Visual Basic 2012

Programmer's Reference

Rod Stephens


http://www.allitebooks.org

ivww . al litebooks.cond



http://www.allitebooks.org

VISUAL BASIC® 2012
PROGRAMMER’S REFERENCE

INTRODUC CTION . ... . e e e e e XXVii
» PART I IDE

CHAPTER1 Introductiontothe IDE . ... ... 3
CHAPTER 2 Menus, Toolbars, and Windows. . . ... 15
CHAPTER 3 Windows Forms Designer .......... i 35
CHAPTER 4  WPF DeSigner. ..ottt e e e e e 45
CHAPTER 5  Visual BasicCode Editor....... ... . i 55
CHAPTER 6  Debugging. ... .ot e e e e e e 69
» PART Il GETTING STARTED

CHAPTER 7  Selecting Windows Forms Controls. ........... ..., 81
CHAPTER 8  Using Windows Forms Controls .......... ... ... 97
CHAPTER 9  Windows FOrmMS .. ... . e e 15
CHAPTER 10 Selecting WPF Controls . .......... i 131
CHAPTER M Using WPF Controls. . ... .. e 143
CHAPTER 12 WPFWindows. .. ... e 171
CHAPTER 13 Program and Module Structure.......... ... ... . ... 179
CHAPTER 14 Data Types, Variables,and Constants........................... 203
CHAPTER 15  Operators .. ... e e e e e 251
CHAPTER 16 Subroutines and Functions ........... ... .. .. .. . i, 267
CHAPTER 17 Program Control Statements......... ... ... ... ... ... ... 299
CHAPTER 18 ErrorHandling. .......... i e e 321
CHAPTER 19 Database Controlsand Objects ........... .. ... ... .. .. ... ...... 337
CHAPTER 20 LINQ .. .. o e e 381
CHAPTER 21 Metro-Style Applications ......... ... .. i 417

ivww . al litebooks.cond



http://www.allitebooks.org

» PART I
CHAPTER 22
CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26

» PART IV
CHAPTER 27
CHAPTER 28
CHAPTER 29
CHAPTER 30

» PARTV

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX |

APPENDIX J

APPENDIX K
APPENDIX L
APPENDIX M
APPENDIX N
APPENDIX O
APPENDIX P

OBJECT-ORIENTED PROGRAMMING

OOP CoNCePES . oot i 433
Classesand Structures. . ...t i 449
NaMESPACES . . .ot 481
Collection Classes . . ... v it 493
GENEIICS. .« et 515

INTERACTING WITH THE ENVIRONMENT

Printing. . ..o 529
Configuration and REsSOUrCes . ..., 547
SIrEaAMIS 571
Filesystem Objects . ... ... i e 585
APPENDICES

Useful Control Properties, Methods,and Events. .................. 611
Variable Declarationsand Data Types.......... ... ... 619
OPErAtOrS ottt 629
Subroutine and Function Declarations .......................... 637
Control Statements ... .. .. 641
ErrorHandling. . ... 647
Windows Forms Controls and Components...................... 649
WPEF Controls . ... 657
Visual Basic Power Packs. ......... ... .. i 665
Form Objects . ... e 669
Classesand Structures. ... i 681
LINQ . 685
GENEIICS. e 695
GraphiCs. .ot 699
Useful Exception Classes. ... Al
Date and Time Format Specifiers . .......... ... ... .. ... .. ... 715

ivww . al litebooks.cond



http://www.allitebooks.org

APPENDIX Q Other Format Specifiers....... ... i 719

APPENDIXR The Application Class .. ... e 725
APPENDIX'S The My Namespace. .. ...ttt ettt 729
APPENDIX T  Streams . ...ttt e e e e 747
APPENDIX U Filesystem Classes .. ... ..ttt 755
APPENDIXV Visual Studio Versions . ...t 771
IND X . oo 773

ivww . al litebooks.cond



http://www.allitebooks.org




Visual Basic® 2012

PROGRAMMER’S REFERENCE

Rod Stephens

&

WILEY
John Wiley & Sons, Inc.



Visual Basic® 2012 Programmer’s Reference

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-31407-4
ISBN: 978-1-118-33208-5 (cbk)
ISBN: 978-1-118-33535-2 (ebk)
ISBN: 978-1-118-43938-8 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012940034

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. Visual Basic is a registered trademark of Microsoft Corporation.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any
product or vendor mentioned in this book.


http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com
http://booksupport.wiley.com

ABOUT THE AUTHOR

ROD STEPHENS started out as a mathematician, but while studying at MIT, he
discovered how much fun programming is and has been programming profes-
sionally ever since. During his career, he has worked on an eclectic assortment of
applications in such fields as telephone switching, billing, repair dispatching, tax
processing, wastewater treatment, concert ticket sales, cartography, and training
for professional football players.

