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Preface

Complexity science is an interdisciplinary field — at the intersection of math-

ematics, computer science and natural science — that focuses on complex

systems, which are systems with many interacting components.

One of the core tools of complexity science is discrete models, including net-

works and graphs, cellular automatons, and agent-based simulations. These

tools are useful in the natural and social sciences, and sometimes in arts and

humanities.

For an overview of complexity science, see https://thinkcomplex.com/complex.

Why should you learn about complexity science? Here are a few reasons:

� Complexity science is useful, especially for explaining why natural and

social systems behave the way they do. Since Newton, math-based

physics has focused on systems with small numbers of components and

simple interactions. These models are effective for some applications,

like celestial mechanics, and less useful for others, like economics. Com-

plexity science provides a diverse and adaptable modeling toolkit.

� Many of the central results of complexity science are surprising; a recur-

ring theme of this book is that simple models can produce complicated

behavior, with the corollary that we can sometimes explain complicated

behavior in the real world using simple models.

� As I explain in Chapter 1, complexity science is at the center of a slow

shift in the practice of science and a change in what we consider science

to be.

https://thinkcomplex.com/complex
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� Studying complexity science provides an opportunity to learn about di-

verse physical and social systems, to develop and apply programming

skills, and to think about fundamental questions in the philosophy of

science.

By reading this book and working on the exercises you will have a chance to

explore topics and ideas you might not encounter otherwise, practice program-

ming in Python, and learn more about data structures and algorithms.

Features of this book include:

Technical details Most books about complexity science are written for a

popular audience. They leave out technical details, which is frustrating

for people who can handle them. This book presents the code, the math,

and the explanations you need to understand how the models work.

Further reading Throughout the book, I include pointers to further reading,

including original papers (most of which are available electronically) and

related articles from Wikipedia and other sources.

Jupyter notebooks For each chapter I provide a Jupyter notebook that in-

cludes the code from the chapter, additional examples, and animations

that let you see the models in action.

Exercises and solutions At the end of each chapter I suggest exercises you

might want to work on, with solutions.

For most of the links in this book I use URL redirection. This mechanism has

the drawback of hiding the link destination, but it makes the URLs shorter

and less obtrusive. Also, and more importantly, it allows me to update the

links without updating the book. If you find a broken link, please let me know

and I will change the redirection.

0.1 Who is this book for?

The examples and supporting code for this book are in Python. You should

know core Python and be familiar with its object-oriented features, specifically

using and defining classes.
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If you are not already familiar with Python, you might want to start with

Think Python, which is appropriate for people who have never programmed

before. If you have programming experience in another language, there are

many good Python books to choose from, as well as online resources.

I use NumPy, SciPy, and NetworkX throughout the book. If you are familiar

with these libraries already, that’s great, but I will also explain them when

they appear.

I assume that the reader knows some mathematics: I use logarithms in several

places, and vectors in one example. But that’s about it.

0.2 Changes from the first edition

For the second edition, I added two chapters, one on evolution, the other on

the evolution of cooperation.

In the first edition, each chapter presented background on a topic and sug-

gested experiments the reader could run. For the second edition, I have done

those experiments. Each chapter presents the implementation and results as

a worked example, then suggests additional experiments for the reader.

For the second edition, I replaced some of my own code with standard libraries

like NumPy and NetworkX. The result is more concise and more efficient, and

it gives readers a chance to learn these libraries.

Also, the Jupyter notebooks are new. For every chapter there are two note-

books: one contains the code from the chapter, explanatory text, and exercises;

the other contains solutions to the exercises.

Finally, all supporting software has been updated to Python 3 (but most of it

runs unmodified in Python 2).

0.3 Using the code

All code used in this book is available from a Git repository on GitHub: https:

//thinkcomplex.com/repo. If you are not familiar with Git, it is a version

https://thinkcomplex.com/repo
https://thinkcomplex.com/repo
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control system that allows you to keep track of the files that make up a project.

A collection of files under Git’s control is called a “repository”. GitHub is a

hosting service that provides storage for Git repositories and a convenient web

interface.

The GitHub homepage for my repository provides several ways to work with

the code:

� You can create a copy of my repository by pressing the Fork button in

the upper right. If you don’t already have a GitHub account, you’ll need

to create one. After forking, you’ll have your own repository on GitHub

that you can use to keep track of code you write while working on this

book. Then you can clone the repo, which means that you copy the files

to your computer.

� Or you can clone my repository without forking; that is, you can make

a copy of my repo on your computer. You don’t need a GitHub account

to do this, but you won’t be able to write your changes back to GitHub.

� If you don’t want to use Git at all, you can download the files in a Zip

file using the green button that says “Clone or download”.

I developed this book using Anaconda from Continuum Analytics, which is a

free Python distribution that includes all the packages you’ll need to run the

code (and lots more). I found Anaconda easy to install. By default it does

a user-level installation, not system-level, so you don’t need administrative

privileges. And it supports both Python 2 and Python 3. You can download

Anaconda from https://continuum.io/downloads.

The repository includes both Python scripts and Jupyter notebooks. If you

have not used Jupyter before, you can read about it at https://jupyter.org.

There are three ways you can work with the Jupyter notebooks:

Run Jupyter on your computer If you installed Anaconda, you can in-

stall Jupyter by running the following command in a terminal or Com-

mand Window:

$ conda install jupyter

https://continuum.io/downloads
https://jupyter.org


0.3 Using the code xv

Before you launch Jupyter, you should cd into the directory that contains

the code:

$ cd ThinkComplexity2/code

And then start the Jupyter server:

$ jupyter notebook

When you start the server, it should launch your default web browser or

create a new tab in an open browser window. Then you can open and

run the notebooks.

Run Jupyter on Binder Binder is a service that runs Jupyter in a virtual

machine. If you follow this link, https://thinkcomplex.com/binder,

you should get a Jupyter home page with the notebooks for this book

and the supporting data and scripts.

You can run the scripts and modify them to run your own code, but the

virtual machine you run them in is temporary. If you leave it idle, the

virtual machine disappears along with any changes you made.

View notebooks on GitHub GitHub provides a view of the notebooks you

can can use to read the notebooks and see the results I generated, but

you won’t be able to modify or run the code.

Good luck, and have fun!

Allen B. Downey

Professor of Computer Science

Olin College of Engineering

Needham, MA

Contributor List

If you have a suggestion or correction, please send email to downey@allendowney.com.

If I make a change based on your feedback, I will add you to the contributor

list (unless you ask to be omitted).

Let me know what version of the book you are working with, and what format.

If you include at least part of the sentence the error appears in, that makes it

easy for me to search. Page and section numbers are fine, too, but not quite

as easy to work with. Thanks!

https://thinkcomplex.com/binder
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Chapter 1

Complexity Science

Complexity science is relatively new; it became recognizable as a field, and

was given a name, in the 1980s. But its newness is not because it applies the

tools of science to a new subject, but because it uses different tools, allows

different kinds of work, and ultimately changes what we mean by “science”.

To demonstrate the difference, I’ll start with an example of classical science:

suppose someone asks you why planetary orbits are elliptical. You might

invoke Newton’s law of universal gravitation and use it to write a differential

equation that describes planetary motion. Then you can solve the differential

equation and show that the solution is an ellipse. QED!

Most people find this kind of explanation satisfying. It includes a mathematical

derivation — so it has some of the rigor of a proof — and it explains a specific

observation, elliptical orbits, by appealing to a general principle, gravitation.

Let me contrast that with a different kind of explanation. Suppose you move

to a city like Detroit that is racially segregated, and you want to know why

it’s like that. If you do some research, you might find a paper by Thomas

Schelling called “Dynamic Models of Segregation”, which proposes a simple

model of racial segregation:

Here is my description of the model, from Chapter 9:

The Schelling model of the city is an array of cells where each

cell represents a house. The houses are occupied by two kinds of
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“agents”, labeled red and blue, in roughly equal numbers. About

10% of the houses are empty.

At any point in time, an agent might be happy or unhappy, de-

pending on the other agents in the neighborhood. In one version

of the model, agents are happy if they have at least two neighbors

like themselves, and unhappy if they have one or zero.

The simulation proceeds by choosing an agent at random and

checking to see whether it is happy. If so, nothing happens; if

not, the agent chooses one of the unoccupied cells at random and

moves.

If you start with a simulated city that is entirely unsegregated and run the

model for a short time, clusters of similar agents appear. As time passes, the

clusters grow and coalesce until there are a small number of large clusters and

most agents live in homogeneous neighborhoods.

The degree of segregation in the model is surprising, and it suggests an ex-

planation of segregation in real cities. Maybe Detroit is segregated because

people prefer not to be greatly outnumbered and will move if the composition

of their neighborhoods makes them unhappy.

Is this explanation satisfying in the same way as the explanation of planetary

motion? Many people would say not, but why?

Most obviously, the Schelling model is highly abstract, which is to say not

realistic. So you might be tempted to say that people are more complicated

than planets. But that can’t be right. After all, some planets have people on

them, so they have to be more complicated than people.

Both systems are complicated, and both models are based on simplifications.

For example, in the model of planetary motion we include forces between the

planet and its sun, and ignore interactions between planets. In Schelling’s

model, we include individual decisions based on local information, and ignore

every other aspect of human behavior.

But there are differences of degree. For planetary motion, we can defend

the model by showing that the forces we ignore are smaller than the ones

we include. And we can extend the model to include other interactions and
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show that the effect is small. For Schelling’s model it is harder to justify the

simplifications.

Another difference is that Schelling’s model doesn’t appeal to any physical

laws, and it uses only simple computation, not mathematical derivation. Mod-

els like Schelling’s don’t look like classical science, and many people find them

less compelling, at least at first. But as I will try to demonstrate, these models

do useful work, including prediction, explanation, and design. One of the goals

of this book is to explain how.

1.1 The changing criteria of science

Complexity science is not just a different set of models; it is also a gradual

shift in the criteria models are judged by, and in the kinds of models that are

considered acceptable.

For example, classical models tend to be law-based, expressed in the form of

equations, and solved by mathematical derivation. Models that fall under the

umbrella of complexity are often rule-based, expressed as computations, and

simulated rather than analyzed.

Not everyone finds these models satisfactory. For example, in Sync, Steven

Strogatz writes about his model of spontaneous synchronization in some species

of fireflies. He presents a simulation that demonstrates the phenomenon, but

then writes:

I repeated the simulation dozens of times, for other random initial

conditions and for other numbers of oscillators. Sync every time.

[...] The challenge now was to prove it. Only an ironclad proof

would demonstrate, in a way that no computer ever could, that

sync was inevitable; and the best kind of proof would clarify why

it was inevitable.

Strogatz is a mathematician, so his enthusiasm for proofs is understandable,

but his proof doesn’t address what is, to me, the most interesting part of the

phenomenon. In order to prove that “sync was inevitable”, Strogatz makes

several simplifying assumptions, in particular that each firefly can see all the

others.
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In my opinion, it is more interesting to explain how an entire valley of fireflies

can synchronize despite the fact that they cannot all see each other. How

this kind of global behavior emerges from local interactions is the subject of

Chapter 9. Explanations of these phenomena often use agent-based models,

which explore (in ways that would be difficult or impossible with mathematical

analysis) the conditions that allow or prevent synchronization.

I am a computer scientist, so my enthusiasm for computational models is

probably no surprise. I don’t mean to say that Strogatz is wrong, but rather

that people have different opinions about what questions to ask and what tools

to use to answer them. These opinions are based on value judgments, so there

is no reason to expect agreement.

Nevertheless, there is rough consensus among scientists about which models

are considered good science, and which others are fringe science, pseudoscience,

or not science at all.

A central thesis of this book is that the criteria this consensus is based on

change over time, and that the emergence of complexity science reflects a

gradual shift in these criteria.

1.2 The axes of scientific models

I have described classical models as based on physical laws, expressed in the

form of equations, and solved by mathematical analysis; conversely, models of

complex systems are often based on simple rules and implemented as compu-

tations.

We can think of this trend as a shift over time along two axes:

Equation-based → simulation-based

Analysis → computation

Complexity science is different in several other ways. I present them here so

you know what’s coming, but some of them might not make sense until you

have seen the examples later in the book.
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Continuous → discrete Classical models tend to be based on continuous

mathematics, like calculus; models of complex systems are often based

on discrete mathematics, including graphs and cellular automatons.

Linear → nonlinear Classical models are often linear, or use linear approx-

imations to nonlinear systems; complexity science is more friendly to

nonlinear models.

Deterministic → stochastic Classical models are usually deterministic, which

may reflect underlying philosophical determinism, discussed in Chap-

ter 5; complex models often include randomness.

Abstract → detailed In classical models, planets are point masses, planes

are frictionless, and cows are spherical (see https://thinkcomplex.

com/cow). Simplifications like these are often necessary for analysis,

but computational models can be more realistic.

One, two → many Classical models are often limited to small numbers of

components. For example, in celestial mechanics the two-body problem

can be solved analytically; the three-body problem cannot. Complexity

science often works with large numbers of components and larger number

of interactions.

Homogeneous → heterogeneous In classical models, the components and

interactions tend to be identical; complex models more often include

heterogeneity.

These are generalizations, so we should not take them too seriously. And I

don’t mean to deprecate classical science. A more complicated model is not

necessarily better; in fact, it is usually worse.

And I don’t mean to say that these changes are abrupt or complete. Rather,

there is a gradual migration in the frontier of what is considered acceptable,

respectable work. Some tools that used to be regarded with suspicion are now

common, and some models that were widely accepted are now regarded with

scrutiny.

For example, when Appel and Haken proved the four-color theorem in 1976,

they used a computer to enumerate 1,936 special cases that were, in some sense,

lemmas of their proof. At the time, many mathematicians did not consider

https://thinkcomplex.com/cow
https://thinkcomplex.com/cow
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the theorem truly proved. Now computer-assisted proofs are common and

generally (but not universally) accepted.

Conversely, a substantial body of economic analysis is based on a model of

human behavior called “Economic man”, or, with tongue in cheek, Homo

economicus. Research based on this model was highly regarded for several

decades, especially if it involved mathematical virtuosity. More recently, this

model is treated with skepticism, and models that include imperfect informa-

tion and bounded rationality are hot topics.

1.3 Different models for different purposes

Complex models are often appropriate for different purposes and interpreta-

tions:

Predictive → explanatory Schelling’s model of segregation might shed light

on a complex social phenomenon, but it is not useful for prediction. On

the other hand, a simple model of celestial mechanics can predict solar

eclipses, down to the second, years in the future.

Realism → instrumentalism Classical models lend themselves to a realist

interpretation; for example, most people accept that electrons are real

things that exist. Instrumentalism is the view that models can be useful

even if the entities they postulate don’t exist. George Box wrote what

might be the motto of instrumentalism: “All models are wrong, but some

are useful.”

Reductionism → holism Reductionism is the view that the behavior of a

system can be explained by understanding its components. For example,

the periodic table of the elements is a triumph of reductionism, because

it explains the chemical behavior of elements with a model of electrons

in atoms. Holism is the view that some phenomena that appear at the

system level do not exist at the level of components, and cannot be

explained in component-level terms.

We get back to explanatory models in Chapter 4, instrumentalism in Chap-

ter 6, and holism in Chapter 8.
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1.4 Complexity engineering

I have been talking about complex systems in the context of science, but

complexity is also a cause, and effect, of changes in engineering and the design

of social systems:

Centralized → decentralized Centralized systems are conceptually simple

and easier to analyze, but decentralized systems can be more robust.

For example, in the World Wide Web clients send requests to centralized

servers; if the servers are down, the service is unavailable. In peer-to-

peer networks, every node is both a client and a server. To take down

the service, you have to take down every node.

One-to-many → many-to-many In many communication systems, broad-

cast services are being augmented, and sometimes replaced, by services

that allow users to communicate with each other and create, share, and

modify content.

Top-down → bottom-up In social, political and economic systems, many

activities that would normally be centrally organized now operate as

grassroots movements. Even armies, which are the canonical example of

hierarchical structure, are moving toward devolved command and con-

trol.

Analysis → computation In classical engineering, the space of feasible de-

signs is limited by our capability for analysis. For example, designing

the Eiffel Tower was possible because Gustave Eiffel developed novel an-

alytic techniques, in particular for dealing with wind load. Now tools

for computer-aided design and analysis make it possible to build almost

anything that can be imagined. Frank Gehry’s Guggenheim Museum

Bilbao is my favorite example.

Isolation → interaction In classical engineering, the complexity of large

systems is managed by isolating components and minimizing interac-

tions. This is still an important engineering principle; nevertheless, the

availability of computation makes it increasingly feasible to design sys-

tems with complex interactions between components.

Design → search Engineering is sometimes described as a search for solu-

tions in a landscape of possible designs. Increasingly, the search process
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can be automated. For example, genetic algorithms explore large design

spaces and discover solutions human engineers would not imagine (or

like). The ultimate genetic algorithm, evolution, notoriously generates

designs that violate the rules of human engineering.

1.5 Complexity thinking

We are getting farther afield now, but the shifts I am postulating in the criteria

of scientific modeling are related to 20th century developments in logic and

epistemology.

Aristotelian logic → many-valued logic In traditional logic, any propo-

sition is either true or false. This system lends itself to math-like proofs,

but fails (in dramatic ways) for many real-world applications. Alterna-

tives include many-valued logic, fuzzy logic, and other systems designed

to handle indeterminacy, vagueness, and uncertainty. Bart Kosko dis-

cusses some of these systems in Fuzzy Thinking.

Frequentist probability → Bayesianism Bayesian probability has been around

for centuries, but was not widely used until recently, facilitated by the

availability of cheap computation and the reluctant acceptance of sub-

jectivity in probabilistic claims. Sharon Bertsch McGrayne presents this

history in The Theory That Would Not Die.

Objective → subjective The Enlightenment, and philosophic modernism,

are based on belief in objective truth, that is, truths that are indepen-

dent of the people that hold them. 20th century developments includ-

ing quantum mechanics, Gödel’s Incompleteness Theorem, and Kuhn’s

study of the history of science called attention to seemingly unavoidable

subjectivity in even “hard sciences” and mathematics. Rebecca Gold-

stein presents the historical context of Gödel’s proof in Incompleteness.

Physical law → theory → model Some people distinguish between laws,

theories, and models. Calling something a “law” implies that it is ob-

jectively true and immutable; “theory” suggests that it is subject to

revision; and “model” concedes that it is a subjective choice based on

simplifications and approximations.
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I think they are all the same thing. Some concepts that are called laws

are really definitions; others are, in effect, the assertion that a certain

model predicts or explains the behavior of a system particularly well.

We come back to the nature of physical laws in Section 4.8, Section 5.9

and Section 8.8.

Determinism → indeterminism Determinism is the view that all events

are caused, inevitably, by prior events. Forms of indeterminism include

randomness, probabilistic causation, and fundamental uncertainty. We

come back to this topic in Section 5.5 and Section 10.6

These trends are not universal or complete, but the center of opinion is shifting

along these axes. As evidence, consider the reaction to Thomas Kuhn’s The

Structure of Scientific Revolutions, which was reviled when it was published

and is now considered almost uncontroversial.

These trends are both cause and effect of complexity science. For example,

highly abstracted models are more acceptable now because of the diminished

expectation that there should be a unique, correct model for every system.

Conversely, developments in complex systems challenge determinism and the

related concept of physical law.

This chapter is an overview of the themes coming up in the book, but not all

of it will make sense before you see the examples. When you get to the end of

the book, you might find it helpful to read this chapter again.
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Chapter 2

Graphs

The next three chapters are about systems made up of components and connec-

tions between components. For example, in a social network, the components

are people and connections represent friendships, business relationships, etc.

In an ecological food web, the components are species and the connections

represent predator-prey relationships.

In this chapter, I introduce NetworkX, a Python package for building models

of these systems. We start with the Erdős-Rényi model, which has interesting

mathematical properties. In the next chapter we move on to models that are

more useful for explaining real-world systems.

The code for this chapter is in chap02.ipynb in the repository for this book.

More information about working with the code is in Section 0.3.

2.1 What is a graph?

To most people a “graph” is a visual representation of data, like a bar chart

or a plot of stock prices over time. That’s not what this chapter is about.

In this chapter, a graph is a representation of a system that contains discrete,

interconnected elements. The elements are represented by nodes — also called

vertices – and the interconnections are represented by edges.
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Alice

Bob

Chuck

Figure 2.1: A directed graph that represents a social network.

For example, you could represent a road map with a node for each city and

an edge for each road between cities. Or you could represent a social network

using a node for each person, with an edge between two people if they are

friends.

In some graphs, edges have attributes like length, cost, or weight. For example,

in a road map, the length of an edge might represent distance between cities

or travel time. In a social network there might be different kinds of edges to

represent different kinds of relationships: friends, business associates, etc.

Edges may be directed or undirected, depending on whether the relation-

ships they represent are asymmetric or symmetric. In a road map, you might

represent a one-way street with a directed edge and a two-way street with an

undirected edge. In some social networks, like Facebook, friendship is sym-

metric: if A is friends with B then B is friends with A. But on Twitter,

for example, the “follows” relationship is not symmetric; if A follows B, that

doesn’t imply that B follows A. So you might use undirected edges to represent

a Facebook network and directed edges for Twitter.

Graphs have interesting mathematical properties, and there is a branch of

mathematics called graph theory that studies them.

Graphs are also useful, because there are many real world problems that can

be solved using graph algorithms. For example, Dijkstra’s shortest path

algorithm is an efficient way to find the shortest path from a node to all other
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Figure 2.2: An undirected graph that represents driving time between cities.

nodes in a graph. A path is a sequence of nodes with an edge between each

consecutive pair.

Graphs are usually drawn with squares or circles for nodes and lines for edges.

For example, the directed graph in Figure 2.1 might represent three people

who follow each other on Twitter. The arrow indicates the direction of the

relationship. In this example, Alice and Bob follow each other, both follow

Chuck, and Chuck follows no one.

The undirected graph in Figure 2.2 shows four cities in the northeast United

States; the labels on the edges indicate driving time in hours. In this example

the placement of the nodes corresponds roughly to the geography of the cities,

but in general the layout of a graph is arbitrary.

2.2 NetworkX

To represent graphs, we’ll use a package called NetworkX, which is the most

commonly used network library in Python. You can read more about it at

https://thinkcomplex.com/netx, but I’ll explain it as we go along.

We can create a directed graph by importing NetworkX (usually imported as

nx) and instantiating nx.DiGraph:

https://thinkcomplex.com/netx
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import networkx as nx

G = nx.DiGraph()

At this point, G is a DiGraph object that contains no nodes and no edges. We

can add nodes using the add_node method:

G.add_node('Alice')

G.add_node('Bob')

G.add_node('Chuck')

Now we can use the nodes method to get a list of nodes:

>>> list(G.nodes())

NodeView(('Alice', 'Bob', 'Chuck'))

The nodes method returns a NodeView, which can be used in a for loop or, as

in this example, used to make a list.

Adding edges works pretty much the same way:

G.add_edge('Alice', 'Bob')

G.add_edge('Alice', 'Chuck')

G.add_edge('Bob', 'Alice')

G.add_edge('Bob', 'Chuck')

And we can use edges to get the list of edges:

>>> list(G.edges())

[('Alice', 'Bob'), ('Alice', 'Chuck'),

('Bob', 'Alice'), ('Bob', 'Chuck')]

NetworkX provides several functions for drawing graphs; draw_circular ar-

ranges the nodes in a circle and connects them with edges:

nx.draw_circular(G,

node_color=COLORS[0],

node_size=2000,

with_labels=True)

That’s the code I use to generate Figure 2.1. The option with_labels causes

the nodes to be labeled; in the next example we’ll see how to label the edges.
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To generate Figure 2.2, I start with a dictionary that maps from each city

name to its approximate longitude and latitude:

positions = dict(Albany=(-74, 43),

Boston=(-71, 42),

NYC=(-74, 41),

Philly=(-75, 40))

Since this is an undirected graph, I instantiate nx.Graph:

G = nx.Graph()

Then I can use add_nodes_from to iterate the keys of positions and add

them as nodes:

G.add_nodes_from(positions)

Next I’ll make a dictionary that maps from each edge to the corresponding

driving time:

drive_times = {('Albany', 'Boston'): 3,

('Albany', 'NYC'): 4,

('Boston', 'NYC'): 4,

('NYC', 'Philly'): 2}

Now I can use add_edges_from, which iterates the keys of drive_times and

adds them as edges:

G.add_edges_from(drive_times)

Instead of draw_circular, which arranges the nodes in a circle, I’ll use draw,

which takes the position dictionary as the second parameter:

nx.draw(G, positions,

node_color=COLORS[1],

node_shape='s',

node_size=2500,

with_labels=True)

draw uses positions to determine the locations of the nodes.

To add the edge labels, we use draw_networkx_edge_labels:
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nx.draw_networkx_edge_labels(G, positions,

edge_labels=drive_times)

The edge_labels parameter expects a dictionary that maps from each pair of

nodes to a label; in this case, the labels are driving times between cities. And

that’s how I generated Figure 2.2.

In both of these examples, the nodes are strings, but in general they can be

any hashable type.

2.3 Random graphs

A random graph is just what it sounds like: a graph with nodes and edges

generated at random. Of course, there are many random processes that can

generate graphs, so there are many kinds of random graphs.

One of the more interesting kinds is the Erdős-Rényi model, studied by Paul

Erdős and Alfréd Rényi in the 1960s.

An Erdős-Rényi graph (ER graph) is characterized by two parameters: n is

the number of nodes and p is the probability that there is an edge between

any two nodes. See https://thinkcomplex.com/er.

Erdős and Rényi studied the properties of these random graphs; one of their

surprising results is the existence of abrupt changes in the properties of random

graphs as random edges are added.

One of the properties that displays this kind of transition is connectivity. An

undirected graph is connected if there is a path from every node to every

other node.

In an ER graph, the probability that the graph is connected is very low when

p is small and nearly 1 when p is large. Between these two regimes, there is a

rapid transition at a particular value of p, denoted p∗.

Erdős and Rényi showed that this critical value is p∗ = (lnn)/n, where n is

the number of nodes. A random graph, G(n, p), is unlikely to be connected if

p < p∗ and very likely to be connected if p > p∗.

To test this claim, we’ll develop algorithms to generate random graphs and

check whether they are connected.

https://thinkcomplex.com/er
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Figure 2.3: A complete graph with 10 nodes.

2.4 Generating graphs

I’ll start by generating a complete graph, which is a graph where every node

is connected to every other.

Here’s a generator function that takes a list of nodes and enumerates all dis-

tinct pairs. If you are not familiar with generator functions, you can read

about them at https://thinkcomplex.com/gen.

def all_pairs(nodes):

for i, u in enumerate(nodes):

for j, v in enumerate(nodes):

if i>j:

yield u, v

We can use all_pairs to construct a complete graph:

def make_complete_graph(n):

G = nx.Graph()

nodes = range(n)

G.add_nodes_from(nodes)

G.add_edges_from(all_pairs(nodes))

return G

make_complete_graph takes the number of nodes, n, and returns a new Graph

with n nodes and edges between all pairs of nodes.

https://thinkcomplex.com/gen
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The following code makes a complete graph with 10 nodes and draws it:

complete = make_complete_graph(10)

nx.draw_circular(complete,

node_color=COLORS[2],

node_size=1000,

with_labels=True)

Figure 2.3 shows the result. Soon we will modify this code to generate ER

graphs, but first we’ll develop functions to check whether a graph is connected.

2.5 Connected graphs

A graph is connected if there is a path from every node to every other node

(see https://thinkcomplex.com/conn).

For many applications involving graphs, it is useful to check whether a graph

is connected. Fortunately, there is a simple algorithm that does it.

You can start at any node and check whether you can reach all other nodes.

If you can reach a node, v, you can reach any of the neighbors of v, which

are the nodes connected to v by an edge.

The Graph class provides a method called neighbors that returns a list of

neighbors for a given node. For example, in the complete graph we generated

in the previous section:

>>> complete.neighbors(0)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Suppose we start at node s. We can mark s as “seen” and mark its neighbors.

Then we mark the neighbor’s neighbors, and their neighbors, and so on, until

we can’t reach any more nodes. If all nodes are seen, the graph is connected.

Here’s what that looks like in Python:

https://thinkcomplex.com/conn
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def reachable_nodes(G, start):

seen = set()

stack = [start]

while stack:

node = stack.pop()

if node not in seen:

seen.add(node)

stack.extend(G.neighbors(node))

return seen

reachable_nodes takes a Graph and a starting node, start, and returns the

set of nodes that can be reached from start.

Initially the set, seen, is empty, and we create a list called stack that keeps

track of nodes we have discovered but not yet processed. Initially the stack

contains a single node, start.

Now, each time through the loop, we:

1. Remove one node from the stack.

2. If the node is already in seen, we go back to Step 1.

3. Otherwise, we add the node to seen and add its neighbors to the stack.

When the stack is empty, we can’t reach any more nodes, so we break out of

the loop and return seen.

As an example, we can find all nodes in the complete graph that are reachable

from node 0:

>>> reachable_nodes(complete, 0)

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Initially, the stack contains node 0 and seen is empty. The first time through

the loop, node 0 is added to seen and all the other nodes are added to the

stack (since they are all neighbors of node 0).

The next time through the loop, pop returns the last element in the stack,

which is node 9. So node 9 gets added to seen and its neighbors get added to

the stack.
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Notice that the same node can appear more than once in the stack; in fact, a

node with k neighbors will be added to the stack k times. Later, we will look

for ways to make this algorithm more efficient.

We can use reachable_nodes to write is_connected:

def is_connected(G):

start = next(iter(G))

reachable = reachable_nodes(G, start)

return len(reachable) == len(G)

is_connected chooses a starting node by making a node iterator and choosing

the first element. Then it uses reachable to get the set of nodes that can be

reached from start. If the size of this set is the same as the size of the graph,

that means we can reach all nodes, which means the graph is connected.

A complete graph is, not surprisingly, connected:

>>> is_connected(complete)

True

In the next section we will generate ER graphs and check whether they are

connected.

2.6 Generating ER graphs

The ER graph G(n, p) contains n nodes, and each pair of nodes is connected by

an edge with probability p. Generating an ER graph is similar to generating

a complete graph.

The following generator function enumerates all possible edges and chooses

which ones should be added to the graph:

def random_pairs(nodes, p):

for edge in all_pairs(nodes):

if flip(p):

yield edge

random_pairs uses flip:
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Figure 2.4: An ER graph with n=10 and p=0.3.

def flip(p):

return np.random.random() < p

This is the first example we’re seen that uses NumPy. Following convention, I

import numpy as np. NumPy provides a module named random, which provides

a method named random, which returns a number between 0 and 1, uniformly

distributed.

