Bunny", DateTime.Today);

The Tuple.Create factory method can receive arguments as the number of items
you wish to have in the tuple.

As with the anonymous type, the Tuple data structure is a generic way to create new
types on the fly, but unlike the anonymous type, the access to the Tuple items is
based on the position of the item. To read the value on the Tuple you created pre-
viously, you need to know that it’s the second item in the tuple:

var theDateTime = tuple.Item2;

This makes the tuple less readable and error prone.

Unlike the anonymous type, Tuple can be returned from a method or passed as an
argument, but I advise you to avoid doing so. The better approach in this case is to
create a class to serve that purpose and make your code type-safe, readable, and
less buggy.

Table 3.1 The most used LINQ query operators

Category Query operator Description

Aggregation Count Returns the number of items in the collection

Max Returns the maximal item in the collection

Min Returns the minimal item in the collection

Element
operations

First Returns the first item in the collection and throws an error if
the collection is empty

https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

82 CHAPTER 3 Functional thinking in C#
Element
operations

FirstOrDefault Returns the first item in the collection or the default value if
the collection is empty

Single Returns the single item that exists in the collection and
throws an error if the collection is empty or if more than one
item exists

SingleOrDefault Returns the single item that exists in the collection and
throws an error if more than one item exists. If the collection
is empty, the default value will be returned.

Filtering OfType<TResult> Returns the items in the collection that can be cast to
TResult

Where Filters the list based on the condition that’s provided as an
argument

Grouping
data

GroupBy Groups the items according to a specified key selector
function

Join Join Joins two collections based on a key

GroupJoin Joins two sequences by key, groups the result by matching
key, and then returns the collection of grouped result and key

Partitioning Skip<TSource> Skips the number of items specified; the resulting collection
contains the items without those skipped

Take<TSource> The result contains only the first items in the collection, fil-
tered by the number of items specified

Projection Select Projects the items in the collection in the form specified in
the passed Func parameter

SelectMany Projects each item to the collection and flattens all the
returned collections to one

Quantifier
operations

All<TSource> Determines whether all elements of a collection satisfy a
condition

Any Determines whether any element in the collection satisfies a
condition

Contains Determines whether the collection contains an item

Set
operations

Distinct Returns a collection in which every item appears only once

Except Takes two collections and returns the element in the first col-
lection that isn’t part of the second collection

Intersect Takes two collections and returns the elements that exist in
both of them

Sorting OrderBy Returns an ascending sorted collection by a key

OrderByDescending Returns a descending sorted collection by a key

Table 3.1 The most used LINQ query operators (continued)

Category Query operator Description

83Querying collections with LINQ

.

3.4.5 Efficiency by deferred execution

LINQ is short and readable, but is it fast? The answer (like most things in program-
ming) is that it depends. LINQ isn’t always the most optimal solution to query a collec-
tion, but most of the time you won’t notice the difference. LINQ also works under a
deferred execution mode that affects performance and understanding. Consider the
next example and try to answer what numbers will print:

var numbers = new List<int>{1, 2, 3, 4};
var evenNumbers =
 from number in numbers
 where number%2 == 0
 select number;

numbers.Add(6);

foreach (var number in evenNumbers)
{
 Console.WriteLine(number);
}

The correct answer is that 2, 4, and 6 will print. How can that be? You created the
query before adding the number 6; shouldn’t the evenNumbers collection hold only
the numbers 2 and 4?

 Deferred execution in LINQ means that the query is evaluated only on demand.
And demand means when there’s an explicit traversing on the collection (such as
foreach) or a call to an operator that does that internally (such as Last or Count).

 To understand how deferred execution works, you need to understand how C#
uses yield to create iterators.

THE YIELD KEYWORD
The yield keyword can be used inside a method that returns IEnumerable<T> or
IEnumerator<T>. When yield return is used inside a method, the value it returns
is part of the returned collection, as shown in the following example:

static IEnumerable<string> GetGreetings()
{
 yield return "Hello";
 yield return "Hi";
}
private static void UnderstandingYieldExample()
{
 foreach (var greeting in GetGreetings())
 {
 Console.WriteLine(greeting);
 }
}

Using yield return and yield break removes the need to manually create itera-
tors by implementing IEnumerable<T> and IEnumerator<T> by ourselves; instead
you can put all the logic regarding the creation of each item in a collection inside the

The number 6 is added
after the query is created.

Returns a collection of strings
represented by IEnumerable<string>

Each yield return makes the
returned item part of the collection
that the method returns.

Each iteration causes the method to
execute until it reaches the next yield
return, yield break, or end of the method.

84 CHAPTER 3 Functional thinking in C#
method that returns the collection. A classic example is the generation of an infinite
sequence such as the Fibonacci sequence. What you’ll do is hold two variables in the
method that holds the two previous items in the sequence. With each iteration, you’ll
generate a new item by summing the two previous items together and then updating
their values:

IEnumerable<int> GenerateFibonacci()
{
 int a = 0;
 int b = 1;
 yield return a;
 yield return b;
 while (true)
 {
 b = a + b;
 a = b - a;
 yield return b;
 }
}

As you can see, yield can be used inside loops as well as in regular sequential code.
The method that contains the yield is controlled from the outside. Each time the
MoveNext method is called on the Enumerator of the output IEnumerable, the
method that returned the IEnumerable is resumed and continues its execution until
it reaches the next yield statement or until it reaches its end. Behind the scenes, the
compiler generated a state machine that keeps track of the method’s position and
knows how to transition to the next state to continue execution.

 The LINQ operators (most of them) are implemented as iterators, so their code is
executed lazily on each item in the collection queried. Here’s a modified version of
the Where operator to explain that point. The modified Where prints a message for
each item it checks:

static class EnumerableDefferedExtensions
{
 public static IEnumerable<T> WhereWithLog<T>(this IEnumerable<T> source,
 Func<T, bool> predicate)
 {
 foreach (var item in source)
 {
 Console.WriteLine("Checking item {0}", item);
 if (predicate(item))
 {
 yield return item;
 }
 }
 }
}

The first two items of the Fibonacci series are
known and fixed so you can return them.

Each time an iteration is done on the output collection,
the next iteration in the while loop happens, which
causes the calculation of the next item in the sequence.

85Querying collections with LINQ
Now you’ll use WhereWithLog on a collection and validate that the predicate isn’t
used on all the items at once but in an iterative way:

var numbers = new[] { 1, 2, 3, 4, 5, 6 };
var evenNumbers = numbers.WhereWithLog(x => x%2 == 0);
Console.WriteLine("before foreach");
foreach (var number in evenNumbers)
{
 Console.WriteLine("evenNumber:{0}",number);
}

This is the output:

before foreach
Checking item 1
Checking item 2
evenNumber:2
Checking item 3
Checking item 4
evenNumber:4
Checking item 5
Checking item 6
evenNumber:6

You can see that between each item yielded, a message is printed from the outer
foreach loop. When you build a method chain of LINQ operators, each item moves
through all the operators and is then handled by the code that traverses the query
result, and then the next item goes through the chain.

 The deferred execution has a good impact on performance. If you need only a
limited number of items from a query result, you’re not paying for the query execu-
tion time on the items you don’t care for.

 The deferred execution also allows you to build queries dynamically, because the
query isn’t evaluated until you iterate on it. You can add more and more operators
without causing side effects:

var numbers = new[] { 1, 2, 3, 4, 5, 6 };
var query = numbers.Where(x => x%2 == 0);
if (/*some condition*/)
{
 query = query.Where(x => x > 5);
}
if (/*another condition*/)
{
 query = query.Where(x => x > 7);
}
foreach (var item in query)
{
 Console.WriteLine(item);
}

If the condition is true
the operator will be
added to the query.

Evaluates
query

86 CHAPTER 3 Functional thinking in C#
3.5 Summary
C# was introduced in 2002 as an object-oriented language. Since then, C# has collected
features and styles from other languages and became a multi-paradigmatic language.

 The functional programming styles aim to create a declarative and concise code
that’s short and readable.

 Using techniques such as a declarative programming style, first-class functions,
and concise coding that were adopted by C# can make you more productive.

 In C# you use delegates to provide the first-class and higher-order functions.
 The reusable Action and Func types helps you express functions as parameters.
 Anonymous methods and lambda expressions make it easy to consume those

methods and send code as arguments.
 In C#, you use a method-chaining technique to build domain-specific languages

(DSLs) that express the domain you program.
 Extension methods make it easy to add functionality to types when you don’t

have access to a type source code or when you don’t want to modify their code.
 To accomplish method chaining, use fluent interfaces and extension methods.
 LINQ makes querying over a collection super easy, with an abstraction that

allows executing the same query against different underlying repositories.
 You can use LINQ to make simple queries that filter collections and more-

complex queries that involve joining two collections together.
 Anonymous types ease your querying because it provides they provide inline

creation of types that you use to store the results of your queries that should be
visible only inside a scope.

 Deferred execution allows you to create queries that are executed when the
results of the query are used instead of when the query is created.

The next chapter discusses the first part of creating an Rx query and the basics of cre-
ating the observables that every Rx query is built upon.

Part 2

Core ideas

The eight chapters in this part of Rx.NET in Action cover the full capabilities
of the Rx library and its application in your programs. You’ll start learning with
the building blocks of Rx—the observable and the observer—how to create
them, connect them, and control their relationship.

 Then you’ll learn how to build sophisticated Rx pipelines that are composed
using the powerful Rx operators. You’ll use operators that allow you to create
queries on a single observable or a combination of multiple observables. You’ll
see how to control and parameterize concurrency and time in your queries and
how to handle faults and avoid known pitfalls as part of your design.

88 CHAPTER

Creating observable
sequences
When people start learning about Rx, they usually ask, “Where do I begin?” The
answer is easy: you should start with creating the observable.

 In the next two chapters, you’ll learn various ways to create observables. This
chapter is limited to observables that are synchronous in their creation. Chapter 5
covers observables that involve asynchroncity in their creation and emissions.

 Because many types of sources exist from which you want to receive items, it’s
not surprising that you have more than one way to create an observable. For
instance, you can create an observable from traditional .NET events so you can still
reuse your existing code, or you can create it from collections of items so it’s easier
to combine it with other observables. Each way is suited to different scenarios and
has different implications, such as simplicity and readability.

This chapter covers
 Creating observables of data and events

 Creating observables from enumerables

 Using Rx creational operators

 Getting to know the primitive observables
89

90 CHAPTER 4 Creating observable sequences
4.1 Creating streams of data and events with observables
The IObservable interface is the most fundamental building block that Rx is based
on, and it includes only a single method: Subscribe.

 The observable is the source that pushes the items, and on the other end is the
observer that receives them. The items can be of many forms: they can be the notifica-
tion that something happened (events) or a data element you can process like a chat
message.

 Figure 4.1 shows an observable that represents a stream of chat messages received
by a chat application. The chat observer receives each message through the OnNext
method, and can display it on-screen or save it to a database. At one point, a network
disconnection leads to an error notification.

Figure 4.1 An example of a possible observable-observer dialogue. The observer receives
notifications after subscribing until the network disconnects, which leads to an error.

We’ll discuss a few ways to get to this type of observable. We’ll start with the naïve
solution.

4.1.1 Implementing the IObservable<T> interface

Before getting into a heavy chat message example, let’s look at listing 4.1, which shows
the most simple and naïve way to create an observable that pushes a simple series of
numbers to observers: manually implementing the IObservable<T> interface. Cre-
ating observables this way isn’t the best practice, but I believe it’s essential for under-
standing the mechanics of how observables work.

using System;
using System.Reactive.Disposables;

public class NumbersObservable : IObservable<int>
{
 private readonly int _amount;

Listing 4.1 Handcrafted observable that pushes numbers

ChatApplication Chat
observer

ChatRoom
observable

Subscribe(ChatObserver)

OnNext("Hello")

OnNext("Reactive")

OnNext("World")

OnError(NetDisconnected)

91Creating streams of data and events with observables

n
co

b

 public NumbersObservable(int amount)
 {
 _amount = amount;
 }

 public IDisposable Subscribe(IObserver<int> observer)
 {
 for (int i = 0; i < _amount; i++)
 {
 observer.OnNext(i);
 }
 observer.OnCompleted();
 return Disposable.Empty;
 }
}

The NumbersObservable class implements the IObservable interface, which
allows any observer of integers to subscribe to it. Note that the NumbersObservable
pushes the integer values immediately and synchronously as the observer subscribes to
it. We’ll talk later about observables that make asynchronous execution.

 The following listing is an example of an observer that will accompany us through-
out the chapter. This observer writes to the console the OnNext, OnComplete, and
OnError actions as they happen.

public class ConsoleObserver<T> : IObserver<T>
{
 private readonly string _name;

 public ConsoleObserver(string name="")
 {
 _name = name;
 }

 public void OnNext(T value)
 {
 Console.WriteLine("{0} - OnNext({1})",_name,value);
 }

 public void OnError(Exception error)
 {
 Console.WriteLine("{0} - OnError:", _name);
 Console.WriteLine("\t {0}", error);
 }

 public void OnCompleted()
 {
 Console.WriteLine("{0} - OnCompleted()", _name);
 }
}

Listing 4.2 ConsoleObserver writes the observer actions to the console

Observable is initialized with
the amount of numbers it
will push to the observers.

For each observer that
subscribes, the observable
pushes the series of values.

Observable
otifies of its
mpleteness
after all the
values have
een pushed.

The Subscribe method
returns the disposable that
represents the subscription.

Subscribing to any observable
and printing all the
notifications emitted by it

Printing a name (if provided)
with every notification, making
it useful for debugging

Printing every
notification of
OnNext

Printing the error
notification

Printing the
completion of
the observable

92 CHAPTER 4 Creating observable sequences
The following shows how to subscribe the ConsoleObserver to the Numbers-
Observable:

var numbers = new NumbersObservable(5);
var subscription =
 numbers.Subscribe(new ConsoleObserver<int>("numbers"));

If you run the code snippet, this is what you’ll see:

numbers - OnNext(0)
numbers - OnNext(1)
numbers - OnNext(2)
numbers - OnNext(3)
numbers - OnNext(4)
numbers - OnCompleted()

The five numbers that the observables pushed to the observer are displayed in the line
with OnNext, and after the observable completed, so the last line is the call to
OnCompleted.

 Whenever an observer is subscribed to the observable, the observer receives an
object that implements the IDisposable interface. This object holds the observer’s
subscription, so you can unsubscribe at any time by calling the Dispose method. In
our simple example that emits a series of numbers, the entire communication
between the observable and the observer is done in the Subscribe method, and
when the method ends, so does the connection between the two. In this case, the sub-
scription object doesn’t have real power, but to keep the contract correct, you return
and empty the disposable by using the Rx static property Disposable.Empty.

NOTE Appendix B covers the Rx Disposables library in more detail.

You can make the subscription of ConsoleObserver more user friendly. Instead of
creating an instance and subscribing each time you need it, let’s create an extension
method that does that for you.

public static class Extensions
{
 public static IDisposable SubscribeConsole<T>(
 this IObservable<T> observable,
 string name="")
 {
 return observable.Subscribe(new ConsoleObserver<T>(name));
 }
}

SubscribeConsole will help you throughout this book, and it may be useful for your
Rx testing and investigations, so it’s a good tool to have. The previous example now
looks like this:

Listing 4.3 SubscribeConsole extension method

93Creating streams of data and events with observables
var numbers = new NumbersObservable(5);
var subscription =
 numbers.SubscribeConsole();

You’ve now created an observable and observer by hand, and it was easy. Why, then,
can’t you always do it this way?

4.1.2 The problem with handcrafted observables

Writing observables by hand is possible, but rarely used, because creating a new type
each time you need an observable is cumbersome and error prone. For example, the
observable-observer relation states that when OnCompleted or OnError are called,
no more notifications will be pushed to the observer. If you change the Numbers-
Observable you created and add another call to the observer OnNext method after
OnComplete is called, you’ll see that it’s called:

public IDisposable Subscribe(IObserver<int> observer)
{
 for (int i = 0; i < _amount; i++)
 {
 observer.OnNext(i);
 }
 observer.OnCompleted();

 observer.OnNext(_amount);
 return Disposable.Empty;
}

This code now causes your ConsoleObserver to output the following:

errorTest - OnNext(0)
errorTest - OnNext(1)
errorTest - OnNext(2)
errorTest - OnNext(3)
errorTest - OnNext(4)
errorTest - OnComplete
errorTest - OnNext(5)

This is problematic because the unwritten agreement between the observable and the
observer is what allows you to create the various operators of Rx. The Repeat opera-
tor, for example, resubscribes an observer when the observable completes. If the
observable lies about its completion, the code that uses Repeat becomes unpredict-
able and confusing.

4.1.3 The ObservableBase

You don’t often write observables manually, but doing so does make sense in some
cases. For example, when you want to name your observable and make it encapsulate
complex logic, then a handcrafted observable is good for you. Say you need to create
a mapping of what goes into each of the observer methods (as you’ll see next when
you use a chat service that you talk to), but the service client is represented by a class

All notifications emitted by the
observable will be written to the console.

Call received by
the observer.

94 CHAPTER 4 Creating observable sequences

R
the

w

that provides events for different types of notifications. In this case, you’d like to con-
sume the chat service with an observable that pushes chat messages. When connecting
to the chat service, you get a connection object with the following interface:

public interface IChatConnection
{
 event Action<string> Received;
 event Action Closed;
 event Action<Exception> Error;

 void Disconnect();
}

The connection to the chat service is done using the Connect method of the Chat-
Client class:

public class ChatClient
{
 ...
 public IChatConnection Connect(string user, string password)
 {
 // Connects to the chat service
 }
}

It’s much nicer to consume the chat
messages with an observable. The map-
ping, shown in figure 4.2, is clear
between the events and what the
observer knows to handle:

 Received event can be mapped
to the observers’ OnNext

 Closed event can be mapped to
the observers’ OnComplete

 Error event can be mapped to the observers’ OnError

Because logic is involved in wiring the event to the observer method, creating your
own observable type makes sense. But you still want to avoid the common pitfalls of
creating observables manually, so the Rx team provides a base class: Observable-
Base. The following listing shows how to use it to create the Observable-
Connection class.

using System;
using System.Reactive;
using System.Reactive.Disposables;

public class ObservableConnection : ObservableBase<string>
{

Listing 4.4 ObservableConnection

Raised when a chat
message was received.

aised when
connection
as closed.

Raised when an unexpected
error occurred.

Received

Closed

Error

OnNext

Observable
connection

OnComplete

OnError

Figure 4.2 Mapping the ChatConnection
events to the observer methods

95Creating streams of data and events with observables

n
ter

O
cl
ab
Su
w
lo
th

 private readonly IChatConnection _chatConnection;

 public ObservableConnection(IChatConnection chatConnection)
 {
 _chatConnection = chatConnection;
 }

 protected override IDisposable SubscribeCore(IObserver<string> observer)
 {
 Action<string> received = message =>
 {
 observer.OnNext(message);
 };

 Action closed = () =>
 {
 observer.OnCompleted();
 };

 Action<Exception> error = ex =>
 {
 observer.OnError(ex);
 };

 _chatConnection.Received += received;
 _chatConnection.Closed += closed;
 _chatConnection.Error += error;

 return Disposable.Create(() =>
 {
 _chatConnection.Received -= received;
 _chatConnection.Closed -= closed;
 _chatConnection.Error -= error;
 _chatConnection.Disconnect();
 });
 }
}

TIP The ObservableConnection example is based on the way SignalR
creates its observable connection. SignalR is a library that helps server-side
code push content to the connected clients. It’s powerful, so you should
check it out.

ObservableConnection derives from ObservableBase<string> and imple-
ments the abstract method SubscribeCore, which is called from the Observable-
Base Subscribe method. ObservableBase performs a validity check on the
observer for you (in case of null) and enforces the contract between the observer and
the observable. It does that by wrapping each observer inside a wrapper called Auto-
DetachObserver. This wrapper automatically detaches the observer from the client
when the observer calls OnCompleted or OnError or when the observer itself throws
an exception while receiving the message. This takes away the burden of implement-
ing this safe execution pipeline yourself in your observables.

Saves the Chat-
Connection so you ca
register and unregis
from its events later

bservableBase
ass provides the
stract method
bscribeCore

here you write the
gic of subscribing
e observer.

Creates event handlers for the
ChatConnection events. You save
them in a variable so you can
unregister them later.

Disposing of the subscription will
unregister the ObservableConnection
from all the ChatConnection events and
try to disconnect from the service.

96 CHAPTER 4 Creating observable sequences

 After you get the ObservableConnection, you can subscribe to it:

var chatClient = new ChatClient();
var connection = chatClient.Connect("guest", "guest");
IObservable<string> observableConnection =
 new ObservableConnection(connection);

var subscription=
 observableConnection.SubscribeConsole("receiver");

As before, you can make the creation of the ObservableConnection more pleasant
with an extension method.

public static class ChatExtensions
{
 public static IObservable<string> ToObservable(
 this IChatConnection connection)
 {
 return new ObservableConnection(connection);
 }
}

Now, you can simply write this:

var subscription =
 chatClient.Connect("guest", "guest")
 .ToObservable()
 .SubscribeConsole();

Still, it’s annoying to create new observable types each time, and most of the time you
don’t have such complex logic to maintain. That’s why it’s considered bad practice to
create observables by deriving directly from the ObservableBase or the
IObservable interface. Instead, you should use one of the existing factory methods
for observable creation that the Rx library provides.

4.1.4 Creating observables with Observable.Create

Every observable implements the IObservable interface, but you don’t have to do it
manually. The static type Observable that’s located under the System.Reactive.Linq
namespace provides several static methods to help you create observables. The
Observable.Create method allows you to create observables by passing the code of
the Subscribe method. The following listing shows how to use it to create the num-
bers observable you manually created previously.

Listing 4.5 Creating the ObservableConnction with an extension method

Connecting to the chat service

Creating an
ObservableConnection from
the ChatConnection. No
subscription is made yet.

Subscribing ConsoleObserver shown
at the beginning of the chapter

97Creating streams of data and events with observables

f

Observable.Create<int>(observer =>
{
 for (int i = 0; i < 5; i++)
 {
 observer.OnNext(i);
 }
 observer.OnCompleted();
 return Disposable.Empty;
});

As with the ObservableBase you used previously, the Create method does all the
boilerplate for you. It creates an observable instance—of type AnonymousObserv-
able—and attaches the delegate you provided (as a lambda expression, in this case)
as the observable Subscribe method.

 Observable.Create takes it even further, and allows you to return not only an
IDisposable that you create, but also an Action. The provided Action can hold
your cleanup code, and after it returns, the Create method will wrap the Action
inside an IDisposable object that it creates by using Disposable.Create. If you
return null, Rx will create an empty disposable for you.

NOTE Appendix B covers the Rx Disposables library in more detail.

Of course, you’d want your observable created with a user-defined amount and a static
number of items (five in the previous example). Create the observable inside a
method, as shown here:

public static IObservable<int> ObserveNumbers(int amount)
{
 return Observable.Create<int>(observer =>
 {
 for (int i = 0; i < amount; i++)
 {
 observer.OnNext(i);
 }
 observer.OnCompleted();
 return Disposable.Empty;
 });
}

Observable.Create is heavily used because it’s flexible and easy to use, but you may
wish to postpone the creation of the observable until it’s needed, such as when the
observer is subscribed.

4.1.5 Deferring the observable creation

In section 4.1.2, you used the ChatClient class to connect to a remote chat server
and then converted the returned ChatConnection into an observable that pushed
the messages into the observers. The two steps of connecting to the server and then

Listing 4.6 Creating the numbers observable with Observable.Create

The lambda expression receives
the observer (of type IObserver)
that subscribes to the observable.

The created
observable will push
the numbers 0 to 4.

Receives the number o
items that the
observable will push

Pushes the numbers
requested by the
amount parameter

98 CHAPTER 4 Creating observable sequences
converting the connection to the observable always come together, so you want to add
the method ObserveMessages to the ChatClient, encapsulate it, and follow the
Don’t Repeat Yourself (DRY) principle:

public IObservable<string> ObserveMessages(string user, string password)
{
 var connection = Connect(user, password);
 return connection.ToObservable();
}

Whenever a call to the ObserveMessages method is made, a connection to the chat
service is created and then it’s converted to an observable. This works perfectly fine,
but it’s possible that after the observable is created, no observer is subscribed to it for
a long time or no observer ever subscribes. One reason this could happen is that you
may create an observable and pass it to other methods or objects that might use it in
their own time (for example, a screen that subscribes only when it’s loaded, but loads
only when a parent view receives input from a user).

 Yet the connection is open and wastes resources on your machine and on the
server machine. It would be better to delay the connection to the moment the
observer subscribes. This is the purpose of the Observable.Defer operator that has
the signature shown in figure 4.3.

Figure 4.3 The Defer method signature

The Defer operator creates an observable that acts as a proxy around the real observ-
able. When the observer subscribes, the observableFactory function that was pro-
vided as an argument is called and the observer subscribes to the created observable.
This sequence is shown in figure 4.4.

Figure 4.4 Sequence diagram of the subscription of an observer to a deferred
observable created with the Defer operator.

Immediately connect
to the chat service.

The factory method will create the real
observable when the observer subscribes.

The returned observable is a proxy around the
real observable; when the observer subscribes,
the observable factory will execute.

public static IObservable<TResult> Defer<TResult>(Func<IObservable<TResult>> observableFactory)

Application

Real
observable

Defer
observable

Subscribe(observer)

observableFactory()

Subscribe(observer)

99Creating observables from events
Defer is good when you want to create observables with any of the observable factory
operators you’ll learn next, or if you have a factory method of your own (that you
might, can’t, or don’t want to change), but you still want to create that observable
when the observer subscribes.

 This is how to use Defer to create the ObservableConnection:

public IObservable<string> ObserveMessagesDeferred(string user,
 string password)
{
 return Observable.Defer(() =>
 {
 var connection = Connect(user, password);
 return connection.ToObservable();
 });
}

I should point out that using Defer doesn’t mean that the observable that was created
with the observableFactory is shared between multiple observers. If two observers
subscribe to the observable that was returned from the Defer method, the Connect
method will be called twice:

var messages = chatClient.ObserveMessagesDeferred("user","password");
var subscription1 = messages.SubscribeConsole();
var subscription2 = messages.SubscribeConsole();

This behavior isn’t specific to Defer. The same issue occurred in the observables you
created previously. Keep that in mind, and you’ll learn when and how to make share-
able observables in chapter 6 when we talk about cold and hot observables. Defer
also plays another role in the observables “temperature” world because it can be used
to turn a hot observable to a cold one, but I’m getting ahead of myself.

 Eventually, the observable you created bridged traditional .NET events into the Rx.
This is something you often do with Rx, so Rx provides operators that ease that work.

4.2 Creating observables from events
Creating an observable from a traditional .NET event is something you’ve seen in
previous chapters, but we haven’t discussed what happens inside. If all you need is
to convert a traditional .NET event to an observable, using methods such as
Observable.Create will be excessive. Instead, Rx provides two methods to convert
from event to observable, namely FromEventPattern and FromEvent. These two
methods (or operators) often lead to confusion for people working with Rx, because
using the wrong one will cause compilation errors or exceptions.

4.2.1 Creating observables that conform to the EventPattern

The .NET events that you see inside the .NET framework expect the event handler to
have the following signature:

void EventHandler(object sender, DerivedEventArgs e)

Results in a call to Connect.

100 CHAPTER 4 Creating observable sequences
The event handler receives an object that’s the sender that raised the event, and an
object of a type that derives from the EventArgs class. Because the pattern of passing
sender and eventargs is so commonly used, you can find generic delegates in the
.NET Framework that you can use when creating events: EventHandler and Event-
Handler<T>.

 Rx recognizes that it’s common to create events with delegates of that structure,
which is called the event pattern, and therefore provides a method to convert events
that follow the event pattern easily. This is the FromEventPattern operator. From-
EventPattern has a few overloads, and the most used one is shown in figure 4.5.

Figure 4.5 One of the FromEventPattern method overload’s signatures

The addHandler and removeHandler parameters are interesting. Because they let
you specify how to attach and detach the inner event handler that Rx provides, they
expect to get an action that performs the registration and deregistration of a delegate
(that’s provided as the action parameter) from the event. In most cases (if not all),
they have the following form:

 addHandler h => [src].[event] += h
 removeHandler h => [src].[event] -= h

For example, one of the places you see the event pattern is in UI events, such as in
WPF. Suppose you want to receive the stream of clicks on a button named theButton
that’s placed in a window. The Button class exposes the Click event (that’s defined
in its base class ButtonBase):

public event RoutedEventHandler Click;

The RoutedEventHandler is a delegate that’s defined in the System.Windows
namespace:

public delegate void RoutedEventHandler(object sender,
 System.Windows.RoutedEventArgs e)

A function (usually lambda
expression) that makes the
registration of the Rx event
handler from the event

A function (usually lambda
expression) that makes the
unregistration of the Rx
event handler from the event

The type of the EventArgs
that the event is carrying

The type of the delegate
that can register to
the event

FromEventPattern<TDelegate, TEventArgs>(Action<TDelegate> addHandler,
 Action<TDelegate> removeHandler)

101Creating observables from events
To create an observable from the click event, write the following code:

IObservable<EventPattern<RoutedEventArgs>> clicks =
 Observable.FromEventPattern<RoutedEventHandler, RoutedEventArgs>(
 h => theButton.Click += h,
 h => theButton.Click -= h);

clicks.SubscribeConsole();

Here, you convert the Click event to an observable, so that every event raised will call
the observers’ OnNext method. You specify that the generic parameters are Routed-
EventHandler, because this is the event handler specified in the event definition,
and RoutedEventArgs, because this is the eventargs type that the event sends to
the event handlers.

 The created observable pushes objects of type EventPattern<RoutedEvent-
Args>. This type encapsulates the values of the sender and the eventargs.

 If the event is defined using the standard EventHandler<TEventArgs>, you can
use the FromEventPattern overload that expects only the generic parameter of
TEventArgs:

IObservable<EventPattern<TEventArgs>> FromEventPattern<TEventArgs>(
 Action<EventHandler<TEventArgs>> addHandler,
 Action<EventHandler<TEventArgs>> removeHandler);

Rx also gives the simplest version for converting events into observables, in which you
need to specify only the name (as a string) of the event and the object that holds it, so
the click event example could’ve been written as follows:

IObservable<EventPattern<object>> clicks =
 Observable.FromEventPattern(theButton, "Click");

I’m not fond of this method. Magic strings tend to cause all sorts of bugs and code
confusion.1 It’s easy to make a typo, and you need to remember to change the strings
around your application in case you decide to rename your event. But the simplicity is
attractive, so use it with care.

TIP If you’re working with GUI applications and find the conversion between
UI events to observables appealing, you might find the ReactiveUI framework
(http://reactiveui.net/) helpful. ReactiveUI isn’t covered in this book, but it
provides many useful Rx utilities. One of them is the built-in conversions of
many UI events to observables.

1 A possible solution to the magic strings problem is the nameof operator that has existed since C# 6.0. See
https://msdn.microsoft.com/en-us/library/dn986596.aspx.

Writes message to the Visual
Studio Output window

Specifies the eventargs
type via TEventArgs.

Gets an EventHandler<TEventArgs>
to register/unregister from the event.

http://reactiveui.net/
https://msdn.microsoft.com/en-us/library/dn986596.aspx

102 CHAPTER 4 Creating observable sequences
4.2.2 Events that aren’t following the event pattern

Not all events follow the event pattern. Suppose you have a class that scans the avail-
able Wi-Fi networks in your area. The class exposes an event that’s raised when a net-
work become available:

public delegate void NetworkFoundEventHandler(string ssid);
class WifiScanner
{
 public event NetworkFoundEventHandler NetworkFound = delegate { };
 // rest of the code
}

The event doesn’t follow the standard event pattern because the event handler needs
to receive a string (for the network SSID). If you try to convert the event to an observ-
able by using the FromEventPattern method, you’ll get an argument exception,
because the NetworkFoundEventHandler delegate isn’t convertible to the standard
EventHandler<TEventArgs> type.

 To overcome this, Rx provides the FromEvent method that looks similar to the
FromEventPattern method:

IObservable<TEventArgs> FromEvent<TDelegate, TEventArgs>
 (Action<TDelegate> addHandler, Action<TDelegate> removeHandler);

This overload of the FromEvent method gets two generic parameters: one for the del-
egate that can attach to the event, and another for the type of the eventargs that’s
passed to the delegate by the event. The important part here is that you have no con-
straint on the type of the delegate or on the eventargs; they can be whatever you
like. This is how to write the WifiScanner class:

var wifiScanner = new WifiScanner();
IObservable<string> networks =
 Observable.FromEvent<NetworkFoundEventHandler, string>(
 h => wifiScanner.NetworkFound += h,
 h => wifiScanner.NetworkFound -= h);

In the code, you create an observable from the event that the WifiScanner exposes.
The event expects an eventHandler that conforms to the NetworkFoundEvent-
Handler delegate, and the value that the event handlers receives is string, so the
resulting observable is of type IObservable<string>.

4.2.3 Events with multiple parameters

The more complex overload of the FromEvent method is used when the event you
want to convert to an observable has more than one parameter in the eventHandler
signature. Take, for example, the case that the WifiScanner is sending not only the
network name, but also its strength:

public delegate void ExtendedNetworkFoundEventHandler(string ssid,
 int strength);

The event handler needs to receive
the SSID and the signal strength.

103Creating observables from events

nt
class WifiScanner
{
 public event ExtendedNetworkFoundEventHandler ExtendedNetworkFound =

delegate { };
}

Trying to write the same code you wrote for the one parameter version won’t work.
Observables can pass only one value when they call the OnNext method of their
observers. You need to somehow wrap the two parameters in a single object. The
FromEvent overload that you’ll use takes a conversion function that converts the Rx
event handler to an event handler that can be used with the event. First, let’s look at
the method signature and then I’ll explain what exactly you’re seeing.

IObservable<TEventArgs> FromEvent<TDelegate, TEventArgs>
 (Func<Action<TEventArgs>, TDelegate> conversion,
 Action<TDelegate> addHandler,
 Action<TDelegate> removeHandler);

This method signature takes time to digest, so I’ll explain it with an example to help
you understand. The following example converts the ExtendedNetworkFound event
into an observable of Tuple<string, int>:

IObservable<Tuple<string, int>> networks =
Observable.FromEvent<ExtendedNetworkFoundEventHandler, Tuple<string, int>>(
 rxHandler =>
 (ssid, strength) => rxHandler(Tuple.Create(ssid, strength)),
 h => wifiScanner.ExtendedNetworkFound += h ,
 h => wifiScanner.ExtendedNetworkFound -= h);

First let’s talk about addHandler and removeHandler. As before, this pair of actions
receives a reference to a method that can be registered to the event in question. The
addHandler registers it, and the removeHandler unregisters it. But how does Rx
know what handler to create? This is the job of the conversion function. In the previous
example, the conversion function is the lambda expression. Its purpose is to create a
handler of its own that has the signature of the delegate defining the event. The
lambda expression receives the parameter rxHandler, which holds the method that
eventually calls the OnNext method in the observers. The lambda expression builds
the event handler that can be registered to the ExtendedNetworkFound event; this
event handler calls rxHandle, and so it acts as a mediator between what the event
expects and what Rx expects.

Creates a reference to a method that can attach
to the event. This method needs to call the

provided Action<TEventArgs>. This is the Rx
handler that will call the observer OnNext.

The conversion handler is then passed
to the addHandler and removeHandler.

Creates a handler that calls the
rxHandler with the values the eve
is sending, wrapped in a tuple.The returned handler is

provided to the
add\removeHandler.

104 CHAPTER 4 Creating observable sequences
4.2.4 Dealing with events that have no arguments

Not every event sends arguments to its event handlers. Certain events state that some-
thing happens; for example, the next event is raised by your WiFiScanner when the
network connects:

event Action Connected = delegate { };

When trying to convert the event to an observable, you face a problem. Every observ-
able must implement IObservable<T>, and T is the type of the data that will be
pushed to the observers. What will type T be for the observable created from the
Connected event? You need a neutral type that could represent a void. In mathemat-
ics, a neutral element with respect to an operation (such as multiplication or addi-
tion) is called the Unit (it’s really called the Identity element, but under a broader
context it’s referred to as the Unit). You’re already familiar with the Unit element in
your day-to-day life: it’s the number 1 under multiplication, and 0 under addition.
That’s why Rx includes the struct System.Reactive.Unit. This struct has no real
members, and you can think of it as an empty entity that represents a singular value.
It’s often used to denote the successful completion of a void-returning method, as in
the case of our event. This how to convert your event to an observable:

IObservable<Unit> connected = Observable.FromEvent(
 h => wifiScanner.Connected += h,
 h => wifiScanner.Connected -= h);

connected.SubscribeConsole("connected");

Because Unit has only a default value (that represents void), its ToString methods
return the string of empty parentheses “()”, so the following output is what you’ll get
from the previous example:

connected - OnNext(())
connected - OnNext(())

NOTE We didn’t cover a few of the overloads to FromEventPattern and
FromEvent. Those overloads allow you to simplify hooking events for simple
cases (when the event handler is just Action<T>, for example) or to convert
from an event that doesn’t conform to the event pattern into IObservable
of EventPattern. You should take a look.

Converting events into observables can be helpful, because after you have the observ-
able, there’s no limit to the event processing you can do with Rx operators. But events
aren’t the only constructs you’d like to convert to an observable; sometimes you’ll
want to take something that’s the complete opposite of an observable and turn it into
an observable. I’m talking about enumerables.

4.3 From enumerables to observables and back
Enumerables provide the mechanism to work in a pull model, whereas observables
enable you to work in a push model. Sometimes you’ll want to move from a pull

105From enumerables to observables and back
model to a push model to create a standard handling of both worlds, such as creating
the same logic for adding chat messages that are received on the fly and for messages
that were stored and read later from a repository. Sometimes it might even make sense
to move from a push model to a pull model. This section explores those transitions
and their effects on your code.

4.3.1 Enumerable to observable

Enumerables and observables are dual; you can go from one to the other by following
several simple steps. Rx provides a method that helps you convert an enumerable into
an observable: ToObservable. In this example, you create an array of strings and
convert it to an observable:

IEnumerable<string> names = new []{"Shira", "Yonatan", "Gabi", "Tamir"};
IObservable<string> observable = names.ToObservable();

observable.SubscribeConsole("names");

If you run this code, the following is printed:

names - OnNext(Shira)
names - OnNext(Yonatan)
names - OnNext(Gabi)
names - OnNext(Tamir)
names - OnCompleted()

Under the hood, the ToObservable method creates an observable that, once sub-
scribed into, iterates on the collection and passes each item to the observer. When the
iteration is done, the OnComplete method is called on the observer.

 If an exception occurs while iterating, it will be passed to the OnError method.

class Program
{
 static void Main(string[] args)
 {
 NumbersAndThrow()
 .ToObservable()
 .SubscribeConsole("names");

 Console.ReadLine();
 }

 static IEnumerable<int> NumbersAndThrow()
 {
 yield return 1;
 yield return 2;
 yield return 3;
 throw new ApplicationException("Something Bad Happened");
 yield return 4;
 }
}

Listing 4.7 Creating an observable that throws

The enumerable returned from
the method will give the values 1–3
and then throws an exception.

106 CHAPTER 4 Creating observable sequences

e
The output of this example is as follows:

enumerable with exception - OnNext(1)
enumerable with exception - OnNext(2)
enumerable with exception - OnNext(3)
enumerable with exception - OnError:
 System.ApplicationException: Something Bad Happened
. . .

If all you need is to eventually subscribe to the enumerable, you can use the
Subscribe extension method on the enumerable. This converts the enumerable to
an observable and subscribes to it:

IEnumerable<string> names = new[] { "Shira", "Yonatan", "Gabi", "Tamir" };
names.Subscribe(new ConsoleObserver<string>("subscribe"));

WHERE TO USE IT
At the beginning of this chapter, you created an ObservableConnection that
helped you consume chat messages through an observable. The nature of the
ObservableConnection is that only new messages will be received by the client, but
as users, you’d like to enter the chat room and see the messages that were there
before you connected.

 For the simplicity of our scenario, let’s assume that while you were offline, no mes-
sages were sent. This leaves the problem of loading the messages saved from all the
previous sessions. Usually, this is where a database is needed. Your application is saving
every message it receives into a database, and when you connect, those messages are
loaded and added to the messages screen.

 With the ObservableConnection, you already have code that knows how to add
messages to the screen. This is code you’d also like to use for the messages loaded
from the database. It would’ve been great to represent the messages in the database as
an observable, merge it with the observable of the new messages, and use the same
observer to receive the messages from both worlds. Here’s a small example that does
that: two messages are saved to the database, and two messages are received while
connected:

ChatClient client = new ChatClient();
IObservable<string> liveMessages =
 client.ObserveMessages("user","pass");
IEnumerable<string> loadedMessages = LoadMessagesFromDB();

loadedMessages.ToObservable()
 .Concat(liveMessages)
 .SubscribeConsole("merged");

This example uses the operator Concat. This operator will concatenate the
liveMessages observable to the loadedMessages observable, such that, only after

An observable for the
messages that are received
while connected

A collection with all th
messages that were
stored in the database

Messages from the liveMessages observable
will be sent to the observers only after
loadedMessages has finished.

107From enumerables to observables and back
all the loaded messages are sent to the observers, the live messages will be sent. The
following is the output:

merged - OnNext(loaded1)
merged - OnNext(loaded2)
merged - OnNext(live message1)
merged - OnNext(live message2)

You could write the same example without converting the enumerable by yourself:

liveMessages
 .StartWith(loadedMessages)
 .SubscribeConsole("loaded first");

The StartWith operator first sends to the observers all the values in the enumerable
and then starts to send all messages received on the liveMessages observable.

 In the previous chapters, where we talked about the enumerable/observable dual-
ity, you saw that it allows going in both directions, from enumerable to observable, as
you saw here, and from observable to enumerable, as you’ll see next.

4.3.2 Observable to enumerable

In the same way that you converted an enumerable to an observable, you can do the
opposite, using the ToEnumerable methods. This creates an enumerable that, once
traversed, will block the thread until an item is available or until the observable com-
pletes. Using ToEnumerable isn’t something that you want to do, but sometimes can’t
do otherwise, as in the cases when you have a library code that accepts only enumera-
bles and you need to use it on a known subset of items from the observable, for exam-
ple, sorting a fraction of items that you can define by time or amount. Using
ToEnumerable is simple, as you’ll see here.

var observable =
 Observable.Create<string>(o =>
 {
 o.OnNext("Observable");
 o.OnNext("To");
 o.OnNext("Enumerable");
 o.OnCompleted();
 return Disposable.Empty;
 });

var enumerable = observable.ToEnumerable();
foreach (var item in enumerable)
{
 Console.WriteLine(item);
}

Because of the blocking behavior of the enumerable returned from ToEnumerable,
using it isn’t recommended. You should stay with the push model as much as possible.

Listing 4.8 Using the ToEnumerable operator

If you comment this line, the thread
will enter a waiting state after all the
values in OnNext have been consumed.

The loop will print every value that you
send with OnNext. When the observable
completes, the loop will end.

108 CHAPTER 4 Creating observable sequences
NOTE The Next operator also returns an enumerable, but it acts differently
than the one ToEnumerable is returning. Chapter 6 covers this topic.

Rx includes methods that can convert the observable to a list and an array in a non-
blocking way (keeping it an observable), namely ToList and ToArray, respectively.
Unlike ToEnumerable, these methods return an observable that provides a single
value (or no value if an error occurs), which is the list or the array. The list (or array)
is sent to the observers only when the observable completes.

var observable =
 Observable.Create<string>(o =>
 {
 o.OnNext("Observable");
 o.OnNext("To");
 o.OnNext("List");
 o.OnCompleted();
 return Disposable.Empty;
 });

IObservable<IList<string>> listObservable =
 observable.ToList();

listObservable
 .Select(lst => string.Join(",", lst))
 .SubscribeConsole("list ready");

Running this sample results in this output:

list ready - OnNext(Observable,To,List)
list ready - OnCompleted()

In the spirit of converting an observable to an enumerable, I should also mention the
ToDictionary and ToLookup methods. Though they sound similar, they have differ-
ent use cases.

CONVERTING AN OBSERVABLE TO A DICTIONARY
In .NET, types that implement the interface System.Collections.Generic
.IDictionary<TKey, TValue> are said to be types that contain key-value pairs. For
each key, there can be only one corresponding value or no value at all. In this case, we
say the key isn’t part of the dictionary.

 Rx provides a way to turn an observable into a dictionary, by using the method
ToDictionary that has a few overloads. The following example is the simplest one:

IObservable<IDictionary<TKey, TSource>> ToDictionary<TSource, TKey>(
 this IObservable<TSource> source,
 Func<TSource, TKey> keySelector)

Listing 4.9 Using the ToList operator

Only if the observable
completes will the list be
sent to the observers.

Converts the list to a
string, where each item is
separated with a comma.

keySelector returns the
value of the key for each
observable value.

109From enumerables to observables and back

he
This method runs keySelector for each value that’s pushed by the source observ-
able and adds it to the dictionary. When the source observable completes, the dic-
tionary is sent to the observers. Here’s a small example that demonstrates how to
create a dictionary from city names, where the key is the name length.

IEnumerable<string> cities = new[] { "London", "Tel-Aviv", "Tokyo", "Rome" };

var dictionaryObservable =
 cities
 .ToObservable()
 .ToDictionary(c => c.Length);

dictionaryObservable
 .Select(d => string.Join(",", d))
 .SubscribeConsole("dictionary");

Running the example displays the following:

dictionary - OnNext([6, London],[8, Tel-Aviv],[5, Tokyo],[4, Rome])
dictionary - OnCompleted()

If the two values in the observable share the same key, when trying to add them to the
dictionary you’ll receive an exception that says the key already exists. Dictionaries
maintain a 1:1 relationship between the key and the value; if you want multiple values
per key, you need a lookup.

CONVERTING AN OBSERVABLE TO A LOOKUP

If you need to convert your observable into a dictionary-like structure that holds mul-
tiple values per key, ToLookup is what you need. The ToLookup signature looks simi-
lar to the signature of ToDictionary:

IObservable<ILookup<TKey, TSource>> ToLookup<TSource, TKey>(
 this IObservable<TSource> source, Func<TSource, TKey> keySelector)

As with ToDictionary, you need to specify the key for each observable value (other
overloads allow you to also specify the value itself). You can look at the lookup as a dic-
tionary in which each value is a collection.

 The next example creates a lookup from an observable of city names, where the
key is the length of the name. This time, the observable will have multiple cities with
the same name length.

IEnumerable<string> cities =
 new[] { "London", "Tel-Aviv", "Tokyo", "Rome", "Madrid" };

var lookupObservable =
 cities

Listing 4.10 Using the ToDictionary operator

Listing 4.11 Using the ToLookup operator

The key can be whatever you
wish, but if two items share the
same key, you’ll get an exception.

Joins all the key-value pairs
together, separated by a comma

London and
Madrid have t
same length.

110 CHAPTER 4 Creating observable sequences

g

A

 .ToObservable()
 .ToLookup(c => c.Length);

lookupObservable
 .Select(lookup =>
 {
 var groups = new StringBuilder();
 foreach (var grp in lookup)
 groups.AppendFormat("[Key:{0} => {1}]",grp.Key,grp.Count());
 return groups.ToString();
 })
 .SubscribeConsole("lookup");

This is the output after running the example:

lookup - OnNext([Key:6 => 2][Key:8 => 1][Key:5 => 1][Key:4 => 1])
lookup - OnCompleted()

You can see that because London and Madrid have the same length (of 6), the output
shows that the key 6 has two values.

 The duality between observables and enumerables allows you to operate in both
worlds and makes it easy for you to transform one to the other according to your needs.
But remember that it comes with a warning. You have more ways to create observables
than “implementing” their logic or converting from other types. Common patterns are
nicely abstracted with creational operators and can be used as factories.

4.4 Using Rx creational operators
Up to this point, you’ve seen how to create observables by hand or convert from known
types such as enumerables and events. Over time, it’s become clear that certain patterns
in the observable creation are being repeated, such as emitting items inside a loop or
emitting a series of numbers. Instead of writing it ourselves, Rx provides operators that
help do it in a standard and concise way. The observables created by the creational
operators are often used as building blocks in much more complex observables.

4.4.1 Generating an observable loop

Suppose you have an iterative-like process that you need to run to produce the observ-
able sequence elements a few lines at a time, as in the case of reading a file in batches.
For this type of scenario, you can use the Observable.Generate operator. Here’s its
simplest overload:

IObservable<TResult> Generate<TState, TResult>(
 TState initialState,
 Func<TState, bool> condition,
 Func<TState, TState> iterate,
 Func<TState, TResult> resultSelector)

In the lambda expression, you
specify the key for each value.

When you receive the lookup, you iterate on
each of its inner groups and join them to a strin
that shows the key and the number of items.

n initial
state

for loop

Determines whether you
should run the next iteration
based on the current state.

Returns the next
state value.Selects the value in the observable

based on the current state. The result
can be a different type than the state.

111Using Rx creational operators

Con
you

end
For example, if you want to generate an observable that pushes the first 10 even num-
bers (starting from 0), this is how you do it:

IObservable<int> observable =
 Observable.Generate(
 0, //Initial state
 i => i < 10, //Condition (false means terminate)
 i => i + 1, //Next iteration step
 i => i*2); //The value in each iteration

observable.SubscribeConsole();

Running this example prints the numbers 0, 2, 4, 6, 8, 10, 12, 14, 16, 18.
 To make this even simpler, if what you’re trying to create is an observable that cre-

ates a range of elements, you can use another operator that does only that: the
Observable.Range operator:

IObservable<int> Range(int start, int count)

This creates an observable that pushes the integral numbers within a specified range.
 If you add the Select operator, you can create the same observable you created

by using Generate:

IObservable<int> observable =
 Observable
 .Range(0, 10)
 .Select(i => i*2);

Generate or Range can be used to create more than numbers generators. Here’s an
example that uses Generate to create an observable that emits the lines of a file.

4.4.2 Reading a file

Basically, reading a file is an iterative process. You need to open the file and read line
by line until you reach the end. In the observable world, you’d like to push the con-
tent to your observers. The following code shows how to do that with Observ-
able.Generate:

IObservable<string> lines =
 Observable.Generate(
 File.OpenText("TextFile.txt"),
 s => !s.EndOfStream,
 s => s,
 s => s.ReadLine());

lines.SubscribeConsole("lines");

This is what I got when running the example on a file with four lines:

lines - OnNext(The 1st line)
lines - OnNext(The 2nd line)
lines - OnNext(The 3rd line)
lines - OnNext(The 4th line)
lines - OnCompleted()

Creates an observable
that pushes 10 numbers
starting from 0

Open the stream to the file.
Note: There’s a flaw here that
we’ll discuss shortly.

tinue until
 reach the
 of the file.

The state is the stream
itself (it contains its
position in the file).Returns the line

from the file

112 CHAPTER 4 Creating observable sequences

C

FREEING THE FILE RESOURCE

The previous example has a flaw you may not see immediately. The call to
File.OpenText creates a stream that holds the file open. Even after the observable
completes—either when it reaches the end or when it is disposed of from the out-
side—the stream is still active and the file remains open. To overcome this and so that
your application will handle resources correctly, you need to let Rx know that a dispos-
able resource is involved. This is where the Observable.Using operator fits in. The
Using operator receives a factory method that creates the resource (and the factory
method that creates the observable with that resource). The returned observable will
make sure that when the inner observable completes, the resource will be disposed of.

NOTE The Using operator, together with other resource management con-
siderations, is covered in chapter 10.

This listing shows how to correct our example.

IObservable<string> lines =
 Observable.Using(
 () => File.OpenText("TextFile.txt"),
 stream =>
 Observable.Generate(
 stream,
 s => !s.EndOfStream,
 s => s,
 s => s.ReadLine())
);

lines.SubscribeConsole("lines");

Now you know for sure that when your observable is used, no resource you create will
remain undisposed, which makes your code more efficient.

4.4.3 The primitive observables

A few creational operators can come in handy during certain times, to combine with
other observables to create edge cases. This can be useful when testing or for demon-
strations and learning purposes, but also when building operators of your own that
need to deal with certain inputs that require special handling.

CREATING A SINGLE-ITEM OBSERVABLE

The Observable.Return operator is used to create an observable that pushes a sin-
gle item to the observer and then completes:

Observable.Return("Hello World")
 .SubscribeConsole("Return");

Listing 4.12 Freeing resources with the Using operator

Opens the file and returns the
stream you work with

The initial state is the stream itself
(pointing to the start of the file).

ontinue until you reach
the end of the file.

The state is the stream.

Returns the line
from the file

113Summary
Running this example results in this output:

Return - OnNext(Hello World)
Return - OnCompleted()

CREATING A NEVER-ENDING OBSERVABLE

Observable.Never is used to create an observable that pushes no items to observers
and never completes (not even with an error):

Observable.Never<string>()
 .SubscribeConsole("Never");

The generic parameter is used to determine the observable type. You can also pass a
fake value of the type you want to do the same. Running this example prints nothing
on the screen.

CREATING AN OBSERVABLE THAT THROWS
If you need to simulate a case that an observable notifies its observers about an error,
Observable.Throw will help you do this:

Observable.Throw<ApplicationException>(
 new ApplicationException("something bad happened"))
 .SubscribeConsole("Throw");

This is what prints after running the example:

Throw - OnError:
 System.ApplicationException: something bad happened

CREATING AN EMPTY OBSERVABLE

If you need an observable that doesn’t push any items to its observers and completes
immediately, you can use the Observable.Empty operator:

 Observable.Empty<string>()
 .SubscribeConsole("Empty");

This prints the following:

Empty - OnCompleted()

4.5 Summary
Wow, you learned a lot in this chapter. You should feel proud of yourself. The material
covered in this chapter will be carried with you in almost every observable pipeline
you’ll create:

 All observables implement the IObservable<T> interface.
 Creating observables by manually implementing the IObservables interface

is discouraged. Instead, use one of the built-in creation operators.
 The Create operator allows you to create observables by passing the Sub-

scribe method that will run for each observer that subscribes.

114 CHAPTER 4 Creating observable sequences
 The Defer operator allows you to defer or delay the creation of the observable
until the time when an observer subscribes to the sequence.

 To create an observable from events that conform to the event pattern (where
the delegate used receives a sender and EventArgs), use the FromEvent-
Pattern operator.

 To convert events that don’t conform to the event pattern, use the FromEvent
operator.

 The FromEventPattern and FromEvent operators receive a function that
adds an event handler to the event, and a function that removes an event han-
dler from the event.

 You can use an overload of the FromEventPattern operator that allows you to
pass an object and to specify the name of the event to create the observable
from. This should be used mostly for standard framework events.

 Enumerables can be converted to observables as well using the operator
ToObservable.

 Observables can be converted to enumerables by using the operators
ToEnumerable, ToList, ToDictionary, and ToLookup. But they’ll cause the
consuming code to block until an item is available or until the entire observable
is completed, depending on the operator.

 To create an observable from an iterative process, use the Generate operator.
 The Range operator creates an observable that emits the sequence of numbers

in the specified range.
 To create an observable that emits one notification, use the Observable

.Return operator.
 To create an observable that never emits notifications, use the Observable

.Never operator.
 To create an observable that notifies failure, use the Observable.Throws

operator.
 To create an empty observable, use the Observable.Empty operator.

Still, throughout the chapter, we ignored important types that wrap asynchronous exe-
cution. The next chapter will extend your knowledge about creating observables.
You’ll learn about the asynchronous patterns in .NET and how to bridge them into Rx.

Creating observables from
.NET asynchronous types
If there’s one thing I really dislike, it’s standing in line, especially a long line. I
always feel I’m wasting time that I could invest in other things (such as writing a
book). I always love the restaurants that allow you to come in and leave your name
for a seat, which then frees you to walk around, admire the view, shop, and so forth.
When your seat is available, or when your time slot arrives, you’re notified by a
phone call or buzzer. For me, this is customer service at its best.