Rod is a Microsoft Visual Basic Most Valuable Professional (MVP) and has taught
introductory programming at ITT Technical Institute. He has written more than
two dozen books that have been translated into languages from all over the world, and more than
250 magazine articles covering Visual Basic, C#, Visual Basic for Applications, Delphi, and Java.

Rod’s popular VB Helper website (www.vb-helper.com) receives several million hits per month and
contains thousands of pages of tips, tricks, and example programs for Visual Basic programmers,
as well as example code for this book. His C# Helper website (www.csharphelper.com) contains
similar material for C# programmers.

You can contact Rod at RodStephens@csharphelper.com Oor RodStephens@vb-helper.com.

ABOUT THE TECHNICAL EDITOR

BRIAN HOCHGURTEL has been doing .NET development for over ten years, and actually started his
.NET experience with Rod Stephens when they wrote the Wiley book Visual Basic .NET and XML
together in 2002. Currently Brian works as a SharePoint Developer and Administrator for a large
defense contractor in Colorado.


http://www.vb-helper.com
http://www.csharphelper.com
mailto:RodStephens@csharphelper.com
mailto://RodStephens@vb-helper.com

CREDITS

Executive Editor
Robert Elliott

Senior Project Editor
Adaobi Obi Tulton

Technical Editor
Brian Hochgurtel

Production Editor
Daniel Scribner

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager

Rosemarie Graham

Associate Director of Marketing

David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
Nicole Hirschman

Indexer
Ron Strauss

Cover Designer
Ryan Sneed

Cover Image
© Erik Isakson / Tetra Images / Jupiterimages



ACKNOWLEDGMENTS

THANKS TO BOB ELLIOTT, Adaobi Obi Tulton, Sydney Jones, Rayna Erlick, Kim Cofer, Daniel
Scribner, and all of the others who worked so hard to make this book possible.

Thanks also to Brian Hochgurtel for giving me another perspective and the benefit of his valuable
experience.






CONTENTS

INTRODUCTION

XXVii

PART I: IDE

CHAPTER 1: INTRODUCTION TO THE IDE 3
Introducing the IDE 3
Different IDE Appearances 4
IDE Configurations 5
Projects and Solutions 6
Starting the IDE 6
Creating a Project 8
Saving a Project 1"
Summary 13

CHAPTER 2: MENUS, TOOLBARS, AND WINDOWS 15
IDE Tools 15
Menus 16

File 16
Edit 18
View 19
Project 20
Build 24
Debug 24
Data 24
Format 25
Tools 25
Test 28
Window 28
Help 29
Toolbars 30
Secondary Windows 30
Toolbox 32
Properties Window 33
Summary 33



CONTENTS

Xii

CHAPTER 3: WINDOWS FORMS DESIGNER 35
Introducing Windows Forms Designer 35
Setting Designer Options 35
Adding Controls 37
Selecting Controls 38
Copying Controls 39
Moving and Sizing Controls 40
Arranging Controls 40
Setting Properties 40

Setting Group Properties 41
Using Smart Tags 41
Adding Code to Controls 42
Summary 43

CHAPTER 4: WPF DESIGNER 45
Introducing WPF Designer 45
Editor Weaknesses 46
Recognizing Designer Windows 47
Adding Controls 48
Selecting Controls 49
Moving and Sizing Controls 50
Setting Properties 51
Setting Group Properties 51
Adding Code to Controls 52
Summary 53

CHAPTER 5: VISUAL BASIC CODE EDITOR 55
Editing Code 55
Margin Icons 56
Outlining 58
Tooltips 59
IntelliSense 60
Code Coloring and Highlighting 61
Code Snippets 63
Architectural Tools 64

Rename 64
Go To Definition 64
Go To Type Definition 64
Highlight References 65
Find All References 65
Generate From Usage 65