So flip returns True with the given probability, p, and False with the com-

plementary probability, 1-p.

Finally, make_random_graph generates and returns the ER graph G(n, p):

def make_random_graph(n, p):

G = nx.Graph()

nodes = range(n)

G.add_nodes_from(nodes)

G.add_edges_from(random_pairs(nodes, p))

return G

make_random_graph is almost identical to make_complete_graph; the only

difference is that it uses random_pairs instead of all_pairs.

Here’s an example with p=0.3:

random_graph = make_random_graph(10, 0.3)
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Figure 2.5: Probability of connectivity with n = 10 and a range of p. The
vertical line shows the predicted critical value.

Figure 2.4 shows the result. This graph turns out to be connected; in fact,

most ER graphs with n = 10 and p = 0.3 are connected. In the next section,

we’ll see how many.

2.7 Probability of connectivity

For given values of n and p, we would like to know the probability that G(n, p)

is connected. We can estimate it by generating a large number of random

graphs and counting how many are connected. Here’s how:

def prob_connected(n, p, iters=100):

tf = [is_connected(make_random_graph(n, p))

for i in range(iters)]

return np.mean(bool)

The parameters n and p are passed along to make_random_graph; iters is the

number of random graphs we generate.

This function uses a list comprehension; if you are not familiar with this fea-

ture, you can read about it at https://thinkcomplex.com/comp.

The result, tf, is a list of boolean values: True for each graph that’s connected

and False for each one that’s not.

https://thinkcomplex.com/comp
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Figure 2.6: Probability of connectivity for several values of n and a range of
p.

np.mean is a NumPy function that computes the mean of this list, treating

True as 1 and False as 0. The result is the fraction of random graphs that

are connected.

>>> prob_connected(10, 0.23, iters=10000)

0.33

I chose 0.23 because it is close to the critical value where the probability

of connectivity goes from near 0 to near 1. According to Erdős and Rényi,

p∗ = lnn/n = 0.23.

We can get a clearer view of the transition by estimating the probability of

connectivity for a range of values of p:

n = 10

ps = np.logspace(-2.5, 0, 11)

ys = [prob_connected(n, p) for p in ps]

The NumPy function logspace returns an array of 11 values from 10−2.5 to

100 = 1, equally spaced on a logarithmic scale.

For each value of p in the array, we compute the probability that a graph with

parameter p is connected and store the results in ys.
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Figure 2.5 shows the results, with a vertical line at the computed critical

value, p∗ = 0.23. As expected, the transition from 0 to 1 occurs near the

critical value.

Figure 2.6 shows similar results for larger values of n. As n increases, the

critical value gets smaller and the transition gets more abrupt.

These experimental results are consistent with the analytic results Erdős and

Rényi presented in their papers.

2.8 Analysis of graph algorithms

Earlier in this chapter I presented an algorithm for checking whether a graph

is connected; in the next few chapters, we will see other graph algorithms.

Along the way, we will analyze the performance of those algorithms, figuring

out how their run times grow as the size of the graphs increases.

If you are not already familiar with analysis of algorithms, you might want to

read Appendix B of Think Python, 2nd Edition, at https://thinkcomplex.

com/tp2.

The order of growth for graph algorithms is usually expressed as a function of

n, the number of vertices (nodes), and m, the number of edges.

As an example, let’s analyze reachable_nodes from Section 2.5:

def reachable_nodes(G, start):

seen = set()

stack = [start]

while stack:

node = stack.pop()

if node not in seen:

seen.add(node)

stack.extend(G.neighbors(node))

return seen

Each time through the loop, we pop a node off the stack; by default, pop

removes and returns the last element of a list, which is a constant time oper-

ation.

https://thinkcomplex.com/tp2
https://thinkcomplex.com/tp2
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Next we check whether the node is in seen, which is a set, so checking mem-

bership is constant time.

If the node is not already in seen, we add it, which is constant time, and then

add the neighbors to the stack, which is linear in the number of neighbors.

To express the run time in terms of n and m, we can add up the total number

of times each node is added to seen and stack.

Each node is only added to seen once, so the total number of additions is n.

But nodes might be added to stack many times, depending on how many

neighbors they have. If a node has k neighbors, it is added to stack k times.

Of course, if it has k neighbors, that means it is connected to k edges.

So the total number of additions to stack is the total number of edges, m,

doubled because we consider every edge twice.

Therefore, the order of growth for this function is O(n + m), which is a con-

venient way to say that the run time grows in proportion to either n or m,

whichever is bigger.

If we know the relationship between n and m, we can simplify this expression.

For example, in a complete graph the number of edges is n(n− 1)/2, which is

in O(n2). So for a complete graph, reachable_nodes is quadratic in n.

2.9 Exercises

The code for this chapter is in chap02.ipynb, which is a Jupyter notebook in

the repository for this book. For more information about working with this

code, see Section 0.3.

Exercise 2.1 Launch chap02.ipynb and run the code. There are a few

short exercises embedded in the notebook that you might want to try.

Exercise 2.2 In Section 2.8 we analyzed the performance of reachable_nodes

and classified it in O(n + m), where n is the number of nodes and m is the

number of edges. Continuing the analysis, what is the order of growth for

is_connected?
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def is_connected(G):

start = list(G)[0]

reachable = reachable_nodes(G, start)

return len(reachable) == len(G)

Exercise 2.3 In my implementation of reachable_nodes, you might be

bothered by the apparent inefficiency of adding all neighbors to the stack

without checking whether they are already in seen. Write a version of this

function that checks the neighbors before adding them to the stack. Does this

“optimization” change the order of growth? Does it make the function faster?

Exercise 2.4 There are actually two kinds of ER graphs. The one we gener-

ated in this chapter, G(n, p), is characterized by two parameters, the number

of nodes and the probability of an edge between nodes.

An alternative definition, denoted G(n,m), is also characterized by two pa-

rameters: the number of nodes, n, and the number of edges, m. Under this

definition, the number of edges is fixed, but their location is random.

Repeat the experiments we did in this chapter using this alternative definition.

Here are a few suggestions for how to proceed:

1. Write a function called m_pairs that takes a list of nodes and the number

of edges, m, and returns a random selection of m edges. A simple way to do

that is to generate a list of all possible edges and use random.sample.

2. Write a function called make_m_graph that takes n and m and returns a

random graph with n nodes and m edges.

3. Make a version of prob_connected that uses make_m_graph instead of

make_random_graph.

4. Compute the probability of connectivity for a range of values of m.

How do the results of this experiment compare to the results using the first

type of ER graph?
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Small World Graphs

Many networks in the real world, including social networks, have the “small

world property”, which is that the average distance between nodes, measured

in number of edges on the shortest path, is much smaller than expected.

In this chapter, I present Stanley Milgram’s famous Small World Experiment,

which was the first demonstration of the small world property in a real social

network. Then we’ll consider Watts-Strogatz graphs, which are intended as a

model of small world graphs. I’ll replicate the experiment Watts and Strogatz

performed and explain what it is intended to show.

Along the way, we’ll see two new graph algorithms: breadth-first search (BFS)

and Dijkstra’s algorithm for computing the shortest path between nodes in a

graph.

The code for this chapter is in chap03.ipynb in the repository for this book.

More information about working with the code is in Section 0.3.

3.1 Stanley Milgram

Stanley Milgram was an American social psychologist who conducted two

of the most famous experiments in social science, the Milgram experiment,

which studied people’s obedience to authority (https://thinkcomplex.com/

https://thinkcomplex.com/milgram
https://thinkcomplex.com/milgram
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milgram) and the Small World Experiment, which studied the structure of

social networks (https://thinkcomplex.com/small).

In the Small World Experiment, Milgram sent a package to several randomly-

chosen people in Wichita, Kansas, with instructions asking them to forward

an enclosed letter to a target person, identified by name and occupation, in

Sharon, Massachusetts (which happens to be the town near Boston where I

grew up). The subjects were told that they could mail the letter directly

to the target person only if they knew him personally; otherwise they were

instructed to send it, and the same instructions, to a relative or friend they

thought would be more likely to know the target person.

Many of the letters were never delivered, but for the ones that were the average

path length — the number of times the letters were forwarded — was about

six. This result was taken to confirm previous observations (and speculations)

that the typical distance between any two people in a social network is about

“six degrees of separation”.

This conclusion is surprising because most people expect social networks to

be localized — people tend to live near their friends — and in a graph with

local connections, path lengths tend to increase in proportion to geographical

distance. For example, most of my friends live nearby, so I would guess that the

average distance between nodes in a social network is about 50 miles. Wichita

is about 1600 miles from Boston, so if Milgram’s letters traversed typical links

in the social network, they should have taken 32 hops, not 6.

3.2 Watts and Strogatz

In 1998 Duncan Watts and Steven Strogatz published a paper in Nature,

“Collective dynamics of ‘small-world’ networks”, that proposed an explana-

tion for the small world phenomenon. You can download it from https:

//thinkcomplex.com/watts.

Watts and Strogatz start with two kinds of graph that were well understood:

random graphs and regular graphs. In a random graph, nodes are connected

at random. In a regular graph, every node has the same number of neighbors.

They consider two properties of these graphs, clustering and path length:

https://thinkcomplex.com/milgram
https://thinkcomplex.com/milgram
https://thinkcomplex.com/small
https://thinkcomplex.com/watts
https://thinkcomplex.com/watts
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� Clustering is a measure of the “cliquishness” of the graph. In a graph,

a clique is a subset of nodes that are all connected to each other; in a

social network, a clique is a set of people who are all friends with each

other. Watts and Strogatz defined a clustering coefficient that quantifies

the likelihood that two nodes that are connected to the same node are

also connected to each other.

� Path length is a measure of the average distance between two nodes,

which corresponds to the degrees of separation in a social network.

Watts and Strogatz show that regular graphs have high clustering and high

path lengths, whereas random graphs with the same size usually have low

clustering and low path lengths. So neither of these is a good model of social

networks, which combine high clustering with short path lengths.

Their goal was to create a generative model of a social network. A generative

model tries to explain a phenomenon by modeling the process that builds

or leads to the phenomenon. Watts and Strogatz proposed this process for

building small-world graphs:

1. Start with a regular graph with n nodes and each node connected to k

neighbors.

2. Choose a subset of the edges and “rewire” them by replacing them with

random edges.

The probability that an edge is rewired is a parameter, p, that controls how

random the graph is. With p = 0, the graph is regular; with p = 1 it is

completely random.

Watts and Strogatz found that small values of p yield graphs with high clus-

tering, like a regular graph, and low path lengths, like a random graph.

In this chapter I replicate the Watts and Strogatz experiment in the following

steps:

1. We’ll start by constructing a ring lattice, which is a kind of regular graph.

2. Then we’ll rewire it as Watts and Strogatz did.
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Figure 3.1: A ring lattice with n = 10 and k = 4.

3. We’ll write a function to measure the degree of clustering and use a

NetworkX function to compute path lengths.

4. Then we’ll compute the degree of clustering and path length for a range

of values of p.

5. Finally, I’ll present Dijkstra’s algorithm, which computes shortest paths

efficiently.

3.3 Ring lattice

A regular graph is a graph where each node has the same number of neighbors;

the number of neighbors is also called the degree of the node.

A ring lattice is a kind of regular graph, which Watts and Strogatz use as the

basis of their model. In a ring lattice with n nodes, the nodes can be arranged

in a circle with each node connected to the k nearest neighbors.

For example, a ring lattice with n = 3 and k = 2 would contain the following

edges: (0, 1), (1, 2), and (2, 0). Notice that the edges “wrap around” from the

highest-numbered node back to 0.

More generally, we can enumerate the edges like this:
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def adjacent_edges(nodes, halfk):

n = len(nodes)

for i, u in enumerate(nodes):

for j in range(i+1, i+halfk+1):

v = nodes[j % n]

yield u, v

adjacent_edges takes a list of nodes and a parameter, halfk, which is half

of k. It is a generator function that yields one edge at a time. It uses the

modulus operator, %, to wrap around from the highest-numbered node to the

lowest.

We can test it like this:

>>> nodes = range(3)

>>> for edge in adjacent_edges(nodes, 1):

... print(edge)

(0, 1)

(1, 2)

(2, 0)

Now we can use adjacent_edges to make a ring lattice:

def make_ring_lattice(n, k):

G = nx.Graph()

nodes = range(n)

G.add_nodes_from(nodes)

G.add_edges_from(adjacent_edges(nodes, k//2))

return G

Notice that make_ring_lattice uses floor division to compute halfk, so it is

only correct if k is even. If k is odd, floor division rounds down, so the result

is a ring lattice with degree k-1. As one of the exercises at the end of the

chapter, you will generate regular graphs with odd values of k.

We can test make_ring_lattice like this:

lattice = make_ring_lattice(10, 4)

Figure 3.1 shows the result.
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Figure 3.2: WS graphs with n = 20, k = 4, and p = 0 (left), p = 0.2 (middle),
and p = 1 (right).

3.4 WS graphs

To make a Watts-Strogatz (WS) graph, we start with a ring lattice and

“rewire” some of the edges. In their paper, Watts and Strogatz consider the

edges in a particular order and rewire each one with probability p. If an edge

is rewired, they leave the first node unchanged and choose the second node at

random. They don’t allow self loops or multiple edges; that is, you can’t have

a edge from a node to itself, and you can’t have more than one edge between

the same two nodes.

Here is my implementation of this process.

def rewire(G, p):

nodes = set(G)

for u, v in G.edges():

if flip(p):

choices = nodes - {u} - set(G[u])

new_v = np.random.choice(list(choices))

G.remove_edge(u, v)

G.add_edge(u, new_v)

The parameter p is the probability of rewiring an edge. The for loop enumer-

ates the edges and uses flip (defined in Section 2.6) to choose which ones get

rewired.

If we are rewiring an edge from node u to node v, we have to choose a replace-

ment for v, called new_v.
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1. To compute the possible choices, we start with nodes, which is a set,

and subtract off u and its neighbors, which avoids self loops and multiple

edges.

2. To choose new_v, we use the NumPy function choice, which is in the

module random.

3. Then we remove the existing edge from u to v, and

4. Add a new edge from u to new_v.

As an aside, the expression G[u] returns a dictionary that contains the neigh-

bors of u as keys. It is usually faster than using G.neighbors (see https:

//thinkcomplex.com/neigh).

This function does not consider the edges in the order specified by Watts and

Strogatz, but that doesn’t seem to affect the results.

Figure 3.2 shows WS graphs with n = 20, k = 4, and a range of values of p.

When p = 0, the graph is a ring lattice. When p = 1, it is completely random.

As we’ll see, the interesting things happen in between.

3.5 Clustering

The next step is to compute the clustering coefficient, which quantifies the

tendency for the nodes to form cliques. A clique is a set of nodes that are

completely connected; that is, there are edges between all pairs of nodes in

the set.

Suppose a particular node, u, has k neighbors. If all of the neighbors are

connected to each other, there would be k(k − 1)/2 edges among them. The

fraction of those edges that actually exist is the local clustering coefficient for

u, denoted Cu.

If we compute the average of Cu over all nodes, we get the “network average

clustering coefficient”, denoted C̄.

Here is a function that computes it.

https://thinkcomplex.com/neigh
https://thinkcomplex.com/neigh
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def node_clustering(G, u):

neighbors = G[u]

k = len(neighbors)

if k < 2:

return np.nan

possible = k * (k-1) / 2

exist = 0

for v, w in all_pairs(neighbors):

if G.has_edge(v, w):

exist +=1

return exist / possible

Again I use G[u], which returns a dictionary with the neighbors of u as keys.

If a node has fewer than 2 neighbors, the clustering coefficient is undefined, so

we return np.nan, which is a special value that indicates “Not a Number”.

Otherwise we compute the number of possible edges among the neighbors,

count the number of those edges that actually exist, and return the fraction

that exist.

We can test the function like this:

>>> lattice = make_ring_lattice(10, 4)

>>> node_clustering(lattice, 1)

0.5

In a ring lattice with k = 4, the clustering coefficient for each node is 0.5 (if

you are not convinced, take another look at Figure 3.1).

Now we can compute the network average clustering coefficient like this:

def clustering_coefficient(G):

cu = [node_clustering(G, node) for node in G]

return np.nanmean(cu)

The NumPy function nanmean computes the mean of the local clustering co-

efficients, ignoring any values that are NaN.

We can test clustering_coefficient like this:
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>>> clustering_coefficient(lattice)

0.5

In this graph, the local clustering coefficient for all nodes is 0.5, so the average

across nodes is 0.5. Of course, we expect this value to be different for WS

graphs.

3.6 Shortest path lengths

The next step is to compute the characteristic path length, L, which is the

average length of the shortest path between each pair of nodes. To compute it,

I’ll start with a function provided by NetworkX, shortest_path_length. I’ll

use it to replicate the Watts and Strogatz experiment, then I’ll explain how it

works.

Here’s a function that takes a graph and returns a list of shortest path lengths,

one for each pair of nodes.

def path_lengths(G):

length_map = nx.shortest_path_length(G)

lengths = [length_map[u][v] for u, v in all_pairs(G)]

return lengths

The return value from nx.shortest_path_length is a dictionary of dictionar-

ies. The outer dictionary maps from each node, u, to a dictionary that maps

from each node, v, to the length of the shortest path from u to v.

With the list of lengths from path_lengths, we can compute L like this:

def characteristic_path_length(G):

return np.mean(path_lengths(G))

And we can test it with a small ring lattice:

>>> lattice = make_ring_lattice(3, 2)

>>> characteristic_path_length(lattice)

1.0

In this example, all 3 nodes are connected to each other, so the mean path

length is 1.
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Figure 3.3: Clustering coefficient (C) and characteristic path length (L) for
WS graphs with n = 1000, k = 10, and a range of p.

3.7 The WS experiment

Now we are ready to replicate the WS experiment, which shows that for a

range of values of p, a WS graph has high clustering like a regular graph and

short path lengths like a random graph.

I’ll start with run_one_graph, which takes n, k, and p; it generates a WS

graph with the given parameters and computes the mean path length, mpl,

and clustering coefficient, cc:

def run_one_graph(n, k, p):

ws = make_ws_graph(n, k, p)

mpl = characteristic_path_length(ws)

cc = clustering_coefficient(ws)

return mpl, cc

Watts and Strogatz ran their experiment with n=1000 and k=10. With these

parameters, run_one_graph takes a few seconds on my computer; most of that

time is spent computing the mean path length.

Now we need to compute these values for a range of p. I’ll use the NumPy

function logspace again to compute ps:

ps = np.logspace(-4, 0, 9)
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Here’s the function that runs the experiment:

def run_experiment(ps, n=1000, k=10, iters=20):

res = []

for p in ps:

t = [run_one_graph(n, k, p) for _ in range(iters)]

means = np.array(t).mean(axis=0)

res.append(means)

return np.array(res)

For each value of p, we generate 20 random graphs and average the results.

Since the return value from run_one_graph is a pair, t is a list of pairs. When

we convert it to an array, we get one row for each iteration and columns for

L and C. Calling mean with the option axis=0 computes the mean of each

column; the result is an array with one row and two columns.

When the loop exits, means is a list of pairs, which we convert to a NumPy

array with one row for each value of p and columns for L and C.

We can extract the columns like this:

L, C = np.transpose(res)

In order to plot L and C on the same axes, we standardize them by dividing

through by the first element:

L /= L[0]

C /= C[0]

Figure 3.3 shows the results. As p increases, the mean path length drops

quickly, because even a small number of randomly rewired edges provide short-

cuts between regions of the graph that are far apart in the lattice. On the

other hand, removing local links decreases the clustering coefficient much more

slowly.

As a result, there is a wide range of p where a WS graph has the properties of

a small world graph, high clustering and low path lengths.

And that’s why Watts and Strogatz propose WS graphs as a model for real-

world networks that exhibit the small world phenomenon.
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3.8 What kind of explanation is that?

If you ask me why planetary orbits are elliptical, I might start by modeling a

planet and a star as point masses; I would look up the law of universal gravi-

tation at https://thinkcomplex.com/grav and use it to write a differential

equation for the motion of the planet. Then I would either derive the orbit

equation or, more likely, look it up at https://thinkcomplex.com/orbit.

With a little algebra, I could derive the conditions that yield an elliptical or-

bit. Then I would argue that the objects we consider planets satisfy these

conditions.

People, or at least scientists, are generally satisfied with this kind of explana-

tion. One of the reasons for its appeal is that the assumptions and approxi-

mations in the model seem reasonable. Planets and stars are not really point

masses, but the distances between them are so big that their actual sizes are

negligible. Planets in the same solar system can affect each other’s orbits,

but the effect is usually small. And we ignore relativistic effects, again on the

assumption that they are small.

This explanation is also appealing because it is equation-based. We can express

the orbit equation in a closed form, which means that we can compute orbits

efficiently. It also means that we can derive general expressions for the orbital

velocity, orbital period, and other quantities.

Finally, I think this kind of explanation is appealing because it has the form

of a mathematical proof. It is important to remember that the proof pertains

to the model and not the real world. That is, we can prove that an idealized

model yields elliptical orbits, but we can’t prove that real orbits are ellipses

(in fact, they are not). Nevertheless, the resemblance to a proof is appealing.

By comparison, Watts and Strogatz’s explanation of the small world phe-

nomenon may seem less satisfying. First, the model is more abstract, which

is to say less realistic. Second, the results are generated by simulation, not

by mathematical analysis. Finally, the results seem less like a proof and more

like an example.

Many of the models in this book are like the Watts and Strogatz model: ab-

stract, simulation-based and (at least superficially) less formal than conven-

tional mathematical models. One of the goals of this book is to consider the

questions these models raise:

https://thinkcomplex.com/grav
https://thinkcomplex.com/orbit
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� What kind of work can these models do: are they predictive, or explana-

tory, or both?

� Are the explanations these models offer less satisfying than explanations

based on more traditional models? Why?

� How should we characterize the differences between these and more con-

ventional models? Are they different in kind or only in degree?

Over the course of the book I will offer my answers to these questions, but

they are tentative and sometimes speculative. I encourage you to consider

them skeptically and reach your own conclusions.

3.9 Breadth-First Search

When we computed shortest paths, we used a function provided by NetworkX,

but I have not explained how it works. To do that, I’ll start with breadth-first

search, which is the basis of Dijkstra’s algorithm for computing shortest paths.

In Section 2.5 I presented reachable_nodes, which finds all the nodes that

can be reached from a given starting node:

def reachable_nodes(G, start):

seen = set()

stack = [start]

while stack:

node = stack.pop()

if node not in seen:

seen.add(node)

stack.extend(G.neighbors(node))

return seen

I didn’t say so at the time, but reachable_nodes performs a depth-first search

(DFS). Now we’ll modify it to perform breadth-first search (BFS).

To understand the difference, imagine you are exploring a castle. You start in

a room with three doors marked A, B, and C. You open door C and discover

another room, with doors marked D, E, and F.
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Which door do you open next? If you are feeling adventurous, you might want

to go deeper into the castle and choose D, E, or F. That would be a depth-first

search.

But if you wanted to be more systematic, you might go back and explore A

and B before D, E, and F. That would be a breadth-first search.

In reachable_nodes, we use the list method pop to choose the next node to

“explore”. By default, pop returns the last element of the list, which is the

last one we added. In the example, that would be door F.

If we want to perform a BFS instead, the simplest solution is to pop the first

element of the list:

node = stack.pop(0)

That works, but it is slow. In Python, popping the last element of a list

takes constant time, but popping the first element is linear in the length of

the list. In the worst case, the length of the stack is O(n), which makes this

implementation of BFS O(nm), which is much worse than what it should be,

O(n+m).

We can solve this problem with a double-ended queue, also known as a deque.

The important feature of a deque is that you can add and remove elements

from the beginning or end in constant time. To see how it is implemented, see

https://thinkcomplex.com/deque.

Python provides a deque in the collections module, so we can import it like

this:

from collections import deque

And we can use it to write an efficient BFS:

def reachable_nodes_bfs(G, start):

seen = set()

queue = deque([start])

while queue:

node = queue.popleft()

if node not in seen:

seen.add(node)

queue.extend(G.neighbors(node))

return seen

https://thinkcomplex.com/deque
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The differences are:

� I replaced the list called stack with a deque called queue.

� I replaced pop with popleft, which removes and returns the leftmost

element of the queue.

This version is back to being O(n + m). Now we’re ready to find shortest

paths.

3.10 Dijkstra’s algorithm

Edsger W. Dijkstra was a Dutch computer scientist who invented an efficient

shortest-path algorithm (see https://thinkcomplex.com/dijk). He also in-

vented the semaphore, which is a data structure used to coordinate programs

that communicate with each other (see https://thinkcomplex.com/sem and

Downey, The Little Book of Semaphores).

Dijkstra is famous (and notorious) as the author of a series of essays on com-

puter science. Some, like “A Case against the GO TO Statement”, had a

profound effect on programming practice. Others, like “On the Cruelty of Re-

ally Teaching Computing Science”, are entertaining in their cantankerousness,

but less effective.

Dijkstra’s algorithm solves the “single source shortest path problem”, which

means that it finds the minimum distance from a given “source” node to every

other node in the graph (or at least every connected node).

I’ll present a simplified version of the algorithm that considers all edges the

same length. The more general version works with any non-negative edge

lengths.

The simplified version is similar to the breadth-first search in the previous

section except that we replace the set called seen with a dictionary called

dist, which maps from each node to its distance from the source:

https://thinkcomplex.com/dijk
https://thinkcomplex.com/sem
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def shortest_path_dijkstra(G, source):

dist = {source: 0}

queue = deque([source])

while queue:

node = queue.popleft()

new_dist = dist[node] + 1

neighbors = set(G[node]).difference(dist)

for n in neighbors:

dist[n] = new_dist

queue.extend(neighbors)

return dist

Here’s how it works:

� Initially, queue contains a single element, source, and dist maps from

source to distance 0 (which is the distance from source to itself).

� Each time through the loop, we use popleft to select the next node in

the queue.

� Next we find all neighbors of node that are not already in dist.

� Since the distance from source to node is dist[node], the distance to

any of the undiscovered neighbors is dist[node]+1.

� For each neighbor, we add an entry to dist, then we add the neighbors

to the queue.

This algorithm only works if we use BFS, not DFS. To see why, consider this:

1. The first time through the loop node is source, and new_dist is 1. So

the neighbors of source get distance 1 and they go in the queue.

2. When we process the neighbors of source, all of their neighbors get

distance 2. We know that none of them can have distance 1, because if

they did, we would have discovered them during the first iteration.
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3. Similarly, when we process the nodes with distance 2, we give their

neighbors distance 3. We know that none of them can have distance

1 or 2, because if they did, we would have discovered them during a

previous iteration.

And so on. If you are familiar with proof by induction, you can see where this

is going.

But this argument only works if we process all nodes with distance 1 before

we start processing nodes with distance 2, and so on. And that’s exactly what

BFS does.

In the exercises at the end of this chapter, you’ll write a version of Dijkstra’s

algorithm using DFS, so you’ll have a chance to see what goes wrong.

3.11 Exercises

Exercise 3.1 In a ring lattice, every node has the same number of neighbors.

The number of neighbors is called the degree of the node, and a graph where

all nodes have the same degree is called a regular graph.

All ring lattices are regular, but not all regular graphs are ring lattices. In

particular, if k is odd, we can’t construct a ring lattice, but we might be able

to construct a regular graph.

Write a function called make_regular_graph that takes n and k and returns

a regular graph that contains n nodes, where every node has k neighbors. If

it’s not possible to make a regular graph with the given values of n and k, the

function should raise a ValueError.

Exercise 3.2 My implementation of reachable_nodes_bfs is efficient in

the sense that it is in O(n + m), but it incurs a lot of overhead adding

nodes to the queue and removing them. NetworkX provides a simple, fast

implementation of BFS, available from the NetworkX repository on GitHub

at https://thinkcomplex.com/connx.

Here is a version I modified to return a set of nodes:

https://thinkcomplex.com/connx
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def plain_bfs(G, start):

seen = set()

nextlevel = {start}

while nextlevel:

thislevel = nextlevel

nextlevel = set()

for v in thislevel:

if v not in seen:

seen.add(v)

nextlevel.update(G[v])

return seen

Compare this function to reachable_nodes_bfs and see which is faster. Then

see if you can modify this function to implement a faster version of shortest_path_dijkstra.

Exercise 3.3 The following implementation of BFS contains two perfor-

mance errors. What are they? What is the actual order of growth for this

algorithm?

def bfs(G, start):

visited = set()

queue = [start]

while len(queue):

curr_node = queue.pop(0) # Dequeue

visited.add(curr_node)

# Enqueue non-visited and non-enqueued children

queue.extend(c for c in G[curr_node]

if c not in visited and c not in queue)

return visited

Exercise 3.4 In Section 3.10, I claimed that Dijkstra’s algorithm does not

work unless it uses BFS. Write a version of shortest_path_dijkstra that

uses DFS and test it on a few examples to see what goes wrong.

Exercise 3.5 A natural question about the Watts and Strogatz paper is

whether the small world phenomenon is specific to their generative model or

whether other similar models yield the same qualitative result (high clustering

and low path lengths).
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To answer this question, choose a variation of the Watts and Strogatz model

and repeat the experiment. There are two kinds of variation you might con-

sider:

� Instead of starting with a regular graph, start with another graph with

high clustering. For example, you could put nodes at random locations

in a 2-D space and connect each node to its nearest k neighbors.

� Experiment with different kinds of rewiring.

If a range of similar models yield similar behavior, we say that the results of

the paper are robust.

Exercise 3.6 Dijkstra’s algorithm solves the “single source shortest path”

problem, but to compute the characteristic path length of a graph, we actually

want to solve the “all pairs shortest path” problem.

Of course, one option is to run Dijkstra’s algorithm n times, once for each

starting node. And for some applications, that’s probably good enough. But

there are are more efficient alternatives.

Find an algorithm for the all-pairs shortest path problem and implement it.

See https://thinkcomplex.com/short.

Compare the run time of your implementation with running Dijkstra’s al-

gorithm n times. Which algorithm is better in theory? Which is better in

practice? Which one does NetworkX use?

https://thinkcomplex.com/short
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Chapter 4

Scale-free networks

In this chapter, we’ll work with data from an online social network, and use

a Watts-Strogatz graph to model it. The WS model has characteristics of a

small world network, like the data, but it has low variability in the number of

neighbors from node to node, unlike the data.

This discrepancy is the motivation for a network model developed by Barabási and

Albert. The BA model captures the observed variability in the number of

neighbors, and it has one of the small world properties, short path lengths,

but it does not have the high clustering of a small world network.

