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preface
Looking back at the last year and a half, I can’t help but wonder: how on Earth did I
manage to survive this? These were the busiest 18 months of my life! Ever since Man-
ning asked Marko and me to write a book about Spark, I have spent most of my free
time on Apache Spark. And that made this period all the more interesting. I learned a
lot, and I can honestly say it was worth it.

 Spark is a super-hot topic these days. It was conceived in Berkeley, California, in 2009
by Matei Zaharia (initially as an attempt to prove the Mesos execution platform feasible)
and was open sourced in 2010. In 2013, it was donated to the Apache Software Foun-
dation, and it has been the target of lightning-fast development ever since. In 2015,
Spark was one of the most active Apache projects and had more than 1,000 contributors.
Today, it’s a part of all major Hadoop distributions and is used by many organizations,
large and small, throughout the world in all kinds of applications. 

 The trouble with writing a book about a project such as Spark is that it develops
very quickly. Since we began writing Spark in Action, we’ve seen six minor releases of
Spark, with many new, important features that needed to be covered. The first major
release (version 2.0) came out after we’d finished writing most of the book, and we
had to delay publication to cover the new features that came with it. 

 Another challenge when writing about Spark is the breadth of the topic: Spark is
more of a platform than a framework. You can use it to write all kinds of applications (in
four languages!): batch jobs, real-time processing systems and web applications execut-
ing Spark jobs, processing structured data using SQL and unstructured data using tra-
ditional programming techniques, various machine learning and data-munging tasks,
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interacting with distributed file systems, various relational and no-SQL databases, real-
time systems, and so on. Then there are the runtime aspects—installing, configuring,
and running Spark—which are equally relevant.

 We tried to do justice to these important topics and make this book a thorough but
gentle guide to using Spark. We hope you’ll enjoy it. 

 www.allitebooks.com

http://www.allitebooks.org
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about this book
Apache Spark is a general data processing framework. That means you can use it for
all kinds of computing tasks. And that means any book on Apache Spark needs to
cover a lot of different topics. We’ve tried to describe all aspects of using Spark: from
configuring runtime options and running standalone and interactive jobs, to writing
batch, streaming, or machine learning applications. And we’ve tried to pick examples
and example data sets that can be run on your personal computer, that are easy to
understand, and that illustrate the concepts well.

 We hope you’ll find this book and the examples useful for understanding how
to use and run Spark and that it will help you write future, production-ready Spark
applications.

Who should read this book
Although the book contains lots of material appropriate for business users and man-
agers, it’s mostly geared toward developers—or, rather, people who are able to under-
stand and execute code. The Spark API can be used in four languages: Scala, Java,
Python, and R. The primary examples in the book are written in Scala (Java and
Python versions are available at the book’s website, www.manning.com/books/spark-
in-action, and in our online GitHub repository at https://github.com/spark-in-
action/first-edition), but we don’t assume any prior knowledge of Scala, and we
explain Scala specifics throughout the book. Nevertheless, it will be beneficial if you
have Java or Scala skills before starting the book. We list some resources to help with
that in chapter 2. 

 

https://github.com/spark-in-action/first-edition
https://github.com/spark-in-action/first-edition
https://www.manning.com/books/spark-in-action
https://www.manning.com/books/spark-in-action
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 Spark can interact with many systems, some of which are covered in the book. To
fully appreciate the content, knowledge of the following topics is preferable (but not
required):

We’ve prepared a virtual machine to make it easy for you to run the examples in the
book. In order to use it, your computer should meet the software and hardware pre-
requisites listed in chapter 1.

How this book is organized
This book has 14 chapters, organized in 4 parts. Part 1 introduces Apache Spark and
its rich API. An understanding of this information is important for writing high-quality
Spark programs and is an excellent foundation for the rest of the book:

■ Chapter 1 roughly describes Spark’s main features and compares them with
Hadoop’s MapReduce and other tools from the Hadoop ecosystem. It also
includes a description of the spark-in-action virtual machine, which you can use
to run the examples in the book.

■ Chapter 2 further explores the virtual machine, teaches you how to use Spark’s
command-line interface (the spark-shell), and uses several examples to explain
resilient distributed datasets (RDDs): the central abstraction in Spark.

■ In chapter 3, you’ll learn how to set up Eclipse to write standalone Spark appli-
cations. Then you’ll write an application for analyzing GitHub logs and execute
the application by submitting it to a Spark cluster.

■ Chapter 4 explores the Spark core API in more detail. Specifically, it shows how
to work with key-value pairs and explains how data partitioning and shuffling
work in Spark. It also teaches you how to group, sort, and join data, and how to
use accumulators and broadcast variables.

In part 2, you’ll get to know other components that make up Spark, including Spark
SQL, Spark Streaming, Spark MLlib, and Spark GraphX:

■ Chapter 5 introduces Spark SQL. You’ll learn how to create and use Data-
Frames, how to use SQL to query DataFrame data, and how to load data to and
save it from external data sources. You’ll also learn about optimizations done by
Spark’s SQL Catalyst optimization engine and about performance improve-
ments introduced with the Tungsten project.

■ Spark Streaming, one of the more popular Spark family members, is intro-
duced in chapter 6. You’ll learn about discretized streams, which periodically
produce RDDs as a streaming application is running. You’ll also learn how to
save computation state over time and how to use window operations. We’ll

■ SQL and JDBC (chapter 5) ■ Amazon EC2 (chapter 11)
■ Hadoop (HDFS and YARN, 

chapters 5 and 12)
■ Basics of linear algebra, and the ability to under-

stand mathematical formulas (chapters 7 and 8)
■ Kafka (chapter 6) ■ Mesos (chapter 12)
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examine ways of connecting to Kafka and how to obtain good performance
from your streaming jobs. We’ll also talk about structured streaming, a new con-
cept included in Spark 2.0.

■ Chapters 7 and 8 are about machine learning, specifically about the Spark
MLlib and Spark ML sections of the Spark API. You’ll learn about machine
learning in general and about linear regression, logistic regression, decision
trees, random forests, and k-means clustering. Along the way, you’ll scale and
normalize features, use regularization, and train and evaluate machine learning
models. We’ll explain API standardizations brought by Spark ML.

■ Chapter 9 explores how to build graphs with Spark’s GraphX API. You’ll trans-
form and join graphs, use graph algorithms, and implement the A* search algo-
rithm using the GraphX API.

Using Spark isn’t just about writing and running Spark applications. It’s also about
configuring Spark clusters and system resources to be used efficiently by applications.
Part 3 explains the necessary concepts and configuration options for running Spark
applications on Spark standalone, Hadoop YARN, and Mesos clusters: 

■ Chapter 10 explores Spark runtime components, Spark cluster types, job and
resource scheduling, configuring Spark, and the Spark web UI. These are con-
cepts common to all cluster managers Spark can run on: the Spark standalone
cluster, YARN, and Mesos. The two local modes are also explained in chapter 10.

■ You’ll learn about the Spark standalone cluster in chapter 11: its components,
how to start it and run applications on it, and how to use its web UI. The Spark
History server, which keeps details about previously run jobs, is also discussed.
Finally, you’ll learn how to use Spark’s scripts to start up a Spark standalone
cluster on Amazon EC2.

■ Chapter 12 goes through the specifics of setting up, configuring, and using
YARN and Mesos clusters to run Spark applications.

Part 4 covers higher-level aspects of using Spark:

■ Chapter 13 brings it all together and explores a Spark streaming application for
analyzing log files and displaying the results on a real-time dashboard. The
application implemented in chapter 13 can be used as a basis for your own
future applications.

■ Chapter 14 introduces H2O, a scalable and fast machine-learning framework
with implementations of many machine-learning algorithms, most notably deep
learning, which Spark lacks; and Sparkling Water, H2O’s package that enables
you to start and use an H2O cluster from Spark. Through Sparkling Water, you
can use Spark’s Core, SQL, Streaming, and GraphX components to ingest, pre-
pare, and analyze data, and transfer it to H2O to be used in H2O’s deep-learning
algorithms. You can then transfer the results back to Spark and use them in sub-
sequent computations.
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Appendix A gives you instructions for installing Spark. Appendix B provides a short
overview of MapReduce. And appendix C is a short primer on linear algebra. 

About the code
All source code in the book is presented in a mono-spaced typeface like this, which
sets it off from the surrounding text. In many listings, the code is annotated to point
out key concepts, and numbered bullets are sometimes used in the text to provide
additional information about the code.

 Source code in Scala, Java, and Python, along with the data files used in the exam-
ples, are available for download from the publisher’s website at www.manning.com/
books/spark-in-action and from our online repository at https://github.com/spark-
in-action/first-edition. The examples were written for and tested with Spark 2.0. 

Author Online
Purchase of Spark in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the lead author and from other users. To access the forum and
subscribe to it, point your web browser to www.manning.com/books/spark-in-action.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contribution to the Author Online forum remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest their
interest stray! The forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

 

http://www.manning.com/books/spark-in-action
http://www.manning.com/books/spark-in-action
https://github.com/spark-in-action/first-edition
https://github.com/spark-in-action/first-edition
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about the cover
The figure on the cover of Spark in Action is captioned “Hollandais” (a Dutchman).
The illustration is taken from a collection of dress costumes from various countries by
Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, pub-
lished in France in 1797. Each illustration is finely drawn and colored by hand. 

 The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how
culturally apart the world’s towns and regions were just 200 years ago. Isolated from
each other, people spoke different dialects and languages. In the streets or in the
countryside, it was easy to identify where they lived and what their trade or station in
life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It’s now hard to tell apart the inhabitants of different continents,
let alone different towns, regions, or countries. Perhaps we have traded cultural diver-
sity for a more varied personal life—certainly for a more varied and fast-paced techno-
logical life.

 At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

 
 
 
 

 



 
 
 
 
 
 
 
 
 
 

 



Part 1

First steps

We begin this book with an introduction to Apache Spark and its rich API.
Understanding the information in part 1 is important for writing high-quality
Spark programs and is an excellent foundation for the rest of the book.

 Chapter 1 roughly describes Spark’s main features and compares them with
Hadoop’s MapReduce and other tools from the Hadoop ecosystem. It also
includes a description of the spark-in-action virtual machine we’ve prepared for
you, which you can use to run the examples in the book.

 Chapter 2 further explores the VM, teaches you how to use Spark’s command-
line interface (spark-shell), and uses several examples to explain resilient distributed
datasets (RDDs)—the central abstraction in Spark.

 In chapter 3, you’ll learn how to set up Eclipse to write standalone Spark
applications. Then you’ll write such an application to analyze GitHub logs and
execute the application by submitting it to a Spark cluster.

 Chapter 4 explores the Spark core API in more detail. Specifically, it shows
you how to work with key-value pairs and explains how data partitioning and
shuffling work in Spark. It also teaches you how to group, sort, and join data, and
how to use accumulators and broadcast variables. 

 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



3

Introduction
 to Apache Spark

Apache Spark is usually defined as a fast, general-purpose, distributed computing
platform. Yes, it sounds a bit like marketing speak at first glance, but we could
hardly come up with a more appropriate label to put on the Spark box.

 Apache Spark really did bring a revolution to the big data space. Spark makes
efficient use of memory and can execute equivalent jobs 10 to 100 times faster than
Hadoop’s MapReduce. On top of that, Spark’s creators managed to abstract away
the fact that you’re dealing with a cluster of machines, and instead present you with
a set of collections-based APIs. Working with Spark’s collections feels like working

This chapter covers
■ What Spark brings to the table
■ Spark components
■ Spark program flow
■ Spark ecosystem
■ Downloading and starting the spark-in-action 

virtual machine
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with local Scala, Java, or Python collections, but Spark’s collections reference data dis-
tributed on many nodes. Operations on these collections get translated to compli-
cated parallel programs without the user being necessarily aware of the fact, which is a
truly powerful concept.

 In this chapter, we first shed light on the main Spark features and compare Spark
to its natural predecessor: Hadoop’s MapReduce. Then we briefly explore Hadoop’s
ecosystem—a collection of tools and languages used together with Hadoop for big
data operations—to see how Spark fits in. We give you a brief overview of Spark’s com-
ponents and show you how a typical Spark program executes using a simple “Hello
World” example. Finally, we help you download and set up the spark-in-action virtual
machine we prepared for running the examples in the book.

 We’ve done our best to write a comprehensive guide to Spark architecture, its com-
ponents, its runtime environment, and its API, while providing concrete examples and
real-life case studies. By reading this book and, more important, by sifting through the
examples, you’ll gain the knowledge and skills necessary for writing your own high-
quality Spark programs and managing Spark applications.

1.1 What is Spark?
Apache Spark is an exciting new technology that is rapidly superseding Hadoop’s
MapReduce as the preferred big data processing platform. Hadoop is an open source,
distributed, Java computation framework consisting of the Hadoop Distributed File
System (HDFS) and MapReduce, its execution engine. Spark is similar to Hadoop in
that it’s a distributed, general-purpose computing platform. But Spark’s unique
design, which allows for keeping large amounts of data in memory, offers tremendous
performance improvements. Spark programs can be 100 times faster than their
MapReduce counterparts.

 Spark was originally conceived at Berkeley’s AMPLab by Matei Zaharia, who went
on to cofound Databricks, together with his mentor Ion Stoica, as well as Reynold Xin,
Patrick Wendell, Andy Konwinski, and Ali Ghodsi. Although Spark is open source,
Databricks is the main force behind Apache Spark, contributing more than 75% of
Spark’s code. It also offers Databricks Cloud, a commercial product for big data analy-
sis based on Apache Spark.

 By using Spark’s elegant API and runtime architecture, you can write distributed
programs in a manner similar to writing local ones. Spark’s collections abstract away
the fact that they’re potentially referencing data distributed on a large number of
nodes. Spark also allows you to use functional programming methods, which are a
great match for data-processing tasks. 

 By supporting Python, Java, Scala, and, most recently, R, Spark is open to a wide
range of users: to the science community that traditionally favors Python and R, to the
still-widespread Java community, and to people using the increasingly popular Scala,
which offers functional programming on the Java virtual machine (JVM).
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 Finally, Spark combines MapReduce-like capabilities for batch programming, real-
time data-processing functions, SQL-like handling of structured data, graph algo-
rithms, and machine learning, all in a single framework. This makes it a one-stop shop
for most of your big data-crunching needs. It’s no wonder, then, that Spark is one of
the busiest and fastest-growing Apache Software Foundation projects today. 

 But some applications aren’t appropriate for Spark. Because of its distributed
architecture, Spark necessarily brings some overhead to the processing time. This
overhead is negligible when handling large amounts of data; but if you have a dataset
that can be handled by a single machine (which is becoming ever more likely these
days), it may be more efficient to use some other framework optimized for that kind
of computation. Also, Spark wasn’t made with online transaction processing (OLTP)
applications in mind (fast, numerous, atomic transactions). It’s better suited for
online analytical processing (OLAP): batch jobs and data mining.

1.1.1 The Spark revolution

Although the last decade saw Hadoop’s wide adoption, Hadoop is not without its
shortcomings. It’s powerful, but it can be slow. This has opened the way for newer
technologies, such as Spark, to solve the same challenges Hadoop solves, but more
efficiently. In the next few pages, we’ll discuss Hadoop’s shortcomings and how Spark
answers those issues.

 The Hadoop framework, with its HDFS and MapReduce data-processing engine,
was the first that brought distributed computing to the masses. Hadoop solved the
three main problems facing any distributed data-processing endeavor: 

■ Parallelization—How to perform subsets of the computation simultaneously
■ Distribution—How to distribute the data
■ Fault tolerance—How to handle component failure

NOTE Appendix A describes MapReduce in more detail.

On top of that, Hadoop clusters are often made of commodity hardware, which makes
Hadoop easy to set up. That’s why the last decade saw its wide adoption.

1.1.2 MapReduce’s shortcomings

Although Hadoop is the foundation of today’s big data revolution and is actively used
and maintained, it still has its shortcomings, and they mostly pertain to its Map-
Reduce component. MapReduce job results need to be stored in HDFS before they
can be used by another job. For this reason, MapReduce is inherently bad with itera-
tive algorithms.

 Furthermore, many kinds of problems don’t easily fit MapReduce’s two-step para-
digm, and decomposing every problem into a series of these two operations can be
difficult. The API can be cumbersome at times. 
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 Hadoop is a rather low-level framework, so myriad tools have sprung up around it:
tools for importing and exporting data, higher-level languages and frameworks for
manipulating data, tools for real-time processing, and so on. They all bring additional
complexity and requirements with them, which complicates any environment. Spark
solves many of these issues. 

1.1.3 What Spark brings to the table

Spark’s core concept is an in-memory execution model that enables caching job data
in memory instead of fetching it from disk every time, as MapReduce does. This can
speed the execution of jobs up to 100 times,1 compared to the same jobs in Map-
Reduce; it has the biggest effect on iterative algorithms such as machine learning,
graph algorithms, and other types of workloads that need to reuse data. 

 Imagine you have city map data stored as a graph. The vertices of this graph repre-
sent points of interest on the map, and the edges represent possible routes between
them, with associated distances. Now suppose you need to find a spot for a new ambu-
lance station that will be situated as close as possible to all the points on the map. That
spot would be the center of your graph. It can be found by first calculating the short-
est path between all the vertices and then finding the farthest point distance (the maxi-
mum distance to any other vertex) for each vertex, and finally finding the vertex with
the smallest farthest point distance. Completing the first phase of the algorithm, find-
ing the shortest path between all vertices, in a parallel manner is the most challenging
(and complicated) part, but it’s not impossible.2

 In the case of MapReduce, you’d need to store the results of each of these three
phases on disk (HDFS). Each subsequent phase would read the results of the previous
one from disk. But with Spark, you can find the shortest path between all vertices and
cache that data in memory. The next phase can use that data from memory, find the
farthest point distance for each vertex, and cache its results. The last phase can go
through this final cached data and find the vertex with the minimum farthest point
distance. You can imagine the performance gains compared to reading and writing to
disk every time.

 Spark performance is so good that in October 2014 it won the Daytona Gray Sort
contest and set a world record (jointly with TritonSort, to be fair) by sorting 100 TB
in 1,406 seconds (see http://sortbenchmark.org).

SPARK’S EASE OF USE

The Spark API is much easier to use than the classic MapReduce API. To implement
the classic word-count example from appendix A as a MapReduce job, you’d need
three classes: the main class that sets up the job, a Mapper, and a Reducer, each 10 lines
long, give or take a few. 

1 See “Shark: SQL and Rich Analytics at Scale” by Reynold Xin et al., http://mng.bz/gFry.
2 See “A Scalable Parallelization of All-Pairs Shortest Path Algorithm for a High Performance Cluster Environ-

ment” by T. Srinivasan et al., http://mng.bz/5TMT.
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 By contrast, the following is all it takes for the same Spark program written in
Scala:

val spark = SparkSession.builder().appName("Spark wordcount")
val file = spark.sparkContext.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))
    .map(word => (word, 1)).countByKey()
counts.saveAsTextFile("hdfs://...")

Figure 1.1. shows this graphically.
 Spark supports the Scala, Java, Python, and R programming languages, so it’s

accessible to a much wider audience. Although Java is supported, Spark can take
advantage of Scala’s versatility, flexibility, and functional programming concepts,
which are a much better fit for data analysis. Python and R are widespread among data
scientists and in the scientific community, which brings those users on par with Java
and Scala developers. 

 Furthermore, the Spark shell (read-eval-print loop [REPL]) offers an interactive
console that can be used for experimentation and idea testing. There’s no need for
compilation and deployment just to find out something isn’t working (again). REPL
can even be used for launching jobs on the full set of data.

MapReduce word count

Main class

Mapper

Reducer

Spark word count

Figure 1.1 A word-count program demonstrates Spark’s conciseness and simplicity. The program is 
shown implemented in Hadoop’s MapReduce framework on the left and as a Spark Scala program on 
the right.
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Finally, Spark can run on several types of clusters: Spark standalone cluster, Hadoop’s
YARN (yet another resource negotiator), and Mesos. This gives it additional flexibility
and makes it accessible to a larger community of users. 

SPARK AS A UNIFYING PLATFORM

An important aspect of Spark is its combination of the many functionalities of the tools
in the Hadoop ecosystem into a single unifying platform. The execution model is gen-
eral enough that the single framework can be used for stream data processing, machine
learning, SQL-like operations, and graph and batch processing. Many roles can work
together on the same platform, which helps bridge the gap between programmers, data
engineers, and data scientists. And the list of functions that Spark provides is continu-
ing to grow.

SPARK ANTI-PATTERNS

Spark isn’t suitable, though, for asynchronous updates to shared data3 (such as online
transaction processing, for example), because it has been created with batch analytics
in mind. (Spark streaming is simply batch analytics applied to data in a time window.)
Tools specialized for those use cases will still be necessary.

 Also, if you don’t have a large amount of data, Spark may not be required, because
it needs to spend some time setting up jobs, tasks, and so on. Sometimes a simple rela-
tional database or a set of clever scripts can be used to process data more quickly than
a distributed system such as Spark. But data has a tendency to grow, and it may out-
grow your relational database management system (RDBMS) or your clever scripts
rather quickly. 

1.2 Spark components
Spark consists of several purpose-built components. These are Spark Core, Spark SQL,
Spark Streaming, Spark GraphX, and Spark MLlib, as shown in figure 1.2. 

 These components make Spark a feature-packed unifying platform: it can be used
for many tasks that previously had to be accomplished with several different frame-
works. A brief description of each Spark component follows.

1.2.1 Spark Core

Spark Core contains basic Spark functionalities required for running jobs and needed
by other components. The most important of these is the resilient distributed dataset
(RDD),4 which is the main element of the Spark API. It’s an abstraction of a distributed
collection of items with operations and transformations applicable to the dataset. It’s
resilient because it’s capable of rebuilding datasets in case of node failures. 

 

3 See “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing“ by Matei
Zaharia et al., http://mng.bz/57uJ.

4 RDDs are explained in chapter 2. Because they’re the fundamental abstraction of Spark, they’re also covered
in detail in chapter 4.
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Spark Core contains logic for accessing various filesystems, such as HDFS, GlusterFS,
Amazon S3, and so on. It also provides a means of information sharing between com-
puting nodes with broadcast variables and accumulators. Other fundamental functions,
such as networking, security, scheduling, and data shuffling, are also part of Spark Core.

1.2.2 Spark SQL

Spark SQL provides functions for manipulating large sets of distributed, structured
data using an SQL subset supported by Spark and Hive SQL (HiveQL). With Data-
Frames introduced in Spark 1.3, and DataSets introduced in Spark 1.6, which simpli-
fied handling of structured data and enabled radical performance optimizations,
Spark SQL became one of the most important Spark components. Spark SQL can also
be used for reading and writing data to and from various structured formats and data
sources, such as JavaScript Object Notation (JSON) files, Parquet files (an increasingly
popular file format that allows for storing a schema along with the data), relational
databases, Hive, and others.

Streaming sources include
Kafka, Flume, Twitter, HDFS, 
and ZeroMQ.

Spark Streaming can use 
machine-learning models and 
Spark SQL to analyze streaming data.

Spark Streaming 
uses DStreams to 
periodically
create RDDs.

Spark MLlib models 
use DataFrames to 
represent data. 
Spark ML uses RDDs. 
Both use features 
from Spark Core.

Data sources include
Hive, JSON, relational 
databases, NoSQL
databases, and  
Parquet files.

Spark SQL transforms
operations on DataFrames
to operations on RDDs. 

Spark Streaming can use 
GraphX features on the
data it receives.

Spark GraphX uses Spark
Core features behind
the scenes.

Filesystems include HDFS, 
Guster FS, and Amazon S3. 

Spark GraphX

Graph RDD

Streaming sources

DStream

Spark Core

RDD

Filesystems

Spark Streaming

ML model

Spark SQL

Dataframe

Data sources

Spark ML & MLlib

Figure 1.2 Main Spark components and various runtime interactions and storage options
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 Operations on DataFrames and DataSets at some point translate to operations on
RDDs and execute as ordinary Spark jobs. Spark SQL provides a query optimization frame-
work called Catalyst that can be extended by custom optimization rules. Spark SQL also
includes a Thrift server, which can be used by external systems, such as business intelli-
gence tools, to query data through Spark SQL using classic JDBC and ODBC protocols. 

1.2.3 Spark Streaming

Spark Streaming is a framework for ingesting real-time streaming data from various
sources. The supported streaming sources include HDFS, Kafka, Flume, Twitter,
ZeroMQ, and custom ones. Spark Streaming operations recover from failure
automatically, which is important for online data processing. Spark Streaming
represents streaming data using discretized streams (DStreams), which periodically
create RDDs containing the data that came in during the last time window.

 Spark Streaming can be combined with other Spark components in a single program,
unifying real-time processing with machine learning, SQL, and graph operations. This is
something unique in the Hadoop ecosystem. And since Spark 2.0, the new Structured
Streaming API makes Spark streaming programs more similar to Spark batch programs.

1.2.4 Spark MLlib

Spark MLlib is a library of machine-learning algorithms grown from the MLbase proj-
ect at UC Berkeley. Supported algorithms include logistic regression, naïve Bayes clas-
sification, support vector machines (SVMs), decision trees, random forests, linear
regression, and k-means clustering. 

 Apache Mahout is an existing open source project offering implementations of dis-
tributed machine-learning algorithms running on Hadoop. Although Apache Mahout
is more mature, both Spark MLlib and Mahout include a similar set of machine-learning
algorithms. But with Mahout migrating from MapReduce to Spark, they’re bound to be
merged in the future.

 Spark MLlib handles machine-learning models used for transforming datasets,
which are represented as RDDs or DataFrames.

1.2.5 Spark GraphX

Graphs are data structures comprising vertices and the edges connecting them.
GraphX provides functions for building graphs, represented as graph RDDs: EdgeRDD
and VertexRDD. GraphX contains implementations of the most important algorithms
of graph theory, such as page rank, connected components, shortest paths, SVD++,
and others. It also provides the Pregel message-passing API, the same API for large-
scale graph processing implemented by Apache Giraph, a project with implementa-
tions of graph algorithms and running on Hadoop. 

1.3 Spark program flow
Let’s see what a typical Spark program looks like. Imagine that a 300 MB log file is
stored in a three-node HDFS cluster. HDFS automatically splits the file into 128 MB
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parts (blocks, in Hadoop terminology) and places each part on a separate node of the
cluster5 (see figure 1.3). Let’s assume Spark is running on YARN, inside the same
Hadoop cluster.

 A Spark data engineer is given the task of analyzing how many errors of type Out-
OfMemoryError have happened during the last two weeks. Mary, the engineer, knows
that the log file contains the last two weeks of logs of the company’s application server
cluster. She sits at her laptop and starts to work.

 She first starts her Spark shell and establishes a connection to the Spark cluster.
Next, she loads the log file from HDFS (see figure 1.4) by using this (Scala) line:

val lines = sc.textFile("hdfs://path/to/the/file")

5 Although it’s not relevant to our example, we should probably mention that HDFS replicates each block to
two additional nodes (if the default replication factor of 3 is in effect).

Disk (HDFS) Disk (HDFS) Disk (HDFS)RAM RAM RAM

300 MB
log file

128 MB
file chunk

128 MB
file chunk

44 MB
file chunk

Figure 1.3 Storing a 300 MB log file in a three-node Hadoop cluster

Disk (HDFS) Disk (HDFS) Disk (HDFS)RAM RAM RAM

Distributed collection
(RDD)

Figure 1.4 Loading a text file from HDFS
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To achieve maximum data locality,6 the loading operation asks Hadoop for the loca-
tions of each block of the log file and then transfers all the blocks into RAM of the
cluster’s nodes. Now Spark has a reference to each of those blocks (partitions, in Spark
terminology) in RAM. The sum of those partitions is a distributed collection of lines
from the log file referenced by an RDD. Simplifying, we can say that RDDs allow you to
work with a distributed collection the same way you would work with any local, nondis-
tributed one. You don’t have to worry about the fact that the collection is distributed,
nor do you have to handle node failures yourself.

 In addition to automatic fault tolerance and distribution, the RDD provides an
elaborate API, which allows you to work with a collection in a functional style. You can
filter the collection; map over it with a function; reduce it to a cumulative value; sub-
tract, intersect, or create a union with another RDD, and so on.

 Mary now has a reference to the RDD, so in order to find the error count, she first
wants to remove all the lines that don’t have an OutOfMemoryError substring. This is a
job for the filter function, which she calls like this:

val oomLines = lines.filter(l => l.contains("OutOfMemoryError")).cache()

After filtering the collection so it contains the subset of data that she needs to analyze
(see figure 1.5), Mary calls cache on it, which tells Spark to leave that RDD in memory
across jobs. Caching is the basic component of Spark’s performance improvements we
mentioned before. The benefits of caching the RDD will become apparent later.

 Now she is left with only those lines that contain the error substring. For this sim-
ple example, we’ll ignore the possibility that the OutOfMemoryError string might
occur in multiple lines of a single error. Our data engineer counts the remaining lines

6 Data locality is honored if each block gets loaded in the RAM of the same node where it resides in HDFS. The
whole point is to try to avoid having to transfer large amounts of data over the wire.

Disk (HDFS) Disk (HDFS) Disk (HDFS)RAM RAM RAM

Distributed collection
(RDD)

Figure 1.5 Filtering the collection to contain only lines containing the OutOfMemoryError string
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and reports the result as the number of out-of-memory errors that occurred in the last
two weeks:

val result = oomLines.count()

Spark enabled her to perform distributed filtering and counting of the data with only
three lines of code. Her little program was executed on all three nodes in parallel.

 If she now wants to further analyze lines with OutOfMemoryErrors, and perhaps call
filter again (but with other criteria) on an oomLines object that was previously
cached in memory, Spark won’t load the file from HDFS again, as it would normally
do. Spark will load it from the cache.

1.4 Spark ecosystem
We’ve already mentioned the Hadoop ecosystem, consisting of interface, analytic,
cluster-management, and infrastructure tools. Some of the most important ones are
shown in figure 1.6. 

 Figure 1.6 is by no means complete.7 You could argue that we failed to add one
tool or another, but a complete list of tools would be hard to fit in this section. We
believe, though, that this list represents a good subset of the most prominent tools in
the Hadoop ecosystem.

 If you compare the functionalities of Spark components with the tools in the
Hadoop ecosystem, you can see that some of the tools are suddenly superfluous. For
example, Apache Giraph can be replaced by Spark GraphX, and Spark MLlib can be

7 If you’re interested, you can find a (hopefully) complete list of Hadoop-related tools and frameworks at
http://hadoopecosystemtable.github.io.

S p
a r k

Mahout
Giraph

Pig
Hive

Sqoop
Flume

Chukwa
Storm

Oozie
HBase

ZooKeeper

Impala
Drill

YARN
HDFS

Ambari

Mahout
Giraph

Pig
Hive

Sqoop
Storm

Flume
Chukwa

Oozie
HBase

ZooKeeper

Impala
Drill

YARN
HDFS

Ambari

Analytic tools providing 
data-transformation and 
-manipulation functions

Interface tools that can be used to transfer
data between Hadoop and other systems

A cluster-management tool Infrastructure tools, providing basic data storage, 
synchronization, and scheduling functions

Figure 1.6 Basic infrastructure, interface, analytic, and management tools in the Hadoop 
ecosystem, with some of the functionalities that Spark incorporates or makes obsolete
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used instead of Apache Mahout. Apache Storm’s capabilities overlap greatly with
those of Spark Streaming, so in many cases Spark Streaming can be used instead.

 Apache Pig and Apache Sqoop aren’t needed any longer, because the same func-
tionalities are covered by Spark Core and Spark SQL. But even if you have legacy Pig
workflows and need to run Pig, the Spork project enables you to run Pig on Spark.

 Spark has no means of replacing the infrastructure and management of the
Hadoop ecosystem tools (Oozie, HBase, and ZooKeeper), though. Oozie is used for
scheduling different types of Hadoop jobs and now even has an extension for schedul-
ing Spark jobs. HBase is a distributed and scalable database, which is something Spark
doesn’t provide. ZooKeeper provides fast and robust implementation of common
functionalities many distributed applications need, like coordination, distributed syn-
chronization, naming, and provisioning of group services. It is used for these pur-
poses in many other distributed systems, too.

 Impala and Drill can coexist alongside Spark, especially with Drill’s coming support
for Spark as an execution engine. But they’re more like competing frameworks, mostly
spanning the features of Spark Core and Spark SQL, which makes Spark feature-richer
(pun not intended).

 We said earlier that Spark doesn’t need to use HDFS storage. In addition to HDFS,
Spark can operate on data stored in Amazon S3 buckets and plain files. More exciting,
it can also use Alluxio (formerly Tachyon), which is a memory-centric distributed file-
system, or other distributed filesystems, such as GlusterFS.

 Another interesting fact is that Spark doesn’t have to run on YARN. Apache Mesos
and the Spark standalone cluster are alternative cluster managers for Spark. Apache
Mesos is an advanced distributed systems kernel bringing distributed resource abstrac-
tions. It can scale to tens of thousands of nodes with full fault tolerance (we’ll visit it in
chapter 12). Spark Standalone is a Spark-specific cluster manager that is used in pro-
duction today on multiple sites. 

 So if we switch from MapReduce to Spark and get rid of YARN and all the tools that
Spark makes obsolete, what’s left of the Hadoop ecosystem? To put it another way: Are
we slowly moving toward a new big data standard: a Spark ecosystem?

1.5 Setting up the spark-in-action VM
In order to make it easy for you to set up a Spark learning environment, we prepared
a virtual machine (VM) that you’ll be using throughout this book. It will allow you to
run all the examples from the book without surprises due to different versions of Java,
Spark, or your OS. For example, you could have problems running the Spark exam-
ples on Windows; after all, Spark is developed on OS X and Linux, so, understandably,
Windows isn’t exactly in the focus. The VM will guarantee we’re all on the same page,
so to speak. 

 The VM consists of the following software stack:

■ 64-bit Ubuntu OS, 14.04.4 (nicknamed Trusty)—Currently the latest version with
long-term support (LTS).
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■ Java 8 (OpenJDK)—Even if you plan on only using Spark from Python, you have to
install Java, because Spark’s Python API communicates with Spark running in a JVM. 

■ Hadoop 2.7.2—Hadoop isn’t a hard requirement for using Spark. You can save
and load files from your local filesystem, if you’re running a local cluster, which
is the case with our VM. But as soon as you set up a truly distributed Spark clus-
ter, you’ll need a distributed filesystem, such as Hadoop’s HDFS. Hadoop instal-
lation will also come in handy in chapter 12 for trying out the methods of
running Spark on YARN, Hadoop’s execution environment.

■ Spark 2.0—We included the latest Spark version at the time this book was fin-
ished. You can easily upgrade the Spark version in the VM, if you wish to do so,
by following the instructions in chapter 2.

■ Kafka 0.8.2—Kafka is a distributed messaging system, used in chapters 6 and 13.

We chose Ubuntu because it’s a popular Linux distribution and Linux is the preferred
Spark platform. If you’ve never worked with Ubuntu before, this could be your chance
to start. We’ll guide you, explaining commands and concepts as you progress through
the chapters.

 Here we’ll explain only the basics: how to download, start, and stop the VM. We’ll
go into more details about using it in the next chapter.

1.5.1 Downloading and starting the virtual machine

To run the VM, you’ll need a 64-bit OS with at least 3 GB of free memory and 15 GB of
free disk space. You first need to install these two software packages for your platform:

■ Oracle VirtualBox—Oracle’s free, open source hardware virtualization software
(www.virtualbox.org)

■ Vagrant—HashiCorp’s software for configuring portable development environ-
ments (www.vagrantup.com/downloads.html)

When you have these two installed, create a folder for hosting the VM (called, for
example, spark-in-action), and enter it. Then download the Vagrant box metadata
JSON file from our online repository. You can download it manually or use the wget
command on Linux or Mac:

$ wget https://raw.githubusercontent.com/spark-in-action/first-edition/

➥ master/spark-in-action-box.json 

Then issue the following command to download the VM itself:

$ vagrant box add spark-in-action-box.json

The Vagrant box metadata JSON file points to the Vagrant box file. The command will
download the 5 GB VM box (this will probably take some time) and register it as the
manning/spark-in-action Vagrant box. To use it, initialize the Vagrant VM in the cur-
rent directory by issuing this command:

$ vagrant init manning/spark-in-action
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Finally, start the VM with the vagrant up command (this will also allocate approxi-
mately 10 GB of disk space):

$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Checking if box 'manning/spark-in-action' is up to date...
==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...
...

If you have several network interfaces on your machine, you’ll be asked to choose one
of them for connecting it to the VM. Choose the one with an access to the internet.
For example:

==> default: Available bridged network interfaces:
1) 1x1 11b/g/n Wireless LAN PCI Express Half Mini Card Adapter
2) Cisco Systems VPN Adapter for 64-bit Windows
==> default: When choosing an interface, it is usually the one that is
==> default: being used to connect to the internet.
    default: Which interface should the network bridge to? 1
==> default: Preparing network interfaces based on configuration...
...

1.5.2 Stopping the virtual machine

You’ll learn how to use the VM in the next chapter. For now, we’ll only show you how
to stop it. To power off the VM, issue the following command:

$ vagrant halt

This will stop the machine but preserve your work. If you wish to completely remove
the VM and free up its space, you need to destroy it:

$ vagrant destroy

You can also remove the downloaded Vagrant box, which was used to create the VM,
with this command:

$ vagrant box remove manning/spark-in-action

But we hope you won’t feel the need for that for quite some time.

1.6 Summary
■ Apache Spark is an exciting new technology that is rapidly superseding

Hadoop’s MapReduce as the preferred big data processing platform.
■ Spark programs can be 100 times faster than their MapReduce counterparts.
■ Spark supports the Java, Scala, Python, and R languages.
■ Writing distributed programs with Spark is similar to writing local Java, Scala, or

Python programs.

 



17Summary

■ Spark provides a unifying platform for batch programming, real-time data-
processing functions, SQL-like handling of structured data, graph algorithms,
and machine learning, all in a single framework.

■ Spark isn’t appropriate for small datasets, nor should you use it for OLTP
applications.

■ The main Spark components are Spark Core, Spark SQL, Spark Streaming,
Spark MLlib, and Spark GraphX.

■ RDDs are Spark’s abstraction of distributed collections.
■ Spark supersedes some of the tools in the Hadoop ecosystem.
■ You’ll use the spark-in-action VM to run the examples in this book.
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Spark fundamentals

It’s finally time to get down to business. In this chapter, you’ll start using the VM we
prepared for you and write your first Spark programs. All you need is a laptop or a
desktop machine with a usable internet connection and the prerequisites described
in chapter 1. 

 To avoid overwhelming you this early in the book with various options for run-
ning Spark, for now you’ll be using the so-called Spark standalone local cluster. Stand-
alone means Spark is using its own cluster manager (rather than Mesos or Hadoop’s
YARN). Local means the whole system is running locally—that is, on your laptop or a
desktop machine. We’ll talk extensively about Spark running modes and deploy-
ment options in the second part of the book. Strap in: things are about to get real!

This chapter covers
■ Exploring the spark-in-action VM
■ Managing multiple Spark versions
■ Getting to know Spark’s command line 

interface (spark-shell)
■ Playing with simple examples in spark-shell
■ Exploring RDD actions and transformations and 

double functions
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 Rest assured, we aren’t assuming any prior Spark or Scala knowledge; in this chap-
ter, you’ll start slowly and progress step-by-step, tutorial style, through the process of
setting up prerequisites, downloading and installing Spark, and playing with simple
code examples in spark-shell (used for accessing Spark from the command prompt). 

 Although we intend to explain all the Scala specifics throughout the book, we
don’t have the illusion that you can learn Scala using a book about Spark. Therefore,
it might be beneficial to get a dedicated Scala book, such as Nilanjan Raychaudhuri’s
Scala in Action (Manning, 2013). Or you can use the second edition of Programming in
Scala (Artima Inc., 2010), an excellent book by Martin Odersky, father of the Scala
programming language. Another awesome, readily available resource we can recom-
mend is Twitter’s online Scala School (http://twitter.github.io/scala_school). As you
come across a new Scala topic, look it up in your book or online, because that will
make it much easier to put things into perspective—especially Scala topics that you
need more details on (than we have room to provide).

 We hope you’ve followed our instructions from the last chapter and successfully set
up the spark-in-action VM. If for some reason you can’t use the VM, check out appen-
dix B for instructions on installing Spark. 

 You’ll now use the spark-in-action VM for writing and executing your first Spark
program. We guess you’re eager to start, so let’s get to it!

2.1 Using the spark-in-action VM
To start using the VM, change to the folder where you put Vagrantfile, and, if it’s not
already running, start the machine with the following command:

$ vagrant up

When the command finishes, you can log in to the VM. Open an SSH connection to
the machine, either by issuing Vagrant’s ssh command

$ vagrant ssh

or by using your favorite SSH program (such as ssh on Linux and Mac, or Putty, Kitty,
or MobaXTerm if you’re running on Windows) to connect directly to 192.168.10.2,
which is the IP address we configured for the spark-in-action VM. Both methods
should present the same login prompt. Enter username spark and password spark,
and you should be greeted with the following prompt:

Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-85-generic x86_64)
... several omitted lines ...
spark@spark-in-action:~$

You’re in. The first step is behind you!

 

http://twitter.github.io/scala_school
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2.1.1 Cloning the Spark in Action GitHub repository

Before doing anything else, clone our Spark in Action GitHub repository into your
home directory by issuing the following command (Git is already installed in the VM):

$ git clone https://github.com/spark-in-action/first-edition

This creates the first-edition folder in your home directory.

2.1.2 Finding Java

We configured the spark user’s PATH so that you can easily invoke Java, Hadoop, and
Spark commands from wherever you’re positioned in the VM. Let’s first see where Java
is installed. The which command shows the location of the executable file specified, if
it can be found in the current PATH:

$ which java
/usr/bin/java

That’s the default location for system-wide user programs, so it’s hardly surprising. But
the file is a symbolic link, which you can trace to Java’s real install location:

spark@spark-in-action:~$ ls -la /usr/bin/java
lrwxrwxrwx 1 root root 22 Apr 19 18:36 /usr/bin/java -> /etc/alternatives

➥ /java
spark@spark-in-action:~$ ls -la /etc/alternatives/java
lrwxrwxrwx 1 root root 46 Apr 19 18:36 /etc/alternatives/java -> /usr/lib/

➥ jvm/java-8-openjdk-amd64/jre/bin/java

So, the Java install location is /usr/lib/jvm/java-8-openjdk-amd64. The JAVA_HOME
variable, which is important for running Hadoop and Spark, has also been set up for
you:

$ echo $JAVA_HOME
/usr/lib/jvm/java-8-openjdk-amd64/jre

Code formatting and notation
We’ve established the following notation and formatting rules to distinguish com-
mands entered into the terminal from those entered into the Spark shell, from termi-
nal and the Spark-shell outputs. Terminal commands start with a dollar sign, while
code entered into the Spark-shell starts with scala>:

$ terminal command
terminal output
scala> a line of code
spark shell output
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2.1.3 Using the VM’s Hadoop installation

With the spark-in-action VM, you also get a fully functioning Hadoop installation.
You’ll need it for reading and writing files to and from the HDFS and for running
YARN later in the book. 

 Hadoop is installed in the folder /usr/local/hadoop. But that is a symlink again,
pointing to /opt/hadoop-2.7.2, which is where the Hadoop binaries are located. 

 Many HDFS shell commands are available in Hadoop, mimicking the usual filesys-
tem commands (for creating, copying, moving files and folders, and so on). They’re
issued as arguments to the hadoop fs command. For example, to list the files and fold-
ers in the /user HDFS folder, you use the following:

$ hadoop fs -ls /user
Found 1 items
drwxr-xr-x   - spark supergroup          0 2016-04-19 18:49 /user/spark

We don’t have the time or space here to explain other Hadoop commands, but you
can find the complete Hadoop filesystem command reference in the official docu-
mentation: http://mng.bz/Y9FP.

 The last command (hadoop fs -ls) works because the spark-in-action VM is con-
figured to automatically start HDFS daemon processes during its startup, so the com-
mand can connect to HDFS and query the filesystem. HDFS startup is done by invoking
a single script (note that Hadoop’s sbin directory isn’t on the spark user’s PATH):

$ /usr/local/hadoop/sbin/start-dfs.sh

If you wish to stop HDFS daemons, you can invoke the equivalent stop-dfs.sh script:

$ /usr/local/hadoop/sbin/stop-dfs.sh

You should note that the spark user has full access rights (read/write/execute [rwx])
to the /usr/local/hadoop directory, so you won’t have to fiddle with sudo every time
you need to make a change (for example, to a configuration file) or start or stop the
daemons.

Symbolic links
A symbolic link (or symlink) is a reference to a file or a folder. It behaves as though
you have access to the same file or folder from two different places in your filesys-
tem. The symlink isn’t a copy; it’s a reference to the target folder (in the case of a
folder symlink) with the ability to navigate inside, as if it were the target folder. Every
change you make inside the symlink is applied directly to the target folder
and reflected in the symlink. If you were to edit a file symlink using the vi editor, for
example, you would be editing the target file, and the changes would be visible in
both places.

 

http://mng.bz/Y9FP
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2.1.4 Examining the VM’s Spark installation

When installing Spark, you download the appropriate Spark archive from the Spark down-
loads page (https://spark.apache.org/downloads.html) and unpack it to the folder of
your choice. In the spark-in-action VM, similar to Hadoop, Spark is available from the
/usr/local/spark folder, which is a symlink pointing to /opt/spark-2.0.0-bin-hadoop2.7,
where the Spark binary archive was unpacked. As the folder name suggests, the installed
version is 2.0, prebuilt for Hadoop 2.7 or higher, which is what we needed for this VM.

 Instead of downloading a prebuilt version, you can build Spark yourself. Please see
appendix B for details. The examples in this book were tested with Spark 2.0.0 (the
latest version at the time of writing), so make sure you install that version.

MANAGING SPARK RELEASES

Because new versions of Spark are flying out every couple of months, you need a way
to manage them so you can have multiple versions installed and easily choose which
one to use. By using a symlink in the described way, regardless of the current version
of Spark, you can always use /usr/local/spark to reference a Spark installation in all
of your programs, scripts, and configuration files. You switch versions by deleting the
symlink and creating a new one, pointing to the root installation folder of the Spark
version you want to work with. 

 For example, after unpacking several Spark versions, your /opt folder might con-
tain the following folders:

$ ls /opt | grep spark
spark-1.3.0-bin-hadoop2.4
spark-1.3.1-bin-hadoop2.4
spark-1.4.0-bin-hadoop2.4
spark-1.5.0-bin-hadoop2.4
spark-1.6.1-bin-hadoop2.6
spark-2.0.0-bin-hadoop2.7

To switch from the current version of 2.0 back to 1.6.1, for example, you would
remove the current symlink (you would need to use sudo here because the spark user
doesn’t have the rights for changing the /usr/local folder)

$ sudo rm -f /usr/local/spark

and then create a new one pointing to version 1.6.1:

$ sudo ln -s /opt/spark-1.6.1-bin-hadoop2.4 /usr/local/spark

The idea is to always refer to the current Spark installation the same way, using the
spark symlink. 

OTHER SPARK INSTALLATION DETAILS

Many Spark scripts require the SPARK_HOME environment variable to be set. It’s already
set up for you in the VM, and it points to the spark symlink, as you can check yourself:

$ export | grep SPARK
declare -x SPARK_HOME="/usr/local/spark"

 www.allitebooks.com

https://spark.apache.org/downloads.html
http://www.allitebooks.org
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Spark’s bin and sbin directories have been added to the spark user’s PATH. The spark
user is also the owner of the files and folders under /usr/local/spark, so you can
change them as necessary without using sudo.

2.2 Using Spark shell and writing your first Spark program
In this section, you’ll start the Spark shell and use it to write your first Spark example
program. So what is this Spark shell all about?

 There are two different ways you can interact with Spark. One way is to write a pro-
gram in Scala, Java, or Python that uses Spark’s library—that is, its API (more on pro-
grams in chapter 3). The other is to use the Scala shell or the Python shell. 

 The shell is primarily used for exploratory data analysis, usually for one-off jobs,
because a program written in the shell is discarded after you exit the shell. The other
common shell-usage scenario is testing and developing Spark applications. It’s much
easier to test a hypothesis in a shell (for example, probe a dataset and experiment)
than to write an application, submit it to be executed, write results to an output file,
and then analyze that output.

 Spark shell is also known as Spark REPL, where the REPL acronym stands for read-
eval-print loop. It reads your input, evaluates it, prints the result, and then does it all
over again—that is, after a command returns a result, it doesn’t exit the scala>
prompt; it stays ready for your next command (thus loop). 

2.2.1 Starting the Spark shell

You should be logged in to the VM as the spark user by now. As we said earlier, Spark’s
bin directory is in the spark user’s PATH, so you should be able to start the Spark shell
by entering the following:

$ spark-shell 
Spark context Web UI available at http://10.0.2.15:4040
Spark context available as 'sc' (master = local[*], app id = local-1474054368520).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.0.0
      /_/

Using Scala version 2.11.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_72-internal)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

And boom! You have a running spark-shell on your machine. 

NOTE To write Python programs in the Spark Python shell, type pyspark.
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In previous Spark versions, Spark logged all the detailed INFO messages to the console
and cluttered the view. That was toned down in later versions, but now those messages,
which may be valuable, are no longer available. Let’s correct that.

 You’ll make spark-shell print only errors, but you’ll maintain the complete log in
the logs/info.log file (relative to the Spark root) for troubleshooting. Exit the shell by
typing :quit (or pressing Ctrl-D) and create a log4j.properties file in the conf sub-
folder, like this:

$ nano /usr/local/spark/conf/log4j.properties

nano is a text editor for UNIX-like systems, available in Ubuntu by default. You are, of
course, free to use any other text editor. Copy the contents of the following listing into
the newly created log4j.properties file.

# set global logging severity to INFO (and upwards: WARN, ERROR, FATAL)
log4j.rootCategory=INFO, console, file

# console config (restrict only to ERROR and FATAL)
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.threshold=ERROR
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} 

➥ %p %c{1}: %m%n

# file config
log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.File=logs/info.log
log4j.appender.file.MaxFileSize=5MB
log4j.appender.file.MaxBackupIndex=10
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} 

➥ %p %c{1}: %m%n

# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
log4j.logger.org.apache.spark=WARN
log4j.logger.org.apache.hadoop=WARN

Exit nano by pressing Ctrl-X and then Y, confirming that you wish to save the file, and
press Enter if you’re asked for the file’s name.

LOG4J Although it has been superseded by the logback library and is almost
two decades old, log4j is still one of the most widely used Java logging librar-
ies, due to the simplicity of its design.

Listing 2.1 Contents of Spark’s log4j.properties file 
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Then use the same command as before to start the Spark shell:

$ spark-shell

As you can see in the output, you’re provided with the Spark context in the form of the
sc variable and the SQL context as sqlContext. The Spark context is the entry point for
interacting with Spark. You use it for things like connecting to Spark from an applica-
tion, configuring a session, managing job execution, loading or saving a file, and so on.

2.2.2 The first Spark code example

It’s time for your first Spark example. Suppose you want to find out how many third-
party libraries that Spark uses are licensed under the BSD license (acronym for Berke-
ley Software Distribution). Luckily, Spark comes with a file named LICENSE, located in
the Spark root directory. The LICENSE file contains the list of all libraries used by
Spark and the licenses they’re provided under. Lines in the file, which names pack-
ages licensed under the BSD license, contain the word BSD. You could easily use a
Linux shell command to count those lines, but that’s not the point. Let’s see how you
can ingest that file and count the lines using the Spark API:

scala> val licLines = sc.textFile("/usr/local/spark/LICENSE")
licLines: org.apache.spark.rdd.RDD[String] = LICENSE MapPartitionsRDD[1] at 

textFile at <console>:27
scala> val lineCnt = licLines.count   
lineCnt: Long = 294

You now know the total number of lines in the file. What good does that do? You need
to find out the number of lines BSD appears in. The idea is to run the licLines collec-
tion through a filter that sifts out the lines that don’t contain BSD:

scala> val bsdLines = licLines.filter(line => line.contains("BSD")) 
bsdLines: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at filter 

➥ at <console>:23
scala> bsdLines.count     
res0: Long = 34 

Think of licLines variable as a collection of lines constructed 
by splitting LICENSE on the newline character.

Retrieves the number of lines 
in the licLines collection

The number of lines in LICENSE may vary (and 
often does) between Spark versions.

Forms a new collection,
bsdLines, that contains only

lines with the “BSD” substring

B

count how many 
elements (lines) the 
collection bsdLines has
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The filter function evaluates the fat-arrow function on each element of the
licLines collection (each line) and returns a new collection, bsdLines, that has only
those elements for which the fat-arrow function returned true.

 The fat-arrow function you use for filtering lines is anonymous, but you could also
define the equivalent named function, like this

scala> def isBSD(line: String) = { line.contains("BSD") }
isBSD: (line: String)Boolean

or store (a reference to) the function definition in a variable

scala> val isBSD = (line: String) => line.contains("BSD")
isBSD: String => Boolean = <function1>

and then use it in place of the anonymous function:

scala> val bsdLines1 = licLines.filter(isBSD)
bsdLines1: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[5] at filter 

➥ at <console>:25
scala> bsdLines1.count
res1: Long = 34

To print the lines containing BSD to the console, you call println for each line:

scala> bsdLines.foreach(bLine => println(bLine))
BSD-style licenses
The following components are provided under a BSD-style license. See 

➥ project link for details.
     (BSD 3 Clause) netlib core (com.github.fommil.netlib:core:1.1.2 - 

➥ https://github.com/fommil/netlib-java/core)
     (BSD 3 Clause) JPMML-Model (org.jpmml:pmml-model:1.1.15 - 

➥ https://github.com/jpmml/jpmml-model)
     (BSD 3-clause style license) jblas (org.jblas:jblas:1.2.4 - 

➥ http://jblas.org/)
     (BSD License) AntLR Parser Generator (antlr:antlr:2.7.7 - 

➥ http://www.antlr.org/)
...

Function literals
If you’ve never used Scala, you may be wondering what the snippet with the fat arrow
(=>) means B. That is a Scala function literal; it defines an anonymous function that
takes a string and returns true or false, depending on whether line contains the
“BSD” substring.

The fat arrow basically designates the transformation that a function does on the left
side of the expression, converting it to the right side, which is then returned. In this
case, String (line) is transformed into a Boolean (the result of contains), which is
then returned as the function’s result.
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To accomplish the same thing with less typing, you can also use a shortcut version:

scala> bsdLines.foreach(println)

2.2.3 The notion of a resilient distributed dataset

Although licLines and bsdLines feel and look like ordinary Scala collections (fil-
ter and foreach methods are available in ordinary Scala collections, too), they aren’t.
They’re distributed collections, specific to Spark, called resilient distributed datasets
or RDDs. 

 The RDD is the fundamental abstraction in Spark. It represents a collection of ele-
ments that is

■ Immutable (read-only)
■ Resilient (fault-tolerant)
■ Distributed (dataset spread out to more than one node)

RDDs support a number of transformations that do useful data manipulation, but they
always yield a new RDD instance. Once created, RDDs never change; thus the adjective
immutable. Mutable state is known to introduce complexity, but besides that, having
immutable collections allows Spark to provide important fault-tolerance guarantees in
a straightforward manner.

 The fact that the collection is distributed on a number of machines (execution con-
texts, JVMs) is transparent1 to its users, so working with RDDs isn’t much different
than working with ordinary local collections like plain old lists, maps, sets, and so on.
To summarize, the purpose of RDDs is to facilitate parallel operations on large data-
sets in a straightforward manner, abstracting away their distributed nature and inher-
ent fault tolerance.

 RDDs are resilient because of Spark’s built-in fault recovery mechanics. Spark is
capable of healing RDDs in case of node failure. Whereas other distributed computa-
tion frameworks facilitate fault tolerance by replicating data to multiple machines (so
it can be restored from healthy replicas once a node fails), RDDs are different: they
provide fault tolerance by logging the transformations used to build a dataset (how it
came to be) rather than the dataset itself. If a node fails, only a subset of the dataset
that resided on the failed node needs to be recomputed.

 For example, in the previous section, the process of loading the text file yielded
the licLines RDD. Then you applied the filter function to licLines, which pro-
duced the new bsdLines RDD. Those transformations and their ordering are referred
to as RDD lineage. It represents the exact recipe for creating the bsdLines RDD, from
start to finish. We’ll talk more about RDD lineage in later chapters. For now, let’s see
what else you can do with RDDs.

1 Well, almost transparent. In order to optimize computation and thus gain performance benefits, there are
ways to control dataset partitioning (how the RDD is distributed among nodes in a cluster) and persistence
options. We’ll talk about both features extensively later in the book.
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2.3 Basic RDD actions and transformations
There are two types of RDD operations: transformations and actions. Transformations
(for example, filter or map) are operations that produce a new RDD by performing
some useful data manipulation on another RDD. Actions (for example, count or
foreach) trigger a computation in order to return the result to the calling program or
to perform some actions on an RDD’s elements.

In this section, you’ll be introduced to a number of other important RDD operations,
such as map, flatMap, take, and distinct. We hope you still have your Spark shell
open so that you can follow along. Feel free to experiment, turn things around, and
make some mistakes. That way, you’ll learn much more efficiently.

2.3.1 Using the map transformation

You saw that filter is used to conditionally remove2 some elements from an RDD.
Now let’s look at how you can take one RDD’s elements, transform them, and create a
brand-new RDD with those transformed elements.

 The map transformation allows you to apply an arbitrary function to all elements of
an RDD. Here is how the map method is declared (we removed parts of the signature
that aren’t relevant for this discussion):

class RDD[T] {             
  // ... other methods ...
  def map[U](f: (T) => U): RDD[U]
  // ... other methods ...
}

You can read the function signature like this: “Declare a function called map that takes
some other function as a parameter and returns an RDD. The RDD that is returned
contains elements of a different type than the RDD on which map was called.” So the
resulting RDD, unlike with filter, may or may not be of the same type as the RDD that
map was called on (this).

2 RDDs are immutable, remember? So when we say “remove” we mean “create a new RDD where some elements
are conditionally missing, compared to the RDD you started with (the one on which filter was called).”

Laziness of Spark transformations
It’s important to understand that transformations are evaluated lazily, meaning com-
putation doesn’t take place until you invoke an action. Once an action is triggered on
an RDD, Spark examines the RDD’s lineage and uses that information to build a
“graph of operations” that needs to be executed in order to compute the action. Think
of a transformation as a sort of diagram that tells Spark which operations need to
happen and in which order once an action gets executed.

Defines the RDD as a class 
with parameterized type T

map takes another function as 
a parameter and returns an 
RDD of a different type.

 



29Basic RDD actions and transformations

 Let’s start with a basic example. If you wanted to calculate the squares of an RDD’s
elements, you could easily do that using map. 

scala> val numbers = sc.parallelize(10 to 50 by 10)
numbers: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at 

➥ parallelize at <console>:12
scala> numbers.foreach(x => println(x))
30
40
50
10
20
scala> val numbersSquared = numbers.map(num => num * num)
numbersSquared: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[7] at map 

➥ at <console>:23
scala> numbersSquared.foreach(x => println(x))
100
400
1600
2500
900

The first command in the listing, Spark context’s parallelize method, takes a Seq
(Array and List classes both implement the Seq interface) and creates an RDD from
its elements. The Seq’s elements get distributed to Spark executors in the process.
makeRDD is an alias for parallelize, so you can use either of the two. The expression
passed in as an argument (10 to 50 by 10) is Scala’s way of creating a Range, which is
also an implementation of Seq.

 Using a slightly different example to illustrate how map can change RDD’s type,
imagine a situation where you want to convert an RDD of integers to an RDD of strings
and then reverse each of those strings:

scala> val reversed = numbersSquared.map(x => x.toString.reverse)
reversed: org.apache.spark.rdd.RDD[String] = MappedRDD[4] at map at 

➥ <console>:16
scala> reversed.foreach(x => println(x))
001
004
009
0061
0052

You can also write this last transformation so it’s even shorter:

scala> val alsoReversed = numbersSquared.map(_.toString.reverse)   
alsoReversed: org.apache.spark.rdd.RDD[String] = MappedRDD[4] at map at 

➥ <console>:16
scala> alsoReversed.first   

Listing 2.2 Calculating the squares of an RDD’s elements using map

An underscore in Scala, in this
context, is called a placeholder.

B

Returns the first elements from an RDD
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res6: String = 001
scala> alsoReversed.top(4)                          
res7: Array[String] = Array(009, 0061, 0052, 004)3

 

2.3.2 Using the distinct and flatMap transformations4

We continue our tour of RDD operations with the distinct and flatMap transforma-
tions. They’re similar to the functions of the same name available in some Scala collec-
tions (such as Array objects), so they may be familiar to you. The difference is that,
when used on RDDs, they operate on distributed data and are lazily evaluated, as we
said earlier.

 Let’s use another example. Imagine that you have a large file containing clients’
transaction logs from the last week. Every time a client makes a purchase, the server
appends a unique client ID to the end of the log file. At the end of each day, the server
adds a new line, so you have a nice file structure of one line of comma-separated user
IDs per day. Suppose you’re given the task of finding out how many clients bought at
least one product during a week. To get that number, you need to remove all dupli-
cate clients: that is, reduce all clients who made multiple purchases to a single entry.
After that, all that is left to do is count the remaining entries.

 To prepare for this example, you’ll create a sample file with several client IDs.
Open a new terminal (not spark-shell), and execute the following commands:5

$ echo "15,16,20,20          
77,80,94
94,98,16,31
31,15,20" > ~/client-ids.log

3 Alphabetical order: http://en.wikipedia.org/wiki/Alphabetical_order.
4 More on placeholder syntax: http://mng.bz/c52S.
5 If you’re reading the printed version of the book, use the book’s GitHub repository to copy the snippets:

http://mng.bz/RCb9.

top returns an ordered 
array of the k largest 
elements from an RDD 
Set.009 is bigger than 0061; because these are

strings they’re sorted alphabetically.3

Placeholder syntax
You can read the placeholder syntax in the previous example B like this: “Whatever
I’m invoked with, call toString and then reverse on it.” We call it a placeholder4

because it holds the place to be filled in with the argument to a function when the
function is invoked. 

In this case, as map starts going over elements, the placeholder is first replaced with
the first element from the numbersSquared collection (100), then the second ele-
ment (400), and so on.

echo prints its argument to the 
standard output, which here is 
redirected to the client-ids.log 
file. The numbers represent 
client IDs.

~ is another way to
refer to your Linux

home directory
(equivalent to $HOME).

 

http://mng.bz/c52S
http://en.wikipedia.org/wiki/Alphabetical_order
http://mng.bz/RCb9
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Back in spark-shell, load the log file:

scala> val lines = sc.textFile("/home/spark/client-ids.log")
lines: org.apache.spark.rdd.RDD[String] = client-ids.log

➥ MapPartitionsRDD[1] at textFile at <console>:21

Then you split each line on the comma character, which yields an array of strings for
each line:

scala> val idsStr = lines.map(line => line.split(","))
idsStr: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at 

➥ map at <console>:14
scala> idsStr.foreach(println(_))
[Ljava.lang.String;@65d795f9
[Ljava.lang.String;@2cb742ab
... 4 of these ...

Wait, what just happened? Isn’t the expected output an array of IDs?
 Actually, no: you created idsStr by splitting each of the four lines on the comma

character, which created four arrays of IDs. Thus the printout contains four return val-
ues of Array.toString:6

scala> idsStr.first
res0: Array[String] = Array(15, 16, 20, 20)

How could you visualize these arrays that found themselves inside your idsStr RDD?
Let’s use the RDD’s collect action (you do remember section 2.3, where we
explained that RDD operations can either be transformations or actions, right?).
collect is an action that creates an array and then, well, collects all elements of an
RDD into that array, which it then returns as the result to your shell:

scala> idsStr.collect
res1: Array[Array[String]] = Array(Array(15, 16, 20, 20), Array(77, 80, 

➥ 94), Array(94, 98, 16, 31), Array(31, 15, 20))

If only there was a function that knows how to flatten those seven arrays into a single, union
array. There is, and it is called flatMap, and it’s used exactly for situations like these, where
the result of a transformation yields multiple arrays and you need to get all elements into
one array. It basically works the same as map, in that it applies the provided function to all
of the RDD’s elements, but the difference is that it concatenates multiple arrays into a col-
lection that has one level of nesting less than what it received. This is its signature:

def flatMap[U](f: (T) => TraversableOnce[U]): RDD[U]

To simplify things and avoid confusion, we’ll say that TraversableOnce7 is a weird
name for a collection. 

6 What is this [Ljava.lang.String;@... thing? See http://stackoverflow.com/a/3442100/465710.
7 If you like a good puzzle, you can look up TraversableOnce in the Scala API (called scaladoc): http://

mng.bz/OTvD.

 

http://stackoverflow.com/a/3442100/465710
http://mng.bz/OTvD
http://mng.bz/OTvD
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Now that you know about flatMap, let’s start over with this example. You’ll once again
split the lines you loaded into the lines RDD, but this time you’ll use flatMap instead
of the regular map:

scala> val ids = lines.flatMap(_.split(","))
ids: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[8] at flatMap at 

➥ <console>:23

Let’s use collect to see what flatMap returned:

scala> ids.collect
res11: Array[String] = Array(15, 16, 20, 20, 77, 80, 94, 94, 98, 16, 31, 

➥ 31, 15, 20)

This Array that wraps the IDs, as we already mentioned, is just the way collect
returns results. When you used collect the first time, after applying the regular map
function, you got back an array of arrays. flatMap yielded one level of nesting less than
map. Let’s make sure you don’t have any arrays in the ids RDD:

scala> ids.first
res12: String = 15

We told you so: you get back a single string. If you want to format the output of the
collect method, you can use a method of the Array class called mkString:

scala> ids.collect.mkString("; ")
res13: String = 15; 16; 20; 20; 77; 80; 94; 94; 98; 16; 31; 31; 15; 20 

mkString isn’t specific to Spark; it’s a method of the Array class from Scala’s standard
library, which is used to concatenate all the array elements into a String, dividing
them with the provided parameter.

 For no particular reason, apart from practicing the map transformation and the
placeholder syntax, let’s transform the RDD’s elements from String to Int (this could

The game plan
It isn’t yet time to go deeper into Scala; after all, we’re sticking to the game plan
of not assuming any prior Scala knowledge. Overwhelming you with Scala defini-
tions wouldn’t be productive at this point. Instead, we’ll keep explaining relevant
Scala concepts in context, as we come across them. We’ll skip the topics that are
hard for a Scala beginner to understand, unless we think that understanding the
topic is crucial for working with Spark. TraversableOnce is definitely not (yet) in
that category.

For more experienced Scala developers, for each such topic, we’ll make sure to in-
clude a footnote that contains a link to an online resource.
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perhaps be used to avoid sorting elements alphabetically as strings, where “10” is
smaller than “2”):

scala> val intIds = ids.map(_.toInt)
intIds: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[9] at map at 

➥ <console>:25
scala> intIds.collect
res14: Array[Int] = Array(15, 16, 20, 20, 77, 80, 94, 94, 98, 16, 31, 31, 

➥ 15, 20)

Your task was to find the number of unique clients who bought anything. To find that
number, you need distinct. distinct is a method that returns a new RDD with dupli-
cate elements removed:

def distinct(): RDD[T]

When called on an RDD, it creates a new RDD with unique elements (of the same type,
of course). So, let’s finally make the list of IDs unique:

scala> val uniqueIds = intIds.distinct
uniqueIds: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[12] at distinct 

➥ at <console>:27
scala> uniqueIds.collect
res15: Array[Int] = Array(16, 80, 98, 20, 94, 15, 77, 31)
scala> val finalCount = uniqueIds.count
finalCount: Long = 8 

You now know that only eight distinct clients made purchases during that week. How
many transactions were made in total?

scala> val transactionCount = ids.count
transactionCount: Long = 14

So, 8 clients made 14 transactions. You end up concluding that you have a small set of
loyal clients.   

Pasting blocks of code into the Spark Scala shell
Just so you know, you don’t have to paste line by line into your shell. You can copy
whole blocks of code, together with their outputs, which can make things a little easier.

Execute the following block of slightly modified commands from this section. If you’re
reading the print edition, you can copy the snippet from the book’s GitHub repository;
otherwise, copy and paste the entire block, together with the results, into spark-shell.
It will detect that you pasted a shell transcript, and all the commands that start with
the scala> prompt will be replayed, after you confirm your intention with a secret key-
board shortcut that will be revealed to you (watch out for // Detected repl tran-
script in the output):
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Still with us? Great! But hold your horses—after all, these are still basics. Let’s see
whether you can grasp the next transformation, the dreaded sample.

2.3.3 Obtaining RDD’s elements with the sample, take, and takeSample operations

Suppose you need to prepare a sample set that contains 30% of client IDs randomly
picked from the same log. Good thing the authors of the RDD API anticipated this exact
situation, because they implemented a sample method in the RDD class. It’s a transfor-
mation that creates a new RDD with random elements from the calling RDD (this):

 The signature looks like this:

def sample(withReplacement: Boolean, fraction: Double, seed: Long = 

➥ Utils.random.nextLong): RDD[T]

The first parameter, withReplacement, determines whether the same element may be
sampled multiple times. If it’s set to false, an element, once sampled, won’t be con-
sidered for the subsequent sampling (it’s removed—that is, not replaced) during the
life of that method call. To use an example from Wikipedia (http://mng.bz/kQ7W),
if we catch fish, measure them, and immediately return them to the water before con-
tinuing with the sample, this is a with replacement design, because we might end up
catching and measuring the same fish more than once. But if we don’t return the fish
to the water (for example, if we eat the fish), this becomes a without replacement design.

 The second parameter, fraction, determines the expected number of times each
element is going to be sampled (as a number greater than zero), when replacement is
used. When used without replacement, it determines the expected probability that
each element is going to be sampled, expressed as a floating-point number between 0
and 1. Keep in mind that sampling is a probabilistic method, so don’t expect the
results to be exact every time.

(continued)
scala> val lines = sc.textFile("/home/spark/client-ids.log")
lines: org.apache.spark.rdd.RDD[String] = client-ids.log 

➥ MapPartitionsRDD[12] at textFile at <console>:21
scala> val ids = lines.flatMap(_.split(","))
ids: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[13] at flatMap at

➥ <console>:23
scala> ids.count
res8: Long = 14
scala> val uniqueIds = ids.distinct
uniqueIds: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[16] at 

➥ distinct at <console>:25
scala> uniqueIds.count
res17: Long = 8
scala> uniqueIds.collect
res18: Array[String] = Array(16, 80, 98, 20, 94, 15, 77, 31)

Now that you have witnessed a small miracle, let’s continue on with our business.

 

http://mng.bz/kQ7W
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 The third parameter represents the seed for random-number generation. The same
seed always produces the same quasi-random numbers, which is useful for testing. Under
the hood, this method uses scala.util.Random, which in turn uses java.util.Random.

 The one new thing you should notice in the method signature is that the seed
parameter has a default value, Utils.random.nextLong. In Scala, a parameter’s
default value is used if you don’t provide that argument when calling a function.

 You needed to prepare a set of 30% (0.3) of all client IDs. You’ll do sampling with-
out replacement:

scala> val s = uniqueIds.sample(false, 0.3)
s: org.apache.spark.rdd.RDD[String] = PartitionwiseSampledRDD[19] at sample 

➥ at <console>:27
scala> s.count
res19: Long = 2
scala> s.collect
res20: Array[String] = Array(94, 21)

You sampled two elements, which is about 30% of the unique set of client IDs. Don’t
be surprised if you get 1 or 3 elements; as we mentioned, 0.3 is only the probability
that each of the elements will end up in the sampled subset.

 Let’s now see what a with replacement does. A 50% with replacement will make
results more apparent:

scala> val swr = uniqueIds.sample(true, 0.5)
swr: org.apache.spark.rdd.RDD[String] = PartitionwiseSampledRDD[20] at 

➥ sample at <console>:27
scala> swr.count
res21: Long = 5
scala> swr.collect
res22: Array[String] = Array(16, 80, 80, 20, 94)

Notice that you get back the string “80” two times from the unique set of strings. That
wouldn’t be possible if you hadn’t used replacement (the algorithm doesn’t remove
elements from the pool of potential sample candidates once they’re picked).

 If you want to sample an exact number of elements from an RDD, you can use the
takeSample action:

def takeSample(withReplacement: Boolean, num: Int, seed: Long = 

➥ Utils.random.nextLong): Array[T]

There are two differences between sample and takeSample. The first is that takeSample
takes an Int as its second parameter, which determines the number of sampled elements
it returns (notice that we didn’t say “expected number of elements”—it always returns
exactly num number of elements). The second difference is that, whereas sample is a
transformation, takeSample is an action, which returns an array (like collect):

scala> val taken = uniqueIds.takeSample(false, 5)
taken: Array[String] = Array(80, 98, 77, 31, 15)
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Another useful action for obtaining a subset of your data is take. It scans enough of
an RDD’s partitions (parts of data residing on different nodes in the cluster) to return
the requested number of elements. Remember this one well, because you’ll find your-
self needing a simple action for peeking into the data in your RDDs:

scala> uniqueIds.take(3)
res23: Array[String] = Array(80, 20, 15)

Of course, you shouldn’t request too many elements, because they all need to be
transferred to a single machine.

2.4 Double RDD functions
If you create an RDD containing only Double elements, several extra functions
automagically become available, through the concept known as implicit conversion.  

Scala’s implicit conversion
Implicit conversion is a useful concept, heavily used in Spark, but it can be a bit tricky
to understand at first, so we’ll explain it here. Let’s say you have a Scala class de-
fined like this:

class ClassOne[T](val input: T) { }

ClassOne is type parameterized, so the argument input can be a string, an integer,
or any other object. And let’s say you want objects of ClassOne to have a method
duplicatedString(), but only if input is a string, and to have a method duplicated-
Int(), only if input is an integer. You can accomplish this by creating two classes,
each containing one of these new methods. Additionally, you have to define two implicit
methods that will be used for conversion of ClassOne to these new classes, like this:

class ClassOneStr(val one: ClassOne[String]) { 
    def duplicatedString() = one.input + one.input
}
class ClassOneInt(val one: ClassOne[Int]) { 
    def duplicatedInt() = one.input.toString + one.input.toString
}
implicit def toStrMethods(one: ClassOne[String]) = new ClassOneStr(one)
implicit def toIntMethods(one: ClassOne[Int]) = new ClassOneInt(one)

The compiler can now perform automatic conversion from type ClassOne[String]
to ClassOneStr and from ClassOne[Int] to ClassOneInt, and you can use their
methods on ClassOne objects. You can now perform something like this:

scala> val oneStrTest = new ClassOne("test")
oneStrTest: ClassOne[String] = ClassOne@516a4aef

scala> val oneIntTest = new ClassOne(123)
oneIntTest: ClassOne[Int] = ClassOne@f8caa36

scala> oneStrTest.duplicatedString()
res0: String = testtest

scala> oneIntTest.duplicatedInt()
res1: 123123
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We’re glad that’s out of the way. So, what functions are implicitly added to RDDs con-
taining Double elements? Double RDD functions can give you the total sum of all ele-
ments along with their mean value, standard deviation, variance, and histogram.
These functions can come in handy when you get new data and you need to obtain
information about its distribution.

2.4.1 Basic statistics with double RDD functions

Let’s use the intIds RDD you created previously to illustrate the concepts in this sec-
tion. Although it contains Int objects, they can be automatically converted to Doubles,
so double RDD functions can be implicitly applied.

 Using mean and sum is trivial:

scala> intIds.mean
res0: Double = 44.785714285714285
scala> intIds.sum
res1: Double = 627.0

A bit more involved is the stats action. It calculates the count and sum of all ele-
ments; their mean, maximum, and minimum values; and their variance and standard
deviation, all in one pass, and returns an org.apache.spark.util.StatCounter
object that has methods for accessing all these metrics.

 variance and stdev actions are just shortcuts for calling stats().variance and
stats().stdev:

scala> intIds.variance
res2: Double = 1114.8826530612246
scala> intIds.stdev
res3: Double = 33.38985853610681

(continued)

But the following snippet gives an error:

scala> oneIntTest.duplicatedString()
      error: value duplicatedString is not a member of ClassOne[Int]
              oneIntTest.duplicatedString()

Neat, eh? 

This is exactly what happens with RDDs in Spark. RDDs have new methods added to
them automatically, depending on the type of data they hold. RDDs containing only
Double objects are automatically converted into instances of the org.apache.spark
.rdd.DoubleRDDFunctions class, which contains all the double RDD functions de-
scribed in this section.

For the curious, the only difference between RDDs in Spark and the preceding example
is where the implicit methods are defined. You can find them in the RDD companion
object, which is an object RDD defined in the same file as the class RDD (and having
the same name). Companion objects in Scala hold what would be static members in Java.
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2.4.2 Visualizing data distribution with histograms

Histograms are used for graphical representation of data. The X axis has value inter-
vals and the Y axis has the data density, or number of elements in the corresponding
interval.

 The histogram action on double RDDs has two versions. The first version takes an
array of Double values that represent interval limits and returns an Array with counts of
elements belonging to each interval. Interval limits have to be sorted, must contain at
least two elements (that represent one interval), and must not contain any duplicates:

scala> intIds.histogram(Array(1.0, 50.0, 100.0))
res4: Array[Long] = Array(9, 5)

The second version takes a number of intervals, which is used to split the input data
range into intervals of equal size, and returns a tuple whose second element contains
the counts (just like the first version) and whose first element contains the calculated
interval limits:

scala> intIds.histogram(3)
res5: (Array[Double], Array[Long]) = (Array(15.0, 42.66666666666667, 

➥ 70.33333333333334, 98.0),Array(9, 0, 5))

Histograms can offer some insight into data distribution, which usually isn’t obvious
from standard deviation and mean values.

2.4.3 Approximate sum and mean

If you have a really large dataset of Double values, calculating their statistics can take
longer than you care to spend. You can use two experimental actions, sumApprox and
meanApprox, to calculate the approximate sum and mean, respectively, in a specified
timeframe: 

sumApprox(timeout: Long, confidence: Double = 0.95):    
    PartialResult[BoundedDouble]
meanApprox(timeout: Long, confidence: Double = 0.95):    
    PartialResult[BoundedDouble]

They both take a timeout value in milliseconds, which determines the maximum
amount of time the action can run for. If it doesn’t return by then, the result com-
puted until that point is returned. The confidence parameter influences the values
returned.

 Approximate actions return a PartialResult object, which gives access to final-
Value and failure fields (the failure field is available only if an exception
occurred). finalValue is of type BoundedDouble, which expresses not a single value,
but a probable range (low and high), its mean value, and the associated confidence.
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2.5 Summary
■ Symbolic links can help you manage multiple Spark releases.
■ The Spark shell is used for interactive one-off jobs and exploratory data analysis.
■ The resilient distributed dataset (RDD) is the fundamental abstraction in

Spark. It represents a collection of elements that is immutable, resilient, and
distributed.

■ There are two types of RDD operations: transformations and actions. Transfor-
mations (for example, filter or map) are operations that produce a new RDD
by performing useful data manipulation on another RDD. Actions (for exam-
ple, count or foreach) trigger a computation in order to return the result to
the calling program or to perform some actions on an RDD’s elements.

■ The map transformation is the main operation for transforming RDD data.
■ distinct returns another RDD containing only unique elements.
■ flatMap concatenates multiple arrays into a collection that has one level of

nesting less than what it received.
■ With sample, take, and takeSample, you can obtain a subset of an RDD’s

elements.
■ Double RDD functions become available through Scala’s implicit conversion

and give you the total sum of all of an RDD’s elements and their mean value,
standard deviation, variance, and histogram.
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Writing
 Spark applications

In this chapter, you’ll learn to write Spark applications. Most Spark programmers
use an integrated development environment (IDE), such as IntelliJ or Eclipse.
There are readily available resources online that describe how to use IntelliJ IDEA
with Spark, whereas Eclipse resources are still hard to come by. That is why, in this
chapter, you’ll learn how to use Eclipse for writing Spark programs. Nevertheless, if
you choose to stick to IntelliJ, you’ll still be able to follow along. After all, these two
IDEs have similar sets of features.

This chapter covers
■ Generating a new Spark project in Eclipse
■ Loading a sample dataset from the GitHub 

archive
■ Writing an application that analyzes GitHub logs
■ Working with DataFrames in Spark 
■ Submitting your application to be executed
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 You’ll start by downloading and configuring Eclipse and then installing Eclipse
plug-ins that are necessary for working with Scala. You’ll use Apache Maven (a soft-
ware project-management tool) to configure Spark application projects in this chap-
ter. The Spark project itself is configured using Maven. We prepared a Maven
Archetype (a template for quickly bootstrapping Maven projects) in the book’s
GitHub repository at https://github.com/spark-in-action, which will help you boot-
strap your new Spark application project in just a few clicks. 

 Throughout this chapter, you’ll be developing an application that counts GitHub
push events (code commits to GitHub) made by your company’s employees. You’ll use
an exciting new construct, the DataFrame, which saw the light of day in Spark 1.3.0. 

 Lots of content awaits you. Ready?

3.1 Generating a new Spark project in Eclipse
This section describes how to create a Spark project in Eclipse. We trust you know how
to install Eclipse (you can follow the online instructions at http://wiki.eclipse.org/
Eclipse/Installation), so we won’t go into details. You can install it onto your develop-
ment machine or in the spark-in-action VM. The decision is all yours, because it won’t
significantly affect how you build your Spark project. We installed it in the VM, in the
/home/spark/eclipse folder, and used /home/spark/workspace as the workspace
folder. To view the Eclipse GUI started from the VM, you’ll need to set up an X Win-
dow system (on Windows, you can use Xming: https://sourceforge.net/projects/
xming) and set the DISPLAY variable in your VM Linux shell to point to the IP address
of your running X Window system.

 If you wish to use some other IDE, such as IntelliJ, you can skip this section and
start from section 3.2. If you wish to continue using Eclipse, you also need to install
these two plug-ins:

■ Scala IDE plug-in 
■ Scala Maven integration for Eclipse (m2eclipse-scala)

To install the Scala IDE plug-in, follow these steps:

1 Go to Help1 > Install new Software, and click Add in the upper-right corner.
2 When the Add Repository window appears, enter scala-ide in the Name field.
3 Enter http://download.scala-ide.org/sdk/lithium/e44/scala211/stable/

site in the Location field
4 Confirm by clicking OK.
5 Eclipse looks up the URL you entered and displays the available software it

found there. Select only the Scala IDE for Eclipse entry and all its subentries. 
6 Confirm the selection on the next screen, and accept the license on the one

after that. Restart Eclipse when prompted.

1 Readers new to Ubuntu may not know that the toolbar of the currently active window is always located at the
top of the screen, and it’s revealed when you hover the cursor near the top.

 

http://download.scala-ide.org/sdk/lithium/e44/scala211/stable/site
https://github.com/spark-in-action
http://wiki.eclipse.org/Eclipse/Installation
http://wiki.eclipse.org/Eclipse/Installation
https://sourceforge.net/projects/xming
https://sourceforge.net/projects/xming
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To install the Scala Maven integration for Eclipse plug-in, follow the same steps as for
the Scala IDE plug-in, only enter http://alchim31.free.fr/m2e-scala/update-site
in the Location field and m2eclipse-scala in the Name field.

 Once you have all these set up, you’re ready to start a new Eclipse project that will
host your application. To simplify setting up new projects (either for examples in this
book or for your future Spark projects), we have prepared an Archetype called scala-
archetype-sparkinaction (available from our GitHub repository), which is used to
create a starter Spark project in which versions and dependencies have already been
taken care of.

 To create a project in Eclipse, on your toolbar menu select File > New > Project >
Maven > Maven Project. Don’t make any changes on the first screen of the New Maven
Project Wizard, but click Next.

 On the second screen, click Configure (which opens the Maven > Archetypes sec-
tion of the Eclipse Preferences). Click the Add Remote Catalog button, and fill in the
following values in the dialog that pops up (see figure 3.1):

■ Catalog File: https://github.com/spark-in-action/scala-archetype-

sparkinaction/raw/master/archetype-catalog.xml

■ Description: Spark in Action

Click OK, and then close the Preferences window. You should see a progress bar in the
lower-right corner, which is how Eclipse notifies you that it went to look up the catalog
you just added.

 You’re now back in the New Maven Project wizard. Select Spark in Action in the
Catalog drop-down field and scala-archetype-sparkinaction artifact (see figure 3.2).

Figure 3.1 Adding the Spark in Action Maven Remote Archetype Catalog to your Eclipse Preferences

 

http://alchim31.free.fr/m2e-scala/update-site
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The next screen prompts you to enter your project’s parameters. Notice (in figure
3.3) that your root package consists of groupId and artifactId. 

You can specify whichever values you like for groupId and artifactId, but it may be
easier for you to follow along if you choose the same values as we did (see figure 3.3).
Confirm by clicking Finish. 

 Let’s examine the structure of the generated project. Looking from the top, the
first (root) entry is the project’s main folder, always named the same as the project. We
call this folder the project’s root (or project root, interchangeably).

 

Figure 3.2 Choosing the Maven Archetype that you want to use as the new project’s template. 
Select scala-archetype-sparkinaction.

groupId and artifactId
If you’re new to Maven, it may be easier for you to look at artifactId as your project
name and groupId as its fully qualified organization name. For example, Spark has
groupId org.apache and artifactId spark. The Play framework has com.typesafe
as its groupId and play as its artifactId.
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Figure 3.3 Creating a Maven project: specifying project parameters

Figure 3.4 The newly generated project in Eclipse’s Package Explorer window
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src/main/scala is your main Scala source folder (if you were to add Java code to your
project, you would create an src/main/java source folder). In the scala folder, you
have the root package,2 org.sia.chapter03App, with a single Scala source file in it:
App.scala. This is the Scala file where you’ll start writing your application.

 Next comes the main test folder with prepared samples for various test types, fol-
lowed by the container for your Scala library. You’re using the Scala that came with
the Scala IDE Eclipse plug-in. Next is Maven Dependencies, described a bit later.
Below Maven Dependencies is JDK (Eclipse refers to JRE and JDK in the same way, as
JRE System Library). Further down in the Package Explorer window is again the src
folder, but this time in the role of an ordinary folder (non-source or, more precisely,
non-jvm-source folder), in case you want to add other types of resources to your proj-
ect, such as images, JavaScript, HTML, CSS, anything you don’t want to be processed by
the Eclipse JVM tooling. Then there is the target folder, which is where compiled
resources go (like .class or .jar files). 

 Finally, there is the all-encompassing pom.xml, which is the project’s Maven speci-
fication. If you open pom.xml from the project root and switch to the Dependency
Hierarchy tab, you’ll have a much better view of the project’s dependencies and their
causality (see figure 3.5). 

2 On the filesystem level, org.sia.chapter03App consists of three folders. In other words, this is the path to
the App.scala file: chapter03App/src/main/scala/org/sia/chapter03App/App.scala.

Top-level
libraries

Additional
dependencies

Figure 3.5 Project’s libraries dependency hierarchy (in pom.xml)
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There are only six libraries at the top level (all explicitly listed in pom.xml). Each of
those libraries brought with it its own dependencies; and many of those dependen-
cies, in turn, have their own dependencies, and so on 

 In the next section, you’ll see a plausible real-world example of developing a Spark
application. You’ll need Eclipse, so don’t close it just yet.

3.2 Developing the application
Say you need to create a daily report that lists all employees of your company and the
number of pushes3 they’ve made to GitHub. You can implement this using the GitHub
archive site (www.githubarchive.org/), put together by Ilya Grigorik from Google
(with the help of the GitHub folks), where you can download GitHub archives for
arbitrary time periods. You can download a single day from the archive and use it as a
sample for building the daily report.

3.2.1 Preparing the GitHub archive dataset

Open your VM’s terminal, and type in the following commands:

$ mkdir -p $HOME/sia/github-archive
$ cd $HOME/sia/github-archive
$ wget http://data.githubarchive.org/2015-03-01-{0..23}.json.gz

This downloads all public GitHub activity from March 1, 2015, in the form of 24 JSON
files, one for each hour of the day:

2015-03-01-0.json.gz
2015-03-01-1.json.gz
...
2015-03-01-23.json.gz

To decompress the files, you can run

$ gunzip *

After a few seconds, you’re left with 24 JSON files. You’ll notice that the files are rather
large (around 1 GB in total, decompressed), so you can use just the first hour of the
day (44 MB) as a sample during development, instead of the entire day.

 But the extracted files aren’t valid JSON. Each file is a set of valid JSON strings sepa-
rated with newlines, where each line is a single JSON object—that is, a GitHub event
(push, branch, create repo, and so on).4 You can preview the first JSON object with
head (which is used to list n lines from the top of a file), like this:

3 To push changes, in distributed source control management systems (such as Git), means to transfer content
from your local repository to a remote repository. In earlier SCM systems, that was known as commit.

4 GitHub API documentation on types of events: https://developer.github.com/v3/activity/events/types/.
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$ head -n 1 2015-03-01-0.json
{"id":"2614896652","type":"CreateEvent","actor":{"id":739622,"login":

➥ "treydock","gravatar_id":"","url":"https://api.github.com/users/
➥ treydock","avatar_url":"https://avatars.githubusercontent.com/u/
➥ 739622?"},"repo":{"id":23934080,"name":"Early-Modern-OCR/emop-
➥ dashboard","url":"https://api.github.com/repos/Early-Modern-OCR/emop-
➥ dashboard"},"payload":{"ref":"development","ref_type":"branch","master_
➥ branch":"master","description":"","pusher_type":"user"},"public":true,
➥ "created_at":"2015-03-01T00:00:00Z","org":{"id":10965476,"login":
➥ "Early-Modern-OCR","gravatar_id":"","url":"https://api.github.com/
➥ orgs/Early-Modern-OCR","avatar_url":
➥ "https://avatars.githubusercontent.com/u/10965476?"}}

Uh, that’s tough to read. Fortunately, an excellent program called jq (http://stedolan
.github.io/jq) makes working with JSON from the command line much easier. Among
other things, it’s great for pretty-printing and color highlighting JSON. You can
download it from http://stedolan.github.io/jq/download. If you’re working in the
spark-in-action VM, it’s already installed for you.

 To try it out, you can pipe a JSON line to jq:

$ head -n 1 2015-03-01-0.json | jq '.'
{
  "id": "2614896652",
  "type": "CreateEvent",
  "actor": {
    "id": 739622,
    "login": "treydock",
    "gravatar_id": "",
    "url": "https://api.githb.com/users/treydock",
    "avatar_url": "https://avatars.githubusercontent.com/u/739622?"
  },
  "repo": {
    "id": 23934080,
    "name": "Early-Modern-OCR/emop-dashboard",
    "url": "https://api.github.com/repos/Early-Modern-OCR/emop-dashboard"
  },
  "payload": {
    "ref": "development",
    "ref_type": "branch",
    "master-branch": "master",
    "description": "",
    "pusher_type": "user",
  },
  "public": true,
  "created_at": "2015-03-01T00:00:00Z",
  "org": {
    "id": 10965476,
    "login": "Early-Modern-OCR",
    "gravatar_id": "",
    "url": "https://api.github.com/orgs/Early-Modern-OCR",
    "avatar_url": "https://avatars.githubusercontent.com/u/10965476?"
  }
}

 

http://stedolan.github.io/jq
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Wow! That certainly is pretty. Now you can easily see that this first log entry from
the file has "CreateEvent" type and that its payload.ref_type is "branch". So
someone named "treydock" (actor.login) created a repository branch called
"development" (payload.ref) in the first second of March 1, 2015 (created_at).
This is how you’ll distinguish types of events, because all you need to count are push
events. Looking at the GitHub API (https://developer.github.com/v3/activity/
events/types/#pushevent), you find out that the push event’s type is, unsurpris-
ingly, "PushEvent".

 OK, you obtained the files needed to develop a prototype, and you know how to
prettify its contents so you can understand the structure of GitHub log files. Next, you
can start looking into the problem of ingesting a JSON-like structured file into Spark.

3.2.2 Loading JSON

Spark SQL and its DataFrame facility, which was introduced in Spark v.1.3.0, provide a
means for ingesting JSON data into Spark. At the time of this announcement, every-
one was talking about DataFrames and the benefits they were going to bring to compu-
tation speed and data interchange between Spark components (Spark Streaming,
MLlib, and so on). In Spark 1.6.0 DataSets were introduced as generalized and
improved DataFrames. 

SQL is so ubiquitous that the new DataFrame API was quickly met with acclamation by
the wider Spark community. It allows you to attack a problem from a higher vantage
point when compared to Spark Core transformations. The SQL-like syntax lets you
express your intent in a more declarative fashion: you describe what you want to
achieve with a dataset, whereas with the Spark Core API you basically specify how to
transform the data (to reshape it so you can come to a useful conclusion).

 You may therefore think of Spark Core as a set of fundamental building blocks on
which all other facilities are built. The code you write using the DataFrame API gets
translated to a series of Spark Core transformations under the hood.

 We’ll talk about DataFrames extensively in chapter 5. For now, let’s focus on fea-
tures relevant to the task at hand.

DataFrame API
A DataFrame is an RDD that has a schema. You can think of it as a relational data-
base table, in that each column has a name and a known type. The power of Data-
Frames comes from the fact that, when you create a DataFrame from a structured
dataset (in this case, JSON), Spark is able to infer a schema by making a pass over
the entire JSON dataset that’s being loaded. Then, when calculating the execution
plan, Spark can use the schema and do substantially better computation optimiza-
tions. Note that DataFrame was called SchemaRDD before Spark v1.3.0.
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 SQLContext is the main interface to Spark SQL (analogous to what SparkContext
is to Spark Core). Since Spark 2.0, both contexts are merged into a single class:
SparkSession. Its read method gives access to the DataFrameReader object, which
you use for getting various data. DataFrameReader’s json method is for reading the
JSON data. Here’s what the scaladocs (http://mng.bz/amo7) say:

def json(paths: String*): DataFrame
Loads a JSON file (one object per line) and returns the result as a 

➥ [[DataFrame]].

One object per line: that’s exactly how the GitHub archive files are structured. 
 Bring your Eclipse forward, and switch to the Scala perspective (Window > Open

Perspective > Other > Scala). Then open the App.scala file (to quickly locate the file,
you can use Ctrl-Shift-R and then type the first few letters of the filename in the dialog
that pops up), clean it up, and leave only the SparkContext initialization, like this:

import org.apache.spark.sql.SparkSession

object App {
  def main(args : Array[String]) {
    val spark = SparkSession.builder()
        .appName("GitHub push counter")
        .master("local[*]")
        .getOrCreate()

    val sc = spark.sparkContext
  }
}

To load the first JSON file, add the following snippet. Because neither a tilde (~)5 nor
$HOME can be used directly in the path, you end up first retrieving the HOME environ-
ment variable so you can use it to compose the JSON file path:

val homeDir = System.getenv("HOME")
val inputPath = homeDir + "/sia/github-archive/2015-03-01-0.json"
val ghLog = spark.read.json(inputPath)

The json method returns a DataFrame, which has many of the standard RDD methods
you used before, like filter, map, flatMap, collect, count, and so on.

 The next task to tackle is filtering the log entries so you’re left only with push events.
By taking a peek at DataFrame (since Spark 2.0, DataFrame is a special case of DataSet;
it’s a DataSet containing Row objects) in the scaladocs (http://mng.bz/3EQc), you can
quickly find out that the filter function is overloaded and that one version takes a con-
dition expression in the form of a String and another one takes a Column.

5 The tilde is equivalent to $HOME. You can use them interchangeably.
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 The String argument will be parsed as SQL, so you can write the following line
below the line that loads JSON into ghLog:

val pushes = ghLog.filter("type = 'PushEvent'")

It’s time to see whether the code you have so far works. Will the application compile
and start successfully? How will the loading go? Will the schema be inferred success-
fully? Have you specified the filter expression correctly? 

3.2.3 Running the application from Eclipse

For the purpose of finding out answers to these questions, add the following code
below filter:

pushes.printSchema                 
println("all events: " + ghLog.count) 
println("only pushes: " + pushes.count)
pushes.show(5)                        

Then, build the project by right-clicking the main project folder and choosing Run As
> Maven Install. Once the process finishes, right-click App.scala in the Package
Explorer, and choose Run As > Scala Application.

 If there is no such option, you will need to create a new Run Configuration. To do
this, click Run As > Run Configurations ..., then choose Scala Application and press
the New button. Enter Chapter03App in the Name field and org.sia.chapter03App.App in
the Main class field and hit Run.

From now on, we won’t always explicitly tell you when to run the application. Follow
the code (always inserting it at the bottom of the existing code), and every time you
see the output, run the application using either of the two methods described here.

 Hopefully, you can now see the output in Eclipse’s console window, where the
printSchema method outputs the inferred schema (if the output is buried in many
INFO and WARN messages, you probably skipped the logging-configuration step in sec-
tion 2.2.1). The inferred schema consists of the union of all JSON keys, where each key
has been assigned a type and the nullable attribute (which is always true in inferred
schemas because, understandably, Spark leaves that decision to you):

Pretty-prints the schema 
of the pushes DataFrame

Prints the first 5 rows (defaults to 20 
if you call it with no arguments) from 
a DataFrame in a tabular format

Keyboard shortcut for running a Scala application
You may have noticed the keyboard shortcut located next to Scala Application (in
Package Explorer > Run As). It says Alt-Shift-X S. This means you first need to press
together on Alt, Shift, and X, then release all the keys, and then press S by itself.
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root
 |-- actor: struct (nullable = true)
 |    |-- avatar_url: string (nullable = true)
 |    |-- gravatar_id: string (nullable = true)
 |    |-- id: long (nullable = true)
 |    |-- login: string (nullable = true)
 |    |-- url: string (nullable = true)
 |-- created_at: string (nullable = true)
 |-- id: string (nullable = true)
 |-- org: struct (nullable = true)
 |    |-- avatar_url: string (nullable = true)
 |    |-- gravatar_id: string (nullable = true)
 |    |-- id: long (nullable = true)
 |    |-- login: string (nullable = true)
 |    |-- url: string (nullable = true)
 |-- payload: struct (nullable = true)
 |    |-- action: string (nullable = true)
 |    |-- before: string (nullable = true)
 |    |-- comment: struct (nullable = true)
 |    |    |-- _links: struct (nullable = true)
 |    |    |    |-- html: struct (nullable = true)
 |    |    |    |    |-- href: string (nullable = true)
 ...

You can see that the inferred schema fits your previous findings regarding the GitHub
username. You’ll have to use the actor object and its property login, thus
actor.login. You’ll need that information soon, to count the number of pushes per
employee. Scroll down to find the first count (all events) and then a bit more to
find the second one (only pushes):

...
all events: 17786
...
only pushes: 8793
...

At the bottom of the output, you can see the first five rows (we removed four col-
umns—id, org, payload, and public—from the middle so the output can fit on a sin-
gle line):

+-------------------+--------------------+<->+--------------------+---------+
|              actor|          created_at|<->|                repo|     type|
+--------------------+-------------------+<->+--------------------+---------+
|[https://avatars...|2015-03-01T00:00:00Z|<->|[31481156,bezerra...|PushEvent|
|[https://avatars...|2015-03-01T00:00:00Z|<->|[31475673,demianb...|PushEvent|
|[https://avatars...|2015-03-01T00:00:00Z|<->|[31481269,ricardo...|PushEvent|
|[https://avatars...|2015-03-01T00:00:00Z|<->|[24902852,actorap...|PushEvent|
|[https://avatars...|2015-03-01T00:00:00Z|<->|[24292601,komasui...|PushEvent|
+-------------------+--------------------+<->+--------------------+---------+

To summarize, there were 17,786 events, out of which 8,793 were push events, in the
first hour of March 1, 2015. So, it’s all working as expected.
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3.2.4 Aggregating the data

You managed to filter out every type of event but PushEvent, and that’s a good start.
Next, you need to group the push events by username and, in the process, count the
number of pushes in each group (rows for each username):

val grouped = pushes.groupBy("actor.login").count 
grouped.show(5)

This groups all rows by actor.login column and, similar to regular SQL, performs
count as the aggregate operation during grouping. Think about it: as multiple rows
(with the same value in the actor.login column) get collapsed down to a single row
(that’s what grouping means), what happens with values in other columns? count6 tells
Spark to ignore the values in those columns and count the number of rows that get
collapsed for each unique login. The result answers the question of how many push
events each unique login has. In addition to count, the API lists other aggregation
functions including min, max, avg, and sum.

 The first five rows of the resulting DataFrame, grouped, are displayed in Eclipse
Console View:

+----------+-----+
|     login|count|
+----------+-----+
|    gfgtdf|    1|
|   mdorman|    1|
|quinngrier|    1|
| aelveborn|    1|
|  jwallesh|    3|
+----------+-----+

That looks good, but it’s impossible to see who had the highest number of pushes.
The only thing left to do is to sort the dataset by the count column:

val ordered = grouped.orderBy(grouped("count").desc)
ordered.show(5)

This orders the grouped DataFrame by the value in the count column and names the
new, sorted DataFrame ordered. The expression grouped("count") returns the count
column from the grouped DataFrame (it implicitly calls DataFrame.apply 7), on which
you call desc to order the output by count in descending order (the default ordering
is asc):

 
 

6 For other operations (such as sum, avg, max, and so on), consult the GroupedData scaladoc: http://mng.bz/X8lA.
7 See the apply method and the examples at the top of the DataFrame API for more info: http://mng.bz/

X8lA.

 www.allitebooks.com

http://mng.bz/X8lA
http://mng.bz/X8lA
http://mng.bz/X8lA
http://www.allitebooks.org
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+------------------+-----+
|             login|count|
+------------------+-----+
|      greatfirebot|  192|
|diversify-exp-user|  146|
|     KenanSulayman|   72|
|        manuelrp07|   45|
|    mirror-updates|   42|
+------------------+-----+

It works! That’s great—but this is the list of all users pushing to GitHub, not only
employees of your company. So, you need to exclude non-employees from the list.

3.2.5 Excluding non-employees

We prepared a file on our GitHub repository containing GitHub usernames for
employees of your imaginary company. It should already be downloaded in your
home directory at first-edition/ch03/ghEmployees.txt.

 To use the employee list, load it into some type of Scala collection. Because Set
has faster random lookup than Seq (sequential collection types, such as Array and
List), let’s use Set. To load the entire file8 into a new Set, you can do the following
(this is only a piece of the complete application, which will be given in the next section):

import scala.io.Source.fromFile

val empPath = homeDir + "/first-edition/ch03/ghEmployees.txt"
val employees = Set() ++ (                     
  for {9                    
    line <- fromFile(empPath).getLines
  } yield line.trim                     
)

This code snippet works like the following pseudocode:

In each iteration of the for loop:
    Read the next line from the file
    Initialize a new line variable so that it contains the current line 
        as its value
    Take the value from the line variable, trim it, and add it to the 
        temporary collection
Once the last iteration finishes:
    Return the temporary, hidden collection as the result of for
    Add the result of for to an empty set 
    Assign the set to the employees variable

8 Loading an entire file isn’t considered good practice, but because you know ghEmployees.txt should never
go over 1 MB, in this case it’s fine (with 208 employees, it weighs only 2 KB).

9 More about for expressions in Scala: http://mng.bz/k8q2.

Set() creates an 
empty, immutable 
set. The method 
named ++ adds 
multiple elements 
to the set.

The for
expression9

reads each line
from the file and
stores it into the

line variable.

yield also operates on every cycle of the for loop, adding a value
to a hidden collection that will be returned (and destroyed) as

the result of the entire for expression, once the loop ends.
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This for expression probably looks complicated if you’re new to Scala, but give it a
couple of tries; Scala’s for comprehensions are a powerful and succinct way of dealing
with iteration. There are no index variables unless you need them. We encourage you
to try a few for-related examples from that Scala book of yours (or other Scala
resource you choose to use). 

 You now have the set of employee usernames, but how do you compare it with your
ordered DataFrame that contains usernames and the corresponding counts? Well, you
already used DataFrame’s filter method. Its scaladocs (http://mng.bz/3EQc) say

def filter(conditionExpr: String): DataSet

filters rows using the given SQL expression:

val oldPeopleDf = peopleDf.filter("age > 15")

But this is only a simple example that compares values of the peopleDf DataFrame’s
age with the literal number 15. If a row’s age is greater than 15, the row is included in
oldPeopleDf. 

 You, on the other hand, need to compare the login column against the set of
employees and filter out each row whose login value isn’t in that set. You could use
DataSet’s filter function to specify filtering criteria based on the contents of individ-
ual Row objects (DataFrames are just DataSets containing Row objects), but you
couldn’t use that method in DataFrame SQL expressions. That’s where user-defined
functions (UDFs) come into play.

 The SparkSession (http://mng.bz/j9As) class contains the udf method, which is
used for registering UDFs. Because you need to check whether each login is in the set
of your company’s employees, the first thing you need to do is write a general filtering
function that checks whether a string is in a set:

val isEmp: (String => Boolean) = (arg: String) => employees.contains(arg)

You explicitly define isEmp as a function that takes a String and returns a Boolean
(often said as “function from String to Boolean”), but thanks to Scala’s type inference,
you could have made it more terse:

val isEmp = user => employees.contains(user)

Because employees is a Set of Strings, Scala knows that the isEmp function should
take a String.

 In Scala, the return value of a function is the value of its last statement, so it isn’t
difficult to infer that the function should return whatever the method contains
returns, which is a Boolean. 

 Next you register isEmp as a UDF:

val isEmployee = spark.udf.register("isEmpUdf", isEmp)
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Now, when Spark goes to execute the UDF, it will take all of its dependencies (only the
employees set, in this case) and send them along with each and every task, to be exe-
cuted on a cluster.

3.2.6 Broadcast variables

We’ll talk more about tasks and Spark execution in general in the coming chapters;
for now, to explain broadcast variables, we’ll tell you that if you were to leave the pro-
gram like this, you’d be sending the employees set some 200 times over the network
(the approximate number of tasks your application will generate for the purpose of
excluding non-employees). You don’t need to imagine this, because you’ll soon see it
in your program’s output.

 Broadcast variables are used for this purpose, because they allow you to send a vari-
able exactly once to each node in a cluster. Moreover, the variable is automatically
cached in memory on the cluster nodes, ready to be used during the execution of the
program.

 Spark uses a peer-to-peer protocol, similar to BitTorrent, to distribute broadcast vari-
ables, so that, in the case of large clusters, the master doesn’t get clogged while broad-
casting a potentially large variable to all nodes. This way, worker nodes know how to
exchange the variable among themselves, so it spreads out through the cluster organi-
cally, like a virus or gossip. In fact, you’ll often hear this type of communication between
nodes referred to as a gossip protocol, further explained at http://en.wikipedia.org/wiki/
Gossip_protocol. 