CONTENTS

The Code Editor at Run Time 66
Summary 68
CHAPTER 6: DEBUGGING 69
Debugging and Testing 69
The Debug Menu 70
The Debug = Windows Submenu 72
The Breakpoints Window 74
The Command and Immediate Windows 75
Summary 77
CHAPTER 7: SELECTING WINDOWS FORMS CONTROLS 81
Controls 81
Controls Overview 82
Choosing Controls 86
Containing and Arranging Controls 87
Making Selections 89
Entering Data 90
Displaying Data 90
Providing Feedback 91
Initiating Action 92
Displaying Graphics 94
Displaying Dialog Boxes 94
Third-Party Controls 95
Summary 96
CHAPTER 8: USING WINDOWS FORMS CONTROLS 97
Using Controls and Components o7
Controls and Components o8
Creating Controls 99
Properties 101
Properties at Design Time 101
Properties at Run Time 104
Useful Control Properties 106
Position and Size Properties 109
Methods 10

Events 10

xiii



CONTENTS

Creating Event Handlers at Design Time m
Validation Events 112
Summary 14
CHAPTER 9: WINDOWS FORMS 115
Using Forms 15
Transparency 116
About, Splash, and Login Forms 117
Mouse Cursors 118
Icons 120
Application Icons 121
Notification Icons 121
Properties Adopted by Child Controls 122
Property Reset Methods 123
Overriding WndProc 123
MRU Lists 125
Dialog Boxes 126
Wizards 128
Summary 129
CHAPTER 10: SELECTING WPF CONTROLS 131
WPF Controls and Code 131
Controls Overview 132
Containing and Arranging Controls 133
Making Selections 136
Entering Data 137
Displaying Data 137
Providing Feedback 138
Initiating Action 138
Presenting Graphics and Media 139
Providing Navigation 140
Managing Documents 140
Digital Ink 141
Summary 142
CHAPTER 11: USING WPF CONTROLS 143
WPF Controls 143
WPF Concepts 144
Separation of User Interface and Code 144

WPF Control Hierarchies 145

Xiv



CONTENTS

WPF in the IDE 145
Editing XAML 146
Editing Visual Basic Code 147
XAML Features 148
Objects 148
Resources 151
Styles 152
Templates 153
Transformations 156
Animations 156
Drawing Objects 159
Procedural WPF 162
Documents 166
Flow Documents 166
Fixed Documents 168
XPS Documents 169
Summary 169
CHAPTER 12: WPF WINDOWS 171
Using WPF Windows 171
Window Applications 172
Page Applications 174
Browser Applications 174
Frame Applications 176
Summary 177
CHAPTER 13: PROGRAM AND MODULE STRUCTURE 179
Solutions and Projects 179
Hidden Files 180
Code File Structure 184
Code Regions 185
Conditional Compilation 186
Namespaces 193
Typographic Code Elements 195
Comments 195
XML Comments 195
Line Continuation 198
Implicit Line Continuation 199
Line Joining 200
Summary 200

XV



CONTENTS

CHAPTER 14: DATA TYPES, VARIABLES, AND CONSTANTS 203
Variables 203
Data Types 204
Type Characters 207
Data Type Conversion 210

Narrowing Conversions 210
Data Type Parsing Methods 212
Widening Conversions 213
The Convert Class 213
ToString 213
Variable Declarations 214
Attribute_List 214
Accessibility 215
Shared 216
Shadows 216
ReadOnly 219
Dim 219
WithEvents 220
Name 221
Bounds_List 222
New 223
As Type and Inferred Types 224
Initialization_Expression 225
Initializing Collections 228
Multiple Variable Declarations 229
Option Explicit and Option Strict 230
Scope 233
Block Scope 233
Procedure Scope 234
Module Scope 234
Namespace Scope 235
Restricting Scope 235
Parameter Declarations 236
Property Procedures 238
Enumerated Data Types 240
Anonymous Types 243
Nullable Types 244
Constants 244
Accessibility 245
As Type 245

Initialization_Expression 246

xvi



CONTENTS

Delegates 246
Naming Conventions 248
Summary 249
CHAPTER 15: OPERATORS 251
Understanding Operators 251
Arithmetic Operators 252
Concatenation Operators 253
Comparison Operators 253
Logical Operators 255
Bitwise Operators 257
Operator Precedence 257
Assignment Operators 259
The StringBuilder Class 260
Date and TimeSpan Operations 261
Operator Overloading 262
Summary 266
CHAPTER 16: SUBROUTINES AND FUNCTIONS 267
Managing Code 267
Subroutines 268
Attribute_List 268
Inheritance_Mode 272
Accessibility 273
Subroutine_Name 274
Parameters 274
Implements interface.subroutine 279
Statements 281
Functions 281
Property Procedures 283
Extension Methods 284
Lambda Functions 285
Relaxed Delegates 287
Asynchronous Methods 290
Calling EndInvoke Directly 291
Handling a Callback 293
Using Async and Await 295
Summary 297

xvii



CONTENTS

CHAPTER 17: PROGRAM CONTROL STATEMENTS 299
Controlling Programs 299
Decision Statements 299