The chapter ends with a discussion of WS and BA graphs as explanatory

models for small world networks.

The code for this chapter is in chap04.ipynb in the respository for this book.

More information about working with the code is in Section 0.3.

4.1 Social network data

Watts-Strogatz graphs are intended to model networks in the natural and

social sciences. In their original paper, Watts and Strogatz looked at the

network of film actors (connected if they have appeared in a movie together);

the electrical power grid in the western United States; and the network of

neurons in the brain of the roundworm C. elegans. They found that all of
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these networks had the high connectivity and low path lengths characteristic

of small world graphs.

In this section we’ll perform the same analysis with a different dataset, a set

of Facebook users and their friends. If you are not familiar with Facebook,

users who are connected to each other are called “friends”, regardless of the

nature of their relationship in the real world.

I’ll use data from the Stanford Network Analysis Project (SNAP), which shares

large datasets from online social networks and other sources. Specifically,

I’ll use their Facebook data1, which includes 4039 users and 88,234 friend

relationships among them. This dataset is in the repository for this book, but it

is also available from the SNAP website at https://thinkcomplex.com/snap.

The data file contains one line per edge, with users identified by integers from

0 to 4038. Here’s the code that reads the file:

def read_graph(filename):

G = nx.Graph()

array = np.loadtxt(filename, dtype=int)

G.add_edges_from(array)

return G

NumPy provides a function called loadtext that reads the given file and

returns the contents as a NumPy array. The parameter dtype indicates that

the “data type” of the array is int.

Then we use add_edges_from to iterate the rows of the array and make edges.

Here are the results:

>>> fb = read_graph('facebook_combined.txt.gz')

>>> n = len(fb)

>>> m = len(fb.edges())

>>> n, m

(4039, 88234)

The node and edge counts are consistent with the documentation of the

dataset.

1J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks.
NIPS, 2012.

https://thinkcomplex.com/snap
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Now we can check whether this dataset has the characteristics of a small world

graph: high clustering and low path lengths.

In Section 3.5 we wrote a function to compute the network average clustering

coefficient. NetworkX provides a function called average_clustering, which

does the same thing a little faster.

But for larger graphs, they are both too slow, taking time proportional to nk2,

where n is the number of nodes and k is the number of neighbors each node

is connected to.

Fortunately, NetworkX provides a function that estimates the clustering coef-

ficient by random sampling. You can invoke it like this:

from networkx.algorithms.approximation import average_clustering

average_clustering(G, trials=1000)

The following function does something similar for path lengths.

def sample_path_lengths(G, nodes=None, trials=1000):

if nodes is None:

nodes = list(G)

else:

nodes = list(nodes)

pairs = np.random.choice(nodes, (trials, 2))

lengths = [nx.shortest_path_length(G, *pair)

for pair in pairs]

return lengths

G is a graph, nodes is the list of nodes to sample from, and trials is the

number of random paths to sample. If nodes is None, we sample from the

entire graph.

pairs is a NumPy array of randomly chosen nodes with one row for each trial

and two columns.

The list comprehension enumerates the rows in the array and computes the

shortest distance between each pair of nodes. The result is a list of path

lengths.
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estimate_path_length generates a list of random path lengths and returns

their mean:

def estimate_path_length(G, nodes=None, trials=1000):

return np.mean(sample_path_lengths(G, nodes, trials))

I’ll use average_clustering to compute C:

C = average_clustering(fb)

And estimate_path_lengths to compute L:

L = estimate_path_lengths(fb)

The clustering coefficient is about 0.61, which is high, as we expect if this

network has the small world property.

And the average path is 3.7, which is quite short in a network of more than

4000 users. It’s a small world after all.

Now let’s see if we can construct a WS graph that has the same characteristics

as this network.

4.2 WS Model

In the Facebook dataset, the average number of edges per node is about 22.

Since each edge is connected to two nodes, the average degree is twice the

number of edges per node:

>>> k = int(round(2*m/n))

>>> k

44

We can make a WS graph with n=4039 and k=44. When p=0, we get a ring

lattice.

lattice = nx.watts_strogatz_graph(n, k, 0)

In this graph, clustering is high: C is 0.73, compared to 0.61 in the dataset.

But L is 46, much higher than in the dataset!
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Figure 4.1: PMF of degree in the Facebook dataset and in the WS model.

With p=1 we get a random graph:

random_graph = nx.watts_strogatz_graph(n, k, 1)

In the random graph, L is 2.6, even shorter than in the dataset (3.7), but C is

only 0.011, so that’s no good.

By trial and error, we find that when p=0.05 we get a WS graph with high

clustering and low path length:

ws = nx.watts_strogatz_graph(n, k, 0.05, seed=15)

In this graph C is 0.63, a bit higher than in the dataset, and L is 3.2, a bit

lower than in the dataset. So this graph models the small world characteristics

of the dataset well.

So far, so good.

4.3 Degree

If the WS graph is a good model for the Facebook network, it should have the

same average degree across nodes, and ideally the same variance in degree.
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This function returns a list of degrees in a graph, one for each node:

def degrees(G):

return [G.degree(u) for u in G]

The mean degree in model is 44, which is close to the mean degree in the

dataset, 43.7.

However, the standard deviation of degree in the model is 1.5, which is not

close to the standard deviation in the dataset, 52.4. Oops.

What’s the problem? To get a better view, we have to look at the distribution

of degrees, not just the mean and standard deviation.

I’ll represent the distribution of degrees with a Pmf object, which is defined in

the thinkstats2 module. Pmf stands for “probability mass function”; if you

are not familiar with this concept, you might want to read Chapter 3 of Think

Stats, 2nd edition at https://thinkcomplex.com/ts2.

Briefly, a Pmf maps from values to their probabilities. A Pmf of degrees is a

mapping from each possible degree, d, to the fraction of nodes with degree d.

As an example, I’ll construct a graph with nodes 1, 2, and 3 connected to a

central node, 0:

G = nx.Graph()

G.add_edge(1, 0)

G.add_edge(2, 0)

G.add_edge(3, 0)

nx.draw(G)

Here’s the list of degrees in this graph:

>>> degrees(G)

[3, 1, 1, 1]

Node 0 has degree 3, the others have degree 1. Now I can make a Pmf that

represents this degree distribution:

>>> from thinkstats2 import Pmf

>>> Pmf(degrees(G))

Pmf({1: 0.75, 3: 0.25})

https://thinkcomplex.com/ts2
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The result is a Pmf object that maps from each degree to a fraction or proba-

bility. In this example, 75% of the nodes have degree 1 and 25% have degree

3.

Now we can make a Pmf that contains node degrees from the dataset, and

compute the mean and standard deviation:

>>> from thinkstats2 import Pmf

>>> pmf_fb = Pmf(degrees(fb))

>>> pmf_fb.Mean(), pmf_fb.Std()

(43.691, 52.414)

And the same for the WS model:

>>> pmf_ws = Pmf(degrees(ws))

>>> pmf_ws.mean(), pmf_ws.std()

(44.000, 1.465)

We can use the thinkplot module to plot the results:

thinkplot.Pdf(pmf_fb, label='Facebook')

thinkplot.Pdf(pmf_ws, label='WS graph')

Figure 4.1 shows the two distributions. They are very different.

In the WS model, most users have about 44 friends; the minimum is 38 and

the maximum is 50. That’s not much variation. In the dataset, there are many

users with only 1 or 2 friends, but one has more than 1000!

Distributions like this, with many small values and a few very large values,

are called heavy-tailed.

4.4 Heavy-tailed distributions

Heavy-tailed distributions are a common feature in many areas of complexity

science and they will be a recurring theme of this book.

We can get a clearer picture of a heavy-tailed distribution by plotting it on a

log-log axis, as shown in Figure 4.2. This transformation emphasizes the tail

of the distribution; that is, the probabilities of large values.
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Figure 4.2: PMF of degree in the Facebook dataset and in the WS model, on
a log-log scale.

Under this transformation, the data fall approximately on a straight line, which

suggests that there is a power law relationship between the largest values in

the distribution and their probabilities. Mathematically, a distribution obeys

a power law if

PMF(k) ∼ k−α

where PMF(k) is the fraction of nodes with degree k, α is a parameter, and

the symbol ∼ indicates that the PMF is asymptotic to k−α as k increases.

If we take the log of both sides, we get

log PMF(k) ∼ −α log k

So if a distribution follows a power law and we plot PMF(k) versus k on a

log-log scale, we expect a straight line with slope −α, at least for large values

of k.

All power law distributions are heavy-tailed, but there are other heavy-tailed

distributions that don’t follow a power law. We will see more examples soon.

But first, we have a problem: the WS model has the high clustering and low

path length we see in the data, but the degree distribution doesn’t resemble
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the data at all. This discrepancy is the motivation for our next topic, the

Barabási-Albert model.

4.5 Barabási-Albert model

In 1999 Barabási and Albert published a paper, “Emergence of Scaling in Ran-

dom Networks”, that characterizes the structure of several real-world networks,

including graphs that represent the interconnectivity of movie actors, web

pages, and elements in the electrical power grid in the western United States.

You can download the paper from https://thinkcomplex.com/barabasi.

They measure the degree of each node and compute PMF(k), the probability

that a vertex has degree k. Then they plot PMF(k) versus k on a log-log scale.

The plots fit a straight line, at least for large values of k, so Barabási and Albert

conclude that these distributions are heavy-tailed.

They also propose a model that generates graphs with the same property. The

essential features of the model, which distinguish it from the WS model, are:

Growth: Instead of starting with a fixed number of vertices, the BA model

starts with a small graph and adds vertices one at a time.

Preferential attachment: When a new edge is created, it is more likely to

connect to a vertex that already has a large number of edges. This

“rich get richer” effect is characteristic of the growth patterns of some

real-world networks.

Finally, they show that graphs generated by the Barabási-Albert (BA) model

have a degree distribution that obeys a power law.

Graphs with this property are sometimes called scale-free networks, for

reasons I won’t explain; if you are curious, you can read more at https:

//thinkcomplex.com/scale.

NetworkX provides a function that generates BA graphs. We will use it first;

then I’ll show you how it works.

ba = nx.barabasi_albert_graph(n=4039, k=22)

https://thinkcomplex.com/barabasi
https://thinkcomplex.com/scale
https://thinkcomplex.com/scale
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Figure 4.3: PMF of degree in the Facebook dataset and in the BA model, on
a log-log scale.

The parameters are n, the number of nodes to generate, and k, the number

of edges each node starts with when it is added to the graph. I chose k=22

because that is the average number of edges per node in the dataset.

The resulting graph has 4039 nodes and 21.9 edges per node. Since every edge

is connected to two nodes, the average degree is 43.8, very close to the average

degree in the dataset, 43.7.

And the standard deviation of degree is 40.9, which is a bit less than in the

dataset, 52.4, but it is much better than what we got from the WS graph, 1.5.

Figure 4.3 shows the degree distributions for the Facebook dataset and the BA

model on a log-log scale. The model is not perfect; in particular, it deviates

from the data when k is less than 10. But the tail looks like a straight line,

which suggests that this process generates degree distributions that follow a

power law.

So the BA model is better than the WS model at reproducing the degree

distribution. But does it have the small world property?

In this example, the average path length, L, is 2.5, which is even more “small

world” than the actual network, which has L = 3.69. So that’s good, although

maybe too good.
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Facebook WS model BA model

C 0.61 0.63 0.037

L 3.69 3.23 2.51

Mean degree 43.7 44 43.7

Std degree 52.4 1.5 40.1

Power law? maybe no yes

Table 4.1: Characteristics of the Facebook dataset compared to two models.

On the other hand, the clustering coefficient, C, is 0.037, not even close to the

value in the dataset, 0.61. So that’s a problem.

Table 4.1 summarizes these results. The WS model captures the small world

characteristics, but not the degree distribution. The BA model captures the

degree distribution, at least approximately, and the average path length, but

not the clustering coefficient.

In the exercises at the end of this chapter, you can explore other models

intended to capture all of these characteristics.

4.6 Generating BA graphs

In the previous sections we used a NetworkX function to generate BA graphs;

now let’s see how it works. Here is a version of barabasi_albert_graph, with

some changes I made to make it easier to read:
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def barabasi_albert_graph(n, k):

G = nx.empty_graph(k)

targets = list(range(k))

repeated_nodes = []

for source in range(k, n):

G.add_edges_from(zip([source]*k, targets))

repeated_nodes.extend(targets)

repeated_nodes.extend([source] * k)

targets = _random_subset(repeated_nodes, k)

return G

The parameters are n, the number of nodes we want, and k, the number of

edges each new node gets (which will turn out to be the average number of

edges per node).

We start with a graph that has k nodes and no edges. Then we initialize two

variables:

The list of k nodes that will be connected to the next node. Initially

targets contains the original k nodes; later it will contain a random

subset of nodes.

A list of existing nodes where each node appears once for every edge it

is connected to. When we select from repeated_nodes, the probability

of selecting any node is proportional to the number of edges it has.

Each time through the loop, we add edges from the source to each node in

targets. Then we update repeated_nodes by adding each target once and

the new node k times.

Finally, we choose a subset of the nodes to be targets for the next iteration.

Here’s the definition of _random_subset:
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Figure 4.4: CDF of degree in the Facebook dataset along with the WS model
(left) and the BA model (right), on a log-x scale.

def _random_subset(repeated_nodes, k):

targets = set()

while len(targets) < k:

x = random.choice(repeated_nodes)

targets.add(x)

return targets

Each time through the loop, _random_subset chooses from repeated_nodes

and adds the chosen node to targets. Because targets is a set, it auto-

matically discards duplicates, so the loop only exits when we have selected k

different nodes.

4.7 Cumulative distributions

Figure 4.3 represents the degree distribution by plotting the probability mass

function (PMF) on a log-log scale. That’s how Barabási and Albert present

their results and it is the representation used most often in articles about

power law distributions. But it is not the best way to look at data like this.

A better alternative is a cumulative distribution function (CDF), which

maps from a value, x, to the fraction of values less than or equal to x.
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Given a Pmf, the simplest way to compute a cumulative probability is to add

up the probabilities for values up to and including x:

def cumulative_prob(pmf, x):

ps = [pmf[value] for value in pmf if value<=x]

return np.sum(ps)

For example, given the degree distribution in the dataset, pmf_fb, we can

compute the fraction of users with 25 or fewer friends:

>>> cumulative_prob(pmf_fb, 25)

0.506

The result is close to 0.5, which means that the median number of friends is

about 25.

CDFs are better for visualization because they are less noisy than PMFs. Once

you get used to interpreting CDFs, they provide a clearer picture of the shape

of a distribution than PMFs.

The thinkstats module provides a class called Cdf that represents a cumu-

lative distribution function. We can use it to compute the CDF of degree in

the dataset.

from thinkstats2 import Cdf

cdf_fb = Cdf(degrees(fb), label='Facebook')

And thinkplot provides a function called Cdf that plots cumulative distribu-

tion functions.

thinkplot.Cdf(cdf_fb)

Figure 4.4 shows the degree CDF for the Facebook dataset along with the WS

model (left) and the BA model (right). The x-axis is on a log scale.

Clearly the CDF for the WS model is very different from the CDF from the

data. The BA model is better, but still not very good, especially for small

values.

In the tail of the distribution (values greater than 100) it looks like the BA

model matches the dataset well enough, but it is hard to see. We can get



4.7 Cumulative distributions 61

100 101 102 103

Degree

10 3

10 2

10 1

100
CC

DF
Facebook
WS model

100 101 102 103

Degree

10 3

10 2

10 1

100 Facebook
BA model

Figure 4.5: Complementary CDF of degree in the Facebook dataset along with
the WS model (left) and the BA model (right), on a log-log scale.

a clearer view with one other view of the data: plotting the complementary

CDF on a log-log scale.

The complementary CDF (CCDF) is defined

CCDF(x) ≡ 1− CDF(x)

This definition is useful because if the PMF follows a power law, the CCDF

also follows a power law:

CCDF(x) ∼
(
x

xm

)−α

where xm is the minimum possible value and α is a parameter that determines

the shape of the distribution.

Taking the log of both sides yields:

log CCDF(x) ∼ −α(log x− log xm)

So if the distribution obeys a power law, we expect the CCDF on a log-log

scale to be a straight line with slope −α.
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Figure 4.6: The logical structure of an explanatory model.

Figure 4.5 shows the CCDF of degree for the Facebook data, along with the

WS model (left) and the BA model (right), on a log-log scale.

With this way of looking at the data, we can see that the BA model matches

the tail of the distribution (values above 20) reasonably well. The WS model

does not.

4.8 Explanatory models

We started the discussion of networks with Milgram’s Small World Experi-

ment, which shows that path lengths in social networks are surprisingly small;

hence, “six degrees of separation”.

When we see something surprising, it is natural to ask “Why?” but sometimes

it’s not clear what kind of answer we are looking for. One kind of answer is an

explanatory model (see Figure 4.6). The logical structure of an explanatory

model is:

targets: repeated_nodes:1. In a system, S, we see something observable, O, that war-

rants explanation.

2. We construct a model, M, that is analogous to the system; that is, there

is a correspondence between the elements of the model and the elements

of the system.
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3. By simulation or mathematical derivation, we show that the model ex-

hibits a behavior, B, that is analogous to O.

4. We conclude that S exhibits O because S is similar to M, M exhibits B,

and B is similar to O.

At its core, this is an argument by analogy, which says that if two things are

similar in some ways, they are likely to be similar in other ways.

Argument by analogy can be useful, and explanatory models can be satisfying,

but they do not constitute a proof in the mathematical sense of the word.

Remember that all models leave out, or “abstract away”, details that we think

are unimportant. For any system there are many possible models that include

or ignore different features. And there might be models that exhibit different

behaviors that are similar to O in different ways. In that case, which model

explains O?

The small world phenomenon is an example: the Watts-Strogatz (WS) model

and the Barabási-Albert (BA) model both exhibit elements of small world

behavior, but they offer different explanations:

� The WS model suggests that social networks are “small” because they

include both strongly-connected clusters and “weak ties” that connect

clusters (see https://thinkcomplex.com/weak).

� The BA model suggests that social networks are small because they

include nodes with high degree that act as hubs, and that hubs grow,

over time, due to preferential attachment.

As is often the case in young areas of science, the problem is not that we have

no explanations, but too many.

4.9 Exercises

Exercise 4.1 In Section 4.8 we discussed two explanations for the small

world phenomenon, “weak ties” and “hubs”. Are these explanations compati-

ble; that is, can they both be right? Which do you find more satisfying as an

explanation, and why?

https://thinkcomplex.com/weak
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Is there data you could collect, or experiments you could perform, that would

provide evidence in favor of one model over the other?

Choosing among competing models is the topic of Thomas Kuhn’s essay,

“Objectivity, Value Judgment, and Theory Choice”, which you can read at

https://thinkcomplex.com/kuhn.

What criteria does Kuhn propose for choosing among competing models? Do

these criteria influence your opinion about the WS and BA models? Are there

other criteria you think should be considered?

Exercise 4.2 NetworkX provides a function called powerlaw_cluster_graph

that implements the ”Holme and Kim algorithm for growing graphs with pow-

erlaw degree distribution and approximate average clustering”. Read the doc-

umentation of this function (https://thinkcomplex.com/hk) and see if you

can use it to generate a graph that has the same number of nodes as the

Facebook dataset, the same average degree, and the same clustering coeffi-

cient. How does the degree distribution in the model compare to the actual

distribution?

Exercise 4.3 Data files from the Barabási and Albert paper are available

from https://thinkcomplex.com/netdata. Their actor collaboration data is

included in the repository for this book in a file named actor.dat.gz. The

following function reads the file and builds the graph.

import gzip

def read_actor_network(filename, n=None):

G = nx.Graph()

with gzip.open(filename) as f:

for i, line in enumerate(f):

nodes = [int(x) for x in line.split()]

G.add_edges_from(thinkcomplexity.all_pairs(nodes))

if n and i >= n:

break

return G

Compute the number of actors in the graph and the average degree. Plot the

PMF of degree on a log-log scale. Also plot the CDF of degree on a log-x

https://thinkcomplex.com/kuhn
https://thinkcomplex.com/hk
https://thinkcomplex.com/netdata
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scale, to see the general shape of the distribution, and on a log-log scale, to

see whether the tail follows a power law.

Note: The actor network is not connected, so you might want to use nx.connected_component_subgraphs

to find connected subsets of the nodes.
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Chapter 5

Cellular Automatons

A cellular automaton (CA) is a model of a world with very simple physics.

“Cellular” means that the world is divided into discrete chunks, called cells.

An “automaton” is a machine that performs computations — it could be a

real machine, but more often the “machine” is a mathematical abstraction or

a computer simulation.

This chapter presents experiments Stephen Wolfram performed in the 1980s,

showing that some cellular automatons display surprisingly complicated be-

havior, including the ability to perform arbitrary computations.

I discuss implications of these results, and at the end of the chapter I suggest

methods for implementing CAs efficiently in Python.

The code for this chapter is in chap05.ipynb in the repository for this book.

More information about working with the code is in Section 0.3.

5.1 A simple CA

Cellular automatons1 are governed by rules that determine how the state of

the cells changes over time.

1You might also see the plural “automata”.
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As a trivial example, consider a cellular automaton (CA) with a single cell.

The state of the cell during time step i is an integer, xi. As an initial condition,

suppose x0 = 0.

Now all we need is a rule. Arbitrarily, I’ll pick xi+1 = xi + 1, which says that

during each time step, the state of the CA gets incremented by 1. So this CA

performs a simple calculation: it counts.

But this CA is atypical; normally the number of possible states is finite. As an

example, suppose a cell can only have one of two states, 0 or 1. For a 2-state

CA, we could write a rule like xi+1 = (xi + 1)%2, where % is the remainder

(or modulus) operator.

The behavior of this CA is simple: it blinks. That is, the state of the cell

switches between 0 and 1 during each time step.

Most CAs are deterministic, which means that rules do not have any random

elements; given the same initial state, they always produce the same result.

But some CAs are nondeterministic; we will see examples later.

The CA in this section has only one cell, so we can think of it as zero-

dimensional. In the rest of this chapter, we explore one-dimensional (1-D)

CAs; in the next chapter we explore two-dimensional CAs.

5.2 Wolfram’s experiment

In the early 1980s Stephen Wolfram published a series of papers presenting a

systematic study of 1-D CAs. He identified four categories of behavior, each

more interesting than the last. You can read one of these papers, “Statistical

mechanics of cellular automata,” at https://thinkcomplex.com/ca.

In Wolfram’s experiments, the cells are arranged in a lattice (which you might

remember from Section 3.2) where each cell is connected to two neighbors.

The lattice can be finite, infinite, or arranged in a ring.

The rules that determine how the system evolves in time are based on the

notion of a “neighborhood”, which is the set of cells that determines the next

state of a given cell. Wolfram’s experiments use a 3-cell neighborhood: the

cell itself and its two neighbors.

https://thinkcomplex.com/ca
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Figure 5.1: Rule 50 after 10 time steps.

In these experiments, the cells have two states, denoted 0 and 1 or “off” and

“on”. A rule can be summarized by a table that maps from the state of the

neighborhood (a tuple of three states) to the next state of the center cell. The

following table shows an example:

prev 111 110 101 100 011 010 001 000

next 0 0 1 1 0 0 1 0

The first row shows the eight states a neighborhood can be in. The second

row shows the state of the center cell during the next time step. As a concise

encoding of this table, Wolfram suggested reading the bottom row as a binary

number; because 00110010 in binary is 50 in decimal, Wolfram calls this CA

“Rule 50”.

Figure 5.1 shows the effect of Rule 50 over 10 time steps. The first row shows

the state of the system during the first time step; it starts with one cell “on”

and the rest “off”. The second row shows the state of the system during the

next time step, and so on.

The triangular shape in the figure is typical of these CAs; is it a consequence of

the shape of the neighborhood. In one time step, each cell influences the state

of one neighbor in either direction. During the next time step, that influence

can propagate one more cell in each direction. So each cell in the past has a

“triangle of influence” that includes all of the cells that can be affected by it.

5.3 Classifying CAs

How many of these CAs are there?
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Figure 5.2: Rule 18 after 64 steps.

Since each cell is either on or off, we can specify the state of a cell with a single

bit. In a neighborhood with three cells, there are 8 possible configurations, so

there are 8 entries in the rule tables. And since each entry contains a single bit,

we can specify a table using 8 bits. With 8 bits, we can specify 256 different

rules.

One of Wolfram’s first experiments with CAs was to test all 256 possibilities

and classify them.

Examining the results visually, he proposed that the behavior of CAs can be

grouped into four classes. Class 1 contains the simplest (and least interesting)

CAs, the ones that evolve from almost any starting condition to the same

uniform pattern. As a trivial example, Rule 0 always generates an empty

pattern after one time step.

Rule 50 is an example of Class 2. It generates a simple pattern with nested

structure, that is, a pattern that contains many smaller versions of itself. Rule

18 makes the nested structure is even clearer; Figure 5.2 shows what it looks

like after 64 steps.

This pattern resembles the Sierpiński triangle, which you can read about at

https://thinkcomplex.com/sier.

Some Class 2 CAs generate patterns that are intricate and pretty, but com-

pared to Classes 3 and 4, they are relatively simple.

https://thinkcomplex.com/sier
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Figure 5.3: Rule 30 after 100 time steps.

5.4 Randomness

Class 3 contains CAs that generate randomness. Rule 30 is an example; Fig-

ure 5.3 shows what it looks like after 100 time steps.

Along the left side there is an apparent pattern, and on the right side there

are triangles in various sizes, but the center seems quite random. In fact, if

you take the center column and treat it as a sequence of bits, it is hard to

distinguish from a truly random sequence. It passes many of the statistical

tests people use to test whether a sequence of bits is random.

Programs that produce random-seeming numbers are called pseudo-random

number generators (PRNGs). They are not considered truly random be-

cause:

� Many of them produce sequences with regularities that can be detected

statistically. For example, the original implementation of rand in the C

library used a linear congruential generator that yielded sequences with

easily detectable serial correlations.

� Any PRNG that uses a finite amount of state (that is, storage) will

eventually repeat itself. One of the characteristics of a generator is the

period of this repetition.
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� The underlying process is fundamentally deterministic, unlike some phys-

ical processes, like radioactive decay and thermal noise, that are consid-

ered to be fundamentally random.

Modern PRNGs produce sequences that are statistically indistinguishable from

random, and they can be implemented with periods so long that the universe

will collapse before they repeat. The existence of these generators raises the

question of whether there is any real difference between a good quality pseudo-

random sequence and a sequence generated by a “truly” random process. In

A New Kind of Science, Wolfram argues that there is not (pages 315–326).

5.5 Determinism

The existence of Class 3 CAs is surprising. To explain how surprising, let

me start with philosophical determinism (see https://thinkcomplex.com/

deter). Many philosophical stances are hard to define precisely because they

come in a variety of flavors. I often find it useful to define them with a list of

statements ordered from weak to strong:

D1: Deterministic models can make accurate predictions for some physical

systems.

D2: Many physical systems can be modeled by deterministic processes, but

some are intrinsically random.

D3: All events are caused by prior events, but many physical systems are

nevertheless fundamentally unpredictable.

D4: All events are caused by prior events, and can (at least in principle) be

predicted.

My goal in constructing this range is to make D1 so weak that virtually ev-

eryone would accept it, D4 so strong that almost no one would accept it, with

intermediate statements that some people accept.

The center of mass of world opinion swings along this range in response to

historical developments and scientific discoveries. Prior to the scientific rev-

olution, many people regarded the working of the universe as fundamentally

https://thinkcomplex.com/deter
https://thinkcomplex.com/deter
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unpredictable or controlled by supernatural forces. After the triumphs of

Newtonian mechanics, some optimists came to believe something like D4; for

example, in 1814 Pierre-Simon Laplace wrote:

We may regard the present state of the universe as the effect of its

past and the cause of its future. An intellect which at a certain

moment would know all forces that set nature in motion, and all

positions of all items of which nature is composed, if this intellect

were also vast enough to submit these data to analysis, it would

embrace in a single formula the movements of the greatest bodies

of the universe and those of the tiniest atom; for such an intellect

nothing would be uncertain and the future just like the past would

be present before its eyes.

This “intellect” is now called “Laplace’s Demon”. See https://thinkcomplex.

com/demon. The word “demon” in this context has the sense of “spirit”, with

no implication of evil.

Discoveries in the 19th and 20th centuries gradually dismantled Laplace’s

hope. Thermodynamics, radioactivity, and quantum mechanics posed suc-

cessive challenges to strong forms of determinism.

In the 1960s chaos theory showed that in some deterministic systems prediction

is only possible over short time scales, limited by precision in the measurement

of initial conditions.

Most of these systems are continuous in space (if not time) and nonlinear, so

the complexity of their behavior is not entirely surprising. Wolfram’s demon-

stration of complex behavior in simple cellular automatons is more surprising

— and disturbing, at least to a deterministic world view.

So far I have focused on scientific challenges to determinism, but the longest-

standing objection is the apparent conflict between determinism and human

free will. Complexity science provides a possible resolution of this conflict; I’ll

come back to this topic in Section 10.6.

5.6 Spaceships

The behavior of Class 4 CAs is even more surprising. Several 1-D CAs, most

notably Rule 110, are Turing complete, which means that they can compute

https://thinkcomplex.com/demon
https://thinkcomplex.com/demon
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Figure 5.4: Rule 110 after 100 time steps.

any computable function. This property, also called universality, was proved

by Matthew Cook in 1998. See https://thinkcomplex.com/r110.

Figure 5.4 shows what Rule 110 looks like with an initial condition of a single

cell and 100 time steps. At this time scale it is not apparent that anything

special is going on. There are some regular patterns but also some features

that are hard to characterize.

Figure 5.5 shows a bigger picture, starting with a random initial condition and

600 time steps:

After about 100 steps the background settles into a simple repeating pattern,

but there are a number of persistent structures that appear as disturbances in

the background. Some of these structures are stable, so they appear as vertical

lines. Others translate in space, appearing as diagonals with different slopes,

depending on how many time steps they take to shift by one column. These

structures are called spaceships.

Collisions between spaceships yield different results depending on the types of

the spaceships and the phase they are in when they collide. Some collisions

annihilate both ships; others leave one ship unchanged; still others yield one

or more ships of different types.

These collisions are the basis of computation in a Rule 110 CA. If you think

of spaceships as signals that propagate through space, and collisions as gates

https://thinkcomplex.com/r110
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Figure 5.5: Rule 110 with random initial conditions and 600 time steps.
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that compute logical operations like AND and OR, you can see what it means

for a CA to perform a computation.

5.7 Universality

To understand universality, we have to understand computability theory, which

is about models of computation and what they compute.