 Like you and me, our code sometimes needs to stand in line and wait for some-
thing; this is what we call the synchronous way. Like you and me, our code can be
notified when a task is complete and can harvest the result; this is the asynchronous
way. Writing asynchronous code is crucial for modern apps to be responsive (and
react in a timely manner) and it’s a key trait for being reactive. In this chapter,
you’ll look at patterns for executing code asynchronously in .NET and see how they

This chapter covers
 Understanding the importance of asynchronous

code

 Writing asynchronous code in C#

 Bridging .NET asynchronous code to Rx

 Creating observables of periodic behaviors
115

116 CHAPTER 5 Creating observables from .NET asynchronous types
relate to your observables. You’ll look at ways to create observables from asynchronous
types and learn about obstacles you might face when doing so.

NOTE This chapter and the rest of the book use the Task-Based Asynchro-
nous Pattern (TAP) and async-await as the pattern for writing asynchro-
nous code. Appendix A covers the common .NET patterns for writing
asynchronous code as well as references to other sources on the subject.

5.1 Bridging .NET asynchronous types with Rx
Rx observables are wonderful when working with asynchronous sources. The observ-
able and observer interfaces allow the separation between a producer that can run
anywhere, synchronously or asynchronously, and the consumer (the observer) that
can receive the notifications and handle them. This has benefits including testability
and flexibility, because it’s easy to create a fake1 observable to emulate your test scenar-
ios, and easy to make changes in the producer side without affecting the consumer.
This producer-consumer separation is shown in figure 5.1.

Here you can see that the observer that subscribes to an observable doesn’t know
where the notifications are emitted from and whether the observable computes them
in an asynchronous way. But in chapter 10 you’ll learn that sometimes it’s necessary
for the observer to handle those notifications on a specific thread. For example, in
WPF and WinForms applications, it’s possible to make changes to UI controls only
from the UI thread, and so it’s necessary for observers that are modifying elements in
the application screens to observe the notifications on the special UI thread.

 Rx provides operators to support that and control the execution of the observable
pipeline. You’ll learn about them in chapter 10. In the next few pages, you’ll look at
an example of converting from synchronous code to asynchronous code that you con-
sume through the observable.

1 A fake is also known as a mock or stub; see http://mng.bz/b2b8.

Observable

Thread 2Thread 1

Observer

OnNext(...)

OnNext(...)

Observable Figure 5.1 From the observer
standpoint, the observable can run on
any thread and emit the notifications by
computing them asynchronously or
synchronously.

http://mng.bz/b2b8

117Bridging .NET asynchronous types with Rx
5.1.1 Changing the synchronous method to asynchronous

Suppose you have a magical prime numbers generator. This class can generate as
many prime numbers as you want, but the processing time to produce a number is
long. Your first attempt to create a synchronous version, the MagicalPrimeNumbers
Generator, looks like this:

class MagicalPrimeGenerator
{
 public IEnumerable<int> Generate(int amount){. . .}
}

The Generate method receives an integer for the number of primes you want to gen-
erate and returns an enumerable with those numbers.

 Now you can write a small program that prints the numbers:

var generator = new MagicalPrimeGenerator();
foreach (var prime in generator.Generate(5))
{
 Console.Write("{0}, ", prime);
}

Because it takes your magical primes generator time to generate each number (for
example, 2 seconds), your main thread will block here for 5 * 2 = 10 seconds. Even if
you change the primes generator to generate each item on demand with yield, it’ll
still block the calling thread for 2 seconds between two numbers.

 Another attempt could generate the full collection of the requested primes in an
asynchronous way, which means you can change the Generate signature to this:

Task<IReadOnlyCollection<int>> GenerateAsync(int amount);

The method now returns Task<IReadOnlyCollection<int>>. I’ve used IRead-
OnlyCollection<T> to make it clear that the method generates the full collection
before returning.

 This change doesn’t block the calling thread, but from the client perspective, it
performs worse because the client will have to wait (asynchronously) a long time
before processing any items in the collection. For instance, the previous program that
prints the five prime numbers will now have to wait 10 seconds before printing any-
thing. In a way, you’ve returned to the original version of the program.

 The iterative model doesn’t fit here, so let’s convert it into a push model.

5.1.2 Creating the primes observable

If the pull model doesn’t work, even when making it asynchronous, you should move
to the push model. This way, you won’t have to wait for the entire computation to fin-
ish to see some progress. Instead of creating an enumerable of the prime numbers,
you need to create an observable that will emit every prime number when it’s ready.

 This is how the method signature looks now:

public IObservable<int> GeneratePrimes(int amount)

Blocks the main thread
for a few seconds

118 CHAPTER 5 Creating observables from .NET asynchronous types
The method still receives as a parameter the number of prime numbers to generate,
but now it returns an observable of type IObservable<int>.

 Now you can implement the method; here’s the first try:

public IObservable<int> GeneratePrimes(int amount)
{
 return Observable.Create<int>(o =>
 {
 foreach (var prime in Generate(amount))
 {
 o.OnNext(prime);
 }
 o.OnCompleted();
 return Disposable.Empty;
 });
}

To create the observable, you’re using the Create method you learned about in chap-
ter four. The code provided to the Create method is still synchronous, so the observer
will receive all the generated primes upon subscription, and the call to Subscribe
won’t return until the generation is finished. You can see this in the following code. You
use the operator Timestamp to also display a timestamp for every item emitted:

var generator = new MagicalPrimeGenerator();

var subscription = generator
 .GeneratePrimes(5)
 .Timestamp()
 .SubscribeConsole("primes observable");

Console.WriteLine("Generation is done");
Console.ReadLine();

When you run it you’ll see

primes observable - OnNext(2@01/08/2015 12:50:02 +00:00)
primes observable - OnNext(3@01/08/2015 12:50:04 +00:00)
primes observable - OnNext(5@01/08/2015 12:50:06 +00:00)
primes observable - OnNext(7@01/08/2015 12:50:08 +00:00)
primes observable - OnNext(11@01/08/2015 12:50:10 +00:00)
primes observable - OnCompleted()
Generation is done

The Timestamp operator wraps the observable items in an object of type Sys-
tem.Reactive.Timestamped<TSource> that contains two properties: Value for
the inner item and Timestamp for the time in which the item was produced. It also
overrides ToString to return a string in the format Value@Timestamp.

 You can see that the Generation is done message is printed after all the prime
numbers are generated. You can see that the numbers are received with a 2-second
gap between them. Let’s fix our observable so the subscription won’t block. For this,
you can run the inner generation code inside a new task.

Produces an enumerable
using yield; you won’t wait
for the entire collection.

Pushes each prime number
to the observer immediately

You’ll reach this point after all the
primes are generated, so disposing
of the subscription has no effect.

119Bridging .NET asynchronous types with Rx

e

re

ce
TIP Creating a new task for running the observable code is considered a bad
practice. I’m doing it in the next example to keep things simple at this stage.
In chapter 10, you’ll learn about the Rx concurrency model and how you
should change the code written here.

Now that the observable code is going to run concurrently, the observer’s ability to
unsubscribe becomes much more important. Until now, the emissions from all the
observables you saw happened immediately when the observer subscribed (synchro-
nously), so the observer didn’t have the opportunity to unsubscribe. Now the observer
can unsubscribe at any time. To allow this, you attach the returned disposable to a
CancellationToken that you’ll check in every iteration, so the new version looks
like this:

public IObservable<int> GeneratePrimes(int amount)
{
 var cts = new CancellationTokenSource();
 return Observable.Create<int>(o =>
 {
 Task.Run(() =>
 {
 foreach (var prime in Generate(amount))
 {
 cts.Token.ThrowIfCancellationRequested();
 o.OnNext(prime);
 }
 o.OnCompleted();
 }, cts.Token);

 return new CancellationDisposable(cts);
 });
}

In this version of GeneratePrimes, you start a new task at the point where, as before,
you’re iterating on the enumerable returned from the Generate method that yields
the next prime number in every iteration. Now that your code is running in the back-
ground, you can enable the cancellation of the subscription. To do this, you create a
CancellationTokenSource instance that you later attach to the returned dispos-
able by using the CancellationDisposable class. When the user disposes of it, the
CancellationTokenSource will be canceled as well. Inside each iteration, you
check to see whether cancellation was requested and stops the loop.

TIP When you run code examples that introduce concurrency inside a con-
sole application (for example, with Task.Run), the main thread will exit even
if the concurrent code is still running. Adding a call to Console.ReadLine
(or any other Console read method) is an easy way to keep the application
from exiting before the example is done.

The pattern of running code inside a task and enabling cancellation with a
CancellationToken object that’s connected to the returned disposable is common,

Creates the CancellationTokenSourc
from which you produce
cancellation tokens

Runs the code inside a new
task to make it asynchronous

Checks whether
cancellation was

quested and stopping Ensures that the task won’t
run in case the subscription was
disposed of before starting

Cancels the CancellationTokenSour
when disposed of

120 CHAPTER 5 Creating observables from .NET asynchronous types
so the Rx team provides an overload of the Observable.Create method (shown in
figure 5.2) that does the plumbing for you.

 The asynchronous version of the Create operator receives a Func that’s invoked
for each observer that subscribes to the returned observable—therefore, it’s called
subscribeAsync. The subscribeAsync function receives two parameters: the
observer that’s subscribing and a CancellationToken that’s tied to the subscription
disposable. subscribeAsync returns a task, thus allowing the asynchronous code to
be written inside.

 Here’s how to use this method to simplify your GeneratePrimes method:

public IObservable<int> GeneratePrimes (int amount)
{
 return Observable.Create<int>((o, ct) =>
 {
 return Task.Run(() =>
 {
 foreach (var prime in Generate(amount))
 {
 ct.ThrowIfCancellationRequested();
 o.OnNext(prime);
 }
 o.OnCompleted();
 });

 });
}

The previous code is almost similar to what you did before, only this time you don’t
need to create CancellationToken and its connection to the subscription disposal.

 Let’s recap what you’ve learned so far:

1 The Create operator receives an asynchronous function named sub-
scribeAsync.

2 The subscribeAsync function is executed each time an observer is sub-
scribed to the observable. The function must return a Task to represent its
asynchronous operation.

A factory method that creates the Task in which the observable logic
happens. This method will be called for every observer subscribing.

CancellationToken that marks
the subscription disposal

The observer subscribing

IObservable<TResult> Create<TResult>(Func<IObserver<TResult>, CancellationToken, Task> subscribeAsync);

Figure 5.2 The asynchronous version of the Create operator

Your lambda expression
receives the observer (o) and
a CancellationToken (ct).

121Bridging .NET asynchronous types with Rx
3 When invoked, the subscribeAsync function receives CancellationToken,
which acts as a communication channel of the observer’s subscription disposal.

4 Inside subscribeAsync is where you’ll write the code that emits the notifica-
tions to the subscribed observer.

TIP If you need more control over the way the subscription disposal affects
your observable logic, you should know that the Create operator also
includes overloads that return a disposable from the subscribeAsync
method.

TIP In the previous chapter, you learned about using Defer to defer the cre-
ation of an observable to when the first observer subscribes. Rx also provides a
version of the Defer operator that supports an asynchronous observable fac-
tory, as well as a cancellable version called DeferAsync.

Next I’ll show you how the combination of observables with async-await shows the
real strength of Rx.

5.1.3 Using async-await in observable creation

The async version of Create also allows you to use async-await inside the
subscribeAsync code. By combining observables and async-await, you can see
the real value Rx brings. Instead of waiting for two (or more) separate asynchronous
operations to complete, and only then merge their results so they can be consumed as
a whole, you can start to emit elements the moment you have something meaningful.

 Figure 5.3 illustrates an observable that emits search results from two search
engines whose call is async.

Figure 5.3 With observables, observers can start to receive notifications even if not all the
sequence sources (like search engines) have completed.

The code for this example is:

IObservable<string> Search(string term)
{
 return Observable.Create<string>(async o =>
 {
 var searchEngineA = ...
 var searchEngineB = ...

Search engine A

Search engine B

Observer

Marks the code with async
because you’re going to use
await inside; your lambda
expression now returns the task.

122 CHAPTER 5 Creating observables from .NET asynchronous types
 var resultsA = await searchEngineA.SearchAsync(term);
 foreach (var result in resultsA)
 {
 o.OnNext(result);
 }
 var resultsB = await searchEngineB.SearchAsync(term);
 foreach (var result in resultsB)
 {
 o.OnNext(result);
 }
 o.OnCompleted();
 });
}

The previous code in the Search method creates an observable by using the asyn-
chronous version of Observable.Create. The subscribeAsync I provided as a
lambda expression uses async-await and therefore returns a task. The code is sim-
ple, calling to two search engines, one after the other, each time emitting the results.

 What you’re missing in this code is the possibility to cancel the process if the sub-
scription is disposed of. As an exercise, add this feature yourself and check what hap-
pens when you dispose of the subscription at different stages. You can see my solution
at the book’s source code.

5.1.4 Converting tasks to observables

The preceding example that demonstrates using the Observable.Create method
with the asynchronous subscribe method can be improved. You might have noticed
the repetition in the code. For every search engine, you called the search method and
then iterated the results.

 To improve the code, you can take advantage of the fact that a natural conversion
occurs between the task and the observable; a task can be looked at as an observable
of potentially one item (zero if it never returns). To convert a task to an observable, all
you need to use is the extension method ToObservable on the task.

TIP Rx recognizes the deep connection between tasks and observables, and
therefore allows, with certain operators, you to provide tasks in the same way
you provide observables, without the need to convert to observables before.

The search method of each search engine returns Task<IEnumerable <string>>,
in our case, so converting it to an observable will give IObservable<IEnumerable
<string>>, still different from the observables you want—IObservable <string>.
You need one more step that I’ll explain shortly.

 Here’s how to change the previous code to convert the two searches from tasks to
observables and then concatenate them together:

IObservable<string> Search (string term)
{
 var searchEngineA = new SearchEngineA();
 var searchEngineB = new SearchEngineB();

Calls the
asynchronous

search method
and awaits it

Emits each of
the search results

Another
asynchronous
call you await Emits the results from

the second search engine

123Bridging .NET asynchronous types with Rx
 IObservable<IEnumerable<string>> resultsA =
 searchEngineA.SearchAsync(term).ToObservable();
 IObservable<IEnumerable<string>> resultsB =
 searchEngineB.SearchAsync(term).ToObservable();

 return resultsA
 .Concat(resultsB)
 .SelectMany(results => results);
}

This method needs a little explanation. The first part of the method calls the search
methods and converts the tasks to observables; it’s easy.

 With two observables in your hands, you can do numerous things. Because you
want to keep the semantics of the methods you saw until now, in which the results
from the second search engine are provided only after you finish emitting the results
from the first search, you need to Concat the observables:

IObservable<TSource> Concat<TSource>(
 this IObservable<TSource> first,
 IObservable<TSource> second)

Concat receives two or more observables (depending on the overload) and returns
an observable that’s a concatenation of the input observables, which emit their values
without interleaving. All the items from the first observables are emitted, and only
then all the items from the second, and so forth. Figure 5.4 provides a marble diagram
so you can visualize it.

Figure 5.4 The Concat operator marble diagram. All items from the first observable are emitted.
Only after the first observable completes will the items from the second observable be emitted.

Still, after you concatenate the observables, you get IObservable<IEnumerable
<string>>. You need to flatten each enumerable so that the items will be pushed one
by one, and so your observable will become IObservable<string>. This is where the
SelectMany operator comes in. I’ll show the overload I used, and then I’ll explain it:

IObservable<TResult> SelectMany<TSource, TResult>(
 this IObservable<TSource> source,
 Func<TSource, IEnumerable<TResult>> selector)

Converting each
task’s results from
the search engine
to an observable

Concatenating the observables together
so that the results from the second

search engine will be emitted only after
the results from the first completed

Changing the observable from an observable
of collections to an observable of the items in
the collections (also called flattening).

This overload accepts
only two observables.

First: A B C

Second: 1 2 3

Concat: A B C 1 2 3

The selector function projects
the item to an enumerable
whose items will be emitted in
the resulted observably

124 CHAPTER 5 Creating observables from .NET asynchronous types
SelectMany projects each element of an observable sequence to an enumerable
sequence and concatenates the enumerables into one observable sequence. Select-
Many gets a selector of type Func<TSource, IEnumerable<TResult>>; this selector
is called on every item in the observable and returns a collection from that item. The
elements of the collection will afterward be emitted on the resulting observable. The
marble diagram in figure 5.5 makes this clearer.

 Going back to our example, you concatenated the observables created from the
search engines, and each observable carries one item that’s the collection of the
search results. When you wrote SelectMany(results => results), you made it
so that the returned observables will carry each search result separately.

NOTE It’s also possible to convert from an observable to a task that you can
later await to get the last value (or exception) produced by the observable.
This is done with the ToTask operator. You also can await the observable
itself because it provides its own Awaiter class.

Besides the use of SelectMany to project observables that emit collections into observ-
ables that emit the items from the collections, SelectMany has an important use when
running asynchronous code as part of your observable pipeline, as you’ll see next.

5.1.5 Running asynchronous code as part of the pipeline

Running asynchronous code is beneficial not only for creating observables; it’s also
extremely useful for running inside the operators that compose the observable pipe-
line, as shown in figure 5.6. This way, you don’t have to block your pipeline while pro-
cessing an emitted element and can let your observable emit the next one while the
processing happens in the background.

Figure 5.6 Asynchronicity can also be necessary in one of the pipeline operators. Operator 2
performs an async operation that, once completed, is passed to operator 3.

Collections

.SelectMany(c => c.Items)

a 1

a 1b 2c 3

Figure 5.5 The SelectMany operator marble diagram. Each item
produces an enumerable by the selector, and the items from each
enumerable are emitted to the resulting observable.

Operator 3

Operator 2
(running

asynchronously)
Operator 1

Observer

125Bridging .NET asynchronous types with Rx
As you can see, an item begins its journey in the pipeline in operator 1, and then oper-
ator 2 performs an asynchronous operation. You’d like operator 3 to handle the result
after the asynchronous operation completes.

 Consider the next example in which you want to use the Where operator to check
each item in the observable against an asynchronous service that determines whether
the number is a prime:

var svc = new PrimeCheckService();
var subscription = Observable.Range(1, 10)
 .Where(async x => await svc.IsPrimeAsync(x))
 .SubscribeConsole("AsyncWhere");

The Where operator expects from the given predicate to return a Boolean that will
determine whether the item will be allowed to proceed on the observable. But the
IsPrimeAsync method returns a Task<bool> so you naïvely try to await it, which
causes your lambda expression return type to again be Task<bool>. Unfortunately,
Where (and most other operators) doesn’t support tasks, and that’s why your code
doesn’t compile. But don’t lose hope; together we can make it work!

NOTE In the observer’s OnNext method, nothing prevents you from running
code with async-await (as long as the method is marked with async). But
remember that because the method returns void, it will return to the caller
the moment the first await is reached, so that the next OnNext might be
called while still processing the previous one. Many times, this process turns
out to be confusing and hard to track.

As you remember, Task<T> can be converted to IObservable<T>, so Task<bool>
can become an IObservable<bool> on which the Where operator can work without
a problem.

 Here’s how the magic happens:

1 Run the IsPrimeAsync method for each number.
2 Convert the return task into an observable.
3 Merge all the observables that were created, while still keeping the source (the

number being checked) of each one.
4 Allow only the observables that will emit the value true—meaning the number

is prime—to proceed to the resulted observable.

Sounds complex, but it’s simple thanks to the SelectMany operator. In the previous
example, the SelectMany operator was used to flatten a collection by passing a
selector function that determined the enumerable to flatten. Here’s another
overload of SelectMany (illustrated in figure 5.7 and the following bit of code) that
will help here but is a little frightening at first look. Don’t worry about it; after the
next code example, it will become clear, and you can return here and read the
description again.

This won’t
compile.

126 CHAPTER 5 Creating observables from .NET asynchronous types

The overload of SelectMany does the same as before, but instead of selecting a collec-
tion from the item of the observable, it projects it to a task, invokes the result selector
with the source element and the task result, and merges the results into one observ-
able sequence:

IObservable<TResult> SelectMany<TSource, TTaskResult, TResult>(
 this IObservable<TSource> source,
 Func<TSource, Task<TTaskResult>> taskSelector,
 Func<TSource, TTaskResult, TResult> resultSelector)

Using this overload, the previous example can be written like so:

subscription =

 Observable.Range(1, 10)
 .SelectMany((number) => svc.IsPrimeAsync(number),
 (number, isPrime) => new {number, isPrime})
 .Where(x => x.isPrime)
 .Select(x => x.number)
 .SubscribeConsole("primes")

These are the printed results when I run it on my machine:

primes - OnNext(1)
primes - OnNext(2)
primes - OnNext(3)
primes - OnNext(5)
primes - OnNext(7)
primes - OnCompleted()

It takes time to digest, but what you see has a natural beauty and elegance. Let’s review
it step by step.

1 2

Task1

Task2

Task3

3

taskSelector

Observables

Observables
 .SelectMany(collectionSelector,
 resultSelector)

resultSelector(,)

12 3

Figure 5.7 The SelectMany
operator allows you to generate an
asynchronous task from each
element and then emit the task
results on the resulted observable.

The observable
you work on

Receives the item from the
observable and selects the task

Creates the end result to be emitted from
the item and the result of the task that

the taskSelector created for that item

Creating an observable
that emits the series

of numbers 1–10

Projecting each item to the task
returned from the async method.

Behind the scenes, the task will be
awaited and its result emitted.

number and isPrime are fed to a
transform function; the result is
emitted, then received in the
Where operator that checks
whether the number is prime.

Projecting the objects that
survived the Where operator to
the number they store inside

Writing the prime
numbers to the console

127Bridging .NET asynchronous types with Rx
 In the example, you create a simple observable that emits the sequence 1 to 10.
Each item is then received by the SelectMany operator that calls the asynchronous
method IsPrimeAsync. This method returns a task, which isn’t interesting to the rest
of your query; but what you want is the future result the task will give you, and so
SelectMany awaits this result for you behind the scenes. When the result is ready, the
transformed function you provided to the SelectMany operator is called. The trans-
form method receives the number on which you ran IsPrimeAsync together with
the result of the task, and in this case, you combine them into an object. This com-
bined object is what’s emitted on the resulted observable and then received in the
Where and Select operators.

 This entire process is depicted in figure 5.8. (I’ve shortened variable names to
reduce noise.)

Figure 5.8 A marble diagram that shows the use of the SelectMany operator with
asynchronous code. Each number is checked (asynchronously) to see whether it’s prime.
When the result is ready, the observable pipeline continues.

One thing that’s important in figure 5.8 is that I describe each task returned from the
IsPrimeAsync method as an observable, which in the case of tasks have only one
item, and then it emits no more.

 I should be honest with you: not everybody agrees that this chain of methods is as
beautiful as I think it is (shocking, isn’t it?). Luckily, the same query can be written in
the query expression, which makes it more readable; judge for yourself:

IObservable<int> primes =
 from number in Observable.Range(1, 10)
 from isPrime in svc.IsPrimeAsync(number)
 where isPrime
 select number;

primes.SubscribeConsole("primes");

This query is the same as the one you used before, and translates to the same method
chains. It’s important to understand the internal mechanics of things so you can

Numbers

 .SelectMany((n) => svc.IsPrimeAsync(n),

2?

5

T

3? T

4?

5?

F

T

 (n, isPrime) => new {n, isPrime}) {2,T} {3,T} {4,F} {5,T}

 .Where(x => x.isPrime) {2,T} {3,T} {5,T}

 .Select(x => x.number) 2 3 5

2 3 4

128 CHAPTER 5 Creating observables from .NET asynchronous types
control them better, so I started with the more complex approach. Also, not every-
thing can be converted to the query syntax, so knowing how to use the SelectMany
operator will be a powerful tool in your belt.

 Now that we have that covered, see if you can predict what will be printed if the
time that it takes for the IsPrimeAsync method to complete is different for different
numbers. For example, if the time it takes for 3 is longer than it takes for 4. Can you
predict the order?

5.1.6 Controlling the results order

SelectMany projects the items to tasks in the same order that they’re emitted. But
the order of the items in the resulting observable (the results of the tasks) that
SelectMany creates depends on the order that the tasks complete—which can be dif-
ferent from the original order.

 For example, run the previous prime check example when the time to check the
number 4 is a few seconds more than all the other numbers:

var svc = new VariableTimePrimeCheckService(numberToDelay: 3);
IObservable<int> primes =
 from number in Observable.Range(1, 10)
 from isPrime in svc.IsPrimeAsync(number)
 where isPrime
 select number;

primes.SubscribeConsole("primes - unordered");

This yields the following output:

primes - unordered - OnNext(1)
primes - unordered - OnNext(2)
primes - unordered - OnNext(7)
primes - unordered - OnNext(5)
primes - unordered - OnNext(3)
primes - unordered - OnCompleted()

Notice that the number 3 is emitted last in our resulting observable.
 You don’t always need or want the order of the resulted observable to be the same

as the source observable, but when you do, SelectMany won’t help. Instead, you can
take advantage of the Concat operator you used earlier in a different context.

 The Concat operator provides an overload that works on an observable sequence
of tasks, and emits the result of each task in the order the task was positioned in the
sequence. The result of the first task is emitted first, and then of the second task, and
so forth, even if the result of the first task is completed long after the second task. This
is exactly what you need! Here’s the overload’s signature you’ll be using:

static IObservable<TSource> Concat<TSource>(
 this IObservable<Task<TSource>> sources)

NOTE The same behavior exists for collections of tasks, or observable of
observables (where the values from the first observable are emitted before the

Configuring the
service to delay
the response of
the check on
the number 3

Same query:
produces only the
prime numbers in
sequence 1–10

129Bridging .NET asynchronous types with Rx

Keep
the em

wit
the
values from the second observable). The Concat operator provides overloads
for each case.

What’s left is to create the observable of tasks that you could feed onto the source
parameter of the Concat operator. Doing so is easy with the help of the Select oper-
ator that enables you to project an item into a different form, and you can use it to
return the task that the IsPrimeAsync(number) returns:

IObservable<Task<bool>> observable =
 Observable.Range(1, 10)
 .Select(number => svc.IsPrimeAsync(number));

But there’s a problem. Note that the observable type is IObservable<Task<bool>>,
which means you lost the original item from which the task was created.

 To include the original item, you wrap the task and the original item together in a
new task that yields them both. The final solution looks like this:

IObservable<int> primes =
 Observable.Range(1, 10)
 .Select(async (number) => new { number, IsPrime = await

 ➥ svc.IsPrimeAsync(number) })
 .Concat()
 .Where(x => x.IsPrime)
 .Select(x => x.number);

Running the example gives this output, which keeps the numbers ordered:

primes - OnNext(1)
primes - OnNext(2)
primes - OnNext(3)
primes - OnNext(5)
primes - OnNext(7)
primes - OnCompleted()

The lambda expression you provided as the selector function is using the async-
await pattern. Inside it, you’re creating an anonymous type that has two properties:
the original number and the result (due to the await) of the IsPrime asynchronous
check. And so the return type of your lambda expression is a task of the anonymous
type created inside.

 The Concat operator is now working on an observable that pushes tasks of this new
anonymous type—named ‘a in Visual Studio IntelliSense, as you can see in figure 5.9.

Figure 5.9 Visual Studio IntelliSense names the anonymous type in the selector function ‘a.

Using async-await in your lambda expression
causes the compiler to implicitly deduce the
return type of the selector function to be a
task of the anonymous type defined inside.

s the order of
itted aligned

h the order of
 source items

 (awaitable,extension) IObservable<'a> IObservable<Task<'a>> Concat <'a>() (+ 1 overload)
Concatenates all task results, as long as the previous taks terminated successfully.

Usage:
 'a x = await Concat();

Anonymous Types:
 'a is new { int number, bool IsPrime }

130 CHAPTER 5 Creating observables from .NET asynchronous types
You can see that the Concat operator is working on IObservable<Task<’a>> but
produces an observable of type IObservable<‘a>. It seems you’ve solved the prob-
lem, but what if a task never completes? What will happen to your system?

 Internally, the Concat operator must keep in memory the results of all the tasks that
have completed, but their time hasn’t arrived yet. For example, if the source observable
emits five tasks, and the last four complete successfully, but the first task takes an hour
to complete, the four results will be kept in memory until the first task completes.

 If one of the tasks never completes (if it’s stuck in a loop or a deadlock), Concat
might cause memory pressure. As a general approach, it’s better to not rely on order
when it comes to asynchronous execution.

 You now have the power to add asynchronous code execution as part of your
observable pipeline. When order isn’t mandatory, use SelectMany. When the order
is a must, use Concat. SelectMany and Concat are explored further in chapter 8.

5.2 Creating observables of periodic behavior
One common request I see from developers who start to use Rx is to create observ-
ables that process in a periodic way (for example, every 2 seconds) and emit their
results. In the imperative programing style, this is done with a timer. An example of
such behavior might be checking for updates against a web service and emitting the
updated items.

 Rx provides two operators that enable creating observables of periodic behavior or
scheduled emission that we’ll cover in this part of the chapter.

5.2.1 Emitting values in time intervals

The Interval operator creates an observable that produces a value periodically
every time interval:

static IObservable<long> Interval(TimeSpan period)

The Interval operator creates an observable of type IObservable<long> that
periodically emits the next long value (starting with 0). The time between two subse-
quent notifications is determined by the period parameter. Figure 5.10 is a marble
diagram that shows the operator effects with a period of 1 second.

 With a period of 1 second, the first notification is emitted after 1 second, and the
second notification occurs 1 second later, and so on.

Figure 5.10 The Interval operator in this marble diagram creates an observable that
emits a value every time interval (every 1 second in the diagram).

Determines the time interval
to produce the first and
subsequent elements.

Observable

 .Interval(TimeSpan.FromSeconds(1))
1s

0
1s

1
1s

2
1s

3
1s

4

131Creating observables of periodic behavior

M
o

Here’s an example that shows how to use the Interval operator to create a WPF win-
dow that polls a web service for updates every minute, and displays them in a list box:

public partial class MessagesWindow : Window
{
 private IDisposable _subscription;

 public MessagesWindow()
 {
 InitializeComponent();

 var updatesWebService = new UpdatesWebService();
 _subscription = Observable
 .Interval(TimeSpan.FromMinutes(1))
 .SelectMany(_ => updatesWebService.GetUpdatesAsync())
 .SelectMany(updates => updates)
 .ObserveOnDispatcher()
 .Subscribe(/*an observer the update the ListBox*/);
 }
}

Keeping the periodic call to the web service in the observable pipeline allows you to
create elegant solutions, as you can see in the previous example. I owe you an explana-
tion on the ObserveOnDispatcher operator. Until now, I deliberately ignored the
elephant in the room: where are the Intervals coming from, on which threads? In
chapter 10, you’ll learn the concurrency model that Rx uses and see the connection to
the Interval operator as well as other time-based operators. For now, you should
know that by default, the Interval operator runs on a different thread of the
observer subscription. In WPF and other GUI frameworks, code that mutates the UI
controls can run in only the UI thread. The ObserveOnDispatcher operator guar-
antees that the observer code will run on the UI thread (by using the WPF Dispatcher).

NOTE In the example, it’s possible that a call to the web service will happen
even if the previous one hasn’t yet returned. The Interval operator has no
knowledge about the asynchronous action you perform at each cycle.

It’s important to note that the Interval operator supports the same period between
all emissions, including the first one. The Timer operator that you’ll see next gives
more flexibility.

5.2.2 Creating an observable timer

At times you may want to create an observable that periodically emits a value, but to
differentiate the time that the first emission is made, perhaps you’d want it to be
immediate or delayed to a future schedule. Using the Timer operator, you can
achieve such flexibility. Here’s one of the overloads that’s commonly used:

static IObservable<long> Timer(TimeSpan dueTime, TimeSpan period)

Emitting a
notification

every minute

Calling the web service for updates, the call
returns a task<IEnumerable<string>>

that the SelectMany awaits on your behalf

Flattening the updates that
were received, so you’ll process

each update separately

arshalling the rest
f the processing to

the UI thread

132 CHAPTER 5 Creating observables from .NET asynchronous types
Figure 5.11 The Timer operator marble diagram creates an observable sequence that
periodically produces a value (1 second in the diagram) after the specified initial relative
due time has elapsed (2 seconds in the diagram).

Calling this overload creates an observable that periodically produces a value after the
specified initial relative due time has elapsed from the moment an observer subscribes.
 Figure 5.11 shows an example of creating an observable that produces a value every sec-
ond, but starting 2 seconds after subscription. You can say that the Interval operator
that you saw earlier is a special case of the Timer operator, in which the dueTime and
period are the same.

 The timer also includes overloads to schedule the beginning of the periodicity in
both relative and absolute times. You’ll explore those definitions when you look at
another special case, scheduling the emission of a single value.

5.2.3 Scheduling an emission with a timer

The Timer operator can also be used to schedule the production of a value (0 of type
long) to a future time:

static IObservable<long> Timer(TimeSpan dueTime)
static IObservable<long> Timer(DateTimeOffset dueTime)

As you can see, Timer has two overloads that receive the due time to emit the single
value. The difference between the two overloads is in the way you represent the time
to emit the value:

 Relative time—Defined as TimeSpan, which reflects a time interval from the
moment of the observer subscription. For example, in 5 seconds

Observable.Timer(TimeSpan.FromSeconds(5))

 Absolute time—Defined as DateTimeOffset, which reflects a particular date
and time, regardless of the time of the observer subscription. For example, July
4 or today at midnight

Observable.Timer(DateTimeOffset.Parse("00:00:00"))

Creating an observable that emits a value in a preconfigured time can be useful when
combining with other observables. Here’s an example that uses the Switch

Observable

 .Timer(dueTime: TimeSpan.FromSeconds(2),
 period: TimeSpan.FromSeconds(1))

2s 1s
0

1s
1

1s
2

1s
3 4

Returns an observable that
produces a single value at
the specified dueTime

Returns an observable that
produces a single value after the

relative dueTime has passed

133Creating observables of periodic behavior
combinator (combining operator) to change from one observable to the other after
5 seconds:

IObservable<string> firstObservable =
 Observable
 .Interval(TimeSpan.FromSeconds(1))
 .Select(x => "value" + x);
IObservable<string> secondObservable =
 Observable
 .Interval(TimeSpan.FromSeconds(2))
 .Select(x => "second" + x)
 .Take(5);

IObservable<IObservable<string>> immediateObservable =
Observable.Return(firstObservable);

//Scheduling the second observable emission
IObservable<IObservable<string>> scheduledObservable =
 Observable
 .Timer(TimeSpan.FromSeconds(5))
 .Select(x => secondObservable);

immediateObservable
 .Merge(scheduledObservable)
 .Switch()
 .Timestamp()
 .SubscribeConsole("timer switch");

Running this example yields this output on my machine:

timer switch - OnNext(first0@10/08/2015 20:30:52 +00:00)
timer switch - OnNext(first1@10/08/2015 20:30:53 +00:00)
timer switch - OnNext(first2@10/08/2015 20:30:54 +00:00)
timer switch - OnNext(first3@10/08/2015 20:30:55 +00:00)
timer switch - OnNext(first4@10/08/2015 20:30:56 +00:00)
timer switch - OnNext(second0@10/08/2015 20:30:58 +00:00)
timer switch - OnNext(second1@10/08/2015 20:31:00 +00:00)
timer switch - OnNext(second2@10/08/2015 20:31:02 +00:00)
timer switch - OnNext(second3@10/08/2015 20:31:04 +00:00)
timer switch - OnNext(second4@10/08/2015 20:31:06 +00:00)
timer switch - OnCompleted()

You can see that after 5 seconds, the second observable begins emitting its values
(every 2 seconds), and so the control switches from the first observable to the second.
Switch is an interesting combinator that’s covered further in chapter 8.

 You have more to learn about asynchronous code execution and handling inside
your Rx code: How can you transition to another thread in the middle of the pipeline
and go back to the original context later (as in the case of a UI), and how can those
transitions affect the building of the pipeline and the results you may see? These top-
ics are discussed in upcoming chapters, but for now you have solid ground to start cre-
ating your observables and using asynchronicity in your application. Let’s summarize
what you’ve learned.

Creates an observable
that emits every second

Creates an observable that
emits every 2 seconds, but
only 5 notifications

Creates an observable that
emits the first observable

Creates an observable that
emits the second
observable after 5 seconds

Merges the two observables
that emit observables

Switches from the first emitted
observable to the second

134 CHAPTER 5 Creating observables from .NET asynchronous types
5.3 Summary
You’ve completed this two-part series of the ways to create observables, which makes
you observables qualified. This chapter covered ways to create observables through
asynchronous code execution.

 Here’s a summary of what you learned:

 Rx observables provide an abstraction over the source that emits the notifica-
tion in a way that makes it thread transparent so that the observers don’t need
to know or care about the origin of the notification.

 Rx observables can be created from code via asynchronous operations by using
the overloads of the Observable.Create or Observable.Defer operators.
Those overloads accept an asynchronous subscribe function that can even be
written using async-await.

 Rx can take care of connecting tasks cancellation and subscription disposal by
providing you with a CancellationToken that Rx attaches to the disposable
subscription object that’s returned after an observer subscribes.

 You can easily convert asynchronous types such as tasks into observables by
using the extension method ToObservable.

 To run asynchronous code as part of the operators in your pipeline, you can use
the SelectMany operator that can await the asynchronous code (which can be
represented as Task or another IObservable) and then continue the pipeline
upon completion or emission.

 Use the Concat operator if you want the order of processing the results of the
asynchronous code that was started from different emissions to be the same as
the order of the emissions.

 Creating observables that emit notification in a periodic way is also possible in
Rx by using the Interval operator, or the Timer operator if you need further
control of the due time of the emission.

Because there’s no real use for observables without the observers that subscribe to
them, the next chapter concentrates on the observer’s side and the various ways to
create them and control their lifetimes.

Controlling the observer-
observable relationship
Imagine you’re a singer with the most beautiful voice, the greatest lyrics, and the
best performance moves. It doesn’t pay to be such a singer if you have no listeners.
The same goes for observables; they sit there, doing nothing and wasting resources,
if there’s no observer to subscribe to and receive their notifications. It’s also inter-
esting to think about when the relationship between the singer and the listener
begins and ends, especially if the music is coming from an album, and the listener
can skip tracks or stop playing.

 This chapter covers the methods you can use to create observers, and the
importance of each action that observers need to implement. The subscription of
the observer to the observable is also something you’ll need to maintain, but you
can control when it begins and how long it lasts by the number of notifications or a
timespan, a combination of the two, or with advanced logic that you define. All of
these options are provided by a set of operators that you’ll learn about throughout

This chapter covers
 Creating observers without a fuss

 Controlling the length of the observer/observable
relationship

 Adding and controlling side effects in the pipeline
135

136 CHAPTER 6 Controlling the observer-observable relationship
this chapter. At the end of the chapter, you’ll combine them to create a fully reactive
drawing application.

6.1 Creating observers
The observer is the consumer of the observable notifications. There can be many
observers to a single observable, and there can be many observables that an observer
observes, as shown in figure 6.1.

Figure 6.1 An observable can have multiple observers, and an observer can observe multiple
observables.

Our goal with Rx is to simplify your event-processing code, so in this part I’ll show you
how to create observers so you can pick the one that’s most suitable for your needs.
This is a good place to review the role the observer plays in the communication proto-
col between the observable and observer.

6.1.1 The observable-observer communication

The protocol between the observable and the observer is shown in figure 6.2.

Figure 6.2 The communication protocol between the observable and the observer

The Observable Singer The Observables

Subscription

Subscribe(observer)

OnError(Exception)

subscription.Dispose()

OnCompleted()

OnNext(X)

Observable Observer

1 3A

2 3B

4

3C

137Creating observers
This is how the communication protocol you see in figure 6.2 works:

1 The communication between the observable and the observer begins by sub-
scribing the observer to the observable.

2 The observable returns a subscription object that implements the IDisposable
interface.

3 Once the observer is subscribed, the observable can emit notifications of differ-
ent kinds to it. For example:
– The observable can emit any number of notifications by calling the

observer’s OnNext method and passing the payload as an argument.
– When the observable reaches completion, meaning no more notifications

will be emitted, it signals that to the observer by calling the OnCompleted
method.

– If an error occurs in the observable, which also means that no more notifica-
tions will be emitted, the observer is notified with a call to the OnError
method that takes the exception object as an argument.

– The OnCompleted and OnError methods are mutually exclusive, so the Rx
protocol mandates that only one of them (or none) can be called on the
observer.

4 Anytime after the observer is subscribed, the subscription can be disposed of.
The observable must ensure that after the subscription is disposed of, no more
notifications of any kind will be emitted to the observer.

The next section covers ways to control the observer lifetime and the length of the
subscription.

6.1.2 Creating observers without leaving the pipeline

By far, the most desirable way to create an observer is doing it without leaving your
pipeline so that everything is centralized and, thus, easier to read and maintain. Luck-
ily, it’s also the easiest and most straightforward way of creating an observer, as shown
in figure 6.3. All it takes is using one of the overloads of the Subscribe extension
method that resides under the static ObservableExtensions class, which is under
the System namespace.

Figure 6.3 Creating the observer and subscribing it as part of the pipeline with the Subscribe operator

Subscribe ()Operator 1 ... Operator N

Observer

Observable

()

Observer

138 CHAPTER 6 Controlling the observer-observable relationship
Here’s an example that creates and subscribes an observer that prints to the screen
(much like the ConsoleObserver created in chapter 4). In this case, you pass all the
observer’s functions as arguments to the Subscribe operator:

Observable.Range(1, 5)
 .Subscribe(
 x => Console.WriteLine("OnNext({0})", x),
 ex => Console.WriteLine("OnError: {0}", ex.Message),
 () => Console.WriteLine("OnCompleted")
);

In the example, I provide lambda expressions as arguments to the Subscribe
method. This results in an observer that prints to the screen every notification it
receives.

 The output for this example is

OnNext(1)
OnNext(2)
OnNext(3)
OnNext(4)
OnNext(5)
OnCompleted

The overloads of the Subscribe method let you specify different functions as argu-
ments and create an observer that uses those functions as its implementation. Here’s a
list of most of the overloads:

IDisposable Subscribe<T>(this IObservable<T> source,
 Action<T> onNext)
IDisposable Subscribe<T>(this IObservable<T> source,
 Action<T> onNext,
 Action<Exception> onError)
IDisposable Subscribe<T>(this IObservable<T> source,
 Action<T> onNext,
 Action onCompleted)
IDisposable Subscribe<T>(this IObservable<T> source,
 Action<T> onNext,
 Action<Exception> onError,
 Action onCompleted)

As you can see from the overloads shown, you can specify the implementation of each
observer method (OnNext, OnCompleted, and OnError), and you can do it only for
those methods you care about (for example, creating an observer by specifying only
what happens in its OnNext method).

 The nicest thing about creating an observer with the Subscribe method is that it
allows you to keep everything together—the observable pipeline and the observer that
subscribes to it.

Creates an observable that
emits the numbers 1 to 5 Provides the implementation

for the OnNext method of the
observer that will be created

Provides the
implementation for the
OnError method of the

observer that will be created

Provides the implementation for
the OnCompleted method of the

observer that will be created

139Creating observers

.

 Using the Subscribe overloads is easy and powerful. Although it’s tempting to
use the simplest form of the Subscribe method (the one that requires only an
onNext argument), it’s also a place that hides many bugs.

 Consider the next example, where I create a pipeline to add a small math calcula-
tion on each number and deliberately create a condition to throw an exception after
the two first notifications:

Observable.Range(1, 5)
 .Select(x=> x/(x-3))
 .Subscribe(x => Console.WriteLine("{0}",x));

In this case when the exception is thrown, just as with regular exceptions, our applica-
tion will crash. An application that crashes is undesirable. Worse than that are those
instances where you don’t know how and why (let alone where) the application
crashed. To avoid the worst-case scenario, you should add an implementation to the
created observer OnError method. For example:

Observable.Range(1, 5)
 .Select(x => x/(x - 3))
 .Subscribe(x => Console.WriteLine("{0}", x),
 ex =>{/* do something with the exception */});

Now, the raised exception won’t crash the application; instead, the error-handling
code will run, and the observer will be detached from the observable.

 Leaving the error-handling code empty is possible, of course, just like creating an
empty catch block, which is known as exception swallowing or error hiding,1 but this is
considered bad practice because doing so will hinder your ability to investigate any
bugs in your application, especially when asynchroncity is involved.

6.1.3 Not passing OnError and asynchronous observables

In the previous chapter, you saw ways to create observables that perform asynchro-
nous behaviors. Let’s explore what happens if you add asynchronicity to our example.
What do you think will happen if you write this:

Observable.Range(1, 5)
 .Select(x => Task.Run(() => x / (x - 3)))
 .Concat()
 .Subscribe(x => Console.WriteLine("{0}", x));

Console.WriteLine("Press any key to continue...");
Console.ReadKey();

1 For more about exception swallowing or error hiding, see https://en.wikipedia.org/wiki/Error_hiding.

Creates an observable that
emits the numbers 1 to 5

When number 3 is reached, a
DivideByZeroException is thrown.

Regular notifications
will be treated here.

Error notifications will be
processed here or swallowed

Perform the calculation
asynchronously by creating
another task. When x = 3, an
exception will be thrown.

Concatenate the task (as
observables) to observe the
results in the same order as
that of task creation.

https://en.wikipedia.org/wiki/Error_hiding
http://mng.bz/IZ4B

140 CHAPTER 6 Controlling the observer-observable relationship
Running the example provides this output:

0
-2
Press any key to continue . . .

You know there’s an exception somewhere, but you don’t see it, and you’re not even
aware that it happened. More puzzling is that in production, you’ll suddenly stop see-
ing the output (or other types of results) from your observable pipeline, and this isn’t
a good thing.

 When you create tasks that fail (unintentionally, of course) and don’t handle the
exceptions within the task continuation or inside a catch block that wraps the await,
your application continues to work although the task was kicked out of your system.

TIP To capture and handle all the unhandled exceptions thrown from tasks,
you can use the TaskScheduler.UnobservedTaskException event that
will be triggered when a task is disposed of because its exception wasn’t
observed. You can also change the default behavior so that the process will
terminate by setting a configuration in your app.config\web.config file.2

I recommend that you always include some implementation of the OnError method;
at the very least, log it so you can investigate it later. Chapter 11 provides more details
about error handling and recovery.

6.1.4 Replacing the subscription disposal with cancellation

Another interesting variation of the Subscribe method is one that accepts a
CancellationToken as a parameter and lets you replace the disposable subscription
with a cancellation mechanism. For example:

void Subscribe<T>(
 this IObservable<T> source,
 /* onNext,OnCompleted,OnError permutations */,
 CancellationToken token)

These variations of Subscribe return void instead of IDisposable, so the ability to
unsubscribe the observer needs to be provided in some other way. This is the job of
CancellationToken. As figure 6.4 shows, Rx monitors CancellationToken for
cancellation and, when this happens, it disposes of the inner subscription and discon-
nects the observer from the observable.

Figure 6.4 Rx monitors the CancellationToken for cancellation.
When this happens, it will dispose of the inner subscription.

2 More details on unhandled exceptions can be found on MSDN: http://mng.bz/57Fv.

As with the Subscribe overload,
you can pass an implementation
of the OnNext, OnCompleted,
and OnError methods.

Cancellation
token

Disposable
subscription

Cancel Dispose of

http://mng.bz/57Fv

141Creating observers

P
can
tok
su
The next example uses the cancellation token to unsubscribe the observer 5 seconds
after it subscribes to the observable:

var cts = new CancellationTokenSource();
cts.Token.Register(() => Console.WriteLine("Subscription canceled"));

Observable.Interval(TimeSpan.FromSeconds(1))
 .Subscribe(x => Console.WriteLine(x), cts.Token);

cts.CancelAfter(TimeSpan.FromSeconds(5));

Passing a cancellation token to the Subscribe method can be useful when you need
to synchronize the cancellation of other parts of your system (such as other tasks).

6.1.5 Creating an observer instance

In the previous sections, the methods used in the overloads of the Subscribe method
create the observer instance behind the scenes, so you have no real interaction with it.

 Sometimes, you may want to access the observer instance. Let’s say you need to
pass it to a method as an argument, or you need to create an observer inside a method
and return it. In Microsoft StreamInsight (a high throughput, event-processing tool),
you can create observables and deploy them to a remote server, and then you can
create observers and pass them to a method that will attach them to the remote
observables.

 To create an implementation of the IObserver interface, you could, of course, cre-
ate a new class and implement each of its methods, but that’s an error-prone and daunt-
ing task (much like creating an observable from scratch, as discussed in chapter 4).

 Instead of creating new classes to implement new observers, I recommend an eas-
ier way using the Observer.Create method that resides in the System.Reactive
namespace. This will save you time and errors:

IObserver<T> Create<T>(
 Action<T> onNext,
 Action<Exception> onError,
 Action onCompleted)

Like the Observable.Subscribe overloads, you can pass an implementation of the
OnNext, OnError, and OnCompleted methods (or any subset of those) to
Observer.Create, and it returns an object that implements the IObserver<T>
interface, which calls the functions you provided.

 Here’s a small example that creates an observer that prints only the notifications
received in its OnNext method and then subscribes it to two observables:

var observer = Observer.Create<string>(x => Console.WriteLine(x));

Observable.Interval(TimeSpan.FromSeconds(1))
 .Select(x=>"X"+x)
 .Subscribe(observer);

Registers an operation to invoke
when there’s a cancellation

Creates an observable that
emits a value every 1 secondasses the

cellation
en while

bscribing
Waits 5 seconds before
canceling, which results in
unsubscribing the observer

142 CHAPTER 6 Controlling the observer-observable relationship
Observable.Interval(TimeSpan.FromSeconds(2))
 .Select(x => "YY" + x)
 .Subscribe(observer);

Running this example for 5 seconds shows this output:

X0
YY0
X1
X2
YY1
X3

In the example, you create two observables—one that emits a value every 1 second
(prefixed with X) and another that emits a value every 2 seconds (prefixed with YY).
You then use the same observer to subscribe to both observables. Figure 6.5 shows the
marble diagram of this program.

In most cases, manually creating an instance of the observer is unnecessary, but when
it’s needed, use Observer.Create. This will ensure that the observer behaves cor-
rectly with regard to the observable-observer protocol.

 After an observer is created and subscribed, you might want to end the relation-
ship at some point. In addition, you might want to gain better control of when the
relationship starts. Rx gives you tools to control the lifetime of your observer.

6.2 Controlling the observable-observer relationship lifetime
Subscribing an observer to an observable is easy; it’s as simple as calling the Subscribe
method. Unsubscribing is also easy. You need only to dispose of the subscription. You

01 sec interval

X0

1

X1

2

X2

3

X3

2 sec interval

Console.WriteLine("X0")

Console.WriteLine("YY0")

Console.WriteLine("X1")

Console.WriteLine("YY1")

Console.WriteLine("X3")

Console.WriteLine("X2")Observer

0

YY0

1

YY1

Figure 6.5 Subscribing the
same observer to multiple
observables lets you share
and reuse the subscriber’s
functionality.

143Controlling the observable-observer relationship lifetime

time
ev
can, however, tweak the observable pipeline so that, even though the observer
subscribes, notifications are observed at only a specific time (or condition) and stop
being observed after a specific time (or condition), as shown in figure 6.6.

 Just like the singer and its audience, each listener in the audience is an observer
(or subscriber) that can arrive at the show at any time, but is allowed to enter the hall
only when the organizers decide. Moreover, the listener can leave the show whenever
they decide to do so (disposing of the subscription). The singer, on the other hand,
will start the show when they decide to do so and will stop the show as determined by
some predefined condition, such as the number of songs, a specific duration, or when
another singer is ready to perform onstage (another observable).

 The same applies to observables. In some scenarios, you might want to configure
the notifications to be observed after a certain time or to complete based on a particu-
lar condition. Instead of writing the code to handle those repeatable patterns yourself,
Rx provides operators to make your job super easy.

6.2.1 Delaying subscription

Calling the Subscribe method will immediately make the observable aware of the
observer and, from that point, emit notifications to it. For some scenarios, it may be
necessary to delay the time the subscription is made. For example, if you’re planning
a trip, you would want to observe notifications about the weather at your destination
closer to the time of your flight and not necessarily when you booked the tickets.

 The DelaySubscription operator receives a TimeSpan or DateTimeOffset
that marks the point to make the subscription. This is how to delay the subscription 5
seconds:

Console.WriteLine("Creating subscription at {0}", DateTime.Now);
Observable.Range(1, 5)
 .Timestamp()
 .DelaySubscription(TimeSpan.FromSeconds(5))
 .SubscribeConsole();

Beginning of
observation

End of
observation

Figure 6.6 Given an observable, the beginning of the emissions observed
by the observers as well as the end of the emissions are configurable and
create an observation box.

Creates an observable
that emits 5 valuesAdds a

stamp to
ery value Delays the subscription

by 5 secondsSubscribes an observer that writes
every notification to the console

144 CHAPTER 6 Controlling the observer-observable relationship

Here’s the output:

Creating subscription at 06/09/2015 00:00:00
 - OnNext(1@05/09/2015 00:00:05 +00:00)
 - OnNext(2@05/09/2015 00:00:05 +00:00)
 - OnNext(3@05/09/2015 00:00:05 +00:00)
 - OnNext(4@05/09/2015 00:00:05 +00:00)
 - OnNext(5@05/09/2015 00:00:05 +00:00)
 - OnCompleted()

You can see that although you created the subscription at 00:00:00, the notification
started at 00:00:05, meaning the subscription happened only at that time. Because the
observable is cold (cold observables are described in the next chapter), a sequence of
notifications will be generated the moment the observer subscribes. The observer will
receive five notifications, but only from the moment it subscribes. Our observer won’t
miss any emission.

 These are the overloads for the DelaySubscription operator—one for relative
time and one for absolute time:

IObservable<TSource> DelaySubscription<TSource>(
 this IObservable<TSource> source,
 TimeSpan dueTime)
IObservable<TSource> DelaySubscription<TSource>(
 this IObservable<TSource> source,
 DateTimeOffset dueTime)

It’s important to note that the relative TimeSpan is started only from the point the
subscription is requested and not from the moment DelaySubscription is added to
the pipeline as the next example shows:

Console.WriteLine("Creating the observable pipeline at {0}", DateTime.Now);
var observable =
 Observable.Range(1, 5)
 .Timestamp()
 .DelaySubscription(TimeSpan.FromSeconds(5));

Thread.Sleep(TimeSpan.FromSeconds(2));

Console.WriteLine("Creating subscription at {0}", DateTime.Now);
observable.SubscribeConsole();

Now, when you run this example, you get these results:

Creating the observable pipeline at 06/09/2015 00:00:10
Creating subscription at 06/09/2015 00:00:12
 - OnNext(1@05/09/2015 00:00:17 +00:00)
 - OnNext(2@05/09/2015 00:00:17 +00:00)
 - OnNext(3@05/09/2015 00:00:17 +00:00)
 - OnNext(4@05/09/2015 00:00:17 +00:00)

Delay by a
relative TimeSpan

Delay to an absolute
DateTimeOffset

Creates an observable that emits
five notifications with a timestamp

Delays each subscription
to this observable by
5 seconds

Creates a short pause between creating the observable
pipeline and the point of subscribing the observer

Subscribes an
observer that writes
to the console

145Controlling the observable-observer relationship lifetime

Takes t
tim
 - OnNext(5@05/09/2015 00:00:17 +00:00)
 - OnCompleted()
Done

You can see from the results that the 5-second delay took place after the call to the
Subscribe method and not when the DelaySubscription operator was added.
Another important aspect of the observer lifetime is that you can control when it stops
receiving the notifications, as you’ll see next.