Single-Line If Then 300
Multiline If Then 300
Select Case 301
Enumerated Values 304
If 304
If 306
Choose 306
Looping Statements 308
For Next 308
Non-Integer For Next Loops 31
For Each 31
Enumerators 314
Iterators 316
Do Loop Statements 316
While End 318
Summary 318

CHAPTER 18: ERROR HANDLING 321
The Struggle for Perfection 321
Bugs versus Unplanned Conditions 322

Catching Bugs 323
Catching Unplanned Conditions 324
Global Exception Handling 326
Structured Error Handling 328
Exception Objects 330
Throwing Exceptions 331
Re-throwing Exceptions 333
Custom Exceptions 334
Debugging 335
Summary 336

CHAPTER 19: DATABASE CONTROLS AND OBJECTS 337
Data Sources 337
Automatically Connecting to Data 338

Connecting to the Data Source 338
Adding Data Controls to the Form 341
Automatically Created Objects 344

xviii



CONTENTS

Other Data Objects 345
Data Overview 346
Connection Objects 347
Transaction Objects 350
Data Adapters 352
Command Objects 356
DataSet 358
DataTable 360
DataRow 363
DataColumn 365
DataRelation 366
Constraints 368
DataView 370
DataRowView 373
Simple Data Binding 373
CurrencyManager 374
Complex Data Binding 377
Summary 379
CHAPTER 20: LINQ 381
The Many Faces of LINQ 381
Introduction to LINQ 383
Basic LINQ Query Syntax 384
From 385
Where 386
Order By 386
Select 387
Using LINQ Results 389
Advanced LINQ Query Syntax 390
Join 390
Group By 391
Aggregate Functions 393
Set Operations 394
Limiting Results 394
LINQ Functions 395
LINQ Extension Methods 397
Method-Based Queries 397
Method-Based Queries with Lambda Functions 399
Extending LINQ 401
LINQ to Objects 403
LINQ to XML 404

XML Literals 404

Xix



CONTENTS

XX

Classes

LINQ into XML 405
LINQ out of XML 406
LINQ to ADO.NET 409
LINQ to SQL and LINQ to Entities 409
LINQ to DataSet 410
PLINQ 413
Summary 414
CHAPTER 21: METRO-STYLE APPLICATIONS 417
Building Metro-Style Applications 417
Starting a New Project 418
Special Image Files 419
Building MetroBones 420
Control Layout 421
XAML Code 421
Zooming in on the Controls 424
Visual Basic Code 424
Testing 428
Summary 429
CHAPTER 22: OOP CONCEPTS 433
Introducing OOP 433
Classes 434
Encapsulation 436
Inheritance 437
Inheritance Hierarchies 438
Refinement and Abstraction 438
“Has-a” and “Is-a” Relationships 441
Adding and Modifying Class Features 441
Interface Inheritance 443
Polymorphism 444
Method Overloading 445
Extension Methods 446
Summary 447
CHAPTER 23: CLASSES AND STRUCTURES 449
Packaging Data 449

450



CONTENTS

Attribute_list 450
Partial 451
Accessibility 452
Shadows 453
Inheritance 454
Implements interface 456
Structures 456
Structures Cannot Inherit 457
Structures Are Value Types 457
Memory Required 457
Heap and Stack Performance 459
Object Assignment 459
Parameter Passing 460
Boxing and Unboxing 461
Class Instantiation Details 461
Structure Instantiation Details 464
Garbage Collection 466
Finalize 467
Dispose 469
Constants, Properties, and Methods 471
Events 473
Declaring Events 473
Raising Events 474
Catching Events 475
Shared Variables 477
Shared Methods 477
Summary 479
CHAPTER 24: NAMESPACES 481
Handling Name Conflicts 481
The Imports Statement 482
Automatic Imports 484
Namespace Aliases 486
Namespace Elements 486
The Root Namespace 487
Making Namespaces 487
Classes, Structures, and Modules 488
Resolving Namespaces 489
Summary 492

XXi



CONTENTS

CHAPTER 25: COLLECTION CLASSES 493
Grouping Data 493
What Is a Collection? 494
Arrays 494