One of the most general models of computation is the Turing machine, which

is an abstract computer proposed by Alan Turing in 1936. A Turing machine

is a 1-D CA, infinite in both directions, augmented with a read-write head.

At any time, the head is positioned over a single cell. It can read the state of

that cell (usually there are only two states) and it can write a new value into

the cell.

In addition, the machine has a register, which records the state of the machine

(one of a finite number of states), and a table of rules. For each machine state

and cell state, the table specifies an action. Actions include modifying the cell

the head is over and moving one cell to the left or right.

A Turing machine is not a practical design for a computer, but it models

common computer architectures. For a given program running on a real com-

puter, it is possible (at least in principle) to construct a Turing machine that

performs an equivalent computation.

The Turing machine is useful because it is possible to characterize the set of

functions that can be computed by a Turing machine, which is what Turing

did. Functions in this set are called “Turing computable”.

To say that a Turing machine can compute any Turing-computable function

is a tautology: it is true by definition. But Turing-computability is more

interesting than that.

It turns out that just about every reasonable model of computation anyone has

come up with is “Turing complete”; that is, it can compute exactly the same

set of functions as the Turing machine. Some of these models, like lamdba

calculus, are very different from a Turing machine, so their equivalence is

surprising.
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This observation led to the Church-Turing Thesis, which is the claim that these

definitions of computability capture something essential that is independent

of any particular model of computation.

The Rule 110 CA is yet another model of computation, and remarkable for its

simplicity. That it, too, turns out to be Turing complete lends support to the

Church-Turing Thesis.

In A New Kind of Science, Wolfram states a variation of this thesis, which he

calls the “principle of computational equivalence” (see https://thinkcomplex.

com/equiv):

Almost all processes that are not obviously simple can be viewed

as computations of equivalent sophistication.

More specifically, the principle of computational equivalence says

that systems found in the natural world can perform computations

up to a maximal (“universal”) level of computational power, and

that most systems do in fact attain this maximal level of compu-

tational power. Consequently, most systems are computationally

equivalent.

Applying these definitions to CAs, Classes 1 and 2 are “obviously simple”. It

may be less obvious that Class 3 is simple, but in a way perfect randomness

is as simple as perfect order; complexity happens in between. So Wolfram’s

claim is that Class 4 behavior is common in the natural world, and that almost

all systems that manifest it are computationally equivalent.

5.8 Falsifiability

Wolfram holds that his principle is a stronger claim than the Church-Turing

thesis because it is about the natural world rather than abstract models of

computation. But saying that natural processes “can be viewed as computa-

tions” strikes me as a statement about theory choice more than a hypothesis

about the natural world.

Also, with qualifications like “almost” and undefined terms like “obviously

simple”, his hypothesis may be unfalsifiable. Falsifiability is an idea from

https://thinkcomplex.com/equiv
https://thinkcomplex.com/equiv
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the philosophy of science, proposed by Karl Popper as a demarcation between

scientific hypotheses and pseudoscience. A hypothesis is falsifiable if there is

an experiment, at least in the realm of practicality, that would contradict the

hypothesis if it were false.

For example, the claim that all life on earth is descended from a common

ancestor is falsifiable because it makes specific predictions about similarities

in the genetics of modern species (among other things). If we discovered a

new species whose DNA was almost entirely different from ours, that would

contradict (or at least bring into question) the theory of universal common

descent.

On the other hand, “special creation”, the claim that all species were created

in their current form by a supernatural agent, is unfalsifiable because there is

nothing that we could observe about the natural world that would contradict

it. Any outcome of any experiment could be attributed to the will of the

creator.

Unfalsifiable hypotheses can be appealing because they are impossible to re-

fute. If your goal is never to be proved wrong, you should choose hypotheses

that are as unfalsifiable as possible.

But if your goal is to make reliable predictions about the world — and this is

at least one of the goals of science — unfalsifiable hypotheses are useless. The

problem is that they have no consequences (if they had consequences, they

would be falsifiable).

For example, if the theory of special creation were true, what good would it do

me to know it? It wouldn’t tell me anything about the creator except that he

has an “inordinate fondness for beetles” (attributed to J. B. S. Haldane). And

unlike the theory of common descent, which informs many areas of science and

bioengineering, it would be of no use for understanding the world or acting in

it.

5.9 What is this a model of?

Some cellular automatons are primarily mathematical artifacts. They are in-

teresting because they are surprising, or useful, or pretty, or because they

provide tools for creating new mathematics (like the Church-Turing thesis).
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Figure 5.6: The logical structure of a simple physical model.

But it is not clear that they are models of physical systems. And if they are,

they are highly abstracted, which is to say that they are not very detailed or

realistic.

For example, some species of cone snail produce a pattern on their shells

that resembles the patterns generated by cellular automatons (see https:

//thinkcomplex.com/cone). So it is natural to suppose that a CA is a model

of the mechanism that produces patterns on shells as they grow. But, at least

initially, it is not clear how the elements of the model (so-called cells, com-

munication between neighbors, rules) correspond to the elements of a growing

snail (real cells, chemical signals, protein interaction networks).

For conventional physical models, being realistic is a virtue. If the elements of

a model correspond to the elements of a physical system, there is an obvious

analogy between the model and the system. In general, we expect a model

that is more realistic to make better predictions and to provide more believable

explanations.

Of course, this is only true up to a point. Models that are more detailed are

harder to work with, and usually less amenable to analysis. At some point, a

model becomes so complex that it is easier to experiment with the system.

At the other extreme, simple models can be compelling exactly because they

are simple.

https://thinkcomplex.com/cone
https://thinkcomplex.com/cone
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Simple models offer a different kind of explanation than detailed models. With

a detailed model, the argument goes something like this: “We are interested in

physical system S, so we construct a detailed model, M, and show by analysis

and simulation that M exhibits a behavior, B, that is similar (qualitatively

or quantitatively) to an observation of the real system, O. So why does O

happen? Because S is similar to M, and B is similar to O, and we can prove

that M leads to B.”

With simple models we can’t claim that S is similar to M, because it isn’t.

Instead, the argument goes like this: “There is a set of models that share a

common set of features. Any model that has these features exhibits behavior

B. If we make an observation, O, that resembles B, one way to explain it is to

show that the system, S, has the set of features sufficient to produce B.”

For this kind of argument, adding more features doesn’t help. Making the

model more realistic doesn’t make the model more reliable; it only obscures

the difference between the essential features that cause B and the incidental

features that are particular to S.

Figure 5.6 shows the logical structure of this kind of model. The features x

and y are sufficient to produce the behavior. Adding more detail, like features

w and z, might make the model more realistic, but that realism adds no

explanatory power.

5.10 Implementing CAs

To generate the figures in this chapter, I wrote a Python class called Cell1D

that represents a 1-D cellular automaton, and a class called Cell1DViewer

that plots the results. Both are defined in Cell1D.py in the repository for this

book.

To store the state of the CA, I use a NumPy array with one column for each

cell and one row for each time step.

To explain how my implementation works, I’ll start with a CA that computes

the parity of the cells in each neighborhood. The “parity” of a number is 0 if

the number is even and 1 if it is odd.
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I use the NumPy function zeros to create an array of zeros, then put a 1 in

the middle of the first row.

rows = 5

cols = 11

array = np.zeros((rows, cols), dtype=np.uint8)

array[0, 5] = 1

print(array)

[[ 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]

[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

The data type uint8 indicates that the elements of array are unsigned 8-bit

integers.

plot_ca displays the elements of an array graphically:

import matplotlib.pyplot as plt

def plot_ca(array, rows, cols):

cmap = plt.get_cmap('Blues')

plt.imshow(array, cmap=cmap, interpolation='none')

I import pyplot with the abbreviated name plt, which is conventional. The

function get_cmap returns a colormap, which maps from the values in the

array to colors. The colormap 'Blues' draws the “on” cells in dark blue and

the “off” cells in light blue.

imshow displays the array as an “image”; that is, it draws a colored square

for each element of the array. Setting interpolation to none indicates that

imshow should not interpolate between on and off cells.

To compute the state of the CA during time step i, we have to add up con-

secutive elements of array and compute the parity of the sum. We can due

that using a slice operator to select the elements and the modulus operator to

compute parity:
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def step(array, i):

rows, cols = array.shape

row = array[i-1]

for j in range(1, cols):

elts = row[j-1:j+2]

array[i, j] = sum(elts) % 2

rows and cols are the dimensions of the array. row is the previous row of the

array.

Each time through the loop, we select three elements from row, add them up,

compute the parity, and store the result in row i.

In this example, the lattice is finite, so the first and last cells have only one

neighbor. To handle this special case, I don’t update the first and last column;

they are always 0.

5.11 Cross-correlation

The operation in the previous section — selecting elements from an array and

adding them up — is an example of an operation that is so useful, in so many

domains, that it has a name: cross-correlation. And NumPy provides a

function, called correlate, that computes it. In this section I’ll show how we

can use NumPy to write a simpler, faster version of step.

The NumPy correlate function takes an array, a, and a “window”, w, with

length N and computes a new array, c, where element k is the following sum-

mation:

ck =
N−1∑
n=0

an+k · wn

We can write this operation in Python like this:

def c_k(a, w, k):

N = len(w)

return sum(a[k:k+N] * w)

This function computes element k of the correlation between a and w. To show

how it works, I’ll create an array of integers:
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N = 10

row = np.arange(N, dtype=np.uint8)

print(row)

[0 1 2 3 4 5 6 7 8 9]

And a window:

window = [1, 1, 1]

print(window)

With this window, each element, c_k, is the sum of consecutive elements from

a:

c_k(row, window, 0)

3

c_k(row, window, 1)

6

We can use c_k to write correlate, which computes the elements of c for all

values of k where the window and the array overlap.

def correlate(row, window):

cols = len(row)

N = len(window)

c = [c_k(row, window, k) for k in range(cols-N+1)]

return np.array(c)

Here’s the result:

c = correlate(row, window)

print(c)

[ 3 6 9 12 15 18 21 24]

The NumPy function correlate does the same thing:

c = np.correlate(row, window, mode='valid')

print(c)

[ 3 6 9 12 15 18 21 24]
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The argument mode='valid' means that the result contains only the elements

where the window and array overlap, which are considered valid.

The drawback of this mode is that the result is not the same size as array.

We can fix that with mode='same', which adds zeros to the beginning and end

of array:

c = np.correlate(row, window, mode='same')

print(c)

[ 1 3 6 9 12 15 18 21 24 17]

Now the result is the same size as array. As an exercise at the end of this

chapter, you’ll have a chance to write a version of correlate that does the

same thing.

We can use NumPy’s implementation of correlate to write a simple, faster

version of step:

def step2(array, i, window=[1,1,1]):

row = array[i-1]

c = np.correlate(row, window, mode='same')

array[i] = c % 2

In the notebook for this chapter, you’ll see that step2 yields the same results

as step.

5.12 CA tables

The function we have so far works if the CA is “totalitic”, which means that

the rules only depend on the sum of the neighbors. But most rules also depend

on which neighbors are on and off. For example, 100 and 001 have the same

sum, but for many CAs, they would yield different results.

We can make step2 more general using a window with elements [4, 2, 1],

which interprets the neighborhood as a binary number. For example, the

neighborhood 100 yields 4; 010 yields 2, and 001 yields 1. Then we can take

these results and look them up in the rule table.
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Here’s the more general version of step2:

def step3(array, i, window=[4,2,1]):

row = array[i-1]

c = np.correlate(row, window, mode='same')

array[i] = table[c]

The first two lines are the same. Then the last line looks up each element from

c in table and assigns the result to array[i].

Here’s the function that computes the table:

def make_table(rule):

rule = np.array([rule], dtype=np.uint8)

table = np.unpackbits(rule)[::-1]

return table

The parameter, rule, is an integer between 0 and 255. The first line puts rule

into an array with a single element so we can use unpackbits, which converts

the rule number to its binary representation. For example, here’s the table for

Rule 150:

>>> table = make_table(150)

>>> print(table)

[0 1 1 0 1 0 0 1]

The code in this section is encapsulated in the Cell1D class, defined in Cell1D.py

in the repository for this book.

5.13 Exercises

The code for this chapter is in the Jupyter notebook chap05.ipynb in the

repository for this book. Open this notebook, read the code, and run the

cells. You can use this notebook to work on the exercises in this chapter. My

solutions are in chap05soln.ipynb.

Exercise 5.1 Write a version of correlate that returns the same result as

np.correlate with mode='same'. Hint: use the NumPy function pad.
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Exercise 5.2 This exercise asks you to experiment with Rule 110 and some

of its spaceships.

1. Read the Wikipedia page about Rule 110, which describes its background

pattern and spaceships: https://thinkcomplex.com/r110.

2. Create a Rule 110 CA with an initial condition that yields the stable

background pattern.

Note that the Cell1D class provides start_string, which allows you to

initialize the state of the array using a string of 1s and 0s.

3. Modify the initial condition by adding different patterns in the center

of the row and see which ones yield spaceships. You might want to

enumerate all possible patterns of n bits, for some reasonable value of

n. For each spaceship, can you find the period and rate of translation?

What is the biggest spaceship you can find?

4. What happens when spaceships collide?

Exercise 5.3 The goal of this exercise is to implement a Turing machine.

1. Read about Turing machines at https://thinkcomplex.com/tm.

2. Write a class called Turing that implements a Turing machine. For the

action table, use the rules for a 3-state busy beaver.

3. Write a class named TuringViewer that generates an image that repre-

sents the state of the tape and the position and state of the head. For

one example of what that might look like, see https://thinkcomplex.

com/turing.

Exercise 5.4 This exercise asks you to implement and test several PRNGs.

For testing, you will need to install DieHarder, which you can download from

https://thinkcomplex.com/dh, or it might be available as a package for your

operating system.

1. Write a program that implements one of the linear congruential gen-

erators described at https://thinkcomplex.com/lcg. Test it using

DieHarder.

https://thinkcomplex.com/r110
https://thinkcomplex.com/tm
https://thinkcomplex.com/turing
https://thinkcomplex.com/turing
https://thinkcomplex.com/dh
https://thinkcomplex.com/lcg
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2. Read the documentation of Python’s random module. What PRNG does

it use? Test it.

3. Implement a Rule 30 CA with a few hundred cells, run it for as many

time steps as you can in a reasonable amount of time, and output the

center column as a sequence of bits. Test it.

Exercise 5.5 Falsifiability is an appealing and useful idea, but among philoso-

phers of science it is not generally accepted as a solution to the demarcation

problem, as Popper claimed.

Read https://thinkcomplex.com/false and answer the following questions.

1. What is the demarcation problem?

2. How, according to Popper, does falsifiability solve the demarcation prob-

lem?

3. Give an example of two theories, one considered scientific and one con-

sidered unscientific, that are successfully distinguished by the criterion

of falsifiability.

4. Can you summarize one or more of the objections that philosophers and

historians of science have raised to Popper’s claim?

5. Do you get the sense that practicing philosophers think highly of Pop-

per’s work?

https://thinkcomplex.com/false
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Chapter 6

Game of Life

In this chapter we consider two-dimensional cellular automatons, especially

John Conway’s Game of Life (GoL). Like some of the 1-D CAs in the previ-

ous chapter, GoL follows simple rules and produces surprisingly complicated

behavior. And like Wolfram’s Rule 110, GoL turns out to be universal; that

is, it can compute any computable function, at least in theory.

Complex behavior in GoL raises issues in the philosophy of science, particularly

related to scientific realism and instrumentalism. I discuss these issues and

suggest additional reading.

At the end of the chapter, I demonstrate ways to implement GoL efficiently

in Python.

The code for this chapter is in chap06.ipynb in the repository for this book.

More information about working with the code is in Section 0.3.

6.1 Conway’s GoL

One of the first cellular automatons to be studied, and probably the most pop-

ular of all time, is a 2-D CA called “The Game of Life”, or GoL for short. It was

developed by John H. Conway and popularized in 1970 in Martin Gardner’s

column in Scientific American. See https://thinkcomplex.com/gol.

https://thinkcomplex.com/gol
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The cells in GoL are arranged in a 2-D grid, that is, an array of rows and

columns. Usually the grid is considered to be infinite, but in practice it is

often “wrapped”; that is, the right edge is connected to the left, and the top

edge to the bottom.

Each cell in the grid has two states — live and dead — and 8 neighbors —

north, south, east, west, and the four diagonals. This set of neighbors is

sometimes called a “Moore neighborhood”.

Like the 1-D CAs in the previous chapters, GoL evolves over time according

to rules, which are like simple laws of physics.

In GoL, the next state of each cell depends on its current state and its number

of live neighbors. If a cell is alive, it stays alive if it has 2 or 3 neighbors, and

dies otherwise. If a cell is dead, it stays dead unless it has exactly 3 neighbors.

This behavior is loosely analogous to real cell growth: cells that are isolated

or overcrowded die; at moderate densities they flourish.

GoL is popular because:

� There are simple initial conditions that yield surprisingly complex be-

havior.

� There are many interesting stable patterns: some oscillate (with various

periods) and some move like the spaceships in Wolfram’s Rule 110 CA.

� And like Rule 110, GoL is Turing complete.

� Another factor that generated interest was Conway’s conjecture — that

there is no initial condition that yields unbounded growth in the number

of live cells — and the $50 bounty he offered to anyone who could prove

or disprove it.

� Finally, the increasing availability of computers made it possible to au-

tomate the computation and display the results graphically.
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Figure 6.1: A stable pattern called a beehive.

Figure 6.2: An oscillator called a toad.

Figure 6.3: A spaceship called a glider.
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6.2 Life patterns

If you run GoL from a random starting state, a number of stable patterns are

likely to appear. Over time, people have identified these patterns and given

them names.

For example, Figure 6.1 shows a stable pattern called a “beehive”. Every cell

in the beehive has 2 or 3 neighbors, so they all survive, and none of the dead

cells adjacent to the beehive has 3 neighbors, so no new cells are born.

Other patterns “oscillate”; that is, they change over time but eventually re-

turn to their starting configuration (provided they don’t collide with another

pattern). For example, Figure 6.2 shows a pattern called a “toad”, which is an

oscillator that alternates between two states. The “period” of this oscillator

is 2.

Finally, some patterns oscillate and return to the starting configuration, but

shifted in space. Because these patterns seem to move, they are called “space-

ships”.

Figure 6.3 shows a spaceship called a “glider”. After a period of 4 steps, the

glider is back in the starting configuration, shifted one unit down and to the

right.

Depending on the starting orientation, gliders can move along any of the four

diagonals. There are other spaceships that move horizontally and vertically.

People have spent embarrassing amounts of time finding and naming these

patterns. If you search the web, you will find many collections.

6.3 Conway’s conjecture

From most initial conditions, GoL quickly reaches a stable state where the

number of live cells is nearly constant (possibly with some oscillation).

But there are a some simple starting conditions that yield a surprising number

of live cells, and take a long time to settle down. Because these patterns are

cso long-lived, they are called “Methuselahs”.
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Figure 6.4: Starting and final configurations of the r-pentomino.

Figure 6.5: Gosper’s glider gun, which produces a stream of gliders.

One of the simplest Methuselahs is the r-pentomino, which has only five cells,

roughly in the shape of the letter “r”. Figure 6.4 shows the initial configuration

of the r-pentomino and the final configuration after 1103 steps.

This configuration is “final” in the sense that all remaining patterns are either

stable, oscillators, or gliders that will never collide with another pattern. In

total, the r-pentomino yields 6 gliders, 8 blocks, 4 blinkers, 4 beehives, 1 boat,

1 ship, and 1 loaf.

The existence of long-lived patterns prompted Conway to wonder if there are

initial patterns that never stabilize. He conjectured that there were not, but

he described two kinds of pattern that would prove him wrong, a “gun” and a

“puffer train”. A gun is a stable pattern that periodically produces a spaceship

— as the stream of spaceships moves out from the source, the number of live

cells grows indefinitely. A puffer train is a translating pattern that leaves live

cells in its wake.
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It turns out that both of these patterns exist. A team led by Bill Gosper

discovered the first, a glider gun now called Gosper’s Gun, which is shown in

Figure 6.5. Gosper also discovered the first puffer train.

There are many patterns of both types, but they are not easy to design or

find. That is not a coincidence. Conway chose the rules of GoL so that his

conjecture would not be obviously true or false. Of all possible rules for a 2-D

CA, most yield simple behavior: most initial conditions stabilize quickly or

grow unboundedly. By avoiding uninteresting CAs, Conway was also avoiding

Wolfram’s Class 1 and Class 2 behavior, and probably Class 3 as well.

If we believe Wolfram’s Principle of Computational Equivalence, we expect

GoL to be in Class 4, and it is. The Game of Life was proved Turing com-

plete in 1982 (and again, independently, in 1983). Since then, several people

have constructed GoL patterns that implement a Turing machine or another

machine known to be Turing complete.

6.4 Realism

Stable patterns in GoL are hard not to notice, especially the ones that move.

It is natural to think of them as persistent entities, but remember that a

CA is made of cells; there is no such thing as a toad or a loaf. Gliders and

other spaceships are even less real because they are not even made up of the

same cells over time. So these patterns are like constellations of stars. We

perceive them because we are good at seeing patterns, or because we have

active imaginations, but they are not real.

Right?

Well, not so fast. Many entities that we consider “real” are also persistent

patterns of entities at a smaller scale. Hurricanes are just patterns of air flow,

but we give them personal names. And people, like gliders, are not made up

of the same cells over time.

This is not a new observation — about 2500 years ago Heraclitus pointed out

that you can’t step in the same river twice — but the entities that appear in

the Game of Life are a useful test case for thinking about scientific realism.
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Scientific realism pertains to scientific theories and the entities they postu-

late. A theory postulates an entity if it is expressed in terms of the properties

and behavior of the entity. For example, theories about electromagnetism are

expressed in terms of electrical and magnetic fields. Some theories about eco-

nomics are expressed in terms of supply, demand, and market forces. And

theories about biology are expressed in terms of genes.

But are these entities real? That is, do they exist in the world independent of

us and our theories?

Again, I find it useful to state philosophical positions in a range of strengths;

here are four statements of scientific realism with increasing strength:

SR1: Scientific theories are true or false to the degree that they approximate

reality, but no theory is exactly true. Some postulated entities may be

real, but there is no principled way to say which ones.

SR2: As science advances, our theories become better approximations of re-

ality. At least some postulated entities are known to be real.

SR3: Some theories are exactly true; others are approximately true. Entities

postulated by true theories, and some entities in approximate theories,

are real.

SR4: A theory is true if it describes reality correctly, and false otherwise. The

entities postulated by true theories are real; others are not.

SR4 is so strong that it is probably untenable; by such a strict criterion,

almost all current theories are known to be false. Most realists would accept

something in the range between SR1 and SR3.

6.5 Instrumentalism

But SR1 is so weak that it verges on instrumentalism, which is the view

that theories are instruments that we use for our purposes: a theory is useful,

or not, to the degree that it is fit for its purpose, but we can’t say whether it

is true or false.

To see whether you are comfortable with instrumentalism, I made up the

following test. Read the following statements and give yourself a point for each

one you agree with. If you score 4 or more, you might be an instrumentalist!
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“Entities in the Game of Life aren’t real; they are just patterns of

cells that people have given cute names.”

“A hurricane is just a pattern of air flow, but it is a useful descrip-

tion because it allows us to make predictions and communicate

about the weather.”

“Freudian entities like the Id and the Superego aren’t real, but they

are useful tools for thinking and communicating about psychology

(or at least some people think so).”

“Electric and magnetic fields are postulated entities in our best

theory of electromagnetism, but they aren’t real. We could con-

struct other theories, without postulating fields, that would be just

as useful.”

“Many of the things in the world that we identify as objects are

arbitrary collections like constellations. For example, a mushroom

is just the fruiting body of a fungus, most of which grows un-

derground as a barely-contiguous network of cells. We focus on

mushrooms for practical reasons like visibility and edibility.”

“Some objects have sharp boundaries, but many are fuzzy. For ex-

ample, which molecules are part of your body: Air in your lungs?

Food in your stomach? Nutrients in your blood? Nutrients in a

cell? Water in a cell? Structural parts of a cell? Hair? Dead skin?

Dirt? Bacteria on your skin? Bacteria in your gut? Mitochondria?

How many of those molecules do you include when you weigh your-

self? Conceiving the world in terms of discrete objects is useful,

but the entities we identify are not real.”

If you are more comfortable with some of these statements than others, ask

yourself why. What are the differences in these scenarios that influence your

reaction? Can you make a principled distinction between them?

For more on instrumentalism, see https://thinkcomplex.com/instr.

https://thinkcomplex.com/instr
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6.6 Implementing Life

The exercises at the end of this chapter ask you to experiment with and modify

the Game of Life, and implement other 2-D cellular automatons. This section

explains my implementation of GoL, which you can use as a starting place for

your experiments.

To represent the state of the cells, I use a NumPy array of 8-bit unsigned

integers. As an example, the following line creates a 10 by 10 array initialized

with random values of 0 and 1.

a = np.random.randint(2, size=(10, 10), dtype=np.uint8)

There are a few ways we can compute the GoL rules. The simplest is to use

for loops to iterate through the rows and columns of the array:

b = np.zeros_like(a)

rows, cols = a.shape

for i in range(1, rows-1):

for j in range(1, cols-1):

state = a[i, j]

neighbors = a[i-1:i+2, j-1:j+2]

k = np.sum(neighbors) - state

if state:

if k==2 or k==3:

b[i, j] = 1

else:

if k == 3:

b[i, j] = 1

Initially, b is an array of zeros with the same size as a. Each time through

the loop, state is the condition of the center cell and neighbors is the 3x3

neighborhood. k is the number of live neighbors (not including the center

cell). The nested if statements evaluate the GoL rules and turn on cells in b

accordingly.

This implementation is a straightforward translation of the rules, but it is

verbose and slow. We can do better using cross-correlation, as we saw in

Section 5.11. There, we used np.correlate to compute a 1-D correlation.
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Now, to perform 2-D correlation, we’ll use correlate2d from scipy.signal,

a SciPy module that provides functions related to signal processing:

from scipy.signal import correlate2d

kernel = np.array([[1, 1, 1],

[1, 0, 1],

[1, 1, 1]])

c = correlate2d(a, kernel, mode='same')

What we called a “window” in the context of 1-D correlation is called a “kernel”

in the context of 2-D correlation, but the idea is the same: correlate2d

multiplies the kernel and the array to select a neighborhood, then adds up the

result. This kernel selects the 8 neighbors that surround the center cell.

correlate2d applies the kernel to each location in the array. With mode='same',

the result has the same size as a.

Now we can use logical operators to compute the rules:

b = (c==3) | (c==2) & a

b = b.astype(np.uint8)

The first line computes a boolean array with True where there should be a

live cell and False elsewhere. Then astype converts the boolean array to an

array of integers.

This version is faster, and probably good enough, but we can simplify it slightly

by modifying the kernel:

kernel = np.array([[1, 1, 1],

[1,10, 1],

[1, 1, 1]])

c = correlate2d(a, kernel, mode='same')

b = (c==3) | (c==12) | (c==13)

b = b.astype(np.uint8)

This version of the kernel includes the center cell and gives it a weight of 10.

If the center cell is 0, the result is between 0 and 8; if the center cell is 1,
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the result is between 10 and 18. Using this kernel, we can simplify the logical

operations, selecting only cells with the values 3, 12, and 13.

That might not seem like a big improvement, but it allows one more simplifi-

cation: with this kernel, we can use a table to look up cell values, as we did

in Section 5.12.

table = np.zeros(20, dtype=np.uint8)

table[[3, 12, 13]] = 1

c = correlate2d(a, kernel, mode='same')

b = table[c]

table has zeros everywhere except locations 3, 12, and 13. When we use c as

an index into table, NumPy performs element-wise lookup; that is, it takes

each value from c, looks it up in table, and puts the result into b.

This version is faster and more concise than the others; the only drawback is

that it takes more explaining.

Life.py, which is included in the repository for this book, provides a Life

class that encapsulates this implementation of the rules. If you run Life.py,

you should see an animation of a “puffer train”, which is a spaceship that

leaves a trail of detritus in its wake.

6.7 Exercises

The code for this chapter is in the Jupyter notebook chap06.ipynb in the

repository for this book. Open this notebook, read the code, and run the

cells. You can use this notebook to work on the following exercises. My

solutions are in chap06soln.ipynb.

Exercise 6.1 Start GoL in a random state and run it until it stabilizes.

What stable patterns can you identify?

Exercise 6.2 Many named patterns are available in portable file formats.

Modify Life.py to parse one of these formats and initialize the grid.

Exercise 6.3 One of the longest-lived small patterns is “rabbits”, which

starts with 9 live cells and takes 17,331 steps to stabilize. You can get the initial



100 Chapter 6 Game of Life

configuration in various formats from https://thinkcomplex.com/rabbits.

Load this configuration and run it.

Exercise 6.4 In my implementation, the Life class is based on a parent class

called Cell2D, and the LifeViewer class is based on Cell2DViewer. You can

use these base classes to implement other 2-D cellular automatons.

For example, one variation of GoL, called “Highlife”, has the same rules as

GoL, plus one additional rule: a dead cell with 6 neighbors comes to life.

Write a class named Highlife that inherits from Cell2D and implements this

version of the rules. Also write a class named HighlifeViewer that inherits

from Cell2DViewer and try different ways to visualize the results. As a simple

example, use a different colormap.

One of the more interesting patterns in Highlife is the replicator (see https:

//thinkcomplex.com/repl). Use add_cells to initialize Highlife with a repli-

cator and see what it does.

Exercise 6.5 If you generalize the Turing machine to two dimensions, or

add a read-write head to a 2-D CA, the result is a cellular automaton called a

Turmite. It is named after a termite because of the way the read-write head

moves, but spelled wrong as an homage to Alan Turing.

The most famous Turmite is Langton’s Ant, discovered by Chris Langton in

1986. See https://thinkcomplex.com/langton.

The ant is a read-write head with four states, which you can think of as facing

north, south, east or west. The cells have two states, black and white.

The rules are simple. During each time step, the ant checks the color of the

cell it is on. If black, the ant turns to the right, changes the cell to white, and

moves forward one space. If the cell is white, the ant turns left, changes the

cell to black, and moves forward.

Given a simple world, a simple set of rules, and only one moving part, you

might expect to see simple behavior — but you should know better by now.