 The good thing about broadcast variables is that they’re simple to use. All you have
to do to “fix” your program is to turn your regular employees variable into a broadcast
variable, which you then use in place of employees. 

 You need to add an additional line, just above the isEmp function’s definition:

val bcEmployees = sc.broadcast(employees) 

Then change how you refer to this variable, because broadcast variables are accessed
using their value method (you need to change this line and not add it; the complete
source code of the program is given in listing 3.1):

val isEmp = user => bcEmployees.value.contains(user)

That’s all—everything else stays unchanged. The last thing to do here is to finally filter
the ordered DataFrame using your newly created isEmployee UDF function:

import sqlContext.implicits._
val filtered = ordered.filter(isEmployee($"login"))
filtered.show()

By writing the previous line, you basically tell filter to apply the isEmployee UDF on
the login column. If isEmployee returns true, the row gets included in the filtered
DataFrame.
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package org.sia.chapter03App
import org.apache.spark.sql.SparkSession
import scala.io.Source.fromFile

object App {
  
  def main(args : Array[String]) {
    // TODO expose appName and master as app. params
    val spark = SparkSession.builder()
        .appName("GitHub push counter")
        .master("local[*]")
        .getOrCreate()

        val sc = spark.sparkContext
    
    // TODO expose inputPath as app. param
    val homeDir = System.getenv("HOME")
    val inputPath = homeDir + "/sia/github-archive/2015-03-01-0.json"
    val ghLog = spark.read.json(inputPath)
   
    val pushes = ghLog.filter("type = 'PushEvent'")
    val grouped = pushes.groupBy("actor.login").count
    val ordered = grouped.orderBy(grouped("count").desc)
    
    // TODO expose empPath as app. param
    val empPath = homeDir + "/first-edition/ch03/ghEmployees.txt"
    val employees = Set() ++ (
      for {
        line <- fromFile(empPath).getLines
      } yield line.trim
    )
    val bcEmployees = sc.broadcast(employees) 

    import spark.implicits._
    val isEmp = user => bcEmployees.value.contains(user)
    val isEmployee = spark.udf.register("SetContainsUdf", isEmp)
    val filtered = ordered.filter(isEmployee($"login"))
    filtered.show()
  }
}

If you were writing this application for real, you would parameterize appName, appMaster,
inputPath, and empPath before sending the application to be tested in a production-
simulation environment. Who knows which Spark cluster the application is ultimately
going to run on? Even if you knew all the parameters in advance, it would still be prudent
to specify those parameters from the outside. It makes the application more flexible. One
obvious consequence of hard-coding the parameters in the application code is that every
time a parameter changes, the application has to be recompiled.

 To run the application, follow these steps:

Listing 3.1 Complete source code of the program

Broadcasts  the             
employees set
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1 In the top menu, go to Run > Run Configurations.
2 At left in the dialog, select Scala Application > App$.
3 Click Run.

The top 20 commit counts are displayed at the bottom of your Eclipse output:

+---------------+-----+
|          login|count|
+---------------+-----+
|  KenanSulayman|   72|
|     manuelrp07|   45|
|        Somasis|   26|
|direwolf-github|   24|
|EmanueleMinotto|   22|
|        hansliu|   21|
|         digipl|   20|
|      liangyali|   19|
|       fbennett|   18|
|         shryme|   18|
|      jmarkkula|   18|
|        chapuni|   18|
|         qeremy|   16|
|     martagalaz|   16|
|     MichaelCTH|   15|
|        mfonken|   15|
|         tywins|   14|
|         lukeis|   12|
|     jschnurrer|   12|
|    eventuserum|   12|
+---------------+-----+

That’s it! You have an application that’s working on a one-hour subset of data. 
 It’s obvious what you need to tackle next. The task was to run the report daily,

which means you need to include all 24 JSON files in the calculation. 

3.2.7 Using the entire dataset

First, let’s create a new Scala source file, to avoid messing with the working one-hour
example. In the Package Explorer, right-click the App.scala file, select Copy, right-
click App.scala again, and choose Paste. In the dialog that appears, enter GitHub-
Day.scala as the object’s name, and click OK. When you double-click the new file to
open it, notice the red around the filename. 

 In the GitHubDay.scala file, you can see the reason for the error: the object’s
name10 is still App. Piece of cake: rename the object App to GitHubDay, and—nothing
happens. Still red. Press Ctrl-S to save the file. Now the red is gone.

 Next, open the SparkSession scaladoc (http://mng.bz/j9As) to see whether there
is a way to create a DataFrame by ingesting multiple files with a single command.

10 Objects are Scala’s singletons. For more details, see http://mng.bz/y2ja.
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Although the read method in the scaladoc says nothing about ingesting multiple files,
let’s try it.

 Change the line starting with val inputPath to include all JSON files in the github-
archive folder, like this:

val inputPath = homeDir + "/sia/github-archive/*.json"

Run the application. In about 90 seconds, depending on your machine, you get the
result for March 1, 2015:

+---------------+-----+
|          login|count|
+---------------+-----+
|  KenanSulayman| 1727|
|direwolf-github|  561|
|         lukeis|  288|
|           keum|  192|
|        chapuni|  184|
|     manuelrp07|  104|
|         shryme|  101|
|            uqs|   90|
|   jeff1evesque|   79|
|        BitKiwi|   68|
|         qeremy|   66|
|        Somasis|   59|
|         jvodan|   57|
|     BhawanVirk|   55|
|       Valicek1|   53|
|      evelynluu|   49|
|  TheRingMaster|   47|
|   larperdoodle|   42|
|         digipl|   42|
|      jmarkkula|   39|
+---------------+-----+

Yup, this really works. There is just one more thing to do: you need to assure yourself
that all the dependencies are available when the application is run, so it can be used
from anywhere and run on any Spark cluster.

3.3 Submitting the application
The application will be run on your in-house Spark cluster. When an application is run,
it must have access to all the libraries it depends on; and because your application will
be shipped off to be executed on a Spark cluster, you know it’ll have access to all Spark
libraries and their dependencies (Spark is always installed on all nodes of a cluster). 

 To visualize the application’s dependencies, open pom.xml from the root of your proj-
ect and switch to the Dependency Hierarchy tab. You can see that your application depends
only on libraries that are available in your cluster (scala, spark-core, and spark-sql).

 After you finish packaging the application, you’ll probably first send it to the testing
team, so it can be tested before the word production is even spoken out loud. But there
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is a potential problem: you can’t be 100% sure that the Spark operations team (with
their custom Spark builds) include spark-sql when they prepare the testing environ-
ment. It may well happen that you send your app to be tested, only to get an angry email. 

3.3.1 Building the uberjar

You have two options for including additional JAR files in Spark programs that are going
to be run in production (there are others ways, but only these two are production-grade). 

■ Use the –-jars parameter of the spark-submit script, which will transfer all
the listed JARs to the executors. 

■ Build a so-called uberjar: a JAR that contains all needed dependencies. 

To avoid fiddling with libraries manually11 on multiple clusters, let’s build an uberjar.
 To illustrate this concept, you’ll introduce another dependency into the applica-

tion: another library you need to include and distribute along with it. Let’s say you
would like to include the commons-email library for simplified email sending, pro-
vided by Apache Commons (although you won’t be using it in the code of the current
example). The uberjar will need to contain only the code you wrote, the commons-
email library, and all the libraries that commons-email depends on. 

 Add the following dependency to pom.xml (right below the Spark SQL dependency):

<dependency>
  <groupId>org.apache.commons</groupId>
  <artifactId>commons-email</artifactId>
  <version>1.3.1</version>
  <scope>compile</scope>
</dependency>

Looking again at the dependency hierarchy in pom.xml, you can see that commons-
email depends on the mail and activation libraries. Some of those libraries may, in
turn, have their own dependencies. For instance, mail also depends on activation.
This dependency tree can grow arbitrarily long and branchy.

 You would probably start worrying, if you didn’t know about maven-shade-plugin.
Yes, Maven comes to the rescue yet again: maven-shade-plugin is used to build uber-
jars. We’ve also included a maven-shade-plugin configuration in pom.xml.

 Because you wish to include the commons-email library in the uberjar, its scope
needs to be set to compile. Maven uses the scope property of each dependency to
determine the phase during which a dependency is required. compile, test, package,
and provided are some of the possible values for scope.

 If scope is set to provided, the library and all its dependencies won’t be included
in uberjar. If you omit the scope, Maven defaults to compile, which means the library
is needed during application compilation and at runtime.

11 For example, in the test environment, you can provide libraries locally and let the driver (a machine from which
you connect to a cluster) expose the libraries over a provisional HTTP server to all other nodes (see “Advanced
Dependency Management” at http://spark.apache.org/docs/latest/submitting-applications.html).

 

http://spark.apache.org/docs/latest/submitting-applications.html
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 As always, after you change pom.xml, update the project by right-clicking its root
and selecting Maven > Update Project; then click OK without changing the defaults.
Depending on the type of changes made in pom.xml, updating the project may or
may not be necessary. If a project update is needed and you haven’t yet done so,
Eclipse draws your attention to the fact by displaying an error in the Problems view
and putting a red marker on the project root.

3.3.2 Adapting the application

To adapt your application to be run using the spark-submit script, you need to make
some modifications. First remove the assignment of the application name and Spark
master parameters from SparkConf (because those will be provided as arguments to
spark-submit) and instead provide an empty SparkConf object when creating Spark-
Context. The final result is shown in the following listing.

package org.sia.chapter03App

import scala.io.Source.fromFile
import org.apache.spark.sql.SparkSession

object GitHubDay {
  def main(args : Array[String]) {
    val spark = SparkSession.builder().getOrCreate()
        
    val sc = spark.sparkContext
    
    val ghLog = spark.read.json(args(0))
   
    val pushes = ghLog.filter("type = 'PushEvent'")
    val grouped = pushes.groupBy("actor.login").count
    val ordered = grouped.orderBy(grouped("count").desc)
    
    val employees = Set() ++ (
      for {
        line <- fromFile(args(1)).getLines
      } yield line.trim
    )
    val bcEmployees = sc.broadcast(employees)
    
    import spark.implicits._
    val isEmp = user => bcEmployees.value.contains(user)
    val sqlFunc = spark.udf.register("SetContainsUdf", isEmp)
    val filtered = ordered.filter(sqlFunc($"login"))
    
    filtered.write.format(args(3)).save(args(2))
  }
}

The last line saves the result to an output file, but you do it in such a way that the per-
son who’s invoking spark-submit decides on the path and format of the written out-
put (currently available built-in formats: JSON, Parquet,12 and JDBC).

Listing 3.2 Final version of the adapted, parameterized application

12 Parquet is a fast columnar file format that contains a schema: http://parquet.apache.org/.

 

http://parquet.apache.org/
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 So, the application will take four arguments:

■ Path to the input JSON files
■ Path to the employees file
■ Path to the output file
■ Output format

To build the uberjar, select the project root in the Package Explorer, and then choose
Run > Run Configurations. Choose Maven Build, and click New Launch Configura-
tion. In the dialog that appears (see figure 3.6), enter Build uberjar in the Name
field, click the Variables button, and choose project_loc in the dialog (which fills the
Base Directory field with the ${project_loc} value).13

 In the Goals field, enter clean package. Select the Skip Tests check box, save the
configuration by clicking Apply, and trigger the build by clicking Run.

13 You should use a variable so that any future project can also use this run configuration (which wouldn’t be
possible if you hard-coded the project’s path with, for example, a Browse Workspace button). This way, the
build will be triggered against the project that is currently selected in the Package Explorer. 

Name of the 
run configuration

Parameterized
base directory

Maven goals that
build the JAR

Turns off JUnit
execution

Runs the build

Figure 3.6 Specifying the run configuration for uberjar packaging
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After running the build, you should see a result similar to the following (truncated for
a cleaner view):

[INFO] --- maven-shade-plugin:2.4.2:shade (default) @ chapter03App ---
[INFO] Including org.scala-lang:scala-library:jar:2.10.6 in the shaded jar.
[INFO] Replacing original artifact with shaded artifact.
[INFO] Replacing /home/spark/workspace/chapter03App/target/chapter03App...
[INFO] Dependency-reduced POM written at: /home/spark/workspace/chapter0...
[INFO] Dependency-reduced POM written at: /home/spark/workspace/chapter0... 

[INFO] Dependency-reduced POM written at: /home/spark/workspace/
chapter0...

[INFO] --------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] --------------------------------------------------------------------
[INFO] Total time: 23.670 s
[INFO] Finished at: 2016-04-23T10:55:06+00:00
[INFO] Final Memory: 20M/60M
[INFO] --------------------------------------------------------------------

You should now have a file named chapter03App-0.0.1-SNAPSHOT.jar in your proj-
ect’s target folder. Because the file isn’t visible in Eclipse, check the filesystem by
right-clicking the target folder in the Package Explorer and selecting Show In >
System Explorer (or open a terminal and navigate to that folder manually).

 Let’s do a quick test on a local Spark installation. That should flush out most of the
potential errors.

3.3.3 Using spark-submit

The Spark documentation on submitting applications (http://mng.bz/WY2Y) gives
docs and examples of using the spark-submit shell script:

spark-submit \
    --class <main-class> \
    --master <master-url> \
    --deploy-mode <deploy-mode> \
    --conf <key>=<value> \
    ... # other options
    <application-jar> \
    [application-arguments]

spark-submit is a helper script that’s used to submit applications to be executed on a
Spark cluster. It’s located in the bin subfolder of your Spark installation.

 Before submitting the application, open another terminal to display the applica-
tion log as it runs. Recall in chapter 2 that you changed the default log4j configura-
tion so that the complete log is written in /usr/local/spark/logs/info.log. You can
still see the log in real time by using the tail command, which displays content from
the end of a file. It’s similar to head, which you used to get the first line of that JSON
file in section 3.3.2. 

 

http://mng.bz/WY2Y
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 If you supply the –f parameter, tail waits until the content is appended to the file;
as soon as that happens, tail outputs it in the terminal. Issue the following command
in your second terminal:

$ tail -f /usr/local/spark/logs/info.log

Bring the first terminal back to the front, and enter the following:

$ spark-submit --class org.sia.chapter03App.GitHubDay --master local[*] 

➥ --name "Daily GitHub Push Counter" chapter03App-0.0.1-SNAPSHOT.jar 
➥ "$HOME/sia/github-archive/*.json" 
➥ "$HOME/first-edition/ch03/ghEmployees.txt" 
➥ "$HOME/sia/emp-gh-push-output" "json"

One or two minutes later, depending on your machine, the command will end with-
out any errors. List the contents of the output folder:

$ cd $HOME/sia/emp-gh-push-output
$ ls –la

You see as many as 42 files (filenames are shortened here for nicer output):

-rw-r--r-- 1 spark spark  720 Apr 23 09:40 part-r-00000-b24f792c-...
-rw-rw-r-- 1 spark spark   16 Apr 23 09:40 .part-r-00000-b24f792c-....crc
-rw-r--r-- 1 spark spark  529 Apr 23 09:40 part-r-00001-b24f792c-...
-rw-rw-r-- 1 spark spark   16 Apr 23 09:40 .part-r-00001-b24f792c-....crc
-rw-r--r-- 1 spark spark  328 Apr 23 09:40 part-r-00002-b24f792c-...
-rw-rw-r-- 1 spark spark   12 Apr 23 09:40 .part-r-00002-b24f792c-....crc
-rw-r--r-- 1 spark spark  170 Apr 23 09:40 part-r-00003-b24f792c-...
-rw-rw-r-- 1 spark spark   12 Apr 23 09:40 .part-r-00003-b24f792c-....crc
-rw-r--r-- 1 spark spark    0 Apr 23 09:40 part-r-00004-b24f792c-...
-rw-rw-r-- 1 spark spark    8 Apr 23 09:40 .part-r-00004-b24f792c-....crc
...
-rw-r--r-- 1 spark spark    0 Apr 22 19:20 _SUCCESS
-rw-rw-r-- 1 spark spark    8 Apr 22 19:20 ._SUCCESS.crc

Pasting blocks of code into the Spark Scala shell
When submitting a Python application, you specify a Python file name instead of the
application JAR file. You also skip the --class argument. For the GitHubDay example:

$ spark-submit --master local[*] --name "Daily GitHub Push Counter" 

➥ GitHubDay.py "$HOME/sia/github-archive/*.json" 
➥ "$HOME/sia/ghEmployees. txt" "$HOME/sia/emp-gh-push-output" "json"

For more information, see the Python version of the GitHubDay application in our on-
line repository.
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The presence of the _SUCCESS file signifies that the job finished successfully. The crc
files are used to verify file validity by calculating the cyclic redundancy check (CRC)14

code for each data file. The file named ._SUCCESS.crc signifies that the CRC calcula-
tion for all the files was successful.

 To see the contents of the first data file, you can use the cat command, which
sends the contents of the file to the standard output (terminal):

$ cat $HOME/sia/emp-gh-push-output/part-r-00000-b24f792c-c0d0-425b-85db-

➥ 3322aab8f3e0
{"login":"KenanSulayman","count":1727}
{"login":"direwolf-github","count":561}
{"login":"lukeis","count":288}
{"login":"keum","count":192}
{"login":"chapuni","count":184}
{"login":"manuelrp07","count":104}
{"login":"shryme","count":101}
{"login":"uqs","count":90}
{"login":"jeff1evesque","count":79}
{"login":"BitKiwi","count":68}
{"login":"qeremy","count":66}
{"login":"Somasis","count":59}
{"login":"jvodan","count":57}
{"login":"BhawanVirk","count":55}
{"login":"Valicek1","count":53}
{"login":"evelynluu","count":49}
{"login":"TheRingMaster","count":47}
{"login":"larperdoodle","count":42}
{"login":"digipl","count":42}
{"login":"jmarkkula","count":39}

3.4 Summary
■ Online resources describe how to use IntelliJ IDEA with Spark, but Eclipse

resources are still hard to come by. That’s why we chose Eclipse for writing the
Spark programs in this chapter.

■ We’ve prepared an Archetype called scala-archetype-sparkinaction (avail-
able from our GitHub repository), which is used to create a starter Spark proj-
ect in which the versions and dependencies are taken care of.

■ The GitHub archive site (https://www.githubarchive.org/) provides GitHub
archives for arbitrary time periods.

■ Spark SQL and DataFrame (which is a DataSet containing Row objects) provide
a means for ingesting JSON data into Spark. 

■ SparkSession’s jsonFile method provides a means for ingesting JSON data.
Each line in an input file needs to be a complete JSON object.

14 A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage
devices to detect accidental changes to raw data. http://en.wikipedia.org/wiki/Cyclic_redundancy_check.
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■ DataSet’s filter method can parse SQL expressions and return a subset of the
data.

■ You can run a Spark application directly from Eclipse.
■ The SparkSession class contains the udf method, which is used to register user-

defined functions. 
■ Broadcast variables are used to send a variable exactly once to each node in a

cluster.
■ maven-shade-plugin is used to build an uberjar containing all of your applica-

tion’s dependencies.
■ You can run a Spark application on a cluster using the spark-submit script.
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The Spark API in depth

The previous two chapters explained RDDs and how to manipulate them with basic
actions and transformations. You’ve seen how to run Spark programs from Spark
REPL and how to submit standalone applications to Spark. 

 In this chapter, you’ll delve further into the Spark Core API and become
acquainted with a large number of Spark API functions. But don’t faint just yet!
We’ll be gentle, go slowly, and take you safely through these complicated and com-
prehensive, but necessary, topics.

 You’ll also learn how to use RDDs of key-value pairs called pair RDDs. You’ll see
how Spark partitions data and how you can change and take advantage of RDD par-
titioning. Related to partitioning is shuffling, which is an expensive operation, so
you’ll focus on avoiding unnecessary shuffling of data. You’ll also learn how to
group, sort, and join data. You’ll learn about accumulators and broadcast variables
and how to use them to share data among Spark executors while a job is running.

This chapter covers
■ Working with key-value pairs
■ Data partitioning and shuffling
■ Grouping, sorting, and joining data
■ Using accumulators and broadcast variables
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Finally, you’ll get into more advanced aspects of the inner workings of Spark, includ-
ing RDD dependencies. Roll up your sleeves!

4.1 Working with pair RDDs
Storing data as key-value pairs offers a simple, general, and extensible data model
because each key-value pair can be stored independently and it’s easy to add new types
of keys and new types of values. This extensibility and simplicity have made this prac-
tice fundamental to several frameworks and applications. For example, many popular
caching systems and NoSQL databases, such as memcached and Redis, are key-value
stores. Hadoop’s MapReduce also operates on key-value pairs (as you can see in
appendix A). 

 Keys and values can be simple types such as integers and strings, as well as more-
complex data structures. Data structures traditionally used to represent key-value pairs
are associative arrays, also called dictionaries in Python and maps in Scala and Java.

 In Spark, RDDs containing key-value tuples are called pair RDDs. Although you don’t
have to use data in Spark in the form of key-value pairs (as you’ve seen in the previous
chapters), pair RDDs are well suited (and indispensable) for many use cases. Having
keys along with the data enables you to aggregate, sort, and join the data, as you’ll soon
see. But before doing any of that, the first step is to create a pair RDD, of course. 

4.1.1 Creating pair RDDs

You can create a pair RDD in a couple of ways. Some SparkContext methods produce
pair RDDs by default (for example, methods for reading files in Hadoop formats,
which are covered later). You can also use a keyBy transformation, which accepts a
function (let’s call it f) for generating keys from an ordinary RDD’s elements and
maps each element into a tuple (f(element), element). You can also transform the
data into two-element tuples manually.

No matter which method you use, if you create an RDD of two-element tuples, the pair
RDD functions automagically become available, through the concept known as
implicit conversion. This concept was described in chapter 2, so feel free to glance
back if you don’t remember how it functions. The class hosting these special pair RDD
functions is PairRDDFunctions, and RDDs of two-element tuples get implicitly
converted to an instance of this class. 

Creating pair RDDs in Java
To create a pair RDD in Java, you need to use the JavaPairRDD class. You can create
a JavaPairRDD object with the JavaSparkContext.parallelizePairs method by
providing a list of Tuple2[K, V] objects. Or you can use the mapToPair transforma-
tion on a JavaRDDLike object and pass it a function that will be used to map each
RDD’s element into Tuple2[K, V] objects. A number of other Java RDD transforma-
tions return RDDs of type JavaPairRDD.
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 Let’s see what functionalities are implicitly added to pair RDDs. 

4.1.2 Basic pair RDD functions

Let’s say your marketing department wants to give complimentary products to custom-
ers according to some rules. They want you to write a program that will go through
yesterday’s transactions and add the complimentary ones. The rules for adding com-
plimentary products are these:

■ Send a bear doll to the customer who made the most transactions
■ Give a 5% discount for two or more Barbie Shopping Mall Playsets bought
■ Add a toothbrush for more than five dictionaries bought
■ Send a pair of pajamas to the customer who spent the most money overall

The complimentary products should be represented as additional transactions with
price 0.00. Marketing would also like to know which transactions were made by the
customers who are getting the complimentary products.

 To begin this task, start up your Spark shell. Assuming you’re running in the spark-
in-action VM, logged in as spark (in which case spark-shell is on your PATH), you
can issue the spark-shell command. Make sure you’re starting it from the /home/
spark directory. The Spark in the VM is already configured to start a cluster with the
local[*] master by default, so you don’t have to provide the --master argument:

$ spark-shell

We assume you cloned our GitHub repository and that the ch04_data_transactions.txt
file1 is available from the first-edition/ch04 directory (otherwise, you can get the file
from https://github.com/spark-in-action/first-edition/tree/master/ch04). 

 Each line in the file contains a transaction date, time, customer ID, product ID,
quantity, and product price, delimited with hash signs. The following snippet creates a
pair RDD with customer IDs as keys and the complete transaction data as values:

scala> val tranFile = sc.textFile("first-edition/ch04/"+  
    "ch04_data_transactions.txt")                          
scala> val tranData = tranFile.map(_.split("#"))            
scala> var transByCust = tranData.map(tran => (tran(2).toInt, tran)) 

After you execute the code, tranFile B contains lines from the file and tranData C
contains an array of strings containing the parsed data. The customer ID is in the third
column, so in order to create the pair RDD transByCust D, you map the parsed data
into a tuple whose first element is the element with index 2 (converted to an integer)

1 The file was generated using the Mockaroo website: www.mockaroo.com.

Loads 
data

B
Parses 
data

C

DCreates the pair RDD
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and whose second element is the complete parsed transaction. You declare transBy-
Cust to be a variable so that you can keep RDDs containing new and changed transac-
tions (which you’ll calculate later) in a single variable and just update it.

GETTING KEYS AND VALUES

Now that you have your pair RDD, you decide to first see how many customers bought
anything yesterday. You can get a new RDD containing only the keys or only the values
with pair RDD transformations prosaically named keys and values. 

 You use this line to get a list of customer IDs, remove any duplicates, and count the
number of unique customer IDs:

scala> transByCust.keys.distinct().count()
res0: Long = 100

The RDD returned by the keys transformation should contain 1,000 elements and
include duplicate IDs. To get the number of different customers who bought a prod-
uct, you first need to eliminate the duplicates with the distinct() transformation,
which gives you 100 as a result. 

 The values transformation behaves analogously, but you don’t need it right now.
These two transformations are shortcuts for map(_._1) and map(_._2), only easier to
type. 

COUNTING VALUES PER KEY

What was the task, again? Oh, yes. Give a complimentary bear doll to the customer
who made the most transactions.

 Each line in the transactions file is one transaction. So, to find out how many trans-
actions each customer made, it’s enough to count the lines per customer. 

 The corresponding RDD function is the countByKey action. As a reminder: unlike
RDD transformations, RDD actions immediately return the result as a Java (Scala or
Python) object. countByKey gives you a Scala Map containing the number of occur-
rences of each key:

scala> transByCust.countByKey()
res1: scala.collection.Map[Int,Long] = Map(69 -> 7, 88 -> 5, 5 -> 11, 
10 -> 7, 56 -> 17, 42 -> 7, 24 -> 9, 37 -> 7, 25 -> 12, 52 -> 9, 14 -> 8, 
20 -> 8, 46 -> 9, 93 -> 12, 57 -> 8, 78 -> 11, 29 -> 9, 84 -> 9, 61 -> 8, 
89 -> 9, 1 -> 9, 74 -> 11, 6 -> 7, 60 -> 4,...

The sum of all values of this Map is 1,000, of course, which is the total number of trans-
actions in the file. To calculate this you can use the following snippet:

scala> transByCust.countByKey().values.sum
res3: Long = 1000

map and sum are Scala’s standard methods and aren’t part of Spark’s API. 
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 You can also use standard Scala methods to find the customer who made the most
purchases:

scala> val (cid, purch) = transByCust.countByKey().toSeq.sortBy(_._2).last
cid: Int = 53
purch: Long = 19

The customer with ID 53 made 19 transactions, and you need to give them a compli-
mentary bear doll (product ID 4). Let’s create a variable, complTrans, which will hold
the complimentary products (transactions) as Arrays of Strings:

scala> var complTrans = Array(Array("2015-03-30", "11:59 PM", "53", "4", 
"1", "0.00"))

You’ll later add the transactions from this Array to the final transactions RDD. 

LOOKING UP VALUES FOR A SINGLE KEY

Marketing would also like to know exactly which transactions were made by the cus-
tomers who are getting the complimentary products. You can get that information for
the customer with ID 53 using the lookup() action:

scala> transByCust.lookup(53)
res1: Seq[Array[String]] = WrappedArray(Array(2015-03-30, 6:18 AM, 53, 42, 
5, 2197.85), Array(2015-03-30, 4:42 AM, 53, 3, 6, 9182.08), ...

The WrappedArray class that you see in the result is Scala’s way to present an Array as
a Seq (mutable sequence) object through implicit conversion. A warning, though. A
lookup transaction will transfer the values to the driver, so you have to make sure the
values will fit in its memory.

 You can use some plain Scala functions to pretty-print the result so that you can
copy it into an e-mail and send it to the marketing folks:

scala> transByCust.lookup(53).foreach(tran => println(tran.mkString(", ")))
2015-03-30, 6:18 AM, 53, 42, 5, 2197.85
2015-03-30, 4:42 AM, 53, 3, 6, 9182.08
...

USING THE MAPVALUES TRANSFORMATION TO CHANGE VALUES IN A PAIR RDD

The second task is to give a 5% discount for two or more Barbie Shopping Mall Play-
sets bought. The mapValues transformation helps you do this: it changes the values
contained in a pair RDD without changing the associated keys. And that’s exactly what
you need. Barbie Shopping Mall Playset has ID 25, so you apply the discount like this:

scala> transByCust = transByCust.mapValues(tran => {
     if(tran(3).toInt == 25 && tran(4).toDouble > 1) 
         tran(5) = (tran(5).toDouble * 0.95).toString
     tran })
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The function you give to the mapValues transformation checks whether the product
ID (third element of the transaction array) is 25 and the quantity (fourth element) is
greater than 1; in that case, it decreases the total price (fifth element) by 5%. Other-
wise, it leaves the transaction array untouched. You assign the new RDD to the same
variable, transByCust, just to make things simpler.

USING THE FLATMAPVALUES TRANSFORMATION TO ADD VALUES TO KEYS

You still have two more tasks to do. Let’s tackle the dictionary one first: you need to
add a complimentary toothbrush (ID 70) to customers who bought five or more dic-
tionaries (ID 81). That means you need to add transactions (represented as arrays) to
the transByCust RDD.

 The flatMapValues transformation fits the bill because it enables you to change
the number of elements corresponding to a key by mapping each value to zero or more
values. That means you can add new values for a key or remove a key altogether. The
signature of the transformation function it expects is V => TraversableOnce[U] (we
said in chapter 2 that TraversableOnce is just a special name for a collection). From
each of the values in the return collection, a new key-value pair is created for the cor-
responding key. If the transformation function returns an empty list for one of the val-
ues, the resulting pair RDD will have one fewer element. If the transformation
function returns a list with two elements for one of the values, the resulting pair RDD
will have one more element. Note that the mapped values can be of a different type
than before.

 So this is what you do:

scala> transByCust = transByCust.flatMapValues(tran => { 
    if(tran(3).toInt == 81 && tran(4).toDouble >= 5) {   
       val cloned = tran.clone()
       cloned(5) = "0.00"; cloned(3) = "70"; cloned(4) = "1"; 
       List(tran, cloned)
    } 
    else 
       List(tran)
    })

The anonymous function given to the transformation maps each transaction into a
list. The list contains only the original transaction if the condition isn’t met, or an
additional transaction with a complimentary toothbrush if the condition holds true.
The final transByCust RDD now contains 1,006 elements (because there are 6 trans-
actions with 5 or more dictionaries in the file). 

USING THE REDUCEBYKEY TRANSFORMATION TO MERGE ALL VALUES OF A KEY

reduceByKey lets you merge all the values of a key into a single value of the same type.
The merge function you pass to it merges two values at a time until there is only one
value left. The function should be associative; otherwise you won’t get the same result
every time you perform the reduceByKey transformation on the same RDD. 

Filters by product
and quantity

Clones the
transaction

array

Sets the clone’s price to
0.00, product ID to 70,

and quantity to 1

Returns two
elements

Returns one 
element
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 You could use reduceByKey for your final task—finding the customer who spent
the most overall—but you can also use the similar foldByKey transformation.

USING THE FOLDBYKEY TRANSFORMATION AS AN ALTERNATIVE TO REDUCEBYKEY

foldByKey does the same thing as reduceByKey, except that it requires an additional
parameter, zeroValue, in an extra parameter list that comes before the one with the
reduce function. The complete method signature is as follows: 

foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]

zeroValue should be a neutral value (0 for addition, 1 for multiplication, Nil for lists,
and so forth). It’s applied on the first value of a key (using the input function), and
the result is applied on the second value. You should be careful here, because, unlike
in the foldLeft and foldRight methods in Scala, zeroValue may be applied multiple
times. This happens because of RDD’s parallel nature.

 You finally get to the last task: finding the customer who spent the most. But your
original dataset isn’t appropriate for that, because you need to sum up the prices, and
the dataset contains arrays of strings. So you first map values to contain only the prices
and then use foldByKey. Finally, you sort the resulting Array by price and take the
largest element:

scala> val amounts = transByCust.mapValues(t => t(5).toDouble)
scala> val totals = amounts.foldByKey(0)((p1, p2) => p1 + p2).collect()
res0: Array[(String, Double)] = Array((84,53020.619999999995), 
(96,36928.57), (66,52130.01), (54,36307.04), ...
scala> totals.toSeq.sortBy(_._2).last
res1: (Int, Double) = (76,100049.0)

Whoa! Not bad! This person spent $100,049 on your company’s website! They defi-
nitely deserve a pair of pajamas. But before giving it to them, let’s illustrate the point
about zeroValue being applied multiple times and try the same foldByKey operation
with a zeroValue of 100,000:

scala> amounts.foldByKey(100000)((p1, p2) => p1 + p2).collect()
res2: Array[(String, Double)] = Array((84,453020.62), (96,436928.57), 
(66,452130.0099999999), (54,436307.04), ...

You can see that a “zero value” of 100,000 was added to the values more than once (as
many times as there are partitions in the RDD), which isn’t something you typically
want to do (unless you like random results). 

 Now you give a pair of pajamas (ID 63) to the customer with ID 76 by adding a
transaction to the temporary array complTrans that you created before:

scala> complTrans = complTrans :+ Array("2015-03-30", "11:59 PM", "76", 
"63", "1", "0.00")
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The complTrans array should have two transactions now. All that is left for you to do is
add these two transactions to the transByCust RDD (adding client IDs as keys and
complete transactions arrays as values), which holds the other changes you made, and
save everything to a new file:

scala> transByCust = transByCust.union(sc.parallelize(complTrans).map(t => 
(t(2).toInt, t)))
scala> transByCust.map(t => t._2.mkString("#")).saveAsTextFile("ch04output-
transByCust")

Someone else will now use a batch job to transform this file into shipping orders. You
can relax now; you’ve finished all the tasks marketing gave you.

USING AGGREGATEBYKEY TO GROUP ALL VALUES OF A KEY

While you’re relaxing, we’ll go on to explain a few things about the aggregateByKey
transformation. But don’t relax too much: leave your Spark shell open, because you’re
still going to need it.

 aggregateByKey is similar to foldByKey and reduceByKey in that it merges values
and takes a zero value, but it also transforms values to another type. In addition to the
zeroValue argument, it takes two functions as arguments: a transform function for
transforming values from type V to type U (with the signature (U, V) => U) and a merge
function for merging the transformed values (with the signature (U, U) => U). The
double parameter list is a Scala feature known as currying (www.scala-lang.org/old/
node/135). If given only the zeroValue argument (the only argument in the first
parentheses), aggregateByKey returns a parameterized function that takes the other
two arguments. But you wouldn’t normally use aggregateByKey like that; you would
provide both sets of parameters at the same time.

 Let’s say you need a list of all products your customers purchased. You can use
aggregateByKey to accomplish that:

scala> val prods = transByCust.aggregateByKey(List[String]())( 
   (prods, tran) => prods ::: List(tran(3)),
   (prods1, prods2) => prods1 ::: prods2)                     
scala> prods.collect()
res0: Array[(String, List[String])] = Array((88,List(47.149.147.123, 
74.211.5.196,...), (82,List(8.140.151.84, 23.130.185.187,...), ...)

NOTE The ::: operator is a Scala list operator for concatenating two lists.

The zeroValue B is an empty List. The first combine function C in aggregate-
ByKey is applied to elements of each of the RDD’s partitions, and the second one D is
used for merging the results. But to understand fully what is going on here, you
should first understand data partitioning. 

Empty list 
as a zero 
value

B
Adds products to listsC

D
Concatenates two

lists of the same key
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4.2 Understanding data partitioning and reducing data shuffling
Data partitioning is Spark’s mechanism for dividing data between multiple nodes in a
cluster. It’s a fundamental aspect of RDDs that can have a big effect on performance
and resource consumption. Shuffling is another important aspect of Spark, closely
related to data partitioning, that you’ll learn about in this section. Many RDD opera-
tions offer ways of manipulating data partitioning and shuffling, so our in-depth
exploration of the Spark API wouldn’t be complete without explaining them. 

 In part 3 of the book, we’ll talk about Spark deployment types, where we discuss
Spark cluster options in depth. For the purpose of explaining partitions, think of a clus-
ter as a set of interconnected machines (nodes) that are being used in parallel.

 Each part (piece or slice) of an RDD is called a partition.2 When you load a text file
from your local filesystem into Spark, for example, the file’s contents are split into par-
titions, which are evenly distributed to nodes in a cluster. More than one partition may
end up on the same node. The sum of all those partitions forms your RDD. This is
where the word distributed in resilient distributed dataset comes from. Figure 4.1 shows
the distribution of lines of a text file loaded into an RDD in a five-node cluster. The
original file had 15 lines of text, so each RDD partition was formed with 3 lines of text.
Each RDD maintains a list of its partitions and an optional list of preferred locations
for computing the partitions. 

NOTE The list of an RDD’s partitions can be obtained from that RDD’s parti-
tions field. It’s an Array, so you can get the number of RDD partitions by
reading its partitions.size field (aggrdd.partitions.size for the previ-
ous example).

The number of RDD partitions is important because, in addition to influencing data
distribution throughout the cluster, it also directly determines the number of tasks
that will be running RDD transformations. If this number is too small, the cluster will
be underutilized. Furthermore, memory problems could result, because working sets
might get too big to fit into the memory of executors. We recommend using three to
four times more partitions than there are cores in your cluster. Moderately larger val-
ues shouldn’t pose a problem, so feel free to experiment. But don’t get too crazy,
because management of a large number of tasks could create a bottleneck. 

 Let’s now see how data partitioning is achieved in Spark.

4.2.1 Using Spark’s data partitioners

Partitioning of RDDs is performed by Partitioner objects that assign a partition
index to each RDD element. Two implementations are provided by Spark: HashParti-
tioner and RangePartitioner. Pair RDDs also accept custom partitioners.

2 Partitions were previously called splits. The term split can still be found in Spark’s source code (it’s eventually
going to be refactored).
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UNDERSTANDING HASHPARTITIONER

HashPartitioner is the default partitioner in Spark. It calculates a partition index
based on an element’s Java hash code (or a key’s hash code in pair RDDs), according
to this simple formula: partitionIndex = hashCode % numberOfPartitions. The parti-
tion index is determined quasi-randomly; consequently, the partitions most likely
won’t be exactly the same size. In large datasets with a relatively small number of parti-
tions, though, the algorithm is likely to distribute data evenly among them.

 The default number of data partitions when using HashPartitioner is determined
by the Spark configuration parameter spark.default.parallelism. If that parame-
ter isn’t specified by the user, it will be set to the number of cores in the cluster. (Chap-
ter 12 covers setting Spark configuration parameters.)

UNDERSTANDING RANGEPARTITIONER

RangePartitioner partitions data of sorted RDDs into roughly equal ranges. It samples
the contents of the RDD passed to it and determines the range boundaries according
to the sampled data. You aren’t likely to use RangePartitioner directly. 

UNDERSTANDING PAIR RDD CUSTOM PARTITIONERS

Pair RDDs can be partitioned with custom partitioners when it’s important to be precise
about the placement of data among partitions (and among tasks working on them).
You may want to use a custom partitioner, for example, if it’s important that each task

Partition1
Node1

Partition2
Node2

Partition3
Node3

Partition4

Node4

Partition5
Node5

Network RDD

Figure 4.1 Simplified look at partitions of an RDD in a five-node cluster. The RDD was 
created by loading a text file using the textFile method of SparkContext. The loaded 
text file had 15 lines of text, so each partition was formed with 3 lines of text.
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processes only a specific subset of key-value pairs, where all of them belong to a single
database, single database table, single user, or something similar.

 Custom partitioners can be used only on pair RDDs, by passing them to pair RDD
transformations. Most pair RDD transformations have two additional overloaded
methods: one that takes an additional Int argument (the desired number of parti-
tions) and another that takes an additional argument of the (custom) Partitioner
type. The method that takes the number of partitions uses the default Hash-
Partitioner. For example, these two lines of code are equal, because they both apply
HashPartitioner with 100 partitions:

rdd.foldByKey(afunction, 100)
rdd.foldByKey(afunction, new HashPartitioner(100))

All other pair RDD transformations offer these two additional versions, except
mapValues and flatMapValues (these two always preserve partitioning). You can spec-
ify a custom partitioner by using the second version.

 If pair RDD transformations don’t specify a partitioner, the number of partitions
used will be the maximum number of partitions of parent RDDs (RDDs that were
transformed into this one). If none of the parent RDDs have a partitioner defined,
HashPartitioner will be used with the number of partitions specified by the
spark.default.parallelism parameter.

 Another method for changing the default placement of data among partitions in
pair RDDs is using the default HashPartitioner, but changing the keys’ hash code
according to some algorithm. This might be simpler to do, depending on your use case,
and it could perform better by avoiding inadvertent shuffling, which is covered next.

4.2.2 Understanding and avoiding unnecessary shuffling

Physical movement of data between partitions is called shuffling. It occurs when data
from multiple partitions needs to be combined in order to build partitions for a new
RDD. When grouping elements by key, for example, Spark needs to examine all of the
RDD’s partitions, find elements with the same key, and then physically group them,
thus forming new partitions. 

 To visualize what happens with partitions during a shuffle, we’ll use the previous
example with the aggregateByKey transformation (from section 4.1.2). The shuffle
that occurs during that transformation is illustrated in figure 4.2.

 For this example, assume that you have only three partitions on three worker
nodes and you’ll simplify the data. As you may recall, aggregateByKey takes two func-
tions: a transform function for transforming and merging two values to a value of the
target type, and a merge function for merging the transformed values themselves. But
what we didn’t say before is that the first one merges values in partitions, and the sec-
ond one merges them between partitions.
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This was the example:

scala> val prods = transByCust.aggregateByKey(List[String]())(
   (prods, tran) => prods ::: List(tran(3)),
   (prods1, prods2) => prods1 ::: prods2)

This gathers all values of a single key into a list, so that prods has one list per key. The
lists are presented in figure 4.2 in parentheses.

 The transform function puts all values of each key in a single partition (partitions P1
to P3) into a list. Spark then writes this data to intermediate files on each node. In the
next phase, the merge function is called to merge lists from different partitions, but of
the same key, into a single list for each key. The default partitioner (HashPartitioner)
then kicks in and puts each key in its proper partition.
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values between partitions
(the shuffle phase).
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Figure 4.2 A shuffle during the example aggregateByKey transformation on an RDD with three 
partitions. The transform function, passed to aggregateByKey, merges values in partitions. The 
merge function merges values between partitions during the shuffle phase. Intermediate files hold val-
ues merged per partition and are used during the shuffle phase.
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 Tasks that immediately precede and follow the shuffle are called map and reduce
tasks, respectively. The results of map tasks are written to intermediate files (often to
the OS’s filesystem cache only) and read by reduce tasks. In addition to being written
to disk, the data is sent over the network, so it’s important to try to minimize the num-
ber of shuffles during Spark jobs. 

 Although most RDD transformations don’t require shuffling, for some of them
shuffling happens only under certain conditions. So to minimize the number of shuf-
fle occurrences, you need to understand these conditions. 

SHUFFLING WHEN EXPLICITLY CHANGING PARTITIONERS

We already mentioned pair RDD custom partitioners. Shuffling always occurs when
using a custom partitioner in methods that allow you to do that (most pair RDD trans-
formations). 

 Shuffling also occurs if a different HashPartitioner than the previous one is used.
Two HashPartitioners are the same if they have the same number of partitions
(because they’ll always choose the same partition for the same object, if the number of
partitions is the same). So shuffling will also occur if a HashPartitioner with a different
number of partitions than the previous one is used in the transformation.

TIP Because changing the partitioner provokes shuffles, the safest approach,
performance-wise, is to use a default partitioner as much as possible and avoid
inadvertently causing a shuffle. 

For example, the following lines always cause shuffling to occur (assuming rdd’s paral-
lelism is different than 100):

rdd.aggregateByKey(zeroValue, 100)(seqFunc, comboFunc).collect()
rdd.aggregateByKey(zeroValue, new CustomPartitioner())(seqFunc, 

➥ comboFunc).collect()

In the first example, the number of partitions is changed; and in the second one, a
custom partitioner is used. A shuffle is invoked in both cases.

SHUFFLE CAUSED BY PARTITIONER REMOVAL

Sometimes a transformation causes a shuffle, although you were using the default par-
titioner. map and flatMap transformations remove the RDD’s partitioner, which doesn’t
cause a shuffle per se. But if you transform the resulting RDD (with one of the trans-
formations previously mentioned, for example), even using the default partitioner, a shuf-
fle will occur. In the following snippet, the second line doesn’t induce a shuffle, but
the third one does:

scala> val rdd:RDD[Int] = sc.parallelize(1 to 10000)   
scala> rdd.map(x => (x, x*x)).map(_.swap).count()      
scala> rdd.map(x => (x, x*x)).reduceByKey((v1, v2)=>v1+v2).count()

No shuffleB

CShuffle occurs
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The second line B creates a pair RDD by using the map transformation, which
removes the partitioner, and then switches its keys and values by using another map
transformation. That alone won’t cause a shuffle. The third line C uses the same pair
RDD as before, but this time the reduceByKey transformation instigates a shuffle.

 Here’s a complete list of transformations that cause a shuffle after map or flatMap
transformations:

■ Pair RDD transformations that can change the RDD’s partitioner: aggregate-
ByKey, foldByKey, reduceByKey, groupByKey, join, leftOuterJoin, right-
OuterJoin, fullOuterJoin, and subtractByKey

■ RDD transformations: subtract, intersection, and groupWith
■ sortByKey transformation (which always causes a shuffle)
■ partitionBy or coalesce with shuffle=true (covered in the next section)

OPTIMIZING SHUFFLING WITH AN EXTERNAL SHUFFLE SERVICE

During shuffling, executors need to read files from one another (a shuffle is pull-
based). If some executors get killed, other executors can no longer get shuffle data
from them, and the data flow is interrupted. 

 An external shuffle service is meant to optimize the exchange of shuffle data by
providing a single point from which executors can read intermediate shuffle files. If
an external shuffle service is enabled (by setting spark.shuffle.service.enabled to
true), one external shuffle server is started per worker node. 

PARAMETERS THAT AFFECT SHUFFLING

Spark has two shuffle implementations: sort-based and hash-based. Sort-based shuffling
has been the default since version 1.2 because it’s more memory efficient and creates
fewer files.3 You can define which shuffle implementation to use by setting the value
of the spark.shuffle.manager parameter to either hash or sort.

 The spark.shuffle.consolidateFiles parameter specifies whether to consoli-
date intermediate files created during a shuffle. For performance reasons, we recom-
mend that you change this to true (the default value is false) if you’re using an ext4
or XFS filesystem.4

 Shuffling can require a lot of memory for aggregation and co-grouping. The
spark.shuffle.spill parameter specifies whether the amount of memory used for
these tasks should be limited (the default is true). In that case, any excess data will spill
over to disk. The memory limit is specified by the spark.shuffle.memoryFraction
parameter (the default is 0.2). Furthermore, the spark.shuffle.spill.compress
parameter tells Spark whether to use compression for the spilled data (the default is
again true).

3 For more information, see http://mng.bz/s6EA.
4 For more information, see http://mng.bz/O304.
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 The spill threshold shouldn’t be too high, because it can cause out-of-memory
exceptions. If it’s too low, spilling can occur too frequently, so it’s important to find a
good balance. Keeping the default value should work well in most situations.

 Some useful additional parameters are as follows:

■ spark.shuffle.compress specifies whether to compress intermediate files (the
default is true).

■ spark.shuffle.spill.batchSize specifies the number of objects that will be
serialized or deserialized together when spilling to disk. The default is 10,000.

■ spark.shuffle.service.port specifies the port the server will listen on if an
external shuffle service is enabled.

4.2.3 Repartitioning RDDs

Now you can return to your exploration of the Spark API with operations that let you
change data partitioning at runtime. Why would you want to do that?

 As we discussed previously, in some situations you need to explicitly repartition an RDD
in order to distribute the workload more efficiently or avoid memory problems. Some
Spark operations, for example, default to a small number of partitions, which results in
partitions that have too many elements (take too much memory) and don’t offer adequate
parallelism. Repartitioning of RDDs can be accomplished with the partitionBy,
coalesce, repartition, and repartitionAndSortWithinPartition transformations.

REPARTITIONING WITH PARTITIONBY

partitionBy is available only on pair RDDs. It accepts only one parameter: the desired
Partitioner object. If the partitioner is the same as the one used before, partitioning
is preserved and the RDD remains the same. Otherwise, a shuffle is scheduled and a
new RDD is created.

REPARTITIONING WITH COALESCE AND REPARTITION

coalesce is used for either reducing or increasing the number of partitions. The full
method signature is coalesce (numPartitions: Int, shuffle: Boolean = false).

 The second (optional) parameter specifies whether a shuffle should be performed
(false by default). If you want to increase the number of partitions, it’s necessary to set
the shuffle parameter to true. The repartitioning algorithm balances new partitions
so they’re based on the same number of parent partitions, matching the preferred
locality (machines) as much as possible, but also trying to balance partitions across the
machines. The repartition transformation is just a coalesce with shuffle set to true.

 It’s important to understand that if a shuffle isn’t specified, all transformations
leading up to coalesce, if they themselves didn’t include a shuffle, will be run using
the newly specified number of executors (the number of partitions). If the shuffle is
specified, the previous transformations are run using the original number of execu-
tors, and only the future ones (the ones after the coalesce) will be run with the new
number of partitions.
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REPARTITIONING WITH REPARTITIONANDSORTWITHINPARTITION

The final transformation for repartitioning RDDs is repartitionAndSortWithin-
Partition. It’s available only on sortable RDDs (pair RDDs with sortable keys), which
are covered later, but we mention it here for the sake of completeness. 

 It also accepts a Partitioner object and, as its name suggests, sorts the elements
within each partition. This offers better performance than calling repartition and
manually sorting, because part of the sorting can be done during the shuffle. A shuffle
is always performed when using repartitionAndSortWithinPartition.

4.2.4 Mapping data in partitions

The last aspect of data partitioning we want to tell you about is mapping data in parti-
tions. Spark offers a way to apply a function not to an RDD as a whole, but to each of its
partitions separately. This can be a precious tool in optimizing your transformations.
Many can be rewritten to map data in partitions only, thus avoiding shuffles. RDD
operations for working on partitions are mapPartitions, mapPartitionsWithIndex,
and glom, a specialized partition-mapping transformation.

UNDERSTANDING MAPPARTITIONS AND MAPPARTITIONSWITHINDEX

Similar to map, mapPartitions accepts a mapping function, but the function has to
have the signature Iterator[T] => Iterator[U]. This way, it can be used for iterating
over elements within each partition and creating partitions for the new RDD. 

 mapPartitionsWithIndex is different in that its mapping function also accepts the
partition’s index: (Int, Iterator[T]) => Iterator[U]. The partition’s index can
then be used in the mapping function.

 The mapping function can transform the input Iterator into a new one with
some of Scala’s Iterator functions.5 For example:

■ You can map, flatMap, zip, and zipWithIndex values in an Iterator.
■ You can take only some elements with take(n) or takeWhile(condition).
■ You can skip elements with drop(n) or dropWhile(condition).
■ You can filter the elements.
■ You can get an Iterator with a subset of elements with slice(m,n).

All of these create a new Iterator that can be used as the result of the mapping function.
 Both transformations accept an additional optional parameter preserveParti-

tioning, which is false by default. If it’s set to true, the new RDD will preserve parti-
tioning of the parent RDD. If it’s set to false, the partitioner will be removed, with all
the consequences we discussed previously.

 Mapping partitions can help you solve some problems more efficiently than using
other transformations that don’t operate on partitions explicitly. For example, if the
mapping function involves expensive setup (such as opening a database connection),
it’s much better to do it once per partition than once per element.

5 For a complete reference, see http://mng.bz/CWA6.
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COLLECTING PARTITION DATA WITH A GLOM TRANSFORMATION

glom (the word means to grab) gathers elements of each partition into an array and
returns a new RDD with those arrays as elements. The number of elements in the new
RDD is equal to the number of its partitions. The partitioner is removed in the process.

 For a quick example of a glom transformation, we’ll use parallelized random data:

scala> val list = List.fill(500)(scala.util.Random.nextInt(100))
list: List[Int] = List(88, 59, 78, 94, 34, 47, 49, 31, 84, 47, ...)
scala> val rdd = sc.parallelize(list, 30).glom()
rdd: org.apache.spark.rdd.RDD[Array[Int]] = MapPartitionsRDD[0]
scala> rdd.collect()
res0: Array[Array[Int]] = Array(Array(88, 59, 78, 94,...), ...)
scala> rdd.count()
res1: Long = 30

This creates an RDD of 30 partitions and gloms it. The count of array objects in the
new RDD, containing data from each partition, is also 30. 

 glom could be used as a quick way to put all of an RDD’s elements into a single
array. You could first repartition the RDD into one partition and then call glom. The
result is an RDD with a single array element containing all of the RDD’s previous ele-
ments. Of course, this applies only to RDDs small enough so that all of their elements
fit into a single partition.

4.3 Joining, sorting, and grouping data
Imagine now that marketing comes to you with another request. They want additional
data for a report: names of products with totals sold, sorted alphabetically; a list of
products the company didn’t sell yesterday; and some statistics about yesterday’s trans-
actions per customer: average, maximum, minimum, and the total price of products
bought. Being thorough and eager for knowledge as you are, you’ll try out all the ways
this can be done with the core Spark API.6 

4.3.1 Joining data

Okay, you need names of products with totals sold (you’ll do the sorting part later).
You already have transaction data loaded in the RDD tranData (used in section 4.1),
but you first need to key the transactions by product ID:

val transByProd = tranData.map(tran => (tran(3).toInt, tran))

Then you calculate the totals per product using the reduceByKey transformation:

val totalsByProd = transByProd.mapValues(t => t(5).toDouble).
   reduceByKey{case(tot1, tot2) => tot1 + tot2}

6 The list of transformations in these sections is rather long, but in order to write good Spark programs, it’s
necessary to become thoroughly acquainted with RDD transformations and know when to apply each of them.
As your mother would probably say: it’s for your own good!
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Names of products are kept in a different file (ch04_data_products.txt from the
online repository), and you’ll obviously need to join the product names with yester-
day’s transaction data. You load the products file and convert it into a pair RDD:

scala> val products = sc.textFile("first-edition/ch04/"+
    "ch04_data_products.txt").
    map(line => line.split("#")).
    map(p => (p(0).toInt, p))

How can you join one with the other? To join contents of several RDDs, Spark offers
classic joins, similar to joins in relational databases, but also transformations such as
zip, cartesian, and intersection. Let’s see how they work.

THE FOUR CLASSIC JOIN TRANSFORMATIONS

The four classic joins in Spark functions are just like RDBMS joins of the same names,
but are performed on pair RDDs. When called on an RDD of (K, V) elements, and
passing in an RDD of (K, W) elements, the four join transformations give different
results:

■ join—Equivalent to an inner join in RDBMS, this returns a new pair RDD with
the elements (K, (V, W)) containing all possible pairs of values from the first
and second RDDs that have the same keys. For the keys that exist in only one of
the two RDDs, the resulting RDD will have no elements.

■ leftOuterJoin—Instead of (K, (V, W)), this returns elements of type (K, (V,
Option(W))). The resulting RDD will also contain the elements (key, (v,
None)) for those keys that don’t exist in the second RDD. Keys that exist only in
the second RDD will have no matching elements in the new RDD.

■ rightOuterJoin—This returns elements of type (K, (Option(V), W)); the
resulting RDD will also contain the elements (key, (None, w)) for those keys
that don’t exist in the first RDD. Keys that exist only in the first RDD will have no
matching elements in the new RDD.

■ fullOuterJoin—This returns elements of type (K, (Option(V), Option(W));
the resulting RDD will contain both (key, (v, None)) and (key, (None, w))
elements for those keys that exist in only one of the two RDDs.

If the RDDs you’re trying to join have duplicate keys, these elements will be joined
multiple times. 

 Similar to some of the other pair-RDD transformations, all four join transforma-
tions have two additional versions that expect a Partitioner object or a number of
partitions. If a number of partitions is specified, HashPartitioner with that number
of partitions will be used. If no partitioner is specified (nor the number of partitions),
Spark takes the first partitioner from the two RDDs being joined. If even the two RDDs
don’t have the partitioner defined, a new HashPartitioner is created, using the num-
ber of partitions equal to either spark.default.partitions (if it’s defined), or the
largest number of partitions in the two RDDs. In a word, it’s complicated. 
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 Now that you know all this, you call join to attach product data to the totals:

scala> val totalsAndProds = totalsByProd.join(products)
scala> totalsAndProds.first()
res0: (Int, (Double, Array[String])) = (84,(75192.53,Array(84, 
Cyanocobalamin, 2044.61, 8)))

And now you have, for each product ID, a tuple containing two elements: the total and
the complete product data as an Array of Strings. 

 Okay, that was easy. But what about the list of products the company didn’t sell yes-
terday? That’s obviously the leftOuterJoin or rightOuterJoin transformation,
depending on the RDD you call it on. The RDD with more data (products, in this
case) should be on the side mentioned in the transformation name. So these two lines
have (almost) the same result:

val totalsWithMissingProds = products.leftOuterJoin(totalsByProd)
val totalsWithMissingProds = totalsByProd.rightOuterJoin(products)

The difference in the results is the position of the Option object. In the case of right-
OuterJoin, totalsWithMissingProds will contain elements of type (Int, (Option
[Double], Array[String])). For missing products, the Option object will be equal to
None. To retrieve the missing products, you filter the RDD and then map it so that you
only get the product data, without the key and the None objects. Assuming you used
rightOuterJoin:

val missingProds = totalsWithMissingProds.
  filter(x => x._2._1 == None).
  map(x => x._2._2)

Finally, you print out the contents of the missingProds RDD:

scala> missingProds.foreach(p => println(p.mkString(", ")))
43, Tomb Raider PC, 2718.14, 1
63, Pajamas, 8131.85, 3
3, Cute baby doll, battery, 1808.79, 2
20, LEGO Elves, 4589.79, 4

NOTE The Option object in the result from *OuterJoin transformations is
Scala’s way to avoid NullPointerExceptions. The result from the join trans-
formation doesn’t contain Option objects because null elements aren’t possi-
ble in that case. An Option object can be either a None or a Some object. To
check whether an Option has a value, you can call isEmpty; and to get the
value itself, you can call get. A convenient shortcut is to call
getOrElse(default). It will return the default expression if the Option is
None, or get otherwise.

Well done! But you may be wondering if you can do this another way.

 



85Joining, sorting, and grouping data

USING SUBTRACT AND SUBTRACTBYKEY TRANSFORMATIONS TO REMOVE COMMON VALUES

The answer is: yes, you can. subtract returns elements from the first RDD that aren’t
present in the second one. It works on ordinary RDDs and compares complete ele-
ments (not just their keys or values).

 subtractByKey works on pair RDDs and returns an RDD with pairs from the first
RDD whose keys aren’t in the second RDD. The second RDD doesn’t need to have val-
ues of the same type as the first one. This is perfect for your task. It gives you elements
from products whose keys don’t exist in totalsByProd:

val missingProds = products.subtractByKey(totalsByProd).values

The result is the same:

scala> missingProds.foreach(p => println(p.mkString(", ")))
20, LEGO Elves, 4589.79, 4
3, Cute baby doll, battery, 1808.79, 2
43, Tomb Raider PC, 2718.14, 1
63, Pajamas, 8131.85, 3

Both subtract and subtractByKey have two additional versions that accept the num-
ber of partitions and a Partitioner object.

JOINING RDDS WITH THE COGROUP TRANSFORMATION

Yet another way of finding both the names of purchased products and the products
that no one bought is the cogroup transformation. cogroup performs a grouping of
values from several RDDs by key and returns an RDD whose values are arrays of Iter-
able objects (a fancy name for a Scala collection) containing values from each RDD.
So, cogroup groups values of several RDDs by key and then joins these grouped RDDs.
You can pass up to three RDDs to it, all of which need to have the same key type as the
enclosing RDD. For example, the signature of the cogroup function for cogrouping
three RDDs (including the enclosing one) is as follows:

cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)]):
  RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]

If you cogroup totalsByProd and products, you’ll get an RDD containing keys pres-
ent in one or the other and the matching values accessible through two Iterators:

scala> val prodTotCogroup = totalsByProd.cogroup(products)
prodTotCogroup: org.apache.spark.rdd.RDD[(Int, (Iterable[Double], 
Iterable[Array[String]]))]...

If one of the two RDDs doesn’t contain one of the keys, the corresponding iterator will
be empty. So this is how you can filter out the missing products:

scala> prodTotCogroup.filter(x => x._2._1.isEmpty).
  foreach(x => println(x._2._2.head.mkString(", ")))
43, Tomb Raider PC, 2718.14, 1
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63, Pajamas, 8131.85, 3
3, Cute baby doll, battery, 1808.79, 2
20, LEGO Elves, 4589.79, 4

The expression x._2._1 selects the iterator with matching values from totalsByProd
(totals as Doubles), and x._2._2 selects the iterator with products as Arrays of
Strings. The x._2._2.head expression takes the first element of the iterator (the two
RDDs don’t contain duplicates, so the Iterator objects contain at most one element).

 You can obtain the totals and the products (the totalsAndProds RDD, which you
created using the join transformation) in a similar way:

val totalsAndProds = prodTotCogroup.filter(x => !x._2._1.isEmpty).
  map(x => (x._2._2.head(0).toInt,(x._2._1.head, x._2._2.head)))

This totalsAndProds RDD now has the same elements as the one obtained with the
join transformation.

USING THE INTERSECTION TRANSFORMATION

intersection and the cartesian, zip, and zipPartitions transformations aren’t
particularly useful for your current task, but we’ll mention them here for the sake of
completeness. intersection accepts an RDD of the same type as the enclosing one
and returns a new RDD that contains elements present in both RDDs. It isn’t useful for
this use case because your transactions already contain only a subset of the products,
and there is no point in intersecting them. But imagine that totalsByProd contains
products from different departments, and you only want to see which products from a
certain department (contained in products RDD) are among them. Then you need to
map both RDDs to product IDs and then intersect them:

totalsByProd.map(_._1).intersection(products.map(_._1))

intersection has two additional versions: one accepting a number of partitions and
the other accepting a Partitioner object.

COMBINING TWO RDDS WITH THE CARTESIAN TRANSFORMATION

A cartesian transformation makes a cartesian product (a mathematical operation) of
two RDDs in the form of an RDD of tuples (T, U) containing all possible pairs of ele-
ments from the first RDD (containing elements of type T) and second RDD (contain-
ing elements of type U). For example, say you have rdd1 and rdd2 defined as follows:

scala> val rdd1 = sc.parallelize(List(7,8,9))
scala> val rdd2 = sc.parallelize(List(1,2,3))

cartesian gives you this:
scala> rdd1.cartesian(rdd2).collect() 
res0: Array[(Int, Int)] = Array((7,1), (7,2), (7,3), (8,1), (9,1), (8,2), 
(8,3), (9,2), (9,3))
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Naturally, in large datasets, cartesian can incur a lot of data transfer because data
from all partitions needs to be combined. And the resulting RDD will contain expo-
nential number of elements, so the memory requirements also aren’t negligible.

 You can use cartesian to compare elements of two RDDs. For example, you could
use it to get all pairs from the previous two RDDs that are divisible:

scala> rdd1.cartesian(rdd2).filter(el => el._1 % el._2 == 0).collect()

The result is as follows:

res1: Array[(Int, Int)] = Array((7,1), (8,1), (9,1), (8,2), (9,3))

You could also use it on your transactions data set to compare all transactions with
each other (tranData.cartesian(tranData)) and detect fishy behavior (for exam-
ple, too many transactions from the same customer in a short period of time). 

JOINING RDDS WITH THE ZIP TRANSFORMATION

The zip and zipPartitions transformations are available on all RDDs (not only pair
RDDs). zip functions just like the zip function in Scala: if you call it on an RDD with
elements of type T and give it an RDD with elements of type U, it will create an RDD of
pairs (T, U) with the first pair having the first elements from each RDD, the second
pair having the second elements, and so forth. 

 Unlike Scala’s zip function, though, it will throw an error if the two RDDs don’t
have the same number of partitions and the same number of elements in them. Two
RDDs will satisfy these requirements if one of them is a result of a map transformation
on the other one. But this makes zip a bit hard to use in Spark.

 This is an operation that is otherwise not easy to do, if you think about it. That’s
because processing data sequentially isn’t inherent to Spark, so it can come in handy,
under the strict circumstances just outlined.

 Here’s an example:

scala> val rdd1 = sc.parallelize(List(1,2,3))
scala> val rdd2 = sc.parallelize(List("n4","n5","n6"))
scala> rdd1.zip(rdd2).collect()
res1: Array[(Int, Int)] = Array((1,"n4"), (2,"n5"), (3,"n6"))

You can get around the requirement for all partitions to have the same number of ele-
ments with the zipPartitions transformation.

JOINING RDDS WITH THE ZIPPARTITIONS TRANSFORMATION

zipPartitions is similar to mapPartitions, in that it enables you to iterate over ele-
ments in partitions, but you use it to combine several RDDs’ partitions (four RDDs at
most, including this). All RDDs need to have the same number of partitions (but not
the same number of elements in them).

 zipPartitions accepts two sets of arguments. In the first set, you give it RDDs; and
in the second, a function that takes a matching number of Iterator objects used for
accessing elements in each partition. The function must return a new Iterator,
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which can be a different type (matching the resulting RDD). This function has to take
into account that RDDs may have different numbers of elements in partitions and
guard against iterating beyond Iterator lengths.

NOTE zipPartitions still (v.1.4) isn’t available in Python.

The zipPartitions transformation takes one more optional argument (in the first set
of arguments): preservesPartitioning, which is false by default. If you’re certain
that your function will leave the data properly partitioned, you can set it to true. Oth-
erwise, the partitioner is removed so a shuffle will be performed during one of the
future transformations. 

 Again, a quick example. You’ll take two RDDs—one containing 10 integers in 10
partitions, and the other one containing 8 strings in 10 partitions—and zip their parti-
tions to create a string-formatted representation of their elements:

scala> val rdd1 = sc.parallelize(1 to 10, 10)
scala> val rdd2 = sc.parallelize((1 to 8).map(x=>"n"+x), 10)
scala> rdd1.zipPartitions(rdd2, true)((iter1, iter2) => { 
        iter1.zipAll(iter2, -1, "empty")
        .map({case(x1, x2)=>x1+"-"+x2}) 
    }).collect()
res1: Array[String] = Array(1-empty, 2-n1, 3-n2, 4-n3, 5-n4, 6-empty, 7-n5, 
    8-n6, 9-n7, 10-n8)

Scala’s zipAll function is used here to combine two iterators because it can zip two col-
lections of different sizes. If the first iterator has more elements than the second one,
the remaining elements will be zipped along with the dummy value of empty (and with
the value of -1 in the opposite case). In the resulting RDD, you can see that rdd2 had
zero elements in partitions 1 and 6. How you handle these empty values depends on your
use case. Note that you can also change the number of elements in the partitions by
using an iterator function such as drop or flatMap. For a refresher, consult section 4.2.4.

4.3.2 Sorting data

Okay, you have your products together with corresponding transaction totals in the RDD
totalsAndProds. You also have to sort the results alphabetically. But how do you do that?

 The main transformations for sorting RDD data are sortByKey, sortBy, and
repartitionAndSortWithinPartition. The last one was covered in section 4.2.3. As
we said, it can repartition and sort more efficiently than calling those two operations
separately.

 Using sortBy is easy:

scala> val sortedProds = totalsAndProds.sortBy(_._2._2(1))
scala> sortedProds.collect()
res0: Array[(Double, Array[String])] = Array((90,(48601.89,Array(90, 
AMBROSIA TRIFIDA POLLEN, 5887.49, 1))), (94,(31049.07,Array(94, ATOPALM 
MUSCLE AND JOINT, 1544.25, 7))), (87,(26047.72,Array(87, Acyclovir, 
6252.58, 4))), ...
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The expression _._2 references the value, which is a tuple (total, transaction array).
_._2._2(1) references the second element of the transaction Array. This is the same
as keying the RDD by product name (keyBy(_._2._2(1))) and calling sortByKey. If
you further map this RDD, the ordering will be preserved.

 It’s trickier if you have keys that are complex objects. Similar to pair RDD transfor-
mations, which are available only on RDDs with key-value tuples through implicit con-
version, sortByKey and repartitionAndSortWithinPartition are available only on
pair RDDs with orderable keys. 

JAVA In Java, the sortByKey method takes an object that implements the
Comparator interface (http://mng.bz/5Suh). That’s the standard way of sort-
ing in Java. There is no sortBy method in the JavaRDD class.

You have two ways to make a class orderable in Scala and use it for sorting RDDs: via the
Ordered trait and via the Ordering trait.

MAKING A CLASS ORDERABLE USING THE ORDERED TRAIT

The first way to make a class orderable is to create a class that extends Scala’s Ordered
trait, which is similar to Java’s Comparable interface. The class extending Ordered has
to implement the compare function, which takes as an argument an object of the same
class against which to perform the comparison. The function returns a positive inte-
ger if the enclosing object (this) is greater than the one taken as an argument (other),
a negative integer if the enclosing object is smaller, and zero if the two should be con-
sidered equal.

 The sortByKey transformation requires an argument of type Ordering (discussed
next), but there’s an implicit conversion in Scala from Ordered to Ordering so you
can safely use this method. 

 For example, the following case class can be used for keys in sortable RDDs for sort-
ing employees according to their last names:

case class Employee(lastName: String) extends Ordered[Employee] {
    override def compare(that: Employee) = 
        ➥ this.lastName.compare(that.lastName)
}

MAKING A CLASS ORDERABLE USING THE ORDERING TRAIT

The second way to make a class orderable uses the Ordering trait, which is similar to
Java’s Comparator interface. Let’s presume you can’t change the preceding Employee
class and make it extend Ordered, but you’d still like to sort employees by their last
names. In that case, you can define an object of type Ordering[Employee] somewhere
in the scope of the function calling sortByKey. For example

implicit val emplOrdering = new Ordering[Employee] {
    override def compare(a: Employee, b: Employee) =        
        ➥ a.lastName.compare(b.lastName)
}

 

http://mng.bz/5Suh
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or

implicit val emplOrdering: Ordering[Employee] = Ordering.by(_.lastName) 

If defined within its scope, this implicit object will be picked up by the sortByKey
transformation (called on an RDD with keys of type Employee), and the RDD will
become sortable.

 The previous sort by product name worked because the Scala standard library con-
tains Orderings for simple types. But if you had a complex key, you would need to
implement an approach similar to the one sketched previously.

PERFORMING A SECONDARY SORT

A few more things about sorting are worth mentioning. Sometimes you may also want
to sort values within keys. For example, you may group transactions by customer ID
and wonder how to further sort them by transaction time. 

 There’s a relatively new groupByKeyAndSortValues transformation, which enables
you to do exactly this. For an RDD of (K, V) pairs, it expects an implicit Ordering[V]
object to be present in the scope and a single argument: either a Partitioner object
or a number of partitions.

 It will give you an RDD of (K, Iterable(V)) elements with values sorted according to
the implicit Ordering object. But it will first
group values by key, which can be expen-
sive in terms of memory and network.

 A cheaper method for performing a
secondary sort, without grouping, is this:7

1 Map an RDD[(K, V)] to RDD[((K,
V),null)]. For example: rdd.map
(kv =>(kv, null)).

2 Use a custom partitioner that parti-
tions only on the K part of the new
composite key, so that all elements
with the same K part end up in the
same partition.

3 Call repartitionAndSortWithin-

Partition, which has to sort by the
complete composite key (K, V):
first by keys, then by values.

4 Map the RDD back to RDD[(K, V)].

An example of the result of this operation
is shown in figure 4.3.

7 Thanks to Patrick Wendell for this idea. See https://issues.apache.org/jira/browse/SPARK-3655.
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Figure 4.3 Example of a secondary sort using 
repartitionAndSortWithinPartition
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 As the figure shows, this procedure gives you partitions sorted first by key and then
by value, and you can iterate over them by calling mapPartitions. No grouping of val-
ues occurs, which makes this method better from a performance point of view.

USING TOP AND TAKEORDERED TO FETCH SORTED ELEMENTS

To fetch the first or last n objects from an RDD, you can use the takeOrdered(n) and
top(n) actions, respectively. What first or last means, on an RDD with elements of type
T, is determined by an implicit Ordering[T] object defined in the scope.

 Consequently, for pair RDDs, top and takeOrdered won’t return elements sorted
by keys (as sortByKey does), but by (K, V) tuples. So for pair RDDs, you need to have
an implicitly defined Ordering[(K, V)] object in scope (which is true for simple keys
and values).

 top and takeOrdered don’t perform full sorting of data among partitions. Instead,
they first take the first (or last) n elements from each partition, merge the results, and
then take the first (or last) n elements from the merged list. This is much faster than
doing sortBy and then calling take, because much less data needs to be transferred
over the network. But just like collect, top and takeOrdered bring all n results into
the driver’s memory, so you should make sure n isn’t too big. 

 Wait a minute—we got carried away and drifted away from your task! You retrieved
the products that no one bought yesterday, and you joined the products with their
totals from yesterday’s transactions (using several methods). And you managed to sort
the results by product names.

 There is one more task for you to do, and that is to calculate statistics about yester-
day’s transactions per customer: average, maximum, minimum, and total price of
products bought. Transactions in your transaction file are organized per customer
and product so you first need to group them by customer. The statistics can then be
calculated in several ways. You’ll use the combineByKey transformation. It’s used for
grouping data, so let’s first say a few words about that.

4.3.3 Grouping data

To group data means to aggregate data into a single collection based on certain crite-
ria. Several pair RDD transformations can be used for grouping data in Spark: aggre-
gateByKey (used in section 4.1.2), groupByKey (and the related groupBy), and
combineByKey. 

GROUPING DATA WITH THE GROUPBYKEY AND GROUPBY TRANSFORMATIONS

The groupByKey transformation creates a pair RDD containing a single key-value pair
for all elements with the same key. For example:

(A, 1)
(A, 2)                (A, (1, 2))
(B, 1)       ->       (B, (1, 3))
(B, 3)                (C, (1))  
(C, 1)
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Each pair’s value becomes an Iterable for iterating over all the key’s values. The
resulting RDD, therefore, is of type RDD[(K, Iterable[V])].

 groupBy is available on non-pair RDDs and offers a shortcut for transforming an
RDD to a pair RDD and then calling groupByKey. So, having an rdd of type RDD[T]
(containing elements of type T) and the function f: T => K for creating keys of type K,
the following two lines are equivalent:

rdd.map(x => (f(x), x)).groupByKey()
rdd.groupBy(f)

The groupByKey transformation can be memory expensive because it has to get all the
values of each key in memory, so you have to be careful when using it. We recommend
using aggregateByKey, reduceByKey, or foldByKey for simpler scenarios that don’t
require full grouping to occur, such as calculating the average per key. As is the case
with other pair RDD transformations, groupByKey and groupBy can also accept the
desired number of partitions or a custom partitioner (two additional implementations
are available).

GROUPING DATA WITH THE COMBINEBYKEY TRANSFORMATION

combineByKey is the transformation you’ll use to calculate the statistics per customer. It’s
a generic transformation that lets you specify custom functions for merging values into
combined values and for merging the combined values themselves. It expects a partitioner
to be specified. You can also specify two optional arguments: the mapSideCombine flag
and a custom serializer. 

 The full function signature is as follows:

def combineByKey[C](createCombiner: V => C,
    mergeValue: (C, V) => C,       
    mergeCombiners: (C, C) => C,   
    partitioner: Partitioner,      
    mapSideCombine: Boolean = true,
    serializer: Serializer = null): RDD[(K, C)]

The createCombiner function is used to create the first combined value (of type C)
from the first key’s value (of type V) in each partition. The mergeValue function is
used to merge additional key values with the combined value, in a single partition,
and the mergeCombiners function is used to merge combined values themselves
among partitions. 

 As we said previously, if the partitioner (a required argument) is the same as the
existing partitioner (which also means the existing one isn’t missing), there’s no need
for a shuffle, because all the elements with the same key are already in the same (and
correct) partition. That’s why the mergeCombiners function won’t be used if there’s
no shuffle (and if spilling to disk isn’t enabled, which is another story), but you still
have to provide it.
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 The last two optional parameters are relevant only if the shuffle will be performed.
With the mapSideCombine parameter, you can specify whether to merge combined val-
ues in partitions before the shuffle. The default is true. This parameter isn’t relevant
if there’s no shuffle, because in that case, combined values are always merged in parti-
tions. Finally, with the serializer parameter, you can go into expert mode and spec-
ify a custom serializer to use if you don’t want to use the default (as specified by the
Spark configuration parameter spark.serializer).

 The numerous options make combineByKey versatile and flexible. No wonder it
was used to implement aggregateByKey, groupByKey, foldByKey, and reduceByKey.
Feel free to check the Spark source code (http://mng.bz/Z6fp) to see how it was
done.

 Let’s now look at how it can help you in your task. You have the transByCust pair
RDD that you created in section 4.1.2. It holds transactions keyed by customer IDs (but
not grouped by customers). 

 To calculate the average, maximum, minimum, and total price of products bought
per customer, the combined values need to keep track of minimum, maximum,
count, and total, while merging values. The average is then calculated by dividing the
total by the count. Each transaction in transByCust contains a quantity (index 4 in
the transaction array), so that value needs to be taken into account. And you also need
to parse the numeric values because you have them as Strings:

def createComb = (t:Array[String]) => { 
  val total = t(5).toDouble 
  val q = t(4).toInt
  (total/q, total/q, q, total) }
def mergeVal:((Double,Double,Int,Double),Array[String])=>
  (Double,Double,Int,Double) =                     
    { case((mn,mx,c,tot),t) => {
      val total = t(5).toDouble
      val q = t(4).toInt
      (scala.math.min(mn,total/q),scala.math.max(mx,total/q),c+q,tot+total) } }
def mergeComb:((Double,Double,Int,Double),(Double,Double,Int,Double))=>
  (Double,Double,Int,Double) =
    { case((mn1,mx1,c1,tot1),(mn2,mx2,c2,tot2)) => 
      (scala.math.min(mn1,mn1),scala.math.max(mx1,mx2),c1+c2,tot1+tot2) } 
val avgByCust = transByCust.combineByKey(createComb, mergeVal, mergeComb,
  new org.apache.spark.HashPartitioner(transByCust.partitions.size)).
     mapValues({case(mn,mx,cnt,tot) => (mn,mx,cnt,tot,tot/cnt)}) 

The create combiners function B needs to set the count to the parsed quantity (vari-
able q), the total to the parsed variable total, and the minimum and maximum to the
price of a single product (total/q). The merge values function C increases the count
by the parsed quantity and the total by the parsed total and updates the minimum and
maximum with the price of a single product (total/quantity). 

Create combiners 
functionB

Merge values 
functionC

Merge
combiners

function

D

Performs the combineByKey 
transformationE F

Adds the average
to the tuple
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 The merge combiners function D sums the counts and totals and compares the
minimums and maximums of the two combined values. Then the combineByKey trans-
formation is finally performed E (the partitioning is preserved by using the previous
number of partitions). This gives you an RDD containing tuples of minimum price,
maximum price, count, and total price for each customer. Finally, you add the average
value to the tuple F by using the mapValues transformation. 

 You check the contents of avgByCust:

scala> avgByCust.first()
res0: (Int, (Double, Double, Int, Double, Double)) = 
(96,(856.2885714285715,4975.08,57,36928.57,647.869649122807))

And that looks good. Finally, you’re done! 
 You can save the results from avgByCust and totalsAndProds in a CSV format

(with the # separator):

scala> totalsAndProds.map(_._2).map(x=>x._2.mkString("#")+", "+x._1).
   saveAsTextFile("ch04output-totalsPerProd")
scala> avgByCust.map{ case (id, (min, max, cnt, tot, avg)) => 
   "%d#%.2f#%.2f#%d#%.2f#%.2f".format(id, min, max, cnt, tot, avg)}.
   saveAsTextFile("ch04output-avgByCust")

But before calling it a day, let’s learn a few more things about RDD dependencies,
accumulators, and broadcast variables. You never know when those might come in
handy.

4.4 Understanding RDD dependencies
In this section, we’ll take a closer look at two aspects of Spark’s inner workings: RDD
dependencies and RDD checkpointing, both important mechanisms in Spark. We
need these two to complete the picture of the Spark Core API. RDD dependencies
make RDDs resilient. They also affect the creation of Spark jobs and tasks.

4.4.1 RDD dependencies and Spark execution

We said in the previous chapters that Spark’s execution model is based on directed acyclic
graphs (DAGs). You’ve surely seen graphs before: they consist of vertices (nodes) and
edges (lines) connecting them. In directed graphs, edges have a direction from one
vertex to another (but they can also be bidirectional). In acyclic directed graphs, edges
connect vertices in such a way that you can never reach the same vertex twice if you fol-
low the direction of the edges (there are no cycles in the graph; hence the name). 

 In Spark DAGs, RDDs are vertices and dependencies are edges. Every time a transfor-
mation is performed on an RDD, a new vertex (a new RDD) and a new edge (a depen-
dency) are created. The new RDD depends on the old one, so the direction of the
edge is from the child RDD to the parent RDD. This graph of dependencies is also called
an RDD lineage. 
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 Two basic types of dependencies exist: narrow and wide (or shuffle). They determine
whether a shuffle will be performed, according to the rules explained in section 4.2.2.
If no data transfer between partitions is required, a narrow dependency is created. A
wide dependency is created in the opposite case, which means a shuffle is performed.
By the way, a shuffle is always performed when joining RDDs.

 Narrow dependencies can be divided further into one-to-one dependencies and range
dependencies. Range dependencies are used only for the union transformation; they
combine multiple parent RDDs in a single dependency. One-to-one dependencies are
used in all other cases when no shuffling is required.

 Let’s illustrate all this with an example. This example is similar to the one used to
examine shuffling after partitioner removal. The code looks like this:

val list = List.fill(500)(scala.util.Random.nextInt(10))
val listrdd = sc.parallelize(list, 5)                  
val pairs = listrdd.map(x => (x, x*x))
val reduced = pairs.reduceByKey((v1, v2)=>v1+v2)
val finalrdd = reduced.mapPartitions(                   
             iter => iter.map({case(k,v)=>"K="+k+",V="+v}))
finalrdd.collect()

The transformations aren’t meaningful or useful in real life, but they help illustrate the
concept of RDD dependencies. The resulting lineage (DAG) is presented in figure 4.4;
each rounded box containing lines represents a partition. Fat arrows in the figure rep-
resent transformations used to create an RDD. Each transformation produces a new RDD
of a specific RDD subclass, and each new RDD becomes a child of the preceding one. 

 The arc arrows represent dependencies in the lineage chain. You can say that
finalrdd (a MapPartitionsRDD) depends on reduced; reduced (a ShuffleRDD)
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creates an RDD with five partitions

Maps the
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a pair RDD
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string representation of its key-value pairs
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reduced
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OneToOne
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Figure 4.4 RDD example dependencies
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depends on pairs; and pairs (a MapPartitionsRDD) depends on listrdd, itself of
type ParallelCollectionRDD.

 Light lines in the figure represent dataflow during the execution of the RDD pro-
gram. As you can see, the two map transformations don’t require data to be exchanged
between partitions, and their dataflow is confined in partition boundaries. That’s why
they produce narrow (OneToOne) dependencies. reduceByKey, on the other hand,
requires a shuffle, as discussed in section 4.2.2 (because the previous map transforma-
tion has removed the partitioner), so a wide (or shuffle) dependency is created. Dur-
ing execution, data is exchanged between the partitions of the pairs RDD and
reduced RDD because each key-value pair needs to get into its proper partition.

 You can get a textual representation of the RDD’s DAG, with information similar to
figure 4.4, by calling toDebugString. For the example finalrdd, the result is as follows:

scala> println(finalrdd.toDebugString)
(6) MapPartitionsRDD[4] at mapPartitions at <console>:20 []
 |  ShuffledRDD[3] at reduceByKey at <console>:18 []
 +-(5) MapPartitionsRDD[2] at map at <console>:16 []
    |  ParallelCollectionRDD[1] at parallelize at <console>:14 []

The RDDs in this output appear in reverse order from that in figure 4.4. Here the first
RDD in the DAG appears last, so the direction of dependencies is upward. Examining
this output can be useful in trying to minimize the number of shuffles your program
performs. Every time you see a ShuffledRDD in the lineage chain, you can be sure that
a shuffle will be performed at that point (if the RDD is executed). The numbers in
parentheses (5 and 6) show the number of partitions of the corresponding RDD.

4.4.2 Spark stages and tasks

All of this is important when considering how Spark packages work to be sent to
executors. Every job is divided into stages based on the points where shuffles occur.
Figure 4.5 shows the two stages created in the example.

parallelize

Driver

Stage 1 Stage 2
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dependency
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dependency
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Figure 4.5 Example DAG divided into stages
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Stage 1 encompasses transformations that result in a shuffle: parallelize, map, and
reduceByKey. The results of Stage 1 are saved on disk as intermediate files on executor
machines. During Stage 2, each partition receives data from these intermediate files
belonging to it, and the execution is continued with the second map transformation
and the final collect. 

 For each stage and each partition, tasks are created and sent to the executors. If
the stage ends with a shuffle, the tasks created will be shuffle-map tasks. After all tasks of
a particular stage complete, the driver creates tasks for the next stage and sends them
to the executors, and so on. This repeats until the last stage (in this case, Stage 2),
which will need to return the results to the driver. The tasks created for the last stage
are called result tasks. 

4.4.3 Saving the RDD lineage with checkpointing

Because the RDD lineage can grow arbitrarily long, by chaining any number of trans-
formations, Spark provides a way to persist the entire RDD to stable storage. Then, in
case of node failure, Spark doesn’t need to recompute the missing RDD pieces from
the start. It uses a snapshot and computes the rest of the lineage from there. This fea-
ture is called checkpointing. 

 During checkpointing, the entire RDD is persisted to disk—not just its data, as is
the case with caching, but its lineage, too. After checkpointing, the RDD’s dependen-
cies are erased, as well as the information about its parent(s), because they won’t be
needed for its recomputation any more.

 You can checkpoint an RDD by calling the checkpoint operation, but first you have
to set the directory where the data will be saved by calling SparkContext.setCheck-
pointDir(). This directory is usually an HDFS directory, but it can also be a local one.
checkpoint must be called before any jobs are executed on the RDD, and the RDD has
to be materialized afterward (some action has to be called on it) for the checkpoint-
ing to be done. 

 So, when should you checkpoint an RDD? If you have an RDD with a long DAG (the
RDD has lots of dependencies), rebuilding it could take a long time in case of a fail-
ure. If the RDD is checkpointed, reading it from a file could be much quicker than
rebuilding it by using all the (possibly complicated) transformations. Checkpointing
is also important in Spark Streaming, as you’ll soon see.

4.5 Using accumulators and broadcast variables to 
communicate with Spark executors
The final topics for this chapter are accumulators and broadcast variables. They
enable you to maintain a global state or share data across tasks and partitions in your
Spark programs. 

4.5.1 Obtaining data from executors with accumulators

Accumulators are variables shared across executors that you can only add to. You can
use them to implement global sums and counters in your Spark jobs.
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 Accumulators are created with SparkContext.accumulator(initialValue). You
can also create one while specifying its name sc.accumulator(initialValue, "accu-
mulatorName"). In that case, the accumulator will be displayed in the Spark web UI
(on the stage details page), and you can use it to track the progress of your tasks. (For
details about the Spark web UI, see chapter 11.)

NOTE You can’t name an accumulator in Python.

To add to an accumulator, you use the add method or += operator. To get its value,
you use the value method. You can access an accumulator’s value only from within
the driver. If you try to access it from an executor, an exception will be thrown.

 Here’s an accumulator example:

scala> val acc = sc.accumulator(0, "acc name")
scala> val list = sc.parallelize(1 to 1000000)
scala> list.foreach(x => acc.add(1))
scala> acc.value                    
res0: Int = 1000000
scala> list.foreach(x => acc.value)

The last line gives you the exception java.lang.UnsupportedOperationException:
Can't read accumulator value in task.

 If you need to have an accumulated value of one type and add to it values of
another type, you can create an Accumulable object. It’s created with SparkContext
.accumulable(initialValue); and, similar to Accumulator, you can also assign it a
name. 

 Accumulator is a special case of the Accumulable class, but is used more often. Accu-
mulable objects are mostly used as custom accumulators (you’ll see an example next).

WRITING CUSTOM ACCUMULATORS

The object in charge of adding values to an Accumulator is AccumulatorParam (or
AccumulableParam for Accumulables). It has to be implicitly defined in the scope of
the calling function. Spark already provides implicit AccumulatorParam objects for
numeric types so they can be used as accumulator values without any special actions.
But if you want to use a custom class as an accumulator value, you have to create a cus-
tom implicit AccumulatorParam object.

 AccumulatorParam has to implement two methods:

■ zero(initialValue: T)—Creates an initial value that’s passed to executors.
The global initial value stays the same.

■ addInPlace(v1: T, v2: T):T—Merges two accumulated values.

AccumulableParam needs to implement one additional method:

■ addAccumulator(v1: T, v2: V): T—Adds a new accumulator value to the accu-
mulated value

Executes on
executors

Executes on the driver

Exception occurs
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For example, you could use a single Accumulable object to track both the sum and
count of values (to get an average value) like this:

val rdd = sc.parallelize(1 to 100)
import org.apache.spark.AccumulableParam
implicit object AvgAccParam extends AccumulableParam[(Int, Int), Int] {
  def zero(v:(Int, Int)) = (0, 0)
  def addInPlace(v1:(Int, Int), v2:(Int, Int)) = (v1._1+v2._1, v1._2+v2._2)
  def addAccumulator(v1:(Int, Int), v2:Int) = (v1._1+1, v1._2+v2)
}
val acc = sc.accumulable((0,0))                   
rdd.foreach(x => acc += x)                        
val mean = acc.value._2.toDouble / acc.value._1
mean: Double = 50.5

The implicit AccumulableParam object in the previous snippet contains all the neces-
sary methods for tracking counts and sums across the executors. AvgAccParam accepts
integers and keeps the accumulated value in a tuple: the first element tracks the
count, the second tracks the sum.

ACCUMULATING VALUES IN ACCUMULABLE COLLECTIONS

You can also accumulate values in mutable collections, without creating any implicit
objects, by using SparkContext.accumulableCollection(). Custom accumulators
are flexible, but if you only need to implement a collection accumulator, accumula-
ble collections are much easier to use. For example, using the same rdd object gener-
ated in the previous example, you can accumulate its objects into a shared collection
like this:

scala> import scala.collection.mutable.MutableList
scala> val colacc = sc.accumulableCollection(MutableList[Int]())
scala> rdd.foreach(x => colacc += x)
scala> colacc.value
res0: scala.collection.mutable.MutableList[Int] = MutableList(1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 31, 32, 33, ...)

As you can see, the results aren’t sorted, because there’s no guarantee that the accu-
mulator results from various partitions will return to the driver in any specific order.

4.5.2 Sending data to executors using broadcast variables

As we said in chapter 3, broadcast variables can be shared and accessed from across
the cluster, similar to accumulators. But they’re opposite from accumulators in that
they can’t be modified by executors. The driver creates a broadcast variable, and exec-
utors read it. 

Creates an RDD of
integers from 1 to 100

Creates the implicit
AccumulableParam.

Creates an Accumulable object; 
compiler finds the AvgAccParam 
object automatically

Adds all values of the 
RDD to the accumulator

Accesses the accumulator
value to calculate the mean
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 You should use broadcast variables if you have a large set of data that the majority of your
executors need. Typically, variables created in the driver, needed by tasks for their execution,
are serialized and shipped along with those tasks. But a single driver program can reuse the
same variable in several jobs, and several tasks may get shipped to the same executor as part
of the same job. So, a potentially large variable may get serialized and transferred over the
network more times than necessary. In these cases, it’s better to use broadcast variables,
because they can transfer the data in a more optimized way and only once.

 Broadcast variables are created with the SparkContext.broadcast(value)

method, which returns an object of type Broadcast. The value can be any serializable
object. It can then be read by executors using the Broadcast.value method. When an
executor tries to read a broadcast variable, the executor will first check to see whether
it’s already loaded. If not, it requests the broadcast variable from the driver, one
chunk at a time. This pull-based approach avoids network congestion at job startup.

 You should always access its contents through the value method and never
directly. Otherwise, Spark will automatically serialize and ship your variable along with
tasks, and you’ll lose all the performance benefits of broadcast variables.

DESTROYING AND UNPERSISTING BROADCAST VARIABLES

When a broadcast variable is no longer needed, you can destroy it. All information
about it will be removed (from the executors and driver), and the variable will become
unusable. If you try to access it after calling destroy, an exception will be thrown.

 The other option is to call unpersist, which only removes the variable value from
the cache in the executors. If you try to use it after unpersisting, it will be sent to the
executors again.

 Finally, broadcast variables are automatically unpersisted by Spark after they go out
of scope (if all references to them cease to exist), so it’s unnecessary to explicitly
unpersist them. Instead, you can remove the reference to the broadcast variable in the
driver program.

CONFIGURATION PARAMETERS THAT AFFECT BROADCAST VARIABLES

Several configuration parameters are available that can affect broadcast performance
(for details about setting Spark configuration parameters, see chapter 11):

■ spark.broadcast.compress—Specifies whether the variables will be
compressed before transfer (you should leave this at true). Variables will
be compressed with a codec specified by spark.io.compression.codec.

■ spark.broadcast.blockSize—Indicates the size of the chunks of data used for
transferring broadcast data. You should probably leave this at the battle-tested
default of 4096.

■ spark.python.worker.reuse—Can greatly affect broadcast performance in
Python because, if workers aren’t reused, broadcast variables will need to be
transferred for each task. You should keep this at true, which is the default value.
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The main points to remember are that you should use broadcast variables if you have
a large set of data that the majority of your workers needs and to always use the value
method to access the broadcast variables.

4.6 Summary
■ Pair RDDs contain two-element tuples: keys and values. 
■ Pair RDDs in Scala are implicitly converted to instances of class PairRDDFunc-

tions, which hosts special pair RDD operations.
■ countByKey returns a map containing the number of occurrences of each key.
■ mapValues changes the values contained in a pair RDD without changing the

associated keys.
■ flatMapValues enables you to change the number of elements corresponding

to a key by mapping each value to zero or more values.
■ reduceByKey and foldByKey let you merge all the values of a key into a single

value of the same type.
■ aggregateByKey merges values, but it also transforms values to another type.
■ Data partitioning is Spark’s mechanism for dividing data between multiple

nodes in a cluster. 
■ The number of RDD partitions is important because, in addition to influencing

data distribution throughout the cluster, it also directly determines the number
of tasks that will be running RDD transformations.

■ Partitioning of RDDs is performed by Partitioner objects that assign a parti-
tion index to each RDD element. Spark provides two implementations: Hash-
Partitioner and RangePartitioner. 

■ Physical movement of data between partitions is called shuffling. It occurs when
data from multiple partitions needs to be combined in order to build partitions
for a new RDD. 

■ During shuffling, in addition to being written to disk, the data is also sent over
the network, so it’s important to try to minimize the number of shuffles during
Spark jobs. 

■ RDD operations for working on partitions are mapPartitions and mapParti-
tionsWithIndex.

■ The four classic joins in Spark function just like the RDBMS joins of the same
names: join (inner join), leftOuterJoin, rightOuterJoin, and fullOuter-
Join.

■ cogroup performs grouping of values from several RDDs by key and returns an
RDD whose values are arrays of Iterable objects containing values from each
RDD.

■ The main transformations for sorting RDD data are sortByKey, sortBy, and
repartitionAndSortWithinPartition.
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■ Several pair RDD transformations can be used for grouping data in Spark:
aggregateByKey, groupByKey (and the related groupBy), and combineByKey.

■ RDD lineage is expressed as a directed acyclic graph (DAG) connecting an RDD
with its parent RDDs, from which it was transformed.

■ Every Spark job is divided into stages based on the points where shuffles occur.
■ The RDD lineage can be saved with checkpointing.
■ Accumulators and broadcast variables enable you to maintain a global state or

share data across tasks and partitions in your Spark programs.

 



Part 2

Meet the Spark family

It’s time to get to know the other components that make up Spark: Spark
SQL, Spark Streaming, Spark MLlib, and Spark GraphX. You’ve already made a
brief acquaintance of Spark SQL in chapter 3. In chapter 5, you’ll be formally
introduced. You’ll learn how to create and use DataFrames, how to use SQL to
query DataFrame data, and how to load data to and save it from external data
sources. You’ll also learn about optimizations done by Spark’s SQL Catalyst opti-
mization engine and about performance improvements introduced with the
Tungsten project.

 Spark Streaming, one of the more popular family members, is introduced in
chapter 6. There you’ll learn about discretized streams, which periodically produce
RDDs as the streaming application is running. You’ll also learn how to save com-
putation state over time and how to use window operations. We’ll examine ways
of connecting to Kafka and how to obtain good performance from your stream-
ing jobs.

 Chapters 7 and 8 are about machine learning, specifically about the Spark
MLlib and Spark ML sections of Spark API. You’ll learn about machine learning
in general and about linear regression, logistic regression, decision trees, ran-
dom forests, and k-means clustering. Along the way, you’ll scale and normalize
features, use regularization, and train and evaluate machine-learning models.
We’ll explain the API standardizations brought by Spark ML.

 Finally, chapter 9 explores how to build graphs with Spark’s GraphX API.
You’ll transform and join graphs, use graph algorithms, and implement the A*
search algorithm using the GraphX API.
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Sparkling
 queries with Spark SQL

You had a taste of working with DataFrames in chapter 3. As you saw there, Data-
Frames let you work with structured data (data organized in rows and columns, where
each column contains only values of a certain type). SQL, frequently used in rela-
tional databases, is the most common way to organize and query this data. SQL also
figures as part of the name of the first Spark component we’re covering in part 2:
Spark SQL. 

This chapter covers
■ Creating DataFrames
■ Using the DataFrame API
■ Using SQL queries
■ Loading and saving data from/to external data sources
■ Understanding the Catalyst optimizer
■ Understanding Tungsten performance improvements
■ Introducing DataSets
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 In this chapter, we plunge deeper into the DataFrame API and examine it more
closely. In section 5.1, you’ll first learn how to convert RDDs to DataFrames. You’ll then
use the DataFrame API on a sample dataset from the Stack Exchange website to select,
filter, sort, group, and join data. We’ll show you all that you need to know about using
SQL functions with DataFrames and how to convert DataFrames back to RDDs. 

 In section 5.2, we show you how to create DataFrames by running SQL queries and
how to execute SQL queries on DataFrame data in three ways: from your programs,
through Spark’s SQL shell, and through Spark’s Thrift server. In section 5.3, we show
you how to save and load data to and from various external data sources. In the last
two sections of this chapter, you learn about optimizations done by Spark’s SQL Cata-
lyst optimization engine and about performance improvements introduced with the
Tungsten project. 

 In the last section of this chapter we give a brief overview of DataSets, which
emerged in Spark 1.6. DataFrames have, since Spark 2.0, become a special case of
DataSets; they are now implemented as DataSets containing Row objects.

 You should have a basic knowledge of SQL to properly understand parts of this chap-
ter. A good reference is w3schools.com’s SQL tutorial (www.w3schools.com/SQL). Some
familiarity with Hive, a distributed warehouse based on Hadoop, is also beneficial.

 An HDFS cluster at your disposal would be helpful in this chapter. We hope you’ll
be using the spark-in-action VM, because HDFS is already installed there, in the stand-
alone mode (http://mng.bz/Bu4d). There’s a lot to cover, so let’s get started.

5.1 Working with DataFrames
In the previous chapter, you learned how to manipulate RDDs. which is important
because RDDs represent a low-level, direct way of manipulating data in Spark and the
core of Spark runtime. Spark 1.3 introduced the DataFrame API for handling struc-
tured, distributed data in a table-like representation with named columns and
declared column types. 

 Inspiration for DataFrames came from several languages that used a similar concept
with the same name: DataFrames in Python’s Pandas package, DataFrames in R, and
DataFrames in the Julia language. What makes them different in Spark is their distrib-
uted nature and Spark’s Catalyst, which optimizes resource use in real time, based on
pluggable data sources, rules, and data types. We talk about Catalyst later in this chapter.

 DataFrames translate SQL code and domain-specific language (DSL) expressions
into optimized low-level RDD operations, so that the same API can be used from any sup-
ported language (Scala, Java, Python, and R) for accessing any supported data source
(files, databases, and so forth) in the same way and with comparable performance char-
acteristics. Since their introduction, DataFrames have become one of the most impor-
tant features in Spark and made Spark SQL the most actively developed Spark
component. Since Spark 2.0, DataFrame is implemented as a special case of DataSet.

 Because you almost always know the structure of the data you’re handling, Data-
Frames are applicable in any instance that requires manipulation of structured data,
which is the majority of cases in the big data world. DataFrames let you reference the data
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by column names and access it with “good ole” SQL queries, which is the most natural
way for most users to handle data, and it provides many integration possibilities. 

 Let’s say you have a table with user data in a relational database and user activity data
in a Parquet file on HDFS, and you want to join the two data sources. (Parquet is a
columnar file format that stores schema information along with the data.) Spark SQL
lets you do that by loading both of these sources in DataFrames. Once available as Data-
Frames, these two data sources can be joined, queried, and saved at a third location. 

 Spark SQL also lets you register DataFrames as tables in the table catalog, which
doesn’t hold the data itself; it merely saves information about how to access the struc-
tured data. Once registered, Spark applications can query the data when you provide
the DataFrames name. What’s also interesting is that third-party applications can use
standard JDBC and ODBC protocols to connect to Spark and then use SQL to query the
data from registered DataFrames tables. Spark’s Thrift server is the component that
enables this functionality. It accepts incoming JDBC client connections and executes
them as Spark jobs using the DataFrame API.

 Figure 5.1 illustrates all of this. It shows two types of clients: a Spark application exe-
cuting a join on two tables using DataFrame DSL, and a non-Spark application executing

Relational DB

User
Name Surname Username ...

Table catalog
...
user
user_activity
...

Spark SQL

Consult

Query Read

Spark-submit

Spark-submit

JDBC

Embedded
hive

HDFS
...
/file/user_activity.parquet
...

Thrift
server

employees.join(user_activity, 
’username)

SELECT * FROM USER
JOIN USER_ACTIVITY 
ON USERNAME

DataFrame ‘user’ reads 
its data from a table in 
a relational database. 

Clients executing the same query, but using 
different languages: DataFrame API and SQL 

Table catalog contains information 
about registered DataFrames and 
how to access their data.

DataFrame ‘user_activity’ 
reads its data from a 
Parquet file.

Thrift server translates SQL
queries into Spark jobs

Spark application Client application

Figure 5.1 An example of two clients (a Spark application using DataFrame DSL and a non-Spark 
client application connecting through JDBC) executing the same query that joins two tables: one 
residing in a relational database and another residing in a Parquet file in HDFS
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the same join, but as an SQL query through JDBC connected to Spark’s Thrift server.
We’ll talk about Spark applications in this section and about JDBC tables in section 5.2. 
A permanent table catalog (surviving Spark context restarts) is available only when
Spark is built with Hive support. In case you’re wondering, Hive is a distributed ware-
house built as a layer of abstraction on top of Hadoop’s MapReduce. Initially built by
Facebook, it’s widely used today for data querying and analysis. It has its own dialect of
SQL known as HiveQL. HiveQL is capable of running its jobs not only as MapReduce
jobs, but also as Spark jobs. 

 When built with Hive support, Spark includes all of Hive’s dependencies. Hive is
included by default when you download archives from the Spark downloads page. In
addition to bringing a more powerful SQL parser, Hive support enables you to access
existing Hive tables and use existing, community-built Hive UDFs. For these reasons,
we recommend using Spark built with Hive support. 

 DataFrames are comparable to, and are based on, RDDs, so the principles described
in the previous chapter are valid for DataFrames too. Type information available for
every column makes DataFrames much easier to use than RDDs because your query has
fewer lines of code, and DataFrame-optimized queries offer better performance. 

 You can create DataFrames in three ways: 

■ Converting existing RDDs 
■ Running SQL queries 
■ Loading external data 

The easiest method is to run an SQL query, but we’ll leave that for later. First, we’ll
show you how to create DataFrames from existing RDDs.

5.1.1 Creating DataFrames from RDDs

It’s often necessary to first load data into an RDD and then use it to create a Data-
Frame. If you want to load log files into DataFrames, you first need to load them as text,
parse the lines, and identify elements that form each entry; only then does the data
become structured and thus ready for consumption by DataFrames. In short, you use
RDDs to load and transform unstructured data and then create DataFrames from RDDs
if you want to use the DataFrame API.

 You can create DataFrames from RDDs in three ways: 

■ Using RDDs containing row data as tuples
■ Using case classes
■ Specifying a schema

The first method is rudimentary. It’s simple but limited because it doesn’t allow you to
specify all the schema attributes, which usually isn’t satisfactory. The second method
includes writing a case class, which is more involved but isn’t as limiting as the first
method. The third method, considered to be a standard in Spark, involves explicitly spec-
ifying a schema. In the first two methods, a schema is specified indirectly (it’s inferred). 
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 We cover each of these methods in this section. But first we need to discuss a few
prerequisites: the SparkSession object, the necessary implicit methods, and the data-
set used in this chapter.

CREATING SPARKSESSION AND IMPORTING IMPLICIT METHODS

To use Spark DataFrames and SQL expressions, begin with the SparkSession object.
It’s preconfigured in a Spark shell and available as the variable spark. In your own
programs, you should construct it yourself, just as you did in previous chapters.

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().getOrElse()

SparkSession is a wrapper around SparkContext and SQLContext, which was directly
used for constructing DataFrames in the versions prior to Spark 2.0. The Builder
object lets you specify master, appName, and other configuration options, but the
defaults will do.

 Spark provides a set of Scala implicit methods for automatically converting RDDs to
DataFrames. You must import these methods before using this feature. Once you have your
SparkSession in spark, the import can be accomplished with the following statement:

import spark.implicits._

Note that in Spark shell this is already done for you, but in your own programs you’ll
have to do it yourself. 