Array Dimensions 496
Lower Bounds 497
Resizing 497
Speed 498
Other Array Class Features 498
Collections 499
ArrayList 499
StringCollection 501
NameValueCollection 501
Dictionaries 503
ListDictionary 503
Hashtable 504
HybridDictionary 505
StringDictionary 505
SortedList 505
CollectionsUtil 505
Stacks and Queues 506
Stack 506
Queue 508
Generics 509
Collection Initializers 51
Iterators 512
Summary 513

CHAPTER 26: GENERICS 515
Class Creators 515
Advantages of Generics 516
Defining Generics 516

Generic Constructors 517
Multiple Types 518
Constrained Types 520
Instantiating Generic Classes 521
Imports Aliases 522
Derived Classes 523
Generic Collection Classes 523

Generic Methods 524

Xxii



CONTENTS

Generics and Extension Methods 524
Summary 526
CHAPTER 27: PRINTING 529
Printing Concepts 529
Basic Printing 530
Drawing Basics 534
Graphics Objects 534
Pens 536
Brushes 538

A Booklet Example 540
Summary 545
CHAPTER 28: CONFIGURATION AND RESOURCES 547
The Need for Configuration 547
My 548
Me and My 549
My Sections 549
Environment 550
Setting Environment Variables 550
Using Environ 551
Using System.Environment 551
Registry 553
Native Visual Basic Registry Methods 554
My.Computer.Registry 556
Configuration Files 559
Resource Files 562
Application Resources 562
Using Application Resources 563
Embedded Resources 564
Localization Resources 564
Application 566
Application Properties 566
Application Methods 567
Application Events 568
Summary 569

xxiii



CONTENTS

CHAPTER 29: STREAMS 571
Stream Concepts 571
Stream 572
FileStream 574
MemoryStream 575
BinaryReader and BinaryWriter 576
TextReader and TextWriter 578
StringReader and StringWriter 579
StreamReader and StreamWriter 580
OpenText, CreateText, and AppendText 581
Custom Stream Classes 582
Summary 583

CHAPTER 30: FILESYSTEM OBJECTS 585
Programming Approaches 585
Permissions 586
Visual Basic Methods 586

File Methods 586
File System Methods 588
Sequential-File Access 589
Random-File Access 589
Binary-File Access 592
.NET Framework Classes 592
Directory 592
File 594
Drivelnfo 595
Directorylnfo 596
FileInfo 598
FileSystemWatcher 600
Path 602
My.Computer.FileSystem 604
My.Computer.FileSystem.SpecialDirectories 606
Summary 606

PART V: APPENDICES

APPENDIX A: USEFUL CONTROL PROPERTIES, METHODS,
AND EVENTS 611

APPENDIX B: VARIABLE DECLARATIONS AND DATA TYPES 619

APPENDIX C: OPERATORS 629

XXiv



CONTENTS

APPENDIX D: SUBROUTINE AND FUNCTION DECLARATIONS

APPENDIX E: CONTROL STATEMENTS

APPENDIX F: ERROR HANDLING

APPENDIX G: WINDOWS FORMS CONTROLS AND COMPONENTS

APPENDIX H: WPF CONTROLS

APPENDIX I: VISUAL BASIC POWER PACKS

APPENDIX J: FORM OBJECTS

APPENDIX K: CLASSES AND STRUCTURES

APPENDIX L: LINQ

APPENDIX M: GENERICS

APPENDIX N: GRAPHICS

APPENDIX O: USEFUL EXCEPTION CLASSES

APPENDIX P: DATE AND TIME FORMAT SPECIFIERS

APPENDIX Q: OTHER FORMAT SPECIFIERS

APPENDIX R: THE APPLICATION CLASS

APPENDIX S: THE MY NAMESPACE

APPENDIX T: STREAMS

APPENDIX U: FILESYSTEM CLASSES

APPENDIX V: VISUAL STUDIO VERSIONS

INDEX

637

641

647

649

657

665

669

681

685

695

699

71

715

719

725

729

747

755

77

773

XXV






INTRODUCTION

IT HAS BEEN SAID THAT SIR ISAAC NEWTON was the last person to know everything. He was an
accomplished physicist (his three laws of motion were the basis of classical mechanics, which defined
astrophysics for three centuries), mathematician (he was one of the inventors of calculus and
developed Newton’s Method for finding roots of equations), astronomer, natural philosopher,

and alchemist (okay, maybe the last one was a mistake). He invented the reflecting telescope, a the-
ory of color, and a law of cooling, and he studied the speed of sound.