Starting with all white cells, Langton’s ant moves in a seemingly random

pattern for more than 10,000 steps before it enters a cycle with a period of

104 steps. After each cycle, the ant is translated diagonally, so it leaves a trail

called the “highway”.

https://thinkcomplex.com/rabbits
https://thinkcomplex.com/repl
https://thinkcomplex.com/repl
https://thinkcomplex.com/langton
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Write an implementation of Langton’s Ant.
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Chapter 7

Physical modeling

The cellular automatons we have seen so far are not physical models; that is,

they are not intended to describe systems in the real world. But some CAs

are intended as physical models.

In this chapter we consider a CA that models chemicals that diffuse (spread

out) and react with each other, which is a process Alan Turing proposed to

explain how some animal patterns develop.

And we’ll experiment with a CA that models percolation of liquid through

porous material, like water through coffee grounds. This model is the first of

several models that exhibit phase change behavior and fractal geometry,

and I’ll explain what both of those mean.

The code for this chapter is in chap07.ipynb in the repository for this book.

More information about working with the code is in Section 0.3.

7.1 Diffusion

In 1952 Alan Turing published a paper called “The chemical basis of morpho-

genesis”, which describes the behavior of systems involving two chemicals that

diffuse in space and react with each other. He showed that these systems pro-

duce a wide range of patterns, depending on the diffusion and reaction rates,

and conjectured that systems like this might be an important mechanism in
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biological growth processes, particularly the development of animal coloration

patterns.

Turing’s model is based on differential equations, but it can be implemented

using a cellular automaton.

Before we get to Turing’s model, we’ll start with something simpler: a diffusion

system with just one chemical. We’ll use a 2-D CA where the state of each

cell is a continuous quantity (usually between 0 and 1) that represents the

concentration of the chemical.

We’ll model the diffusion process by comparing each cell with the average of its

neighbors. If the concentration of the center cell exceeds the neighborhood av-

erage, the chemical flows from the center to the neighbors. If the concentration

of the center cell is lower, the chemical flows the other way.

The following kernel computes the difference between each cell and the average

of its neighbors:

kernel = np.array([[0, 1, 0],

[1,-4, 1],

[0, 1, 0]])

Using np.correlate2d, we can apply this kernel to each cell in an array:

c = correlate2d(array, kernel, mode='same')

We’ll use a diffusion constant, r, that relates the difference in concentration

to the rate of flow:

array += r * c

Figure 7.1 shows results for a CA with size n=9, diffusion constant r=0.1, and

initial concentration 0 everywhere except for an “island” in the middle. The

figure shows the starting configuration and the state of the CA after 5 and

10 steps. The chemical spreads from the center outward, continuing until the

concentration is the same everywhere.
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Figure 7.1: A simple diffusion model after 0, 5, and 10 steps.

7.2 Reaction-diffusion

Now let’s add a second chemical. I’ll define a new object, ReactionDiffusion,

that contains two arrays, one for each chemical:

class ReactionDiffusion(Cell2D):

def __init__(self, n, m, params, noise=0.1):

self.params = params

self.array = np.ones((n, m), dtype=float)

self.array2 = noise * np.random.random((n, m))

add_island(self.array2)

n and m are the number of rows and columns in the array. params is a tuple

of parameters, which I explain below.

array represents the concentration of the first chemical, A; the NumPy func-

tion ones initializes it to 1 everywhere. The data type float indicates that

the elements of A are floating-point values.

array2 represents the concentration of B, which is initialized with random

values between 0 and noise, which is 0.1 by default. Then add_island adds

an island of higher concentration in the middle:
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def add_island(a, height=0.1):

n, m = a.shape

radius = min(n, m) // 20

i = n//2

j = m//2

a[i-radius:i+radius, j-radius:j+radius] += height

The radius of the island is one twentieth of n or m, whichever is smaller. The

height of the island is height, with the default value 0.1.

Here is the step function that updates the arrays:

def step(self):

A = self.array

B = self.array2

ra, rb, f, k = self.params

cA = correlate2d(A, self.kernel, **self.options)

cB = correlate2d(B, self.kernel, **self.options)

reaction = A * B**2

self.array += ra * cA - reaction + f * (1-A)

self.array2 += rb * cB + reaction - (f+k) * B

The parameters are

The diffusion rate of A (analogous to r in the previous section).

The diffusion rate of B. In most versions of this model, rb is about half

of ra.

The “feed” rate, which controls how quickly A is added to the system.

The “kill” rate, which controls how quickly B is removed from the system.

Now let’s look more closely at the update statements:

reaction = A * B**2

self.array += ra * cA - reaction + f * (1-A)

self.array2 += rb * cB + reaction - (f+k) * B
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Figure 7.2: Reaction-diffusion model with parameters f=0.035 and k=0.057

after 1000, 2000, and 4000 steps.

The arrays cA and cB are the result of applying a diffusion kernel to A and B.

Multiplying by ra and rb yields the rate of diffusion into or out of each cell.

The term A * B**2 represents the rate that A and B react with each other.

Assuming that the reaction consumes A and produces B, we subtract this term

in the first equation and add it in the second.

The term f * (1-A) determines the rate that A is added to the system. Where

A is near 0, the maximum feed rate is f. Where A approaches 1, the feed rate

drops off to zero.

Finally, the term (f+k) * B determines the rate that B is removed from the

system. As B approaches 0, this rate goes to zero.

As long as the rate parameters are not too high, the values of A and B usually

stay between 0 and 1.

With different parameters, this model can produce patterns similar to the

stripes and spots on a variety of animals. In some cases, the similarity is

striking, especially when the feed and kill parameters vary in space.

For all simulations in this section, ra=0.5 and rb=0.25.

Figure 7.2 shows results with f=0.035 and k=0.057, with the concentration of

B shown in darker colors. With these parameters, the system evolves toward

a stable configuration with light spots of A on a dark background of B.
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Figure 7.3: Reaction-diffusion model with parameters f=0.055 and k=0.062

after 1000, 2000, and 4000 steps.

Figure 7.4: A reaction-diffusion model with parameters f=0.039 and k=0.065

after 1000, 2000, and 4000 steps.

Figure 7.3 shows results with f=0.055 and k=0.062, which yields a coral-like

pattern of B on a background of A.

Figure 7.4 shows results with f=0.039 and k=0.065. These parameters pro-

duce spots of B that grow and divide in a process that resembles mitosis, ending

with a stable pattern of equally-spaced spots.

Since 1952, observations and experiments have provided some support for Tur-

ing’s conjecture. At this point it seems likely, but not yet proven, that many

animal patterns are actually formed by reaction-diffusion processes of some

kind.
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7.3 Percolation

Percolation is a process in which a fluid flows through a semi-porous material.

Examples include oil in rock formations, water in paper, and hydrogen gas in

micropores. Percolation models are also used to study systems that are not

literally percolation, including epidemics and networks of electrical resistors.

See https://thinkcomplex.com/perc.

Percolation models are often represented using random graphs like the ones we

saw in Chapter 2, but they can also be represented using cellular automatons.

In the next few sections we’ll explore a 2-D CA that simulates percolation.

In this model:

ra: rb: f: k:� Initially, each cell is either “porous” with probability q or “non-porous”

with probability 1-q.

� When the simulation begins, all cells are considered “dry” except the

top row, which is “wet”.

� During each time step, if a porous cell has at least one wet neighbor, it

becomes wet. Non-porous cells stay dry.

� The simulation runs until it reaches a “fixed point” where no more cells

change state.

If there is a path of wet cells from the top to the bottom row, we say that the

CA has a “percolating cluster”.

Two questions of interest regarding percolation are (1) the probability that

a random array contains a percolating cluster, and (2) how that probability

depends on q. These questions might remind you of Section 2.3, where we

considered the probability that a random Erdős-Rényi graph is connected.

We will see several connections between that model and this one.

I define a new class to represent a percolation model:

class Percolation(Cell2D):

def __init__(self, n, q):

self.q = q

self.array = np.random.choice([1, 0], (n, n), p=[q, 1-q])

self.array[0] = 5

https://thinkcomplex.com/perc
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n and m are the number of rows and columns in the CA.

The state of the CA is stored in array, which is initialized using np.random.choice

to choose 1 (porous) with probability q, and 0 (non-porous) with probability

1-q.

The state of the top row is set to 5, which represents a wet cell. Using 5,

rather than the more obvious 2, makes it possible to use correlate2d to

check whether any porous cell has a wet neighbor. Here is the kernel:

kernel = np.array([[0, 1, 0],

[1, 0, 1],

[0, 1, 0]])

This kernel defines a 4-cell “von Neumann” neighborhood; unlike the Moore

neighborhood we saw in Section 6.1, it does not include the diagonals.

This kernel adds up the states of the neighbors. If any of them are wet,

the result will exceed 5. Otherwise the maximum result is 4 (if all neighbors

happen to be porous).

We can use this logic to write a simple, fast step function:

def step(self):

a = self.array

c = correlate2d(a, self.kernel, mode='same')

self.array[(a==1) & (c>=5)] = 5

This function identifies porous cells, where a==1, that have at least one wet

neighbor, where c>=5, and sets their state to 5, which indicates that they are

wet.

Figure 7.5 shows the first few steps of a percolation model with n=10 and

p=0.7. Non-porous cells are white, porous cells are lightly shaded, and wet

cells are dark.

7.4 Phase change

Now let’s test whether a random array contains a percolating cluster:
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Figure 7.5: The first three steps of a percolation model with n=10 and p=0.7.

def test_perc(perc):

num_wet = perc.num_wet()

while True:

perc.step()

if perc.bottom_row_wet():

return True

new_num_wet = perc.num_wet()

if new_num_wet == num_wet:

return False

num_wet = new_num_wet

test_perc takes a Percolation object as a parameter. Each time through

the loop, it advances the CA one time step. It checks the bottom row to see if

any cells are wet; if so, it returns True, to indicate that there is a percolating

cluster.

During each time step, it also computes the number of wet cells and checks

whether the number increased since the last step. If not, we have reached a

fixed point without finding a percolating cluster, so test_perc returns False.

To estimate the probability of a percolating cluster, we generate many random

arrays and test them:
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def estimate_prob_percolating(n=100, q=0.5, iters=100):

t = [test_perc(Percolation(n, q)) for i in range(iters)]

return np.mean(t)

estimate_prob_percolating makes 100 Percolation objects with the given

values of n and q and calls test_perc to see how many of them have a perco-

lating cluster. The return value is the fraction that do.

When p=0.55, the probability of a percolating cluster is near 0. At p=0.60, it

is about 70%, and at p=0.65 it is near 1. This rapid transition suggests that

there is a critical value of p near 0.6.

We can estimate the critical value more precisely using a random walk.

Starting from an initial value of q, we construct a Percolation object and

check whether it has a percolating cluster. If so, q is probably too high, so we

decrease it. If not, q is probably too low, so we increase it.

Here’s the code:

def find_critical(n=100, q=0.6, iters=100):

qs = [q]

for i in range(iters):

perc = Percolation(n, q)

if test_perc(perc):

q -= 0.005

else:

q += 0.005

qs.append(q)

return qs

The result is a list of values for q. We can estimate the critical value, q_crit,

by computing the mean of this list. With n=100 the mean of qs is about 0.59;

this value does not seem to depend on n.

The rapid change in behavior near the critical value is called a phase change

by analogy with phase changes in physical systems, like the way water changes

from liquid to solid at its freezing point.

A wide variety of systems display a common set of behaviors and character-

istics when they are at or near a critical point. These behaviors are known

collectively as critical phenomena. In the next section, we explore one of

them: fractal geometry.
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Figure 7.6: One-dimensional CAs with rules 20, 50, and 18, after 32 time steps.

7.5 Fractals

To understand fractals, we have to start with dimensions.

For simple geometric objects, dimension is defined in terms of scaling behavior.

For example, if the side of a square has length l, its area is l2. The exponent,

2, indicates that a square is two-dimensional. Similarly, if the side of a cube

has length l, its volume is l3, which indicates that a cube is three-dimensional.

More generally, we can estimate the dimension of an object by measuring some

kind of size (like area or volume) as a function of some kind of linear measure

(like the length of a side).

As an example, I’ll estimate the dimension of a 1-D cellular automaton by

measuring its area (total number of “on” cells) as a function of the number of

rows.

Figure 7.6 shows three 1-D CAs like the ones we saw in Section 5.2. Rule

20 (left) generates a set of cells that seems like a line, so we expect it to be

one-dimensional. Rule 50 (center) produces something like a triangle, so we

expect it to be 2-D. Rule 18 (right) also produces something like a triangle,

but the density is not uniform, so its scaling behavior is not obvious.

I’ll estimate the dimension of these CAs with the following function, which

counts the number of on cells after each time step. It returns a list of tuples,

where each tuple contains i, i2, and the total number of cells.
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Figure 7.7: Number of “on” cells versus number of time steps for rules 20, 50,
and 18.

def count_cells(rule, n=500):

ca = Cell1D(rule, n)

ca.start_single()

res = []

for i in range(1, n):

cells = np.sum(ca.array)

res.append((i, i**2, cells))

ca.step()

return res

Figure 7.7 shows the results plotted on a log-log scale.

In each figure, the top dashed line shows y = i2. Taking the log of both sides,

we have log y = 2 log i. Since the figure is on a log-log scale, the slope of this

line is 2.

Similarly, the bottom dashed line shows y = i. On a log-log scale, the slope of

this line is 1.

Rule 20 (left) produces 3 cells every 2 time steps, so the total number of

cells after i steps is y = 1.5i. Taking the log of both sides, we have log y =

log 1.5 + log i, so on a log-log scale, we expect a line with slope 1. In fact, the

estimated slope of the line is 1.01.
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Figure 7.8: Percolation models with q=0.6 and n=100, 200, and 300.

Rule 50 (center) produces i+ 1 new cells during the ith time step, so the total

number of cells after i steps is y = i2 + i. If we ignore the second term and

take the log of both sides, we have log y ∼ 2 log i, so as i gets large, we expect

to see a line with slope 2. In fact, the estimated slope is 1.97.

Finally, for Rule 18 (right), the estimated slope is about 1.57, which is clearly

not 1, 2, or any other integer. This suggests that the pattern generated by

Rule 18 has a “fractional dimension”; that is, it is a fractal.

This way of estimating a fractal dimension is called box-counting. For more

about it, see https://thinkcomplex.com/box.

7.6 Fractals and Percolation Models

Now let’s get back to percolation models. Figure 7.8 shows clusters of wet cells

in percolation simulations with p=0.6 and n=100, 200, and 300. Informally,

they resemble fractal patterns seen in nature and in mathematical models.

To estimate their fractal dimension, we can run CAs with a range of sizes,

count the number of wet cells in each percolating cluster, and then see how

the cell counts scale as we increase the size of the array.

The following loop runs the simulations:

https://thinkcomplex.com/box
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Figure 7.9: Number of cells in the percolating cluster versus CA size.

res = []

for size in sizes:

perc = Percolation(size, q)

if test_perc(perc):

num_filled = perc.num_wet() - size

res.append((size, size**2, num_filled))

The result is a list of tuples where each tuple contains size, size**2, and the

number of cells in the percolating cluster (not including the initial wet cells in

the top row).

Figure 7.9 shows the results for a range of sizes from 10 to 100. The dots show

the number of cells in each percolating cluster. The slope of a line fitted to

these dots is often near 1.85, which suggests that the percolating cluster is, in

fact, fractal when q is near the critical value.

When q is larger than the critical value, nearly every porous cell gets filled, so

the number of wet cells is close to q * size^2, which has dimension 2.

When q is substantially smaller than the critical value, the number of wet cells

is proportional to the linear size of the array, so it has dimension 1.

7.7 Exercises

Exercise 7.1 In Section 7.6 we showed that the Rule 18 CA produces a

fractal. Can you find other 1-D CAs that produce fractals?
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Note: the Cell1D object does not wrap around from the left edge to the right,

which creates artifacts at the boundaries for some rules. You might want to

use Wrap1D, which is a child class of Cell1D that wraps around. It is defined

in Cell1D.py in the repository for this book.

Exercise 7.2 In 1990 Bak, Chen and Tang proposed a cellular automaton

that is an abstract model of a forest fire. Each cell is in one of three states:

empty, occupied by a tree, or on fire.

The rules of the CA are:

1. An empty cell becomes occupied with probability p.

2. A cell with a tree burns if any of its neighbors is on fire.

3. A cell with a tree spontaneously burns, with probability f , even if none

of its neighbors is on fire.

4. A cell with a burning tree becomes an empty cell in the next time step.

Write a program that implements this model. You might want to inherit from

Cell2D. Typical values for the parameters are p = 0.01 and f = 0.001, but

you might want to experiment with other values.

Starting from a random initial condition, run the model until it reaches a

steady state where the number of trees no longer increases or decreases con-

sistently.

In steady state, is the geometry of the forest fractal? What is its fractal

dimension?
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Chapter 8

Self-organized criticality

In the previous chapter we saw an example of a system with a critical point and

we explored one of the common properties of critical systems, fractal geometry.

In this chapter, we explore two other properties of critical systems: heavy-

tailed distributions, which we saw in Chapter 4.4 and pink noise, which I’ll

explain in this chapter.

These properties are interesting in part because they appear frequently in

nature; that is, many natural systems produce fractal-like geometry, heavy-

tailed distributions, and pink noise.

This observation raises a natural question: why do so many natural systems

have properties of critical systems? A possible answer is self-organized crit-

icality (SOC), which is the tendency of some systems to evolve toward, and

stay in, a critical state.

In this chapter I’ll present a sand pile model that was the first system shown

to exhibit SOC.

The code for this chapter is in chap08.ipynb in the repository for this book.

More information about working with the code is in Section 0.3.

8.1 Critical Systems

Many critical systems demonstrate common behaviors:
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� Fractal geometry: For example, freezing water tends to form fractal

patterns, including snowflakes and other crystal structures. Fractals are

characterized by self-similarity; that is, parts of the pattern are similar

to scaled copies of the whole.

� Heavy-tailed distributions of some physical quantities: For example, in

freezing water the distribution of crystal sizes is characterized by a power

law.

� Variations in time that exhibit pink noise: Complex signals can be de-

composed into their frequency components. In pink noise, low-frequency

components have more power than high-frequency components. Specifi-

cally, the power at frequency f is proportional to 1/f .

Critical systems are usually unstable. For example, to keep water in a partially

frozen state requires active control of the temperature. If the system is near

the critical temperature, a small deviation tends to move the system into one

phase or the other.

Many natural systems exhibit characteristic behaviors of criticality, but if crit-

ical points are unstable, they should not be common in nature. This is the puz-

zle Bak, Tang and Wiesenfeld address. Their solution is called self-organized

criticality (SOC), where “self-organized” means that from any initial condition,

the system moves toward a critical state, and stays there, without external

control.

8.2 Sand Piles

The sand pile model was proposed by Bak, Tang and Wiesenfeld in 1987. It

is not meant to be a realistic model of a sand pile, but rather an abstraction

that models physical systems with a large number of elements that interact

with their neighbors.

The sand pile model is a 2-D cellular automaton where the state of each cell

represents the slope of a part of a sand pile. During each time step, each cell

is checked to see whether it exceeds a critical value, K, which is usually 3. If

so, it “topples” and transfers sand to four neighboring cells; that is, the slope

of the cell is decreased by 4, and each of the neighbors is increased by 1. At
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the perimeter of the grid, all cells are kept at slope 0, so the excess spills over

the edge.

Bak, Tang and Wiesenfeld initialize all cells at a level greater than K and run

the model until it stabilizes. Then they observe the effect of small perturba-

tions: they choose a cell at random, increment its value by 1, and run the

model again until it stabilizes.

For each perturbation, they measure T, the number of time steps the pile takes

to stabilize, and S, the total number of cells that topple1.

Most of the time, dropping a single grain causes no cells to topple, so T=1 and

S=0. But occasionally a single grain can cause an avalanche that affects a

substantial fraction of the grid. The distributions of T and S turn out to be

heavy-tailed, which supports the claim that the system is in a critical state.

They conclude that the sand pile model exhibits “self-organized criticality”,

which means that it evolves toward a critical state without the need for external

control or what they call “fine tuning” of any parameters. And the model stays

in a critical state as more grains are added.

In the next few sections I replicate their experiments and interpret the results.

8.3 Implementing the Sand Pile

To implement the sand pile model, I define a class called SandPile that inherits

from Cell2D, which is defined in Cell2D.py in the repository for this book.

class SandPile(Cell2D):

def __init__(self, n, m, level=9):

self.array = np.ones((n, m)) * level

All values in the array are initialized to level, which is generally greater than

the toppling threshold, K.

Here’s the step method that finds all cells above K and topples them:

1The original paper uses a different definition of S, but most later work uses this defini-
tion.
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kernel = np.array([[0, 1, 0],

[1,-4, 1],

[0, 1, 0]])

def step(self, K=3):

toppling = self.array > K

num_toppled = np.sum(toppling)

c = correlate2d(toppling, self.kernel, mode='same')

self.array += c

return num_toppled

To show how step works, I’ll start with a small pile that has two cells ready

to topple:

pile = SandPile(n=3, m=5, level=0)

pile.array[1, 1] = 4

pile.array[1, 3] = 4

Initially, pile.array looks like this:

[[0 0 0 0 0]

[0 4 0 4 0]

[0 0 0 0 0]]

Now we can select the cells that are above the toppling threshold:

toppling = pile.array > K

The result is a boolean array, but we can use it as if it were an array of integers

like this:

[[0 0 0 0 0]

[0 1 0 1 0]

[0 0 0 0 0]]

If we correlate this array with the kernel, it makes copies of the kernel at each

location where toppling is 1.

c = correlate2d(toppling, kernel, mode='same')

And here’s the result:
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[[ 0 1 0 1 0]

[ 1 -4 2 -4 1]

[ 0 1 0 1 0]]

Notice that where the copies of the kernel overlap, they add up.

This array contains the change for each cell, which we use to update the

original array:

pile.array += c

And here’s the result.

[[0 1 0 1 0]

[1 0 2 0 1]

[0 1 0 1 0]]

So that’s how step works.

With mode='same', correlate2d considers the boundary of the array to be

fixed at zero, so any grains of sand that go over the edge disappear.

SandPile also provides run, which calls step until no more cells topple:

def run(self):

total = 0

for i in itertools.count(1):

num_toppled = self.step()

total += num_toppled

if num_toppled == 0:

return i, total

The return value is a tuple that contains the number of time steps and the

total number of cells that toppled.

If you are not familiar with itertools.count, it is an infinite generator that

counts up from the given initial value, so the for loop runs until step returns

0. You can read about the itertools module at https://thinkcomplex.

com/iter.

Finally, the drop method chooses a random cell and adds a grain of sand:

https://thinkcomplex.com/iter
https://thinkcomplex.com/iter
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Figure 8.1: Sand pile model initial state (left), after 200 steps (middle), and
400 steps (right).

def drop(self):

a = self.array

n, m = a.shape

index = np.random.randint(n), np.random.randint(m)

a[index] += 1

Let’s look at a bigger example, with n=20:

pile = SandPile(n=20, level=10)

pile.run()

With an initial level of 10, this sand pile takes 332 time steps to reach equilib-

rium, with a total of 53,336 topplings. Figure 8.1 (left) shows the configuration

after this initial run. Notice that it has the repeating elements that are char-

acteristic of fractals. We’ll come back to that soon.

Figure 8.1 (middle) shows the configuration of the sand pile after dropping 200

grains onto random cells, each time running until the pile reaches equilibrium.

The symmetry of the initial configuration has been broken; the configuration

looks random.
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Finally Figure 8.1 (right) shows the configuration after 400 drops. It looks

similar to the configuration after 200 drops. In fact, the pile is now in a steady

state where its statistical properties don’t change over time. I’ll explain some

of those statistical properties in the next section.

8.4 Heavy-tailed distributions

If the sand pile model is in a critical state, we expect to find heavy-tailed

distributions for quantities like the duration and size of avalanches. So let’s

take a look.

I’ll make a larger sand pile, with n=50 and an initial level of 30, and run until

equilibrium:

pile2 = SandPile(n=50, level=30)

pile2.run()

Next, I’ll run 100,000 random drops

iters = 100000

res = [pile2.drop_and_run() for _ in range(iters)]

As the name suggests, drop_and_run calls drop and run and returns the

duration of the avalanche and total number of cells that toppled.

So res is a list of (T, S) tuples, where T is duration, in time steps, and S

is cells toppled. We can use np.transpose to unpack res into two NumPy

arrays:

T, S = np.transpose(res)

A large majority of drops have duration 1 and no toppled cells; if we filter

them out before plotting, we get a clearer view of the rest of the distribution.

T = T[T>1]

S = S[S>0]

The distributions of T and S have many small values and a few very large ones.

I’ll use the Pmf class from thinkstats2 to make a PMF of the values, that is,

a map from each value to its probability of occurring (see Section 4.3).
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pmfT = Pmf(T)

pmfS = Pmf(S)

Figure 8.2 shows the results for values less than 50.

As we saw in Section 4.4, we can get a clearer picture of these distributions

by plotting them on a log-log scale, as shown in Figure 8.3.

For values between 1 and 100, the distributions are nearly straight on a log-log

scale, which is characteristic of a heavy tail. The gray lines in the figure have

slopes near -1, which suggests that these distributions follow a power law with

parameters near α = 1.

For values greater than 100, the distributions fall away more quickly than

the power law model, which means there are fewer very large values than the

model predicts. One possibility is that this effect is due to the finite size of

the sand pile; if so, we might expect larger piles to fit the power law better.

Another possibility, which you can explore in one of the exercises at the end of

this chapter, is that these distributions do not strictly obey a power law. But

even if they are not power-law distributions, they might still be heavy-tailed.

8.5 Fractals

Another property of critical systems is fractal geometry. The initial config-

uration in Figure 8.1 (left) resembles a fractal, but you can’t always tell by

looking. A more reliable way to identify a fractal is to estimate its fractal

dimension, as we saw in Section 7.5 and Section 7.6.

I’ll start by making a bigger sand pile, with n=131 and initial level 22.

pile3 = SandPile(n=131, level=22)

pile3.run()

It takes 28,379 steps for this pile to reach equilibrium, with more than 200

million cells toppled.

To see the resulting pattern more clearly, I select cells with levels 0, 1, 2, and

3, and plot them separately:
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Figure 8.4: Sand pile model in equilibrium, selecting cells with levels 0, 1, 2,
and 3, left to right, top to bottom.

def draw_four(viewer, levels=range(4)):

thinkplot.preplot(rows=2, cols=2)

a = viewer.viewee.array

for i, level in enumerate(levels):

thinkplot.subplot(i+1)

viewer.draw_array(a==level, vmax=1)

draw_four takes a SandPileViewer object, which is defined in Sand.py in the

repository for this book. The parameter levels is the list of levels we want

to plot; the default is the range 0 through 3. If the sand pile has run until

equilibrium, these are the only levels that should exist.

Inside the loop, it uses a==level to make a boolean array that’s True where

the array is level and False otherwise. draw_array treats these booleans as

1s and 0s.

Figure 8.4 shows the results for pile3. Visually, these patterns resemble frac-

tals, but looks can be deceiving. To be more confident, we can estimate the

fractal dimension for each pattern using box-counting, as we saw in Sec-

tion 7.5.
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We’ll count the number of cells in a small box at the center of the pile, then

see how the number of cells increases as the box gets bigger. Here’s my imple-

mentation:

def count_cells(a):

n, m = a.shape

end = min(n, m)

res = []

for i in range(1, end, 2):

top = (n-i) // 2

left = (m-i) // 2

box = a[top:top+i, left:left+i]

total = np.sum(box)

res.append((i, i**2, total))

return np.transpose(res)

The parameter, a, is a boolean array. The size of the box is initially 1. Each

time through the loop, it increases by 2 until it reaches end, which is the

smaller of n and m.

Each time through the loop, box is a set of cells with width and height i,

centered in the array. total is the number of “on” cells in the box.

The result is a list of tuples, where each tuple contains i, i**2, and the number

of cells in the box. When we pass this result to transpose, NumPy converts

it to an array with three columns, and then transposes it; that is, it makes

the columns into rows and the rows into columns. The result is an array with

3 rows: i, i**2, and total.

Here’s how we use count_cells:

res = count_cells(pile.array==level)

steps, steps2, cells = res

The first line creates a boolean array that contains True where the array equals

level, calls count_cells, and gets an array with three rows.

The second line unpacks the rows and assigns them to steps, steps2, and

cells, which we can plot like this:
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Figure 8.5: Box counts for cells with levels 0, 1, 2, and 3, compared to dashed
lines with slopes 1 and 2.

thinkplot.plot(steps, steps2, linestyle='dashed')

thinkplot.plot(steps, cells)

thinkplot.plot(steps, steps, linestyle='dashed')

Figure 8.5 shows the results. On a log-log scale, the cell counts form nearly

straight lines, which indicates that we are measuring fractal dimension over a

valid range of box sizes.

To estimate the slopes of these lines, we can use the SciPy function linregress,

which fits a line to the data by linear regression (see https://thinkcomplex.

com/regress).

from scipy.stats import linregress

params = linregress(np.log(steps), np.log(cells))

slope = params[0]

https://thinkcomplex.com/regress
https://thinkcomplex.com/regress
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The estimated fractal dimensions are:

0 1.871

1 3.502

2 1.781

3 2.084

The fractal dimension for levels 0, 1, and 2 seems to be clearly non-integer,

which indicates that the image is fractal.

The estimate for level 3 is indistinguishable from 2, but given the results for

the other values, the apparent curvature of the line, and the appearance of the

pattern, it seems likely that it is also fractal.

One of the exercises in the notebook for this chapter asks you to run this

analysis again with different values of n and the initial level to see if the

estimated dimensions are consistent.

8.6 Pink noise

The title of the original paper that presented the sand pile model is “Self-

Organized Criticality: An Explanation of 1/f Noise”. You can read it at

https://thinkcomplex.com/bak.

As the subtitle suggests, Bak, Tang and Wiesenfeld were trying to explain why

many natural and engineered systems exhibit 1/f noise, which is also known

as “flicker noise” and “pink noise”.

To understand pink noise, we have to take a detour to understand signals,

power spectrums, and noise.

Signal: A signal is any quantity that varies in time. One example is sound,

which is variation in air density. In the sand pile model, the signals we’ll

consider are avalanche durations and sizes as they vary over time.

Power spectrum: Any signal can be decomposed into a set of frequency

components with different levels of power, which is related to amplitude

or volume. The power spectrum of a signal is a function that shows

the power of each frequency component.

https://thinkcomplex.com/bak
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Noise: In common use, noise is usually an unwanted sound, but in the con-

text of signal processing, it is a signal that contains many frequency

components.

There are many kinds of noise. For example, “white noise” is a signal that has

components with equal power over a wide range of frequencies.

Other kinds of noise have different relationships between frequency and power.