 These implicits add one method, called toDF, to your RDD if the RDD contains objects
for which a DataSet Encoder is defined. Encoders are used for converting JVM objects to
internal Spark SQL representation. For the list of Encoders that can be used for constructing
DataFrames, and that come with Spark out of the box, see this list: http://mng.bz/Wa45.
We’ll illustrate how this works with an example. 

UNDERSTANDING AND LOADING THE EXAMPLE DATASET

The examples in this chapter are based on the data obtained from Stack Exchange.
You probably already know about or use the Stack Exchange website
(www.stackexchange.com), especially its subcommunity Stack Overflow, a place for
asking and answering programming-related questions.

 Anybody can ask questions in Stack Exchange communities, and anybody can
answer them. A system of upvotes and downvotes exists as a means for marking certain
questions and answers useful (or less so). Users earn points for asking and answering
questions and can also earn different types of badges for various activities on the site.

 In 2009, Stack Exchange released1 an anonymized data dump of all questions and
answers in the Stack Exchange communities, and it continues to release data as new
questions became available. One of the communities whose data was released is the Ital-
ian Language Stack Exchange, and we’ll use its data to illustrate Spark SQL concepts in

1 See the official announcement at http://mng.bz/Ct8l.
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this chapter. We chose this community because of its small size (you can easily download
and use it on your laptop) and because we like the language. 

 The original data is available in XML format. We preprocessed it and created a
comma-separated values (CSV) file that you can find in our GitHub repository (which
you have, hopefully, cloned) under the folder ch05. The first file you’ll use is italian-
Posts.csv. It contains Italian language–related questions (and answers) with the follow-
ing fields (delimited with tilde signs):

■ commentCount—Number of comments related to the question/answer
■ lastActivityDate—Date and time of the last modification
■ ownerUserId—User ID of the owner
■ body—Textual contents of the question/answer
■ score—Total score based on upvotes and downvotes
■ creationDate—Date and time of creation
■ viewCount—View count
■ title—Title of the question
■ tags—Set of tags the question has been marked with 
■ answerCount—Number of related answers
■ acceptedAnswerId—If a question contains the ID of its accepted answer
■ postTypeId—Type of the post; 1 is for questions, 2 for answers
■ id—Post’s unique ID

After downloading the file and starting your Spark shell, you can parse the data and
load it into an RDD with the following snippet:

scala> val itPostsRows = sc.textFile("first-edition/ch05/italianPosts.csv")
scala> val itPostsSplit = itPostsRows.map(x => x.split("~"))
itPostsSplit: org.apache.spark.rdd.RDD[Array[String]] = ...

This gives you an RDD containing arrays of strings. You could convert this RDD to a
DataFrame with only one column containing arrays of Strings, but that’s not what we
want to do here. We need to map each of those Strings to a different column.

CREATING A DATAFRAME FROM AN RDD OF TUPLES

So let’s create a DataFrame by converting the RDD’s element arrays to tuples and then
calling toDF on the resulting RDD. There’s no elegant way to convert an array to a
tuple, so you have to resort to this ugly expression:

scala> val itPostsRDD = itPostsSplit.map(x => (x(0),x(1),x(2),x(3),x(4),
  x(5),x(6),x(7),x(8),x(9),x(10),x(11),x(12)))
itPostsRDD: org.apache.spark.rdd.RDD[(String, String, ...

 



111Working with DataFrames

Then use the toDF function:

scala> val itPostsDFrame = itPostsRDD.toDF()
itPostsDF: org.apache.spark.sql.DataFrame = [_1: string, ...

Now you have your DataFrame, and you can use all the goodies that come with it. First,
you can get the contents of the first 10 rows in a nice, formatted textual output with
the show method (the output is cropped to the right to fit on the page):

scala> itPostsDFrame.show(10)
+---+--------------------+---+--------------------+---+--------------------
| _1|                  _2| _3|                  _4| _5|                  _6
+---+--------------------+---+--------------------+---+--------------------
|  4|2013-11-11 18:21:...| 17|&lt;p&gt;The infi...| 23|2013-11-10 19:37:...
|  5|2013-11-10 20:31:...| 12|&lt;p&gt;Come cre...|  1|2013-11-10 19:44:...
|  2|2013-11-10 20:31:...| 17|&lt;p&gt;Il verbo...|  5|2013-11-10 19:58:...
|  1|2014-07-25 13:15:...|154|&lt;p&gt;As part ...| 11|2013-11-10 22:03:...
|  0|2013-11-10 22:15:...| 70|&lt;p&gt;&lt;em&g...|  3|2013-11-10 22:15:...
|  2|2013-11-10 22:17:...| 17|&lt;p&gt;There's ...|  8|2013-11-10 22:17:...
|  1|2013-11-11 09:51:...| 63|&lt;p&gt;As other...|  3|2013-11-11 09:51:...
|  1|2013-11-12 23:57:...| 63|&lt;p&gt;The expr...|  1|2013-11-11 10:09:...
|  9|2014-01-05 11:13:...| 63|&lt;p&gt;When I w...|  5|2013-11-11 10:28:...
|  0|2013-11-11 10:58:...| 18|&lt;p&gt;Wow, wha...|  5|2013-11-11 10:58:...
+---+--------------------+---+--------------------+---+--------------------

If you call the show method without arguments, it shows the first 20 rows. This is nice,
but the column names are generic and aren’t particularly helpful. You can rectify that
by specifying column names when calling the toDF method:

scala> val itPostsDF = itPostsRDD.toDF("commentCount", "lastActivityDate", 
  "ownerUserId", "body", "score", "creationDate", "viewCount", "title",
  "tags", "answerCount", "acceptedAnswerId", "postTypeId", "id")

If you call show now, you’ll see that column names appear in the output. You can also
examine the schema of the DataFrame with the printSchema method:

scala> itPostsDF.printSchema
root
 |-- commentCount: string (nullable = true)
 |-- lastActivityDate: string (nullable = true)
 |-- ownerUserId: string (nullable = true)
 |-- body: string (nullable = true)
 |-- score: string (nullable = true)
 |-- creationDate: string (nullable = true)
 |-- viewCount: string (nullable = true)
 |-- title: string (nullable = true)
 |-- tags: string (nullable = true)
 |-- answerCount: string (nullable = true)
 |-- acceptedAnswerId: string (nullable = true)
 |-- postTypeId: string (nullable = true)
 |-- id: string (nullable = true)
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This method shows the information that the DataFrame has about its columns. You can
see that column names are now available, but all the columns are of type String and
they’re all nullable. This could be desirable in some cases, but in this case it’s obviously
wrong. Here, the column ID should be of type long, counts should be integers, and the
date columns should be timestamps. The following two RDD-to-DataFrame conversion
methods let you specify the desirable column types and their names.

CONVERTING RDDS TO DATAFRAMES USING CASE CLASSES

The second option of converting RDDs to DataFrames is to map each row in an RDD to
a case class and then use the toDF method. First you need to define the case class that
will hold the data. Here’s the Post class that can hold each row of the dataset:

import java.sql.Timestamp
case class Post(
  commentCount:Option[Int], 
  lastActivityDate:Option[java.sql.Timestamp], 
  ownerUserId:Option[Long], 
  body:String, 
  score:Option[Int], 
  creationDate:Option[java.sql.Timestamp], 
  viewCount:Option[Int], 
  title:String, 
  tags:String, 
  answerCount:Option[Int], 
  acceptedAnswerId:Option[Long], 
  postTypeId:Option[Long], 
  id:Long)

Nullable fields are declared to be of type Option[T], which means they can contain
either a Some object with the value of type T, or a None (null in Java). For timestamp
columns, Spark supports the java.sql.Timestamp class. 

 Before mapping itPostsRDD’s rows to Post objects, first declare an implicit class
that helps to write that in a more elegant way:2

object StringImplicits {
  implicit class StringImprovements(val s: String) {
    import scala.util.control.Exception.catching
    def toIntSafe = catching(classOf[NumberFormatException]) opt s.toInt
    def toLongSafe = catching(classOf[NumberFormatException]) opt s.toLong
    def toTimestampSafe = catching(classOf[IllegalArgumentException]) opt 
       Timestamp.valueOf(s)
  }
}

The implicit StringImprovements class in the StringImplicits object defines three
methods that can be implicitly added to Scala’s String class and used to safely convert
strings to integers, longs, and timestamps. Safely means that, if a string can’t be

2 Thanks to Pierre Andres for this idea: http://mng.bz/ih7n.
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converted to the type, instead of throwing an exception, the methods return None.
The catching function returns an object of type scala.util.control.Exception
.Catch, whose opt method can be used to map the results of the specified function
(s.toInt, for example) to an Option object, returning None if the specified exception
occurs or Some otherwise.

 This makes parsing of rows much more elegant:

import StringImplicits._
def stringToPost(row:String):Post = {
  val r = row.split("~")
  Post(r(0).toIntSafe,
    r(1).toTimestampSafe,
    r(2).toLongSafe,
    r(3),
    r(4).toIntSafe,
    r(5).toTimestampSafe,
    r(6).toIntSafe,
    r(7),
    r(8),
    r(9).toIntSafe,
    r(10).toLongSafe,
    r(11).toLongSafe,
    r(12).toLong)
}
val itPostsDFCase = itPostsRows.map(x => stringToPost(x)).toDF()

You first need to import the implicit class you just declared and then parse the individ-
ual fields (strings) into objects of appropriate types using the safe methods. Note that
the last column (id) can’t be null, so a safe method isn’t used there.

 Now your DataFrame contains the proper types and nullable flags:

scala> itPostsDFCase.printSchema
root
 |-- commentCount: integer (nullable = true)
 |-- lastActivityDate: timestamp (nullable = true)
 |-- ownerUserId: long (nullable = true)
 |-- body: string (nullable = true)
 |-- score: integer (nullable = true)
 |-- creationDate: timestamp (nullable = true)
 |-- viewCount: integer (nullable = true)
 |-- title: string (nullable = true)
 |-- tags: string (nullable = true)
 |-- answerCount: integer (nullable = true)
 |-- acceptedAnswerId: long (nullable = true)
 |-- postTypeId: long (nullable = true)
 |-- id: long (nullable = false)

Before looking further into the DataFrame API, we’ll show you another way of creating
DataFrames from RDDs.
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CONVERTING RDDS TO DATAFRAMES BY SPECIFYING A SCHEMA 

The last method for converting RDDs to DataFrames is to use SparkSession’s create-
DataFrame method, which takes an RDD containing objects of type Row and a Struct-
Type. In Spark SQL, a StructType represents a schema. It contains one or more
StructFields, each describing a column. You can construct a StructType schema for
the post RDD with the following snippet:

import org.apache.spark.sql.types._
val postSchema = StructType(Seq(
  StructField("commentCount", IntegerType, true), 
  StructField("lastActivityDate", TimestampType, true), 
  StructField("ownerUserId", LongType, true),
  StructField("body", StringType, true),
  StructField("score", IntegerType, true),
  StructField("creationDate", TimestampType, true),
  StructField("viewCount", IntegerType, true),
  StructField("title", StringType, true),
  StructField("tags", StringType, true),
  StructField("answerCount", IntegerType, true),
  StructField("acceptedAnswerId", LongType, true),
  StructField("postTypeId", LongType, true),
  StructField("id", LongType, false))
  )

The Row class for your RDD needs to contain elements of various types, so you can con-
struct its objects by specifying all the elements or by passing in a Seq or a Tuple. You
can change the stringToPost function used previously to a stringToRow function just
by changing the Post type to Row (you’ll find the stringToRow function in our online
repository). But because Spark in version 2.0 doesn't handle Scala Option objects well
when constructing DataFrames in this way, you need to use real Java null values. In
other words:

Supported data types
DataFrame takes columns of the usual types supported by major relational databas-
es: strings, integers, shorts, floats, doubles, bytes, dates, timestamps, and binary
values (in relational databases, called BLOBs). But it can also contain complex data
types:

■ Arrays contain several values of the same type.
■ Maps contain key-value pairs, where the key is a primitive type.
■ Structs contain nested column definitions.

You’ll find Scala data type objects that you can use when constructing StructType ob-
jects in the org.apache.spark.sql.types package.
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def stringToRow(row:String):Row = {
    val r = row.split("~")
    Row(r(0).toIntSafe.getOrElse(null),
        r(1).toTimestampSafe.getOrElse(null),
        r(2).toLongSafe.getOrElse(null),
        r(3),
        r(4).toIntSafe.getOrElse(null),
        r(5).toTimestampSafe.getOrElse(null),
        r(6).toIntSafe.getOrElse(null),
        r(7),
        r(8),
        r(9).toIntSafe.getOrElse(null),
        r(10).toLongSafe.getOrElse(null),
        r(11).toLongSafe.getOrElse(null),
        r(12).toLong)
}

Then you can create an RDD and the final DataFrame like this:

val rowRDD = itPostsRows.map(row => stringToRow(row))
val itPostsDFStruct = spark.createDataFrame(rowRDD, postSchema)

GETTING SCHEMA INFORMATION

You can verify that the schema of itPostsDFStruct is equivalent to that of itPosts-
DFCase by calling the printSchema method. You can also access the schema Struct-
Type object through the DataFrame’s schema field.

 Two additional DataFrame functions can give you some information about the Data-
Frame’s schema. The columns method returns a list of column names, and the dtypes
method returns a list of tuples, each containing the column name and the name of its
type. For the itPostsDFCase DataFrame, the results looks like this:

scala> itPostsDFCase.columns
res0: Array[String] = Array(commentCount, lastActivityDate, ownerUserId,   
  body, score, creationDate, viewCount, title, tags, answerCount, 
  acceptedAnswerId, postTypeId, id)

scala> itPostsDFStruct.dtypes
res1: Array[(String, String)] = Array((commentCount,IntegerType), 
  (lastActivityDate,TimestampType), (ownerUserId,LongType),  
  (body,StringType), (score,IntegerType), (creationDate,TimestampType), 
  (viewCount,IntegerType), (title,StringType), (tags,StringType), 
  (answerCount,IntegerType), (acceptedAnswerId,LongType), 
  (postTypeId,LongType), (id,LongType))

5.1.2 DataFrame API basics

Now that you have your DataFrame loaded (no matter which method you used to load
the data), you can start exploring the rich DataFrame API. DataFrames come with a
DSL for manipulating data, which is fundamental to working with Spark SQL. Spark’s
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machine learning library (ML) also relies on DataFrames. They’ve become a corner-
stone of Spark, so it’s important to get acquainted with their API.

 DataFrame’s DSL has a set of functionalities similar to the usual SQL functions for
manipulating data in relational databases. DataFrames work like RDDs: they’re immu-
table and lazy. They inherit their immutable nature from the underlying RDD architec-
ture. You can’t directly change data in a DataFrame; you have to transform it into
another one. They’re lazy because most DataFrame DSL functions don’t return results.
Instead, they return another DataFrame, similar to RDD transformations. 

 In this section, we’ll give you an overview of basic DataFrame functions and show
how you can use them to select, filter, map, group, and join data. All of these functions
have their SQL counterparts, but we’ll get to that in section 5.2. 

SELECTING DATA

Most of the DataFrame DSL functions work with Column objects. When using the
select function for selecting data, you can pass column names or Column objects to it,
and it will return a new DataFrame containing only those columns. For example (first
rename the DataFrame variable to postsDf to make it shorter):

scala> val postsDf = itPostsDFStruct
scala> val postsIdBody = postsDf.select("id", "body")
postsIdBody: org.apache.spark.sql.DataFrame = [id: bigint, body: string]

Several methods exist for creating Column objects. You can create columns using an
existing DataFrame object and its col function:

val postsIdBody = postsDf.select(postsDf.col("id"), postsDf.col("body"))

or you can use some of the implicit methods that you imported in section 5.1.1. One
of them indirectly converts Scala’s Symbol class to a Column. Symbol objects are some-
times used in Scala programs as identifiers instead of Strings because they’re interned
(at most one instance of an object exists) and can be quickly checked for equality.
They can be instantiated with Scala’s built-in quote mechanism or with Scala’s apply
function, so the following two statements are equivalent:

val postsIdBody = postsDf.select(Symbol("id"), Symbol("body"))
val postsIdBody = postsDf.select('id, 'body)

Another implicit method (called $) converts strings to ColumnName objects (which
inherit from Column objects, so you can use ColumnName objects as well):

val postsIdBody = postsDf.select($"id", $"body")

Column objects are important for DataFrame DSL, so all this flexibility is justified. 
 That’s how you specify which columns to select. The resulting DataFrame contains

only the specified columns. If you need to select all the columns except a single one,
you can use the drop function, which takes a column name or a Column object and
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returns a new DataFrame with the specified column missing. For example, to remove
the body column from the postsIdBody DataFrame (and thus leave only the id col-
umn), you can use the following line:

val postIds = postsIdBody.drop("body")

FILTERING DATA

You can filter DataFrame data using the where and filter functions (they’re synony-
mous). They take a Column object or an expression string. The variant taking a string
is used for parsing SQL expressions. Again, we’ll get to that in section 5.2. 

 Why do you pass a Column object to a filtering function, you ask? Because the Col-
umn class, in addition to representing a column name, contains a rich set of SQL-like
operators that you can use to build expressions. These expressions are also repre-
sented by the Column class. 

 For example, to see how many posts contain the word Italiano in their body, you
can use the following line:

scala> postsIdBody.filter('body contains "Italiano").count
res0: Long = 46

To select all the questions that don’t have an accepted answer, use this expression:

scala> val noAnswer = postsDf.filter(('postTypeId === 1) and 
  ('acceptedAnswerId isNull))

Here, the filter expression is based on two columns: the post type ID (which is equal
to 1 for questions) and the accepted answer ID columns. Both expressions yield a
Column object, which is then combined into a third one using the and operator. You
need to use the extra parenthesis to help the Scala parser find its way. 

 These are just some of the available operators. We invite you to examine the com-
plete set of operators listed in the official documentation at http://mng.bz/a2Xt.
Note that you can use these column expressions in select functions as well.

 You can select only the first n rows of a DataFrame with the limit function. The fol-
lowing will return a DataFrame containing only the first 10 questions:

scala> val firstTenQs = postsDf.filter('postTypeId === 1).limit(10)

ADDING AND RENAMING COLUMNS

In some situations, you may want to rename a column to give it a shorter or a more
meaningful name. That’s what the withColumnRenamed function is for. It accepts two
strings: the old and the new name of the column. For example:

val firstTenQsRn = firstTenQs.withColumnRenamed("ownerUserId", "owner")

To add a new column to a DataFrame, use the withColumn function and give it the col-
umn name and the Column expression. Let’s say you’re interested in a “views per score
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point” metric (in other words, how many views are needed to increase score by one),
and you want to see the questions whose value of this metric is less than some thresh-
old (which means if the question is more successful, it gains a higher score with fewer
views). If your threshold is 35 (which is the actual average), this can be accomplished
with the following expression:

scala> postsDf.filter('postTypeId === 1).
  withColumn("ratio", 'viewCount / 'score).
  where('ratio < 35).show()

The output is too wide to print on this page, but you can run the command yourself
and see that the output contains the extra column called ratio. 

SORTING DATA

DataFrame’s orderBy and sort functions sort data (they’re equivalent). They take one
or more column names or one or more Column expressions. The Column class has asc
and desc operators, which are used for specifying the sort order. The default is to sort
in ascending order. 

 As an exercise, try to list the 10 most recently modified questions. (You’ll find the
solution in our online repository.)

5.1.3 Using SQL functions to perform calculations on data

All relational databases today provide SQL functions for performing calculations on
data. Spark SQL also supports a large number of them. SQL functions are available
through the DataFrame API and through SQL expressions. In this section, we’ll cover
their use through the DataFrame API. 

 SQL functions fit into four categories:  

■ Scalar functions return a single value for each row based on calculations on one
or more columns. 

■ Aggregate functions return a single value for a group of rows.
■ Window functions return several values for a group of rows.
■ User-defined functions include custom scalar or aggregate functions.

USING BUILT-IN SCALAR AND AGGREGATE FUNCTIONS

Scalar functions return a single value for each row based on values in one or more columns
in the same row. Scalar functions include abs (calculates the absolute value), exp (com-
putes the exponential), and substring (extracts a substring of a given string). Aggregate
functions return a single value for a group of rows. They are min (returns the minimum
value in a group of rows), avg (calculates the average value in a group of rows), and so on.

 Scalar and aggregate functions reside within the object org.apache.spark
.sql.functions. You can import them all at once (note that they’re automatically
imported in Spark shell, so you don’t have to do this yourself):

import org.apache.spark.sql.functions._
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Spark offers numerous scalar functions to do the following:

■ Math calculations—abs (calculates absolute value), hypot (calculates hypote-
nuse based on two columns or scalar values), log (calculates logarithm), cbrt
(computes cube root), and others

■ String operations—length (calculates length of a string), trim (trims a string
value left and right), concat (concatenates several input strings), and others

■ Date-time operations—year (returns the year of a date column), date_add (adds
a number of days to a date column), and others

Aggregate functions are used in combination with groupBy (explained in section 5.1.4)
but can also be used on the entire dataset in the select or withColumn method. Spark’s
aggregate functions include min, max, count, avg, and sum. These are so common that
we believe no special explanation is necessary. 

 As an example, let’s find the question that was active for the largest amount of
time. You can use the lastActivityDate and creationDate columns for this and find
the difference between them (in days) using the datediff function, which takes two
arguments: end date column and start date column. Here goes:

scala> postsDf.filter('postTypeId === 1).
  withColumn("activePeriod", datediff('lastActivityDate, 'creationDate)).
  orderBy('activePeriod desc).head.getString(3).
  replace("&lt;","<").replace("&gt;",">")
res0: String = <p>The plural of <em>braccio</em> is <em>braccia</em>, and 
the plural of <em>avambraccio</em> is <em>avambracci</em>.</p><p>Why are 
the plural of those words so different, if they both are referring to parts 
of the human body, and <em>avambraccio</em> derives from 
<em>braccio</em>?</p>

You use the head DataFrame function to locally retrieve the first Row from the Data-
Frame and then select its third element, which is the column body. The column body
contains HTML-formatted text, so we unescaped it for better readability. 

 As another example, let’s find the average and maximum score of all questions
and the total number of questions. Spark SQL makes this easy:

scala> postsDf.select(avg('score), max('score), count('score)).show
+-----------------+----------+------------+
|       avg(score)|max(score)|count(score)|
+-----------------+----------+------------+
|4.159397303727201|        24|        1261|
+-----------------+----------+------------+

WINDOW FUNCTIONS

Window functions are comparable to aggregate functions. The main difference is that
they don’t group rows into a single output row per group. They let you define a
“moving group” of rows, called frames, which are somehow related to the current row
and can be used in calculations on the current row. You can use window functions to
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calculate moving averages or cumulative sums, for example. These are calculations that
typically require subselects or complex joins to accomplish. Window functions make
them much simpler and easier.

 When you want to use window functions, start by constructing a Column definition
with an aggregate function (min, max, sum, avg, count) or with one of the functions
listed in table 5.1. Then build a window specification (WindowSpec object) and use it
as an argument to the column’s over function. The over function defines a column
that uses the specified window specification. 

The window specification is built using the static methods in the org.apache.spark
.sql.expressions.Window class. You need to specify one or more columns that
define the partition (the same principles apply as with aggregate functions) using the
partitionBy function, or specify ordering in the partition (assuming the partition is
the entire dataset) using the orderBy function, or you can do both. 

 You can further restrict which rows appear in frames by using the rows-
Between(from, to) and rangeBetween(from, to) functions. The rowsBetween func-
tion restricts rows by their row index, where index 0 is the row being processed, -1 is
the previous row, and so on. The rangeBetween function restricts rows by their values

Table 5.1 Ranking and analytic functions that can be used as window functions

Function name Description

first (column) Returns the value in the first row in the frame. 

last (column) Returns the value in the last row in the frame.

lag (column, offset, 
[default])

Returns the value in the row that is offset rows behind the row in the 
frame. Use default if such a row doesn’t exist.

lead (column, 
offset, [default])

Returns the value in the row that is offset rows before the row in the 
frame. Use default if such a row doesn’t exist.

ntile (n) Divides the frame into n parts and returns the part index of the row. If 
the number of rows in the frame isn’t divisible by n and division gives a 
number between x and x+1, the resulting parts will contain x or x+1 
rows, with parts containing x+1 rows coming first.

cumeDist Calculates the fraction of rows in the frame whose value is less than or 
equal to the value in the row being processed. 

rank Returns the rank of the row in the frame (first, second, and so on). Rank 
is calculated by the value. 

denseRank Returns the rank of the row in the frame (first, second, and so on), but 
puts the rows with equal values in the same rank. 

percentRank Returns the rank of the row divided by the number of rows in the frame.

rowNumber Returns the sequential number of the row in the frame.
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and includes only those rows whose values (in the defined column to which the win-
dow specification applies) fall in the defined range.

 This is a lot of information, so we’ll illustrate with two examples using the
postsDf DataFrame. First, you’ll display the maximum score of all user questions
(post type ID 1), and for each question, how much its score is below the maximum
score for that user. As you can probably imagine, without window functions, this
would require a complicated query. 

 To use window functions, first import the Window class:

import org.apache.spark.sql.expressions.Window

If you filter the posts by type, then you can select the maximum score among other
columns. When using the window specification for partitioning rows by the question
owner, the max function applies only to user questions in the current row. You can
then add a column (called toMax in the example) to display the difference in points
between the current question’s score and the user’s maximum score:

scala> postsDf.filter('postTypeId === 1).
  select('ownerUserId, 'acceptedAnswerId, 'score, max('score).
    over(Window.partitionBy('ownerUserId)) as "maxPerUser").
  withColumn("toMax", 'maxPerUser - 'score).show(10)
+-----------+----------------+-----+----------+-----+
|ownerUserId|acceptedAnswerId|score|maxPerUser|toMax|
+-----------+----------------+-----+----------+-----+
|        232|            2185|    6|         6|    0|
|        833|            2277|    4|         4|    0|
|        833|            null|    1|         4|    3|
|        235|            2004|   10|        10|    0|
|        835|            2280|    3|         3|    0|
|         37|            null|    4|        13|    9|
|         37|            null|   13|        13|    0|
|         37|            2313|    8|        13|    5|
|         37|              20|   13|        13|    0|
|         37|            null|    4|        13|    9|
+-----------+----------------+-----+----------+-----+

For the second example, you’ll display, for each question, the id of its owner’s next
and previous questions by creation date. Again, first filter posts by their type to get
only the questions. Then use the lag and lead functions to reference the previous
and the next rows in the frame. The window specification is the same for both col-
umns: partitioning needs to be done by user, and the questions in the frame need to
be ordered by creation date. Finally, order the entire dataset by owner user ID and
question ID to make the results clearly apparent:

scala> postsDf.filter('postTypeId === 1).
  select('ownerUserId, 'id, 'creationDate, 
    lag('id, 1).over(
      Window.partitionBy('ownerUserId).orderBy('creationDate)) as "prev", 
    lead('id, 1).over(
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      Window.partitionBy('ownerUserId).orderBy('creationDate)) as "next").
  orderBy('ownerUserId, 'id).show(10)
+-----------+----+--------------------+----------+
|ownerUserId|  id|        creationDate|prev| next|
+-----------+----+--------------------+----------+
|          4|1637|2014-01-24 06:51:...|null| null|
|          8|   1|2013-11-05 20:22:...|null|  112|
|          8| 112|2013-11-08 13:14:...|   1| 1192|
|          8|1192|2013-11-11 21:01:...| 112| 1276|
|          8|1276|2013-11-15 16:09:...|1192| 1321|
|          8|1321|2013-11-20 16:42:...|1276| 1365|
|          8|1365|2013-11-23 09:09:...|1321| null|
|         12|  11|2013-11-05 21:30:...|null|   17|
|         12|  17|2013-11-05 22:17:...|  11|   18|
|         12|  18|2013-11-05 22:34:...|  17|   19|
+-----------+----+--------------------+----+-----+

If you need to write a similar SQL query, we’re confident you’ll know how to appreci-
ate the power and simplicity of window functions.

 In the previous sections, we covered only some of the SQL functions Spark supports.
We encourage you to explore all the available functions at http://mng.bz/849V.

USER-DEFINED FUNCTIONS

In many situations, Spark SQL may not provide the specific functionality you need in a
particular moment. UDFs let you extend the built-in functionalities of Spark SQL. 

 For example, there’s no built-in function that can help you find how many tags
each question has. Tags are stored as concatenated tag names surrounded by angle
brackets. The angle brackets are encoded so they appear as &lt; and &gt; instead of <
and > (for example, the translation tag appears as &lt;translation&gt;). You can
calculate the number of tags by counting occurrences of the string "&lt;" in the tags
column, but there are no built-in functions for this. 

 UDFs are created using the udf function (accessible from the functions object) by
passing to it the function with the required logic. Each UDF takes zero or more columns
(the maximum is 10) and returns the final value. In this case, all occurrences of a string
in another one can be found with Scala’s regular expressions (r.findAllMatchIn):

scala> val countTags = udf((tags: String) => 
  "&lt;".r.findAllMatchIn(tags).length)
countTags: org.apache.spark.sql.UserDefinedFunction = ...

Another way of accomplishing the same thing is using the SparkSession.udf.register
function:

scala> val countTags = spark.udf.register("countTags",
    (tags: String) => "&lt;".r.findAllMatchIn(tags).length)

This way, the UDF gets registered with a name that can be also used in SQL expressions
(covered in section 5.2).
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 Now that the countTags UDF is defined, it can be used to produce a Column defini-
tion for the select statement (the output was truncated to fit on the page):

scala> postsDf.filter('postTypeId === 1).
  select('tags, countTags('tags) as "tagCnt").show(10, false)
+------------------------------------------------------------------+------+
|tags                                                              |tagCnt|
+------------------------------------------------------------------+------+
|&lt;word-choice&gt;                                               |1     |
|&lt;english-comparison&gt;&lt;translation&gt;&lt;phrase-request&gt|3     |
|&lt;usage&gt;&lt;verbs&gt;                                        |2     |
|&lt;usage&gt;&lt;tenses&gt;&lt;english-comparison&gt;             |3     |
|&lt;usage&gt;&lt;punctuation&gt;                                  |2     |
|&lt;usage&gt;&lt;tenses&gt;                                       |2     |
|&lt;history&gt;&lt;english-comparison&gt;                         |2     |
|&lt;idioms&gt;&lt;etymology&gt;                                   |2     |
|&lt;idioms&gt;&lt;regional&gt;                                    |2     |
|&lt;grammar&gt;                                                   |1     |
+------------------------------------------------------------------+------+

The false flag tells the show method not to truncate the strings in columns (the
default is to truncate them to 20 characters).

5.1.4 Working with missing values

Sometimes you may need to clean your data before using it. It might contain null or
empty values, or equivalent string constants (for example, “N/A” or “unknown”). In
those instances, the DataFrameNaFunctions class, accessible through the DataFrames
na field, may prove useful. Depending on your case, you can choose to drop the rows
containing null or NaN (the Scala constant meaning “not a number”) values, to fill null
or NaN values with constants, or to replace certain values with string or numeric constants. 

 Each of these methods has several versions. For example, to remove all the rows
from postsDf that contain null or NaN values in at least one of their columns, call
drop with no arguments:

scala> val cleanPosts = postsDf.na.drop()
scala> cleanPosts.count()
res0: Long = 222

This is the same as calling drop("any"), which means null values can be in any of the
columns. If you use drop("all"), it removes rows that have null values in all of the
columns. You can also specify column names. For example, to remove the rows that
don’t have an accepted answer ID, you can do this:

postsDf.na.drop(Array("acceptedAnswerId"))

With the fill function, you can replace null and NaN values with a constant. The con-
stant can be a double or a string value. If you specify only one argument, that argu-
ment is used as the constant value for all the columns. You can also specify the
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columns in the second argument. There is a third option: to specify Map, mapping col-
umn names to replacement values. For example, you can replace null values in the
viewCount column with zeroes using the following expression:

postsDf.na.fill(Map("viewCount" -> 0))

Finally, the replace function enables you to replace certain values in specific col-
umns with different ones. For example, imagine there was a mistake in your data
export and you needed to change post ID 1177 to 3000. You can do that with the
replace function:

val postsDfCorrected = postsDf.na.
    replace(Array("id", "acceptedAnswerId"), Map(1177 -> 3000))

5.1.5 Converting DataFrames to RDDs

You’ve seen how to create a DataFrame from an RDD. Now we’ll show you how to do
the reverse. DataFrames are based on RDDs, so getting an RDD from a DataFrame isn’t
complicated. Every DataFrame has the lazily evaluated rdd field for accessing the
underlying RDD:

scala> val postsRdd = postsDf.rdd
postsRdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = ...

The resulting RDD contains elements of type org.apache.spark.sql.Row, the same
class used in section 5.1.1 to convert an RDD to a DataFrame by specifying a schema
(stringToRow function). Row has various get* functions for accessing column values
by column indexes (getString(index), getInt(index), getMap(index), and so
forth. It also has a useful function for converting rows to strings (mimicking a similar
function available for Scala sequences): mkString(delimiter).

 Mapping DataFrame’s data and partitions with map, flatMap, and mapPartitions
transformations is done directly on the underlying rdd field. Naturally, they return a
new RDD and not a DataFrame. Everything we said about those transformations in the
last chapter applies here also, with an additional constraint that the functions you pass
to them need to work with Row objects.

 These transformations can change the DataFrame’s (RDD’s) schema. They can
change the order, number, or type of the columns. Or they can convert Row objects
to some other type. So, automatic conversion back to a DataFrame isn’t possible. If
you don’t change the DataFrame’s schema, you can use the old schema to create a
new DataFrame. 

 As an exercise, let’s replace those nasty-looking &lt; and &gt; strings with < and >
symbols in the body (index 3) and tags (index 8) columns. You can map each row to
a Seq object, use the Seq object’s updated method to replace its elements, map the
Seq back to a Row object, and finally use the old schema to create a new DataFrame.
The following lines accomplish this:
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val postsMapped = postsDf.rdd.map(row => Row.fromSeq(
  row.toSeq.
    updated(3, row.getString(3).replace("&lt;","<").replace("&gt;",">")).
    updated(8, row.getString(8).replace("&lt;","<").replace("&gt;",">"))))
val postsDfNew = spark.createDataFrame(postsMapped, postsDf.schema)

Typically there’s no need to convert DataFrames to RDDs and back because most data-
mapping tasks can be done with built-in DSL and SQL functions and UTFs.

5.1.6 Grouping and joining data

Grouping data is straightforward with DataFrames. If you understand the SQL GROUP
BY clause, you’ll have no trouble understanding grouping data with DataFrames. It
starts with the groupBy function, which expects a list of column names or a list of Col-
umn objects and returns a GroupedData object. 

 GroupedData represents groups of rows that have the same values in the columns
specified when calling groupBy, and it offers standard aggregation functions (count,
sum, max, min, and avg) for aggregating across the groups. Each of these functions
returns a DataFrame with the specified columns and an additional column containing
the aggregated data. 

 To find the number of posts per author, associated tags, and the post type, use the
following (treating each combination of tags as a unique value):

scala> postsDfNew.groupBy('ownerUserId, 'tags,   
    'postTypeId).count.orderBy('ownerUserId desc).show(10)
+-----------+--------------------+----------+-----+
|ownerUserId|                tags|postTypeId|count|
+-----------+--------------------+----------+-----+
|        862|                    |         2|    1|
|        855|         <resources>|         1|    1|
|        846|<translation><eng...|         1|    1|
|        845|<word-meaning><tr...|         1|    1|
|        842|  <verbs><resources>|         1|    1|
|        835|    <grammar><verbs>|         1|    1|
|        833|                    |         2|    1|
|        833|           <meaning>|         1|    1|
|        833|<meaning><article...|         1|    1|
|        814|                    |         2|    1|
+-----------+--------------------+----------+-----+

You can perform several aggregations on different columns with the agg function. It
can take one or more column expressions using aggregate functions from
org.apache.spark.sql.functions (which you used in section 5.1.3) or a map with
column names to function name mappings. To find the last activity date and the max-
imum post score per user, you can use the following two expressions, which accom-
plish the same result:

scala> postsDfNew.groupBy('ownerUserId).
  agg(max('lastActivityDate), max('score)).show(10)
scala> postsDfNew.groupBy('ownerUserId).
  agg(Map("lastActivityDate" -> "max", "score" -> "max")).show(10)
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They both show the same output:

+-----------+---------------------+----------+
|ownerUserId|max(lastActivityDate)|max(score)|
+-----------+---------------------+----------+
|        431| 2014-02-16 14:16:...|         1|
|        232| 2014-08-18 20:25:...|         6|
|        833| 2014-09-03 19:53:...|         4|
|        633| 2014-05-15 22:22:...|         1|
|        634| 2014-05-27 09:22:...|         6|
|        234| 2014-07-12 17:56:...|         5|
|        235| 2014-08-28 19:30:...|        10|
|        435| 2014-02-18 13:10:...|        -2|
|        835| 2014-08-26 15:35:...|         3|
|         37| 2014-09-13 13:29:...|        23|
+-----------+---------------------+----------+

The former method is more powerful, however, because it enables you to chain col-
umn expressions. For example:

scala> postsDfNew.groupBy('ownerUserId).
  agg(max('lastActivityDate), max('score).gt(5)).show(10) 
+-----------+---------------------+----------------+
|ownerUserId|max(lastActivityDate)|(max(score) > 5)|
+-----------+---------------------+----------------+
|        431| 2014-02-16 14:16:...|           false|
|        232| 2014-08-18 20:25:...|            true|
|        833| 2014-09-03 19:53:...|           false|
|        633| 2014-05-15 22:22:...|           false|
|        634| 2014-05-27 09:22:...|            true|
|        234| 2014-07-12 17:56:...|           false|
|        235| 2014-08-28 19:30:...|            true|
|        435| 2014-02-18 13:10:...|           false|
|        835| 2014-08-26 15:35:...|           false|
|         37| 2014-09-13 13:29:...|            true|
+-----------+---------------------+----------------+

USER-DEFINED AGGREGATE FUNCTIONS

In addition to the built-in aggregate functions, Spark SQL lets you define your own.
We don’t elaborate much on this because the scope of this chapter doesn’t allow us to
go into detail. A general approach is to create a class that extends the abstract class
org.apache.spark.sql.expressions.UserDefinedAggregateFunction, then define
input and buffer schemas, and finally implement the initialize, update, merge, and
evaluate functions. For details, see the official documentation at http://mng.bz/Gbt3
and a Java example at http://mng.bz/5bOb. 

ROLLUP AND CUBE

Data grouping and aggregation can be done with two additional flavors called
rollup and cube. You saw that groupBy calculates aggregate values for all
combinations of data values in the selected columns; cube and rollup also calculate
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the aggregates for subsets of the selected columns. The difference between the two
is that rollup respects the hierarchy of the input columns and always groups by the
first column.

 An example will make this much clearer. You’ll select a subset of the dataset
because the difference between these functions isn’t obvious on a large dataset. Begin
by selecting the posts from only a couple of users:

scala> val smplDf = postsDfNew.where('ownerUserId >= 13 and 'ownerUserId <= 15)

Counting the posts by owner, tags, and post type (by chance, all the tags are empty and
all the post types are 2) gives the following result:

scala> smplDf.groupBy('ownerUserId, 'tags, 'postTypeId).count.show()
+-----------+----+----------+-----+
|ownerUserId|tags|postTypeId|count|
+-----------+----+----------+-----+
|         15|    |         2|    2|
|         14|    |         2|    2|
|         13|    |         2|    1|
+-----------+----+----------+-----+

The rollup and cube functions, used just like groupBy, are also accessible from the
DataFrame class. The rollup function returns the same results but adds subtotals per
owner (tags and post type are null), per owner and tags (post type is null), and the
grand total (all null values):

scala> smplDf.rollup('ownerUserId, 'tags, 'postTypeId).count.show()
+-----------+----+----------+-----+
|ownerUserId|tags|postTypeId|count|
+-----------+----+----------+-----+
|         15|    |         2|    2|
|         13|    |      null|    1|
|         13|null|      null|    1|
|         14|    |      null|    2|
|         13|    |         2|    1|
|         14|null|      null|    2|
|         15|    |      null|    2|
|         14|    |         2|    2|
|         15|null|      null|    2|
|       null|null|      null|    5|
+-----------+----+----------+-----+

The cube function returns all of these results, but also adds other possible subtotals
(per post type, per tags, per post type and tags, per post type and user). We’ll omit the
results here for brevity, but you can find them in our online repository, and you can
produce them in your Spark shell yourself.
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5.1.7 Performing joins

Often you may have related data in two DataFrames that you want to join so the result-
ing DataFrame contains rows from both DataFrames with values common to both. We
showed you how to perform joins on RDDs in the previous chapter. Performing them
with DataFrames isn’t much different.  

 When calling the join function, you need to provide the DataFrame to be joined
and one or more column names or a column definition. If you use column names,
they need to be present in both DataFrames. If they aren’t, you can always use column
definitions. When using a column definition, you can also pass a third argument spec-
ifying the join type (inner, outer, left_outer, right_outer, or leftsemi).  

Configuring Spark SQL
How to configure Spark SQL is essential when working with DataFrames DSL or using
SQL commands. You’ll find details about configuring Spark in general in chapter 10.
Although Spark’s main configuration can’t be changed during runtime, the Spark SQL
configuration can. Spark SQL has a separate set of parameters that affect the exe-
cution of DataFrame operations and SQL commands. 

You can set Spark SQL parameters with the SQL command SET (SET <parameter
_name>=<parameter_value>) or by calling the set method of the RuntimeConfig
object available from SparkSession’s conf field. set accepts a single parameter name
and a value (a String, Boolean, or Long). So, these two lines are equivalent:

spark.sql("SET spark.sql.caseSensitive=true")
spark.conf.set("spark.sql.caseSensitive", "true")

By the way, this parameter enables case sensitivity for query analysis (table and col-
umn names), which is something Hive doesn’t support natively but Spark SQL does,
even when using Hive support. 

Another configuration parameter to note is spark.sql.eagerAnalysis, which tells
Spark whether to evaluate DataFrame expressions eagerly. If set to true, Spark throws
an exception as soon as you mention a non-existent column in a DataFrame, instead
of waiting for you to perform an action on the DataFrame that fetches the results. 

We mention several more important parameters in the following sections.

An important note about performance
One hidden but important parameter is spark.sql.shuffle.partitions, which de-
termines the number of partitions a DataFrame should have after a shuffle is performed
(for example, after a join). As of Spark 1.5.1, the default is 200, which could be too
much or too little for your use case and your environment. For the examples in this
book, you don’t need more than 5 to 10 partitions. But if your dataset is huge, 200
may be too small. If you wish to change the number of partitions, you can set this
parameter before performing the action that will trigger the shuffle.
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As an example, load the italianVotes.csv file from our online GitHub repository
(which should already be cloned in the first-edition folder), and load it into a Data-
Frame with the following code:

val itVotesRaw = sc.textFile("first-edition/ch05/italianVotes.csv").
  map(x => x.split("~"))
val itVotesRows = itVotesRaw.map(row => Row(row(0).toLong, row(1).toLong, 
  row(2).toInt, Timestamp.valueOf(row(3))))
val votesSchema = StructType(Seq(
  StructField("id", LongType, false),
  StructField("postId", LongType, false),
  StructField("voteTypeId", IntegerType, false),
  StructField("creationDate", TimestampType, false)) )
val votesDf = spark.createDataFrame(itVotesRows, votesSchema)

Joining the two DataFrames on the postId column can be done like this:

val postsVotes = postsDf.join(votesDf, postsDf("id") === 'postId)

This performs an inner join. You can perform an outer join by adding another
argument:

val postsVotesOuter = postsDf.join(votesDf, 
  postsDf("id") === 'postId, "outer")

If you examine the contents of the postsVotesOuter DataFrame, you’ll notice there
are some rows with all null values in the votes columns. These are the posts that have
no votes. Note that you have to tell Spark SQL exactly which id column you’re refer-
encing by creating the Column object from the DataFrame object. postId is unique
across both DataFrames, so you can resort to the simpler syntax and create the Column
object by using implicit conversion from Scala’s Symbol. 

 If you’d like to experiment more, you can use other CSV files from the Italian lan-
guage dataset in our online repository. They contain data about badges, comments,
post history, post links, tags, and users. 

5.2 Beyond DataFrames: introducing DataSets
DataSets, introduced in Spark 1.6.0 as an experimental feature, graduated into a
pivotal construct in Spark 2.0. The idea behind DataSets “is to provide an API that
allows users to easily express transformations on domain objects, while also

(continued)
This isn’t an ideal situation, however, because the number of DataFrame partitions
shouldn’t be fixed, but should depend on the data and runtime environment instead.
There are two JIRA tickets (https://issues.apache.org/jira/browse/SPARK-9872 and
https://issues.apache.org/jira/browse/SPARK-9850) documenting this and propos-
ing solutions, so the situation will probably change in a future Spark release.
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providing the performance and robustness advantages of the Spark SQL execution
engine” (https://issues.apache.org/jira/browse/SPARK-9999). That essentially
means that you can store ordinary Java objects in DataSets and take advantage of
Tungsten and Catalyst optimizations. 

 DataSets represent a competition to RDDs in a way because they have overlap-
ping functions. Another path the Spark community could have taken was to change
the RDD API to include the new features and optimizations. But that would break the
API and too many existing applications would need to be changed, so it was decided
against that.

 DataFrames are now simply implemented as DataSets containing Row objects. 
 To convert a DataFrame to a DataSet, you use DataFrame’s as method:

def as[U : Encoder]: Dataset[U]

As you can see, you need to provide an Encoder object, which tells Spark how to inter-
pret the DataSet’s contents. Most Java and Scala primitive types, such as String, Int,
and so on, are implicitly converted to Encoders, so you don’t need to do anything spe-
cial to create a DataSet containing Strings or Doubles:

val stringDataSet = spark.read.text("path/to/file").as[String]

You can write your own encoders or you can use encoders for ordinary Java bean
classes. Fields of the bean class need to be primitive types (or their boxed versions,
such as Integer or Double), BigDecimals, Date or Timestamp objects, arrays, lists, or
nested Java beans. 

 You can manipulate DataSet’s columns, as you did with DataFrames in this chapter.
If you look at DataSet documentation {http://mng.bz/3EQc} you will also see many
transformations and actions familiar from both RDD and DataFrame APIs. 

 DataSets will surely improve in future versions of Spark and will integrate more
fully with other parts of Spark. So keep an eye on them.

5.3 Using SQL commands
The DataFrame DSL functionalities presented in the previous sections are also accessi-
ble through SQL commands as an alternative interface for programming Spark SQL.
Writing SQL is probably easier and more natural to users who are used to working with
relational databases, or distributed databases, such as Hive. 

 When you write SQL commands in Spark SQL, they get translated into operations
on DataFrames. Because SQL is so widespread, using SQL commands opens Spark SQL
and DataFrames for use by users who have only an SQL interface at their disposal.
They can connect to Spark from their applications through standard JDBC or ODBC
protocols by connecting to Spark’s Thrift server (we’ll talk about it in a bit). In this
section, you’ll learn how to perform SQL queries referencing your DataFrames and
how you can enable users to connect to your Spark cluster through the Thrift server. 
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 Spark supports two SQL dialects: Spark’s SQL dialect and Hive Query Language
(HQL). The Spark community recommends HQL (Spark 1.5) because HQL has a
richer set of functionalities. To use Hive functionalities, you need a Spark distribution
built with Hive support (which is the case with archives downloaded from the main
Spark download page). In addition to bringing a more powerful SQL parser, Hive sup-
port lets you access existing Hive tables and use existing, community-built Hive UDFs. 

 Hive functionalities are enabled in Spark by calling enableHiveSupport() on a
Builder object while constructing a SparkSession. If you’re using a Spark distribu-
tion with Hive support, the Spark shell automatically detects this and enables Hive
functionality. In your programs, you would enable it yourself:

val spark = SparkSession.builder().
    enableHiveSupport().
    getOrCreate()

5.3.1 Table catalog and Hive metastore

As you probably know, most SQL operations operate on tables referenced by name.
When executing SQL queries using Spark SQL, you can reference a DataFrame by its
name by registering the DataFrame as a table. When you do that, Spark stores the table
definition in the table catalog. 

 For Spark without Hive support, a table catalog is implemented as a simple in-
memory map, which means that table information lives in the driver’s memory and
disappears with the Spark session. SparkSession with Hive support, on the other
hand, uses a Hive metastore for implementing the table catalog. A Hive metastore is a
persistent database, so DataFrame definitions remain available even if you close the
Spark session and start a new one. 

REGISTERING TABLES TEMPORARILY

Hive support still enables you to create temporary table definitions. In both cases
(Spark with or without Hive support), the createOrReplaceTempView method regis-
ters a temporary table. You can register the postsDf DataFrames like this:

postsDf.createOrReplaceTempView("posts_temp")

Now you’ll be able to query data from postsDf DataFrame using SQL queries referenc-
ing the DataFrame by the name posts_temp. We’ll show you how to do that in a jiffy. 

REGISTERING TABLES PERMANENTLY

As we said, only SparkSession with Hive support can be used to register table definitions
that will survive your application’s restarts (in other words, they’re persistent). By
default, HiveContext creates a Derby database in the local working directory under the
metastore_db subdirectory (or it reuses the database if it already exists). If you wish to
change where the working directory is located, set the hive.metastore.warehouse.dir
property in your hive-site.xml file (details shortly).
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 To register a DataFrame as a permanent table, you need to use its write member.
Using the postsDf and votesDf DataFrames as an example again:

postsDf.write.saveAsTable("posts")
votesDf.write.saveAsTable("votes")

After you save DataFrames to a Hive metastore like this, you can subsequently use
them in SQL expressions. 

WORKING WITH THE SPARK TABLE CATALOG

Since version 2.0, Spark provides a facility for managing the table catalog. It is imple-
mented as the Catalog class, accessible through SparkSession’s catalog field. You
can use it to see which tables are currently registered:

scala> spark.catalog.listTables().show()
+----------+--------+-----------+---------+-----------+
|      name|database|description|tableType|isTemporary|
+----------+--------+-----------+---------+-----------+
|     posts| default|       null|  MANAGED|      false|
|     votes| default|       null|  MANAGED|      false|
|posts_temp|    null|       null|TEMPORARY|       true|
+----------+--------+-----------+---------+-----------+

You can use the show() method here because listTables returns a DataSet of
Table objects. You can immediately see which tables are permanent and which are
temporary (isTemporary column). The MANAGED table type means that Spark also
manages the data for the table. The table can also be EXTERNAL, which means that its
data is managed by another system, for example a RDBMS.

 Tables are registered in metastore “databases.” The default database, called
“default,” stores managed tables in the spark_warehouse subfolder in your home
directory. You can change that location by setting the spark.sql.warehouse.dir
parameter to the desired value.

 You can also use the Catalog object to examine the columns of a specific table:

scala> spark.catalog.listColumns("votes").show()
+------------+-----------+---------+--------+-----------+--------+
|        name|description| dataType|nullable|isPartition|isBucket|
+------------+-----------+---------+--------+-----------+--------+
|          id|       null|   bigint|    true|      false|   false|
|      postid|       null|   bigint|    true|      false|   false|
|  votetypeid|       null|      int|    true|      false|   false|
|creationdate|       null|timestamp|    true|      false|   false|
+------------+-----------+---------+--------+-----------+--------+

To get a list of all available SQL functions call:

scala> spark.catalog.listFunctions.show()
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 You can also manage which tables are cached in memory, and which are not, with
the cacheTable, uncacheTable, isCached, and clearCache methods.

CONFIGURING A REMOTE HIVE METASTORE

You can also configure Spark to use a remote Hive metastore database. This can be a
metastore database of an existing Hive installation or a new database to be used exclu-
sively by Spark. This configuration is done by placing the Hive configuration file hive-
site.xml, with the appropriate configuration parameters, in Spark’s conf directory.
This will override the spark.sql.warehouse.dir parameter. 

 The hive-site.xml  file must contain a configuration tag with property tags in it.
Each property tag has name and value subtags. For example:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
  <name>hive.metastore.warehouse.dir</name>
  <value>/hive/metastore/directory</value>
</property>
</configuration>

To configure Spark to use a remote Hive metastore, these properties need to be in the
hive-site.xml file:

■ javax.jdo.option.ConnectionURL—JDBC connection URL
■ javax.jdo.option.ConnectionDriverName—Class name of the JDBC driver
■ javax.jdo.option.ConnectionUserName—Database username
■ javax.jdo.option.ConnectionPassword—Database user password

The connection URL must point to an existing database containing Hive tables. To ini-
tialize the metastore database and create the necessary tables, you can use Hive’s
schematool. Please consult the Hive official documentation (http://mng.bz/3HJ5)
on how to use it.

 The JDBC driver you specify must be in the classpath of the driver and all execu-
tors. The easiest way to do this is to supply JAR files with the --jars option while sub-
mitting your application or starting your Spark shell. 

5.3.2 Executing SQL queries

Now that you have a DataFrame registered as a table, you can query its data using SQL
expressions. This is done with SparkSession’s sql function. In a Spark shell, it’s auto-
matically imported (import spark.sql), so you can use it directly for writing SQL
commands:

val resultDf = sql("select * from posts")

The result is again a DataFrame. All the data manipulations performed with DataFrame
DSL in the previous sections can also be done through SQL, but Spark SQL offers more
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options. When using a SparkSession with Hive support, which is the recommended
Spark SQL engine, the majority of Hive commands and data types are supported. For
example, with SQL you can use DDL commands, such as ALTER TABLE and DROP TABLE.
You can find the complete list of supported Hive features in the Spark documentation
(http://mng.bz/8AFz). We won’t list them  here, but you can find the details in the Hive
language manual (http://mng.bz/x7k2). 

USING THE SPARK SQL SHELL

In addition to the Spark shell, Spark also offers an SQL shell in the form of the spark-
sql command, which supports the same arguments as the spark-shell and spark-
submit commands (for details, see chapters 10 and 11) but adds some of its own.
When run without arguments, it starts an SQL shell in local mode. At the shell
prompt, you can enter the same SQL commands you would using the sql command
you used in the previous sections. 

 For example, to show the titles (cropped to 70 characters so they fit on this page)
of the three most recent questions from the posts table you permanently saved earlier,
enter the following at the Spark SQL shell prompt (you’ll need to stop your Spark
shell first to avoid locking on the same Derby metastore):

spark-sql> select substring(title, 0, 70) from posts where 
  postTypeId = 1 order by creationDate desc limit 3;
Verbo impersonale che regge verbo impersonale: costruzione implicita?
Perch?Š si chiama &quot;saracinesca&quot; la chiusura metallica scorren
Perch?Š a volte si scrive l'accento acuto sulla &quot;i&quot; o sulla &
Time taken: 0.375 seconds, Fetched 3 row(s)

NOTE In the SQL shell, you need to terminate SQL expressions with
semicolons (;).

You can also run a single SQL query without entering the shell with the -e argument.
In this case, you don’t need a semicolon. For example:

$ spark-sql -e "select substring(title, 0, 70) from posts where 

➥ postTypeId= 1 order by creationDate desc limit 3"

And to run a file with SQL commands, specify it with the -f argument. The i argu-
ment enables you to specify an initialization SQL file to run before any other SQL com-
mand. Again, you can use the data files in our online repository to play around with
Spark SQL and further examine the API.

5.3.3 Connecting to Spark SQL through the Thrift server

In addition to executing SQL queries directly from your programs or through a SQL
shell, Spark also lets you run SQL commands remotely, through a JDBC (and ODBC)
server called Thrift.3 JDBC (and ODBC) is a standard way of accessing relational

3 Spark’s Thrift server is based on Hive’s server of the same name.
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databases, which means the Thrift server opens Spark for use by any application
capable of communicating with relational databases. 

 The Thrift server is a special Spark application, capable of accepting JDBC and
ODBC connections from multiple users and executing their queries in a Spark SQL
session. It runs in a Spark cluster, like any Spark application. SQL queries get trans-
lated to DataFrames and, finally, RDD operations (as we discussed previously), and the
results are sent back over the JDBC protocol. DataFrames referenced by the queries
must be permanently registered in the Hive metastore used by the Thrift server.

STARTING A THRIFT SERVER

You start a Thrift server with the start-thriftserver.sh command from Spark’s sbin
directory. You can pass to it the same arguments as those accepted by the spark-shell
and spark-submit commands (for details, see chapters 10 and 11). If you set up a
remote metastore database, you can tell the Thrift server where to find the JAR with
the JDBC driver to access the database using the --jars argument. If your remote
metastore database is PostgreSQL, you can start the Thrift server like this:

$ sbin/start-thriftserver.sh --jars /usr/share/java/postgresql-jdbc4.jar

This script starts a Thrift server in the background and then exits. The default Thrift
server port is 10000. You can change the listening port and host name of the Thrift
server either with the environment variables HIVE_SERVER2_THRIFT_PORT and
HIVE_SERVER2_THRIFT_BIND_HOST (both are needed) or with the hive.server2
.thrift.port and hive.server2.thrift.bind.host Hive configuration variables,
which you specify using the --hiveconf parameters when starting the server.

CONNECTING TO THE THRIFT SERVER WITH BEELINE

Beeline is Hive’s command-line shell for connecting to a Thrift server, available in
Spark’s bin directory. You can use it to test the connection to the Thrift server you just
started. You need to provide the JDBC URL to the server and, optionally, a username
and a password:

$ beeline -u jdbc:hive2://<server_name>:<port> -n <username> -p <password>
Connecting to jdbc:hive2://<server_name>:<port>
Connected to: Spark SQL (version 1.5.0)
Driver: Spark Project Core (version 1.5.0)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 1.5.0 by Apache Hive
0: jdbc:hive2://<server_name>:<port>>

Once connected to the server, Beeline shows its command prompt, where you can
enter HQL commands for interacting with the tables in your Hive metastore.

CONNECTING FROM THIRD-PARTY JDBC CLIENTS

As an example of a JDBC client, we’ll use Squirrel SQL, an open source Java SQL client.
We’re using Squirrel SQL to show you the typical steps and configuration needed for
connecting to Spark’s Thrift server, but you can use any other JDBC client. 
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To connect to your Thrift server from Squirrel SQL, you define a Hive driver and an
alias. Driver definition parameters are shown in figure 5.2. The two JAR files needed in
the classpath are hive-jdbc-<version>-standalone.jar and hadoop-common-<version>
.jar. The former is part of the Hive distribution (from the lib folder), and the latter
can be found in the Hadoop distribution (in the share/hadoop/common folder).

 The next step is to define an alias using the defined Hive driver. Figure 5.3 shows
the parameters needed: alias name, URL, username, and password. The URL needs to
be in the format jdbc:hive2://<hostname>:<port>. 

Figure 5.2 Defining a Hive driver 
in Squirrel SQL as an example of a 
JDBC client connecting to Spark’s 
Thrift server. You need to provide 
the driver name and classpath. 
hive-jdbc-<version>-stand-
alone.jar and hadoop-common-
<version>.jar are the only JAR files 
needed for a successful connec-

Figure 5.3 Defining an alias for 
the Thrift server connection in 
Squirrel SQL as an example of a 
JDBC client. You need to select 
the driver defined previously and 
enter a URL in the format jd-
bc:hive:// <hostname>:<port>, a 
username, and a password.
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And that’s all the configuration you need. When you connect to the Thrift server, you
can enter SQL queries in the SQL tab. An example is shown in figure 5.4. This is a con-
venient way of connecting your usual visualization and analytical tools to your distrib-
uted data through Spark. 

5.4 Saving and loading DataFrame data
Spark has built-in support for several file formats and databases (generally called data
sources in Spark). These include JDBC and Hive, which we mentioned earlier, and the
JSON, ORC, and Parquet file formats. For relational databases, Spark specifically sup-
ports dialects (meaning data-type mappings) for the MySQL and PostgreSQL databases. 

 Data sources are pluggable, so you can add your own implementations. And you
can download and use some external data, such as the CSV (https://github.com/
databricks/spark-csv), Avro (https://github.com/databricks/spark-avro), and Ama-
zon Redshift (https://github.com/databricks/spark-redshift) data sources. 

 Spark uses the metastore, which we covered in the previous section, to save infor-
mation about where and how the data is stored. It uses data sources for saving and
loading the actual data. 

5.4.1 Built-in data sources

Before explaining how to save and load DataFrame data, we’ll first say a few words
about the data formats that Spark supports out of the box. Each has its strengths and

Figure 5.4 Selecting the contents of the posts table through the Thrift server using Squirrel SQL, an 
open source JDBC client program

 

https://github.com/databricks/spark-csv
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weaknesses, and you should understand when to use one or another. The built-in data
formats are JSON, ORC, and Parquet.

JSON

The JSON format is commonly used for web development and is popular as a lightweight
alternative to XML. Spark can automatically infer a JSON schema, so it can be a great solu-
tion for receiving data from and sending data to external systems, but it’s not an efficient
permanent data-storage format. It’s simple, easy to use, and human-readable.

ORC

The optimized row columnar (ORC) file format was designed to provide a more effi-
cient way to store Hive data (http://mng.bz/m6Mn), compared to an RCFile, which
was previously the standard format for storing data in Hadoop. 

 The ORC format is columnar, which means data from a single column is physically
stored in close proximity, unlike row formats, where data from a single row is stored
sequentially. ORC files consist of groups of row data, called stripes, a file footer, and a
postscript area at the end of the file. The file footer contains the list of stripes in a file,
number of rows per stripe, and column data types. The postscript area contains com-
pression parameters and the size of the file footer.

 Stripes are typically 250 MB, and they contain index data, row data, and a stripe
footer. Index data contains minimum and maximum values for each column and
row position in columns. Index data can also include a Bloom filter (https://
en.wikipedia.org/wiki/Bloom_filter), which can be used for quick testing if the
stripe contains a certain value. Index data can speed up table scans because, in this
way, certain stripes can be skipped and not read at all.

 ORC uses type-specific serializers, which can take advantage of a certain type’s spe-
cifics to store the data more efficiently. On top of that, stripes are compressed with
Zlib or Snappy. The complete ORC file format specification can be found at http://
mng.bz/0Z5B.

PARQUET

Unlike the ORC file format, the Parquet format (http://mng.bz/3IOo) started out-
side Hive and was later integrated with it. Parquet was designed to be independent of
any specific framework and free of unnecessary dependencies. This is why it’s more
popular in the Hadoop ecosystem than the ORC file format. 

 Parquet is also a columnar file format and also uses compression, but it allows com-
pression schemes to be specified per column. It pays special attention to nested com-
plex data structures, so it works better than the ORC file format on these types of
datasets. It supports the LZO, Snappy, and GZIP compression libraries. Furthermore, it
keeps min/max statistics about column chunks, so it can also skip some of the data
when querying. Parquet is the default data source in Spark. 

 

https://en.wikipedia.org/wiki/Bloom_filter
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5.4.2 Saving data

DataFrame’s data is saved using the DataFrameWriter object, available as DataFrame’s
write field. You already saw an example of using DataFrameWriter in section 5.3.1:

postsDf.write.saveAsTable("posts")

In addition to the saveAsTable method, data can be saved using the save and
insertInto methods. saveAsTable and insertInto save data into Hive tables and use
the metastore in the process; save doesn’t. In case you’re not using Spark session with
Hive support, the saveAsTable and insertInto methods create (or insert into) tem-
porary tables. You can configure all three methods with DataFrameWriter’s configura-
tion functions (explained next).

CONFIGURING THE WRITER

DataFrameWriter implements the builder pattern (https://en.wikipedia.org/wiki/
Builder_pattern), which means its configuration functions return objects with config-
uration fragments so you can stack them up one after another and build the desired
configuration incrementally. The configuration functions are the following:

■ format—Specifies the file format for saving data (the data source name), which
can be one of the built-in data sources (json, parquet, orc) or a named custom
data source. When no format is specified, the default is parquet.

■ mode—Specifies the save mode when a table or a file already exists. Possible val-
ues are overwrite (overwrites the existing data), append (appends the data),
ignore (does nothing), and error (throws an exception); the default is error.

■ option and options—Adds a single parameter name and a value (or a parameter-
value map) to the data source configuration.

■ partitionBy—Specifies partitioning columns. 

The Spark SQL parameter spark.sql.sources.default determines the default data
source. Its default value is parquet. (We’ll describe the Parquet file format in sec-
tion 5.3.3.)

 As we said, you can stack these functions one after another to build a DataFrame-
Writer object:

postsDf.write.format("orc").mode("overwrite").option(...)

USING THE SAVEASTABLE METHOD

As we said, saveAsTable saves data to a Hive table and registers it in the Hive meta-
store if you’re using Hive support, which we recommend. If you aren’t using Hive sup-
port, the DataFrame is registered as a temporary table. 

 saveAsTable takes only the table name as an argument. If the table already exists,
then the mode configuration parameter determines the resulting behavior (default is
to throw an exception). 

 

https://en.wikipedia.org/wiki/Builder_pattern
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 The embedded Hive libraries take care of saving the table data if you’re saving it in
a format for which Hive SerDe (serialization/deserialization class) exists. If no Hive
SerDe exists for the format, Spark chooses the format for saving the data (for exam-
ple, text for JSON). 

 For example, you can save postsDf DataFrame in JSON format with the following
line:

postsDf.write.format("json").saveAsTable("postsjson")

This saves posts data as the postsjson file in the Spark’s metastore warehouse directory.
Each line in the file contains a complete JSON object. You can now query the table
from the Hive metastore:

scala> sql("select * from postsjson")

USING THE INSERTINTO METHOD

When using the insertInto method, you need to specify a table that already exists in
the Hive metastore and that has the same schema as the DataFrame you wish to save. If
the schemas aren’t the same, Spark throws an exception. Because the table’s format is
already known (the table exists), the format and options configuration parameters
will be ignored. If you set the mode configuration parameter to overwrite, the table’s
contents will be deleted and replaced with the DataFrame’s contents. 

USING THE SAVE METHOD

The save method doesn’t use a Hive metastore; rather, it saves data directly to the file-
system. You pass to it a direct path to the destination, whether HDFS, Amazon S3, or a
local path URL. If you pass in a local path, the file is saved locally on every executor’s
machine.

USING THE SHORTCUT METHODS

DataFrameWriter has three shortcut methods for saving data to the built-in data
sources: json, orc, and parquet. Each first calls format with the appropriate data-
source name and then calls save, passing in the input path argument. This means
these three methods don’t use the Hive metastore.

SAVING DATA TO RELATIONAL DATABASES WITH JDBC

You can save the contents of a DataFrame with DataFrameWriter’s jdbc method. It
takes three parameters: a URL string, a table name, and a java.util.Properties
object containing connection properties, usually user and password. For example, to
save the posts data into a PostgreSQL table named posts in the database mydb on the
server postgresrv, you can use the following:

val props = new java.util.Properties()
props.setProperty("user", "user")
props.setProperty("password", "password")
postsDf.write.jdbc("jdbc:postgresql://postgresrv/mydb", "posts", props)
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All of postsDf’s partitions connect to the database to save the data, so you have to
make sure the DataFrame doesn’t have too many partitions or you may overwhelm
your database. You also have to make sure the required JDBC driver is accessible to
your executors. This can be done by setting the spark.executor.extraClassPath
Spark configuration parameter (for details, see chapter 10).

5.4.3 Loading data

You load data with an org.apache.spark.sql.DataFrameReader object, accessible
through SparkSession’s read field. It functions analogously to DataFrameWriter. You
can configure it with the format and option/options functions and additionally with
the schema function. The schema function specifies the schema of the DataFrame.
Most data sources automatically detect the schema, but you can speed it up by specify-
ing the schema yourself. 

 Similarly to DataFrameWriter’s save method, the load method loads data directly
from the configured data source. Three shortcut methods—json, orc, and parquet—
analogously call format and then load. 

 You can use the table function to load a DataFrame from a table registered in the
Hive metastore. For example, instead of executing the SELECT * FROM POSTS com-
mand, as you did previously, you can load the posts table like this

val postsDf = spark.read.table("posts")

or

val postsDf = spark.table("posts")

LOADING DATA FROM RELATIONAL DATABASES USING JDBC

DataFrameReader’s jdbc function is similar to DataFrameWriter’s jdbc function but
has several differences. At a minimum it accepts a URL, a table name, and a set of
properties (in a java.util.Properties object). But you can also narrow the dataset
to be retrieved with a set of predicates (expressions that can go into a where clause). 

 For example, to load all posts with more than three views from the example Post-
greSQL table you created in the previous section, you can use the following:

val result = spark.read.jdbc("jdbc:postgresql://postgresrv/mydb", 
  "posts", Array("viewCount > 3"), props)

LOADING DATA FROM DATA SOURCES REGISTERED USING SQL

An alternative way of registering temporary tables lets you use SQL to reference exist-
ing data sources. You can accomplish (almost) the same result as in the previous
example with the following snippet:

scala> sql("CREATE TEMPORARY TABLE postsjdbc "+
  "USING org.apache.spark.sql.jdbc "+
  "OPTIONS ("+
    "url 'jdbc:postgresql://postgresrv/mydb',"+
    "dbtable 'posts',"+
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    "user 'user',"+
    "password 'password')")
scala> val result = sql("select * from postsjdbc")

The method isn’t quite the same, though, because this way you can’t specify predicates
(viewCount > 3). As an example of another built-in data source, to register a Parquet
file and load its contents, this is what you can do:

scala> sql("CREATE TEMPORARY TABLE postsParquet "+
  "USING org.apache.spark.sql.parquet "+
  "OPTIONS (path '/path/to/parquet_file')")
scala> val resParq = sql("select * from postsParquet")

5.5 Catalyst optimizer
The Catalyst optimizer is the brain behind DataFrames and DataSets, and is responsi-
ble for converting DataFrame DSL and SQL expressions into low-level RDD operations.
It can be easily extended, and additional optimizations can be added. 

 Catalyst first creates a parsed logical plan from DSL and SQL expressions. Then it
checks the names of tables, columns, and qualified names (called relations) and cre-
ates an analyzed logical plan. In the next step, Catalyst tries to optimize the plan by rear-
ranging and combining the lower-level operations. It might decide to move a filter
operation before a join so as to reduce the amount of data involved in the join, for
example. This step produces an optimized logical plan. A physical plan is then calculated
from the optimized plan. Future Spark versions will implement the generation of sev-
eral physical plans and the selection of the best one based on a cost model. Figure 5.5
shows all of these steps. 

 Logical optimization means Catalyst tries to push predicates down to data sources so
that subsequent operations work on as small a dataset as possible. During physical
planning, instead of performing a shuffle join, for example, Catalyst may decide to
broadcast one of the two datasets if it’s small enough (smaller than 10 MB). 

SQL or
DataFrame
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Parsing and
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Parsed

logical plan
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Code
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Physical
planning
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Figure 5.5 The steps of transforming SQL and DSL expressions into RDD operations include analysis, 
logical optimization, physical planning, and code generation.
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EXAMINING THE EXECUTION PLAN

You can see the results of optimizations and examine the generated plans in two ways:
by using DataFrame’s explain method or by consulting the Spark Web UI. Let’s again
use postsDf as an example. Consider the expression you used in section 5.1.2 to filter
posts by “views per score point” less than 35:

scala> val postsFiltered = postsDf.filter('postTypeId === 1).
  withColumn("ratio", 'viewCount / 'score).where('ratio < 35)

You can examine DataFrame’s calculated logical and physical plans by calling
explain(true). If called without an argument (which is the same as calling it with
false), explain displays only the physical plan. For postsFiltered, explain returns
the following (the output has been truncated for easier viewing; you can find the full
output in our online repository):

scala> postsFiltered.explain(true)
== Parsed Logical Plan ==
'Filter ('ratio < 35)
 Project [...columns ommitted..., ...ratio expr... AS ratio#21]
  Filter (postTypeId#11L = cast(1 as bigint))
   Project [...columns ommitted...]
    Subquery posts
     Relation[...columns ommitted...] ParquetRelation[path/to/posts]

== Analyzed Logical Plan ==
...columns ommitted...
Filter (ratio#21 < cast(35 as double))
 Project [...columns ommitted..., ...ratio expr... AS ratio#21]
  Filter (postTypeId#11L = cast(1 as bigint))
   Project [...columns ommitted...]
    Subquery posts
     Relation[...columns ommitted...] ParquetRelation[path/to/posts]

== Optimized Logical Plan ==
Project [...columns ommitted..., ...ratio expr... AS ratio#21]
 Filter ((postTypeId#11L = 1) && ((cast(viewCount#6 as double) / 
cast(score#4 as double)) < 35.0))
  Relation[...columns ommitted...] ParquetRelation[path/to/posts]

== Physical Plan ==
Project [...columns ommitted..., ...ratio expr... AS ratio#21]
 Filter ((postTypeId#11L = 1) && ((cast(viewCount#6 as double) / 
cast(score#4 as double)) < 35.0))
  Scan ParquetRelation[path/to/posts][...columns ommitted...]
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As you can see, the parsed logical plan looks like the original Scala expression, if you
read it from bottom upward. ParquetRelation in the last line (the first step of the
parsed logical plan) means the data is to be read from a Parquet file. Project (the sec-
ond step) is an internal Spark class that shows which columns are to be selected. The
first filter step (in the Filter line) filters by the post type, then the next project step
adds the ratio column, and the last filter step filters by the ratio column. 

 Compare that to the physical plan at the end of the output. The two filters were merged
into a single filter, and the ratio column isn’t added until the last step in the plan.

 Beginning with Spark 1.5, you can get the same output using the Spark web UI,
available at port 4040 on the machine where your Spark driver is running (for more
information about the Spark web UI, see chapter 10). The SQL tab shows completed
SQL queries. For each, you can click the +Details link in the Details column and get
output similar to the one shown previously. 

TAKING ADVANTAGE OF PARTITION STATISTICS

The Catalyst optimizer examines the contents of a DataFrame’s partitions, calculates
statistics of its columns (such as lower and upper bounds, number of NULL values, and
so forth), and then uses this data to skip some partitions while filtering, which adds
additional performance benefits. These statistics are automatically calculated when
DataFrames are cached in memory, so there’s nothing special you need to do to
enable this behavior. Just remember to cache DataFrames.

5.6 Performance improvements with Tungsten
Spark 1.5 also introduced the Tungsten project. Tungsten presents a complete overhaul
of Spark memory management and other performance improvements in sorting,
aggregating, and shuffling. Beginning with Spark 1.5, Tungsten is enabled by default
(Spark SQL configuration parameter spark.sql.tungsten.enabled). Since Spark 2.0,
its improvements were extended from structured data in DataFrames to unstructured
data in DataSets.

 Tungsten’s memory-management improvements are based on binary encoding of
the objects (integers, strings, tuples, and so on) and directly referencing them in
memory. Two modes are supported: off-heap and on-heap allocation. On-heap alloca-
tion stores binary-encoded objects in large, JVM-managed arrays of longs. Off-heap allo-
cation mode uses the sun.misc.Unsafe class to directly allocate (and free) memory by
address, similar to how it’s done in the C language. 

 Off-heap mode still uses arrays of longs for storing binary-encoded objects, but
these arrays are no longer allocated and garbage-collected by JVM. They’re directly
managed by Spark. A new class, UnsafeRow, is used to internally represent rows backed
by directly managed memory. Off-heap allocation is disabled by default, but you can
enable it by setting the spark.unsafe.offHeap Spark configuration parameter (not
Spark SQL parameter) to true.
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 Binary-encoded objects take up much less memory than their Java representations.
Storing them in arrays of Long (on-heap mode) significantly reduces garbage collec-
tion. Allocating those arrays (off-heap mode) removes the need for garbage collection
entirely. Tungsten’s binary encoding also includes several tricks so that the data can be
more efficiently cached in a CPU’s L1 and L2 caches.

 Project Tungsten also improves shuffle performance. Prior to Spark 1.5, only sort-
based and hash-based shuffle managers were available. Now you can use a new Tung-
sten shuffle manager. It’s also sort-based but uses binary encoding (mentioned ear-
lier). You can enable it by setting Spark’s spark.shuffle.manager parameter to
tungsten-sort. Future Spark versions will bring more performance improvements by
further implementing Tungsten’s binary encoding in Spark components.

5.7 Summary
■ DataFrames translate SQL code and DSL expressions into optimized, low-level

RDD operations.
■ DataFrames have become one of the most important features in Spark and have

made Spark SQL the most actively developed Spark component.
■ Three ways of creating DataFrames exist: by converting existing RDDs, by run-

ning SQL queries, or by loading external data.
■ You can use DataFrame DSL operations to select, filter, group, and join data. 
■ DataFrames support scalar, aggregate, window, and user-defined functions.
■ With the DataFrameNaFunctions class, accessible through DataFrame’s na field,

you can deal with missing values in the dataset.
■ SparkSQL has its own configuration method.
■ Tables can be registered temporarily and permanently in the Hive metastore,

which can reside in a local Derby database or in a remote relational database.
■ The Spark SQL shell can be used to directly write queries referencing tables reg-

istered in the Hive metastore.
■ Spark includes a Thrift server that clients can connect to over JDBC and ODBC

and use to perform SQL queries.
■ Data is loaded into DataFrames through DataFrameReader, available through

SparkSession’s read field.
■ Data is saved from DataFrames through DataFrameWriter, available through

DataFrame’s write field.
■ Spark’s built-in data sources are JSON, ORC, Parquet, and JDBC. Third-party

data sources are available for download.
■ Catalyst optimizer (the brain behind DataFrames) can optimize logical plans

and create physical execution plans.
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■ The Tungsten project introduced numerous performance improvements
through binary, cache-friendly encoding of objects, on-heap and off-heap allo-
cation, and a new shuffle manager.

■ DataSets are an experimental feature similar to DataFrames, but they enable
you to store plain Java objects instead of generic Row containers.

 



147

Ingesting data
 with Spark Streaming

Real-time data ingestion, in today’s high-paced, interconnected world, is getting
increasingly important. There is much talk today about the so-called Internet of
Things or, in other words, a world of devices in use in our daily lives, which continu-
ally stream data to the internet and to each other and make our lives easier (in the-
ory, at least). Even without those micro-devices overwhelming our networks with
their data, many companies today need to receive data in real-time, learn from it,
and act on it immediately. After all, time is money, as they say.

 It isn’t hard to think of professional fields that might (and do) profit from real-
time data analysis: traffic monitoring, online advertising, stock market trading,
unavoidable social networks, and so on. Many of these cases need scalable and

This chapter covers
■ Using discretized streams
■ Saving computation state over time
■ Using window operations
■ Reading from and writing to Kafka
■ Obtaining good performance
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fault-tolerant systems for ingesting data, and Spark boasts all of those features. In addi-
tion to enabling scalable analysis of high-throughput data, Spark is also a unifying
platform, which means you can use the same APIs from streaming and batch pro-
grams. That way, you can build both speed and batch layers of the lambda architec-
ture (the name and the design of lambda architecture come from Nathan Marz;
check out his book Big Data [Manning, 2015]).

 Spark Streaming has connectors for reading data from Hadoop-compatible filesys-
tems (such as HDFS and S3) and distributed systems (such as Flume, Kafka, and Twit-
ter). In this chapter, you’ll first stream data from files and write the results back to
files. You’ll then expand on that and use Kafka, the scalable and distributed message-
queuing system, as the source and destination for the data. The same principles you’ll
learn there can be applied to other sources as well. At the end of the chapter, we’ll
show you how to ensure good performance for your streaming applications.

 In chapter 13, you’ll find a successful application of Spark Streaming to the prob-
lem of real-time log analysis. Methods and concepts taught in this chapter will be
applied there.

6.1 Writing Spark Streaming applications
As you saw in previous chapters, Spark is great for working with structured and unstruc-
tured data. And as you already may have concluded, Spark is batch processing–oriented.
But how are Spark’s batch-processing features applied to real-time data?

 The answer is that Spark uses mini-batches. This means Spark Streaming takes
blocks of data, which come in specific time periods, and packages them as RDDs. Fig-
ure 6.1 illustrates this concept.

 As shown in the figure, data can come into a Spark Streaming job from various
external systems. These include filesystems and TCP/IP socket connections, but also
other distributed systems, such as Kafka, Flume, Twitter, and Amazon Kinesis. Differ-
ent Spark Streaming receiver implementations exist for different sources (data from
some data sources is read without using receivers, but let’s not complicate things too
early). Receivers know how to connect to the source, read the data, and forward it fur-
ther into Spark Streaming. Spark Streaming then splits the incoming data into mini-
batch RDDs, one mini-batch RDD for one time period, and then the Spark application
processes it according to the logic built into the application. During mini-batch pro-
cessing, you’re free to use other parts of the Spark API, such as machine learning and
SQL. The results of computations can be written to filesystems, relational databases, or
to other distributed systems.

6.1.1 Introducing the example application

For purposes of learning Spark Streaming concepts, imagine you need to build a
dashboard application for a brokerage firm. Clients of the firm use their internet
application to place market orders (for buying or selling securities1), and brokers

1 Securities are tradable financial assets, such as bonds, stocks, and the infamous derivatives.
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need to carry out the orders in the market. The dashboard application you need to
build will calculate the number of selling and buying orders per second, the top five
clients as measured by the total amounts bought or sold, and the top five securities
bought or sold during the last hour.

 For starters, to make things simpler, you’ll read the data from an HDFS file and
write the results back to HDFS. In section 6.2, we’ll expand on this and show you how
to connect to Kafka, a distributed message-passing system. 

 Similarly, in order to use simpler functionalities first, the implementation of the
first version will only count the number of selling and buying orders per second.
Later, you’ll add calculations for the top five clients and top five securities.

 One more thing to note: everything in this chapter will be done using your Spark
shell. We’ll point out any differences between running Spark Streaming from the
Spark shell and from a standalone application. If you went through chapter 3 success-
fully, you should be able to apply the principles learned there and embed the code
from this chapter into a standalone application, which you would submit to a cluster
as a JAR archive.

Kafka, Flume, Kinesis ...
Input data stream

Receiver

Spark streaming

Spark core, SQL, ML, GraphX HDFS, DBs, Kafka ...

Mini-batch
RDD

Mini-batch
RDD

Mini-batch
RDD

Time period Time period Time period

Spark is capable of receiving 
data from various sources.

The receiver receives data
from a particular source.

Mini-batches are handled as 
ordinary RDDs by the Spark API.

The input data is periodically
split into subsets, forming 
mini-batch RDDs.

Figure 6.1 The concept of processing streaming data in Apache Spark. Spark Streaming is splitting 
the input data stream into time-based mini-batch RDDs, which are then processed using other Spark 
components, as usual.
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6.1.2 Creating a streaming context

If you’d like to follow along, now is the time to start up your Spark shell. You can start
a local cluster in the spark-in-action VM or connect to a Spark standalone, YARN, or
Mesos cluster, if it’s available to you (for details, please see chapter 10, 11, or 12). In
any case, make sure to have more than one core available to your executors, because
each Spark Streaming receiver has to use one core (technically, it’s a thread) for read-
ing the incoming data, and at least one more core needs to be available for perform-
ing the calculations of your program. 

 For example, to run a local cluster, you can issue the following command:

$ spark-shell --master local[4]

Once your shell is up, the first thing you need to do is to create an instance of
StreamingContext. From your Spark shell, you instantiate it using the SparkContext
object (available as variable sc) and a Duration object, which specifies time intervals
at which Spark Streaming should split the input stream data and create mini-batch
RDDs. The mini-batch intervals depend on the use case (how important it is to see the
latest data) and on the performance requirements and capacity of your cluster. We’ll
have more to say about this later. For now, use an interval of five seconds:

scala> import org.apache.spark._
scala> import org.apache.spark.streaming._
scala> val ssc = new StreamingContext(sc, Seconds(5))

NOTE Instead of Seconds, you can use the Milliseconds and Minutes
objects to specify duration. 

The previous StreamingContext constructor reuses an existing SparkContext, but
SparkStreaming can also start a new SparkContext if you give it a Spark configuration
object:

val conf = new SparkConf().setMaster("local[4]").setAppName("App name")
val ssc = new StreamingContext(conf, Seconds(5))

You could use this snippet from your standalone application, but it wouldn’t work if
you ran it from your shell because you can’t instantiate two Spark contexts in the same
JVM. 

6.1.3 Creating a discretized stream

As we said, for starters, you’ll stream the data from a file. Let’s first see what the data
will look like. 

DOWNLOADING THE DATA TO BE STREAMED

We prepared a file containing 500,000 lines representing buy and sell orders. The
data was randomly generated. Each line contains the following comma-separated
elements:
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■ Order timestamp—Format yyyy-mm-dd hh:MM:ss
■ Order ID—Serially incrementing integer
■ Client ID—Integer randomly picked from the range 1 to 100
■ Stock symbol—Randomly picked from a list of 80 stock symbols
■ Number of stocks to be bought or sold—Random number from 1 to 1,000
■ Price at which to buy or sell—Random number from 1 to 100
■ Character B or S—Whether the event is an order to buy or sell

You can find an archive containing this file in our online repository. You should have
already cloned the repository into the /home/spark folder, so you should be able to
unzip the file with the following commands:

$ cd first-edition/ch06
$ tar xvfz orders.tar.gz

This is the data that will be arriving into your streaming application.
 For streaming the incoming textual data directly from files, StreamingContext pro-

vides the textFileStream method, which monitors a directory (any Hadoop-compliant
directory, such as HDFS, S3, GlusterFS, and local directories) and reads each newly cre-
ated file in the directory. The method takes only one argument: the name of the direc-
tory to be monitored. 

 Newly created means it won’t process the files that already exist in the folder when
the streaming context starts, nor will it react to data that’s added to a file. It will pro-
cess only the files copied to the folder after processing starts.

 Because it’s unrealistic that all 500,000 events will arrive to your system all at once,
we also prepared a Linux shell script named splitAndSend.sh, which splits the
unzipped file (orders.txt) into 50 files, each containing 10,000 lines. It then periodi-
cally moves the splits to an HDFS directory (supplied as an argument), waiting for
three seconds after copying each split. This is similar to what would happen in a real
environment.

 The user you’re logged in as needs to have access to the hdfs command. If you
don’t have access to HDFS (which you should, if you’re using the spark-in-action VM),
you can specify a local folder and add an argument: local. The script will then peri-
odically move the splits to the specified local folder. 

 No need to start the script yet. You’ll do that later.

CREATING A DSTREAM OBJECT

You should choose a folder (HDFS or a local one) where the splits will be copied to
and from where your streaming application will read them (for example, /home/
spark/ch06input). Then specify that folder as an argument to the textFileStream
method:

scala> val filestream = ssc.textFileStream("/home/spark/ch06input")
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The resulting fileDstream object is an instance of class DStream. DStream (which
stands for “discretized stream”) is the basic abstraction in Spark Streaming, represent-
ing a sequence of RDDs, periodically created from the input stream. Needless to say,
DStreams are lazily evaluated, just like RDDs. So when you create a DStream object,
nothing happens yet. The RDDs will start coming in only after you start the streaming
context, which you’ll do in section 6.1.6. 

6.1.4 Using discretized streams

Now that you have your DStream object, you need to use it to calculate the number of
selling and buying orders per second. But how do you do that?

 Well, similarly to RDDs, DStreams have methods that transform them to other
DStreams. You can use those methods to filter, map, and reduce data in a DStream’s
RDDs and even combine and join different DStreams. 

PARSING THE LINES

For your task, you should first transform each line into something more manageable,
like a Scala case class. Let’s do that now. First, let’s create the Order class, which will
hold order data:

scala> import java.sql.Timestamp 
scala> case class Order(time: java.sql.Timestamp, orderId:Long, 

➥ clientId:Long, symbol:String, amount:Int, price:Double, buy:Boolean)

You use java.sql.Timestamp to represent time because it’s supported by Spark Data-
Frames so you won’t have any trouble using this class for constructing DataFrames, in
case you need them.

 Now you need to parse the lines from the filestream DStream and thus obtain a
new DStream containing Order objects. There are several ways you can accomplish
this. Let’s use the flatMap transformation, which operates on all elements of all RDDs
in a DStream. The reason to use flatMap and not map transformation is that you’d like
to ignore any lines that don’t match the format we expect. If the line can be parsed,
the function returns a list with a single element and an empty list otherwise. 

 This is the snippet you need:

import java.text.SimpleDateFormat
val orders = filestream.flatMap(line => {
    val dateFormat = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss")
    val s = line.split(",")
    try {
        assert(s(6) == "B" || s(6) == "S")
        List(Order(new Timestamp(dateFormat.parse(s(0)).getTime()),
        s(1).toLong, s(2).toLong, s(3), s(4).toInt, 
        s(5).toDouble, s(6) == "B"))
    }

Java’s SimpleDateFormat is used
for parsing timestamps.

Each line is first 
split by commas.

The seventh
field should
be equal to

“B” (buy) or
“S” (sell).

Constructs an Order
object from the

parsed fields
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    catch {
        case e : Throwable => println("Wrong line format ("+e+"): "+line)
       List()
    }
})

Each RDD from the orders DStream now contains Order objects. 

COUNTING THE NUMBERS OF BUY AND SELL ORDERS

The task is to count the number of buy and sell orders per second. For this, you’ll use
the PairDStreamFunctions object. Similar to RDDs, which get implicitly converted to
instances of the PairRDDFunctions object if they contain two-element tuples, DStreams
containing two-element tuples get automatically converted to PairDStreamFunctions
objects. In that way, functions such as combineByKey, reduceByKey, flatMapValues,
various joins, and other functions you may recognize from chapter 4, become available
on DStream objects.

 If you map orders to tuples that contain the order type as the key and the count as
the value, you can use reduceByKey (there is no countByKey function in Pair-
DStreamFunctions); for example, for counting occurrences of each order type (buy
or sell). This is how to do this:

scala> val numPerType = orders.map(o => (o.buy, 1L)).
  reduceByKey((c1, c2) => c1+c2)

This should be familiar to you from chapter 4. reduceByKey here just sums different
values per key, which are all initially equal to 1. Each RDD in the resulting numPerType
DStream will contain at most two (Boolean, Long) tuples: one for buy orders (true)
and one for sell orders (false).

6.1.5 Saving the results to a file

To save the results of your computation to a file, you can use DStream’s saveAsTextFiles
method. It takes a String prefix and an optional String suffix and uses them to construct
the path at which the data should be periodically saved. Each mini-batch RDD is saved to
a folder called <your_prefix>-<time_in_milliseconds>.<your_suffix>, or just <your_prefix>-
<time_in_milliseconds> if a suffix isn’t supplied. This means that every 5 seconds (in this
example), a new directory is created. Each of these directories contains one file, named
part-xxxxx, for each partition in the RDD (where xxxxx is the partition’s number). 

 To create only one part-xxxxx file per RDD folder, you’ll repartition the DStream to
only one partition before saving it to a file. We’ve shown that each RDD will contain at
most two elements, so you can be certain that putting all the data into one partition
won’t cause any memory problems. So this is what you can do:

scala> numPerType.repartition(1).saveAsTextFiles(
  "/home/spark/ch06output/output", "txt")

If anything goes wrong during parsing, the error is 
logged (to System.out only, in this example), along 
with the complete line that caused it.

If a line can’t be parsed, an empty list is 
returned, ignoring the problematic line.
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The output file can again be a local file (if you’re running a local cluster) or a file on
a distributed Hadoop-compatible filesystem, such as HDFS. 

NOTE When developing a streaming application, DStream’s print(n)
method may prove useful. It prints out the first n elements (10 by default) of
each mini-batch RDD.

But even after you execute this last command, still nothing happens. That’s because
you still haven’t started the streaming context.

6.1.6 Starting and stopping the streaming computation

Finally, you get to see the fruit of your labor. Start the streaming computation by issu-
ing the following command:

scala> ssc.start()

This starts the streaming context, which evaluates the DStreams it was used to create,
starts their receivers, and starts running the programs the DStreams represent. In the
Spark shell, this is all you need to do to run the streaming computation of your appli-
cation. Receivers are started in separate threads, and you can still use your Spark shell
to enter and run other lines of code in parallel with the streaming computation.

NOTE Although you can construct several StreamingContext instances using
the same SparkContext object, you can’t start more than one StreamingContext
in the same JVM at a time.

But if you were to start a streaming context like this in a standalone application,
although the receiver threads would be started, the main thread of your driver would
exit, unless you added the following line:

ssc.awaitTermination()

This line tells Spark to wait for the Spark Streaming computation to stop. You can also
use the awaitTerminationOrTimeout(<timeout in milliseconds>) method, which
will wait the specified maximum number of seconds for streaming to finish and will
return false, if the timeout occurred, or true, if the streaming computation was
stopped before the timeout. 

SENDING DATA TO SPARK STREAMING

Now your Spark Streaming application is running, but it doesn’t have any data to pro-
cess. So let’s give it some data using the splitAndSend.sh script that we mentioned
previously. You might first need to make the script executable:

$ chmod +x first-edition/ch06/splitAndSend.sh

Then, from your command prompt, start the script and specify the input folder you
used in the Spark Streaming code (we assume you used /home/spark/ch06input).
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Make sure the unzipped orders.txt file is in /home/spark/first-edition/ch06, and
don’t forget to add the local argument if the streaming input folder is a local one:

$ cd first-edition/ch06
$ ./splitAndSend.sh /home/spark/ch06input local

This will start copying parts of the orders.txt file to the specified folder, and the appli-
cation will automatically start counting buy and sell orders in the copied files.

STOPPING THE SPARK STREAMING CONTEXT

You can wait for all the files to be processed (which will take about 2.5 minutes), or
you can stop the running streaming context right from your shell. Just paste this line
in the shell, and the streaming context will stop:

scala> ssc.stop(false)

The argument false tells the streaming context not to stop the Spark context, which
it would do by default. You can’t restart a stopped streaming context, but you can
reuse the existing Spark context to create a new streaming context. And because the
Spark shell allows you to overwrite the previously used variable names, you can paste
all the previous lines in your shell and run the whole application again (if you wish to
do so).

EXAMINING THE GENERATED OUTPUT

As we said earlier, saveAsTextFiles creates one folder per mini-batch. If you look at
your output folders, you’ll find two files in each of them, named part-00000 and
_SUCCESS. _SUCCESS means writing has finished successfully, and part-00000 contains
the counts that were calculated. The contents of the part-00000 file might look some-
thing like this:

(false,9969)
(true,10031)

Reading data from all these folders might seem difficult, but it’s simple using the
Spark API. You can read several text files in one go using asterisks (*) when specifying
paths for SparkContext’s textFile method. To read all the files you just generated
into a single RDD, you can use the following expression:

val allCounts = sc.textFile("/home/spark/ch06output/output*.txt")

The asterisk in this case replaces the generated timestamps.

6.1.7 Saving the computation state over time

You’ve seen how to do basic calculations with Spark Streaming, but how to do the rest
of the required calculations still isn’t clear. You have to find the top five clients as mea-
sured by the total amounts bought or sold, and the top five securities bought or sold
during the last hour. 
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 The previous calculations only needed the data from the current mini-batch, but
these new numbers have to be obtained by also taking into account the data from pre-
vious mini-batches. To calculate the top five clients, you have to keep track of the total
dollar amount bought or sold by each client. In other words, you have to keep track of
a state that persists over time and over different mini-batches. 

 This principle is illustrated in figure 6.2. New data periodically arrives over time in
mini-batches. Each DStream is a program that processes the data and produces results.
By using Spark Streaming methods to update state, DStreams can combine the per-
sisted data from the state with the new data from the current mini-batch. The results
are much more powerful streaming programs. Let’s see which methods from Spark
Streaming let you do this.

KEEPING TRACK OF THE STATE USING UPDATESTATEBYKEY

In addition to window operations, which will be covered in section 6.1.9, Spark provides
two main methods for performing calculations while taking into account the previous
state of the computation: updateStateByKey and mapWithState. We’ll first show you
how to use updateStateByKey. Both methods are accessible from PairDStream-
Functions; in other words, they’re only available for DStreams containing key-value
tuples. Therefore, before using these methods, you have to create such a DStream. 

New data

Update

Results

New data

Update

Results

New data

Update

Results

New data arrives
in batches over time.

The state changes with
each new batch of data.

DStream is the program
that updates the state
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Figure 6.2 Keeping state over time. A DStream combines new data arriving in mini-
batches with the data from state persisted over time, produces results, and updates 
the state.
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You’ll reuse the orders DStream you created previously and expand the previous
example by adding and changing a few lines. Creating orders and numPerType
DStreams remains the same as in the previous example. You’ll just add the calculation
of the state and change the way the results are saved. The complete listing will be
given at the end of the section. 

 Let’s first create a DStream that contains client IDs as keys and order dollar
amounts as values (number of stocks bought or sold multiplied by their price):

scala> val amountPerClient = orders.map(o => (o.clientId, o.amount * o.price))

Now you can use the updateStateByKey method. There are two basic versions of
updateStateByKey. The first one, which you’ll use in this example, lets you work with
a DStream’s values. The second version lets you also work with, and potentially change,
a DStream’s keys. Both versions return a new state DStream, which contains a state
value for each key.

 The first version, at minimum, takes as an argument a function with this signature:

(Seq[V], Option[S]) => Option[S]

The first argument of this function is a Seq object with new values of a key that came in
the current mini-batch. The second argument is the state value of the key, or None if the
state for that key hasn’t been calculated yet. If the state for the key has been calculated,
but no new values for the key were received in the current mini-batch, the first argument
will be an empty Seq. The function should return the new value for the key’s state.

 This function is the only required argument for the updateStateByKey method,
but you can also specify the number of partitions or a Partitioner object to be used
for the resulting DStream. That could become important if you have lots of keys to
keep track of and large state objects.

 To apply this to the example and create a state DStream from the amountPerClient
DStream, you can use the following snippet:

val amountState = amountPerClient.updateStateByKey((vals, 
    totalOpt) => {  
  totalOpt match {
    case Some(total) => vals.sum + total
    case None => vals.sum                
  }
})

Now, to find the top five clients by amounts of their orders, you need to sort each RDD
in the amountState DStream and leave in each RDD only the first five elements. To
leave only the top elements in an RDD, the following will do the job: add an index to
each RDD’s element using zipWithIndex, filter out only the elements with the first five
indices, and remove the indices using map. The whole snippet looks like this:

val top5clients = amountState.transform(_.sortBy(_._2, false).
  zipWithIndex.filter(x => x._2 < 5).map(x => x._1))

If state for this key
already exists, sum
it up with the sum

of new values.

Otherwise, only 
return the sum 
of new values.
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COMBINING TWO DSTREAMS USING UNION

In order to write both calculated results (the top five clients and numbers of buy and
sell orders you calculated previously) only once per batch interval, you first have to
combine them in a single DStream. Two DStreams can be combined by key using vari-
ous join methods or the cogroup method, or they can be merged using union. We’ll
do the latter.

 To merge two DStreams, their elements have to be of the same type. You’ll trans-
form the top5clients and numPerType DStreams’ elements to tuples whose first ele-
ments are keys describing the metric ("BUYS" for the number of buy orders, "SELLS"
for the number of sell orders, and "TOP5CLIENTS" for the list of top five clients) and
whose second elements are lists of strings. They need to be lists because the top-five-
clients metric is a list. You’ll convert all values to strings in order to be able to add a list
of top stocks (their symbols) later.

 Converting numPerType to the new format isn’t difficult. If the key is true, the
value represents the number of buy orders, and the number of sell orders otherwise:

val buySellList = numPerType.map(t => 
  if(t._1) ("BUYS", List(t._2.toString)) 
  else ("SELLS", List(t._2.toString)) )

To convert the top5clients DStream, you’ll first make sure that all five clients are in
the same partition by calling repartition(1). Then you remove the amounts and
leave just the client IDs (converted to strings, as we said) and call glom to group all the
client IDs in the partition in a single array. Finally, you map that array to a tuple with a
key equal to the metric name:

val top5clList = top5clients.repartition(1).
  map(x => x._1.toString).
  glom().                                   
  map(arr => ("TOP5CLIENTS", arr.toList))

Now you can union the two DStreams together:

val finalStream = buySellList.union(top5clList)

You save the combined DStream same as previously:

finalStream.repartition(1).
  saveAsTextFiles("/home/spark/ch06output/output", "txt")

SPECIFYING THE CHECKPOINTING DIRECTORY

You need to do one more thing before starting the streaming context, which is to
specify a checkpointing directory:

scala> sc.setCheckpointDir("/home/spark/checkpoint")

Makes sure all the 
data is in a single 
partitionLeaves only

client IDs

Puts all client IDs 
into a single arrayAdds the

metric key
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As you may recall from chapter 4, checkpointing saves an RDD’s data and its complete
DAG (an RDD’s calculation plan), so that if an executor fails, the RDD doesn’t have to
be recomputed from scratch. It can be read from disk. This is necessary for DStreams
resulting from the updateStateByKey method, because updateStateByKey expands
RDD’s DAG in each mini-batch, and that can quickly lead to stack overflow exceptions.
By periodically checkpointing RDDs, their calculation plan’s dependence on previous
mini-batches is broken.

STARTING THE STREAMING CONTEXT AND EXAMINING THE NEW OUTPUT

Finally, you can start the streaming context. The complete code, which you can paste
into your Spark shell, is shown in the following listing.

import org.apache.spark._
import org.apache.spark.streaming._
import java.text.SimpleDateFormat

val ssc = new StreamingContext(sc, Seconds(5))

val filestream = ssc.textFileStream("/home/spark/ch06input")

import java.sql.Timestamp
case class Order(time: java.sql.Timestamp, orderId:Long, clientId:Long, 
  symbol:String, amount:Int, price:Double, buy:Boolean)

val orders = filestream.flatMap(line => {
  val dateFormat = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss")
  val s = line.split(",")
  try {
    assert(s(6) == "B" || s(6) == "S")
    List(Order(new Timestamp(dateFormat.parse(s(0)).getTime()), 
      s(1).toLong,s(2).toLong,s(3),s(4).toInt,s(5).toDouble,s(6) == "B"))
  }
  catch {
    case e : Throwable => println("Wrong line format ("+e+"): "+line)
    List()
  }
})
val numPerType = orders.map(o => (o.buy, 1L)).
  reduceByKey((c1, c2) => c1+c2)

val amountPerClient = orders.map(o => (o.clientId, o.amount*o.price))
val amountState = amountPerClient.updateStateByKey((vals, 

➥ totalOpt:Option[Double]) => {
  totalOpt match {
    case Some(total) => Some(vals.sum + total)
    case None => Some(vals.sum)
  }
})
val top5clients = amountState.transform(_.sortBy(_._2, false).map(_._1).
  zipWithIndex.filter(x => x._2 < 5))

Listing 6.1 Calculating the number of sell/buy orders and finding the top five clients
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val buySellList = numPerType.map(t => 
  if(t._1) ("BUYS", List(t._2.toString)) 
  else ("SELLS", List(t._2.toString)) )
val top5clList = top5clients.repartition(1).
  map(x => x._1.toString).glom().map(arr => ("TOP5CLIENTS", arr.toList))
val finalStream = buySellList.union(top5clList)
finalStream.repartition(1).

➥ saveAsTextFiles("/home/spark/ch06output/output", "txt")

sc.setCheckpointDir("/home/spark/checkpoint ")

ssc.start()

After you start the streaming context, start the splitAndSend.sh script as you did pre-
viously. After a couple of seconds, a part-00000 file in one of your output folders may
look like this:

(SELLS,List(4926))
(BUYS,List(5074))
(TOP5CLIENTS,List(34, 69, 92, 36, 64))

You’re making progress, but you still need to find the top-traded securities during the
last hour. But before doing that, we have to describe the mapWithState method, which
we previously skipped.

USING THE MAPWITHSTATE METHOD

The mapWithState method is newer than updateStateByKey and contains several per-
formance and functional improvements. It’s been available since Spark 1.6. 

 The main difference compared to updateStateByKey is that it lets you maintain a
state of one type and return data of another. Let us show you what we mean.

 mapWithState takes only one argument: an instance of class StateSpec, which is
used for building the actual parameters. You can instantiate a StateSpec object by giv-
ing it a function with this signature (the first Time argument is optional):

(Time, KeyType, Option[ValueType], State[StateType]) => Option[MappedType]

Similar to updateStateByKey and the function you gave to it, the function you pass to
StateSpec (and to mapWithState afterward) will be called for each key’s new values
(keys are of type KeyType and values of type ValueType) and for each key’s existing
state (of type StateType). The resulting DStream will have elements of type Mapped-
Type, unlike updateStateByKey, whose resulting DStream has elements equal to the
maintained state.

 The State object that the provided function receives holds the key’s state and has
several useful methods for manipulating it:

■ exists—Returns true if the state is defined
■ get—Obtains the state value
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■ remove—Removes the state for a key
■ update—Updates or sets the new state value for a key

For example, the following function, used with mapWithState, would allow you to
obtain the same amountState DStream as you did with updateStateByKey previously:

val updateAmountState = (clientId:Long, amount:Option[Double], 
                         state:State[Double]) => {
  var total = amount.getOrElse(0.toDouble)
  if(state.exists())
    total += state.get()
  state.update(total)                   
  Some((clientId, total))
}

You use this function like this:

val amountState = amountPerClient.mapWithState(StateSpec.
  function(updateAmountState)).stateSnapshots()

Without that last method, stateSnapshots, you’d get a DStream with client IDs and
their total amounts, but only for the clients whose orders arrived during the current
mini-batch. stateSnaphots gives you a DStream with the whole state (all clients), just
like updateStateByKey. 

 When building a StateSpec object, in addition to specifying the state mapping
function, you can specify the number of desired partitions, a Partitioner object to be
used, an RDD with initial state values, and a timeout. An RDD with initial state values
could be useful in situations when you would like to persist the state and reuse it after
you restart the streaming job. In this example, at the end of the day, just after the
stock exchange is closed, you could save the list of clients and the amounts they
traded, and tomorrow continue where you left off today.

 The timeout parameter is also interesting. You can use it to make Spark Streaming
remove particular values from the state once the values expire. This can be applied to
calculating session timeouts, for example, which has to be done manually when using
updateStateByKey.

 Finally, you can chain all those parameters one after another.

StateSpec.function(updateAmountState).numPartitions(10).
  timeout(Minutes(30))

These were functional improvements, but mapWithState also brings some perfor-
mance improvements. It can keep 10 times more keys in the maintained state than
updateStateByKey can, and it can be 6 times faster2 (mostly by avoiding processing
when no new keys have arrived). 

2 These numbers are based on measurements done by people at Databricks: http://mng.bz/42QD.

Sets the new state
value to the new

incoming value, if
it exists; to zero

otherwise

Increments the
new state’s value

by the value of
the existing state

Updates the state 
with the new value

Returns a tuple with 
the client ID and the 
new state value

 

http://mng.bz/42QD
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6.1.8 Using window operations for time-limited calculations

Let’s continue with the example. There is one last task left to do: find the top five
most-traded securities during the last hour. This is different than the previous task
because it’s time-limited. In Spark Streaming, this type of calculation is accomplished
using window operations.