6.2.2 Stop emitting notifications at a scheduled time

If you need the observable to complete and to stop emitting notifications at an abso-
lute time (for example, at midnight January 1, 2020), there’s no reason to subscribe to
its updates. Rather than creating a Timer and disposing of the subscription, there’s an
easier way. You can use the TakeUntil operator.

 The TakeUntil operator receives a DateTimeOffset, which is an absolute date
and time in a specific time zone. When that time arrives, the observable will notify its
observers that it has completed. There’s no relative time overload for TakeUntil, but
here’s a simple example that uses the absolute time version to schedule the unsub-
scribe in a relative time of 5 seconds:

Observable.Timer(DateTimeOffset.Now,TimeSpan.FromSeconds(1))
 .Select(t => DateTimeOffset.Now)
 .TakeUntil(DateTimeOffset.Now.AddSeconds(5))
 .SubscribeConsole("TakeUntil(time)");

This generates the following output:

TakeUntil(time) - OnNext(07/09/2015 10:00:10 +03:00)
TakeUntil(time) - OnNext(07/09/2015 10:00:11 +03:00)
TakeUntil(time) - OnNext(07/09/2015 10:00:12 +03:00)
TakeUntil(time) - OnNext(07/09/2015 10:00:13 +03:00)
TakeUntil(time) - OnNext(07/09/2015 10:00:14 +03:00)
TakeUntil(time) - OnCompleted()

You can see from the output that the first notification was emitted at 10:00:10 and
because you scheduled the observable to stop receiving notification after 5 seconds,
you see that the last notification was received at 10:00:14 (5 seconds later). This is the
complete signature for TakeUntil:

IObservable<TSource> TakeUntil<TSource>(
 this IObservable<TSource> source,
 DateTimeOffset endTime)

6.2.3 Discarding items when another observable emits

Rx makes it easy to combine observables to build powerful pipelines. Among those
operators that allow combining observables is another variation of TakeUntil. This

Produces a value
every second, but

starts immediately

he current
e in every
iteration

Schedules the unsubscribe
to 5 seconds from now

The time the observer will
stop taking notifications
from the observable

146 CHAPTER 6 Controlling the observer-observable relationship
lets you make the observable stop emitting notifications based on external conditions
that are represented by another observable emission, as shown in figure 6.7.

 If you want your observable to stop emitting notifications after a certain period
(instead of an absolute time), you can write code like this:

Observable.Timer(DateTimeOffset.Now,TimeSpan.FromSeconds(1))
 .Select(t => DateTimeOffset.Now)
 .TakeUntil(
 Observable.Timer(TimeSpan.FromSeconds(5)))
 .SubscribeConsole("TakeUntil(observable)");

Running this code produces

TakeUntil(observable) - OnNext(07/09/2015 18:39:18 +03:00)
TakeUntil(observable) - OnNext(07/09/2015 18:39:19 +03:00)
TakeUntil(observable) - OnNext(07/09/2015 18:39:20 +03:00)
TakeUntil(observable) - OnNext(07/09/2015 18:39:21 +03:00)
TakeUntil(observable) - OnNext(07/09/2015 18:39:22 +03:00)
TakeUntil(observable) - OnCompleted()

In this example, you can see that 5 seconds after the first notification (which is produced
immediately when the observer subscribes), the OnCompleted message is received.

 The method signature for the TakeUntil operator is shown next. Because the
other observable can be of any type, you can use whatever observable you want to con-
trol the observations of the emissions.

IObservable<TSource> TakeUntil<TSource, TOther>(
 this IObservable<TSource> source,
 IObservable<TOther> other)

USING OBSERVABLES AS EXTERNAL TRIGGERS FOR TAKEUNTIL

Of course, more-complex scenarios could determine when to stop receiving notifica-
tions. For example, you can specify that a chat message observer will stop “listening”
to chat messages when a certain control message arrives:

IObservable<string> messages = ...
IObservable<string> controlChannel = ...

messages
 .TakeUntil(controlChannel.Where(m => m == "STOP"))
 .Subscribe(

Source

Other

Source
 .TakeUntil(Other)

Figure 6.7 The TakeUntil
operator allows notifications
from the observable source to
proceed until the other
observable emits a notification.

Creates an observable that produces a single value after 5
seconds and passes it to the TakeUntil operator. The

observer stops receiving notifications after that time.

Terminates propagation
of elements of the
source sequence

Allows the notification to be observed only
until the message STOP is received. No

more messages will be observed after that.

147Controlling the observable-observer relationship lifetime
 msg => {/* add to message screen */ },
 ex => { /* error handling */},
 () => { /* completion handling */});

Using observables as the parameter for an operator is seen frequently in Rx and is a
flexible mechanism of control.3

6.2.4 Skipping notifications

At times you might want to subscribe an observer to an observable, but receive notifi-
cations only when a particular condition is met. For instance, in a chat message, you
could specify to receive messages only after a specific control message is sent. Or, you
may want to skip a specified number of search results if you know in advance that the
first results are irrelevant. The Where operator used in previous chapters (and
explained in-depth in chapter 8) can filter notifications, but after you add a condi-
tion, you can’t disable it when it evaluates to true for the first time. Notifications will
keep being pushed, even if not all of them survive the filtering.

SKIPPING UNTIL . . .
The SkipUntil operator, depicted in figure 6.8, lets you specify when to start receiv-
ing notifications from the observable source, giving you finer control over your appli-
cation’s operations.

Figure 6.8 The SkipUntil operator lets you skip notifications from the
observable source until the other observable emits a notification.

Suppose a chat application needs to start showing messages from a certain user only
when a specific control message is sent, like the traffic cop who allows traffic to pro-
ceed only after receiving an order from the commander. This is how it could be done:

IObservable<string> messages = ...
IObservable<string> controlChannel = ...

messages
 .SkipUntil(controlChannel.Where(m => m == "START"))
 .Subscribe(
 msg => {/* add to message screen */ },
 ex => { /* error handling */},
 () => { /* completion handling */});

3 This powerful mechanism is a result of the IObservable<T> being a monad. Good explanations of monads
with .NET types can be found at http://mng.bz/E381 and http://ericlippert.com/2013/02/21/monads-part-
one/.

Source

Other

Source
 .skipUntil(other)

The moment the
message START is
received, notifications
will be observed.

http://mng.bz/E381
http://ericlippert.com/2013/02/21/monads-part-one/
http://ericlippert.com/2013/02/21/monads-part-one/

148 CHAPTER 6 Controlling the observer-observable relationship
The SkipUntil operator has two overloads: one that accepts a DateTimeOffset for
absolute time scheduling (which is relatively straightforward at this point) and one
that accepts an observable that acts as an external trigger. For example:

IObservable<TSource> SkipUntil<TSource>(this IObservable<TSource> source,
 DateTimeOffset startTime)
IObservable<TSource> SkipUntil<TSource, TOther>(
 this IObservable<TSource> source,
 IObservable<TOther> other)

TIP You can also skip items based on relative time by using the Skip operator.

If you need to specify the number of items to skip, the Skip operator is what you’re
looking for.

SKIPPING A NUMBER OF NOTIFICATIONS

Sometimes you want to skip notifications by a predefined number of items (for exam-
ple, you want to combine an observable with a shifted version of itself, so you can
process two adjacent notifications). Just as in LINQ, you can use the Skip operator to
do that:

IObservable<TSource> Skip<TSource>(this IObservable<TSource> source,
 int count)

The following shows an example for bypassing the first two notifications:

Observable.Range(1, 5)
 .Skip(2)
 .SubscribeConsole("Skip(2)");

This example produces this output:

Skip(2) - OnNext(3)
Skip(2) - OnNext(4)
Skip(2) - OnNext(5)
Skip(2) - OnCompleted()

TIP If you want to stop receiving notifications after a predefined number of
notifications, just as in LINQ, use the Take operator that receives the number
of elements you want as an integer.

6.2.5 Taking or stopping when a condition is met

If none of the methods for starting or stopping notifications is suitable for your needs,
you can use the configurable TakeWhile or SkipWhile overloads, which receive a
predicate that indicates when to start or stop:

IObservable<TSource> TakeWhile<TSource>(this IObservable<TSource> source,
 Func<TSource, bool> predicate)
IObservable<TSource> TakeWhile<TSource>
 (this IObservable<TSource> source,

Skipping notifications
until an absolute time

Skipping notifications until another
observable emits a notification

Accepts the notifications as long
as the predicate on the
notification data evaluates to true.

149Controlling the observable-observer relationship lifetime
Func<TSource, int, bool> predicate)
IObservable<TSource> SkipWhile<TSource>(this IObservable<TSource> source,
Func<TSource, bool> predicate)
IObservable<TSource> SkipWhile<TSource>(this IObservable<TSource> source,
Func<TSource, int, bool> predicate)

Figures 6.9 and 6.10 show that when the predicate evaluates to true, something hap-
pens—either you start or you stop accepting notifications.

Figure 6.9 The TakeWhile operator accepts notifications while a predicate function
evaluates to true and discards all items after the predicate evaluates to false.

Figure 6.10 The SkipWhile operator discards the notifications as long as a predicate
evaluates to true and accepts all notifications after the predicate evaluates to false.

You can use the two operators together to observe only a subrange of values:

Observable.Range(1, 10)
 .SkipWhile(x => x < 2)
 .TakeWhile(x => x < 7)
 .SubscribeConsole();

This example allows only a range of numbers between 2 (inclusive) and 7 (exclusive)
to be observed:

 - OnNext(2)
 - OnNext(3)
 - OnNext(4)
 - OnNext(5)
 - OnNext(6)
 - OnCompleted()

Accepts the notifications as
long as the predicate on the

notification data and its
index evaluate to true.

Bypasses notifications as long as
the predicate on the notification
data evaluates to true.

Bypasses notifications as long as
the predicate on the notification

data and its index evaluate to true.

Source

Source
 .TakeWhile(predicate)

Predicate Predicate Predicate

Source

Source
 .SkipWhile(predicate)

predicate predicate predicate

150 CHAPTER 6 Controlling the observer-observable relationship
With operators that take or skip notifications, you can easily adjust the source observ-
able you subscribe to and control the input your code responds to. How wonderful is
that? After the observable you subscribe to completes, no matter whether it’s due to
the completion of the source or because you discard further notifications, you can
choose to start all over again, just as when you hear your favorite album and want to
hear it one more time.

6.2.6 Resubscribing

After an observable completes, no more notifications are received by the observer.
Sometimes, however, you may want to restart and subscribe to the observable. This is
usually done when you have a cold observable (covered in chapter 7) that starts emitting
notifications when the observer subscribes. Resubscribing will make the observable
emit the notifications again. This can also occur with hot observables. For example, you
can subscribe to a mouse movement observable until a click is made and then resub-
scribe to capture the movements until the next click happens, and so on.

 To automatically resubscribe in Rx, you use the Repeat operator. For example,
you can create an observable that emits the range 1 to 3 twice:

Observable.Range(1, 3)
 .Repeat(2)
 .SubscribeConsole("Repeat(2)");

This example generates this output

Repeat(2) - OnNext(1)
Repeat(2) - OnNext(2)
Repeat(2) - OnNext(3)
Repeat(2) - OnNext(1)
Repeat(2) - OnNext(2)
Repeat(2) - OnNext(3)
Repeat(2) - OnCompleted()

The Repeat operator has two overloads, as shown next. With both overloads, when the
source observable completes successfully, an observer will be subscribed to it again:

IObservable<TSource> Repeat<TSource>(this IObservable<TSource> source)
IObservable<TSource> Repeat<TSource>(this IObservable<TSource> source,
 int repeatCount)

TIP Another operator that allows “repeating” an observable is DoWhile,
which repeats the observable if a predicate is true.

You need to remember that Repeat calls the Subscribe method according to the
number of times you specified. So if there’s a side effect taking place in the observable
Subscribe method (such as connecting to an external source), it’ll repeat.

Repeats the sequence
indefinitely

Repeats the sequence a
specified number of times

151Controlling the observable-observer relationship lifetime
 Side effects are another interesting topic. When thinking about observable pipe-
lines, how can you add an invocation to an operation (such as logging) in the middle
of the pipeline? We’ll discuss that next.

6.2.7 Adding side effects in the observable pipeline

In chapter 3, you learned that a side effect is a change in the environment that influ-
ences the way your application behaves. You also discovered that functional program-
ming languages try to avoid creating side effects, but at times they’re necessary. And,
frankly, many of your applications would be limited if they couldn’t change state or
call operations to change the environment.

 The important part about side effects is that you want them to be visible and dis-
coverable. Until now, the only place that you could change state or call operations was
inside the Rx observer methods, which means only at the end of the notification jour-
ney when something reacted to it. This is limiting. What if you wanted to do some-
thing simple like writing a log between operators?

 To allow this kind of operation as part of your observable pipeline, Rx provides the
Do operator (illustrated in figure 6.11).

Figure 6.11 Adding a side effect between operators

Here’s how to use the Do operator to add logs that’ll make it easy to debug your
observable pipeline:

Observable.Range(1, 5)
 .Do(x=> { Console.WriteLine("{0} was emitted",x); })
 .Where(x=>x%2==0)
 .Do(x => { Console.WriteLine("{0} survived the Where()", x); })
 .Select(x=>x*3)
 .SubscribeConsole("final");

This little application creates an observable that emits a range of values (1 to 5), filters
the odd numbers, and multiplies the even numbers by 3. Between each operator, you
added code to print to the console with the Do operator. This is the output:

1 was emitted
2 was emitted
2 survived the Where()
final - OnNext(6)
3 was emitted

Operator 3Operator 1 Do something

Observer

152 CHAPTER 6 Controlling the observer-observable relationship

4 was emitted
4 survived the Where()
final - OnNext(12)
5 was emitted
final - OnCompleted()

Like the Subscribe operator, the Do operator has several overloads that let you add
functionality to the various source observable emissions:

IObservable<TSource> Do<TSource>(this IObservable<TSource> source,
 Action<TSource> onNext)
IObservable<TSource> Do<TSource>(this IObservable<TSource> source,
 Action<TSource> onNext,
 Action onCompleted)
IObservable<TSource> Do<TSource>(this IObservable<TSource> source,
 Action<TSource> onNext,
 Action<Exception> onError)
IObservable<TSource> Do<TSource>(this IObservable<TSource> source,
 Action<TSource> onNext,
 Action<Exception> onError,
 Action onCompleted)

IObservable<TSource> Do<TSource>(this IObservable<TSource> source,
 IObserver<TSource> observer)

You can take the logging example one step further and create a reusable Log operator
that prints all the source observable notifications for you. The Log operator will use
Do to print various emissions coming from the observable source.

public static IObservable<T> Log<T>(this IObservable<T> observable,
 string msg="")
{
 return observable.Do(
 x => Console.WriteLine("{0} - OnNext({1})", msg, x),
 ex =>
 {
 Console.WriteLine("{0} - OnError:", msg);
 Console.WriteLine("\t {0}", ex);
 },
 () => Console.WriteLine("{0} - OnCompleted()", msg));
}

This Log operator is nice to play with when investigating your observable’s pipeline,
and you might find it useful in your applications. Here’s how I use it in the example:

Observable.Range(1, 5)
 .Log("range")
 .Where(x => x%2 == 0)
 .Log("where")
 .Select(x => x*3)
 .SubscribeConsole("final");

Listing 6.1 The Log operator

Invokes the
appropriate
actions for each
notification in
the observable
sequence; you
can choose which
actions you want
to provide.

Passes an observer, instead
of each individual action

153Putting it all together
This produces

range - OnNext(1)
range - OnNext(2)
where - OnNext(2)
final - OnNext(6)
range - OnNext(3)
range - OnNext(4)
where - OnNext(4)
final - OnNext(12)
range - OnNext(5)
range - OnCompleted()
where - OnCompleted()
final - OnCompleted()

As mentioned previously, adding side effects to the observable pipeline could intro-
duce some confusion, but when used correctly, they can improve the code you write,
in both readability and correctness. Next, I’ll show you how combining the operators
you’ve learned about in this chapter can turn a large complex application into a small
yet comprehensible one.

6.3 Putting it all together
All the operators you’ve learned about let you process complex events easily, especially
when combining them. Did you ever think that your mouse could be treated as an
observable? It’s an observable that’s capable of producing notifications about the state
of the mouse buttons and, of course, the current cursor position.

 You can take advantage of this to create a reactive drawing application. The appli-
cation draws lines by adding points based on the mouse position in a window, starting
when the mouse button is pressed down, and stopping when the mouse button is
released. An example of a simple drawing is shown in figure 6.12.

Figure 6.12 The Reactive Draw application. A line is created by adding points based on the
position of the mouse, starting from the point the mouse button is down and stopping when it’s up.

Mouse button
was down

Mouse button
was up

154 CHAPTER 6 Controlling the observer-observable relationship
This is how the application looks when writing it in a WPF window.
 First, you need to create observables from the traditional MouseDown, MouseUp,

and MouseMove events:

var mouseDowns =
Observable.FromEventPattern<MouseButtonEventArgs>(this, "MouseDown");
var mouseUp =
Observable.FromEventPattern<MouseButtonEventArgs>(this, "MouseUp");
var movements =
Observable.FromEventPattern<MouseEventArgs>(this, "MouseMove");

Now, for each movement, you select the mouse position and add a point to a polyline
drawn in the window’s inner panel:

movements
 .Select(m => m.EventArgs.GetPosition(this))
 .Subscribe(pos => line.Points.Add(pos));

This code creates an application that draws a continuous line, without stopping. So
now you need to add a condition that will stop taking the movements when the mouse
button is up. This is exactly the job for TakeUntil:

movements
 .Select(m => m.EventArgs.GetPosition(this))
 .TakeUntil(mouseUp)
 .Subscribe(pos => line.Points.Add(pos));

Here the mouseUp observable is passed to the TakeUntil operator. When a notifica-
tion that that mouse button is up is emitted, the observer will be detached from the
observable.

 You still need to add the trigger to start drawing the line when the mouse button is
down. This is achieved by using the SkipUntil operator. For example:

movements
 .SkipUntil(mouseDowns)
 .Select(m => m.EventArgs.GetPosition(this))
 .TakeUntil(mouseUp)
 .Subscribe(pos => line.Points.Add(pos));

After a mouse-button-down notification is emitted, the mouse movements are
observed by the observer that adds the points to the line. And when the mouse button
is up, the observer stops.

 This creates a situation in which only one transaction is allowed (only one cycle of
a mouse-down and mouse-up event). For this application, you want to repeat this cycle
again and again, which is (of course) the job of Repeat. For example:

Subscribes to the events raised by the window, passing
the this (the window object) as an argument and the
name of the event to the FromEventPattern method.

Observes the mouse movements
(of type MouseEventArgs)

Takes the mouse position
relative to the window’s
coordinate systemAdds a point

to the polyline

Observes the mouse position only
until the mouse button is up.

Movements aren’t observed by the
observer until a mouse-button-
down notification is emitted.

155Summary

Add

crea
add
movements
 .SkipUntil(mouseDowns)
 .Select(m => m.EventArgs.GetPosition(this))
 .TakeUntil(mouseUp)
 .Repeat()
 .Subscribe(pos => line.Points.Add(pos));

Great, you now have an application that draws a line, but it always adds points to the
same line. A drawing application that draws only one line, reactive as it may be, isn’t
useful.

 What you want is to add a new line when the mouse button is down and have the
points received from the mouse move added to that line, which becomes the current
line. This is a side effect you need to take care of. Luckily, you have the Do operator.
The following listing shows the complete application code that handles the drawing.
As always, you can find the entire application’s source code in the book’s Git repo
(http://mng.bz/IZ4B).

Polyline line = null;

movements
 .SkipUntil(
 mouseDowns.Do(_ =>
 {
 line = new Polyline() {Stroke = Brushes.Black, StrokeThickness = 3};
 canvas.Children.Add(line);
 }))
 .TakeUntil(mouseUp)
 .Select(m => m.EventArgs.GetPosition(this))
 .Repeat()
 .Subscribe(pos => line.Points.Add(pos));

This example shows the beauty of the operator composability you have in Rx. Each
operator logically follows another to create a clear chain of execution, in which one
observable created by an operator becomes the source observable of the next opera-
tor. You created a complete drawing application with just a few lines of code, and mod-
ifying our pipeline as you built it was simple.

6.4 Summary
Another chapter comes to its end, and this one was fundamental for understanding
how to work correctly with the observer and observables. The concepts in this chap-
ter aren’t easy to understand, so you should commend yourself for making it such a
long way.

 Here’s what you learned in this chapter:

 You can easily create and subscribe an observer by using the Subscribe exten-
sion method, which accepts the OnNext, OnError, and OnCompleted methods.

Listing 6.2 Reactive Draw application—full code

Resubscribe to the mouse movements,
only after the mouse button is down

The current line will be
held by this variable.

ing a side effect to
each mouse-down

notification that
tes a new line and
s it to the window

http://mng.bz/IZ4B

156 CHAPTER 6 Controlling the observer-observable relationship
 If you want to use the observer more than once, you can create an observer
instance with the Observer.Create method and subscribe it yourself.

 You can replace the disposable subscription object with a CancellationToken
and then pass it to the Subscribe method.

 To delay the subscription of an observer to an observable, you use the Delay-
Subscription method and pass it the relative TimeSpan or the absolute
DateTimeOffset.

 The TakeUntil operator lets you specify the time the observer will stop receiv-
ing notifications or lets you pass another observable that marks the stop by
emitting a notification.

 The SkipUntil operator lets you specify the time the observer will start receiv-
ing notifications or lets you pass another observable that marks the start by
emitting a notification.

 You can skip any number of notifications by using the Skip operator, and stop
receiving notifications after a specified number by using the Take operator.

 You can set a condition to start receiving notifications and to stop receiving
notifications by using the SkipWhile and TakeWhile operators, respectively.

 An observer can automatically be subscribed to an observable with the Repeat
operator, which lets you specify a certain number of times or an indefinite num-
ber of times.

 To show a side effect explicitly as part of your observable pipeline, use the Do
operator, where you can specify the actions to do in the OnNext, OnError, and
OnCompleted notifications.

 The Reactive Drawing application you created in this chapter used many of
these operators to make a powerful application with just a few lines of code.

 In the next chapter, you’ll explore the concept of an observable’s temperature
and learn what cold and hot observables mean.

Controlling the observable
temperature
The abstraction provided by observables hides from the observers the knowledge of
how the underlying source makes the emissions. Depending on the way the observ-
able is implemented, the same emissions (the object instance) might be shared
between the various observers, or alternatively, each observer might get different
instances. The observable might be implemented so that each observer receives the
entire sequence, or instead receives part of the sequence, depending on when it
subscribed.

 Say an observable emits sound waves. As an observer, you don’t know whether
the sound is coming from a live concert, or played from an album that was started
the moment the observer subscribed. During a concert, all the listeners (the
observers) share the same tunes. But when played from an album, the tunes are
played to each listener independently, and the full sequence of songs can be con-
sumed no matter when the observer subscribed.

This chapter covers
 Creating publishers with subjects

 Working with hot and cold observables

 Moving from hot to cold and vice versa

 Controlling the hot observable lifetime
157

158 CHAPTER 7 Controlling the observable temperature
 The term observable temperature refers to the state of the observable at the moment
of its subscription. This state describes the time an observable begins and stops its
emissions and whether the emissions are shared between observers. A hot observable is
in an active state, like a singer performing live or an observable that emits the mouse’s
current position. In contrast, a cold observable is in a passive state, like an album waiting
to be played or an observable that pushes the elements in a loop when an observer
subscribes.

 To control and change the observable temperature—for example, when you want
to make sure all observers observe the same items, or when you want to “record” noti-
fications to replay them later—you need to use one of the Rx building blocks—the
Subject, a type that’s both an observable and an observer. Subject acts as a hub
that allows multicasting notifications. You can also use Subject to create a PubSub
inside your application. At the end of the chapter, you’ll know how to identify and
control the shareability of your observable so that the results of your queries will
always be predictable.

7.1 Multicasting with subjects
A type that implements the IObservable<T> interface and IObserver<M> interface
is called a subject. This type acts as both an observer and an observable, as shown in fig-
ure 7.1. It allows you to create an object that becomes a hub, which is able to intercept
notifications it receives as an observer and push them to its observers. This, for exam-
ple, can be used inside a shopping-cart class to notify various observers (such as the
relevant UI component) about items added or removed from the cart. The cart
exposes Subject as an observable, and the cart Add and Remove methods call the
subject’s OnNext method to notify about the change.

Figure 7.1 A subject is a type that’s both an observable and an observer. It allows
multicasting the notifications emitted by the sources to the observers.

Subject

Observer

Observer

Observer

Observable

Observable

:
:

:
:

Observable

159Multicasting with subjects
The following listing provides the definition of the ISubject interface that resides in
the System.Reactive.Subjects namespace.

interface ISubject<in TSource, out TResult> : IObserver<TSource>,
 IObservable<TResult>
{
}

The Subject type represents a PubSub (publisher-subscriber) pattern: the subject
consumes notifications on one side (or is triggered by a notification) and emits notifi-
cations on the other side. This lets you create types that add special logic (transforma-
tions, caching, buffering, and so on) within the notifications received before they’re
published, or allows multicasting from one source to multiple destinations.

 When TSource and TResult generic parameters are of the same type, you can
use the simpler version of the ISubject interface.

interface ISubject<T> : ISubject<T, T>
{
}

Rx provides these subject implementations:

 Subject<T>—Broadcasts every observed notification to all observers.
 AsyncSubject<T>—Represents an asynchronous operation that emits its

value upon completion.
 ReplaySubject<T>—Broadcasts notifications for current and future observers.
 BehaviorSubject<T>—Broadcasts notifications and saves the latest value for

future observers. When created, it’s initialized with a value that emits until
changed.

In all the standard implementations of subjects inside the Rx library, the observers
receive the notifications sequentially, in the order that they subscribed.

Listing 7.1 The ISubject interface

Listing 7.2 ISubject interface with Source and Result types that are the same

Why is it called a subject?
In chapter 1, I mentioned that Rx drew its inspiration from the original GoF observer
design pattern. In this pattern, the subject is observed by the observers and can be
externally triggered to raise the notifications. The Rx Subject plays the same role
as the subject in the observer pattern, therefore its name.

160 CHAPTER 7 Controlling the observable temperature
7.1.1 Simple broadcasting with Subject<T>

The simplest subject implementation is Subject<T>, which serves as a simple broad-
caster, as shown in figure 7.2. This type adds no behavior around the received notifica-
tion. Each observed notification is broadcast to the observers without any additional
processing. This is why it makes Subject<T> a good fit for a backing field to an observ-
able that’s exposed by your class. All you need to do is tell it to push notifications from
various methods in the class (such as the shopping cart that needs to notify parts of the
application that it has changed).

Figure 7.2 Subject<T> is a broadcaster. Each notification it observes is
broadcast to its observers.

Because Subject<T> is an observer, it exposes the OnNext, OnCompleted, and
OnError methods, so when they’re called, the same methods are called on all the
observers. You can manually signal a subject to emit notifications by calling its
exposed methods.

 This example uses a subject to publish two notifications to two observers and then
completes:

using System.Reactive.Subjects;

Subject<int> sbj = new Subject<int>();

sbj.SubscribeConsole("First");
sbj.SubscribeConsole("Second");

sbj.OnNext(1);
sbj.OnNext(2);
sbj.OnCompleted();

Subject

Observer

Observer

Observer

A single notification
observed by the subject

The same notification
broadcasted to all
the observers

:
:

Creates a subject
of integers

Subscribes two observers

Emits two notifications Notifies subscribed observers about
the end of the observable sequence

161Multicasting with subjects

Cre
sub
typ
Running this example displays the following output:

First - OnNext(1)
Second - OnNext(1)
First - OnNext(2)
Second - OnNext(2)
First - OnCompleted()
Second - OnCompleted()

Each time you call the OnNext or OnCompleted methods on the subject, the observ-
ers receive the notification in the order in which they subscribe.

MULTIPLE SOURCE, BUT ONE COMPLETION

One misunderstanding I see when working with Subject<T> is that although there
can be many source observables, only one completion will occur and be passed to the
observers. Subjects conform to the observable-observer protocol mandate that after
completion, no more notifications are emitted.

 Consider this example: a subject subscribes to two observables representing two
chat rooms, each emitting messages as they’re received from participants. Each
observable emits five notifications but at different rates—every 1 second and every 2
seconds. The desired behavior is that the observer subscribing to the subject will
receive the messages from both chat rooms and, if one chat room completes (all the
participants leave), the messages from the other chat room will continue to be
observed. But, confusingly, the real behavior is that the observer will receive the values
emitted only until either observable completes; the rest of the notifications from the
other observable won’t pass through, as shown in figure 7.3.

Subject<string> sbj = new Subject<string>();

Observable.Interval(TimeSpan.FromSeconds(1))
 .Select(x => "First: " + x)
 .Take(5)
 .Subscribe(sbj);
Observable.Interval(TimeSpan.FromSeconds(2))
 .Select(x => "Second: " + x)
 .Take(5)
 .Subscribe(sbj);

sbj.SubscribeConsole();

Listing 7.3 Subscribing the subject to multiple observables

First

Second

Subject

Figure 7.3 The subject can
subscribe to multiple sources,
but when any of the sources
completes (the second in this
figure), so does the subject.

ates a
ject of
e string

Creates an observable that simulates the
first chat room the subject is subscribed
to. Chat room emits five notifications
before completion, one every 1 second.

Simulates a second chat room which
emits five notifications before
completion, one every 2 seconds.

Subscribes an observer
to the subject

162 CHAPTER 7 Controlling the observable temperature

Don’t
Use M
instea
After running this example, you’ll get this output:

- OnNext(First: 0)
- OnNext(Second: 0)
- OnNext(First: 1)
- OnNext(First: 2)
- OnNext(Second: 1)
- OnNext(First: 3)
- OnNext(First: 4)
- OnCompleted()

The output shows that after the five values are emitted by the first observable, a com-
pletion notification from the first observable is observed by the subject and then pub-
lished to its observer. Afterward, no more notifications are received.

CLASSIC MISUSE OF A SUBJECT

Typically, developers naively try to merge observables together by using a subject, but
the built-in Merge operator should be used instead. The following listing shows a clas-
sic example of a subject misuse: the subject subscribes to multiple sources to merge
them. And the surprisingly confusing result is that the resulting sequence isn’t
merged at all. The scenario here merges an enumerable that was fetched from a data-
base and transformed to an observable (everything is a stream, remember?1) together
with an observable of real-time notifications. The observable created from the enu-
merable completes first and, therefore, the rest of the notification won’t be observed,
making the result confusing.

Subject<string> sbj = new Subject<string>();
sbj.SubscribeConsole();

 //at some point later...

IEnumerable<string> messagesFromDb = ...
IObservable<string> realTimeMessages = ...

messagesFromDb.ToObservable().Subscribe(sbj);
realTimeMessages.Subscribe(sbj);

In the example, you create a subject at the beginning of the application and subscribe
an observer to it. (In a real application, the observer can be the screen that shows the
messages.) Later, somewhere in the code (for example, after the initialization pro-
cess), you subscribe the subject to two observables: the first is an enumerable of the

1 Chapter 1 introduced the concept that everything is a stream.

Listing 7.4 The wrong way to merge observables

Creates a subject and
subscribes an observer

Fetches a collection of
messages from the database

Creates an observable of messages
that emits messages in real time

 do it.
erge
d. Converts the collection to an observable

that synchronously emits all the
messages to the subject subscribed
to it and publishes its completeness

Subscribes the subject (because the previous
observable already completed, none of this
observable’s notifications will be observed)

163Multicasting with subjects
items that the database loads (and transforms to the observable), and the second is
the observable of the messages received in real time. This creates a simple implemen-
tation of a merge; however, the correct way to implement the merge is by using the
Merge operator.

 The first observable is created from a finite collection of messages because a finite
number of messages are stored in the database. The moment the subject subscribes to
it, all the messages are synchronously emitted, and then the OnCompleted method is
called on Subject.

 Calling the OnCompleted method at this point means the subject discards any
message emitted afterward. This makes the subscription to the second observable use-
less, as it has no effect.

TIP As a general rule, use subjects (of any kind) with caution, and make sure
you’re not reinventing the wheel; instead, use the built-in Rx operators.

One problem with Subject<T> you may encounter is that if the source observable
emits a value before an observer subscribes, this value will be lost. This is specifically
problematic if the source always emits only a single notification. Luckily, AsyncSub-
ject provides a remedy for those cases.

7.1.2 Representing asynchronous computation with AsyncSubject

You can add inner behavior to the way subjects handle source notifications. Async-
Subject<T> adds logic to your code that fits nicely with asynchronous emissions.
This is useful when the source observable might complete before the observer has a
chance to subscribe to it, as shown in figure 7.4. This behavior is often seen when deal-
ing with concurrent applications, where order of execution can’t be predicted.

Figure 7.4 AsyncSubject emits only the last value to current and future observers.

After source observable completionBefore source observable completion

Observer

Observer

Observer

Last notification Last notificationFirst notification

Async subject

value: ?

Async subject

value:
:
:

164 CHAPTER 7 Controlling the observable temperature

T
th

no
tifies

d
Internally, AsyncSubject stores the most recent value so that when the source
observable completes, it emits this value to current and future observers. For example,
you can use AsyncSubject inside Rx to convert Task and Task<T> into observables.
Listing 7.5 shows the conceptual implementation of this conversion. The Rx imple-
mentation for the ToObservable operator is different and includes performance
optimizations and edge-case handling.

 The code shows how to create an AsyncSubject and redirect each possible com-
pletion status for the task to the observable notifications. Even though the task is com-
pleted, the subject emits the notification to the observer.

var tcs = new TaskCompletionSource<bool>();
var task = tcs.Task;

AsyncSubject<bool> sbj = new AsyncSubject<bool>();
task.ContinueWith(t =>
{
 switch (t.Status)
 {
 case TaskStatus.RanToCompletion:
 sbj.OnNext(t.Result);
 sbj.OnCompleted();
 break;
 case TaskStatus.Faulted:
 sbj.OnError(t.Exception.InnerException);
 break;
 case TaskStatus.Canceled:
 sbj.OnError(new TaskCanceledException(t));
 break;
 }
} ,TaskContinuationOptions.ExecuteSynchronously);
tcs.SetResult(true);
sbj.SubscribeConsole();

The program output shows that even though the Task completed before the observer
subscribed, the observer is notified of the result:

- OnNext(True)
- OnCompleted()

Keep in mind that AsyncSubject emits only one value, and only after the source
observable completes. Sometimes, however, you’ll want to emit notifications as they
come and preserve the ability to cache the latest value for future observers, as Async-
Subject does. For that, you need to use BehaviorSubject.

Listing 7.5 Converting Task<T> to an observable by using AsyncSubject

Creates a Task from a
TaskCompletionSource that
you can control in the code

If the Task completes
successfully, emits its result
and then completes

akes the exception
at was thrown and
tifies the observers

If the Task is canceled, no
the observers with a
TaskCanceledException

Sets the continuation to
work on the same threa
as the completed Task

Sets the Task to completion
before the observer subscribes

165Multicasting with subjects

t.If

co
re
7.1.3 Preserving the latest state with BehaviorSubject

The type BehaviorSubject<T> is useful when you need to represent a value that
changes over time, such as an object state. Say you need to store an object’s possible
states (PreLoad, Loaded, Rendering, and so forth).

 Every observer that subscribes to BehaviorSubject receives the last value and all
subsequent notifications, as shown in figure 7.5. Therefore, when creating an instance
of BehaviorSubject, you pass an initial value (a default). You can also read the last
(or initial) value through the Value property that BehaviorSubject exposes, mak-
ing it ideal as a backing field for a state property that allows change notifications.

Figure 7.5 BehaviorSubject represents a value that changes over time.
Observers receive the last (or initial) value and all subsequent notifications.

This example uses BehaviorSubject to maintain the state of the network connectiv-
ity while still making changes in the connectivity observable:

BehaviorSubject<NetworkConnectivity> connection =
 new BehaviorSubject<NetworkConnectivity>(
 NetworkConnectivity.Disconnected);
 connection.SubscribeConsole("first");
//After connection
connection.OnNext(NetworkConnectivity.Connected);
connection.SubscribeConsole("second");
Console.WriteLine("Connection is {0}", connection.Value);

Observer

Observer

Observer

Behavior
subject

value: default
:
:

Creates a BehaviorSubject that represents the
connectivity state and initializes as Disconnected If an observer subscribes

before a connection is made,
the subscriber receives the

Disconnected value.

Emits a notification
with the Connected
value which is cached
inside BehaviorSubjec another observer subscribes after a

nnection is made, the subscriber
ceives the cached Connected value.

Shows the last emitted or
initialized BehaviorSubject

value through the Value

166 CHAPTER 7 Controlling the observable temperature
Running this example shows this output:

first - OnNext(Disconnected)
first - OnNext(Connected)
second - OnNext(Connected)
Connection is Connected

BehaviorSubject keeps a cache of one value only (the last one). For more than one
value, use ReplaySubject.

7.1.4 Caching the sequence with ReplaySubject

ReplaySubject<T> is a subject that holds a cache of the notifications it observes
inside an inner buffer, as shown in figure 7.6.

Figure 7.6 ReplaySubject broadcasts each notification to all subscribed
and future observers, subject to buffer trimming policies.

ReplaySubject lets you, for example, store notifications and replay them for various
observable pipelines that you’re testing, and compare the results to see which is the
best. To prevent unwanted memory leaks, you can control the caching policy that lim-
its the buffer size, time, or both.

 Listing 7.6 shows how to limit ReplaySubject by time and size. This example
uses Rx with a health sensor. Like Microsoft Band,2 the client application connects to
the sensor when started, but the user can add a heart-rate parameter to the UI later.
To display a nice graph, you want to keep the last 20 readings from the last 2 minutes.

2 A repository that adds Rx support to Microsoft Band can be found at GitHub (https://github.com/Reactive-
Extensions/RxToBand).

Observer

Observer

Observer

Replay
subject

values:

:
:

https://github.com/Reactive-Extensions/RxToBand
https://github.com/Reactive-Extensions/RxToBand

167Multicasting with subjects

IObservable<int> heartRate = ...
ReplaySubject<int> sbj = new ReplaySubject<int>(bufferSize: 20,
 window: TimeSpan.FromMinutes(2));

heartRate.Subscribe(sbj);

// After the user selected to show the heart rate on the screen)
sbj.SubscribeConsole("HeartRate Graph");

For the heart rate, I simulated five readings (70–74) and, instead of displaying a
graph, I printed them onscreen:

HeartRate Graph - OnNext(70)
HeartRate Graph - OnNext(71)
HeartRate Graph - OnNext(72)
HeartRate Graph - OnNext(73)
HeartRate Graph - OnNext(74)
HeartRate Graph - OnCompleted()

Like everything that involves caching in software, you should be aware of the memory
footprint it leaves and the cache invalidation you use. There’s no way to manually
clean the cache that ReplaySubject contains (nor access it and read it), so pay spe-
cial attention when you use the unbounded version of ReplaySubject. You can free
the cache’s memory only by disposing of ReplaySubject.

 Next, we’ll talk about guidelines and best practices for subjects.

7.1.5 Hiding your subjects

You should be aware of a risk when working with subjects: it’s easy to lose control of
them. Suppose you have a class that holds an inner subject and then exposes it when a
property returns an observable, as this example shows:

class BankAccount
{
 Subject<int> _inner = new Subject<int>();

 public IObservable<int> MoneyTransactions { get { return _inner; } }
}

Although you expose the IObservable type only, the encapsulation can still be bro-
ken. That’s because it’s possible for a hostile or inexperienced developer to cast the
observable back to a subject, as in this example:

var acct = new BankAccount();
acct.MoneyTransactions.SubscribeConsole("Transferring");

Listing 7.6 Limiting the ReplaySubject cache by time and size

Gets an observable of the heart
rate from Microsoft Band

Creates ReplaySubject
with a buffer size of 20

and notifications
cached at 2 minutes

Subscribes the subject
when the application starts

If the user displays the heart rate onscreen,
subscribes an observer to receive the cached

readings and all the ones that follow

Returns the
subject instance

Makes a regular subscription
as the class author intended

168 CHAPTER 7 Controlling the observable temperature
var hackedSubject = acct.MoneyTransactions as Subject<int>;

hackedSubject.OnNext(-9999);

After casting back to Subject (or ISubject), the code can now emit notifications
from the outside. This will cause confusion and unwanted bugs.

HOW TO PROTECT FROM OUTSIDE EMISSIONS

Your subject was compromised because you returned an inner object that has accessi-
ble methods. To fix that, you need to return a different object—one that won’t reveal
the ability to reach your observers even by accident.

 For that purpose, Rx provides the AsObservable operator. AsObservable cre-
ates a proxy that wraps your subject and exposes only the IObservable interface, so
the observer can still subscribe, but no code can cast the observer to a subject, and no
code can access the observers. This is demonstrated in figure 7.7.

Figure 7.7 Instead of exposing your subject, use the AsObservable
operator to create a proxy that hides the inner subject.

The following example proves that the observable returned by the AsObservable
operator (the proxy) can’t be cast to a subject:

Subject<int> sbj = new Subject<int>();
var proxy = sbj.AsObservable();
var subject = proxy as Subject<int>;
var observer = proxy as IObserver<int>;
Console.WriteLine("proxy as subject is {0}",subject == null
 ? "null"
 : "notnull");
Console.WriteLine("proxy as observer is {0}",observer == null
 ? "null"
 : "not null");

A hostile casting
of the observable

Your encapsulation is broken, and
all the account money is taken.

Subject

AsObservable Observer

Observer

Observer

:
:

169Introducing temperature: cold and hot observables
This, of course, prints the following:

proxy as subject is null
proxy as observer is null

Subject plays a big role in Rx operators and is a powerful tool if used correctly. Unfor-
tunately, Subject can be used incorrectly. The next section provides a few guidelines
that can help you decide whether Subject is the right object for you to use.

7.1.6 Following best practices and guidelines

One of the areas that causes a lot of debate in the Rx world is whether subjects are
good or bad, and if using them is right or wrong. As Erik Meijer once said, “Once you
start seeing yourself using Subject, something is wrong. Because subjects are stateful
things.”3

 But let’s set the record straight: subjects aren’t bad and, when used correctly, can
be useful indeed. They’re used extensively inside the Rx code itself. It’s true, however,
that some developers use subjects when they don’t need them. So when should you
use a subject and when should you avoid them? The following list contains the points
you should consider:

 Use the built-in factory methods such as Observable.Create whenever possi-
ble, instead of using a subject. Use a subject only if no suitable built-in factory
method exists.

 Use a subject only if the source of the notifications is local (your code raises the
notifications and not an external source); for example, to create a notifying
property with BehaviorSubject.

 Use a subject for controlling an observable’s temperature (as you’ll learn next).
 Use a subject when creating an operator of your own that needs a notification’s

hub.
 Don’t expose subjects; use AsObservable to prevent that from happening.

The important thing to remember is that before you create an operator, you should
always check whether an operator that does what you intended to write by yourself
already exists in Rx.

 Dave Sexton wrote a wonderful blog post about the correct use of subjects that
drills down into these guidelines (http://mng.bz/Pv9). I recommend reading it after
you read the next section, where I’ll show one area that depends on subjects for its
existence—controlling the observable temperature.

7.2 Introducing temperature: cold and hot observables
It may sound funny, but observables have a notion of temperature. Observables can be
cold or hot, and each has different effects on your applications. A cold observable is
passive and emits only when the observer subscribes; for each observer, a complete

3 “RX: Reactive Extensions for .NET,” PDC 2009, http://mng.bz/3qu4, and Erik Meijer on Twitter, http://
mng.bz/Weiq.

http://davesexton.com/blog/post/To-Use-Subject-Or-Not-To-Use-Subject.aspx
http://mng.bz/3qu4
http://mng.bz/Weiq
http://mng.bz/Weiq

170 CHAPTER 7 Controlling the observable temperature
sequence is generated. A hot observable is active and emits regardless of the observers.
All the observers of the hot observable will observe the same emissions, so we say that
the items are shared. Observables can also move from one temperature to the other
with the techniques you’ll learn in this section that will help make your observable
queries predictable. Figure 7.8 summarizes the differences between hot and cold
observables.

7.2.1 Explaining cold and hot observables

To understand the difference between hot and cold observables, I created the follow-
ing simple program. It creates an observable that emits two string values with a short
delay between them. Look at the following example and try to predict the output:

var coldObservable =
 Observable.Create<string>(async o =>
 {
 o.OnNext("Hello");
 await Task.Delay(TimeSpan.FromSeconds(1));
 o.OnNext("Rx");
 });

coldObservable.SubscribeConsole("o1");
await Task.Delay(TimeSpan.FromSeconds(0.5));
coldObservable.SubscribeConsole("o2");

Many developers new to Rx find it surprising that the output of this small program
shows the message of both observers intertwined:

o1 - OnNext(Hello)
o2 - OnNext(Hello)
o1 - OnNext(Rx)
o1 - OnCompleted()
o2 - OnNext(Rx)
o2 - OnCompleted()

Observer

Observer

Observer

Observer

Subscription

Subscription

Subscription

Observer
Cold observable Hot observable

Observer

Figure 7.8 A cold observable is passive and starts emitting only when an observer subscribes.
A hot observable is active, and its emissions are shared among all the observers.

Emit the words Hello
and Rx with a 1-second
delay between the words

Subscribes two observers
with a half-second delay
between the subscriptions

171Heating and cooling an observable
You can see that the second observer receives the message Hello even though it sub-
scribes after the first observer receives it.

 For each observer that subscribes, the observable begins its work from the start and
generates the entire sequence of notifications for that observer. You can also say that
the observable isn’t running until an observer subscribes to it. Those characteristics
are typical for cold observables.

7.2.2 Cold observable

Here’s my more formal definition of a cold observable:

A cold observable is an observable that starts emitting notifications only when an observer
subscribes, and each observer receives the full sequence of notifications without sharing them
with other observers.4

Most of the observables you’ve created thus far in this book are cold observables.
When you use the operators Create, Defer, Range, Interval, and so on, you get an
observable that’s cold. From the observer’s standpoint, if the observable it subscribes
to is cold, then the observer can be certain that it hasn’t missed any notifications.

7.2.3 Hot observables

Here’s my formal definition of a hot observable:

A hot observable is an observable that emits notifications regardless of its observers (even if
there are none). The notifications emitted by hot observables are shared among their observers.

The classic example of a hot observable is the one you create from an event, such as a
mouse-move event. The mouse movement’s observable sequence is “live,” so even if
there’s no subscribed observer, the mouse movements still happen. And when there
are multiple observers, they all get notified of the same mouse movement.

 From the observer standpoint, if the observable it subscribes to is hot, then the
observer might have already missed some notifications.

 When learning about observable temperatures, it’s typical to wonder whether the
temperature is fixed or can somehow change. The next section answers just that.

7.3 Heating and cooling an observable
Now that you know what cold and hot mean in terms of observables, the next step is to
figure out the ways to switch from cold to hot, or from hot to cold. In this section,
you’ll learn how and why you would want to perform the transformation from one
temperature to the other.

7.3.1 Turning cold into hot

Suppose you want to create a few queries over an observable; for example, you want to
filter certain elements with a few filter functions, and observe the ones that survived

4 This doesn’t mean the data carried inside the notification can’t reference the same object (thus making them
shared); rather, the notifications that carry the data are independent from one another.

172 CHAPTER 7 Controlling the observable temperature
from each filter in a specific way. As a good practice, you’d probably encapsulate each
observation (per each filter) in its own query, possibly in its own method. As mentioned
previously, cold observables don’t share their emissions between their subscribers, so
multiple subscriptions, as in the case of the multiple queries, to a cold observable will
result in different streams of elements for each one—shown as cannons in figure 7.9.
The elements aren’t shared and might be different in their values. This is exactly like
calling a method twice, which could result in two different return values.

 To overcome the possibility that multiple subscriptions will end up with different
elements observed by each observer, you need to turn the cold observable into a hot
observable, so that the observers will subscribe to the hot one instead, and you can
then guarantee they’ll observe the same notifications. You have to make sure that
turning an observable from cold to hot won’t cause you to lose any notifications.
You’ll have to take that into account inside your process, as you’ll see next.

 Conceptually, all it takes to make a cold observable hot is putting a proxy between
the cold observable and the observers, and letting it broadcast all the notifications to
the observers. Luckily, not so long ago, you learned about excellent types that can be
programmed as those proxies: subjects. The process of turning an observable from
cold to hot is shown in figure 7.10.

 To turn a cold observable into a hot observable:

1 Create the subject that will be placed in front of the cold observable. The sub-
ject can now accept subscriptions from observers interested in the notifications
of the cold observable.

2 Subscribe the observers that are interested in the notifications of the cold
observable to the subject.

3 Subscribe the subject, as an observer, to the cold observable. This causes the cold
observable to start emitting its sequence of notifications, which are broadcast by

Observer

Subscription

Observer
Cold observable

Observer

Subscription

Subscription

Filter

Transform

Filter

< 9

> 5

Figure 7.9 Even though each observer subscribes to the same observable, each observer
receives a different sequence and the operator processes different elements.

173Heating and cooling an observable
the subject to all of the observers. This is also the way to guarantee that you don’t
lose any notifications from the source observable.

Whenever you create an observable and know there will be more than one observable
pipeline (and observers), you may want to make the observable hot. This may occur,
for example, when you want to model periodic data retrieval from a web service as an
observable and don’t want each observer to initiate different calls to the web service.
Instead, you want to make one call and share the retrieved data with all observers.

 Don’t be scared of this lengthy process. The code you need to write to turn the
cold observable into a hot one is simple. The steps in figure 7.10 correspond to the Rx
operators Publish, Subscribe, and Connect. First, I’ll show the code that uses
those operators and then I’ll explain each operator.

var coldObservable=Observable.Interval(TimeSpan.FromSeconds(1)).Take(5);
var connectableObservable = coldObservable.Publish();

Listing 7.7 Turning a cold observable hot

ObserverObserver

Observer

ObserverObserver

Observer

Cold observable

Cold observable
Connectable
observable

Subject

Cold observable
Connectable
observable

Subject

Cold observable

Publishing

Subscribing observers

Connecting the subject
Connectable
observable

Subject

Hot

1

2

3

Figure 7.10 The steps for turning a cold observable into a hot observable. The
order of the steps is important! After connecting the subject to the cold
observable, data starts flowing and it is sent only once.

Creates a cold observable that emits
five notifications, one per second

Publishes the observable to let multiple
observers share the notifications

174 CHAPTER 7 Controlling the observable temperature

o
connectableObservable.SubscribeConsole("First");
connectableObservable.SubscribeConsole("Second");

connectableObservable.Connect();

Thread.Sleep(2000);
connectableObservable.SubscribeConsole("Third");

This small application creates a cold observable that emits five notifications, one every
second. The application then makes the observable hot by converting it to a
ConnectableObservable (more on that in a moment) and connects it to the source
observable (by calling the Connect operator) after two observers subscribe. Then,
after another 2 seconds, it subscribes another observer.

 The output shows that all notifications are indeed shared between all observers:

First - OnNext(0)
Second - OnNext(0)
First - OnNext(1)
Second - OnNext(1)
Third - OnNext(1)
First - OnNext(2)
Second - OnNext(2)
Third - OnNext(2)
First - OnNext(3)
Second - OnNext(3)
Third - OnNext(3)
First - OnNext(4)
Second - OnNext(4)
Third - OnNext(4)
First - OnCompleted()
Second - OnCompleted()
Third - OnCompleted()

You can see that the same notification values are shared between the observers. A few
new concepts have arisen here, so let’s explore the first one: ConnectableObservable.

7.3.2 Using ConnectableObservable

To turn the cold observable to hot, you need a proxy around it. But you don’t want the
proxy to create a subscription to the cold observable before you finish setting all the
observers you need (otherwise, you might miss some notifications). To help with that,
Rx introduces the connectable observable. ConnectableObservable implements
the IConnectableObservable interface and subscribes to the source observable
only when explicitly told to do so by calling the Connect method.

interface IConnectableObservable<T> : IObservable<T>
{
 IDisposable Connect();
}

Listing 7.8 The IConnectableObservable interface

Subscribes two observers; both will
share the same notifications.

Connects the inner subject
to the source observable

Subscribes a third observer that will share ensuing
notifications with the previous observers

Subscribes the observable wrapper t
its source and returns a disposable
object representing the subscription

175Heating and cooling an observable
IConnectableObservable is an observable by itself and can (and will) have observ-
ers. As long as the connection is established, all the observers will receive the notifica-
tions from the source observable.

 To get an instance that implements the IConnectableObservable interface,
you need to call the Publish operator on your source observable. The Publish
operator has a few overloads; each overload creates a ConnectableObservable with
some tweaks, as you’ll see next.

7.3.3 Publishing and multicasting

The Publish operator creates a ConnectableObservable wrapper around the
source observable. This is a required step for allowing multicasting of the observable
notifications. The Publish operator has a few overloads, so let’s examine those one
by one.

SIMPLE PUBLISH

This is the simplest overload:

IConnectableObservable<TSource> Publish<TSource>(
 this IObservable<TSource> source)

It creates a ConnectableObservable that holds a Subject<T> internally. So, from
the moment you Connect it, all the observers share the same notifications. These are
the code steps to follow:

var coldObservable= ...
var connectableObservable = coldObservable.Publish();

connectableObservable.Subscribe(...);
:
connectableObservable.Subscribe(...);

connectableObservable.Connect();

In most cases, you’d like to subscribe all observers before calling Connect, so no
observer will miss a notification; but that’s not always the case. In case new observers
subscribe later, it’s important for you to note that they’ll receive only the next notifica-
tion that follows their subscription.

 But you can tweak this behavior so that an observer will immediately receive the
latest notification when it subscribes. This is done using the following overloads of
Publish, which accept an initial value and create the ConnectableObservable
with an inner BehaviorSubject<T>:

IConnectableObservable<TSource> Publish<TSource>(
 this IObservable<TSource> source,
 TSource initialValue)

Publishes a cold observable by creating
a ConnectableObservable that wraps it
and holds a single subscription to it

Subscribes all observers interested
in the shared notifications from
the source observable

Subscribes the ConnectableObservable
to the source observable

176 CHAPTER 7 Controlling the observable temperature

.

Figure 7.11 Publishing an observable with an initial value. Observers
receive either the last value that was emitted from the source observable
or the initial value, if no notification was yet emitted.

The inner BehaviorSubject<T> this overload creates for the Connectable-
Observable is initialized with an initial value, so every observer that subscribes
before Connect was called will receive this value. Every observer that subscribes after
Connect was called will receive the last value that was emitted from the source observ-
able or the initial value, if no notification was yet emitted. This behavior is shown in
figure 7.11

REUSING THE PUBLISHED OBSERVABLE TO CREATE A NEW OBSERVABLE

Things get a little interesting (and complex) when you need to combine the cold
observable multiple times to create new observables. The following Publish overload
is useful in these cases:

IObservable<TResult> Publish<TSource, TResult>(
 this IObservable<TSource> source,
 Func<IObservable<TSource>, IObservable<TResult>> selector)

Notice that this overload returns an observable and not a ConnectableObservable.
With this overload, you can easily create observables that reuse the source observable.
Consider the next example in which you want to use the Zip operator on an observable
with itself. The Zip operator takes two (or more) observables and merges them by call-
ing a function on the corresponding notifications. The normal expectation that devel-
opers have when they use the Zip operator on an observable with itself is that the two
function arguments will be identical. This example shows why this expectation is false:

int I = 0;
var numbers = Observable.Range(1, 5).Select(_ => i++);

var zipped = numbers
 .Zip(numbers, (a, b) => a + b)
 .SubscribeConsole("zipped");

Source observable

Published observable

Observer1

subscribe

subscribe

initial

Observer2

The cold source
observable

Selector function that can use the multicasted source
sequence as many times as needed. Subscriptions made

inside are deferred until the real subscription takes place.

Emits a sequence of
numbers but causes a side
effect on a shared variable

Because the “numbers” observable is cold,
this results in the sequence of values in the
form I + (i + 1) and not i + i.