In “red noise”, the power at frequency f is 1/f 2, which we can write like this:

P (f) = 1/f 2

We can generalize this equation by replacing the exponent 2 with a parameter

β:

P (f) = 1/fβ

When β = 0, this equation describes white noise; when β = 2 it describes

red noise. When the parameter is near 1, the result is called 1/f noise. More

generally, noise with any value between 0 and 2 is called “pink”, because it’s

between white and red.

We can use this relationship to derive a test for pink noise. Taking the log of

both sides yields

logP (f) = −β log f

So if we plot P (f) versus f on a log-log scale, we expect a straight line with

slope −β.

What does this have to do with the sand pile model? Suppose that every

time a cell topples, it makes a sound. If we record a sand pile model while

its running, what would it sound like? In the next section, we’ll simulate the

sound of the sand pile model and see if it is pink noise.

8.7 The sound of sand

As my implementation of SandPile runs, it records the number of cells that

topple during each time step, accumulating the results in a list called toppled_seq.

After running the model in Section 8.4, we can extract the resulting signal:
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signal = pile2.toppled_seq

To compute the power spectrum of this signal we can use the SciPy function

welch:

from scipy.signal import welch

nperseg = 2048

freqs, spectrum = welch(signal, nperseg=nperseg, fs=nperseg)

This function uses Welch’s method, which splits the signal into segments and

computes the power spectrum of each segment. The result is typically noisy,

so Welch’s method averages across segments to estimate the average power at

each frequency. For more about Welch’s method, see https://thinkcomplex.

com/welch.

The parameter nperseg specifies the number of time steps per segment. With

longer segments, we can estimate the power for more frequencies. With shorter

segments, we get better estimates for each frequency. The value I chose, 2048,

balances these tradeoffs.

The parameter fs is the “sampling frequency”, which is the number of data

points in the signal per unit of time. By setting fs=nperseg, we get a range

of frequencies from 0 to nperseg/2. This range is convenient, but because the

units of time in the model are arbitrary, it doesn’t mean much.

The return values, freqs and powers, are NumPy arrays containing the fre-

quencies of the components and their corresponding powers, which we can

plot. Figure 8.6 shows the result.

For frequencies between 10 and 1000 (in arbitrary units), the spectrum falls

on a straight line, which is what we expect for pink or red noise.

The gray line in the figure has slope −1.58, which indicates that

logP (f) ∼ −β log f

with parameter β = 1.58, which is the same parameter reported by Bak, Tang,

and Wiesenfeld. This result confirms that the sand pile model generates pink

noise.

https://thinkcomplex.com/welch
https://thinkcomplex.com/welch
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Figure 8.6: Power spectrum of the number of toppled cells over time, log-log
scale.

8.8 Reductionism and Holism

The original paper by Bak, Tang and Wiesenfeld is one of the most frequently-

cited papers in the last few decades. Some subsequent papers have reported

other systems that are apparently self-organized critical (SOC). Others have

studied the sand pile model in more detail.

As it turns out, the sand pile model is not a good model of a sand pile. Sand

is dense and not very sticky, so momentum has a non-negligible effect on the

behavior of avalanches. As a result, there are fewer very large and very small

avalanches than the model predicts, and the distribution might not be heavy-

tailed.

Bak has suggested that this observation misses the point. The sand pile model

is not meant to be a realistic model of a sand pile; it is meant to be a simple

example of a broad category of models.

To understand this point, it is useful to think about two kinds of models,

reductionist and holistic. A reductionist model describes a system by de-

scribing its parts and their interactions. When a reductionist model is used
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Figure 8.7: The logical structure of a holistic model.

as an explanation, it depends on an analogy between the components of the

model and the components of the system.

For example, to explain why the ideal gas law holds, we can model the

molecules that make up a gas with point masses and model their interac-

tions as elastic collisions. If you simulate or analyze this model, you find

that it obeys the ideal gas law. This model is satisfactory to the degree that

molecules in a gas behave like molecules in the model. The analogy is between

the parts of the system and the parts of the model.

Holistic models are more focused on similarities between systems and less

interested in analogous parts. A holistic approach to modeling consists of

these steps:

� Observe a behavior that appears in a variety of systems.

� Find a simple model that demonstrates that behavior.

� Identify the elements of the model that are necessary and sufficient to

produce the behavior.

For example, in The Selfish Gene, Richard Dawkins suggests that genetic evo-

lution is just one example of an evolutionary system. He identifies the essential

elements of the category — discrete replicators, variability, and differential re-

production — and proposes that any system with these elements will show

evidence of evolution.

As another example of an evolutionary system, he proposes “memes”, which

are thoughts or behaviors that are replicated by transmission from person to
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person2. As memes compete for the resource of human attention, they evolve

in ways that are similar to genetic evolution.

Critics of the meme model have pointed out that memes are a poor analogy

for genes; they differ from genes in many obvious ways. Dawkins has argued

that these differences are beside the point because memes are not supposed to

be analogous to genes. Rather, memes and genes are examples of the same

category: evolutionary systems. The differences between them emphasize the

real point, which is that evolution is a general model that applies to many

seemingly disparate systems. The logical structure of this argument is shown

in Figure 8.7.

Bak has made a similar argument that self-organized criticality is a general

model for a broad category of system:

Since these phenomena appear everywhere, they cannot depend on

any specific detail whatsoever... If the physics of a large class of

problems is the same, this gives [the theorist] the option of selecting

the simplest possible [model] belonging to that class for detailed

study.3

Many natural systems demonstrate behaviors characteristic of critical systems.

Bak’s explanation for this prevalence is that these systems are examples of the

broad category of self-organized criticality. There are two ways to support this

argument. One is to build a realistic model of a particular system and show

that the model exhibits SOC. The second is to show that SOC is a feature of

many diverse models, and to identify the essential characteristics those models

have in common.

The first approach, which I characterize as reductionist, can explain the behav-

ior of a particular system. The second approach, which I am calling holistic,

can explain the prevalence of criticality in natural systems. They are different

models with different purposes.

For reductionist models, realism is the primary virtue, and simplicity is sec-

ondary. For holistic models, it is the other way around.

2This use of “meme” is original to Dawkins, and predates the distantly-related use of the
word on the Internet by about 20 years.

3Bak, How Nature Works, Springer-Verlag 1996, page 43.
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8.9 SOC, causation, and prediction

If a stock market index drops by a fraction of a percent in a day, there is

no need for an explanation. But if it drops 10%, people want to know why.

Pundits on television are willing to offer explanations, but the real answer may

be that there is no explanation.

Day-to-day variability in the stock market shows evidence of criticality: the

distribution of value changes is heavy-tailed and the time series exhibits pink

noise. If the stock market is a critical system, we should expect occasional

large changes as part of the ordinary behavior of the market.

The distribution of earthquake sizes is also heavy-tailed, and there are simple

models of the dynamics of geological faults that might explain this behavior. If

these models are right, they imply that large earthquakes are not exceptional;

that is, they do not require explanation any more than small earthquakes do.

Similarly, Charles Perrow has suggested that failures in large engineered sys-

tems, like nuclear power plants, are like avalanches in the sand pile model.

Most failures are small, isolated, and harmless, but occasionally a coincidence

of bad fortune yields a catastrophe. When big accidents occur, investigators

go looking for the cause, but if Perrow’s “normal accident theory” is correct,

there may be no special cause of large failures.

These conclusions are not comforting. Among other things, they imply that

large earthquakes and some kinds of accidents are fundamentally unpredictable.

It is impossible to look at the state of a critical system and say whether a large

avalanche is “due”. If the system is in a critical state, then a large avalanche

is always possible. It just depends on the next grain of sand.

In a sand pile model, what is the cause of a large avalanche? Philosophers

sometimes distinguish the proximate cause, which is most immediately re-

sponsible, from the ultimate cause, which is considered some deeper kind of

explanation (see https://thinkcomplex.com/cause).

In the sand pile model, the proximate cause of an avalanche is a grain of sand,

but the grain that causes a large avalanche is identical to every other grain,

so it offers no special explanation. The ultimate cause of a large avalanche is

the structure and dynamics of the systems as a whole: large avalanches occur

because they are a property of the system.

https://thinkcomplex.com/cause
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Many social phenomena, including wars, revolutions, epidemics, inventions,

and terrorist attacks, are characterized by heavy-tailed distributions. If these

distributions are prevalent because social systems are SOC, major historical

events may be fundamentally unpredictable and unexplainable.

8.10 Exercises

The code for this chapter is in the Jupyter notebook chap08.ipynb in the

repository for this book. Open this notebook, read the code, and run the

cells. You can use this notebook to work on the following exercises. My

solutions are in chap08soln.ipynb.

Exercise 8.1 To test whether the distributions of T and S are heavy-tailed,

we plotted their PMFs on a log-log scale, which is what Bak, Tang and Wiesen-

feld show in their paper. But as we saw in Section 4.7, this visualization can

obscure the shape of the distribution. Using the same data, make a plot that

shows the cumulative distributions (CDFs) of S and T. What can you say

about their shape? Do they follow a power law? Are they heavy-tailed?

You might find it helpful to plot the CDFs on a log-x scale and on a log-log

scale.

Exercise 8.2 In Section 8.5 we showed that the initial configuration of the

sand pile model produces fractal patterns. But after we drop a large number

of random grains, the patterns look more random.

Starting with the example in Section 8.5, run the sand pile model for a while

and then compute fractal dimensions for each of the 4 levels. Is the sand pile

model fractal in steady state?

Exercise 8.3 Another version of the sand pile model, called the “single

source” model, starts from a different initial condition: instead of all cells at

the same level, all cells are set to 0 except the center cell, which is set to a

large value. Write a function that creates a SandPile object, sets up the single

source initial condition, and runs until the pile reaches equilibrium. Does the

result appear to be fractal?

You can read more about this version of the sand pile model at https://

thinkcomplex.com/sand.

https://thinkcomplex.com/sand
https://thinkcomplex.com/sand
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Exercise 8.4 In their 1989 paper, Bak, Chen and Creutz suggest that the

Game of Life is a self-organized critical system (see https://thinkcomplex.

com/bak89).

To replicate their tests, start with a random configuration and run the GoL

CA until it stabilizes. Then choose a random cell and flip it. Run the CA

until it stabilizes again, keeping track of T, the number of time steps it takes,

and S, the number of cells affected. Repeat for a large number of trials and

plot the distributions of T and S. Also, estimate the power spectrums of T and

S as signals in time, and see if they are consistent with pink noise.

Exercise 8.5 In The Fractal Geometry of Nature, Benoit Mandelbrot pro-

poses what he calls a “heretical” explanation for the prevalence of heavy-tailed

distributions in natural systems. It may not be, as Bak suggests, that many

systems can generate this behavior in isolation. Instead there may be only a

few, but interactions between systems might cause the behavior to propagate.

To support this argument, Mandelbrot points out:

� The distribution of observed data is often “the joint effect of a fixed

underlying true distribution and a highly variable filter”.

� Heavy-tailed distributions are robust to filtering; that is, “a wide variety

of filters leave their asymptotic behavior unchanged”.

What do you think of this argument? Would you characterize it as reductionist

or holist?

Exercise 8.6 Read about the “Great Man” theory of history at https:

//thinkcomplex.com/great. What implication does self-organized criticality

have for this theory?

https://thinkcomplex.com/bak89
https://thinkcomplex.com/bak89
https://thinkcomplex.com/great
https://thinkcomplex.com/great
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Chapter 9

Agent-based models

The models we have seen so far might be characterized as “rule-based” in the

sense that they involve systems governed by simple rules. In this and the

following chapters, we explore agent-based models.

Agent-based models include agents that are intended to model people and

other entities that gather information about the world, make decisions, and

take actions.

The agents are usually situated in space or in a network, and interact with

each other locally. They usually have imperfect or incomplete information

about the world.

Often there are differences among agents, unlike previous models where all

components are identical. And agent-based models often include randomness,

either among the agents or in the world.

Since the 1970s, agent-based modeling has become an important tool in eco-

nomics, other social sciences, and some natural sciences.

Agent-based models are useful for modeling the dynamics of systems that are

not in equilibrium (although they are also used to study equilibrium). And

they are particularly useful for understanding relationships between individual

decisions and system behavior.

The code for this chapter is in chap09.ipynb, which is a Jupyter notebook in

the repository for this book. For more information about working with this

code, see Section 0.3.
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9.1 Schelling’s Model

In 1969 Thomas Schelling published “Models of Segregation”, which pro-

posed a simple model of racial segregation. You can read it at https://

thinkcomplex.com/schell.

The Schelling model of the world is a grid where each cell represents a house.

The houses are occupied by two kinds of agents, labeled red and blue, in

roughly equal numbers. About 10% of the houses are empty.

At any point in time, an agent might be happy or unhappy, depending on the

other agents in the neighborhood, where the “neighborhood” of each house is

the set of eight adjacent cells. In one version of the model, agents are happy

if they have at least two neighbors like themselves, and unhappy if they have

one or zero.

The simulation proceeds by choosing an agent at random and checking to see

whether they are happy. If so, nothing happens; if not, the agent chooses one

of the unoccupied cells at random and moves.

You will not be surprised to hear that this model leads to some segregation,

but you might be surprised by the degree. From a random starting point,

clusters of similar agents form almost immediately. The clusters grow and

coalesce over time until there are a small number of large clusters and most

agents live in homogeneous neighborhoods.

If you did not know the process and only saw the result, you might assume

that the agents were racist, but in fact all of them would be perfectly happy

in a mixed neighborhood. Since they prefer not to be greatly outnumbered,

they might be considered mildly xenophobic. Of course, these agents are a

wild simplification of real people, so it may not be appropriate to apply these

descriptions at all.

Racism is a complex human problem; it is hard to imagine that such a simple

model could shed light on it. But in fact it provides a strong argument about

the relationship between a system and its parts: if you observe segregation in

a real city, you cannot conclude that individual racism is the immediate cause,

or even that the people in the city are racists.

https://thinkcomplex.com/schell
https://thinkcomplex.com/schell
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Of course, we have to keep in mind the limitations of this argument: Schelling’s

model demonstrates a possible cause of segregation, but says nothing about

actual causes.

9.2 Implementation of Schelling’s model

To implement Schelling’s model, I wrote yet another class that inherits from

Cell2D:

class Schelling(Cell2D):

def __init__(self, n, p):

self.p = p

choices = [0, 1, 2]

probs = [0.1, 0.45, 0.45]

self.array = np.random.choice(choices, (n, n), p=probs)

n is the size of the grid, and p is the threshold on the fraction of similar

neighbors. For example, if p=0.3, an agent will be unhappy if fewer than 30%

of their neighbors are the same color.

array is a NumPy array where each cell is 0 if empty, 1 if occupied by a red

agent, and 2 if occupied by a blue agent. Initially 10% of the cells are empty,

45% red, and 45% blue.

The step function for Schelling’s model is substantially more complicated than

previous examples. If you are not interested in the details, you can skip to the

next section. But if you stick around, you might pick up some NumPy tips.

First, I make boolean arrays that indicate which cells are red, blue, and empty:

a = self.array

red = a==1

blue = a==2

empty = a==0

Then I use correlate2d to count, for each location, the number of neighboring

cells that are red, blue, and non-empty. We saw correlate2d in Section 6.6.
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options = dict(mode='same', boundary='wrap')

kernel = np.array([[1, 1, 1],

[1, 0, 1],

[1, 1, 1]], dtype=np.int8)

num_red = correlate2d(red, kernel, **options)

num_blue = correlate2d(blue, kernel, **options)

num_neighbors = num_red + num_blue

options is a dictionary that contains the options we pass to correlate2d.

With mode='same', the result is the same size as the input. With boundary='wrap',

the top edge is wrapped to meet the bottom, and the left edge is wrapped to

meet the right.

kernel indicates that we want to consider the eight neighbors that surround

each cell.

After computing num_red and num_blue, we can compute the fraction of neigh-

bors, for each location, that are red and blue.

frac_red = num_red / num_neighbors

frac_blue = num_blue / num_neighbors

Then, we can compute the fraction of neighbors, for each agent, that are the

same color as the agent. I use np.where, which is like an element-wise if

expression. The first parameter is a condition that selects elements from the

second or third parameter.

frac_same = np.where(red, frac_red, frac_blue)

frac_same[empty] = np.nan

In this case, wherever red is True, frac_same gets the corresponding element

of frac_red. Where red is False, frac_same gets the corresponding element

of frac_blue. Finally, where empty indicates that a cell is empty, frac_same

is set to np.nan, which is a special value that indicates “Not a Number”.

Now we can identify the locations of the unhappy agents:

unhappy = frac_same < self.p

unhappy_locs = locs_where(unhappy)
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locs_where is a wrapper function for np.nonzero:

def locs_where(condition):

return list(zip(*np.nonzero(condition)))

np.nonzero takes an array and returns the coordinates of all non-zero cells;

the result is a tuple of arrays, one for each dimension. Then locs_where uses

list and zip to convert this result to a list of coordinate pairs.

Similarly, empty_locs is an array that contains the coordinates of the empty

cells:

empty_locs = locs_where(empty)

Now we get to the core of the simulation. We loop through the unhappy agents

and move them:

num_empty = np.sum(empty)

for source in unhappy_locs:

i = np.random.randint(num_empty)

dest = empty_locs[i]

a[dest] = a[source]

a[source] = 0

empty_locs[i] = source

i is the index of a random empty cell; dest is a tuple containing the coordinates

of the empty cell.

In order to move an agent, we copy its value (1 or 2) from source to dest,

and then set the value of source to 0 (since it is now empty).

Finally, we replace the entry in empty_locs with source, so the cell that just

became empty can be chosen by the next agent.

9.3 Segregation

Now let’s see what happens when we run the model. I’ll start with n=100 and

p=0.3, and run for 10 steps.
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Figure 9.1: Schelling’s segregation model with n=100, initial condition (left),
after 2 steps (middle), and after 10 steps (right).

grid = Schelling(n=100, p=0.3)

for i in range(10):

grid.step()

Figure 9.1 shows the initial configuration (left), the state of the simulation

after 2 steps (middle), and the state after 10 steps (right).

Clusters form almost immediately and grow quickly, until most agents live in

highly-segregated neighborhoods.

As the simulation runs, we can compute the degree of segregation, which is

the average, across agents, of the fraction of neighbors who are the same color

as the agent:

np.nanmean(frac_same)

In Figure 9.1, the average fraction of similar neighbors is 50% in the initial

configuration, 65% after two steps, and 76% after 10 steps!

Remember that when p=0.3 the agents would be happy if 3 of 8 neighbors

were their own color, but they end up living in neighborhoods where 6 or 7 of

their neighbors are their own color, typically.
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Figure 9.2: Degree of segregation in Schelling’s model, over time, for a range
of p.

Figure 9.2 shows how the degree of segregation increases and where it levels

off for several values of p. When p=0.4, the degree of segregation in steady

state is about 82%, and a majority of agents have no neighbors with a different

color.

These results are surprising to many people, and they make a striking exam-

ple of the unpredictable relationship between individual decisions and system

behavior.

9.4 Sugarscape

In 1996 Joshua Epstein and Robert Axtell proposed Sugarscape, an agent-

based model of an “artificial society” intended to support experiments related

to economics and other social sciences.

Sugarscape is a versatile model that has been adapted for a wide variety of

topics. As examples, I will replicate the first few experiments from Epstein

and Axtell’s book, Growing Artificial Societies.
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Figure 9.3: Replication of the original Sugarscape model: initial configuration
(left), after 2 steps (middle) and after 100 steps (right).

In its simplest form, Sugarscape is a model of a simple economy where agents

move around on a 2-D grid, harvesting and accumulating “sugar”, which rep-

resents economic wealth. Some parts of the grid produce more sugar than

others, and some agents are better at finding it than others.

This version of Sugarscape is often used to explore and explain the distribution

of wealth, in particular the tendency toward inequality.

In the Sugarscape grid, each cell has a capacity, which is the maximum amount

of sugar it can hold. In the original configuration, there are two high-sugar

regions, with capacity 4, surrounding by concentric rings with capacities 3, 2,

and 1.

Figure 9.3 (left) shows the initial configuration, with the darker areas indicat-

ing cells with higher capacity, and small dots representing the agents.

Initially there are 400 agents placed at random locations. Each agent has three

randomly-chosen attributes:

Sugar: Each agent starts with an endowment of sugar chosen from a uniform

distribution between 5 and 25 units.
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Metabolism: Each agent has some amount of sugar they must consume per

time step, chosen uniformly between 1 and 4.

Vision: Each agent can “see” the amount of sugar in nearby cells and move

to the cell with the most, but some agents can see and move farther than

others. The distance agents see is chosen uniformly between 1 and 6.

During each time step, agents move one at a time in a random order. Each

agent follows these rules:

� The agent surveys k cells in each of the 4 compass directions, where k is

the range of the agent’s vision.

� It chooses the unoccupied cell with the most sugar. In case of a tie,

it chooses the closer cell; among cells at the same distance, it chooses

randomly.

� The agent moves to the selected cell and harvests the sugar, adding the

harvest to its accumulated wealth and leaving the cell empty.

� The agent consumes some part of its wealth, depending on its metabolism.

If the resulting total is negative, the agent “starves” and is removed.

After all agents have executed these steps, the cells grow back some sugar,

typically 1 unit, but the total sugar in each cell is bounded by its capacity.

Figure 9.3 (middle) shows the state of the model after two steps. Most agents

are moving toward the areas with the most sugar. Agents with high vision

move the fastest; agents with low vision tend to get stuck on the plateaus,

wandering randomly until they get close enough to see the next level.

Agents born in the areas with the least sugar are likely to starve unless they

have a high initial endowment and high vision.

Within the high-sugar areas, agents compete with each other to find and har-

vest sugar as it grows back. Agents with high metabolism or low vision are

the most likely to starve.

When sugar grows back at 1 unit per time step, there is not enough sugar to

sustain the 400 agents we started with. The population drops quickly at first,

then more slowly, and levels off around 250.
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Figure 9.3 (right) shows the state of the model after 100 time steps, with about

250 agents. The agents who survive tend to be the lucky ones, born with high

vision and/or low metabolism. Having survived to this point, they are likely

to survive forever, accumulating unbounded stockpiles of sugar.

9.5 Wealth inequality

In its current form, Sugarscape models a simple ecology, and could be used to

explore the relationship between the parameters of the model, like the growth

rate and the attributes of the agents, and the carrying capacity of the system

(the number of agents that survive in steady state). And it models a form of

natural selection, where agents with higher “fitness” are more likely to survive.

The model also demonstrates a kind of wealth inequality, with some agents

accumulating sugar faster than others. But it would be hard to say anything

specific about the distribution of wealth because it is not “stationary”; that

is, the distribution changes over time and does not reach a steady state.

However, if we give the agents finite lifespans, the model produces a stationary

distribution of wealth. Then we can run experiments to see what effect the

parameters and rules have on this distribution.

In this version of the model, agents have an age that gets incremented each

time step, and a random lifespan chosen from a uniform distribution between

60 to 100. If an agent’s age exceeds its lifespan, it dies.

When an agent dies, from starvation or old age, it is replaced by a new agent

with random attributes, so the number of agents is constant.

Starting with 250 agents (which is close to carrying capacity) I run the model

for 500 steps. After each 100 steps, I plot the cumulative distribution function

(CDF) of sugar accumulated by the agents. We saw CDFs in Section 4.7.

Figure 9.4 shows the results on a linear scale (left) and a log-x scale (right).

After about 200 steps (which is twice the longest lifespan) the distribution

doesn’t change much. And it is skewed to the right.

Most agents have little accumulated wealth: the 25th percentile is about 10

and the median is about 20. But a few agents have accumulated much more:

the 75th percentile is about 40, and the highest value is more than 150.
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Figure 9.4: Distribution of sugar (wealth) after 100, 200, 300, and 400 steps
(gray lines) and 500 steps (dark line). Linear scale (left) and log-x scale (right).

On a log scale the shape of the distribution resembles a Gaussian or normal

distribution, although the right tail is truncated. If it were actually normal on

a log scale, the distribution would be lognormal, which is a heavy-tailed dis-

tribution. And in fact, the distribution of wealth in practically every country,

and in the world, is a heavy-tailed distribution.

It would be too much to claim that Sugarscape explains why wealth distribu-

tions are heavy-tailed, but the prevalence of inequality in variations of Sug-

arscape suggests that inequality is characteristic of many economies, even very

simple ones. And experiments with rules that model taxation and other in-

come transfers suggest that it is not easy to avoid or mitigate.

9.6 Implementing Sugarscape

Sugarscape is more complicated than the previous models, so I won’t present

the entire implementation here. I will outline the structure of the code and you

can see the details in the Jupyter notebook for this chapter, chap09.ipynb,

which is in the repository for this book. If you are not interested in the details,

you can skip this section.
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During each step, the agent moves, harvests sugar, and ages. Here is the Agent

class and its step method:

class Agent:

def step(self, env):

self.loc = env.look_and_move(self.loc, self.vision)

self.sugar += env.harvest(self.loc) - self.metabolism

self.age += 1

The parameter env is a reference to the environment, which is a Sugarscape

object. It provides methods look_and_move and harvest:

� look_and_move takes the location of the agent, which is a tuple of co-

ordinates, and the range of the agent’s vision, which is an integer. It

returns the agent’s new location, which is the visible cell with the most

sugar.

� harvest takes the (new) location of the agent, and removes and returns

the sugar at that location.

Sugarscape inherits from Cell2D, so it is similar to the other grid-based mod-

els we’ve seen.

The attributes include agents, which is a list of Agent objects, and occupied,

which is a set of tuples, where each tuple contains the coordinates of a cell

occupied by an agent.

Here is the Sugarscape class and its step method:
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class Sugarscape(Cell2D):

def step(self):

# loop through the agents in random order

random_order = np.random.permutation(self.agents)

for agent in random_order:

# mark the current cell unoccupied

self.occupied.remove(agent.loc)

# execute one step

agent.step(self)

# if the agent is dead, remove from the list

if agent.is_starving():

self.agents.remove(agent)

else:

# otherwise mark its cell occupied

self.occupied.add(agent.loc)

# grow back some sugar

self.grow()

return len(self.agents)

During each step, the Sugarscape uses the NumPy function permutation so

it loops through the agents in random order. It invokes step on each agent

and then checks whether it is dead. After all agents have moved, some of the

sugar grows back. The return value is the number of agents still alive.

I won’t show more details here; you can see them in the notebook for this

chapter. If you want to learn more about NumPy, you might want to look at

these functions in particular:

� make_visible_locs, which builds the array of locations an agent can

see, depending on its vision. The locations are sorted by distance, with

locations at the same distance appearing in random order. This function

uses np.random.shuffle and np.vstack.
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Figure 9.5: Wave behavior in Sugarscape: initial configuration (left), after 6
steps (middle) and after 12 steps (right).

� make_capacity, which initializes the capacity of the cells using NumPy

functions indices, hypot, minimum, and digitize.

� look_and_move, which uses argmax.

9.7 Migration and Wave Behavior

Although the purpose of Sugarscape is not primarily to explore the movement

of agents in space, Epstein and Axtell observed some interesting patterns when

agents migrate.

If we start with all agents in the lower-left corner, they quickly move toward

the closest “peak” of high-capacity cells. But if there are more agents than a

single peak can support, they quickly exhaust the sugar and agents are forced

to move into lower-capacity areas.

The ones with the longest vision cross the valley between the peaks and prop-

agate toward the northeast in a pattern that resembles a wave front. Because
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they leave a stripe of empty cells behind them, other agents don’t follow until

the sugar grows back.

The result is a series of discrete waves of migration, where each wave resembles

a coherent object, like the spaceships we saw in the Rule 110 CA and Game

of Life (see Section 5.6 and Section 6.2).

Figure 9.5 shows the initial condition (left) and the state of the model after 6

steps (middle) and 12 steps (right). You can see the first two waves reaching

and moving through the second peak, leaving a stripe of empty cells behind.

You can see an animated version of this model, where the wave patterns are

more clearly visible, in the notebook for this chapter.

These waves move diagonally, which is surprising because the agents them-

selves only move north or east, never northeast. Outcomes like this — groups

or “aggregates” with properties and behaviors that the agents don’t have —

are common in agent-based models. We will see more examples in the next

chapter.

9.8 Emergence

The examples in this chapter demonstrate one of the most important ideas in

complexity science: emergence. An emergent property is a characteristic of

a system that results from the interaction of its components, not from their

properties.

To clarify what emergence is, it helps to consider what it isn’t. For example,

a brick wall is hard because bricks and mortar are hard, so that’s not an

emergent property. As another example, some rigid structures are built from

flexible components, so that seems like a kind of emergence. But it is at best

a weak kind, because structural properties follow from well understood laws

of mechanics.

In contrast, the segregation we see in Schelling’s model is an emergent property

because it is not caused by racist agents. Even when the agents are only

mildly xenophobic, the outcome of the system is substantially different from

the intention of the agent’s decisions.
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The distribution of wealth in Sugarscape might be an emergent property, but

it is a weak example because we could reasonably predict it based on the

distributions of vision, metabolism, and lifespan. The wave behavior we saw

in the last example might be a stronger example, since the wave displays a

capability — diagonal movement — that the agents do not have.

Emergent properties are surprising: it is hard to predict the behavior of the

system even if we know all the rules. That difficulty is not an accident; in fact,

it may be the defining characteristic of emergence.

As Wolfram discusses in A New Kind of Science, conventional science is based

on the axiom that if you know the rules that govern a system, you can predict

its behavior. What we call “laws” are often computational shortcuts that allow

us to predict the outcome of a system without building or observing it.

But many cellular automatons are computationally irreducible, which

means that there are no shortcuts. The only way to get the outcome is to

implement the system.

The same may be true of complex systems in general. For physical systems

with more than a few components, there is usually no model that yields an an-

alytic solution. Numerical methods provide a kind of computational shortcut,

but there is still a qualitative difference.

Analytic solutions often provide a constant-time algorithm for prediction; that

is, the run time of the computation does not depend on t, the time scale

of prediction. But numerical methods, simulation, analog computation, and

similar methods take time proportional to t. And for many systems, there is

a bound on t beyond which we can’t compute reliable predictions at all.

These observations suggest that emergent properties are fundamentally unpre-

dictable, and that for complex systems we should not expect to find natural

laws in the form of computational shortcuts.

To some people, “emergence” is another name for ignorance; by this reckoning,

a property is emergent if we don’t have a reductionist explanation for it, but if

we come to understand it better in the future, it would no longer be emergent.

The status of emergent properties is a topic of debate, so it is appropriate to

be skeptical. When we see an apparently emergent property, we should not
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assume that there can never be a reductionist explanation. But neither should

we assume that there has to be one.