Just as important, he was born before relativity, quantum mechanics, gene sequencing, thermody-
namics, parallel computation, and a swarm of other extremely difficult branches of science.

If you ever used Visual Basic 3, you too could have known everything. Visual Basic 3 was a reason-
ably small but powerful language. Visual Basic 4 added classes to the language and made Visual
Basic much more complicated. Versions 4, 5, and 6 added more support for database programming
and other topics such as custom controls, but Visual Basic was still a fairly understandable lan-
guage, and if you took the time you could become an expert in just about all of it.

Visual Basic .NET changed the language in much more fundamental ways and made it much harder
to understand every last detail of Visual Basic. The .NET Framework added powerful new tools to
Visual Basic, but those tools came at the cost of increased complexity. Associated technologies have
been added to the language at an ever-increasing rate, so today it is impossible for anyone to be an
expert on every topic that deals with Visual Basic.

To cover every nook and cranny in Visual Basic you would need an in-depth understanding of data-
base technologies, custom controls, custom property editors, XML, cryptography, serialization,
two- and three-dimensional graphics, multi-threading, reflection, the code document object model
(DOM), diagnostics, globalization, web services, inter-process communication, work flow, Office,
ASP, Windows Forms, WPF, and much more.

This book doesn’t even attempt to cover all of these topics. Instead, it provides a broad, solid under-
standing of essential Visual Basic topics. It explains the powerful development environment that
makes Visual Basic such a productive language. It describes the Visual Basic language itself and
explains how to use it to perform a host of important development tasks.

It also explains the forms, windows, controls, and other objects that Visual Basic provides for build-
ing applications in a modern windowing environment.

This book may not cover every possible topic related to Visual Basic, but it does cover the majority
of the technologies that developers need to build sophisticated applications.



INTRODUCTION

SHOULD YOU USE VISUAL BASIC 2012?

Software engineers talk about five generations of languages (so far). A first-generation language
(1GL) is machine language: Os and 1s. For example, the binary command 00110010 00001110
00010010 00000000 might mean to combine the register CL with the value at address 12H by
using the exclusive-or (XOR) operation. Pretty incomprehensible, right? You actually had to pro-
gram some early computers by painstakingly toggling switches to enter Os and 1s!

A second-generation language (2GL) is an assembly language that provides terse mnemonics for
machine instructions. It provides few additional tools beyond an easier way to write machine code.
In assembly language, the previous XOR command might look like “XOR CL, [12H].” It’s a lot
better than assembly language but it’s still pretty hard to read. Third-generation languages (3GLs)
are higher-level languages such as Pascal and FORTRAN. They provide much more sophisticated
language elements such as subroutines, loops, and data structures. In Visual Basic, the previous
example might look something like total = total Xor value.

WHERE DID THE REGISTER GO?

Higher-level languages generally don’t directly use registers or memory addresses.
Instead they work with variables with names such as total and value. The lan-
guage’s compiler automatically figures out when a value should be placed in a regis-
ter or other location.

Fourth-generation languages (4GLs) are natural languages, such as SQL. They let developers use a
language that is sort of similar to a human language to execute programming tasks. For example,
the SQL statement “SELECT * FROM Customers WHERE Balance > 50” tells the database to
return information about customers who owe more than $50.

Fifth-generation languages (5GLs) provide powerful, highly graphical development environments to
allow developers to use the underlying language in more sophisticated ways. The emphasis is more
on the development environment than on the language itself.

The Visual Studio development environment is an extremely powerful fifth-generation tool. It pro-
vides graphical editors to make building forms and editing properties easy and intuitive; IntelliSense
to help developers remember what to type next; auto-completion so developers can use meaning-
ful variable names without needing to waste time typing them completely by hand; tools that show
call hierarchies indicating which routines call which others; and breakpoints, watches, and other
advanced debugging tools that make building applications easier.

Visual Studio is so powerful that the answer to the question of whether you should use it is practi-
cally obvious: If you want to write powerful applications that run in a Windows operating system,
you should use Visual Studio.

Visual Basic is not the only language that uses Visual Studio. The C# language does, too, so now the
question is, should you use Visual Basic or C#?

xxviii



INTRODUCTION

LOTS OF LANGUAGES

Visual Studio also supports a few other languages including Visual C++, Visual J#,
and Visual F#, and in theory it could support others in the future. Visual Studio was
originally built for Visual Basic and C# so it provides the most support for these.