177Heating and cooling an observable
In the example, you use an observable twice in order to create a new observable by
using the Zip operator. Because the numbers observable is cold, the sequence is gen-
erated twice, and the side effect caused by incrementing the variable i happens twice
per notification. Ultimately, what I did in this example is the same as if I had created
two different observables that happen to use the same variable i and advance it inde-
pendently (causing the side effect to be reflected in the other observable); thus the
function arguments in iteration k will be with the values a = k and b = k + 1. You can
see this effect in the output:

zipped - OnNext(1)
zipped - OnNext(5)
zipped - OnNext(9)
zipped - OnNext(13)
zipped - OnNext(17)
zipped - OnCompleted()

You can publish the source observable by yourself, but then it can be hard to decide
when exactly to call Connect, especially if you want to share the zipped observable. To
solve that, you want to defer Connect until the subscription happens. As the next
example shows, the Publish operator can do this:

var publishedZip = numbers.Publish(published =>
 published.Zip(published, (a, b) => a + b));
publishedZip.SubscribeConsole("publishedZipped");

Now, the numbers observable is published, so the notifications are shared among all
its observers. The same notification will be received both as a and b. The output is

publishedZipped - OnNext(0)
publishedZipped - OnNext(2)
publishedZipped - OnNext(4)
publishedZipped - OnNext(6)
publishedZipped - OnNext(8)
publishedZipped - OnCompleted()

PUBLISHLAST

ConnectableObservables, created by the Publish operator, publishes the notifi-
cations from the source observable until it completes. At that point, Connectable-
Observable completes as well.

 Any observer that was late to subscribe won’t see any values. This is especially bad
when you have an observable that produces a single value, and that’s the value you
need. This source observable might even be a hot observable.

 To help with that, Rx provides the PublishLast operator, which publishes only
the last value of the source observable:

IConnectableObservable<TSource> PublishLast<TSource>(
 IObservable<TSource> source)

= 0 + 1
= 2 + 3
= 4 + 5

Calls the Connect method on the
published numbers observable

178 CHAPTER 7 Controlling the observable temperature
The PublishLast operator works similarly to the Publish operator, but instead of
sharing all notifications from the source observable, the ConnectableObservable it
creates will share only the last notification emitted before the source observable com-
pletes, both for existing observers and future ones. This is similar to working with an
asynchronous type, as you saw earlier in this chapter, and PublishLast will create an
AsyncSubject<T> that’s used internally by the ConnectableObservable. Here’s
an example that shows it in action:

var coldObservable = Observable.Timer(TimeSpan.FromSeconds(5))
 .Select(_ => "Rx");

var connectableObservable = coldObservable.PublishLast();
connectableObservable.SubscribeConsole("First");
connectableObservable.SubscribeConsole("Second");
connectableObservable.Connect();

Thread.Sleep(6000);
connectableObservable.SubscribeConsole("Third");

Running this example shows that the last notification emitted by the source observ-
able was shared among all observers:

First - OnNext(Rx)
First - OnCompleted()
Second - OnNext(Rx)
Second - OnCompleted()
Third - OnNext(Rx)
Third - OnCompleted()

7.3.4 Using Multicast

Both Publish and PublishLast are good for all of the common scenarios in which
you need to heat a cold observable. But if you need more control or need to enforce
policies on an internal subject used inside ConnectableObservable (for example,
setting its buffer size and other configurations), then you need to use the Multicast
operator. Multicast lets you pass the pending subject inside the Connectable-
Observable

IConnectableObservable<TResult> Multicast<TSource, TResult>(
 this IObservable<TSource> source,
 ISubject<TSource, TResult> subject)

Multicast is a powerful low-level operator that’s used to create other operators. All
the Publish versions use Multicast in their implementations. For example, this
implementation from the Rx source code for the Publish overload creates a
BehaviorSubject for ConnectableObservable:

virtual IConnectableObservable<TSource> Publish<TSource>(
 IObservable<TSource> source,
 TSource initialValue)

Simulates an asynchronous operation
that takes a long time to complete

Shares the last value
between all current
and future observers

Subscribes an observer after
the source observable completes

179Heating and cooling an observable

Sub
con
{
 return source.Multicast(new BehaviorSubject<TSource>(initialValue));
}

As explained earlier, this Publish overload creates a ConnectableObservable. Every
observer that subscribes to it, after its Connect method is called, will receive the last
value emitted from the source observable or the initial value, if no notification was yet
emitted. The implementation shows that in order to provide this behavior, Behavior-
Subject is used as the underlying subject passed to the Multicast operator.

7.3.5 Managing the ConnectableObservable connection

After you connect ConnectableObservable to the source observable by calling the
Connect method, you get back the subscription object that enables you to discon-
nect it whenever you want. What happens if you reconnect again? What if there are
still observers? What if the observers are no longer there? To find the answers, keep
on reading.

RECONNECTING

You can reconnect ConnectableObservable at any time. Doing so will cause the
subscribed observers to see the notifications again. Reconnecting might be useful
when you want to keep the observers but need to change the original source of the
observable pipeline. For example, if the source observable is a chat server, and you
know that server needs to be replaced, you can reconnect, which will cause the new
server to be picked up again.

var connectableObservable =
 Observable.Defer(() => ChatServer.Current.ObserveMessages())
 .Publish();

connectableObservable.SubscribeConsole("Messages Screen");
connectableObservable.SubscribeConsole("Messages Statistics");
var subscription = connectableObservable.Connect();

//After the application was notified on server outage
Console.WriteLine("—Disposing the current connection and reconnecting--");
subscription.Dispose();
subscription = connectableObservable.Connect();

In this example, the source observable is created using the Defer operator, which
makes it a cold observable and, therefore, every observer shares the connection logic.

Listing 7.9 Reconnecting ConnectableObservable

Creates and publishes an observable
that connects to the current server and

emits the messages coming from it

scribes two observers to the
nectable observable

Connects the connectable
observable to the source
observable to connect to

the server
Disposes of the connection to the servers
without losing the current observers and

reconnects to a new server

180 CHAPTER 7 Controlling the observable temperature

Sub
two
Because you publish it, the connection happens only once, and the notifications are
shared among the observers.

 The observer begins to receive notifications when you call Connect and stops
receiving them when you dispose of the subscription object. When you call Connect a
second time, an underlying connection to the new server is made (because Chat-
Server.Current points to the new server), and the observers receive the messages
coming from it. This is shown in the program output:

Messages Screen - OnNext(Server0 - Message1)
Messages Statistics - OnNext(Server0 - Message1)
Messages Screen - OnNext(Server0 - Message2)
Messages Statistics - OnNext(Server0 - Message2)
Messages Screen - OnNext(Server0 - Message3)
Messages Statistics - OnNext(Server0 - Message3)
--Disposing the current connection and reconnecting--
Messages Screen - OnNext(Server1 - Message1)
Messages Statistics - OnNext(Server1 - Message1)
Messages Screen - OnNext(Server1 - Message2)
Messages Statistics - OnNext(Server1 - Message2)
Messages Screen - OnNext(Server1 - Message3)
Messages Statistics - OnNext(Server1 - Message3)

PERFORMING AUTOMATIC DISCONNECTION

If you dispose of the subscription object while there are still observers, you might see
different results than expected. Moreover, when disposing of the subscription object,
the subscribed observers won’t see any notifications, and you have no way of telling
that the ConnectableObservable is no longer connected.

 If you keep the subscription when there are no observers, you’re wasting expansive
resources, and the source observable will keep pushing notifications for no reason.
The best option is to make an automatic disconnect when there are no more observ-
ers. In addition, you should dispose of the subscription to the source observable.

 To achieve this kind of automatic disconnect, you need to use the RefCount oper-
ator, which manages an inner counter for the number of subscribed observers and
then disposes of the subscription when the count is zero.

 The next example shows how to subscribe two observers to the observable and,
when you unsubscribe them, no more notifications are emitted.

var publishedObservable = Observable.Interval(TimeSpan.FromSeconds(1))
 .Do(x => Console.WriteLine("Generating {0}",x))
 .Publish()
 .RefCount();
var subscription1 = publishedObservable.SubscribeConsole("First");
var subscription2 = publishedObservable.SubscribeConsole("Second");

Listing 7.10 Automatic disconnection with RefCount

Creates an observable that
emits a value every second

Prints a message to the console every
time the observable emits a value

Publishes with a reference count so that when the last
observer unsubscribes, there will be no more notifications

scribes the
 observers

181Heating and cooling an observable
Thread.Sleep(3000);
subscription1.Dispose();
Thread.Sleep(3000);
subscription2.Dispose();

As you can see from the following program output, after the second observer unsub-
scribes, no more notifications are emitted:

Generating 0
First - OnNext(0)
Second - OnNext(0)
Generating 1
First - OnNext(1)
Second - OnNext(1)
Generating 2
Second - OnNext(2)
Generating 3
Second - OnNext(3)
Generating 4
Second - OnNext(4)

Press any key to continue . . .

Using RefCount when publishing is a good practice that helps ensure that you’re not
keeping unneeded resources in use. Next you’ll look at the other side of the tempera-
ture scale and see how to “cool” a hot observable to replay its emissions.

7.3.6 Cooling a hot observable to allow replaying

We defined a cold observable as an observable that generates the complete sequence
of notifications for each observer that subscribes to it. Just as when you have a live
broadcast that you want to watch later, it makes sense that if you could somehow
record an observable and replay it later, each observer could subscribe when needed
and be guaranteed to receive the entire recorded sequence. Therefore, you can con-
clude that a recorded observable is a cold observable.

 It’s important to note that if you have a hot observable, you can make it cold only
from the moment you run the conversion. If by the time you make the conversion a
notification is already emitted, you can’t reproduce them.

 To make an observable cold, you need to use the same tools that made a cold
observable hot. The only difference is that, in addition to multicasting notifications as
they happen, you need to store the notifications and replay them when an observer
subscribes. This is what the Replay operator does (shown in figure 7.12), and it has
many overloads to support doing just that. All of the overloads create a Replay-
Subject<T> that you can use inside ConnectableObservable.

Waits 3 seconds before
unsubscribing the first observer

Waits 3 seconds before
unsubscribing the second observer

182 CHAPTER 7 Controlling the observable temperature

Conne
the s
obse

Figure 7.12 Turning a hot observable to a cold observable is necessary when you want to
capture emissions and replay them.

The Replay operator has many overloads that let you constrain both the time and the
number of items to remember and replay. Here’s an example that lets you replay the
last two items for any observer that subscribes:

var publishedObservable = Observable.Interval(TimeSpan.FromSeconds(1))
 .Take(5)
 .Replay(2);
publishedObservable.Connect();
var subscription1 = publishedObservable.SubscribeConsole("First");
Thread.Sleep(3000);
Var subscription2 = publishedObservable.SubscribeConsole("Second");

Running this application shows this output:

First - OnNext(0)
First - OnNext(1)
First - OnNext(2)
Second - OnNext(1) subscribing the second observable
Second - OnNext(2)
First - OnNext(3)
Second - OnNext(3)
First - OnNext(4)
Second - OnNext(4)
First - OnCompleted()
Second - OnCompleted()

Observer

Subscription

Observer
ReplayHot observable

Observer

Subscription

Subscription

Creates a connectable observable that
replays the last two items

cts to
ource

rvable

Waits 3 seconds before subscribing the second
observable (meaning you missed three values)

Receives the last two values
and all the subsequent ones

183Summary
The preceding results show how
the Replay operator caches and
then re-emits notifications from
the source observable. Figure 7.13
shows the marble diagram.

 It’s important to understand the
implications of the operators you
use and how they might make an
observable hot or cold. By using the
operators you’ve seen in this chap-
ter, such as Publish and Replay,
you can control the temperature so that there will be no doubt about the results of the
queries you write, therefore making your code more readable and predictable.

7.4 Summary
In this chapter, you’ve learned the definition of the observable temperature and the
difference between cold and hot observables. You’ve also seen how to control the tem-
perature by using special groups of Rx types called subjects.

 Here are the important points of this chapter:

 A type that’s both an observable and an observer is called a subject.
 Subjects implement the interface ISubject<TSource, TResult>, or

ISubject<T> if the source and result are of the same type.
 Rx provides four built-in subjects: Subject<T>, AsyncSubject<T>, Replay-

Subject<T>, and BehaviorSubject<T>.
 A subject broadcasts the notifications it receives to all its observers.
 Observables have a notion of temperature; they can be cold or hot.
 A cold observable emits the full sequence of notifications when the observer

subscribes.
 A hot observable emits notifications regardless of its observers and may share

the notifications among the observers.
 To make a cold observable hot, you use the Publish and Multicast operators

to create a ConnectableObservable with an inner subject.
 Calling the Connect method on the ConnectableObservable subscribes it

to the source observable, and the notifications are shared with all observers.
 To automatically unsubscribe the ConnectableObservable when there are

no more observers, use the RefCount operator.
 The Replay operator renders a hot observable cold by replaying the notifica-

tions to the observers. You can limit the amount of memory used for replaying
by specifying the number of items and/or time to keep the items in memory.

In the next chapter, you’ll deepen your knowledge of the querying operators Rx has
to offer.

Observable

Observer1 0

Observer2

1

1

2

2

3

3

4

4

Replay(2)

0 1 2 3 4

subscribe

subscribe

Figure 7.13 Marble diagram showing the result of the
Replay operator with a buffer size of two items

Working with basic
query operators
After a source observable emits a notification, there’s often a pipeline the notifica-
tion goes through before it reaches the destined observer. Almost every example in
this book shows how operators are used in some way to manipulate a generated
sequence of notifications, which your observers eventually observe. This chapter
categorizes and explains the basic operators that you’ll use to create queries on the
observables at hand. These include transformations and mappings, filtering and
flattening, and aggregation operators that generate sums, averages, and other types
of quantifiable results, as shown in figure 8.1. Some of the operators shown in this
chapter were introduced in previous chapters, but you haven’t yet seen how they’re
defined and the capabilities they provide.

This chapter covers
 Mapping and transforming the notification datum

 Filtering and choosing which notifications to
observe

 Creating observables of distinct items

 Aggregating and quantifying notifications
184

185Selecting what’s important (mapping)
Figure 8.1 Example of an observable pipeline. Each block may or may not be present, and the order
of blocks may change as well. Sometimes one type of block may be present more than once.

NOTE For those who speak LINQ as a second language, this chapter might
seem trivial at times. But more than once I’ve found that previous knowledge
may lead to false conclusions, so it’s better to be on the safe side and make sure
that a standard query operator works the way you’d expect it to.

8.1 Selecting what’s important (mapping)
Observables emit notifications—so far, so good. Sometimes the notifications you
receive aren’t exactly what you were looking for, and not always in the form that’s the
easiest for your program to process. For example, when working with a remote end-
point, the object that travels from one side to the other is usually simple and light,
containing a minimal amount of data. This is commonly known as a data transfer
object (DTO). DTOs carry only the must-have information (for example, identifiers) to
your application in order to perform its logic; however, when the DTO enters your
application, it’s often easier for you to work with your own data type or for you to fetch
the corresponding entities from your datastore. For that, you need to create a trans-
forming method with the Select operator.

 The Select operator, illustrated in figure 8.2, lets you transform a notification
that’s flowing in your observable pipeline (in functional programming, this operator
is also called Map) to a data format that’s more usable for your purposes.

Figure 8.2 The Select operator projects each element of an observable sequence into a new form.

TIP Instead of Select, you can use the Map operator if you feel it’s more natu-
ral, but you’ll need to add NuGet’s System.Reactive.Observable.Aliases
package (www.nuget.org/packages/System.Reactive.Observable.Aliases). Both
operators are the same implementation, just with different names.

The next bit of code shows how to use Select to transform a received ChatMessage
that contains the sending user identifier. You load a User object from the database

Observer
Filter Transform

Remove
duplicates

Hot observable

Strings aa Abc BbA

AA ABC BBA.Select(s => s.ToUpper())

www.nuget.org/packages/System.Reactive.Observable.Aliases

186 CHAPTER 8 Working with basic query operators

s
rec
and create a ViewModel that will be easier to work with in the UI layer. Figure 8.3
illustrates this process.

IObservable<ChatMessage> messages = ...

IObservable<ChatMessageViewModel> messagesViewModels =
 messages
 .Select(m => new ChatMessageViewModel
 {
 MessageContent = m.Content,
 User = LoadUserFromDb(m.Sender)
 });

The transformation done with the Select operator creates a new observable that
emits the ViewModel you created.

 Using Select, you can make multiple transformations in a declarative and readable
form. The Select operator has two overloads—one accepts a simple selector function
that receives the notification data, and the second receives the notification index:

IObservable<TResult> Select<TSource, TResult>(
 IObservable<TSource> source,
 Func<TSource, TResult> selector);

IObservable<TResult> Select<TSource, TResult>(
 IObservable<TSource> source,
 Func<TSource, int, TResult> selector);

The transformation function (the selector) that the Select operator receives is free
to do whatever transformations you like. It can create an object based on the notifica-
tion values, extract a subproperty of the received notification and return it, or ignore
the notification and return a different value altogether (although this probably won’t
be that helpful).

 An interesting scenario occurs when you want to select a subproperty that’s an enu-
merable or an observable. This creates an observable of enumerables (or observables).

{
 Content:...
 Sender: ID1
}

ID1

DB

MessageViewModel

Select

Figure 8.3 Using the Select operator
to convert an incoming message DTO to
a corresponding ViewModel with a
loaded user object from the database

An observable of chat
messages that are pushed
from a remote server

Extracts a
ubproperty of the
eived notification

Loads an object from the
database based on the identifier
received in the notification.

Emits notifications
of type TSource

Receives the source notification
and transforms it to a
notification of type TResult

Receives the source notification and its
index in the sequence and transforms
it to a notification of type TResult

187Flattening observables
If you want to apply more operators to the enumerables (or observables), you’ll have to
do that independently for each enumerable (or observable). For these cases, it’s better
to work with the SelectMany operator. As you’ll see in a short while, overloads let you
keep track of the source object (the event) that created the enumerable.

8.2 Flattening observables
Observables that carry observables (or enumerables) as their notification objects
make it harder to apply operators that need to work on each one of the inner ele-
ments. Let’s say an observable carries collections of numbers, and you want to filter all
the odd numbers. What’s the best way to filter the collection? Adding a Where opera-
tor for every inner collection is possible but makes your code less readable. A better
approach is to flatten the observable with SelectMany and use the Where operator
on the resulting observable. Now, let’s see it in action.

8.2.1 Flattening observables of enumerables

The SelectMany operator is used to flatten an observable. If each element in the
observable sequence is a collection, as shown in figure 8.4, the resulting observable
will emit all the elements from each collection.

Figure 8.4 The SelectMany operator flattens an observable of
collections to an observable of items.

SelectMany is also called FlatMap (as an alias) because it maps each item to a col-
lection and then flattens those collections into one stream. Suppose you have an
observable of news items and every item has a collection of images that you want to
show on the screen, but only if they’re rated PG-13 (child friendly). You can write the
Rx query like this:

IObservable<NewsItem> news = ...

news.SelectMany(n => n.Images)
 .Where(img => img.IsChildFriendly)
 .Subscribe(img => AddToHeadlines(img));

The SelectMany operator used here has the following signature:

IObservable<TResult> SelectMany<TSource, TResult>(
 this IObservable<TSource> source,
 Func<TSource, IEnumerable<TResult>> selector)

Collections

.SelectMany(c => c.Items)

a 1

a 1b 2c 3

Extracts the images collection
from every news item

Filters the images so only
those that are child
friendly are observed

Adds the
images

to the UI

188 CHAPTER 8 Working with basic query operators
It receives the source observable and, using a selector function, generates an enumer-
able of type TResult for each item in the observable sequence. The resulting observ-
able flattens all the generated enumerables, so that’s why the return type is
IObservable<TResult>.

 You can see in this example that the selector function of SelectMany returns the
Images collection. The resulting observable of SelectMany emits all the images from
all the news items; therefore, you can write the Where clause at the same level as the
SelectMany operator. You don’t need to add the Where clause to each collection.

 Figure 8.5 shows an example of news
items that your application might receive,
followed by the application’s output for
those news items.

 The program output is:

News headline image: Item1Image1
News headline image: Item2Image1

Note that when SelectMany is applied to
an observable of enumerables, the items’
order is kept; so, in this scenario, all the
images of the first news item will be pro-
cessed before any images of the second
news item.

 SelectMany also has an overload that lets you receive the index of each notifica-
tion from the source observable:

IObservable<TResult> SelectMany<TSource, TResult>(
 this IObservable<TSource> source,
 Func<TSource, int, IEnumerable<TResult>> selector)

You can use this overload to change the way you generate the enumerable, based on
the position of the source item in the observable sequence. Next, I’ll show you how to
keep track of the source notifications that create the enumerable to which the
observed items belong.

PROCESSING THE SOURCE AND THE RESULT

SelectMany does a great job flattening the observable, but each inner item that’s
now emitted loses its connection to the source object that generated the collection.
For example, the images generated from the news items are separated from that news
item object. Luckily, SelectMany offers another overload that can be helpful.

 Suppose for each image in the headline view you want to add a link to the news
item it belongs to. This is how you’d use SelectMany now:

IObservable<NewsItem> news = ...

news.SelectMany(n => n.Images,

Item1Image1

Child Friendly:

Item1Image2

Child Friendly:

NewsItem1

Item2Image1

Child Friendly:

NewsItem2

Figure 8.5 The test news items. The first news
item contains two images, but only one that is
child friendly, and the second news item
contains a single image.

Receives each item in
the source observable,
together with its index

Extracts the images collection
from every news item

189Flattening observables
 (newsItem, img) => new NewImageViewModel
 {
 ItemUrl = newsItem.Url,
 NewsImage = img
 })
 .Where(vm => vm.NewsImage.IsChildFriendly)
 .Subscribe(img => AddToHeadlines(img));

The overloads for the SelectMany operator that accept a resultSelector function
are shown in the following code snippet. For each item in every collection, the
resultSelector function is invoked, together with the source element that gener-
ates the collection. The value returned from resultSelector is the value that the
resulting observable emits. The resultSelector in the second overload also
receives the index of the emitted notification.

IObservable<TResult> SelectMany<TSource, TCollection, TResult>(
 this IObservable<TSource> source,
 Func<TSource, IEnumerable<TCollection>> collectionSelector,
 Func<TSource, TCollection, TResult> resultSelector)
IObservable<TResult> SelectMany<TSource, TCollection, TResult>(
 this IObservable<TSource> source,
 Func<TSource, int, IEnumerable<TCollection>> collectionSelector,
 Func<TSource, int, TCollection, int, TResult> resultSelector)

A nice feature that the C# compiler provides is the ability to add the SelectMany
operator to the query without a plethora of code when done manually. To achieve
this, use the Let operator when writing the query. Here’s how to manually create the
view models of the child-friendly news images with query syntax:

IObservable<NewsItem> news = ...
var newsImages =
 from n in news
 from img in n.Images
 where img.IsChildFriendly
 select new NewImageViewModel
 {
 ItemUrl = n.Url,
 NewsImage = img
 };

The two from statements (and you can use as many from statements as you like) will
cause the compiler to generate a SelectMany that will wrap the news item and the
news image inside an object. Thereafter, all references to the news item and news
image will take its value from that object behind the scenes.

 SelectMany works not only on observables of enumerables but on observables of
observables as well.

Takes as an argument the newsItem that
generates the collection from which the
img comes. Based on the object pair, an
ImageViewModel is created.

Invoked for each item from every collection, together with
the item that generates the collection, and then produces

the next value in the resulting observable sequence.

Invoked for each item from every collection,
together with the item’s index and the

source item that generates the collection.

190 CHAPTER 8 Working with basic query operators
8.2.2 Flattening observables of observables

The same difficulty of applying operators to each emitted observable applies to
observables that carry other observables as well (as in figure 8.6).

Figure 8.6 The SelectMany operator flattens an observable of observables
to an observable of emitted items from all the observables.

Suppose your Chat application supports different chat rooms that can be opened by
you or by other users that add you as a participant. Each chat room is represented as
the type ChatRoom, which holds an observable for the messages sent in each room. In
the application, you want to show a dashboard view with the recent messages (no mat-
ter from which room they were sent). This is shown in figure 8.7.

Figure 8.7 Flattening messages from various chat rooms to one stream of messages

Here’s how you can do this with Rx:

IObservable<ChatRoom> rooms = ...

rooms
 .Log("Rooms")
 .SelectMany(r => r.Messages)
 .Select(m => new ChatMessageViewModel(m))
 .Subscribe(vm => AddToDashboard(vm));

Observables

O1

Observables
.SelectMany(obs=>obs)

O2

O3

O1 O2 O3

Rooms

R1

R2

Rooms
.SelectMany(r=>r.Messages)

R1 R2 R3

Adds a log message for
every emitted chat
room notification

Extracts the messages observable
from each chat room

Transforms each
ChatMessage to a
UI-suitable object

Adds each message view model
to the application’s dashboard

191Flattening observables
To simulate a situation in which two chat rooms are opened and messages are sent, I
created this simple code where the rooms observable and each Messages observable
is a Subject.

var roomsSubject = new Subject<ChatRoom>();
IObservable<ChatRoom> rooms = roomsSubject.AsObservable();

var room1 = new Subject<ChatMessage>();
roomsSubject.OnNext(new ChatRoom {Id = "Room1", Messages = room1Messages});
room1.OnNext(new ChatMessage{Content = "First Message", Sender = "1"});
room1.OnNext(new ChatMessage{Content = "Second Message", Sender = "1"});

var room2 = new Subject<ChatMessage>();
roomsSubject.OnNext(new ChatRoom{Id = "Room2", Messages = room2Messages});
room2.OnNext(new ChatMessage{Content = "Hello World", Sender = "2" });

room1.OnNext(new ChatMessage{Content = "Another Message", Sender = "1" });

Running this test program against the query produces this output:

Rooms - OnNext(ChatRoom: Room1)
Room: Room1 , Message: "First Message" was sent by Id=1 Name:User1
Room: Room1 , Message: "Second Message" was sent by Id=1 Name:User1
Rooms - OnNext(ChatRoom: Room2)
Room: Room2 , Message: "Hello World" was sent by Id=2 Name:User2
Room: Room1 , Message: "Another Message" was sent by Id=1 Name:User1

In chapter 6, you created the Log operator that, when called, prints a message for
every OnNext, OnError, and OnCompleted method. Log is used here to display a
message when a new room is opened (the bolded lines in the output). You can see in
the output that all the messages that were sent, no matter from which room, are dis-
played in a centralized fashion. The view model created for each message is the one
that formats the output line for each message, and the AddToDashboard method
simply writes it to the console.

PROCESSING THE SOURCE AND THE RESULT

As with observables of enumerables, when applying the SelectMany operator on an
observable of observables, you can specify a resultSelector function that will be
invoked for each notification (regardless of which observable originates the notifica-
tion), together with the source item that creates the observable that emits the notifica-
tion (figure 8.8). This allows you to track the connection between the notifications
and their origin and to produce a value based on the results. For example, for chat
messages that are emitted concurrently from multiple chat rooms, it’s important to
know what the source chat room is so you can show it on screen or highlight it if it’s a
room of importance to the user.

Listing 8.1 Test program to simulate the creation of chat rooms and message emissions

192 CHAPTER 8 Working with basic query operators
Figure 8.8 When the SelectMany operator is applied to an observable
of observables, the resultSelector will be invoked for each notification,
together with the source item that created the observable it was emitted from.

Here’s how to use SelectMany to add the ChatRoom identifier to the chat message
ViewModel:

IObservable<ChatRoom> rooms = roomsSubject.AsObservable();

rooms
 .Log("Rooms")
 .SelectMany(r => r.Messages,
 (room, msg) => new ChatMessageViewModel(msg)
{Room = room.Id})
 .Subscribe(vm => AddToDashboard(vm));

Unlike enumerables, observables can emit asynchronous notifications, so the order in
which the resultSelector is invoked is nondeterministic. This means that
SelectMany will have to cache all the items from the source observable in order to
pass them with each notification emitted by the observable they created. This is, of
course, only until the observables have completed. Consequently, using SelectMany
may affect the memory footprint of your application.

NOTE The SelectMany operator is powerful when adding asynchronous
method invocations as part of the observable pipeline. Chapter 5 discusses
this technique, along with other techniques for working with asynchronous
operations.

8.3 Filtering an observable
Not all notifications emitted by an observable are meaningful to your application;
therefore, they need to be filtered out of the observable sequence. These might be
notifications whose values are higher than a specific threshold, or chat messages sent
from a user you blocked, or news items already received from another news source.

8.3.1 Filtering with the Where operator

I’ve used the Where operator in almost every example in this book; it’s one of the fun-
damental operators for most query languages. Where receives a predicate function

O1

O1

O2

O2 O3

collectionSelector()

Observables

Observables
 .SelectMany(collectionSelector,
 resultSelector)

resultSelector(,)

1 2 1 2

Receives the chat message and the chat room it
belongs to and produces a ChatMessageViewModel

that also includes the room identifier

193Filtering an observable
that’s invoked for each emitted value and returns a Boolean, which indicates whether
the value is allowed to proceed in the pipeline and be observed by the observer. The
Where operator, depicted in figure 8.9, is also known as the Filter operator.

 The next example filters an observable of strings, so only the strings that start with
a capital A are emitted:

var strings = new[] {"aa", "Abc", "Ba", "Ac"}.ToObservable();

strings.Where(s => s.StartsWith("A"))
 .SubscribeConsole();

This produces the following output:

- OnNext(Abc)
- OnNext(Ac)
- OnCompleted()

The Where operator checks each emitted notification solely; it doesn’t hold a view of
the entire observable sequence generated before the current notification. This makes
it harder to create predicate functions that make decisions based on past events.
Therefore, it’s the developer’s responsibility to keep track of that information and to
use it. For example, you may need a view of what happened previously if you need to
get a distinct observable sequence (where each value is emitted at most once). Luckily,
Rx provides this kind of operator for your use.

8.3.2 Creating a distinct sequence

The Distinct operator permits a restrictive policy on the resulting observable, so val-
ues appear only once in the sequence. If the observable emits news items that come
from multiple news sources, but you want to see a news item only once, for example,
the Distinct operator makes this easy to achieve, assuming the news item has an
identifier. Figure 8.10 shows a marble diagram of Distinct.

Figure 8.10 The Distinct operator suppresses duplicate items
emitted by an observable.

Strings

 .Where(s=>s.StartsWith(”A”)) Abc

Abc Ba Acaa

Ac

Figure 8.9 The Where operator takes a predicate function and filters the
elements of an observable sequence.

Strings

 .Distinct()

b a ca

b ca

194 CHAPTER 8 Working with basic query operators

ly
r

ly
tor
Note that the Distinct operator emits values as they come (and not when the source
observable completes), unless they were already emitted:

var subject = new Subject<NewsItem>();
subject.Log()
 .Distinct(n=>n.Title)
 .SubscribeConsole("Distinct");
subject.OnNext(new NewsItem() {Title = "Title1"});
subject.OnNext(new NewsItem() {Title = "Title2"});
subject.OnNext(new NewsItem() {Title = "Title1"});
subject.OnNext(new NewsItem() {Title = "Title3"});

In the output of this program the lines prefixed with Distinct are emitted by the
observable after removing the duplicates (with the Distinct operator):

- OnNext(Title1)
Distinct - OnNext(Title1)
 - OnNext(Title2)
Distinct - OnNext(Title2)
 - OnNext(Title1)
 - OnNext(Title3)
Distinct - OnNext(Title3)
 - OnCompleted()
Distinct - OnCompleted()

As you can see, the second time the Title1 news item is emitted, it’s filtered out.
 The Distinct operator has several overloads. If the emitted data type overrides the

Equals method, you can leave the Distinct operator empty (with no arguments),
and it’ll check equality based on the implementation of Equals. Alternatively, you can
provide an EqualityComparer that determines the equality between the items:

IObservable<TSource> Distinct<TSource>(this IObservable<TSource> source)

IObservable<TSource> Distinct<TSource>(
 this IObservable<TSource> source,
 IEqualityComparer<TSource> comparer)

IObservable<TSource> Distinct<TSource, TKey>(
 this IObservable<TSource> source, Func<TSource, TKey> keySelector,
 IEqualityComparer<TKey> comparer)

IObservable<TSource> Distinct<TSource, TKey>(
 this IObservable<TSource> source, Func<TSource, TKey> keySelector,
 IEqualityComparer<TKey> comparer)

NOTE In order for the Distinct operator to behave as expected, it must
save the entire emitted distinct sequence internally. This affects the memory
footprint of your application, so you must use it with care.

Displays the emitted values
with Log before they’re
observed by Distinct

Determines the equality between
values using a selector function
and Distinct; here items with
the same Title are equals.

Emits a NewsItem with a Title
that was already emitted

Returns observable sequence
containing only distinct elements

Returns observable sequence containing on
distinct elements according to the compare

Returns observable sequence containing on
distinct elements according to the keySelec

Returns observable sequence containing
only distinct elements according to the
keySelector and the comparer

195Filtering an observable

ges

Take
from
box

no
8.3.3 Removing duplicate contiguous values

Suppose you have a search form, and every time the user changes a search term, a
search request is sent to the search service. Because the search request is expensive in
terms of time and service load, you want to reduce the number of calls made if they’re
duplicate queries, as shown in figure 8.11.

The DistinctUntilChanged operator returns an observable sequence that emits
only distinct contiguous elements. If the source observable emits the same element
consecutively, the value is emitted only once (the first appearance) by the observable
returned from DistinctUntilChanged. But, unlike Distinct, if the value is emit-
ted again after other values are emitted in between, the value is emitted again. Figure
8.12 shows the marble diagram for this operator.

Figure 8.12 The DistinctUntilChanged operator filters consecutive
duplicate items from the observable.

The next example uses DistinctUntilChanged to prevent the same search term
from being sent to the search service if it has already been sent. To make this
approach more realistic, I’m using another important operator called Throttle.
This operator emits a value only if a particular timespan has passed without another
value being emitted. In this case, a search term is sent only if no other search term is
provided within 400 milliseconds:

Observable.FromEventPattern(SearchTerm, "TextChanged")
 .Select(_ => SearchTerm.Text)
 .Throttle(TimeSpan.FromMilliseconds(400))
 .DistinctUntilChanged()
 .Subscribe(s => /* Sending the search term to the WebService */);

You can find a sample WPF application that uses this code at http://mng.bz/84bh. In
the sample application, I added all the search terms to a list instead of querying a real

Rx GET http://www.search.com/Rx

ReactiveX GET http://www.search.com/ReactiveX

ReactiveX

Figure 8.11 To reduce load on the
service, avoid sending the same term
more than once contiguously.

Strings

 .DistinctUntilChanged()

aa

aa

a a b

b

Emits a notification every
time the text in the
SearchTerm text box chan

s the text
 the text

whenever
there’s a
tification Waits 400 ms before allowing the

search term to be emitted

http://mng.bz/84bh

196 CHAPTER 8 Working with basic query operators
web service. Figure 8.13 shows the output when I wrote Rx, Reactive and then wrote
ReactiveX but deleted the X in less than 400 ms. Note that the list isn’t cleared
between search terms and, with each term, grows over time.

 Just like the Distinct operator, DistinctUntilChanged provides a few over-
loads that let you specify the way equality is determined by keySelector and/or
EqualityComparer between values emitted by the observable:

IObservable<TSource> DistinctUntilChanged<TSource>(
 this IObservable<TSource> source,
 IEqualityComparer<TSource> comparer)
IObservable<TSource> DistinctUntilChanged<TSource, TKey>(
 this IObservable<TSource> source,
 Func<TSource, TKey> keySelector)
IObservable<TSource> DistinctUntilChanged<TSource, TKey>(
 this IObservable<TSource> source,
 Func<TSource, TKey> keySelector,
 IEqualityComparer<TKey> comparer)

The result of an Rx query isn’t always an observable sequence of items. Occasionally,
you may want a single result, such as the sum of the items or a count of them. The Rx
aggregation operators let you do that.

8.4 Aggregating the observable sequence
Rx lets you take an observable sequence and reduce it to an aggregated value from the
entire sequence or from the sequence up to the current point. This type of aggrega-
tion includes summing the sequence, averaging, and finding maximum and mini-
mum values, depending on your aggregation algorithm.

8.4.1 Using basic aggregation operators

Those who are familiar with SQL and LINQ know that you can easily include basic
aggregate functions in the query, and the underlying system will do the work for you.
Rx operators let you utilize the same technique.

Figure 8.13 With DistinctUntilChanged,
the word Reactive appears only once, even
though it was provided twice.

197Aggregating the observable sequence
SUM

The Sum operator sums all values in the source observable sequence and emits the
summation on the resulting observable when the source completes. Figure 8.14 shows
a marble diagram of Sum.

Figure 8.14 The Sum operator calculates the sum of numbers emitted by an
observable and then emits the sum.

The Sum operator supports the summation of all primitive number types (integers,
floats, and so on), as well as their nullable forms, where the null values will be dis-
carded. Here’s an example that sums integers from an observable sequence contain-
ing the numbers 1 to 5:

Observable.Range(1, 5)
 .Sum()
 .SubscribeConsole("Sum");

The output is as follows:

Sum - OnNext(15)
Sum - OnCompleted()

You can see that sum (15) was emitted when the source observable completed. Using
a selector function and overloads for the Sum operator, you can specify which oper-
and to use for the summation. This allows you to select a subproperty of the emitted
object. Here’s the signature of the overload that accepts integers (int); the same sig-
nature exists for the other primitive types as well:

IObservable<int> Sum<TSource>(this IObservable<TSource> source,
 Func<TSource, int> selector)

COUNT

To count the number of values emitted by an observable, apply the Count operator,
depicted in figure 8.15.

Figure 8.15 The Count operator counts the number of items emitted by
the source observable and emits this value.

Numbers

 .Sum()

1 2 3 4 5

15

Numbers

 .Count()

1 2 3 4 5

5

198 CHAPTER 8 Working with basic query operators
The observable returned from Count emits the count when the source observable
completes:

Observable.Range(1, 5)
 .Count()
 .SubscribeConsole("Count");

The output is as follows:

Count - OnNext(5)
Count - OnCompleted()

The Count operator also lets you specify a predicate that determines which emitted
value will be counted. This is equivalent to using a Where operator followed by the
parameterless Count operator. This is how you count only the even numbers in an
observable sequence:

Observable.Range(1, 5)
 .Count(x => x % 2 == 0)
 .SubscribeConsole("Count of even numbers");

Here’s the output:

Count of even numbers - OnNext(2)
Count of even numbers - OnCompleted()

AVERAGE

The Average operator, illustrated in figure 8.16, creates an observable that emits the
average of the values emitted from the source observable when it completes.

Figure 8.16 The Average operator calculates the average of numbers
emitted by an observable and emits this average.

Average supports averaging all primitive number types (integers, floats, and so on),
as well as their nullable forms, where the null values will be discarded:

Observable.Range(1, 5)
 .Average()
 .SubscribeConsole("Average");

The output is as follows:

Average - OnNext(3)
Average - OnCompleted()

Using a selector function and overloads for the Average operator, you can specify
which operand to use for averaging. This allows you to select a subproperty of the

Numbers

 .Average()

1 2 3 4 5

3

199Aggregating the observable sequence
emitted object. Here’s the signature of the overload that accepts integers (int); the
same signature exists for the other primitive types as well:

IObservable<double> Average<TSource>(this IObservable<TSource> source,
Func<TSource, int> selector)

MAX AND MIN

The Max and Min operators let you find the maximum and minimum values in an
observable sequence and emit them when it completes, as shown in figure 8.17.

Figure 8.17 The Max operator emits the maximum value in an observable sequence.

Here’s an example of finding the maximal and minimal values:

Observable.Range(1, 5)
 .Max()
 .SubscribeConsole("Max");
Observable.Range(1, 5)
 .Min()
 .SubscribeConsole("Min");

The output is as follows:

Max - OnNext(5)
Max - OnCompleted()
Min - OnNext(1)
Min - OnCompleted()

.NET provides the default comparer that Max and Min use for your data type; however,
if the default comparison condition isn’t suitable for your needs, you can provide an
IComparer and/or a selector function. The following shows the list of overloads for
the Max operator; the Min operator provides the same overloads:

IObservable<TSource> Max<TSource>(
 this IObservable<TSource> source,
 IComparer<TSource> comparer)
IObservable<TResult> Max<TSource, TResult>(
 this IObservable<TSource> source,
 Func<TSource, TResult> selector)
IObservable<TResult> Max<TSource, TResult>(
 this IObservable<TSource> source,
 Func<TSource, TResult> selector,
 IComparer<TResult> comparer)

Note that the values returned by the selector are the ones from which the maxi-
mum/minimum values will be chosen and subsequently emitted. The source item
(the containing object, for example) producing the values won’t be emitted.

Numbers

 .Max()

4 5 3 1 2

5

200 CHAPTER 8 Working with basic query operators
 If you have an observable sequence of students’ grades, and you want to find the
student with the maximum grade, for example, the Max operator won’t help because
you receive the maximum grade only as a number and not the contained object. This
is shown in the following example:

Subject<StudentGrade> grades = new Subject<StudentGrade>();
grades.Max(g => g.Grade)
 .SubscribeConsole("Maximal grade");

grades.OnNext(new StudentGrade() {Id = "1",Name = "A", Grade = 85.0});
grades.OnNext(new StudentGrade() {Id = "2",Name = "B", Grade = 90.0});
grades.OnNext(new StudentGrade() {Id = "3",Name = "C", Grade = 80.0});
grades.OnCompleted();

This example generates the following output:

Maximal grade - OnNext(90)
Maximal grade - OnCompleted()

As you can see, the Max operator (and selector) emits the value 90 and not the
StudentGrade object that contained the maximum values. If you want to print the
name of the student with the maximum grade, you won’t be able to do that. To reach
the behavior you want (emitting the maximum/minimum object and not just the
maximum/minimum value), you need to use the MaxBy/MinBy operator.

8.4.2 Finding the maximum and minimum items by condition

The operators MaxBy and MinBy let
you search an observable sequence to
find the items containing the maxi-
mum and the minimum values,
respectively, and then emit that value
when the search completes, as shown
in figure 8.18. You set the maximum
or minimum values by invoking a
keySelector function on each item
emitted by the source observable.

 Because multiple items might have the same maximum or minimum value, the
operators MaxBy or MinBy return an observable of lists:

IObservable<IList<TSource>> MaxBy<TSource, TKey>(
 this IObservable<TSource> source,
 Func<TSource, TKey> keySelector)

The following example finds the StudentGrade object that has the maximum Grade
property:

Subject<StudentGrade> grades = new Subject<StudentGrade>();
grades.MaxBy(s => s.Grade)
 .SelectMany(max => max)
 .SubscribeConsole("Maximal object by grade");

MaxBy(x=>x.Size)

Figure 8.18 The MaxBy operator, based on the
values provided by the keySelector function,
emits the maximum value as an item when the
source observable completes.

Emits each maximum
item that MaxBy found

201Aggregating the observable sequence
grades.OnNext(new StudentGrade() { Id = "1", Name = "A", Grade = 85.0 });
grades.OnNext(new StudentGrade() { Id = "2", Name = "B", Grade = 90.0 });
grades.OnNext(new StudentGrade() { Id = "3", Name = "C", Grade = 80.0 });
grades.OnCompleted();

After running the example, this is the output:

Maximal object by grade - OnNext(Id: 2, Name: B, Grade: 90)
Maximal object by grade - OnCompleted()

This example and its output show that you succeeded in finding the student object
with the maximum grade—student B with grade 90.

8.4.3 Writing your aggregation logic with Aggregate and Scan

In Rx, you can create your own aggregation functions and apply them to an observ-
able sequence. The aggregate functions are invoked for each item that’s emitted,
together with the aggregated value up to that point. The computed value is the input
for the next invocation with the next item.

 You can use two operators with aggregate functions:

 Aggregate—Applies a function to each item emitted by an observable, and
then emits the computed value upon the source observable completion.

 Scan—Applies a function to each item emitted by a sequential observable, and
then emits each successive value.

Figure 8.19 depicts the Aggregate operator, and figure 8.20 depicts the Scan
operator.

Here’s an example that creates the multiplication of all values in an observable
sequence, first with Aggregate and then with Scan:

Observable.Range(1, 5)
 .Aggregate(1,

1 2 3 4 5

120

Aggregate(1, (x,y)=> x * y) Figure 8.19 The Aggregate operator
applies a function to each item emitted by an
observable, and then emits the computed
value upon the source observable completion.

1 2 3 4 5

1 2 6 24 120

Scan(1, (x,y)=> x * y)
Figure 8.20 The Scan operator applies a
function to each item emitted by sequential
observables and emits each successive value.

Sets a seed value

202 CHAPTER 8 Working with basic query operators

.

lue
 (accumulate, currItem) => accumulate * currItem)
 .SubscribeConsole("Aggregate");

Observable.Range(1, 5)
 .Scan(1,
 (accumulate, currItem) => accumulate * currItem)
 .SubscribeConsole("Scan");

This is the output produced:

Aggregate - OnNext(120)
Aggregate - OnCompleted()
Scan - OnNext(1)
Scan - OnNext(2)
Scan - OnNext(6)
Scan - OnNext(24)
Scan - OnNext(120)
Scan - OnCompleted()

In this example, the input observable emits a sequence of values 1 to 5, the Aggre-
gate operator emits the factorial value 120, and Scan emits the factorials 1! 2! 3! 4! 5!

 Beside the seed value and the accumulator function, the Aggregate operator pro-
vides an overload that you can use to pass a resultSelector function that’s invoked
for the last value—the aggregate result:

IObservable<TResult> Aggregate<TSource, TAccumulate, TResult>(
 this IObservable<TSource> source,
 TAccumulate seed,
 Func<TAccumulate, TSource, TAccumulate> accumulator,
 Func<TAccumulate, TResult> resultSelector)

Suppose you need to retrieve the second largest item in an observable. Instead of cre-
ating your own variables to store the relevant state and use them inside the aggregate
operators by capturing them as closures (mutating state as part of the observable is
usually a code smell), you can use the Aggregate operator to encapsulate the
mutated state for you. The next example retains the two largest items emitted by an
observable (so far) in a sorted collection. And, when the observable is complete, it
emits the second largest item.

Subject<int> numbers = new Subject<int>();

numbers.Aggregate(
 new SortedSet<int>(),

Listing 8.2 Creating observable with Aggregate operator emitting second-largest item

Sets a seed value

For each item, receives the accumulator (the
computed value up to this point) and the current item
The value returned is the new accumulator value.

Initial accumulator value

Accumulator
function to be
invoked on
each element

A function to transform the final
accumulator value into the result va

Passes a sorted set that’ll be
used to hold the largest items

203Summary

co
cont

la
 (largest, item) =>
 {
 largest.Add(item);
 if (largest.Count > 2)
 {
 largest.Remove(largest.First());
 }
 return largest;
 },
 largest => largest.FirstOrDefault())
 .SubscribeConsole();

numbers.OnNext(3);
numbers.OnNext(1);
numbers.OnNext(4);
numbers.OnNext(2);
numbers.OnCompleted();

This example uses an empty SortedSet as a seed. This class helps keep the items
sorted and ensures that there won’t be duplicate items in the set. For each item emit-
ted from the source observable, the accumulator function adds an item to the set, and
then compacts it to hold two items at most.

 When the source observable is complete, the resultSelector function takes the
first item in the set (if it exists) and returns it. Because SortedSet is sorted, and you
want to make sure there will be two items at most, the first item is the second greatest
that you want to find.

 The output from the preceding example is shown here:

- OnNext(3)
- OnCompleted()

Using Aggregate and Scan allows you to create your own powerful aggregation func-
tions. In a way, they’re the reactive equivalent to a loop, which you would’ve used for
collections in order to produce a single value from it.

8.5 Summary
The querying abilities that Rx provides are rich and extensive. This can sometimes be
overwhelming and complex to understand, so I made this chapter easy to digest in
order to teach you the fundamentals of writing an Rx query by using some of the most
used operators. Here’s what I covered:

 The Select operator transforms the emitted notification to another form. This
includes taking only a subproperty or creating a new object (for example, a
ViewModel).

 Observables emit other observables or other collections (or items that contain
them). The SelectMany operator merges the inner observables (or collec-
tions) to a flat stream; pass a collectionSelector function and you’re done.

Keeps only the first two largest
items by adding them to the sorted
collection and removes the first
item (the smallest) if needed

Returns
llection that
ains the two
rgest items

Because the collection is sorted and
contains two items at most, the first
item is the second-largest one.

204 CHAPTER 8 Working with basic query operators
 The SelectMany operator also takes a resultSelector function that you can
call for every emitted item, together with its source item.

 SelectMany is the power force behind the Let operator that you can use when
manually writing a query.

 The Where operator filters emitted notifications, which receive a predicate
function to test each notification.

 The Distinct operator gets an observable of distinct items.
 The DistinctUntilChanged operator gets an observable of distinct consecu-

tive items.
 Rx provides the common statistical aggregation functions that you can apply to

an observable. These are Sum, Count, Average, Max, and Min.
 The MaxBy and MinBy operators get the maximum and minimum item, respec-

tively, based on a subproperty.
 You can use the Aggregate and Scan operators to customize the aggregation

logic.
 The Aggregate operator emits the aggregated result only when the source

observable completes.
 The Scan operator emits a sequential aggregated result each time a notifica-

tion is emitted by the source observable.

In this chapter, we dealt only with operators that act in the scope of a single observ-
able. The next chapter describes the operators used to break the observable into finer
observables (groups) and to combine multiple observables.

Partitioning and
combining observables
A typical application is usually composed of multiple workflows that structure its
behavior. In many cases, the application needs to handle and react to more than
one data source, UI events, push notifications, remote procedure calls, and so on.
Suppose your application needs to consume messages from various sources (such
as social networking) and react to all of them in the same way. Or, say your applica-
tion deals with a source that emits a stream of various kinds of notifications (such as
stock prices), and it needs to look at each subgroup of notifications (for each
stock) separately and independently. How do you do that?

 There are many ways to combine observables and react to a combination of the
notifications emitted by them (for example, taking only the latest, pairing, or
joining by condition). And, there are different ways to create subgroups from an

This chapter covers
 Partitioning observables into groups of related

notifications

 Emitting chunks of notifications by sliding
windows and buffers

 Combining multiple observables into one

 Reacting to patterns of coincidence
205

206 CHAPTER 9 Partitioning and combining observables
observable (for example, by time or condition). This chapter takes you to the next
level by using concepts you already know from enumerables and applying those to the
world of observables.

9.1 Combining observables
Working with a single observable has its benefits; however, the internet is composed of
multiple events occurring independently. To react to notifications emitted from multi-
ple observables, Rx provides operators that make it easy to combine the observables.

9.1.1 Pairing items from observables (zipping)

When you need to combine values that are in the same index in two (or more) observ-
ables, the Zip operator should be your answer. It takes the observables you want to
pair and a selector function that describes how to do that. The first item of each
observable is zipped together, the second item of each observable is zipped together,
and so on.

 The arguments for the selector function are the set of values, emitted at the same
index (each in its source observable), from the items emitted by the observables you
want to zip. The selector function then returns the calculated result from those values.

 Suppose you have two temperature sensors in a room that emit values roughly at
the same time and you want to show the average temperature from both readings.
Here’s how to do that with the Zip operator:

IObservable<double> temp1 = ...
IObservable<double> temp2 = ...

temp1
 .Zip(temp2, (t1, t2) => (t1 + t2)/2)
 .SubscribeConsole("Avg Temp.");

A sample output of this program is shown in figure 9.1.

Figure 9.1 The Zip operator lets you zip values with the same index from
two (or more) observables by using a selector function.

Temp1

Selector function

20 21 22

Temp2 22 23 24

Temp1
 .Zip(temp2, (t1, t2) => (t1 + t2) / 2)

21 22 23

207Combining observables
The problem with the Zip operator is that it relies on the index of the values emitted
by both observables. If the rate of one of the observables is higher than the other, Zip
accumulates the emitted values in memory until the next value is emitted from the
second observable (this also means that if the second observable never emits or com-
pletes, the values from the first observable will never be used, but still remain in mem-
ory). In many cases, you’ll want to combine only the latest values emitted by the
observables.

9.1.2 Combining the latest emitted values

To combine the set of values last emitted by the observables, use the CombineLatest
operator (figure 9.2). Unlike the Zip operator, when one of the observables returns a
value, CombineLatest also returns a value, even if a second observable doesn’t emit
for a long time.

Figure 9.2 The CombineLatest operator combines the latest emitted
values from each observable by using a selector function.

Consider this example: you have a sensor that monitors heart rate and one that moni-
tors speed. You want to display the most up-to-date value, regardless of the update
rate of each sensor. To simulate this case, you’ll create the observables as subjects you
can control:

Subject<int> heartRate = new Subject<int>();
Subject<int> speed = new Subject<int>();

speed.CombineLatest(heartRate,
 (s, h) => String.Format("Heart:{0} Speed:{1}", h, s))
 .SubscribeConsole("Metrics");

Now you can emit the values from each observable and see what happens:

heartRate.OnNext(150);
heartRate.OnNext(151);
heartRate.OnNext(152);
speed.OnNext(30);
speed.OnNext(31);
heartRate.OnNext(153);
heartRate.OnNext(154);

xs

Selector function

1 2

ys 10

xs.CombineLatest(ys, (x, y) => (x + y)) 11 12

3

13

20

23

Combines two observables
into a string that contains

the values from each

208 CHAPTER 9 Partitioning and combining observables
The output from this sequence is shown here:

Metrics - OnNext(Heart:152 Speed:30)
Metrics - OnNext(Heart:152 Speed:31)
Metrics - OnNext(Heart:153 Speed:31)
Metrics - OnNext(Heart:154 Speed:31)

Two things are of note here. First, you can see that the heart-rate value of 152 is emit-
ted twice at the beginning. This is because the speed observable emits two values, one
after the other, and 152 is the latest value emitted by the heartRate observable. The
same thing happens when the heartRate observable emits its values while the latest
speed value is 31 (shown in the last two lines).

 The second thing to notice is that when the heartRate observable initially pro-
duces the values 150 and 151, nothing is emitted by the combined observable. Indeed,
CombineLatest emits values only if all observables emit a value at least once; other-
wise, there isn’t a latest value from all observables.

 One way to overcome dropped values, making sure the combined observable emits a
value even if all observables haven’t yet emitted a value, is to add a value at the begin-
ning of each observable by using the StartWith operator. For example, changing the
previous snippet to the following prints the heart-rate values of 150 and 151 as well:

speed.StartWith(0)
 .CombineLatest(heartRate.StartWith(0),
 (s, h) => String.Format("Heart:{0} Speed:{1}", h, s))
 .SubscribeConsole("Metrics");

NOTE Currently, the Rx codebase also includes the operator WithLatest-
From, which is like a one-way CombineLatest. WithLatestFrom combines
each value from the first observable with the latest value from the second
observable, but not the other way around. This operator isn’t included in Rx
versions prior to 3.0, which this book is using.

Combining observables isn’t restricted only to taking a value from each observable
and creating a unified result from them. As you’ll see next, another combination
includes creating a unified observable and placing the values emitted from each
observable into a single stream.

9.1.3 Concatenating observables

The Concat operator connects two or more observables of the same type into a single
stream (figure 9.3). When the first observable completes, Concat links the values
from the second observable to the resulting observable, even if they were emitted long

First 1 2 3

Second 10 20

first.Concat(second) 1 2 3 10 20

Figure 9.3 The Concat operator
concatenates the second observable
sequence to the first observable sequence
upon successful termination of the first.

209Combining observables
before the first observable completes. It’s important to note that the Concat operator
subscribes itself to the second observable only after the first observable completes, so
if the second observable is hot and notifications were emitted before subscribing, they
won’t be part of the resulting observable emissions.