The examples in this book and the principle of computational equivalence give

good reasons to believe that at least some emergent properties can never be

“explained” by a classical reductionist model.

You can read more about emergence at https://thinkcomplex.com/emerge.

9.9 Exercises

The code for this chapter is in the Jupyter notebook chap09.ipynb in the

repository for this book. Open this notebook, read the code, and run the

cells. You can use this notebook to work on the following exercises. My

solutions are in chap09soln.ipynb.

Exercise 9.1 Bill Bishop, author of The Big Sort, argues that American

society is increasingly segregated by political opinion, as people choose to live

among like-minded neighbors.

The mechanism Bishop hypothesizes is not that people, like the agents in

Schelling’s model, are more likely to move if they are isolated, but that when

they move for any reason, they are likely to choose a neighborhood with people

like themselves.

Modify your implementation of Schelling’s model to simulate this kind of be-

havior and see if it yields similar degrees of segregation.

There are several ways you can model Bishop’s hypothesis. In my implementa-

tion, a random selection of agents moves during each step. Each agent consid-

ers k randomly-chosen empty locations and chooses the one with the highest

fraction of similar neighbors. How does the degree of segregation depend on

k?

Exercise 9.2 In the first version of SugarScape, we never add agents, so

once the population falls, it never recovers. In the second version, we only

replace agents when they die, so the population is constant. Now let’s see

what happens if we add some “population pressure”.

https://thinkcomplex.com/emerge
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Write a version of SugarScape that adds a new agent at the end of every

step. Add code to compute the average vision and the average metabolism of

the agents at the end of each step. Run the model for a few hundred steps

and plot the population over time, as well as the average vision and average

metabolism.

You should be able to implement this model by inheriting from SugarScape

and overriding __init__ and step.

Exercise 9.3 Among people who study philosophy of mind, “Strong AI” is

the theory that an appropriately-programmed computer could have a mind in

the same sense that humans have minds.

John Searle presented a thought experiment called “The Chinese Room”, in-

tended to show that Strong AI is false. You can read about it at https:

//thinkcomplex.com/searle.

What is the system reply to the Chinese Room argument? How does what

you have learned about emergence influence your reaction to the system re-

sponse?

https://thinkcomplex.com/searle
https://thinkcomplex.com/searle


Chapter 10

Herds, Flocks, and Traffic Jams

The agent-based models in the previous chapter are based on grids: the agents

occupy discrete locations in two-dimensional space. In this chapter we con-

sider agents that move is continuous space, including simulated cars on a

one-dimensional highway and simulated birds in three-dimensional space.

The code for this chapter is in chap10.ipynb, which is a Jupyter notebook in

the repository for this book. For more information about working with this

code, see Section 0.3.

10.1 Traffic jams

What causes traffic jams? Sometimes there is an obvious cause, like an ac-

cident, a speed trap, or something else that disturbs the flow of traffic. But

other times traffic jams appear for no apparent reason.

Agent-based models can help explain spontaneous traffic jams. As an example,

I implement a highway simulation based on a model in Mitchell Resnick’s book,

Turtles, Termites and Traffic Jams.

Here’s the class that represents the “highway”:
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class Highway:

def __init__(self, n=10, length=1000, eps=0):

self.length = length

self.eps = eps

# create the drivers

locs = np.linspace(0, length, n, endpoint=False)

self.drivers = [Driver(loc) for loc in locs]

# and link them up

for i in range(n):

j = (i+1) % n

self.drivers[i].next = self.drivers[j]

n is the number of cars, length is the length of the highway, and eps is the

amount of random noise we’ll add to the system.

locs contains the locations of the drivers; the NumPy function linspace

creates an array of n locations equally spaced between 0 and length.

The drivers attribute is a list of Driver objects. The for loop links them so

each Driver contains a reference to the next. The highway is circular, so the

last Driver contains a reference to the first.

During each time step, the Highway moves each of the drivers:

# Highway

def step(self):

for driver in self.drivers:

self.move(driver)

The move method lets the Driver choose its acceleration. Then move computes

the updated speed and position. Here’s the implementation:
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# Highway

def move(self, driver):

dist = self.distance(driver)

# let the driver choose acceleration

acc = driver.choose_acceleration(dist)

acc = min(acc, self.max_acc)

acc = max(acc, self.min_acc)

speed = driver.speed + acc

# add random noise to speed

speed *= np.random.uniform(1-self.eps, 1+self.eps)

# keep it nonnegative and under the speed limit

speed = max(speed, 0)

speed = min(speed, self.speed_limit)

# if current speed would collide, stop

if speed > dist:

speed = 0

# update speed and loc

driver.speed = speed

driver.loc += speed

dist is the distance between driver and the next driver ahead. This distance

is passed to choose_acceleration, which specifies the behavior of the driver.

This is the only decision the driver gets to make; everything else is determined

by the “physics” of the simulation.

� acc is acceleration, which is bounded by min_acc and max_acc. In

my implementation, cars can accelerate with max_acc=1 and brake with

min_acc=-10.

� speed is the old speed plus the requested acceleration, but then we

make some adjustments. First, we add random noise to speed, because

the world is not perfect. eps determines the magnitude of the relative

error; for example, if eps is 0.02, speed is multiplied by a random factor

between 0.98 and 1.02.
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� Speed is bounded between 0 and speed_limit, which is 40 in my imple-

mentation, so cars are not allowed to go backward or speed.

� If the requested speed would cause a collision with the next car, speed

is set to 0.

� Finally, we update the speed and loc attributes of driver.

Here’s the definition for the Driver class:

class Driver:

def __init__(self, loc, speed=0):

self.loc = loc

self.speed = speed

def choose_acceleration(self, dist):

return 1

The attributes loc and speed are the location and speed of the driver.

This implementation of choose_acceleration is simple: it always accelerates

at the maximum rate.

Since the cars start out equally spaced, we expect them all to accelerate until

they reach the speed limit, or until their speed exceeds the space between

them. At that point, at least one “collision” will occur, causing some cars to

stop.

Figure 10.1 shows a few steps in this process, starting with 30 cars and

eps=0.02. On the left is the configuration after 16 time steps, with the high-

way mapped to a circle. Because of random noise, some cars are going faster

than others, and the spacing has become uneven.

During the next time step (middle) there are two collisions, indicated by the

triangles.

During the next time step (right) two cars collide with the stopped cars, and

we can see the initial formation of a traffic jam. Once a jam forms, it tends to

persist, with additional cars approaching from behind and colliding, and with

cars in the front accelerating away.

Under some conditions, the jam itself propagates backwards, as you can see if

you watch the animations in the notebook for this chapter.
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Figure 10.1: Simulation of drivers on a circular highway at three points in
time. Squares indicate the position of the drivers; triangles indicate places
where one driver has to brake to avoid another.

10.2 Random perturbation

As the number of cars increases, traffic jams become more severe. Figure 10.2

shows the average speed cars are able to achieve, as a function of the number

of cars.

The top line shows results with eps=0, that is, with no random variation

in speed. With 25 or fewer cars, the spacing between cars is greater than

40, which allows cars to reach and maintain the maximum speed, which is 40.

With more than 25 cars, traffic jams form and the average speed drops quickly.

This effect is a direct result of the physics of the simulation, so it should not

be surprising. If the length of the road is 1000, the spacing between n cars is

1000/n. And since cars can’t move faster than the space in front of them, the

highest average speed we expect is 1000/n or 40, whichever is less.

But that’s the best case scenario. With just a small amount of randomness,

things get much worse.

Figure 10.2 also shows results with eps=0.001 and eps=0.01, which corre-

spond to errors in speed of 0.1% and 1%.
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Figure 10.2: Average speed as a function of the number of cars, for three
magnitudes of added random noise.

With 0.1% errors, the capacity of the highway drops from 25 to 20 (by “ca-

pacity” I mean the maximum number of cars that can reach and sustain the

speed limit). And with 1% errors, the capacity drops to 10. Ugh.

As one of the exercises at the end of this chapter, you’ll have a chance to

design a better driver; that is, you will experiment with different strategies in

choose_acceleration and see if you can find driver behaviors that improve

average speed.

10.3 Boids

In 1987 Craig Reynolds published “Flocks, herds and schools: A distributed

behavioral model”, which describes an agent-based model of herd behavior.

You can download his paper from https://thinkcomplex.com/boid.

Agents in this model are called “Boids”, which is both a contraction of “bird-

oid” and an accented pronunciation of “bird” (although Boids are also used

to model fish and herding land animals).

Each agent simulates three behaviors:

https://thinkcomplex.com/boid
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Flock centering: Move toward the center of the flock.

Collision avoidance: Avoid obstacles, including other Boids.

Velocity matching: Align velocity (speed and direction) with neighboring

Boids.

Boids make decisions based on local information only; each Boid only sees (or

pays attention to) other Boids in its field of vision.

In the repository for this book, you will find Boids7.py, which contains my

implementation of Boids, based in part on the description in Gary William

Flake’s book, The Computational Beauty of Nature.

My implementation uses VPython, which is a library that provides 3-D graph-

ics. VPython provides a Vector object, which I use to represent the posi-

tion and velocity of Boids in three dimensions. You can read about them at

https://thinkcomplex.com/vector.

10.4 The Boid algorithm

Boids7.py defines two classes: Boid, which implements the Boid behaviors,

and World, which contains a list of Boids and a “carrot” the Boids are attracted

to.

The Boid class defines the following methods:

� center: Finds other Boids within range and computes a vector toward

their centroid.

� avoid: Finds objects, including other Boids, within a given range, and

computes a vector that points away from their centroid.

� align: Finds other Boids within range and computes the average of their

headings.

� love: Computes a vector that points toward the carrot.

https://thinkcomplex.com/vector
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Here’s the implementation of center:

def center(self, boids, radius=1, angle=1):

neighbors = self.get_neighbors(boids, radius, angle)

vecs = [boid.pos for boid in neighbors]

return self.vector_toward_center(vecs)

The parameters radius and angle are the radius and angle of the field of view,

which determines which other Boids are taken into consideration. radius is

in arbitrary units of length; angle is in radians.

center uses get_neighbors to get a list of Boid objects that are in the field

of view. vecs is a list of Vector objects that represent their positions.

Finally, vector_toward_center computes a Vector that points from self to

the centroid of neighbors.

Here’s how get_neighbors works:

def get_neighbors(self, boids, radius, angle):

neighbors = []

for boid in boids:

if boid is self:

continue

# if not in range, skip it

offset = boid.pos - self.pos

if offset.mag > radius:

continue

# if not within viewing angle, skip it

if self.vel.diff_angle(offset) > angle:

continue

# otherwise add it to the list

neighbors.append(boid)

return neighbors

For each other Boid, get_neighbors uses vector subtraction to compute the
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vector from self to boid. The magnitude of this vector is the distance between

them; if this magnitude exceeds radius, we ignore boid.

diff_angle computes the angle between the velocity of self, which points

in the direction the Boid is heading, and the position of boid. If this angle

exceeds angle, we ignore boid.

Otherwise boid is in view, so we add it to neighbors.

Now here’s the implementation of vector_toward_center, which computes a

vector from self to the centroid of its neighbors.

def vector_toward_center(self, vecs):

if vecs:

center = np.mean(vecs)

toward = vector(center - self.pos)

return limit_vector(toward)

else:

return null_vector

VPython vectors work with NumPy, so np.mean computes the mean of vecs,

which is a sequence of vectors. limit_vector limits the magnitude of the

result to 1; null_vector has magnitude 0.

We use the same helper methods to implement avoid:

def avoid(self, boids, carrot, radius=0.3, angle=np.pi):

objects = boids + [carrot]

neighbors = self.get_neighbors(objects, radius, angle)

vecs = [boid.pos for boid in neighbors]

return -self.vector_toward_center(vecs)

avoid is similar to center, but it takes into account the carrot as well as

the other Boids. Also, the parameters are different: radius is smaller, so

Boids only avoid objects that are too close, and angle is wider, so Boids avoid

objects from all directions. Finally, the result from vector_toward_center is

negated, so it points away from the centroid of any objects that are too close.

Here’s the implementation of align:
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def align(self, boids, radius=0.5, angle=1):

neighbors = self.get_neighbors(boids, radius, angle)

vecs = [boid.vel for boid in neighbors]

return self.vector_toward_center(vecs)

align is also similar to center; the big difference is that it computes the av-

erage of the neighbors’ velocities, rather than their positions. If the neighbors

point in a particular direction, the Boid tends to steer toward that direction.

Finally, love computes a vector that points in the direction of the carrot.

def love(self, carrot):

toward = carrot.pos - self.pos

return limit_vector(toward)

The results from center, avoid, align, and love are what Reynolds calls

“acceleration requests”, where each request is intended to achieve a different

goal.

10.5 Arbitration

To arbitrate among these possibly conflicting goals, we compute a weighted

sum of the four requests:

def set_goal(self, boids, carrot):

w_avoid = 10

w_center = 3

w_align = 1

w_love = 10

self.goal = (w_center * self.center(boids) +

w_avoid * self.avoid(boids, carrot) +

w_align * self.align(boids) +

w_love * self.love(carrot))

self.goal.mag = 1

w_center, w_avoid, and the other weights determine the importance of the

acceleration requests. Usually w_avoid is relatively high and w_align is rela-

tively low.
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After computing a goal for each Boid, we update their velocity and position:

def move(self, mu=0.1, dt=0.1):

self.vel = (1-mu) * self.vel + mu * self.goal

self.vel.mag = 1

self.pos += dt * self.vel

self.axis = self.length * self.vel

The new velocity is the weighted sum of the old velocity and the goal. The

parameter mu determines how quickly the birds can change speed and direction.

Then we normalize velocity so its magnitude is 1, and orient the axis of the

Boid to point in the direction it is moving.

To update position, we multiply velocity by the time step, dt, to get the change

in position. Finally, we update axis so the orientation of the Boid when it is

drawn is aligned with its velocity.

Many parameters influence flock behavior, including the radius, angle and

weight for each behavior, as well as maneuverability, mu. These parameters

determine the ability of the Boids to form and maintain a flock, and the

patterns of motion and organization within the flock. For some settings, the

Boids resemble a flock of birds; other settings resemble a school of fish or a

cloud of flying insects.

As one of the exercises at the end of this chapter, you can modify these pa-

rameters and see how they affect Boid behavior.

10.6 Emergence and free will

Many complex systems have properties, as a whole, that their components do

not:

� The Rule 30 cellular automaton is deterministic, and the rules that gov-

ern its evolution are completely known. Nevertheless, it generates a

sequence that is statistically indistinguishable from random.

� The agents in Schelling’s model are not racist, but the outcome of their

interactions is a high degree of segregation.
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� Agents in Sugarscape form waves that move diagonally even though the

agents cannot.

� Traffic jams move backward even though the cars in them are moving

forward.

� Flocks and herds behave as if they are centrally organized even though

the animals in them are making individual decisions based on local in-

formation.

These examples suggest an approach to several old and challenging questions,

including the problems of consciousness and free will.

Free will is the ability to make choices, but if our bodies and brains are gov-

erned by deterministic physical laws, our choices are completely determined.

Philosophers and scientists have proposed many possible resolutions to this

apparent conflict; for example:

� William James proposed a two-stage model in which possible actions are

generated by a random process and then selected by a deterministic pro-

cess. In that case our actions are fundamentally unpredictable because

the process that generates them includes a random element.

� David Hume suggested that our perception of making choices is an illu-

sion; in that case, our actions are deterministic because the system that

produces them is deterministic.

These arguments reconcile the conflict in opposite ways, but they agree that

there is a conflict: the system cannot have free will if the parts are determin-

istic.

The complex systems in this book suggest the alternative that free will, at

the level of options and decisions, is compatible with determinism at the level

of neurons (or some lower level). In the same way that a traffic jam moves

backward while the cars move forward, a person can have free will even though

neurons don’t.
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10.7 Exercises

The code for the traffic jam simulation is in the Jupyter notebook chap09.ipynb

in the repository for this book. Open this notebook, read the code, and run

the cells. You can use this notebook to work on the following exercise. My

solutions are in chap09soln.ipynb.

Exercise 10.1 In the traffic jam simulation, define a class, BetterDriver,

that inherits from Driver and overrides choose_acceleration. See if you can

define driving rules that do better than the basic implementation in Driver.

You might try to achieve higher average speed, or a lower number of collisions.

Exercise 10.2 The code for my Boid implementation is in Boids7.py in the

repository for this book. To run it, you will need VPython, a library for 3-D

graphics and animation. If you use Anaconda (as I recommend in Section 0.3),

you can run the following in a terminal or Command Window:

conda install -c vpython vpython

Then run Boids7.py. It should either launch a browser or create a window

in a running browser, and create an animated display showing Boids, as white

cones, circling a red sphere, which is the carrot. If you click and move the

mouse, you can move the carrot and see how the Boids react.

Read the code to see how the parameters control Boid behaviors. Experiment

with different parameters. What happens if you “turn off” one of the behaviors

by setting its weight to 0?

To generate more bird-like behavior, Flake suggests adding a behavior to main-

tain a clear line of sight; in other words, if there is another bird directly ahead,

the Boid should move away laterally. What effect do you expect this rule to

have on the behavior of the flock? Implement it and see.

Exercise 10.3 Read more about free will at https://thinkcomplex.com/

will. The view that free will is compatible with determinism is called com-

patibilism. One of the strongest challenges to compatibilism is the “conse-

quence argument”. What is the consequence argument? What response can

you give to the consequence argument based on what you have read in this

book?

https://thinkcomplex.com/will
https://thinkcomplex.com/will
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Chapter 11

Evolution

The most important idea in biology, and possibly all of science, is the theory

of evolution by natural selection, which claims that new species are created

and existing species change due to natural selection. Natural selection is a

process in which inherited variations between individuals cause differences in

survival and reproduction.

Among people who know something about biology, the theory of evolution is

widely regarded as a fact, which is to say that it is consistent with all current

observations; it is highly unlikely to be contradicted by future observations;

and, if it is revised in the future, the changes will almost certainly leave the

central ideas substantially intact.

Nevertheless, many people do not believe in evolution. In a survey run by the

Pew Research Center, survey respondents were asked which of the following

claims is closer to their view:

1. Humans and other living things have evolved over time.

2. Humans and other living things have existed in their present form since

the beginning of time.

About 34% of Americans chose the second (see https://thinkcomplex.com/

arda).

https://thinkcomplex.com/arda
https://thinkcomplex.com/arda
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Even among the ones who believe that living things have evolved, barely more

than half believe that the cause of evolution is natural selection. In other

words, only a third of Americans believe that the theory of evolution is true.

How is this possible? In my opinion, contributing factors include:

� Some people think that there is a conflict between evolution and their

religious beliefs. Feeling like they have to reject one, they reject evolu-

tion.

� Others have been actively misinformed, often by members of the first

group, so that much of what they know about evolution is misleading

or false. For example, many people think that evolution means humans

evolved from monkeys. It doesn’t, and we didn’t.

� And many people simply don’t know anything about evolution.

There’s probably not much I can do about the first group, but I think I can

help the others. Empirically, the theory of evolution is hard for people to

understand. At the same time, it is profoundly simple: for many people, once

they understand it, it seems both obvious and irrefutable.

To help people make this transition from confusion to clarity, the most powerful

tool I have found is computation. Ideas that are hard to understand in theory

can be easy to understand when we see them happening in simulation. That

is the goal of this chapter.

The code for this chapter is in chap11.ipynb, which is a Jupyter notebook in

the repository for this book. For more information about working with this

code, see Section 0.3.

11.1 Simulating evolution

I start with a simple model that demonstrates a basic form of evolution. Ac-

cording to the theory, the following features are sufficient to produce evolution:

� Replicators: We need a population of agents that can reproduce in some

way. We’ll start with replicators that make perfect copies of themselves.

Later we’ll add imperfect copying, that is, mutation.
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� Variation: We need variability in the population, that is, differences

between individuals.

� Differential survival or reproduction: The differences between individuals

have to affect their ability to survive or reproduce.

To simulate these features, we’ll define a population of agents that represent

individual organisms. Each agent has genetic information, called its geno-

type, which is the information that gets copied when the agent replicates. In

our model1, a genotype is represented by a sequence of N binary digits (zeros

and ones), where N is a parameter we choose.

To generate variation, we create a population with a variety of genotypes; later

we will explore mechanisms that create or increase variation.

Finally, to generate differential survival and reproduction, we define a function

that maps from each genotype to a fitness, where fitness is a quantity related

to the ability of an agent to survive or reproduce.

11.2 Fitness landscape

The function that maps from genotype to fitness is called a fitness landscape.

In the landscape metaphor, each genotype corresponds to a location in an N-

dimensional space, and fitness corresponds to the “height” of the landscape at

that location. For visualizations that might clarify this metaphor, see https:

//thinkcomplex.com/fit.

In biological terms, the fitness landscape represents information about how the

genotype of an organism is related to its physical form and capabilities, called

its phenotype, and how the phenotype interacts with its environment.

In the real world, fitness landscapes are complicated, but we don’t need to build

a realistic model. To induce evolution, we need some relationship between

genotype and fitness, but it turns out that it can be any relationship. To

demonstrate this point, we’ll use a totally random fitness landscape.

1This model is a variant of the NK model developed primarily by Stuart Kauffman (see
https://thinkcomplex.com/nk).

https://thinkcomplex.com/fit
https://thinkcomplex.com/fit
https://thinkcomplex.com/nk
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Here is the definition for a class that represents a fitness landscape:

class FitnessLandscape:

def __init__(self, N):

self.N = N

self.one_values = np.random.random(N)

self.zero_values = np.random.random(N)

def fitness(self, loc):

fs = np.where(loc, self.one_values,

self.zero_values)

return fs.mean()

The genotype of an agent, which corresponds to its location in the fitness

landscape, is represented by a NumPy array of zeros and ones called loc. The

fitness of a given genotype is the mean of N fitness contributions, one for

each element of loc.

To compute the fitness of a genotype, FitnessLandscape uses two arrays:

one_values, which contains the fitness contributions of having a 1 in each

element of loc, and zero_values, which contains the fitness contributions of

having a 0.

The fitness method uses np.where to select a value from one_values where

loc has a 1, and a value from zero_values where loc has a 0.

As an example, suppose N=3 and

one_values = [0.1, 0.2, 0.3]

zero_values = [0.4, 0.7, 0.9]

In that case, the fitness of loc = [0, 1, 0] would be the mean of [0.4, 0.2, 0.9],

which is 0.5.

11.3 Agents

Next we need agents. Here’s the class definition:
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class Agent:

def __init__(self, loc, fit_land):

self.loc = loc

self.fit_land = fit_land

self.fitness = fit_land.fitness(self.loc)

def copy(self):

return Agent(self.loc, self.fit_land)

The attributes of an Agent are:

� loc: The location of the Agent in the fitness landscape.

� fit_land: A reference to a FitnessLandscape object.

� fitness: The fitness of this Agent in the FitnessLandscape, repre-

sented as a number between 0 and 1.

Agent provides copy, which copies the genotype exactly. Later, we will see a

version that copies with mutation, but mutation is not necessary for evolution.

11.4 Simulation

Now that we have agents and a fitness landscape, I’ll define a class called

Simulation that simulates the creation, reproduction, and death of the agents.

To avoid getting bogged down, I’ll present a simplified version of the code here;

you can see the details in the notebook for this chapter.

Here’s the definition of Simulation:

class Simulation:

def __init__(self, fit_land, agents):

self.fit_land = fit_land

self.agents = agents

The attributes of a Simulation are:
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� fit_land: A reference to a FitnessLandscape object.

� agents: An array of Agent objects.

The most important function in Simulation is step, which simulates one time

step:

# class Simulation:

def step(self):

n = len(self.agents)

fits = self.get_fitnesses()

# see who dies

index_dead = self.choose_dead(fits)

num_dead = len(index_dead)

# replace the dead with copies of the living

replacements = self.choose_replacements(num_dead, fits)

self.agents[index_dead] = replacements

step uses three other methods:

� get_fitnesses returns an array containing the fitness of each agent.

� choose_dead decides which agents die during this time step, and returns

an array that contains the indices of the dead agents.

� choose_replacements decides which agents reproduce during this time

step, invokes copy on each one, and returns an array of new Agent

objects.

In this version of the simulation, the number of new agents during each time

step equals the number of dead agents, so the number of live agents is constant.

11.5 No differentiation

Before we run the simulation, we have to specify the behavior of choose_dead

and choose_replacements. We’ll start with simple versions of these functions

that don’t depend on fitness:
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# class Simulation

def choose_dead(self, fits):

n = len(self.agents)

is_dead = np.random.random(n) < 0.1

index_dead = np.nonzero(is_dead)[0]

return index_dead

In choose_dead, n is the number of agents and is_dead is a boolean array

that contains True for the agents who die during this time step. In this

version, every agent has the same probability of dying: 0.1. choose_dead uses

np.nonzero to find the indices of the non-zero elements of is_dead (True is

considered non-zero).

# class Simulation

def choose_replacements(self, n, fits):

agents = np.random.choice(self.agents, size=n, replace=True)

replacements = [agent.copy() for agent in agents]

return replacements

In choose_replacements, n is the number of agents who reproduce during this

time step. It uses np.random.choice to choose n agents with replacement.

Then it invokes copy on each one and returns a list of new Agent objects.

These methods don’t depend on fitness, so this simulation does not have dif-

ferential survival or reproduction. As a result, we should not expect to see

evolution. But how can we tell?

11.6 Evidence of evolution

The most inclusive definition of evolution is a change in the distribution of

genotypes in a population. Evolution is an aggregate effect: in other words,

individuals don’t evolve; populations do.

In this simulation, genotypes are locations in a high-dimensional space, so it

is hard to visualize changes in their distribution. However, if the genotypes

change, we expect their fitness to change as well. So we will use changes in
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the distribution of fitness as evidence of evolution. In particular, we’ll look at

the mean and standard deviation of fitness over time.

Before we run the simulation, we have to add an Instrument, which is an

object that gets updated after each time step, computes a statistic of interest,

or “metric”, and stores the result in a sequence we can plot later.

Here is the parent class for all instruments:

class Instrument:

def __init__(self):

self.metrics = []

And here’s the definition for MeanFitness, an instrument that computes the

mean fitness of the population at each time step:

class MeanFitness(Instrument):

def update(self, sim):

mean = np.nanmean(sim.get_fitnesses())

self.metrics.append(mean)

Now we’re ready to run the simulation. To avoid the effect of random changes

in the starting population, we start every simulation with the same set of

agents. And to make sure we explore the entire fitness landscape, we start

with one agent at every location. Here’s the code that creates the Simulation:

N = 8

fit_land = FitnessLandscape(N)

agents = make_all_agents(fit_land, Agent)

sim = Simulation(fit_land, agents)

make_all_agents creates one Agent for every location; the implementation is

in the notebook for this chapter.

Now we can create and add a MeanFitness instrument, run the simulation,

and plot the results:

instrument = MeanFitness()

sim.add_instrument(instrument)

sim.run()
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Figure 11.1: Mean fitness over time for 10 simulations with no differential
survival or reproduction.

Simulation keeps a list of Instrument objects. After each time step it invokes

update on each Instrument in the list.

Figure 11.1 shows the result of running this simulation 10 times. The mean

fitness of the population drifts up or down at random. Since the distribution

of fitness changes over time, we infer that the distribution of phenotypes is

also changing. By the most inclusive definition, this random walk is a kind

of evolution. But it is not a particularly interesting kind.

In particular, this kind of evolution does not explain how biological species

change over time, or how new species appear. The theory of evolution is

powerful because it explains phenomena we see in the natural world that seem

inexplicable:

� Adaptation: Species interact with their environments in ways that seem

too complex, too intricate, and too clever to happen by chance. Many

features of natural systems seem as if they were designed.

� Increasing diversity: Over time the number of species on earth has gen-

erally increased (despite several periods of mass extinction).
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� Increasing complexity: The history of life on earth starts with relatively

simple life forms, with more complex organisms appearing later in the

geological record.

These are the phenomena we want to explain. So far, our model doesn’t do

the job.

11.7 Differential survival

Let’s add one more ingredient, differential survival. Here’s a class that extends

Simulation and overrides choose_dead:

class SimWithDiffSurvival(Simulation):

def choose_dead(self, fits):

n = len(self.agents)

is_dead = np.random.random(n) > fits

index_dead = np.nonzero(is_dead)[0]

return index_dead

Now the probability of survival depends on fitness; in fact, in this version, the

probability that an agent survives each time step is its fitness.

Since agents with low fitness are more likely to die, agents with high fitness

are more likely to survive long enough to reproduce. Over time we expect

the number of low-fitness agents to decrease, and the number of high-fitness

agents to increase.

Figure 11.2 shows mean fitness over time for 10 simulations with differential

survival. Mean fitness increases quickly at first, but then levels off.

You can probably figure out why it levels off: if there is only one agent at a

particular location and it dies, it leaves that location unoccupied. Without

mutation, there is no way for it to be occupied again.

With N=8, this simulation starts with 256 agents occupying all possible loca-

tions. Over time, the number of occupied locations decreases; if the simulation

runs long enough, eventually all agents will occupy the same location.



11.8 Mutation 183

0 100 200 300 400 500
Time

0.48

0.50

0.52

0.54

0.56

0.58

0.60
M

ea
n 

fit
ne

ss

Figure 11.2: Mean fitness over time for 10 simulations with differential survival.

So this simulation starts to explain adaptation: increasing fitness means that

the species is getting better at surviving in its environment. But the num-

ber of occupied locations decreases over time, so this model does not explain

increasing diversity at all.

In the notebook for this chapter, you will see the effect of differential repro-

duction. As you might expect, differential reproduction also increases mean

fitness. But without mutation, we still don’t see increasing diversity.

11.8 Mutation

In the simulations so far, we start with the maximum possible diversity —

one agent at every location in the landscape — and end with the minimum

possible diversity, all agents at one location.

That’s almost the opposite of what happened in the natural world, which ap-

parently began with a single species that branched, over time, into the millions,

or possibly billions, of species on Earth today (see https://thinkcomplex.

com/bio).

https://thinkcomplex.com/bio
https://thinkcomplex.com/bio
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With perfect copying in our model, we never see increasing diversity. But if

we add mutation, along with differential survival and reproduction, we get a

step closer to understanding evolution in nature.

Here is a class definition that extends Agent and overrides copy:

class Mutant(Agent):

def copy(self, prob_mutate=0.05)::

if np.random.random() > prob_mutate:

loc = self.loc.copy()

else:

direction = np.random.randint(self.fit_land.N)

loc = self.mutate(direction)

return Mutant(loc, self.fit_land)

In this model of mutation, every time we call copy, there is a 5% chance of

mutation. In case of mutation, we choose a random direction from the current

location — that is, a random bit in the genotype — and flip it. Here’s mutate:

def mutate(self, direction):

new_loc = self.loc.copy()

new_loc[direction] ^= 1

return new_loc

The operator ^= computes “exclusive OR”; with the operand 1, it has the

effect of flipping a bit (see https://thinkcomplex.com/xor).