A Visual Basic programmer’s joke asks, “What’s the difference between Visual Basic .NET and C#?

About three months!” The implication is that Visual Basic .NET syntax is easier to understand and

building applications with it is faster. Similarly, C# programmers have their jokes about Visual Basic
.NET, implying that C# is more powerful.

In fact, Visual Basic .NET is not a whole lot easier to use than C#, and C# is not significantly more
powerful. The basic form of the two languages is very similar. Aside from a few stylistic differences
(Visual Basic is line-oriented; C# uses lots of braces and semicolons), the languages are comparable.
Both use the Visual Studio development environment, both provide access to the NET Framework
of support classes and tools, and both provide similar syntax for performing basic programming
tasks.

The main difference between these languages is one of style. If you have experience with previous
versions of Visual Basic, you will probably find Visual Basic 2012 easier to get used to. If you have
experience with C++ or Java, you will probably find C# (or Visual C++ or Visual J#) easy to learn.

Visual Basic does have some ties with other Microsoft products that increase its value. For example,
Active Server Pages (ASP) and ASP.NET use Visual Basic to create interactive web pages. Microsoft
Office applications (Word, Excel, PowerPoint, and so forth) and many third-party tools use Visual
Basic for Applications (VBA) as a macro programming language. If you know Visual Basic, you
have a big head start in using these other languages. ASP and VBA are based on pre-.NET versions
of Visual Basic, so you won’t instantly know how to use them, but you’ll have an advantage if you
need to learn ASP or VBA.

If you are new to programming, either Visual Basic 2012 or C# is a good choice. I think Visual
Basic 2012 is a little easier to learn, but I may be slightly biased because I’ve been using Visual Basic
since long before C# was invented. You won’t be making a big mistake either way, and you can eas-
ily switch later, if necessary.

WHO SHOULD READ THIS BOOK

This book is intended for programmers of all levels. It describes the Visual Basic 2012 language
from scratch, so you don’t need experience with previous versions of the language. The book also
covers many intermediate and advanced topics. It covers topics in enough depth that even experi-
enced developers will discover new tips, tricks, and language details. After you have mastered the
language, you may still find useful tidbits throughout the book, and the reference appendices will
help you look up easily forgotten details.

XXiX



INTRODUCTION

The chapters move quickly through the more introductory material. If you have never programmed
before and are intimidated by computers, you might want to read a more introductory book first. If
you are a beginner who’s not afraid of the computer, you should have few problems learning Visual
Basic 2012 from this book.

If you have programmed in any other language, fundamentals such as variable declarations, data
types, and arrays should be familiar to you, so you should have no problem with this book. The
index and reference appendices should be particularly useful in helping you translate from the lan-
guages you already know into the corresponding Visual Basic syntax.

HOW THIS BOOK IS ORGANIZED

The chapters in this book are divided into four parts plus appendices. The chapters in each part
are described here. If you are an experienced programmer, you can use these descriptions to decide
which chapters to skim and which to read in detail.

Part I: IDE

XXX

The chapters in this part of the book describe the Visual Studio integrated development environ-
ment (IDE) from a Visual Basic developer’s point of view. The IDE is mostly the same for

C# and other developers but there are a few differences such as which keyboard shortcuts perform
which tasks.

Chapter 1, “Introduction to the IDE,” explains how to get started using the Visual Studio integrated
development environment. It tells how to configure the IDE for different kinds of development. It
defines and describes Visual Basic projects and solutions, and shows how to create, run, and save a
new project.

Chapter 2, “Menus, Toolbars, and Windows,” describes the most useful and important commands
available in the IDE’s menus and toolbars. The IDE’s menus and toolbars include hundreds of com-
mands, so this chapter covers only those that are the most useful.

Chapter 3, “Windows Forms Designer,” describes the designer you can use to build Windows
Forms. It explains how to create, size, move, and copy controls. It tells how to set control properties
and add code to respond to control events.

Chapter 4, “WPF Designer,” explains how to use the Windows Presentation Foundation (WPF)
form designer. This chapter is similar to Chapter 3 except that it covers WPF forms instead of
Windows Forms.

Chapter 5, “Visual Basic Code Editor,” describes one of the most important windows used by
developers: the code editor. It explains how to write code, set breakpoints, use code snippets, and
get the most out of IntelliSense.

Chapter 6, “Debugging,” explains debugging tools provided by Visual Studio. It describes the
debugging windows and explains techniques such as setting complex breakpoints to locate bugs.