 Confusion about hot and cold observables and the Concat operator may arise when
you use it in asynchronous operations. For example, say you use Concat to ensure that
the results from two asynchronous operations are emitted in an order that isn’t the
expected order returned by asynchronous operations. Remember, when tasks are con-
verted to observables, an AsyncSubject is created so the value of the asynchronous
computation won’t get dropped, which turns a hot operation into a cold observable.

 The following example simulates two asynchronous operations that load messages
from Facebook and Twitter. Facebook is slower in this case (due to the use of the
Delay operator), but because I’m using Concat, the Facebook messages appear first
in the output:

using System.Reactive.Threading.Tasks;

Task<string[]> facebookMessages = Task.Delay(10).ContinueWith(_=>new[]
{"Facebook1", "Facebook2"});

Task<string[]> twitterStatuses =
 Task.FromResult(new[] {"Twitter1", "Twitter2"});

Observable.Concat(facebookMessages.ToObservable(),
 twitterStatuses.ToObservable())
 .SelectMany(messages=>messages)
 .SubscribeConsole("Concat Messages");

Running this example shows this output:

Concat Messages - OnNext(Facebook1)
Concat Messages - OnNext(Facebook2)
Concat Messages - OnNext(Twitter1)
Concat Messages - OnNext(Twitter2)
Concat Messages - OnCompleted()

Even though the results from Facebook take longer to arrive (due to the use of
Delay), they’re still present first. At times, however, that order between the observ-
ables has no meaning, and you want to react to the notifications emitted by the
observables the moment they’re pushed. For this, you need the Merge operator.

9.1.4 Merging observables

Merging observables means you want
to route the notifications from the
source observables into a single
observable, so that when a notifica-
tion is emitted by one of the sources,
it’s also emitted by the merged
observable (figure 9.4). This allows

Simulates an asynchronous operation
that’s slow (takes 10 ms to complete)

Simulates an asynchronous
operation that’s fast

First 1 2 3

Second 10 20

first.Merge(second) 1 2 310 20

Figure 9.4 The Merge operator merges the
notifications from the source observables into a
single observable sequence.

210 CHAPTER 9 Partitioning and combining observables
you to react to the notifications as fast as possible, no matter what source observable
emitted them.

 The following example simulates two asynchronous operations that load messages
from Facebook and Twitter. Facebook is slower in this case (due to the use of the
Delay operator), but because I’m using Merge, the Twitter messages are shown first
and only then. When the Facebook operation completes, its messages are then shown:

Task<string[]> facebookMessages =
 Task.Delay(10)
 .ContinueWith(_ => new[] { "Facebook1", "Facebook2" });
Task<string[]> twitterStatuses =
 Task.FromResult(new[] { "Twitter1", "Twitter2" });

Observable.Merge(
 facebookMessages.ToObservable(),
 twitterStatuses.ToObservable())
 .SelectMany(messages => messages)
 .SubscribeConsole("Merged Messages");

Console.ReadLine();

Now, even though the Facebook asynchronous operation is passed first to the Merge
operator, the first values you’ll see printed are those from Twitter because this opera-
tion completes first:

Merged Messages - OnNext(Twitter1)
Merged Messages - OnNext(Twitter2)
Merged Messages - OnNext(Facebook1)
Merged Messages - OnNext(Facebook2)
Merged Messages - OnCompleted()

Concat and Merge are useful for combining a fixed set of observables when you write
your code, but your application might create observables in a more dynamic way
(based on user usage, for example). You’ll want those operators to be more dynamic
with their inputs because, as mentioned in chapter 1, everything is a stream.

9.1.5 Dynamic concatenating and merging

Both Concat and Merge let you pass not only a fixed collection of observables you
want to combine, but also an observable of the observables to combine. This is the
construct:

IObservable<TSource> Concat<TSource>(
 this IObservable<IObservable<TSource>> sources)
IObservable<TSource> Merge<TSource>(
 this IObservable<IObservable<TSource>> sources)

These overloads let you add Merge or Concat as part of a broader pipeline; for exam-
ple, when a source observable emits a value that’ll be transformed into another
observable (like one that represents an asynchronous operation). Suppose you want
to create an observable from the text-changed event of a text box, and when the text

Simulates a slow
asynchronous

operation (takes 10
ms to complete)

Simulates a fast
asynchronous

operation

211Combining observables
changes, you want to make a call to a remote search service and show all the results
from all the searches.

IObservable<string> texts = new[] {"Hello", "World"}.ToObservable()
texts
 .Select(txt => Observable.Return(txt + "-Result"))
 .Merge()
 .SubscribeConsole("Merging from observable");

Running the example yields this output:

Merging from observable - OnNext(Hello-Result)
Merging from observable - OnNext(World-Result)
Merging from observable - OnCompleted()

NOTE Conceptually, the operator SelectMany (described broadly in chap-
ter 8) operates the same as calling Select and Merge.

As with dynamic allocations, without dynamic operations, you sometimes need to set a
limit; otherwise, performance decreases (just like overallocations that may cause Out-
OfMemoryException or responsiveness degradation). Luckily, Rx provides control
over this.

CONTROLLING THE CONCURRENCY

Concat subscribes itself to an observable only when the previous observable com-
pletes, but Merge needs to subscribe to all the observables at the beginning of its
operation. Subscribing to many observables might pose a performance problem for
your application or a heavy load on the observable source (such as a remote service).
For those reasons, you might need to restrict the amount of concurrent subscriptions
that Merge is allowed to make. Here’s an example that shows how to do this:

IObservable<string> first =
 Observable.Interval(TimeSpan.FromSeconds(1))
 .Select(i=>"First"+i)
 .Take(2);
IObservable<string> second =
 Observable.Interval(TimeSpan.FromSeconds(1))
 .Select(i=> "Second" + i)
 .Take(2);
IObservable<string> third = Observable.Interval(TimeSpan.FromSeconds(1))
 .Select(i=> "Third" + i).Take(2);
new[] {first,second,third}.ToObservable()
 .Merge(2)
 .SubscribeConsole("Merge with 2 concurrent subscriptions");
 Console.ReadLine();

Simulates an observable that emits the
text in a text box when it changes

Transforms the text into an
observable, simulating a call to a
remote search service. resulting
in an observable of observables.

Creates three observables that
emit a value every second,

stopping them after two emissions

Creates an observable that
emits the observables

created previously
Restricts the Merge operator
to two concurrent subscriptions

212 CHAPTER 9 Partitioning and combining observables
In this case, you have three observables that can emit notifications concurrently. If
Merge subscribes to all of them, you’d see the messages generated from the three
observables intertwined. Instead, you get the following:

Merge with 2 concurrent subscriptions - OnNext(Second0)
Merge with 2 concurrent subscriptions - OnNext(First0)
Merge with 2 concurrent subscriptions - OnNext(Second1)
Merge with 2 concurrent subscriptions - OnNext(First1)
Merge with 2 concurrent subscriptions - OnNext(Third0)
Merge with 2 concurrent subscriptions - OnNext(Third1)
Merge with 2 concurrent subscriptions - OnCompleted()

Note that the notifications emitted by the third observable are separate from the others.
This is because it’s subscribed to only when one of the first two observables completes
(after 2 seconds). If after the first observable completes, the second observable still
emits notifications, you’d see the merged result from the second and third observables.

9.1.6 Switching to the next observable

Consider the preceding example in which for every text change, you make a call to a
remote search service and then display all the results onscreen. A more realistic
approach is that you’d show only the latest results.

 Now imagine that while waiting for the search results to arrive from the back end,
another search is executed (the text has changed again). In this case, you’d unsub-
scribe from the previous asynchronous search operation and start a new search to
which you’d now be subscribed.

 To accomplish the task of switching to a new observable when it’s available, you
need to use the Switch operator, depicted in figure 9.5.

Texts

R1 results

R2 results

R3 results

R1 results are ignored
since we switched to
R2 search results.

Switch

R1 R2 R3

Figure 9.5 The Switch operator takes an observable that emits observables and
creates a single observable that emits the notifications from the most recent observable.

213Combining observables
Here’s a simple program that simulates the text changes shown in the marble dia-
gram. You use the Delay operator to add a little delay to R1 emissions so the system
will switch to the R2 observable before the R results are available.

var textsSubject = new Subject<string>();
IObservable<string> texts = textsSubject.AsObservable();
texts
 .Select(txt => Observable.Return(txt + "-Result")
 .Delay(TimeSpan.FromMilliseconds(txt == "R1" ? 10 : 0)))
 .Switch()
 .SubscribeConsole("Merging from observable");

textsSubject.OnNext("R1");
textsSubject.OnNext("R2");
Thread.Sleep(20);
textsSubject.OnNext("R3");

SWITCHING TO THE FIRST OBSERVABLE TO EMIT

Imagine you have multiple observables that represent options to receive the same
sequence of notifications (for example, multiple service representatives in real life),
but you need to select only one of them—the one that’s the fastest (the first to emit).

 This can be a selection between servers or a selection between a computed result
and a cached one. Switch won’t help here because it’ll bind to the first observable to
emit and then switch to the slower one.

 The Amb (short for ambiguity) operator works similarly to the Switch operator,
but instead of switching to a new observable each time a new one is emitted, Amb
switches only to the first observable to emit. Think of it this way: if all the observables
are considered equally fit as the source, you want them to duel, and the first one to
shoot wins.

 Here’s an example:

var server1 =
 Observable.Interval(TimeSpan.FromSeconds(2))
 .Select(i => "Server1-" + i);
var server2 =
 Observable.Interval(TimeSpan.FromSeconds(1))
 .Select(I => "Server2-" + i);

Observable.Amb(server1, server2)
 .Take(3)
 .SubscribeConsole("Amb");
Console.ReadLine();

Listing 9.1 Switching to the most recent search results with the Switch operator

Adds a delay to R results so the
next search term will be switched

to before the results return

Adds a short delay so the system
 will have time to process R2
results before R3 retakes control

214 CHAPTER 9 Partitioning and combining observables
In this case, the server2 observable emits first, so you’ll see only the values with the
prefix Server2-.

TIP You can also write the example like this:
server1.Amb(server2).Take(3).SubscribeConsole("Amb");.

So far, you’ve learned how to combine and pair observables. Next, you’ll get to know
techniques for breaking an observable into subobservables.

9.2 Grouping elements from the observable
The elements that observables emit can be grouped based on a particular condition.
Unlike collections or datasets, grouping elements from observables creates a group
with an unfixed size, in which the number of elements is unknown and can be infi-
nite. This is because you can’t predict what elements will be emitted by the observable
in the future.

 To group elements from an observable, you need to generate the group as an
observable by itself; that is, an observable that emits a notification for every element
that’s part of the group. For example, using the GroupBy operator, you can split an
information stream of people into a group of males and a group of females (figure 9.6).

Figure 9.6 The GroupBy operator groups the elements of an observable
sequence according to a specified key selector function (for example, splitting a
stream of people into a group of males and a group of females). Each group is an
observable of the group elements.

The basic GroupBy signature looks like this:

IObservable<IGroupedObservable<TKey, TSource>> GroupBy<TSource, TKey>(
 this IObservable<TSource> source,
 Func<TSource, TKey> keySelector)

Note that the return type is an observable of grouped observables. The grouped
observable is itself an observable that also includes the property Key, which holds the
key that describes each element it emits.

People
 .GroupBy(x=>x.Gender) Bob John DanSara Fibi

Males

Females

Bob John Dan

Sara Fibi

215Joining observables (coincidence-based combining)
 GroupBy also includes overloads that let you pass an elementSelector (to
decide how each element will be transformed before being emitted by the grouped
observable) and a capacity (to control the maximum number of groups that can
live concurrently).

 By separating the elements into different observables, you can create separate
queries for each group. For example, you can now get the average age for females
and for males:

var genderAge =
 from gender in people.GroupBy(p => p.Gender)
 from avg in gender.Average(p => p.Age)
 select new {Gender=gender.Key, AvgAge=avg};

genderAge.SubscribeConsole("Gender Age");

You can also use the GroupBy query syntax clause for the preceding example:

var genderAge =
 from p in people
 group p by p.Gender
 into gender
 from avg in gender.Average(p => p.Age)
 select new { Gender = gender.Key, AvgAge = avg };

Next, you’ll look at another concept that’s clear in the world of collections but is a lit-
tle tricky in the world of observables: joins.

9.3 Joining observables (coincidence-based combining)
Combining observables isn’t restricted to only using the elements emitted to create a
new type of result. Another interesting combination is to find relationships and logi-
cal correlations between elements—when trying to answer which elements exist in the
same time frame, for example.

 When querying database tables or collections of items, joining entities is clear—
you combine fields from two or more entities by using values that are common to
each. How can you apply this definition to the world of reactive streams? Rx bases
commonality on the coincidence of occurrence, meaning when notifications are occurring
in the same time frame.

 In short, combining elements from various observables based on the coincidence
that they exist in the same time frame is what we call joining. You can join two or more
observables in two ways. The first emits joint pairs into a single flat stream. The second
creates groups of correlated items and emits an item into a correlation group.

9.3.1 Joining to a flat stream

Let’s start with an example of how joining observables works. Suppose you’re running
a statistical study and want to get notifications on the occurrence of males and females

Groups the elements in the
people observable by gender

Averages each
grouped observable

216 CHAPTER 9 Partitioning and combining observables

Deter
time

eac
item

left o
that are in the same room at the same time. This is a classic case for joins, as shown in
figure 9.7.

 To create joins between observables, you use the Join operator, which correlates
the elements of two sequences based on overlapping durations. The signature for
Join is complex and requires some explanation:

IObservable<TResult> Join<TLeft, TRight,
TLeftDuration, TRightDuration,TResult>(

 IObservable<TLeft>left,
 IObservable<TRight> right,
 Func<TLeft, IObservable<TLeftDuration>>leftDurationSelector ,
 Func<TRight, IObservable<TRightDuration>> rightDurationSelector,
 Func<TLeft, TRight, TResult> resultSelector);

The tricky part of the method signature is the duration selector functions. Those func-
tions receive an emitted element and return an observable whose emissions deter-
mine the end of the time frame for the element.

 Suppose you have a sensor, coded as a hot observable of DoorEvent objects, that
monitors people who enter and exit a room. You want to emit all the males and
females that are in the same room at the same time:

IObservable<DoorOpened> doorOpened = doorOpenedSubject.AsObservable();

Males

Females

Durations in room

Join

Bob John Dan

Sara Fibi

Bob John Bob John Dan
Sara FibiSara Fibi Fibi

Figure 9.7 The Join operator combines items emitted by two observables
when an item from one observable is emitted during a time frame of an emitted
item from the other observable.

Defines the left
observable for the join

Defines the right
observable for the join

mines the
 frame for
h emitted
 from the
bservable

Determines the time frame
for each emitted item from

the right observable
Computes the result of any two overlapping
elements of the left and right observables

217Joining observables (coincidence-based combining)
DoorEvent is defined as follows:

class DoorOpened
{
 public string Name { get; set; }
 public OpenDirection Direction { get; set; }
 public Gender Gender { get; set; }
}

You can extract the observable of the males entering the room and the females enter-
ing the room like this:

var entrances = doorOpened.Where(o => o.Direction ==
 OpenDirection.Entering);
var maleEntering = entrances.Where(x => x.Gender == Gender.Male);
var femaleEntering = entrances.Where(x => x.Gender == Gender.Female);

In the same way, you can extract the observable of those leaving:

var exits = doorOpened.Where(o => o.Direction == OpenDirection.Leaving);
var maleExiting = exits.Where(x => x.Gender == Gender.Male);
var femaleExiting = exits.Where(x => x.Gender == Gender.Female);

Now, you’ll want to join the occurrence of males in the room with the occurrence of
females in the room. For that you need to define for each notification (male or female
entering) the time frame that marks the existence in the room. With the reactive
approach, defining the time frame means defining an observable that emits (or com-
pletes) when the time frame closes. Here’s how you bring that into action:

maleEntering
 .Join(femaleEntering,
 male => maleExiting.Where(exit => exit.Name == male.Name),
 female => femaleExiting.Where(exit => female.Name == exit.Name),
 (m, f) => new {Male = m.Name, Female = f.Name})
 .SubscribeConsole("Together At Room");

TIP An interesting type of a time-frame observable is one that uses the same
observable that emits the elements as the one that defines the time frame. By
doing this, you’re expressing that the time frame for an element is the time
until the next element is emitted.

To test your code, you’ll create a subject that acts as the back end of your observable and
then you’ll emit notifications that simulate the sequence shown previously in figure 9.7:

doorOpenedSubject.OnNext(
 new DoorOpened("Bob", Gender.Male, OpenDirection.Entering));
doorOpenedSubject.OnNext(

Specifies whether the person is
entering or leaving the room

Creates a join operation for the
males and females entering the room

Defines the time frame for each man
entering the room. When the man enters
the room, the time window closes.

Defines the time frame for each
woman entering the room.

When the woman enters the
room, the time window closes.

Packs the male and female pairs
that are in the same room together

218 CHAPTER 9 Partitioning and combining observables
 new DoorOpened("Sara", Gender.Female, OpenDirection.Entering));
doorOpenedSubject.OnNext(
 new DoorOpened("John", Gender.Male, OpenDirection.Entering));
doorOpenedSubject.OnNext(
 new DoorOpened("Sara", Gender.Female, OpenDirection.Leaving));
doorOpenedSubject.OnNext(
 new DoorOpened("Fibi", Gender.Female, OpenDirection.Entering));
doorOpenedSubject.OnNext(
 new DoorOpened("Bob", Gender.Male, OpenDirection.Leaving));
doorOpenedSubject.OnNext(
 new DoorOpened("Dan", Gender.Male, OpenDirection.Entering));
doorOpenedSubject.OnNext(
 new DoorOpened("Fibi", Gender.Female, OpenDirection.Leaving));
doorOpenedSubject.OnNext(
 new DoorOpened("John", Gender.Male, OpenDirection.Leaving));
doorOpenedSubject.OnNext(
 new DoorOpened("Dan", Gender.Male, OpenDirection.Leaving));

// Rest of code that simulates participants leaving the room

Running this procedure produces the following output:

Together At Room - OnNext({ Male = Bob, Female = Sara })
Together At Room - OnNext({ Male = John, Female = Sara })
Together At Room - OnNext({ Male = Bob, Female = Fibi })
Together At Room - OnNext({ Male = John, Female = Fibi })
Together At Room - OnNext({ Male = Dan, Female = Fibi })

WRITING JOINS WITH QUERY SYNTAX

The C# compiler lets you write joins with a LINQ query. The join clause is shown
here:

from [left] in [leftObservable]
join [right] in [rightObservable] on [leftDuration] equals [rightDuration]
select ...

With the query syntax approach, finding the male and female pairs that are in the
room at the same time looks like this:

from male in maleEntering
join female in femaleEntering on maleEntering.Where(exit =>
exit.Name == male.Name) equals
femaleExiting.Where(exit => female.Name == exit.Name)
select new {Male = male.Name, Female = female.Name};

The join clause creates a single observable on which all the correlations are emitted.
Sometimes, however, a divide-and-conquer approach is easier to work with.

 In the spirit of this approach, you’d like to receive per each male, all the occur-
rences of that male with the females in the room with him. So each male becomes a
group key for the group of all the associated females, and this group is an observable
of those females. So instead of one observable with all the pairs, you’ll have multiple
observables—one for each group. For this behavior, you need to use the GroupJoin
operator.

219Joining observables (coincidence-based combining)
9.3.2 Joining into groups

The GroupJoin operator lets you correlate the elements of two observable
sequences based on overlapping durations and combines the elements that correlate
with each element into a group that’s itself an observable (figure 9.8). For example,
in a statistical observation experiment, you want to emit, for each male, all the
females that were in the same room with him. You’ll call this observable of associated
females per male a group.

 The motivation for this group, based on coincidence, is that for each group you
can define a finer query in a much easier way. For example, what’s the average age of
the women group?

 The GroupJoin operator has a signature similar to Join:

IObservable<TResult> GroupJoin<TLeft, TRight, TLeftDuration, TRightDuration,
TResult>(

 this IObservable<TLeft> left,
 IObservable<TRight> right,
 Func<TLeft, IObservable<TLeftDuration>> leftDurationSelector,
 Func<TRight, IObservable<TRightDuration>> rightDurationSelector,
 Func<TLeft, IObservable<TRight>, TResult> resultSelector)

Males

Females

GroupJoin

Bob
correlation

group

John
correlation

group

Dan
correlation

group

Duration in room

Bob John Dan

Sara Fibi

Sara Fibi

Sara Fibi

Fibi

Figure 9.8 The GroupJoin operator correlates elements from two observables based on
overlapping duration time frames. The elements from the second observable are grouped by the
element from the first observable to which they correlate.

Defines the left observable
you want to join

Defines the right observable
you want to join

Determines the time frame for each
emitted item from the left observable

Determines the time frame
for each emitted item from

the right observable

Computes a result element for any element
of the left observable with its overlapping
elements from the right sequence

220 CHAPTER 9 Partitioning and combining observables
Suppose you want to extend your example from the previous section (finding all the
pairs of males and females in a room together). Now, you want to add a counter
that shows the number of females that each male was in the room with, up to the cur-
rent point.

 As before, you have observables that emit the males and females that enter and
exit the room:

var maleEntering = entrances.Where(x => x.Gender == Gender.Male);
var femaleEntering = entrances.Where(x => x.Gender == Gender.Female);
var maleExiting = exits.Where(x => x.Gender == Gender.Male);
var femaleExiting = exits.Where(x => x.Gender == Gender.Female);

Now you can use GroupJoin to create the groups of correlations. For each male, you
create an object that contains the male’s name and the observable of females that cor-
relate to him:

var malesAcquaintances =
 maleEntering
 .GroupJoin(femaleEntering,
 male => maleExiting.Where(exit => exit.Name == male.Name),
 female => femaleExiting.Where(exit => female.Name == exit.Name),
 (m, females) => new {Male = m.Name, Females = females});

Then you can create a query for the malesAcquaintances observable that com-
putes the number of females each man meets in the room and subscribe to it:

var amountPerUser =
 from acquaintances in malesAcquaintances
 from cnt in acquaintances.Females.Scan(0, (acc, curr) => acc + 1)
 select new {acquaintances.Male, cnt};

amountPerUser.SubscribeConsole("Amount of meetings for User");

Running this example with the males and females shown in figure 9.8 generates this
output:

Amount of meetings per User - OnNext({ Male = Bob, cnt = 1 })
Amount of meetings per User - OnNext({ Male = John, cnt = 1 })
Amount of meetings per User - OnNext({ Male = Bob, cnt = 2 })
Amount of meetings per User - OnNext({ Male = John, cnt = 2 })
Amount of meetings per User - OnNext({ Male = Dan, cnt = 1 })

Note that a notification emits each time the count changes.

GROUPJOIN WITH QUERY SYNTAX

For simplicity, you can write a GroupJoin clause by using the LINQ query syntax.
GroupJoin has the same format as the clause used in LINQ, but the meaning of its
parts is as follows:

from [left] in [leftObservable]
join [right] in [rightObservable] on [leftDuration] equals [rightDuration]
 into [correlationGroup]
select ...

221Buffers and sliding windows
This is how you’d correlate the males and females in the same room:

from male in maleEntering
join female in femaleEntering on maleExiting.Where(e => e.Name == male.Name)
equals femaleExiting.Where(e => female.Name == e.Name)
into maleEncounters
select new { Male = male.Name, Females = maleEncounters };

Joins are a powerful tool in the Rx toolbox, as they allow you to find correlations
between elements and to capture coincidence.

 At this point in the chapter, you already have a good idea of how to connect differ-
ent observables and a basic understanding of how to split a single observable into sub-
observables (groups). Next, you’ll learn more useful techniques for breaking the
observable into parts.

9.4 Buffers and sliding windows
When thinking about observables, you’ll look at them in many cases as a representa-
tion of an unbounded stream of elements (or notifications). Working with
unbounded things, whether they’re observables or collections, isn’t easy to grasp. As
humans, we like to break them into smaller, bounded things to process each sepa-
rately until, finally, we reflect their result in the “big picture” of the entire unbounded
set. This is known as the divide-and-conquer approach. With reactive programming, you
can do that in two ways:

 Buffering breaks the observable sequence into bounded collections called
buffers.

 Windowing breaks the observable sequence into finer observables to define
their duration.

The important difference between the two is that with windowing, you get the emis-
sion as soon as it arrives, and with buffering you get the buffer’s emission only when it
closes (either because it’s full or because the buffering time is over), as shown in
figure 9.9.

Figure 9.9 Buffering versus windowing: with windowing, you get the emissions as soon as
they arrive, and with buffering you get the buffer only when it closes.

1

1

2

3

2 3 1

Buffer

1

2

3

2 3 1 2 3 1

Window

2 3

1
2

3

1
2

3

222 CHAPTER 9 Partitioning and combining observables
9.4.1 Buffering

With buffering, you can wrap consecutive elements emitted by an observable into a
buffer and create an observable of collections, but not of single elements. You can buf-
fer by time, number of items, or any logical duration you specify by using an observ-
able whose notifications define when the buffer closes.

 Suppose your application connects to your bike’s speedometer, which pushes the
speed at a constant rate. You want your application to show how your acceleration
changes. To do that, you need to get two consecutive readings and calculate the differ-
ence between them. You can use Buffer to accomplish that, where the buffering is
done with a sliding window of two items.

 Figure 9.10 shows the marble diagram of what you’re trying to achieve.

Two definitions of window
The word window is a little confusing here because it represents two different but
related things.

First, window is the substream of elements under a certain boundary (duration or
amount).

Second, window is the logical boundary in which elements are gathered from the
stream.

In figure 9.9 you can say that the buffer is created from a time frame (window) that
spans over the three items, which are emitted and then collected to the buffer.

You can also say that the three items that are emitted in that time frame are emitted
to an observable that we call a window.

You can define three types of windows when you consider them as containers of ele-
ments over time:

 Tumbling windows are a series of fixed-sized, nonoverlapping, contiguous time
intervals.

 Hopping windows are a series of windows that “hop” forward in time by a
fixed period.

 Sliding windows are a type of hopping window in which the window width is
larger than the “hop,” causing the windows to overlap.

1 2 3 5 6 7Tumbling windows

1 2 3 5 6Sliding windows

Hopping windows 1 2 3 5 6 7

223Buffers and sliding windows

Applies
opera

obs
wrap th
This listing shows the code for the marble diagram in figure 9.10.

IObservable<double> speedReadings = ...

Double timeDelta = 0.0002777777777777778; //1 second in hours unit

Var accelerations =
 From buffer in speedReadings.Buffer(count: 2, skip: 1)
 Where buffer.Count==2
 Let speedDelta = buffer[1] - buffer[0]
 Select speedDelta/timeDelta;

accelerations.SubscribeConsole("Acceleration");

In this example, you use the query syntax approach because it allows you to use the
let keyword to introduce new subcalculations that make your code smaller. After
applying the Buffer operator on the speedReadings observable, you get an observ-
able of buffers with two consecutive items.

TIP Instead of creating a buffer of two consecutive elements to find the
speed delta, you could use the Zip operator like this: speedReadings.Zip
(speedReadings.Skip(1), (x,y)=> y-x). This zips the observable with a
shifted version of itself.

You can see in the example that you provide two arguments to the Buffer operator
by using this overload:

IObservable<IList<TSource>> Buffer<TSource>(IObservable<TSource> source,
 int count,
 int skip);

The first argument passed is the number of items you want in each buffer, and the
second argument (called skip) defines the number of notifications that need to be

Listing 9.2 Using Buffer to find the deltas between two speedometer readings

50

50 51 51 51.5 51.5 53 53

51-50 51.5-51 51.5-53 53-52
∆Time ∆Time ∆Time ∆Time

52

Speed 51 51.5 53 52

Acceleration

Buffer(2, 1)

Figure 9.10 A marble diagram
of acceleration calculated with
the Buffer operator

An observable
that emits
speed in MPH
every 1 second

 the Buffer
tor on the
ervable to
e emitted
items into

Specifies the number of
items to be buffered (the
last item emitted by the
observable will be wrapped
inside a buffer alone)

Calculates the delta between two
speedometer readings that were buffered

224 CHAPTER 9 Partitioning and combining observables
emitted when the first buffer opens, before another buffer will be opened. The combi-
nations of the two arguments create the various types of windows (as a container of ele-
ments over time, explained in the beginning of this section), as shown in figure 9.11:

 Tumbling window: If skip is the same as the number of items in the buffer, a buf-
fer opens the moment the previous one closes.

 Hopping window: If skip is larger than the number of items in the buffer, then
after a buffer is closed, the next buffer opens only after count-skip (count
minus skip) elements have been emitted.

 Sliding window: If skip is smaller than the number of items a buffer contains,
then the buffer overlaps with the next one and shares some of the items.

Buffer has overloads that let you make the buffering by time span, or you can set the
buffering to be both by time and number of items, whichever happens first:

IObservable<IList<TSource>> Buffer<TSource>(IObservable<TSource> source,
 TimeSpan timeSpan);
IObservable<IList<TSource>> Buffer<TSource>(IObservable<TSource> source,
 TimeSpan timeSpan,
 TimeSpan timeShift);
IObservable<IList<TSource>> Buffer<TSource>(IObservable<TSource> source,
 TimeSpan timeSpan,
 Int count);

If you need more control over when the buffer starts and when it closes, you can use the
Buffer overload that accepts observables as its triggers for starting or closing a buffer.

 If the closing of a buffer triggers the opening of the next buffer, use this overload:

IObservable<IList<TSource>> Buffer<TSource, TBufferBoundary>(
 IObservable<TSource> source,
 IObservable<TBufferBoundary> bufferBoundaries);

1 2 3 5 6 7Buffer(3,3)

1 2 3 5 6Buffer(3,2)

Buffer(2,4)

(Tumbling windows)

(Sliding windows)

(Hopping windows)

1 2 3 5 6 7

Figure 9.11 Buffering with various
combinations of amount and skip and
the effect on the windows’ behavior

Interval between
creation of

consecutive buffers
Buffer until timeSpan is reached or until the number
in the buffer is equal to the provided count

Closes the current buffer
and opens the next one by
emitting a notification

225Buffers and sliding windows
If a single observable for controlling the closing of the buffer (and opening the next
one) isn’t enough for your needs, and you need to create a specific duration for each
buffer that’s opened, consider using this overload:

IObservable<IList<TSource>> Buffer<TSource, TBufferClosing>(
 IObservable<TSource> source,
 Func<IObservable<TBufferClosing>> bufferClosingSelector);

If buffers can open and close independently, consider using this overload:

IObservable<IList<TSource>> Buffer<TSource, TBufferOpening,
 TBufferClosing>(
 IObservable<TSource> source,
 IObservable<TBufferOpening> bufferOpenings,
 Func<TBufferOpening, IObservable<TBufferClosing>>
 ➥ bufferClosingSelector);

Suppose you’re writing a chat messaging application that can receive messages at a
rapid rate. Because you don’t want to block your UI, you need to protect it from too
many updates in a short period of time. What you want is to wait until there’s a short
pause between the messages and then put all the messages on the screen at once. To
do that, you can buffer the chat messages and control the buffering with another
observable that emits when there’s a short pause:

IObservable<string> messages = ...

messages.Buffer(messages.Throttle(TimeSpan.FromMilliseconds(100)))
 .SelectMany((b, i) =>
b.Select(m => string.Format("Buffer {0} - {1}", i, m)))
 .SubscribeConsole("Hi-Rate Messages");
Console.ReadLine();

To simulate the situation of high-rate messages, you’ll create an observable that emits
four messages, one every 50 ms, and then pauses for 200 ms before it emits four more
messages. (Note that I’m converting the cold observable into a hot one in order to get
realistic results):

var coldMessages = Observable.Interval(TimeSpan.FromMilliseconds(50))
 .Take(4)
 .Select(x => "Message " + x);

IObservable<string> messages =
 coldMessages.Concat(
 coldMessages.DelaySubscription(TimeSpan.FromMilliseconds(200)))

Called when a buffer is opened and
returns an observable that triggers the
buffer closure by emitting a notification

Triggers the opening of a buffer
by emitting a notification

Returns an observable that triggers the
buffer closure by emitting a notification

Emits messages; some may be
received at a high rate.

Buffering messages into
buffers that are closed

when there’s a delay of 100
ms between the messages

226 CHAPTER 9 Partitioning and combining observables
 .Publish()
 .RefCount();

//Rest of the example as it is shown in the snippet and use the Buffer
operator

Running this example displays these results:

Hi-Rate Messages - OnNext(Buffer 0 - Message 0)
Hi-Rate Messages - OnNext(Buffer 0 - Message 1)
Hi-Rate Messages - OnNext(Buffer 0 - Message 2)
Hi-Rate Messages - OnNext(Buffer 0 - Message 3)
Hi-Rate Messages - OnNext(Buffer 1 - Message 0)
Hi-Rate Messages - OnNext(Buffer 1 - Message 1)
Hi-Rate Messages - OnNext(Buffer 1 - Message 2)
Hi-Rate Messages - OnNext(Buffer 1 - Message 3)
Hi-Rate Messages - OnCompleted()

With the different overloads of the Buffer operator, you can control when a buffer is
opened and when it’s closed. Still, your observer receives the elements inside the buf-
fer only when the buffer closes, which can take some time (depending on your logic).

 If you need to perform any operations on the elements inside the buffer (such as
summing or filtering them), you can do that only at the end of each buffer. For cases
like this, requiring a more “live” operation, you should use the Window operator.

9.4.2 Windowing the observable sequence

The Window operator lets you fragment the
observable sequence into windows along tempo-
ral boundaries or capacity. A window is an observ-
able that emits the elements in that temporal
boundary (figure 9.12). The Window operator
looks similar to the Buffer operator, but instead
of wrapping all the elements of the buffer inside
a collection that emits when the buffer closes, a
window emits the items as soon as they arrive.

 Suppose you have an application for a call
center that collects donations. The work is done
in shifts of 1 hour, and you want to see how many
donations were collected in each shift.

 In this case, working with Buffer isn’t sufficient because you’ll get the sum of the
donations only at the end of the 1-hour window. Instead, you’ll use the Window opera-
tor so that values are summed and displayed immediately onscreen:

IObservable<decimal> donations = ...

var windows = donations.Window(TimeSpan.FromHours(1));

var donationsSums =
 from window in windows.Do(_ => Console.WriteLine("New Window"))

1 2 3 4 5 6

1 2 3

4 5 6

Window(TimeSpan.FromSeconds(1))

1 sec 1 sec

Figure 9.12 The Window operator
splits the observable sequence into sub-
observables based on temporal
boundaries or capacity.

Prints a message when
a new window is
opened (and the

previous one closed).

227Buffers and sliding windows
 from sum in window.Scan((prevSum, donation) => prevSum+donation)
 select sum;

donationsSums.SubscribeConsole("donations in shift");

The donations observable is broken into non-overlapping windows of 1 hour each.
Then, you take each window and apply the Scan operator to sum all the values of the
donations made. Scan emits the summation when the values change (as opposed to
Aggregate, which emits when the observable completes).

 The donationsSums observable is a flat observable that emits the summations
from all the windows. Because you’ve added the Do operator to the windows observ-
able, you’ll see a message between each window. Here’s the output I received when
running the example for two shifts with the sample donation values:

Shift 1—50$, 55$, 60$
Shift 2—49$, 48$, 45$
Output:
New Window
donations in shift - OnNext(50)
donations in shift - OnNext(105)
donations in shift - OnNext(165)
New Window
donations in shift - OnNext(49)
donations in shift - OnNext(97)
donations in shift - OnNext(142)
donations in shift - OnCompleted()

The Window operator has some overloads that let you control when the window is
opened and when it closes. Windows can be opened and closed based on the number
of items they contain or by the duration of time they should be opened. You can also
specify the number of items to be skipped between them or the duration of a pause
between closing a window and opening another.

 Here’s a small subset of these overloads (you’ll find them similar to the ones that
the Buffer operator provides):

IObservable<IObservable<TSource>> Window<TSource>(
 IObservable<TSource> source,
 int count,
 int skip);
IObservable<IObservable<TSource>> Window<TSource>(
 IObservable<TSource> source,
 TimeSpan timeSpan,
 TimeSpan timeShift);
IObservable<IObservable<TSource>> Window<TSource>(
 IObservable<TSource> source,
 TimeSpan timeSpan,
 int count);

Creates an aggregated
computation and emits

the value when the
computation changes

228 CHAPTER 9 Partitioning and combining observables

w
Figure 9.13 Fixed windows versus sliding windows

If the number of items to skip (or the time shift) is less than the number of items in
the window (or the window duration), a sliding window is created, and there will be
an overlap between the two windows, as shown in figure 9.13.

DYNAMIC WINDOWS

Windows can open and close dynamically, based on your own logic that might depend
on other observables. You can define the window closure strategy differently for each
window by providing a function that creates an observable per window. This observ-
able determines when the window closes by emitting a notification on completion:

IObservable<IObservable<TSource>> Window<TSource, TWindowClosing>(
 IObservable<TSource> source,
 Func<IObservable<TWindowClosing>> windowClosingSelector);

Opening a window can be controlled in a similar fashion. You can provide an observ-
able to the Window operator that triggers the opening of a window by emitting a
notification:

IObservable<IObservable<TSource>> Window<TSource, TWindowOpening, TWindow-
Closing>(

 IObservable<TSource> source,
 IObservable<TWindowOpening> windowOpenings,
 Func<TWindowOpening, IObservable<TWindowClosing>> windowClosingSelector);

If you want to create nonoverlapping windows and control the window boundaries by
your own logic, you can use this overload:

IObservable<IObservable<TSource>> Window<TSource, TWindowBoundary>(
 IObservable<TSource> source,
 IObservable<TWindowBoundary> windowBoundaries);

windowBounderies is an observable that you provide to close the previous window
and open the next by emitting a notification.

 Windows and buffers are two ways you can split a big problem into many small
ones and solve each one independently. By splitting your observable into parts, you
can gain insight into the different parts that later can be reflected overall. This is ideal

Window1 Window2
Time Time

Window3 Window1

Fixed windows Sliding windows

Window2

Window3

Triggers the opening of a windo
by emitting a notification

Executes when a window opens and returns an
observable that triggers the window closure by emitting

229Summary
for aggregations or other operations over subsets of elements that fall within a certain
period of time.

 This concludes your journey into the ways to combine observables and the ways to
split them. You accomplished quite a lot in this chapter, which presented advanced
techniques in reactive logic. It’s time to summarize what you’ve learned so you’ll have
a future reference to use for refreshing your memory.

9.5 Summary
In this chapter, you’ve learned that building reactive queries isn’t restricted to a single
observable and that you can create queries that rely on the relationship and combina-
tions of multiple observables:

 The Zip operator pairs elements from two or more observables that share the
same index.

 The CombineLatest operator combines the latest values emitted from each of
the observables.

 The Concat operator emits the elements from the next observable when the
previous observable completes.

 Concat subscribes to the observable only when the previous one completes.
 The Merge operator subscribes to all of the observables and emits their notifi-

cations as they arrive.
 You can restrict the number of concurrent subscriptions for the Merge opera-

tor by passing the number of allowed concurrent subscriptions as an argument.
 The Switch operator creates a single observable that emits the notifications

from the most recent observable.
 The Amb operator works similarly to Switch, but switches to the first observable

that emits.
 In Rx, grouping means to create observables of elements that share the same

key. This is done with the GroupBy operator.
 In Rx, joining two observables means to emit pairs of elements that exist in the

same time frame.
 The Join operator combines items emitted by two observables in the same

time frame and emits the pairs into a single flat observable.
 The GroupJoin operator correlates the elements of two observable sequences

based on overlapping durations, and then groups all elements that correlate
with each element, which is an observable itself.

 You can write your Join and GroupJoin queries using both query syntax and
method chaining.

 The Buffer operator breaks an observable sequence into bounded collections
and creates an observable of those collections.

 The Window operator breaks an observable sequence into finer observables.

230 CHAPTER 9 Partitioning and combining observables
 Both Buffer and Window allow you to control the duration or capacity of the
buffer or windows and allow the creation of sliding windows.

In the many examples you’ve seen in this book, from creating observables through
querying and combining, we’ve added the element of time and of execution context
(threads, tasks, and so on). The next chapter teaches you how Rx models time and
concurrency and how to use that to control the execution of your queries.

Working with
Rx concurrency and

synchronization
Timing is everything, or at least that’s what some say. Unlike collections (enumera-
bles), timing plays a big part in the observables world. The time between notifica-
tions can be long or short, and it can affect how you process them. In chapter 9,
you saw examples of buffering elements or creating sliding windows over time.
There’s also the matter of where the execution takes place (for example, threads,
tasks, dispatchers, and so on). The concepts of time and execution context are
related and provide the foundation for the Rx concurrency model. The scheduler
type and its derivations express this model. This chapter explains the scheduler’s
layer in Rx and how to use it to control concurrency inside the Rx observable pipe-
line, as well as how to use it with Rx time-based operators.

10.1 Controlling concurrency with schedulers
In computer science, concurrency is a property of those systems in which several com-
putations are executing simultaneously and, potentially, interacting with each other.
I talked a bit about concurrency in chapter 5, where I mentioned the different .NET

This chapter covers
 Rx schedulers

 Time-based operators

 Synchronization in the observable pipeline
231

232 CHAPTER 10 Working with Rx concurrency and synchronization

Re
sc

cur
asynchronous types. Until now, I’ve avoided talking directly about how concurrency is
handled inside the observable pipeline. If you use the Interval operator to create an
observable that emits every 10 seconds, for example, on what thread will the notifica-
tions be received? On what thread will the observer’s subscription take place? In some
cases, such as when working with UI frameworks, controlling those execution contexts
is important because you may have restrictions on which thread executes the code that
performs an operation. Usually UI controls can be mutated only on the UI thread; oth-
erwise, you get an exception.

 Rx follows this design guideline: everything that introduces concurrency must do
so by using a Scheduler type, which is the abstraction layer Rx uses for concurrency
and time.

10.1.1 Defining the scheduler

In simple terms, a scheduler is a unit that represents a clock and an execution context.
The clock maintains the current time and allows for scheduling work at a specific time
(such as a timer). The execution context determines where to process the work (for
example, in the current thread or in the current SynchronizationContext object).
This is shown in figure 10.1. All schedulers in Rx implement the IScheduler inter-
face, shown in listing 10.1.

Figure 10.1 The Rx schedulers are like timers: you assign specific actions or
tasks to the scheduler, and when a preset time expires, the scheduler posts
the work to the execution context it’s bound to.

public interface IScheduler
{
 DateTimeOffset Now { get; }

 IDisposable Schedule<TState>(
 TState state,
 Func<IScheduler, TState, IDisposable> action);

Listing 10.1 The IScheduler interface

Scheduler

12

6

1

5

11

7

2

4

10

8
39

Thread pool

UI dispatcher

Other

turns the
heduler’s
notion of
rent time

Schedules an action to be executed.
Returns a disposable that’s used to

cancel the scheduled action.

233Controlling concurrency with schedulers

Sc
Re
 IDisposable Schedule<TState>(
 TState state,
 TimeSpan dueTime,
 Func<IScheduler, TState, IDisposable> action);

 IDisposable Schedule<TState>(
 TState state,
 DateTimeOffset dueTime,
 Func<IScheduler, TState, IDisposable> action);
}

The scheduler contains the property Now, which returns the scheduler’s notion of the
current time. Most scheduler implementations return DateTimeOffset.UtcNow,
but in more advanced cases, as you’ll see in appendix C, the scheduler’s time abstrac-
tion lets you control the time for testing and for revisiting past events.

 Along with the Now property, the Scheduler interface provides a couple of over-
loads to the Schedule methods. Those overloads let you schedule actions to run at an
absolute or relative time, or immediately. To schedule actions, you pass a state object
of your choice, the scheduling time, and an action of type Func<IScheduler,
TState, IDisposable>.

 When the preset time arrives and the action is invoked, it receives the scheduler
that invoked it and the state object you provided. The state object lets you maintain
context from the caller that made the scheduling to the action that’ll be running at a
later time. There’s no restriction on the type of the state object, and it can be any data
type you choose.

 The action you schedule must return a Disposable object, which acts as a cancel-
lation token. Disposing of it is meant to trigger the cancellation of the running opera-
tion as well as to clean any resources that were created as part of it.

 Let’s see an example of what working with the scheduler looks like. You’ll use
NewThreadScheduler (which resides in System.Reactive.Concurrency) to
schedule an action that prints the current time on-screen. You’ll want to schedule this
action 2 seconds in the future and, instead of being coupled to the environment clock
or the platform-specific timers, you’ll rely on the Rx scheduler to do the wiring for
you, as shown in figure 10.2.

Figure 10.2 Scheduling work with NewThreadScheduler

Schedules an action to be executed after the
given TimeSpan. Returns a disposable that’s

used to cancel the scheduled action.

hedules an action to be executed at the given dueTime.
turns a disposable that’s used to cancel the scheduled action.

Thread A

Thread B

Schedule(initialValue, 2sec, action)

t0

Action(scheduler, initialValue)

t0+2sec

234 CHAPTER 10 Working with Rx concurrency and synchronization

tion
IScheduler scheduler = NewThreadScheduler.Default;

IDisposable scheduling =
 scheduler.Schedule(
 Unit.Default,
 TimeSpan.FromSeconds(2),
 (scdlr, _) =>
 {
 Console.WriteLine("Hello World, Now: {0}", scdlr.Now);
 Return Disposable.Empty;
 });

Running this example (and waiting 2 seconds) displays this output:

Hello World, Now: 22/12/2015 13:45:00 +00:00

In this example, the state object and the returned disposable aren’t used, but often
those objects are used to control what’s going on inside the scheduled action.

 Let’s see a more advanced example of a recurring event (every 2 seconds) that
needs to count how many times it happened. You’ll use the state object and also create
recursive scheduling to run an action every 2 seconds, which can be canceled with the
returned disposable:

IScheduler scheduler = NewThreadScheduler.Default;
Func<IScheduler, int, IDisposable> action = null;
action = (scdlr, callNumber) =>
 {
 Console.WriteLine("Hello {0}, Now: {1}, Thread: {2}",
 callNumber,
 scdlr.Now,
 Thread.CurrentThread.ManagedThreadId);
 return scdlr.Schedule(callNumber + 1, TimeSpan.FromSeconds(2),
 action);
 };

IDisposable scheduling =
 scheduler.Schedule(
 0,
 TimeSpan.FromSeconds(2),
 action);

Figure 10.3 shows the conceptual sequence of the periodic behavior you just created.
 If you run this example now, it’ll keep on running and writing messages on-screen.

When the time comes, and you want to stop it, you can simply dispose of the sched-
uling object.

 Internally, the scheduler connects all disposables that are created downstream of
the disposable returned from the initial call to the Schedule method, so even if an
inner-level scheduling has already happened, disposing of the top disposable will

The state object isn’t used in this
example; Unit.Default is used,
which acts like a null object.

The execution time is 2 seconds from
when the scheduling takes place.

Receives the scheduler that’s used for recursive scheduling
and the state object. Disposable.Empty is returned because
there is no specific resource handling or cancellation object.

The C# compiler doesn’t
allow use of a variable
until it’s declared, so
you separate the action
declaration from its defini
(where it’s being used).

Reschedules the action for another 2 seconds,
incrementing the state object (that acts as the
calls counter). The disposable returned from
the Schedule method is also returned.

The first scheduling passes the
initial state object. Because
it’s the first call, you pass 0.

235Controlling concurrency with schedulers
affect the innermost one. (Appendix A delves deeper into the Rx Disposables library
that enables this kind of disposable chain.)

 Some schedulers, in addition to implementing the IScheduler interface, imple-
ment two more interfaces that Rx provides:

 ISchedulerPeriodic declares the SchedulePeriodic method for schedul-
ing actions to run periodically.

 ISchedulerLongRunning declares the ScheduleLongRunning method for
scheduling actions that’ll run for a long period of time.

In most cases, you won’t use the scheduler directly. Instead, you’ll pass it to Rx opera-
tors only to control concurrency.

10.1.2 Parameterizing concurrency

The IScheduler interface provides an abstraction over the concurrency that you
introduce in your application. IScheduler allows the operators that perform a con-
current operation to be agnostic to the real implementation of the concurrency sim-
ply by providing it with the scheduler you want it to use as a parameter. To create an
observable that emits a notification every second but ensures that the emissions hap-
pen on the current thread, you can write this code:

Console.WriteLine("Before - Thread: {0}",
 Thread.CurrentThread.ManagedThreadId);
Observable.Interval(TimeSpan.FromSeconds(1), CurrentThreadScheduler.Instance)
 .Take(3)
 .Subscribe(x => Console.WriteLine("Inside - Thread: {1}",
 x,
 Thread.CurrentThread.ManagedThreadId));

Note that I passed the CurrentThreadScheduler.Instance to the Interval
operator. This ensures that the internal timer that Interval is using will use the cur-
rent thread. The code yields this output (thread numbers could differ):

Before - Thread: 1
Inside - Thread: 1

Scheduler Action

Schedule(0,2sec,action)

action(scheduler,0)

Schedule(1,2sec,action)
action(scheduler,1)

Schedule(2,2sec,action)
:
:

action(scheduler,N)

Schedule(N+1,2sec,action)

Figure 10.3 You can use schedulers to
create a periodic behavior. You can also
use the state parameter for passing
information to the next iteration.

236 CHAPTER 10 Working with Rx concurrency and synchronization
Inside - Thread: 1
Inside - Thread: 1

Interval creates a cold observable. Because CurrentThreadScheduler is used in
this example, an observable runs synchronously for each observer that subscribes, so the
subscription call turns into a blocking operation that continues only after the entire
observable sequence completes.

 If no scheduler is passed to the Interval operator, it’ll use the default scheduler
that runs the timer on another thread and, therefore, the emissions will happen on
that thread, yielding this output (thread numbers could differ):

Before - Thread: 1
Inside - Thread: 4
Inside - Thread: 4
Inside - Thread: 4

In this case the thread in which the OnNext method was called is 4 and is different
from the thread that the application was executed on before the subscription took
place. In other words, the observable now runs asynchronously.

 Like the Interval operator, all Rx operators that introduce concurrency in their
operations receive a scheduler (a default scheduler is used otherwise). I’ll confess I
wasn’t completely honest in the previous chapters, and I intentionally hid all the oper-
ators’ overloads that receive the IScheduler.

 Many developers that approach Rx have a false assumption that everything in Rx is
running in the background. This isn’t true. In fact, Rx operators are clear about their
intentions to execute the so-called background operation by providing an overload
that accepts IScheduler. Consider the next example of the Range operator that cre-
ates an observable that emits a sequence of numbers together with the Repeat opera-
tor that resubscribes to the observable. Try to predict what will be printed:

var subscription =
 Observable.Range(1, 5)
 .Repeat()
 .SubscribeConsole("Range on another thread");

subscription.Dispose();

Unlike what many developers falsely believe, this writes the sequence 1–5 indefinitely
on the console and doesn’t immediately dispose of the subscription. Because when the
observable that emits the sequence completes, the Repeat operator resubscribes to it.
This happens over and over on the calling thread, so the Dispose method of the sub-
scription will never be reached.

 To overcome this, you can change the Range emissions to take place on another
thread by doing this:

Observable.Range(1, 5, NewThreadScheduler.Default)

Now the calling thread won’t be blocked, and the call to the Dispose method will
happen as quickly as possible.

237Controlling concurrency with schedulers
 Rx also provides a few implementations of the IScheduler interface that’s suited
for different purposes.

10.1.3 Types of schedulers

To help you set the concurrency of your observable pipeline, Rx provides a couple of
schedulers. All the standard Rx schedulers sit under the System.Reactive.Con-
currency namespace. To demonstrate the different effect each scheduler has, I’ll use
the test method shown here.

public static void TestScheduler(IScheduler scheduler)
{
 scheduler.Schedule(Unit.Default,
 (s, _) => Console.WriteLine("Action1 - Thread:{0}",
 Thread.CurrentThread.ManagedThreadId));
 scheduler.Schedule(Unit.Default,
 (s, _) => Console.WriteLine("Action2 - Thread:{0}",
 Thread.CurrentThread.ManagedThreadId));

}

NEWTHREADSCHEDULER

Just as the name suggests, NewThreadScheduler runs the scheduled action on a new
thread. By default, NewThreadScheduler creates a new Thread object for every
scheduling operation, but you can also pass it a threadFactory of type
Func<ThreadStart, Thread>, which is responsible for the way threads are created.

 Most of the time, you won’t instantiate the scheduler, but will use the NewThread-
Scheduler.Default static property to receive a shared instance.

TestScheduler(NewThreadScheduler.Default);

Running the code displays this output (thread numbers could differ):

Action1 - Thread:7
Action2 - Thread:8

One issue usually confuses developers who use NewThreadScheduler with a recur-
sive call to the scheduler—it won’t open a new thread. Internally, it will use the
EventLoopScheduler that uses the same thread.

 Because creating a new thread for every scheduling isn’t efficient,1 you should use
the NewThreadScheduler primarily for making long-running operations. For short-
lived operations, it’s recommended to work with ThreadPool.

THREADPOOLSCHEDULER

Creating a new thread for every scheduled action isn’t efficient; opening and clos-
ing a thread in the OS is time and memory expensive. Instead, the .NET Framework

Listing 10.2 A test method to show the behavior of various schedulers

1 This issue is discussed in chapter 5.

238 CHAPTER 10 Working with Rx concurrency and synchronization
provides the ThreadPool class that reuses threads instead of opening a new one
each time. ThreadPoolScheduler works similarly to NewThreadScheduler, but
uses the thread pool instead of creating new threads:

TestScheduler(ThreadPoolScheduler.Instance);

The output is as follows (thread numbers could differ):

Action1 - Thread:9
Action2 - Thread:10

You can see from the output that two actions are scheduled independently of one
another, and on different threads.

 Unlike NewThreadScheduler, recursive scheduling is also queued on the thread
pool, so different scheduled actions might run on different threads. Thread-
PoolScheduler should be your first choice when you specifically need to schedule
on threads.

TASKPOOLSCHEDULER

TaskPoolScheduler works similarly to ThreadPoolScheduler except, instead of
working with ThreadPool, it uses the Task Parallel Library (TPL) task pool. In some
platforms (such as WinRT), the thread pool isn’t accessible, so TaskPoolScheduler
is the perfect replacement.

CURRENTTHREADSCHEDULER

CurrentThreadScheduler schedules the actions on the same thread where the caller
of the Schedule method runs. Any recursive scheduling that happens inside a sched-
uled action is put into an ordered-by-time queue maintained by the scheduler. After a
scheduled operation completes, the scheduler picks the next operations from the
queue and runs it when its dueTime comes, or immediately if it has already passed.

TestScheduler(CurrentThreadScheduler.Instance);

The output is as follows (thread numbers could differ):

Calling thread: 1
Action1 - Thread:1
Action2 - Thread:1

The example shows that each scheduled action runs on the same thread, and that this
thread is the same one the caller is running on. When you program recursive schedul-
ings, they’ll also run on the same thread.

IMMEDIATESCHEDULER

Like CurrentThreadScheduler, ImmediateScheduler schedules the action on
the current thread. But unlike CurrentThreadScheduler that queues the sched-
uled actions and then runs them one after the other, ImmediateScheduler runs
each action immediately or blocks it until the dueTime comes:

239Controlling concurrency with schedulers
var immediateScheduler = ImmediateScheduler.Instance;

Console.WriteLine("Calling thread: {0} Current time: {1}",
Thread.CurrentThread.ManagedThreadId, immediateScheduler.Now);

immediateScheduler.Schedule(Unit.Default,
 TimeSpan.FromSeconds(2),
 (s, _) =>
 {
 Console.WriteLine("Outer Action - Thread:{0}",
 Thread.CurrentThread.ManagedThreadId);
 s.Schedule(Unit.Default,
 (s2, __) =>
 {
 Console.WriteLine("Inner Action - Thread:{0}",
 Thread.CurrentThread.ManagedThreadId);
 return Disposable.Empty;
 });
 Console.WriteLine("Outer Action - Done");
 return Disposable.Empty;
 });
Console.WriteLine("After the Schedule, Time: {0}",immediateScheduler.Now);

The output is as follows (thread numbers could differ):

Calling thread: 1 Current time: 24/12/2015 18:00:47 +00:00
Outer Action - Thread:1
Inner Action - Thread:1
Outer Action - Done
After the Schedule, Time: 24/12/2015 18:00:49 +00:00

There are a few things to note in this example output. First, all the actions run on the
same thread that the initial caller runs on. Second, the inner action is scheduled
immediately and not when the outer action completes. Third, the message After
the Schedule prints 2 seconds after the call to the Schedule method. This is
because you pass the TimeSpan.FromSecond(2) as an argument to the Schedule
method that causes it to block until the dueTime arrives. You should use Immediate-
Scheduler when you need to schedule actions that involve a small amount of work
that can be viewed as constant time operations.