Now that we have mutation, we don’t have to start with an agent at every

location. Instead, we can start with the minimum variability: all agents at the

same location.

Figure 11.3 shows the results of 10 simulations with mutation and differential

survival and reproduction. In every case, the population evolves toward the

location with maximum fitness.

To measure diversity in the population, we can plot the number of occupied

locations after each time step. Figure 11.4 shows the results. We start with

100 agents at the same location. As mutations occur, the number of occupied

locations increases quickly.

https://thinkcomplex.com/xor
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Figure 11.3: Mean fitness over time for 10 simulations with mutation and
differential survival and reproduction.
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Figure 11.4: Number of occupied locations over time for 10 simulations with
mutation and differential survival and reproduction.
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When an agent discovers a high-fitness location, it is more likely to survive

and reproduce. Agents at lower-fitness locations eventually die out. Over

time, the population migrates through the landscape until most agents are at

the location with the highest fitness.

At that point, the system reaches an equilibrium where mutation occupies

new locations at the same rate that differential survival causes lower-fitness

locations to be left empty.

The number of occupied locations in equilibrium depends on the mutation

rate and the degree of differential survival. In these simulations the number

of unique occupied locations at any point is typically 5–15.

It is important to remember that the agents in this model don’t move, just

as the genotype of an organism doesn’t change. When an agent dies, it can

leave a location unoccupied. And when a mutation occurs, it can occupy a

new location. As agents disappear from some locations and appear in others,

the population migrates across the landscape, like a glider in Game of Life.

But organisms don’t evolve; populations do.

11.9 Speciation

The theory of evolution says that natural selection changes existing species

and creates new ones. In our model, we have seen changes, but we have not

seen a new species. It’s not even clear, in the model, what a new species would

look like.

Among species that reproduce sexually, two organisms are considered the same

species if they can breed and produce fertile offspring. But the agents in the

model don’t reproduce sexually, so this definition doesn’t apply.

Among organisms that reproduce asexually, like bacteria, the definition of

species is not as clear-cut. Generally, a population is considered a species if

their genotypes form a cluster, that is, if the genetic differences within the

population are small compared to the differences between populations.

Before we can model new species, we need the ability to identify clusters of

agents in the landscape, which means we need a definition of distance between
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Figure 11.5: Mean distance between agents over time.

locations. Since locations are represented with arrays of bits, we’ll define dis-

tance as the number of bits that differ between locations. FitnessLandscape

provides a distance method:

# class FitnessLandscape

def distance(self, loc1, loc2):

return np.sum(np.logical_xor(loc1, loc2))

The logical_xor function computes “exclusive OR”, which is True for bits

that differ, and False for the bits that are the same.

To quantify the dispersion of a population, we can compute the mean of the

distances between pairs of agents. In the notebook for this chapter, you’ll

see the MeanDistance instrument, which computes this metric after each time

step.

Figure 11.5 shows mean distance between agents over time. Because we start

with identical mutants, the initial distances are 0. As mutations occur, mean

distance increases, reaching a maximum while the population migrates across

the landscape.
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Figure 11.6: Mean fitness over time. After 500 time steps, we change the
fitness landscape.

Once the agents discover the optimal location, mean distance decreases until

the population reaches an equilibrium where increasing distance due to muta-

tion is balanced by decreasing distance as agents far from the optimal location

disappear. In these simulations, the mean distance in equilibrium is near 1;

that is, most agents are only one mutation away from optimal.

Now we are ready to look for new species. To model a simple kind of speciation,

suppose a population evolves in an unchanging environment until it reaches

steady state (like some species we find in nature that seem to have changed

very little over long periods of time).

Now suppose we either change the environment or transport the population

to a new environment. Some features that increased fitness in the old envi-

ronment might decrease it in the new environment, and vice versa.

We can model these scenarios by running a simulation until the population

reaches steady state, then changing the fitness landscape, and then resuming

the simulation until the population reaches steady state again.

Figure 11.6 shows results from a simulation like that. We start with 100

identical mutants at a random location, and run the simulation for 500 time



11.10 Summary 189

steps. At that point, many agents are at the optimal location, which has

fitness near 0.65 in this example. The genotypes of the agents form a cluster,

with the mean distance between agents near 1.

After 500 steps, we run FitnessLandscape.set_values, which changes the

fitness landscape; then we resume the simulation. Mean fitness is lower, as we

expect because the optimal location in the old landscape is no better than a

random location in the new landscape.

After the change, mean fitness increases again as the population migrates

across the new landscape, eventually finding the new optimum, which has

fitness near 0.75 (which happens to be higher in this example, but needn’t

be).

Once the population reaches steady state, it forms a new cluster, with mean

distance between agents near 1 again.

Now if we compute the distance between the agents’ locations before and after

the change, they differ by more than 6, on average. The distances between

clusters are much bigger than the distances between agents in each cluster, so

we can interpret these clusters as distinct species.

11.10 Summary

We have seen that mutation, along with differential survival and reproduction,

is sufficient to cause increasing fitness, increasing diversity, and a simple form

of speciation. This model is not meant to be realistic; evolution in natural

systems is much more complicated than this. Rather, it is meant to be a

“sufficiency theorem”; that is, a demonstration that the features of the model

are sufficient to produce the behavior we are trying to explain (see https:

//thinkcomplex.com/suff).

Logically, this “theorem” doesn’t prove that evolution in nature is caused by

these mechanisms alone. But since these mechanisms do appear, in many

forms, in biological systems, it is reasonable to think that they at least con-

tribute to natural evolution.

Likewise, the model does not prove that these mechanisms always cause evo-

lution. But the results we see here turn out to be robust: in almost any

https://thinkcomplex.com/suff
https://thinkcomplex.com/suff
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model that includes these features — imperfect replicators, variability, and

differential reproduction — evolution happens.

I hope this observation helps to demystify evolution. When we look at natural

systems, evolution seems complicated. And because we primarily see the re-

sults of evolution, with only glimpses of the process, it can be hard to imagine

and hard to believe.

But in simulation, we see the whole process, not just the results. And by

including the minimal set of features to produce evolution — temporarily

ignoring the vast complexity of biological life — we can see evolution as the

surprisingly simple, inevitable idea that it is.

11.11 Exercises

The code for this chapter is in the Jupyter notebook chap11.ipynb in the

repository for this book. Open the notebook, read the code, and run the cells.

You can use the notebook to work on the following exercises. My solutions

are in chap11soln.ipynb.

Exercise 11.1 The notebook shows the effects of differential reproductions

and survival separately. What if you have both? Write a class called SimWithBoth

that uses the version of choose_dead from SimWithDiffSurvival and the ver-

sion of choose_replacements from SimWithDiffReproduction. Does mean

fitness increase more quickly?

As a Python challenge, can you write this class without copying code?

Exercise 11.2 When we change the landscape as in Section 11.9, the number

of occupied locations and the mean distance usually increase, but the effect is

not always big enough to be obvious. Try out some different random seeds to

see how general the effect is.
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Evolution of cooperation

In this final chapter, I take on two questions, one from biology and one from

philosophy:

� In biology, the “problem of altruism” is the apparent conflict between

natural selection, which suggests that animals live in a state of con-

stant competition, and altruism, which is the tendency of many ani-

mals to help other animals, even to their own detriment. See https:

//thinkcomplex.com/altruism.

� In moral philosophy, the question of human nature asks whether hu-

mans are fundamentally good, or evil, or blank states shaped by their

environment. See https://thinkcomplex.com/nature.

The tools I use to address these questions are agent-based simulation (again)

and game theory, which is a set of abstract models meant to describe ways

agents interact. Specifically, the game we will consider is the Prisoner’s Dilemma.

The code for this chapter is in chap12.ipynb, which is a Jupyter notebook in

the repository for this book. For more information about working with this

code, see Section 0.3.

https://thinkcomplex.com/altruism
https://thinkcomplex.com/altruism
https://thinkcomplex.com/nature
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12.1 Prisoner’s Dilemma

The Prisoner’s Dilemma is a topic in game theory, but it’s not the fun kind of

game. Instead, it is the kind of game that sheds light on human motivation and

behavior. Here is the presentation of the dilemma from Wikipedia (https:

//thinkcomplex.com/pd):

Two members of a criminal gang are arrested and imprisoned. Each

prisoner is in solitary confinement with no means of communicating

with the other. The prosecutors lack sufficient evidence to convict

the pair on the principal charge, but they have enough to convict

both on a lesser charge. Simultaneously, the prosecutors offer each

prisoner a bargain. Each prisoner is given the opportunity to either:

(1) betray the other by testifying that the other committed the

crime, or (2) cooperate with the other by remaining silent. The

offer is:

� If A and B each betray the other, each of them serves 2 years

in prison.

� If A betrays B but B remains silent, A will be set free and B

will serve 3 years in prison (and vice versa).

� If A and B both remain silent, both of them will only serve 1

year in prison (on the lesser charge).

Obviously, this scenario is contrived, but it is meant to represent a variety of

interactions where agents have to choose whether to “cooperate” with each

other or “defect”, and where the reward (or punishment) for each agent de-

pends on what the other chooses.

With this set of punishments, it is tempting to say that the players should

cooperate, that is, that both should remain silent. But neither agent knows

what the other will do, so each has to consider two possible outcomes. First,

looking at it from A’s point of view:

� If B remains silent, A is better off defecting; she would go free rather

than serve 1 year.

� If B defects, A is still better off defecting; she would serve only 2 years

rather than 3.

https://thinkcomplex.com/pd
https://thinkcomplex.com/pd
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No matter what B does, A is better off defecting. And because the game is

symmetric, this analysis is the same from B’s point of view: no matter what

A does, B is better off defecting.

In the simplest version of this game, we assume that A and B have no other

considerations to take into account. They can’t communicate with each other,

so they can’t negotiate, make promises, or threaten each other. And they

consider only the immediate goal of minimizing their sentences; they don’t

take into account any other factors.

Under those assumptions, the rational choice for both agents is to defect. That

might be a good thing, at least for purposes of criminal justice. But for the

prisoners, it is frustrating because there is, apparently, nothing they can do to

achieve the outcome they both want. And this model applies to other scenarios

in real life where cooperation would be better for the greater good as well as

for the players.

Studying these scenarios, and ways to escape from the dilemma, is the focus

of people who study game theory, but it is not the focus of this chapter. We

are headed in a different direction.

12.2 The problem of nice

Since the Prisoner’s Dilemma was first discussed in the 1950s, it has been

a popular topic of study in social psychology. Based on the analysis in the

previous section, we can say what a perfectly rational agent should do; it is

harder to predict what real people actually do. Fortunately, the experiment

has been done1.

If we assume that people are smart enough to do the analysis (or understand it

when explained), and that they generally act in their own interest, we would

expect them to defect pretty much all the time. But they don’t. In most

1Here’s a recent report with references to previous experiments: Barreda-Tarrazona,
Jaramillo-Gutiérrez, Pavan, and Sabater-Grande, “Individual Characteristics vs. Experi-
ence: An Experimental Study on Cooperation in Prisoner’s Dilemma”, Frontiers in Psy-
chology, 2017; 8: 596. https://thinkcomplex.com/pdexp.

https://thinkcomplex.com/pdexp
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experiments, subjects cooperate much more than the rational agent model

predicts2.

The most obvious explanation of this result is that people are not rational

agents, which should not be a surprise to anyone. But why not? Is it because

they are not smart enough to understand the scenario or because they are

knowingly acting contrary to their own interest?

Based on experimental results, it seems that at least part of the explanation

is plain altruism: many people are willing to incur a cost to themselves in

order to benefit another person. Now, before you nominate that conclusion

for publication in the Journal of Obvious Results, let’s keep asking why:

� Why do people help other people, even at a cost to themselves? At least

part of the reason is that they want to; it makes them feel good about

themselves and the world.

� And why does being nice make people feel good? It might be tempting

to say that they were raised right, or more generally trained by society

to want to do good things. But there is little doubt that some part of

altruism is innate; a proclivity for altruism is the result of normal brain

development.

� Well, why is that? The innate parts of brain development, and the

personal characteristics that follow, are the result of genetic information.

Of course, the relationship between genes and altruism is complicated;

there are probably many genes that interact with each other and with

environmental factors to cause people to be more or less altruistic in

different circumstances. Nevertheless, there are almost certainly genes

that tend to make people altruistic.

� Finally, why is that? If, under natural selection, animals are in constant

competition with each other to survive and reproduce, it seems obvious

that altruism would be counterproductive. In a population where some

people help others, even to their own detriment, and others are purely

selfish, it seems like the selfish ones would benefit, the altruistic ones

would suffer, and the genes for altruism would be driven to extinction.

2For an excellent video summarizing what we have discussed so far, see https://

thinkcomplex.com/pdvid1.

https://thinkcomplex.com/pdvid1
https://thinkcomplex.com/pdvid1
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This apparent contradiction is the “problem of altruism”: why haven’t the

genes for altruism died out?

Among biologists, there are many possible explanations, including reciprocal

altruism, sexual selection, kin selection, and group selection. Among non-

scientists, there are even more explanations. I leave it to you to explore the

alternatives; for now I want to focus on just one explanation, arguably the

simplest one: maybe altruism is adaptive. In other words, maybe genes for

altruism make people more likely to survive and reproduce.

It turns out that the Prisoner’s Dilemma, which raises the problem of altruism,

might also help resolve it.

12.3 Prisoner’s dilemma tournaments

In the late 1970s Robert Axelrod, a political scientist at the University of

Michigan, organized a tournament to compare strategies for playing Prisoner’s

Dilemma (PD).

He invited participants to submit strategies in the form of computer programs,

then played the programs against each other and kept score. Specifically, they

played the iterated version of PD, in which the agents play multiple rounds

against the same opponent, so their decisions can be based on history.

In Axelrod’s tournaments, a simple strategy that did surprisingly well was

called “tit for tat”, or TFT. TFT always cooperates during the first round of

an iterated match; after that, it copies whatever the opponent did during the

previous round. If the opponent keeps cooperating, TFT keeps cooperating.

If the opponent defects at any point, TFT defects in the next round. But if

the opponent goes back to cooperating, so does TFT.

For more information about these tournaments, and an explanation of why

TFT does so well, see this video: https://thinkcomplex.com/pdvid2.

Looking at the strategies that did well in these tournaments, Alexrod identified

the characteristics they tended to share:

� Nice: The strategies that do well cooperate during the first round, and

generally cooperate as often as they defect in subsequent rounds.

https://thinkcomplex.com/pdvid2
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� Retaliating: Strategies that cooperate all the time did not do as well as

strategies that retaliate if the opponent defects.

� Forgiving: But strategies that were too vindictive tended to punish them-

selves as well as their opponents.

� Non-envious: Some of the most successful strategies seldom outscore

their opponents; they are successful because they do well enough against

a wide variety of opponents.

TFT has all of these properties.

Axelrod’s tournaments offer a partial, possible answer to the problem of al-

truism: maybe the genes for altruism are prevalent because they are adaptive.

To the degree that many social interactions can be modeled as variations on

the Prisoner’s Dilemma, a brain that is wired to be nice, tempered by a bal-

ance of retaliation and forgiveness, will tend to do well in a wide variety of

circumstances.

But the strategies in Axelrod’s tournaments were designed by people; they

didn’t evolve. We need to consider whether it is credible that genes for nice-

ness, retribution, and forgiveness could appear by mutation, successfully in-

vade a population of other strategies, and resist being invaded by subsequent

mutations.

12.4 Simulating evolution of cooperation

Evolution of Cooperation is the title of the first book where Axelrod presented

results from Prisoner’s Dilemma tournaments and discussed the implications

for the problem of altruism. Since then, he and other researchers have explored

the evolutionary dynamics of PD tournaments, that is, how the distribution

of strategies changes over time in a population of PD contestants. In the rest

of this chapter, I run a version of those experiments and present the results.

First, we’ll need a way to encode a PD strategy as a genotype. For this ex-

periment, I consider strategies where the agent’s choice in each round depends

only on the opponent’s choice in the previous two rounds. I represent a strat-

egy using a dictionary that maps from the opponent’s previous two choices to

the agent’s next choice.
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Here is the class definition for these agents:

class Agent:

keys = [(None, None),

(None, 'C'),

(None, 'D'),

('C', 'C'),

('C', 'D'),

('D', 'C'),

('D', 'D')]

def __init__(self, values, fitness=np.nan):

self.values = values

self.responses = dict(zip(self.keys, values))

self.fitness = fitness

keys is the sequence of keys in each agent’s dictionary, where the tuple ('C', 'C')

means that the opponent cooperated in the previous two rounds; (None, 'C')

means that only one round has been played and the opponent cooperated; and

(None, None) means that no rounds have been played.

In the __init__ method, values is a sequence of choices, either 'C' or 'D',

that correspond to keys. So if the first element of values is 'C', that means

that this agent will cooperate in the first round. If the last element of values is

'D', this agent will defect if the opponent defected in the previous two rounds.

In this implementation, the genotype of an agent who always defects is 'DDDDDDD';

the genotype of an agent who always cooperates is 'CCCCCCC', and the geno-

type for TFT is 'CCDCDCD'.

The Agent class provides copy, which makes another agent with the same

genotype, but with some probability of mutation:

def copy(self, prob_mutate=0.05):

if np.random.random() > prob_mutate:

values = self.values

else:

values = self.mutate()

return Agent(values, self.fitness)
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Mutation works by choosing a random value in the genotype and flipping from

'C' to 'D', or vice versa:

def mutate(self):

values = list(self.values)

index = np.random.choice(len(values))

values[index] = 'C' if values[index] == 'D' else 'D'

return values

Now that we have agents, we need a tournament.

12.5 The Tournament

The Tournament class encapsulates the details of the PD competition:

payoffs = {('C', 'C'): (3, 3),

('C', 'D'): (0, 5),

('D', 'C'): (5, 0),

('D', 'D'): (1, 1)}

num_rounds = 6

def play(self, agent1, agent2):

agent1.reset()

agent2.reset()

for i in range(self.num_rounds):

resp1 = agent1.respond(agent2)

resp2 = agent2.respond(agent1)

pay1, pay2 = self.payoffs[resp1, resp2]

agent1.append(resp1, pay1)

agent2.append(resp2, pay2)

return agent1.score, agent2.score

payoffs is a dictionary that maps from the agents’ choices to their rewards.

For example, if both agents cooperate, they each get 3 points. If one defects
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and the other cooperates, the defector gets 5 and the cooperator gets 0. If

they both defect, each gets 1. These are the payoffs Axelrod used in his

tournaments.

The play method runs several rounds of the PD game. It uses the following

methods from the Agent class:

� reset: Initializes the agents before the first round, resetting their scores

and the history of their responses.

� respond: Asks each agent for their response, given the opponent’s pre-

vious responses.

� append: Updates each agent by storing the choices and adding up the

scores from successive rounds.

After the given number of rounds, play returns the total score for each agent.

I chose num_rounds=6 so that each element of the genotype is accessed with

roughly the same frequency. The first element is only accessed during the first

round, or one sixth of the time. The next two elements are only accessed

during the second round, or one twelfth each. The last four elements are

accessed four of six times, or one sixth each, on average.

Tournament provides a second method, melee, that determines which agents

compete against each other:
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def melee(self, agents, randomize=True):

if randomize:

agents = np.random.permutation(agents)

n = len(agents)

i_row = np.arange(n)

j_row = (i_row + 1) % n

totals = np.zeros(n)

for i, j in zip(i_row, j_row):

agent1, agent2 = agents[i], agents[j]

score1, score2 = self.play(agent1, agent2)

totals[i] += score1

totals[j] += score2

for i in i_row:

agents[i].fitness = totals[i] / self.num_rounds / 2

melee takes a list of agents and a boolean, randomize, that determines whether

each agent fights the same neighbors every time, or whether the pairings are

randomized.

i_row and j_row contain the indices of the pairings. totals contains the total

score of each agent.

Inside the loop, we select two agents, invoke play, and update totals. At the

end, we compute the average number of points each agent got, per round and

per opponent, and store the results in the fitness attribute of each agent.

12.6 The Simulation

The Simulation class for this chapter is based on the one in Section 11.4; the

only differences are in __init__ and step.

Here’s the __init__ method:
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class PDSimulation(Simulation):

def __init__(self, tournament, agents):

self.tournament = tournament

self.agents = np.asarray(agents)

self.instruments = []

A Simulation object contains a Tournament object, a sequence of agents, and

a sequence of Instrument objects (as in Section 11.6).

Here’s the step method:

def step(self):

self.tournament.melee(self.agents)

Simulation.step(self)

This version of step uses Tournament.melee, which sets the fitness attribute

for each agent; then it calls the step method from the Simulation class,

reproduced here:

# class Simulation

def step(self):

n = len(self.agents)

fits = self.get_fitnesses()

# see who dies

index_dead = self.choose_dead(fits)

num_dead = len(index_dead)

# replace the dead with copies of the living

replacements = self.choose_replacements(num_dead, fits)

self.agents[index_dead] = replacements

# update any instruments

self.update_instruments()

Simulation.step collects the agents’ fitnesses in an array; then it calls choose_dead

to decide which agents die, and choose_replacements to decide which agents

reproduce.



202 Chapter 12 Evolution of cooperation

My simulation includes differential survival, as in Section 11.7, but not differ-

ential reproduction. You can see the details in the notebook for this chapter.

As one of the exercises, you will have a chance to explore the effect of differ-

ential reproduction.

12.7 Results

Suppose we start with a population of three agents: one always cooperates, one

always defects, and one plays the TFT strategy. If we run Tournament.melee

with this population, the cooperator gets 1.5 points per round, the TFT agent

gets 1.9, and the defector gets 3.33. This result suggests that “always defect”

should quickly become the dominant strategy.

But “always defect” contains the seeds of its own destruction. If nicer strate-

gies are driven to extinction, the defectors have no one to take advantage of.

Their fitness drops, and they become vulnerable to invasion by cooperators.

Based on this analysis, it is not easy to predict how the system will behave:

will it find a stable equilibrium, or oscillate between various points in the

genotype landscape? Let’s run the simulation and find out!

I start with 100 identical agents who always defect, and run the simulation for

5000 steps:

tour = Tournament()

agents = make_identical_agents(100, list('DDDDDDD'))

sim = PDSimulation(tour, agents)

Figure 12.1 shows mean fitness over time (using the MeanFitness instrument

from Section 11.6). Initially mean fitness is 1, because when defectors face

each other, they get only 1 point each per round.

After about 500 time steps, mean fitness increases to nearly 3, which is what

cooperators get when they face each other. However, as we suspected, this

situation in unstable. Over the next 500 steps, mean fitness drops below 2,

climbs back toward 3, and continues to oscillate.

The rest of the simulation is highly variable, but with the exception of one big

drop, mean fitness is usually between 2 and 3, with the long-term mean close

to 2.5.
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Figure 12.1: Average fitness (points scored per round of Prisoner’s Dilemma).

And that’s not bad! It’s not quite a utopia of cooperation, which would

average 3 points per round, but it’s a long way from the dystopia of perpetual

defection. And it’s a lot better than what we might expect from the natural

selection of self-interested agents.

To get some insight into this level of fitness, let’s look at a few more instru-

ments. Niceness measures the fraction of cooperation in the genotypes of the

agents after each time step:

class Niceness(Instrument):

def update(self, sim):

responses = np.array([agent.values

for agent in sim.agents])

metric = np.mean(responses == 'C')

self.metrics.append(metric)

responses is an array with one row for each agent and one column for each el-

ement of the genome. metric is the fraction of elements that are 'C', averaged

across agents.

Figure 12.2 (left) shows the results: starting from 0, average niceness increases
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Figure 12.2: Average niceness across all genomes in the population (left), and
fraction of population that cooperates in the first round (right).

quickly to 0.75, then oscillates between 0.4 and 0.85, with a long-term mean

near 0.65. Again, that’s a lot of niceness!

Looking specifically at the opening move, we can track the fraction of agents

that cooperate in the first round. Here’s the instrument:

class Opening(Instrument):

def update(self, sim):

responses = np.array([agent.values[0]

for agent in sim.agents])

metric = np.mean(responses == 'C')

self.metrics.append(metric)

Figure 12.2 (right) shows the results, which are highly variable. The fraction of

agents who cooperate in the first round is often near 1, and occasionally near

0. The long-term average is close to 0.65, similar to overall niceness. These

results are consistent with Axelrod’s tournaments; in general, nice strategies

do well.

The other characteristics Axelrod identifies in successful strategies are retali-
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ation and forgiveness. To measure retaliation, I define this instrument:

class Retaliating(Instrument):

def update(self, sim):

after_d = np.array([agent.values[2::2]

for agent in sim.agents])

after_c = np.array([agent.values[1::2]

for agent in sim.agents])

metric = np.mean(after_d=='D') - np.mean(after_c=='D')

self.metrics.append(metric)

Retaliating compares the number of elements in all genomes where an agent

defects after the opponent defects (elements 2, 4, and 6) with the number of

places where an agents defects after the opponent cooperates. As you might

expect by now, the results vary substantially (you can see the graph in the

notebook). On average the difference between these fractions is less than 0.1,

so if agents defect 30% of the time after the opponent cooperates, they might

defect 40% of the time after a defection.

This result provides weak support for the claim that successful strategies re-

taliate. But maybe it’s not necessary for all agents, or even many, to be

retaliatory; if there is at least some tendency toward retaliation in the popu-

lation as a whole, that might be enough to prevent high-defection strategies

from gaining ground.

To measure forgiveness, I define one more instrument to see whether agents

might be more likely to cooperate after D-C in the previous two rounds, com-

pared to C-D. In my simulations, there is no evidence for this particular kind of

forgiveness. On the other hand, the strategies in these simulations are neces-

sarily forgiving because they consider only the previous two rounds of history.

In this context, forgetting is a kind of forgiving.

12.8 Conclusions

Axelrod’s tournaments suggest a possible resolution to the problem of altru-

ism: maybe being nice, but not too nice, is adaptive. But the strategies in the
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original tournaments were designed by people, not evolution, and the distri-

bution of strategies did not change over the course of the tournaments.

So that raises a question: strategies like TFT might do well in a fixed pop-

ulation of human-designed strategies, but can they evolve? In other words,

can they appear in a population through mutation, compete successfully with

their ancestors, and resist invasion by their descendants?

The simulations in this chapter suggest:

� Populations of defectors are vulnerable to invasion by nicer strategies.

� Populations that are too nice are vulnerable to invasion by defectors.

� As a result, the average level of niceness oscillates, but the average

amount of niceness is generally high, and the average level of fitness

is generally closer to a utopia of cooperation than to a dystopia of de-

fection.

� TFT, which was a successful strategy in Alexrod’s tournaments, does

not seem to be a specially optimal strategy in an evolving population.

In fact, there is probably no stable optimal strategy.

� Some degree of retaliation may be adaptive, but it might not be necessary

for all agents to retaliate. If there is enough retaliation in the population

as a whole, that might be enough to prevent invasion by defectors3.

Obviously, the agents in these simulations are simple, and the Prisoner’s

Dilemma is a highly abstract model of a limited range of social interactions.

Nevertheless, the results in this chapter provide some insight into human na-

ture. Maybe our inclinations toward cooperation, retaliation, and forgiveness

are innate, at least in part. These characteristics are a result of how our brains

are wired, which is controlled by our genes, at least in part. And maybe our

genes build our brains that way because over the history of human evolution,

genes for less altruistic brains were less likely to propagate.

Maybe that’s why selfish genes build altruistic brains.

3And that introduces a whole new topic in game theory, the free-rider problem (see
https://thinkcomplex.com/rider)

https://thinkcomplex.com/rider
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12.9 Exercises

The code for this chapter is in the Jupyter notebook chap12.ipynb in the

repository for this book. Open the notebook, read the code, and run the cells.

You can use this notebook to work on the following exercises. My solutions

are in chap12soln.ipynb.

Exercise 12.1 The simulations in this chapter depend on conditions and

parameters I chose arbitrarily. As an exercise, I encourage you to explore

other conditions to see what effect they have on the results. Here are some

suggestions:

1. Vary the initial conditions: instead of starting with all defectors, see

what happens if you start with all cooperators, all TFT, or random

agents.

2. In Tournament.melee, I shuffle the agents at the beginning of each time

step, so each agent plays against two randomly-chosen agents. What

happens if you don’t shuffle? In that case, each agent plays against the

same neighbors repeatedly. That might make it easier for a minority

strategy to invade a majority, by taking advantage of locality.

3. Since each agent only plays against two other agents, the outcome of

each round is highly variable: an agent that would do well against most

other agents might get unlucky during any given round, or the other way

around. What happens if you increase the number of opponents each

agent plays against during each round? Or what if an agent’s fitness at

the end of each step is the average of its current score and its fitness at

the end of the previous round?

4. The function I chose for prob_survival varies from 0.7 to 0.9, so the

least fit agent, with p=0.7, lives for 3.33 time steps on average, and the

most fit agent lives for 10 time steps. What happens if you make the

degree of differential survival more or less “aggressive”?

5. I chose num_rounds=6 so that each element of the genome has roughly

the same impact on the outcome of a match. But that is substantially

shorter than what Alexrod used in his tournaments. What happens if you

increase num_rounds? Note: if you explore the effect of this parameter,

you might want to modify Niceness to measure the niceness of the last
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4 elements of the genome, which will be under more selective pressure

as num_rounds increases.

6. My implementation has differential survival but not differential repro-

duction. What happens if you add differential reproduction?

Exercise 12.2 In my simulations, the population never converges to a state

where a majority share the same, presumably optimal, genotype. There are

two possible explanations for this outcome: one is that there is no optimal

strategy, because whenever the population is dominated by a majority geno-

type, that condition creates an opportunity for a minority to invade; the other

possibility is that the mutation rate is high enough to maintain a diversity of

genotypes.

To distinguish between these explanations, try lowering the mutation rate

to see what happens. Alternatively, start with a random population and run

without mutation until only one genotype survives. Or run with mutation until

the system reaches something like a steady state; then turn off mutation and

run until there is only one surviving genotype. What are the characteristics

of the genotypes that prevail in these conditions?

Exercise 12.3 The agents in my experiment are “reactive” in the sense that

their choice during each round depends only on what the opponent did during

previous rounds. Explore strategies that also take into account the agent’s past

choices. These strategies can distinguish an opponent who retaliates from an

opponent who defects without provocation.
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