 The main principle is shown in figure 6.3. As you can see, window operations oper-
ate on a sliding window of mini-batches. Each windowed DStream is determined by win-
dow duration and the slide of the window (how often the window data is
recomputed), both multiples of the mini-batch duration.

SOLVING THE FINAL TASK WITH WINDOW OPERATIONS

In our example, the window duration is one hour (you need the top five most-traded
securities during the last hour). But the slide duration is the same as the mini-batch
duration (five seconds), because you want to report the top five most-traded securities
in every mini-batch, together with other metrics.

 To create a windowed DStream, you can use one of the window methods. For this task,
you’ll use the reduceByKeyAndWindow method. You need to specify the reduce function

Window 1 results

Window 2 results

Slide duration equal to 
two batch durations.

Results are computed
once per slide.

Window duration equal 
to four batch durations.
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Figure 6.3 Windowed DStream processing data with slide duration of two mini-batch durations, 
and with window duration of four mini-batch durations. Results are computed once per slide.
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and the window duration (you can also specify the slide duration if it’s different than the
mini-batch duration), and it will create a windowed DStream and reduce it using your
reduce function. So, to calculate the amounts traded per stock and per window, you can
use this snippet (put this before the finalStream variable initialization):

val stocksPerWindow = orders.
  map(x => (x.symbol, x.amount)).window(Minutes(60))
  reduceByKey((a1:Int, a2:Int) => a1+a2)

The rest is the same as what you did for top clients:

val topStocks = stocksPerWindow.transform(_.sortBy(_._2, false).map(_._1).
  zipWithIndex.filter(x => x._2 < 5)).repartition(1).
    map(x => x._1.toString).glom().
    map(arr => ("TOP5STOCKS", arr.toList))

And you need to add this result to the final DStream:

val finalStream = buySellList.union(top5clList).union(topStocks)

The rest is the same as before:

finalStream.repartition(1).

➥ saveAsTextFiles("/home/spark/ch06output/output", "txt")
sc.setCheckpointDir("/home/spark/checkpoint/")
ssc.start()

Now, when you start your streaming application, the resulting part-00000 files may
contain results like these:

(SELLS,List(9969))
(BUYS,List(10031))
(TOP5CLIENTS,List(15, 64, 55, 69, 19))
(TOP5STOCKS,List(AMD, INTC, BP, EGO, NEM))

EXPLORING THE OTHER WINDOW OPERATIONS

The window method isn’t the only window operation available. There are a number of
others, which can be useful in many situations. Some of them are available for ordi-
nary DStreams and others only for pair DStreams (byKey functions). Table 6.1 lists
them all.

Table 6.1 Window operations available in Spark Streaming

Window operation Description

window(winDur, [slideDur]) Generates RDDs every slideDur with elements that appeared 
in this DStream during the sliding window of winDur duration. 
slideDur is equal to the mini-batch duration by default.

countByWindow(winDur, slideDur) Every slideDur generates single-element RDDs containing the 
number of elements that appeared in this DStream during the 
sliding window of winDur duration.
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As you’ve probably noticed, instead of using the reduceByKeyAndWindow method in
the previous example, you could have also used the window method and then the
reduceByKey method. 

6.1.9 Examining the other built-in input streams

Before continuing, let’s see what other options you have for receiving data using built-
in input streams. Spark Streaming has several more methods for creating DStreams, in
addition to the textFileStream method you used previously. We’ll briefly explain
how to use them. 

FILE INPUT STREAMS

To read data from files, there are also the binaryRecordsStream method and the
more general fileStream method. They both monitor a folder for newly created files,
just like textFileStream, but they can read files of different types. 

 binaryRecordsStream reads binary files in records of a specified size (you pass to it
a folder name and the records’ size) and returns a DStream containing arrays of bytes
(Array[Byte]). Using fileStream is more involved and requires you to parameterize

countByValueAndWindow(winDur, 
slideDur, [numParts])

Counts distinct elements in the window (determined by the 
winDur and slideDur parameters). numParts enables you 
to change the default number of partitions used.

reduceByWindow(reduceFunc, 
winDur, slideDur)

Every slideDur generates single-element RDDs containing the 
elements from the window of winDur duration reduced using 
the reduceFunc function.

reduceByWindow(reduceFunc, 
invReduceFunc, winDur, slideDur)

More efficient than reduceByWindow. Every slideDur gen-
erates single-element RDDs containing the elements from the 
window of winDur duration reduced using the reduceFunc 
function, but subtracts the elements that are leaving the window 
using the invReduceFunc.

groupByKeyAndWindow(winDur, 
[slideDur], [numParts/
partitioner])

Groups elements from the window (determined by the winDur 
and slideDur parameters; slideDur is optional) by key. You 
can also specify the number of partitions or a partitioner to be 
used.

reduceByKeyAndWindow(reduceFunc, 
winDur, [slideDur], [numParts/
partitioner])

Reduces elements from the window (determined by the winDur 
and slideDur parameters; slideDur is optional) by key. You 
can also specify the number of partitions or a partitioner to be 
used.

reduceByKeyAndWindow(reduceFunc, 
invReduceFunc, winDur, 
[slideDur], [numParts], 
[filterFunc])

A more efficient version that also uses the inverse reduce func-
tion to subtract the elements leaving the window. filterFunc 
is an optional function specifying the condition that key-value 
pairs need to satisfy to remain in the DStream.

Table 6.1 Window operations available in Spark Streaming (continued)

Window operation Description
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it with classes for key type, value type, and input format (a subclass of Hadoop’s
NewInputFormat) for reading HDFS files. The resulting DStream will contain tuples
with two elements of the specified key and value types. 

 In addition to these classes, you need to provide the path to the folder to be moni-
tored, and you can specify several optional arguments:

■ filter function that for each Path (a Hadoop class representing a file) object
determines whether to process it (returns a Boolean)

■ newFilesOnly flag determining whether to process only newly created files in
the monitored folder or all files

■ Hadoop Configuration object containing additional configuration options for
reading HDFS files

Details about reading files with Hadoop API are beyond the scope of this book, but good
information can be found in Hadoop in Practice by Alex Holmes (Manning, 2014).

SOCKET INPUT STREAMS

You can use Spark Streaming to receive data directly from a TCP/IP socket. You can
use socketStream and socketTextStream methods for this. As you’d expect, socket-
TextStream returns a DStream whose elements are UTF8-encoded lines, delimited by
newline characters. It needs a hostname and a port number to connect to and an
optional StorageLevel (the default is StorageLevel.MEMORY_AND_DISK_SER_2, which
means memory and disk with replication factor of 2). StorageLevel determines
where the data will be kept and whether it will be replicated.

 The socketStream method also needs a function for converting Java InputStream
objects (for reading binary data) into target objects that will be elements of the result-
ing DStream. When you start a socket stream, its receiver runs in an executor on one
of the worker nodes.

6.2 Using external data sources
We’ve shown you how to use the built-in data sources: files and sockets. Now it’s time
to connect to external data sources, which don’t come bundled with Spark. Official
Spark connectors exist for the following external systems and protocols:

■ Kafka (https://kafka.apache.org)—A distributed, fast, scalable publish-subscribe
messaging system. It persists all messages and is capable of acting as a replay queue.

■ Flume (https://flume.apache.org)—A distributed, reliable system for collect-
ing, aggregating, and transferring large amounts of log data.

■ Amazon Kinesis (https://aws.amazon.com/en/kinesis)—An AWS streaming
platform similar to Kafka.

■ Twitter (https://dev.twitter.com/overview/documentation)—The popular social
network’s API service.

■ ZeroMQ (http://zeromq.org)—A distributed messaging system.
■ MQTT (http://mqtt.org)—A lightweight publish-subscribe messaging protocol.

 

http://zeromq.org
http://mqtt.org
https://dev.twitter.com/overview/documentation
https://kafka.apache.org
https://flume.apache.org
https://aws.amazon.com/en/kinesis
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NOTE The source code of all of these data sources, except Kafka and Amazon
Kinesis, was moved out of the Spark project into the Spark packages project at
https://github.com/spark-packages.

These are interesting systems that have much to offer, but covering them all in this
book isn’t possible. So we’ll concentrate on (arguably) the most popular among them:
Apache Kafka. If you don’t know much about Kafka, we invite you to first read the offi-
cial introduction at http://kafka.apache.org/documentation.html#introduction. 

 In this section, instead of reading sell and buy orders from files, as you did previ-
ously, you’ll use a shell script we wrote to send the orders to a Kafka topic. The Spark
Streaming job will read orders from this topic and write the computed metrics to a dif-
ferent Kafka topic. You’ll then use the Kafka console consumer script to receive and
display the results.

6.2.1 Setting up Kafka

Examples in this section use Kafka, which is already installed in the spark-in-action
VM. If you aren’t using our VM, and you wish to follow the examples in this section,
you’ll need to install and configure Kafka. 

 To set up Kafka, you first need to download it (from the official download page:
http://kafka.apache.org/downloads.html). You should choose the release compati-
ble with your version of Spark3 (for example, the kafka_2.10-0.8.2.1.tgz archive for
Spark 2.0). Next, unpack the archive to a folder on your hard drive:

$ tar -xvfz kafka_2.10-0.8.2.1.tgz

In the VM, Kafka has been installed for you in the folder /usr/local/kafka. 
 Kafka requires Apache ZooKeeper, an open source server for reliable, distributed

process coordination (https://zookeeper.apache.org/), so you should start it before
starting Kafka:

$ cd /usr/local/kafka
$ bin/zookeeper-server-start.sh config/zookeeper.properties &

 This will start the ZooKeeper process on port 2181 and leave ZooKeeper working
in the background. Next, you can start the Kafka server:

$ bin/kafka-server-start.sh config/server.properties &

 Finally, you need to create topics that will be used for sending orders and metrics
data:

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 

➥ --replication-factor 1 --partitions 1 --topic orders
$ bin/kafka-topics.sh --create --zookeeper localhost:2181 

➥ --replication-factor 1 --partitions 1 --topic metrics

3 You can check which version of Kafka to use for your version of Spark at http://mng.bz/Df88.

 

http://mng.bz/Df88
https://github.com/spark-packages
http://kafka.apache.org/documentation.html
http://kafka.apache.org/downloads.html
https://zookeeper.apache.org/
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Now you’re ready to update the Spark Streaming program from the previous section
so that it reads and writes data to Kafka, instead of a filesystem.

6.2.2 Changing the streaming application to use Kafka

If you still have your Spark shell open, you’ll need restart it at this point and add the
Kafka library and Spark Kafka connector library to its classpath. You can download the
required JAR files manually, or you can use the packages parameter4 and have Spark
download the files for you (don’t execute this yet, though; you’ll do that later):

$ spark-shell --master local[4] --packages org.apache.spark:spark-

➥ streaming-kafka-0-8_2.11:1.6.1,org.apache.kafka:kafka_2.11:0.8.2.1

The names between the colons in the packages parameter are the group ID, the arti-
fact ID, and the version of the Spark Kafka connector artifact from the central Maven
repository. The version depends on the version of Spark you’re using. If you were
building the application as a Maven project, you’d accomplish the same thing by add-
ing the following dependencies to your pom.xml file:

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
  <version>2.0.0</version>
</dependency>
<dependency>
  <groupId>org.apache.kafka</groupId>
  <artifactId>kafka_2.11</artifactId>
  <version>0.8.2.1</version>
</dependency>

USING THE SPARK KAFKA CONNECTOR

There are two versions of the Kafka connector. The first one is a receiver-based connector,
and the second one is the newer direct connector. When using the receiver-based connector,
in some circumstances, the same message may be consumed multiple times; the direct
connector makes it possible to achieve exactly-once processing of incoming messages. The
receiver-based connector is also less efficient (it requires a write-ahead log to be set up,
which slows down the computation). You’ll use the direct connector in this section.

 To create a DStream that reads data from a Kafka topic, you need to set up a param-
eter map containing, at minimum, the metadata.broker.list parameter, which points
to addresses of Kafka brokers in your cluster. Instead of a metadata.broker.list
parameter, you can also specify the bootstrap.servers parameter with the same value.
If you’re running a single Kafka server on the same machine as your Spark shell, you just
set it to the VM’s address (192.168.10.2) and the default port, which is 9092:

val kafkaReceiverParams = Map[String, String](
  "metadata.broker.list" -> "192.168.10.2:9092")

4 In some situations, the download may fail repeatedly. In that case, try to clear the Ivy cache: delete everything
under .ivy/cache in your home directory.
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Then you pass the parameter map to the KafkaUtils.createDirectStream method,
along with a reference to the streaming context and a set of topic names to which you
wish to connect. The createDirectStream method needs to be parameterized with
classes to be used for message keys and values, and key and value decoders. In the case
of this example, keys and values are strings, and you use Kafka’s StringDecoder classes
to decode them:

import org.apache.spark.streaming.kafka.KafkaUtils
val kafkaStream = KafkaUtils.
  createDirectStream[String, String, StringDecoder, StringDecoder](ssc, 
  kafkaReceiverParams, Set("orders"))

The receiver-based consumer saves the last consumed message offset in ZooKeeper.
The direct consumer doesn’t use ZooKeeper but stores offsets in the Spark check-
point directory. The auto.offset.reset parameter, which you can place in the
parameter map, determines which messages to consume if the offset of the last con-
sumed message isn’t available. If it’s set to smallest, it will start consuming from the
smallest offset. By default, it consumes the latest messages.

 The created kafkaStream can now be used the same way you used fileStream pre-
viously. The only difference is that fileStream had elements that were strings,
whereas kafkaStream contains tuples with two strings: a key and a message. We’ll skip
that part of the code for now and first show you how to write messages back to Kafka.
The complete code listing will be given at the end of this section.

WRITING MESSAGES TO KAFKA

Previously, you wrote the calculated metrics from the finalStream DStream to files.
We’ll now change that to write to Kafka’s metrics topic instead. This is accomplished
with the DStream’s useful foreachRDD method, which we didn’t mention earlier. You
can use it to perform an arbitrary action on each RDD in a DStream. It has two versions:

def foreachRDD(foreachFunc: RDD[T] => Unit): Unit
def foreachRDD(foreachFunc: (RDD[T], Time) => Unit): Unit

Both versions take only a function as an argument, which receives an RDD and returns
Unit (which is equal to void in Java). The difference is that the second function also
receives a Time object, so it can make decisions based on the moment the RDD data
was received. 

 To write messages to Kafka, you use Kafka’s Producer object, which connects to a
Kafka broker and sends messages represented as KeyedMessage objects. A Producer
needs to be configured using a ProducerConfig object. 

 Producer objects aren’t serializable: they open a connection to Kafka, and you
can’t serialize a connection, deserialize it in another JVM, and continue to use it. So
you need to create Producer objects in the code that runs in executors. A first naïve
attempt at sending messages to Kafka might look like this:
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import kafka.producer.Producer
import kafka.producer.KeyedMessage
import kafka.producer.ProducerConfig
finalStream.foreachRDD((rdd) => {
  val prop = new java.util.Properties
  prop.put("metadata.broker.list", "192.168.10.2:9092")
  rdd.foreach(x => { 
    val p = new Producer[Array[Byte], Array[Byte]](
      new ProducerConfig(prop))
    p.send(new KeyedMessage(topic, x.toString.toCharArray.map(_.toByte)))
    p.close()
  })
})

The bold part of the snippet is executed in executors, and the rest is executed in the
driver. But this code creates a new Producer for each message! That’s not good. 

 You can optimize this by using foreachPartition and creating a single Producer
per RDD partition:

finalStream.foreachRDD((rdd) => {
  val prop = new java.util.Properties
  prop.put("metadata.broker.list", "192.168.10.2:9092")  
  rdd.foreachPartition((iter) => {
    val p = new Producer[Array[Byte], Array[Byte]](
      new ProducerConfig(prop))
    iter.foreach(x => p.send(new KeyedMessage("metric", 
      x.toString.toCharArray.map(_.toByte))))
    p.close()     
  })
})

That’s better but still not ideal. The best way would be to create a singleton object that
initializes a Producer object only once per JVM. You’ll create a singleton object as a
companion object of the KafkaProducerWrapper class (we hope you remember com-
panion objects from chapter 4). This is the code:

import kafka.producer.Producer
import kafka.producer.KeyedMessage
import kafka.producer.ProducerConfig
case class KafkaProducerWrapper(brokerList: String) {
  val producerProps = {
    val prop = new java.util.Properties
    prop.put("metadata.broker.list", brokerList)
    prop
  }
  val p = new Producer[Array[Byte], Array[Byte]](new
    ProducerConfig(producerProps))
  def send(topic: String, key: String, value: String) {          
    p.send(new KeyedMessage(topic, key.toCharArray.map(_.toByte), 
      value.toCharArray.map(_.toByte)))
  }
}

Method for sending 
messages

Producer 
object
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object KafkaProducerWrapper {             
  var brokerList = "" 
  lazy val instance = new KafkaProducerWrapper(brokerList) 
}

As you may recall from chapter 4, companion objects have to be declared in the same
file as the class of the same name. To avoid serialization and instantiation problems in
Spark shell, you compile the KafkaProducerWrapper class into a JAR file, which should
already be downloded in the VM in the first-edition/ch06/ directory. Download the JAR
file and start your Spark shell, adding the JAR to your Spark’s classpath using the --jars
parameter. Including the --packages parameter we mentioned before, the complete
command for starting the Spark shell now looks like this:

$ spark-shell --master local[4] --packages org.apache.spark:spark-

➥ streaming-kafka_2.11:2.0.0,org.apache.kafka:kafka_2.11:0.8.2.1 --jars 
{CA]first-edition/ch06/kafkaProducerWrapper.jar

The complete Scala program (the Python version is in the repository), which you can
paste into your Spark shell and which calculates all the metrics from this chapter and
sends them to Kafka, is given in the following listing. In it, we combined all the code
you’ve seen so far. There isn’t much left to do but to execute it.

import org.apache.spark._
import kafka.serializer.StringDecoder
import kafka.producer.Producer
import kafka.producer.KeyedMessage
import kafka.producer.ProducerConfig
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._

val ssc = new StreamingContext(sc, Seconds(5))

val kafkaReceiverParams = Map[String, String](
  "metadata.broker.list" -> "192.168.10.2:9092")

Listing 6.2 Complete code for calculating metrics and sending the results to Kafka

Companion object

Lazily instantiated 
instance

Running the Python version
To run the Python version of the program, you’ll only need the first package:

$ pyspark --master local[4] --packages org.apache.spark:spark-streaming-

➥ kafka_2.10:1.6.1

But you’ll also need to install the kafka-python Python package (https://
github.com/dpkp/kafka-python), which isn’t installed in the spark-in-action VM by de-
fault. And you need to install pip:

$ sudo apt-get install python-pip
$ sudo pip install kafka-python

 

https://github.com/dpkp/kafka-python
https://github.com/dpkp/kafka-python
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val kafkaStream = KafkaUtils.
  createDirectStream[String, String, StringDecoder, StringDecoder](ssc, 
    kafkaReceiverParams, Set("orders"))

import java.sql.Timestamp
case class Order(time: java.sql.Timestamp, orderId:Long, clientId:Long, 
  symbol:String, amount:Int, price:Double, buy:Boolean)
import java.text.SimpleDateFormat
val orders = kafkaStream.flatMap(line => {
  val dateFormat = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss")
  val s = line._2.split(",")
  try {
    assert(s(6) == "B" || s(6) == "S")
    List(Order(new Timestamp(dateFormat.parse(s(0)).getTime()), 
  s(1).toLong, s(2).toLong, s(3), s(4).toInt, s(5).toDouble, s(6) == "B"))
  }
  catch {
    case e : Throwable => println("Wrong line format ("+e+"): "+line._2)
    List()
  } })
val numPerType = orders.map(o => (o.buy, 1L)).reduceByKey((c1, c2) => 
  c1+c2)
val buySellList = numPerType.map(t =>
  if(t._1) ("BUYS", List(t._2.toString))
  else ("SELLS", List(t._2.toString)) )

val amountPerClient = orders.map(o => (o.clientId, o.amount*o.price))
val amountState = amountPerClient.updateStateByKey((vals, 

totalOpt:Option[Double]) => {
  totalOpt match {
    case Some(total) => Some(vals.sum + total)
    case None => Some(vals.sum)
  } })
val top5clients = amountState.transform(_.sortBy(_._2, false).map(_._1).
  zipWithIndex.filter(x => x._2 < 5))
val top5clList = top5clients.repartition(1).map(x => x._1.toString).
  glom().map(arr => ("TOP5CLIENTS", arr.toList))

val stocksPerWindow = orders.map(x => (x.symbol, x.amount)).
  reduceByKeyAndWindow((a1:Int, a2:Int) => a1+a2, Minutes(60))
val topStocks = stocksPerWindow.transform(_.sortBy(_._2, false).map(_._1).
  zipWithIndex.filter(x => x._2 < 5)).repartition(1).
    map(x => x._1.toString).glom().
    map(arr => ("TOP5STOCKS", arr.toList))

val finalStream = buySellList.union(top5clList).union(topStocks)

import org.sia.KafkaProducerWrapper
finalStream.foreachRDD((rdd) => {
  rdd.foreachPartition((iter) => {
    KafkaProducerWrapper.brokerList = "192.168.10.2:9092"
    val producer = KafkaProducerWrapper.instance
    iter.foreach({ case (metric, list) => 
      producer.send("metrics", metric, list.toString) })
  }) })
sc.setCheckpointDir("/home/spark/checkpoint")
ssc.start()
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RUNNING THE EXAMPLE

To see the program in action, you need to open two more Linux shells. We prepared a
script that streams lines from the orders.txt file (a line every 0.1 seconds) and sends
them to the orders Kafka topic. You can find the streamOrders.sh script in our
online repository (which you should have cloned by now) and start it in the first Linux
shell. You may first need to set its execution flag:

$ chmod +x streamOrders.sh

The script expects the orders.txt file to be present in the same directory and also
needs to have the Kafka bin directory in the PATH (it will invoke the kafka-console-
producer.sh script). You can give it the broker list as an argument (the default
is 192.168.10.2:9092):

$ ./streamOrders.sh 192.168.10.2:9092

In the second Linux shell, start the kafka-console-consumer.sh script, and have it
consume messages from the metrics topic to see the output from your streaming
program:

$ kafka-console-consumer.sh --zookeeper localhost:2181 --topic metrics
TOP5CLIENTS, List(62, 2, 92, 25, 19)
SELLS, List(12)
BUYS, List(20) 
TOP5STOCKS, List(CHK, DOW, FB, SRPT, ABX)
TOP5CLIENTS, List(2, 62, 87, 52, 45)
TOP5STOCKS, List(FB, CTRE, AU, PHG, EGO)
SELLS, List(28)
BUYS, List(21)
SELLS, List(37)
BUYS, List(12)
TOP5STOCKS, List(FB, CTRE, SDLP, AU, NEM)
TOP5CLIENTS, List(14, 2, 81, 43, 31)

And there you have it. Your Spark Streaming program is sending its calculated metrics
back through Kafka. 

6.3 Performance of Spark Streaming jobs
You generally want your streaming applications to

■ Process each input record as fast as possible (low latency)
■ Keep up with increases in the flow of incoming data (scalability)
■ Keep ingesting data and not lose any data in case of a node failure (fault

tolerance)

There are a few parameters worth mentioning when it comes to tuning performance
for Spark Streaming jobs and ensuring that they’re fault-tolerant.
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6.3.1 Obtaining good performance

With Spark Streaming, the first parameter you need to decide on is the mini-batch dura-
tion. There is no exact method of determining its value, because it depends on the type
of processing the job is performing and the capacity of your cluster. What can help you
with that is the Streaming page of the Spark web UI, which automatically starts for each
Spark application. You can access the Spark web UI on port 4040, by default.

 The Streaming tab automatically appears on the web UI if you’re running a Spark
Streaming application (StreamingContext). It shows several useful graphs, shown in
figure 6.4, with the following metrics:

■ Input Rate—Number of incoming records per second
■ Scheduling Delay—Time the new mini-batches spend waiting for their jobs to be

scheduled
■ Processing Time—Time required to process the jobs of each mini-batch 
■ Total Delay—Total time taken to handle a batch

The total processing time per mini-batch (the total delay) should be lower than the
mini-batch duration, and it should be more or less constant. If it keeps increasing, the
computation isn’t sustainable in the long run, and you’ll have to decrease the process-
ing time, increase parallelism, or limit the input rate.

Figure 6.4 Streaming page of the Spark web UI, showing various metrics: Input Rate, Scheduling Delay, 
Processing Time, and Total Delay
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LOWERING THE PROCESSING TIME

If you start seeing scheduling delays, the first step is to try to optimize your program
and decrease the processing time per batch. Methods in this book will help with that.
You need to avoid unnecessary shuffles, as we discussed in chapter 4. If you’re sending
data to external systems, you need to reuse connections within partitions and use
some kind of connection pooling, as we discussed in this chapter. 

 You can also try to increase the mini-batch duration, because Spark Streaming job-
scheduling, task-serialization, and data-shuffling times will even out on larger datasets
and thus decrease the processing time per record. But setting the mini-batch duration
too high will increase memory requirements for each mini-batch; in addition, lower
output frequency may not satisfy your business requirements. 

 Additional cluster resources can also help to decrease the processing time. Adding
memory may lower the garbage-collection rate, for example, and adding CPU cores
may increase processing speed. 

INCREASING PARALLELISM

But in order to use all CPU cores efficiently and get more throughput, you need to
increase parallelism. You can increase it on several levels. First, you can do so at the
input source. For example, Kafka has the concept of partitions, which determine the
level of parallelism that can be achieved by the consumer. If you’re using a Kafka
direct connector, it will handle parallelism automatically and match the number of
consuming threads in Spark Streaming to the number of partitions in Kafka. 

 But if you’re using a receiver-based connector, you can increase consumer parallel-
ism by creating several DStreams and using them together:

val stream1 = ...
val stream2 = ...
val stream = stream2.union(stream2)

At the next level, parallelism can be increased by explicitly repartitioning DStreams to
a higher number of partitions (by using the repartition method). A general rule of
thumb is that the number of receivers shouldn’t exceed the number of cores available
or the number of executors. 

LIMITING THE INPUT RATE

Finally, if you can’t decrease the processing time or increase parallelism, and you
still experience increasing scheduling delays, you may need to limit the rate at which
data is ingested. There are two parameters for manually limiting the ingestion
rate: spark.streaming.receiver.maxRate for receiver-based consumers and spark
.streaming.kafka.maxRatePerPartition for the Kafka direct consumer. The former
limits the number of records per receiver-based stream, and the latter the number of
records per Kafka partition (more than one Kafka partition can be read by a single
direct Kafka stream). Both represent the number of records per second and aren’t set
by default. 
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 You can also enable the backpressure feature by setting the spark.streaming
.backpressure.enabled parameter to true. It will automatically limit the maximum
number of messages that can be received by your application if scheduling delays start
to appear. But the rate will never exceed the values of the previous two parameters, if
they’re set.

6.3.2 Achieving fault-tolerance

Streaming applications are usually long-running applications, and failures of driver
and executor processes are to be expected. Spark Streaming makes it possible to sur-
vive these failures with zero data loss. 

RECOVERING FROM EXECUTOR FAILURES

Data received through receivers running in executors is replicated in the cluster. If an
executor running a receiver fails, the driver will restart the executor on a different
node, and the data will be recovered. You don’t need to enable this behavior specifi-
cally. Spark does this automatically.

RECOVERING FROM DRIVER FAILURES

In the case of a failure of the driver process, the connection to the executors is lost, and
the application needs to be restarted. As we’ll discuss in chapters 11 and 12, the cluster
manager can automatically restart the driver process (if submitted with the --supervise
option when running in a Spark Standalone cluster, by using cluster mode in YARN, or
by using Marathon in Mesos).

 Once the driver process is restarted, Spark Streaming can recover the state of the
previous streaming application by reading the checkpointed state of the streaming
context. Spark’s StreamingContext has a special method of initialization to take
advantage of this feature. The method is StreamingContext.getOrCreate(), and it
takes a checkpoint directory and a function for initializing the context. The func-
tion needs to perform all the usual steps to instantiate your streams and initialize a
StreamingContext object. The getOrCreate method first checks the checkpoint
directory to see if any state exists there. If so, it loads the previous checkpointed
state and skips the StreamingContext initialization. Otherwise, it calls the initializa-
tion function.

 To use this in the example from this chapter, you need to rearrange the code a bit:

def setupStreamContext(): StreamingContext {
  val ssc = new StreamingContext(sc, Seconds(5))
  val kafkaReceiverParams = Map[String, String]("metadata.broker.list" -> 

➥ "192.168.10.2:9092")
  //...
  //perform all other DStream computations
  //...
  ssc.checkpoint("checkpoint_dir")
  ssc
}
val ssc = StreamingContext("checkpoint_dir", setupStreamContext)
ssc.start()
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ssc.checkpoint tells the Streaming context to periodically save the state of the
streams to the specified directory. And that’s it. In case of a driver restart, your applica-
tion will be able to continue from where it left off.

 One more thing is required to prevent loss of data in case of a driver restart. Spark
Streaming receivers can write all the data they receive to the write-ahead log, before
the data is processed. They acknowledge to the input source (if the input source
allows messages to be acknowledged) that the message was received only after it was
written to the write-ahead log. If a receiver (and its executor) is restarted, it reads all
the unprocessed data from the write-ahead logs, so no data loss occurs. The Kafka
direct connector doesn’t need write-ahead logs to prevent data loss, because Kafka
provides that functionality.

 Write-ahead logs aren’t enabled by default. You need to explicitly enable them by
setting spark.streaming.receiver.writeAheadLog.enable to true.

6.4 Structured Streaming
In Spark 2.0, an experimental new streaming API was introduced called structured stream-
ing. The idea behind it is to make the streaming API similar to the batch API by obscuring
the details that are involved in making streaming operations fault-tolerant and consistent. 

 Structured streaming operations work directly on DataFrames (or rather Data-
Sets). There is no longer a concept of a “stream.” There are only streaming and ordi-
nary DataFrames. Streaming DataFrames are implemented as append-only tables.
Queries on streaming data return new DataFrames and you work with them similarly
as you would in a batch program.

6.4.1 Creating a streaming DataFrame

To create a streaming DataFrame, instead of calling read on a SparkSession, you call
readStream. It will return a DataStreamReader, with almost the same methods as Data-
FrameReader. The crucial difference is that it works on data that is continuously arriving. 

 As an example, let’s load the files from the ch06input folder, as you did in the
beginning of this chapter, but using the structured streaming API. You will first need
the DataFrame implicits:

import spark.implicits._

Then use DataStreamReader’s text method to load the files:

scala> val structStream = spark.readStream.text("ch06input")
structStream: org.apache.spark.sql.DataFrame = [value: string]

As you can see, the resulting object is a DataFrame with a single column called “value.”
You can check if it’s a streaming DataFrame by calling its isStreaming method:

scala> structStream.isStreaming
res0: Boolean = true
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You can also examine the execution plan:

scala> structStream.explain()
== Physical Plan ==
StreamingRelation FileSource[ch06input], [value#263]

6.4.2 Outputting streaming data

The structStream will monitor the input folder for new files and periodically process
them. You still didn’t tell it how to process them, though. To do anything useful with a
streaming DataFrame, and to start the streaming computation, you have to use Data-
Frame’s writeStream method, which give you an instance of DataStreamWriter class.
It can also be configured using the builder pattern, which means that you can chain
configuration functions one after another. Some of the available functions are:

■ Trigger—Use it to specify the interval at which execution is triggered. You need
to use ProcessingTime.create function to construct interval descriptions. For
example: ProcessingTime.create("5 seconds").

■ format—Specify the output format. Only "parquet", "console", and "memory"
are supported in Spark 2.0. The first one writes to Parquet files, the second one
prints the DataFrames to the console (using show()), and the third one keeps
the data as a table in the driver’s memory, which you can query interactively. 

■ outputMode—Specify the output mode. 
■ option—Specify other specific parameters. 
■ foreach—Use it to perform computations on individual DataFrames. You have

to specify a class implementing the ForeachWriter interface. 
■ queryName - used with the “memory” format.

 Only two output modes are currently (Spark 2.0) supported:
■ append—Output only the data that was received after the last output.
■ complete—Output all available data every time. Can only be used with aggregations.

After you specify all the configuration options you want, call start() to start the
streaming computation. To print the first 20 rows of each file arriving into the
ch06input folder every five seconds, run this:

scala> import org.apache.spark.sql.streaming.ProcessingTime
scala> val streamHandle = structStream.
    writeStream.
    format("console").
    trigger(ProcessingTime.create("5 seconds")).
    start()

To see the results in your console, start the splitAndSend.sh script in a separate
Linux console, as you did at the beginning of this chapter:

$ cd first-edition/ch06
$ ./splitAndSend.sh /home/spark/ch06input local
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You should now see the contents of the files in your Spark shell.

6.4.3 Examining streaming executions

start() returns a StreamingQuery object, which acts as a handle to the streaming
execution. You can use it to check execution’s status with the isActive() method,
stop the execution with the stop() method, block until the execution is over with the
awaitTermination() method, examine an exception (in case it occurred) with the
exception() method, or get execution’s ID from the id field.

 SparkSession also provides the means of querying streaming executions.
SparkSession.streams.active returns an array of active streaming execu-
tions, SparkSession.streams.get(id) enables you to get a streaming handle using
its ID, and SparkSession.streams.awaitAnyTermination blocks until any of the
streaming executions finishes.

6.4.4 Future direction of structured streaming

While still an experimental feature in Spark 2.0, structured streaming is proving to be a
powerful concept. It enables true unification of batch and streaming computations and
joining of streaming with batch data, a feature not many streaming engines can boast.
On top of that, it brings Tungsten performance improvements to Spark streaming.

 The Spark community has big plans with structured streaming. Community mem-
bers want to extend it to all other Spark components: to train machine-learning algo-
rithms on streaming data and to perform ETL transformations using streaming
concepts, which could lower capacity requirements. What other improvements await
us, remains to be seen.

 This was a short overview of structured streaming. You can find more information
about structured streaming as it develops in the official Structured Streaming
Programming Guide (http://mng.bz/bxF9) and in its original design document
(http://mng.bz/0ipm).

6.5 Summary
■ Spark Streaming applies Spark’s batch-processing features to real-time data by

using mini-batches.
■ Spark can ingest data from filesystems and TCP/IP socket connections, but also

from other distributed systems, such as Kafka, Flume, Twitter, and Amazon
Kinesis.

■ The mini-batch duration is set when initializing a Spark Streaming context. It
determines the interval at which input data will be split and packaged as an
RDD. It has a big influence on your system’s performance.

■ DStream (which stands for discretized stream) is the basic abstraction in Spark
Streaming, representing a sequence of RDDs, periodically created from the
input stream. You can’t write Spark Streaming programs without them.

 

http://mng.bz/bxF9
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■ DStreams have methods that transform them to other DStreams. You can use
those methods to filter, map, and reduce data in DStream’s RDDs and even com-
bine and join different DStreams. 

■ DStream’s saveAsTextFiles method takes a String prefix and an optional
String suffix and uses them to construct the path at which the data should be
periodically saved. You can use it to save the results of your computations to the
filesystem.

■ You can use the updateStateByKey and mapWithState methods to perform cal-
culations while taking into account the previous state of the computation.

■ The mapWithState method lets you maintain a state of one type and return data
of another. It also brings performance improvements.

■ Checkpointing is necessary when saving the streaming state, because otherwise
the RDD lineage will get too long; this will eventually result in stack-overflow
errors.

■ Window operations operate on a sliding window of mini-batches, determined by
the window duration and the slide of the window. You can use them to maintain
a time-bounded state and perform calculations on the data contained in them. 

■ Before using external sources, their Maven packages need to be added to the
Spark classpath.

■ Spark has two Kafka connectors: a receiver-based connector and a direct con-
nector. The direct connector enables exactly-once processing.

■ The best way to write a message to Kafka is to create a singleton object that ini-
tializes a Producer object only once per JVM. That way, a single connection per
executor can be reused throughout the lifetime of your streaming application.

■ The Streaming page of the Spark Web UI contains useful graphs that can help
you determine the ideal mini-batch duration.

■ Scheduling delays in streaming applications can be reduced by decreasing pro-
cessing time, increasing parallelism, adding more resources, or limiting the
input rate.

■ Jobs can be made fault-tolerant by enabling automatic restart of the driver pro-
cess, initializing the StreamingContext with StreamingContext.getOrCreate,
and enabling write-ahead logs for receiver-based connectors.
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Getting
 smart with MLlib

Machine learning is a scientific discipline that studies the use and development of
algorithms that make computers accomplish complicated tasks without explicitly
programming them. That is, the algorithms eventually learn how they can solve a
given task. These algorithms include methods and techniques from statistics, prob-
ability, and information theory. 

 Today, machine learning is ubiquitous. Examples include online stores that
offer you similar items that other users have viewed or bought, email clients that

This chapter covers
■ Machine-learning basics
■ Performing linear algebra in Spark
■ Scaling and normalizing features
■ Training and applying a linear regression model
■ Evaluating the model’s performance
■ Using regularization
■ Optimizing linear regression
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automatically move emails to spam, advances in autonomous driving recently devel-
oped by several car manufacturers, and speech and video recognition. It’s also becom-
ing a big part of online business: finding hidden relationships in user habits and
actions (and learning from them) can bring critical added value to existing products
and services. 

 But with the advent of companies handling huge amounts of data (known as big
data), more scalable machine-learning packages are needed. Spark provides distrib-
uted and scalable implementations of various machine-learning algorithms and makes
it possible to handle those continuously growing datasets.1

 Spark offers distributed implementations of the most important and most often-
used machine-learning algorithms, and new implementations are constantly being
added. Spark’s distributed nature helps you apply machine-learning algorithms on
very large datasets with adequate speed. Spark, as a unifying platform, lets you per-
form most of the machine-learning tasks (such as data collection, preparation, analy-
sis, model training, and evaluation) all in the same system and using the same API. 

 In this chapter, you’ll use linear regression to predict Boston housing prices. Regres-
sion analysis is a statistical process of modeling relationships between variables, and lin-
ear regression, as a special type of the regression analysis, assumes those relationships to
be linear. It’s historically one of the most widely used and most simple regression
methods in statistics. 

 While using linear regression to predict housing prices, you’ll learn about linear
regression itself, how to prepare the data, train the model, use the model to make
predictions, and evaluate the model’s performance and optimize it. We’ll begin with
a short introduction to machine learning and a primer on using linear regression
in Spark. 

 First, a disclaimer. Machine learning is such a vast subject that it’s impossible to
fully cover it here. To learn more about machine learning in general, check out Real-
World Machine Learning, by Henrik Brink and Joseph W. Richards (Manning, 2016
[est.]), and Machine Learning in Action, by Peter Harrington (Manning, 2012). A sea of
other resources can be found online; Stanford’s “Machine Learning” course by
Andrew Ng (http://mng.bz/K6XZ) is an excellent starting point.

7.1 Introduction to machine learning
Let’s start with an example of using machine learning in real life. Let’s say you’re run-
ning a website that lets people sell their cars online. And let’s say you’d like your sys-
tem to automatically propose to your sellers reasonable starting prices when they post
their ads. You know that regression analysis can be used for that purpose by taking
data of previous sales, analyzing characteristics of the cars and their selling prices, and
modeling the relation between them. But you don’t have enough ads in your data-
base, so you decide to get car prices from publicly available sources. You find a lot of

1 Spark isn’t the only framework that provides a distributed machine-learning package. There are other frame-
works, such as GraphLab, Flink, and TensorFlow.
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interesting car sale records online, but most of the data is available in CSV files, and
large parts of it are PDF and Word documents (containing car sale offers). 

 You first parse PDFs and Word documents to identify and match similar fields
(manufacturer, model, make, and so on). You know that a regression-analysis model
can’t handle string values of various fields (“automatic” and “manual,” for example),
so you come up with a way to convert these values to numeric ones. Then you notice
that important fields are missing from some of the records (year manufactured, for
example) and you decide to remove those records from your dataset. 

 When you finally have the data cleaned up and stored somewhere, you start exam-
ining various fields—how they’re correlated and what their distributions look like
(this is important for understanding the hidden dependencies of the data). Then you
decide which regression-analysis model to use.

 Let’s say you choose linear regression, because, based on the correlations you cal-
culated, you assume the main relations to be linear. Before building a model, you nor-
malize and scale the data (more on how and why this is done soon) and split it into
training and validation datasets. You finally train your model using the training data
(you use the historical data to set weights of the model to predict the future data where
the price isn’t known; we’ll explain this later), and you get a usable linear-regression
model. But when you test it on your validation dataset, the results are horrible. You
change some of the parameters used for training the model, test it again, and repeat
the process until you get a model with acceptable performance. Finally, you incorpo-
rate the model in your web application and start getting emails from your clients won-
dering how you’re doing that (or from clients complaining about bad predictions).

 What this example illustrates is that a machine-learning project consists of multiple
steps. Although typical steps are shown in figure 7.1, the entire process can usually be
broken down into the following:

1 Collecting data—First the data needs to be gathered from various sources. The
sources can be log files, database records, signals coming from sensors, and so
on. Spark can help load the data from relational databases, CSV files, remote
services, and distributed file systems like HDFS, or from real-time sources using
Spark Streaming. 

2 Cleaning and preparing data—Data isn’t always available in a structured format
appropriate for machine learning (text, images, sounds, binary data, and so
forth), so you need to devise and carry out a method of transforming this
unstructured data into numerical features. Additionally, you need to handle
missing data and the different forms in which the same values can be entered
(for example, VW and Volkswagen are the same carmaker). Often, data also
needs to be scaled so that all dimensions are of comparable ranges.

3 Analyzing data and extracting features—Next you analyze the data, examine its
correlations, and visualize them (using various tools) if necessary. (The number
of dimensions may be reduced in this step if some of them don’t bring any extra
information: for example, if they’re redundant.) You then choose the
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appropriate machine-learning algorithm (or set of algorithms) and split the
data into training and validation subsets—this is important because you’d like
to see how the model behaves on the data not seen during the training phase.
Or you decide on a different cross-validation method, where you continuously
split the dataset into different training and validation datasets and average the
results over the rounds. 

4 Training the model—You train a model by running an algorithm that learns a set
of algorithm-specific parameters from the input data.

5 Evaluating the model—You then put the model to use on the validation dataset
and evaluate its performance according to some criteria. At this point, you may
decide that you need more input data or that you need to change the way fea-
tures were extracted. You may also change the feature space or switch to a dif-
ferent model. In any of these cases, you go back to step 1 or step 2. 

6 Using the model—Finally, you deploy the built model to the production environ-
ment of your website. 

?

1. Data
collection

2. Data
clean-up 

and 
preparation

3. Data
analysis and
visualization4. Training the model

6. Using the model
for predictions

5. Model evaluation

New data
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Figure 7.1 Typical steps in a machine-learning project
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The mechanics of using an API (Spark or some other machine-learning library) to
train and test the models is only the last and the shortest part of the process. Equally
important are collection, preparation, and analysis of data, where knowledge about
the problem domain is needed. Therefore, this and the following chapter on machine
learning are mostly about steps 4 and 5, as described previously.

7.1.1 Definition of machine learning

Machine learning is one of the largest research areas in artificial intelligence, a scientific
field that studies algorithms for simulating intelligence. Ron Kohavi and Foster Pro-
vost, in their article “Glossary of Terms,” describe machine learning in these words:

Machine learning is a scientific discipline that explores the construction and study of
algorithms that can learn from and make predictions on data.2

This is in contrast to traditional programming methods where what an algorithm needs
to do (like parsing an XML file with a certain structure) is explicitly programmed into
it. Such traditional methods can’t be easily expanded to cover similar tasks, like parsing
XML files with a similar structure. As another example, making a speech-recognition
program that recognizes different accents and voices would be impossible by explicitly
programming it, because the sheer number of variations in the way a single word can
be pronounced would necessitate that many versions of the program. 

 Instead of incorporating the explicit knowledge about the problem area in the
program itself, machine learning relies on methods from the fields of statistics, proba-
bility, and information theory to discover and use the knowledge inherent in data and
then change the behavior of a program accordingly in order to be able to solve the
initial task (such as recognizing speech).

7.1.2 Classification of machine-learning algorithms

The most basic classification of machine-learning algorithms divides them into two
classes: supervised and unsupervised learners. A dataset for supervised learning is prela-
beled (information about the expected prediction output is provided with the data),
whereas one for unsupervised learning contains no labels, and the algorithm needs to
determine them itself.

 Supervised learning is used for many practical machine-learning problems today,
such as spam detection, speech and handwriting recognition, and computer vision. A
spam-detection algorithm, for example, is trained on examples of emails manually
marked as spam or not spam (labeled data) and learns how to classify future emails.

 Unsupervised learning is also a powerful tool that is widely used. Among other pur-
poses, it’s used for discovering structure within data—for example, groups of similar
items known as clusters)—anomaly detection, image segmentation, and so on.

2 Ron Kohavi and Foster Provost, “Glossary of Terms,” Special Issue on Applications of Machine Learning and
the Knowledge Discovery Process, Machine Learning, vol. 30 (1998): 271–274.
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CLASSIFICATION OF SUPERVISED AND UNSUPERVISED ALGORITHMS

In supervised learning, an algorithm is given a set of known inputs and matching out-
puts, and it has to find a function that can be used to transform the given inputs to the
true outputs, even in the case of input data not seen during the training phase. The
same function can then be used to predict outputs of any future input. The typical
supervised learning tasks are regression and classification.

 Regression attempts to predict the values of continuous output variables based on a
set of input variables. Classification aims to classify sets of inputs into two or more
classes (discrete output variables). Both regression and classification models are
trained based on a set of inputs with known outputs—where known outputs are the
output variables, values, or classes, which are supervised problems.

 In the case of unsupervised learning, the output isn’t known in advance, and the algo-
rithm has to find some structure in the data without additional information being pro-
vided. A typical unsupervised learning task is clustering. With clustering, the goal of the
algorithm is to discover dense regions, called clusters, in the input data by analyzing sim-
ilarities between the input examples. There are no known classes used as a reference.

 For an example of the differences between supervised and unsupervised learning,
consider figure 7.2. It shows the often-used Iris flower dataset 3 created in 1936. The
dataset contains widths and lengths of petals and sepals4 of 150 flowers of three iris spe-
cies: Iris setosa, Iris versicolor, and Iris virginica (50 flowers of each species). For the sake
of simplicity, only sepal length and width are given in figure 7.2. That way, you can plot
the dataset in two dimensions.

 Sepal length and sepal width are features (or dimensions) of the input, and the
flower species is the output (or target variable, a label). You’d like your algorithm to find
a mapping function that correctly maps sepal length and sepal width to flower species
for existing and future examples. 

3 Iris flower dataset, Wikipedia (http://en.wikipedia.org/wiki/Iris_flower_data_set).
4 A sepal is the part of a flower that supports its petals and protects the flower in bud.
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Figure 7.2 Supervised and unsupervised learning in the Iris flower dataset. The dataset for supervised 
learning is prelabeled, whereas the one for unsupervised learning contains no labels because the al-
gorithm needs to determine them itself.
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NOTE For historical reasons, and because of many possible application areas,
a single concept in machine learning can have several different names. Inputs
are also called examples, points, data samples, observations, or instances. In Spark,
training examples for supervised learning are called labeled points. Features
(sepal length and sepal width in the Iris dataset, for example) are also called
dimensions, attributes, variables, or independent variables. 

In the graph on the left in figure 7.2, flower species corresponding to each input are
marked with dots, circles, and Xes, which means the flower species are known in
advance. We call this the training set because it can be used to train (or fit) the param-
eters of the machine-learning model to determine the mapping function. You then test
the accuracy of your trained model using a test set containing a different set of labeled
examples. If satisfied with its performance, you then let it predict labels for real data. 

 The graph on the right in figure 7.2 shows clustering (a form of unsupervised
learning), which requires the algorithm to find the mapping function and the catego-
ries. As you can see, all the examples are marked with the same symbol (a dot), and
the algorithm needs to find the most likely grouping system for the given examples. 

 In the graph showing clustering, there is obviously a clear separation between the
group of examples in the lower-left corner of the graph and the rest of the examples,
but the separation between the other two categories isn’t that clear. You can probably
already guess that an unsupervised learning algorithm will be less successful in cor-
rectly separating this dataset into the three flower categories, because the supervised
learning algorithm has much more data to learn from.

ALGORITHM CLASSIFICATION BASED ON THE TYPE OF TARGET VARIABLE

In addition to classifying machine-learning algorithms as supervised and unsuper-
vised, we can also classify them according to the type of the target variable into classifi-
cation and regression algorithms. The Iris dataset mentioned in the last section is an
example of a classification problem because target variables are categorical (or qualita-
tive), which means they can take on a limited number of values (discrete values). In clas-
sification algorithms, the target variable is also called a label, class, or category, and the
algorithm itself is called a classifier, recognizer, or categorizer. In the case of regression
algorithms, the target variable is continuous or quantitative (a real number). 

 Both regression and classification are plainly supervised learning algorithms
because the estimation function is fitted according to a priori known values. Figure 7.3
shows an example of linear regression with only one feature, shown on the X axis. The
output value is shown on the Y axis. 

 The goal of regression is to find, based on a set of examples, a mathematical func-
tion that is as close an approximation of the relationship between features and the tar-
get variable as possible. The regression in figure 7.3 is a simple linear regression
because there is only one independent variable (making it simple), and the hypothe-
sis function is modeled as a linear function (a straight line). If there were two vari-
ables, you could plot the estimation function in 3D space as a plane. When there are
more features, the function becomes a hyperplane. 
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7.1.3 Machine learning with Spark

All the advantages of Spark extend to machine learning, too. The most important
aspect of Spark is its distributed nature. It enables you to train and apply machine-
learning algorithms on very large datasets with adequate speed. 

 The second advantage is Spark’s unifying nature; it offers a platform for perform-
ing most tasks. You can collect, prepare, and analyze the data and train, evaluate, and
use the model—all in the same system and using the same API.

 Spark offers distributed implementations of the most popular machine-learning
algorithms, and new ones are constantly added. Spark’s primary machine learning API
is called MLlib. It’s based on the MLbase project in Berkeley, CA. Since its inclusion in
Spark 0.8, MLlib has been expanded and developed by the open source community. 

 Spark 1.2 introduced a new machine learning API called Spark ML. The idea
behind Spark ML is to provide a generalized API that can be used for training and tun-
ing different algorithms in the same way. It also provides pipelines, sequences of
machine-learning-related processing steps that are collected and handled as a unit. 

 The new Spark ML API is being developed in parallel with the “old” Spark MLlib
API. Spark MLlib will continue to be supported and expanded.

 Spark relies on several low-level libraries for performing optimized linear algebra
operations. These are Breeze and jblas for Scala and Java and NumPy for Python.
Refer to the official documentation (http://mng.bz/417O) for how to configure
these. We’ll use the default Spark build, but that decision shouldn’t influence the
functional aspects described in this chapter.

7.2 Linear algebra in Spark
Linear algebra is a branch of mathematics focusing on vector spaces and linear opera-
tions and mappings between them expressed mainly by matrices. Linear algebra is
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essential for understanding the math behind most machine-learning algorithms, so if
you don’t know much about vectors and matrices, you should have a peek at appendix
C for a primer on linear algebra.

 Matrices and vectors in Spark can be manipulated locally (in the driver or execu-
tor processes) or in a distributed manner. Implementations of distributed matrices in
Spark enable you to perform linear algebra operations on huge amounts of data,
spanning numerous machines. For local linear algebra operations, Spark uses the very
fast Breeze and jblas libraries (and NumPy in Python), and it has its own implementa-
tions of distributed ones.

7.2.1 Local vector and matrix implementations

Local vector and matrix implementations in Spark are located in the package
org.apache.spark.mllib.linalg. We’ll examine Spark’s linear algebra API with a set
of examples you can run in your Spark shell. To start the shell in local mode, use the
command spark-shell --master local[*]. We’ll assume you’re running Spark in
the spark-in-action VM.

GENERATING LOCAL VECTORS

Local vectors in Spark are implemented with two classes—DenseVector and Sparse-
Vector—implementing a common interface called Vector, making sure both imple-
mentations support exactly the same set of operations. The main class for creating
vectors is the Vectors class and its dense and sparse method. The dense method has
two versions: it can take all elements as inline arguments or it can take an array of ele-
ments. For the sparse method, you need to specify a vector size, an array with indices,
and an array with values. The following three vectors (dv1, dv2, and sv) contain the
same elements and, hence, represent the same mathematical vectors:

import org.apache.spark.mllib.linalg.{Vectors,Vector}
val dv1 = Vectors.dense(5.0,6.0,7.0,8.0)
val dv2 = Vectors.dense(Array(5.0,6.0,7.0,8.0))
val sv = Vectors.sparse(4, Array(0,1,2,3), Array(5.0,6.0,7.0,8.0))

NOTE Make sure to always use sorted indices for constructing your sparse
vectors (the second argument of the sparse method). Otherwise, you may get
unexpected results.

Sparse and dense vectors and matrices
Spark supports sparse and dense vectors and matrices. A vector or matrix is sparse
if it contains mostly zeros. It’s more efficient to represent such data with pairs of in-
dices and values at those indices. A sparse vector or matrix can be likened to a map
(or dictionary in Python).

Conversely, a dense vector or matrix contains all the data—values at all index posi-
tions not storing the indices, similar to an array or a list.
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You can access a specific element in the vector by its index like this:

scala> dv2(2)
res0: Double = 7.0

You can get the size of the vector with the size method:

scala> dv1.size
res1: Int = 4

To get all elements of a vector as an array, you can use the toArray method: 

scala> dv2.toArray
res2: Array[Double] = Array(5.0, 6.0, 7.0, 8.0)

LINEAR ALGEBRA OPERATIONS ON LOCAL VECTORS

Linear algebra operations on local vectors can be done using the Breeze library,
which Spark uses internally for the same purposes. toBreeze functions exist in Spark
vector and matrix local implementations, but they’re declared as private. The Spark
community has decided not to allow end users access to this library, because they
don’t want to depend on a third-party library. But you’ll most likely need a library for
handling local vectors and matrices.

 An alternative would be to create your own function for converting Spark vectors
to Breeze classes, which isn’t that hard to do. We propose the following solution:

import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector}
import breeze.linalg.{DenseVector => BDV,SparseVector => BSV,Vector => BV}
def toBreezeV(v:Vector):BV[Double] = v match {
    case dv:DenseVector => new BDV(dv.values) 
    case sv:SparseVector => new BSV(sv.indices, sv.values, sv.size) 
}

Now you can use this function (toBreezeV) and the Breeze library to add vectors and
calculate their dot products. For example:

scala> toBreezeV(dv1) + toBreezeV(dv2)
res3: breeze.linalg.Vector[Double] = DenseVector(10.0, 12.0, 14.0, 16.0)
scala> toBreezeV(dv1).dot(toBreezeV(dv2))
res4: Double = 174.0

The Breeze library offers more linear algebra operations, and we invite you to exam-
ine its rich set of functionalities. You should note that the names of Breeze classes con-
flict with the names of Spark classes, so be careful when using both in your code. One
solution is to change the class names during import, as in the preceding toBreezeV
function example.

GENERATING LOCAL DENSE MATRICES

Similar to the Vectors class, the Matrices class also has the methods dense and
sparse for creating matrices. The dense method expects number of rows, number of
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columns, and an array with the data (elements of type Double). The data should be
specified column-wise, which means the elements of the array will be used sequentially
to populate columns. For example, to create the following matrix as a DenseMatrix

use a code snippet similar to this one:

scala> import org.apache.spark.mllib.linalg.{DenseMatrix, SparseMatrix, 
Matrix, Matrices}
scala> import breeze.linalg.{DenseMatrix => BDM,CSCMatrix => BSM,Matrix => 

BM}
scala> val dm = Matrices.dense(2,3,Array(5.0,0.0,0.0,3.0,1.0,4.0))
dm: org.apache.spark.mllib.linalg.Matrix =
5.0  0.0  1.0
0.0  3.0  4.0

A Matrices object provides shortcut methods for quickly creating identity and diago-
nal matrices and matrices with all zeros and ones. The eye(n) method5 creates a
dense identity matrix of size n × n. The method speye is the equivalent for creating a
sparse identity matrix. The methods ones(m, n) and zeros(m, n) create dense matri-
ces with all ones or zeros of size m × n. The diag method takes a Vector and creates a
diagonal matrix (its elements are all zeros, except the ones on its main diagonal) with
elements from the input Vector placed on its diagonal. Its dimensions are equal to
the size of the input Vector.

 Additionally, you can generate a DenseMatrix filled with random numbers in a
range from 0 to 1 using the rand and randn methods of the Matrices object. The first
method generates numbers according to a uniform distribution, and the second
according to Gaussian distribution. (Gaussian distribution, also known as normal dis-
tribution, has that familiar bell-shaped curve.) Both distributions take the number of
rows, the number of columns, and an initialized java.util.Random object as argu-
ments. The sprand and sprandn methods are equivalent methods for generating
SparseMatrix objects.

NOTE These methods (eye, rand, randn, zeros, ones, and diag) aren’t avail-
able in Python.

GENERATING LOCAL SPARSE MATRICES

Generating sparse matrices is a bit more involved than generating dense ones. You
also pass the number of rows and columns to the sparse method, but the nonzero
element values (in sparse matrices only, nonzero elements are needed) are specified

5 Identity matrices are usually denoted with the letter I, pronounced the same as “eye”; hence the pun in the
method name.

M 5 0 1
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in compressed sparse column (CSC) format.6 CSC format is made of three arrays,
containing column pointers, row indices, and the nonzero elements. A row indices
array contains the row index of each element in the elements array. The col-
umn pointers array contains ranges of indices of elements that belong to the
same column. 

NOTE SparseMatrix isn’t available in Python. 

For the previous M matrix example (the same matrix used previously), the arrays for
specifying the matrix in CSC format are as follows:

colPtrs = [0 1 2 4], rowIndices = [0 1 0 1], elements = [5 3 1 4]

The colPtrs array tells us that the elements from index 0 (inclusive) to 1 (non-
inclusive), which is only element 5, belong to the first column. Elements from index 1
to 2, which is only element 3, belong to the second column. Finally, elements from
index 2 to 4 (elements 1 and 4) belong to the third column. The row index of each
element is given in the rowIndices array. 

 To create the SparseMatrix object corresponding to the matrix M, you use this
line of code:

val sm = Matrices.sparse(2,3,Array(0,1,2,4), Array(0,1,0,1), Array(5.,3.,1.,4.))

(Note that the indices are specified as Ints and the values as Doubles.)
 You can convert SparseMatrix to DenseMatrix and vice versa with the correspond-

ing toDense and toSparse methods. But you’ll need to explicitly cast the Matrix
object to the appropriate class:

scala> import org.apache.spark.mllib.linalg. {DenseMatrix,SparseMatrix}
scala> sm.asInstanceOf[SparseMatrix].toDense
res0: org.apache.spark.mllib.linalg.DenseMatrix =
5.0  0.0  1.0
0.0  3.0  4.0
scala> dm.asInstanceOf[DenseMatrix].toSparse
2 x 3 CSCMatrix
(0,0) 5.0
(1,1) 3.0
(0,2) 1.0
(1,2) 4.0

LINEAR ALGEBRA OPERATIONS ON LOCAL MATRICES

Similar to vectors, you can access specific elements of a matrix by indexing it like this:

scala> dm(1,1)
res1: Double = 3.0

6 Jack Dongarra et al., Compressed Column Storage (CCS), http://mng.bz/Sajv.
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You can efficiently create a transposed matrix using the transpose method:

scala> dm.transpose
res1: org.apache.spark.mllib.linalg.Matrix =
5.0  0.0
0.0  3.0
1.0  4.0

For other local matrix operations similar to vectors, conversion to Breeze matrices is
necessary. The online repository contains the toBreezeM and toBreezeD functions
that you can use for converting local and distributed matrices to Breeze objects.

 Once converted to Breeze matrices, you can use operations like element-wise addi-
tion and matrix multiplication. We leave it up to you to further explore the Breeze API.

7.2.2 Distributed matrices

Distributed matrices are necessary when you’re using machine-learning algorithms on
huge datasets. They’re stored across many machines, and they can have a large num-
ber of rows and columns. Instead of using Ints to index rows and columns, for distrib-
uted matrices you use Longs. There are four types of distributed matrices in Spark,
defined in the package org.apache.spark.mllib.linalg.distributed: RowMatrix,
IndexedRowMatrix, BlockMatrix, and CoordinateMatrix.

ROWMATRIX

RowMatrix stores the rows of a matrix in an RDD of Vector objects. This RDD is acces-
sible as the rows member field. The number of rows and columns can be obtained
with numRows and numCols. RowMatrix can be multiplied by a local matrix (producing
another RowMatrix) using the method multiply. RowMatrix also provides other use-
ful methods, not available for other distributed implementations. We’ll describe
those later.

 Every other type of Spark distributed matrix can be converted to a RowMatrix
using the built-in toRowMatrix methods, but there are no methods for converting a
RowMatrix to other distributed implementations.

INDEXEDROWMATRIX

IndexedRowMatrix is an RDD of IndexedRow objects, each containing an index of the
row and a Vector with row data. Although there is no built-in method for converting a
RowMatrix to an IndexedRowMatrix, it’s fairly easy to do:

import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix
import org.apache.spark.mllib.linalg.distributed.IndexedRow
val rmind = new IndexedRowMatrix(rm.rows.zipWithIndex().map(x => 
IndexedRow(x._2, x._1)))

COORDINATEMATRIX

CoordinateMatrix stores its values as an RDD of MatrixEntry objects, which contain
individual entries and their (i,j) positions in the matrix. This isn’t an efficient way of
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storing data, so you should use CoordinateMatrix only for storing sparse matrices.
Otherwise, it could consume too much memory.

BLOCKMATRIX

BlockMatrix is the only distributed implementation with methods for adding and
multiplying other distributed matrices. It stores its values as RDDs of tuples ((i,j),
Matrix). In other words, BlockMatrix contains local matrices (blocks) referenced by
their position in the matrix. Sub-matrices take up blocks of the same sizes (of rows-
per-block and columns-per-block dimensions), except for the last sub-matrices, which
can be smaller (to allow the total matrix to be of any dimensions). The validate
method checks whether all blocks are of the same size (except the last ones).

LINEAR ALGEBRA OPERATIONS WITH DISTRIBUTED MATRICES

Linear algebra operations with distributed matrix implementations are somewhat lim-
ited, so you’ll need to implement some of these yourself. For example, element-wise
addition and multiplication of distributed matrices is available only for BlockMatrix
matrices. The reason is that only BlockMatrices offer a way to efficiently handle these
operations for matrices with many rows and columns. 

 Transposition is available only for CoordinateMatrix and BlockMatrix. The other
operations, like matrix inverse, for example, have to be done manually.

7.3 Linear regression
Now you finally get to do some machine learning. In this section, you’ll learn how lin-
ear regression works and how to apply it on a sample dataset. In the process, you’ll
learn how to analyze and prepare the data for linear regression and how to evaluate
your model’s performance. You’ll also learn important concepts such as bias-variance
tradeoff, cross-validation, and regularization.

7.3.1 About linear regression

Historically, linear regression has been one of the most widely used regression meth-
ods and one of the basic analytical methods in statistics, and it’s still widely used today.
That’s because modeling linear relationships is much easier than modeling nonlinear
ones. Interpretation of the resulting models is also easier. The theory behind linear
regression also forms the basis for more advanced methods and algorithms in
machine learning. 

 Like other types of regression, linear regression lets you use a set of independent
variables to make predictions about a target variable and quantify the relationship
between them. Linear regression makes an assumption that there is a linear relation-
ship (hence the name) between the independent and target variables. Let’s see what
this means when you have only one independent and one target variable, which is also
called simple linear regression. Using simple linear regression, you can plot the problem
in two dimensions: the X-axis is the independent variable, and the Y-axis is the target
variable. Later, you’ll expand this into a model with more independent variables,
which is called multiple linear regression.
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7.3.2 Simple linear regression

As an example, let’s use the UCI Boston housing dataset.7 Although the dataset is
rather small and, as such, doesn’t represent a big-data problem, it’s nevertheless
appropriate for explaining machine-learning algorithms in Spark. Besides, this
enables you to use it on your local machine if you want to do so.

 The dataset contains mean values of owner-occupied homes in the suburbs of Bos-
ton and 13 features that can be used to predict home values. These features include
the crime rate, number of rooms per dwelling, accessibility to highways, and so on. 

 For the simple linear-regression example, you’ll predict home prices based on the
average number of rooms per dwelling. You might not need to use linear regression to
find out that the price of a house probably rises if there are more rooms in it. That’s
obvious and intuitive. But linear regression does enable you to quantify that relation-
ship—to say what the expected price is for a certain number of rooms. If you were to
plot the average number of rooms on the X-axis and the average price on the Y-axis,
you’d get output similar to that shown in figure 7.4.

 There is obviously a correlation between the two variables: almost no expensive
houses have a small number of rooms, and no inexpensive houses have a large num-
ber of rooms. Linear regression enables you to find a line that goes through the mid-
dle of these data points and, in that way, to approximate the most likely home price
you could expect given an average number of rooms. We’ve already calculated this
line, as shown in figure 7.4. Let’s see what the method is for finding it.

 Generally, if you want to draw a line in two-dimensional space, you need two values:
the slope of the line and the value at which the line intersects the Y-axis, also called the
intercept. If you denote the number of rooms as x, the function for calculating the

7 Housing Data Set, UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/datasets/Housing.

Average number of rooms

M
ea

n 
ho

m
e 

pr
ic

e

10

20

30

40

50

4 5 6 7 8

Figure 7.4 Mean home pric-
es in Boston by average num-
ber of rooms per dwelling. 
Linear regression was used to 
find a best-fit line for this data 
(shown on the graph).

 

https://archive.ics.uci.edu/ml/datasets/Housing


195Linear regression

home price as h (which stands for hypothesis), and the intercept and slope as w0 and
w1, respectively, the line can be described with the following formula:

h(x) = w0 + w1x
The goal is to find the weights w0 and w1 that best fit the data. Linear regression’s
method for finding appropriate weight values is to minimize the so-called cost function.
The cost function returns a single value that can be used as a measure of how well the
line, determined by weights, fits all examples in a dataset. Different cost functions can
be used. The one used in linear regression is the mean of the squared differences
between predicted and real values of the target variable for all m examples in the data-
set (mean squared error). The cost function (we call it C in the equation) can be writ-
ten like this:

If you give this function a set of m examples x(1) to x(m) (with matching target values y(1)

to y(m)) and the weights w0 and w1, which you think would be most appropriate for the
data, the function will give you a single error value. If this value is lower than a second
one, obtained for a different set of weights, that means the first model (determined by
chosen weights w0 and w1) better fits the dataset.

 But how do you get the best-fit weights? You can find the minimum of the cost
function. If you plot the cost function with respect to weights w0 and w1, it forms a
curved plane in a three-dimensional space, similar to the one in figure 7.5. The shape
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of the cost function depends on your dataset. In this example, the cost function has a
valley along which many points correspond to low error values. That means you could
draw many lines (defined by weights w0 and w1) in figure 7.4 that would fit the dataset
equally well. 

 The mean-squared-error cost function is used in linear regression because it offers
certain benefits: the squares of individual deviations can’t cancel each other out
(they’re always positive), even though the corresponding deviations may be negative;
the function is convex, which means there are no local minima, only a global mini-
mum; and an analytical solution for finding its minimum exists.

7.3.3 Expanding the model to multiple linear regression

There is a nice vectorized solution for finding the minimum of the cost function C, but
let’s first expand the model to use multiple linear regression. As we said previously,
expanding the model to use multiple linear regression means examples will have more
dimensions (independent variables). In this example, you need to add the remaining 12
dimensions of the housing dataset. This adds additional information to the dataset and
enables the model to make better predictions based on that additional information. It
also means, from this point on, you won’t be able to plot the data or the cost function,
because the linear-regression solution now becomes a 13-dimensional hyperplane
(instead of a line in 2 dimensions).

 After adding the remaining 12 dimensions to the dataset, the hypothesis function
becomes

h(x) = w0 + w1x1 + … + wnxn = wTx
where n, in this example, is equal to 12. On the right side, you can see the vectorized
version of the same expression. To be able to introduce the vectorized notation
(because the intercept value w0 is multiplied by 1), you need to extend the original
vector x with an additional component, x0, which has a constant value of 1:

xT = [1 x1 … xn]
You can now rewrite the cost function of the multiple linear-regression model like this:

This is also a vectorized version of the cost function (as indicated by the bold letters in
this equation).

FINDING THE MINIMUM WITH THE NORMAL EQUATION METHOD

The vectorized solution to the problem of minimizing the cost function, in respect to
the weights w0 to wn, is given by the normal equation method formula:
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X here is a matrix with m rows (m examples) and n + 1 columns (n dimensions plus 1s
for x0). w and y are vectors with n + 1 weights and m target values, respectively. Unfor-
tunately, the scope of this book doesn’t allow us to explain the math behind this formula.

FINDING THE MINIMUM WITH GRADIENT DESCENT

Directly solving this equation with the previous formula can be very expensive and not
easy to do (because of the matrix multiplications and matrix-inversion calculations
required), especially if there is a large number of dimensions and rows in the dataset.
So we’ll use the gradient-descent method, which is more commonly employed—and you
can use it in Spark, too.

 Gradient-descent algorithms work iteratively. It starts from a certain point, repre-
senting a best guess of the weight parameters’ values (this point can also be randomly
chosen), and for each weight parameter wj, calculates a partial derivative of the cost
function with respect to that weight parameter. The partial derivative tells the algo-
rithm how to change the weight parameter in question to descend to the minimum of
the cost function as quickly as possible. The algorithm then updates the weight param-
eters according to the calculated partial derivatives and calculates the value of the cost
function at the new point. If the new value is less than some tolerance value, we say that
the algorithm has converged, and the process stops. See figure 7.6 for an illustration.

 As an example of a gradient-descent algorithm, let’s return to the simple linear-
regression example and its cost function, shown in figure 7.6. The dots on the white
line in the figure are points the algorithm visits in each step. The white line is the
shortest path from the starting point to the minimum of the cost function. 
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Figure 7.6 A gradient-de-
scent algorithm deter-
mines the minimum value 
for the cost function in the 
simple linear-regression 
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The partial derivative of the cost function C, with respect to any weight parameter wj,
is given by this formula:

(Please note that x0 is equal to 1 for all examples, as mentioned previously.)
 If the partial derivative is negative, the cost function decreases with an increase of the

weight parameter wj. You can now use this value to update the weight parameter wj to
decrease the value of the cost function. And you do it for all weight parameters as part
of a single step:

After updating all weight parameters, you calculate the cost function again (the sec-
ond point along the black line in figure 7.6), and if it’s still unacceptably high, you
update the weights again using partial derivatives. You repeat this process until conver-
gence (the value of the cost function remains stable).

 Parameter � (Greek letter gamma) is the step-size parameter that helps stabilize the
algorithm. We’ll have more to say about the step-size parameter later.

7.4 Analyzing and preparing the data
That was a good dose of theoretical background for the linear-regression example.
Now it’s time to implement all that using Spark’s API. You’ll download the housing
dataset, prepare the data, fit a linear-regression model, and use the model to predict
target values of some examples.

 To begin, download the housing dataset (housing.data) from our online reposi-
tory (use our GitHub repository8 and not the one from the UCI machine learning
repository because we changed the dataset a bit). We’ll assume you’ve cloned the
GitHub repository to the /home/spark/first-edition folder in the VM. You can find
the description of the dataset in the file ch07/housing.names. 

 First, start the Spark shell in your home directory, and load the data with the fol-
lowing code:

import org.apache.spark.mllib.linalg.Vectors
val housingLines = sc.textFile("first-edition/ch07/housing.data", 6)
val housingVals = housingLines.map(x => 
Vectors.dense(x.split(",").map(_.trim().toDouble)))

8 Find the housing dataset here: https://github.com/spark-in-action/first-edition/blob/master/ch07/
housing.data.
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We’re using six partitions for the housingLines RDD, but you can choose another
value, depending on your cluster environment.9

 Now you have your data parsed and available as Vector objects. But before doing
anything useful with it, acquaint yourself with the data. The first step when dealing
with any machine-learning problem is to analyze the data and notice its distribution
and interrelationships among different variables. 

7.4.1 Analyzing data distribution

To get a feeling for the data you just loaded, you can calculate its multivariate statisti-
cal summary. You can obtain that value from the corresponding RowMatrix object like
this

import org.apache.spark.mllib.linalg.distributed.RowMatrix
val housingMat = new RowMatrix(housingVals)
val housingStats = housingMat.computeColumnSummaryStatistics()

or you can use the Statistics object for the same purpose:

import org.apache.spark.mllib.stat.Statistics
val housingStats = Statistics.colStats(housingVals)

You can now use the obtained MultivariateStatisticalSummary object to examine
the average (the mean method), maximum (the max method), and minimum (the min
method) values in each column of the matrix. For example, the minimum values in
the columns are these:

scala> housingStats.min
res0: org.apache.spark.mllib.linalg.Vector = [0.00632,0.0,0.46,0.0,0.385, 
3.561,2.9,1.1296,1.0,187.0,12.6,0.32,1.73,5.0]

You can also get the L1 norm (sum of absolute values of all elements per column) and
L2 norm (also called Euclidian norm; equal to the length of a vector/column) for each
column, with the methods normL1 and normL2. The variance of each column can be
obtained with the variance method.

DEFINITION Variance is a measure of dispersion of a dataset and is equal to the
average of the squared deviations of values from their mean value. The stan-
dard deviation is calculated as the square root of the variance. The covariance is
a measure of how much two variables change relative to each other. 

All of this can be useful when examining data for the first time, especially when decid-
ing whether feature scaling (described shortly) is necessary.

9 If you need more information about the number of partitions required, chapter 4 is a good place to look.
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7.4.2 Analyzing column cosine similarities

Understanding column cosine similarities is another thing that helps when analyzing
data. Column cosine similarities represent an angle between two columns, viewed as vec-
tors. A similar procedure can be used for other purposes as well (for example, for
finding similar products, or similar articles).

 You obtain column cosine similarities from the RowMatrix object:

val housingColSims = housingMat.columnSimilarities()

PYTHON The columnSimilarities method isn’t available in Python.

The resulting object is a distributed CoordinateMatrix containing an upper-triangular
matrix (upper-triangular matrices contain data only above their diagonal). The value at the
i-th row and j-th column in the resulting housingColSims matrix gives a measure of sim-
ilarity between the i-th column and j-th column in the housingMat matrix. The values
in the housingColSims matrix can go in value from –1 to 1. A value of –1 means the two
columns have completely opposite orientations (directions), a value of 0 means they’re
orthogonal to one another, and a value of 1 means the two columns (vectors) have the
same orientation. 

 The easiest way to see the contents of this matrix is to convert it to a Breeze
matrix using the toBreezeD method and then print the output with the utility
method printMat that you can find in our repository listing, which we omit due to
brevity. To do this, first paste the printMat method definition into your shell and
execute the following:

printMat(toBreezeD(housingColSims))

This will pretty-print the contents of the matrix (you can also find the expected out-
put in our online repository). If you look at the last column of the result, it gives you a
measure of how well each dimension in the dataset corresponds to the target variable
(average price). The last column reads: 0.224, 0.528, 0.693, 0.307, 0.873, 0.949, 0.803,
0.856, 0.588, 0.789, 0.897, 0.928, 0.670, 0.000. The biggest value here is the sixth value
(0.949), which corresponds to the column containing the average number of rooms.
Now you can see that it was no coincidence that we chose that column for the previous
simple linear-regression example—it has the strongest similarity with the target value
and thus represents the most appropriate candidate for simple linear regression.

7.4.3 Computing the covariance matrix

Another method for examining similarities between different columns (dimensions)
of the input set is the covariance matrix. It’s important in statistics for modeling linear
correspondence between variables. In Spark, you compute the covariance matrix sim-
ilarly to column statistics and column similarities, using the RowMatrix object:

val housingCovar = housingMat.computeCovariance()
printMat(toBreezeM(housingCovar))
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PYTHON The computeCovariance method isn’t available in Python. 

The expected output is also available in our online repository. Notice that there is a
large range of values in the matrix and that some of them are negative and some are
positive. You’ll also probably notice that the matrix is symmetric (that is, each (i, j) ele-
ment is the same as a (j, i) element). 

 This is because the variance-covariance matrix contains the variance of each col-
umn on its diagonal and the covariance of the two matching columns on all other
positions. If a covariance of two columns is zero, there is no linear relationship
between them. Negative values mean the values in the two columns move in opposite
directions from their averages, whereas the opposite is true for positive values.

 Spark also offers two other methods for examining the correlations between series
of data: Spearman’s and Pearson’s methods. An explanation of those methods is beyond
the scope of this book. You can access them through the org.apache.spark.mllib
.stat.Statistics object.

7.4.4 Transforming to labeled points

Now that you’ve examined the dataset, you can go on to preparing the data for linear
regression. First you have to put each example in the dataset in a structure called a
LabeledPoint, which is used in most of Spark’s machine-learning algorithms. It con-
tains the target value and the vector with the features. housingVals containing Vector
objects with all variables, and the equivalent housingMat RowMatrix object, were use-
ful when you were examining the dataset as a whole (in the previous sections), but
now you need to separate the target variable (the label) from the features. 

 To do that, you can transform the housingVals RDD (the target variable is in the
last column):

import org.apache.spark.mllib.regression.LabeledPoint
val housingData = housingVals.map(x => { 
  val a = x.toArray
  LabeledPoint(a(a.length-1), Vectors.dense(a.slice(0, a.length-1))) 
})

7.4.5 Splitting the data

The second important step is splitting the data into training and validation sets. A
training set is used to train the model, and a validation set is used to see how well the
model performs on data that wasn’t used to train it. The usual split ratio is 80% for the
training set and 20% for the validation set. 

 You can split the data easily in Spark with the RDD’s built-in randomSplit method:

val sets = housingData.randomSplit(Array(0.8, 0.2))
val housingTrain = sets(0)
val housingValid = sets(1)

The method returns an array of RDDs, each containing approximately the requested
percentage of orginal data.
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7.4.6 Feature scaling and mean normalization

We’re not done with data preparation yet. As you probably noticed when you were
examining distribution of the data, there are large differences in data spans between
the columns. For example, the data in the first column goes from 0.00632 to 88.9762,
and the data in the fifth column from 0.385 to 0.871. 

 Interpreting results from a linear-regression model trained with data like this can
be difficult and can render some data transformations (which you’re going to per-
form in the coming sections) problematic. It’s often a good idea to standardize the
data first, which can’t hurt your model. There are two ways you can do this: with fea-
ture scaling and with mean normalization. 

 Feature scaling means the ranges of data are scaled to comparable sizes. Mean nor-
malization means the data is translated so that the averages are roughly zero. You can
do both in a single pass, but you need a StandardScaler object to do that. In the con-
structor, you specify which of the standardization techniques you want to use (you’ll
use both) and then fit it according to some data: 

import org.apache.spark.mllib.feature.StandardScaler 
val scaler = new StandardScaler(true, true).
  fit(housingTrain.map(x => x.features))

Fitting finds column-summary statistics of the input data and uses these statistics (in
the next step) to do the scaling. You fitted the scaler according to the training set, and
you’ll then use the same statistics to scale both the training and validation sets (only
data from the training set should be used for fitting the scaler):

val trainScaled = housingTrain.map(x => LabeledPoint(x.label, 

➥ scaler.transform(x.features)))
val validScaled = housingValid.map(x => LabeledPoint(x.label, 

➥ scaler.transform(x.features)))

Now you’re finally ready to use the housing dataset for linear regression. 

7.5 Fitting and using a linear regression model
A linear regression model in Spark is implemented by the class LinearRegression-
Model in the package org.apache.spark.mllib.regression. It’s produced by fitting
a model and holds the fitted model’s parameters. When you have fitted a Linear-
RegressionModel object, you can use its predict method on individual Vector exam-
ples to predict the corresponding target variables. You construct the model using the
LinearRegressionWithSGD class, which implements the algorithm used for training
the model. You can do this in two ways. The first is the standard Spark way of invoking
the static train method:

val model = LinearRegressionWithSGD.train(trainScaled, 200, 1.0)
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Unfortunately, this doesn’t allow you to find the intercept value (only the weights), so
use the second, nonstandard method:

import org.apache.spark.mllib.regression.LinearRegressionWithSGD
val alg = new LinearRegressionWithSGD()
alg.setIntercept(true)                 
alg.optimizer.setNumIterations(200)
trainScaled.cache()                     
validScaled.cache()                     
val model = alg.run(trainScaled)

Within a few seconds of executing this code, you’ll have your Spark linear-regression
model ready to use for predictions. The datasets are cached, which is important for
iterative algorithms, such as machine learning ones, because they tend to reuse the
same data many times.

7.5.1 Predicting the target values

You can now use the trained model to predict the target values of vectors in the valida-
tion set by running predict on every element. The validation set contains labeled
points, but you only need the features. You also need the predictions together with
the original labels, so you can compare them. This is how you can map labeled points
to pairs of predicted and original values:

val validPredicts = validScaled.map(x => (model.predict(x.features), 
x.label))

The moment of truth has arrived. You can see how well your model is doing on the
validation set by examining the contents of validPredicts:

scala> validPredicts.collect()
res123: Array[(Double, Double)] = Array((28.250971806168213,33.4), 
(23.050776311791807,22.9), (21.278600156174313,21.7), 
(19.067817892581136,19.9), (19.463816495227626,18.4), ...

Some predictions are close to original labels, and some are further off. To quantify the
success of your model, calculate the root mean squared error (the root of the cost
function defined previously):

scala> math.sqrt(validPredicts.map{case(p,l) => math.pow(p-l,2)}.mean())
res0: Double = 4.775608317676729

The average value of the target variables (home prices) is 22.5—which you learned
earlier when you were calculating column statistics—so a root mean squared error
(RMSE) of 4.78 seems rather large. But if you take into account that the variance of
home prices is 84.6, the number suddenly looks much better.

Instantiates
object

Sets the option to find
the intercept value

Sets the number
of iterations to

run
Caching input data 
is important.

Starts training the model
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7.5.2 Evaluating the model’s performance

This isn’t the only way you can evaluate the performance of your regression model.
Spark offers the RegressionMetrics class for this purpose. You give it an RDD with
pairs of predictions and labels, and it returns several useful evaluation metrics:

scala> import org.apache.spark.mllib.evaluation.RegressionMetrics 
scala> val validMetrics = new RegressionMetrics(validPredicts)
scala> validMetrics.rootMeanSquaredError
res1: Double = 4.775608317676729
scala> validMetrics.meanSquaredError
res2: Double = 22.806434803863162

In addition to the root mean squared error that you previously calculated yourself,
RegressionMetrics gives you the following:

■ meanAbsoluteError—Average absolute difference between a predicted and
real value (3.044 in this case).

■ r2—Coefficient of determination R2 (0.71 in this case) is a value between 0
and 1 and represents the fraction of variance explained. It’s a measure of how
much a model accounts for the variation in the target variable (predictions)
and how much of it is “unexplained.” A value close to 1 means the model
explains a large part of variance in the target variable. 

■ explainedVariance—A value similar to R2 (0.711 in this case). 

All of these are used in practice, but the coefficient of determination can give you
somewhat misleading results (it tends to rise when the number of features increases,
whether or not they’re relevant). For that reason, you’ll use the RMSE from now on.

7.5.3 Interpreting the model parameters

The set of weights the model has learned can tell you something about the influence
of individual dimensions on the target variable. If a particular weight is near zero, the
corresponding dimension doesn’t contribute to the target variable (price of housing)
in a significant way (assuming the data has been scaled—otherwise even low-range fea-
tures might be important). 

 You can inspect absolutes of the individual weights with the following snippet of
code: 

scala> println(model.weights.toArray.map(x => x.abs).
  | zipWithIndex.sortBy(_._1).mkString(", "))
(0.112892822124492423,6), (0.163296952677502576,2), 
(0.588838584855835963,3), (0.939646889835077461,0), 
(0.994950411719257694,11), (1.263479388579985779,1), 
(1.660835069779720992,9), (2.030167784111269705,4), 
(2.072353314616951604,10), (2.419153951711214781,8), 
(2.794657721841373189,5), (3.113566843160460237,7), 
(3.323924359136577734,12)
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The model’s weights Vector is first converted to a Scala Array, then the absolute val-
ues are calculated, an index is attached to each weight using the Scala’s zipWithIndex
method, and, finally, the weights are sorted by their values.

 You can see that the most influential dimension of the dataset is the one with
index 12, which corresponds to the LSTAT column, or the “percentage of lower sta-
tus of the population.” (You can find the column descriptions in the housing.names
file in the book’s online repository.) The second-most influential dimension is the
column with index 7, or “weighted distances to five Boston employment centers,”
and so on.

 The two least influential dimensions are the “proportion of owner-occupied units
built prior to 1940” and the “proportion of non-retail business acres per town.” Those
dimensions can be removed from the dataset without influencing the model’s perfor-
mance significantly. In fact, that might even improve it a bit because in that way, the
model would be move focused on the important features.

7.5.4 Loading and saving the model

Because training a model using lots of data can be an expensive and lengthy opera-
tion, Spark offers a way to save the model to a filesystem as a Parquet file (covered in
chapter 5) and load it later, when needed. Most Spark MLlib models can be saved
using the save method. You just pass a SparkContext instance and a filesystem path to
it, similar to this:

model.save(sc, "chapter07output/model")

Spark uses the path for creating a directory and creates two Parquet files in it: data
and metadata. 

 In the case of linear-regression models, the metadata file contains the model’s
implementation class name, the implementation’s version, and the number of fea-
tures in the model. The data file contains the weights and the intercept of the linear
regression model.

 To load the model, use the corresponding load method, again passing to it a Spark-
Context instance and the path to the directory with the saved model. For example:

import org.apache.spark.mllib.regression.LinearRegressionModel
val model = LinearRegressionModel.load(sc, "ch07output/model")

The model can then be used for predictions. 

7.6 Tweaking the algorithm
In section 7.3.3, you saw the gradient descent formula:
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Parameter � (Greek letter gamma) in the formula is the step-size parameter, which helps
to stabilize the gradient descent algorithm. But it can be difficult to find the optimal
value for this parameter. If it’s too small, the algorithm will take too many small steps
to converge. If it’s too large, the algorithm may never converge. The right value
depends on the dataset. 

 It’s similar with the number of iterations. If it’s too large, fitting the model will take
too much time. If it’s too small, the algorithm may not reach the minimum.

 Although you only set the number of iterations for the previous run of the linear-
regression algorithm (the step size you used had the default value of 1.0), you can set
both of these parameters when using LinearRegressionWithSGD. But you can’t tell
Spark to “iterate until the algorithm converges” (which would be ideal). You have to
find the optimal values for these two parameters yourself.

7.6.1 Finding the right step size and number of iterations

One way to find satisfactory values for these two parameters is to experiment with sev-
eral combinations and find the one that gives the best results. We put together a func-
tion that can help you do this. Find the iterateLRwSGD function in our online
repository (in the ch07-listings.scala and ch07-listings.py files), and paste it into your
Spark shell. This is the complete function:

import org.apache.spark.rdd.RDD
def iterateLRwSGD(iterNums:Array[Int], stepSizes:Array[Double], 
    train:RDD[LabeledPoint], test:RDD[LabeledPoint]) = {
  for(numIter <- iterNums; step <- stepSizes) {
    val alg = new LinearRegressionWithSGD()
    alg.setIntercept(true).optimizer.setNumIterations(numIter).
        setStepSize(step)
    val model = alg.run(train)
    val rescaledPredicts = train.map(x => 
        (model.predict(x.features), x.label))
    val validPredicts = test.map(x => (model.predict(x.features), x.label))
    val meanSquared = math.sqrt(rescaledPredicts.map(
        {case(p,l) => math.pow(p-l,2)}).mean())
    val meanSquaredValid = math.sqrt(validPredicts.map(
        {case(p,l) => math.pow(p-l,2)}).mean())
    println("%d, %5.3f -> %.4f, %.4f".format(numIter, 
        step, meanSquared, meanSquaredValid))
  }
}

The iterateLRwSGD function takes two arrays, containing different numbers of itera-
tions and step-size parameters, and two RDDs, containing training and validation data.
For each combination of step size and number of iterations in the input arrays, the
function returns the RMSE of the training and validation sets. Here’s what the printout
should look like:
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scala> iterateLRwSGD(Array(200, 400, 600), Array(0.05, 0.1, 0.5, 1, 1.5, 2, 

➥ 3), trainScaled, validScaled)
200, 0.050 -> 7.5420, 7.4786
200, 0.100 -> 5.0437, 5.0910
200, 0.500 -> 4.6920, 4.7814
200, 1.000 -> 4.6777, 4.7756
200, 1.500 -> 4.6751, 4.7761
200, 2.000 -> 4.6746, 4.7771
200, 3.000 -> 108738480856.3940, 122956877593.1419
400, 0.050 -> 5.8161, 5.8254
400, 0.100 -> 4.8069, 4.8689
400, 0.500 -> 4.6826, 4.7772
400, 1.000 -> 4.6753, 4.7760
400, 1.500 -> 4.6746, 4.7774
400, 2.000 -> 4.6745, 4.7780
400, 3.000 -> 25240554554.3096, 30621674955.1730
600, 0.050 -> 5.2510, 5.2877
600, 0.100 -> 4.7667, 4.8332
600, 0.500 -> 4.6792, 4.7759
600, 1.000 -> 4.6748, 4.7767
600, 1.500 -> 4.6745, 4.7779
600, 2.000 -> 4.6745, 4.7783
600, 3.000 -> 4977766834.6285, 6036973314.0450

You can see several things from this output. First, the testing RMSE is always greater
than the training RMSE (except for some corner cases). That’s to be expected. Fur-
thermore, for every number of iterations, both errors decline rapidly as step size
increases, following some inverse exponential function. That makes sense because for
smaller numbers of iterations and smaller step sizes, there weren’t enough iterations
to get to the minimum.

 Then the error values flatten out, more quickly for larger numbers of iterations.
This also makes sense because there are some limitations to how well you can fit a
dataset. And models fitted with larger numbers of iterations will perform better. For a
step size value of 3, the error values explode. This step size value is too large, and the
algorithm misses the minimum. It seems that a step size of 0.5 or 1.0 gives the best
results if the number of iterations stays the same.

 You may also have noticed that running more iterations doesn’t help much. For
example, a step size of 1.0 with 200 iterations gives you almost the same training RMSE
as with 600 iterations. 

7.6.2 Adding higher-order polynomials

It seems that the testing RMSE of 4.7760 is the lowest error you can get for the housing
dataset. You can do better (when we added higher-order polynomials, the model
changes and it is not “the model” any longer). Often, data doesn’t follow a simple linear
formula (a straight line in a two-dimensional space) but may be some kind of a curve.
Curves can often be described with functions containing higher-order polynomials.
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 For example:

h(x) = w0x3 + w1x2 + w2x + w3

This hypothesis is capable of matching data governed by a nonlinear relationship.
You’ll see an example of this in the next section.

 Spark doesn’t offer a method of training a nonlinear regression model that
includes higher-order polynomials, such as the preceding hypothesis. Instead, you can
employ a little trick and do something that has a similar effect: you can expand your
dataset with additional features obtained by multiplying the existing ones. For exam-
ple, if you have features x1 and x2, you can expand the dataset to include x12 and x22.
Adding the interaction term x1x2 helps in cases when x1 and x2 influence the target vari-
able together. 

 Let’s do that now with this dataset. You’ll use a simple function to map each Vec-
tor in the dataset to include the square of each feature:

def addHighPols(v:Vector): Vector =
{
  Vectors.dense(v.toArray.flatMap(x => Array(x, x*x)))
}
val housingHP = housingData.map(x => LabeledPoint(x.label,
addHighPols(x.features))) 

The housingHP RDD now contains LabeledPoints from the original housingData
RDD, but expanded with additional features containing second-order polynomials.
You now have 26 features instead of the previous 13:

scala> housingHP.first().features.count()
res0: Int = 26

Next it’s necessary to once again go through the process of splitting the dataset for
training and testing subsets and to scale the data the same way you did previously:

val setsHP = housingHP.randomSplit(Array(0.8, 0.2))
val housingHPTrain = setsHP(0)
val housingHPValid = setsHP(1)
val scalerHP = new StandardScaler(true, true)
scalerHP.fit(housingHPTrain.map(x => x.features))
val trainHPScaled = housingHPTrain.map(x => LabeledPoint(x.label, 

➥ scalerHP.transform(x.features)))
val validHPScaled = housingHPValid.map(x => LabeledPoint(x.label, 

➥ scalerHP.transform(x.features)))
trainHPScaled.cache()
validHPScaled.cache()

You can see how the new model behaves with different numbers of iterations and step sizes: 

iterateLRwSGD(Array(200, 400), Array(0.4, 0.5, 0.6, 0.7, 0.9, 1.0, 1.1, 1.2, 
1.3, 1.5), trainHPScaled, validHPScaled)

Adds squares 
to a Vector

Maps the original 
dataset
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As you can see from the results (omitted for brevity, but available in our online reposi-
tory), the RMSE explodes for a step size of 1.3, and you get the best results for a step
size of 1.1. The error values are lower than before. The best RMSE is 3.9836 (for 400
iterations), compared to 4.776 before. You can conclude that adding higher-order
polynomials helped the linear-regression algorithm find a better-performing model.

 But is this the lowest RMSE you can get with this dataset? Let’s see what happens if
you increase the number of iterations (and use the best-performing step size of 1.1):

scala> iterateLRwSGD(Array(200, 400, 800, 1000, 3000, 6000), Array(1.1), 

➥ trainHPScaled, validHPScaled)
200, 1.100 -> 4.1605, 4.0108
400, 1.100 -> 4.0378, 3.9836
800, 1.100 -> 3.9438, 3.9901 
1000, 1.100 -> 3.9199, 3.9982
3000, 1.100 -> 3.8332, 4.0633
6000, 1.100 -> 3.7915, 4.1138

With more iterations, the testing RMSE is even starting to increase. (Depending on
your dataset split, you may get different results.) So which step size should you
choose? And why is the RMSE increasing?

7.6.3 Bias-variance tradeoff and model complexity

The situation where the testing RMSE is increasing while the training RMSE is decreas-
ing is known as overfitting. What happens is that the model gets too attuned to the
“noise” in the training set and becomes less accurate when analyzing new, real-world
data that doesn’t possess the same properties as the training set. There is also an oppo-
site term—underfitting—where the model is too simple and is incapable of adequately
capturing the complexities of the data. Understanding these phenomena is important
for correctly using machine-learning algorithms and getting the most out of your data.

 Figure 7.7 shows a sample dataset (circles) following a quadratic function. The lin-
ear model (graph on the left) isn’t capable of properly modeling the data. The qua-
dratic function in the middle is just about right, and the function with higher-order
polynomials on the right overfits the dataset.

Figure 7.7 The linear model (left) underfits the dataset, a model with higher-order polynomials (right) 
overfits it, and a quadratic model (middle) fits nicely.
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You normally want your model to fit the data in your training dataset, but also to be
expandable to some other, presently unknown data. It’s not necessarily possible to do
both perfectly. 

 And that leads us to the bias-variance tradeoff. Bias here pertains to the model. For
example, the linear model on the left in figure 7.7 has a high bias: it’s assuming the
linear relationship between the independent and target variables, so it’s biased. The
model on the right side has a high variance because the values it predicts are oscillat-
ing more. Bias-variance tradeoff says that you can’t necessarily have both at the same
time and that you need to seek an equilibrium, or middle ground.

 How do you know if your model has high bias (it’s underfitted) or high variance
(it’s overfitted)? Let’s return to the example. Generally, overfitting occurs when the
ratio of model complexity and training-set size gets large. If you have a complex model
but also a relatively large training set, overfitting is less likely to occur. You saw that the
RMSE on the validation set started to rise when you added higher-order polynomials
and trained the model with more iterations. Higher-order polynomials bring more
complexity to the model, and more iterations overfit the model to the data while the
algorithm is converging. Let’s see what happens if you try even more iterations: 

scala> iterateLRwSGD(Array(10000, 15000, 30000, 50000), Array(1.1), 

➥ trainHPScaled, validHPScaled)
10000, 1.100 -> 3.7638, 4.1553
15000, 1.100 -> 3.7441, 4.1922
30000, 1.100 -> 3.7173, 4.2626
50000, 1.100 -> 3.7039, 4.3163

You can see that the training RMSE continues to
decrease while the testing RMSE continues to rise.
And that’s typical for an overfitting situation: the
training error falls and then plateaus (which would
happen for even more iterations), and the testing
error falls and then starts to rise, meaning the model
learns training set–specific properties instead of
characteristics representative of the whole popula-
tion. If you were to plot this, you’d get a graph similar
to figure 7.8.

 To answer the question of which values for the
number of iterations and step size to choose: choose
the values corresponding to the minimum of the test-
ing RMSE curve, at the point before it starts to rise. In
this case, 400 iterations and a step size of 1.1 give very
good results (testing RMSE of 3.98).

Number of iterations

Training error

Test error

R
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E

Figure 7.8 Error as a function of 
the number of iterations used. The 
test RMSE falls but then starts to 
rise at a certain point. Parameters 
corresponding to that point should 
be chosen for the model, because 
the model is beginning to overfit the 
data.
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7.6.4 Plotting residual plots

But how can you tell if you need to keep adding higher-order polynomials, or if you
need to add any in the first place? And where do you stop? Examining residual plots can
help you answer those questions.

 The residual is the difference between the predicted and actual values of the tar-
get variable. In other words, for a single example in the training dataset, the resid-
ual is the difference between its label’s value and what the model says the label’s
value should be. Residual plots have residuals on the Y-axis and the predicted values
on the X-axis.

 A residual plot should show no noticeable patterns—it should have the same
height at all points on the X-axis, and if you plot a best-fit line (or a curve) through
the plotted values, the line should stay flat. If it shows a shape similar to the letter u
(or inverted u), that means a nonlinear model would be more appropriate for some
of the dimensions. 

 The two residual plots for the two models (the original linear-regression model
and the one with added second-order polynomials) are shown in figure 7.9. The one
on the left shows a shape of an inverted u-curve. The one on the right, although still
not perfect, shows an improvement: the shape is more balanced.

 As we said, the new residual plot still isn’t perfect, and further dimension transfor-
mations might help, but probably not much. A line in the lower-right part of both fig-
ures is also visible. This is due to several outliers, or points that represent some kind of
exceptions. In this case, there are several instances of expensive houses ($50,000) that
should otherwise be not as expensive. This could also be caused by a missing variable—
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Figure 7.9 Residual plots for two linear-regression models. The model on the left was fitted using the 
original housing dataset and shows an inverted u-curve shape. The one on the right was fitted using the 
dataset with added second-order polynomials and shows a more balanced pattern.
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some factor making a house expensive (aesthetics, for example), but not present in
the dataset.

 Residual plots can also help you in a number of other situations. If the plot shows a
fan-in or a fan-out shape (the residuals show greater variance at one end of the plot
than at the other, a phenomenon called heteroscedasticity10), one solution in addition to
adding higher-order polynomials may be to transform the target variable logarithmi-
cally so that your model predicts log(y) (or some other function) and not y.

 Further discussion of this important topic is beyond the scope of this book. The
main thing to remember is that you should always spend time studying residual plots
to get further information about how your model is actually doing.

7.6.5 Avoiding overfitting by using regularization

Let’s get back to overfitting. You’ve seen how it decreases the model’s performance. You
can avoid overfitting using a method called regularization, which increases the bias of
your model and decreases variance by penalizing large values in the model parameters.

 Regularization adds an additional element (we denote it as �) to the cost function
that penalizes complexity in the model. There are different regularization types. The
most common ones are L1 and L2 regularizations (named after L1 and L2 norms dis-
cussed in section 7.4.2), and they’re the ones available in Spark. Linear regression
with L1 regularization is called Lasso regression, and the one with L2 regression is called
Ridge regression. 

 The cost function with the regularization element � looks like this:

� is a product of two elements: �, the regularization parameter, and L1 (‖w‖i) or L2
(‖w‖ii) norm of the weight vector. As we said in section 7.4.2, the L1 norm is the sum
of the absolute values of the vector’s elements, and the L2 norm is the square root of
the sum of squares of the vector’s elements, which is equal to the length of the vector. 

 The regularization increases the error in proportion to absolute weight values. In
that way, the optimization function tries to deemphasize individual dimensions and
slow the algorithm as the weights get larger. L1 regularization (Lasso regression) is
more aggressive in this process. It’s capable of reducing individual weights to zero and
thus completely removing some of the features from the dataset.

 In addition, both L1 and L2 regularizations in Spark decrease the step size in pro-
portion to the number of iterations. This means the longer the algorithm runs, the
smaller steps it takes. (This isn’t related to regularization per se but is part of L1 and
L2 regularization implementations in Spark.)

10 For further information, see https://en.wikipedia.org/wiki/Heteroscedasticity.
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 Regularization can help you in situations where you’re overfitting the model to the
dataset. By increasing the regularization parameter (�), you can decrease overfitting.
In addition, regularization can help you get to lower error values more quickly, when
you have many dimensions, because it decreases the influence of dimensions that
have less impact on performance. But the downside is that regularization requires you
to configure an extra parameter, which adds complexity to the process. 

USING LASSO AND RIDGE REGRESSIONS IN SPARK

In Spark, you can set Lasso and Ridge regressions manually by changing the regParam
and updater properties of the LinearRegressionWithSGD.optimizer object or by
using the LassoWithSGD and RidgeRegressionWithSGD classes. The latter is what we did. 

 You can find two additional methods in our online repository: iterateLasso and
iterateRidge. They’re similar to the iterateLRwSGD method you used before, but
they take an additional regParam argument and train different models.

 You can try these two methods and see the RMSE values Lasso and Ridge regression
give on the dataset with the second-order polynomials you used earlier (trainHP-
Scaled and validHPScaled) with the same step size as before and with the value of
regression parameter of 0.01, which gives the best results:

iterateRidge(Array(200, 400, 1000, 3000, 6000, 10000), Array(1.1), 0.01, 
trainHPScaled, validHPScaled)
iterateLasso(Array(200, 400, 1000, 3000, 6000, 10000), Array(1.1), 0.01, 
trainHPScaled, validHPScaled)

The results (available in our repository online) show that Ridge gives a lower RMSE
than Lasso regression and that Ridge is better even than the ordinary least squares
(OLS) regression used previously (3.966 for 1,000 iterations instead of 3.984 for 400
iterations). Note that the increase in test RMSE, which was happening for numbers of
iterations larger than 400 and which was the effect of overfitting, also happens for
Ridge and Lasso regressions. The overfitting kicks in later for Ridge regressions. If you
were to increase the regularization parameter, you would see RMSE increase later, but
the RMSE levels would be greater.

 Which regularization method and which regularization parameter you should
choose is difficult to say because it depends on your dataset. You should apply an
approach similar to the one you used for finding the number of iterations and the
step size (train several models with different parameters and pick the ones with the
lowest error). The most common method for doing this is k-fold cross-validation.

7.6.6 K-fold cross-validation

K-fold cross-validation is a method of model validation. It consists of dividing the dataset
into k subsets of roughly equal size and training k models, excluding a different subset
each time. The excluded subsets are used as the validation set and the union of all the
remaining subsets as the training set. 
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 For each set of parameters you want to validate, train all k models and calculate the
mean error across all k models. Finally, you choose the set of parameters giving you
the smallest average error.

 Why is this important? Because fitting a model depends very much on the training
and validation sets used. If you take the housing dataset, split it randomly into training
and validation sets again, and then go through all the actions you did in this chapter,
you’ll notice that the results and parameters will be different, maybe even dramatically
so. K-fold cross-validation can help you decide which of the parameter combinations
to choose. We’ll have more to say about k-fold cross-validation when we talk about
Spark’s new ML Pipeline API in the next chapter.

7.7 Optimizing linear regression
We have a couple more things to say about linear-regression optimization. As you saw
in earlier examples, LinearRegressionSGD (and its parent class GeneralizedLinear-
Algorithm) has an optimizer member object you can configure. You previously used
the default GradientDescent optimizer and configured it with the number of itera-
tions and the step size.

 There are two additional methods you can employ to make linear regression find
the minimum of the cost function more quickly. The first is to configure the Gradient-
Descent optimizer as a mini-batch stochastic gradient descent. The second is to use
Spark’s LBFGS optimizer (see section 7.7.2).

7.7.1 Mini-batch stochastic gradient descent 

As explained in section 7.3.3, gradient descent updates the weights in each step by
going through the entire dataset. If you recall, the formula used for updating each
weight parameter is this:

This is also called batch gradient descent (BGD). In contrast, the mini-batch stochastic
gradient descent uses only a subset of the data in each step; and instead of i going
from 1 to m (the entire dataset), it only goes from 1 to k (as some fraction of m). If k is
equal to 1—which means the algorithm considers only one example in each step—the
optimizer is called the stochastic gradient descent (SGD).

 Mini-batch SGD is much less computationally expensive, especially when parallel-
ized, but it compensates for this parallelization with more iterations. It has more diffi-
culties to converge, but it gets to the minimum close enough (except in some rare
cases). If the mini-batch size (k) is small, the algorithm is more stochastic, meaning it has
a more random route toward the cost function minimum. If k is larger, the algorithm
is more stable. In both cases, though, it reaches the minimum and can get very close to
BGD results.
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 Let’s see how to use mini-batch SGD in Spark. The same GradientDescent opti-
mizer you used before is used for mini-batch SGD, but you need to specify an addi-
tional parameter (miniBatchFraction). miniBatchFraction takes a value between 0
and 1. If it’s equal to 1 (the default), a mini-batch SGD becomes a BGD because the
entire dataset is considered in each step. 

 Parameters for mini-batch SGD can be chosen similarly to how you did it previ-
ously, only now there is one more parameter to be configured. If a step-size parameter
worked on BGD, that doesn’t mean it will work on mini-batch SGD, so the parameter’s
value has to be chosen the same way you did it before—or, preferably, using k-fold
cross-validation.