EVENTLOOPSCHEDULER

EventLoopScheduler is a scheduler bound to a single thread that runs all the
actions. When EventLoopScheduler is created, it creates a thread (or you can pro-
vide a thread factory of your own) to run all the actions that will be scheduled, regard-
less of what thread the actions are scheduled on.

 Internally, EventLoopScheduler holds an ordered-by-time queue of the action.
Every scheduled action is enqueued and, when the scheduler finishes running an
action, the next action is dequeued.

TestScheduler(new EventLoopScheduler());

Schedules the action to
run after 2 seconds

240 CHAPTER 10 Working with Rx concurrency and synchronization
The output is as follows (thread numbers could differ):

Calling thread: 1
Action1 - Thread:14
Action2 - Thread:14

The example shows that all scheduled actions are running on the same thread, but
this thread is different from the one that EventLoopScheduler was created on.

 In one of the projects I was consulting on, three observables emitted values at a
high rate, and observers used and modified the state of a shared object. All the modi-
fications of the shared object had to be synchronized, so the developers used locks
and other synchronization primitives in many places inside the shared object, thus
degrading the performance. A small but powerful tweak I made to improve the per-
formance was to make all the observers run on the same EventLoopScheduler so
that no locks were needed while the processing was still synchronized.

SCHEDULING ON THE SYNCHRONIZATIONCONTEXT
In the .NET Framework, SynchronizationContext is an object that handles the syn-
chronization of work for a specific threading context, such as the UI thread in WPF
and WinForms or an ASP.NET request. By using SynchronizationContext, you can
dispatch work from a source thread to a target thread and let Synchronization-
Context handle the details.

 SynchronizationContextScheduler in Rx provides a bridge between the Rx
schedulers’ model and the .NET SynchronizationContext model so that each
scheduled task is posted on SynchronizationContext. When creating the
SynchronizationContextScheduler, you need to pass the Synchronization-
Context you want to use. For example:

var syncContextScheduler = new SynchronizationContextScheduler(
 SynchronizationContext.Current);

In both WinForms and XAML platforms, SynchronizationContext plays a big part
because if you try to run code that interacts with the UI component from a thread dif-
ferent than the UI thread, an exception is thrown. So every operation related to the UI
needs to go through the right SynchronizationContext. In WinForms, you can
use the control itself to invoke the actions on the right thread:

control.BeginInvoke(() => {/* the action code */});

 With XAML platforms (such as WPF or WinRT), you can use the Dispatcher class:

Dispatcher.CurrentDispatcher.BeginInvoke(() => {/* the action code */});

To ease the use of schedulers in those frameworks, Rx provides ControlScheduler
and DispatcherScheduler, which wrap the right synchronization context for Win-
Forms and XAML platforms. To access these schedulers, add a reference to the relevant
platform package—System.Reactive.Windows.Threading for XAML platforms

241Using time-based operators
such as WPF or UAP (www.nuget.org/packages/System.Reactive.Windows.Threading)
and System.Reactive.Windows.Forms for WinForms (www.nuget.org/packages/
System.Reactive.Windows.Forms).

10.2 Using time-based operators
The main difference between an observable sequence and traditional enumerables is
the dimension of time. With observables, the time between two notifications is dynamic
and can be predicated by the observer. This dimension of time can affect the way you
want to react to notifications—ignoring them or delaying them if they’re too fast.

Fixing the primes observable from chapter 5
In chapter 5, I showed how to create observables from asynchronous code. For the
sake of the example (and because schedulers were introduced only in this chapter),
I introduced concurrency by explicitly creating a task inside the observable creation
method of an observable that emits prime numbers. To make amends, I’ll show here
the correct way of introducing concurrency and parameterizing it. Note that the exam-
ple can be optimized even more (by converting enumerables to observables, for exam-
ple), but I want to show the simplest refactoring:

static IObservable<int> GeneratePrimes(int amount,
Ischeduler scheduler = null)
{
 scheduler = scheduler ?? DefaultScheduler.Instance;
 return Observable.Create<int>(o =>
 {
 var cancellation = new CancellationDisposable();
 var scheduledWork = scheduler.Schedule(() =>
 {
 try
 {
 var magicalPrimeGenerator = new MagicalPrimeGenerator();
 foreach (var prime in magicalPrimeGenerator
 .Generate(amount))
 {
 cancellation.Token.ThrowIfCancellationRequested();
 o.OnNext(prime);
 }
 o.OnCompleted();
 }
 catch (Exception ex)
 {
 o.OnError(ex);
 }
 });
 return new CompositeDisposable(scheduledWork, cancellation);
 });
}

Uses the scheduler
that was passed or
a default one if
none was provided

Allows canceling the
concurrent work by disposing

of the subscriptionSchedules
the prime
generation and
emissions with the
scheduler. This
allows the code to
run concurrently.

Exits with a
CancellationException when the

subscription is disposed of.

www.nuget.org/packages/System.Reactive.Windows.Threading
www.nuget.org/packages/System.Reactive.Windows.Forms
www.nuget.org/packages/System.Reactive.Windows.Forms

242 CHAPTER 10 Working with Rx concurrency and synchronization
 In the previous chapters, you’ve already seen some of the operators that are time-
based. In this section, I’m going to talk about them at a deeper level.

10.2.1 Adding a timestamp to a notification

Because the observable emits notifications at different times, it makes sense to ask
what time each notification was emitted. Instead of manually adding the time infor-
mation, Rx provides the Timestamp operator, which adds the UTC date and time
details for each notification in the observable sequence. Figure 10.4 depicts the
Timestamp operator.

The Timestamp operator takes no parameters (except for an optional scheduler) and
wraps the notification object with the Timestamped<T> type that holds the time-
stamp of the emission:

IObservable<Timestamped<TSource>> Timestamp<TSource>(
 this IObservable<TSource> source);
IObservable<Timestamped<TSource>> Timestamp<TSource>(
 this IObservable<TSource> source,
 IScheduler scheduler)

In the next example, you create an observable that emits a notification every 1 second,
like a heartbeat notification received from a hardware product that your software
monitors.2 You add a timestamp by using the Timestamp operator so you can log the
information for future analysis. Because you don’t want the example to run forever,
you’re taking only three notifications:

IObservable<long> deviceHeartbeat =
 Observable.Interval(TimeSpan.FromSeconds(1));

deviceHeartbeat
 .Take(3)
 .Timestamp()
 .SubscribeConsole("Heartbeat");
Console.ReadLine();

2 A heartbeat is a special notification used to monitor the availability of a resource; see https://en.wikipedia
.org/wiki/Heartbeat_(computing).

Numbers 1 2 3

{1,t1} {2,t2} {3,t3}

t1 t2 t3

.Timestamp()

Time

12

6

1

5

11

7

2

4

10

8
39

Figure 10.4 The Timestamp operator
adds a timestamp of the emission time to
every notification.

https://en.wikipedia.org/wiki/Heartbeat_(computing)
https://en.wikipedia.org/wiki/Heartbeat_(computing)

243Using time-based operators
Running this example on my machine shows this output:

Heartbeat - OnNext(0@25/12/2015 22:29:24 +00:00)
Heartbeat - OnNext(1@25/12/2015 22:29:25 +00:00)
Heartbeat - OnNext(2@25/12/2015 22:29:26 +00:00)
Heartbeat - OnCompleted()

The bolded text values were emitted by the observable. I got this formatted output
because of the Timestamped<T> type. The Timestamped<T> type holds the notifica-
tion object that was emitted by the timestamped observable and the timestamp of
when the notification was emitted. It also implements a nice ToString method that
helps when debugging.

 The Timestamp operator can be useful when you need to investigate what’s going
on inside your observable and how the time dimension affects your handling.

10.2.2 Adding the time interval between notifications

Useful as the Timestamp operator can be, sometimes all you care about is the time
interval between two emissions. Instead of calculating this interval by subtracting the
two timestamps, you can use the TimeInterval operator, which records the time
interval between consecutive elements in the observable. Figure 10.5 shows a marble
diagram of the TimeInterval operator.

TimeInterval wraps every notification object with a TimeInterval<T> type:

IObservable<TimeInterval<TSource>> TimeInterval<TSource>
 (this IObservable<TSource> source);
IObservable<TimeInterval<TSource>> TimeInterval<TSource>
 (this IObservable<TSource> source, IScheduler scheduler);

In the next example, you simulate a hardware device that sends heartbeat signals that
the application monitors. You create an observable that emits three notifications with
the following intervals between them: 1 second, 2 seconds, and 4 seconds. You use the
TimeInterval operator to record the interval between them. Obviously, when
there’s a long gap between heartbeats, it means that something is unhealthy with the
device being monitored.

var deviceHeartbeat = Observable
 .Timer(TimeSpan.FromSeconds(1))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(2)))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(4)));

Numbers 4 5 1

{4,t1} {5,t2} {1,t3}.TimeInterval()

t3

12

6

1

5

11

7

2

4

10

8
39

t2

12

6

1

5

11

7

2

4

10

8
39

t1

Subscribe

12

6

1

5

11

7

2

4

10

8
39

Figure 10.5 The TimeInterval
operator computes the time interval
between two notifications.

244 CHAPTER 10 Working with Rx concurrency and synchronization
deviceHeartbeat
 .TimeInterval()
 .SubscribeConsole("time from last heartbeat");
Console.ReadLine();

This code prints the following output:

time from last heartbeat - OnNext(0@00:00:01.0120598)
time from last heartbeat - OnNext(0@00:00:02.0070871)
time from last heartbeat - OnNext(0@00:00:04.0029774)
time from last heartbeat - OnCompleted()

The bold text shows the time intervals that were recorded. Of course, the measured
time isn’t the same as what you’ve set. That’s because many factors were involved in
scheduling the notifications and in measuring the intervals: the preemptive OS, the
time of the measurement itself, and so forth.

 Even so, your application can now alert the user that something is wrong with the
device simply by checking that the interval encapsulated in the TimeInterval type is
within the normal time limits. The TimeInterval struct holds the Interval prop-
erty (of type TimeSpan) and the Value property that contains the emitted notifica-
tion, and implements a nice ToString method useful for debugging.

 Using the TimeInterval operator lets you make decisions based on the distance
between the emitted values. Sometimes the behavior you’re trying to implement is
that if the time distance is too long, you want to cancel the operation (or query). This
is known as setting a time-out.

10.2.3 Adding a time-out policy

As discussed in previous chapters, observables can represent an asynchronous opera-
tion or can be a result of an observable pipeline that involves some kind of an asyn-
chronous operation, such as a request from a remote service.

 When doing things asynchronously, you must always ask how long it takes before
you can say that the action was faulty. When you work with asynchronous service pro-
viders, it’s common for some kind of error to happen that prevents you from receiving
a response.

 To make handling such cases easy, Rx provides the Timeout operator that, as its
name indicates, handles the time-out cases for you. It monitors the notifications emit-
ted by the observable and, if a notification hasn’t been emitted (since the previous
one) in the period of time that you configured, it raises an exception that will be
passed to the observer by its OnError method. Figure 10.6 illustrates Timeout.

4 sec

3sec

4 sec1 sec

Timeout(TimeSpan.FromSeconds(3))
Figure 10.6 The Timeout operator emits
an error notification when the time-out
duration has passed without emitting.

245Using time-based operators
The next example simulates a case in which four remote requests are sent, one after the
other, and you’re waiting for their responses. You set the time-out to 3 seconds, mean-
ing that when a response takes more than 3 seconds to return, you can unsubscribe
from the observable. To simulate this, you create an observable that emits two notifica-
tions with a 1-second gap between them, and two more notifications with a 4-second
gap. You add the Timeout operator to your pipeline and configure it to 3 seconds:

var observable = Observable
 .Timer(TimeSpan.FromSeconds(1))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(1)))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(4)))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(4)));

observable
 .Timeout(TimeSpan.FromSeconds(3))
 .SubscribeConsole("Timeout");
Console.ReadLine();

Running the example shows this output:

Timeout - OnNext(0)
Timeout - OnNext(0)
Timeout - OnError:
 System.TimeoutException: The operation has timed out.

You can see that because you define the time-out to be 3 seconds, and no notification
was sent, you get a TimeoutException.

10.2.4 Delaying the notifications

The notifications emitted by the observable can come at any rate. In most cases, you’ll
want to react to them as soon as they arrive. But in some cases delaying the handling
of a notification is preferred; for example, when you get requests that have different
priorities (based on customer service-level agreement, or SLA), and you want to delay
the processing of the lower-priority requests and give precedence to requests of a
higher priority.

 The Delay operator lets you add the delay you want, either constantly to all notifi-
cations or independently per notification. Figure 10.7 shows how the Delay operator
affects the notification when passing it a relative time span. (Overloads that accept an
absolute time exists as well.)

Delay(TimeSpan.FromSeconds(1))

1 2 3

1 2 3
Figure 10.7 The Delay operator shifts the
observable notifications by a time duration.

246 CHAPTER 10 Working with Rx concurrency and synchronization

ts
t
If you want to add a fixed time period for each notification delay, you can accomplish
it using the Delay operator.

var observable = Observable
 .Timer(TimeSpan.FromSeconds(1))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(1)))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(4)))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(4)));

observable
 .Timestamp()
 .Delay(TimeSpan.FromSeconds(2))
 .Timestamp()
 .Take(5)
 .SubscribeConsole("Delay");
Console.ReadLine();

Running this example on my machine shows this output:

Delay - OnNext(0@26/12/2015 14:47:41 +00:00@26/12/2015 14:47:43 +00:00)
Delay - OnNext(0@26/12/2015 14:47:42 +00:00@26/12/2015 14:47:44 +00:00)
Delay - OnNext(0@26/12/2015 14:47:46 +00:00@26/12/2015 14:47:48 +00:00)
Delay - OnNext(0@26/12/2015 14:47:50 +00:00@26/12/2015 14:47:52 +00:00)
Delay - OnCompleted()

The important pieces of data here are the two timestamps. The one on the right
(bolded text) is the time the notification was emitted after the delay, and the one on
the left is the time the notification was emitted by the source observable. You can eas-
ily see that there’s a 2-second difference between the timestamps for each notification.

ADDING A VARIABLE DELAY

When a constant delay doesn’t fit your needs, you can use the Delay operator over-
loads that let you specify the delay duration per notification:

IObservable<TSource> Delay<TSource, TDelay>(
 this IObservable<TSource> source,
 IObservable<TDelay> subscriptionDelay,
 Func<TSource, IObservable<TDelay>> delayDurationSelector);

Another overload also exists whereby you can omit the subscriptionDelay, which
is used to delay the subscription to the source observable.3

Listing 10.3 Delaying notifications with the Delay operator

3 The subscriptionDelay parameter gives a similar effect as the DelaySubscription operator I talked
about in chapter 6.

Creates an observable that emi
four notifications with a differen
duration between each

Captures the time the notification was
emitted by the source observable

Adds a 2-second delay
for each notificationCaptures the time the

notification was emitted
after the delay

Determines the subscription delay.
Upon its emission, a subscription
to the source observable is made.

Returns an observable for each element,
which determines the delay duration. Its

notification marks the delay end.

247Using time-based operators

De
not

b
i

 In the next example, you create an observable of integers, and use each integer to
determine the delay duration for each notification. These integers can be the
request’s priority in your application or the requested handling time of your applica-
tion user:

var observable = new[] {4, 1, 2, 3}.ToObservable();

observable
 .Timestamp()
 .Delay(x => Observable.Timer(TimeSpan.FromSeconds(x.Value)))
 .Timestamp()
 .SubscribeConsole("Delay");
Console.ReadLine();

This is the output I got on my machine:

Delay - OnNext(1@26/12/2015 15:10:11 +00:00@26/12/2015 15:10:12 +00:00)
Delay - OnNext(2@26/12/2015 15:10:11 +00:00@26/12/2015 15:10:13 +00:00)
Delay - OnNext(3@26/12/2015 15:10:11 +00:00@26/12/2015 15:10:14 +00:00)
Delay - OnNext(4@26/12/2015 15:10:11 +00:00@26/12/2015 15:10:15 +00:00)
Delay - OnCompleted()

Because you create the observable from a collection of integers, all of them were emit-
ted by the observable roughly at the same time. Each one was delayed independently,
so even though number 4 was the first to be emitted by the source observable, it was
the last to be received by the observer.

10.2.5 Throttling the notifications

In many cases, handling notifications emitted close to one another adds no real value.
For example, if users update their details at a high rate (let’s say three times per sec-
ond), it might not be cost-effective to handle the first two updates because they’re no
longer relevant.

 To add this kind of behavior to your observable pipeline, so notifications will be
dropped unless a predefined period of time has passed without other notifications
arriving, you can use the Throttle operator,4 depicted in figure 10.8.

4 Some Rx implementations refer to this operator as Debounce.

Captures the time the
notification was emitted
by the source observable

lays the
ification
ased on
ts value

Captures the time the notification
was emitted after the delay

Numbers

 .Throttle(timeSpan)

1 2 3 4 5

1 4 5

Figure 10.8 The Throttle operator emits an item from an
observable only if a particular time span has passed without
emitting another item.

248 CHAPTER 10 Working with Rx concurrency and synchronization
In the next example, you simulate a case in which multiple updates are arriving, but
only if 2 seconds have passed without another update coming will the update be
allowed to proceed:

var observable = Observable
 .Return("Update A")
 .Concat(Observable.Timer(TimeSpan.FromSeconds(2)).Select(_ => "Update B"))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(1)).Select(_ => "Update C"))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(1)).Select(_ => "Update D"))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(3)).Select(_ => "Update E"));

observable.Throttle(TimeSpan.FromSeconds(2))
 .SubscribeConsole("Throttle");
Console.ReadLine();

Running the example displays this output:

Throttle - OnNext(Update A)
Throttle - OnNext(Update D)
Throttle - OnNext(Update E)
Throttle - OnCompleted()

You can see that updates B and C were dropped because both of them were followed
by another notification that was emitted after less than 2 seconds.

VARIABLE THROTTLING

The Throttle operator lets you control the throttling duration for each element in
an independent way. To achieve that, you can pass a function that returns an observ-
able for each element that signals when the throttling period ends:

IObservable<TSource> Throttle<TSource, TThrottle>(
 this IObservable<TSource> source,
 Func<TSource, IObservable<TThrottle>> throttleDurationSelector)

Every emitted notification causes the Throttle operator to drop the previously
returned observable and to start a new duration with the newly returned observable.

 In listing 10.4, you extend your throttling example such that, in addition to the
normal update messages, a new type of update message is created that triggers an
immediate update. You use the Throttle operator to prevent handling of fast-rate
messages, unless it’s an Immediate Message, which is handled immediately. In your
applications, an Immediate Message might be a notification of high importance or an
item that comes from a source of high priority.

var observable = Observable
 .Return("Msg A")
 .Concat(Observable.Timer(TimeSpan.FromSeconds(2)).Select(_ => "Msg B"))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(1))
 ➥ .Select(_ => "Immediate Update"))

Listing 10.4 Throttling notifications

Emits five updates. The second, third, and fourth
updates are close (in time) to one another.

Emits notifications that weren’t
followed by another notification
for at least 2 seconds

Returns an observable
indicating the throttle duration

for each given element

249Using time-based operators
 .Concat(Observable.Timer(TimeSpan.FromSeconds(1)).Select(_ => "Msg D"))
 .Concat(Observable.Timer(TimeSpan.FromSeconds(3)).Select(_ => "Msg E"));

observable
 .Throttle(x => x == "Immediate Update"
 ? Observable.Empty<long>()
 : Observable.Timer(TimeSpan.FromSeconds(2)))
 .SubscribeConsole("Variable Throttling");

Running the example creates this output:

Variable Throttling - OnNext(Msg A)
Variable Throttling - OnNext(Immediate Update)
Variable Throttling - OnNext(Msg D)
Variable Throttling - OnNext(Msg E)
Variable Throttling - OnCompleted()

In this example, you’re checking each element. If it’s an Immediate Update, you
return an observable that emits a notification immediately (the OnCompleted notifi-
cation). Otherwise, you create an observable that emits a notification after 2 seconds.
That’s why, even though notifications were emitted less than 2 seconds from when the
Immediate Update was emitted, Immediate Update was emitted as well.

10.2.6 Sampling the observable in intervals

Another way of handling rapid observables is to slow the reaction rate to the notifica-
tions and to sample the emitted values in predefined intervals. The Sample operator
lets you define the duration of the interval, so that when an interval ends, the last
value emitted by the source observable is emitted by the resulting observable. Figure
10.9 provides a marble diagram of Sample.

The next example shows how to take an observable that emits a notification every sec-
ond and sample it every 3.5 seconds. (I limited the example to only three intervals.)
In real-world scenarios, you might want to do that when the source of the notification
is fast, but there isn’t a lot of advantage to collecting all received values. For example,
digital signal processing (DSP) applications usually sample the audio of video signals
at a rate that’s high enough to reconstruct the signal in a way that makes it under-
standable, even if some data is lost. (Displaying 24 frames per second is enough to fool
our brains into seeing a moving picture.)

Observable.Interval(TimeSpan.FromSeconds(1))
 .Sample(TimeSpan.FromSeconds(3.5))
 .Take(3)
 .SubscribeConsole("Sample");
Console.ReadLine();

Numbers

 .Sample(timeSpan)

1 2 3 4 5

53

timeSpan interval timeSpan interval

Figure 10.9 The Sample operator
samples the observable sequence at
each interval, emitting the last
notification in the interval.

250 CHAPTER 10 Working with Rx concurrency and synchronization
The example yields this output:

Sample - OnNext(2)
Sample - OnNext(5)
Sample - OnNext(9)
Sample - OnCompleted()

The duration of the interval doesn’t have to be constant. The next Sample overload
lets you control the duration of each interval by passing an observable that emits when
the interval ends:

IObservable<TSource> Sample<TSource, TSample>(
 this IObservable<TSource> source,
 IObservable<TSample> sampler)

Upon each emission done by the sampler (sampling tick), the latest element (if any)
in the source observable during the last sampling interval is sent to the resulting
sequence. All the operators you’ve learned about in this chapter (and others covered
in other chapters) can receive the IScheduler you want them to use for introducing
concurrency. But, for the operators that don’t introduce concurrency, you can’t pass
the scheduler. So what do you do if you want to change the execution context in the
middle of your observable pipeline? You use the Rx-provided operators that add syn-
chronization.

10.3 Synchronizing the observable emissions
From the observer’s standpoint, the emissions done by the observables can happen on
any thread and, therefore, the observer’s reaction can happen on any thread as well.
In many cases, this has no real importance, but when dealing with certain frameworks
or libraries you might need to perform certain operations on a specific execution con-
text (for example, the UI thread). Furthermore, at times you need to synchronize the
processing between different observers from different observables, either by making
them all happen on the same thread or by using concurrency primitives (for example,
mutex, semaphor, and so on). Luckily, you don’t need to write all that low-level code
yourself; you can use the Rx synchronization operators.

10.3.1 Changing the observation’s execution context

If you need to control the execution context (the
observations of elements done by the observer),
Rx provides the ObserveOn operator that lets you
pass the scheduler that the emissions will be sched-
uled on. You have the ability (to some extent) to
specify on which thread you want the OnNext/
OnError/OnCompleted functions to run. Figure
10.10 is a marble diagram of ObserveOn.

ObserveOn(-Scheduler)

1 2 3 4 5 6

1 2 3 4 5 6

Figure 10.10 The ObserveOn
operator runs the observer functions
on the specified scheduler.

251Synchronizing the observable emissions
A classic use of ObserveOn occurs when you need your observer to modify a UI con-
trol (for example, changing the width of a button), and you need to make sure the
observer runs in the UI thread. The UI thread is managed either by Dispatcher-
Scheduler for XAML platforms or by ControlScheduler in WinForms.

 The next example creates an observable from the TextBox.TextChanged event
and throttles it. The text values that survive the throttling are then added to a ListBox.
Because the Throttle operator uses a default scheduler (usually ThreadPool), you
use the ObserveOn operator to make sure the ListBox is changed on the UI thread.

Observable.FromEventPattern(TextBox, "TextChanged")
 .Select(_ => TextBox.Text)
 .Throttle(TimeSpan.FromMilliseconds(400))
 .ObserveOn(DispatcherScheduler.Current)
 .Subscribe(t => ThrottledResults.Items.Add(t));

Because the observation on the Dispatcher is something that happens frequently,
you can use the shortened operator ObserveOnDispatcher, which does the same
thing. The ObserveOn operator also has overloads that let you pass the
SynchronizationContext or the WinForms Control with which you want to make
the observation. Under the hood, the ObserveOn operator creates an interceptor in
the observable pipeline that intercepts each call done on the observer and executes it
on the specified scheduler.

10.3.2 Changing the subscription/unsubscription execution context

In addition to controlling the execution context of the observation, you can control
the execution context that runs the subscription and unsubscription, meaning the
thread in which the Subscribe method of the observable and the Dispose method
of the subscription is called.

 This is something that you’d typically want to do if the observable’s work must hap-
pen on a specific thread (as in Silverlight, where the registration to a control’s events
has to happen on the UI thread, but the processing of the notifications can happen
anywhere).

 Consider the code for an observable that does heavy processing before emitting its
values, such as connecting to a hardware device that is slow, as shown here:

var observable =
 Observable.Create<int>(o =>
 {
 Thread.Sleep(TimeSpan.FromSeconds(5));
 o.OnNext(1);
 o.OnCompleted();
 return Disposable.Empty;
 });

observable.SubscribeConsole("LongOperation");

When running this example, the calling thread will be blocked for 5 seconds, and only
afterward do the messages appear. Adding ObserveOn to this example won’t help

Simulating a long
operation done in the
subscription time

252 CHAPTER 10 Working with Rx concurrency and synchronization

because the long operation happens as part of the subscription. What you want is to
make the subscription itself on another thread.

 The SubscribeOn operator lets you pass the scheduler that’ll be used to schedule
the subscription and unsubscription. It creates interceptors in the observable pipeline
that’ll intercept the call to the observable Subscribe method and make these calls
run on the specified Scheduler. Then, the interceptor wraps the disposable returned
by the Subscribe method so that its Dispose method will also run under the speci-
fied scheduler. Figure 10.11 depicts the SubscribeOn operator.

Figure 10.11 The SubscribeOn operator runs the observer subscription and
unsubscription on the specified scheduler.

This interception over the unsubscription can cause confusion because the moment
you call the Dispose method, it might go into effect only at a later time, based on the
scheduler used. In the next example, you create an observable that emits every 1 sec-
ond and uses the EventLoopScheduler for making the subscription. Then you
schedule work items that take a long time to complete and dispose of the subscrip-
tion. The unsubscription will take some time until it’s complete and, in the meantime,
notifications will still be processed inside the pipeline.

var eventLoopScheduler = new EventLoopScheduler();
var subscription =
 Observable.Interval(TimeSpan.FromSeconds(1))
 .Do(x => Console.WriteLine("Inside Do"))
 .SubscribeOn(eventLoopScheduler)
 .SubscribeConsole();

eventLoopScheduler.Schedule(1,
 (s, state) =>
 {
 Console.WriteLine("Before sleep");
 Thread.Sleep(TimeSpan.FromSeconds(3));
 Console.WriteLine("After sleep");
 return Disposable.Empty;
 });

Listing 10.5 Confusion from using SubscribeOn when unsubscribing

SubscribeOn(-Scheduler)

Subscribe

Subscribe

1 2 3 4 5 6

1 2 3 4 5 6

Transitions from the original
execution context to the

one defined by the scheduler

Unless stated otherwise, emissions are carried
out by the scheduler execution context.

Calls to Do will stop only when
the subscription is disposed of

Sets the subscription and unsubscription
to run on the event loop

Simulates a long
processing-time
operation that’s
happening in the
event loop

253Synchronizing the observable emissions
subscription.Dispose();
Console.WriteLine("Subscription disposed");

Running the example shows this output:

Subscription disposed
Before sleep
Inside Do
Inside Do
After sleep
Inside Do

Note that the call to Dispose happens almost immediately; but, because the real sub-
scription will be disposed of on the event loop, it needs to wait until the long opera-
tion completes, and so you see the messages from the Do operator.

10.3.3 Using SubscribeOn and ObserveOn together

Depending on the observable you subscribe to, the thread on which you subscribe
might also be the thread on which the emissions happens, or they might be totally dif-
ferent threads. You can combine the SubscribeOn and ObserveOn operators to gain
better control over which thread will run in each step of your observable pipeline.
And it’s important to understand the order in which these operators happen and
where their effect is coming into play.

 To help with that, I created this simple LogWithThread operator to provide
insight on the threads on which the subscriptions and emissions happen.

public static IObservable<T> LogWithThread<T>(
 this IObservable<T> observable,
 string msg = "")
{
 return Observable.Defer(() =>
 {
 Console.WriteLine("{0} Subscription happened on Thread: {1}", msg,
 Thread.CurrentThread.ManagedThreadId);

 return observable.Do(
 x => Console.WriteLine("{0} - OnNext({1}) Thread: {2}", msg, x,
 Thread.CurrentThread.ManagedThreadId),
 ex =>
 {
 Console.WriteLine("{0} – OnError Thread:{1}", msg,
 Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine("\t {0}", ex);
 },
 () => Console.WriteLine("{0} - OnCompleted() Thread {1}", msg,
 Thread.CurrentThread.ManagedThreadId));
 });
}

Listing 10.6 The LogWithThread operator logs both events and threads.

Triggers the disposal of the underlying
subscription on the event loop

254 CHAPTER 10 Working with Rx concurrency and synchronization
The LogWithThread operator prints messages to the console when the observer sub-
scribes and for every notification done by the source observable. With each log mes-
sage, the thread on which the event happens is also written.

 Now let’s see what happens when you use SubscribeOn and ObserveOn with
LogWithThread to log the details for you. In the next example, you create a simple
observable that emits three notifications (one every second), and you use the Sub-
scribeOn and ObserveOn operators to control the execution context. The example
creates an observable that emits five numbers and adds a few operators on it.

new[] {0,1,2,3,4,5}.ToObservable()
 .Take(3).LogWithThread("A")
 .Where(x => x%2 == 0).LogWithThread("B")
 .SubscribeOn(NewThreadScheduler.Default).LogWithThread("C")
 .Select(x => x*x).LogWithThread("D")
 .ObserveOn(TaskPoolScheduler.Default).LogWithThread("E")
 .SubscribeConsole("squares by time");
Console.ReadLine();

Running the example on my machine shows this output:

E Subscription happened on Thread: 1
D Subscription happened on Thread: 1
C Subscription happened on Thread: 1
B Subscription happened on Thread: 3
A Subscription happened on Thread: 3
A - OnNext(0) Thread: 3
B - OnNext(0) Thread: 3
C - OnNext(0) Thread: 3
D - OnNext(0) Thread: 3
E - OnNext(0) Thread: 4
A - OnNext(1) Thread: 3
A - OnNext(2) Thread: 3
squares by time - OnNext(0)
B - OnNext(2) Thread: 3
C - OnNext(2) Thread: 3
D - OnNext(4) Thread: 3
E - OnNext(4) Thread: 4
squares by time - OnNext(4)
A - OnCompleted() Thread 3
B - OnCompleted() Thread 3
C - OnCompleted() Thread 3
D - OnCompleted() Thread 3
E - OnCompleted() Thread 4
squares by time - OnCompleted()

Listing 10.7 Testing the order of execution and effects of SubscribeOn and ObserveOn

255Synchronizing the observable emissions
Figure 10.12 shows the marble diagram
that displays what you see in the output.

 Here are the key points in the exam-
ple output:

 The order of the subscriptions is
from the bottom to the top (the
subscription is first executed at
stage E, and only at the end at
stage A). This is because the
observable returned by the last
LogWithThread operator is the
one the observer is subscribing to.

 The subscriptions are executed
on thread 1 until SubscribeOn is
called, and then the subscriptions
are made with thread 3 (step B).

 The notifications are done from
top to bottom (A is first, and E is
last).

 The notifications are emitted on
thread 3 (where the subscriptions
occur) until ObserveOn is called
(right before E), and then the
notifications are emitted on
thread 4.

 While the notification is observed on thread 4, thread 3 is free to observe the
next notification. That’s why you see the observation of 0 together with the
emission of 2 (the bolded lines).

Next, I’ll talk about how to synchronize processing of the notifications in the observ-
able pipeline and between observables.

10.3.4 Synchronizing notifications

The notifications observed by the observer are assumed to arrive in a serialized fash-
ion. The Rx Design Guidelines (see paragraphs 4.2 and 6.7) state that all Rx operators
should safely assume that their inputs are serialized.5 They won’t receive notifications
concurrently, but only one after the other. If this assumption isn’t made, almost every
operator and every observer should be written in a thread-safe way and use various
kinds of locks to ensure the validity of their operations. This imposes a significant per-
formance hit that isn’t necessary.

5 To read paragraphs 4.2 and 6.7 and for more details on the guidelines, see http://mng.bz/6bVR.

0 1 2 3

Take(3)

Numbers

A:

B:

C:

D:

E:

4 5

0 1 2

Where(x=>x%2==0)

0 2

SubscribeOn(-Scheduler)

Subscribe

0 2

Select(x=>x*x)

0 4

ObserveOn(-Scheduler)

0 4

Figure 10.12 The effects of SubscribeOn and
ObserveOn on the observable pipeline

http://mng.bz/6bVR

256 CHAPTER 10 Working with Rx concurrency and synchronization
 But you can’t control every observable subscribed to. Some observables might be
from a third party or might be constructed on top of a source that doesn’t act in a seri-
alized way. For these types of observables, you should synchronize their emissions in
the observable pipeline.

 Suppose you create an observable from an event exposed by a third-party
component:

class Messenger
{
 public event EventHandler<string> MessageReceived;

 //Rest of the Messenger code
}

This is how to create the observable:

var messenger = new Messenger();
var messages =
 Observable.FromEventPattern<string>(
 h => messenger.MessageReceived += h,
 h => messenger.MessageReceived -= h);

And this is how to subscribe to it:

messages
 .Select(evt => evt.EventArgs)
 .Subscribe(msg =>
 {
 Console.WriteLine("Message {0} arrived", msg);
 Thread.Sleep(1000);
 Console.WriteLine("Message {0} exit", msg);
 });

When I ran this example and received three messages from multiple threads, this is
what I got:

Message msg2 arrived
Message msg1 arrived
Message msg0 arrived
Message msg1 exit
Message msg0 exit
Message msg2 exit

It’s obvious that the messages are received in an unserialized way. To serialize the noti-
fications received in the observer (or in any operator), you need to use the Synchro-
nize operator:

messages
 .Select(evt => evt.EventArgs)
 .Synchronize()
 .Subscribe(msg =>
 {
 Console.WriteLine("Message {0} arrived", msg);
 Thread.Sleep(1000);

Takes only the message
itself (without the sender)

Simulates processing
done with the message

Synchronizes the notifications so they
will be received in a serialized way

257Summary
 Console.WriteLine("Message {0} exit", msg);
 });

Now the messages are received in a serialized way, no matter from what thread the
emission was made. Internally, the Synchronize operator creates a lock around
every notification it makes to the observer. The lock is done on an inner object called
the gate.

SYNCHRONIZING MULTIPLE OBSERVABLES

The Synchronize operator has an overload that lets you send the gate object that
will be used to make the locks:

IObservable<TSource> Synchronize<TSource>(
 IObservable<TSource> source,
 object gate);

This overload can be useful when you need to share the lock between multiple sub-
scribed observables. Suppose the Messenger class exposes another event, Friend-
RequestReceived, of all the friend requests you receive. After you create an
observable, you want to synchronize the processing of the two types of notifications
(friend requests and text messages). This how to do that:

var gate = new object();

messages
 .Select(evt => evt.EventArgs)
 .Synchronize(gate)
 .Subscribe(msg => { /* processing the text message */ });

friendRequests
 .Select(evt => evt.EventArgs)
 .Synchronize(gate)
 .Subscribe(request => { /* processing the friend request */ });

Now the friend requests and the messages will be received in a serialized fashion.
 This chapter dealt with many advanced topics of the Rx world. Let’s summarize

what you’ve learned.

10.4 Summary
In this chapter, you’ve learned about the way Rx models time and concurrency, and
the techniques you can use to control the timing and execution context of the observ-
able pipeline.

 In Rx, a scheduler is a unit that represents a clock and an execution context.
 With a scheduler, you can schedule work to be posted to an execution context

at a specific time.
 All Rx schedulers implement the IScheduler interface.
 Some schedulers also implement the ISchedulerPeriodic or the ISched-

ulerLongRunning interfaces.

An object used as a lock
between two observables

258 CHAPTER 10 Working with Rx concurrency and synchronization
 Rx operators that introduce concurrency can receive a parameter of type
IScheduler, allowing you to control the way concurrency is introduced.

 Out-of-the-box Rx comes with a handful of schedulers: NewThreadScheduler,
ThreadPoolScheduler, TaskPoolScheduler, CurrentThreadScheduler,
ImmediateScheduler, and EventLoopScheduler.

 Depending on the framework you use, other schedulers that are bound to the
synchronization context will also be included (for example, Control-
Scheduler or DispatcherScheduler).

 You use the Timestamp operator to add a timestamp of the emission time to
every notification.

 You use the TimeInterval operator to add a time interval between two
notifications.

 You use the Timeout operator to emit an error notification in case the time-out
duration has passed without the source observable emitting.

 You use the Delay operator to shift the observable notifications by a time
duration.

 You use the Throttle operator to emit an item from an observable if a particu-
lar time span has passed without the source observable emitting another item.

 You use the Sample operator to sample the observable sequence every time
interval, emitting the last notification in each interval.

 You use the ObserveOn operator to enforce the observer functions to run on a
specified scheduler.

 You use the SubscribeOn operator to enforce observer subscription and
unsubscription to run on a specified scheduler.

 You use the Synchronize operator to create a lock so that the notifications are
received in a serialized way.

The topics in this chapter are considered advanced and complex, but they’re inherent
in many of the operators you’ve seen throughout the book. Controlling them will help
you achieve the goals of your observable pipelines. The next chapter covers some-
thing we all dislike but must take care of: errors. Because they’re inevitable, I’ll show
you how to add error handling and recovery to your observable queries.

Error handling
and recovery
Errors happen; that’s a fact of programming life. To provide high-quality service to
the users of your applications, you must make sure your code handles errors and
gracefully recovers when they happen. Otherwise, users experience application
crashes or incorrect behavior (such as wrong computations or unexpected alerts)
that can eventually turn them away from your product. In the case of an error, you
might want to swallow it and continue, or add specific handling for a specific error.
If an observable periodically emits updates from a central server, and one of the
updates causes an unexpected error (for example, a network disconnection), han-
dling the error by resubscribing observers to get the next set of updates might be
the best solution. This chapter teaches you about the kinds of error-handling oper-
ators you can use to ensure that your observable pipeline is protected.

 In addition to handling errors, you can prevent certain errors in advance, such as
improper resource handling that can cause memory leaks, and unclosed server con-
nections. An observable emitting at a rate faster than the rate the observer can con-
sume is known as backpressure, which can result in errors and a high consumption of

This chapter covers
 Reacting to errors

 Properly freeing resources

 Dealing with backpressure
259

260 CHAPTER 11 Error handling and recovery
resources. This chapter shows you how to control the lifetime of your resources prop-
erly, even in the case of unexpected errors, and gives you solutions to backpressure.

11.1 Reacting to errors
In the .NET world, error means an exception, and an exception can be thrown for
many reasons. Some (OutOfMemoryException, for example) aren’t even under your
control. It’s important to differentiate the various places (or phases) an exception can
be thrown from inside the observable pipeline because for different places you’ll need
different types of handling.

 In the reactive pipeline, errors can happen in these four places:

 In the observable Subscribe method call during subscription
 In the observable code as it prepares the values to emit after subscription (for

example, the observable tries to pull data from an external source that’s discon-
nected)

 In operator code (for example, the selector function you provided for the
Select operator throws an exception)

 In the observer’s OnNext, OnCompleted, and OnError functions

For the first three cases, the Rx guidelines state that the observer should be notified of
the error via its OnError function and the observer subscription will terminate, meaning
no more notifications from the observable will be observed by the observer.

 In the last case, where the observer is the one responsible for the error, it’s the
responsibility of the observer (and the developer) to handle the error. Rx provides no
guarantee of what will happen in this case.

NOTE I’d like to stress the last point again. If the code inside the observer func-
tion throws an exception, there’s nothing in the Rx package to save you. So if
you didn’t provide an error-handling routine using a try-catch block around
the “risky” code, the caller thread will have an unhandled exception. This will
cause your process to terminate. This isn’t different from any other code in
your application that throws an exception that nobody handled. Your only
option here is to make sure your code doesn’t throw unwanted exceptions.

11.1.1 Errors from the observable side

Now that you understand that you must take care of exceptions that happen in the
observer code explicitly, let’s talk about the other three cases in the preceding list,
where the exception is thrown by the observable or one of the operators in the pipeline.

 The Rx Design Guidelines guarantee that errors from those places are propagated
to the observer’s OnError function. This makes error handling easy for you, because
you now have a single place where you can react to them—the OnError function,
depicted in figure 11.1. The OnError function receives a single argument (the
Exception that was thrown) so your code can investigate what exactly that exception
is and react to it.

261Reacting to errors
Figure 11.1 When an exception is thrown in the pipeline by the observable or one of the
operators, it’s propagated to the OnError function of the observer.

Listing 11.1 creates an observable that produces an error of type OutOfMemory-
Exception. The weather simulation application implements a weather prediction
observable that runs a data-intensive computation and then emits its results. Because
the computation also creates a lot of data stored in memory, there’s a risk of running
out of memory. If this exception occurs, as a last resort the observer can run garbage
collection (GC) together with Large Object Heap (LOH) compaction1 to try to free
memory.

IObservable<WeatherSimulation> weatherSimulationResults =
 Observable.Throw<WeatherSimulation>(new OutOfMemoryException());

weatherSimulationResults
 .Subscribe(
 _ => { /* OnNext code */ },
 e =>
 {
 if (e is OutOfMemoryException)
 {
 GCSettings.LargeObjectHeapCompactionMode =
 GCLargeObjectHeapCompactionMode.CompactOnce;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
 });

One thing that you might think when looking at this example from the developer’s
standpoint is that reacting to errors isn’t code friendly. You’re absolutely right. You
have to do type checking to see what the exception type is and, for each type of excep-
tion, the error handling requires your manual intervention, even if all you want to do
is to dismiss it.

 The Rx team realizes that developers tend to have common responses to errors
happening in the observable pipeline. Those responses include catching a specific
exception type and doing something accordingly, or dismissing the error and resum-
ing the execution with the original observable or another observable.

1 This is available for .NET version 4.5.1 and up, http://mng.bz/NVW5.

Listing 11.1 Typical implementation of the observer's OnError function

Operator 1
OnError(...)

Operator 2

Observer

OnError(...)

Observable

throw new Exception();

Observer

Creates an observable
that emits an error

Focuses on the
OnError function

Frees memory as a last
attempt by calling for GC

http://mng.bz/NVW5

262 CHAPTER 11 Error handling and recovery
 The Rx team, making sure the observable pipeline code will continue to be declar-
ative and concise, created specific operators to make the developer's life easier.

11.1.2 Catching errors

In the traditional imperative programming model, you use a try-catch block
around the potentially erroneous code and, in each catch block, specify the type of
the exception you want to handle or leave it empty to say it should handle all excep-
tion types. After the catch code finishes, the application continues its work.

 Semantically, the Rx Catch operator does the same thing, handling a specific
exception type, but the way to specify the continuation of execution is by stipulating a
fallback observable. In the case of an error, the observer is subscribed to the fallback
observable (figure 11.2).

In the next example, you improve the error handling for the weather simulation
observable shown in listing 11.1. Now, you add the Catch operator to handle the
OutOfMemoryException and gracefully close the observable pipeline:

IObservable<WeatherSimulation> weatherSimulationResults =
 Observable.Throw<WeatherSimulation>(new OutOfMemoryException());

weatherSimulationResults
 .Catch((OutOfMemoryException ex) =>
 {
 Console.WriteLine("handling OOM exception");
 return Observable.Empty<WeatherSimulation>();
 })
 .SubscribeConsole("Catch (source throws)");

The output is as follows:

handling OOM exception
Catch (source throws) - OnCompleted()

Catch receives a function that handles a specific exception type; the function returns
the observable that will be used for continuing execution of the observable pipeline.
In this example, you return an empty observable so that the observable pipeline will
complete, but in your code, this can be a fallback observable that will emit values
instead of the original observable.

Source

FallbackException

Catch(exception => fallbackObservable)

Subscribe Figure 11.2 The Catch operator lets
you handle a specific exception type
and set a fallback observable in case
an exception is thrown.

Returning an empty observable
so that the observer will receive

a completion notification
instead of the error

263Reacting to errors
IObservable<TSource> Catch<TSource, TException>(
 IObservable<TSource> source,
 Func<TException, IObservable<TSource>> handler) where TException :

Exception

If you want to return the same observable for any type of exception that might be
thrown in the observable pipeline, you can use the Catch overload that receives only
the observable that will be used in case of an error.

 The next error gracefully finishes, in case the weather simulation observable sig-
nals an error:

weatherSimulationResults
 .Catch(Observable.Empty<WeatherSimulation>())
 .SubscribeConsole("Catch (handling all exception types)");

ONERRORRESUMENEXT—A VARIANT OF CATCH

The Catch operator concatenates observables if an error occurs. In chapter 10, you
learned about the Concat operator. It also concatenates an observable, so when the
first observable successfully completes, the second observable is being subscribed to
and the observer receives its notifications. It makes sense to extend the Concat oper-
ator so concatenation happens not only when the observable completes, but also
when it fails. This is the responsibility of the OnErrorResumeNext operator, illus-
trated in figure 11.3.

The next example shows how to concatenate weather reports coming from two weather
stations. The example shows that even if the first weather station observable (Station A)
is terminated with an error, the second observable (Station B) is concatenated:

IObservable<WeatherReport> weatherStationA =
 Observable.Throw<WeatherReport>(new OutOfMemoryException());

IObservable<WeatherReport> weatherStationB =
 Observable.Return<WeatherReport>(new WeatherReport() { Station = "B",

Temperature = 20.0 });

weatherStationA
 .OnErrorResumeNext(weatherStationB)
 .SubscribeConsole("OnErrorResumeNext(source throws)");

Source

Fallback

OnErrorResumeNext(exception => fallbackObservable)

Subscribe

Fallback
Subscribe

OnErrorResumeNext(exception => fallbackObservable) Figure 11.3 The OnErrorResumeNext
operator is a hybrid of the Catch operator
and the Concat operator.

264 CHAPTER 11 Error handling and recovery
weatherStationB
 .OnErrorResumeNext(weatherStationB)
 .SubscribeConsole("OnErrorResumeNext(source completed)");

Running the example shows this output, where only Station B reports are received:

OnErrorResumeNext(source throws) - OnNext(Station: B, Temperature: 20)
OnErrorResumeNext(source throws) - OnCompleted()
OnErrorResumeNext(source completed) - OnNext(Station: B, Temperature: 20)
OnErrorResumeNext(source completed) - OnNext(Station: B, Temperature: 20)
OnErrorResumeNext(source completed) - OnCompleted()

With both Catch and OnErrorResumeNext operators, it’s possible the concatenated
observable is the original observable that throws the exception. In the case of an error,
this resubscribes the observer to the observable. Conceptually, this means you want to
retry the operation; however, you may want to limit the number of retries or explicitly
set the number of retries to infinity. To make it easier for you to set the number of
retries, use the Retry operator.

11.1.3 Retrying to subscribe in case of an error

The Retry operator, illustrated in figure 11.4, resubscribes an observer to the observ-
able if an error occurs. Remember, the Rx guidelines state that if an error occurs, the
subscription between the observer and observable is disconnected. If the observable is
cold (which means the set of notifications isn’t shared between the observers, such as
an observable that reads lines from a file), the Retry operator will cause the observer
to resubscribe, and the observable sequence will regenerate and possibly fail again. If
the observable is hot, the new subscription will allow the observer to receive the ensu-
ing emitted notifications.

NOTE Observable temperature is explained in chapter 7.

In the next example, the observable simulates weather reports received from a
weather station. It’s possible that the connection to the station fails due to a transient2

error (such as a low network reception) and retrying is the best possible option. Of
course, it’s possible that the error isn’t transient, so you’ll want to limit the number of
retries (in this case to three attempts), as shown in figure 11.5.

2 A transient is a property of any element in the system that is temporary. See https://en.wikipedia.org/wiki/
Transient_(computer_programming).

Source

Retry

SubscribeException
Figure 11.4 The Retry operator
resubscribes the observer to the
observable when an error is emitted. In
the case of a hot observable, as shown
in the figure, the observer receives the
rest of the emitted notifications.

https://en.wikipedia.org/wiki/Transient_(computer_programming)
https://en.wikipedia.org/wiki/Transient_(computer_programming)

265Controlling the lifetime of resources
Figure 11.5 The Retry operator automatically resubscribes to the weather station
observable in the case of an error.

IObservable<WeatherReport> weatherStationA =
 Observable.Throw<WeatherReport>(new OutOfMemoryException());

weatherStationA
 .Log()
 .Retry(3)
 .SubscribeConsole("Retry");

Running the example shows this output (I removed some of the output for readability):

- OnError:
 System.OutOfMemoryException: Insufficient memory to continue ...
- OnError:
 System.OutOfMemoryException: Insufficient memory to continue ...
- OnError:
 System.OutOfMemoryException: Insufficient memory to continue ...
Retry - OnError:
 System.OutOfMemoryException: Insufficient memory to continue ...

You can see that the error is thrown four times. The first three messages are printed
because of the original error and the first two retries, and the last message is from the
last attempt to retry, which in this case causes the error again, and is received by the
observer OnNext function.

NOTE If you leave the Retry operator empty (without passing a number),
the retries occur infinite times.

Next, I’ll show you how to control the lifetime of the resources you use as part of your
observable pipeline so that you can properly discard them.

11.2 Controlling the lifetime of resources
As part of the observable pipeline construction, different resources are allocated and
used. This includes primitives and simple objects that occupy memory and resources
that aren’t managed (such as handles to files or connections to external services).

Observer

Subscribe

Subscribe

Observer

Subscribe

Subscribe
Weather
station

observable

Retry(3)

Adds a log message for every
notification received in this
part of the pipeline

Limits the number
of retries to three

266 CHAPTER 11 Error handling and recovery
When the observable pipeline completes, either because the observable finishes its
emissions or because the subscription is disposed of, it’s important to free the
resources that were allocated. It’s twice as important to handle the deallocation of
those resources when an error occurs; otherwise, your attempts to recover from the
error might be doomed in advance (for example, a file might be locked because its
handle wasn’t freed).

 The good news is that Rx operators take care of themselves and clean whatever
they use. So you need to take care of only the things that you create and work with in
the observable pipeline.

11.2.1 Disposing in a deterministic way

In .NET, the GC deallocates managed objects in a nondeterministic way. Even if an
object is no longer in use (there are no root references to it), the object can stay in
memory for a long time until the GC runs. Some managed objects might use unman-
aged resources, such as connections or file handles and, in this case, it’s important to
dispose of them as soon as possible when they’re no longer needed. This makes the
disposal deterministic.

 In .NET, you can achieve a deterministic disposal of resources by implementing the
IDisposable interface on the class that holds the resource and by implementing the
Dispose method with the code that frees the resource. During runtime, when you’re
finished using the resource (and the object that wraps it), you can invoke the Dis-
pose method to free the resource. Of course, the managed memory of the wrapping
object or any other objects used by the resource is reclaimed by the GC (garbage col-
lection is nondeterministic in nature).

 In C#, the easiest and safest way of working with an object of a type that imple-
ments the IDisposable interface is with the using statement:

class DisposableType : IDisposable
{
 public void Dispose() { /*Freeing the resource*/ }
}

private static void TraditionalUsingStatement()
{
 using (var disposable = new DisposableType())
 {
 //Rest of code
 }
}

When the execution reaches the end of the block, the Dispose method is automati-
cally called, even if it’s due to an exception thrown inside the block.

 Alternatively, you can call the Dispose method and not use the using statement.
This is usually done when the location of the creation of the disposable object is dif-
ferent from the location of where you need to dispose of it.

267Controlling the lifetime of resources
 Because you’d like to use the same semantics of deterministic disposal inside your
observable pipeline, Rx provides the Using operator, which works similarly to the
using statement.

 In our sample application, suppose you need to work with an observable that emits
notifications coming from a heat sensor, and you’re trying to trace a problem that's
happening in your code. You want to write the notifications to a log file so you can
analyze it later. When working with files, it’s important to close the file when you’re
finished; otherwise, no one else can work with it, and the data that wasn’t flushed to it
disappears. Here’s how to make sure the file handle will be disposed of:

string logFilePath = . . .
IObservable<SensorData> sensorData =. . .

var sensorDataWithLogging =
 Observable.Using(() => new StreamWriter(logFilePath),
 writer =>
 {
 return sensorData.Do(x => writer.WriteLine(x.Data));
 });

sensorDataWithLogging.SubscribeConsole("sensor");

The use of the Using operator looks similar to the using statement in that you create
the resource and then use the created resource inside the block. The main difference
is that the inner block (the second parameter) needs to return the observable that
uses the resource, as shown in figure 11.6.

The Using operator receives two parameters: the first is the resource factory (a function
that creates the disposable object), and the second is the observable factory (a function
that receives the disposable object and returns an observable that uses it).

 The Using operator returns an observable that wraps the process of invoking the
resource factory and then the observable factory every time an observer subscribes.
The Using operator disposes of the resource when the observable terminates, no mat-
ter for what reason.

A factory function that
produces the resource

A factory function that creates
the observable that uses the
resource you created

Observable
resourceFactory()

Subscribe

observableFactory
(resource)

Dispose()

Using(resourceFactory,observableFactory)

Resource

Figure 11.6 The Using operator
creates a disposable resource that has
the same lifespan as the observable.

268 CHAPTER 11 Error handling and recovery
 Here’s an example that proves it:

Subject<int> subject = new Subject<int>();
var observable =
 Observable.Using(
 () => Disposable.Create(()=>{ Console.WriteLine("DISPOSED"); }),
 _ => subject);

Console.WriteLine("Disposed when completed");
observable.SubscribeConsole();
subject.OnCompleted();

Console.WriteLine("Disposed when error occurs");
subject = new Subject<int>();
observable.SubscribeConsole();
subject.OnError(new Exception("error"));

Console.WriteLine("Disposed when subscription disposed");
subject = new Subject<int>();
var subscription =
 observable.SubscribeConsole();
subscription.Dispose();

In the resource factory, you create a disposable object that prints a message when it’s
disposed of. You use a Subject as the observable that you return from the observable
factory. You then test what happens when the subject emits the notifications of
OnCompleted and OnError, and also what happens when the subscription object
itself is disposed of.

 In all of these tests, the resource is disposed of. Note that between each test case,
you create a new Subject because a completed Subject is no longer usable and will
automatically notify its completeness to any a new observer that subscribes to it.