 A good starting point for the mini-batch fraction parameter is 0.1, but it will prob-
ably have to be fine-tuned. The number of iterations can be chosen so that the dataset
as a whole is iterated about 100 times in total (and sometimes even less). For example,
if the fraction parameter is 0.1, specifying 1,000 iterations guarantees that elements in
the dataset are taken into account 100 times (on average). For performance reasons,
to balance computation and communication between nodes in the cluster, the mini-
batch size (absolute size, not the fraction parameter) must typically be at least two
orders of magnitude larger than the number of machines in the cluster.11

 In our online repository, you’ll find the method iterateLRwSGDBatch, which is a
variation of iterateLRwSGD with one additional line:

alg.optimizer.setMiniBatchFraction(miniBFraction)

The signature of the method is also different because its parameter takes three arrays:
in addition to number of iterations and step sizes, an array with mini-batch fractions.
The method tries all combinations of the three values and prints the results (training
and testing RMSE). You can try it out on the dataset expanded with feature squares
(trainHPScaled and validHPScaled RDDs). First, to get a feeling for the step-size
parameter in the context of the other two, execute this command:

iterateLRwSGDBatch(Array(400, 1000), Array(0.05, 0.09, 0.1, 0.15, 0.2, 0.3, 
0.35, 0.4, 0.5, 1), Array(0.01, 0.1), trainHPScaled, validHPScaled)

The results (available online) show that a step size of 0.4 works best. Now use that
value and see how the algorithm behaves when you change other parameters:

iterateLRwSGDBatch(Array(400, 1000, 2000, 3000, 5000, 10000), Array(0.4), 

➥ Array(0.1, 0.2, 0.4, 0.5, 0.6, 0.8), trainHPScaled, validHPScaled)

The results (again, available online) show that 2,000 iterations are enough to get the
best RMSE of 3.965, which is slightly better even than the previous best RMSE of 3.966
(for Ridge regression). The results also show that with more than 5,000 iterations, you

11 Chenxin Ma et al., “Adding vs. Averaging in Distributed Primal-Dual Optimization,” www.cs.berkeley.edu/
~vsmith/docs/cocoap.pdf.
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get into overfitting territory. This lowest RMSE was accomplished with a mini-batch
fraction of 0.5. 

 If your dataset is huge, a mini-batch fraction of 0.5 may be too large to get good
performance results. You should try lower mini-batch fractions and more iterations.
Some experimenting will be needed.

 We can conclude that mini-batch SGD can give the same RMSE as BGD. Because of
its performance improvements, you should prefer it to BGD.

7.7.2 LBFGS optimizer

LBFGS is a limited-memory approximation of the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm for minimizing multidimensional functions. The classic BFGS algo-
rithm calculates an approximate inverse of the so-called Hessian matrix, which is a
matrix of second-degree derivatives of a function, and keeps an n × n matrix in memory,
where n is the number of dimensions. LBFGS keeps fewer than 10 of the last-calculated
corrections and is more memory efficient, especially for larger numbers of dimensions.

PYTHON An LBFGS regression optimizer isn’t available in Python.

LBFGS can give good performance. And it’s much simpler to use, because instead of
requiring the number of iterations and the step size, its stopping criterion is the
convergence-tolerance parameter. It stops if the RMSE after each iteration changes
less than the value of the convergence-tolerance parameter. This is a much more
natural and more simple criterion.

 You also need to give it the maximum number of iterations to run (in case it
doesn’t converge), the number of corrections to keep (this should be less than 10,
which is the default), and the regularization parameter (it gives you freedom to use
L1 or L2 regularization).

 You can find the iterateLBFGS method in our online repository and paste it into
your Spark Scala shell to try it out like this—but before running it, you might want to
set the Breeze library logging level to WARN (the snippet is available online):

iterateLBFGS(Array(0.005, 0.007, 0.01, 0.02, 0.03, 0.05, 0.1), 10, 1e-5, 

➥ trainHPScaled, validHPScaled)
0.005, 10 -> 3.8335, 4.0383
0.007, 10 -> 3.8848, 4.0005
0.010, 10 -> 3.9542, 3.9798
0.020, 10 -> 4.1388, 3.9662
0.030, 10 -> 4.2892, 3.9996
0.050, 10 -> 4.5319, 4.0796
0.100, 10 -> 5.0571, 4.3579

Now, wasn’t that fast? It flew by. And it was simple, too. The only parameter you
needed to tweak is the regularization parameter, because the other two don’t influ-
ence the algorithm much, and these defaults can be used safely. Obviously, a regular-
ization parameter of 0.02 gives the best RMSE of 3.9662. And that’s almost the same as
the previous best RMSE, which took great effort to get to.
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7.8 Summary
■ Supervised learning uses labeled data for training. Unsupervised-learning algo-

rithms discover the inner structure of unlabeled data through model fitting.
■ Regression and classification differ by the type of target variable: continuous (a

real number) for regression and categorical (a set of discreet numbers) for
classification.

■ Before using data for linear regression, it’s a good idea to analyze its distribu-
tion and similarities. You should also normalize and scale the data and split it
into training and validation datasets.

■ A root mean squared error (RMSE) is commonly used for evaluating a linear-
regression model’s performance.

■ The learned parameters of a linear-regression model can give you insight into
how each feature affects the target variable.

■ Adding higher-order polynomials to the dataset enables you to apply linear
regression to nonlinear problems and can yield better results on some datasets.

■ Increasing a model’s complexity can lead to overfitting. The bias-variance
tradeoff says that you can either have high bias or high variance, but not both. 

■ Ridge and Lasso regularizations help reduce overfitting for linear regression.
■ Mini-batch stochastic gradient descent optimizes performance of the linear-

regression algorithm.
■ The LBFGS optimizer in Spark takes much less time to train and offers great

performance.
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ML: classification
 and clustering

In the previous chapter, you got acquainted with Spark MLlib (Spark’s machine
learning library), with machine learning in general, and linear regression, the most
important method of regression analysis. In this chapter, we’ll cover two equally
important fields in machine learning: classification and clustering.

 Classification is a subset of supervised machine learning algorithms, where the
target variable is a categorical variable, which means it takes only a limited set of val-
ues. So the task of classification is to categorize input examples into several classes.
Recognizing handwritten letters is a classification problem, for example, because
each input image needs to be labeled as one of the letters in an alphabet. Recogniz-
ing a sickness a patient may have, based on their symptoms, is a similar problem.

This chapter covers
■ The Spark ML library
■ Logistic regression
■ Decision trees and random forests
■ K-means clustering
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 Clustering also groups input data into classes (called clusters), but as an unsuper-
vised learning method, it has no properly labeled data to learn from and has to figure
out on its own what constitutes a cluster. You could, for example, use clustering for
grouping clients by their habits or characteristics (client segmentation) or recogniz-
ing different topics in news articles (text categorization). 

 For classification tasks in Spark, you have logistic regression, naïve Bayes, support vector
machines (SVM), decision trees, and random forests at your disposal. They all have their
pluses and minuses and different logic and theory behind them. We’ll cover logistic
regression, decision trees, and random forests in this chapter, as well as k-means clus-
tering, the most-often-used clustering algorithm. 

 We don’t have enough space in this book to cover naïve Bayes, SVM, and other Spark
clustering algorithms such as power iteration clustering, Gaussian mixture model, and
latent Dirichlet allocation. We’ll also have to skip other machine learning methods,
such as recommendations with alternating least squares, text feature extraction, and
frequent item sets. We’ll keep those for some other book and some other time. 

 As you may remember from the previous chapter, Spark has two machine learning
libraries: MLlib, which you used in chapter 7, and the new ML library. They’re both
being actively developed, but currently the focus of development is more on the ML
library. For the most part, you’ll use the ML library in this chapter to see how it’s used
and how it differs from MLlib.

 In section 8.1, we’ll give you an overview of the ML library; in section 8.2 you’ll use
it for classification with logistic regression, a well-known classification algorithm. In
section 8.3, you’ll learn how to use Spark’s decision tree and random forest, two algo-
rithms that can be used for both classification and clustering. In section 8.4, you’ll use
a k-means clustering algorithm for clustering sample data. We’ll be explaining theory
behind these algorithms along the way. Let’s get started.

8.1 Spark ML library
The Spark ML library was introduced in Spark 1.2. The motivation for a new machine
library came from the fact that MLlib wasn’t scalable and extendable enough, nor was
it sufficiently practical for use in real machine learning projects. The goal of the new
Spark ML library is to generalize machine learning operations and streamline
machine learning processes. Influenced by the Python’s scikit-learn library,1 it intro-
duces several new abstractions—estimators, transformers, and evaluators—that can be
combined to form pipelines. All four can be parameterized with ML parameters in a
general way.

 Spark ML ubiquitously uses DataFrame objects to present datasets. This is why the
old MLlib algorithms can’t be simply upgraded: the Spark ML architecture requires
structural changes, so new implementations of the same algorithms are necessary. At
the time of writing, the old MLlib library still offers a richer set of algorithms than ML,

1 For more information, see the Spark “Pipelines and Parameters” design document at http://mng.bz/22lY
and the corresponding JIRA ticket at https://issues.apache.org/jira/browse/SPARK-3530.
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but that is bound to change soon. Because estimators, transformers, evaluators, ML
parameters, and pipelines are the main components of Spark ML, let’s examine them
more closely.

8.1.1 Estimators, transformers, and evaluators

In Spark, you use transformers (no, not those Transformers) to implement machine
learning components that convert one dataset to another. Machine learning models
in Spark ML are transformers because they transform datasets by adding predictions.
The main method for this is transform, which takes a DataFrame and an optional set
of parameters. 

 Estimators produce transformers by fitting on a dataset. A linear regression algo-
rithm produces a linear regression model with fitted weights and an intercept, which
is a transformer. The main method for using estimators is fit, which also takes a
DataFrame and an optional set of parameters.

 Evaluators evaluate the performance of a model based on a single metric. For
instance, regression evaluators can use RMSE and R2 as metrics. Figure 8.1 shows the
operations of transformers, estimators, and evaluators graphically. You’ll see examples
of transformers, estimators, and evaluators throughout this chapter.

8.1.2 ML parameters

Specifying parameters for estimators and transformers is generalized in Spark ML, so
all parameters can be specified the same way with the Param, ParamPair, and Param-
Map classes. Param describes parameter types: it holds the parameter name, its class
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type, a parameter description, a function for validating the parameter, and an
optional default value. ParamPair contains a parameter type (a Param object) and its
value. ParamMap contains a set of ParamPair objects.

 You pass ParamPair or ParamMap objects to the fit or transform methods of esti-
mators and transformers, or you can set the parameters using the specific, named set-
ter methods. You can, for example, call setRegParam(0.1) on a LinearRegression
object named linreg, or you can pass a ParamMap(linreg.regParam -> 0.1) object
to its fit method. 

8.1.3 ML pipelines

As you saw in chapter 7, in machine learning, the same steps are often repeated in the
same sequence over and over again with slightly different parameters to find those
that yield the best results (lowest error or some other metric). In chapter 7 you
trained a linear regression model several times, each time with a different set of
parameters. Then you added higher-order polynomials to the dataset and trained the
model several times again. 

 Instead of doing this manually each time, Spark ML lets you create a Pipeline
object with two stages. The first stage transforms the dataset by adding higher-order
polynomials. The PolynomialExpansion transformer in the ML library does this using
the polynomial degree as a parameter. The second stage performs linear regression
analysis, and then it lets you treat the entire pipeline as a single estimator, which pro-
duces a PipelineModel. The PipelineModel also has two stages: a polynomial expan-
sion step and the fitted linear regression model. You can use it on the validation data
to see how well it performs. 

 Each time you fit the pipeline, you give it a different set of parameters (a ParamMap
that contains parameters for both stages) and then choose the set that gives you the
best results. This is much simpler when you have several steps in the process.

 This was a brief description of the ML API. You’ll see full examples in the following
sections.

8.2 Logistic regression
As you may remember, your goal in chapter 7 was to predict median home prices in
Boston suburbs. That is a typical example of regression analysis because the goal is to
find a single value based on a set of input variables. The goal of classification, on the
other hand, is to classify input examples (consisting of input variables’ values) into
two or more classes.

 You can easily transform the problem of predicting median home prices into a
classification problem if you want to predict whether the mean price is greater than
some fixed amount (let’s say $30,0002). Then the target variable takes only two possible

2 $30,000 may seem inexpensive, but bear in mind that the Boston housing dataset was created in 1978.
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values: 1, if the price is greater than $30,000; or 0, if it’s less than $30,000. This is called
a binary response because there are only two possible classes.

 Logistic regression outputs probabilities that a certain example belongs to a certain
class. The binary-response example is an example of a binary logistic regression. We’ll
describe its model in the next section and then show you how to train and use a logistic-
regression model in Spark. We’ll also talk about how to evaluate classification results in
general, using logistic regression as an example. At the end of this section, we’ll expand
a logistic regression model to a multiclass logistic regression, which can classify exam-
ples into more than two classes.

8.2.1 Binary logistic regression model

A linear regression model trained on the home prices dataset gives you a single num-
ber that you can then treat either as a 1 (if it’s larger than some threshold) or as a 0 (if
it’s smaller than the threshold). Linear regression can give you very good results in
binary-classification problems like this one, but it wasn’t designed for predicting cate-
gorical variables. Again, classification methods such as logistic regression output a
probability p(x) that an example x (a vector) belongs to a specific category. 

 Probabilities lie in the range from 0 to 1 (corresponding to 0% and 100% proba-
bilities), but linear regression outputs values outside of these boundaries. So, in logis-
tic regression, instead of modeling the probability p(x) with the linear equation

it’s modeled with the so-called logistic function (from which logistic regression gets its
name):

The result of plotting this function for two different sets of weights w is shown in fig-
ure 8.2. The plot on the left side of the figure shows the basic logistic function,
where w0 is 0 and w1 is 1. The one on the right corresponds to a different set of
weights, where w0 is 4 and w1 is -2. You can see that the weight parameter w0 moves
the step of the function left or right along the X-axis, and the weight parameter w1
changes the slope of the step and also influences the horizontal position of it.
Because the logistic function always gives values between 0 and 1, it’s better suited
for modeling probabilities. 

 By further manipulating the logistic function, you can arrive at the following:
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The expression on the left side of this equation is known as the odds. You may have
heard a gambler say something similar to “the odds are three to one.” This is
expressed by the odds formula: the probability of an event happening divided by the
probability of the opposite. After taking the natural logarithm of the equation, you
arrive at the following expression:

The expression on the left side of the equation becomes the logit (or log-odds) of the
logistic function; and, as you can see, it linearly depends on x. Note that the vector w
contains an intercept w0 and that x0 equals 1. 

 If you think about it, p(x) is actually the probability that input example x belongs
to category 1 (mean home price is greater than $30,000), so 1 – p(x) equals the proba-
bility of the opposite case (mean home price is less than $30,000). This can be written
in the following way, using conditional-probability notation: 

The right side of the first equation can be read as “probability that category is 1, given
the example x and parameterized by the vector of weights w.”

 Optimal values for weight parameters in logistic regression are determined by max-
imizing the so-called likelihood function, which gives you the joint probability (the proba-
bility that a set of events happens in the same time) of correctly predicting the labels of
all examples from the dataset. You want the predicted probability (given by the logistic
function and parameterized by weight values) to be as close as possible to 1 for the
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Figure 8.2 A logistic function gives values in the range from 0 to 1 for any input value. This is ideal 
for modeling probabilities. The plot on the left is a logistic function with weights w0 of 0 and w1 of 1. 
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examples that are labeled as such, and as close as possible to 0 for those that aren’t.
Expressing this mathematically yields the following equation:

Taking a natural logarithm of the last expression gives you the log-likelihood function
(or log-loss), which is easier to maximize, so it’s used as the cost function for logistic
regression:

If you work out the math, the log-likelihood function gets reduced to the following:

Now that you have the cost function, gradient descent can be applied to finding its
minimum, similar to how it’s done in linear regression as described in chapter 7. In
fact, many of the methods you used for linear regression in the previous chapter, such
as L1 and L2 regularizations and LBFGS optimization, can be used for logistic regres-
sion, too. 

 The partial derivative of the log-likelihood function, with respect to the j-th weight
parameter wj (necessary for performing gradient descent), is the following:

But that’s more math than you need in order to use logistic regression in Spark. Let’s
see how to do that.

8.2.2 Preparing data to use logistic regression in Spark

In this section, you’ll load an example dataset, clean up the data, and package it so
that it’s usable by the Spark ML API. In the next section, you’ll use this data to train a
logistic-regression model.

 The example dataset that you’ll use for logistic regression is the well-known adult
dataset (http://archive.ics.uci.edu/ml/datasets/Adult), extracted from the 1994
United States census data. It contains 13 attributes3 with data about a person’s sex,

3 We removed the education-num column because it’s a transformation of the education column and as
such contains no extra information.
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age, education, marital status, race, native country, and so on, and the target variable
(income). The goal is to predict whether a person earns more or less than $50,000 per
year (the income column contains only values 1 and 0). 

 The first step is to download the dataset (you’ll find the adult.raw file in our online
repository, which you should have cloned by now) and load it into your Spark shell.
Start your Spark shell on a local cluster, taking all the available CPU cores (you can
also run it on Mesos or YARN, if you want, but we’ll assume you’re running a local clus-
ter in the spark-in-action VM):

$ cd /home/spark
$ spark-shell --master local[*]

Load the dataset with the following command (the third line converts to doubles all
values that can be converted; others are left as strings):

val census_raw = sc.textFile("first-edition/ch08/adult.raw", 4).
  map(x => x.split(", ")).
  map(row => row.map(x => try { x.toDouble } 
    catch { case _ : Throwable => x }))

Let’s first examine the data by loading it into a DataFrame (DataFrames should be
familiar to you from chapter 5). 

val adultschema = StructType(Array(
    StructField("age",DoubleType,true),
    StructField("workclass",StringType,true),
    StructField("fnlwgt",DoubleType,true),
    StructField("education",StringType,true),
    StructField("marital_status",StringType,true),
    StructField("occupation",StringType,true),
    StructField("relationship",StringType,true),
    StructField("race",StringType,true),
    StructField("sex",StringType,true),
    StructField("capital_gain",DoubleType,true),
    StructField("capital_loss",DoubleType,true),
    StructField("hours_per_week",DoubleType,true),
    StructField("native_country",StringType,true),
    StructField("income",StringType,true)
))
val dfraw = sqlContext.createDataFrame(census_raw.map(Row.fromSeq(_)), 
    adultschema)

DEALING WITH MISSING VALUES

There are several small problems (let’s call them “challenges”) here. First, if you
examine the data (by listing the first 20 rows with dfraw.show(), for example), you’ll
see that some columns have missing values (marked as “?”). You have several options
for dealing with missing data:
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■ If a lot of data is missing from a column, you can remove the entire column
from the dataset because that column (feature) can negatively affect the results.

■ You can remove the individual examples (rows) from the dataset if they contain
too many missing values.

■ You can set the missing data to the most common value in the column.
■ You can train a separate classification or regression model and use it to predict

the missing values.

The last option is obviously the most involved and time-consuming, so you’ll imple-
ment the third option by counting all the values and using the most frequent ones. 

 Missing values occur only in these three columns: workclass, occupation, and native
_country. Let’s examine the count of individual values in the workclass column:

scala> dfraw.groupBy(dfraw("workclass")).count().rdd.foreach(println)
[?,2799]
[Self-emp-not-inc,3862]
[Never-worked,10]
[Self-emp-inc,1695]
[Federal-gov,1432]
[State-gov,1981]
[Local-gov,3136]
[Private,33906]
[Without-pay,21]

You can see that the value Private occurs the most often in the workclass column.
For the occupation column, the value Prof-specialty is the most common. For the
native_country column it is, not surprisingly, United-States. You can now use this
information to impute (which is the official term) the missing values with the Data-
FrameNaFunctions class, available through the DataFrame’s na field:

val dfrawrp = dfraw.na.replace(Array("workclass"), 
  Map("?" -> "Private"))
val dfrawrpl = dfrawrp.na.replace(Array("occupation"), 
  Map("?" -> "Prof-specialty"))
val dfrawnona = dfrawrpl.na.replace(Array("native_country"), 
  Map("?" -> "United-States")) 

The replace method takes an array of column names and replaces values as specified
by the map in the second argument. DataFrameNaFunctions can also fill missing (null)
values with several versions of the fill method and drop rows if they contain a certain
number of missing values (implemented by several versions of the drop method).4

DEALING WITH CATEGORICAL VALUES

That’s settled now, but you still have a challenge: most of the values in the dfrawnona
data frame are string values, and classification algorithms can’t handle them. So you
first need to transform the data to numeric values. But even after you do that, you’ll

4 For further information, check the official documentation at http://mng.bz/X3Zg.
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still have a problem because a numeric encoding ranks categories by their numeric
values, and it’s often not clear how they should be ranked. If you encode the marital
status field’s values (separated, divorced, never married, widowed, married5) with
integer values from 0 to 4, would that be a realistic interpretation of their meanings?
Is never married “greater than” separated? No, it isn’t. So a technique known as one-
hot encoding is more commonly used. 

 In one-hot encoding, a column is expanded to as many columns as there are dis-
tinct values in it so that, for a single row, only one of the columns contains a 1 and all
the others contain 0s. For the marital status column example (shown in figure 8.3),
the column gets expanded to 5 columns (values from 0 to 4), and if a row contains the
value married, the new columns contain values 0, 0, 0, 0, 1. In this way, all possible val-
ues become equally important. 

Three classes in the new Spark ML library can help you deal with categorical values:
■ StringIndexer
■ OneHotEncoder
■ VectorAssembler

USING STRINGINDEXER

StringIndexer helps you convert String categorical values into integer indexes of those
values. StringIndexer takes a DataFrame and fits a StringIndexerModel, which is then
used for transformations of a column. You have to fit as many StringIndexerModels as
there are columns you want to transform. We wrote a method that does this for you:

import org.apache.spark.sql.DataFrame
def indexStringColumns(df:DataFrame, cols:Array[String]):DataFrame = {
  var newdf = df
  for(col <- cols) {
    val si = new StringIndexer().setInputCol(col).setOutputCol(col+"-num")

5 We omit a few other possible values here.
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    val sm:StringIndexerModel = si.fit(newdf)
    newdf = sm.transform(newdf).drop(col)       
    newdf = newdf.withColumnRenamed(col+"-num", col)
  }
  newdf
} 
val dfnumeric = indexStringColumns(dfrawnona, Array("workclass", 
  "education", "marital_status", "occupation", "relationship", "race", 
  "sex", "native_country", "income"))

StringIndexerModel also adds metadata to the columns it transforms. This metadata
contains information about the type of values a column contains (binary, nominal,
numeric). Some algorithms depend on this metadata.

ENCODING THE DATA WITH ONEHOTENCODER

The second class that helps with data preparation is OneHotEncoder, which one-hot-
encodes a column and puts the results into a new column as a one-hot-encoded sparse
Vector. Here, we provide the method oneHotEncodeColumns that you can use to one-
hot-encode an arbitrary number of columns. You provide a DataFrame object and a list
of numeric columns, and it will replace each column with a Vector with one-hot-
encoded values:

def oneHotEncodeColumns(df:DataFrame, cols:Array[String]):DataFrame = {
    var newdf = df
    for(c <- cols) {
        val onehotenc = new OneHotEncoder().setInputCol(c)     
        onehotenc.setOutputCol(c+"-onehot").setDropLast(false) 
        newdf = onehotenc.transform(newdf).drop(c)         
        newdf = newdf.withColumnRenamed(c+"-onehot", c)
    }
    newdf
}
val dfhot = oneHotEncodeColumns(dfnumeric, Array("workclass", "education", 
 "marital_status", "occupation", "relationship", "race", "native_country"))

MERGING THE DATA WITH VECTORASSEMBLER

The final step is to merge all these new Vectors and the original columns into a single
Vector column containing all the features. Spark ML algorithms work with two col-
umns named features and label, by default. If you recall from chapter 7, MLlib algo-
rithms work with RDDs containing LabeledPoint objects. If you convert an RDD
containing a LabeledPoint into a DataFrame (using the toDF method), the resulting
DataFrame contains two columns: features and label. So, we can say this is the Data-
Frame equivalent of LabeledPoint.

For each column in the cols
argument, fits a StringIndexerModel

Creates a DataFrame by 
putting the transformed 
values in the new column 
with suffix “-num”; drops 
the old column

Renames the new column 
to have the old name

Transforms columns of the dfrawnona 
DataFrame to numeric values
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 This is where a third helpful class, VectorAssembler, comes into play. It takes a
number of column names (as the inputCols parameter), an output column name (as
the outputCol parameter), and a DataFrame and then assembles the values from all
input columns into the output column. 

 The final step is to use VectorAssembler. The input columns are all the columns
of the dfhot DataFrame, minus the income column:

val va = new VectorAssembler().setOutputCol("features").
  setInputCols(dfhot.columns.diff(Array("income")))

After the transformation, you still need to rename the income column label:

val lpoints = va.transform(dfhot).select("features", "income").
  withColumnRenamed("income", "label")

VectorAssembler also adds metadata about features it assembles. Again, some algo-
rithms depend on these. Now that you have a data frame with labeled points, you can
finally move on to fitting a logistic regression model.

8.2.3 Training the model

As with any machine learning model, you have to train it on the prepared data. This
means the algorithm needs to find the model with parameters that correspond to the
data as much as possible. 

 Logistic-regression models in Spark can be trained with the MLlib classes Logistic-
RegressionWithSGD and LogisticRegressionWithLBFGS (this gives you an MLlib
LogisticRegressionModel object), and with the new ML API class LogisticRegression
(this gives you an ML LogisticRegressionModel object). As we said, you’ll use the new
ML API in this chapter. 

 You’ll use the same principle of dividing the dataset into training and validation
sets that you used in the previous chapter. DataFrames also provide a randomSplit
method for this purpose, the same as RDDs:

val splits = lpoints.randomSplit(Array(0.8, 0.2))
val adulttrain = splits(0).cache()
val adultvalid = splits(1).cache()

You’ll use the training set to fit your models and then use the validation set to test the
performance of the models. Notice that the sets are cached in memory: this is impor-
tant for machine learning algorithms that are iterative in nature and reuse the same
dataset many times.

 To train a logistic-regression model, set the parameters on a LogisticRegression
object and call its fit method, passing in a DataFrame:

val lr = new LogisticRegression
lr.setRegParam(0.01).setMaxIter(500).setFitIntercept(true)
val lrmodel = lr.fit(adulttrain)
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As we said in section 8.1, you can also set the parameters with the fit method:

val lrmodel = lr.fit(adulttrain, ParamMap(lr.regParam -> 0.01, 
  lr.maxIter -> 500, lr.fitIntercept -> true))

Logistic regression in Spark ML uses the LBFGS algorithm (which you encountered in
chapter 7) to minimize the loss function because it converges quickly and is easier to
use. The logistic-regression implementation in Spark also automatically scales the fea-
tures. 

INTERPRETING THE MODEL PARAMETERS

You can now inspect the model parameters that the algorithm found:

scala> lrmodel.weights
res0: org.apache.spark.mllib.linalg.Vector = 
[0.02253347752531383,5.79891265368467E-7,1.4056502945663293E-4,
5.405187982713647E-4,0.025912049724868744,-0.5254963078098936, 
0.060803010946022244,-0.3868418367509028,...
scala> lrmodel.intercept
res1: Double = -4.396337959898011

Your results may be somewhat different. What do these numbers mean?
 In the previous chapter, the trained linear regression model gave you weights

whose magnitude directly corresponded to the importance of particular features: in
other words, to the influence they had on the target variable. In logistic regression,
we’re interested in the probability that a sample is in a certain category, but a model’s
weights don’t linearly influence that probability. Instead, they linearly influence the
log-odds given by this equation (repeated from section 8.2.1):

From the log-odds equation, the equation for calculating the odds follows:

To see how individual weight parameters influence the probability, let’s see what hap-
pens if you increase a single feature (let’s say x1) by 1 and leave all other values the
same. It can be shown this is equal to multiplying the odds by e w1.

 If you take the age dimension as an example, the corresponding weight parameter
is 0.0225335 (rounded). e0.0225335 equals 1.0228, which means increasing age by 1
increases the odds of the person earning more than $50,000 per year by 2.28%. That
is, in a nutshell, the way to interpret logistic-regression parameters.
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8.2.4 Evaluating classification models

Now that you have a trained model, you can see how well it performs on the training
dataset. First, you use the linear regression model lrmodel, which is a Transformer, to
transform the validation dataset; and then you use BinaryClassificationEvaluator
to evaluate the model’s performance:

val validpredicts = lrmodel.transform(adultvalid)

The validpredicts DataFrame now contains the label and features columns from
the adultvalid DataFrame, along with a few additional columns: 

scala> validpredicts.show()
+--------------------+-----+-----------------+-----------------+----------+
|            features|label|    rawPrediction|      probability|prediction|
+--------------------+-----+-----------------+-----------------+----------+
|(103,[0,1,2,4,5,6...|  0.0|[1.00751014104...|[0.73253259721...|       0.0|
|(103,[0,1,2,4,5,6...|  0.0|[0.41118861448...|[0.60137285202...|       0.0|
|(103,[0,1,2,4,5,6...|  0.0|[0.39603063020...|[0.59773360388...|       0.0|
...

The probability column contains vectors with two values: the probability that the
sample isn’t in the category (the person is making less than $50,000) and the proba-
bility that it is. These two values always add up to 1. The rawPrediction column also
contains vectors with two values: the log-odds that a sample doesn’t belong to the cate-
gory and the log-odds that it does. These two values are always opposite numbers (they
add up to 0). The prediction column contains 1s and 0s, which indicates whether a
sample is likely to belong to the category. A sample is likely to belong to the category if
its probability is greater than a certain threshold (0.5 by default). 

 The names of all these columns (including features and label) can be custom-
ized using parameters (for example, outputCol, rawPredictionCol, probabilityCol,
and so on).

USING BINARYCLASSIFICATIONEVALUATOR

To evaluate the performance of your model, you can use the BinaryClassification-
Evaluator class and its evaluate method:

scala> val bceval = new BinaryClassificationEvaluator()
bceval: org.apache.spark.ml...
scala> bceval.evaluate(validpredicts)
res0: Double = 0.9039934862200736

But what does this result mean, and how is it calculated? You can check the metric the
BinaryClassificationEvaluator used by calling the getMetricName method:

scala> bceval.getMetricName
res1: String = areaUnderROC
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This metric is known as “area under receiver operating characteristic curve.” Binary-
ClassificationEvaluator can also be configured to calculate “area under precision-
recall curve” by setting setMetricName("areaUnderPR").

 Great: you know the names of the metrics, but you don’t know what they mean yet.
To understand what these terms mean, you first need to understand precision and
recall. 

PRECISION AND RECALL

In chapter 7, you used the RMSE to evaluate the performance of linear regression.
When evaluating classification results, which are nominal values, this method isn’t
appropriate. Instead, you use metrics based on counting good and bad predictions.

 To evaluate your model’s performance, you can count true positives (TP), which is
the number of your model’s predictions that it correctly classified as positives, and
false positives (FP), which are those that it predicted as positives but are actually nega-
tives. Analogously, there are true negatives (TN) and false negatives (FN).

 From these four numbers, precision (P) and recall (R) measures are calculated like
this:

In other words, precision is the percentage of true positives out of all positives your
model has labeled as such. Recall is the percentage of all positives that your model iden-
tified (or recalled). Recall is also called sensitivity, true positive rate (TPR), and hit rate. 

 So, if your model predicts only 0s, it has both precision and recall equal to 0, because
there are no true or false positives. But if it predicts only 1s, recall is equal to 1 and pre-
cision will depend on the dataset: if there is a large percentage of positives in the dataset,
precision will also be close to 1, which is misleading.

 This is why a measure called f-measure, or f1-score, is more commonly used. It’s cal-
culated as the harmonic mean of precision and recall:

The f1-score will be 0 if any of the two (precision or recall) is 0, and it will be close to 1
if both of them are.

PRECISION-RECALL CURVE

A precision-recall (PR) curve is obtained when you gradually change the probability
threshold at which your model determines whether a sample belongs to a category (say,
from 0 to 1), and at each point, you calculate precision and recall. Then you plot the
obtained values on the same graph (precision on the Y-axis and recall on the X-axis). 

 If you increase the probability threshold, there will be fewer false positives, so pre-
cision will go up; but recall will go down, because fewer positives in the dataset will be
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identified. If you decrease the threshold, precision will go down because many more
positives (true and false) will be identified, but recall will go up. 

PYTHON The BinaryClassificationMetrics class in Python doesn’t provide
methods for calculating precision and recall values at different threshold val-
ues. It does provide areaUnderPR and areaUnderROC metrics, though.

You can change the threshold of your model using the setThreshold method. A class
BinaryClassificationMetrics from the MLlib library can calculate precision and
recall for an RDD containing tuples with predictions and labels. We wrote a small
method called computePRCurve (you can find it in our online repository) that outputs
precision and recall for 11 values of threshold from 0 to 1. The results are available in
our online repository. The resulting plot of the PR curve is shown in figure 8.4.

Finally, the area under the PR curve is one of two metrics available when using the
BinaryClassificationEvaluator class we mentioned previously. In this case, the
area under the PR curve is 0.7548, which isn’t a bad result.

RECEIVER OPERATING CHARACTERISTIC CURVE

When using BinaryClassificationEvaluator, the second available metric (and the
default one) is area under the receiver operating characteristic (ROC) curve. The ROC
curve is similar to the PR curve, but it has recall (TPR) plotted on its Y-axis and the
false positive rate (FPR) plotted on its X-axis. FPR is calculated as the percentage of
false positives out of all negative samples:

In other words, FPR measures the percentage of all negative samples that your model
wrongly classified as positives. The ROC curve for the example model is shown in fig-
ure 8.5. The data for it was generated using the computeROCCurve method in our
online repository. 
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An ideal model would have a low FPR (low number of false positives) and a high TPR
(low number of false negatives), and the matching ROC curve would pass close to the
upper-left corner. A ROC curve close to the diagonal is a sign of a model giving almost
random results. If the model places FPR and TPR values in the bottom-right corner,
the model can be inverted to get it to output more correct results.

 The ROC curve shown in figure 8.5 is pretty good. As you’ve already seen, the
matching area under the curve is 0.904, which is pretty high. 

PR curves can give more relevant results than ROC curves when your dataset has a
small percentage of positive samples. Both ROC curves and PR curves are used to com-
pare different models. 

8.2.5 Performing k-fold cross-validation

We briefly touched on k-fold cross-validation in chapter 7, and we promised we would
say more about it later. Here’s where we do that. In general, using cross-validation
helps you validate the performance of your model more reliably because it validates
the model several times and returns the average as the final result. In this way, it’s less
likely to overfit one particular view of the data.

 As we said in the last chapter, k-fold cross-validation consists of dividing the dataset
into k subsets of equal sizes and training k models excluding a different subset each
time. The excluded subset is used as the validation set, and all other subsets are used
together as the training set. This is shown in figure 8.6.

 For each set of parameters you want to validate, you train all k models and then cal-
culate the mean error across all k models (as in figure 8.6). Finally, you choose the set
of parameters giving you the smallest average error. 
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The CrossValidator class in Spark ML can automate this for you. You give it an esti-
mator (a LogisticRegression object, for example) and an evaluator (Binary-
ClassificationEvaluator) and then set the number of folds it is to use (default is 3): 

val cv = new CrossValidator().setEstimator(lr).
  setEvaluator(bceval).setNumFolds(5)

CrossValidator takes several sets of parameters (an array of ParamMaps) in the set-
EstimatorParamMaps method. It performs k-fold cross-validation for each of those
ParamMap objects. Another class, ParamGridBuilder, makes it easy to generate combi-
nations of parameters as an array of ParamMaps. You add grids with sets of values for
individual parameters and then build the complete grid, like this:

scala> val paramGrid = new ParamGridBuilder().
  addGrid(lr.maxIter, Array(1000)).
  addGrid(lr.regParam, Array(0.0001, 0.001, 0.005, 0.01, 0.05, 0.1)).
  build()

To perform logistic regression with LBFGS, only the regularization parameter is rele-
vant, so only the regParam parameter is varied in the parameter grid, and the maxi-
mum number of iterations is kept constant at 1,000. Finally, the parameter grid is fed
to the CrossValidator:

scala> cv.setEstimatorParamMaps(paramGrid)

When you call the fit method of the cv CrossValidator, it fits the necessary models
and returns the best one, as measured by the bceval evaluator (this may take some
time): 

scala> val cvmodel = cv.fit(adulttrain)

Model 1
evaluation 0.85

Model 2
evaluation 0.8

Model 3
evaluation 0.9

Data subset 1

Data subset 2 Train,
evaluate Average = 0.85

Data subset 3

Figure 8.6 An example three-fold cross-validation. The dataset is divided into three subsets that 
are used to train three models with the same parameters. The average evaluation result is taken as 
a measure of the model’s performance with the selected parameters.
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The returned model is of type CrossValidatorModel, and you can access the selected
logistic-regression model through the bestModel field:

scala> cvmodel.bestModel.asInstanceOf[LogisticRegressionModel].coefficients
res0: org.apache.spark.mllib.linalg.Vector = 

[0.0248435418248564,7.555156155398289E-7,3.1447428691767557E-4,
6.176181173588984E-4,0.027906992593851074,-0.7258527114344593,...

Furthermore, to find out which regularization parameter was selected as best, you can
access the bestModel’s parent (you can’t do this in Python):

scala>cvmodel.bestModel.parent.asInstanceOf[LogisticRegression].getRegParam
res1: Double = 1.0E-4

The regularization parameter of 0.0001 gives the best results. You can now test its per-
formance on the validation dataset:

scala> new BinaryClassificationEvaluator().
  evaluate(cvmodel.bestModel.transform(adultvalid))
res2: Double = 0.9073005687252869

As you can see, CrossValidatorModel makes it simple to perform k-fold cross-
validation. Although you can’t use it for model comparison across different
algorithms, it speeds up comparison across different sets of parameters. 

8.2.6 Multiclass logistic regression

As we said earlier, multiclass classification means a classifier categorizes input exam-
ples into several classes. Spark ML’s logistic regression doesn’t support multiclass clas-
sification at this time, but you can use MLlib’s LogisticRegressionWithLBFGS to
perform it. We don’t have space to get into LogisticRegressionWithLBFGS here,6 but
we’ll show you another method for performing multiclass classification using binary
classification models. It’s called the one vs. rest strategy. 

 When using the one vs. rest strategy, you train one model per class, each time treat-
ing all other classes (the rest) as negatives. Then, when classifying new samples, you
classify them using all the trained models and pick the class corresponding to the
model that gives the highest probability. 

 Spark ML provides the OneVsRest class precisely for this purpose. It produces a
OneVsRestModel that you can use for dataset transformation. Because the multiclass
evaluator in the Spark ML library doesn’t exist in Spark at the time of writing, you’ll
use the MulticlassMetrics class from MLlib. 

 We’ll show you how to use these classes on an example dataset containing data
extracted from scaled images of handwritten numbers. It’s a public dataset available
from the UCI machine learning repository,7 containing 10,992 samples of handwritten
digits from 0 to 9. Each sample contains 16 pixels with intensity values of 0–100. 

6 You can find an example in the official Spark configuration: http://mng.bz/Ab91.
7 You can find it at http://mng.bz/9jHs.
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PYTHON OneVsRest isn’t available in Python.

To begin, download the penbased.dat file from our online repository and load it into
Spark in much the same way you did the adult dataset (see section 8.2.2):

StructField("pix1",IntegerType,true), StructField("pix2",IntegerType,true),
StructField("pix3",IntegerType,true), StructField("pix4",IntegerType,true),
StructField("pix5",IntegerType,true), StructField("pix6",IntegerType,true),
StructField("pix7",IntegerType,true), StructField("pix8",IntegerType,true),
StructField("pix9",IntegerType,true), StructField("pix10",IntegerType,true),
StructField("pix11",IntegerType,true),StructField("pix12",IntegerType,true),
StructField("pix13",IntegerType,true), IntegerType ("pix14",IntegerType,true),
StructField("pix15",IntegerType,true),StructField("pix16",IntegerType,true),
StructField("label",IntegerType,true)))
val pen_raw = sc.textFile("first-edition/ch08/penbased.dat", 4).
  map(x => x.split(", ")).
  map(row => row.map(x => x.toDouble.toInt))
import org.apache.spark.sql.Row
val dfpen = spark.createDataFrame(pen_raw.map(Row.fromSeq(_)), penschema)
import org.apache.spark.ml.feature.VectorAssembler
val va = new VectorAssembler().setOutputCol("features")
va.setInputCols(dfpen.columns.diff(Array("label")))
val penlpoints = va.transform(dfpen).select("features", "label")

You already know that you need to split the dataset into training and validation sets:

val pensets = penlpoints.randomSplit(Array(0.8, 0.2))
val pentrain = pensets(0).cache()
val penvalid = pensets(1).cache()

Now you’re ready to use the dataset. First you’ll specify a classifier for OneVsRest. Here,
you’ll use a logistic-regression classifier (but you could also use some other classifier): 

val penlr = new LogisticRegression().setRegParam(0.01)
val ovrest = new OneVsRest()
ovrest.setClassifier(penlr)

Finally, you’ll fit it on the training set to obtain the model:

val ovrestmodel = ovrest.fit(pentrain)

The one vs. rest model you just obtained contains 10 logistic-regression models (one for
each digit). You can now use it to predict classes of samples from the validation dataset:

val penresult = ovrestmodel.transform(penvalid)

As we said, Spark ML still has no multiclass evaluator, so you’ll use the Multiclass-
Metrics class from Spark MLlib; but it requires an RDD with tuples containing predic-
tions and labels. So you first need to convert the penresult DataFrame to an RDD:

val penPreds = penresult.select("prediction", "label").
  rdd.map(row => (row.getDouble(0), row.getDouble(1)))
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And finally, you’ll construct a MulticlassMetrics object:

val penmm = new MulticlassMetrics(penPreds)

Recall and precision are equal for multiclass classifiers because the sum of all false
positives is equal to the sum of all false negatives. In this case, they’re equal to 0.90182.
MulticlassMetrics can also give you precision, recall, and f-measure per individual
class:

scala> penmm.precision(3)
res0: Double = 0.9026548672566371
scala> penmm.recall(3)
res1: Double = 0.9855072463768116
scala> penmm.fMeasure(3)
res2: Double = 0.9422632794457274

It can also show you the confusion matrix, which has rows and columns that corre-
spond to classes. Each element on the ith row and jth column shows how many ele-
ments from the ith class were classified as the jth class: 

scala> penmm.confusionMatrix
res3: org.apache.spark.mllib.linalg.Matrix =
228.0  1.0    0.0    0.0    1.0    0.0    1.0    0.0    10.0   1.0
0.0    167.0  27.0   3.0    0.0    19.0   0.0    0.0    0.0    0.0
0.0    11.0   217.0  0.0    0.0    0.0    0.0    2.0    0.0    0.0
0.0    0.0    0.0    204.0  1.0    0.0    0.0    1.0    0.0    1.0
0.0    0.0    1.0    0.0    231.0  1.0    2.0    0.0    0.0    2.0
0.0    0.0    1.0    9.0    0.0    153.0  9.0    0.0    9.0    34.0
0.0    0.0    0.0    0.0    1.0    0.0    213.0  0.0    2.0    0.0
0.0    14.0   2.0    6.0    3.0    1.0    0.0    199.0  1.0    0.0
7.0    7.0    0.0    1.0    0.0    4.0    0.0    1.0    195.0  0.0
1.0    9.0    0.0    3.0    3.0    7.0    0.0    1.0    0.0    223.0

The values on the diagonal correspond to the correctly classified samples. You can see
that this model performs rather well. Let’s now see how decision trees and random
forests handle this dataset.

8.3 Decision trees and random forests
In this section, we’ll show you how to use decision trees and random forests, simple
but powerful algorithms that can be used for both classification and regression. We’ll
follow the same approach we used for other algorithms in these two chapters: we’ll
explain their theoretical background and then show you how to use them in Spark.
We’ll do that first for decision trees and then for random forests. 

 A decision-trees algorithm uses a tree-like set of user-defined or learned rules to
classify input examples based on their feature values. It’s simple to use and easy to
understand because it isn’t based on complicated math. It can perform classification
and regression analysis using simple decision rules, learned from a training dataset.
The learned decision rules can be visualized, and they offer an intuitive explanation
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of inner workings of the algorithm. Furthermore, decision trees don’t require data
normalization, they can handle numeric and categorical data, and they can work with
missing values.

 They’re prone to overfitting (covered in chapter 7), though, and are very sensitive
to the input data. Small changes in the input dataset can drastically change the deci-
sion rules. Training an optimal decision tree is NP-complete 8 (no efficient way to find a
solution is known), so existing practical solutions find locally optimal solutions at each
node, which aren’t guaranteed to be globally optimal. 

 Random forests train a certain number of decision trees on data randomly sam-
pled from the original dataset. Methods that use several trained models are generally
called ensemble learning methods, and the procedure of using randomly sampled data for
training the models and then averaging their results is called bagging. Bagging helps in
reducing variance and, thus, reducing overfitting. That isn’t all there is to say about a
random-forest algorithm, and we’ll get to that later. Let’s first examine decision trees.

8.3.1 Decision trees

How does a decision-tree algorithm work? It starts by testing how well each feature
classifies the entire training dataset. The metrics used for this are called impurity and
information gain (we’ll say more about this later). The best feature is selected as a
node, and new branches leaving the node are created according to possible values of
the selected feature. If a feature contains continuous values, it’s binned into sub-
ranges (or bins). A parameter decides how many bins will be used per feature.

 Spark creates only binary decision trees; that is, each node has only two branches
leaving it. The dataset is divided according to the branches (the selected feature’s val-
ues), and the entire procedure is repeated for each branch. If a branch contains only
a single class, or if a certain tree depth for the branch is reached, the branch becomes
a leaf node and the procedure for that branch stops. 

AN ILLUMINATING EXAMPLE

This may sound complicated, so let’s illustrate it with an example. To create an exam-
ple dataset, we took the housing dataset used in the previous chapter and simplified it
a bit. We selected only the features age, education, sex, hours worked per week, and
the target variable income and converted the income values to categorical labels (1 if a
person earns more than $50,000 and 0 otherwise). Then we sampled the data to
obtain only 16 samples. The resulting dataset is shown on the left in figure 8.7. 

 We next used the dataset to train a decision-tree model. The way the algorithm used
the original dataset is shown on the right in the figure. In the first step (in the root
node of the resulting tree), the algorithm determined that the education feature
should be selected first (that is why the education column is shown first in the table on
the right). It divided the possible categories of the education feature according to

8 Laurent Hyafil and Ronald L. Rivest, “Constructing Optimal Binary Decision Trees Is NP-Complete,” 1976,
http://mng.bz/9G3C.
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target class values (income) into left categories, corresponding to the left branch in fig-
ure 8.8 and depicted with a dark gray background in figure 8.7; and right categories, cor-
responding to the right branch in figure 8.8 and depicted with a light gray background
in figure 8.7. The resulting right branch only contains the positive examples (income
is greater than $50,000), so it’s declared to be a leaf node (the final node in the tree).

 In the next step, the algorithm uses the age feature. It repeats the same process
and divides only those column values
in the left education branch (because
the values in the right education

branch became a leaf node) into two
sets. Because age is continuous, it uses
a threshold value (value 48) and not a
set of categories to divide the values.
This time the left branch becomes a
leaf node (predicting the classifica-
tion value false). For the right
branch, the sex feature is chosen, and
the two final leaf nodes result. As you
can see, the algorithm never got to use
the hours per week feature, so that fea-
ture will have no influence on predic-
tions. The corresponding decision tree
is shown in figure 8.8.

Age
25.0
39.0
27.0
51.0
46.0
52.0
48.0
36.0
37.0
47.0
63.0
19.0
63.0
59.0
27.0
58.0

Age
25.0
19.0
39.0
46.0
58.0
36.0
27.0
27.0
48.0
37.0
63.0
52.0
51.0
59.0
47.0
63.0

Hours per week
40.0
40.0
30.0
40.0
40.0
30.0
35.0
40.0
50.0
35.0
44.0
25.0
60.0
40.0
40.0
40.0

Education
Bachelors
Some college
HS-grad
Some college
Some college
Prof-school
10th
HS-grad
1HS-grad
Masters
1Assoc-voc
Some college
7th-8th
HS-grad
HS-grad
Some college

Sex
Male
Male
Female
Male
Female
Female
Female
Female
Male
Male
Female
Female
Male
Male
Male
Female

Sex
Male
Female
Male
Female
Female
Female
Male
Female
Female
Male
Female
Female
Male
Male
Male
Male

Income

>$50k

>$50k

>$50k

>$50k
>$50k

Hours per week
40.0
25.0
40.0
40.0
40.0
40.0
40.0
30.0
35.0
50.0
44.0
30.0
40.0
40.0
35.0
60.0

Income

>$50k
>$50k
>$50k
>$50k

Education
Bachelors
Some college
Some college
Some college
Some college
HS-grad
HS-grad
HS-grad
10th
9th
1st-4th
Prof-school
Some college
HS-grad
Masters
7th-8th

2nd level 3rd level1st level

Figure 8.7 The example dataset on the left serves for training of a decision-tree model. The model’s algorithm 
first divides the dataset by education. The resulting left branch (black background) is divided by age, and the resulting 
right branch (gray background) is divided by sex. The built model (tree) has a depth of three and has seven nodes. 
Each group of colored cells in a column corresponds to a node, plus the root node not visible in the figure.

Education

[Bachelors, ...] [Masters, ...]

Age > $50k

< 48 > 48

< $50k Sex

Female Male

< $50k > $50k

Figure 8.8 The decision tree corresponding to 
the data shown in figure 8.7. The decision tree has 
seven nodes and a depth of three. Leaf nodes are 
depicted with black or gray background, depend-
ing on the prediction.

 



241Decision trees and random forests

 Nodes with a white background in figure 8.8 correspond to the columns used to split
the dataset, and the dark gray and light gray arrows correspond to the resulting left and
right subsets of the data. The nodes with dark gray and light gray backgrounds are leaf
nodes containing final prediction values. The trained decision tree has seven nodes and
a depth of three. The decision tree can be used to quickly classify incoming feature vectors.

UNDERSTANDING IMPURITY AND INFORMATION GAIN

We said that the decision-tree algorithm uses impurity and information gain to deter-
mine which feature to split. Two measures of impurity are used in decision trees:
entropy and Gini impurity. Gini impurity is the default in Spark and in other decision-
tree implementations. 

 Entropy (Shannon entropy) comes from information theory and is a measure of the
amount of information contained in a message. The entropy of a dataset D is calcu-
lated as:

where K is the number of target classes and p(Cj) is the proportion of jth class Cj. For
the binary-classification example dataset shown in figure 8.7, entropy is equal to

If only one class is present in a dataset, the entropy is equal to 0. Entropy reaches a
maximum if all classes are equally present in the dataset. For a binary classification,
this maximum is equal to 1.

 Gini impurity is a measure of how often a randomly chosen element from the data-
set would be incorrectly labeled if it were randomly labeled according to the distribu-
tion of labels in the dataset.9 It’s calculated like this:

It also reaches a maximum if all classes are equally present in the dataset (equal to 0.5
in the case of two classes) and is equal to 0 if the dataset contains only one class (the value
of the target variable). For the example, the dataset in figure 8.8 is equal to 0.4296875.

 That’s how impurity is calculated. When deciding how to split the dataset, an infor-
mation-gain metric is used. It represents the expected impurity reduction after split-
ting the dataset D according to a feature F. It’s calculated in the following manner

9 As defined by Wikipedia: https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity.
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where subsets(F) are subsets of the feature F after the split, |Ds| is the number of ele-
ments in the subset s, and |D| is the number of elements in the dataset. In the previous
example, when splitting the dataset according to the feature education, the informa-
tion gain is equal to the following. Note that entropy is used for calculating impurity
in this example:

If any other split of education categories were chosen, information gain would be
lower. This is obvious by examining the education and income columns in figure 8.7.
If you move the bachelors feature to the right branch, for example, the right branch
would no longer contain a single class (the bachelors row’s class is “less than $50k”
and the other two light gray education values—Masters and 7th-8th—have class of
“>$50k”), and its impurity would be greater than zero, thus reducing information
gain. The algorithm uses information gain to decide how to split the dataset at each
node of the decision tree.

TRAINING A DECISION-TREE MODEL

You’ll now train a decision-tree model on the same handwritten digit dataset that you
used previously for multiclass logistic regression. But before using the dataset, one
extra data-preparation step is necessary. You need to add column metadata, which the
decision-tree algorithm needs to determine the number of possible classes. You can
use the StringIndexer class (the same class you used in section 8.2.2 to convert cate-
gorical string values to integer nominal values) for this because StringIndexer adds
the needed metadata information to the transformed column. The penlpoints Data-
Frame you loaded in section 8.2.6 contains the dataset, and you can add the metadata
information with the following snippet of code:

val dtsi = new StringIndexer().setInputCol("label").setOutputCol("label-i")
val dtsm:StringIndexerModel = dtsi.fit(penlpoints)
val pendtlpoints = dtsm.transform(penlpoints).drop("label").
  withColumnRenamed("label-i", "label")

As always, splitting the dataset into training and validation sets is necessary:

val pendtset = penlpointsf.randomSplit(Array(0.8, 0.2))
val pendttrain = pendtsets(0).cache()
val pendtvalid = pendtsets(1).cache()

The decision-tree classification algorithm in Spark ML is implemented by the class
DecisionTreeClassifier. A decision tree for regression is implemented by the class
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DecisionTreeRegressor, but you won’t use it here. It can be configured with several
parameters:

■ maxDepth determines the maximum tree depth. The default is 5.
■ maxBins determines the maximum number of bins created when binning con-

tinuous features. The default is 32.
■ minInstancesPerNode sets the minimum number of dataset samples each

branch needs to have after a split. The default is 1.
■ minInfoGain sets the minimum information gain for a split to be valid (other-

wise, the split will be discarded). The default is 0.

The default parameters work fine in most cases. For this example, you need to adjust
the maximum depth to 20 (because the default depth of 5 levels isn’t enough) and
train the model by calling fit on the training set:

val dt = new DecisionTreeClassifier()
dt.setMaxDepth(20)
val dtmodel = dt.fit(pendttrain)

EXAMINING THE DECISION TREE

As we said previously, one of the advantages of decision trees is that the learned deci-
sion rules can be visualized, and they can offer an intuitive explanation of the inner
workings of the algorithm. How do you examine the learned decision rules of the
model in Spark?

 You can begin by examining the root node of the tree (note that these results are highly
dependent on the way the dataset was split, so your results may be somewhat different):

scala> dtmodel.rootNode
res0: org.apache.spark.ml.tree.Node = InternalNode(prediction = 0.0, 
impurity = 0.4296875, split = org.apache.spark.ml.tree.
CategoricalSplit@557cc88b)

Here you can see the calculated impurity of the root node (equal to 0.4296875). You
can also see which feature was used for the split on the first node by examining the
featureIndex field of rootNode’s split (you’ll need to cast the root node to Internal-
Node first):

scala> dtmodel.rootNode.asInstanceOf[InternalNode].split.featureIndex
res1: Int = 15

PYTHON You can’t access the root node in Python.

An index of 15 corresponds to the last pixel in the dataset. Using the split field, you
can also see which threshold was used to split the values of feature 15:

scala> dtmodel.rootNode.asInstanceOf[InternalNode].split.
  asInstanceOf[ContinuousSplit].threshold
res2: Double = 51.0
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If the feature 15 were a categorical value, the split would be an instance of the Cate-
goricalSplit class, and you could access its leftCategories and rightCategories
fields to examine which categories were used for each branch. 

 Furthermore, you can access the left and right nodes:

dtmodel.rootNode.asInstanceOf[InternalNode].leftChild
dtmodel.rootNode.asInstanceOf[InternalNode].rightChild

You can continue the procedure for all nodes in the model.

EVALUATING THE MODEL

Now you can transform the validation set and evaluate the model using Multiclass-
Metrics, as you did for multiclass logistic regression:

scala> val dtpredicts = dtmodel.transform(pendtvalid)
scala> val dtresrdd = dtpredicts.select("prediction", "label").rdd 
  .map(row => (row.getDouble(0), row.getDouble(1)))
scala> val dtmm = new MulticlassMetrics(dtresrdd)
scala> dtmm.precision
res0: Double = 0.951442968392121
scala> dtmm.confusionMatrix
res1: org.apache.spark.mllib.linalg.Matrix =
192.0  0.0    0.0    9.0    2.0    0.0    2.0    0.0    0.0    0.0
0.0    225.0  0.0    1.0    0.0    1.0    0.0    0.0    3.0    2.0
0.0    1.0    217.0  1.0    0.0    1.0    0.0    1.0    1.0    0.0
9.0    1.0    0.0    205.0  5.0    1.0    3.0    1.0    1.0    0.0
2.0    0.0    1.0    1.0    221.0  0.0    2.0    3.0    0.0    0.0
0.0    1.0    0.0    1.0    0.0    201.0  0.0    0.0    0.0    1.0
2.0    1.0    0.0    2.0    1.0    0.0    207.0  0.0    2.0    3.0
0.0    0.0    3.0    1.0    1.0    0.0    1.0    213.0  1.0    2.0
0.0    0.0    0.0    2.0    0.0    2.0    2.0    4.0    198.0  6.0
0.0    1.0    0.0    0.0    1.0    0.0    3.0    3.0    4.0    198.0

As you can see, without much preparation the decision tree gives you better results
than logistic regression. Precision and recall for logistic regression were 0.90182, and
here they’re 0.95, which is an increase of 5.5%. But as you’ll see, random forests can
give you even better results.

8.3.2 Random forests

We’ll now move to random forests, a powerful classification and regression algorithm
that can give excellent results without much tuning. As we said previously, the
random-forests algorithm is an ensemble method of training a number of decision
trees and selecting the best result by averaging results from all of them. This enables
the algorithm to avoid overfitting and to find a global optima that particular decision
trees can’t find on their own.

 Random forests furthermore use feature bagging, where only a subset of features is
randomly selected in each node of a decision tree and the best split is determined
according to that reduced feature set. The reason for doing this is that the error rate
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of a random-forests model increases when decision trees are correlated (are similar).
Feature bagging makes decision trees less similar. 

 As we mentioned, random forests give better results, reduce overfitting, and are
generally easy to train and use, but they aren’t as easy to interpret and visualize as deci-
sion trees. 

USING RANDOM FORESTS IN SPARK

Random forests in Spark are implemented by the classes RandomForestClassifier
and RandomForestRegressor. Because this chapter is about classification, you’ll use
RandomForestClassifier. You can configure it with two additional parameters:

■ numTrees is the number of trees to train. The default is 20.
■ featureSubsetStrategy determines how feature bagging is done. Its value can

be one of the following: all (uses all features), onethird (randomly selects
one-third of the features), sqrt (randomly selects sqrt (number of features)),
log2 (randomly selects log2 (number of features)), or auto, which means sqrt
for classification and onethird for regression. The default is auto.

The defaults work fine in most cases. If you want to train a large number of trees, you
need to make sure you give enough memory to your driver, because the trained deci-
sion trees are kept in the driver’s memory.

 Training a random-forests classifier model is straightforward:

val rf = new RandomForestClassifier()
rf.setMaxDepth(20)
val rfmodel = rf.fit(pendttrain)

Having a model available, you can examine the trees it trained by accessing the trees
field:

scala> rfmodel.trees
res0: Array[org.apache.spark.ml.tree.DecisionTreeModel] = 
Array(DecisionTreeClassificationModel of depth 20 with 833 nodes, 
DecisionTreeClassificationModel of depth 17 with 757 nodes, 
DecisionTreeClassificationModel of depth 16 with 691 nodes, ...

After transforming the validation set, you can evaluate the model’s performance in
the usual way, using the MulticlassMetrics class:

scala> val rfpredicts = rfmodel.transform(pendtvalid)
scala> val rfresrdd = rfpredicts.select("prediction", "label").
  rdd.map(row => (row.getDouble(0), row.getDouble(1)))
scala> val rfmm = new MulticlassMetrics()
scala> rfmm.precision
res1: Double = 0.9894640403114979
scala> rfmm.confusionMatrix
res2: org.apache.spark.mllib.linalg.Matrix =
205.0  0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0
0.0    231.0  0.0    0.0    0.0    0.0    0.0    0.0    1.0    0.0
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0.0    0.0    221.0  1.0    0.0    0.0    0.0    0.0    0.0    0.0
5.0    0.0    0.0    219.0  0.0    0.0    2.0    0.0    0.0    0.0
0.0    0.0    0.0    0.0    230.0  0.0    0.0    0.0    0.0    0.0
0.0    1.0    0.0    0.0    0.0    203.0  0.0    0.0    0.0    0.0
1.0    0.0    0.0    1.0    0.0    0.0    216.0  0.0    0.0    0.0
0.0    0.0    1.0    0.0    2.0    0.0    0.0    219.0  0.0    0.0
0.0    0.0    0.0    1.0    0.0    0.0    0.0    1.0    212.0  0.0
0.0    0.0    0.0    0.0    0.0    0.0    2.0    2.0    2.0    204.0

Here the precision of the random-forests model is 0.99, which means it has an error
rate of only 1%. That’s better than the decision tree’s precision by 4% and better than
logistic regression by 10%. And you didn’t need to tune the algorithm at all.

 These are excellent results. And it’s no wonder. Random forests are one of the
most popular algorithms because of their excellent performance and ease of use.
They have also been shown to perform equally well on high-dimensional datasets,10

which isn’t true for other algorithms.

8.4 Using k-means clustering
The final family of machine learning algorithms that we’re going to cover in this book
is clustering. The task of clustering is to group a set of examples into several groups
(clusters), based on some similarity metric. Clustering is an unsupervised learning
method, which means unlike classification, the examples aren’t labeled prior to clus-
tering: a clustering algorithm learns the labels itself. 

 For instance, a classification algorithm gets a set of images labeled cats and dogs, and
it learns how to recognize cats and dogs on future images. A clustering algorithm can
try to spot differences between different images and automatically categorize them
into two groups, but not knowing the names for each group. At most it can label them
“group 1” and “group 2”. 

 Clustering can be used for many purposes:

■ Partitioning data into groups (for example, customer segmentation or group-
ing customers by similar habits)

■ Image segmentation (recognizing different regions in an image)
■ Detecting anomalies
■ Text categorization or recognizing topics in a set of articles
■ Grouping search results (for example, the www.yippy.com search engine auto-

matically groups results by their categories)

The reason labels are missing from clustering datasets may be that it’s too expensive
and time consuming to label all the data (for example, when grouping search results)
or that clusters aren’t known in advance (for example, market segmentation) and you
want the algorithm to find the clusters for you so you can better understand the data. 
Spark offers implementations of the following clustering algorithms:

10 Rich Caruana et al., “An Empirical Evaluation of Supervised Learning in High Dimensions,” Cornell Univer-
sity, Ithaca, NY.
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■ K-means clustering
■ Gaussian mixture model
■ Power-iteration clustering

K-means clustering is the simplest and the most often used of the three. Unfortunately,
it has drawbacks: it has trouble handling non-spherical clusters and unevenly sized
clusters (uneven by density or by radius). It also can’t make efficient use of the one-hot-
encoded features you used in section 8.2.2. It’s often used for classifying text documents,
along with the term frequency-inverse document frequency (TF-IDF) feature-
vectorization method.11

 The Gaussian mixture model (or mixture of Gaussians) is a model-based cluster-
ing technique, which means each cluster is represented by a Gaussian distribution,
and the model is a mixture of these distributions. It performs soft clustering (modeling
a probability that an example belongs to a cluster), unlike k-means, which performs
hard clustering (modeling whether an example belongs to a cluster). Because the
Gaussian mixture model doesn’t scale well to datasets with many dimensions, we won’t
cover it here.

 Power-iteration clustering is a form of spectral clustering, and the math behind it is
too advanced for this chapter. Its implementation in Spark is based on the GraphX
library, which we’ll cover in the next chapter. 

 The rest of this section is devoted to k-means clustering. We’ll explain how k-means
clustering works, and then you’ll perform clustering on the handwritten digit dataset
you used before. 

8.4.1 K-means clustering

Let’s see how a k-means clustering algorithm works. Let’s say you have a set of exam-
ples in a two-dimensional dataset, shown in the top-left graph in figure 8.9, and you’d
like to group these examples into two clusters. 

 In the first step, the k-means clustering algorithm randomly chooses two points as
cluster centers. In the next step, distances from each of the centers to all points in the
dataset are calculated. The points are then assigned to the cluster they’re closest to.
Finally, mean points in each cluster are calculated, and these points become the new
cluster centers. 

 Then the distances to all points are calculated again, the points are assigned to the
clusters accordingly, and new cluster centers are calculated again. If the new cluster
centers didn’t move significantly, the process stops.

 At the end of this process, you have a set of cluster centers. You can classify each
new point as belonging to one of the clusters by calculating its distance from each
cluster center and picking the closest one.

11 For more information, see TF-IDF in the Spark documentation: http://mng.bz/4GE3.
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USING K-MEANS CLUSTERING IN SPARK

As you can see, the algorithm is indeed simple. Let’s see how that works in Spark.
Each image of handwritten digits, which you’ll use for this example, is represented as
a series of numbers (dimensions) representing image pixels. As such, each image is a
point in an n-dimensional space. K-means clustering can group together images that
are close in this space. In an ideal case, all of these will be images of the same digit.

 To implement k-means, you first have to make sure your dataset is standardized (all
dimensions are of comparable ranges), because k-means clustering doesn’t work well
with non-standardized data. The dimensions of the handwritten digit dataset are
already standardized (all the values go from 0 to 100), so you can skip this step now. 

 With clustering algorithms, there’s no point in having a validation and a training
dataset. So, you’ll use the entire dataset contained in the penlpoints DataFrame you
used before. The KMeans estimator can be parameterized with the following parameters:

■ k—Number of clusters to find (default is 2)
■ maxIter—Maximum number of iterations to perform (required).
■ predictionCol—Prediction column name (default is “prediction”)

Initial data set Step 1 – choosing random centers

Step 2 – calculating distances Step 3 – updating center points

Figure 8.9 Running the k-means clustering algorithm. In the first step, two points are randomly chosen 
as cluster centers. The distances from these centers to all points in the dataset are calculated in the 
second step, and the points are assigned to the cluster they’re closest to. In the third step, new cluster 
centers are calculated; the process is repeated until cluster centers don’t move significantly.
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■ featuresCol—Features column name (default is “features”)
■ tol—Convergence tolerance
■ seed—Random seed value for cluster initialization

The number of clusters is 10, of course (there are 10 digits in the dataset), and the
maximum number of iterations can be set to several hundred. A larger number of
iterations usually isn’t needed. 

 If you suspect you need more iterations, turn on the logging of informational mes-
sages (check chapter 2 if you need a refresher) and see if the message “KMeans
reached the max number of iterations” appears. If you see that message, you need
more iterations.

 To train a k-means model, use the following lines:

import org.apache.spark.ml.clustering.KMeans
val kmeans = new KMeans()
kmeans.setK(10)
kmeans.setMaxIter(500)

val kmmodel = kmeans.fit(penlpoints)

EVALUATING THE MODEL

Evaluating clustering models can be difficult because of the nature of the clustering
problem: clusters aren’t known in advance, and it isn’t easy to separate good and bad
clusters. There’s no silver bullet for solving this problem, but several measures can
help: cost value, average distance from the center, and the contingency table. 

 The cost value (a measure also called distortion), calculated as the sum of the
squared distances from all points to the matching cluster centers, is the main metric
for evaluating k-means models.

 The KMeansModel class has a computeCost(DataFrame) method you can use to
compute the cost on the dataset:

scala> kmmodel.computeCost(penlpoints)
res0: Double = 4.517530920539787E7

This value is dependent on the dataset and can be used to compare different k-means
models on the same dataset, but it doesn’t provide an intuitive way of understanding
how well the model is doing overall. And how do you put this huge value into context?
Average distance from the center may be a bit more intuitive. To obtain it, take the square
root of the cost divided by the number of examples in the dataset:

scala> math.sqrt(kmmodel.computeCost(penlpoints)/penlpoints.count())
res2: Double = 66.5102817068467

This way, the value is comparable to the maximum value the features can have
(100). 
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 At times, in clustering problems, some of the examples can be manually labeled. If
that’s the case, you can compare these original labels with the clusters they end up in.
With the handwritten digit dataset, you have the labels available, and you can com-
pare them with the predicted labels. But the predicted labels (cluster indexes) were
constructed by the k-means clustering algorithm independently of the original labels.
Label 4 (handwritten digit 4), for example, doesn’t have to correspond to cluster 4.
How do you match the two? Well, just find the cluster with the most examples for a
particular label in it, and assign the label to that cluster.

 We wrote a simple printContingency method (you can find it in our online repos-
itory) that will print the so-called contingency table with the original labels as rows and
k-means cluster indexes as columns. The cells in the table contain counts of examples
belonging both to the original label and the predicted cluster. 

 The method takes an RDD containing tuples with predictions and the original
labels (both double values). Before using the method, you need to obtain an RDD
with this information. You can do it like this:

val kmpredicts = kmmodel.transform(penlpoints)

The printContingency method also takes an array of label values it will use for con-
structing the table (it assumes both cluster indexes and original labels are from the
same range). For each original label, the method also finds the cluster where the label
is most frequent, prints the mappings found, and calculates purity, which is a measure
defined as a ratio of correctly classified examples. Finally:

printContingency(kmpredicts, 0 to 9)
orig.class|Pred0|Pred1|Pred2|Pred3|Pred4|Pred5|Pred6|Pred7|Pred8|Pred9
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
     0    |    1|  379|   14|    7|    2|  713|    0|    0|   25|    2
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
     1    |  333|    0|    9|    1|  642|    0|   88|    0|    0|   70
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
     2    | 1130|    0|    0|    0|   14|    0|    0|    0|    0|    0
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
     3    |    1|    0|    0|    1|   24|    0| 1027|    0|    0|    2
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
     4    |    1|    0|   51| 1046|   13|    0|    1|    0|    0|   32
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
     5    |    0|    0|    6|    0|    0|    0|  235|  624|    3|  187
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
     6    |    0|    0| 1052|    3|    0|    0|    0|    1|    0|    0
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
     7    |  903|    0|    1|    1|  154|    0|   78|    4|    1|    0
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
     8    |   32|  433|    6|    0|    0|   16|  106|   22|  436|    4
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
     9    |    9|    0|    1|   88|   82|   11|  199|    0|    1|  664
----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
Purity: 0.6672125181950509
Predicted->original label map: Map(8.0 -> 8.0, 2.0 -> 6.0, 5.0 -> 0.0, 
4.0 -> 1.0, 7.0 -> 5.0, 9.0 -> 9.0, 3.0 -> 4.0, 6.0 -> 3.0, 0.0 -> 2.0)
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Purity is calculated as the sum of the largest values in each column divided by the total
number of examples12 (sum of the values in all cells). 

 There are some problems with this table. The cluster 0 column has two values that
are largest in their rows (labels 2 and 7). That means both labels 2 and 7 are mostly clus-
tered in cluster 0. Because label 2 is more frequent in cluster 0, 2 was chosen to be its
label, and now label 7 has no matching cluster. There’s also a problem with cluster 1.
It holds examples with labels that are more frequent in other tables, so it has no label
at all. Similar to cluster 0, cluster 1 also contains two equally frequent labels: label 0 and
label 8. 

 What happened? Well, the algorithm confused 8s with 0s and 7s with 2s. These dig-
its look similar, so it’s no surprise the algorithm could have trouble recognizing the
differences between them. There isn’t much you can do about this. You can only try to
“correct” the dataset by creating features from the images of handwritten digits in a
different way. 

 But in a real-life situation, you most likely wouldn’t have this option. You would
only have a set of cluster centers and sets of clustered samples. Interpreting the mean-
ings of the clusters depends on the nature of the data. 

DETERMINING THE NUMBER OF CLUSTERS

In a real-life situation, you’d also have an additional question: what number of clusters
should you use? Sometimes you have a rough idea for the number of clusters, but
often you don’t. In these cases, you can use the elbow method. 

 It goes like this. You gradually increase the number of clusters, train a model for
each number, and look at the cost of each model. The cost will inevitably decrease
because as the clusters increase in number, they keep getting smaller and smaller, and
the distances from the centers decrease. But if you plot the cost as a function of number
of clusters K, you may notice a few “elbows” where the slope of the function changes
abruptly. K numbers corresponding to these points are good candidates for use.

 We plotted the costs of models trained on the pen dataset with the numbers of
clusters from 2 to 30. The result is shown in figure 8.10.

 The curve on the figure is mostly smooth. The only slight elbow is at the K value
of 15 and then at 36. But these aren’t so obvious. 

 There is much debate about how to choose the right number of clusters. Several
methods have been proposed, but none of them is available in Spark out of the box.
For example, silhouette, information criterion, information theoretic, and cross vali-
dation are some of the proposed approaches. A great overview is available in the
paper by Trupti M. Kodinariya and Dr. Prashant R. Makwana.13

12 Purity is equal to precision (and accuracy), and the contingency table contains the same values as the confu-
sion matrix you used for classification.

13 Trupti M. Kodinariya and Dr. Prashant R. Makwana, “Review on Determining Number of Cluster in K-means
Clustering,” International Journal of Advance Research in Computer Science and Management Studies 1, no. 6
(November 2013), http://mng.bz/k2up.

 

http://mng.bz/k2up


252 CHAPTER 8 ML: classification and clustering

8.5 Summary
■ The Spark ML library generalizes machine learning operations and streamlines

machine learning processes.
■ Spark ML introduces several new abstractions—estimators, transformers, and

evaluators—that can be combined to form pipelines. All four are parameterized
in a general way with ML parameters.

■ The goal of classification is to classify input examples into two or more classes.
■ Logistic regression outputs probabilities that a certain example belongs to a

certain class using a logistic function.
■ Missing data can be dealt with by removing columns, by removing rows, by set-

ting missing data to the most common value, or by predicting the missing val-
ues using a separate model.

■ Categorical values can be one-hot-encoded so that a column is expanded to as
many columns as there are distinct values in it; thus, for a single row, only one
of the columns contains a 1 and all the others contain 0s.

■ VectorAssembler combines several columns into one column containing all
values in a Vector.

■ Area under the precision and recall (PR) curve is one of the metrics for evaluat-
ing classification models.

■ Area under the receiver operating characteristic (ROC) curve is another metric
for evaluating classification models.

■ K-fold cross-validation validates the performance of models more reliably
because it validates the model several times and takes the average as the final
result.
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■ Multiclass logistic regression classifies examples into more than two classes. The
results are evaluated with the MulticlassMetrics class. 

■ The decision-trees algorithm uses a tree-like set of user-defined or learned rules
to classify input examples based on their features values.

■ Impurity and information gain are used in decision trees to decide how to split
the dataset.

■ The decision-tree structure can be examined and visualized.
■ Random forests train a certain number of decision trees on data randomly sam-

pled from the original dataset and averages the results.
■ K-means clustering forms clusters by calculating the distances of data points

from cluster centers and moving the cluster centers to the average position in
the cluster. It stops when the cluster centers stop moving significantly.

■ A contingency table can be used to visualize the results of clustering.
■ An appropriate number of clusters to use can sometimes be determined using

the elbow method.
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Connecting
 the dots with GraphX

This chapter completes your tour of Spark components with an overview of
GraphX, Spark’s graph-processing API. In this chapter, we’ll show you how to use
GraphX and give you examples of using graph algorithms in Spark. These include
shortest paths, page rank, connected components, and strongly connected compo-
nents. If you’re interested in learning about other algorithms available in Spark
(triangle count, LDA, and SVD++), or more about GraphX in general, Michael
Malak and Robin East go into much more detail in their book GraphX in Action
(Manning, 2016), which we highly recommend.

This chapter covers
■ Using the GraphX API
■ Transforming and joining graphs
■ Using GraphX algorithms
■ Implementing the A* search algorithm with the 

GraphX API
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9.1 Graph processing with Spark
A graph, as a mathematical concept of linked objects, consists of vertices (objects in the
graph) and edges that connect the vertices (or links between the objects). In Spark,
edges are directed (they have a source and a destination vertex), and both edges and
vertices have property objects attached to them. For example, in a graph containing
data about pages and links, property objects attached to the vertices may contain
information about a page’s URL, title, date, and so on, and property objects attached
to the edges may contain a description of the link (contents of an <a> HTML tag).

 Once presented as a graph, some problems become easier to solve; they give rise
naturally to graph algorithms. For example, presenting hierarchical data can be com-
plicated using traditional data-organization methods, such as relational databases, and
can be simplified using graphs. In addition to using them to represent social networks
and links between web pages, graph algorithms have applications in biology, com-
puter chip design, travel, physics, chemistry, and other areas.

 In this section, you’ll learn how to construct and transform graphs using GraphX.
You’ll build an example graph representing a social network (shown in figure 9.1)
consisting of seven vertices and nine edges. In this graph, vertices represent people,
and edges represent relationships between them. Each vertex has a vertex ID (a num-
ber in a circle) and vertex properties (information about the person’s name and age)
attached to it. Edge properties contain information about a relation type. It would
make sense in this case to also draw edges in the opposite direction (because “married
to,” for example, works both ways), but we wanted to keep it simple and save some

Name: Milhouse
Age: 12

Name: Homer
Age: 39

Name: Bart
Age: 12

Name: Marge
Age: 39

Relation:
father

Relation:
friend

Relation:
married To

4

1 2

3

VertexEdge property Vertex propertyEdge

Relation:
mother

Figure 9.1 An example graph representing a simple social network involving the Simpsons 
family (before Maggie was born). The numbered circles are graph vertices, and the solid lines 
connecting them are graph edges. The properties attached to vertices (with the dotted lines) 
contain information about name and age. The properties attached to edges (also with the dotted 
lines) describe the type of relationship.
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memory space. This isn’t a limitation of Spark; Spark allows you to define several
edges between the same vertices, and they can be directed both ways. Let’s build this
graph using the Spark GraphX API. 

9.1.1 Constructing graphs using GraphX API

Graph (http://mng.bz/078M) is the main class in GraphX providing access to vertices
and edges and various operations for transforming graphs. Vertices and edges in
Spark are realized by two special RDD implementations:

■ VertexRDDs contain tuples, which consist of two elements: a vertex ID of type
Long and a property object of an arbitrary type.

■ EdgeRDDs contain Edge objects, which consist of source and destination vertex
IDs (srcId and dstId, respectively) and a property object of an arbitrary type
(attr field). 

CONSTRUCTING THE GRAPH

You can construct graphs with Spark in several ways. One way is to instantiate a Graph
object using an RDD containing tuples, consisting of a vertex ID and a vertex property
object, and using an RDD containing Edge objects. You’ll use this method to construct
the example graph from figure 9.1. First you need to import the required classes.
Open your Spark shell, and paste in the following line:

import org.apache.spark.graphx._

NOTE You can find the complete code for this chapter in our online reposi-
tory. But because the Spark GraphX API isn’t available in Python or Java, you
won’t find any Python or Java code there.

The Person case class holds properties of the nodes (edge properties are simple
strings):

case class Person(name:String, age:Int)

Next you construct the vertex and edge RDDs with the required vertex and edge
objects:

val vertices = sc.parallelize(Array((1L, Person("Homer", 39)), 
  (2L, Person("Marge", 39)), (3L, Person("Bart", 12)),
  (4L, Person("Milhouse", 12))))
val edges = sc.parallelize(Array(Edge(4L, 3L, "friend"), 
  Edge(3L, 1L, "father"), Edge(3L, 2L, "mother"),
  Edge(1L, 2L, "marriedTo")))

Finally, you construct the graph object:

val graph = Graph(vertices, edges)
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You can now access the graph’s vertices and edges properties and use other graph-
transformation and -manipulation methods that we’ll get to later:

scala> graph.vertices.count()
res0: Long = 4
scala> graph.edges.count()
res1: Long = 4

In section 9.4, we’ll show you several more methods for creating graphs in GraphX.

9.1.2 Transforming graphs

Let’s look at what you can do with graphs and how you can manipulate them. In this
section, we’ll show you how to map edges and vertices in order to add data to property
objects attached to them, or to transform them by calculating their new values. Then
we’ll show you how to send messages throughout a graph by aggregating them and by
using Spark’s implementation of Pregel, Google’s system for large-scale graph process-
ing. Finally, we’ll show you how to join and filter graphs.

 As we said, the main class for representing graphs in GraphX is Graph. But there’s
also the GraphOps class (http://mng.bz/J4jv), whose methods are implicitly added to
Graph objects. You need to consider both classes when figuring out which methods to
use. Some of the methods we’ll mention in this section come from Graph, and some
from GraphOps.

MAPPING EDGES AND VERTICES

Let’s say you need to change the edges of your graph object to make them instances of
the Relationship class (given in a moment) instead of strings as they are now. This is
just an example illustrating the concept, and the Relationship class is just a wrapper
around the String relation property. But you could add more information to the
edges this way, and you could later use this information for additional calculations.
For example, you could add information about when two people started their rela-
tionship and how often they meet.

 You can transform edge and vertex property objects with the mapEdges and
mapVertices methods. The mapEdges method requires a mapping function, which
takes a partition ID and an iterator of edges in the partition and returns the trans-
formed iterator containing a new edge property object (not a new edge) for each input
edge. The following code will do the job:

case class Relationship(relation:String)
val newgraph = graph.mapEdges((partId, iter) => 
    iter.map(edge => Relationship(edge.attr)))

newgraph now has Relationship objects as edge properties:

scala> newgraph.edges.collect()
res0: Array[org.apache.spark.graphx.Edge[Relationship]] = 
Array(Edge(3,1,Relationship(father)), ...)

 

http://mng.bz/J4jv
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TIP Another useful method for mapping edges is mapTriplets. It also maps
edge property objects to new ones, but the mapping function it expects
receives an EdgeTriplet object. An EdgeTriplet object, in addition to con-
taining srcId, dstId, and attr fields as Edge does, holds source and destina-
tion vertex property objects (srcAttr and dstAttr). You can use
mapTriplets when you need to calculate the contents of a new property
object as a function of the edge’s current property object and the properties
of the connected vertices.

Let’s say you want to attach to each person in your graph the number of children,
friends, and coworkers they have and add a flag indicating whether they’re married.
You first need to change the vertex property objects so they allow for storage of these
new properties. Let’s use the PersonExt case class for this:

case class PersonExt(name:String, age:Int, children:Int=0, friends:Int=0, 
  married:Boolean=false)

Now you need to change the graph’s vertices to use this new property class. The
mapVertices method maps vertices’ property objects and works similarly to mapEdges.
The mapping function you need to give to it takes a vertex ID and a vertex property
object and returns the new property object:

val newGraphExt = newgraph.mapVertices((vid, person) => 
  PersonExt(person.name, person.age))

Now all vertices in newGraphExt have these new properties, but they all default to 0, so
no person in the graph is married, has children, or has friends. How do you calculate
the right values? That’s where the aggregateMessages method comes in.

AGGREGATING MESSAGES

The aggregateMessages method is used to run a function on each vertex of a graph
and optionally send messages to its neighboring vertices. The method collects and
aggregates all the messages sent to each vertex and stores them in a new VertexRDD. It
has the following signature:

def aggregateMessages[A: ClassTag](
    sendMsg: EdgeContext[VD, ED, A] => Unit,
    mergeMsg: (A, A) => A,
    tripletFields: TripletFields = TripletFields.All)
  : VertexRDD[A]

You need to provide two functions, sendMsg and mergeMsg, and the tripletFields
property. 

 The sendMsg function receives an EdgeContext object for each edge in the graph
and, if necessary, uses the edge context to send messages to vertices. The EdgeContext
object contains IDs and property objects for source and destination vertices, the prop-
erty object for the edge, and two methods for sending messages to neighboring vertices:
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sendToSrc and sendToDst. The sendMsg function can use the edge context to decide
which, if any, message to send to each vertex. 

 The mergeMsg function aggregates messages destined for the same vertex. Finally,
the tripletFields argument specifies which fields should be provided as part of the
edge context. Possible values are static fields in the TripletFields class (None,
EdgeOnly, Src, Dst, and All). 

 Let’s use aggregateMessages to calculate additional properties in the PersonExt
objects (number of friends and children and the married flag), for each vertex of the
newGraphExt graph:

val aggVertices = newGraphExt.aggregateMessages(
  (ctx:EdgeContext[PersonExt, Relationship, 
      Tuple3[Int, Int, Boolean]]) => { 
    if(ctx.attr.relation == "marriedTo") 
      { ctx.sendToSrc((0, 0, true)); ctx.sendToDst((0, 0, true)); } 
    else if(ctx.attr.relation == "mother" || ctx.attr.relation == "father") 
      { ctx.sendToDst((1, 0, false)); }
    else if(ctx.attr.relation.contains("friend"))
      { ctx.sendToDst((0, 1, false)); ctx.sendToSrc((0, 1, false));}
  }, 
  (msg1:Tuple3[Int, Int, Boolean], 
      msg2:Tuple3[Int, Int, Boolean]) => 
   (msg1._1+msg2._1, msg1._2+msg2._2, msg1._3 || msg2._3)
)

The messages the sendMsg function sends to vertices are tuples containing the num-
ber of children (an Int), the number of friends (an Int), and whether the person is
married (a Boolean). These values are set to 1 (or true) only if the edge examined is
of an appropriate type. The second function (mergeMsg) adds up all the values per
vertex so that the resulting tuple contains the sums. 

 Because the marriedTo and friendOf relationships are represented with only one
edge (to save space) but are in reality bidirectional relationships, sendMsg in those
cases sends the same message to both source and destination vertices. Mother and
father relationships are unidirectional and are used for counting the number of chil-
dren, so those messages are sent only once. 

 The resulting RDD has seven elements as with the original VertexRDD, because all
the vertices received messages:

scala> aggVertices.collect.foreach(println)
(4,(0,1,false))
(2,(1,0,true))
(1,(1,0,true))
(3,(0,1,false))

The result is a VertexRDD, so your work isn’t done because you still don’t have the
resulting Graph. To update the original graph with these newly found values, you’ll
need to join the old graph with the new vertices.
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JOINING GRAPH DATA

To join the original graph and the new vertex messages, use the outerJoinVertices
function, which has the following signature:

def outerJoinVertices[U:ClassTag, VD2:ClassTag](other: RDD[(VertexId, U)])
  (mapFunc: (VertexId, VD, Option[U]) => VD2) : Graph[VD2, ED]

You need to provide two arguments: an RDD that contains tuples with vertex IDs and
new vertex objects, and a mapping function to combine old vertex property objects
(of type VD) and new vertex objects from the input RDD (of type U). If no object exists
in the input RDD for a particular vertex ID, the mapping function receives None. 

 The following statement will join your newGraphExt graph with the new informa-
tion from aggVertices:

val graphAggr = newGraphExt.outerJoinVertices(aggVertices)(
  (vid, origPerson, optMsg) => { optMsg match { 
    case Some(msg) => PersonExt(origPerson.name, origPerson.age, 
                                msg._1, msg._2, msg._3) 
    case None => origPerson
    }}
)

The mapping function copies the summed values from an input message into a new
PersonExt object, conserving the name and age properties, if an input message for a
vertex exists. It returns the original PersonExt object otherwise:

scala> graphAggr.vertices.collect().foreach(println)
(4,PersonExt(Milhouse,12,0,1,false))
(2,PersonExt(Marge,39,1,0,true))
(1,PersonExt(Homer,39,1,0,true))
(3,PersonExt(Bart,12,0,1,false))

The resulting graph is shown in figure 9.2.

Name: Milhouse
Age: 12
Children: 0
Friends: 1
Married: no

Name: Homer
Age: 39
Children: 1
Friends: 0
Married: yes

Name: Bart
Age: 12
Children: 0
Friends: 1
Married: no

Name: Marge
Age: 39
Children: 1
Friends: 0
Married: yes

Relation:
father

Relation:
friend

Relation:
married To

4

1 2

3

Relation:
mother

Figure 9.2 The transformed graph with additional vertex properties added. These were obtained using 
the aggregateMessages and outerJoinVertices methods.
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The previously described Graph methods, aggregateMessages and outerJoinVertices,
along with the mapping functions, are the bread and butter of graph operations in
GraphX. You’ll find yourself using them often in your GraphX applications.

 1

1 Grzegorz Malewicz et al., “Pregel: A System for Large-Scale Graph Processing,” https://kowshik.github.io/
JPregel/pregel_paper.pdf.

GraphX’s Pregel implementation
Pregel is Google’s system for large-scale graph processing.1 GraphX contains an im-
plementation of a Pregel-like API, which you can use to perform calculations similar
to aggregateMessages. But Pregel is more powerful, which is why it was used to im-
plement many of the graph algorithms in GraphX.

Pregel works by executing a sequence of iterations called supersteps. Each superstep
is similar to aggregateMessages in that the sendMsg function is invoked on edges
and the mergeMsg function is used to merge messages destined for the same vertex.
Additionally, a user-defined vertex program (vprog) is invoked for each vertex. The vprog
function receives the incoming message and computes a new value for the vertex.

The initial superstep is executed on all vertices, and subsequent supersteps are executed
only on those vertices that receive a message. sendMsg is invoked only for the outgoing
edges of the vertices that receive a message. The process stops if no new messages
are sent or the maximum number of iterations is attained. GraphX’s Pregel API is im-
plemented by the Pregel object, whose apply method has the following signature:

def apply[VD: ClassTag, ED: ClassTag, A: ClassTag]
   (graph: Graph[VD, ED],
    initialMsg: A,
    maxIterations: Int = Int.MaxValue,
    activeDirection: EdgeDirection = EdgeDirection.Either)
   (vprog: (VertexId, VD, A) => VD,
    sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
    mergeMsg: (A, A) => A)
  : Graph[VD, ED]

These are the parameters the method takes:

■ graph—Input graph on which to operate.
■ initialMsg—Message sent to all vertices in the first superstep.
■ maxIterations—Maximum number of supersteps to perform.
■ activeDirection—When to invoke the sendMsg function: on edges whose

source vertex received a message (EdgeDirection.Out), on edges whose des-
tination vertex received a message (EdgeDirection.In), if either source or des-
tination received a message (EdgeDirection.Either), or if both vertices
received a message (EdgeDirection.Both).

■ vprog—Vertex program function to invoke on each vertex. It receives the mes-
sage and potentially changes the content of a vertex.

■ sendMsg—Function that receives an EdgeTriplet and returns an iterator of
(vertex ID, message) tuples. These messages are sent to the specified vertices.

■ mergeMsg—Function to merge messages directed to the same vertex.

 

https://kowshik.github.io/JPregel/pregel_paper.pdf
https://kowshik.github.io/JPregel/pregel_paper.pdf
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SELECTING GRAPH SUBSETS

Another important operation on graphs is selecting only a part of a graph. Here, we’ll
show you three methods you can use to accomplish this:

■ subgraph—Selects vertices and edges based on supplied predicates
■ mask—Selects only the vertices present in another graph
■ filter—Combination of the previous two

Let’s select from graphAggr only those persons who have children. You can use the
subgraph method and give it predicates that vertices and edges have to satisfy in order
to be selected. This is subgraph’s signature:

def subgraph(
    epred: EdgeTriplet[VD, ED] => Boolean = (x => true),
    vpred: (VertexId, VD) => Boolean = ((v, d) => true))
  : Graph[VD, ED]

As you can see, the edge predicate function (epred) receives an EdgeTriplet object.
If it returns true, the particular edge will be included in the resulting graph. The ver-
tex predicate function (vpred) receives a vertex ID and its property object. If you omit
the vertex predicate function, the subgraph function keeps all the original vertices in
the new graph. Edges whose vertices no longer exist in the new graph are automati-
cally removed.

 To select only the persons who have children, you can do this:

val parents = graphAggr.subgraph(_ => true,
(vertexId, person) => person.children > 0)

If you look at the remaining edges and vertices, you’ll see that only Marge and Homer
are left, with the single edge that connects them:

scala> parents.vertices.collect.foreach(println)
(1,PersonExt(Homer,39,1,0,true))
(2,PersonExt(Marge,39,1,0,true))
scala> parents.edges.collect.foreach(println)
Edge(1,2,Relationship(marriedTo))

The mask function is another way to filter a graph in GraphX. With mask, you can proj-
ect a graph onto another graph and keep only those vertices and edges that also exist
in the second graph, not taking into account property objects of either graph. The
only argument mask takes is the second graph.

 The third function for filtering a graph’s contents is filter. It’s related to both
the subgraph and mask functions. It takes three arguments: a preprocessing function and
edge and vertex predicate functions (just like subgraph). The preprocessing function

Edges are automatically removed 
if the source or destination vertex 
no longer exists.

Keeps only people with 
one or more children
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lets you transform the original graph into another graph, which will then be pruned
using the supplied edge and vertex predicate functions. The resulting graph will be
used as a mask for the original graph. In other words, filter lets you combine two
steps into one and is useful only if you don’t need the preprocessed graph except for
masking the original one.

9.2 Graph algorithms
Graph algorithms are the reason GraphX exists in the first place: the whole point of
organizing data into graphs is to be able to use algorithms built specifically for work-
ing with graph data. Many problems can be elegantly solved using graph solutions. 

 In this section, we’ll cover several Spark graph algorithms: 

■ Shortest paths—Finds the shortest paths to a set of vertices
■ Page rank—Calculates the relative importance of vertices in a graph based on

the number of edges leading to and from them
■ Connected components—Finds distinct subgraphs, if they exist in a graph
■ Strongly connected components—Finds clusters of doubly connected vertices

As we’ve said, if you’re interested in learning about other graph algorithms Spark pro-
vides, such as triangle count, SVD++ (a collaborative filtering model), and Latent
Dirichlet allocation (LDA, a topic model for text documents), we recommend Spark
GraphX in Action by Michael Malak and Robin East (Manning, 2016).

9.2.1 Presentation of the dataset

In this section, you’ll switch to a different dataset. The dataset you’ll use can be
obtained from Stanford University.2 It was prepared by Robert West and Jure Leskovec
as part of their project “Human Wayfinding in Information Networks.” 3  The dataset is
based on an online game called Wikispeedia (http://snap.stanford.edu/data/
wikispeedia.html), also a part of a research project.4 The game contains a subset of
Wikipedia articles and challenges a user to connect two articles with as few links as
possible. The dataset archive (http://mng.bz/N2kf) contains several files, but for this
section you need only two: articles.tsv and links.tsv. The first contains unique article
names (one per line), and the second contains links with source and destination
article names separated by a tab character. Both files are available from our GitHub
repository (which you cloned in chapter 2).

 Using zipWithIndex, the following snippet loads article names, removes empty
lines and comment lines, and assigns a unique number (ID) to each article name
(assuming you’re running in your home directory, where you cloned the repository):

2 Wikispeedia Navigation Paths dataset: http://snap.stanford.edu/data/wikispeedia.html.
3 Robert West and Jure Leskovec, “Human Wayfinding in Information Networks,” 21st International World

Wide Web Conference (WWW), 2012.
4 Robert West, Joelle Pineau, and Doina Precup, “Wikispeedia: An Online Game for Inferring Semantic Dis-

tances between Concepts,” 21st International Joint Conference on Artificial Intelligence (IJCAI), 2009.

 

http://snap.stanford.edu/data/wikispeedia.html
http://snap.stanford.edu/data/wikispeedia.html
http://snap.stanford.edu/data/wikispeedia.html
http://mng.bz/N2kf
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val articles = sc.textFile("first-edition/ch09/articles.tsv").
  filter(line => line.trim() != "" && !line.startsWith("#")).
  zipWithIndex().cache()

Calling cache will make article names and IDs available for quick lookup. Loading
lines with links is analogous, except you don’t need to use zipWithIndex:

val links = sc.textFile("first-edition/ch09/links.tsv").
  filter(line => line.trim() != "" && !line.startsWith("#"))

Parse each link line to obtain the article names, and then replace each name with the
article ID by joining names with the articles RDD:

val linkIndexes = links.map(x => { 
    val spl = x.split("\t"); 
    (spl(0), spl(1)) }).
  join(articles).map(x => x._2).join(articles).map(x => x._2)

The resulting RDD contains tuples with source and destination article IDs. You can use
it to construct a Graph object:

val wikigraph = Graph.fromEdgeTuples(linkIndexes, 0)

You can see that there’s a slight difference in the number of articles and vertices in the
graph:

scala> wikigraph.vertices.count()
res0: Long = 4592
scala> articles.count()
res1: Long = 4604

That’s because some articles are missing from the links file. You can check that by
counting all the distinct article names in the linkIndexes RDD: 

scala> linkIndexes.map(x => x._1).union(linkIndexes.map(x => x._2)).
  distinct().count()
res2: Long = 4592

You’re now ready to get acquainted with the graph algorithms available in GraphX. 

9.2.2 Shortest-paths algorithm

For each vertex in a graph, the shortest-paths algorithm finds the minimum number of
edges you need to follow in order to reach the starting vertex. If you have a LinkedIn
account, you’ve undoubtedly seen an example of the shortest-paths algorithm. In the
section How You’re Connected, LinkedIn shows you the persons whom you can get
acquainted with through the person you’re looking at. 

 Spark implements the shortest-paths algorithm with the ShortestPaths object. It
has only one method, called run, which takes a graph and a Seq of landmark vertex IDs.
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The returned graph’s vertices contain a map with the shortest path to each of the land-
marks, where the landmark vertex ID is the key and the shortest-path length is the value.

 One of the challenges Wikispeedia presents is to connect the 14th Century and
Rainbow pages. In the paths_finished.tsv file, you’ll find examples of successfully com-
pleted challenges. Some people finished the challenge with six clicks and some with as
few as three clicks. Let’s see what Spark says is the minimum number of clicks you need:

 First, you need to find the vertex ID of the two pages:

scala> articles.filter(x => x._1 == "Rainbow" || x._1 == "14th_century").
  collect().foreach(println)
(14th_century,10)
(Rainbow,3425)

Then call ShortestPaths’s run method with wikigraph and one of the IDs in a Seq as
arguments:

import org.apache.spark.graphx.lib._
val shortest = ShortestPaths.run(wikigraph, Seq(10))

The shortest graph has vertices whose property objects are maps with distances to land-
marks. Now you only need to find the vertex corresponding to the Rainbow article:

scala> shortest.vertices.filter(x => x._1 == 3425).collect.foreach(println)
(3425,Map(1772 -> 2))

The actual minimum number of clicks is two; but ShortestPaths doesn’t give you the
path from one vertex to another, only the number of edges you need to reach it. 

 To find the vertices on the shortest path, you’d need to write your own implemen-
tation of the shortest-paths algorithm, which is beyond the scope of this book. But if
you need to take that road, GraphX in Action, which we mentioned earlier, can help
you. Another thing you can use as a reference is our implementation of the A* algo-
rithm given in section 9.3. 

9.2.3 Page rank

The page-rank algorithm was invented by Larry Page, cofounder of Google. It deter-
mines the importance of vertices in a graph by counting incoming edges. It’s been
widely used to analyze the relative importance of web pages in a web graph. It starts
by assigning each vertex a page rank (PR) value of 1. It divides this PR value by the
number of outgoing edges and then adds the result to the PR value of all neighbor-
ing vertices. This process is repeated until no PR value changes by more than the tol-
erance parameter.

 Because the PR value of a page is divided by the number of outgoing edges, the
page’s influence shrinks proportionally to the number of pages it references. The
highest-ranked page is the one that has the minimum number of outgoing links and
the maximum number of incoming links. 

 



266 CHAPTER 9 Connecting the dots with GraphX

 You can run the page-rank algorithm on a graph by calling its pageRank method
and passing in the tolerance parameter. The tolerance parameter determines the
amount the page-rank values can change and still be considered to converge. Smaller
values mean more accuracy, but the algorithm will also need more time to converge.
The result is a graph whose vertices contain the PR values: 

val ranked = wikigraph.pageRank(0.001)

Let’s see the 10 highest-ranked pages in the Wikispeedia subset of Wikipedia pages: 

val ordering = new Ordering[Tuple2[VertexId,Double]] { 
  def compare(x:Tuple2[VertexId, Double], y:Tuple2[VertexId, Double]):Int = 
    x._2.compareTo(y._2) }
val top10 = ranked.vertices.top(10)(ordering)

The top10 array now contains vertex IDs and their PR values of the 10 highest-ranked
pages, but you still don’t know to which pages those IDs belong. You can join this array
with the articles RDD to find out:

scala> sc.parallelize(top10).join(articles.map(_.swap)).collect.
  sortWith((x, y) => x._2._1 > y._2._1).foreach(println)
(4297,(43.064871681422574,United_States))
(1568,(29.02695420077583,France))
(1433,(28.605445025345137,Europe))
(4293,(28.12516457691193,United_Kingdom))
(1389,(21.962114281302206,English_language))
(1694,(21.77679013455212,Germany))
(4542,(21.328506154058328,World_War_II))
(1385,(20.138550469782487,England))
(2417,(19.88906178678032,Latin))
(2098,(18.246567557461464,India))

The first element of each tuple in the result is the vertex ID; the second element con-
tains the PR value and the page name. As you can see, the page about the United
States is the most influential page in the dataset.

9.2.4 Connected components

Finding connected components of a graph means finding subgraphs in which every ver-
tex can be reached from every other vertex by following the edges in the subgraph. A
graph is connected if it contains only one connected component and all of its vertices can
be reached from every other vertex. A graph with two connected components is shown
in figure 9.3: vertices from one connected component can’t be reached from the other.

 Finding connected components is important in many situations. For example, you
should check whether your graph is connected before running other algorithms,
because that may affect your results and skew your conclusions.

 To find connected components on a GraphX graph, you call its connected-
Components method (implicitly made available from GraphOps object). Connected
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components are represented by the lowest vertex ID in the connected component.
To use the Wikispeedia graph:

val wikiCC = wikigraph.connectedComponents()

Property objects of the wikiCC graph’s vertices contain the lowest vertex ID of the con-
nected component to which they belong. To find all the connected components in
the graph, you can find the distinct connected component IDs. To find page names of
those IDs, you can again join them with the articles RDD:

scala> wikiCC.vertices.map(x => (x._2, x._2)).
  distinct().join(articles.map(_.swap)).collect.foreach(println)
(0,(0,%C3%81ed%C3%A1n_mac_Gabr%C3%A1in))
(1210,(1210,Directdebit))

As you can see, the Wikispeedia graph has two separate clusters of web pages. The first
is identified by the vertex ID of the page about Áedán mac Gabráin and the second by
the vertex ID of the Direct Debit page. 

 Let’s see how many pages are in each cluster:

scala> wikiCC.vertices.map(x => (x._2, x._2)).countByKey().foreach(println)
(0,4589)
(1210,3)

The second cluster has only three pages, which means Wikispeedia is well connected. 

Connected
components

Figure 9.3 A graph with two connected components. Although they belong to the same 
graph, vertices from one connected component can’t be reached from the other.

 



268 CHAPTER 9 Connecting the dots with GraphX

9.2.5 Strongly connected components

Strongly connected components (SCCs) are subgraphs where all vertices are con-
nected to every other vertex in the subgraph (not necessarily directly). All vertices in
an SCC need to be reachable from each other (following the direction of the edges).
An example is given in figure 9.4, showing a graph with four strongly connected com-
ponents. Unlike connected components, SCCs can be connected to each other
through some of their vertices.

 SCCs have many applications in graph theory and other areas. As a practical exam-
ple, let’s consider LinkedIn again. SCCs in a LinkedIn graph are likely to occur in
small companies, on teams, or among lifelong friends, but aren’t likely to exist across
industries, such as IT and construction. 

 In Spark, the stronglyConnectedComponents method is also available from the
GraphOps object, implicitly added to Graph objects. You just need to give it the maxi-
mum number of iterations to perform:

val wikiSCC = wikigraph.stronglyConnectedComponents(100)

As with the connected-components algorithm, the vertices of the graph resulting from
the SCC algorithm contain the lowest vertex ID of the strongly connected component
to which they belong. 

 The wikiSCC graph contains 519 strongly connected components:

scala> wikiSCC.vertices.map(x => x._2).distinct.count
res0: Long = 519

Strongly
connected

components

Figure 9.4 A graph with four strongly connected components. Every vertex 
in each component is connected to every other vertex.
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Let’s see which ones are largest:

scala> wikiSCC.vertices.map(x => (x._2, x._1)).countByKey().
  filter(_._2 > 1).toList.sortWith((x, y) => x._2 > y._2).foreach(println)
(6,4051)
(2488,6)
(1831,3)
(892,2)
(1950,2)
(4224,2)
...

The largest SCC has 4,051 vertices, which is too many to display here. You can examine
the names of the pages belonging to the vertices in several smaller SCCs. For the three
next-largest SCCs found, members of the first SCC are lists of countries by continents
(those pages were changed in Wikipedia since the Wikispeedia dataset was con-
structed, and they no longer form an SCC):

scala> wikiSCC.vertices.filter(x => x._2 == 2488).
  join(articles.map(x => (x._2, x._1))).collect.foreach(println)
(2490,(2488,List_of_Asian_countries))
(2496,(2488,List_of_Oceanian_countries))
(2498,(2488,List_of_South_American_countries))
(2493,(2488,List_of_European_countries))
(2488,(2488,List_of_African_countries))
(2495,(2488,List_of_North_American_countries))
scala> wikiSCC.vertices.filter(x => x._2 == 1831).
  join(articles.map(x => (x._2, x._1))).collect.foreach(println)
(1831,(1831,HD_217107))
(1832,(1831,HD_217107_b))
(1833,(1831,HD_217107_c))
scala> wikiSCC.vertices.filter(x => x._2 == 892).
  join(articles.map(x => (x._2, x._1))).collect.foreach(println)
(1262,(892,Dunstable_Downs))
(892,(892,Chiltern_Hills))

The second SCC contains pages about a star (HD_217107) and its two planets. Mem-
bers of the third SCC are regions in England. 

9.3 Implementing the A* search algorithm
In this section, you’ll implement the A* (pronounced as A star) search algorithm for
finding the shortest path between two vertices in a graph. The A* algorithm is widely
popular because of its efficiency in path finding. The main reason to implement this
algorithm using the GraphX API in this chapter is to help you get a better understand-
ing of GraphX classes and methods. 

 Through the process, you’ll apply graph filtering, message aggregation, and join-
ing vertices—all the methods we talked about in the previous sections—to a real prob-
lem. And you’ll also learn about the A* search algorithm itself, of course.

 



270 CHAPTER 9 Connecting the dots with GraphX

9.3.1 Understanding the A* algorithm

The A* algorithm may seem complicated initially but is simple once you get the hang
of it. You need a start vertex and an end vertex; the A* algorithm finds the shortest
path between them. The algorithm works by calculating the cost of each vertex, rela-
tive to the start and end vertices, and then selecting the path containing the vertices
with the minimum cost. 

 We’ll illustrate how the A* algo-
rithm works using a simple 2D map
(see figure 9.5). The map contains a
grid with starting and ending squares
and a barrier between them. Imagine
this 2D map is represented as a graph,
where each square is a vertex con-
nected to its neighboring squares by
edges. Vertices aren’t connected diag-
onally, only horizontally and vertically. 

 The cost of each vertex is calculated
using two measures, shown in figure 9.5
with a dotted line and a dashed line.
The light gray square represents a ver-
tex for which the cost is being calcu-
lated. The dotted line is a path between
that vertex and the starting node (the
path traversed so far). The length of
that path is denoted by the letter G, and
in this example is equal to 2 because the
distance between two neighbors is
always 1 (each edge has a length, or
weight, of 1). 

 The dashed line is an estimated path between the vertex under consideration and
the end vertex. The length of that path is denoted by the letter H and is an estimation
of how far the end vertex is from the current vertex. In this case, the value H is calcu-
lated as the length of a straight line from a vertex to the destination, but other estima-
tion functions can be used too. 

 The final vertex cost, denoted by letter F, is calculated by summing up the G and H
values:

F = G + H
The estimation function is central to the A* algorithm, and you can’t use the A* algo-
rithm on graphs that don’t have an option of calculating the estimated distance
between two random vertices. The graph from section 9.1 is such a graph because you
can’t estimate distance between Marge and Milhouse. You can calculate the distance if

G

H

Start
vertex

Barrier (non-vertex
squares)

End vertex

Figure 9.5 2D map, which will be used to illustrate 
how the A* algorithm works. Its squares can be rep-
resented as nodes of a graph, with edges connecting 
the neighboring squares. The darker squares are bar-
riers. The goal of the A* algorithm is to find the short-
est path between the start and end nodes. The light 
gray square is the square for which the cost is being 
calculated. The dotted line is the path between the 
start vertex and the vertex under consideration. The 
dashed line is an estimated distance between the ver-
tex under consideration and the end vertex.

 



271Implementing the A* search algorithm

you know the path between them, but there’s no way to estimate it only by examining
the two vertices alone.

 Figure 9.6 shows the A* algorithm in action. The algorithm holds vertices in the open
and closed groups, and it keeps track of the current vertex. Squares in the closed group are
denoted with a light gray background. Squares in the open group have a white back-
ground with the calculated numbers written on them. The upper two numbers are the
G and H values, and the lower number is the final F value (the sum of G and H).

 In the first iteration of the algorithm, the starting vertex is the current vertex. Its G
value is equal to 0, and its H value isn’t used. In each iteration, the A* algorithm puts
the current vertex in the closed group and calculates the G, H, and F values of each of
its neighbors not in the closed group. If a neighbor already had its F value calculated
(which means it was in the open group), the old F value is compared with the new
one, and the smaller one is used. 

Iteration 1:

1, 4.2,
5.2

1, 3.1,
4.1

0
1, 2.8,

3.8
1, 4.5,

5.5

Iteration 2:

1, 4.2,
5.2

1, 3.1,
4.1

2, 3.6,
5.6

2, 2.2,
4.2

0
1, 2.8,

3.8
1, 4.5,

5.5

Iteration 3:

1, 4.2,
5.2

1, 3.1,
4.1

0
1, 2.8,

3.8

1, 2.2,
4.2

1, 4.5,
5.5

Iteration 4, 5, 6:

1, 4.2,
5.2

1, 3.1,
4.1

2, 3.6,
5.6

2, 3.6,
5.6

2, 2.2,
4.2

0
1, 2.8,

3.8
1, 4.5,

5.5

2, 3,
5

2, 4.1,
6.1

2, 3,
5

3, 2,
5

4, 1,
5

2, 4.1,
6.1

Figure 9.6 An A* algorithm finding a path from the starting vertex (square with the circle) to the end 
vertex (vertex with an X). In each iteration, the algorithm calculates F, G, and H values for neighbors 
of the current vertex. Once the values are calculated, the vertices belong to the open group. Next, the 
algorithm selects the vertex from the open group with the lowest F value as the next current vertex and 
puts it in the closed group (light gray squares ). Once the destination vertex is reached, the algorithm 
constructs the path to the starting vertex by following the lowest F values (darker gray squares). The 
black squares in the figure are barriers.
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Next, a vertex from the open group with the minimum F value is selected as the new
current vertex. If the new current vertex is the destination vertex, the final path is con-
structed by going back and following the vertices with minimal F values (or by using
the vertex parent information, as is the case with our implementation). 

 In figure 9.6, the final path is shown with the darker gray color. The darkest color
denotes the barrier.

9.3.2 Implementing the A* algorithm

Now, let’s build an implementation of the A* algorithm using the GraphX API. You’ll
use here almost all the methods you learned in previous sections.

 The complete algorithm is given in the following listing. You can also find it in our
online repository. We’ll go through it line by line. 

object AStar extends Serializable {
  import scala.reflect.ClassTag

  private val checkpointFrequency = 20

  def run[VD: ClassTag, ED: ClassTag](graph:Graph[VD, ED], 
    origin:VertexId, dest:VertexId, maxIterations:Int = 100,
    estimateDistance:(VD, VD) => Double,
    edgeWeight:(ED) => Double,
    shouldVisitSource:(ED) => Boolean = (in:ED) => true,
    shouldVisitDestination:(ED) => Boolean = (in:ED) => true):Array[VD] = 
  {
    val resbuf = scala.collection.mutable.ArrayBuffer.empty[VD]

    val arr = graph.vertices.flatMap(n => if(n._1 == origin || 
      n._1 == dest) List[Tuple2[VertexId, VD]](n) else List()).collect()
    if(arr.length != 2)
      throw new IllegalArgumentException("Origin or destination not found")
    val origNode = if (arr(0)._1 == origin) arr(0)._2 else arr(1)._2
    val destNode = if (arr(0)._1 == origin) arr(1)._2 else arr(0)._2
    var dist = estimateDistance(origNode, destNode)

    case class WorkNode(origNode:VD, g:Double=Double.MaxValue, 
      h:Double=Double.MaxValue, f:Double=Double.MaxValue, 
      visited:Boolean=false, predec:Option[VertexId]=None)
    var gwork = graph.mapVertices{ case(ind, node) => {
      if(ind == origin)
        WorkNode(node, 0, dist, dist)
      else
        WorkNode(node)
      }}.cache()

    var currVertexId:Option[VertexId] = Some(origin)
    var lastIter = 0
    for(iter <- 0 to maxIterations
      if currVertexId.isDefined; 

Listing 9.1 GraphX implementation of the A* search algorithm
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      if currVertexId.getOrElse(Long.MaxValue) != dest) 
    {
      lastIter = iter
      println("Iteration "+iter)
      gwork.unpersistVertices()
      gwork = gwork.mapVertices((vid:VertexId, v:WorkNode) => {
        if(vid != currVertexId.get)
          v
        else
          WorkNode(v.origNode, v.g, v.h, v.f, true, v.predec)
        }).cache()
      if(iter % checkpointFrequency == 0)
        gwork.checkpoint()
      val neighbors = gwork.subgraph(trip => trip.srcId == 
        currVertexId.get || trip.dstId == currVertexId.get)
      val newGs = neighbors.aggregateMessages[Double](ctx => {
          if(ctx.srcId == currVertexId.get && 
              !ctx.dstAttr.visited && shouldVisitDestination(ctx.attr)) {
            ctx.sendToDst(ctx.srcAttr.g + edgeWeight(ctx.attr))
          }
          else if(ctx.dstId == currVertexId.get && 
            !ctx.srcAttr.visited && shouldVisitSource(ctx.attr)) {
               ctx.sendToSrc(ctx.dstAttr.g + edgeWeight(ctx.attr))
          }}
        , (a1:Double, a2:Double) => a1, //never supposed to happen
        TripletFields.All)

      val cid = currVertexId.get
      gwork = gwork.outerJoinVertices(newGs)((nid, node, totalG) =>
        totalG match {
          case None => node
          case Some(newG) => {
            if(node.h == Double.MaxValue) { 
              val h = estimateDistance(node.origNode, destNode)
              WorkNode(node.origNode, newG, h, newG+h, false, Some(cid))
            }
            else if(node.h + newG < node.f) //the new f is less than old
            {
              WorkNode(node.origNode, newG, node.h, newG+node.h, false, 
                Some(cid))
            }
            else
              node
          }})
      val openList = gwork.vertices.filter(v => v._2.h < Double.MaxValue && 
        !v._2.visited)
      if(openList.isEmpty)
        currVertexId = None
      else {
        val nextV = openList.map(v => (v._1, v._2.f)).
          reduce((n1, n2) => if(n1._2 < n2._2) n1 else n2)
        currVertexId = Some(nextV._1)
      }
    }
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    if(currVertexId.isDefined && currVertexId.get == dest) {
      var currId:Option[VertexId] = Some(dest)
      var it = lastIter
      while(currId.isDefined && it >= 0) {
        val v = gwork.vertices.filter(x => x._1 == currId.get).collect()(0)
        resbuf += v._2.origNode
        currId = v._2.predec
        it = it - 1
      }
    }
    else
      println("Path not found!")
    gwork.unpersist()
    resbuf.toArray.reverse
  }
}

INITIALIZING THE ALGORITHM

You run the A* algorithm by calling the run method of the AStar object. The argu-
ments are described here.

■ graph—Graph on which to run the A*algorithm (required).
■ origin—Origin vertex ID (required).
■ dest—Destination vertex ID (required).
■ maxIterations—Maximum number of iterations to run. Default is 100.
■ estimateDistance—Function that takes two vertex property objects and esti-

mates the distance between them (required). 
■ edgeWeight—Function that takes an edge property object and calculates its

weight: a measure of how costly it would be to include the edge in the path
(required). 

■ shouldVisitSource—Function that takes an edge property object and deter-
mines whether to visit the source vertex. Defaults to true for all edges and verti-
ces. Can be used to simulate a bidirectional graph with unidirectional edges. 

■ shouldVisitDestination—Function that takes an edge property object and
determines whether to visit the destination vertex. Defaults to true for all edges
and vertices. Can be used to simulate a bidirectional graph with unidirectional
edges. 

The estimateDistance function returns an estimated distance between two vertices,
determined by their property objects. For example, as shown in figure 9.6, it takes X
and Y coordinates of two squares and calculates the distance between them using the
Pythagorean formula. The edgeWeight function determines the weight for each edge.
In figure 9.6, it always returned 1 because squares are connected only to their neigh-
boring squares, which are always one square away. shouldVisitSource and should-
VisitDestination determine whether to visit the edges’ source and destination
vertices, respectively. You can use this function to visit both vertices even if the graph is
unidirectional, or to determine whether an edge is one-way for only some edges. If
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your graph has edges going in both directions, then only shouldVisitDestination
should return true; shouldVisitSource should return false. 

 The run method first checks whether the supplied origin and destination vertex
IDs exist in the graph and estimates the starting distance to the destination:

val arr = graph.vertices.flatMap(n => 
  if(n._1 == origin || n._1 == dest) 
    List[Tuple2[VertexId, VD]](n) 
  else 
    List()).collect()
if(arr.length != 2)
  throw new IllegalArgumentException("Origin or destination not found")
val origNode = if (arr(0)._1 == origin) arr(0)._2 else arr(1)._2
val destNode = if (arr(0)._1 == origin) arr(1)._2 else arr(0)._2
var dist = estimateDistance(origNode, destNode)

It then prepares a working graph, which will be used to calculate F, G and H values.
The WorkNode case class is used for this purpose:

case class WorkNode(origNode:VD, 
  g:Double=Double.MaxValue, 
  h:Double=Double.MaxValue, 
  f:Double=Double.MaxValue, 
  visited:Boolean=false, 
  predec:Option[VertexId]=None)

WorkNode keeps the original node object in the origNode attribute, but it also contains
attributes for the G, H, and F values, the visited flag (if visited is true, the vertex is
in the closed group), and the ID of the predecessor vertex (predec attribute), used to
construct the final path. 

 The working graph (gwork) is created by mapping vertices to WorkNode objects.
The origin vertex’s F, G, and H values are also set in the process:

var gwork = graph.mapVertices{ case(ind, node) => {
  if(ind == origin)
    WorkNode(node, 0, dist, dist)
  else
    WorkNode(node)
  }}.cache()

Finally, the origin is set as the current vertex:

var currVertexId:Option[VertexId] = Some(origin)

All the prerequisites for the main loop are now complete. 

UNDERSTANDING THE MAIN LOOP

The currVertexId will be set to None if there are no more vertices in the open group
and the destination hasn’t been reached. It will be equal to the destination vertex ID if
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the destination has been reached. These are the two conditions for staying in the
main loop; the third condition is the number of iterations:

for(iter <- 0 to maxIterations
  if currVertexId.isDefined; 
  if currVertexId.getOrElse(Long.MaxValue) != dest) {

In the main loop, the following happens:

1 The current vertex is marked as visited (the equivalent of placing it in the
closed group).

2 The F, G, and H values of the current vertex’s neighboring vertices are calcu-
lated.

3 The next current vertex is selected from the open group.

Because the working graph is reused in the main loop, it’s cached, and then its verti-
ces are unpersisted before the next iteration. Edges aren’t modified, so they stay
cached.

MARKING THE CURRENT VERTEX AS VISITED

Because RDDs are immutable, you can’t change a vertex’s property object. You need to
transform the vertices RDD. This in itself is simple:

gwork = gwork.mapVertices((vid:VertexId, v:WorkNode) => {
  if(vid != currVertexId.get)
    v
  else
    WorkNode(v.origNode, v.g, v.h, v.f, true, v.predec)
  }).cache()

Caching and checkpointing graphs
Many graph algorithms need to reuse the same data repeatedly. It’s therefore helpful
to have your graph data readily available in memory. Graph’s cache method does this
for you by caching both vertices and edges. By default, Spark caches vertex and edge
data in memory only, but other storage levels can be specified when using the per-
sist method. It takes StorageLevel as an argument, which has several constants
defined (DISK_ONLY, MEMORY_AND_DISK, and so on). You can find more information
about storage levels at http://mng.bz/pM17.

But if a graph’s data is continually changed and cached, it will soon fill the available
memory space and force JVM to do garbage collection (GC) often. Spark can free the
cached data more efficiently than JVM can, so if you frequently persist graph data,
you should also unpersist it. To do this, you can use the unpersist method, which
uncaches both edges and vertices; or you can use the unpersistVertices method,
which uncaches only vertices. Both methods take a boolean argument that deter-
mines whether to block until data is uncached.

 

http://mng.bz/pM17
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You keep the work nodes of all edges unchanged, except the current vertex, for which
only the visited property is set to true.

CHECKPOINTING THE WORKING GRAPH

The working graph needs to be periodically checkpointed (every 20th iteration)
because its RDD DAG grows too large and gradually too expensive for calculation:

if(iter % checkpointFrequency == 0)
  gwork.checkpoint()

The working graph is continuously transformed, and if too many iterations are per-
formed, that can lead to stack-overflow errors. Periodic checkpointing avoids this by
persisting the DAG plan.

CALCULATING F, G, AND H VALUES

The F, G, and H values need to be calculated only for neighboring vertices, so you first
create a subgraph of your working graph containing only edges to and from the cur-
rent vertex:

val neighbors = gwork.subgraph(trip => trip.srcId == currVertexId.get || 
  trip.dstId == currVertexId.get)

Next, you send a message to each of those neighbors if they haven’t already been vis-
ited and if the shouldVisit* function says you should visit it. The message you send to
each node (using sendToSrc or sendToDst) contains the new G value for that vertex,
calculated using the provided edgeWeight function. The result (newGs) is a VertexRDD
containing only the new Gs as vertices’ values:

val newGs = neighbors.aggregateMessages[Double](ctx => {
    if(ctx.srcId == currVertexId.get && 
        !ctx.dstAttr.visited && shouldVisitDestination(ctx.attr)) {
      ctx.sendToDst(ctx.srcAttr.g + edgeWeight(ctx.attr))
    } else if(ctx.dstId == currVertexId.get  && !ctx.srcAttr.visited && 
          shouldVisitSource(ctx.attr)) {
        ctx.sendToSrc(ctx.dstAttr.g + edgeWeight(ctx.attr))
    }}, (a1:Double, a2:Double) => a1, 
    TripletFields.All)

In the next step, the graph containing the new G values is joined with the working
graph. If the new F value (new G plus H value) is less than the current F value, the ver-
tex is updated, and its predec (predecessor) field is set to the current vertex ID. For
those vertices that don’t have a new G value calculated in the newG graph (they aren’t
neighbors of the current vertex), the totalG value in the join function will be None,
and the function leaves the existing vertex object the same:

val cid = currVertexId.get
gwork = gwork.outerJoinVertices(newGs)((nid, node, totalG) =>
  totalG match {
    case None => node
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    case Some(newG) => {
      if(node.h == Double.MaxValue) { 
        val h = estimateDistance(node.origNode, destNode)
        WorkNode(node.origNode, newG, h, newG+h, false, Some(cid))
      } else if(node.h + newG < node.f) { 
      WorkNode(node.origNode, newG, node.h, newG+node.h, false, Some(cid))
      }
      else
        node
  } })

The new gwork graph now contains the updated F values for all vertices in the current
open group. All that’s left to do is to choose the next current vertex.

SELECTING THE NEXT CURRENT VERTEX

To find the next current vertex, first select only the vertices in the open group:

val openList = gwork.vertices.filter(v => 
    v._2.h < Double.MaxValue && !v._2.visited)

If the open group is empty, the destination vertex can’t be reached. Otherwise, the
vertex with the smallest F value is found:

if(openList.isEmpty)
  currVertexId = None
else {
  val nextV = openList.map(v => (v._1, v._2.f)).
    reduce((n1, n2) => if(n1._2 < n2._2) n1 else n2)
  currVertexId = Some(nextV._1)
}

COLLECTING THE FINAL PATH VERTICES

Finally, after the main loop finishes and the destination is reached, the current-
VertexId is equal to the destination vertex ID. The A* algorithm then follows the
predec fields of each vertex, takes the corresponding vertex property objects, and
puts them in the final collection (resbuf, a Scala mutable ArrayBuffer):

if(currVertexId.isDefined && currVertexId.get == dest) {
  println("Found!")
  var currId:Option[VertexId] = Some(dest)
  var it = lastIter
  while(currId.isDefined && it >= 0) {
    val v = gwork.vertices.filter(x => x._1 == currId.get).collect()(0)
    resbuf += v._2.origNode
    currId = v._2.predec
    it = it - 1
  }
}

The contents of the resbuf is then reversed and returned as the final shortest path:

resbuf.toArray.reverse
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9.3.3 Testing the implementation

Let’s test the implementation on a simple, easy-to-visualize dataset. The graph you’ll
use connects points in a three-dimensional space. Each vertex in the graph contains
X, Y, and Z coordinates. You’ll use the following case class to denote the points:

case class Point(x:Double, y:Double, z:Double)

And you’ll create the graph by specifying the points manually:

val vertices3d = sc.parallelize(Array((1L, Point(1,2,4)), 
  (2L, Point(6,4,4)), (3L, Point(8,5,1)), (4L, Point(2,2,2)),
  (5L, Point(2,5,8)), (6L, Point(3,7,4)), (7L, Point(7,9,1)), 
  (8L, Point(7,1,2)), (9L, Point(8,8,10)),
  (10L, Point(10,10,2)), (11L, Point(8,4,3)) ))
val edges3d = sc.parallelize(Array(Edge(1, 2, 1.0), Edge(2, 3, 1.0), 
  Edge(3, 4, 1.0), Edge(4, 1, 1.0), Edge(1, 5, 1.0), Edge(4, 5, 1.0), 
  Edge(2, 8, 1.0), Edge(4, 6, 1.0), Edge(5, 6, 1.0), Edge(6, 7, 1.0), 
  Edge(7, 2, 1.0), Edge(2, 9, 1.0), Edge(7, 9, 1.0), Edge(7, 10, 1.0), 
  Edge(10, 11, 1.0), Edge(9, 11, 1.0 ) ))
val graph3d = Graph(vertices3d, edges3d)

The corresponding points and the edges between them are shown in figure 9.7. 
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Figure 9.7 The example graph used to test the A* algorithm implementation. The vertices of the graph 
are points in three-dimensional space. The shortest path from vertex 1 to vertex 10 is shown with a thick 
line. (The graphic was drawn using Python’s matplotlib library.)
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The edges of the graph all have a value of 1. The calcDistance3d function calculates
distances between two points in three-dimensional space:

val calcDistance3d = (p1:Point, p2:Point) => {
    val x = p1.x - p2.x
    val y = p1.y - p2.y
    val z = p1.z - p2.z
    Math.sqrt(x*x + y*y + z*z)
}

You can use this function to map edges and calculate the real distance between the
vertices each edge connects:

val graph3dDst = graph3d.mapTriplets(t => 
  calcDistance3d(t.srcAttr, t.dstAttr))

Because the A* algorithm uses checkpointing (covered in chapter 4), before running
this algorithm, set the Spark checkpointing directory:

sc.setCheckpointDir("/spark/checkpoint/directory")

Now you can run the A* algorithm on the graph3dDst graph. The same
calcDistance3d function can be used to calculate H values (the distance from a ver-
tex to the destination vertex). The function that calculates edge weights can return
the property object attached to each vertex (because you just calculated the weight of
each edge and graph3dDst already contains them). 

 Let’s calculate the shortest path between vertices 1 and 10:

scala> AStar.run(graph3dDst, 1, 10, 50, calcDistance3d, (e:Double) => e)
res0: Array[Point] = Array(Point(1.0,2.0,4.0), Point(6.0,4.0,4.0), 
Point(7.0,9.0,1.0), Point(10.0,10.0,2.0))

The resulting shortest path is shown with a thick line in figure 9.7.

9.4 Summary
■ A graph is a mathematical concept of linked objects, used to model relations

between them.
■ Graphs consist of vertices (nodes in a graph) and edges that connect the verti-

ces. In Spark, edges are directed, and both edges and vertices have property
objects attached to them.

■ In Spark, vertices and edges are realized by two special RDD implementations:
VertexRDD and EdgeRDD. 

■ You can construct a graph object with an RDD containing tuples with vertex IDs
and vertex property objects, and an RDD containing Edge objects.
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■ You can transform graph objects using the mapEdges, mapVertices, and map-
Triplets methods to add more information to the edges and vertices or to
transform property objects attached to them.

■ Using the aggregateMessages method, you can run a function on each vertex
of a graph and optionally send messages to its neighboring vertices, collecting
and aggregating all the messages sent to each vertex in a new VertexRDD. 

■ You can join two graphs using the outerJoinVertices method. aggregate-
Messages and outerJoinVertices, along with the mapping functions, are the
bread and butter of graph operations in GraphX. You’ll use them often in your
GraphX applications.

■ GraphX contains an implementation of a Pregel-like API. It also functions by
sending messages throughout the graph.

■ Graphs can be filtered using the subgraph, mask, and filter functions.
■ The shortest-paths algorithm finds the shortest paths from a set of vertices to

every other vertex in a graph. You can use it for various tasks, such as finding
the smallest number of links you need to follow from one page to another.

■ Page rank finds the relative importance of a vertex based on the number of
edges going in or out of the vertex. You can use it to find the most influential
nodes in a graph (such as web pages and the links between them, or people in a
social network).

■ The connected-components algorithm finds distinct, disjoint subgraphs of a
graph.

■ The strongly connected components algorithm finds clusters of doubly con-
nected vertices.

■ The A* search algorithm is a quick algorithm to find paths. We presented a
GraphX implementation of the A* algorithm for educational purposes.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Part 3

Spark ops

Using Spark isn’t just about writing and running Spark applications. It’s
also about configuring Spark clusters and system resources to be used efficiently
by applications. The necessary concepts and configuration options for running
Spark applications on Spark standalone, Hadoop YARN, and Mesos clusters are
explained in this part of the book. 

 Chapter 10 explores Spark runtime components, Spark cluster types, job and
resource scheduling, configuring Spark, and the Spark web UI. These are con-
cepts common to all cluster managers that Spark can run on: the Spark stand-
alone cluster, YARN, and Mesos. The two local modes are also explained in
chapter 10.

 You’ll learn about the Spark standalone cluster in chapter 11: its compo-
nents, how to start it and run applications on it, and how to use its web UI. Spark
History Server, which keeps details about previously run jobs, is also discussed.
You’ll also learn how to use Spark’s scripts to start up a Spark standalone cluster
on Amazon EC2.

 Chapter 12 goes through the specifics of setting up, configuring, and using
YARN and Mesos clusters for running Spark applications. 
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Running Spark

In previous chapters, we mentioned different ways to run Spark. In this and the
next two chapters, we’ll discuss ways to set up a Spark cluster. A Spark cluster is a set
of interconnected processes, usually running in a distributed manner on different
machines. The main cluster types that Spark runs on are YARN, Mesos, and Spark
standalone. Two other runtime options, local mode and local cluster mode,
although the easiest and quickest methods of setting up Spark, are used mainly for
testing purposes. The local mode is a pseudo-cluster running on a single machine,
and the local cluster mode is a Spark standalone cluster that’s also confined to a
single machine. If all this sounds confusing, don’t worry. We’ll explain these con-
cepts in this chapter one step at a time.

This chapter covers
■ Spark runtime components
■ Spark cluster types
■ Job and resource scheduling
■ Configuring Spark
■ Spark web UI
■ Running Spark on the local machine
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 In this chapter, we’ll also describe common elements of the Spark runtime archi-
tecture that apply to all the Spark cluster types. For example, driver and executor pro-
cesses, as well as Spark context and scheduler objects, are common to all Spark
runtime modes. Job and resource scheduling also function similarly on all cluster
types, as do usage and configuration for the Spark web UI, used to monitor the execu-
tion of Spark jobs. 

 We’ll also show you how to configure a runtime instance of Spark, which is similar
for all cluster types. The number of different configuration options and different run-
time modes can be bewildering; we’ll explain and list the usage of the most important
parameters and configuration options. Familiarity with these common concepts will
help you understand specific cluster types in the following two chapters and is very
important if you want to control how your Spark programs run.

10.1 An overview of Spark’s runtime architecture
When talking about the Spark runtime architecture, we can distinguish the specifics of
various cluster types and the typical Spark components shared by all. The next two chap-
ters describe the details of Spark standalone, YARN, and Mesos clusters. Here we’ll
describe typical Spark components that are the same regardless of the runtime mode
you choose.

10.1.1 Spark runtime components

A basic familiarity with Spark runtime components will help you understand how your
jobs work. Figure 10.1 shows the main Spark components running in a cluster: client,
driver, and executors. 

Cluster

Driver JVM

Executor JVM

JVM heap

T TT

T
JVM heap

Scheduler
Client JVM

Spark
context

Spark
application

Executor JVM

JVM heap

TT

T

Figure 10.1 Spark 
runtime components in 
cluster-deploy mode. 
Application tasks run-
ning in task slots are la-
beled with a T. 
Unoccupied task slots 
are in white boxes.
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The physical placement of executor and driver processes depends on the cluster type
and its configuration. For example, some of these processes could share a single phys-
ical machine, or they could all run on different ones. Figure 10.1 shows only the logi-
cal components in cluster-deploy mode.

RESPONSIBILITIES OF THE CLIENT-PROCESS COMPONENT

The client process starts the driver program. The client process can be a spark-submit
script for running applications, a spark-shell script, or a custom application using
Spark API. The client process prepares the classpath and all configuration options for
the Spark application. It also passes application arguments, if any, to the application
running in the driver.

RESPONSIBILITIES OF THE DRIVER COMPONENT

The driver orchestrates and monitors execution of a Spark application. There is always
one driver per Spark application. You can think of the driver as a wrapper around the
application. The driver and its subcomponents—the Spark context and scheduler—
are responsible for the following: 

■ Requesting memory and CPU resources from cluster managers
■ Breaking application logic into stages and tasks
■ Sending tasks to executors
■ Collecting the results 

Chapter 4 describes the logic behind dividing the application’s work into stages and
tasks.

 There are two basic ways the driver
program can be run.

■ Cluster-deploy mode is shown in
figure 10.1. In this mode, the
driver process runs as a separate
JVM process in a cluster, and the
cluster manages its resources
(mostly JVM heap memory).

■ Client-deploy mode is shown in fig-
ure 10.2. In this mode, the
driver is running in the client’s
JVM process and communicates
with the executors managed by
the cluster. 

The deploy mode you choose affects
how you configure Spark and the
resource requirements of the client
JVM. We’ll talk about that in the follow-
ing chapters.

Cluster

Driver 

Client JVM

Executor JVM

JVM heap

T TT
JVM heap

Scheduler

Spark
context

Spark
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Executor JVM

JVM heap
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T

Figure 10.2 Spark runtime components in client-
deploy mode. The driver is running in the client’s JVM 
process.
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RESPONSIBILITIES OF THE EXECUTORS

The executors, which are JVM processes, accept tasks from the driver, execute those
tasks, and return the results to the driver. The example drivers in figures 10.1 and 10.2
use only two executors, but you can use a much larger number (some companies
today run Spark clusters with tens of thousands of executors).

 Each executor has several task slots for running tasks in parallel. The executors in
the figures have six task slots each. The slots in white boxes are vacant. You can set
the number of task slots to a value two or three times the number of CPU cores.
Although these task slots are often referred to as CPU cores in Spark, they’re imple-
mented as threads and don’t have to correspond to the number of physical CPU cores
on the machine. 

CREATION OF THE SPARK CONTEXT

Once the driver is started, it starts and configures an instance of SparkContext. You’ve
seen code examples of this in previous chapters. When running a Spark REPL shell,
the shell is the driver program. Your Spark context is already preconfigured and avail-
able as an sc variable. When running a standalone Spark application by submitting a
JAR file or by using the Spark API from another program, your Spark application starts
and configures the Spark context. There can be only one Spark context per JVM.

NOTE Although the configuration option spark.driver.allowMultiple-
Contexts exists, it’s misleading because using multiple Spark contexts is dis-
couraged. This option is used only for Spark internal tests, and we
recommend that you don’t use it in your user programs. If you do, you may
get unexpected results while running more than one Spark context in a sin-
gle JVM.

As you’ve seen in previous chapters, a Spark context comes with many useful methods
for creating RDDs, loading data, and so on. It’s the main interface for accessing the
Spark runtime.

10.1.2 Spark cluster types

Although Spark can run in local mode and in Spark standalone, YARN, and Mesos
clusters, one may be more applicable for your environment and use cases. In this sec-
tion, you’ll find the pros and cons of each cluster type. 

SPARK STANDALONE CLUSTER

A Spark standalone cluster is a Spark-specific cluster. Because a standalone cluster is
built specifically for Spark applications, it doesn’t support communication with an
HDFS secured with the Kerberos authentication protocol. If you need that kind of
security, use YARN to run Spark. A Spark standalone cluster, however, provides faster
job startup than those jobs running on YARN. We’ll cover Spark standalone clusters in
chapter 11.

 



289Job and resource scheduling

YARN CLUSTER

YARN is Hadoop’s resource manager and execution system. It’s also known as Map-
Reduce 2 because it superseded the MapReduce engine in Hadoop 1 that supported
only MapReduce jobs. 

 Running Spark on YARN has several advantages:

■ Many organizations already have YARN clusters of a significant size, along with
the technical know-how, tools, and procedures for managing and monitoring
them. 

■ YARN lets you run different types of Java applications, not just Spark, so you can
mix legacy Hadoop and Spark applications with ease. 

■ YARN provides methods for isolating and prioritizing applications among users
and organizations, functionality the standalone cluster doesn’t have.

■ It’s the only cluster type that supports Kerberos-secured HDFS.
■ You don’t have to install Spark on all nodes in the cluster. 

MESOS CLUSTER

Mesos is a scalable and fault-tolerant distributed systems kernel written in C++. Run-
ning Spark in a Mesos cluster also has advantages. Unlike YARN, Mesos supports C++
and Python applications. And unlike YARN and a standalone Spark cluster, which only
schedule memory, Mesos provides scheduling of other types of resources (for exam-
ple, CPU, disk space, and ports), although these additional resources aren’t used by
Spark in the current release (1.6). Mesos has additional options for job scheduling
that other cluster types don’t have (for example, fine-grained mode).

 Mesos is a “scheduler of scheduler frameworks” because of its two-level scheduling
architecture. The jury is still out on whether YARN or Mesos is better; but now, with
the Myriad project (http://myriad.incubator.apache.org/), you can run YARN on top
of Mesos to solve the dilemma. We’ll discuss YARN and Mesos in chapter 12.

SPARK LOCAL MODES

Spark local mode and Spark local cluster mode are special cases of a Spark standalone
cluster running on a single machine. Because these cluster types are easy to set up and
use, they’re convenient for quick tests, but they shouldn’t be used in a production
environment. 

 Furthermore, in these local modes, the workload isn’t distributed, thus providing
the resource restrictions of a single machine and suboptimal performance. Of course,
true high availability isn’t possible on a single machine. We’ll get into the details in
section 10.6. 

10.2 Job and resource scheduling
Resources for Spark applications are scheduled as executors (JVM processes) and CPU
(task slots) and then memory is allocated to them. The cluster manager of the cur-
rently running cluster and the Spark scheduler grant resources for execution of Spark
jobs. 

 

http://myriad.incubator.apache.org/
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 The cluster manager starts the executor processes requested by the driver and
starts the driver process itself when running in cluster-deploy mode. The cluster man-
ager can also restart and stop the processes it has started and can set the maximum
number of CPUs that executor processes can use.

 Once the application’s driver and executors are running, the Spark scheduler
communicates with them directly and decides which executors will run which tasks.
This is called job scheduling, and it affects CPU resource usage in the cluster. Indirectly,
it also affects memory use, because more tasks running in a single JVM use more of its
heap. The memory, however, isn’t directly managed at the task level like CPU is. Spark
manages the JVM heap memory allocated by the cluster manager by separating it into
several segments, as you’ll soon learn.

 A set of dedicated executors is allocated for each Spark application running in a
cluster. If several Spark applications (and, possibly, applications of other types) run in
a single cluster, they compete for the cluster’s resources. 

 Thus, two levels of Spark resource scheduling exist: 

■ Cluster resource scheduling for allocating resources for Spark executors of differ-
ent Spark applications

■ Spark resource scheduling for scheduling CPU and memory resources within a sin-
gle application

10.2.1 Cluster resource scheduling

Cluster resource scheduling (dividing cluster resources among several applications
running in a single cluster) is the responsibility of the cluster manager. This works
similarly on all cluster types supported by Spark, but with minor differences. 

 All supported cluster managers provide requested resources for each application
and free up the requested resources when the application closes. Mesos is unique
among the three cluster types: its fine-grained scheduler can allocate resources for
each task, instead of for each application. This way, an application can use resources
not currently requested by other applications. 

 For more details, we’ll explain standalone clusters in chapter 11 and Mesos and
YARN clusters in chapter 12. You’ll learn about Spark local modes at the end of this
chapter.

10.2.2 Spark job scheduling

Once the cluster manager allocates CPU and memory resources for the executors,
scheduling of jobs occurs within the Spark application. Job scheduling depends solely
on Spark and doesn’t rely on the cluster manager. It’s implemented by a mechanism
for deciding how to split jobs into tasks and how to choose which executors will exe-
cute them. As you saw in chapter 4, Spark creates jobs, stages, and tasks based on the
RDD’s lineage. The scheduler then distributes these tasks to executors and monitors
their execution. 
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 It’s also possible for several users (multiple threads) to use the same SparkContext
object simultaneously (SparkContext is thread-safe). In that case, several jobs of the
same SparkContext compete for its executors’ resources.

 Figures 10.1 and 10.2 showed each driver using a single scheduler for distributing
tasks. Actually, several scheduling objects are in play, but all of them can be abstracted
as a single one, as shown in the figures.

 Spark grants CPU resources in one of two ways: FIFO (first-in-first-out) scheduling
and fair scheduling. The Spark parameter spark.scheduler.mode sets the scheduler
mode, and it takes two possible values: FAIR and FIFO. (For details on setting Spark
parameters, see section 10.3.) 

FIFO SCHEDULING

FIFO scheduling functions on the principle of first-come, first-served. The first job that
requests resources takes up all the necessary (and available) executor task slots (assume
each job consists of only one stage).

 If there are 500 task slots in the cluster,
and the first job requires only 50, other jobs
can use the remaining 450 while the first job
runs. But if the first job requires 800 task
slots, all the other jobs must wait until the first
job’s tasks have released executor resources.
Figure 10.3 shows another example.

 In this example, a driver has 2 execu-
tors, each having 6 task slots, and 2 Spark
jobs to run. The first job has 15 tasks that
need to be executed, 12 of which are cur-
rently executing. The second job has 6
tasks, but they need to wait because job 1
was first to request the resources. Compare
this figure with the fair scheduler example
in figure 10.4. FIFO scheduling is the
default scheduler mode, and it works best
if your application is a single-user applica-
tion that is running only one job at a time. 

FAIR SCHEDULING

Fair scheduling evenly distributes available
resources (executor threads) among com-
peting Spark jobs in a round-robin fashion.
It’s a better option for multiuser applica-
tions running several jobs simultaneously.
Spark’s fair scheduler was inspired by
YARN’s fair scheduler (described in chap-
ter 12). Figure 10.4 provides an example.
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Figure 10.3 FIFO scheduling mode with two jobs 
and two executors. Tasks from job 2 must wait until 
all tasks from the job 1 finish executing.

Figure 10.4 Fair scheduling mode with two jobs 
and two executors. Tasks from job 2 execute in par-
allel with tasks from job 1, although job 1 was first 
to request resources.
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 The number of jobs and tasks in the example is the same as in the FIFO scheduling
example, so that you can see the difference between the two scheduling modes. Tasks
from job 2 are now executing in parallel with the tasks from job 1. Other tasks from
job 1 are waiting for free task slots. In this way, a shorter-running job (job 2) can run
immediately without having to wait for the longer-running job (job 1) to finish,
although job 2 wasn’t the first to request task slots.

 The fair scheduler has a concept of scheduler pools that is similar to YARN’s queues
covered in chapter 12. Each pool has weight value, which determines the number of
resources its jobs have in comparison to jobs from other pools, and a minimum share
value, which determines the number of CPU cores the pool has at its disposal at
all times.

 You specify the pool configuration by setting the spark.scheduler.allocation
.file parameter, which must point to an XML configuration file. You can find an exam-
ple XML configuration in the <SPARK_HOME>/conf/fairscheduler.xml.template file.
Using pools with the fair scheduler lets you set priorities for different users or job types.

SPECULATIVE EXECUTION OF TASKS

An additional option for configuring the way Spark dispatches tasks to executors is
speculative execution, which attempts to solve the problem of stragglers (tasks that are
taking longer to finish than other tasks at the same stage). One of your executors may
get bogged down with some other process, using up all of its CPU resources, which
prevents it from finishing your tasks in a timely fashion. In that case, if speculative exe-
cution is turned on, Spark may try to run the same task for that partition on some
other executor. If that happens and the new task finishes, Spark accepts the results of
the new task and discards the old task’s results. That way, a single malfunctioning
executor doesn’t cause the job to stall. 

 Speculative execution is turned off by default. Turn it on by setting the
spark.speculation parameter to true. When turned on, Spark checks every
spark.speculation.interval setting to determine whether any of the tasks need to
be restarted. 

 Two additional parameters determine the criteria for selecting which tasks need
to be started again. spark.speculation.quantile determines the percentage of
tasks that need to complete before speculation is started for a stage, and
spark.speculation.multiplier sets how many times a task needs to run before it
needs to be restarted.

 For some jobs (for example, those that write to external systems such as relational
databases), speculative execution isn’t desirable because two tasks can run simultane-
ously on the same partition and can write the same data to the external system.
Although one task may finish earlier than the other, it may be prudent to explicitly
disable speculation, especially if you don’t have complete control over Spark’s config-
uration affecting your application. 
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10.2.3 Data-locality considerations

Data locality means Spark tries to run tasks as close to the data location as possible.
This affects the selection of executors on which to run tasks and is, therefore, related
to job scheduling.

 Spark tries to maintain a list of preferred locations for each partition. A partition’s
preferred location is a list of hostnames or executors where the partition’s data resides so
that computation can be moved closer to the data. This information can be obtained
for RDDs that are based on HDFS data (HadoopRDD) and for cached RDDs. 

 In the case of RDDs based on HDFS data, the Hadoop API gets this information
from an HDFS cluster. In the case of cached RDDs, Spark itself tracks which executor
each partition is cached on.

 If Spark obtains a list of preferred locations, the Spark scheduler tries to run tasks
on the executors where the data is physically present so that no data transfer is
required. This can have a big impact on performance.

 There are five levels of data locality:

■ PROCESS_LOCAL—Execute a task on the executor that cached the partition.
■ NODE_LOCAL—Execute a task on the node where the partition is available.
■ RACK_LOCAL—Execute the task on the same rack as the partition if rack informa-

tion is available in the cluster (currently only on YARN).
■ NO_PREF—No preferred locations are associated with the task.
■ ANY—Default if everything else fails.

If a task slot with the best locality for the task can’t be obtained (that is, all the match-
ing task slots are taken), the scheduler waits a certain amount of time and then tries a
location with the second-best locality, and so on. The Locality Level column in the
Tasks table (section 10.4.2) on the Stage Details page of the Spark web UI shows the
locality level for a specific task.

 The amount of time the scheduler waits for each locality level before moving to
the next is determined by the spark.locality.wait parameter. The default is 30 sec-
onds. You can also set wait times for specific locality levels with spark.local-
ity.wait.process, spark.locality.wait.node, and spark.locality.wait.rack. If
any of these parameters is set to 0, the corresponding level is ignored, and tasks won’t
be assigned according to that level. 

 If you set any of these wait times to a much higher value, you’ll force the scheduler
to always honor the desired locality level by waiting until it becomes available. For
example, you can force HDFS data to be always processed on the node where the data
resides by increasing spark.locality.wait.node to 10 minutes. This also means a
wait of 10 minutes is theoretically possible if something gets stuck on the node in
question. Use a high value in situations where data locality is of critical importance
(that is, other nodes should not be allowed to process the data).
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10.2.4 Spark memory scheduling

We’ll now move away from CPU resource scheduling and see how Spark schedules
memory resources. We said previously that the cluster manager allocates memory for
Spark executor JVM processes (and for the driver process, if the driver is running in
cluster-deploy mode). Once memory is allocated, Spark schedules and manages its
usage with jobs and tasks. Memory problems can be frequent in Spark programs, so
it’s important to understand how Spark manages memory and how you can configure
its management.

MEMORY MANAGED BY THE CLUSTER MANAGER

You set the amount of memory you want allocated for your executors with the
spark.executor.memory parameter. (Setting Spark parameters is discussed in the
next section.) You can use the g (for gigabytes) and m (for megabytes) suffixes. The
default executor memory size is 512 MB (512m).

 The cluster manager allocates the amount of memory specified with the
spark.executor.memory parameter. Spark then uses and partitions that memory. 

MEMORY MANAGED BY SPARK

Spark reserves parts of that memory for cached data storage and for temporary shuffle
data. Set the heap for these with the parameters spark.storage.memoryFraction
(default 0.6) and spark.shuffle.memoryFraction (default 0.2). Because these parts
of the heap can grow before Spark can measure and limit them, two additional safety
parameters must be set: spark.storage.safetyFraction (default 0.9) and
spark.shuffle.safetyFraction (default 0.8). Safety parameters lower the memory
fraction by the amount specified, as shown in figure 10.5.

 The actual part of the heap used for storage by default is 0.6 × 0.9 (safety fraction
times the storage memory fraction), which equals 54%. Similarly, the part of the heap
used for shuffle data is 0.2 × 0.8 (safety fraction times the shuffle memory fraction),
which equals 16%. 

 You then have 30% of the heap
reserved for other Java objects and
resources needed to run tasks. You should,
however, count on only 20%.

SETTING THE DRIVER MEMORY

You set the memory for your driver with
the spark.driver.memory parameter.
This parameter applies when you’re
starting your application with spark-
shell and spark-submit scripts (both in
cluster and client-deploy modes).

 If you start a Spark context program-
matically from another application (cli-
ent mode), then that application contains
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your driver. Therefore, to increase the memory available to your driver, use the -Xmx Java
option to set the maximum size of the Java heap of the containing process.

10.3 Configuring Spark
You affect how Spark runs by setting configuration parameters. For example, you’ll
most likely need to adjust the memory for the driver and executors (as we discussed in
the previous section) or the classpath for your Spark application. Although specifying
these settings is straightforward and common to other similar frameworks, a few
details aren’t so obvious. It is worth spending a few moments to study the different
ways of configuring Spark.

 Here we’ll only describe the mechanisms for specifying various runtime parameters
and not the specific configuration options themselves. We explain specific parameters
throughout the book in the appropriate context. You can check the official documen-
tation (http://spark.apache.org/docs/latest/configuration.html) for a list of cur-
rently valid configuration parameters.

 You can specify Spark configuration parameters using several methods: on the com-
mand line, in Spark configuration files, as system environment variables, and from within
user programs. The SparkConf object, accessible through SparkContext, contains all cur-
rently applied configuration parameters. Parameters specified with the methods
described here all end up in the SparkConf object. As you’ve seen in previous chapters,
when using spark-shell, SparkContext is already instantiated, preconfigured, and avail-
able as the variable sc. You can get the SparkConf object with its getConf method:

scala> sc.getConf

10.3.1 Spark configuration file

You specify default Spark parameters in the <spark_home>/conf/spark-defaults.conf
file. If not otherwise specified, the values from this file are applied to your Spark run-
time, no matter what method you use to start Spark. 

 You can override the filename from the command line using the parameter
--properties-file. That way, you can maintain a different set of parameters for spe-
cific applications and specify a different configuration file for each one.

10.3.2 Command-line parameters

You can use command-line parameters as arguments to the spark-shell and spark-
submit commands. These parameters are passed to a SparkConf object in the REPL
shell (when using the spark-shell command) or in your program (when using the
spark-submit command). They take precedence over arguments specified in the
Spark configuration file.

NOTE As you probably recall from chapter 3, you have to specify a JAR file
containing your application when using spark-submit. Make sure you specify
any arguments you want to pass to your application after the JAR filename and
any Spark configuration parameters before the JAR filename. 

 

http://spark.apache.org/docs/latest/configuration.html
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The names of Spark command-line parameters are different than their counterparts
in Spark’s configuration file. Furthermore, only some Spark configuration parameters
have command-line versions. For example, these two lines accomplish the same thing
(set the driver’s memory to 16 GB):

spark-shell --driver-memory 16g
spark-shell --conf spark.driver.memory=16g

You can get a complete list of command-line parameters by running spark-shell (or
spark-submit) with the --help option.

 You can also use the --conf command-line argument to set any Spark configura-
tion parameter, using its name as it appears in the configuration file. Specify a sepa-
rate --conf argument for each configuration parameter you want to set. 

10.3.3 System environment variables

Some configuration parameters can be specified in the spark-env.sh file in the
<SPARK_HOME>/conf directory. You can also set their defaults as OS environment vari-
ables. Parameters specified using this method have the lowest priority of all configura-
tion methods.

 Most of these variables have a Spark configuration file counterpart. For example,
in addition to the two methods for setting the driver’s memory mentioned earlier, you
can specify it by setting the SPARK_DRIVER_MEMORY system environment variable. 

 You can speed up creation of the spark-env.sh file by changing the spark-
env.sh.template file that Spark provides. In that file, you can find all possible variables
that can be used in spark-env.sh. 

NOTE If you change spark-env.sh, and you’re running the Spark standalone
cluster, you should copy the file to all worker machines so that all executors
run with the same configuration.

10.3.4 Setting configuration programmatically

You can set Spark configuration parameters directly in your program by using the
SparkConf class. For example:

val conf = new org.apache.spark.SparkConf()
conf.set("spark.driver.memory", "16g")
val sc = new org.apache.spark.SparkContext(conf)

Note that the Spark configuration can’t be changed at runtime using this method, so
you need to set up the SparkConf object with all the configuration options you need
before creating the SparkContext object. Otherwise, SparkContext uses the default
Spark configuration, and your options aren’t applied. Any parameters set this way
have precedence over parameters set with the methods mentioned previously (they
have the highest priority). 
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10.3.5 The master parameter

The master parameter tells Spark which cluster type to use. When running spark-
shell and spark-submit commands, you define this parameter like this:

spark-submit --master <master_connection_url>

When specifying it from your application, you can do it in this way

val conf = org.apache.spark.SparkConf()
conf.set("spark.master", "<master_connection_url>")

or you can use SparkConf’s setMaster method:

conf.setMaster("<master_connection_url>")

<master_connection_url> varies according to the type of cluster used (which will be
duly explained).

 If you’re submitting your application as a JAR file, it’s best not to set the master
parameter in the application, because doing so reduces its portability. In that case,
specify it as a parameter to spark-submit so that you can run the same JAR file on dif-
ferent clusters by only changing the master parameter. Setting it in your application is
an option when you’re only embedding Spark as part of other functionalities. 

10.3.6 Viewing all configured parameters

To see the list of all options explicitly defined and loaded in the current Spark con-
text, call the sc.getConf.getAll method in your program (assuming sc is the Spark-
Context instance). For example, this snippet prints the current configuration options:

scala> sc.getConf.getAll.foreach(x => println(x._1+": "+x._2))
spark.app.id: local-1524799343426
spark.driver.memory: 16g
spark.driver.host: <your_hostname>
spark.app.name: Spark shell
...

To see the complete list of configured parameters affecting your Spark application,
consult the Environment page of the Spark web UI (see section 10.4.4).

10.4 Spark web UI
Each time a SparkContext object is initialized, Spark starts a web UI, providing infor-
mation about the Spark environment and job execution statistics. The web UI default
port is 4040, but if that port is already taken (by another Spark web UI, for example),
Spark adds to the port number until it finds one that’s free. 

 When starting a Spark shell, you’ll see an output line similar to this one (unless
you turned off INFO log messages):

SparkUI: Started SparkUI at http://svgubuntu01:4040
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NOTE You can disable the Spark web UI by setting the spark.ui.enabled
configuration parameter to false. You can change its port with the
spark.ui.port parameter.

An example Spark web UI Welcome page is shown in figure 10.6. This web UI was
started from a Spark shell, so its name is set to Spark shell, as shown in the upper-right
corner of the figure. You can change the application name that is displayed in the
Spark web UI by programmatically calling the setAppName method of your SparkConf
object. You can also set it on the command line when running the spark-submit com-
mand with --conf spark.app.name=<new_name>, but you can’t change the application
name when starting a Spark shell. In that case, it always defaults to Spark shell.

10.4.1 Jobs page

The Welcome page of the Spark web UI (figure 10.6) provides statistics about run-
ning, completed, and failed jobs. For each job, you see when it started, how long it
ran, and how many stages and tasks it ran. (For a refresher on Spark jobs and stages,
see section 4.6.2.)

 If you click a job description, you see information about its completed and failed
stages. Click a stage again in the table to display the Stage Details page.

 By clicking the Timeline link, you get a graphical representation of jobs as they
executed over the time. An example is shown in figure 10.7. Clicking a job in the time-
line view also takes you to the Job Details page, where you can see its completed and
failed stages (see figure 10.8).  

Figure 10.6 The Spark web UI Jobs page shows information about active, completed, and failed jobs. 
Column headings describe the information.
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Figure 10.7 Timeline view showing when each job started and when it finished

Figure 10.8 Spark web UI Stages page showing stage duration, number of tasks, and amount of data 
read or written
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10.4.2 Stages page

The Stages page (figure 10.8) provides summary information about job stages. There
you can see when each stage started, how long it ran or whether it’s still running, how
large its input and output were, and shuffle reads and writes.

 When you click a Details link, you see a stack trace from the point in the code
where the stage started. If you set the spark.ui.killEnabled parameter to true, an
additional option (Kill) appears next to the Details link (see figure 10.9).

After you click the Kill link and confirm your choice, the stage is terminated, and a
stack trace similar to this one appears in your log file:

15/03/20 09:58:25 INFO DAGScheduler: Job 0 failed: foreach at 

➥ SampleApp.scala:22, took 59,125413 s
Exception in thread "main" org.apache.spark.SparkException: Job 0 cancelled 

➥ because Stage 0 was cancelled
        at org.apache.spark.scheduler.DAGScheduler.... 

To open the Stage Details page (figure 10.10), click a stage description. On the Stage
Details page, you can find useful information for debugging the state of your jobs. If
you see problems with the duration of your jobs, you can use these pages to quickly
drill down to the problematic stages and tasks and narrow the problem. 

 If, for example, you see excessive GC time, that’s a signal to increase the available
memory or to increase the number of RDD partitions (which lowers the number of
elements in partitions, thus lowering memory consumption). If you see excessive shuf-
fle reads and writes, you may want to change your program logic to avoid unnecessary
shuffling. The page also shows the stage timeline graph with details about how long it
took to execute each subcomponent of task processing: task serialization, computa-
tion, shuffling and so on.

 If your Spark job uses accumulators, the appropriate Stage Details page displays a
section similar to the one shown in figure 10.11. In the Accumulators section, you can
track the value of each accumulator used in your program. As we mentioned in sec-
tion 4.5.1, you need to use a named accumulator in order for it to appear here.

 
 

Figure 10.9 The option to kill a long-running stage is available after setting the spark.ui 
.killEnabled parameter.

 



301Spark web UI

Figure 10.10 Spark web UI Stage Details page showing stage and task metrics useful for debugging 
the state of Spark jobs

Figure 10.11 Accumulators section of the Stage Details page show-
ing the current count of your accumulators
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10.4.3 Storage page

The Storage page gives you information about your cached RDDs and how much
memory, Tachyon storage, or disk space the cached data is consuming. For the exam-
ple in figure 10.12, several small RDDs are cached in memory.

10.4.4 Environment page

On the Environment page, you see Java and Scala versions, Java system properties, and
classpath entries, in addition to the Spark configuration parameters we talked about
previously. An example is shown in figure 10.13.

Figure 10.12 Spark web UI Storage page showing cached RDD metrics

Figure 10.13 Spark web UI Environment page showing Java and Spark configuration parameters
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10.4.5 Executors page

The Executors page (see figure 10.14) gives you a list of all executors configured in
your cluster (including the driver) with information about available and used memory
and other statistics aggregated per executor/driver. The amount of memory shown in
the Memory Used column is the amount of storage memory, which by default is equal
to 54% of the heap, as described in section 10.2.4.

 Click the Thread Dump link to take current stack traces of all threads for a partic-
ular executor. This can be useful for debugging purposes when waits and deadlocks
are slowing the execution of your program. 

10.5 Running Spark on the local machine 
Now that we’ve acquainted you with the basics of running Spark and its architecture,
we can start exploring different Spark runtime modes. To begin, we’ll look into two
ways of running Spark on a local machine: local mode and local cluster mode.

Figure 10.14 Spark web UI Executors page showing executors’ addresses; number of RDD blocks; amount of mem-
ory and disk used; number of active, failed, and complete tasks; and other useful metrics
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10.5.1 Local mode

We mostly used Spark local mode to run the
examples in the previous chapters. This
mode is convenient for testing purposes
when you don’t have access to a full cluster
or you want to try something out quickly. 

 In local mode, there is only one execu-
tor in the same client JVM as the driver, but
this executor can spawn several threads to
run tasks. This is illustrated in figure 10.15.

 In local mode, Spark uses your client
process as the single executor in the clus-
ter, and the number of threads specified
determines how many tasks can be exe-
cuted in parallel. You can specify more
threads than available CPU cores. That way,
CPU cores can be better utilized. Although it depends on the complexity of your jobs,
multiplying the number of CPU cores by two or three gives you a good starting point
for this parameter (for example, for a machine with quad-core CPUs, set the number
of threads to a value between 8 and 12). 

 To run Spark in local mode, set the master parameter to one of the following values:

■ local[<n>]—Run a single executor using <n> threads, where <n> is a positive
integer.

■ local—Run a single executor using one thread. This is the same as local[1].
■ local[*]—Run a single executor using a number of threads equal to the num-

ber of CPU cores available on the local machine. In other words, use up all CPU
cores.

■ local[<n>,<f>]—Run a single executor using <n> threads, and allow a maxi-
mum of <f> failures per task. This is mostly used for Spark internal tests.

NOTE If you use --master local with only one thread, you may notice that
your log lines are missing from the driver’s output. That’s because in Spark
Streaming, for example, that single thread is used to read streaming data
from a source, and the driver wouldn’t have any threads left to print out the
results of your program. If you want the output printed to your log file, be
sure to specify at least two threads (local[2]).

If you start a spark-shell or spark-submit script with no --master parameter,
(local[*]), local mode taking all CPU cores is assumed.

Executor

T TT

T

Client JVM

Driver

JVM heap

Scheduler

Spark
context

Spark
application

Figure 10.15 Spark running in local mode. The 
driver and the single executor are running in the 
same JVM.
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10.5.2 Local cluster mode

The second method of running Spark on the local machine is local cluster mode.
Local cluster mode is intended mostly for Spark internal tests, but it can be useful for
quick tests and demonstrations requiring inter-process communication. 

 Local cluster mode is a full Spark standalone cluster running on the local
machine. The difference between local cluster mode and full standalone cluster is
that the master isn’t a separate process but runs in the client JVM. Most configuration
parameters affecting the Spark standalone cluster can be applied to local cluster
mode, too. We’ll go into the details of a Spark standalone cluster in the next chapter,
so we won’t explain them here.

 You start Spark in local cluster mode by setting the master parameter to the value
local-cluster[<n>,<c>,<m>] (without spaces). This means that you’re running a local
Spark standalone cluster with <n> executors, each using <c> threads and <m> megabytes
of memory. (Specify memory only as an integer representing megabytes. Don’t use the g

or m suffixes here.) Each executor in local cluster mode runs in a separate JVM, which
makes it similar to a Spark standalone cluster, covered in the next chapter. 

10.6 Summary
■ Typical components of the Spark runtime architecture are the client process,

the driver, and the executors.
■ Spark can run in two deploy modes: client-deploy mode and cluster-deploy

mode. This depends on the location of the driver process.
■ Spark supports three cluster managers: Spark standalone cluster, YARN, and

Mesos. Spark local modes are special cases of the Spark standalone cluster.
■ The cluster manager manages (schedules) resources for Spark executors of dif-

ferent Spark applications.
■ Spark itself schedules CPU and memory resources in a single application in two

possible modes: FIFO scheduling and fair scheduling.
■ Data locality means Spark tries to run tasks as close to the data location as possi-

ble; five locality levels exist.
■ Spark directly manages memory available to its executors by partitioning it into

storage memory, shuffle memory, and the rest of the heap.
■ Spark can be configured through the configuration file, using command-line

parameters, using system environment variables, and programmatically.
■ The Spark web UI shows useful information about running jobs, stages, and

tasks.
■ Spark local mode runs the entire cluster in a single JVM and is useful for testing

purposes.
■ Spark local cluster mode is a full Spark standalone cluster running on the local

machine, with the master process running in the client JVM.
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Running on a
 Spark standalone cluster

After describing common aspects of running Spark and examining Spark local
modes in chapter 10, now we get to the first “real” Spark cluster type. The Spark
standalone cluster is a Spark-specific cluster: it was built specifically for Spark, and
it can’t execute any other type of application. It’s relatively simple and efficient and
comes with Spark out of the box, so you can use it even if you don’t have a YARN or
Mesos installation. 

 In this chapter, we’ll explain the runtime components of a standalone cluster
and how to configure and control those components. A Spark standalone cluster

This chapter covers
■ Components of Spark standalone cluster
■ Spinning up the cluster
■ Spark cluster Web UI
■ Running applications
■ Spark History Server
■ Running on Amazon EC2
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comes with its own web UI, and we’ll show you how to use it to monitor cluster pro-
cesses and running applications. A useful component for this is Spark’s History
Server; we’ll also show you how to use it and explain why you should.

 Spark provides scripts for quickly spinning up a standalone cluster on Amazon
EC2. (If you aren’t acquainted with it, Amazon EC2 is Amazon’s cloud service, offering
virtual servers for rent.) We’ll walk you through how to do that. Let’s get started.

11.1 Spark standalone cluster components
A standalone cluster comes bundled with Spark. It has a simple architecture and is
easy to install and configure. Because it was built and optimized specifically for Spark,
it has no extra functionalities with unnecessary generalizations, requirements, and
configuration options, each with its own bugs. In short, the Spark standalone cluster is
simple and fast.

 The standalone cluster consists of master and worker (also called slave) processes.
A master process acts as the cluster manager, as we mentioned in chapter 10. It accepts
applications to be run and schedules worker resources (available CPU cores) among
them. Worker processes launch application executors (and the driver for applications
in cluster-deploy mode) for task execution. To refresh your memory, a driver orches-
trates and monitors execution of Spark jobs, and executors execute a job’s tasks.

 Both masters and workers can be run on a single machine, essentially becoming
Spark in local cluster mode (described in chapter 10), but this isn’t how a Spark stand-
alone cluster usually runs. You normally distribute workers across several nodes to
avoid reaching the limits of a single machine’s resources.

 Naturally, Spark has to be installed on all nodes in the cluster in order for them to
be usable as slaves. Installing Spark means unpacking a binary distribution or building
your own version from Spark source files (for details, please see the official documen-
tation at http://spark.apache.org/docs/latest/building-spark.html).

 Figure 11.1 shows an example Spark standalone cluster running on two nodes with
two workers:

Step 1.  A client process submits an application to the master.
Step 2. The master instructs one of its workers to launch a driver.
Step 3. The worker spawns a driver JVM.
Step 4. The master instructs both workers to launch executors for the application. 
Step 5. The workers spawn executor JVMs.
Step 6. The driver and executors communicate independent of the cluster’s processes.

Each executor has a certain number of threads (CPU cores) allocated to it, which are
task slots for running multiple tasks in parallel. In a Spark standalone cluster, for each
application, there can be only one executor per worker process. If you need more
executors per machine, you can start multiple worker processes. You may want to
do this if your JVM heap is really large (greater than 64 GB) and GC is starting to affect
job performance.

 

http://spark.apache.org/docs/latest/building-spark.html
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The driver in figure 11.1 is running in the cluster or, in other words, in cluster-deploy
mode. As we said in chapter 10, it can also run in the client JVM, which is called client-
deploy mode.

 We should also mention that only one application is shown running in this cluster.
If there were more, each would have its own set of executors and a separate driver
running either in the cluster, like this one, or in its client’s JVM (depending on the
deploy mode).

 An optional History Server is also shown in figure 11.1. It’s used for viewing the
Spark web UI after the application has exited. We’ll explain this feature in more detail
in section 11.5.

11.2 Starting the standalone cluster
Unlike starting Spark in one of the local cluster modes you saw in chapter 10, you
must start a Spark standalone cluster before submitting an application or prior to
starting the Spark shell. When the cluster is running, connect your application to the

1. Submit

2. Launch driver
4. Launch executor

4. Launch executor

3. Spawn

5. Spawn

5. Spawn

6. Spark
communication

6. Spark
communication
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Stand alone cluster—Cluster deploy mode
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Executor JVM

T

T

T T
Driver JVM

Spark
application

Spark
context

Scheduler

Client JVM
JVM heap

Executor JVM

T

T

T

JVM heap

Figure 11.1 A Spark standalone cluster with an application in cluster-deploy mode. A master and one 
worker are running on Node 1, and the second worker is running on Node 2. Workers are spawning 
drivers’ and executors’ JVMs.
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cluster using the master connection URL. A master connection URL for a standalone
cluster has the following syntax:

spark://master_hostname:port

If you have a standby master process running (see section 11.2.4), you can specify sev-
eral addresses:

spark://master1_hostname:port1,master2_hostname:port2

To start the standalone cluster, you have two basic options: use Spark-provided scripts
or start the components manually. 

11.2.1 Starting the cluster with shell scripts

Startup scripts are the most convenient way to start Spark. They set up the proper envi-
ronment and load your Spark default configuration. In order for scripts to run cor-
rectly, Spark should be installed at the same location on all the nodes in the cluster. 

 Spark provides three scripts for starting standalone-cluster components (you can
find them in the SPARK_HOME/sbin directory):

■ start-master.sh starts the master process.
■ start-slaves.sh starts all defined worker processes. 
■ start-all.sh starts both master and worker processes.

Counterpart scripts for stopping the processes are also available: stop-master.sh,
stop-slaves.sh, and stop-all.sh. 

NOTE On a Windows platform, no scripts for starting and stopping a stand-
alone cluster are provided. The only option is to start and stop the cluster
manually, as explained in section 11.2.2.

START-MASTER.SH

start-master.sh starts the master process. It takes no arguments and shows just one
line when started:

$ sbin/start-master.sh
starting org.apache.spark.deploy.master.Master, logging to log_file

You can use the log file that the script outputs to find the command used to start the
master and the master’s runtime messages. The default log file is SPARK_HOME/logs/
spark-username-org.apache.spark.deploy.master.Master-1-hostname.out. 

 To customize the start-master.sh script, you can use the system environment
variables listed in table 11.1. The best way to apply them is to put them in the spark-
env.sh file in the conf folder. (If it doesn’t exist, you can use the spark-env.sh.template
as a starting point.) The Java parameters in table 11.2 can be specified in the SPARK
_MASTER_OPTS variable in this format:

 -Dparam1_name=param1_value -Dparam2_name=param2_value
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Table 11.1 System environment variables affecting the behavior of the start-master.sh script

System environment variable Description

SPARK_MASTER_IP Hostname the master should bind to.

SPARK_MASTER_PORT Port the master should bind to (default is 7077).

SPARK_MASTER_WEBUI_PORT Port on which the cluster web UI (described in section 11.4.3) 
should be started.

SPARK_DAEMON_MEMORY Amount of heap memory to give the master and worker Java pro-
cesses (default is 512 MB). The same parameter applies both to 
worker and master processes. Note that this only affects cluster 
daemon processes and not the driver or executors.

SPARK_MASTER_OPTS Lets you pass additional Java parameters to the master process.

Table 11.2 Java parameters you can specify in the SPARK_MASTER_OPTS environment variable

Java parameter Description

spark.deploy.defaultCores Default maximum number of cores to allow per application. 
Applications can override this by setting the spark.cores 
.max parameter. If it isn’t set, applications take all available 
cores on the machine.

spark.worker.timeout Maximum number of seconds the master waits for a heartbeat 
from a worker before considering it lost (default is 60).

spark.dead.worker.persistence Amount of time (measured as multiples of spark.worker 
.timeout) to keep dead workers displayed in the master 
web UI (default is 15).

spark.deploy.spreadOut If set to true, which is the default, the master attempts to 
spread an application’s executors across all workers, taking one 
core at a time. Otherwise, it starts an application’s executors on 
the first free workers it finds, taking all available cores. Spread-
ing out can be better for data locality when working with HDFS, 
because applications will run on a larger number of nodes, 
increasing the likelihood of running where data is stored.

spark.master.rest.enabled Whether to start the standalone REST server for submitting appli-
cations (default is true). This is transparent to the end user.

spark.master.rest.port Listening port for the standalone REST server (default is 6066).

spark.deploy.retainedApplications Number of completed applications to display in the cluster 
web UI (default is 200).

spark.deploy.retainedDrivers Number of completed drivers to display in the cluster web UI 
(default is 200).

 



311Starting the standalone cluster

In addition to the Java parameters in table 11.2, in the SPARK_MASTER_OPTS environ-
ment variable you can specify parameters for master recovery (which we’ll describe in
section 11.2.4).

START-SLAVES.SH

The start-slaves.sh script is a bit different. Using the SSH protocol, it connects to
all machines defined in the SPARK_HOME/conf/slaves file and starts a worker process
there. For this to work, Spark should be installed at the same location on all machines
in the cluster. 

 A slaves file (similar to a Hadoop slaves file) should contain a list of worker host-
names, each on a separate line. If there are any duplicates in the file, starting addi-
tional workers on those machines will fail due to port conflicts. If you need more
workers per machine, you can start them manually; or you can set the
SPARK_WORKER_INSTANCES environment variable to the number of workers you want
on each machine, and the start-slaves.sh script will start all of them automatically. 

 By default, the script will try to start all workers in tandem. For this, you need to set
up password-less SSH. You can override this by defining any value for the
SPARK_SSH_FOREGROUND environment variable. In that case, the script will start workers
serially and allow you to enter a password for each remote machine.

 Similar to the start-master.sh script, start-slaves.sh prints the path to the
log file for each worker process it starts. The system environment variables listed in
table 11.3 let you customize worker behavior.

The Java parameters specified in table 11.4 can be specified in the SPARK_WORKER
_OPTS environment variable in this format: 

-Dparam1_name=param1_value -Dparam2_name=param2_value

Table 11.3 System environment variables affecting the behavior of worker processes

System environment variable Description

SPARK_MASTER_IP Hostname of the master process with which the worker should register.

SPARK_MASTER_PORT Port of the master process with which the worker should register.

SPARK_WORKER_WEBUI_PORT Port on which the worker web UI should be started (default is 8081).

SPARK_WORKER_CORES Maximum combined number of CPU cores (task slots) for all exec-
utors launched by the worker.

SPARK_WORKER_MEMORY Maximum combined total size of the Java heap for all executors 
launched by the worker.

SPARK_WORKER_DIR Directory for the application’s log files (and other application files, 
such as JAR files). 

SPARK_WORKER_PORT Port to which the worker should bind.

SPARK_WORKER_OPTS Additional Java parameters to pass to the worker process.
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START-ALL.SH

The start-all.sh script calls start-master.sh and then start-slaves.sh.

11.2.2 Starting the cluster manually

Spark also provides an option to start cluster components manually, which is the only
option available on a Windows platform. This can be accomplished by calling the
spark-class script and specifying the complete Spark master or Spark worker class
name as an argument. When starting the worker, you also need to specify the master
URL. For example:

$ spark-class org.apache.spark.deploy.master.Master
$ spark-class org.apache.spark.deploy.worker.Worker spark://<IPADDR>:<PORT>

Both commands accept several optional parameters, listed in table 11.5. (Some of the
parameters apply only to worker processes, as specified by the Only Worker column.)
Starting the processes this way makes it a bit easier to specify these parameters, but
starting with start-all.sh is still the most convenient method.

Table 11.4 Java parameters that can be specified in the SPARK_WORKER_OPTS environment variable

Java parameter Description

spark.worker.timeout Worker will be declared dead after this many seconds. 
Worker will send heartbeats to the master every 
spark.worker.timeout / 4 seconds.

spark.worker.cleanup.enabled Interval for cleanup of old applications’ log data and 
other files from the work directory (default is false).

spark.worker.cleanup.interval Interval for cleanup of old applications’ data (default is 
30 minutes).

spark.worker.cleanup.appDataTtl Time in seconds after which an application is consid-
ered old (default is 7 days, in seconds).

Table 11.5 Optional parameters that can be specified when starting masters or workers manually

Optional parameter Description
Only 

worker

-h HOST or
--host HOST

Hostname to listen on. For a master, the same as the 
SPARK_MASTER_HOST environment variable.

-p PORT or
--port PORT

Port to listen on (default is random). Same as SPARK_WORKER_PORT 
for a worker or SPARK_MASTER_PORT for a master.

--webui-port PORT Port for the web UI. Same as SPARK_MASTER_WEBUI_PORT or 
SPARK_WORKER_WEBUI_PORT. Default on a master is 8080 and 
on a worker is 8081.
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11.2.3 Viewing Spark processes

If you’re curious which cluster processes are started, you can use the JVM Process Sta-
tus Tool (jps command) to view them. The jps command outputs PIDs and the
names of JVM processes running on the machine:

$ jps 
1696 CoarseGrainedExecutorBackend
403 Worker
1519 SparkSubmit
32655 Master
6080 DriverWrapper

Master and worker processes appear as Master and Worker. A driver running in the
cluster appears as DriverWrapper, and a driver spawned by the spark-submit com-
mand (that also includes spark-shell) appears as SparkSubmit. Executor processes
appear as CoarseGrainedExecutorBackend.

11.2.4 Standalone master high availability and recovery

A master process is the most important component in the standalone cluster. Because
client processes connect to it to submit applications, the master requests resources
from the workers on behalf of the clients, and users rely on it to view the state of run-
ning applications. If the master process dies, the cluster becomes unusable: clients
can’t submit new applications to the cluster, and users can’t see the state of the cur-
rently running ones. 

 Master high availability means the master process will be automatically restarted if it
goes down. Worker processes, on the other hand, aren’t critical for cluster availability.
This is the case because if one of the workers becomes unavailable, Spark will restart
its tasks on another worker. 

--properties-file FILE Path to a custom Spark properties file (default is conf/spark-
defaults.conf).

-c CORES or
--cores CORES

Number of cores to use. Same as the SPARK_WORKER_CORES 
environment variable.

P

-m MEM or
--memory MEM

Amount of memory to use (for example, 1000 MB or 2 GB). Same as 
the SPARK_WORKER_MEMORY environment variable.

P

-d DIR or
--work-dir DIR

Directory in which to run applications (default is SPARK_HOME/
work). Same as the SPARK_WORKER_DIR environment variable.

P

--help Shows help for invoking the script.

Table 11.5 Optional parameters that can be specified when starting masters or workers manually (continued)

Optional parameter Description
Only 

worker
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 If the master process is restarted, Spark provides two ways to recover application
and worker data that was running before the master died: using the filesystem and
using ZooKeeper. ZooKeeper also provides automatic master high availability, as you’ll
see. With filesystem recovery, though, you have to set up master high availability your-
self (if you need it) by using one of the tools available for that purpose (for example,
start the master process from inittab with the respawn option1).

NOTE All parameters mentioned in this section should be specified in the
SPARK_MASTER_OPTS variable mentioned earlier and not in the spark-
defaults.conf file.

FILESYSTEM MASTER RECOVERY

When using filesystem master recovery, a master persists information about registered
workers and running applications in the directory specified by the spark.deploy
.recoveryDirectory parameter. Normally, if the master restarts, workers re-register
automatically, but the master loses information about running applications. This
doesn’t affect the applications, but users won’t be able to monitor them through the
master web UI.

 If filesystem master recovery is enabled, the master will restore worker state
instantly (no need for them to re-register), along with the state of any running appli-
cations. You enable filesystem recovery by setting the spark.deploy.recoveryMode
parameter to FILESYSTEM.

ZOOKEEPER RECOVERY

ZooKeeper is a fast and simple system providing naming, distributed synchronization,
and group services. ZooKeeper clients (or Spark, in this case) use it to coordinate
their processes and to store small amounts of shared data. In addition to Spark, it’s
used in many other distributed systems.

 ZooKeeper allows client processes to register with it and use its services to elect a
leader process. Those processes not elected as leaders become followers. If a leader
process goes down, a leader election process starts, producing a new leader.

 To set up master high availability, you need to install and configure ZooKeeper.
Then you start several master processes, instructing them to synchronize through Zoo-
Keeper. Only one of them becomes a ZooKeeper leader. If an application tries to reg-
ister with a master that currently isn’t a leader, it will be turned down. If the leader
fails, one of the other masters will take its place and restore the master’s state using
ZooKeeper’s services.

 Similar to filesystem recovery, the master will persist information about registered
workers and running applications, but it will persist that information to ZooKeeper. This
way, ZooKeeper provides both recovery and high-availability services for Spark master pro-
cesses. To store the recovery data, ZooKeeper uses the directory specified by the
spark.deploy.zookeeper.dir parameter on the machines where ZooKeeper is running.

1 See the Linux man pages: www.manpages.info/linux/inittab.5.html.

 

http://www.manpages.info/linux/inittab.5.html
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 You turn on ZooKeeper recovery by setting the spark.deploy.recoveryMode
parameter to ZOOKEEPER. ZooKeeper needs to be accessible to the URLs specified by
the spark.deploy.zookeeper.url parameter. 

11.3 Standalone cluster web UI
When you start a master or a worker process, each starts its own web UI application. This
is different than the way the web UI Spark context starts, as discussed in chapter 10. The
Spark web UI shows information about applications, stages, tasks, and so on, and the
standalone cluster web UI shows information about master and workers. An example
master web UI is shown in figure 11.2. 

Figure 11.2 Example Spark master web UI page showing the running workers, running applications and 
drivers, and the completed applications and drivers
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On the master web UI pages, you can see basic information about memory and CPU
cores used and those available in the cluster, as well as information about workers,
applications, and drivers. We’ll talk more about these in the next section. 

 If you click a worker ID, you’re taken to the web UI page started by a worker pro-
cess. A sample UI page is shown in figure 11.3. On the worker web UI page, you can
see which executors and drivers the worker is managing, and you can examine their
log files by clicking the appropriate links.

 If you click an application’s name when on the master web UI page, you’ll be taken
to the Spark web UI page started by that application’s Spark context. If you click an
application’s ID, though, you’ll be taken to the application screen of the master web
UI (figure 11.4).

Figure 11.3 Sample Spark worker web UI

Figure 11.4 Sample Spark master web UI application screen
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The application screen shows which workers and executors the application is running
on. You can access the Spark web UI again by clicking the Application Detail UI link.
You can also view the application’s logs on each worker machine.

 The Spark cluster web UIs (master and workers) and the Spark web UI come with
Spark out of the box and offer a way of monitoring applications and jobs. That should
be enough in most situations.

11.4 Running applications in a standalone cluster
As with the other cluster types, you can run Spark programs on a standalone cluster by
submitting them with the spark-submit command, running them in a Spark shell, or
instantiating and configuring a SparkContext object in your own application. We
already talked about these options in chapter 10. In all three cases, you need to specify
a master connection URL with the hostname and port of the master process.

NOTE When connecting your applications to a Spark standalone cluster, it’s
important to use the exact hostname in the master connection URL as that
used to start the master process (the one specified by the SPARK_MASTER_IP
environment variable or your hostname).

You have two basic options when running Spark applications in a standalone cluster,
and they differ in the location of the driver process. 

11.4.1 Location of the driver

As we said in section 10.1.1, the driver process can run in the client process that was
used to launch the application (like spark-submit script), or it can run in the cluster.
Running in the client process is the default behavior and is equivalent to specifying
the --deploy-mode client command-line argument. In this case, spark-submit will
wait until your application finishes, and you’ll see the output of your application on
the screen.

NOTE The spark-shell script supports only client-deploy mode.

 To run the driver in the cluster, you have to specify the --deploy-mode cluster
command-line argument. In that case, you’ll see output similar to this:

Sending launch command to spark://<master_hostname>:7077
Driver successfully submitted as driver-20150303224234-0000
... waiting before polling master for driver state
... polling master for driver state
State of driver-20150303224234-0000 is RUNNING
Driver running on <client_hostname>:55175 (worker-20150303224421-
<client_hostname>-55175)

The option --deploy-mode is only used on standalone and Mesos clusters. YARN has a
different master URL syntax.
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NOTE If you’re embedding SparkContext in your application and you’re not
using the spark-submit script to connect to the standalone cluster, there’s
currently no way to specify deploy mode. It will default to client-deploy mode,
and the driver will run in your application.

In cluster-deploy mode, the cluster manager takes care of the driver’s resources and can
automatically restart your application if the driver process fails (see section 11.4.5). 

 If you’re submitting your application in cluster-deploy mode using the spark-submit
script, the JAR file you specify needs to be available on the worker (at the location you
specified) that will be executing the application. Because there’s no way to say in
advance which worker will execute your driver, you should put your application’s JAR file
on all the workers if you intend to use cluster-deploy mode, or you can put your appli-
cation’s JAR file on HDFS and use the HDFS URL as the JAR filename.

 Log files from the driver running in cluster mode are available from the master
and worker web UI pages. Of course, you can also access them directly on the filesys-
tem of the corresponding worker.

NOTE Python applications can’t run in cluster-deploy mode on a standalone
cluster.

The example web UI page in figure 11.2 (in section 11.3) shows three configured
workers and two applications. One application is a Spark shell; the other is a custom
application (called Sample App) submitted as a JAR file in cluster-deploy mode, so a
running driver can also be seen on the web UI page. In cluster-deploy mode, the
driver is spawned by one of the worker processes and uses one of its available CPU
cores. We show this in figure 11.3 (in section 11.3).

11.4.2 Specifying the number of executors

Each of the two applications in figure 11.2 uses three cores out of six available (Sam-
ple App is using four cores; its driver is using the fourth one). This is accomplished by
setting the parameter spark.deploy.defaultCores in the SPARK_MASTER_OPTS envi-
ronment variable to 3 (as described previously). You can accomplish the same thing
by setting the spark.cores.max parameter for each application you want to prevent
from taking all available cores. You can also set the SPARK_WORKER_CORES environment
variable to limit the number of cores each application can take per machine. If neither
spark.cores.max nor spark.deploy.defaultCores were set, a single application
would have taken all the available cores, and the subsequent applications would have
had to wait for the first application to finish.

 To control how many executors are allocated for your application, set
spark.cores.max to the total number of cores you wish to use, and set spark.executor
.cores to the number of cores per executor (or set their command-line equivalents:
--executor-cores and --total-executor-cores). If you wish to use 3 executors with
the total of 15 cores, set spark.cores.max to 15 and spark.executor.cores to 5. If you
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plan to run only one application, leave these settings at the default value, which is infinite
(Int.MaxValue).

11.4.3 Specifying extra classpath entries and files

In many situations, it’s necessary to modify the classpath of your application or to
make other files available to it. For example, your application may need a JDBC driver
to access a relational database or other third-party classes not bundled with Spark.
This means you need to modify the classpath of executor and driver processes,
because that’s where your application is executing. Special Spark parameters exist for
these purposes, and you can apply them at different levels, as is often the case when
configuring Spark. 

NOTE Techniques described in this section aren’t specific to the standalone
cluster and can be used on other cluster types, too. 

USING THE SPARK_CLASSPATH VARIABLE

You can use the SPARK_CLASSPATH environment variable to add additional JAR files to
the driver and executors. If you set it on the client machine, the extra classpath
entries will be added to both the driver’s and workers’ classpaths. When using this
variable, however, you’ll need to manually copy the required files to the same location
on all machines. Multiple JAR files are separated by semicolons (;) on Windows and by
colons (:) on all other platforms. 

USING THE COMMAND-LINE OPTIONS

Another option is to use the Spark configuration parameters spark.driver.extra-
ClassPath and spark.executor.extraClassPath for JAR files, and spark.driver
.extraLibraryPath and spark.executor.extraLibraryPath for native libraries.
There are two additional spark-submit parameters for specifying driver paths:
--driver-class-path and --driver-library-path. You should use these parameters
if the driver is running in client mode, because then --conf spark.driver.extra-
ClassPath won’t work. JAR files specified with these options will be prepended to the
appropriate executor classpaths. You’ll still need to have these files on your worker
machines as well. 

USING THE --JARS PARAMETER

This option uses spark-submit with the --jars parameter, which automatically cop-
ies the specified JAR files (separated with commas) to the worker machines and adds
them to the executor classpaths. That means the JAR files need not exist on the
worker machines before submitting the application. Spark uses the same mechanism
to distribute your application’s JAR file to worker machines.

 When using the --jars option, you can fetch the JAR files from different locations,
depending on the prefix before the specified filename (a colon at the end of each
prefix is required): 
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■ file:—The default option described earlier. The file is copied to each worker.
■ local:—The file exists on all worker machines at the exact same location.
■ hdfs:—The file path is HDFS, and each worker can access it directly from HDFS.
■ http:, https:, or ftp:—The file path is a URI.

NOTE If your application JAR includes classes or JARs also used by Spark itself,
and you’re experiencing conflicts among class versions, you can set the config-
uration parameter spark.executor.userClassPathFirst or spark.driver
.userClassPathFirst to true to force Spark to load your classes before its own.

You can use a similar option (--files) to add ordinary files to workers (files that
aren’t JAR files or libraries). They can also be local, HDFS, HTTP, or FTP files. To use
these files on workers, you need to access them with SparkFiles.get(<filename>).

ADDING FILES PROGRAMMATICALLY

There is a programmatic method of adding JARs and files by calling SparkContext’s
addJar and addFile methods. The --jars and --files options described earlier call
these methods, so most things said previously also apply here. The only addition is
that you can use addFile(filename, true) to recursively add an HDFS directory (the
second argument means recursive).

ADDING ADDITIONAL PYTHON FILES

For Python applications, extra .egg, .zip, or .py files can be added with the --py-files
spark-submit option. For example:

spark-submit --master <master_url> --py-files file1.py,file2.py main.py

where main.py is the Python file instantiating a Spark context.

11.4.4 Killing applications

If you submitted your application to the cluster in cluster mode, and the application is
taking too long to complete or you want to stop it for some other reason, you can kill
it by using the spark-class command like this:

spark-class org.apache.spark.deploy.Client kill <master_URL> <driver_ID>

You can do this only for applications whose driver is running in the cluster (cluster
mode). For those applications submitted using the spark-submit command in client
mode, you can kill the client process. You can still terminate particular stages (and
jobs) using the Spark web UI, as described in section 10.4.2.

11.4.5 Application automatic restart

When submitting an application in cluster-deploy mode, a special command-line
option (--supervise) tells Spark to restart the driver process if it fails (or ends abnor-
mally). This restarts the entire application because it isn’t possible to recover the state
of a Spark program and continue at the point where it failed.
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 If the driver is failing every time and keeps getting restarted, you’ll need to kill it
using the method described in the previous section. Then you need to investigate the
problem and change your application so that the driver executes without failing.

11.5 Spark History Server and event logging
We mentioned the History Server earlier. What’s it for? Let’s say you ran your applica-
tion using spark-submit. Everything went smoothly, or so you thought. You suddenly
notice something strange and would like to check a detail on the Spark web UI. You
use the master’s web UI to get to the application page, and you click the Application
Detail UI link, but you get the message shown in figure 11.5. Or, even worse, you
restarted the master process in the meantime, and your application isn’t listed on the
master’s web UI.

Event logging exists to help with these situations. When enabled, Spark logs events
necessary for rendering the web UI in the folder specified by spark.eventLog.dir,
which is /tmp/spark-events by default. The Spark master web UI will then be able to
display this information in a manner identical to the Spark web UI so that data about
jobs, stages, and tasks is available even after the application has finished. You enable
event logging by setting spark.eventLog.enabled to true. 

 If you restarted (or stopped) the master, and your application is no longer
available from the master web UI, you can start the Spark History Server, which
displays a Spark web UI for applications whose events have been logged in the event
log directory.

TIP Unfortunately, if an application is killed before finishing, it may not
appear in the History Server UI because the History Server expects to find a
file named APPLICATION_COMPLETE in the application’s directory (/tmp/
spark-events/<application_id> by default). You can manually create an
empty file with that name if it’s missing, and the application will appear in
the UI. 

You start the Spark History Server with the script start-history-server.sh in the
sbin directory, and you stop it with stop-history-server.sh. The default HTTP port
is 18080. You can change this with the spark.history.ui.port parameter.

 An example History Server page is shown in figure 11.6. Click any application ID
link to go to the appropriate web UI pages, which we covered in section 11.4.

Figure 11.5 A web UI message showing that event logging isn’t enabled
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You can customize the History Server with several environment variables: use
SPARK_DAEMON_MEMORY to specify how much memory it should take, SPARK_PUBLIC
_DNS to set its public address, SPARK_DAEMON_JAVA_OPTS to pass additional param-eters
to its JVM, and SPARK_HISTORY_OPTS to pass to it spark.history.* parameters. For
the complete list of these parameters, see the official documentation (http://
spark.apache.org/docs/latest/configuration.html). You can also set spark.history.*
parameters in the spark-default.conf file.

11.6 Running on Amazon EC2
You can use any physical or virtual machine to run Spark, but in this section, we’ll
show you how to use Spark’s EC2 scripts to quickly set up a Spark standalone cluster in
Amazon’s AWS cloud. Amazon EC2 is Amazon’s cloud service that lets you rent virtual
servers to run your own applications. EC2 is just one of the services in Amazon Web
Services (AWS); other services include storage and databases. AWS is popular because
of its ease of use, broad set of features, and relatively low price. Of course, we don’t
want to start a flame war about which cloud provider is better. There are other provid-
ers and you can manually install Spark on them and set up a standalone cluster as
described in this chapter.

 To go through this tutorial, we’ll use Amazon resources that go outside the free
tier, so you should be prepared to spend a buck or two. You’ll first obtain secret AWS
keys, necessary for connecting to AWS services, and set up basic security. Then you’ll
use Spark’s EC2 scripts to launch a cluster and log in to it. We’ll show you how to stop
and restart parts of the cluster you created. Finally, you’ll destroy the fruit of all that
hard work.

Figure 11.6 Spark History Server
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11.6.1 Prerequisites

In order to follow along, you should have an Amazon account and obtain these AWS
keys: Access Key ID and Secret Access Key. These keys are used for user identification
when using the AWS API. You can use the keys of your main user, but this isn’t recom-
mended. A better approach would be to create a new user with lower permissions and
then generate and use those keys. 

OBTAINING THE AWS SECRET KEYS

You create a new user with Amazon’s Identity and Access Management (IAM) service.
For the purposes of this tutorial, we created a user named sparkuser by selecting Ser-
vices > IAM from the AWS landing page, going to the Users page, and clicking the Cre-
ate New Users button. We entered a single username and left the option Generate an
Access Key for Each User checked. Figure 11.7 shows our keys ready for download.
You should store the keys in a safe place right away, because you won’t be able to
access them later. 

In order to successfully use this user for the
Spark cluster setup, the user has to have
adequate permissions. Click the new user’s
name, and then click the Attach Policy but-
ton on the Permissions tab (see figure 11.8).
From the list of available policies, choose
AmazonEC2FullAccess. This will be enough
for your Spark setup. 

CREATING A KEY PAIR

The next prerequisite is a key pair, which is
necessary for securing communication
between a client and AWS services. On the
EC2 Services page (available from any page through the top menu Services > EC2),
under Network & Security, select Key Pairs and then choose your region in the upper-
right corner. Choosing the correct region is important because keys generated for one
region won’t work in another. We chose Ireland (eu-west-1).

 Click Create Key Pair, and give the pair a name. The name can be anything you
like; we chose SparkKey. After creating the key pair, a private key will be automatically

Figure 11.7 AWS user created

Figure 11.8 Giving the user adequate per-
missions
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downloaded as a <key_pair_name>.pem file. You should store that file in a secure but
accessible place and change its access rights so that only you can read it:

chmod 400 SparkKey.pem

Just to be sure everything is OK before starting the scripts (you could have made a mis-
take in pasting its contents), check that the key is valid using this command:

openssl rsa -in SparkKey.pem -check

If the command outputs the contents of the file, all is well.

11.6.2 Creating an EC2 standalone cluster

Now let’s look at the main spark-ec2 script for managing the EC2 cluster. It used to come
bundled with Spark, but has since moved to a separate project. To use it, create an ec2
directory in your SPARK_HOME folder and then clone the AMPLab’s spark-ec2 GitHub
repository (https://github.com/amplab/spark-ec2) into it. The spark-ec2 script has the
following syntax:

spark-ec2 options action cluster_name

Table 11.6 shows the possible actions you can specify.

Depending on the action argument, you can use the same script to launch the cluster;
log in to it; stop, start, and destroy the cluster; and restart the slave machines. Every
action requires the cluster_name argument, which is used to reference the machines
that will be created; and security credentials, which are the AWS secret keys and the
key pair you created before. Options depend on the action chosen and will be
explained as we go.

Table 11.6 Possible actions for the spark-ec2 script

Action Description

launch Launches EC2 instances, installs the required software packages, and starts the 
Spark master and slaves

login Logs in to the instance running the Spark master

stop Stops all the cluster instances

start Starts all the cluster instances, and reconfigures the cluster

get-master Returns the address of the instance where the Spark master is running

reboot-slaves Reboots instances where workers are running

destroy An unrecoverable action that terminates EC2 instances and destroys the cluster

 

https://github.com/amplab/spark-ec2


325Running on Amazon EC2

SPECIFYING THE CREDENTIALS

AWS secret keys are specified as the system environment variables
AWS_SECRET_ACCESS_KEY and AWS_ACCESS_KEY_ID:

export AWS_SECRET_ACCESS_KEY=<your_AWS_access_key>
export AWS_ACCESS_KEY_ID=<your_AWS_access_key_id>

The key pair is specified with the --key-pair option (-k for short) containing the key
pair name and the --identity-file option (-i for short) pointing to the pem file
with the private key created earlier.

 You also have to specify the --region option (-r for short) for all actions if you
chose a region other than the default us-east-1 as we did. Otherwise, the script won’t
be able to find your cluster’s machines.

 Up until this point, you have this (don’t run this just yet)

spark-ec2 --key-pair=SparkKey --identity-file=SparkKey.pem \
--region=<your_region_if_dffrnt_than_us-east-1> launch spark-in-action

or the equivalent:

spark-ec2 -k SparkKey -i SparkKey.pem -r eu-west-1 launch spark-in-action

Running this command now would create a cluster called spark-in-action. But we’d
like to change a few things before doing that.

CHANGING THE INSTANCE TYPES

Amazon offers many types of instances you can use for your VMs. These differ in num-
ber of CPUs, amount of memory available, and, of course, price.

 The default instance type when creating EC2 instances with the spark-ec2 script is
m1.large, which has two cores and 7.5 GB of RAM. The same instance type will be used
for the master and slave machines, which usually isn’t desirable because the master is less
hungry for resources. So we decided to use m1.small for the master. We also opted for
m1.medium for slaves. The option for changing a slave’s instance type is --instance-
type (-t for short), and the option for changing the master is --master-instance-type
(-m for short).

CHANGING THE HADOOP VERSION

You’ll probably be using Hadoop on your EC2 instances. The default Hadoop version
the spark-ec2 script will install is 1.0.4, which may not be something you want. You
can change that with the --hadoop-major-version parameter and set it to 2, which
will install Spark prebuilt for Cloudera CDH 4.2.0, containing Hadoop 2.0.0 MR1. 

CUSTOMIZING SECURITY GROUPS

By default, access to EC2 instances through internet ports isn’t allowed. That prevents
you from submitting applications to your Spark cluster running on EC2 instances
directly from a client machine outside the EC2 cluster. EC2 security groups let you
change inbound and outbound rules so that machines can communicate with the
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outside world. The spark-ec2 script sets up security groups to allow communication
between the machines in your cluster, but access to port 7077 (the Spark standalone
master default port) from the internet still isn’t allowed. That’s why you should create
a security group (accessible from Services > EC2 > Security Groups > Create Security
Group) with a rule as shown in figure 11.9 (we named it Allow7077).

 Although opening a port to everybody like this isn’t recommended, it’s acceptable
for short time periods in test environments. For production environments, we recom-
mend that you restrict access to a single address.

 You can assign a security group to all of your instances with the option
--additional-security-group. Because you need the security group you just
created only for the master (you don’t need to access workers through port 7077),
you won’t use this option now and will add this security group manually to the
master instance after your cluster is running. 

LAUNCHING THE CLUSTER

The last thing you need to change is the number of slave machines. By default, only
one will be created, and in this case you’d like more. The option for changing that is
--slaves (-s for short). 

 This is the complete command:

./spark-ec2 --key-pair=SparkKey --identity-file=SparkKey.pem \
--slaves=3 --region=eu-west-1 --instance-type=m1.medium \
--master-instance-type=m1.small --hadoop-major-version=2 \
launch spark-in-action

After you start the script, it will create security groups, launch the appropriate
instances, and install these packages: Scala, Spark, Hadoop, and Tachyon. The script
downloads appropriate packages from online repositories and distributes them to
workers using the rsync (remotely copy) program. 

 You can instruct the script to use an existing master instance and only create the
slaves with the option --use-existing-master. To launch the cluster on an Amazon
Virtual Private Cloud (VPC), you use the options --vpc-id and --subnet-id; every-
thing else remains the same. 

 After the script is done, you’ll see the new instances running in your EC2 console
(figure 11.10). The cluster is now ready to be used. 

11.6.3 Using the EC2 cluster

Now that you have your cluster, you can log in to see what your command created.

Figure 11.9 Adding a custom security rule to allow access to the master instance from anywhere on 
the internet
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LOGGING IN

You can log in to your cluster in a couple of ways. First, the spark-ec2 script provides
an action for this:

spark-ec2 -k SparkKey -i SparkKey.pem -r eu-west-1 login spark-in-action

This will print out something similar to the following:

Searching for existing cluster spark-in-action...
Found 1 master(s), 3 slaves
Logging into master ec2-52-16-244-147.eu-west-1.compute.amazonaws.com

Last login: ...

       __|  __|_  )
       _|  (     /   Amazon Linux AMI
      ___|\___|___|

https://aws.amazon.com/amazon-linux-ami/2013.03-release-notes/
There are 74 security update(s) out of 262 total update(s) available
Run "sudo yum update" to apply all updates.
Amazon Linux version 2014.09 is available.
root@ip-172-31-3-54 ~]$

And you’re in! Another option is to add ssh directly to the public address of one of
your instances, still using your private key (secret key environment variables aren’t
necessary in this case). You can find the addresses of your instances on the EC2 con-
sole. In this example, to log in to the master instance, you’d type

$ ssh -i SparkKey.pem root@52.16.171.131

If you don’t feel like logging in to your EC2 console to find the address, you can use
the spark-ec2 script to obtain the master’s hostname: 

$ spark-ec2 -k SparkKey -i SparkKey.pem -r eu-west-1 login spark-in-action
Searching for existing cluster spark-in-action...
Found 1 master(s), 3 slaves
ec2-52-16-244-147.eu-west-1.compute.amazonaws.com

Then you can use that address for the ssh command.

Figure 11.10 Spark cluster machines running on EC2
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CLUSTER CONFIGURATION

Upon logging in, you’ll see that software packages were installed in the user’s home
directory. The default user is root (you can change that with the --user option), so
the home directory is /root. 

 If you examine spark-env.sh in the spark/conf subdirectory, you’ll see that the
spark-ec2 script added a few Spark configuration options. The ones we’re most inter-
ested in are SPARK_WORKER_INSTANCES and SPARK_WORKER_CORES.

 The number of instances per worker can be customized with the command-line
option --worker-instances. Of course, you can manually alter the configuration in
the spark-env.sh file, too. In that case, you should distribute the file to the workers.

 SPARK_WORKER_CORES can’t be customized using the spark-ec2 script because the
number of worker cores depends on the instance type selected. In the example, you
used m1.medium, which has only one CPU, so the configured value was 1. For the
default instance type (m1.large in the example), which has two CPUs, the configured
default value is 2.

 You’ll also notice two Hadoop installations: ephemeral-hdfs and persistent-
hdfs. Ephemeral HDFS is configured to use temporary storage available only while the
machine is running. If the machine restarts, the ephemeral (temporary) data is lost.

 Persistent HDFS is configured to use Elastic Block Store (EBS) storage, which
means it won’t be lost if the machine restarts. It also means keeping that data is going
to cost you. You can add more EBS volumes to each instance with the --ebs-vol-num,
--ebs-vol-type, and --ebs-vol-size options. 

 The spark-ec2 subdirectory contains the contents of the https://github.com/
mesos/spark-ec2 GitHub repository. These are the actual scripts for setting up Spark
EC2 clusters. One useful script there is copy-dir, enabling you to rsync a directory from
one of the instances to the same path on all slave machines in a Spark configuration.

CONNECTING TO THE MASTER

If everything went smoothly, you should be able to start a Spark shell and connect to
the master. For this, you should use the hostname returned by the get-master com-
mand and not its IP address.

 If you assigned the Allow7077 security group to the master instance, you should be
able to connect to the cluster from your client machine, too. Further configuration
and application submission work as usual.

STOPPING, STARTING, AND REBOOTING

Stop and start actions obviously stop and start the entire cluster. After stopping, the
machines will be in a stopped state, and data in temporary storage will be lost. After
starting the cluster again, the necessary scripts will be called to rebuild the temporary
data and repeat the cluster configuration. This will also cause any changes you may
have made to your Spark configuration to be overwritten, although that data is kept in
persistent storage. If you restart the machines using the EC2 console, your changes to
your Spark configuration will be preserved.
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 spark-ec2 also lets you reboot slave machines. reboot-slaves is used similarly to
other actions:

$ ./spark-ec2 -k SparkKey -i SparkKey.pem -r eu-west-1 \
reboot-slaves spark-in-action
Are you sure you want to reboot the cluster spark-in-action slaves?
Reboot cluster slaves spark-in-action (y/N): y
Searching for existing cluster spark-in-action...
Found 1 master(s), 3 slaves
Rebooting slaves...
Rebooting i-b87d0d5e
Rebooting i-8a7d0d6c
Rebooting i-8b7d0d6d

After a reboot, you’ll have to run the start-slaves.sh script from the master
machine, because slaves aren’t started automatically.

11.6.4 Destroying the cluster

A destroy action (to use the AWS terminology) will terminate all cluster instances.
Instances that are only stopped and not terminated may incur additional costs,
although you may not be using them. For example, Spark instances use EBS perma-
nent storage, and Amazon charges for EBS usage even though instances are stopped.

 So it may be prudent to destroy the cluster if you won’t be using it for a long time.
It’s straightforward to do:

spark-ec2 -k SparkKey -i SparkKey.pem destroy spark-in-action
Are you sure you want to destroy the cluster spark-in-action?
The following instances will be terminated:
Searching for existing cluster spark-in-action...
ALL DATA ON ALL NODES WILL BE LOST!!
Destroy cluster spark-in-action (y/N):
Terminating master...
Terminating slaves...

After this step, your only option is to launch another cluster (or pack up and go home).

11.7 Summary
■ A standalone cluster comes bundled with Spark, has a simple architecture, and

is easy to install and configure.
■ It consists of master and worker processes.
■ Spark applications on a Spark standalone cluster can run in cluster mode (the

driver is running in the cluster) or client-deploy mode (the driver is running in
the client JVM).

■ You can start the standalone cluster with shell scripts or manually.
■ The master process can be automatically restarted if it goes down, using filesys-

tem master recovery or ZooKeeper recovery. 
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■ The standalone cluster web UI gives useful information about running applica-
tions, master, and workers.

■ You can specify extra classpath entries and files using the SPARK_CLASSPATH
environment variable, using command-line options, using the --jars argu-
ment, and programmatically. 

■ The Spark History Server enables you to view the Spark web UI of applications
that finished, but only if they were running while event logging was enabled.

■ You can start a Spark standalone cluster on Amazon EC2 using the scripts in the
Spark distribution.
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Running
 on YARN and Mesos

We examined a Spark standalone cluster in the previous chapter. Now it’s time to tackle
YARN and Mesos, two other cluster managers supported by Spark. They’re both widely
used (with YARN still more widespread) and offer similar functionalities, but each has
its own specific strengths and weaknesses. Mesos is the only cluster manager supporting
fine-grained resource scheduling mode; you can also use Mesos to run Spark tasks in
Docker images. In fact, the Spark project was originally started to demonstrate the

This chapter covers
■ YARN architecture
■ YARN resource scheduling 
■ Configuring and running Spark on YARN
■ Mesos architecture
■ Mesos resource scheduling
■ Configuring and running Spark on Mesos
■ Running Spark from Docker
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usefulness of Mesos,1 which illustrates Mesos’s importance. YARN lets you access Kerberos-
secured HDFS (Hadoop distributed filesystem restricted to users authenticated using the
Kerberos authentication protocol) from your Spark applications. 

 In this chapter, we’ll describe the architectures, installation and configuration
options, and resource scheduling mechanisms for Mesos and YARN. We’ll also highlight
the differences between them and how to avoid common pitfalls. In short, this chapter
will help you decide which platform better suits your needs. We’ll start with YARN.

12.1 Running Spark on YARN
YARN (which, as you may recall, stands for yet another resource negotiator) is the new
generation of Hadoop’s MapReduce execution engine (for more information about
MapReduce, see appendix B). Unlike the previous MapReduce engine, which could
only run MapReduce jobs, YARN can run other types of programs (such as Spark).
Most Hadoop installations already have YARN configured alongside HDFS, so YARN is
the most natural execution engine for many potential and existing Spark users. 

 Spark was designed to be agnostic to the underlying cluster manager, and running
Spark applications on YARN doesn’t differ much from running them on other cluster
managers, but there are a few differences you should be aware of. We’ll go through those
differences here. 

 We’ll begin our exploration of running Spark on YARN by first looking at the YARN
architecture. Then we’ll describe how to submit Spark applications to YARN, then
explain the differences between running Spark applications on YARN compared to a
Spark standalone cluster.

12.1.1 YARN architecture

The basic YARN architecture is similar to Spark’s standalone cluster architecture. Its
main components are a resource manager (it could be likened to Spark’s master pro-
cess) for each cluster and a node manager (similar to Spark’s worker processes) for each
node in the cluster. Unlike running on Spark’s standalone cluster, applications on
YARN run in containers (JVM processes to which CPU and memory resources are
granted). An application master for each application is a special component. Running
in its own container, it’s responsible for requesting application resources from the
resource manager. When Spark is running on YARN, the Spark driver process acts as
the YARN application master. Node managers track resources used by containers and
report to the resource manager.

 Figure 12.1 shows a YARN cluster with two nodes and a Spark application running
in the cluster. You’ll notice that this figure is similar to figure 11.1, but the process of
starting an application is somewhat different. 

 A client first submits an application to the resource manager (step 1), which directs
one of the node managers to allocate a container for the application master (step 2).
The node manager launches a container (step 3) for the application master (Spark’s

1 See “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center,” by Benjamin Hindman et al.,
http://mesos.berkeley.edu/mesos_tech_report.pdf.
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driver), which then asks the resource manager for more containers to be used as
Spark executors (step 4). When the resources are granted, the application master asks
the node managers to launch executors in the new containers (step 5), and the node
managers obey (step 6). From that point on, driver and executors communicate inde-
pendently of YARN components, in the same way as when they’re running in other
types of clusters. Clients can query the application’s status at any time.
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Figure 12.1 YARN architecture in an example cluster of two nodes. The client submits an application, 
whereby the resource manager starts the container for the application master (Spark driver). The appli-
cation master requests more containers for Spark executors. Once the containers start, the Spark driver 
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Figure 12.1 shows only one application running in the cluster. But multiple applica-
tions can run in a single YARN cluster, be they Spark applications or applications of
another type. In that case, each application has its own application master. The num-
ber of containers depends on the application type. At minimum, an application could
consist of only an application master. Because Spark needs a driver and executors, it
will always have a container for the application master (Spark driver) and one or more
containers for its executors. Unlike Spark’s workers, YARN’s node managers can
launch more than one container (executor) per application. 

12.1.2 Installing, configuring, and starting YARN

This section contains an overview of YARN and Hadoop installation and configuration.
For more information, we recommend Hadoop in Practice, Second Edition, by Alex Hol-
mes (Manning, 2015) and Hadoop: The Definitive Guide, Fourth Edition, by Tom White
(O’Reilly, 2015).

 YARN is installed together with Hadoop. The installation is straightforward: from
the Hadoop download page (https://hadoop.apache.org/releases.html), you need to
download and extract Hadoop’s distribution archive on every machine that is to be
part of your cluster. Similar to Spark, you can use YARN in three possible modes:

■ Standalone (local) mode—Runs as a single Java process. This is comparable to
Spark’s local mode, described in chapter 10.