 If you run this program, this is the output you’ll see:

Disposed when completed
 - OnCompleted()
DISPOSED

Disposed when error occurs
 - OnError:
 System.Exception: error
DISPOSED

Disposed when subscription disposed
DISPOSED

This proves that for any termination of the observable, or the subscription, the
resource will be gracefully disposed of.

 The Using operator also includes an asynchronous version, in which the resource
factory and the observable factory return Tasks:

IObservable<TResult> Using<TResult, TResource>(
 Func<CancellationToken, Task<TResource>> resourceFactoryAsync,
 Func<TResource, CancellationToken, Task<IObservable<TResult>>>

observableFactoryAsync)

Creates an object that when
disposed of by a call to the
Dispose method prints the

message “DISPOSED”

Returns the Subject
currently referenced by the
variable subject

269Controlling the lifetime of resources
Because the factories are asynchronous, they both receive a cancellation token that
will report cancellation in case the subscription was disposed of while the factories are
still running. Other than that, the asynchronous version works the same as what you
saw in the preceding synchronous version.

 The Using operator works amazingly well when you need to dispose of resources.
Nonetheless, in some cases cleanup operations aren’t exposed through a disposable
object. In C#, when you have a piece of code that needs to run at the end of an opera-
tion, no matter whether the operation succeeded or failed, you use the try-finally
statement. Rx provides similar semantics.

11.2.2 Deterministic finalization

The Finally operator, illustrated in figure 11.7, works similarly to the finally
block in C#. At the end of an operation, no matter whether it succeeded or failed, a
piece of code is executed.

 The code in the finally block usually handles
cleanup of things that aren’t necessarily dispos-
able, and it runs the code related to the closure of
a logical transaction. The Finally operator does
the same thing for the observable: it runs the code
you need to execute when the observable termi-
nates—successfully or with an error.

 Suppose you have a window that shows the
progress of an operation (for example, loading a
file or running a lengthy or complicated computa-
tion), and you want to close the window programmatically, no matter whether the
operation succeeds or fails. This is how you can write code for that:

IObservable<int> progress =...

progress
 .Finally(() =>{/*close the window*/})
 .Subscribe(x =>{/*Update the UI /});

The piece of code that closes the window is called for in any case in which the observ-
able terminates.

 The next code example demonstrates the different cases when the action in the
Finally clause is executed:

Console.WriteLine("Successful complete");
Observable.Interval(TimeSpan.FromSeconds(1))
 .Take(3)
 .Finally(() => Console.WriteLine("Finally Code"))
 .SubscribeConsole();

Console.WriteLine("Error termination");
Observable.Throw<Exception>(new Exception("error"))
 .Finally(() => Console.WriteLine("Finally Code"))
 .SubscribeConsole();

Source

finallyAction()

Finally(finallyAction)

Figure 11.7 The Finally operator
registers an action to take on the
observable or subscription termination.

The final action
is called when
the observable
completes.

The final action is called
when the observable
ends with an error.

270 CHAPTER 11 Error handling and recovery
Console.WriteLine("Unsubscribing");
Subject<int> subject = new Subject<int>();
var subscription =
 subject.AsObservable()
 .Finally(() => Console.WriteLine("Finally Code"))
 .SubscribeConsole();
subscription.Dispose();

Running this example produces the following output:

Successful complete
 - OnCompleted()
Finally Code

Error termination
 - OnError:
 System.Exception: error
Finally Code

Unsubscribing
Finally Code

The Finally operator can be helpful when you want to do the last step in the ongo-
ing work of the observable and can’t express it with a disposable object (for example,
closing a connection or sending a message to an external service).

 Next, I’ll show you how to reduce the risk of having observers that are no longer
necessary, yet never removed from memory—a situation called dangling observers.

11.2.3 Dangling observers

A dangling observer is the result of an observer being held (referenced) by nothing else
but an observable, even though the logical lifetime of the observer has already fin-
ished. If the observer is the window that shows chat messages coming from the chat
observable, it’s possible that the window object will still be referenced by the observ-
able, even though the user has closed the window.

 Dangling observers appear when an observer subscribes to an observable but never
unsubscribes from it by disposing of the subscription object. I define the object that
subscribes the observer and that’s in charge for its lifetime as the observer’s owner.

 Dangling observers result in memory leaks because observers are objects that
occupy memory. Dangling observers also result in unwanted (and unexpected) behav-
ior because the observer still reacts to notifications although it shouldn’t. For exam-
ple, the chat window mentioned previously still reacts to the chat messages and adds
them to its inner collections even though it’s closed. Figure 11.8 depicts a dangling
observer.

 As a reminder, when an observer is subscribed to an observable, you get in return a
disposable object that holds the subscription. For example:

IObservable<int> observable = ...
IDisposable subscription = observable.Subscribe(x =>{/*the observer code*/});

The final action is
called when the
subscription is
disposed of.

271Controlling the lifetime of resources
Figure 11.8 When an observer is subscribed to an observable, it remains alive,
regardless of its creator.

Unfortunately, many developers throw away the subscription object and don’t main-
tain it. Developers also forget to dispose of the subscription properly even if they do
save it, which also results in a dangling observer.

 If the observer holds references to other objects, this creates a chain of objects
that aren’t collected. A special case of such a reference occurs when you implicitly
create an observer via the Subscribe operator to which you send the OnNext,
OnError, and OnCompleted functions. This implicitly creates a reference from the
observer to the object that created the subscription if the functions use the object’s
properties or methods.

 Just to make it clear, if your application does need the observer to be kept alive for
the lifetime of the observable it’s subscribed to, then leaving the observer dangled is
the expected behavior. But, in many cases, the observer should be kept alive for the
duration of its owner (or creator) and, in those cases, it’s crucial that you save the sub-
scription and dispose of it when needed.

NOTE One of the misunderstandings about the subscription object is the
false assumption that when the GC collects the subscription, its Dispose
method is called. Rx disposables don’t implement a finalizer and, if the GC

Observer

Observer

Observer

Ob

Observable

Observer
ownerAn object that’s interested in the

observable notifications (the observer
owner) subscribes the observer. Subscribe()

ObObservable

Observer
ownerAfter the subscription, the observer

owner and the observable hold a
reference to the observer.

Ob
Observable

When the observer owner is no longer
in use, and a garbage collection occurs,
the observer owner will be collected
but the observer will remain dangled.

272 CHAPTER 11 Error handling and recovery
collects it, the memory is reclaimed but the subscription isn’t. You can’t rely
on the GC to unsubscribe observers for you.

In some cases, you can’t determine when the life of the subscription should end and
you’d like to keep it dynamic so that when there are no more references to the
observer (except from the observable), it should be disposed of. An example of such a
case is when working with platforms such as Windows Phone, where the application
pages are kept inside a backstack. (The backstack is what allows the user to press the
Back key on the machine and navigate to the previous page.) The Windows Phone
application can also clear the backstack when it wants to prevent user navigation (for
example, when the user logs out and returns to the login page, all the previous pages
visited are no longer relevant).

 Suppose a page (or its ViewModel) subscribes to an observable. Because of the
nondeterministic nature of the page’s lifetime, the page doesn’t know whether it’s still
in the backstack. You have no way of knowing exactly when to dispose of the subscrip-
tion. For those cases, you need a weak observer.

CREATING A WEAK OBSERVER

The problem of dangling observers is similar to the problem of dangling event han-
dlers. In traditional .NET events, the registration of the event handler to the event cre-
ates a reference from the event source to the object that contains the event handler
(unless the event handler is static). So unless you unregister from the event with the
-= operator, the object that contains the event handler will be kept alive as long as the
event source is alive.

 To remove this risk, a common pattern is to change the references held by the
event to weak references.3 The WeakReference class represents a reference that still
allows the referenced object to be reclaimed by the GC. The code that uses the Weak-
Reference object can query it to check whether the object is still alive.

 The next example demonstrates that as long as a strong reference to an object
exists, the WeakReference shows that the object is alive. When there are no more
strong references, the WeakReference shows that it’s no longer alive.

object obj = new object();
WeakReference weak = new WeakReference(obj);

GC.Collect();
Console.WriteLine("IsAlive: {0} obj!=null is {1}", weak.IsAlive,obj!=null);

obj = null;
GC.Collect();
Console.WriteLine("IsAlive: {0}", weak.IsAlive);

This is the output you’ll see when running the example:

IsAlive: True obj!=null is True
IsAlive: False

3 A weak reference is a reference that doesn’t prevent the GC from collecting the object, http://mng.bz/73ux.

http://mng.bz/73ux

273Controlling the lifetime of resources
Figure 11.9 Disconnecting the observable and its observer with a mediator
observer that weakly references the real observer

You can use WeakReference to make the subscription of the observer weak as well, so
if the only thing that keeps the observer alive is observable, it won’t prevent the GC
from reclaiming it. I call this pattern the weak observer.

 Figure 11.9 illustrates what you’re trying to achieve. The idea here is to create a
proxy object that holds a weak reference to the observer and delegates the calls from
the source observable to the observer. In order for the proxy to receive the notifica-
tions from the observable, it must implement the IObserver<T> interface.

 For each notification the WeakObserverProxy receives from the observable, it
checks whether the object is still alive and isn’t reclaimed by the GC. If so, it will pass
the notification to it. If the observer has already been reclaimed, WeakObserver-
Proxy disposes of the subscription to the source observable.

 Here’s an example of how this looks for the OnNext method:

IObserver<T> observer;
if (_weakObserver.TryGetTarget(out observer))
{
 observer.OnNext(value);
}
else
{
 _subscriptionToSource.Dispose();
}

The OnError and OnCompleted methods will do the same thing, so I refactored my
code into this:

void NotifyObserver(Action<IObserver<T>> action)
{
 IObserver<T> observer;
 if (_weakObserver.TryGetTarget(out observer))
 {
 action(observer);
 }
 else
 {
 _subscriptionToSource.Dispose();
 }
}

WeakObserver
Proxy

Observer

WeakReference

IObserver<T>

Observable
Observer

274 CHAPTER 11 Error handling and recovery
public void OnNext(T value)
{
 NotifyObserver(observer=>observer.OnNext(value));
}

Besides the fact that the inner observer might get collected, the user can dispose of
the subscription at any time. The WeakObserverProxy object holds the subscription
object to the source observable and exposes it through the AsDisposable method.
The exposed disposable is then returned to the client code that subscribes to the
observable.

 This is the complete code for the WeakObserverProxy.

class WeakObserverProxy<T>:IObserver<T>
{
 private IDisposable _subscriptionToSource;
 private WeakReference<IObserver<T>> _weakObserver;

 public WeakObserverProxy(IObserver<T> observer)
 {
 _weakObserver = new WeakReference<IObserver<T>>(observer);
 }

 internal void SetSubscription(IDisposable subscriptionToSource)
 {
 _subscriptionToSource = subscriptionToSource;
 }

 void NotifyObserver(Action<IObserver<T>> action)
 {
 IObserver<T> observer;
 if (_weakObserver.TryGetTarget(out observer))
 {
 action(observer);
 }
 else
 {
 _subscriptionToSource.Dispose();
 }
 }
 public void OnNext(T value)
 {
 NotifyObserver(observer=>observer.OnNext(value));
 }

 public void OnError(Exception error)
 {
 NotifyObserver(observer => observer.OnError(error));
 }

 public void OnCompleted()
 {
 NotifyObserver(observer => observer.OnCompleted());
 }

Listing 11.2 The WeakObserverProxy

275Controlling the lifetime of resources
 public IDisposable AsDisposable()
 {
 return _subscriptionToSource;
 }
}

To make your life easier, I created the extension method AsWeakObservable that
will wrap any observable that you want to subscribe to weakly.

 Now, when the observer subscribes, a WeakObserverProxy is created, and the
observer and the subscription to the source observable are passed to it. Finally, you
return the inner subscription to the caller:

public static IObservable<T> AsWeakObservable<T>(this IObservable<T> source)
{
 return Observable.Create<T>(o =>
 {
 var weakObserverProxy = new WeakObserverProxy<T>(o);
 var subscription = source.Subscribe(weakObserverProxy);
 weakObserverProxy.SetSubscription(subscription);
 return weakObserverProxy.AsDisposable();;
 });
}

Here’s an example to test that the weak observer works. In the following code, you cre-
ate an observable that emits a notification each second (like a sensor that reports the
measurement it takes), and weakly subscribes an observer to it. The program holds
the subscription for 2 seconds in order to keep the observer alive. Then you remove
the reference to the subscription object (setting it to null) and force a GC. Afterward,
no more notifications are emitted even though you haven’t called the Dispose
method explicitly:

 var subscription =
 Observable.Interval(TimeSpan.FromSeconds(1))
 .AsWeakObservable()
 .SubscribeConsole("Interval");

Console.WriteLine("Collecting");
GC.Collect();
Thread.Sleep(2000); //2 seconds

GC.KeepAlive(subscription);
Console.WriteLine("Done sleeping");
Console.WriteLine("Collecting");

subscription = null;
GC.Collect();
Thread.Sleep(2000); //2 seconds
Console.WriteLine("Done sleeping");

This is my output after running the program:

Collecting
Interval - OnNext(0)
Interval - OnNext(1)

276 CHAPTER 11 Error handling and recovery
Done sleeping
Collecting
Done sleeping

From the output, you can see that while the subscription is held by a strong reference,
notifications keep on coming. When there are no more strong references that are
roots to the underlying observer, the notifications stop.

 Using weak observers isn’t something you should do on a regular basis (just as with
weak events), because in most cases you want to be in control of the subscription. But
if you find yourself unable to deterministically predict the lifespan of an observer
(with the Windows Store application’s backstack, for example), then a weak observer
is a strong utility to make your life easier and level your application resource usage.

 You need to remember that the WeakObserverProxy object might stay alive for a
long time after the observer it references is collected. This is because when the observ-
able emits a notification, the WeakObserverProxy can check whether it’s still
needed, and if not, it can unsubscribe itself from the observable.

 Next, you’ll dive into another situation where the consumption of resources in
your application increases even though nothing is wrong with the code you write. This
might occur when the number of notifications an observer receives per time frame is
large. This is called backpressure.

11.3 Dealing with backpressure
The observable provides an abstraction over the source of the notifications that emits
them, and nothing in the observable interface provides any clue about the rate at
which those notifications are emitted.

11.3.1 Observables of different rates

There are three possible outcomes regarding the rate of processing done by the
observer; these are illustrated in figure 11.10:

1 The observer processes the notifications at the same rate as the observable
emits them.

2 The observable is faster than the observer. This is a case of overload.
3 The observer is faster than the observable. In this case, the observer can process

more notifications per time frame than what is emitted by the observable.

Figure 11.10 The effect of different rates between an observable and an observer

I’m waiting

Same rate Faster observable Faster observer

277Dealing with backpressure
Figure 11.11 A Service Unavailable error page that you might get when the website is overloaded

You can compare those situations to a website that gets requests from clients. The web
server that hosts the website can handle a limited number of requests. When the num-
ber of requests is too high, you might get an error that says the website isn’t available,
as shown in figure 11.11.

 For cases 1 and 3, where the observer is just as fast as or faster than the observable,
no problems will arise and the system will work great. But when the rate of the observ-
able becomes greater than the ability of the observer to consume the notifications,
you’re on the road to an overload that will eventually crash your system, unless you
slow things down in some way.

 As stated previously, we call this kind of overload backpressure, and it’s something
that’s easy to get into, as the next example shows.

NOTE Backpressure is also defined as the ability to tell a source to slow down
in order to prevent flooding.

In the following example, you use the Zip operator to combine an observable that
emits a notification each second with another observable that emits a notification
every 2 seconds. These observables might emit notifications from two sensors or from
two remote servers, but in any case, the result will be that the slow observable notifica-
tions will be buffered by the Zip operator:

var fast = Observable.Interval(TimeSpan.FromSeconds(1));
var slow = Observable.Interval(TimeSpan.FromSeconds(2));

var zipped = slow.Zip(fast, (x, y) => x + y);

278 CHAPTER 11 Error handling and recovery
Figure 11.12 Zipping a fast observable with a slow observable leads to pending
elements stored in memory.

The Zip operator combines the elements based on their ordinal position, so it must
store the elements from the fast observable until the corresponding items are emitted
by the slow observable. After 10 seconds, the fast observable emits 10 elements, and
the slow observable emits only 5, so the Zip operator currently contains only 5 ele-
ments in memory. If you run this example for a full day (total time of 86,400 seconds),
you’ll have 43,200 elements in memory. An illustration of the problem is shown in
figure 11.12.

 Now that we’ve established what backpressure is, we can discuss ways to deal with it.

11.3.2 Mitigating backpressure

Imagine someone is throwing balls at you at a high rate of speed, and you need to
catch them and organize them on a shelf. You have three possible ways to handle this:

1 Ignore some of the balls and let them drop (the lossy approach).
2 Temporarily put some of the balls in a box and get them later (the lossless

approach).
3 Signal the thrower to slow down until you’re free to catch the balls (the con-

trolled lossless approach).

Some Rx operators take the lossy approach and some take the lossless, but none of
them take the controlled lossless approach.

TIP Reactive Streams (www.reactive-streams.org/) tries to provide a controlled
lossless approach to observables. As stated on the Reactive Streams website,
this initiative provides a standard for asynchronous stream processing with
nonblocking backpressure (controlled lossless). This standard extends the Rx
model to allow the observer to notify the observable about the load it can take.
Reactive Streams is not supported by Rx.NET at the time of this writing.

LOSSY APPROACH

Say you have two sensors that emit notifications. One emits twice as fast as the second,
and you need to combine the notifications. You need to consider whether the notifica-
tion emitted by the slower sensor is still relevant. If the sensor emits heart rate, ask

10 20

Slow
 .Zip(fast, (x, y) => x + y)

30

11 22 33

Fast

Slow

40 50 60 70 80 90

1 2 5

44 55

Pending elements
(stored in memory)

3 4

279Summary
yourself whether the heart that was measured an hour ago is still relevant. Is it better
to drop it and use only the latest one? In cases like these, where dropping a message is
reasonable, here’s a list of the options you can take:

 If you’re combining observables, but it’s sufficient to combine only the latest
emitted notification from each of them, use the CombineLatest operator
(chapter 9).

 If the rate of the observable is high at times, and a notification is irrelevant if
another one comes in a short while, use the Throttle operator (chapter 10).

 If you need to consume the notifications at a steady pace, no matter how many
notifications are emitted in each fragment of time, use the Scan operator
(chapter 10).

If you need to combine notifications coming from a heart-rate monitor with notifica-
tions coming from a speedometer, and there’s a chance that the heart-rate monitor
produces values faster than the speedometer, this is how you’ll overcome backpres-
sure with the CombineLatest operator:

heartRates.CombineLatest(speeds, (h, s) => String.Format("Heart:{0}
Speed:{1}", h, s))

In all of the lossy approach options, you’ll lose some notifications in favor of lower
resource consumption, and this is ideal if being responsive and available is your high-
est priority. When your priority is in consuming each of the notifications emitted, you
need to take the lossless approach.

LOSSLESS APPROACH

Say an observable is emitting text messages that you need to display onscreen. Every
time a change is made to the screen, it needs to refresh itself, which takes time. When
the rate of messages is high, the screen refreshes can cause the UI to be unresponsive
and make the user unhappy. A better solution would be to refresh the screen with
bulk messages instead of doing it one a time. In such scenarios, you can’t drop mes-
sages just because they come in at a high rate. Therefore, you need a lossless approach
to handle the backpressure. The lossless approach that Rx supports is through buffer-
ing, whereby items are stored and then processed as a bulk operation.

 The Buffer operator you learned about in chapter 9 lets you specify the buffer
period by time or amount. This should be handled with care; otherwise, the memory
consumption of your application will increase and possibly crash your application.

11.4 Summary
In this final chapter, you looked at methods for optimizing your Rx code. You saw how
to react to errors in a graceful manner and how to control the resources your code uses.

 The Catch operator lets you react to a specific type of exception that’s thrown
in the observable pipeline. It sets a fallback observable that the observer will be
subscribed to in case an exception is thrown.

280 CHAPTER 11 Error handling and recovery
 The OnErrorResumeNext operator concatenates the observable to another for
both successful completion and error termination.

 The Retry operator resubscribes the observer to the observable in the case of
error.

 The Using operator deterministically disposes of an object in case the observ-
able terminates. This way, resources used inside the observable pipeline can be
properly cleaned.

 The Finally operator runs specific code (like cleanup or logging) in case the
observable terminates. This way, you can run cleanup code at the end of the
observable processing.

 The observable holds a strong reference to the observers, which can cause the
observers to stay alive longer than they should (dangling observers).

 WeakObservers change the reference that’s used to hold the observer into a
WeakReference, eliminating cases in which an observer isn’t collected because
an observable holds it.

 Backpressure occurs when a consumer is slower than the producer.
 Backpressure can cause system performance to degrade, both in memory and

throughput.
 The CombineLatest, Throttle, and Scan operators handle backpressure

with a lossy approach; some notifications are dropped in favor of lower resource
consumption.

 The Buffer operator handles backpressure by saving the notifications into a
bulk operation that can then be processed as a whole.

appendix A
Writing asynchronous

code in .NET

For modern applications to be responsive, writing asynchronous code is crucial,
and it’s a key trait for being reactive. This appendix summarizes what asynchronous
code is, what it’s good for, how you can write asynchronous code in .NET, and the
best practices for doing so.

A.1 Writing asynchronous code
Imagine you want to ask your friend to send you important information from a doc-
ument (such as the content of the ReactiveX.io portal). You have two options: you
can use the phone to ask your friend to read the information to you, or you can
send an email with your request so you both can work on getting the information
later. Figure A.1 shows the two options.

Figure A.1 Two approaches to get the content of a document from a friend. The left sequence shows
the synchronous way via phone call. The right sequence shows the asynchronous way via email.

Searching the
document

Hello

Waiting

Please read me the document

Please send...Calling

<html>..</html>

<html>........</html>

W
atching
281

282 APPENDIX A Writing asynchronous code in .NET
When you make a phone call to retrieve information (the left sequence in the figure),
you’re using the synchronous approach. With this method, you have to wait until the
call is answered and then you need to wait for the other side to complete the
requested task (such as retrieving the document).

 When you choose to send an email (the right sequence in the figure), you’re using
the asynchronous approach. The benefit of the asynchronous operation is obvious:
while your message is being sent to the other participant and while it’s being handled,
you can continue doing other things.

 Running code in an asynchronous way is crucial for the modern application for
two main reasons:

 Responsiveness—Imagine your client application copies a big file. It’d be awful if
the UI is blocked the entire time. The user might think the application is stuck.
It’d be much better if the long copy operation were asynchronous, with the UI
showing progress until the operation finishes.

 Scalability—Nowadays almost every computer has more than one core, so run-
ning tasks or jobs in real-time parallelism lets your application handle multiple
tasks at the same time. Suppose your application needs to handle multiple user
requests. Each request that arrives can run asynchronously, and your applica-
tion can scale accordingly.

A.2 Asynchronous code in .NET
Writing asynchronous code isn’t hard; all it takes is to delegate the work to another
thread, process, or machine, and then not to wait for it to complete. Sounds simple,
doesn’t it? Unfortunately, writing asynchronous code tends to be much more difficult
than that.

 For starters, you need to decide how to create a thread, a process, or a task. Or you
need to decide how to communicate with another machine to run your code. Then,
after you decide how to run your asynchronous code, you need to determine whether
it has finished successfully or failed. If it finishes, you’ll want to capture the result (or
the error).

 Not every asynchronous operation (such as reading a file from the hard drive or
running a query against a database) is CPU bound, which is great because the CPU is
free to process other threads.

 .NET has always had ways to run code in an asynchronous fashion, and that has
evolved throughout the years.

 Here’s a simple application that runs a lengthy task in an asynchronous way:

class Program
{
 static void Main(string[] args)
 {
 var thread = new Thread(() =>
 {
 //Performing a very long task

283Asynchronous code in .NET
 Console.WriteLine("Long work is done, the result is ...");
 });

 thread.Start();
 Console.ReadLine();
 }
}

In this simple program, you create a thread that runs the long-running job. After start-
ing the thread, the main thread is free to proceed with another task. In this case, you
wait for user input. When the long-running job is done, the result is written to the
console. Figure A.2 shows how the two threads work concurrently.

This sample works, but it’s far from ideal. Creating a thread is a relatively expensive
operation because the OS needs to allocate the thread. For this example, together
with all data structures involved, it’s approximately 1 MB of memory. Not only is the
creation of the thread expensive, when the thread is destroyed and given back to the
OS, your application suffers again. For every thread you create, you lose precious
resources (time and memory) that the application could’ve used for additional work.
Inside .NET, you have ways to improve the sample code. The System.Threading
.ThreadPool class, for example, handles the creation and destruction of threads,
and it does so in a way that reuses threads and adapts to the workload of your applica-
tion. Thus, the long-running job could’ve been written like this:

 ThreadPool.QueueUserWorkItem((_) =>
{
 //Performing a very long task

 Console.WriteLine("Long work is done, the result is ...");
});

In this code, you assign the work that needs to be done asynchronously to the
ThreadPool that adds it to an internal queue. Then, a worker thread that’s managed
by the ThreadPool will pick the work item and execute it.

 But creating threads to run every code you want to run asynchronously can work
against you. For example, in the previous code, you call to the Console.WriteLine
method to keep the output from displaying characters that arrive from simultaneous
calls. The Console class holds a lock to prevent multiple threads from executing at

Background
thread

Main thread Main code

Background work

Rest of main code

Figure A.2 Creating a background
thread. After the thread is created, the
main thread continues its execution
concurrently to the background thread.

284 APPENDIX A Writing asynchronous code in .NET
the same time. If you have many threads to write to the console, they’ll be blocked
until the current write is finished. If you take into consideration the overhead of man-
aging the threads and the code that runs them, you might find that the performance
of your application decreases, which is counterproductive to what you want to achieve.

 Beside the performance issues, there’s another downside to using the thread
approach: There’s no standard and easy way to know whether the thread completes
and no way to receive the response. This makes this approach unfriendly in many situ-
ations. In many cases, you’ll want to delegate calculations to other threads, and when
the calculation is done, you’ll want to take the results and combine them. Sometimes
this is also done in another thread (or threads).

 .NET provides a few patterns to achieve this behavior. The following list describes
two that are now considered obsolete, but there’s still a chance you’ll run into them:

 The Asynchronous Programming Model (APM) pattern: In this pattern, two methods
(Begin[OperationName] and End[OperationName]) begin and end the
operation. After calling Begin, an object of a type that implements IAsync-
Result is returned immediately. The calling thread isn’t blocked and can con-
tinue processing the next line. The application can be notified that the
operation completed, either by checking the IsCompleted property of the
IAsyncResult object or by a callback that’s supplied to the Begin[Operation
Name] method. When the operation completes, the application calls the
End[OperationName] method and provides the IAsyncResult as an argu-
ment; that is, End[OperationName] returns the operation’s result.

 The Event-Based Asynchronous Pattern (EAP): In this pattern, you call the method
that’s making the time-consuming work, [MethodName]Async. The contain-
ing class will have a corresponding event called [MethodName]Completed,
which will be raised when the operation completes.

Beginning with .NET Framework 4, the recommended pattern for creating asynchro-
nous code is the Task-Based Asynchronous Pattern (TAP), which is based on the Task
Parallel Library (TPL). And, because all the other patterns can be converted to the
TPL, I use it in the rest of the appendix.

TIP If you do bump into the older asynchronous patterns, the easiest (also
recommended) way to work with them is to create a task that abstracts them.
For the APM pattern, you can use the Task.FromAsync static method, but
for EAP you need to work a bit and use the type TaskCompletion-
Source<TResult>. You can find more information in an MSDN article at
http://mng.bz/dJ6K.

A.3 Task-Based Asynchronous Pattern
TAP is based on two important types that exist in the .NET Framework: System
.Threading.Tasks.Task and System.Threading.Tasks.Task<TResult>.
Tasks are the .NET implementation of futures. A future is a stand-in for a computational

http://mng.bz/dJ6K

285Task-Based Asynchronous Pattern
result that’s initially unknown but becomes available at a later time (hence the name
future), as shown in figure A.3.

 With TAP, methods that perform an asynchronous computation return tasks, and
the task is the contact point from which you can know the state of the computation
and the final result.

 The process of calculating the result can occur in parallel with other computa-
tions. Task represents a computation that yields no value, while Task<TResult>
yields a value of type TResult. After the computation completes, you can get the
result from the task’s property Result. Here’s a small example that asynchronously
gets the headers of the ReactiveX portal home page. For brevity, error handling wasn’t
added to this example:

var httpClient = new HttpClient();
Task<HttpResponseMessage> requestTask =
httpClient.GetAsync("http://ReactiveX.io");

Console.WriteLine("the request was sent, status:{0}",requestTask.Status);

Console.WriteLine(requestTask.Result.Headers);

When I ran the sample on my machine, this is what I got:

the request was sent, status:WaitingForActivation
Access-Control-Allow-Origin: *
Accept-Ranges: bytes
Cache-Control: max-age=600
Date: Mon, 27 Jul 2015 19:17:26 GMT
Server: GitHub.com

A little explanation is in order. When a task is created and started, it’s added to a
queue that’s managed by the TaskScheduler. At this point, the task state is Waiting
ForActivation, which is why the first line that prints shows this status. The

Task<T>

Computation

Result: ?

Task<T>

Result: value

Computation

Figure A.3 The task is a .NET implementation of a future: a stand-in for a
computational result that’s initially unknown but becomes available at a later time.

Initiates an asynchronous call. The
calling thread isn’t blocked, and the

task is returned immediately.

 The request hasn’t finished, so the task
status is either waiting or running.

The call to Result blocks the
thread until the request finishes;

then the headers will print.

286 APPENDIX A Writing asynchronous code in .NET
TaskScheduler assigns the task into a thread, and this changes the task status to
Running. When you try to get the Result from the task while it’s still running, the
calling thread is blocked until the task finishes, which causes its state to change to
RanToCompletion. Upon completion, the calling thread resumes, and the task result
is returned. This is when the headers are printed to the console.

 Waiting for the task to finish by calling Result (or Wait) is a little counterproduc-
tive for what you want to achieve—getting the headers asynchronously without block-
ing the calling threads. You can achieve this thanks to the Continuation
functionality, which tasks support. Here’s what the previous example looks like when
using the Continuation functionality:

var httpClient = new HttpClient();
httpClient.GetAsync("http://ReactiveX.io")
 .ContinueWith(requestTask =>
 {
 Console.WriteLine("the request was sent, status:{0}",

requestTask.Status);
 Console.WriteLine(requestTask.Result.Headers);
 });

Running this version of the code produces this output:

the request was sent, status:RanToCompletion
Access-Control-Allow-Origin: *
Accept-Ranges: bytes
Cache-Control: max-age=600
Date: Tue, 28 Jul 2015 20:08:55 GMT
Server: GitHub.com

You use the ContinueWith method to attach code that’ll be executed when the task
completes (successfully or not), and the task you’re attaching to is sent as an argu-
ment (the requestTask in the lambda expression). This is why the output you
received shows that the status of the task is RanToCompletion. Now, in the time that
it takes to get the headers and process them (writing to the console), your code works
in an asynchronous way. The main thread isn’t blocked, and everything runs in the
background.

 Continuation makes the creation of asynchronous code nice, but it can be lengthy.
To demonstrate, let’s see what happens when you want to print the content of the
page as well as the headers:

var httpClient = new HttpClient();

httpClient.GetAsync("http://ReactiveX.io")
 .ContinueWith(requestTask =>
 {
 var httpContent = requestTask.Result.Content;
 httpContent.ReadAsStringAsync()
 .ContinueWith(contentTask =>
 {

Adds a continuation to the task returned
from the GetAsync method. The code

inside starts when the task completes.

To use the value of the httpContent
object, it needs to be transformed
to a meaningful format. This is
done asynchronously.

287Simplifying asynchronous code with async-await
 Console.WriteLine(contentTask.Result);
 });
 });

As you can see, the more asynchronous methods you use on the way to your target, the
more continuations you’ll need and the less readable your code becomes. To help
with that, C# provides language-based support to hide the complexity of continua-
tions by awaiting the tasks while maintaining regular control flow. This is also known
as the async-await pattern.

A.4 Simplifying asynchronous code with async-await
Instead of repeating the pattern of continuing a task and getting the result when it fin-
ishes and then making another continuation on another task, the async-await pat-
tern lets you write your asynchronous code as if it were simple and sequential. When
calling the asynchronous method (which returns a task), you can instruct the com-
piler that you want to await it, meaning you want the rest of the code to execute when
the async-await pattern finishes and its result is returned.

 Let’s look at an example of getting the reactivex.io page with async-await:

async void GetPageAsync()
{
 var httpClient = new HttpClient();
 var response = await httpClient.GetAsync("http://ReactiveX.io");
 string page = await response.Content.ReadAsStringAsync();
 Console.WriteLine(page);
}

To use async-await, the method that contains await must be marked with the
async modifier. Inside the method, you can now call the asynchronous methods that
return either Task or Task<TResult> and await them (any type can be awaited as
long as it provides an awaiter). When the task is complete, the rest of the code is exe-
cuted and, if you awaited Task<TResult>, the TResult value is returned without the
need to explicitly use the Result property on the task. If the task throws an excep-
tion, it will be caught in the calling code as if it were a synchronous call.

TIP Any type can be awaited as long as it provides an awaiter by exposing a
GetAwaiter method. An awaiter is any class that conforms to a particular pat-
tern. You can find more details in the Async/Await FAQ: http://mng.bz/27mZ.

Suppose the method you wrote needs to return the downloaded string content.
async-await is viral! Because you call async methods inside your code, this makes
your code asynchronous by itself, which means that the value you want to return will
be available when the async calls complete. To expose that information to the caller,
and to allow it to await on the completeness of your code, you must also return a task

Adds the async modifier
to the method definition

Sends a request to the server and awaits
its response without blocking

After the response arrives,
reads the content as a string

and awaits its completion

http://mng.bz/27mZ

288 APPENDIX A Writing asynchronous code in .NET
(in this case, Task<string>). Methods marked with async can only return Task,
Task<TResult>, or void. This is how the method signature looks now:

 async Task<string> GetPageAsync()

When you need to return a value inside an async method that returns a task, you don’t
need to return the task explicitly. You can regularly return the value as if it were a sim-
ple synchronous method. The compiler makes the transformations behind the scenes:

private static async Task<string> GetPageAsync()
{
 var httpClient = new HttpClient();

 var response = await httpClient.GetAsync("http://ReactiveX.io");
 string page = await response.Content.ReadAsStringAsync();
 return page;
}

The GetPageAsync method calls to other async methods and then returns the end
result that’s of type string. The method is asynchronous because it uses other asyn-
chronous methods, but you have no real idea of what’s going on inside and whether
it’s truly asynchronous. Because we haven’t discussed how to write methods that run
their code inside an asynchronous task, we’ll look at that next.

A.5 Creating tasks
In the previous examples, I haven’t talked about how to create tasks in the code that
you write. All you saw is that when you add the async modifier to your methods, the
compiler generates a returned task for you. This can be misleading, as the next exam-
ple shows.

 Look at the following code and predict what will be printed:

async void AsyncMethodCaller()
{
 bool isSame = await MyAsyncMethod(Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine(isSame);
}

async Task<bool> MyAsyncMethod(int callingThreadId)
{
 return Thread.CurrentThread.ManagedThreadId == callingThreadId;
}

The method AsyncMethodCaller calls MyAsyncMethod and passes the thread ID.
Because MyAsyncMethod returns a task, the call can be awaited. The MyAsync-
Method checks whether the ID of the thread it’s running on is the same as the thread
ID it received as a parameter and returns the result, which is then printed by the caller
method.

 When you run this program, you’ll see that the printed value will be true, which
might surprise you. You see, marking a method as async and returning a task doesn’t

Returns a string value,
not a task object

289Summary
by itself make the code inside the method perform asynchronously. It’s a way to
instruct the compiler that the code inside might perform as an asynchronous opera-
tion and that you request its help to make a continuation when that happens.

 In the previous method, you haven’t done anything asynchronous, so that’s why
the calling thread is the same thread as the one running the method’s code. The only
thing you did is hurt the performance of your simple code because, behind the
scenes, the compiler created a state machine1 that has only one state, and the over-
head of managing this state machine has a performance hit.

 To make your method asynchronous, you need to span the work to another task,
and this can be done by using Task.Run. Here’s a real asynchronous version of
MyAsyncMethod:

async void AsyncMethodCaller()
{
 Console.WriteLine();
 Console.WriteLine("----- Using Task.Run(...) to create async code ----");

 bool isSame = await MyAsyncMethod(Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine("Caller thread is the same as executing thread: {0}",
isSame);
}

async Task<bool> MyAsyncMethod(int callingThreadId)
{
 return await Task.Run(() =>
Thread.CurrentThread.ManagedThreadId == callingThreadId);
}

In this version, you create a new task and start it by passing the lambda expression to
the Task.Run method. This causes the TaskScheduler to assign a thread that will
run your code. The printed value you see now is false.

 In this appendix, I’ve tried to show a few techniques that you can use to write asyn-
chronous code. I haven’t touched upon many other techniques that we could talk
about for hours. But this book is about Rx and not about how to write multithreaded
applications; many books have been written to explain that. Because this topic is inter-
esting to me and, I'm sure, to you too, you can learn more about what .NET provides
when dealing with multithreading by reading Jeffrey Richter’s CLR via C# (Microsoft
Press, 2012). I also recommend Concurrency in C# Cookbook by Stephen Cleary
(O’Reilly, 2014).

A.6 Summary
This appendix provided a short recap about writing asynchronous code in .NET. Asyn-
chronicity plays a major role in the Rx world, and the material in this book relies on
the concepts explained here.

1 To learn more about state machines, see https://en.wikipedia.org/wiki/Finite-state_machine.

After the call, this
will print “false.”

The call to Task.Run will
cause the code passed in
the lambda expression to

run in another thread.

https://en.wikipedia.org/wiki/Finite-state_machine

290 APPENDIX A Writing asynchronous code in .NET
 Here’s a summary of what you learned:

 Asynchronous code execution is crucial for the modern application to be both
scalable and responsive.

 .NET provides a few ways to achieve asynchronicity, which rely on thread cre-
ation and I/O operations.

 The recommended approach is to use the Task Parallel Library (TPL), which
allows spanning new tasks, and to create continuations on tasks (completed or
failed).

 The async-await pattern lets you write asynchronous code in a way that
makes it look sequential and natural.

appendix B
The Rx Disposables library

The System.Reactive.Core package includes an additional treat that can be
helpful: the Rx Disposables library. It’s a set of types that implement the IDispos-
able interface and provides generic implementations to recurring patterns to help
you accomplish most of the things you’ll need your disposable to do, without creat-
ing your own type! All the types listed in this appendix reside in the System
.Reactive.Disposables namespace.

NOTE The System.Reactive.Core package is the main Rx package. For
details about other Rx packages, see chapter 2.

Table B.1 will help you remember what the disposable utilities and types do.

Table B.1 The tenets of the Rx Disposables library

Type/utility Description

Disposable.Create A static method used to create a disposable that executes
a given code when disposed of.

Disposable.Empty Creates an empty disposable.

ContextDisposable Runs the disposal of its underlying disposable resource on
a given SynchronizationContext.

ScheduledDisposable Runs the disposal of its underlying disposable resource on
a given IScheduler.

SerialDisposable Holds a replaceable underlying disposable and disposes
of the previous disposable when replaced.

MultipleAssignmentDisposable Holds a replaceable underlying disposable but doesn’t dis-
pose of the previous disposable when replaced.

RefCountDisposable Disposes of the underlying disposable when all the refer-
encing disposables are disposed of.
291

292 APPENDIX B The Rx Disposables library
B.1 Disposable.Create
The most flexible way to create a disposable is with the Disposable.Create static
factory method. All you need to do is pass the action you want the disposable to exe-
cute upon calling the Dispose method. The next example creates a disposable that
changes the state of a screen (from busy to nonbusy). The screen shows news items
after they’re downloaded. While the screen is in the busy state, the UI can display a
progress bar to show the user that something is happening in the background.

private async Task RefreshNewsAsync()
{
 IsBusy = true;
 NewsItems = Enumerable.Empty<string>();
 using (Disposable.Create(() => IsBusy = false))
 {
 NewsItems = await DownloadNewsItems();
 }
}

The IsBusy property is bound to a busy indicator on the screen, so when it’s set to
true, the busy indicator is shown, and when it's set to false, the busy indicator is
invisible. The nice thing about working with disposables is that the using statement
ensures that the Dispose method is executed even if the code throws an exception,
so you can be assured that the screen won't get stuck in a busy state.

B.2 Disposable.Empty
The static property Disposable.Empty returns a disposable object that has an empty
Dispose method. This can be handy for initializing an IDisposable variable or
member so you won't have to write code to check for null and risk forgetting it. It can
also serve to return a disposable object, such as when you create your own Rx opera-
tors that must return a disposable object from their Subscribe method, but you
don’t need any special disposing functionality. Here’s a simplified version of the
Observable.Return operator that uses Disposable.Empty:

public static IObservable<T> Return<T>(T value)
{

CompositeDisposable Combines multiple disposables into a single disposable
object that will dispose of all the disposables together.

CancellationDisposable Cancels a given CancellationTokenSource when dis-
posed of.

BooleanDisposable Sets a Boolean flag when disposed of. You can query
whether the BooleanDisposable type was disposed of
by using the IsDisposed property.

Table B.1 The tenets of the Rx Disposables library (continued)

Type/utility Description

293SerialDisposable
 return Observable.Create<T>(o =>
 {
 o.OnNext(value);
 o.OnCompleted();
 return Disposable.Empty;
 });
}

B.3 ContextDisposable
The ContextDisposable class wraps a disposable object and executes its Dispose
method on a specified SynchronizationContext. Executing the Dispose method
on a SynchronizationContext is important when the operation is tied to a specific
context (for example, when changing a UI element). This code creates a StartBusy
method to create a disposable that turns off the busy indicator on the UI’s Synchro-
nizationContext:

public IDisposable StartBusy()
{
 IsBusy = true;
 return new ContextDisposable(
 SynchronizationContext.Current,
 Disposable.Create(() => IsBusy = false));
}

B.4 ScheduledDisposable
The ScheduledDisposable class works similarly to ContextDisposable, but
instead of specifying a SynchronizationContext, you specify an IScheduler on
which the disposal invocation is scheduled. For example, when you use the
SubscribeOn operator on an observable, the returned disposable from your sub-
scription is wrapped with a ScheduledDisposable that uses the IScheduler pro-
vided. See the next section for an example.

B.5 SerialDisposable
The SerialDisposable class lets you wrap a replaceable disposable object. Upon
replacing the inner disposable, the previous one is automatically disposed of. Besides
that, SerialDisposable remembers whether it’s been disposed of, and if it was and
the inner disposable is replaced, then the inner disposable will also be disposed of. An
example is shown in a simplified version of the SubscribeOn operator. Because I can’t
predict exactly when the scheduler will execute work that I schedule, I’m creating a
SerialDisposable and set its inner disposable inside the scheduled operation:

public static IObservable<TSource> MySubscribeOn<TSource>(
 this IObservable<TSource> source,
 IScheduler scheduler)
{
 return Observable.Create<TSource>(observer =>
 {

The value has already been emitted so
the returned disposable has nothing it
can do. You return an empty one.

Wrap the disposable in a ContextDisposable
to make sure the change to the IsBusy
property will happen on the UI thread.

294 APPENDIX B The Rx Disposables library
 var d = new SerialDisposable();

 d.Disposable = scheduler.Schedule(() =>
 {
 d.Disposable = new ScheduledDisposable(scheduler,

 source.SubscribeSafe(observer));
 });

 return d;
 });
}

After the scheduled task executes the subscription to the source observable, the
underlying disposable of SerialDisposable is set to the subscription that’s wrapped
with a ScheduledDisposable, so its disposal takes place on the scheduler. If it's
already disposed of, the assigned disposable will also be disposed of.

B.6 RefCountDisposable
The RefCountDisposable class wraps a disposable object and disposes of it only
after all referencing disposables have been disposed of. A referencing disposable is
created by calling the method GetDisposable on the RefCountDisposable.

 Here’s an example that shows that the inner disposable is disposed of only after
the two referencing disposables are disposed of:

var inner = Disposable.Create(
 () => Console.WriteLine("Disposing inner-disposable"));
var refCountDisposable = new RefCountDisposable(inner);
var d1=refCountDisposable.GetDisposable();
var d2=refCountDisposable.GetDisposable();

refCountDisposable.Dispose();
Console.WriteLine("Disposing 1st");
d1.Dispose();
Console.WriteLine("Disposing 2nd");
d2.Dispose();

The output is as follows:

Disposing 1st
Disposing 2nd
Disposing inner-disposable

B.7 MultipleAssignmentDisposable
The MultiAssignmentDisposable class holds an underlying disposable object that
can be replaced at any time, but unlike the SerialDisposable, replacing the under-
lying disposable doesn’t automatically dispose of the previous one. But MultiAs-
signmentDisposable remembers whether the disposable has been disposed of. If
so, and the underlying disposable is replaced, MultiAssignmentDisposable will
automatically dispose of it.

295SingleAssignmentDisposable
B.8 CompositeDisposable
The CompositeDisposable class lets you group multiple disposable objects into
one, so that when the CompositeDisposable is disposed of, all its inner disposables
are disposed of as well.

var compositeDisposable = new CompositeDisposable(
 Disposable.Create(() => Console.WriteLine("1st disposed")),
 Disposable.Create(() => Console.WriteLine("2nd disposed")));

compositeDisposable.Dispose();

The same can also be written using the Add method:

var compositeDisposable = new CompositeDisposable();
compositeDisposable.Add(Disposable.Create(
 () => Console.WriteLine("1st disposed")));
compositeDisposable.Add(Disposable.Create(
 () => Console.WriteLine("2nd disposed")));

compositeDisposable.Dispose();

Often when I subscribe to multiple observables inside my class, I want to group all the
subscriptions together so I can dispose of them at the same time. To keep my observ-
able pipelines fluent, I created this handy extension method:

static CompositeDisposable AddToCompositeDisposable(this IDisposable @this,
 CompositeDisposable compositeDisposable)
{
 if (compositeDisposable==null)
 throw new ArgumentNullException(nameof(compositeDisposable));
 compositeDisposable.Add(@this);
 return compositeDisposable;
}

Then I can use it like this:

IObservable<string> observable = ...

observable.Where(x => x.Length%2 == 0)
 .Select(x => x.ToUpper())
 .Subscribe(x => Console.WriteLine(x))
 .AddToCompositeDisposable(compositeDisposable);

observable.Where(x => x.Length % 2 == 1)
 .Select(x => x.ToLower())
 .Subscribe(x => Console.WriteLine(x))
 .AddToCompositeDisposable(compositeDisposable);

B.9 SingleAssignmentDisposable
The SingleAssignmentDisposable class allows only a single assignment of its
underlying disposable object. If there’s an attempt to set the underlying disposable
object when it’s already set, an InvalidOperationException is thrown.

296 APPENDIX B The Rx Disposables library
B.10 CancellationDisposable
The CancellationDisposable class is an adapter between the IDisposable world
and the CancellationTokenSource world. When CancellationDisposable is
disposed of, the underlying CancellationTokenSource is canceled. This is used,
for example, in the Rx TaskPoolScheduler so the returned disposable from
Schedule will be tied to the CancellationToken that’s sent to the TaskSched-
uler. Here’s a simplified version of how it looks:

IDisposable Schedule<TState>(TState state,
 Func<IScheduler, TState, IDisposable> action)
{
 var d = new SerialDisposable();
 var cancelable = new CancellationDisposable();
 d.Disposable = cancelable;
 Task.Run(() =>
 {
 d.Disposable = action(this, state);
 }, cancelable.Token);
 return d;
}

The CancellationToken created by the underlying CancellationTokenSource of
the CancellationDisposable is sent to the TaskScheduler to prevent it from run-
ning the Task if the user disposed of the disposable that was returned from the method.

B.11 BooleanDisposable
The BooleanDisposable class holds a Boolean flag that lets you check whether it
has already been disposed of. For example:

var booleanDisposable = new BooleanDisposable();
Console.WriteLine("Before dispose, booleanDisposable.IsDisposed = {0}",
 booleanDisposable.IsDisposed);
 booleanDisposable.Dispose();
Console.WriteLine("After dispose, booleanDisposable.IsDisposed = {0}",
 booleanDisposable.IsDisposed);

The output is as follows:

Before dispose, booleanDisposable.IsDisposed = False
After dispose, booleanDisposable.IsDisposed = True

B.12 Summary
The Rx package provides not only Rx-specific types and utilities, but also a rich library
to ease your life when creating disposables.

 To create a disposable that executes a given code when disposed of, use the
Disposable.Create static method.

 To create an empty disposable, use the Disposable.Empty static property.
 To make sure that a disposable will be disposed of in a specific Synchroniza-

tionContext, wrap it with an instance of ContextDisposable.

297Summary
 To make sure that a disposable will be disposed of in a specific IScheduler,
wrap it with an instance of ScheduledDisposable.

 Use the SerialDisposable class when you need a disposable that holds an
underlying disposable resource that can be replaced, causing an automatic dis-
posal of the previous underlying disposable resource.

 When you need a disposable whose underlying disposable resource can be
replaced but without disposing the previous one, use the MultipleAssign-
mentDisposable class.

 To make sure that a disposable object will be disposed of only after all referenc-
ing disposables are disposed of, use the RefCountDisposable class.

 To combine multiple disposables into a single disposable object that will dis-
pose of all the disposables together, use the CompositeDisposable class.

 Use the SingleAssignmentDisposable when you need to make sure that
only a single underlying disposable will be set.

 Use the CancellationDisposable to cancel a CancellationTokenSource
upon disposal.

 Use the BooleanDisposable when you need to query a disposable about
whether it was disposed of.

appendix C
Testing Rx queries

and operators

One of the things that differentiates an amateur programmer from a professional is
the ability to test the code that was written and ensure that it does what it needs to
do. Writing unit tests allows you, the programmer, to validate that you created the
right solution, and be certain that your future development won’t affect or ruin the
code you previously wrote (known as regression). Rx queries and operators are no
different, and you should invest the time to test them as well. I’ll even go so far as to
say that by testing, you’ll get a better understanding of your craft and improve your
design. In this appendix, you’ll learn the utilities that the Rx library provides to
facilitate your testing and strategies you can use to improve your Rx code testability.

C.1 Testing Rx code
As you progress with your Rx work, at times you’ll find yourself writing the same
pattern of code over and over. When this happens, you should follow the DRY prin-
ciple and encapsulate the recurring pattern in a new operator. Of course, once you
create a new operator, you need to test it and be certain you implement it correctly.

 Imagine that you have a proximity sensor that emits notifications whenever a
near object is sensed. The proximity sensor is sensitive, and every time an object
gets closer, you get a burst of notifications, one after the other. Your application
wants to react to the sensor notifications, but it’s necessary to filter the bursts so
only a single emission will take place. At the same time, another application you
write needs to react to mouse moves, but you don’t want to react to each and every
one; you want to make the reaction smoother and react to a single emission from
the burst. This type of filtering is known as throttling. Rx even provides the Throt-
tle operator (discussed in chapter 10), but it emits only the last notification in a
298

299Testing Rx code
burst, whereas what you need here is emitting the first notification in the burst.
Because you need this kind of logic in more than one place, you create a new Rx oper-
ator called FilterBursts. This operator receives the expected size of a burst, and
emits back the first item of each burst:

public static class ObservableExtensions
{
 public static IObservable<T> FilterBursts<T>(
 this IObservable<T> src,
 int burstSize)
 {
 //The operator implementation
 }
}

NOTE This appendix focuses on testing, not implementing the Rx code, so
the operator implementation isn’t shown here. It’s available with the book
source code, and I encourage you to check it out, or even better, try to imple-
ment it yourself as an exercise.

Now that you have the operator implementation, you want to test it. The examples in
this chapter use xUnit (https://xunit.github.io/). Beside being a good testing frame-
work, it’s the one used by the Rx team and is also one of the few frameworks that sup-
ports .NET Core at the time of this writing. Feel free to use whatever testing framework
you like; the concepts I'll show are applicable to all frameworks.

 Before you can start writing the unit tests, you need to add the Rx testing library.
To install it, you need to add the NuGet package Microsoft.Reactive.Testing.

 Your first unit test, shown in the following listing, asserts that when applying the
FilterBursts operator with a burstSize of 5 to a source observable of 10 values,
the resulted observable will emit only the first and the sixth values.

using Microsoft.Reactive.Testing;

public class FilterBurstsTests
{
 [Fact]
 public static void FilterBursts_SourceOf10AndBurstSize5_TwoEmissions()
 {
 var sequenceSize = 10;
 var burstSize = 5;
 var expected = new[] { 0, 5 };
 var xs = Observable.Range(0, sequenceSize);

 xs.FilterBursts(burstSize)
 .AssertEqual(expected.ToObservable());
 }
}

Listing C.1 A basic unit test on an Rx operator

xUnit declaration
of a test method

Creates the source
observable that will
emit 10 values

https://xunit.github.io/

300 APPENDIX C Testing Rx queries and operators
AssertEqual is part of the Rx test library. It checks that the resulted observable emits
the same value as the observable it receives as an argument.

NOTE It’s a common convention to name the source observables in unit tests
as xs and ys.

The preceding unit test works as expected and is small and clear. So now you want to
add more test cases to make sure that your operator behaves as it should. For this, you
can use the xUnit theory1 feature that allows you to specify multiple inputs to the same
test method (also known as a data-driven test).

[Theory]
[InlineData(1, 1, new[] { 0 })]
[InlineData(5, 1, new[] { 0 })]
[InlineData(1, 5, new[] { 0, 1, 2, 3, 4 })]
[InlineData(5, 5, new[] { 0 })]
[InlineData(5, 8, new[] { 0, 5 })]
public void FilterBursts(int burstSize, int sequenceSize, int[] expected)
{
 var xs = Observable.Range(0, sequenceSize);
 xs.FilterBursts(burstSize)
 .AssertEqual(expected.ToObservable());
}

Running this test yields the results shown in figure C.1 in the Visual Studio Test
Explorer.

Figure C.1 The results of the xUnit data-driven test, as shown in Visual Studio Test Explorer

1 For more details, see http://mng.bz/Pe5x.

Listing C.2 A data-driven test of an Rx operator

Each InlineData attribute represents a
single test case. Set each InlineData with
a collection of values that will be the test
method arguments for this test case.

http://mng.bz/Pe5x

301Testing Rx code
So far you’ve managed to write simple tests the can validate the logical purpose of the
Rx operator. Next I’ll show you how to write tests that take the time dimension into
consideration, and you can assert that emissions were indeed what happened when
they should’ve happened.

C.1.1 Writing reactive tests with the TestScheduler

The tests you’ve written in the previous section work well, but they’re limited because
they don’t take the time dimension into consideration. When developing Rx opera-
tors and queries, you want to ensure that they behave correctly even if there’s a time
difference in certain positions in the observer-observable relationship, for example:

 When there’s a time pause between emissions
 When there’s a time difference between the observer subscription and observ-

able creation
 When the emission time the observer experiences is different from the time the

source observable has emitted its value
 Any other time-related case that could influence the Rx code

Writing tests that involve timing is a complex thing to do by yourself, but luckily,
Rx provides a way to virtualize time by using the TestScheduler and the
ReactiveTest base class.

 In chapter 10, I introduced schedulers and explained how they allow you to con-
trol and parameterize concurrency in the Rx pipeline. A scheduler is a unit that holds a
clock and an execution location (such as a thread or a task) and enables scheduling
the execution of work items to a specific time.

 The TestScheduler (part of the Microsoft.Reactive.Testing namespace)
is a special kind of scheduler that allows you to control its inner clock and configure
when events will occur. The TestScheduler provides a clock of a virtual time
counted by ticks, and ticks can be converted to (and from) DateTime and TimeSpan.