■ Pseudo-distributed mode—Runs all Hadoop daemons (several Java processes) on a
single machine. This is comparable to Spark’s local cluster mode, described in
chapter 10.

■ Fully distributed mode—Runs on multiple machines.

CONFIGURATION FILES

Hadoop’s XML-based configuration files are located in the etc/hadoop directory of
the main installation location. The main configuration files are as follows:

■ slaves—List of hostnames (one per line) of the machines in the cluster.
Hadoop’s slaves file is the same as the slaves file in Spark’s standalone cluster
configuration.

■ hdfs-site.xml—Configuration pertaining to Hadoop’s filesystem. 
■ yarn-site.xml—YARN configuration.
■ yarn-env.sh—YARN environment variables.
■ core-site.xml—Various security, high-availability, and filesystem parameters.

Copy the configuration files to all the machines in the cluster. We’ll mention specific
configuration options pertinent to Spark in the coming sections.

STARTING AND STOPPING YARN

Table 12.1 lists the scripts for starting and stopping YARN and HDFS daemons. They’re
available in the sbin directory of the main Hadoop installation location. 
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12.1.3 Resource scheduling in YARN

YARN’s ResourceManager, mentioned previously, has a pluggable interface to allow differ-
ent plug-ins to implement its resource-scheduling functions. There are three main sched-
uler plug-ins: the FIFO scheduler, the capacity scheduler, and the fair scheduler. You specify the
desired scheduler by setting the property yarn.resourcemanager.scheduler.class
in the yarn-site.xml file to the scheduler’s class name. The default is the capacity
scheduler (the value org.apache.hadoop.yarn.server.resourcemanager.scheduler
.capacity.CapacityScheduler).

 These schedulers treat Spark like any other application running in YARN. They
allocate CPU and memory to Spark according to their logic. Once they do, Spark
schedules resources for its own jobs internally, as discussed in chapter 10.

FIFO SCHEDULER

The FIFO scheduler is the simplest of the scheduler plug-ins. It lets applications take
all the resources they need. If two applications require the same resources, the first
application that requests them will be first served (FIFO).

CAPACITY SCHEDULER 

The capacity scheduler (the default scheduler in YARN) was designed to allow for sharing
of a single YARN cluster by different organizations, and it guarantees that each organiza-
tion will always have a certain amount of resources available (guaranteed capacity). The
main unit of resources scheduled by YARN is a queue. Each queue’s capacity determines the
percentage of cluster resources that can be used by applications submitted to it. A hier-
archy of queues can be set up to reflect a hierarchy of capacity requirements by organi-
zations, so that sub-queues (sub-organizations) can share the resources of a single queue
and thus not affect others. In a single queue, the resources are scheduled in FIFO fashion.

 If enabled, capacity scheduling can be elastic, meaning it allows organizations to use
any excess capacity not used by others. Preemption isn’t supported, which means the
excess capacity temporarily allocated to some organizations isn’t automatically freed
when demanded by organizations originally entitled to use it. If that happens, the
“rightful owners” have to wait until the “guests” have finished using their resources.

Table 12.1 Scripts for starting and stopping YARN and HDFS daemons

Script file What it does

start-hdfs.sh / stop-hdfs.sh Starts/stops HDFS daemons on all machines listed in the 
slaves file

start-yarn.sh / stop-yarn.sh Starts/stops YARN daemons on all machines listed in the 
slaves file

start-all.sh / stop-all.sh Starts/stops both HDFS and YARN daemons on all machines 
listed in the slaves file
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FAIR SCHEDULER

The fair scheduler tries to assign resources in such a way that all applications get (on
average) an equal share. By default, it bases its decisions on memory only, but you can
configure it to schedule with both memory and CPU. 

 Like the capacity scheduler, it also organizes applications into queues. The fair
scheduler also supports application priorities (some applications should get more
resources than others) and minimum capacity requirements. It offers more flexibility
than the capacity scheduler. It enables preemption, meaning when an application
demands resources, the fair scheduler can take some resources from other running
applications. It can schedule resources according to FIFO scheduling, fair scheduling,
and dominant resource fairness scheduling. Dominant resource fairness scheduling
takes into account CPU and memory (whereas in normal operation, only memory
affects scheduling decisions).

12.1.4 Submitting Spark applications to YARN

As with running applications in a Spark standalone cluster, depending on where the
driver process is running, Spark has two modes of running applications on YARN: the
driver can run in YARN or it can run on the client machine. If you want it to run in a
cluster, the Spark master connection URL should be as follows:

--master yarn-cluster

If you want it to run on the client machine, use:

--master yarn-client

NOTE The spark-shell can’t be started in yarn-cluster mode because an inter-
active connection with the driver is required.

Figure 12.1 shows an example of running Spark on YARN in cluster-deploy mode. Fig-
ure 12.2 shows Spark running on YARN in client-deploy mode. As you can see, the
order of calls is similar to cluster-deploy mode. What is different is that resource allo-
cation and internal Spark communications are now split between Spark’s application
master and the driver. Spark’s application master handles resource allocation and
communication with the resource manager, and the driver communicates directly
with Spark’s executors. Communication between the driver and the application mas-
ter is now necessary, too.

 Submitting an application to YARN in client mode is similar to the way it’s done for
a standalone cluster. You’ll see the output of your application in the client window.
You can kill the application by stopping the client process.
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When you submit an application to YARN in cluster mode, your client process will stay
alive and wait for the application to finish. Killing the client process won’t stop the

Resource manager first asks
one Node manager to start a
container for the Spark
application master.

Submit

Start AM container

Launch 
AM
container

Allocate
application
resources

Start executor 
container

Start
executor 
container

Launch
executor 
container

Launch 
executor container

Spark 
communication

Spark 
communication

Spark 
communication

Client (running outside 
the cluster) submits an
application to the
resource manager.

Node managers start
executors on behalf
of Spark application 
master.

Resource
manager

YARN cluster—Cluster deploy mode

Node 1

Node 2

Node
manager

Container

JVM heap

Executor
T

T

T T

Container

JVM heap

Executor
T

T

T

Container

JVM heap

Spark
application

master

Node
manager

Spark application 
master asks 
Resource manager
to allocate resources
for the application.

Spark application 
master requests Node 
managers to start 
executor containers.

Spark driver 
communicates
with Spark executors
independently of YARN.

Node manager
launches AM 
container.

Client JVM

JVM heap

Spark driver

Scheduler

Spark
context

Figure 12.2 Running spark in YARN client-deploy mode in a cluster with two nodes. The client submits an 
application, and the resource manager starts the container for the application master (Spark driver). The 
application master requests further containers for Spark executors. The Spark driver runs in the client JVM 
and directly communicates with the executors once the containers start.

 



338 CHAPTER 12 Running on YARN and Mesos

application. If you’ve turned on information (INFO) message logging, your client pro-
cess will display periodic messages like this one:

INFO Client: Application report for <application_id> (state: RUNNING)

You’ll notice that application startup is somewhat slower on YARN than it is on a stand-
alone cluster. This is because of the way YARN assigns resources: it first has to create a con-
tainer for the application master, which then has to ask the resource manager to create
containers for executors. This overhead isn’t felt that much when running larger jobs.

STOPPING AN APPLICATION

YARN offers a way to stop a running application with the following command:

$ yarn application -kill <application_id>

You can obtain the application ID from the spark-submit command’s output if you
enable logging of INFO messages for the org.apache.spark package. Otherwise, you
can find the ID on the YARN web UI (see section 12.1.5). You can kill an application
regardless of whether the application runs in client or cluster mode.

12.1.5 Configuring Spark on YARN 

To run Spark on YARN, you only need to have Spark installed on the client node (the
node running spark-submit or spark-shell, or if your application instantiates a
SparkContext). The Spark assembly JAR and all configuration options are transferred
automatically to the appropriate YARN containers.

 The Spark distribution package needs to be built with YARN support. You can
download a prebuilt version from the Spark official website (https://
spark.apache.org/downloads.html) or build your own. 

 As you’ve probably noticed, the master connection URL for connecting to YARN
contains no hostnames. Therefore, before submitting an application to a YARN clus-
ter, you need to tell Spark where to find the YARN resource manager. This is done by
setting one of the following two variables to point to the directory that contains the
YARN configuration: YARN_CONF_DIR or HADOOP_CONF_DIR. At minimum, the specified
directory needs to have at least one file, yarn-site.xml, with this configuration:

<?xml version="1.0"?>
<configuration>
    <property>
        <name>yarn.resourcemanager.address</name>
        <value>{RM_hostname}:{RM_port}</value>
    </property>
</configuration>

RM_hostname and RM_port are the hostname and port of your resource manager (the
default port is 8050). For other configuration options that you can specify in yarn-
site.xml, please see the official Hadoop documentation (http://mng.bz/zB92).

 If you need to access HDFS, the directory specified by YARN_CONF_DIR or HADOOP
_CONF_DIR should also contain the core-site.xml file with the parameter fs.default
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.name set to a value similar to this: hdfs://yourhostname:9000. This client-side con-
figuration will be distributed to all Spark executors in the YARN cluster.

SPECIFYING A YARN QUEUE

As we discussed in section 12.1.3, when using capacity or fair schedulers, YARN appli-
cations’ resources are allocated by specifying a queue. You set the queue name Spark
will use with the --queue command-line parameter, the spark.yarn.queue configura-
tion parameter, or the SPARK_YARN_QUEUE environment variable. If you don’t specify a
queue name, Spark will use the default name (default).

SHARING THE SPARK ASSEMBLY JAR

When submitting Spark applications to a YARN cluster, JAR files containing Spark
classes (all the JARs from Spark installation’s jars folder) need to be transferred to the
containers on remote nodes. This upload can take some time because these files can
take up more than 150 MB. You can shorten this time by uploading the JARs to a
specific folder on all executor machines manually and set spark.yarn.jars

configuration parameter to point to that folder. Or you can make it point to a central
folder on HDFS.

 There is a third option. You can put the JAR files in an archive and set the
spark.yarn.archive parameter to point to the archive (in a folder on each node or
in an HDFS folder).

 This way, Spark will be able to access the JARs from each container when needed,
instead of uploading the JARs from the client each time it runs. 

MODIFYING THE CLASSPATH AND SHARING FILES

Most of the things we said in the previous chapter about specifying extra classpath
entries and files for a standalone cluster also apply to YARN. You can use a SPARK
_CLASSPATH variable, the --jars command-line parameter, or spark.driver.extra-
ClassPath (and others in spark.*.extra[Class|Library]Path). For more details,
see the official documentation at http://mng.bz/75KO.

 There are a few differences, though. An additional command-line parameter,
--archives, lets you specify an archive name that will be transferred to worker
machines and extracted into the working directory of each executor. Additionally, for
each file or archive specified with --archives and --files, you can add a reference
filename so you can access it from your program running on executors. For example,
you can submit your application with these parameters:

--files /path/to/myfile.txt#fileName.txt

Then, you can access the file myfile.txt from your program by using the name file-
Name.txt. This is specific to running on YARN.

12.1.6 Configuring resources for Spark jobs

YARN schedules CPU and memory resources. A few specifics that you should be aware
of are described in this section. For example, the default number of executor cores
should be changed in most circumstances (as described shortly). Also, to take advantage
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of Spark’s memory management, it’s important to configure it properly, especially on
YARN. Several important, YARN-specific parameters are mentioned here as well.

SPECIFYING CPU RESOURCES FOR AN APPLICATION

The default setup when running on YARN is to have two executors and one core per
executor. This usually isn’t enough. To change this, use the following command-line
options when submitting an application to YARN:

■ --num-executors—Changes the number of executors
■ --executor-cores—Changes the number of cores per executor

SPARK MEMORY MANAGEMENT WHEN RUNNING ON YARN

Just as on a standalone cluster, driver memory can be set with the --driver-memory
command-line parameter, a spark.driver.memory configuration parameter, or the
SPARK_DRIVER_MEMORY environment variable. For executors, the situation is a bit
different. Similar to a standalone cluster, spark.executor.memory determines the
executors’ heap size (same as the SPARK_EXECUTOR_MEMORY environment variable or
the --executor-memory command-line parameter). An additional parameter,
spark.executor.memoryOverhead, determines additional memory beyond the Java
heap that will be available to YARN containers running Spark executors. This memory
is necessary for the JVM process itself. If your executor uses more memory than
spark.executor.memory + spark.executor.memoryOverhead, YARN will shut down
the container, and your jobs will repeatedly fail. 

TIP Failing to set spark.executor.memoryOverhead to a sufficiently high
value can lead to problems that are hard to diagnose. Make sure to specify at
least 1024 MB.

The memory layout of Spark’s executors
when running on YARN is shown in fig-
ure 12.3. It shows memory overhead
along with the sections of the Java heap
we described in section 10.2.4: storage
memory (whose size is determined
by spark.storage.memoryFraction),
shuffle memory (size determined by
spark.shuffle.memoryFraction), and
the rest of the heap used for Java objects. 

 When your application is running
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client mode. Furthermore, a few YARN parameters (specified in yarn-site.xml) influence
memory allocation:

■ yarn.scheduler.maximum-allocation-mb—Determines the upper memory
limit of YARN containers. The resource manager won’t allow allocation of larger
amounts of memory. The default value is 8192 MB.

■ yarn.scheduler.minimum-allocation-mb—Determines the minimum amount
of memory the resource manager can allocate. The resource manager allocates
memory only in multiples of this parameter. The default value is 1024 MB.

■ yarn.nodemanager.resource.memory-mb—Determines the maximum amount
of memory YARN can use on a node overall. The default value is 8192 MB.

yarn.nodemanager.resource.memory-mb should be set to the amount of memory
available on a node, minus the memory needed for the OS. yarn.scheduler.maximum-
allocation-mb should be set to the same value. Because YARN will round up all
allocation requests to multiples of yarn.scheduler.minimum-allocation-mb, that
parameter should be set to a value small enough to not waste memory unnecessarily (for
example, 256 MB).

CONFIGURING EXECUTOR RESOURCES PROGRAMMATICALLY

Executor resources can also be specified when creating Spark context objects pro-
grammatically with the spark.executor.cores, spark.executor.instances, and
spark.executor.memory parameters. But if your application is running in YARN clus-
ter mode, the driver is running in its own container, started in parallel with executor
containers, so these parameters will have no effect. In that case, it’s best to set these
parameters in the spark-defaults.conf file or on the command line.

12.1.7 YARN UI

Similar to a Spark standalone cluster, YARN also provides a web interface for monitor-
ing the cluster state. By default, it starts on port 8088 on the machine where the
resource manager is running. You can see the state and various metrics of your nodes,
the current capacity usage of the cluster, local and remote log files, and the status of
finished and currently running applications. Figure 12.4 shows a sample YARN UI start-
ing page with a list of applications.

Figure 12.4 YARN UI: the All Applications page shows a list of running and finished applications
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From this page, you can click an application’s ID, which takes you to the Application
Overview page (figure 12.5). There you can examine the application’s name, status,
and running time, and access its log files. The node at which the application master is
running is also displayed.

ACCESSING THE SPARK WEB UI FROM THE YARN UI

The so-called tracking UI (or tracking URL) is available from the YARN UI Applications
page and from the Application Overview page. The tracking URL takes you to the
Spark web UI if the application is still running. We described the Spark web UI in
chapter 10.

TIP If you get the error “Connection refused” in your browser when trying to
access the Spark web UI through the Tracking UI link, you should set the
YARN configuration parameter yarn.resourcemanager.hostname (in yarn-
site.xml) to the exact value of your YARN hostname. 

When the application finishes, you’ll be taken to the YARN Application Overview page
(figure 12.4). If you have the Spark History Server running, the tracking URL for the
finished application will point to the Spark History Server. 

SPARK HISTORY SERVER AND YARN

If you enabled event logging and started the Spark History Server (as described in
chapter 10), you’ll be able to access the Spark web UI of a finished Spark application,
just like when running on a Spark standalone cluster. But if you’re running your appli-
cation in YARN cluster mode, the driver can be run on any node in the cluster. In
order for the Spark History Server to see the event log files, don’t use a local directory
as an event log directory; put it on HDFS. 

Figure 12.5 YARN UI: The Application Overview page
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12.1.8 Finding logs on YARN

By default, YARN stores your application’s logs locally on the machines where the contain-
ers are running. The directory for storing log files is determined by the parameter
yarn.nodeamanager.log-dirs (set in yarn-site.xml), which defaults to <Hadoop instal-
lation directory>/logs/userlogs. To view the log files, you need to look in this directory on
each container’s machine. The directory contains a subdirectory for each application.

 You can also find the log files through the YARN web UI. The application master’s
logs are available from the Application Overview page. To view logs from other con-
tainers, you need to find the appropriate node by clicking Nodes and then clicking
the node name in the list of nodes. Then go to its list of containers, where you can
access logs for each of them.

USING LOG AGGREGATION

Another option on YARN is to enable the log aggregation feature by setting the
yarn.log-aggregation-enable parameter in yarn-site.xml to true. After an applica-
tion finishes, its log files will be transferred to a directory on HDFS as specified by the
parameter yarn.nodemanager.remote-app-log-dir, which defaults to /tmp/logs.
Under this directory, a hierarchy of subdirectories is created, first by the current user’s
username and then by the application ID. The final application aggregate log direc-
tory contains one file per node on which it executed.

 You can view these aggregate log files by using the yarn logs command (only after
the application has finished executing) and specifying the application ID:

$ yarn logs -applicationId <application_id> 

As we already said, you can obtain the application ID from the spark-submit com-
mand’s output if logging of INFO messages for the org.apache.spark package is
enabled. Otherwise, you can find it on the YARN web UI (see section 12.1.5).

 You can view a single container’s logs by specifying the container’s ID. To do so,
you also need to specify the hostname and port of the node on which the container is
executing. You can find this information on the Nodes page of the YARN web UI:

$ yarn logs -applicationId <application_id> -containerId <container_id> \ 
-nodeAddress <node hostname>:<node port>

You can then use shell utilities to further filter and grep the logs.

CONFIGURING THE LOGGING LEVEL

If you want to use an application-specific log4j configuration, you need to upload your
log4j.properties file using the --files option while submitting the application. Alter-
natively, you can specify the location of the log4j.properties file (which should already
be present on the node machines) using the -Dlog4j.configuration parameter in
the spark.executor.extraJavaOptions option. For example, from the command
line, you can do it like this:

$ spark-submit --master yarn-client --conf spark.executor.extraJavaOptions=
-Dlog4j.configuration=file:/usr/local/conf/log4j.properties" ...
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12.1.9 Security considerations

Hadoop provides the means for authorizing access to resources (HDFS files, for exam-
ple) to certain users, but it has no means of user authentication. Hadoop instead
relies on Kerberos, a widely used and robust security framework. Hadoop allows user
access or not, depending on Kerberos-provided identity and access control lists in the
Hadoop configuration. If Kerberos is enabled in a Hadoop cluster (in other words,
the cluster is Kerberized), only Kerberos-authenticated users can access it. YARN knows
how to handle Kerberos authentication information and pass it on to HDFS. The
Spark standalone and Mesos cluster managers don’t have this functionality. You’ll
need to use YARN to run Spark if you need to access Kerberized HDFS.

 To submit jobs to a Kerberized YARN cluster, you need a Kerberos service principal
name (in the form username/host@KERBEROS_REALM_NAME; the host part is optional)
and a keytab file. The service principal name serves as your Kerberos user name. Your
keytab file contains pairs of user names and encryption keys used for encrypting Ker-
beros authentication messages. Your service principal name and keytab file are typi-
cally provided by your Kerberos administrator. 

 Before submitting a job to a Kerberized YARN cluster, you need to authenticate
with a Kerberos server using the kinit command (on Linux systems):

$ kinit -kt <your_keytab_file> <your_service_principal>

Then submit your job as usual.

12.1.10Dynamic resource allocation

As you may recall from the previous chapters, Spark applications obtain executors
from the cluster manager and use them until they finish executing. The same execu-
tors are used for several jobs of the same application, and executors’ resources remain
allocated even though they may be idle between jobs. This enables tasks to reuse data
from a previous job’s tasks that ran on the same executors. For example, spark-shell
may be idle for a long time while the user is away from their computer, but the execu-
tors it allocated remain, holding the cluster’s resources.

 Dynamic allocation is Spark’s remedy for this situation, enabling applications to
release executors temporarily so that other applications can use the allocated
resources. This option has been available since Spark 1.2, but only for the YARN clus-
ter manager. Since Spark 1.5, it’s also available on Mesos and standalone clusters.

USING DYNAMIC ALLOCATION

You enable dynamic allocation by setting the spark.dynamicAllocation.enabled
parameter to true. You should also enable Spark’s shuffle service, which is used to
serve executors’ shuffle files even after the executors are no longer available. If an
executor’s shuffle files are requested and the executor isn’t available while the service
isn’t enabled, shuffle files will need to be recalculated, which wastes resources. There-
fore, you should always enable the shuffle service when enabling dynamic allocation.
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 To enable the shuffle service on YARN, you need to add spark-<version>-shuffle.jar
(available from the lib directory of the Spark distribution) to the classpath of all node
managers in the cluster. To do this, put the file in the share/hadoop/yarn/lib folder
of your Hadoop installation and then add or edit the following properties in the yarn-
site.xml file:

■ Set the property yarn.nodemanager.aux-services to the value "mapreduce
_shuffle,spark_shuffle" (basically, add spark_shuffle to the string).

■ set the property yarn.nodemanager.aux-services.spark_shuffle.class to
org.apache.spark.network.yarn.YarnShuffleService.

This will start the service in each node manager in your cluster. To tell Spark that it
should use the service, you need to set the spark.shuffle.service.enabled Spark
parameter to true. 

 When dynamic allocation is configured and running, Spark will measure the time
during which there are pending tasks to be executed. If this period exceeds the
interval specified by the parameter spark.dynamicAllocation.schedulerBacklog-
Timeout (in seconds), Spark will request executors from the resource manager. It
will continue to request them every spark.dynamicAllocation.sustained-

SchedulerBacklogTimeout seconds if there are pending tasks. Every time Spark
requests new executors, the number of executors requested increases exponentially
so that it can respond to the demand quickly enough—but not too quickly, in case
the application only needs a couple of them. The parameter spark.dynamic-
Allocation.executorIdleTimeout specifies the number of seconds an executor
needs to remain idle before it’s removed.

 You can control the number of executors with these parameters:

■ spark.dynamicAllocation.minExecutors—Minimum number of executors
for your application

■ spark.dynamicAllocation.maxExecutors—Maximum number of executors
for your application

■ spark.dynamicAllocation.initialExecutors—Initial number of executors
for your application

12.2 Running Spark on Mesos
Mesos is the last cluster manager supported by Spark that we’ll talk about, but it’s cer-
tainly not the least. We mentioned that the Spark project was originally started in
order to demonstrate the usefulness of Mesos. Apple’s Siri application runs on Mesos,
as well as applications at eBay, Netflix, Twitter, Uber, and many other companies. 

 Mesos provides a distributed systems kernel and serves commodity cluster
resources to applications, just like a Linux kernel manages a single computer’s
resources and serves them to applications running on a single machine. Mesos sup-
ports applications written in Java, C, C++, and Python. With version 0.20, Mesos can
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run Docker containers, which are packages containing all the libraries and configura-
tions that an application needs in order to run. With Docker support, you can run
Mesos on virtually any application that can run in a Docker container. Since Spark 1.4,
Spark can run on Mesos in Docker containers, too.

 A few points where Mesos can use some improvement are security and support to
run stateful applications (ones that use persistent storage, such as databases). With the
current version (1.0.1), it isn’t advisable to run stateful applications on Mesos. The com-
munity is working on supporting these use cases, too.2 Also, Kerberos-based authenti-
cation isn’t supported yet (https://issues.apache.org/jira/browse/MESOS-907).
Applications, however, can provide authentication using Simple Authentication and
Security Layer (SASL, a widely used authentication and data security framework), and
intra-cluster communication is secured with Secure Sockets Layer (SSL). Dynamic allo-
cation (explained in section 12.1.10), previously reserved for YARN only, is available on
Mesos with Spark 1.5.

 To begin our exploration of running Spark on Mesos, we’ll first examine the
Mesos architecture more closely. Then we’ll see how running Spark on Mesos is differ-
ent than running it on YARN and in Spark standalone clusters.

12.2.1 Mesos architecture

It’s simpler to compare the Mesos architecture to a Spark standalone cluster than to
YARN. Mesos’s basic components—masters, slaves, and applications (or frameworks, in
Mesos terms)—should be familiar to you from chapter 11. As is the case with a Spark
standalone cluster, a Mesos master schedules slave resources among applications that
want to use them. Slaves launch the application’s executors, which execute tasks. 

 So far, so good. Mesos is more powerful than a Spark standalone cluster and
differs from it in several important points. First, it can schedule other types of
applications besides Spark (Java, Scala, C, C++, and Python applications). It’s also
capable of scheduling disk space, network ports, and even custom resources (not just
CPU and memory). And instead of applications demanding resources from the cluster
(from its master), a Mesos cluster offers resources to applications, which they can
accept or refuse. 

 Frameworks running on Mesos (such as Spark applications) consist of two compo-
nents: a scheduler and an executor. The scheduler accepts or rejects resources offered by
the Mesos master and automatically starts Mesos executors on slaves. Mesos executors
run tasks as requested by the frameworks’ schedulers. 

 Figure 12.6 shows Spark running on a two-node Mesos cluster in client-deploy and
coarse-grained modes. You’ll learn what coarse-grained means in an instant.

 
 
 

2 For more information, see https://issues.apache.org/jira/browse/MESOS-1554.
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Let’s explain the communication steps shown on the figure: 

1 Mesos slaves offer their resources to the master. 
2 Spark’s Mesos-specific scheduler, running in a driver (the Spark submit com-

mand, for example) registers with the Mesos master.
3 The Mesos master in turn offers the available resources to the Spark Mesos

scheduler (this happens continually: by default, every second while the frame-
work is alive).

4 Spark’s Mesos scheduler accepts some of the resources and sends a list of
resources, along with a list of tasks it wants to run using the resources, to the
Mesos master.

5 The master asks the slaves to start the tasks with the requested resources.

1. Slave resource offers

1. Slave resource offers
2. Register with
Mesos master

3. Master
resource 
offers

4. Accept offer
(3 CPU, 8G RAM, ...)
and Start tasks
(TASK1, TASK2)

5. Start tasks

5. Start tasks

6. Launch executor

6. Launch executor

7. Spark 
communication

7. Spark 
communication

Mesos
master

Mesos cluster—Client deploy, coarse-grained mode

Node 1

Node 2

Mesos
slave

Mesos
slave

Mesos TASK1
(container)

Mesos executor

Resources

Spark executor
T

T

T T

Client JVM

Resources

Spark driver

Scheduler

Spark
Mesos

scheduler

Spark
context

Mesos TASK2
(container)

Mesos executor

Resources

Spark executor
T

T

T T

Figure 12.6 Spark running on a two-node Mesos cluster in client-deploy and coarse-grained modes
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6 Slaves launch executors (in this case, Mesos’s Command Executors), which
launch Spark executors (using the provided command) in task containers.

7 Spark executors connect to the Spark driver and freely communicate with it,
executing Spark tasks as usual.

You can see that the figure is similar to the ones for YARN and a Spark standalone clus-
ter. The main difference is that the scheduling is backward: applications don’t
demand, but accept resources offered by the cluster manager.

FINE-GRAINED AND COARSE-GRAINED SPARK MODES

As we said, figure 12.6 shows Spark running in coarse-grained mode. This means
Spark starts one Spark executor per Mesos slave. These executors stay alive during the
entire lifetime of the Spark application and run tasks in much the same way as they do
on YARN and a Spark standalone cluster.

 Contrast this with fine-grained mode, shown on figure 12.7. Spark’s fine-grained
mode is available only on Mesos (it isn’t available on other cluster types). 

 In fine-grained mode, one Spark executor—and, hence, one Mesos task—is
started per Spark task. This means much more communication, data serialization, and
setting up of Spark executor processes will need to be done, compared to coarse-
grained mode. Consequently, jobs are likely to be slower in fine-grained mode than in
coarse-grained mode. 

 The rationale behind fine-grained mode is to use cluster resources more flexibly so
that other frameworks running on the cluster can get a chance to use some of the
resources a Spark application may not currently need. It’s used mainly for batch or
streaming jobs that have long-running tasks, because in those cases, the slowdown due
to management of Spark executors is negligible.

 One additional detail visible in figure 12.7 is the Spark Mesos executor. This is a
custom Mesos executor used only in Spark fine-grained mode.

 Fine-grained mode is the default option, so if you try Mesos and see that it’s much
slower than YARN or a Spark standalone cluster, first switch to coarse-grained mode by
setting the spark.mesos.coarse parameter to true (configuring Spark was described
in chapter 10) and try your job again. Chances are, it will be much faster.

MESOS CONTAINERS

Tasks in Mesos are executed in containers, shown in figures 12.6 and 12.7, whose pur-
pose is to isolate resources between processes (tasks) on the same slave so that tasks
don’t interfere with each other. The two basic types of containers in Mesos are Linux
cgroups containers (default containers) and Docker containers. 

■ cgroups (control groups)—A feature of the Linux kernel that limits and isolates
processes’ resource usage. A control group is a collection of processes to which
a set of resource limitations (CPU, memory, network, disk) is applied. 

■ Docker containers—Similar to VMs. In addition to limiting resources, as
cgroups containers do, Docker containers provide the required system libraries.
This is the crucial difference. 
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We’ll say more about using Docker in Mesos in section 12.2.6.

MASTER HIGH-AVAILABILITY

Similar to Spark standalone clusters, you can set up Mesos to use several master pro-
cesses. Master processes use ZooKeeper to elect a leader among themselves. If the
leader goes down, the standby masters will elect a new leader, again using ZooKeeper.

12.2.2 Installing and configuring Mesos

The officially recommended way to install Mesos is to build it from source code.3 But
if you’re lucky enough to be running a Linux version supported by Mesosphere, a
quicker and simpler way is to install Mesos from the Mesosphere package repository.4

3 For more information, see the “Getting Started” guide at http://mesos.apache.org/gettingstarted.
4 For more information, see https://mesosphere.com/downloads.
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Here we show the steps for installing Mesos from Mesosphere on Ubuntu. If you need
help installing Mesos on other platforms or more information about installing and
configuring Mesos in general, we recommend Mesos in Action by Roger Ignazio (Man-
ning, 2016).

 You first need to set up the repository

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv E56151BF
$ echo "deb http://repos.mesosphere.io/ubuntu trusty main" | \
    sudo tee /etc/apt/sources.list.d/mesosphere.list

and then install the package:

$ sudo apt-get install mesos

On the master node, you’ll also need to install Zookeeper:

$ sudo apt-get install zookeeper

BASIC CONFIGURATION

You’re (almost) good to go. The only thing left is to tell the slaves where to find the
master. Master and slaves look in the file /etc/mesos/zk to find ZooKeeper’s master
address (which you should set up and start before starting Mesos). Slaves always ask
ZooKeeper for the master’s address. 

 Once you edit /etc/mesos/zk, you have a fully working Mesos cluster. If you want
to further customize your Mesos configuration, you can use these locations:

/etc/mesos
/etc/mesos-master
/etc/mesos-slave
/etc/default/mesos
/etc/default/mesos-master
/etc/default/mesos-slave

The list of all configuration options is available at the official documentation page
(http://mesos.apache.org/documentation/latest/configuration). You can also obtain
it by running the mesos-master --help and mesos-slave --help commands. Envi-
ronment variables are specified in the /etc/default/mesos* files just listed. Command-
line parameters can also be specified on the command line and in the /etc/mesos/*
directories. Place each parameter in a separate file, where the name of the file matches
the parameter name and the contents of the file contain the parameter value.

STARTING MESOS

You run Mesos by starting the corresponding service. To start the master, you should use

$ sudo service mesos-master start

Use this for slaves:

$ sudo service mesos-slave start

 

http://mesos.apache.org/documentation/latest/configuration


351Running Spark on Mesos

These commands automatically pick up the configurations from the configuration
files previously described. You can verify that the services are running by accessing the
Mesos web UI at port 5050 (the default port).

12.2.3 Mesos web UI

When you start a Mesos master, it automatically starts a web UI interface. Figure 12.8
shows the main page.

On the main page, you’ll find a list of active and
completed tasks, information about the master
and slaves, and an overview of the cluster’s CPU
and memory (figure 12.9). The list of active and
terminated frameworks is available on the
Frameworks page (figure 12.10).

 You can click one of the frameworks to exam-
ine a list of its active and terminated tasks. The
Slaves page (figure 12.11) shows a list of regis-
tered slaves and their resources. This is where

Figure 12.8 The main Mesos web UI page shows active and completed tasks and basic information 
about the cluster.

Figure 12.10 The Mesos Frameworks page shows active and terminated frameworks, with an overview 
of their resources.

Figure 12.9 Overview of the state of the 
cluster’s CPU and memory resources on 
the main Mesos web UI page
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you can check whether all of your slaves have registered with the master and are avail-
able. You can click one of the slaves to see a list of previous or currently running
frameworks. If you click one of the frameworks, you’ll also see a list of its running and
completed executors on that slave.

From this screen, you can access an executor’s environment by clicking the Sandbox
link. Figure 12.12 shows the resulting page.

 The Sandbox page lets you see your executor’s environment: application files and
its log files. When you click one of the log files, a separate window opens with a live
view of your application’s logs, which is automatically updated as new lines become
available. This is useful for debugging your application.

Figure 12.11 A list of a framework’s executors on a slave. The executor’s environment is available 
from the Sandbox link.

Figure 12.12 An executor’s Sandbox page shows the executor’s working folder. You can also download 
application files and system out and system error log files.
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12.2.4 Mesos resource scheduling

The fine-grained and coarse-grained scheduling described in section 12.2.1 are
Spark’s scheduling policies when running on Mesos. Mesos itself knows nothing about
them.

 Resource scheduling decisions in Mesos are made on two levels: by the resource-
allocation module running in the Mesos master, and by the framework’s scheduler, which
we mentioned previously. A resource-allocation module decides which resources to
offer to which frameworks and in which order. As we mentioned, Mesos can schedule
memory, CPU, disk, network ports, and even custom resources. It seeks to satisfy the
needs of all frameworks while fairly distributing resources among them. 

 Different types of workloads and different frameworks require different allocation
policies, because some are long-running and some are short-running, some mostly use
memory, some CPU, and so forth. That’s why a resource-allocation module allows for
use of plug-ins that can change resource-allocation decisions. 

 By default, Mesos uses the Dominant Resource Fairness (DRF) algorithm, which is
appropriate for the majority of use cases. It tracks each framework’s resources and
determines the dominant resource for each framework, which is the resource type the
framework uses the most. Then it calculates the framework’s dominant share, which is
the share of all cluster resources of the dominant resource type used by the frame-
work. If a framework is using 1 CPU and 6 GB of RAM in a cluster of 20 CPUs and 36 GB
of RAM, then it’s using 1/20 of all CPUs and 1/6 of all RAM; thus its dominant
resource is RAM, and its dominant share is 1/6.

 DRF allocates the newest resource to the framework with the lowest dominant
share. The framework can accept or reject the offer. If it currently has no work to do,
or if the offer doesn’t contain enough resources for its needs, the framework can
reject the offer. This can be useful if the framework needs a specific locality level for
its tasks. It can wait until a resource offer with an acceptable locality level becomes
available. If a framework is holding on to some resources for too long, Mesos can
revoke the tasks taking up the resources. 

ROLES, WEIGHTS, AND RESOURCE ALLOCATIONS

Roles and weights let you prioritize frameworks so that some get more resource offers
than others. Roles are names attached to typical groups of users or frameworks, and
weights are numbers attached to roles that specify priorities the roles will have when
resource-allocation decisions are made.

 You can initialize a master with a list of acceptable roles with the --roles option
(for example, --roles=dev,test,stage,prod) or with a list of weights per role (for
example, --weights='dev=30,test=50,stage=80,prod=100'). As we explained in
the previous section, you can place these values in the /etc/mesos-master/roles and /
etc/mesos-master/weights files, respectively. In this example, the prod role will get
twice as many resource offers as the test role. 
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 Furthermore, resource allocations can be used on slaves to reserve some resources
for a particular role. When starting a slave, you can specify the --resources parame-
ter with the contents formatted as follows: 'resource_name1(role_name1):value1;
'resource_name2(role_name2):value2'. For example, --resources='cpu(prod):3;
mem(prod):2048' will reserve 3 CPUs and 2 GB of RAM exclusively for frameworks in
the prod role.

 Frameworks can specify a role when registering with a master. To tell Spark which
role to use when registering Mesos, you can use the spark.mesos.role parameter
(which is available with Spark version 1.5). 

MESOS ATTRIBUTES AND SPARK CONSTRAINTS

Mesos also lets you specify custom attributes per slave with the --attributes parame-
ter. You can use attributes to specify the type and version of the slave’s operating sys-
tem or the rack the slave is running on. Mesos supports attributes of the following
types: float, integer, range, set, and text. For more information, see the official docu-
mentation (http://mesos.apache.org/documentation/attributes-resources/). Once
specified, the attributes are sent with each resource offer.

 Beginning with Spark 1.5, you can specify attribute constraints using the
spark.mesos.constraints parameter. This instructs Spark to accept only those offers
whose attributes match the specified constraints. You specify the constraints as key-
value pairs, separated by semicolons (;). Keys and values themselves are separated by
colons (:); and if the value is composed of several values, they’re separated by com-
mas (,) (for example, os:ubuntu,redhat;zone:EU1,EU2). 

12.2.5 Submitting Spark applications to Mesos

The master URL for submitting Spark applications to Mesos starts with mesos:// and
needs to specify the master’s hostname and port:

$ spark-submit --master mesos://<master_hostname>:<master_port>

The default Mesos master port is 5050. If you have several masters running, synchro-
nized through Zookeeper, you can instruct Spark to ask Zookeeper for the currently
elected leader by specifying a master URL in this format:

mesos://zk://<zookeeper_hostname>:<zookeeper_port>

The ZooKeeper port defaults to 2181. 

MAKING SPARK AVAILABLE TO SLAVES

Mesos’s slaves need to know where to find the Spark classes to start your tasks. If you
have Spark installed on the slave machines in the same location as on the driver, then
there’s nothing special you need to do to make Spark available on the slave machines.
Mesos’s slaves will automatically pick up Spark from the same location.

 If Spark is installed on the slave machines, but in a different location, then you can
specify this location with the Spark parameter spark.mesos.executor.home. If you

 

http://mesos.apache.org/documentation/attributes-resources/


355Running Spark on Mesos

don’t have Spark installed on the slave machines, then you need to upload Spark’s
binary package to a location accessible by slaves. This can be an NFS shared filesystem
or a location on HDFS or Amazon S3. You can get Spark’s binary package either by
downloading it from Spark’s official download page or by building Spark yourself and
packaging the distribution with the make-distribution.sh command. Then you
need to set this location as the value of the parameter spark.executor.uri and as the
value of the environment variable SPARK_EXECUTOR_URI. 

RUNNING IN CLUSTER MODE

Mesos’s cluster mode is available with Spark 1.4. A new component was added to
Spark for this purpose: MesosClusterDispatcher. It’s a separate Mesos framework
used only for submitting Spark drivers to Mesos.

 You start MesosClusterDispatcher with the script start-mesos-dispatcher.sh
from Spark’s sbin directory and then pass the master URL to it. Start the cluster dis-
patcher with ZooKeeper’s version of the master’s URL. Otherwise, you may have prob-
lems submitting jobs (for example, submit could hang). The complete start
command looks like this:

$ start-mesos-dispatcher.sh --master mesos://zk://<bind_address>:2181/mesos

The dispatcher process will start listening at port 7077. You can then submit applica-
tions to the dispatcher process instead of the Mesos master. You also need to specify
cluster-deploy mode when submitting applications:

$ spark-submit --deploy-mode cluster --master \
   mesos://<dispatcher_hostname>:7077 ...

If everything goes OK, the driver’s Mesos task will be visible in the Mesos UI, and you’ll
be able to see which slave it’s running. You can use that information to access the
driver’s Spark web UI.

OTHER CONFIGURATION OPTIONS

A few more parameters are available for configuring how Spark runs on Mesos, in addi-
tion to the spark.mesos.coarse, spark.mesos.role, and spark.mesos.constraints
parameters that we mentioned before. They’re shown in table 12.2.

Table 12.2 Additional configuration parameters for running Spark on Mesos

Parameter Default Description

spark.cores.max All available cores Limits the number of tasks your cluster can 
run in parallel. It’s available on other cluster 
managers, too.

spark.mesos
.mesosExecutor.cores

1 Tells Spark how many cores to reserve per 
Mesos executor, in addition to the resources 
it takes for its tasks. The value can be a deci-
mal number.
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12.2.6 Running Spark with Docker

As we said earlier, Mesos uses Linux cgroups as the default “containerizer” for the
tasks it’s running, but it can also use Docker. Docker lets you package an application
along with all of its library and configuration requirements. The name Docker comes
from an analogy to freight containers, which all adhere to the same specifications and
sizes so they can be handled and transported the same way regardless of their con-
tents. The same principle runs true for Docker containers: they can run in different
environments (different OSes with different versions of Java, Python, or other librar-
ies), but they behave the same way on all of them because they bring their own librar-
ies with them. So, you only need to set up your machines to run Docker containers.
Docker containers bring everything needed for whichever application they contain. 

 You can use Docker, Mesos, and Spark in several interesting ways and combina-
tions. You can run Mesos in Docker containers, or you can run Spark in Docker con-
tainers. You can have Mesos run Spark and other applications in Docker containers,
or you can do both—run Mesos in Docker containers and have it run other Docker
containers. EBay, for example, uses Mesos to run Jenkins servers for continuous deliv-
ery in the company’s development department (http://mng.bz/MLtO).

 The benefit of running Docker containers on Mesos is that Docker and Mesos pro-
vide two layers of abstraction between your application and the infrastructure it’s run-
ning on, so you can write your application for a specific environment (contained in
Docker) and distribute it to hundreds and thousands of different machines. We’ll first
show you how to install and configure Docker and then how to use it to run Spark jobs
on Mesos.

INSTALLING DOCKER

Installing Docker on Ubuntu is simple because the installation script is available
online at https://get.docker.com/.5 You only need to pass it to your shell:

$ curl -sSL https://get.docker.com/ | sh

You can verify your installation with this command:

$ sudo docker run hello-world

spark.mesos.extra.cores 0 Specifies the extra number of cores to reserve 
per task in coarse-grained mode.

spark.mesos.executor
.memoryOverhead

10% of spark.executor
.memory

Specifies the amount of extra memory to 
reserve per executor. This is similar to the 
memory overhead parameter on YARN. 

5 For other environments, see the official installation documentation: https://docs.docker.com/installation.

Table 12.2 Additional configuration parameters for running Spark on Mesos (continued)

Parameter Default Description
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To enable other users to run the docker command without having to use sudo every
time, create a user group named docker and add your user to the group:

$ sudo addgroup docker
$ sudo usermod -aG docker <your_username>

 After logging out and logging back in, you should be able to run docker without
using the sudo command.

USING DOCKER

Docker uses images to run containers. Images are comparable to templates, and con-
tainers are comparable to concrete instances of the images. You can build new images
from Dockerfiles, which describe the image contents, and you can pull images from
Docker Hub, an online repository of public Docker images. If you visit Docker Hub
(https://hub.docker.com) and search for mesos or spark, you’ll see that dozens of
images are available for you to use. In this section, you’ll build a Docker image based
on the mesosphere/mesos image available from Docker Hub. 

 When you have built or pulled an image to your local machine, it’s available locally,
and you can run it. If you try to run an image that doesn’t exist locally, Docker pulls it
automatically from the Docker Hub. To list all the images available locally, you can use
the docker images command. To see the running containers, use the docker ps com-
mand. For the complete command reference, use the docker --help command.

 You can also run a command in a container in interactive mode by using the -i
and -t flags, and by specifying the command as an additional argument. For example,
this command starts a bash shell in a container of an image called spark-image:

$ docker run -it spark-image bash

BUILDING A SPARK DOCKER IMAGE

This is the contents of a Dockerfile for building a Docker image that can be used to
run Spark on Mesos:

FROM mesosphere/mesos:0.20.1
RUN apt-get update && \
    apt-get install -y python libnss3 openjdk-7-jre-headless curl
RUN mkdir /opt/spark && \
    curl http://www-us.apache.org/dist/spark/

➥ spark-2.0.0/spark-2.0.0-bin-hadoop2.7.tgz | tar -xzC /opt
ENV SPARK_HOME /opt/spark-2.0.0-bin-hadoop2.7
ENV MESOS_NATIVE_JAVA_LIBRARY /usr/local/lib/libmesos.so

Copy those lines into a file called Dockerfile in a folder of your choosing. Then, posi-
tion yourself in the folder and build the image using this command:

$ docker build -t spark-mesos .
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This command instructs Docker to build an image called spark-mesos using the Docker
file in the current directory. You can verify that your image is available with the docker
images command. You need to do this on all the slave machines in your Mesos cluster. 

PREPARING MESOS TO USE DOCKER

Before using Docker in Mesos, the Docker containerizer needs to be enabled. You
need to execute the following two commands on each of the slave machines in your
Mesos cluster:

$ echo 'docker,mesos' > /etc/mesos-slave/containerizers
$ echo '5mins' > /etc/mesos-slave/executor_registration_timeout

Then restart your slaves:

$ sudo service mesos-slave restart

Mesos should now be ready to run Spark executors in Docker images.

RUNNING SPARK TASKS IN DOCKER IMAGES

Before running Spark tasks in your newly built Docker image, you need to set a cou-
ple of configuration parameters. First, you need to tell Spark the name of the image
by specifying it in the spark.mesos.executor.docker.image parameter (in your
spark-defaults.conf file). The image you built has Spark installed in the folder /opt/
spark-2.0.0-bin-hadoop2.7, which is probably different than your Spark installation
location. So, you’ll need to set the parameter spark.mesos.executor.home to the
image’s Spark installation location. And you’ll need to tell Spark executors where to
find Mesos’s system library. You can do this with the parameter spark.executorEnv
.MESOS_NATIVE_JAVA_LIBRARY. 

 Your spark-defaults.conf file should now contain these lines:

spark.mesos.executor.docker.image           spark-mesos
spark.mesos.executor.home            /opt/spark-2.0.0-bin-hadoop2.7
spark.executorEnv.MESOS_NATIVE_JAVA_LIBRARY  /usr/local/lib/libmesos.so

We’ll use the SparkPi example to demonstrate submitting an application to Docker,
but you can use your own (for example, the one built in chapter 3). Position yourself
in your Spark home directory, and issue the following command (the name of the JAR
file could be different, depending on your Spark version):

$ spark-submit --master mesos://zk://<your_hostname>:2181/mesos \
   --class org.apache.spark.examples.SparkPi \
   examples/jars/spark-examples_2.11-2.0.0.jar

If everything goes well, you should see the message Pi is roughly 3.13972 in your con-
sole output. To verify that Mesos really used a Docker container to run Spark tasks,
you can use the Mesos UI to find your framework. Click the Sandbox link next to one
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of framework’s completed tasks, and then open its standard output log file. It should
contain the following line:

Registered docker executor on <slave's_hostname>

FURTHER DOCKER CONFIGURATION

If you need to access the slave’s filesystem from within your Docker image, Docker lets
you mount the host’s folders to the folders in your image with the -v flag. You can
instruct Spark to do this for you when launching Docker executors by specifying the
parameter spark.mesos.executor.docker.volumes containing a comma-separated
list of volume (folder) mappings in the following format:

[host_path:]container_path[:ro|:rw]

The host path is optional if it’s the same as the container path. 
 Docker also lets you connect certain network ports on your image to the ones on

the slave’s host. You can specify these port mappings with the parameter
spark.mesos.executor.docker.portmaps in this format:

host_port:container_port[:tcp|:udp]

This way, you’ll be able to access the container through ports on the host.

12.3 Summary
■ YARN is the new generation of Hadoop’s MapReduce execution engine and can

run MapReduce, Spark, and other types of programs.
■ YARN consists of a resource manager and several node managers.
■ Applications on YARN run in containers and provide their application masters.
■ YARN supports three different schedulers: FIFO, capacity, and fair. 
■ Spark on YARN runs in yarn-cluster and yarn-client modes.
■ YARN kills containers that use more memory than allowed, so tuning

spark.executor.memoryOverhead is important.
■ YARN provides log aggregation for easy log inspection.
■ YARN was the first cluster manager to support dynamic allocation.
■ YARN is the only cluster manager on which Spark can access HDFS secured with

Kerberos.
■ Mesos can also run different types of applications (you can even run YARN on

Mesos), but unlike YARN, it’s capable of scheduling disk, network, and even cus-
tom resources.

■ Mesos consists of masters, slaves, frameworks, and executors.
■ Spark on Mesos can run in fine-grained or coarse-grained mode.
■ Mesos provides resource isolation for its tasks through containers, imple-

mented with Linux cgroups or Docker.
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■ Mesos’s resource scheduling operates on two levels: by a framework’s scheduler
and by Mesos’s resource-allocation module.

■ Mesos allows framework prioritization through roles, weights, and resource
allocations. 

■ You can use Spark’s contraints to accept resource requests from only some of
the slaves in the cluster.

■ Spark on Mesos supports both client and cluster modes. Cluster mode is imple-
mented with Spark’s Mesos dispatcher.

■ You can run Spark’s executors on Mesos from Docker images.

 



Part 4

Bringing it together

In chapter 13, you’ll bring it all together and explore a Spark streaming appli-
cation for analyzing log files and displaying the results on a real-time dashboard.
The application implemented in chapter 13 can be used as a basis for your own
future applications.

 Chapter 14 introduces H2O, a scalable, fast machine-learning framework with
implementations of many machine-learning algorithms, most notably deep
learning, which Spark lacks; and Sparkling Water, H2O’s package that enables
you to start and use an H2O cluster from Spark. Through Sparkling Water, you
can use Spark’s Core, SQL, Streaming, and GraphX components to ingest, pre-
pare, and analyze data, and transfer it to H2O to be used in H2O’s deep-learning
algorithms. You can then transfer the results back to Spark and use them in sub-
sequent computations.
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Case study:
 real-time dashboard

In this chapter, we’ll show you how to use Spark in a real-life application. For the
example application in this chapter, we’ll show you how to build a real-time dash-
board (a control panel with monitoring instruments) for viewing statistics calculated
from a web server’s access log files. We’ll first explain the main idea behind the appli-
cation. Then we’ll show you how to run it using shell scripts and a Docker image
(which we prepared for you at https://github.com/spark-in-action/uc1-docker) and
how to run the components manually, if you choose to do so. At the end of the chap-
ter, we’ll explain the application code. 

This chapter covers
■ An example Spark Streaming application 
■ A real-time dashboard application example
■ Explanation of the application components
■ Running the application
■ Examining the source code

 

https://github.com/spark-in-action/uc1-docker


364 CHAPTER 13 Case study: real-time dashboard

 You can use this example application as a starting point for your own dashboard.
You can extend the example to track additional metrics, or you can use it to show a
dashboard for something entirely different than web-access logs. You can replace
some of the components with your own, and more. The first step is to see it in action
and understand how it works. Let’s get to it.

13.1 Understanding the use case
In this section, you’ll first learn what this case study is all about. Then we’ll explain the
components of the application that we built to realize the use case. You’ll also get the
answers to the “what” and “why” questions you may have (the “how” question will be
answered in sections 13.2 and 13.3).

13.1.1 The overall picture

Real-time dashboards are common. People generally want to have insight into the
state of their applications and systems, and they want to be able to react quickly to any
challenges that may arise. Dashboards can display sensor data, resource-utilization
data, click-stream data (log traces that users leave while browsing a website), and
so on.

 The use case in this chapter analyzes click-stream data coming from access log files
and displays the results in a web application called Web Stats Dashboard. You want to
receive access log files; calculate the number of active user sessions in each second
and the number of requests, errors, and ads clicked per second; and display all that
information in real-time graphs. The result is shown in figure 13.1.

 As you can see, the web page (the only page in the web application) has two
graphs: the upper graph shows the number of active user sessions, and the lower
graph shows the number of requests, errors, and ads clicked per second. For debug-
ging purposes, you log the last 100 messages received (shown in the text area on the
right). Using the button in the upper-left corner, you can start or stop consuming mes-
sages; and using the row of buttons at the top of the page, you can change the time
range displayed.

 The access log data is in this format:

<date> <time> <IPaddress> <sessionId> <URL> <method> <respCode> <duration>

For example:

2016-04-12 21:38:39.138 192.168.0.123 514304dd-dbf4-4ad9-9cff-557dcff47d7b 

➥ / GET 200 500
2016-04-12 21:38:39.138 192.168.0.252 d7a074e5-77c2-4045-9447-245f7b80269d 

➥ sia.org/ads/10/123/clickfw GET 200 500
2016-04-12 21:38:39.138 192.168.0.51 df870e59-b67c-45d4-b02b-458aa492052f / 

➥ GET 200 500

 



365Understanding the use case

Actual fields are described in table 13.1. 

Table 13.1 Data stored in access logs for each user request in the example application

Field Description

date and time Date and time formatted as yyyy-MM-dd hh:mm:ss.SSS 
(for example, “2016-02-01 13:10:50.738”)

IPaddress Client’s IP address

sessionId Contents of the client’s session cookie

URL Visited URL

method HTTP method used (GET, POST, and so on)

respCode Server’s HTTP response code

duration Time it took the server to respond to the request

Start or stop
consuming 
messages   

Change the time
range displayed

Shows the number
of currently active
user sessions

Shows the number of requests, errors, 
and ads clicked per second

Shows the last
100 received
messages

Figure 13.1 Web Stats Dashboard displays two graphs: one showing the number of active user sessions 
and the other showing the number of requests, errors, and ads clicked per second. You can change the 
displayed time range using the buttons at the top, and start or stop consuming messages using the button 
in the upper-left corner. The last 100 messages are shown on the right for debugging purposes.
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This is, more or less, the data that’s usually stored in web server access log files. But
you won’t use all of these fields to calculate statistics.

13.1.2 Understanding the application’s components

Figure 13.2 shows the components of this application. Because you don’t have a real,
running website that would generate access logs, you use Log Simulator, a Java applica-
tion that simulates access logs generated by users visiting URLs on the website. Log
Simulator sends the formatted click data directly to a Kafka topic. (As mentioned in
chapter 6, Kafka is a distributed queuing system used in many organizations today for
streaming data.) 

 If you were dealing with click-stream data from a real website (or several sites),
you’d need a method of collecting the log files and sending them to Kafka. Apache
Flume (mentioned in chapter 1) would be a good choice for that. It can execute the
tail -F command, for example, and direct its output to Kafka.

 The next component, a Spark Streaming application called Web Log Analyzer, is
the main component of the system. It reads log data from Kafka, calculates several sta-
tistics, and writes the statistics back to Kafka, but to a different topic. 

Kafka

weblogs topic

stats topic

Log Simulator

Web Stats
Dashboard

Client
browser

Log Analyzer

A Java application for
simulating users using
a web application and
generating access logs

A web application that 
reads the calculated
statistics and sends them
to clients over websockets

JavaScript code that receives
the statistics and renders 
them in real-time graphs
using D3.js library

A Spark Streaming 
application analyzing 
incoming access logs 
and calculating various 
statistics

Kafka installation with
two topics defined

WebSockets

Figure 13.2 Components of the example application for this chapter include a Java application that 
simulates user traffic, a Spark Streaming application that analyzes incoming access logs and calculates 
various statistics, and a web application (including the JavaScript code running in the client browser) 
to display the calculated statistics in real-time graphs. All three communicate through Kafka.
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The Log Analyzer component calculates statistics and sends the results to the second
Kafka topic in this format: 

<timestamp>:(key->value,...)

The timestamp is a long number containing the number of milliseconds since Jan. 1, 1970,
(the standard representation of time in Java and several other languages). Table 13.2
shows the possible keys and their meanings. It’s assumed that every banner click takes the
user to a URL of the format /ads/<ad_category>/<ad_id>/clickfw, logs the click event,
and redirects the user to the corresponding partner site. Keys are encoded as integers in
order to save some network bandwidth, which is a good practice.

You can easily extend this application and track other statistics as well. You’ll see how
to do that in section 13.3.

 Finally, Web Stats Dashboard reads the calculated statistical data from Kafka again
and sends it to client browsers over WebSockets to display on real-time graphs using the
D3.js JavaScript library. Additionally, the JavaScript code running in the browser aggre-
gates and sorts the statistics per timestamp (in case the data comes in out of order).

13.2 Running the application
Now that you understand what the application does, you’re ready to start the compo-
nents and see them in action. You have two main options:

■ You can use the scripts and the Docker image (for the application server) that
we prepared for you, and run all the components on a single machine, as
described in section 13.2.1. The spark-in-action VM already has Spark, Kafka,
and Docker installed. Using the scripts in the spark-in-action VM is the easier
option for getting everything up and running quickly.

Table 13.2 Statistics, descriptions, and matching keys calculated by Log Analyzer to format messages
                    sent to Kafka

Statistic Key Description

Active sessions SESS Number of active sessions. Each request has an associated session ID. 
The number of active sessions is the number of unique session IDs whose 
last request occurred less than some fixed number of seconds ago. This 
fixed number of seconds is the session timeout parameter, which should 
be equal to the application server’s session timeout.

Requests REQ Number of requests per second, calculated based on timestamps parsed 
from log file entries.

Errors ERR Number of error response codes (400 and higher) per second.

Ads 1 AD#1 Number of clicks per second on banners of category 1.

Ads 2 AD#2 Number of clicks per second on banners of category 2.

Ads 3 AD#3 Number of clicks per second on banners of category 3.
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■ You can start the application components manually if you have your own Kafka,
Spark, and application server installations, as described in section 13.2.2. 

Of course, you could use a combination of the two approaches and run some of the
components using our scripts and/or the Docker image, and some of the components
on your own. But we recommend that you use the VM, because that way you can be
sure everything will work as planned and that you won’t have any version clashes and
incompatibilities.

13.2.1 Starting the application in the spark-in-action VM

We prepared a Docker image and a set of bash scripts to run the application components
in the spark-in-action VM. The scripts make it easy for you to set up the environment and
run the application, but they run all of the components on a single machine (your VM)
with minimal capacity. To use more resources, you can manually run the application com-
ponents on different machines and/or using your own Spark cluster (see section 13.2.2).

 To get the images for running the application components, first clone the uc1-
docker project into your home directory from our GitHub repository using git:

$ git clone https://github.com/spark-in-action/uc1-docker

Then make all the scripts in the folder executable:

$ cd uc1-docker
$ chmod +x *.sh

The uc1-docker folder contains the following scripts for starting the application:

■ start-kafka.sh—Starts ZooKeeper and Kafka in the background
■ start-dashboard.sh—Downloads the Web Stats Dashboard web application,

builds the sia-dashboard Docker image containing the IBM WebSphere Liberty
Profile application server, and deploys and starts the web application

■ start-spark.sh—Downloads the Log Analyzer JAR file and submits it to a local
Spark cluster

■ start-simulator.sh—Downloads and runs the Log Simulator Java process,
which generates web-traffic log entries and sends them to Kafka

All the scripts (except start-simulator.sh) should be run in the spark-in-action VM,
because they use its IP address (192.168.10.2) and Spark and Kafka install locations. 

 To start the application components, run the scripts in this order:

$ ./start-kafka.sh
$ ./start-dashboard.sh
$ ./start-spark.sh

Or use the run-all.sh script, which will call all of these scripts consecutively:

$ ./run-all.sh
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The scripts start ZooKeeper, Kafka, the web application, and Spark. It will take some
time to download all the archives and build the sia-dashboard Docker image. This
image is based on the websphere-liberty:webProfile7 image from the Docker Hub
(https://hub.docker.com/_/websphere-liberty), which contains an IBM WebSphere
Liberty Profile application server. The sia-dashboard image automatically down-
loads, installs, and runs the Web Stats Dashboard web application.

 The last script starts Spark in the foreground, which means you’ll see the results
directly in the console. You can stop the Spark streaming job by pressing Ctrl-C. 

 To see if the web application has started, open your browser and go to the follow-
ing URL: http://192.168.10.2/WebStatsDashboard. If you don’t get any response, or if
you see a “Context Root Not Found” message, wait a minute or two and then try again.
You should finally see a screen similar to the one in figure 13.3. If the page looks bro-
ken, the problem could be in your ad-blocking software. Please disable it if you’re
using one. If you don’t see any messages in the box on the right, see the next section
for troubleshooting. 

Start or stop
consuming 
messages

Shows the number
of requests, errors, and
ads clicked per second

Shows the number
of currently active
user sessions

Shows the last
100 received 
messages 

Change the time
range displayed

Figure 13.3 Web Stats Dashboard immediately after starting the application components, before 
starting Log Simulator

 

https://hub.docker.com/_/websphere-liberty
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The messages contain only zeros for now, and the lines in the graphs are flat. In order to
see some activity, you’ll need to start Log Simulator. You can use the start-simulator.sh
script for that; but because you left Spark in the foreground, open another shell and posi-
tion yourself in the uc1-docker folder. If you run the script with the -help argument, it
shows all the possible options you can specify; they’re listed in table 13.3.

If you call the start-simulator.sh script with no arguments, it runs 10 simulated
users for 2 minutes (120 seconds) and sends those messages to the Kafka topic
weblogs. You can send it to the background by adding an ampersand (&) at the end of
the command line:

$ ./start-simulator.sh &

You can start several processes like this to generate even more traffic. After starting
Log Simulator, you should see some activity in the graphs, similar to what is shown in
figure 13.4. 

STOPPING THE APPLICATION

If you wish to stop the application, it’s best to stop the components in the opposite
order of that they were started. To stop Log Simulator, you kill the appropriate process
or press Ctrl-C if it’s running in the foreground. It’s the same for the Spark job.

 To stop the Web Dashboard application, you can use the stop-dashboard.sh
script. It will kill the appropriate Docker container. If you wish to remove the Docker
images from your system (or from the VM), you need to list the Docker images:

$ docker images

Table 13.3 Arguments for the start-simulator.sh script

Argument Description

-brokerList=HOST1:PORT1,... Comma-separated list of Kafka broker host:port pairs 
(default is 192.168.10.2:9092).

-topic=NAME Optional. Name of the Kafka topic for sending log mes-
sages (default is webstats).

-usersToRun=NUM Optional. Number of users to simulate (default is 10).

-runSeconds=NUM Optional. Number of seconds to run and simulate user 
traffic (default is 120).

-thinkMin=NUM Optional. Minimum think time between simulated actions, 
in seconds (default is 5).

-thinkMax=NUM Optional. Maximum think time between simulated actions, 
in seconds (default is 10).

-silent Optional. Suppresses all messages.

-help Shows help, and exits.
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Find the image ID of the Docker image you wish to remove, and use the ID in the
docker rmi command:

$ docker rmi --force <image_id>

Finally, to stop Kafka and ZooKeeper, run the stop-kafka.sh script.

TROUBLESHOOTING THE APPLICATION

If you don’t see any messages or activity on the web page after starting the compo-
nents, you can check a couple of things. First, see whether the Spark Streaming Log
Analyzer is working as expected. You can execute the consume-messages.sh script,
which starts a Kafka console consumer, reads messages from the stats topic (to which
Log Analyzer should be writing), and writes them to standard output. 

 If consume-messages.sh doesn’t output any messages, examine the output from
the Spark streaming job. You should be able to diagnose the problem using the job’s
output. If Log Analyzer is producing messages but you still don’t see them on the web
page, you can examine the web application’s log using the show-dashboard-log.sh
script, and try to correct the problem. 

 Note that the time scale on the X-axis of the graphs depends on the date and time
of the machine where your browser is running, which may be different from the date
and time of the machine where the application is running. Log Simulator generates
log events using its machine’s local time. If there’s a large difference between the two

Figure 13.4 Activity on Web Stats Dashboard’s graphs after starting two instances of Log Simulator. 
The upper graph shows that the number of users increased from 30 to 60 at one point. The lower graph 
shows that the requests and errors generated and ads clicked by the simulated users also increased.
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times, the data may not be displayed in the graph, because it may fall outside of the
X-axis’ time range. So, the time offset on the two machines is another thing to check
(if you’re using two machines).

 Finally, there’s a known issue with the Kafka version installed in the spark-in-action
VM. If you stop Spark and Kafka and then start them again, you may see the message
“Kafka scheduler has not been started“ (the issue is reported here: https://
issues.apache.org/jira/browse/KAFKA-1724). The solution is to stop and start Spark
and Kafka one more time, after which the application should work. If you’re still expe-
riencing problems, you can report them to us using the book’s forum at https://
forums.manning.com/forums/spark-in-action.

13.2.2 Starting the application manually

If you want to use your existing ZooKeeper and Kafka installations, your existing
Spark cluster to run Log Analyzer, or your existing application server to run Web Stats
Dashboard, you can manually install, configure, and run the required components as
described in this section.

OBTAINING THE ARCHIVES 

First, you need to obtain the component archives. You can build them yourself, or you
can download them from our GitHub repository. 

 The archive locations are as follows:

■ http://mng.bz/8uuF
■ http://mng.bz/QJvi
■ http://mng.bz/Ak6K
■ The projects with the source files are in our repository’s ch13 folder.

CREATING THE KAFKA TOPICS

You’ll need to create two Kafka topics: one for log events and one for statistics. We named
them weblogs and stats, but you can use different names. In our scripts, we used a
replication factor of 1, and one partition for each topic. To use different values, use this
command (you need to start ZooKeeper and Kafka before running the command): 

$ kafka-topics.sh --create --topic <topic_name> --replication-factor 

➥ <repl_factor> --partitions <num_partitions> --zookeeper <zk_ip>:2181 

STARTING LOG ANALYZER

After you create the topics, you can start the Log Analyzer job. You submit the job to
Spark as usual, specifying the StreamingLogAnalyzer class and at least two additional
arguments (brokerList and checkpointDir):

■ brokerList depends on your Kafka installation and should contain a comma-
separated list of the Kafka broker IP addresses and ports.

■ checkpointDir is a URL pointing to a directory (local or HDFS) for storing
Spark checkpoint data (for details, see section 4.4.3).

 

https://issues.apache.org/jira/browse/KAFKA-1724
https://issues.apache.org/jira/browse/KAFKA-1724
https://forums.manning.com/forums/spark-in-action
https://forums.manning.com/forums/spark-in-action
http://mng.bz/8uuF
http://mng.bz/QJvi
http://mng.bz/Ak6K
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The command looks like this:

$ spark-submit --master <your_master_url> \
   --class org.sia.loganalyzer.StreamingLogAnalyzer \
   streaming-log-analyzer.jar -brokerList=<kafka_ip>:<kafka_port> \
   -checkpointDir=hdfs://<hdfs_host>:<hdfs_port>/<checkpoint_dir>

Additionally, you can specify several optional parameters:

■ inputTopic—Name of the input topic with log events
■ outputTopic—Name of the output topic for writing statistics
■ sessionTimeout—How many seconds should pass since the last request before

a session is considered timed out
■ numberPartitions—Number of RDD partitions to use during statistical calculations

STARTING WEB STATS DASHBOARD

Web Stats Dashboard is a Java web application, so you can use any Java application
server supporting WebSockets to run it. We chose IBM WebSphere Liberty Profile.
Whichever server you choose, you need to set two Java system variables:

■ zookeeper.address—ZooKeeper’s host name and port, which are used for
connecting to Kafka

■ kafka.topic—Topic name for reading statistical messages

The URL to the application depends on the chosen application server and your instal-
lation method. If you change the default URL (/WebStatsDashboard), make sure to
change it in the webstats.js file, too. As soon as you visit the page, if everything was set
up correctly, the application will start consuming messages from Kafka and displaying
them in the graphs. Your application server’s System Out log file should contain the
following entries:

LogStatsReceiver getting consumer
LogStatsReceiver getting KafkaStream
LogStatsReceiver iterating

The result on the screen should be the same as when using the VM. If not, you’ll need
to examine log files from the Spark job and the web application server. As we
explained in the previous section, it’s important that all machines running your com-
ponents have synchronized clocks. Otherwise, data may display with an offset.

STARTING LOG SIMULATOR

Once all the components are running, you can start Log Simulator, as explained pre-
viously. When you’re starting everything manually, provide the address of the Kafka
broker (probably localhost:9092):

$ ./start-simulator.sh --brokerList=<kafka_host>:<kafka_port>

For the full list of arguments, see table 13.3.
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13.3 Understanding the source code
If you’re curious about how the application works, this is the moment when you learn
the answer. The ch13 folder in this book’s GitHub repository (https://github.com/
spark-in-action/first-edition/tree/master/ch13) contains the three required projects:

■ KafkaLogsSimulator
■ StreamingLogAnalyzer
■ WebStatsDashboard

We examine these projects in this section.

13.3.1 The KafkaLogsSimulator project

KafkaLogsSimulator is a pure Java application consisting of only two classes: Log-
Simulator and IPPartitioner. This is all straightforward and not Spark-specific, so
we won’t spend much time on it. 

 LogSimulator is an executable Java class (it has a main method) and extends the
Thread class, which means it can be run as a thread. The main method takes the argu-
ments described in table 13.3. It then spawns the required number of LogSimulator
threads and waits for all of them to finish.

 Each thread has its own IP address and a session ID (generated in the main
method), which remain constant throughout the life of the thread. Each thread
creates access-log entries containing the current time, IP address, session ID, URL,
HTTP method, response code, and response duration in milliseconds. The response
code that Log Simulator generates is 404 (not found) in 2% of cases and 200 (OK)
otherwise. The session URL (in the format /ads/<ad_category>/<ad_id>/clickfw)
represents a click to an ad in 3% of cases and a forward slash (/) otherwise. Log
Simulator uses only three categories (1, 2, and 3), each of which has an equal
probability of appearing.

 The constructed message is then sent to Kafka as a KeyedMessage (line 191):

KeyedMessage<String, String> data = new KeyedMessage<String, String>
    (TOPIC_NAME, ipAddress, message);
producer.send(data);

The IP address is used as the partitioning key. IPPartitioner, used for constructing
the producer, partitions messages based on the lowest octet of the IP address key (the
number after the last dot in the address).

13.3.2 The StreamingLogAnalyzer project

StreamingLogAnalyzer is a Scala project containing only one file with two classes:
StreamingLogAnalyzer and KafkaProducerWrapper. Figure 13.5 shows their relation-
ship. As explained in chapter 6, StreamingLogAnalyzer uses KafkaProducerWrapper
to open a single connection per partition to Kafka. In this way, multiple tasks on a sin-
gle partition can reuse the same connection.

 

https://github.com/spark-in-action/first-edition/tree/master/ch13
https://github.com/spark-in-action/first-edition/tree/master/ch13


375Understanding the source code

These classes are the core of the example application. We’ll analyze the source code
thoroughly in this section; it’s available in the single file at http://mng.bz/NSOr. 

INITIALIZING THE SPARK CONTEXT

StreamingLogAnalyzer takes several arguments, which we described in section 13.2.2.
As we said, the two required arguments are brokerList and checkpointDir. After
argument validation, the Spark streaming context is initialized:

println("Starting Kafka direct stream to broker list: "+brokerList.get) 
val conf = new SparkConf().setAppName("Streaming Log Analyzer")
val ssc = new StreamingContext(conf, Seconds(1))

This is the standard way of streaming context initialization. The batch duration of 1
second is important, as you’ll see later.

 The updateStateByKey functionality, which you use to keep track of active ses-
sions, requires checkpointing, so you set the checkpoint folder:

ssc.checkpoint(checkpointDir.get)

Three spark executors
executing application’s tasks

StreamingLogAnalyzer
Spark application running
inside spark driver

A single producer opens 
a single connection to 
Kafka per partition

Three partitions per executor, 
each running one streaming 
LogAnalyzer task

Log simulator

Streaming
Log Analyzer

Streaming
Log Analyzer—task code

Partition

Spark executor

Kafka
ProductWrapper

Kafka producer Stats topic

Weblogs topic

Kafka

Figure 13.5 An instance of StreamingLogAnalyzer running in a Spark cluster with three exec-
utors, each running three Spark Streaming Log Analyzer tasks within the matching partitions. Using 
a single Kafka producer and a single connection, each task reads data from the weblogs Kafka topic, 
calculates the statistics, and writes them to the stats topic.
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INITIALIZING THE KAFKA INPUT STREAM

Next, the Kafka stream is initialized using the KafkaUtils helper class. You need to
pass to KafkaUtils a list of Kafka brokers as the metadata.broker.list parameter:

val kafkaReceiverParams = Map[String, String](
  "metadata.broker.list" -> brokerList.get)
val kafkaStream = KafkaUtils.
  createDirectStream[String, String, StringDecoder, StringDecoder](
    ssc, kafkaReceiverParams, Set(logsTopic.get))

The createDirectStream method is parameterized with key and value types (both
strings) and their decoders (both StringDecoders).

 The LogLine case class is used to store parsed access log lines, and df SimpleDate-
Format is used for parsing the date and time:

case class LogLine(time: Long, ipAddr: String, sessId: String, url: String, 
          method: String, respCode: Int, respTime: Int)
val df = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss.SSS")

PARSING ACCESS-LOG LINES

The first step in analyzing access logs is to read the access-log lines coming in as Kafka
messages and parse them into LogLine objects:

val logsStream = kafkaStream.flatMap { t => {
  val fields = t._2.split(" ")
  try {        
    List(LogLine(df.parse(fields(0) + " " + fields(1)).getTime(), 
      fields(2), fields(3), fields(4), fields(5), fields(6).toInt, 
      fields(7).toInt))
  }
  catch {
    case e: Exception => { 
      System.err.println("Wrong line format: "+t); 
      List() 
    }
  } }}

If a line doesn’t conform to the expected format, a message is printed to the standard
error output and the line is discarded.

COUNTING ACTIVE SESSIONS

To count all active sessions, you need to find when the last request happened for each
session ID. So, you first map LogLine objects to tuples with the session ID as the key and
the time as the value. Then, using reduceByKey, you find the maximum time per session
(in case several requests with the same session ID are returned during this batch):

val maxTimeBySession = logsStream.map(r => (r.sessId, r.time)).reduceByKey(
  (max1, max2) => { Math.max(max1, max2) })

 



377Understanding the source code

The RDDs in the maxTimeBySession DStream now contain one tuple per session ID.
You can use the updateStateByKey function to maintain state during the lifetime of
your streaming application (for details, see chapter 6). Here, you use it to keep track
of all session IDs whose requests happened at most SESSION_TIMEOUT_MILLIS millisec-
onds ago. You’ll “forget” all session IDs with no requests during that timeframe.

 updateStateByKey gives you the set of new values from the current batch (the
maxTimeNewValues variable, which always has a size of 1 in this case because of the pre-
vious reduceByKey) and the maintained state for that key (the maxTimeOldState vari-
able). For each key, you can use updateStateByKey to delete the key by returning
None or to change the key’s state value by returning the new value:

val stateBySession = maxTimeBySession.updateStateByKey(
  (maxTimeNewValues: Seq[Long], maxTimeOldState: Option[Long]) => {
    if (maxTimeNewValues.size == 0) {
      if (System.currentTimeMillis() - maxTimeOldState.get > 
            SESSION_TIMEOUT_MILLIS) 
        None 
      else
        maxTimeOldState 
    } 
    else if(maxTimeOldState.isEmpty)
      Some(maxTimeNewValues(0)) 
    else 
      Some(Math.max(maxTimeNewValues(0), maxTimeOldState.get))
  })

For each key (session ID), only the last (maximum) request time is retained. If there
are no new requests for a session ID (maxTimeNewValues is empty), you need to check
whether the session has expired by comparing the last request time with the current
time. If it has expired, you delete it from the state by returning None; you leave the old
maximum request time otherwise.

 If the session ID doesn’t have any state yet (this is the first request for that session
ID), you return the new request’s time. And if the session ID has both a new request
and an old state, you return the larger of the two.

 Finally, you count all the elements in the stateBySession DStream to get the cur-
rent count of active sessions:

val sessionCount = stateBySession.count()

COUNTING REQUESTS PER SECOND

Before counting requests, errors, and ad clicks per second, you need to map LogLine
objects in the logsStream DStream to key-value tuples, where the key is the second
(the request’s time with milliseconds removed):

val logLinesPerSecond = logsStream.map(l => ((l.time / 1000) * 1000, l))
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Now that you have second LogLine tuples in the logLinesPerSecond DStream, you
need to count them by key to get the number of requests per second. Because
DStream doesn’t have a countByKey method, you use combineByKey for that:

val reqsPerSecond = logLinesPerSecond.combineByKey(
  l => 1L, 
  (c: Long, ll: LogLine) => c + 1, 
  (c1: Long, c2: Long) => c1 + c2, 
  new HashPartitioner(numberPartitions), 
  true)

COUNTING ERRORS PER SECOND

Counting errors per second is done the same way as counting requests, except that
requests first need to be filtered to include only errors. To do that, you check whether
the response code starts with 4 or 5:

val errorsPerSecond = logLinesPerSecond.filter(l => { 
    val respCode = l._2.respCode / 100
    respCode == 4 || respCode == 5 
  }).
  combineByKey ...

The combineByKey part is identical to what you did to count requests.

COUNTING AD CLICKS PER SECOND

To count ad clicks, not only do you need to filter requests based on their URLs, but
you also need to find the ad category that the user clicked to display it on the dash-
board. You assume that the web application whose logs you are analyzing accepts ad
clicks at URLs of this format: /ads/<ad_category>/<ad_id>/clickfw. The web applica-
tion then redirects the user to the appropriate partner website. 

 As we said, you need to parse the ad category. You use the following regular expres-
sion to accomplish that:

val adUrlPattern = new Regex(".*/ads/(\\d+)/\\d+/clickfw", "adtype")

Because you need to find the ad category too, you can’t use filter as you did previ-
ously. You flatMap logLinesPerSecond to key-value tuples, where the keys are tuples
of the timestamp (second) and ad category. If the request URL doesn’t match the
regular expression adUrlPattern, the flatMap function removes that element from
the results:

val adsPerSecondAndType = logLinesPerSecond.flatMap(l => {
    adUrlPattern.findFirstMatchIn(l._2.url) match {
      case Some(urlmatch) => List(((l._1, urlmatch.group("adtype")), l._2))
      case None => List()
    }
  }).combineByKey ...
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COMBINING ALL STATISTICS

Now you have four DStreams with different statistics: sessionCount, reqsPerSecond,
errorsPerSecond, and adsPerSecondAndType. But you need to display them all in a
single dashboard. You could send them to Kafka separately, thus sending four mes-
sages for a single timestamp (second), or you could combine all the statistics and send
only one message per second. How can you combine the statistics?

 Well, you can put the different statistics under different keys in a single Map per
timestamp. That’s exactly what you’re going to do. You first need to define the keys:

val SESSION_COUNT = "SESS"
val REQ_PER_SEC = "REQ"
val ERR_PER_SEC = "ERR"
val ADS_PER_SEC = "AD"

Then you map each statistic count value to a Map with the statistic under the appropri-
ate key. The corresponding DStream also has to be keyed by timestamp. Because
reqsPerSecond and errorsPerSecond are already keyed by timestamp, you just map
the values:

val requests = reqsPerSecond.map(sc => (sc._1, Map(REQ_PER_SEC -> sc._2)))
val errors = errorsPerSecond.map(sc => (sc._1, Map(ERR_PER_SEC -> sc._2)))

The sessionCount DStream, however, isn’t keyed by timestamp. It contains only one
count per batch (per DStream’s RDD), so you also create the key with the current time-
stamp with milliseconds removed:

val finalSessionCount = sessionCount.map(c => 
  ((System.currentTimeMillis / 1000) * 1000, Map(SESSION_COUNT -> c)))

By the way: this is why the Spark batch duration of 1 second is important. You want to
generate a single statistic per second. The granularity of other statistics doesn’t
depend on the batch duration, because their timestamps are taken from log files and
always aggregated per second. For the session count, you generate the key yourself. If
the batch duration were set to 2 seconds, for example, you’d generate a session-count
statistic for every other second. Then the final graph, showing active sessions, would
oscillate unrealistically (it would have a gap every other second). One possible solu-
tion is to fill in the missing values when displaying the graph or change the way the
graph is displayed. Another solution is to fix the batch size to 1 second. We opted for
the latter.

 As for the adsPerSecondAndType DStream, it’s keyed by timestamp and ad category.
So, you map its keys to keep only the timestamp part and use the ad category for the
key in the value Map:

val ads = adsPerSecondAndType.map(stc => 
  (stc._1._1, Map(s"$ADS_PER_SEC#${stc._1._2}" -> stc._2)))
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Thus, all the ad keys in the Map will begin with 4# and end with the ad category.
 Finally, you need to combine all the Map objects into a single Map per timestamp.

You union them into a single DStream and reduce all value Maps per key into a single
Map object:

val finalStats = finalSessionCount.union(requests).
  union(errors).
  union(ads).
  reduceByKey((m1, m2) => m1 ++ m2)

SENDING THE RESULTS TO KAFKA

You’re finally ready to send the statistics to Kafka. Here you have a challenge. Kafka
Producer objects aren’t serializable, because they need to open a connection to Kafka
and maintain it. Therefore, you can’t instantiate producers on the driver side and
transfer them to the workers. You need to instantiate producers in the tasks running
in Spark workers. You use the KafkaProducerWrapper class for that purpose.
KafkaProducerWrapper’s companion object (companion objects hold the equivalent to
static methods and fields in Java, as discussed in section 4.1.1) is used to instantiate a
single, lazily instantiated instance of KafkaProducerWrapper, which itself instantiates
one instance of a Kafka Producer. KafkaProducerWrapper is parameterized by a list of
Kafka brokers:

case class KafkaProducerWrapper(brokerList: String) {
  val producerProps = {
    val prop = new Properties
    prop.put("metadata.broker.list", brokerList)
    prop
  }
  val p = new Producer[Array[Byte], Array[Byte]](
    new ProducerConfig(producerProps))
  def send(topic: String, key: String, value: String) {
    p.send(new KeyedMessage(topic, 
      key.toCharArray.map(_.toByte), value.toCharArray.map(_.toByte)))
  }
}
object KafkaProducerWrapper {
  var brokerList = ""
  lazy val instance = new KafkaProducerWrapper(brokerList)
}

Using the KafkaProducerWrapper class and the RDD’s foreachPartition function,
you can instantiate a single Kafka Producer per JVM (multiple partitions can share the
same executor’s JVM; they would all use the same static instance) and use it to send
messages to Kafka:

finalStats.foreachRDD(rdd => {
  rdd.foreachPartition(partition => {
    KafkaProducerWrapper.brokerList = brokerList.get
    val producer = KafkaProducerWrapper.instance
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    partition.foreach {
      case (s, map) =>
        producer.send(
          statsTopic.get,
          s.toString, 
          s.toString + ":(" + map.foldLeft(new Array[String](0)) { 
            case (x, y) => { x :+ y._1 + "->" + y._2 } }.
               mkString(",")+")")
    }//foreach
  })//foreachPartition
})//foreachRDD

Using Scala Map’s foldLeft function, the message is formatted as timestamp:(key1-
>value1,key2->value2,...). The timestamp is used as the Kafka topic’s partitioning
key.

 The only thing left to do now is to start the Spark Streaming application and wait
for its termination:

println("Starting the streaming context... Kill me with ^C")
ssc.start()
ssc.awaitTermination()

13.3.3 The WebStatsDashboard project

The WebStatsDashboard project is a web application that reads messages from Kafka
and sends them to the clients’ browsers over WebSockets. Using the D3.js library, the
JavaScript code running in the client’s browsers displays the statistics in real-time
graphs. 

 The WebStatsDashboard project consists of four main files:

■ LogStatsObserver.java—Interface denoting classes that receive messages from
LogStatsReceiver when they arrive

■ LogStatsReceiver.java—Singleton that reads messages from Kafka and dis-
patches them to all LogStatsObservers

■ WebStatsEndpoint.java—WebSockets endpoint for managing WebSockets con-
nections and for forwarding messages to clients 

■ webstats.js—JavaScript code for receiving statistics from the WebSockets end-
point and displaying that data using the D3.js library

The LogStatsReceiver thread continuously receives messages from a Kafka topic and
dispatches them to the registered LogStatsObservers. It functions as a singleton
object and starts receiving only when at least one LogStatsObserver is registered. It
stops receiving when the last LogStatsObserver deregisters. 

 The WebStatsEndpoint is a WebSockets endpoint used to connect clients, but it’s
also a LogStatsObserver. It forwards messages received from the LogStatsReceiver
to its clients.

 webstats.js is a JavaScript application based on the Multi-Series Line Chart D3.js exam-
ple (http://bl.ocks.org/mbostock/3884955). It connects to the WebStatsEndpoint and
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starts displaying the messages. This book isn’t about JavaScript, so we won’t explain the
code in the webstats.js file.

13.3.4 Building the projects

If you want to build the projects on your own, you’ll need to have Maven and Java
installed. For each project, we’ve included a Maven pom.xml file in the root of the proj-
ect folder. Just issue a maven install command from the root folder, and find the result-
ing kafka-logs-simulator.jar, streaming-log-analyzer.jar, or WebStatsDashboard.war file
in the target subfolder. 

13.4 Summary
■ The use case in this chapter is about analyzing click-stream data coming from

access log files.
■ The application consists of a a Log Simulator application that simulates user

activity on a website, Log Analyzer (a Spark Streaming application) to analyze
log data and produce statistics, Kafka topics to exchange messages between
components, and a Web Stats Dashboard application to consume the statistics.
Web Stats Dashboard also sends statistics over WebSockets to client browsers to
be displayed in real-time graphs using the D3.js library.

■ The statistics tracked are active user sessions, requests per second, errors per
second, and clicks on ads per second and per ad category.

■ We prepared several scripts and a Docker image to run the application compo-
nents: ZooKeeper, Kafka, Spark, and a WebSphere Liberty Profile application
server to run the Web Dashboard web application.

■ Using a set of available scripts, you can easily start, stop, and troubleshoot the
application.

■ You can also manually start individual components on your own infrastructure.
■ The source code is organized into three projects: KafkaLogsSimulator,

StreamingLogAnalyzer, and WebStatsDashboard. 
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Deep learning
 on Spark with H2O

Deep learning is a hot topic in the machine-learning world today. We could say that
there’s a deep-learning revolution going on. Deep learning is a general term denot-
ing a family of machine-learning methods characterized by the use of multiple pro-
cessing layers of nonlinear transformations. These layers are almost universally
implemented as neural networks. 

 Although the core principles aren’t new, a lack of computing power and
efficient algorithms prevented those principles from being further developed in
the previous decades. This has changed in recent years, with many advances in

This chapter covers
■ Introduction to H2O
■ Introduction to deep learning
■ Starting an H2O cluster on Spark
■ Building and evaluating a regression deep-

learning model using Sparkling Water
■ Building and evaluating a classification deep-

learning model using Sparkling Water
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deep-learning algorithms and their successful applications. One of the many recent
breakthroughs is the DeepID system for learning high-level features,1 which is capable
of recognizing tens of thousands of faces with a close-to-human accuracy of 97.45%
(unlike its accuracy, its capacity is obviously superhuman).

 Likewise, several software frameworks for doing deep learning have sprung up in
recent years. In this chapter, we’ll give you an overview of the H2O framework, which
seamlessly integrates with Spark and coexists with it nicely. You’ll create an H2O clus-
ter and use the housing prices dataset from chapter 7 and the adult dataset from
chapter 8 to perform regression and classification using deep learning (H2O neural
networks). You’ll train deep-learning models through H2O’s UI, and we’ll show you
how to do the same thing using the H2O API from Spark. The datasets will be kept
small so that you can use them even without a large Spark cluster, but you can use the
same techniques to build deep-learning models using larger datasets. 

14.1 What is deep learning?
Deep learning can help you model complex nonlinear relationships in the data and build
powerful regression and classification models. Deep learning is an area of machine learn-
ing based on usage of artificial neural networks for learning high-level features of the
underlying data. Artificial neural networks (ANNs) are modeled according to biological
neural networks and consist of artificial neurons (nodes) organized in layers. Each neu-
ron’s output depends on outputs from several neurons in the previous layer, on a set of
learned weights, and on an activation function, which combines inputs and weights to
produce a single output value. A single neuron functions similarly to the logistic regres-
sion model described in chapter 8 and learns the values of its input weights through the
process of training the ANN. The complete ANN, consisting of many tens, hundreds, or
thousands of neurons, is capable of modeling complex, nonlinear functions. 

 Each ANN has an input layer, used to feed the feature values of input examples
into the network; an output layer, to output the results; and one or more hidden lay-
ers (layers that aren’t input or output layers). A deep neural network (DNN) is an ANN
with two or more hidden layers. An illustration of a DNN with three layers is shown in
figure 14.1. The output from each neuron is 0 or 1, and each neuron calculates its
output using the activation function (usually the logistic function we introduced in
chapter 8). The input to the activation function is the sum of its inputs multiplied by
their weight parameters. For example, the output of neuron hk equals the following
(assuming the logistic function is used)

where ij is output from neuron ij and wjk is the j-th input weight of neuron hk. 

1 Yi Sun et al., “Deep Learning Face Representation from Predicting 10,000 Classes,” http://mng.bz/W01w.
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Weights of individual nodes are learned through processes of forward and backward
propagation. For each example, forward propagation uses already-learned weights to
calculate the output values and the error between calculated and real output values.
Backward propagation then goes from the last layer toward the first (for each exam-
ple) and changes the weights based on a measure of how much each neuron partici-
pated in the overall error. The process then repeats with another wave of forward and
backward propagations until convergence.

 Each layer in an ANN learns features on different levels of abstraction. In ANNs
built for recognizing faces, the first layer may learn to recognize low-level features,
such as edges and their directions. The second layer may learn to recognize basic
shapes based on edge features from the previous layer. The third layer may recognize
eyes, noses, and so on. This description is just an illustration; interpreting in this way
what specific layers learn is very difficult, and ANNs function mostly like black boxes.

 Mathematical foundations for ANNs were laid down in the 1940s, and the first ANN
machines appeared in the 1950s. Although neglected for some time during ’80s and
’90s, they’re seeing wide adoption again today because of advances in computational
capacity and the efficiency of learning algorithms and distributed computing. Neural
networks and deep-learning methods are outperforming traditional machine-learning
algorithms today in a wide range of application areas, such as image analysis and pattern
recognition, speech analysis, decision making, robotics, autonomous driving, and so on. 

14.2 Using H2O with Spark
In this section, you’ll see how H2O can help you do deep learning on Spark. We’ll first
give you a short introduction to H2O and Sparkling Water, H2O’s Spark package that
enables integration between H2O and Spark. Then you’ll start an H2O cluster from
Spark, using the Sparkling Water API. After that, you’ll get acquianted with the H2O
Flow UI, its graphical interface.
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Figure 14.1 An artificial neural network consist-
ing of three layers: an input layer, a hidden layer, 
and an output layer. Each neuron’s output de-
pends on the outputs from neurons in the previous 
layer and on a set of weights, learned through the 
process of training the ANN.
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14.2.1 What is H2O?

H2O is a fast, open source, machine-learning platform. It’s backed by the H2O.ai com-
pany (http://www.h2o.ai, previously called 0xdata), which was cofounded in 2011 by
SriSatish Ambati and Cliff Click, the lead developer of the JVM (Cliff wrote JIT, Java’s
just-in-time compiler). Arno Candel serves as the chief architect.

 H2O is an excellent machine-learning platform with basic data-transformation
capabilities (fast parse, columnar transformations and joins), but it isn’t a general
computing engine like Spark. Using them together, you can get the best of both
worlds. With Spark, you can read and join data from various sources, parse the data,
transform it, transfer it to H2O, and then build and use the H2O machine-learning
models. In this way, H2O and Spark can nicely complement each other. 

 H2O algorithms overlap somewhat with Spark’s machine-learning algorithms.
Although H2O has a few algorithms that Spark still doesn’t have (deep learning and
generalized low-rank modeling), Spark has several algorithms not available in H2O,
such as alternating least squares (ALS), latent Dirichlet allocation, SVMs, tf-idf,
Word2vec, and others. 

 H2O supports these machine-learning algorithms:

■ Deep learning—Algorithm used in this chapter.
■ Generalized linear modeling—Generalization of ordinary linear regression

(explained in chapter 7) to also cover other types of regressions (such as elastic
net regularized logistic regression). Can be used for both classification and
regression.

■ Generalized low-rank modeling—New machine-learning approach for reconstruct-
ing missing values and identifying important features in heterogeneous data
(http://mng.bz/w4OJ).

■ Distributed random forest—Regression and classification algorithm, covered in
chapter 8.

■ Naïve Bayes—Probability-based multiclass classification algorithm, also available
in Spark.

■ Principal component analysis—Algorithm for dimensionality reduction, also avail-
able in Spark.

■ K-means—Clustering algorithm, explained in chapter 8.
■ Gradient-boosting machines—Form of ensemble method, using decision trees as

the base learner, similarly to random forests. Can be used for both classification
and regression.

14.2.2 Starting Sparkling Water on Spark

Sparkling Water is the integration layer between Spark and H2O and is implemented
as a Spark package. You can use it to start an H2O cluster in a Spark cluster and
exchange data between the two. This is shown in figure 14.2. 
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When starting an H2O cluster in Spark, you first use a Spark context to start or connect
to a Spark cluster as usual. You then use the Sparkling Water API to instantiate an
instance of H2OContext, which starts H2O nodes in Spark executors. These nodes form
an H2O cluster and are used to store compressed data and machine-learning models.

 Similar to Spark, you have several options for starting Sparkling Water:

■ Start the Sparkling Water shell, and start a new Spark cluster or connect to an
existing one 

■ Start the Spark shell by specifying the Sparkling Water package (recommended
method).

■ Embed Sparkling Water in your application, and submit it to a Spark cluster.

STARTING SPARKLING WATER WITH THE SPARKLING WATER SHELL

To start the Sparkling Water shell, you first need to build or download Sparkling
Water for your version of Spark (www.h2o.ai/download). In the spark-in-action VM,
Sparkling Water is already downloaded and unzipped in your home directory
(/home/spark/sparkling-water-1.6.3). You also need to set the SPARK_HOME environ-
ment variable to point to the root directory of your Spark installation. The Spark ver-
sion you will use has to correspond to the version of Sparkling Water you will use. At
the time of writing, Sparkling Water for Spark 2.0 was still not available, so set this vari-
able to the Spark 1.6.1 folder, which is also available in the spark-in-action VM:

$ export SPARK_HOME=/opt/spark-1.6.1-bin-hadoop2.6

You can also set the MASTER environment variable to the Spark master you wish to use. If you
don’t set it, the default is local[*]. For a local, single-JVM cluster, you can use this value:

$ export MASTER=local

Spark driver

Spark cluster

Spark context

H2O node 1

H2O node 2

H2O node 3

H2O cluster

Spark executor 1

Spark executor 2

Spark executor 3

H2O context
(Sparkling water)

Figure 14.2 Sparkling Water 
architecture. H2O nodes are 
running in Spark executors, 
forming an H2O cluster.
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For a local cluster with three executors, one core, and 1024 MB per executor, you can
use the following:

$ export MASTER=local-cluster[3,1,1024]

After you set the environment variables, position yourself in the folder where you
extracted Sparkling Water, and start the Sparkling Water shell:

$ bin/sparkling-shell
-----
  Spark master (MASTER)     : local[3,1,1024]
  Spark home   (SPARK_HOME) : /usr/local/spark
  H2O build version         : 3.8.1.3 (turan)
  Spark build version       : 1.6.1
----
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  ‘_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.6.1
      /_/

Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_72)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.
SQL context available as sqlContext.

scala>

If your Spark master is a local cluster, the Sparkling Water shell will start it automati-
cally. If you’re connecting to YARN, Mesos, or a Spark standalone cluster, you’ll need
to specify the number of executors you wish to use. For a Spark standalone cluster, you
need to specify the spark.executor.cores, spark.cores.max, and spark.executor
.instances parameters. For YARN, only spark.executor.instances is needed. 

 To connect to a Spark standalone cluster and use six executors, issue the following
command:

$ bin/sparkling-shell --master spark://<master_address> \
--conf "spark.cores.max=6" --conf "spark.executor.cores=1" \
--conf "spark.executor.instances=6"

STARTING SPARKLING WATER WITH THE SPARK SHELL

You can download Sparkling Water automatically to your local Maven repository with
the --packages option (you’ll also need to download the sparkling-water-examples
package, which you’ll need in this chapter):

$ spark-shell --packages \
ai.h2o:sparkling-water-core_2.10:1.6.3,\
ai.h2o:sparkling-water-examples_2.10:1.6.3 <other options>
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You can also load Sparkling Water into a Spark shell by specifying the Sparkling Water
assembly JAR with the --jars option. If you’re running in the spark-in-action VM as
the spark user, spark-shell should already be in your path and Sparkling Water
should be available from the sparkling-water-1.6.3 directory in your home directory:

$ spark-shell --jars /home/spark/sparkling-water-1.6.3/assembly/build/libs/
  sparkling-water-assembly-1.6.3-all.jar <other options>

STARTING SPARKLING WATER FROM YOUR APPLICATION

Finally, to use Sparkling Water from your application, embed it in your fat JAR (using
dependencies with your packaging manager) or add it with the jars or packages
option while submitting the application as usual.

14.2.3 Starting the H2O cluster

No matter which method you use to start Sparkling Water, once you have your shell
open, you can start the H2O cluster by creating and starting an instance of
H2OContext:

scala> import org.apache.spark.h2o._
scala> val h2oContext = new H2OContext(sc).start()

The default number of H2O nodes that will be started is the value of the
spark.ext.h2o.cluster.size Spark configuration parameter. If it’s not specified,
the spark.executor.instances parameter will be used. 

NOTE If running in a local, single-JVM cluster, Sparkling Water always starts a
single H2O node.

If all goes well, you should see output similar to the following. In this example, the
Sparkling Shell was started using six executors on a Spark Standalone cluster:

Sparkling Water Context:
 * H2O name: sparkling-water-<user>_876327168
 * number of executors: 6
 * list of used executors:
  (executorId, host, port)
  ------------------------
  (4,<IP4>,<PORT4>)
  (0,<IP0>,<PORT0>)
  (5,<IP5>,<PORT5>)
  (2,<IP2>,<PORT2>)
  (1,<IP1>,<PORT1>)
  (3,<IP3>,<PORT3>)
  ------------------------

  Open H2O Flow in browser: http://<IP>:<PORT> (CMD + click in Mac OSX)

The H2O cluster has started, and you’re good to go.
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14.2.4 Accessing the Flow UI

H2O features a web-based console called Flow UI, which enables you to quickly load
the data, train models using the supported algorithms, use the trained models, and
inspect the results. It also has a helpful assistant to guide you through possible actions.
You can use the assistant’s forms to manipulate data in the Flow UI, or you can directly
enter Flow commands. 

 If you visit the URL that was printed after the H2OContext was started, you’ll land
on the H2O Flow UI page shown in figure 14.3. The functioning of the Flow UI may
look familiar if you’ve used Jupyter notebooks (http://jupyter.org) or Zeppelin
(https://zeppelin.incubator.apache.org). 

 The Flow UI manages notebooks called flows, which are web pages you can save
and execute. Each flow has a name and a set of cells for executing commands and dis-
playing the results. Similar to Jupyter notebooks and Zeppelin, cells can also contain
markdown code, which can be used as portable documentation. 

Flow name Cell command

Cell command results Helper panel

Flow UI
application menu

Flow and cell
action toolbar

Figure 14.3 The starting page of the H2O Flow UI, showing a flow called Untitled Flow with a single cell 
that displays the results of the assist command. You can manipulate cells through the action toolbar.
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At the top of the Flow UI screen is the main Flow UI menu. You can use it to manipu-
late flows (create, load, save, run all cells in a flow, and so on), cells (run, cut, delete,
move, and so on), data (import and split), and models (create, export, import, and so
on). Through the Admin submenu, you can view running jobs, view cluster status and
CPU usage, inspect logs, and access other advanced options (such as network test).
And through the Help submenu, you can get information about using H2O. 

 If you press the H key, the Flow UI presents a helpful pop-up showing keyboard
shortcuts. Using the Flow UI is intuitive, and you should find your way around it easily.
We’ll get you on the right track in the next section, where you’ll train several deep-
learning models.

14.3 Performing regression with H2O’s deep learning
In chapter 7, you used the UCI Boston housing dataset to predict the mean values of
owner-occupied homes in suburbs of Boston. You’ll use it again here to build a deep-
learning model with H2O. By using the same dataset as in chapter 7, we’ll be able to
concentrate on the features in H2O and Sparkling Water without explaining the
details of the dataset and regression, and you can compare the techniques and ease of
use of Spark ML against H2O. 

 After loading data into H2O, we’ll show you how to build and evaluate a deep-
learning model using the H2O Flow UI. Then we’ll teach you how to do the same
thing using the Sparkling Water API so that you can use H2O machine-learning algo-
rithms from your Spark applications.

14.3.1 Loading data into an H2O frame

The first step is to load data into Sparkling Water and make it available to the H2O
cluster as an H2O frame. H2O frames are similar to Spark DataFrames; implicit and
explicit conversions from Spark DataFrames and RDDs to H2O frames, and vice versa,
are available from the H2OContext class. To use the conversions, you need to import
them from your H2OContext object:

import h2oContext._

The housing dataset is available from our online repository (http://mng.bz/o8e0).
You can either import this file directly into an H2OFrame from this URL (we’ll show you
how to do that later) or download it and parse it into a Spark DataFrame and then into
an H2OFrame. In this section, you’ll do the latter. In the subsequent example, you’ll
load it directly into H2O.

 You can use the following code to import the file into a Spark DataFrame. Just
replace the path to housing.data and the number of partitions with your own (you can
use three partitions for this small dataset):

val housingLines = sc.textFile("first-edition/ch07/housing.data", 3)
val housingVals = housingLines.map(x => x.split(",").
    map(_.trim().toDouble))
import org.apache.spark.sql.types.{StructType,StructField,DoubleType}
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val housingSchema = StructType(Array(
    StructField("crim",DoubleType,true),
    StructField("zn",DoubleType,true),
    StructField("indus",DoubleType,true),
    StructField("chas",DoubleType,true),
    StructField("nox",DoubleType,true),
    StructField("rm",DoubleType,true),
    StructField("age",DoubleType,true),
    StructField("dis",DoubleType,true),
    StructField("rad",DoubleType,true),
    StructField("tax",DoubleType,true),
    StructField("ptratio",DoubleType,true),
    StructField("b",DoubleType,true),
    StructField("lstat",DoubleType,true),
    StructField("medv",DoubleType,true)
))
import org.apache.spark.sql.Row
val housingDF = sqlContext.applySchema(housingVals.map(Row.fromSeq(_)), 
    housingSchema)

This code should be familiar to you by now. If not, please consult chapters 4 and 5.
The column names and their meanings are explained in the housing.names file
(http://mng.bz/k6kE). 

 To convert the housingDF DataFrame to an H2O frame, use the asH2OFrame
method of H2OContext:

val housingH2o = h2oContext.asH2OFrame(housingDF, "housing")

The second argument is optional and specifies the name of the frame. You should
now be able to find the new frame in the Flow UI. Select Data > List All Frames from
the main Flow UI menu (or click the same option in the Assist cell). This will execute
the getFrames Flow command in a new cell, as shown in figure 14.4.

 By clicking the frame name, you get another cell executing the command get-
FrameSummary "housing", as shown in figure 14.5. The frame-summary cell shows
basic column statistics, such as the number of zeros; the number of missing values;

Figure 14.4 Cell created after selecting the List All Frames menu action, showing all frames 
in the current flow. The housing frame was created using the Sparkling Water API.
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minimum, mean, and maximum values and so on. The frame-summary cell also con-
tains several action buttons: you can use them to preview frame data, download the
data, split the frame, build a model from a frame, or use the frame’s data for predic-
tions on an already-built model.

If you click any of the columns, you’ll get further information about the data it con-
tains in the column summary cell. Among other things, it contains a graphical repre-
sentation of the data distribution.
The distribution graph for the Lstat
column is shown in figure 14.6.  

 Before building a model, you
need to split the data into training
and test sets. Go back to the housing
frame summary cell by deleting the
current cell (select the cell and
press D twice) or by scrolling
upward, and click the Split button.
(You can also find all your cells in
the Outline view on the right side of
the screen.) Another cell appears
(see figure 14.7), where you need to
define ratios for frame splits. Accept
the default ratios of 0.75 and 0.25,
but rename the split frames (change

Figure 14.5 Frame summary displayed after clicking the frame name. It shows basic 
column statistics and action buttons.

Figure 14.6 Distribution graph for the Lstat column’s 
summary cell
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their key names) to something recognizable (housing750 and housing250) and then
click the Create button. The resulting frames will be displayed (see figure 14.8). 

The results in the rest of the chapter are highly dependent on the exact frames used
for training and testing. If you’d like to get results similar to ours, you can download
the splits we used from our online repository (housing750.csv and housing250.csv
from http://mng.bz/IS40). See section 14.4.1 on how to load files into H2O directly,
or load them by parsing them into SQL DataFrames, as you did in this section.

14.3.2 Building and evaluating a deep-learning model using the Flow UI

You’ll now use the two new frames to build and evaluate a deep-learning model. Super-
vised machine-learning models (to which deep-learning models belong), as you
learned in chapters 7 and 8, consist of a set of algorithm-specific parameters estimated
according to the training data used to train the models and to a set of hyper-parameters
used during the training process. A deep-learning model learns a large number of
parameters, which determine the functioning of particular neurons in its layers, as
described in section 4.1. 

 Hyper-parameters are specified outside of the learning process. Deep-learning
hyper-parameters include, for example, the number of hidden layers in the neural
network. We’ll call hyper-parameters parameters from now on.

 Once trained, models are evaluated on validation datasets; and once their accuracy
is satisfactory, they’re used to make predictions and classify samples in a production

Figure 14.7 Defining the 
frame’s split ratios and 
the future frames’ names

Figure 14.8 The H2O 
Flow cell showing the re-
sults of splitting the hous-
ing frame into two frame 
splits
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environment. Deep-learning models can be used both for regression and classifica-
tion. H2O automatically determines this according to the target variable.

 Click the Housing750 frame, and then click the Build Model button; a Build a
Model assistant will be displayed, asking you to choose the algorithm to be used. We’re
interested in deep learning in this chapter, so select Deep Learning. You should then
see an assistant (a wizard) similar to the one shown in figure 14.9.

Select Housing750 as the training dataset and Medv as the response column (target
variable). These are the only two mandatory parameters. But because you want to use
a validation dataset, select Housing250 as the validation frame. 