TIP Both TimeSpan and DateTime implement a property called Ticks that
returns the aforementioned value as ticks. You can convert ticks to TimeSpan
by using the static method TimeSpan.FromTicks, and you can create a
DateTime from ticks by using its dedicated constructor.

When you create the TestScheduler, it initializes its clock to the time 0. Until you
explicitly start the clock, the time is frozen.

 The following code shows an example of creating an observable that, after the
observer subscription, will emit the values 1 and 2 with a gap of 20 ticks between them
and then complete after another 20 ticks:

var testScheduler = new TestScheduler();

ITestableObservable<int> coldObservable =
testScheduler.CreateColdObservable<int>(

 new Recorded<Notification<int>>(20, Notification.CreateOnNext<int>(1)),
 new Recorded<Notification<int>>(40, Notification.CreateOnNext<int>(2)),

http://nsubstitute.github.io/
http://nsubstitute.github.io/
http://nsubstitute.github.io/

302 APPENDIX C Testing Rx queries and operators
 new Recorded<Notification<int>>(60,Notification.CreateOnCompleted<int>())
);

NOTE What is shown here is the full, long, and detailed way to create Test-
ableObservable. After you inherit from ReactiveTest, this task becomes
shorter, as you’ll see soon.

TestScheduler provides two methods for creating observables:

 CreateColdObservable—Creates an observable that emits its value relatively
to when each observer subscribes

 CreateHotObservable—Creates an observable that emits its values regardless
of the observer subscription time, and each emission is configured to the abso-
lute scheduler clock

Both methods receive a collection of Recorded<Notification<T>> objects that
specify the scheduling of the OnNext, OnError, and OnCompleted notifications you
want the observable to emit, and return an observable of type ITestableObserv-
able that lets you examine its messages and subscriptions so you can assert they’re
what you expect them to be.

 It’s important to remember that when you create a TestScheduler, its clock is
frozen. Until you start it or advance its time explicitly, no emissions will be made. After
you start the scheduler, it’ll execute every work item that was scheduled to it. After
each one, it’ll increment its inner clock to the scheduled time of the next work item.
After the last work item, the scheduler will increment its clock by one, and stop, so
you'll have to start it again after you schedule another work item.

 The Rx testing library Microsoft.Reactive.Testing includes the Reactive
Test base class that I recommend using whenever you write unit tests for Rx code.
The ReactiveTest base class includes a few factory methods that make the unit-test
code more fluent and concise so the observable you just created can now be declared,
as shown in the following listing.

public class CreatColdObservableTests : ReactiveTest
{

 [Fact]
 public void CreatColdObservable()
 {
 var testScheduler = new TestScheduler();
 ITestableObservable<int> coldObservable =
 testScheduler.CreateColdObservable<int>(

 OnNext(20, 1),
 OnNext(40, 2),
 OnCompleted<int>(60)
);

Listing C.3 An example of a reactive unit test with the ReactiveTest base class

Creates the Recorded<Notification<T>>
objects. They’re provided by the

ReactiveTest base class that
makes the configuration of

the observable emissions much
shorter and more concise.

303Testing Rx code

testabl

rec
ob

o
e
 // rest of unit-test
 }
}

C.1.2 Observing the TestableObservable

Now that you know how to create TestableObservables, you can continue to
embed them in your tests so you can observe the Rx query they’re part of and take the
time dimension into consideration.

 Continuing with the tests of the FilterBursts operator introduced earlier, you
can now test how time issues might affect it. The next test, shown in listing C.4, asserts
that when two bursts of three values happen one after the other with a gap of 100 ticks
between them, FilterBursts will emit the first value from each burst (a visualiza-
tion of this is shown in figure C.2).

[Fact]
public void FilterBursts_TwoBurstWithAGap_FirstInEachBurstEmitted()
{
 var scheduler = new TestScheduler();

 var xs = scheduler.CreateHotObservable(
 OnNext(250, 1),
 OnNext(275, 2),
 OnNext(300, 3),

 OnNext(400, -1),
 OnNext(401, -2),
 OnNext(405, -3),

 OnCompleted<int>(500)
);

 var testableObserver = scheduler.CreateObserver<int>();

 xs.FilterBursts(3)
 .Subscribe(testableObserver);

 scheduler.Start();

 testableObserver.Messages.AssertEqual(
 OnNext(250, 1),
 OnNext(400, -1),
 OnCompleted<int>(500));

Listing C.4 An example of a reactive unit test that embeds the time dimension

xs

.FilterBursts(3)

1 2 3

1

-1 -2 -3

-1

100 ticks

Figure C.2 Visualization of the expected
result of applying the FilterBursts
operator on an observable that emits two
bursts with a time gap between them

Creates an observable that will
emit two bursts, of values 1 to 3
and of –1 to –3, at the absolute
times specified by the ticks
parameter (the first parameter)
of each notification

Creates a
eObserver
capable of
ording its

servations

Code to test. Because the scheduler
hasn’t been started, its clock time is 0.

Starts the Scheduler s
the testableObservabl
will start emittingAsserts that the

notifications that
testableObserver
observed are the same

304 APPENDIX C Testing Rx queries and operators
 xs.Subscriptions.AssertEqual(
 Subscribe(0, 500));
}

In the preceding code, you use the TestableObserver class to assert that the
expected emission indeed took effect.

 TestableObserver is created by calling the TestScheduler.CreateObserver
method. This special observer records the notifications it observes and then exposes
them through its Messages property so you can later inspect them and assert they’re
correct.

 As mentioned before, when created, the TestScheduler is in a stopped state,
which means that the time is frozen. Calling the Start method causes the scheduler
to begin executing all the work items that were scheduled to it. In the preceding unit
test, you’ve created a hot observable with a set of scheduled emissions, so when the
scheduler was started, those emissions were emitted and the observer that was sub-
scribed observed them.

 At the end of the unit test, you’re asserting that (a) all the notifications were indeed
observed, and (b) the subscription lifetime of the single observer is as expected.

TIP The OnNext factory method has another overload that accepts a predi-
cate (of type Func<T,bool>) as a second parameter. This overload can be
used in the Assertion phase to check that the emitted value is what was
expected by using a logical condition.

Next, I want to take you through the fundamentals of testing operators that introduce
concurrency and use time as part of their logic.

C.1.3 Testing concurrent Rx code

The FilterBurst operator used in the previous sections, as useful as it may be, tack-
led the problem of bursts from an items-amount perspective. This perspective ignores
an important aspect of many Rx queries in which the time distance between items
might be relatively large and might affect the resulted emissions. Therefore, another
overload of this operator was created that deals with bursts of values over time (shown
in figure C.3). According to the approach that this operator takes, the concept of a
burst is defined as a sequence of values that has a maximal time difference between two adja-
cent values.

Asserts that only one observer was subscribed,
starting at time 0 and ending at time 500, the
time of the observable completion

xs

FilterBursts(TimeSpan.FromTicks(10))

1 2 3

1

-1 -2 -3

-1

8 ticks 4 ticks 188 ticks 1 tick 9 ticks

Figure C.3
The FilterBursts operator
emits the first value from
every burst of items

305Testing Rx code

ob
emi
va
of
re

whe
Here are the signatures of this overload:

public static class ObservableExtensions
{
 public static IObservable<T> FilterBursts<T>(
 this IObservable<T> src,
 TimeSpan maximalDistance)
 {
 //...
 }

 public static IObservable<T> FilterBursts<T>(
 this IObservable<T> src,
 TimeSpan maximalDistance,
 IScheduler scheduler)
 {
 //...
 }
}

As discussed in chapter 10, every operator that introduces concurrency as part of its
logic should accept a scheduler that’ll be used to control that concurrency. One of the
benefits of this rule is that it allows you to test the operator under different scenarios.

 Here’s how to write the test for the scenario shown in figure C.3.

[Fact]
public void FilterBurstsInColdObservable()
{
 var scheduler = new TestScheduler();

 var xs = scheduler.CreateColdObservable(
 OnNext(250, 1),
 OnNext(258, 2),
 OnNext(262, 3),

 OnNext(450, -1),
 OnNext(451, -2),
 OnNext(460, -3),

 OnCompleted<int>(500)
);

 var res = scheduler.Start(
 () => xs.FilterBursts(TimeSpan.FromTicks(10), scheduler));

 res.Messages.AssertEqual(
 OnNext(450, 1),
 OnNext(650, -1),
 OnCompleted<int>(700));

 xs.Subscriptions.AssertEqual(
 Subscribe(ReactiveTest.Subscribed, 700));
}

Listing C.5 An example of a reactive unit test on a time-based operator

Creates a cold
servable that’ll
t two bursts of
lues 1 to 3 and
–1 to –3 at the
lative times to
n the observer

subscribed

Orders the TestScheduler to
start its clock and monitor

the given observable by
creating a TestableObserver

that’ll be subscribed to it.

By default, the time in which the
TestableObserver is subscribed to

the observable you test is initialized
to the value specified in the

ReactiveTest.Subscribed constant.

306 APPENDIX C Testing Rx queries and operators
Reactive tests tend to have a repetitive structure: you create a testable observable and a
testable observer, subscribe the observer to the observable (not necessarily immedi-
ately), start the scheduler, and then assert the recorded notifications. Because this
structure is repeated in many tests, the TestScheduler.Start method has over-
loads that encapsulate this structure.

 In the preceding unit test, you use this kind of overload that has the following sig-
nature:

ITestableObserver<T> Start<T>(
 Func<IObservable<T>> create,
 long created,
 long subscribed,
 long disposed)

By default, the time at which the observer is subscribed to the observable is 200 (con-
figured by the ReactiveTest.Subscribed constant). That’s why I assert that the
first emitted value observed by the TestableObserver was observed at the time 450.

C.1.4 Finer control on the TestScheduler

Some tests require you to have finer control over the TestScheduler clock. Usually,
in these cases, you need to break the test into two or more phases. Table C.1 lists the
most used methods and members for controlling the scheduler.

Table C.1 The most used TestScheduler members (partial list)

Method/member Description

Start Starts the scheduler clock. Each work item that was scheduled will be
executed, and the clock will increment its time after each one.

AdvanceTo(long time) Advances the scheduler clock to the specified absolute time. Every work
item that was scheduled to a point between the current time and given
time will be executed.

AdvanceBy(long time) Advances the scheduler clock by the specified relative time. Every work
item that was scheduled to a point between the current time and given
time will be executed.

Sleep(long time) Advances the scheduler by the specified relative time without executing
the queued work items that were scheduled to that time frame.

Stop Stops the scheduler.

Clock Gets the current clock time (as ticks).

IsEnabled Gets whether the scheduler is enabled to run work.

Creates a TestableObserver and
subscribes it to the observable returned

by the create factory method A factory method that returns
the observable query you
want to run under test

The time at which the
scheduler should execute the
creation of the observableThe time at which the

scheduler should subscribe
the TestableObserver to

the observable
The time at which the scheduler should
dispose of the observer’s subscription

307Testing Rx queries

Slow
that
som
C.2 Testing Rx queries
Everything you’ve learned in the previous sections about testing Rx operators is appli-
cable to testing other Rx constructs and queries. The only difference is the lack of
accessibility you might have to the Rx code when you write the test for the class that
contains it. This lack of accessibility is usually a good thing (because you don’t want
the test to rely on implementation details), but when you use time-based operators,
this can cause the testing to be hard or even impossible.

C.2.1 Injecting schedulers

Consider this example: you’ve created a class named MachineMonitor that monitors
a manufacturing machine that produces a lot of heat during its work. The monitor
uses a proximity sensor and temperature sensor, so that if someone is getting near the
machine while it’s hot, an alert is produced.

 The rate of notifications produced by the proximity sensor and the temperature
sensor is high, and therefore the MachineMonitor class emits many alerts. To slow
the number of alerts produced, you add the FilterBursts operator that was dis-
cussed earlier in this chapter. This time, FilterBursts was extended so that it won’t
filter emissions from the burst forever. Instead, a maximum burst duration is provided
to the operator, such that if a burst is longer than the maximum burst duration, the
burst is considered closed and the emission isn’t filtered.

 The initial monitor class basic structure is shown here.

public class MachineMonitor
{

 public MachineMonitor(
 ITemperatureSensor temperatureSensor,
 IProximitySensor proximitySensor)
 {
 _temperatureSensor = temperatureSensor;
 _proximitySensor = proximitySensor;
 }

 public TimeSpan MinAlertPause { get; set; }
 public TimeSpan MaxAlertBurstTime { get; set; }

 public IObservable<Alert> ObserveAlerts()
 {
 return Observable.Defer(() =>
 {
 IObservable<Alert> alerts = //Rx query that emits alerts

 return alerts.FilterBursts(MinAlertPause, MaxAlertBurstTime);
 });
 }
}

Listing C.6 Initial implementation of the MachineMonitor class

Maximal amount of time you
consider a sequence of
notifications as a burst. After
this time, emissions are
considered as a new burst.

Amount of time you
allow between two
consecutive alerts

s down the alerts
are emitted when
eone is close to a

hot machine

308 APPENDIX C Testing Rx queries and operators
NOTE The focus of this appendix is about testing and not the implementation
of the Rx code, so the full implementation isn’t shown here. It’s available with
the book source code, and I encourage you to check it out, or even better,
implement it yourself as an exercise.

Looking at this code might make you wonder how you can test it for various scenarios.
How can you make sure that if notifications are produced over a long period of time,
they won't be filtered?

 The answer is, you can’t, at least not the way it’s written now. MachineMonitor
isn’t testable. To make this class testable, you need a way to control the time from the
outside and provide MachineMonitor the scheduler you want it to use in its queries.

 The pattern often used to inject schedulers wraps them inside a class that provides
the schedulers you need to use in your system. Then, you register this class in your IoC
container.2 This is the interface that I usually use in my projects:

public interface IConcurrencyProvider
{
 IScheduler TimeBasedOperations { get; }
 IScheduler Task { get; }
 IScheduler Thread { get; }
 IScheduler Dispatcher { get; }
}

Note that the members of this interface might be different based on the platform or
type of application you write (for example, Dispatcher isn’t relevant to platforms
that don’t support it). The implementation for this interface is also easy:

class ConcurrencyProvider : IConcurrencyProvider
{
 public ConcurrencyProvider()
 {
 TimeBasedOperations = DefaultScheduler.Instance;
 Task = TaskPoolScheduler.Default;
 Thread = NewThreadScheduler.Default;
 Dispatcher = DispatcherScheduler.Current;
 }

 public IScheduler TimeBasedOperations { get; }
 public IScheduler Task { get; }
 public IScheduler Thread { get; }
 public IScheduler Dispatcher { get; }
}

Now that you have the IConcurrencyProvider in place, you can change the
MachineMonitor implementation to make it testable by injecting the IConcurrency-
Provider through its constructor:

2 An inversion of control container (also called a dependency injection, or DI container) is a class that’s in
charge of creating other objects based on the configuration you specify, such as the implementation that’s
registered for an interface. Read more at http://martinfowler.com/articles/injection.html.

http://martinfowler.com/articles/injection.html

309Testing Rx queries

Config
concu
mock
TestSc
each o
public MachineMonitor(
 IConcurrencyProvider concurrencyProvider,
 ITemperatureSensor temperatureSensor,
 IProximitySensor proximitySensor)
{
 _concurrencyProvider = concurrencyProvider;
 _temperatureSensor = temperatureSensor;
 _proximitySensor = proximitySensor;
}

C.2.2 Injecting the TestScheduler

In this implementation of the MachineMonitor class, you set the value of the Max-
AlertBurstTime property to 5 seconds and the value of the MinAlertPause prop-
erty to 1 second. If two notifications are produced in less than a second from one
another, you discard the latter one, but if more notifications are produced close to
each other and 5 seconds has passed, then another notification will be emitted.

 Listing C.7 shows an example of a unit test I’ve written to validate that if a burst is
longer than 5 seconds and the temperature is high (higher than 70 degrees), two emis-
sions are produced. In my test, I use NSubstitute (http://nsubstitute.github.io/) as
a mocking framework and set the mock for the IConcurrencyProvider to return the
TestScheduler from every member of the concurrency provider. In your tests, you
can use whatever mocking framework you like (or none if you prefer).

NOTE In my implementation, I consider an emitted temperature to be valid
until another temperature value is emitted.

[Fact]
public void BurstOverFiveSeconds_RiskyTemperature_TwoAlerts()
{
 var testScheduler = new TestScheduler();
 var oneSecond = TimeSpan.TicksPerSecond;

 var temperatures = testScheduler.CreateHotObservable<double>(
 OnNext(310, 500.0),
);
 var proximities = testScheduler.CreateHotObservable<Unit>(
 OnNext(100, Unit.Default),
 OnNext(1 * oneSecond-1, Unit.Default),
 OnNext(2 * oneSecond - 1, Unit.Default),
 OnNext(3 * oneSecond - 1, Unit.Default),
 OnNext(4 * oneSecond - 1, Unit.Default),
 OnNext(5 * oneSecond-1, Unit.Default),
 OnNext(6 * oneSecond - 1, Unit.Default)

);
 var concurrencyProvider = Substitute.For<IConcurrencyProvider>();
 concurrencyProvider.ReturnsForAll<IScheduler>(testScheduler);

Listing C.7 Validating that 2 alerts are produced if the burst is longer than 5 seconds

An emission of a high
temperature; should

result in an alert

A sequence of proximity
notifications that are close to
each other, but over a period of
time longer than 5 seconds. This
should result in two alerts.

ures the
rrency-provider
 to return the
heduler from
f its members

http://nsubstitute.github.io/

310 APPENDIX C Testing Rx queries and operators

T
to
th

A

w

 var tempSensor = Substitute.For<ITemperatureSensor>();
 tempSensor.Readings.Returns(temperatures);
 var proxSensor = Substitute.For<IProximitySensor>();
 proxSensor.Readings.Returns(proximities);

 var monitor=new MachineMonitor(concurrencyProvider, tempSensor,
proxSensor);

 var res = testScheduler.Start(() => monitor.ObserveAlerts(),
 0,
 0,
 long.MaxValue);

 res.Messages.AssertEqual(
 OnNext(310, (Alert a) => a.Time.Ticks == 310),
 OnNext(6*oneSecond - 1, (Alert a) => true)
);
}

As you can see, even though this is a complex scenario to test (which makes the test
itself a bit complex), the test is still readable, and creating it was relatively easy thanks
to the utilites provided by Rx.

C.3 Summary
 Testing Rx code is important, just like testing any other code. However, without

the proper tools, testing Rx code can be cumbersome, which naturally results in
fewer tests and in lower quality. Luckily, Rx provides excellent utilities to tackle
this problem.

 To get access to Rx testing utilities, you need to add the Microsoft.Reactive
.Testing NuGet package.

 Test classes that test Rx code should inherit from the ReactiveTest base class
to simplify the test code.

 TestScheduler is a special scheduler that allows you to control its inner clock.
 For a cold observable with a predefined set of values that will be emitted rela-

tively to the observer subscription, use the TestScheduler.CreateCold-
Observable method.

 For a hot observable with a predefined set of values that will be emitted at an
absolute time, use the TestScheduler.CreateHotObservable method.

 To create an observer that records the notifications it observes and the time
they were observed, use TestScheduler.CreateObserver.

 The AssertEqual extension method allows you to assert that the expected
emissions were observed by the test observer.

 Use the TestScheduler.Start method to start its clock.

Creates the mock of the temperature
sensor and configures it to return the test
observable with the temperature emissions

Creates the mock of the proximity sensor
and configures it to return the test
observable with the proximity emissions

Configures
TestScheduler to start
the test at time 0

Configures
estScheduler
 subscribe to
e observable

at time 0

Configures TestScheduler to
dispose of the subscription
at the latest time possible

Asserts the first alert was
emitted when the emitted
alert was produced

sserts that a
second alert
as produced

311Summary
 Use the TestScheduler.Start(Func<IObservable<T>>) method over-
load to simplify the test. It’ll create the observable with the provided factory
method, subscribe to it, and return the collection of emissions that were
observed.

 Make your Rx code testable by providing the schedulers that’ll be used through
dependency injection.

312 APPENDIX C Testing Rx queries and operators

index
A

absolute time 132
Action delegate type 64–66
Add method 158
addHandler parameter 45, 100
Aggregate function, writing aggregation logic

with 201–204
All operator 82
Amb operator 213
anonymous methods

closures (captured variables) and 62–63
overview 61

AnonymousObservable 97
Any operator 82
APM (Asynchronous Programming Model)

pattern 284
AsDisposable method 274
AsObservable operator 168
AssertEqual 300
async-await pattern

overview 116, 287–290
using in observable creation 121–122

asynchronicity
overview 20, 23–24
resource use and 21–23

asynchronous approach 282
asynchronous code 281–290

creating tasks 288–290
simplifying with async-await 287–288
TAP pattern 284–287
writing 281–282

asynchronous execution 22
asynchronous message passing 19
asynchronous observable, not passing 139–140
AsyncMethodCaller method 288

AsyncSubject 163–164
AutoDetachObserver wrapper 95
Average operator 198–199
awaiter 124, 287

B

backpressure 276–280
mitigating 278–280

lossless approach 279–280
lossy approach 278–279

observables of different rates 276–278
backstack 272
BehaviorSubject, preserving latest state with

165–166
BooleanDisposable class 292, 296–297
Buffer method 47
buffering breaks 221–222

C

C# programming language 54–86
advantages of 55–59

concise code 59
declarative programming style 55–56
first-class functions 58–59
immutability 56–58

first-class functions 58–59, 66–70
using Action 64–66
using anonymous methods 61–63
using delegates 60–61
using Func 64–66, 68–70
using lambda expressions 63–64

higher-order functions 59, 66–70
using Action 64–66
using anonymous methods 61–63
313

INDEX314
C# programming language (continued)
using delegates 60–61
using Func 64–66, 68–70
using lambda expressions 63–64

method chaining
fluent interfaces and 72–74
with extension methods 70–75

querying collections with LINQ 75–86
anonymous types 79–80
deferred execution 83–86
joins 78–79
LINQ operators 81
nested queries 78–79
overview 77–78

caching sequence, with ReplaySubject 166–167
CancellationDisposable class 119, 292, 296
CancellationToken 119, 140
CancellationTokenSource 119, 296
captured variables 62–63
catch block 139–140
Catch operator 262–263, 279
CEP (complex event processing) 9
ChatClient class 94, 97
ChatRoom 190
Click event 100–101
client-side technology 9
Closed event 94
closures 62–63
CLR (Common Language Runtime) 55
code, organizing 52
cold observable 150, 158, 169–183
CollectionExtensions 71
collections 15
combinators 4
CombineLatest operator 207, 229, 279
combining observables 206–214

combining latest emitted values 207–208
concatenating observables 208–209
dynamic concatenating and merging 210–212
merging observables 209–210
pairing items from observables (zipping)

206–207
switching to next observable 212–214

combining operations 4
Common Language Runtime. See CLR
complex event processing. See CEP
composability, in .NET events 38–39
CompositeDisposable class 292, 295
composition 38
Concat operator 106, 123, 128–130, 134, 208–209,

229, 263
concatenating observables 208–212
concurrency

immutability and 57–58
in .NET events 33–35

in event-processing flow 50
parameterizing 235–237

ConcurrentDictionary 34
Connect method 94, 99, 174, 179
ConnectableObservable wrapper

overview 174–175
performing automatic disconnection 180–181
reconnecting 179–180

Contains operator 82
ContextDisposable class 291, 293
ContinueWith method 286
conversion function 103
correlation group 215
Count operator 81–198
CPU-based operation 22
Create method 97, 118, 120, 122
CreateColdObservable method 302
CreateHotObservable method 302
CurrentThreadScheduler 235–236, 238

D

data at rest 24
data in motion 25
data transfer object. See DTO
data-driven test 300
DateTime property 79
DateTimeOffset 132
DateTimeOffset.UtcNow 233
DDoS (distributed denial of service) 18
declarative programming 55–56
declarative query syntax 46
Defer operator 98, 114, 121, 179
DeferAsync 121
deferred execution 83–86
Delay operator 209–210, 213, 245–246, 258
DelaySubscription operator 143–145
delegates 59–61
dictionaries, converting observable to 108–109
Disposable.Create method 291–292
Disposable.Empty property 92, 291–292
disposables library, Rx 291–297

BooleanDisposable class 296–297
CancellationDisposable class 296
CompositeDisposable class 295
ContextDisposable class 293
Disposable.Create method 292
Disposable.Empty property 292
MultipleAssignmentDisposable class 294
RefCountDisposable class 294
ScheduledDisposable class 293
SerialDisposable class 293–294
SingleAssignmentDisposable class 295

Dispose method 10, 92, 236, 251–252, 266, 268,
271, 275, 292

INDEX 315
distance variable 7
Distinct operator 82, 193–194, 196, 204
DistinctUntilChanged operator 195–196, 204
distributed denial of service. See DDoS
divide-and-conquer approach 221
Do operator 152
dotnet restore command 44
drasticChanges variable 48–49
dropped values 208
DRY (Don’t Repeat Yourself) principle 98
DSL (domain-specific language) 12
DSP (digital signal processing) 249
DTO (data transfer object) 185
duality principle 16
duration selector functions 216
dynamic concatenating and merging 210–212
dynamic windows 228–230

E

EAP (Event-Based Asynchronous Pattern) 284
elasticity, in reactive programming 18–19
electric eel logo 8
elementSelector 215
empty observables, creating 113–114
empty parentheses 104
enumerables 15

converting observables to 107
converting to observables 105–107
flattening 187–189
observables 110

converting observable to dictionary 108–109
converting observable to lookup 109–110

EqualityComparer 194, 196
Error event 94
error handling and recovery 259–280

backpressure 276–280
mitigating 278–280
observables of different rates 276–278

controlling lifetime of resources 265–276
dangling observers 270–276
deterministic finalization 269–270
disposing in deterministic way 266–269

reacting to errors 260–265
catching errors 262–264
errors from observable side 260–262
retrying to subscribe in case of error 264–265

error hiding 139
event handler 24
event source 24
Event-Based Asynchronous Pattern. See EAP
event-processing flow, writing 44, 50–53

cleaning resources 49–50
dealing with concurrency 50
finding difference between ticks 46–49

grouping stocks by symbol 45–46
keeping code close 52
performing synchronization 52–53
providing improved resource handling 52
subscribing to event 44–45
using composable operators 52

EventArgs class
overview 100
unwrapping 45

eventargs type 101
EventHandler event 100
EventLoopScheduler 237, 239–240, 252
EventPattern, creating observables that conform

to 99–101
events 24–26

creating observables from 99–104
creating observables that conform to

EventPattern 99–101
events that aren’t following event pattern 102
events that have no arguments 104
events with multiple parameters 102–103

creating with observables 99
creating observables with

Observable.Create 96–97
deferring observable creation 97–99
implementing IObservable interface 90–93
ObservableBase 93–96
problem with handcrafted observables 93

subscribing to 44–45
Except operator 82
exception swallowing 139
extension methods

extending type behavior with 70–72
with method chaining 70–75

Extensions 71

F

fake observable 116
Filter operator 42, 193
FilterBursts operator 299, 303–304, 307
filtering observables 192–196

creating distinct sequence 193–194
removing duplicate contiguous values 195–196
with Where operator 192–193

filters 66
Finally operator 269–270, 280
First operator 81
first-class functions 58–59, 66–70

using Action 64–66
using anonymous methods 61–63
using delegates 60–61
using Func 64–66, 68–70
using lambda expressions 63–64

FirstOrDefault operator 82

INDEX316
flat stream, joining observables to 215–218
FlatMap operator 42
flattening

enumerables 187–189
messages 190
observables 190–192

fluent interfaces, method chaining and 72–74
FluentAssertions library 75
ForEach method 66, 70–71
from statements 189
FromEvent method 99, 102
FromEventPattern method 44–45, 99–100, 102
FRP (functional reactive programming) 3
Func delegate type

as factory 68–70
overview 64–66

functional programming 57–58

G

gate 257
GC (garbage collection) 261
Generate method 117, 119
GeneratePrimes method 119–120
GetAwaiter method 287
GetDiscounts method 24
GetEnumerator parameter 16
GetPageAsync method 288
GoF (Gang of Four) 12
Google Finance 28
GroupBy operator 82, 214, 229
grouping elements from observable 214–215
GroupJoin operator

overview 82, 219
with query syntax 220–221

groups, joining observables into 219–221

H

heating observables 171–174
higher-order functions 58–59, 61–62, 66–70

using Action 64–66
using anonymous methods 61–63
using delegates 60–61
using Func 64–66, 68–70
using lambda expressions 63–64

hopping windows 222, 224
hot observable 157–158, 170–173, 177, 181–183

I

I/O-based operation 22
IAsyncAction 42
IAsyncOperationWithProgress 42
IAsyncResult object 284

IComparer interface 67
IConcurrencyProvider 308–309
IConnectableObservable interface 174–175
IDisposable interface 10, 31, 49, 92, 137, 266
IEnumerable interface 15–16, 71, 76, 81
Immediate Message 248
ImmediateScheduler 238–239
immutability

concurrency and 57–58
side effects and 56–58

imperative style 55
Intersect operator 82
Interval operator 130–132, 134, 232, 235–236
IObservable interface

implementing 90–93
overview 10, 26, 44, 158

IObserver interface 10, 26, 141, 158
IQueryable 76
IScheduler interface 232, 235, 237, 257
ISchedulerLongRunning 235
ISchedulerPeriodic 235
IsCompleted property 284
IsNullOrEmpty 72
IsPrimeAsync method 125, 127–128
IStrategy interface 67
ISubject interface 159

J

Join operator 82, 216, 229
joining observables 215–221

into groups 219–221
to flat stream 215–218

joins 78–79

K

keySelector function 109, 196, 200

L

lambda expressions 63–64
Lazy class 69
lazy loading 68
Let keyword 47
LINQ (Language Integrated Query)

operators 81
querying collections with 75–86

anonymous types 79–80
deferred execution 83–86
joins 78–79
nested queries 78–79
operators 81
overview 77–78

Log operator 152, 191

INDEX 317
LogWithThread operator 253–255
LOH (Large Object Heap) 261

M

magic strings 101
Map operator 42
mapping 185–187
marble diagrams 14–15
Max operator 81–200
Merge operator 162–163, 209–210, 229
merging observables 209–210
message-driven approach, with reactive

programming 19–20
method chaining

fluent interfaces and 72–74
with extension methods 70–75

creating language 74–75
extending type behavior 70–72

Microsoft Band 166
Microsoft.Reactive.Testing package 42, 299, 301
Min operator 81–200
MoveNext method 84
mscorlib assembly 65
MSTest 75
Multicast operator 178–179
multicasting with subjects 158–169

best practices and guidelines 169
caching sequence with ReplaySubject 166–167
hiding subjects 167–169
preserving latest state with

BehaviorSubject 165–166
representing asynchronous computation with

AsyncSubject 163–164
simple broadcasting with Subject 160–163

classic misuse of subject 162–163
multiple source, but one completion 161–162

MultipleAssignmentDisposable 291, 294

N

named method 61
nested queries 78–79
.NET asynchronous types, creating observables

from 115–134
bridging .NET asynchronous types with Rx

116–130
changing synchronous method to

asynchronous 117
controlling results order 128–130
converting tasks to observables 122–124
creating primes observable 117–121
running asynchronous code as part of

pipeline 124–128

using async-await in observable creation
121–122

creating observables of periodic behavior
130–134
creating observable timer 131–132
emitting values in time intervals 130–131
scheduling emission with timer 132–134

.NET events 28–39
composability 38–39
concurrency 33–35
repeatability 38–39
resource handling 37
scattered code 36–37
synchronization 39

never-ending observables, creating 113
NewThreadScheduler 233, 237–238
nonoverlapping windows 228
NSubstitute 309
NuGet

installing from 42–43
overview 40

O

observable emissions, synchronizing 250–258
changing observations execution context

250–251
changing subscription/unsubscription execu-

tion context 251–253
synchronizing notifications 255–258
using SubscribeOn and ObserveOn

together 253–255
observable factory 267
observable sequences 8, 10, 14–15, 26
observable temperature

cold observables 171
ConnectableObservable 174–175, 179–181

performing automatic disconnection 180–181
reconnecting 179–180

cooling hot observable to allow replaying
181–183

heating observables 171–174
hot observables 171
overview 169–171

Observable.Create method 96–97
Observable.Defer operator 98
Observable.Empty operator 113
Observable.Generate operator 110
Observable.Never operator 113
Observable.Range operator 111
Observable.Return operator 112, 292
Observable.Throw operator 113
Observable.Using operator 112
ObservableBase class 93–96
ObservableConnection class 94, 106

INDEX318
ObservableExtensions class 137
observableFactory function 98
observables 10–11, 89–114

aggregating 196–204
basic aggregation operators 196–200
finding maximum and minimum items by

condition 200–201
writing aggregation logic with Aggregate and

Scan 201–204
combining 206–214

combining latest emitted values 207–208
concatenating observables 208–212
merging observables 209–210
pairing items from observables

(zipping) 206–207
switching to next observable 212–214

communication between observer and 136–137
controlling lifetime of relationship with

observers 142–153
adding side effects in observable

pipeline 151–153
delaying subscription 143–145
discarding items when another observable

emits 145–147
resubscribing 150–151
skipping notifications 147–148
stopping emitting notifications at scheduled

time 145
taking or stopping when condition is

met 148–150
converting enumerables to 105–107
converting to enumerables 107–110

converting observable to dictionary 108–109
converting observable to lookup 109–110

creating from events 99–104
creating observables that conform to

EventPattern 99–101
events that aren’t following event pattern 102
events that have no arguments 104
events with multiple parameters 102–103

creating streams of data and events with 90–99
creating observables with

Observable.Create 96–97
deferring observable creation 97–99
implementing IObservable interface 90–93
ObservableBase 93–96
problem with handcrafted observables 93

filtering 192–196
creating distinct sequence 193–194
removing duplicate contiguous values

195–196
with Where operator 192–193

flattening 190–192
joining 215–221

into groups 219–221

to flat stream 215–218
published, reusing to create new

observable 176–177
using Rx creational operators 110–114

generating observable loop 110–111
primitive observables 112–114
reading file 111–112
See also observable temperature

ObserveOn, using with SubscribeOn 253–255
ObserveOnDispatcher operator 131
Observer pattern 11–12
observers

controlling lifetime of relationship with
observables 142–153
delaying subscription 143–145
discarding items when another observable

emits 145–147
stopping emitting notifications at scheduled

time 145
creating 136–142

creating observer instance 141–142
creating observers without leaving

pipeline 137–139
not passing OnError and asynchronous

observables 139–140
observable-observer communication 136–137
replacing subscription disposal with

cancellation 140–141
OCP (Open Close Principle) 66
OfType operator 82
OnComplete method 105
OnCompleted method 95, 137–138, 161, 163
OnError method 137–140, 260–261
OnError observable, not passing 139–140
OnErrorResumeNext operator 263–264, 280
OnKeyPressed event 9
OnMouseMove event 9
OnNext method 45, 90, 93, 101, 103, 125, 137–138,

236, 273
operators

composable nature of 13–14
using composable 52

operators library 8
OrderBy operator 82
OrderByDescending operator 82
OutOfMemoryException 211, 261–262

P

Package Manager console 42
packages, selecting 39–42
pairing items from observables 206–207
parameterizing concurrency 235–237
PCLs (portable class libraries) 40
period parameter 130

INDEX 319
periodic behavior, creating observables of 130–134
creating observable timer 131–132
emitting values in time intervals 130–131
scheduling emission with timer 132–134

PlatformServices assembly 40–41
predicates 66
preserving latest state, with BehaviorSubject

165–166
publishing 175–178

Publish operator 175, 177–178
PublishLast operator 177–178
reusing published observable to create new

observable 176–177
simple publish 175–176

pull model 10, 15–17
push model 10, 15–17

Q

query expression syntax 78
query operators 184–204

aggregating observables 196–204
basic aggregation operators 196–200
finding maximum and minimum items by

condition 200–201
writing aggregation logic with Aggregate and

Scan 201–204
filtering observables 192–196

creating distinct sequence 193–194
removing duplicate contiguous values 195–196
with Where operator 192–193

flattening enumerables 187–189
flattening observables 190–192
mapping and 185–187

query syntax 46

R

RanToCompletion 286
Reactive Draw application 153
Reactive Extensions. See Rx
Reactive Manifesto 17–20
reactive programming 3–7

asynchronicity and 20, 23–24
elasticity 18–19
events 24–26
Reactive Manifesto 17–20
reactiveness in applications 6–7
resiliency 18
responsiveness 17–18
Rx library and 20
streams 24–26
with message-driven approach 19–20

Reactive Streams 278
ReactiveTest class 301–302

Received event 94
RefCount operator 180, 183
RefCountDisposable class 291, 294
relative time 132
Remove method 158
removeHandler parameter 45, 100
Repeat operator 93, 150, 236
repeatability, in .NET events 38–39
Replay operator 181–183
ReplaySubject, caching sequence with 166–167
resiliency, in reactive programming 18
resource factory 267
resource handling

in .NET events 37
providing 52

resources, cleaning 49–50
responsiveness, in reactive programming 17–18
resultSelector function 189, 191, 202–204
Retry operator 264–265, 280
return statement 64
RoutedEventArgs 101
RoutedEventHandler 100–101
Rx (Reactive Extensions) 231–258

bridging .NET asynchronous types with 116–130
changing synchronous method to

asynchronous 117
controlling results order 128–130
converting tasks to observables 122–124
creating primes observable 117–121
running asynchronous code as part of

pipeline 124–128
using async-await in observable creation

121–122
disposables library 291–297

BooleanDisposable class 296–297
CancellationDisposable class 296
CompositeDisposable class 295
ContextDisposable class 293
Disposable.Create method 292
Disposable.Empty property 292
MultipleAssignmentDisposable class 294
RefCountDisposable class 294
ScheduledDisposable class 293
SerialDisposable class 293–294
SingleAssignmentDisposable class 295

history of 9
overview 7–17
schedulers 231–241

defining 232–235
parameterizing concurrency 235–237
types of 237–241

synchronizing observable emissions 250–258
changing observations execution

context 250–251

INDEX320
Rx (Reactive Extensions) (continued)
changing subscription/unsubscription execu-

tion context 251–253
synchronizing notifications 255–258
using SubscribeOn and ObserveOn

together 253–255
testing code 298–306

finer control on TestScheduler 306
TestableObservable 303–304
testing concurrent code 304–306
writing reactive tests with TestScheduler

301–302
testing queries 307–311

injecting schedulers 307–308
injecting TestScheduler 309–311

time-based operators 241–250
adding time interval between

notifications 243–244
adding time-out policy 244–245
adding timestamp to notification 242–243
delaying notifications 245–247
sampling observable in intervals 249–250
throttling notifications 247–249

using Rx creational operators 110–114
generating observable loop 110–111
primitive observables 112–114
reading file 111–112

Rx library 20
rxHandler parameter 103
RxJava port 9

S

Scan function, writing aggregation logic with
201–204

Scan operator 201, 204, 227, 279
scattered code, in .NET events 36–37
Schedule method 234, 238–239
ScheduledDisposable class 291, 293
ScheduleLongRunning method 235
SchedulePeriodic method 235
schedulers 8, 231–241

defining 232–235
parameterizing concurrency 235–237
types of 237–241

CurrentThreadScheduler 238
EventLoopScheduler 239–240
ImmediateScheduler 238–239
NewThreadScheduler 237
scheduling on SynchronizationContext

240–241
TaskPoolScheduler 238
ThreadPoolScheduler 237–238

Select operator 45, 53, 82, 111, 185–186, 203

SelectMany operator 82, 123–128, 134, 187–192,
203–204

selector function 186, 188, 194, 197–199
SerialDisposable class 291, 293–294
server-side technology 9
Sexton, Dave 169
Shoppy application example 6–7, 13
Should method 75
side effects, immutability and 56–58
SignalR library 95
Single operator 82
single-item observables, creating 112–113
SingleAssignmentDisposable class 295
SingleOrDefault operator 82
Skip operator 82
SkipUntil operator 147, 154
SkipWhile operator 149
SLA (service-level agreement) 245
sliding windows 222
Sort method 67
SortedSet 203
source parameter 129
StartBusy method 293
StartWith operator 107, 208
StockMonitor class 29–31, 33, 43
stocks, grouping by symbol 45–46
StockTick class 29, 44
StockTicker class 29, 32
streams 24–26
streams of data, creating with observables

creating observables with
Observable.Create 96–97

deferring observable creation 97–99
implementing IObservable interface 90–93
ObservableBase 93–96
problem with handcrafted observables 93

string property 79
StringAssertion 75
StringBuilder 73
StringExtensions 71
subject 158–159
Subject broadcaster 160–163

classic misuse of subject 162–163
multiple source, but one completion 161–162

Subscribe method 10, 16, 44, 90–92, 95–97,
137–143, 251–252

subscribeAsync function 120–121
SubscribeConsole method 92
SubscribeCore method 95
SubscribeOn operator

overview 252, 258, 293
using with ObserveOn 253–255

subscriptionDelay 246
Sum operator 197
Switch operator 212–213, 229

INDEX 321
synchronization
in .NET events 39
performing 52–53

SynchronizationContext 240–241, 251, 293
SynchronizationContextScheduler 240
Synchronize operator 50, 52, 256–258
synchronous approach 282
synchronous execution 21
System namespace 10, 65, 69, 137
System.Collections.Generic namespace 67
System.Reactive package 41–42, 141
System.Reactive.Concurrency namespace 237
System.Reactive.Core package 41, 291
System.Reactive.Disposables namespace 291
System.Reactive.Interfaces package 41
System.Reactive.Linq package 41
System.Reactive.Observable.Aliases package 42,

185
System.Reactive.PlatformServices package 41
System.Reactive.Providers package 41
System.Reactive.Runtime.Remoting package 41
System.Reactive.Subjects namespace 159
System.Reactive.Windows.Forms package 42
System.Reactive.Windows.Threading package 41
System.Reactive.WindowsRuntime package 42
System.Text.StringBuilder class 72
System.Threading.ThreadPool class 283

T

Take operator 82
TakeUntil operator

overview 145, 154, 156
using observables as external triggers for

146–147
TakeWhile operator 149
TAP (task-based asynchronous pattern) 116,

284–287
Task class 22
Task.FromAsync method 284
Task.Run method 289
Task.WaitAll method 23
TaskPoolScheduler 238, 296
TaskScheduler.UnobservedTaskException

event 140
TestableObservable 303–304
tester 61
testing

Rx code 298–306
finer control on TestScheduler 306
TestableObservable 303–304
testing concurrent code 304–306
writing reactive tests with TestScheduler

301–302
Rx queries 307–311

injecting schedulers 307–308
injecting TestScheduler 309–311

TestScheduler
finer control on 306
injecting 309–311
writing reactive tests with 301–302

TestScheduler.Start method 306
TextBox.TextChanged event 251
thread safety 33
ThreadPoolScheduler 237–238
Throttle operator 195, 247–248, 251, 258, 279,

298
Ticks property 301
ticks, finding difference between 46–49
time-based operators 241–250

adding time interval between notifications
243–244

adding time-out policy 244–245
adding timestamp to notification 242–243
delaying notifications 245–247
sampling observable in intervals 249–250
throttling notifications 247–249

time-variant variables 5–7, 23
TimeInterval operator 243–244, 258
Timeout operator 244–245, 258
Timer operator 131–132, 134
TimeSpan 132
Timestamp operator 118, 242–243, 258
ToArray method 108
ToDictionary method 108
ToEnumerable method 107
ToList method 108
ToLookup method 108–110
ToObservable method 105, 122, 164
ToString method 243–244
ToTask operator 124
ToUpper method 57
try-catch block 260, 262
TryGetValue method 30
tumbling windows 222, 224
Tuple.Create method 81
Tuple<> class 80

U

UML (Unified Modeling Language) 12
Using operator 112, 267–269, 280
using statement 266–267
UWP (Universal Windows Platform) 41

V

Value property 165
var keyword 80
variable delay 246–247

INDEX322
variable throttling 248–249
variables

captured 62–63
time-variant 5–7

Visual Studio Code 43
Volta project 8

W

Wait method 23
WaitingForActivation 285
WCF (Windows Communication Foundation) 39
weak observer pattern 273
WeakObserverProxy 273
WeakReference class 272
Where operator 82, 125, 147, 187, 192–193, 198,

204
WhereWithLog 85
Window operator 226
windowBounderies observable 228

windowing
breaks 221
observable sequence 226–230

WinForms 240
WithLatestFrom operator 208
WPF (Windows Presentation Foundation) 39

X

xUnit 299

Y

Yahoo Finance 28

Z

Zip operator 176–177, 206–207, 223, 229, 277–278
zipping 206–207

2 CHAPTER

Filtering Based on time Throttle
Timeout
Sample

Based on data DistinctUntilChanged
Where
OfType
Distinct

Aggregating Quantifying to Boolean All
Any
Contains

Aggregating to a result Sum
Average
Scan
Aggregate
Count
Max/MaxBy
Min/MinBy

Handling concurrency Synchronize
SubscribeOn
ObserveOn
ObserveOnDispatcher

Reacting To errors Catch
OnErrorResumeNext
Retry
Using
Finally

To emissions Do
Subscribe

Catalog of Rx operators (continued)

 My goal is . . . How? What? Rx operator

Tamir Dresher

M
odern applications must react to streams of data such
as user and system events, internal messages, and sen-
sor input. Reactive Extensions (Rx) is a .NET library

containing more than 600 operators that you can compose
together to build reactive client- and server-side applications
to handle events asynchronously in a way that maximizes
responsiveness, resiliency, and elasticity.

Rx.NET in Action teaches developers how to build event-driven
applications using the Rx library. Starting with an overview of
the design and architecture of Rx-based reactive applications,
you’ll get hands-on with in-depth code examples to discover
fi rsthand how to exploit the rich query capabilities that Rx
provides and the Rx concurrency model that allows you to
control both the asynchronicity of your code and the process-
ing of event handlers. You’ll also learn about consuming event
streams, using schedulers to manage time, and working with
Rx operators to fi lter, transform, and group events.

What’s Inside
● Introduction to Rx in C#
● Creating and consuming streams of data and events
● Building complex queries on event streams
● Error handling and testing Rx code

Readers should understand OOP concepts and be comfortable
coding in C#.

Tamir Dresher is a senior software architect at CodeValue and
a prominent member of Israel’s Microsoft programming
community.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/rx-dot-net-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Rx.NET IN ACTION

.NET DEVELOPMENT

M A N N I N G

“Keep a copy of this
book handy to put

Rx.NET into action!”
—From the Foreword by

Erik Meijer, Inventor of Rx

“An excellent, deep
journey towards true event-

driven programming.”
—Stephen Byrne, Dell

“Thorough and
comprehensive, with

 hundreds of code examples.”—Edgar Knapp
ISIS Papyrus Software

“An essential resource
to take your reactive

programming skills to the
 next level. A must-read.”

—Rohit Sharma, Morgan Stanley

SEE INSERT

	Rx.NET in Action
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	Author Online
	Other online resources

	about the author
	about the cover illustration
	Part 1 Getting started with Reactive Extensions
	1 Reactive programming
	1.1 Being reactive
	1.1.1 Reactiveness in your application

	1.2 Introducing Reactive Extensions
	1.2.1 Rx history
	1.2.2 Rx on the client and server
	1.2.3 Observables
	1.2.4 Operators
	1.2.5 The composable nature of Rx operators
	1.2.6 Marble diagrams
	1.2.7 Pull model vs. push model

	1.3 Working with reactive systems and the Reactive Manifesto
	1.3.1 Responsiveness
	1.3.2 Resiliency
	1.3.3 Elasticity
	1.3.4 Message driven
	1.3.5 Where is Rx?

	1.4 Understanding asynchronicity
	1.4.1 It’s all about resource use
	1.4.2 Asynchronicity and Rx

	1.5 Understanding events and streams
	1.5.1 Everything is a stream

	1.6 Summary

	2 Hello, Rx
	2.1 Working with traditional .NET events
	2.1.1 Dealing with concurrency
	2.1.2 Retrospective on the solution and looking at the future

	2.2 Creating your first Rx application
	2.2.1 Selecting Rx packages
	2.2.2 Installing from NuGet

	2.3 Writing the event-processing flow
	2.3.1 Subscribing to the event
	2.3.2 Grouping stocks by symbol
	2.3.3 Finding the difference between ticks
	2.3.4 Cleaning resources
	2.3.5 Dealing with concurrency
	2.3.6 Wrapping up

	2.4 Summary

	3 Functional thinking in C#
	3.1 The advantages of thinking functionally
	3.1.1 Declarative programming style
	3.1.2 Immutability and side effects
	3.1.3 First-class functions
	3.1.4 Being concise

	3.2 First-class and higher-order functions using delegates and lambdas
	3.2.1 Delegates
	3.2.2 Anonymous methods
	3.2.3 Lambda expressions
	3.2.4 Func and Action
	3.2.5 Using it all together

	3.3 Method chaining with extension methods
	3.3.1 Extending type behavior with extension methods
	3.3.2 Fluent interfaces and method chaining
	3.3.3 Creating a language

	3.4 Querying collections with LINQ
	3.4.1 What does LINQ look like?
	3.4.2 Nested queries and joins
	3.4.3 Anonymous types
	3.4.4 LINQ operators
	3.4.5 Efficiency by deferred execution

	3.5 Summary

	Part 2 Core ideas
	4 Creating observable sequences
	4.1 Creating streams of data and events with observables
	4.1.1 Implementing the IObservable<T> interface
	4.1.2 The problem with handcrafted observables
	4.1.3 The ObservableBase
	4.1.4 Creating observables with Observable.Create
	4.1.5 Deferring the observable creation

	4.2 Creating observables from events
	4.2.1 Creating observables that conform to the EventPattern
	4.2.2 Events that aren’t following the event pattern
	4.2.3 Events with multiple parameters
	4.2.4 Dealing with events that have no arguments

	4.3 From enumerables to observables and back
	4.3.1 Enumerable to observable
	4.3.2 Observable to enumerable

	4.4 Using Rx creational operators
	4.4.1 Generating an observable loop
	4.4.2 Reading a file
	4.4.3 The primitive observables

	4.5 Summary

	5 Creating observables from .NET asynchronous types
	5.1 Bridging .NET asynchronous types with Rx
	5.1.1 Changing the synchronous method to asynchronous
	5.1.2 Creating the primes observable
	5.1.3 Using async-await in observable creation
	5.1.4 Converting tasks to observables
	5.1.5 Running asynchronous code as part of the pipeline
	5.1.6 Controlling the results order

	5.2 Creating observables of periodic behavior
	5.2.1 Emitting values in time intervals
	5.2.2 Creating an observable timer
	5.2.3 Scheduling an emission with a timer

	5.3 Summary

	6 Controlling the observer- observable relationship
	6.1 Creating observers
	6.1.1 The observable-observer communication
	6.1.2 Creating observers without leaving the pipeline
	6.1.3 Not passing OnError and asynchronous observables
	6.1.4 Replacing the subscription disposal with cancellation
	6.1.5 Creating an observer instance

	6.2 Controlling the observable-observer relationship lifetime
	6.2.1 Delaying subscription
	6.2.2 Stop emitting notifications at a scheduled time
	6.2.3 Discarding items when another observable emits
	6.2.4 Skipping notifications
	6.2.5 Taking or stopping when a condition is met
	6.2.6 Resubscribing
	6.2.7 Adding side effects in the observable pipeline

	6.3 Putting it all together
	6.4 Summary

	7 Controlling the observable temperature
	7.1 Multicasting with subjects
	7.1.1 Simple broadcasting with Subject<T>
	7.1.2 Representing asynchronous computation with AsyncSubject
	7.1.3 Preserving the latest state with BehaviorSubject
	7.1.4 Caching the sequence with ReplaySubject
	7.1.5 Hiding your subjects
	7.1.6 Following best practices and guidelines

	7.2 Introducing temperature: cold and hot observables
	7.2.1 Explaining cold and hot observables
	7.2.2 Cold observable
	7.2.3 Hot observables

	7.3 Heating and cooling an observable
	7.3.1 Turning cold into hot
	7.3.2 Using ConnectableObservable
	7.3.3 Publishing and multicasting
	7.3.4 Using Multicast
	7.3.5 Managing the ConnectableObservable connection
	7.3.6 Cooling a hot observable to allow replaying

	7.4 Summary

	8 Working with basic query operators
	8.1 Selecting what’s important (mapping)
	8.2 Flattening observables
	8.2.1 Flattening observables of enumerables
	8.2.2 Flattening observables of observables

	8.3 Filtering an observable
	8.3.1 Filtering with the Where operator
	8.3.2 Creating a distinct sequence
	8.3.3 Removing duplicate contiguous values

	8.4 Aggregating the observable sequence
	8.4.1 Using basic aggregation operators
	8.4.2 Finding the maximum and minimum items by condition
	8.4.3 Writing your aggregation logic with Aggregate and Scan

	8.5 Summary

	9 Partitioning and combining observables
	9.1 Combining observables
	9.1.1 Pairing items from observables (zipping)
	9.1.2 Combining the latest emitted values
	9.1.3 Concatenating observables
	9.1.4 Merging observables
	9.1.5 Dynamic concatenating and merging
	9.1.6 Switching to the next observable

	9.2 Grouping elements from the observable
	9.3 Joining observables (coincidence-based combining)
	9.3.1 Joining to a flat stream
	9.3.2 Joining into groups

	9.4 Buffers and sliding windows
	9.4.1 Buffering
	9.4.2 Windowing the observable sequence

	9.5 Summary

	10 Working with Rx concurrency and synchronization
	10.1 Controlling concurrency with schedulers
	10.1.1 Defining the scheduler
	10.1.2 Parameterizing concurrency
	10.1.3 Types of schedulers

	10.2 Using time-based operators
	10.2.1 Adding a timestamp to a notification
	10.2.2 Adding the time interval between notifications
	10.2.3 Adding a time-out policy
	10.2.4 Delaying the notifications
	10.2.5 Throttling the notifications
	10.2.6 Sampling the observable in intervals

	10.3 Synchronizing the observable emissions
	10.3.1 Changing the observation’s execution context
	10.3.2 Changing the subscription/unsubscription execution context
	10.3.3 Using SubscribeOn and ObserveOn together
	10.3.4 Synchronizing notifications

	10.4 Summary

	11 Error handling and recovery
	11.1 Reacting to errors
	11.1.1 Errors from the observable side
	11.1.2 Catching errors
	11.1.3 Retrying to subscribe in case of an error

	11.2 Controlling the lifetime of resources
	11.2.1 Disposing in a deterministic way
	11.2.2 Deterministic finalization
	11.2.3 Dangling observers

	11.3 Dealing with backpressure
	11.3.1 Observables of different rates
	11.3.2 Mitigating backpressure

	11.4 Summary

	appendix A Writing asynchronous code in .NET
	A.1 Writing asynchronous code
	A.2 Asynchronous code in .NET
	A.3 Task-Based Asynchronous Pattern
	A.4 Simplifying asynchronous code with async-await
	A.5 Creating tasks
	A.6 Summary

	appendix B The Rx Disposables library
	B.1 Disposable.Create
	B.2 Disposable.Empty
	B.3 ContextDisposable
	B.4 ScheduledDisposable
	B.5 SerialDisposable
	B.6 RefCountDisposable
	B.7 MultipleAssignmentDisposable
	B.8 CompositeDisposable
	B.9 SingleAssignmentDisposable
	B.10 CancellationDisposable
	B.11 BooleanDisposable
	B.12 Summary

	appendix C Testing Rx queries and operators
	C.1 Testing Rx code
	C.1.1 Writing reactive tests with the TestScheduler
	C.1.2 Observing the TestableObservable
	C.1.3 Testing concurrent Rx code
	C.1.4 Finer control on the TestScheduler

	C.2 Testing Rx queries
	C.2.1 Injecting schedulers
	C.2.2 Injecting the TestScheduler

	C.3 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Rx.NET in Action-back