 You can also specify a large number of other parameters. We’ll explain some of
them as we go along. Leave the parameters at their defaults, and click the Build Model
button. A new cell will be created, executing the buildModel Flow command with all
the parameters you previously selected. You can watch the progress as the job is exe-
cuting (see figure 14.10).

Figure 14.9 An assistant for building a deep-learning model. The housing750 frame will be used for train-
ing, and housing250 will be used for validation. The target variable is in the Medv response column.

Figure 14.10 H2O Flow cell showing the progress of building a deep-learning model
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Once the model is built, click the View button. This will display the built model and
the various metrics. The metrics will depend on the exact data splits and may differ
from our results (you can see our results in figure 14.11). 

NOTE By the way, H2O deep-learning model results are almost never repro-
ducible because of the way the algorithm functions. You can make them
reproducible by setting the Reproducible parameter to true and setting a
seed, but this is slow and should be done only on small datasets. 

The graph on the left in figure 14.11 shows deviance, which is equal to the mean
squared error (MSE). You can see in the graph that deviance is still falling and that you
probably stopped too early. If you continue to increase the number of epochs, you’ll
probably get better results (but we’ll skip that and continue to a more complex model
in the next section). The output on the right shows a couple of metrics, most notably
the final deviance and MSE of 19.07 (equal to the RMSE of 4.37). This isn’t great, but
it’s better than the first result you got in chapter 7 when you were using linear regres-
sion on this dataset, which was 22.806 (RMSE of 4.78). 

BUILDING A MORE COMPLEX MODEL

In chapter 7, you added second-order polynomials to capture nonlinear relationships
in the data but used a linear regression model. With higher-order polynomials, you
increased the complexity of the model. To increase complexity in a deep-learning
model, you can add additional hidden layers, and that is what you’ll do now. 

 You should train several models to get a feeling for the dataset and for the algo-
rithm parameters. We don’t have the means here to walk you through all the parame-
ters and options, so we invite you to do that yourself. We’ll just show you a set of
parameters that will give you the best results on the housing dataset.

Figure 14.11 Two metrics of the built deep-learning model shown side by side: the scoring history show-
ing mean deviance (equal to MSE) as a function of the number of epochs, and the final validation metrics.
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 Go back to the Build a Model assistant (you can use the Outline view on the right side
of the screen to navigate more easily), and set the model name to something human-
readable, such as housingDL. Then enter 200, 200, 200 in the Hidden field. As you’ll
recall from chapters 7 and 8, more complex models need more iterations to converge,
so enter 200 in the Epochs field. Finally, add L1 regularization by setting L1 to 1e-5. That
will help the model suppress the features that don’t contribute to its performance. Click
the Build Model button, and wait for the job to finish (it may take longer than the first
time). The results we got are shown in figure 14.12. 

As you can see in the scoring history graph, the validation deviation (equal to the
MSE) is now 9.92, which gives an RMSE of 3.15. R2 is 0.907. That is better than the best
result you had in chapter 7 (RMSE of 3.4655119390 and R2 of 0.8567), and the Flow UI
made it much easier to do. 

SAVING THE MODEL

You can now save the model by clicking Export. This will open another cell where you
need to enter a directory path (on the server where your Spark driver is running).
Then, click Export (see figure 14.13). You can import a saved model using the main
menu (Model > Import Model).

Figure 14.12 Results of building a deep-learning model with three hidden layers, 200 epochs, and L1 
regularization

Figure 14.13 Exporting a 
model to the /models/
housingDL folder on the 
server where the Spark 
driver is running
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14.3.3 Building and evaluating a deep-learning model using the 
Sparkling Water API

In this section, you’ll learn how to do all the steps from the previous sections directly
from Spark, using the Sparkling Water API, which may come in handy if you plan to
use H2O with Spark. First, you need to load and split the data and use it to build an
H2O deep-learning model. After that, you’ll evaluate the model’s performance; and
finally, you’ll learn how to load and save H2O models.

SPLITTING THE DATA

If you wish to use the same split frames as in the previous section (we recommend
doing so, because that way you can get comparable results), you can load them in your
Spark shell (the one from which you started the H2O cluster) using the following
command:

scala> val housing750 = new H2OFrame("housing750")
scala> val housing250 = new H2OFrame("housing250")

Otherwise, you can create splits using the Sparkling Water API:

import org.apache.spark.examples.h2o.DemoUtils
val housingSplit = DemoUtils.split(housingH2o, Array("housing750sw", 
  "housing250sw"), Array(0.75))
val housing750 = housingSplit(0)
val housing250 = housingSplit(1)

DemoUtils is a helper class available from the Sparkling Water examples package. You
can examine its source (http://mng.bz/pT30) to see how it splits frames. 

BUILDING THE MODEL

The first step in building the model is to create a DeepLearningParameters object,
which will hold the algorithm’s parameters:

import _root_.hex.deeplearning.DeepLearningModel.DeepLearningParameters
val dlParams = new DeepLearningParameters()

To get results similar to those from the model built from the Flow UI, you’ll use the
exact same parameters you used there. First you need to set the train frame and the
validation frame. Every object in H2O (frames, models, and jobs) has a key with which
it’s referenced in H2O’s distributed key-value store:

dlParams._train = housing750._key 
dlParams._valid = housing250._key 

Next, set the other parameters you used through the Flow UI. Parameters that aren’t
explicitly set will take the same defaults as those in the Flow UI:
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dlParams._response_column = "medv"
dlParams._epochs = 200
dlParams._l1 = 1e-5
dlParams._hidden = Array(200, 200, 200)

As a last step, construct a DeepLearning object by passing it the parameters object you
just built, and call the trainModel method. trainModel will return a water.Job
object, which is used for tracking long-running user actions. Its get method will block
until the job’s completion and return the result:

import _root_.hex.deeplearning.DeepLearning
val dlBuildJob = new DeepLearning(dlParams).trainModel
val housingModel = dlBuildJob.get

That last command will trigger the model training job and output the results once it’s
finished:

housingModel: hex.deeplearning.DeepLearningModel =
Model Metrics Type: Regression
 Description: Metrics reported on full training frame
 model id: DeepLearning_model_1460198303597_1
 frame id: housing750-2
 MSE: 5.7617407
 R^2: 0.92605346
 mean residual deviance: 5.7617407
Model Metrics Type: Regression
 Description: Metrics reported on full validation frame
 model id: DeepLearning_model_1460198303597_1
 frame id: housing250-2
 MSE: 10.819859
 R^2: 0.89840055
 mean residual deviance: 10.819859
Status of Neuron Layers (predicting medv, regression, gaussian 

➥ distribution, Quadratic loss, 83.401 weights/biases, 989,5 KB, 82.616 
➥ training samples, mini-batch size 1):
 Layer Units      Type Dropout       L1       L2 Mean Rate Rate RMS 

➥ Momentum Mean Weight Weight RMS Mean Bias Bias RMS
     1 ...

The resulting model is automatically stored in the H2O cluster (its distributed key-
value store) under its key.

EVALUATING THE MODEL

The model-training step also automatically puts into the H2O’s key-value store a
ModelMetricsRegression object (because housingModel is a regression model),
containing results of the model’s evaluation against the validation dataset. You can
retrieve the metrics object with the following code:

scala> val housingMetrics = _root_.hex.ModelMetricsRegression.getFromDKV(
    housingModel, housing250)
housingMetrics: hex.ModelMetricsRegression =
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Model Metrics Type: Regression
 Description: Metrics reported on full validation frame
 model id: DeepLearning_model_1460198303597_1
 frame id: housing250-2
 MSE: 10.819859
 R^2: 0.89840055
 mean residual deviance: 10.819859

The model is also available from the Flow UI. You can find it by clicking Models and
then List All Models. When you click the model name (DeepLearning_model_146…),
you can see that the scoring history graph and the validation metrics (see figure 14.14)
are similar to those from the housingDL model (figure 14.12).

TRANSFERRING H2O RESULTS BACK TO SPARK

You can now use the model to create predictions based on new data samples. For
example, you can get a new H2OFrame, with the individual predictions the model
makes on samples from the validation dataset, by calling the model’s score method:

scala> val housingValPreds = housingModel.score(housing250)
housingValPreds: water.fvec.Frame =
Frame _972a703785fcceb561ec3310fa0f4b43 (114 rows and 1 cols):
                    predict
    min   6.744033282852284
   mean  24.105874992201343
 stddev     9.2411335636329
    max  51.844403675884294
missing                 0.0
      0   33.76862113111221
      1  20.826654125442147
      2    21.0116710955151

Figure 14.14 Scoring history and validation metrics of the model built from Sparkling Water with the 
same parameters as the model built through the Flow UI
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      3  21.966950826024252
      4   18.81179674838294
      ...

To convert these results back to a Spark DataFrame, call the H2OContext’s asDataFrame
method:

scala> val housingPredictions = h2oContext.asDataFrame(
  housingValPreds)(sqlContext)
scala> housingPredictions.show()
+------------------+
|           predict|
+------------------+
| 33.76862113111221|
|20.826654125442147|
|  21.0116710955151|
|21.966950826024252|
| 18.81179674838294|
| 18.02565778065803|
|17.795387663167254|
|18.419968615600666|
| 22.92203005950029|
|21.225224043197787|
|  20.0887430162838|
| 21.45854177762687|
| 23.76300250484211|
| 23.48128403269915|
|   21.354705723607|
| 29.75633627046893|
|24.705942488206933|
| 22.37385360846257|
|30.439123158814077|
| 32.83702131412606|
+------------------+
only showing top 20 rows

The resulting DataFrame contains a single Predict column, which contains the predic-
tions for individual rows in the input frame.

LOADING AND SAVING MODELS USING THE SPARKLING WATER API

You can save a model to a file and load a saved model using the ModelSerialization-
Support class. To save a model, pass the model and a URI pointing to a file (it can also
be an HDFS or S3 URI) to its exportH2OModel method:

import water.app.ModelSerializationSupport
import _root_.hex.deeplearning.DeepLearningModel

ModelSerializationSupport.exportH2OModel(housingModel, 
  new java.net.URI("file:///path/to/model/file"))

You can load a saved model with the loadH2OModel method the same way:

val modelImported:DeepLearningModel = ModelSerializationSupport.loadH2OModel(
  new java.net.URI("file:///path/to/model/file"))
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14.4 Performing classification with H2O’s deep learning
Deep learning can be used for classification as well as for regression. In this section,
you’ll again use a dataset you used before: the adult dataset from chapter 8. To refresh
your memory, the adult dataset was extracted from the 1994 United States census
data. It contains 13 attributes with data about a person’s sex, age, education, marital
status, race, native country, and so on, and the target variable (income). The goal is to
predict whether a person earns more or less than $50,000 per year. You can find the
dataset in our online repository (http://mng.bz/bnCf). You can find descriptions of
the columns in the file adult.names (http://mng.bz/KF4i).

14.4.1 Loading and splitting the data 

As we said previously, in this section you’ll load the data from a file directly to an
H2OFrame. It’s straightforward—you need only to provide a path to the file to load:

val censusH2O = new H2OFrame(new java.net.URI("first-edition/ch08/adult.raw"))

The frame is now also available through H2O Flow UI under the name
adult_raw.hex. H2O automatically detects which columns contain numbers and
which contain categorical values (the enum type in H2O terms). Categorical values are
those that can take on only a limited number of possible values, such as education
and marital_status. The resulting frame is shown in figure 14.15. 

Figure 14.15 Census frame summary showing that H2O sees categorical columns as strings and not 
as enums
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But there’s a problem with the names of the columns. The adult.raw file doesn’t
include the column names. So, you can change the column names using the H2O API.
This is how you do that:

censusH2o.setNames(Array("age1", "workclass", "fnlwgt", "education", 
  "marital_status", "occupation", "relationship", "race", "sex", 
  "capital_gain", "capital_loss", "hours_per_week", "native_country", 
  "income"))

That line sets the new names for the columns. You can check it with the following
command:

scala> censusH2o.name(0)
res0: String = age

But if you execute the Flow command getFrameSummary "adult_raw.hex" from the
Flow UI, you’ll see that the names haven’t changed. You need to update them in H2O’s
distributed key-value store in order for them to become visible in the Flow UI. You can
accomplish that with the following line:

censusH2o.update()

SPLITTING THE DATASET

Unlike the housing dataset, you’ll split the census dataset directly using the Sparkling
Water API to learn how it’s done. The most straightforward way is to use the
DemoUtils class from the Sparkling Water examples (this is why you needed to
include the examples package when you started Sparkling Water in section 14.2.2):

import org.apache.spark.examples.h2o.DemoUtils
val censusSplit = DemoUtils.split(censusH2o, 
    Array("census750", "census250"), Array(0.75))
val census750 = censusSplit(0)
val census250 = censusSplit(1)

The new frames are now also accessible through the Flow UI. If you’d like to use the
same splits we used, you can find them in our online repository (files census750.csv
and census250.csv at http://mng.bz/IS40). You can load them using the line from the
beginning of this section.

14.4.2 Building the model through the Flow UI

Building a classification deep-learning model is no different than building a regres-
sion model. But you must be wondering what to do with the categorical data—after
all, in chapter 8 you had to use the StringIndexer and OneHotEncoder classes to one-
hot encode those features. The good news is that H2O does all that automatically; you
don’t have to worry about it. Just open the Build Model assistant, select the Deep
Learning algorithm, and enter the parameters from table 14.1. They’re almost identi-
cal to the ones you used to build the regression model previously.
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The training will take longer than for the housing data because the adult dataset is
larger. Click the Build Model button, and then click View once the job finishes. 

EVALUATING THE MODEL’S PERFORMANCE

Because the target variable (response column) is categorical, H2O automatically
builds a classification model and chooses the appropriate evaluation metrics: f1, r2,
and ROC curve (to refresh your memory on these terms, consult section 8.2.4). It also
shows log-loss (defined in section 8.2.1), not just MSE. 

 The resulting validation metrics are shown in figure 14.16, and the ROC curve is
shown in figure 14.17. As you can see, the corresponding area under the curve (AUC)
is 0.9118, which is slightly better than the best result from chapter 8. 

 The table on the right in figure 14.17 is associated with the value selected under
the criterion drop-down menu (or the threshold, if a criterion isn’t selected). You
have to select one of those fields in order to see the table. The table shows the thresh-
old and all other metrics that would apply if the selected criterion were to be
enforced. The selected criterion in figure 14.17 is the maximum f1 measure. This tells
you that if you wanted the maximum
f1 measure possible, the threshold
would need to be 0.2905 (anything
above that value is considered to
belong to the target category, mean-
ing the income is greater than
$50,000), the TPR would be 0.8007,
the FPR would be 0.1550, and so on.

 You can also examine the scoring
history graphs (figure 14.18) that
show log-loss and MSE as functions of
the number of epochs. You can use
them to see if the validation error is

Table 14.1 Parameters to build a deep-learning model for 
                   classification of census data

Parameter Value

Model ID censusDL-Flow

Training frame census750

Validation frame census250

Response column income

Hidden 200, 200, 200

Epochs 50

L1 1e-5

Figure 14.16 Validation metrics of the built deep-
learning model
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rising or falling and to determine whether you’re using too few or too many epochs.
In this case, we could say that a smaller number of epochs may lead to slightly better
results, because the validation error has started to rise. Your results may be different,
depending on the frame splits.

Figure 14.17 The ROC curve of the built deep-learning model with an area under the curve of 0.911823. 
The values in the tables on the right correspond to the maximum possible value of the f1 measure that 
can be obtained with this model and this dataset.

Figure 14.18 Scoring history for the built deep-learning model, showing log-loss and MSE as functions 
of the number of epochs
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14.4.3 Building the model with the Sparkling Water API

Using the Sparkling Water API to build a classification deep-learning model is the
same as building a regression model:

val censusdlParams = new DeepLearningParameters()
censusdlParams._train = census750._key
censusdlParams._valid = census250._key
censusdlParams._response_column = "income"
censusdlParams._epochs = 50
censusdlParams._l1 = 1e-5
censusdlParams._hidden = Array(200, 200, 200)

The following line starts the training job:

import _root_.hex.deeplearning.DeepLearning
val censusModel = new DeepLearning(censusdlParams).trainModel.get
Model Metrics Type: Binomial
 Description: Metrics reported on temporary training frame with 9890 samples
 model id: DeepLearning_model_1460198303597_64
 frame id: census750.temporary.sample.27,30%
 MSE: 0.09550598
 R^2: 0.48424917
 AUC: 0.9206606
 logloss: 0.2964316
 CM: Confusion Matrix (vertical: actual; across: predicted):
        <=50K  >50K   Error             Rate
 <=50K   6619   844  0,1131  =   844 / 7.463
  >50K    595  1832  0,2452  =   595 / 2.427
Totals   7214  2676  0,1455  = 1.439 / 9.890
Gains/Lift Table (Avg response rate: 24,54 %):
  Group  Cumulative Data Fraction  Lower Threshold      Lift  Cumulative 

➥ Lift  Response Rate  Cumulative Response Rate  Capture Rate  Cumulative 
➥ Capture Rate        Gain  Cumulative Gain
   ...

The only difference is the class used for validation. In this case, it’s ModelMetricsBinomial:

val censusPredictions = censusModel.score(census250)
val censusMetrics = _root_.hex.ModelMetricsBinomial.getFromDKV(censusModel, 

➥ census250)

Looking at the AUC metric values, this model gives very similar results to the censusDL-
Flow model and, again, better results than the best results from chapter 8, on the same
dataset.

14.4.4 Stopping the H2O cluster

When you’re finished using the H2O cluster, you can shut it down by calling the
H2OContext’s stop method:

h2oContext.stop(false)
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The argument (true or false; false is the default) tells Sparkling Water whether to
first stop the Spark context. The Spark context stops in either case, because the stop
method performs the system exit, which causes the JVM to stop.

14.5 Summary
■ Deep learning is an area of machine learning based on using artificial neural

networks to learn high-level features of the underlying data. 
■ Artificial neural networks are modeled according to biological neural networks

and consist of artificial neurons organized in layers. A deep neural network is
an ANN with two or more hidden layers. 

■ H2O is a fast, open-source, machine-learning platform, featuring a deep-learning
algorithm, among others. 

■ Sparkling Water is a Spark package that you can use to run an H2O cluster on
top of Spark. With Sparkling Water, you can use H2O API directly from Spark.

■ H2O’s web-based console is called the Flow UI. It enables you to quickly load
data, train models using the supported algorithms, use the trained models, and
inspect the results.

■ Spark DataFrames can be converted to H2O frames, and vice versa. Once con-
verted to H2O frames, they’re immediately available in the Flow UI. This way,
you can load, transform, and clean data in Spark, transfer it to H2O to build
machine-learning models, and transfer the results back to Spark.

■ The Flow UI can be used to examine data distributions, split frames, train mod-
els, and load and save data and machine-learning models. The same actions can
be accomplished using the Sparkling Water API.

■ H2O automatically chooses the appropriate metrics and deep-learning model
(classification or regression) based on the type of the target variable, and pro-
vides a wealth of information about your model’s performance.
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appendix A
Installing Apache Spark

Although we provide a VM image where Spark is already installed, we also wanted
to give you step-by-step instructions on how to install Apache Spark as it would be
done in the real world. This appendix contains instructions for the following:

■ Installing Java (JDK) 
■ Downloading, installing, and configuring Apache Spark

If you aren’t using Ubuntu, we suggest that you install the VirtualBox hardware-
virtualization software and create a Ubuntu VM (www.wikihow.com/Install-Ubuntu-
on-VirtualBox).

Prerequisites: installing the JDK
Let’s get started. From now on, we’ll assume that you’re logged in to your Ubuntu OS.

 If you aren’t sure whether you already have the JDK installed and set up cor-
rectly, open your terminal (Ctrl-Alt-T) and issue the following command (you can
paste the command in the Ubuntu terminal with Ctrl-Shift-V and, if needed, copy
from the terminal with Ctrl-Shift-C):

$ which javac

NOTE Skip the dollar sign ($) when you enter commands—that’s just the
standard way of designating that commands should be entered into the
terminal.

The which command basically tells you which executable file on your filesystem
would be triggered if you were to execute the javac command (javac is the Java
compiler, which comes only with the JDK).

 If the command returns a path, such as /usr/bin/javac, make sure your
JAVA_HOME environment variable is correctly set (echo $JAVA_HOME should return the
root JDK installation folder: for example, /usr/lib/jvm/java-8-openjdk-amd64), and

 

http://www.wikihow.com/Install-Ubuntu-on-VirtualBox
http://www.wikihow.com/Install-Ubuntu-on-VirtualBox
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continue from “Downloading, installing, and configuring Spark.” If the JDK is installed
but JAVA_HOME isn’t set, continue from “Setting the JAVA_HOME environment variable.”

 If the which command returns an empty line, you’ll need to install the JDK. Still in
your terminal, execute the following set of commands (requires internet access):

$ sudo apt-get update                   
$ sudo apt-get -y install openjdk-8-jdk

sudo is a way to run commands with elevated privileges (as the root user). apt is
Ubuntu’s package manager: a way to install programs using online package repositories
(or deb prepackaged installations from the local filesystem).

SETTING THE JAVA_HOME ENVIRONMENT VARIABLE

There’s one more thing to do, once the installation completes: permanently set the
JAVA_HOME environment variable to refer to the open-jdk installation folder (perma-
nently meaning not only for the duration of the current session, but after a reboot
too). Here’s how:

$ echo "export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64" | sudo tee 
/etc/profile.d/sia.sh
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

The echo command sends its input to the standard output. The standard output is
normally the terminal window, but here you use a pipe command (|), which temporar-
ily redirects standard output to a command that comes after it (tee, in this case). (We
provide more details about the pipe command in chapter 3.) The tee command
sends its input to both a file, which it received as a parameter, and the standard output
(the terminal, because there’s no pipe after tee). You again need the sudo command
because writing to any file in /etc requires elevated privileges.

 To summarize, you echo the JAVA_HOME assignment string (export is used to set
environment variables), which the pipe redirects to the tee command, which in turn
writes that string to both the provided file and to the terminal window.

 Every file located in /etc/profile.d that has the .sh extension is executed on Ubuntu
startup, so you’ll have JAVA_HOME set even after you restart Ubuntu. But all the previous
command did was to create a new file, sia.sh, and add the export of the JAVA_HOME assign-
ment line to the file; it didn’t set JAVA_HOME. Let’s see whether that’s the case with echo,
and then fix it with the source command (which executes the contents of a file):

$ echo $JAVA_HOME
-----empty-line-----
$ source /etc/profile.d/sia.sh
$ echo $JAVA_HOME                    
/usr/lib/jvm/java-8-openjdk-amd64

Updates the apt 
package repository

Downloads and installs the 
latest available build of the JDK

Placing $ in front of an 
environment variable 
retrieves the variable’s value.
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Now, with the prerequisites out of your way, you’ll finally start dealing with fun stuff:
downloading and setting up the latest version of Spark.

Downloading, installing, and configuring Spark
Use Mozilla Firefox, which comes with Ubuntu out of the box, to open the Apache
Spark project page (http://spark.apache.org/downloads.html). Make the following
selections:

1 Choose a Spark Release: select the latest Spark release.
2 Choose a Package Type: select the latest prebuilt version of Hadoop (or your

version of Hadoop, if you have one at your disposal).
3 Choose a Download Type: select Apache Mirror.
4 Click the link that comes after Download Spark in step 3.

When a page with a list of mirrors appears, click the suggested, topmost Apache Mir-
ror site. In the dialog that opens, make sure Save File is selected (this may differ
depending on your browser), and click OK. The file will be saved in the Downloads
folder in your home folder.

 Once the download completes, in your terminal, navigate to the $HOME/Down-
loads folder (if that’s where you downloaded Spark), and unpack the Spark bundle:

$ cd $HOME/Downloads
$ tar -xvf spark*
$ rm spark*tgz           

Instead of using *, you can type “tar –xvf spark” and then press Tab to autocomplete
the filename. 

 When you log in to Ubuntu, the HOME environment variable is populated with a
path to your home directory.1 For example, because we used the username mbo, HOME
points to /home/mbo:

$ echo $HOME         
/home/mbo

From now on, we’ll refer to this directory as your home directory (or just home), and
you’ll use the HOME environment variable to navigate to it (as shown in the next set of
commands). 

 Because the purpose of this Spark installation is not to put Spark in production,
but rather to learn, and because it will be used only by you, let’s follow a Linux con-
vention (http://mng.bz/0ezc) and place the Spark binaries2 in the bin directory in
your home. You have full access rights (read/write/execute, or rwx) to your home
directory, so you won’t have to fiddle with sudo every time you need to make a change
(for example, to a configuration file). 

1 More on the home directory: https://help.ubuntu.com/community/HomeFolder.
2 A fancy name for a compiled program (for example, you can download Spark’s source code or Spark binaries).

Deletes the downloaded 
Spark tgz archive.

Prints out the provided input, as 
you saw when setting JAVA_HOME.

 

http://spark.apache.org/downloads.html
http://mng.bz/0ezc
https://help.ubuntu.com/community/HomeFolder
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 Because new versions of Spark are flying out every couple of months, you need a
way to manage them so you can have multiple versions installed and easily choose
which one to use. You’ll create a sparks directory, where you’ll put the current and all
future versions of Spark. 

 Create the bin directory with the sparks directory in it, and then move your
unpacked Spark binaries from Downloads to this new sparks directory, as follows: 

$ cd $HOME                  
$ mkdir –p bin/sparks           
$ mv Downloads/spark-* bin/sparks     

Our home/bin directory looked like this after moving the Spark binaries to bin/
sparks. Yours should look the same, but without earlier versions of Spark:

bin
   spark
   sparks
      spark-1.2.0-bin-hadoop2.4
      spark-1.2.1-bin-hadoop2.4
      spark-1.2.2-bin-hadoop2.4
      spark-1.3.0-bin-hadoop2.4
      spark-1.3.1-bin-hadoop2.6
      spark-1.4.0-bin-hadoop2.6
      spark-1.4.1-bin-hadoop2.6
   ...
      spark-1.6.1-bin-hadoop2.6
spark-2.0.0-bin-hadoop2.7

Great! You’re nearly there. There’s one thing left to do, if you’re going to follow good
Linux practices for managing multiple versions of a program: you need to create a
symbolic link directory named Spark in your $HOME/bin directory, which will point
to a Spark installation directory you want to use. Let’s do that now:

$ cd $HOME/bin                                  
$ ln -s sparks/spark-2.0.0-bin-hadoop2.7 spark

Now, still in the ~/bin folder, execute the tree –L 2 command. You’ll see that the spark
folder is actually a symbolic link that points to another folder in the sparks directory.

 The idea is to always refer to the spark root (see the sidebar) the same way, using
the spark symbolic link. When you want to use some other version of Spark, you can
change the symbolic link to point to a different version.

SPARK-SHELL

Now you should be able to start the spark-shell command-line interface using these
commands in your terminal:

$ cd $HOME/bin/spark       
$ ./bin/spark-shell   

Navigates to your 
home directory

Creates the
bin/sparks
directory

Moves the uncompressed 
spark directory from 
Downloads to bin/sparks.

Navigates to the bin directory 
in your home directory

Creates a symbolic link

Navigates to the spark root directory

Starts the spark-shell
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Boom! You have a running spark-shell on your machine. The default logging settings
are much too verbose, so let’s tone that down a bit.

 You’ll make spark-shell print only errors, but you’ll maintain the complete log in
the logs/info.log file (relative to the spark root) for troubleshooting. Exit the shell by
typing :quit or just :q (or pressing Ctrl-D), and create a log4j.properties file in the
conf subfolder, like this:

$ gedit conf/log4j.properties

gedit is Ubuntu’s built-in text editor. You are, of course, free to use any other text edi-
tor. Now, copy the following listing into the newly created log4j.properties file in
gedit.

# set global logging severity to INFO (and upwards: WARN, ERROR, FATAL)
log4j.rootCategory=INFO, console, file

# console config (restrict only to ERROR and FATAL)
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.threshold=ERROR
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p 

➥ %c{1}: %m%n

# file config
log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.File=logs/info.log
log4j.appender.file.MaxFileSize=5MB
log4j.appender.file.MaxBackupIndex=10
log4j.appender.file.layout=org.apache.log4j.PatternLayout

Listing A.1 log4j.properties file

Symbolic links
A symbolic link (or symlink) is a reference to a file or a folder (the latter, in this case).
It behaves as though you have access to the same folder from two different places
in your filesystem. The symlink isn’t a copy; it’s a reference to the target folder, with
the ability to navigate within it, as if it were the target folder. Every change you make
in the symlink is applied directly to the target folder and reflected in the symlink. 

By using the symlink this way, regardless of the current version of Spark, you’re al-
ways using $HOME/bin/spark. You switch versions by deleting the symlink (rm com-
mand) and creating one that points to the root installation folder of a Spark version
you want to work with. If you wanted to switch to version 1.6.1, you would do this:

$ rm spark
$ ln -s spark-1.6.1-bin-hadoop2.6 spark

From now on, we’ll call $HOME/bin/spark directory the spark root.
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log4j.appender.file.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p 

➥ %c{1}: %m%n

# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO

Save the file, and close gedit. 

Make sure your current directory is still spark root, and then use the same command
as before (instead of writing it again, you can press the up-arrow key two times) to start
spark-shell:

$ ./bin/spark-shell

Cleaner, right? So, what is this spark-shell about?
 There are two ways you can interact with Spark. One way is to write a program in

Scala, Java, or Python that uses Spark’s library (that is, its API; more on programs in
chapter 3). The other is to use the Scala shell or the Python shell. 

 The shell is primarily used for exploratory data analysis, usually one-off jobs,
because a program written in the shell is discarded after you exit the shell. The other
common shell-use scenario is testing and developing Spark applications. It’s much
easier to test a hypothesis in a shell (for example, probing a dataset) than it is to write
an application, submit it to be executed, write the results to an output file, and then
analyze that output.

 spark-shell is also known as Spark REPL, which, as you recall, stands for read-eval-
print-loop. It reads your input, evaluates it, prints the result, and then does it all over
again (after a command returns a result, it doesn’t exit the scala> prompt but rather
stays ready for your next command—thus loop). 

 As you can see in the REPL’s initial printout, as you start it, it provides you with the
Spark context in the form of the sc variable and the SparkSession as spark. Spark-
Session is the entry point for interacting with Spark. You use it for things like con-
necting to Spark from an application, configuring a session, managing job execution,
loading or saving a file, and so on. If you type spark. and press the Tab key, you’ll see
a printout of all the functions SparkSession provides.

log4j
Although it has been superseded by the logback library and is almost two decades
old, log4j is still one of the most widely used Java logging libraries, due to the sim-
plicity of its design.
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appendix B
Understanding MapReduce

In December 2004, Google published a paper, “MapReduce: Simplified Data Pro-
cessing on Large Clusters,” by Jeffrey Dean and Sanjay Ghemawat, summarizing the
authors’ solution to Google’s urgent need to simplify cluster computing. Dean and
Ghemawat settled on a paradigm in which parts of a job are mapped (dispatched) to
all nodes in a cluster. Each node produces a slice of the intermediary result set. All
those slices are then reduced (aggregated) back to the final result.

 The MapReduce paper (http://mng.bz/8s06) solves these three main problems:

■ Parallelization—How to parallelize the computation
■ Distribution—How to distribute the data
■ Fault-tolerance—How to handle component failure

The core of MapReduce deals with programmatic resolution of those three prob-
lems, which effectively hides most of the complexities of dealing with large-scale
distributed systems and allows MapReduce to expose a minimal API that consists
only of two functions: (wait for it …) map and reduce. 

 One of the key insights from MapReduce is that you shouldn’t be forced to
move data in order to process it. Instead, a program is sent to where the data
resides. That is a key differentiator, compared to traditional data warehouse systems
and relational databases. There’s simply too much data to be moved around.

 We’ll explain how MapReduce works with a simple example—we’ll use the
good-old simplified word count (big data’s “Hello World”). 

 Suppose you’d like to find the most common words on a website. Let’s say there
are two pages on this website, each with a single paragraph:

■ “Is it easy to program with MapReduce?”
■ “It is as easy as Map and Reduce are.”

 

http://mng.bz/8s06


416 APPENDIX B Understanding MapReduce

First, the map function takes each paragraph, tokenizes it into words, normalizes the
case and punctuation, and emits 1 for each word:

So, for each input paragraph, map takes a key and a value and returns a list of keys/values.
 In this intermediate phase, the MapReduce library takes care that the same word

always goes to the same reducer, so counts can be summed up and computation final-
ized without any subsequent steps. That is called the shuffle phase, and for the over-
whelming majority of applications, it takes the longest time to complete.

 The reduce function receives map’s output, adds up the words, and emits the
result: 

We can generalize that map takes a key/value pair, applies some arbitrary transforma-
tion, and returns a list of so-called intermediate key/value pairs. MapReduce then,
behind the scenes, groups those pairs by key, and they become input for the reduce
function. reduce combines those values in some useful way and writes the result to a
final output file. When all reducers have finished their task, control is returned to the
user program. 

map  ("is", 1) map  ("it", 1)

map  ("it", 1) map  ("is", 1)

map  ("easy", 1) map  ("as", 1)

map  ("to", 1) map  ("easy", 1)

map  ("program", 1) map  ("as", 1)

map  ("with", 1) map  ("map", 1)

map  ("mapreduce", 1) map  ("and", 1)

map  ("reduce", 1)

map  ("are", 1)

reduce  ("is", 2) reduce  ("it", 2)

reduce  ("easy", 2) reduce  ("to", 1)

reduce  ("program", 1) reduce  ("with", 1)

reduce  ("mapreduce", 1) reduce  ("as", 2)

reduce  ("map", 1) reduce  ("and", 1)

reduce  ("reduce", 1) reduce  ("are", 1)
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 This is just one version of the word-count example. You could do it differently: for
example, you could make map do the counting within each paragraph ("as", 2), or
you could use natural language processing analysis and stem each word to its root. You
could split words on CamelCase (MapReduce  map reduce). Also, you could use a stop-
word filter, which uses a list of the most common words in each language to remove
those words from the final count because they don’t add value or relevance (that
would then be TermVector, not WordCount). But those additions would only compli-
cate and obscure the example. We skipped them because they’re not important when
explaining how MapReduce works.

 Having seen MapReduce in action, your first instinct may be that MapReduce is
overly complicated for the simple task of counting the frequency of words in two sen-
tences. And you’re right, of course—there are simpler and more intuitive ways to write
a trivial method for the task at hand. But keep in mind that MapReduce was designed
to tackle terabytes and even petabytes of sentences, from billions of websites, server
logs, click streams, and so on.

MapReduce fault-tolerance
Thisis an excerpt from Dean’s and Ghemawat’s MapReduce paper (slightly para-
phrased):

The master pings every worker periodically. If no response is received from a
worker in a certain amount of time, the master marks the worker as failed. Any
map tasks, in-progress or completed by the failed worker are reset back to their
initial idle state, and therefore become eligible for scheduling on other workers.
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appendix C
A primer on linear algebra

This appendix presents the basic linear algebra operations. They’re important for
understanding much of the math behind most machine-learning algorithms. In
case you skipped your linear algebra classes, this is your chance to come to grips
with it.

Matrices and vectors
A matrix is a set of elements arranged in rows and columns (we’ll only use matrices
whose elements are numbers). This is a matrix with two rows and three columns, so
it’s called a 2 × 3 matrix:

Usually, the number of rows in a matrix is denoted by the letter m and the num-
ber of columns by the letter n. m and n are the matrix’s dimensions, and we say its
size is m × n. We’ll denote matrices with bold, uppercase letters (X in the previous
example) and its elements with plain, lowercase letters with subscript indices. For
example:

A column vector is a matrix of size n × 1, and a row vector is a matrix of size 1 × n.
We’ll refer to column vectors with lowercase, italic, bold letters (for example, u)

x 1 2 3

4 5 6
=

x
x11 x12 x13

x21 x22 x23

=
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and row vectors just like column vectors, but with an added superscript letter T (for
example, uT):

The letter T here means transposed. Transposition is an operation in which the rows of
a matrix become its columns, and vice versa. For our example matrix X, its transposed
matrix would be as follows:

So, if the size of the original matrix is m × n, the size of the transposed matrix will be
n × m. Note that (XT)T = X. 

Matrix addition
Two matrices (or vectors, which are matrix special cases) can be added if they have the
same size. The addition is performed element-wise:

Matrix addition is associative, which means A + (B + C) = (A + B) + C. It’s also a com-
mutative operation, which means A + B = B + A.

Scalar multiplication
A scalar, in contrast to vectors and matrices, is a regular number. Multiplication of
matrices by scalars is also performed element-wise, by multiplying each element with
the scalar value:

u
1

2

3

          u
T

1 2 3==

X
T

x11 x21

x12 x22

x13 x23

=

a11 a12

a21 a22

b11 b12

b21 b22

+
a11 b12+ a12 b12+

a21 b22+ a21 b22+
=


a11 a12

a21 a22

a11 a12

a21 a22

=
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Matrix multiplication
Two matrices can be multiplied only if the number of columns in the left matrix is
equal to the number of rows in the right matrix. If two matrices being multiplied have
sizes m × n and n × k, the resulting matrix will be of size m × k. 

 In the case of vectors, when multiplying a row vector (1 × n) and a column vector
(n × 1), the result will be a scalar value. This is also called a dot product or a scalar product:

Conversely, when multiplying a column vector of size m × 1 and a row vector of size
1 × n, the result will be a matrix of size m × n. 

 Generally, when multiplying matrices A and B, you can use this formula to calcu-
late each element of the resulting matrix C: 

For example:

In other words, the value of the element in the row i and column j of the resulting
matrix will be equal to the dot product of the i-th row of the first matrix and the j-th
column of the second matrix.

Identity matrix
A square matrix is a matrix with the same number of rows and columns (its size is m × m).
An identity matrix is a square matrix with all elements on its main diagonal equal to 1 and
all other elements equal to 0. For example, this is an identity matrix of size 2:

Any matrix A of size m × n, multiplied by an identity matrix, stays the same: AIn = ImA = A.

a
T

b a11 a12 a13

b11

b21

b31

a11b11 a12b21 a13b31+ += =

cij airbrj    0 i m 0 j k
r 1=

n

=

a11 a12 a13

a21 a22 a23

b11 b12

b21 b22

b31 b32

a11b11 a12b21 a13b31   + + a11b12 a12b22 a13b32+ +

a21b11 a22b21 a23b31   + + a21b12 a22b22 a23b32+ +
=

I2
1 0

0 1
=
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Matrix inverse
The final definition for this appendix is the matrix inverse. Any matrix A multiplied by
its inverse (denoted by A-1) gives an identity matrix. Only square matrices can have an
inverse. But some square matrices don’t have an inverse. If a square matrix has an
inverse, it’s called an invertible or non-singular matrix.
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index

Symbols

, character 31
::: operator 73
* character 155
& character 370
&gt; string 124
&lt; string 124
# separator 94
+= operator 98
< symbol 124
=> (fat arrow) function 26
> symbol 124
~ character 49

A

<a> tag 255
A* search algorithm 269–281

calculating F, G, and H 
values 277–278

checkpointing working 
graph 277

collecting final path 
vertices 278

implementing 272–278
initializing 274–275
main loop 275–276
marking current vertex as 

visited 276–277
overview 270–272
selecting next current 

vertex 278
testing implementation

279–281

abs function 118–119
acceptedAnswerId 110
accessing filesystems 9
Accumulable class 98
AccumulatorParam objects 98
accumulators 97–99

accumulating values in 
accumulable collections 99

writing custom 98
activeDirection parameter 261
actor object 51
add method 98
Add Remote Catalog button 42
addFile method 320
--additional-security-group 

option 326
addJar method 320
adsPerSecondAndType 379
adUrlPattern 378
agg function 125
aggrdd.partitions.size 74
aggregate functions

built-in 118–119
user-defined 126

aggregateByKey 
transformation 73, 76–77

aggregateMessages method
258, 260

aggregating data 52–53
aggregating graphs 257
aggVertices 260
algorithms, for machine 

learning 184–186

based on type of target 
variable 186

supervised and unsupervised 
algorithms 185–186

ALS (alternating least 
squares) 386

ALTER TABLE command 134
Amazon EC2, running stand-

alone cluster on 322–329
creating cluster 324–326

changing Hadoop 
version 325

changing instance 
types 325

customizing security 
groups 325–326

launching cluster 326
specifying credentials 325

destroying cluster 329
prerequisites for 323–324

creating key pairs 323–324
obtaining AWS secret 

keys 323
using cluster 327–329

cluster configuration 328
connecting to master 328
logging in 327–328
rebooting 328–329
starting 328–329
stopping 328–329

Amazon Web Services. See AWS
ampersand character 370
analyzed logical plan 142
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analyzing and preparing 
data 198–202

analyzing column cosine 
similarities 200

analyzing data 
distribution 199

computing covariance 
matrix 200–201

feature scaling and mean 
normalization 202

splitting data 201
transforming to labeled 

points 201
and operator 117
ANNs (artificial neural 

networks) 384
answerCount 110
anti-patterns 8
ANY level 293
Apache Spark. See Spark
App.scala file 57
Application Detail UI link 321
application master 332
Application Overview page 342
applications

developing 46–58
aggregating data 52–53
broadcast variables 55–57
excluding non-

employees 53–55
loading JSON 48–50
preparing GitHub archive 

dataset 46–48
running applications from 

Eclipse 50–51
using entire dataset 57–58

submitting 58–65
adapting applications

60–62
building uberjar 59–60
spark-submit shell 

script 62–65
apply function 116
approximate sum and mean

38–39
area under the curve. See AUC
areaUnderPR 233
areaUnderROC 233
Array class 29, 32
Array.toString 31
ArrayBuffer 278
artifactId 43
artificial intelligence 184
artificial neural networks. See 

ANNs

asc operator 118
asDataFrame method 401
associative arrays 67
AStar object 274
asterisk character 155
attr field 256
attributes 186
--attributes parameter 354
AUC (area under the 

curve) 404
auto value 245
auto.offset.reset parameter 168
avg function 118, 125
avgByCust 94
awaitTerminationOrTimeout 

method 154
AWS (Amazon Web 

Services) 322

B

backpressure feature 175
badges 109, 129
bagging 239
Base Directory field 61
batch gradient descent. See BGD
bceval evaluator 235
Beeline, connecting to Thrift 

server 135
Berkeley Software Distribution. 

See BSD
best-fit weights 195
bestModel field 236
BFGS (Broyden-Fletcher-

Goldfarb-Shanno) 216
BGD (batch gradient 

descent) 214
bias-variance tradeoff 209–210
binary response 222
BinaryClassificationEvaluator 

class 231–233
binaryRecordsStream 164
BLOBs 114
BlockMatrix distributed 

matrix 193
boolean argument 276
bootstrap.servers parameter 167
BoundedDouble 38
Breeze library 189
broadcast variables 55–57, 

99–102
configuration parameters that 

affect 100–102
destroying and 

unpersisting 100

Broadcast.value method 100
brokerList argument 372
Broyden-Fletcher-Goldfarb-

Shanno. See BFGS
BSD (Berkeley Software 

Distribution) 25
bsdLines 26
Build Model button

395, 397, 404
Build uberjar 61
buying securities 148

C

-c CORES parameter 313
cache method 276
caching graphs 276
calcDistance3d function 280
capacity scheduler 335–336
cartesian transformation

83, 86–87
case studies 364–382

components of 366–367
overview 364–366
running application 367–373
source code 374–382

building projects 382
KafkaLogsSimulator 

project 374
StreamingLogAnalyzer 

project 374–381
WebStatsDashboard 

project 381–382
starting application 

manually 372–373
creating Kafka topics 372
obtaining archives 372
starting Log Analyzer

372–373
starting Log Simulator 373
starting Web Stats 

Dashboard 373
stopping application 370–371
troubleshooting 371–372

cat command 64
Catalog class 132–133
Catalyst optimizer 142–144

examining execution 
plan 143–144

taking advantage of partition 
statistics 144

categorical values, preparing 
data to use in Spark
226–227

categorical variables 186, 218
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CategoricalSplit class 244
category 186
cbrt function 119
cells 390
checkpointDir argument 372
checkpointing graphs 276
child RDD 94
chosen weights 195
class argument 63
classification algorithm 186, 

219, 242, 246
classpath and sharing files 339
classpath entries and files, 

specifying extra 319–320
adding additional Python 

files 320
adding files 

programmatically 320
using --jars parameter

319–320
using command-line 

options 319
using SPARK_CLASSPATH 

variable 319
clean package 61
client-deploy mode 287
client-process component 287
clients 332
cloning Spark in Action GitHub 

repository 20
closed group 271
cluster manager, scheduling 

memory managed by 294
cluster mode, Mesos 355
cluster options 74
cluster resource scheduling 290
cluster types 288–289

Mesos cluster 289
Spark local modes 289
Spark standalone cluster 288
YARN cluster 289

cluster_name argument 324
cluster-deploy mode

287, 307–308, 318, 320
clustering 219
coalesce transformation 80
coarse-grained Spark mode, 

Mesos and 348
code formatting 20
code notation 20
cogroup method 158
cogroup transformation 85–86
collect action 31
Column class 118
column cosine similarities 200

columns method 115
columnSimilarities method 200
combineByKey method 91–92, 

94, 153, 378
combined values 92
comma character 31
comma-separated values file. See 

CSV
command-line parameters

295–296
commentCount 110
commons-email library 59
companion objects 380
Comparable interface 89
Comparator interface 89
compare function 89
complTrans variable 70, 73
components, Spark 8–10

Spark Core 8–9
Spark GraphX 10
Spark MLlib 10
Spark SQL 9–10
Spark Streaming 10

Compressed Sparse Column 
format. See CSC

computeCovariance 
method 201

computePRCurve method 233
computeROCCurve 

method 233
concat function 119
conf argument 296
confidence parameter 38
Configuration object 165
configuration tag 133
configuring Spark 295–297

command-line 
parameters 295–296

master parameter 297
setting programmatically 296
Spark configuration file 295
system environment 

variables 296
viewing all configured 

parameters 297
connected components 

algorithm 266–267
connectedComponents 

method 266
Connection refused error 342
constructing graphs 256–257
consume-messages.sh script 371
containers 332, 348–349
contingency table 249–251, 253
continuous variables 186

CoordinateMatrix 192–193, 200
core-site.xml file 334
Core. See Spark Core
cost function 195
cost value 249
count function 125
countByKey method

69, 153, 378
countByValueAndWindow 

operation 164
countByWindow operation 163
countTags 123
covariance 199
covariance matrix 200–201
CPU cores 288, 292, 304
CRC (cyclic redundancy 

check) 64
create combiners function 93
createCombiner function 92
createDataFrame method 114
createDirectStream 

method 168, 376
CreateEvent 48
createOrReplaceTempView 

method 131
creationDate 110, 119
CrossValidator class 235
CSC (Compressed Sparse 

Column) format 191
CSV (comma-separated values) 

file 110
cube functions 126–127
cumeDist function 120
current vertex 270–272, 

275–278
currentVertexId 278
currVertexId 275
currying 73
custom partitioners 90
cyclic redundancy check. See 

CRC

D

-d DIR parameter 313
DAGs (directed acyclic 

graphs) 94
dashboard case study 83–382

components of 366–367
overview 364–366
running application 367–373
source code 374–382

building projects 382
KafkaLogsSimulator 

project 374
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dashboard case study (continued)
StreamingLogAnalyzer 

project 374–381
WebStatsDashboard 

project 381–382
starting application 

manually 372–373
creating Kafka topics 372
obtaining archives 372
starting Log Analyzer

372–373
starting Log Simulator 373
starting Web Stats 

Dashboard 373
stopping application 370–371
troubleshooting 371–372

data analysis 182
data cleaning 182
data collection 182
data distribution 199
data dump 109
data file 205
data grouping 91–94, 125–127

rollup and cube 
functions 126–127

user-defined aggregate 
functions 126

with combineByKey 
transformation 92–94

with groupByKey and groupBy 
transformations 91–92

data joining 82–88, 125–127
classic join 

transformations 83–84
combining two RDDs 86–87
intersection 

transformation 86
joining RDDs

with cogroup 
transformation 85–86

with zip transformation 87
with zipPartitions 

transformation 87–88
removing common values 85
rollup and cube 

functions 126–127
user-defined aggregate 

functions 126
data locality 12, 293
data mapping, in partitions

81–82
with glom 82
with mapPartitions and 

mapPartitionsWithIndex
81

data partitioning 74–82
data shuffling 76–80

caused by partitioner 
removal 78–79

optimizing with external 
shuffle service 79

parameters that affect
79–80

when explicitly changing 
partitioners 78

mapping data in 
partitions 81–82
with glom 82
with mapPartitions and map-

PartitionsWithIndex 81
repartitioning RDDs 80–81

with coalesce and 
repartition 80

with partitionBy 80
with repartitionAndSort-

WithinPartition 81
Spark data partitioners 74–76

HashPartitioner 75
pair RDD custom 

partitioners 75–76
RangePartitioner 75

data preparation 182
data samples 186
data shuffling 76–80

caused by partitioner 
removal 78–79

optimizing with external 
shuffle service 79

parameters that affect 79–80
when explicitly changing 

partitioners 78
data sources 137
data streaming 177–178
data visualization 38
data-type mappings 137
DataFrame API 48, 52, 115–118

adding and renaming 
columns 117–118

filtering data 117
selecting data 116–117
sorting data 118

DataFrame construct 41
DataFrameNaFunctions 

class 123, 145, 226
DataFrameReader object 49
DataFrames 106–129, 137–142

built-in data sources 137–138
JSON format 138
ORC format 138
Parquet format 138

converting to RDDs 124–125
creating from RDDs 108–115

converting RDDs to 
DataFrames 112–115

creating SparkSession 
object and importing 
implicit methods 109

example dataset 109
getting schema 

information 115
of tuples 110–112

grouping and joining 
data 125–127
rollup and cube 

functions 126–127
user-defined aggregate 

functions 126
loading data 141–142

from data sources 
registered using SQL
141–142

from relational databases 
using JDBC 141

missing values 123–124
performing joins 128–129
saving data 139–141

configuring writer 139
to relational databases with 

JDCB 140–141
with insertInto method 140
with save method 140
with saveAsTable 

method 139–140
with shortcut methods 140

SQL functions 118–123
built-in scalar and aggregate 

functions 118–119
user-defined 

functions 122–123
window functions 119–122

structured streaming 176–177
DataSets 48, 129–130
date_add function 119
date-time operations 119
datediff function 119
decision trees 239–244

evaluating model 244
examining 243–244
example 239–241
impurity and information 

gain 241–242
training decision-tree 

model 242–243
DecisionTreeClassifier class 242
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DecisionTreeRegressor 
class 243

deep learning 384–407
accessing Flow UI 390–391
defined 384–385
H2O, defined 386
performing 

classification 402–407
building model through 

Flow UI 403–405
building model with Spar-

kling Water API 406
loading and splitting 

data 402–403
stopping H2O cluster

406–407
performing regression

391–401
loading data into 

frame 391–394
using Flow UI 394–397
using Sparkling Water 

API 398–401
starting cluster 389
starting Sparkling Water 

API 386–389
from application 389
with Spark shell 388–389
with Sparkling Water 

shell 387–388
deep neural network. See DNN
DeepLearning object 399
default partitioners 78
DemoUtils class 398, 403
dense local matrices 189–190
dense method 188–189
dense vectors 188
DenseMatrix 190–191
denseRank function 120
DenseVector class 188
dependencies 94
Dependency Hierarchy tab

45, 58
deploying model 183
desc operator 118
dest argument 274
destroy action 324
Details link 300
developing applications 46–58

aggregating data 52–53
broadcast variables 55–57
excluding non-employees

53–55

loading JSON 48–50
preparing GitHub archive 

dataset 46–48
running applications from 

Eclipse 50–51
using entire dataset 57–58

dfraw.show() method 225
dfrawnona data frame 226
diag method 190
dialects 131, 137
dictionaries 67
dimensions 185–186, 196
directed acyclic graphs. See 

DAGs
directed edges 255
discrete values 186
discretized streams

103, 152–153
counting buy and sell 

orders 153
creating 150–152

creating DStream 
object 151–152

downloading data to be 
streamed 150–151

parsing lines 152–153
DISPLAY variable 41
distinct transformation 30–34
distinct() method 28, 33, 69
distortion 249
distributed matrices 192–193

BlockMatrix 193
CoordinateMatrix 192–193
IndexedRowMatrix 192
linear algebra in 192–193
linear algebra operations 

on 193
RowMatrix 192

distributed RDDs 27
distribution 5
-Dlog4j.configuration 

parameter 343
DNN (deep neural 

network) 384
Docker 356–360

building Spark Docker 
image 357–358

installing 356–357
preparing Mesos to use 358
running Spark tasks in Docker 

images 358–359
using 357

docker images command 357
docker ps command 357
docker rmi command 371

domain-specific language. See 
DSL

dominant resource 353
Dominant Resource Fairness 

algorithm. See DRF
dominant share 353
dot symbol 186
Double elements 36–37
double RDD functions 36–39

approximate sum and 
mean 38–39

basic statistics with 37
histograms 38

DoubleRDDFunctions class 37
downloading virtual 

machine 15–16
DRF (Dominant Resource 

Fairness) algorithm 353
driver component, 

responsibilities of 287
driver definition 

parameters 136
driver failures, recovering 

from 175–176
driver memory, setting 294–295
drop function 88
DROP TABLE command 134
DSL (domain-specific 

language) 106
dstAttr 258
dstId 256
DStream object

combining two 158
creating 151–152

dummy values 88
duplicatedInt() method 36
duplicatedString() method 36
Duration object 150
dynamic resource allocation, 

YARN 344–345

E

-e argument 134
EBS (Elastic Block Store) 328
--ebs-vol-num option 328
--ebs-vol-size option 328
--ebs-vol-type option 328
Eclipse

generating new projects 
in 41–46

running applications 
from 50–51

ecosystem 13–14
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Edge objects 256
edge property object 257
EdgeContext object 258
EdgeRDDs 10, 256
edges 94
EdgeTriplet object 258, 262
edgeWeight function 274, 277
Elastic Block Store. See EBS
elbow method 251
Employee class 89
employees variable 53, 55
Encoders 109
ensemble learning methods 239
entropy 241–242
Environment page (Spark web 

UI) 302
ERR key 367
errorsPerSecond 379
estimateDistance function 274
estimators 220
Euclidian norm 199
evaluators 220
event logging 321–322
examples 186
--executor-cores option 340
executors

obtaining data from with 
accumulators 97–99
accumulating values in 

accumulable 
collections 99

writing custom 
accumulators 98

RDD dependencies and Spark 
execution 94–96

recovering from failures 175
responsibilities of 288
sending data to with broadcast 

variables 99–102
configuration parameters 

that affect broadcast 
variables 100–102

destroying and unpersist-
ing broadcast 
variables 100

specifying number of when 
running applications in 
standalone cluster 318–319

Executors page (Spark web 
UI) 303

exists method 160
exp function 118
explainedVariance 204
eye(n) method 190

F

-f argument 134
f function 67
–f parameter 63
f-measure 232, 238
f1-score 232
failure field 38
fair scheduling 291–292, 

335–336
false argument 155
false negatives. See FN
false positive rate. See FPR
false positives. See FP
fan-in shape 212
fan-out shape 212
farthest point distance 6
fat arrow function 26
fault-tolerance 175–176

recovering from driver 
failures 175–176

recovering from executor 
failures 175

feature bagging 244–245
feature extraction 182
feature scaling 202
features 185
featureSubsetStrategy 

parameter 245
FIFO scheduling 291, 335
file footer 138
file input streams 164–165
filesystem master recovery 314
fill method 123, 226
filter function 26–27, 49, 

165, 262
filter graph 257
Filter line 144
finalrdd 95–96
finalStream variable 163
finalValue field 38
fine-grained Spark mode 348
first (column) function 120
fit method 220
flatMap function 28, 30–34, 

152, 378
flatMapValues function

71, 76, 153
Flow command 395
Flow UI

accessing 390–391
classification 403–405
regression 394–397

complex model 396–397
saving model 397

flows 390
FN (false negatives) 232
foldByKey 72–73, 79, 92
folder symlink 21
foldLeft method 72, 381
foldRight method 72
for expression 53–54
foreach method 27
foreachPartition function

169, 380
foreachRDD method 168
format function 139–140
FP (false positives) 232
FPR (false positive rate) 233
fraction of variance 

explained 204
fraction parameter 34
frames 119
framework’s scheduler 353
fullOuterJoin 79, 83
fully distributed mode 334
function literals 26

G

Gaussian distribution 190
Gaussian mixture model

219, 247
GC (garbage collection) 276
generalized linear 

modeling 386
generalized low-rank 

modeling 386
GeneralizedLinearAlgorithm 

class 214
get method 160, 399
get-master command 324, 328
getConf method 295
getFrames command 392
getFrameSummary 

command 392, 403
getMetricName method 231
getOrCreate method 175
Gini impurity 241
GitHub repository

overview 198
preparing archive dataset

46–48
Spark in Action, cloning 20

GitHubDay.scala file 57
glom transformation 82
gossip protocol 55
gradient descent

finding minimum with 197–198
mini-batch stochastic 214–216
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gradient-boosting machines 386
GradientDescent 

optimizer 214–215
graph argument 274
graph3dDst graph 280
GraphOps class 257, 266, 268
GraphX 254–281

A* search algorithm 269–281
calculating F, G, and H 

values 277–278
checkpointing working 

graph 277
collecting final path 

vertices 278
implementing 272–278
initializing 274–275
main loop 275–276
marking current vertex as 

visited 276–277
overview 270–272
selecting next current 

vertex 278
testing implementation

279–281
algorithms 263–269

connected 
components 266–267

page rank 265–266
presentation of 

dataset 263–264
shortest-paths 

algorithm 264–265
strongly connected 

components 268–269
constructing graphs 256–257
transforming graphs 257–263

aggregating messages
258–259

joining graph data 260–261
mapping edges and 

vertices 257–258
selecting graph 

subsets 262–263
GraphX. See Spark GraphX
groupBy function 91–92, 125
groupByKey transformation

91–92
groupByKeyAndSortValues 

transformation 90
groupByKeyAndWindow 

operation 164
groupId 43
grouping data 91–94, 125–127

rollup and cube 
functions 126–127

user-defined aggregate 
functions 126

with combineByKey 
transformation 92–94

with groupByKey and groupBy 
transformations 91–92

groupWith transformation 79
guaranteed capacity 335
gwork graph 275, 278

H

-h HOST parameter 312
H2O

performing classification 
with 402–407
building model through 

Flow UI 403–405
building model with Spar-

kling Water API 406
loading and splitting 

data 402–403
stopping H2O cluster

406–407
performing regression 

with 391–401
loading data into 

frame 391–394
using Flow UI 394–397
using Sparkling Water 

API 398–401
H2OContext 387
HADOOP_CONF_DIR 

variable 338
hadoop-common-.jar 136
--hadoop-major-version 

parameter 325
hard clustering 247
hash-based shuffling 79
HashPartitioner data 

partitioner 75
hdfs command 151
HDFS daemons 21
hdfs-site.xml file 334
-help argument 370
--help parameter 313
heteroscedasticity 212
higher-order polynomials

207–209
histogram action 38
History Server 321–322
hit rate 232
Hive metastore, configuring 

remote 133
Hive support 108, 128

HIVE_SERVER2_THRIFT_BIND 
_HOST variable 135

HIVE_SERVER2_THRIFT_PORT 
variable 135

hive-jdbc--standalone.jar 136
hive-site.xml file 133
hive.metastore.warehouse.dir 

property 131
HiveQL 9
$HOME variable 49
housing.names file 205
housingModel 399
hyper-parameters 394
hyperplane 186
hypot function 119
hypothesis 195

I

i argument 134
IAM (Identity and Access 

Management) 323
id column 117, 129
IDE (integrated development 

environment) 40
--identity-file option 325
idsStr RDD 31
immutable nature 116
immutable RDDs 27
implicit conversion 36, 39
impurity 239
independent variables 186, 196
IndexedRowMatrix 192
INFO message 50
information gain 239, 241–242
initialMsg parameter 261
inputCols parameter 229
inputs 186
inputTopic parameter 373
insertInto method 139–140
--instance-type 325
instances 186
Int argument 76
Int parameter 35
interaction term 208
intercept 194
intersection transformation

79, 83, 86
invReduceFunc 164
IPPartitioner 374
isEmp function 54–55
isEmployee function 55
Iterable objects 85, 101
iterateLasso method 213
iterateLBFGS method 216
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iterateLRwSGD function
206, 215

iterateLRwSGDBatch 
method 215

iterateRidge method 213

J

--jars argument 135
jars parameter 59
Java 20
Java virtual machine. See JVM
JAVA_HOME variable 20
java.sql.Timestamp class

112, 152
java.util.Properties 140–141
java.util.Random 35, 190
JavaPairRDD object 67
JavaRDDLike object 67
JavaScript Object Notation. See 

JSON
JavaSparkContext.parallelize-

Pairs method 67
javax.jdo.option.Connection-

DriverName 133
javax.jdo.option.Connection-

Password 133
javax.jdo.option.Connection-

URL 133
javax.jdo.option.Connection-

UserName 133
JDBC clients

connecting to Thrift server 
from 135–137

loading data from relational 
databases with 141

saving data to relational data-
bases with 140–141

job scheduling 290–292
data-locality 

considerations 293
fair scheduling 291–292
FIFO scheduling 291
speculative execution of 

tasks 292
Jobs page (Spark web UI)

298–299
join graph 257
join method 158
join transformation 83
joining data 82–88, 125–127

classic join 
transformations 83–84

combining two RDDs 86–87

intersection 
transformation 86

joining RDDs
with cogroup 

transformation 85–86
with zip transformation 87
with zipPartitions 

transformation 87–88
removing common values 85
rollup and cube 

functions 126–127
user-defined aggregate 

functions 126
joint probability 223
jps command 313
jq program 47
JSON (JavaScript Object 

Notation) 9, 48–50
JSON data format 138
json method 49, 140–141
jth class 238, 241
JVM (Java virtual machine) 4

K

k models 234
k-fold cross-validation 213–214, 

234–236
k-means clustering 246–253

determining number of 
clusters 251–253

evaluating model 249–251
in Spark 248–249

Kafka
changing streaming applica-

tion to use 167–172
running example 172
using Spark Kafka 

connector 167–168
writing messages 168–170

real-time dashboard case 
study 372, 376, 380–381

setting up 166–167
kafka-console-consumer.sh 

script 172
kafka-console-producer.sh 

script 172
kafka-python package 170
kafka.topic variable 373
KafkaLogsSimulator project 374
KafkaProducerWrapper 

class 169–170, 374, 380
kafkaStream 168
KafkaUtils class 376

KafkaUtils.createDirectStream 
method 168

Kerberized clusters 344
--key-pair option 325
key-value pairs 66–67, 76
keyboard shortcuts 50
keyBy transformation 67
keys

adding values to 71
counting values per key

69–70
getting 69
looking up values for 

single 70
keytab file 344
Kill option 300
KMeans class 248
KMeansModel class 249

L

L1 norm 199
L2 norm 199
labeled points 186, 201
LabeledPoint 201, 228
lag function 120
Lasso regressions 212–213
LassoWithSGD class 213
last (column) function 120
lastActivityDate 110, 119
latent Dirichlet allocation 219
launch action 324
lazily transformations 28
LBFGS optimizer 216–217
lead function 120
leaf node 239–240
leftCategories field 244
leftOuterJoin 79, 83–84
length function 119
LICENSE file 25
licLines 25–26
likelihood function 223
limit function 117
linear algebra 187–193

distributed matrices 192–193
BlockMatrix 193
CoordinateMatrix 192–193
IndexedRowMatrix 192
linear algebra operations 

on 193
RowMatrix 192

in Spark 187–193
distributed matrices

192–193
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linear algebra (continued)
local vector and matrix 

implementations
188–192

local matrices
generating dense 189–190
generating sparse 190–191
linear algebra operations 

on 191–192
local vectors

generating 188–189
linear algebra operations 

on 189
linear regression 193–198, 

202–205, 214–217
evaluating model 

performance 204
fitting and using linear 

regression model 202–205
evaluating model’s 

performance 204
interpreting model 

parameters 204–205
loading and saving 

model 205
predicting target values 203

interpreting model 
parameters 204–205

LBFGS optimizer 216–217
loading and saving model 205
mini-batch stochastic 

gradient descent 214–216
multiple 196–198

finding minimum with gra-
dient descent 197–198

finding minimum with 
normal equation 
method 196–197

optimizing 214–217
LBFGS optimizer 216–217
SGD, minibatch 214–216

overview 193
predicting target values 203
simple linear regression

194–196
LinearRegression object 221
LinearRegressionModel 

class 202
LinearRegressionSGD class 214
LinearRegressionWithSGD 

class 202, 206
Linux cgroups containers 348
List class 29
listrdd 96
load method 141, 205

local argument 151
local cluster mode 289, 305
local machine, running Spark 

on 303–305
local cluster mode 305
local mode 304

local matrices
generating dense 189–190
generating sparse 190–191
linear algebra operations 

on 191–192
sparse, generating 190–191

local mode 289, 304
local vectors

generating 188–189
linear algebra operations 

on 189
Log Analyzer 372–373
log function 119
Log Simulator 366, 368–371, 

373–374, 382
log-likelihood function 224
log-loss 224
log-odds 223
log2 value 245
logging YARN 343
login action 324
login property 51
logistic function 222
logistic regression 221–238

binary logistic regression 
model 222–224

evaluating classification 
models 231–234
precision-recall curve

232–233
receiver operating charac-

teristic curve 233–234
with BinaryClassification-

Evaluator 231–232
k-fold cross-validation

234–236
multiclass logistic 

regression 236–238
preparing data to use in 

Spark 224–229
categorical values 226–227
encoding data 228
merging data 228–229
missing values 225–226
StringIndexer 227–228

training model 229–230
LogisticRegression object

229, 235

LogisticRegressionWithLBFGS 
class 229

LogisticRegressionWithSGD 
class 229

logit 223
LogLine class 376
LogSimulator class 374
LogStatsObserver.java 381
LogStatsReceiver.java 381
lookup() method 70
lrmodel 231
Lstat column 393

M

-m MEM parameter 313
m2eclipse-scala 41
machine learning 181–253

algorithms 184–186, 205–214
avoiding overfitting

212–213
based on type of target 

variable 186
bias-variance tradeoff and 

model 
complexity 209–210

higher-order 
polynomials 207–209

K-fold cross-validation
213–214

plotting residual plots
211–212

step size and number of 
iterations 206–207

supervised and unsuper-
vised algorithms
185–186

algorithms for, classification 
of 184–186
based on type of target 

variable 186
supervised and unsuper-

vised algorithms
185–186

analyzing data
column cosine 

similarities 200
data distribution 199

decision trees 239–244
evaluating model 244
examining 243–244
example 239–241
impurity and information 

gain 241–242
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machine learning (continued)
training decision-tree 

model 242–243
defined 184
k-means clustering 246–253

determining number of 
clusters 251–253

evaluating model 249–251
in Spark 248–249

linear algebra in Spark
187–193
distributed matrices

192–193
local matrices 189–192
local vectors 188–189

linear regression 193–198, 
202–205, 214–217
evaluating model 

performance 204
interpreting model 

parameters 204–205
LBFGS optimizer 216–217
loading and saving 

model 205
mini-batch stochastic gradi-

ent descent 214–216
multiple 196–198
overview 193
predicting target values 203
simple 194–196

logistic regression 221–238
binary logistic regression 

model 222–224
evaluating classification 

models 231–234
k-fold cross-validation

234–236
multiclass logistic 

regression 236–238
preparing data to use in 

Spark 224–229
training model 229–230

preparing data
computing covariance 

matrix 200–201
feature scaling and mean 

normalization 202
splitting data 201
transforming to labeled 

points 201
random forests 244–246
Spark ML library 219–221

estimators 220
evaluators 220
parameters 220–221

pipelines 221
transformers 220

with Spark 187
make-distribution.sh 

command 355
map edges 257, 280
map method 69
map operation 28
map tasks 78
map transformation 28–29, 32, 

39, 79, 87, 96–97
mapEdges method 257
mapPartitions 

transformation 81, 87
MapPartitionsRDD 95–96
mapPartitionsWithIndex 

transformation 81
MappedType 160
mapping data in partitions

81–82
with glom 82
with mapPartitions and 

mapPartitionsWithIndex
81

MapReduce component 5–6
maps 67
mapSideCombine 

parameter 92–93
mapToPair transformation 67
mapTriplets method 258
MapValues transformation

70–71
mapVertices method 257–258
mapWithState method

156, 160–161
married flag 259
mask function 262
master argument 68
master high availability

313–315, 349
master parameter 297, 304–305
MASTER variable 387
--master-instance-type 325
math calculations 119
Matrices class 189–190
matrices, local

dense 189–190
linear algebra operations 

on 191–192
sparse 190–191

maven-shade-plugin 59, 65
max method 125, 199
maxBins parameter 243
maxDepth parameter 243
maxIter parameter 248

maxIterations argument 274
maxIterations parameter 261
maxTimeNewValues 

variable 377
maxTimeOldState variable 377
mean method 199
mean normalization 202
mean squared error. See MSE
meanAbsoluteError 204
meanApprox action 38
mechanisms 295
memory scheduling 294–295

driver memory 294–295
memory managed by cluster 

manager 294
memory managed by 

Spark 294
merge combiners function 94
merge function 76
mergeCombiners function 92
mergeMsg function

258–259, 261
mergeValue function 92
merging values 92–93
Mesos 345–360

architecture of 346–349
fine-grained and coarse-

grained Spark 
modes 348

master high-availability 349
Mesos containers 348–349

configuring 350
Docker 356–360

building Spark Docker 
image 357–358

installing 356–357
preparing Mesos to use 358
running Spark tasks in 

Docker images
358–359

using 357
installing 349–350
resource scheduling 353–354

Mesos attributes and Spark 
constraints 354

resource allocations 353–354
roles 353–354
weights 353–354

starting 350–351
submitting applications 

to 354–356
making Spark available to 

slaves 354–355
running in cluster mode 355

web UI 351–352
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Mesos cluster 289
MesosClusterDispatcher 355
metadata file 205
metadata.broker.list 

parameter 167
min method 118, 125, 199
mini-batch, stochastic gradient 

descent 214–216
miniBatchFraction 

parameter 215
minInfoGain parameter 243
minInstancesPerNode 

parameter 243
missing values, preparing data to 

use in Spark 225–226
missingProds 84
mkString class 32
MLlib

analyzing and preparing 
data 198–202
analyzing column cosine 

similarities 200
analyzing data 

distribution 199
computing covariance 

matrix 200–201
feature scaling and mean 

normalization 202
splitting data 201
transforming to labeled 

points 201
fitting and using linear 

regression model 202–205
evaluating model’s 

performance 204
interpreting model 

parameters 204–205
loading and saving the 

model 205
predicting target values 203

linear algebra in Spark
187–193
distributed matrices

192–193
local vector and matrix 

implementations
188–192

linear regression 193–198
multiple linear 

regression 196–198
overview 193
simple linear 

regression 194–196
optimizing linear 

regression 214–217

LBFGS optimizer 216–217
mini-batch stochastic gradi-

ent descent 214–216
tweaking algorithm 205–214

adding higher-order 
polynomials 207–209

avoiding overfitting 
by using 
regularization 212–213

bias-variance tradeoff and 
model 
complexity 209–210

finding right step size and 
number of 
iterations 206–207

k-fold cross-validation
213–214

plotting residual plots
211–212

See also machine learning
mode function 139
model evaluation 183
model training 183
ModelMetricsRegression 

object 399
ModelSerializationSupport 

class 401
MSE (mean squared error) 396
multiclass logistic 

regression 236–238
MulticlassMetrics class 236–237, 

245, 253
multiple linear regression

196–198
finding minimum with 

gradient descent 197–198
finding minimum with normal 

equation method 197
multiply method 192
MultivariateStatisticalSummary 

object 199
mutable state 27

N

n elements 91, 154
NaN (not a number) 123
nano 24
narrow dependencies 95
native_country column 226
New Maven Project wizard 42
newFilesOnly flag 165
newG graph 277
newGraphExt graph 259–260
NewInputFormat 165

newline characters 165
newly created 151
NO_PREF level 293
node manager 332
NODE_LOCAL level 293
normal distribution 190
normal equation method

196–197
normL1 method 199
normL2 method 199
not a number. See NaN
notebooks 390
NP-complete 239
ntile function 120
null values 123–124, 127, 129
nullable attribute 50
nullable flags 113
NullPointerExceptions 84
--num-executors option 340
numberPartitions 

parameter 373
numbersSquared collection 30
numParts 164
numTrees parameter 245

O

observations 186
occupation column 226
odds 223, 230
off-heap allocation 144
OLAP (online analytical 

processing) 5
OLS (ordinary least 

squares) 213
OLTP (online transaction 

processing) 5
on-heap allocation 144
one-hot encoding 227
one-to-one dependencies 95
oneHotEncodeColumns 

method 228
OneHotEncoder class 228
ones(m, n) method 190
onethird value 245
OneVsRest class 236–237
OneVsRestModel 236
online analytical processing. See 

OLAP
online transaction processing. 

See OLTP
oomLines object 13
open group 271
OpenJDK 15
opt method 113
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optimizer object 214
optimizers 142–144

examining execution 
plan 143–144

taking advantage of partition 
statistics 144

option function 139
Option object 84
options function 139
options parameter 140
Oracle VirtualBox 15
ORC (optimized row 

columnar) 138
orc method 140–141
Order class 152
orderable keys 89
orderBy function 120
ordered trait 89–90
Ordering object 90
ordinary least squares. See OLS
org.apache.spark package

338, 343
org.apache.spark.mllib.linalg 

package 188
org.apache.spark.mllib.regres-

sion package 202
org.apache.spark.mllib.stat.Sta-

tistics object 201
org.apache.spark.sql.types 

package 114
origin argument 274
origNode attribute 275
outerJoinVertices method 260
outliers 211
OutOfMemoryError 11–12
outputCol parameter 229
outputTopic parameter 373
over function 120
overfitting

avoiding by using 
regularization 212–213

avoiding using 
regularization 212–213

overview of 209, 239, 245
ownerUserId 110

P

-p PORT parameter 312
Package Explorer window, 

Eclipse 44
--packages option 388
--packages parameter 170
page rank algorithm. See PR 

algorithm

pageRank method 266
pair RDDs (resilient distributed 

datasets) 67–73
adding values to keys 71
changing values 70–71
counting values per key 69–70
creating 67–68
custom partitioners 75–76
getting keys and values 69
grouping all values of key 73
looking up values for single 

key 70
merging values of key

using foldByKey 
transformation 72–73

using reduceByKey 
transformation 71–72

PairDStreamFunctions 153, 156
PairRDDFunctions class 67, 153
ParallelCollectionRDD 96
parallelization 5
parallelize method 29
Param class 220
ParamMap class 220
ParamMaps class 235
ParamPair class 220
parent RDD 94
Parquet data format 138
Parquet files 9
parquet method 140–141
ParquetRelation 144
parsed logical plan 142, 144
PartialResult object 38
partition 74
partitionBy function 80, 120, 139
Partitioner object 80–81, 83, 90, 

157, 161
partitioning data 74–82

data shuffling 76–80
caused by partitioner 

removal 78–79
optimizing with external 

shuffle service 79
parameters that affect

79–80
when explicitly changing 

partitioners 78
mapping data in 

partitions 81–82
with glom 82
with mapPartitions and map-

PartitionsWithIndex 81
repartitioning RDDs 80–81

with coalesce and 
repartition 80

with partitionBy 80
with repartitionAndSort-

WithinPartition 81
Spark data partitioners 74–76

HashPartitioner 75
pair RDD custom 

partitioners 75–76
RangePartitioner 75

partitions 12, 157, 161, 164, 
166, 174

partitions.size field 74
pasting code 33, 63
paths_finished.tsv file 265
payload.ref_type 48
peer-to-peer protocol 55
penlpoints DataFrame 242, 248
percentRank function 120
performance tuning 172–175

increasing parallelism 174
limiting input rate 174–175
lowering processing time 174

persist method 276
PersonExt object 260
physical plan 142–144
PipelineModel 221
pipelines 187
placeholder syntax 30
points 186
PolynomialExpansion 

transformer 221
pom.xml file 45
postscript area 138
postsDf 123
postsFiltered 143
postTypeId 110
power-iteration clustering

219, 247
PR (page rank) algorithm

265–266
PR (precision-recall) curve

232–233
precision 232
predec attribute 275
predec fields 278
predicates 141–142
predict method 202
prediction column 231
preferred location 293
Pregel implementation 261
preparing data

computing covariance 
matrix 200–201

feature scaling and mean 
normalization 202
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preparing data (continued)
splitting data 201
transforming to labeled 

points 201
preprocessing function 262
preservePartitioning 

parameter 81
principal component 

analysis 386
print(n) method 154
printContingency method 250
printMat method 200
printSchema method

50, 111, 115
priori 186
probability column 231
PROCESS_LOCAL level 293
ProducerConfig object 168
program flow 10–13
project root 43
--properties-file FILE 

parameter 313
property tag 133
pseudo-distributed mode 334
purity 250
pushes 46
PushEvent 52
pyspark 23
Python files 320
Python shell 23

Q

quantitative variables 186
queue 335
--queue parameter 339

R

r2 204
RACK_LOCAL level 293
rand method 190
randn method 190
random forests 244–246
RandomForestClassifier 

class 245
RandomForestRegressor 

class 245
randomSplit method 201, 229
range dependencies 95
rangeBetween function 120
RangePartitioner data 

partitioner 75

rank function 120
ratio column 118, 144
rawPrediction column 231
RDBMS (relational database 

management system) 8
RDDs (resilient distributed 

datasets) 8, 27
basic actions and 

transformations 27–36
distinct and flatMap 

transformations 30–34
map transformation 28–29
obtaining RDD’s elements 

with sample, take, and 
takeSample 
operations 34–36

combining two 86–87
converting DataFrames 

to 124–125
converting to DataFrames

by specifying schema
114–115

using case classes 112–113
creating DataFrames 

from 108–115
converting RDDs to 

DataFrames 112–115
creating SparkSession 

object and importing 
implicit methods 109

example dataset 109
getting schema 

information 115
RDDs of tuples 110–112

dependencies 94–97
saving RDD lineage with 

checkpointing 97
Spark execution and 94–96
Spark stages and tasks

96–97
joining

with cogroup 
transformation 85–86

with zip transformation 87
with zipPartitions 

transformation 87–88
repartitioning 80–81

with coalesce and 
repartition 80

with partitionBy 80
with repartitionAndSort-

WithinPartition 81
read method 58
read-eval-print loop. See REPL

real-time dashboard case 
study 197–382

components of 366–367
overview 364–366
running application 367–373
source code 374–382

building projects 382
KafkaLogsSimulator 

project 374
StreamingLogAnalyzer 

project 374–381
WebStatsDashboard 

project 381–382
starting application 

manually 372–373
creating Kafka topics 372
obtaining archives 372
starting Log Analyzer

372–373
starting Log Simulator 373
starting Web Stats 

Dashboard 373
stopping application 370–371
troubleshooting 371–372

reboot-slaves option 324, 329
recall 232
receiver operating characteristic 

curve. See ROC
reduce function 162, 164
reduce tasks 78
reduceByKey function 79, 92, 

96, 153
reduceByKeyAndWindow 

method 162, 164
reduceByWindow operation 164
reduced RDD 96
reduceFunc function 164
--region option 325
regParam argument 213
regParam parameter 235
regression algorithm 186
regression analysis model 182
regression evaluators 220
RegressionMetrics class 204
regularization, avoiding over-

fitting by using 212–213
relational database management
relations 142
Relationship class 257
remove method 161
repartition method 174
repartition transformation 80
repartitionAndSortWithin-

Partition 80–81, 88, 90
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REPL (read-eval-print loop)
7, 23

replace function 124
REQ key 367
reqsPerSecond 379
residual plots 211–212
resilient distributed datasets. See 

RDDs
resource manager 332
resource scheduling

cluster resource 
scheduling 290

for Mesos 353–354
Mesos attributes and Spark 

constraints 354
resource allocations

353–354
roles 353–354
weights 353–354

for YARN 335–336
capacity scheduler 335
fair scheduler 336
FIFO scheduler 335

memory scheduling 294–295
driver memory 294–295
memory managed by cluster 

manager 294
memory managed by 

Spark 294
--resources parameter 354
respawn option 314
Ridge regressions 212–213
RidgeRegressionWithSGD 

class 213
rightCategories field 244
rightOuterJoin 

transformation 83–84
RM_hostname 338
RM_port 338
RMSE (root mean squared 

error) 206
ROC (receiver operating charac-

teristic) curve 233–234
rollup functions 126–127
root mean squared error. See 

RMSE
RowMatrix object 192, 199–201
rowsBetween function 120
rsync program 326
run method 264–265, 274–275
running standalone 

clusters 322–329
creating cluster 324–326

changing Hadoop 
version 325

changing instance types 325
customizing security 

groups 325–326
launching cluster 326
specifying credentials 325

destroying cluster 329
prerequisites for 323–324

creating key pairs 323–324
obtaining AWS secret 

keys 323
using cluster 327–329

cluster configuration 328
connecting to master 328
logging in 327–328
rebooting 328–329
starting 328–329
stopping 328–329

-runSeconds=NUM 
argument 370

runtime architecture 286–289
cluster types 288–289

Mesos cluster 289
Spark local modes 289
Spark standalone 

cluster 288
YARN cluster 289

components 286–288
client-process 

component 287
driver component 287
executors 288
Spark context 288

S

sample action 35
sample operation 34–36
Sandbox link 352
SASL (Simple Authentication 

and Security Layer) 346
save method 140, 205
saveAsTable method 139
saveAsTextFiles method 153
sc variable 25, 150
sc.getConf.getAll method 297
Scala IDE plug-in 41
Scala Maven integration 

plug-in 41–42
scala.util.Random 35
scala> prompt 23, 33
scaladocs 58
scalar functions, built-in 118–119
SCCs (strongly connected compo-

nents) algorithm 268–269
scheduler pools 292

SchemaRDD 48
schematool 133
scikit-learn library 219
scope property 59
score method 400
search algorithm 269–281

calculating F, G, and H 
values 277–278

checkpointing working 
graph 277

collecting final path 
vertices 278

implementing 272–278
initializing 274–275
main loop 275–276
marking current vertex as 

visited 276–277
overview 270–272
selecting next current 

vertex 278
testing implementation

279–281
Secure Sockets Layer. See SSL
securities 148
seed parameter 35, 249
SELECT * FROM POSTS 

command 141
select function 116
selling securities 148
sendMsg function 258–259, 261
sendToDst 259, 277
sendToSrc 259, 277
sensitivity 232
sepal length 185
sepal width 185
Seq interface 29, 157
serializer parameter 93
SESS key 367
sessionCount 379
sessionTimeout parameter 373
SET command 128
setAppName method 298
setEstimatorParamMaps 

method 235
setMetricName 232
setThreshold method 233
SGD (stochastic gradient 

descent) 214–216
Shannon entropy 241
shell scripts, starting standalone 

cluster with 309–312
start-all.sh 312
start-master.sh 309–311
start-slaves.sh 311
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shortcut methods, saving data 
with 140

shortest-paths algorithm
264–265

ShortestPaths object 264
shouldVisit* function 277
shouldVisitDestination 

argument 274
shouldVisitSource 

argument 274
show-dashboard-log.sh 

script 371
shuffle dependencies 95
shuffle parameter 80
shuffle-map tasks 97
ShuffledRDD 96
ShuffleRDD 95
shuffling data 76–80

caused by partitioner 
removal 78–79

optimizing with external 
shuffle service 79

parameters that affect 79–80
when explicitly changing 

partitioners 78
-silent argument 370
Simple Authentication and Secu-

rity Layer. See SASL
simple linear regression

194–196
size method 189
Skip Tests check box 61
slave processes 307
slaves file 334
slideDur 163
slope value 194
socket input streams 165
socketStream method 165
socketTextStream method 165
soft clustering 247
sort-based shuffling 79
sortable RDDs 89
sortBy transformation 88
sortByKey transformation

79, 88–90
sorted RDDs 75
sorting data 88–91

fetching sorted elements 91
making classes orderable

89–90
performing secondary 

sorts 90–91
Spark

anti-patterns 8
as unifying platform 8

benefits of 6–8
components 8–10

Spark Core 8–9
Spark GraphX 10
Spark MLlib 10
Spark SQL 9–10
Spark Streaming 10

configuration 295–297
command-line 

parameters 295–296
master parameter 297
setting programmatically

296
Spark configuration 

file 295
system environment 

variables 296
viewing all configured 

parameters 297
ease of use 6–8
ecosystem 13–14
generating new projects in 

Eclipse 41–46
job scheduling 290–292

data-locality 
considerations 293

fair scheduling 291–292
FIFO scheduling 291
speculative execution of 

tasks 292
linear algebra in 187–193

distributed matrices
192–193

local matrices 189–192
local vector and matrix 

implementations
188–192

local vectors 188–189
machine learning with 187
problems solved by 5
program flow 10–13
resource scheduling

cluster resource 
scheduling 290

memory scheduling
294–295

running on local 
machine 303–305
local cluster mode 305
local mode 304

runtime architecture 286–289
cluster types 288–289
components 286–288

spark-in-action virtual 
machine 14–17
downloading and 

starting 15–16
stopping 16–17

web UI 297–303
Environment page 302
Executors page 303
Jobs page 298–299
Stages page 300–301
Storage page 302

Spark API 97–102
accumulators 97–99

accumulating values in 
accumulable 
collections 99

writing custom 98
broadcast variables 99–102

configuration parameters 
that affect 100–102

destroying and 
unpersisting 100

data partitioning 74–82
data shuffling 76–80
mapping data in 

partitions 81–82
repartitioning RDDs 80–81
Spark data partitioners

74–76
grouping data 91–94

with combineByKey 
transformation 92–94

with groupByKey and 
groupBy 
transformations 91–92

joining data 82–88
classic join 

transformations 83–84
combining two RDDs 86–87
intersection 

transformation 86
joining RDDs 85–88
removing common 

values 85
pair RDDs 67–73

adding values to keys 71
changing values 70–71
counting values per key

69–70
creating 67–68
getting keys and values 69
grouping all values 73
looking up values for single 

key 70
merging values 71–73
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Spark API (continued)
RDD dependencies 94–97

saving RDD lineage with 
checkpointing 97

Spark execution and 94–96
Spark stages and tasks

96–97
sorting data 88–91

fetching sorted 
elements 91

making classes 
orderable 89–90

performing secondary 
sorts 90–91

Spark context, creation of 288
Spark Core 8–9
Spark GraphX 10
Spark in Action GitHub 

repository 20
Spark in Action option 42
Spark ML library 219–221

estimators 220
evaluators 220
parameters 220–221
pipelines 221
transformers 220

Spark shell 23–25
Spark SQL

Catalyst optimizer 142–144
examining execution 

plan 143–144
taking advantage of parti-

tion statistics 144
DataFrames 106–129, 

137–142
adding and renaming 

columns 117–118
built-in data sources

137–138
converting to RDDs

124–125
creating from RDDs

108–115
filtering data 117
grouping and joining 

data 125–127
loading data 141–142
missing values 123–124
performing joins 128–129
saving data 139–141
selecting data 116–117
sorting data 118
SQL functions 118–123

performance improvements 
with Tungsten 144–145

SQL commands 130–137
executing SQL 

queries 133–134
Hive metastore 133
table catalog 131–133
Thrift server 134–137

Spark standalone cluster
288–329

components of 307–308
History Server and event 

logging 321–322
running applications in

317–321
application automatic 

restart 320–321
killing applications 320
location of driver 317–318
specifying extra classpath 

entries and files
319–320

specifying number of 
executors 318–319

running on Amazon 
EC2 322–329
creating cluster 324–326
destroying cluster 329
prerequisites for 323–324
using cluster 327–329

starting 308–315
manually 312
master high availability and 

recovery 313–315
viewing Spark 

processes 313
with shell scripts 309–312

web UI 315–316
Spark Streaming 10, 148–179

creating streaming 
context 150

discretized streams
creating 150–152
using 152–153

example application 148–149
external data sources

165–172
changing streaming applica-

tion to use Kafka
167–172

setting up Kafka 166–167
fault-tolerance 175–176

recovering from driver 
failures 175–176

recovering from executor 
failures 175

file input streams 164–165

performance tuning 172–175
increasing parallelism 174
limiting input rate 174–175
lowering processing 

time 174
saving computation state over 

time 155–161
combining two 

DStreams 158
keeping track of state

156–157
mapWithState 

method 160–161
specifying checkpointing 

directory 158–159
starting streaming context 

and examining new 
output 159–160

saving results to file 153–154
socket input streams 165
starting and stopping stream-

ing computation 154–155
examining generated 

output 155
sending data to Spark 

Streaming 154–155
stopping streaming 

context 155
structured streaming 176–178

creating DataFrame
176–177

data streaming 177–178
executions 178
future of 178

window operations for time-
limited calculations
162–164

spark symlink 22
Spark Table catalog, working 

with 132–133
SPARK_CLASSPATH 

variable 319, 339
SPARK_DAEMON_JAVA_OPTS 

variable 322
SPARK_DAEMON_MEMORY 

variable 310, 322
SPARK_DRIVER_MEMORY 

variable 296, 340
SPARK_EXECUTOR_MEMORY 

variable 340
SPARK_HISTORY_OPTS 

variable 322
SPARK_HOME variable 22, 387
SPARK_MASTER_IP 

variable 310–311, 317
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SPARK_MASTER_OPTS 
variable 310

SPARK_MASTER_PORT 
variable 310–311

SPARK_MASTER_WEBUI_PORT 
variable 310

SPARK_PUBLIC_DNS 
variable 322

SPARK_WORKER_CORES 
variable 311, 318, 328

SPARK_WORKER_DIR 
variable 311

SPARK_WORKER_INSTANCES 
variable 328

SPARK_WORKER_MEMORY 
variable 311

SPARK_WORKER_OPTS 
variable 311

SPARK_WORKER_PORT 
variable 311

SPARK_WORKER_WEBUI
_PORT variable 311

SPARK_YARN_QUEUE 
variable 339

spark-ec2 script 324
spark-env.sh file 296
spark-in-action 68, 368–370
spark-shell command

68, 134–135, 295
spark-shell script 287
spark-sql command 134
spark-submit command 134–135, 

295, 298, 313, 317, 320
spark-submit script 59, 62–65, 

287, 304
spark.broadcast.blockSize 100
spark.broadcast.compress 100
spark.cores.max parameter

310, 318, 355, 388
spark.dead.worker.persistence 

parameter 310
spark.default.parallelism 

parameter 75–76
spark.default.partitions 83
spark.deploy.defaultCores 

parameter 310, 318
spark.deploy.recoveryDirectory 

parameter 314
spark.deploy.recoveryMode 

parameter 314–315
spark.deploy.retainedApplica-

tions parameter 310
spark.deploy.retainedDrivers 

parameter 310

spark.deploy.spreadOut 
parameter 310

spark.deploy.zookeeper.dir 
parameter 314

spark.driver.extraClassPath 
parameter 319

spark.driver.extraClassPath 
variable 339

spark.driver.memory 
parameter 294, 340

spark.driver.userClassPathFirst 
parameter 320

spark.dynamicAllocation
.enabled parameter 344

spark.dynamicAllocation.initial-
Executors parameter 345

spark.dynamicAllocation.max-
Executors parameter 345

spark.dynamicAllocation.min-
Executors parameter 345

spark.eventLog.dir 321
spark.executor.cores 

parameter 341, 388
spark.executor.extraClassPath 

parameter 319
spark.executor.extraJava-

Options option 343
spark.executor.instances 

parameter 341, 388–389
spark.executor.memory 

parameter 294, 341
spark.executor.memoryOver-

head parameter 340
spark.executor.uri 

parameter 355
spark.executor.userClassPath-

First parameter 320
spark.ext.h2o.cluster.size 

parameter 389
spark.history.ui.port 

parameter 321
spark.io.compression.codec 100
spark.locality.wait 

parameter 293
spark.locality.wait.node 293
spark.locality.wait.process 293
spark.locality.wait.rack 293
spark.master.rest.enabled 

parameter 310
spark.master.rest.port 

parameter 310
spark.mesos.coarse 

parameter 348
spark.mesos.constraints 

parameter 354

spark.mesos.executor.docker 
.image parameter 358

spark.mesos.executor.docker 
.portmaps parameter 359

spark.mesos.executor.home 
parameter 354

spark.mesos.executor.memory-
Overhead parameter 356

spark.mesos.extra.cores 
parameter 356

spark.mesos.mesosExecutor 
.cores parameter 355

spark.python.worker.reuse 100
spark.scheduler.allocation.file 

parameter 292
spark.scheduler.mode 

parameter 291
spark.shuffle.consolidateFiles 

parameter 79
spark.shuffle.manager 

parameter 79, 145
spark.shuffle.memoryFraction 

parameter 79, 294, 340
spark.shuffle.service.enabled 

parameter 345
spark.shuffle.spill parameter 79
spark.shuffle.spill.compress 

parameter 79
spark.speculation 

parameter 292
spark.speculation.interval 292
spark.speculation.multiplier 292
spark.speculation.quantile 292
spark.sql.shuffle.partitions 128
spark.sql.sources.default 139
spark.sql.tungsten.enabled 144
spark.storage.memoryFraction 

parameter 294, 340
spark.streaming.backpressure 

.enabled parameter 175
spark.streaming.kafka.maxRate-

PerPartition 174
spark.streaming.receiver.max-

Rate 174
spark.ui.enabled parameter

298
spark.ui.killEnabled 

parameter 300
spark.unsafe.offHeap 

parameter 144
spark.worker.cleanup.app-

DataTtl parameter 312
spark.worker.cleanup.enabled 

parameter 312
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spark.worker.cleanup.interval 
parameter 312

spark.worker.timeout 
parameter 310, 312

spark.yarn.archive 
parameter 339

spark.yarn.driver.memoryOver-
head parameter 340

spark.yarn.jars configuration 
parameter 339

spark.yarn.queue 
parameter 339

SparkConf object 60
SparkContext class 75, 150
SparkContext.accumulable-

Collection() method 99
SparkContext.broadcast 

method 100
SparkContext.setCheckpoint-

Dir() method 97
Sparkling Water API 386–389

classification 406
regression 398–401

building model 398–399
evaluating model 399–400
loading and saving 

models 401
splitting data 398
transferring results back to 

Spark 400–401
starting

from application 389
with Spark shell 388–389
with Sparkling Water 

shell 387–388
sparkling-water-examples 

package 388
SparkPi example 358
SparkSession class 49
SparkSession.udf.register 

function 122
sparse local matrices 190–191
sparse method 188, 190
sparse vectors 188
SparseMatrix object 191
SparseVector class 188
speculative execution 292
speye method 190
Split button 393
split field 243
splitAndSend.sh script 154, 160
splitting data 201
sprand method 190
sprandn method 190

SQL commands 130–137
executing SQL queries

133–134
Hive metastore 133
loading data from data 

sources registered 
with 141–142

table catalog 131–133
Thrift server 134–137

connecting from third-party 
JDBC clients 135–137

connecting to with 
Beeline 135

starting 135
SQL functions 118–123

built-in scalar and aggregate 
functions 118–119

user-defined functions
122–123

window functions 119–122
sqrt value 245
srcAttr 258
srcId 256
ssh command 19
SSL (Secure Sockets Layer) 346
Stack Overflow 109
Stage Details page 293, 300–301
Stages page (Spark web 

UI) 300–301
standalone (local) mode 334
standalone clusters 307–329

components of 307–308
History Server and event 

logging 321–322
running applications in

317–321
application automatic 

restart 320–321
killing applications 320
location of driver 317–318
specifying extra classpath 

entries and files
319–320

specifying number of 
executors 318–319

running on Amazon 
EC2 322–329
creating cluster 324–326
destroying cluster 329
prerequisites for 323–324
using cluster 327–329

starting 308–315
manually 312
master high availability and 

recovery 313–315

viewing Spark 
processes 313

with shell scripts 309–312
web UI 315–316

standard deviation 199
standardized dataset 248
StandardScaler object 202
start action 324
start-all.sh file 335
start-dashboard.sh 368
start-hdfs.sh file 335
start-history-server.sh 321
start-kafka.sh 368
start-master.sh script 309–311
start-simulator.sh 368
start-slaves.sh script 311
start-thriftserver.sh 

command 135
start-yarn.sh file 335
starting

Spark shell 23–25
virtual machine 15–16

State object 160
stateSnapshots method 161
StateSpec class 160
statistics, with double RDD 

functions 37
stats().stdev 37
stats().variance 37
step size parameter 198, 206
stochastic gradient descent. See 

SGD
stop method 324, 406–407
stop-all.sh file 335
stop-dfs.sh script 21
stop-hdfs.sh file 335
stop-history-server.sh 321
stop-yarn.sh file 335
stopping, virtual machine 16–17
Storage page (Spark web 

UI) 302
StorageLevel argument 165, 276
stragglers 292
streaming 148–179

creating streaming 
context 150

discretized streams
creating 150–152
using 152–153

example application 148–149
external data sources 165–172

changing streaming applica-
tion to use Kafka
167–172

setting up Kafka 166–167
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streaming (continued)
fault-tolerance 175–176

recovering from driver 
failures 175–176

recovering from executor 
failures 175

file input streams 164–165
performance tuning 172–175

increasing parallelism 174
limiting input rate 174–175
lowering processing 

time 174
saving computation state over 

time 155–161
combining two 

DStreams 158
keeping track of state

156–157
mapWithState 

method 160–161
specifying checkpointing 

directory 158–159
starting streaming context 

and examining new 
output 159–160

saving results to file 153–154
socket input streams 165
starting and stopping stream-

ing computation 154–155
examining generated 

output 155
sending data to Spark 

Streaming 154–155
stopping streaming 

context 155
structured streaming 176–178

creating DataFrame
176–177

data streaming 177–178
executions 178
future of 178

window operations for time-
limited calculations
162–164

StreamingContext.getOrCreate() 
method 175

StreamingLogAnalyzer 
project 374–381

combining all statistics 379–380
counting active sessions

376–377
counting ad clicks per 

second 378
counting errors per 

second 378

counting requests per 
second 377–378

initializing Kafka input 
stream 376

initializing Spark context 375
parsing access-log lines 376
sending results to Kafka

380–381
streamOrders.sh script 172
String argument 50
string operations 119
String prefix 153
String suffix 153
StringImprovements class 112
StringIndexer class

227–228, 242
StringIndexerModel 227
stringToPost function 114
stringToRow function 114, 124
stripes 138
strongly connected components
stronglyConnectedComponents 

method 268
structured streaming 176–178

creating DataFrame 176–177
data streaming 177
executions 178
future of 178

subgraph method 262
submitting applications 58–65

adapting applications 60–62
building uberjar 59–60
spark-submit shell script

62–65
subsets 242
substring function 118
subtract transformation 79, 85
subtractByKey 

transformation 85
SUCCESS file 64
sum 38–39
sumApprox action 38
sun.misc.Unsafe class 144
supersteps 261
--supervise option 175, 320
supervised algorithms 185–186
supervised learners 184
SVMs (support vector 

machines) 10, 219
symbolic links 20–21
system environment 

variables 296

T

table catalog 131–133
table function 141
tags column 122
tail command 62
take operation 28, 34–36
takeOrdered action 91
takeSample operation 34–36
target variable 218, 221, 225, 

230, 239, 241
task slots 286, 288–289, 291–293
test set 186
text categorization 219
textFile method 75, 155
textFileStream method 151, 164
TF-IDF (term frequency-inverse 

document frequency) 247
-thinkMax=NUM argument 370
-thinkMin=NUM argument 370
Thread Dump link 303
Thrift server 134–137

connecting from third-party 
JDBC clients 135–137

connecting to with 
Beeline 135

starting 135
tilde 49
Time argument 160
Timeline link 298
TN (true negatives) 232
toArray method 189
toBreeze function 189
toBreezeD function 192, 200
toBreezeM function 192
toBreezeV function 189
toDebugString 96
toDense method 191
toDF method 111–112
toMax column 121
top action 91
-topic=NAME argument 370
toRowMatrix method 192
toSparse method 191
toString method 30
total variable 93
totalsAndProds 88, 94
totalsByProd 85
totalsWithMissingProds 84
TP (true positives) 232
TPR (true positive rate) 232
tracking UI 342
tracking URL 342
train method 202
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trainHPScaled 213, 215
training set 186, 201
trainModel method 399
tranData 68, 82
tranFile 68
transByCust 68, 93
transform function 73, 76
transforming graphs 257–263

aggregating messages
258–259

joining graph data 260–261
mapping edges and 

vertices 257–258
selecting graph subsets

262–263
transforming values 73
translation tag 122
TraversableOnce 31–32, 71
trim function 119
tripletFields argument 259
TripletFields class 259
true negatives. See TN
true positive rate. See TPR
true positives. See TP
tungsten-sort parameter 145
tuples 110–112, 193

U

uberjar 59
UCI Boston housing dataset 194
udf function 122
UDFs (user-defined 

functions) 54
uncached data 276
underfitting 209
unifying platform 8
union array 31
union method 158
union transformation 95
unique strings 35
unpersist method 276
unpersistVertices method 276
UnsafeRow class 144
unsupervised algorithms

185–186
unsupervised learners 184
update method 161
updated method 124
updater property 213
updateStateByKey method

156–157, 159–160, 375, 377
--use-existing-master option 326
user-defined functions. See UDFs

-usersToRun=NUM 
argument 370

Utils.random.nextLong 35

V

Vagrant 15
vagrant up command 16
Vagrantfile 19
validate method 193
validation set 201
validHPScaled 213, 215
validPredicts 203
value method 98
values

adding to keys 71
changing 70–71
counting per key 69–70
getting 69
grouping 73
looking up 70
merging 71–73
missing 123–124
removing common 85

values transformation 69
variables 186
Variables button 61
variance method 199
VectorAssembler class 228–229
Vectors class 188–189
vectors, local

generating 188–189
linear algebra operations 

on 189
vertex program (vprog) 261
VertexRDDs 256
vertices 255
View button 396
viewCount 110, 124
visited flag 275
visited property 277
VM (virtual machine) 14–17, 

19–23
cloning Spark in Action 

GitHub repository 20
downloading and starting

15–16
examining Spark installation 

of 22–23
finding Java 20
stopping 16–17
using Hadoop installation 

of 21
votes columns 129
VPC (Virtual Private Cloud) 326

W

WARN message 50
water.Job object 399
Web Log Analyzer 366
Web Stats Dashboard 364–365, 

367–369, 371–372, 382
web UI 297–303

Environment page 302
Executors page 303
for Mesos 351–352
for standalone cluster 315–316
for YARN 341–342
Jobs page 298–299
Stages page 300–301
Storage page 302

webstats.js 381
WebStatsDashboard 

project 381–382
WebStatsEndpoint.java 381
--webui-port PORT 

parameter 312
weights 195, 353–354
where clause 141
which command 20
wide dependencies 95
wikiSCC graph 268
Wikispeedia dataset 269
window functions 119–122
window operations, for time-

limited calculations 162–164
WindowSpec object 120
winDur 163
with replacement design 34
withColumn method 119
withColumnRenamed 

function 117
without replacement design 34
withReplacement parameter 34
workclass column 226
working graph 275
WorkNode class 275
WrappedArray class 70

X

XFS filesystem 79
-Xmx Java option 295

Y

YARN (yet another resource 
negotiator) 8, 332–345

architecture of 332–334
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YARN (continued)
configuring 334
configuring resources for 

Spark jobs 339–341
configuring executor 

resources 
programmatically 341

Spark memory 
management 340–341

specifying CPU 
resources 340

configuring Spark on 338–339
modifying classpath and 

sharing files 339
sharing Spark assembly 

JAR 339
specifying YARN queue 339

dynamic resource 
allocation 344–345

installing 334
logs on 343

configuring logging 
level 343

log aggregation 343
resource scheduling 335–336

capacity scheduler 335
fair scheduler 336
FIFO scheduler 335

running applications on
stopping 338
submitting 336–338

security considerations 344
starting and stopping

334–335
web UI 341–342

YARN_CONF_DIR variable 338
yarn-env.sh file 334
yarn-site.xml file 334
yarn.log-aggregation-enable 

parameter 343
yarn.nodeamanager.log-dirs 

parameter 343
yarn.nodemanager.remote-app-

log-dir parameter 343

yarn.nodemanager.resource.mem-
ory-mb parameter 341

yarn.resourcemanager.scheduler
.class 335

yarn.scheduler.maximum-alloca-
tion-mb parameter 341

yarn.scheduler.minimum-alloca-
tion-mb parameter 341

year function 119

Z

zeros(m, n) methods 190
zeroValue argument 72–73
zip function 87
zip transformation 83, 87
zipAll function 88
zipPartitions 

transformation 87–88
zipWithIndex method 205, 263
ZooKeeper recovery 314–315
zookeeper.address variable 373

 



MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Spark GraphX in Action
by Michael S. Malak and Robin East

ISBN: 9781617292521
280 pages
$49.99
June 2016

Big Data
Principles and best practices of scalable realtime
data systems
by Nathan Marz and James Warren

ISBN: 9781617290343
328 pages
$49.99
April 2015

Streaming Data
Understanding the real-time pipeline
by Andrew G. Psaltis

ISBN: 9781617292286
300 pages
$49.99
December 2016

 

https://www.manning.com/books/spark-graphx-in-action
https://www.manning.com/books/big-data
https://www.manning.com/books/streaming-data
www.manning.com
https://www.manning.com/books/spark-graphx-in-action
https://www.manning.com/books/big-data
https://www.manning.com/books/streaming-data


MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Functional Programming in Scala
by Paul Chiusano and Rúnar Bjarnason

ISBN: 9781617290657
320 pages
$44.99
September 2014

Akka in Action
by Raymond Roestenburg, Rob Bakker,

and Rob Williams

ISBN: 9781617291012
448 pages
$49.99
September 2016

Reactive Design Patterns
by Roland Kuhn

with Brian Hanafee and Jamie Allen

ISBN: 9781617291807
325 pages
$49.99
December 2016

 

https://www.manning.com/books/functional-programming-in-scala
https://www.manning.com/books/akka-in-action
https://www.manning.com/books/reactive-design-patterns
www.manning.com
https://www.manning.com/books/functional-programming-in-scala
https://www.manning.com/books/reactive-design-patterns
https://www.manning.com/books/akka-in-action


For ordering information go to www.manning.com

Real-World Machine Learning
by Henrik Brink, Joseph W. Richards,

and Mark Fetherolf

ISBN: 9781617291920
264 pages
$49.99
September 2016

Elixir in Action
by Saša Jurić
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