INTRODUCTION

Part ll: Getting Started

The chapters in this part of the book explain the bulk of the Visual Basic language and the objects
that support it. They explain the forms, windows, controls, and other objects that a program

uses to build a user interface, and they tell how you can put code behind those objects to implement
the program’s functionality.

Chapter 7, “Selecting Windows Forms Controls,” provides an overview of the Windows Forms con-
trols that you can put on a form. It groups the controls by category to help you find the controls you
can use for a particular purpose.

Chapter 8, “Using Windows Forms Controls,” gives more detail about how you can use Windows
Forms controls. It explains how you can create controls at design time or run time, how to set com-
plex property values, and how to use useful properties that are common to many different kinds of
controls. It explains how to add event handlers to process control events and how to validate user-
entered data.

Chapter 9, “Windows Forms,” describes the forms you use in a Windows Forms application.
Technically, forms are just another kind of control, but their unique position in the application’s
architecture means they have some special properties, and this chapter describes them.

Chapter 10, “Selecting WPF Controls,” provides an overview of WPF controls. It groups the con-
trols by category to help you find the controls you can use for a particular purpose. This chapter is
similar to Chapter 7 except it covers WPF controls instead of Windows Forms controls.

Chapter 11, “Using WPF Controls,” gives more detail about how you can use WPF controls.
This chapter is similar to Chapter 8 except it deals with WPF controls instead of Windows Forms
controls.

Chapter 12, “WPF Windows,” describes the windows that WPF applications use in place of
Windows forms. This chapter is similar to Chapter 9 except it deals with WPF windows instead
of Windows forms.

Chapter 13, “Program and Module Structure,” describes the most important files that make up a
Visual Basic project. It describes some of the hidden files that projects contain and explains some
of the structure that you can give to code within a module, such as code regions and conditionally
compiled code.

Chapter 14, “Data Types, Variables, and Constants,” explains the standard data types provided by
Visual Basic. It shows how to declare and initialize variables and constants, and explains variable
scope. It discusses technical topics, such as value and reference types, passing parameters by value
or reference, and creating parameter variables on the fly. It also explains how to create and initialize
arrays, enumerated types, and structures.

Chapter 15, “Operators,” describes the operators a program uses to perform calculations. These
include mathematical operators (+, *, \), string operators (&), and Boolean operators (And, Or).
The chapter explains operator precedence and potentially confusing type conversion issues that

XXXi



INTRODUCTION

arise when an expression combines more than one type of operator (for example, arithmetic and
Boolean).

Chapter 16, “Subroutines and Functions,” explains how you can use subroutines and functions
to break a program into manageable pieces. It describes routine overloading and scope. It also
describes lambda functions and relaxed delegates.

Chapter 17, “Program Control Statements,” describes the statements that a Visual Basic program
uses to control code execution. These include decision statements, such as If, Then, and Else, and
looping statements, such as For and Next.

Chapter 18, “Error Handling,” explains error handling and debugging techniques. It describes
the Try Catch structured error handler and discusses typical actions a program might take when
it catches an error. It also describes important techniques for preventing errors and making errors
more obvious when they do occur.

Chapter 19, “Database Controls and Objects,” explains how to use the standard Visual Basic
database controls. These include database components that manage connections to a database,
DataSet components that hold data within an application, and data adapter controls that move data
between databases and DataSets.

Chapter 20, “LINQ),” describes language integrated query (LINQ) features. It explains how you
can write SQL-like queries to select data from or into objects, XML, or database objects. It also
explains PLINQ, a parallel version of LINQ that can provide improved performance on multi-core
systems.

Chapter 21, “Metro-Style Applications,” explains how to build Metro-style applications that run
on Windows 8. It explains special considerations that you should take into account when writing
Metro applications such as loading files asynchronously.

Part lll: Object-Oriented Programming

This part explains fundamental concepts in object-oriented programming (OOP) with Visual Basic.
It also describes some of the more important classes and objects that you can use when building an
application.

Chapter 22, “OOP Concepts,” explains the fundamental ideas behind object-oriented programming
(OQP). It describes the three main features of OOP: encapsulation, polymorphism, and inheritance.
It explains the benefits of these features, and tells how you can take advantage of them in Visual
Basic.

Chapter 23, “Classes and Structures,” explains how to declare and use classes and structures.

It explains what classes and structures are, and it describes their differences. It shows the basic
declaration syntax and tells how to create instances of classes and structures. It also explains some
of the trickier class issues such as private class scope, declaring events, and shared variables and
methods.

Xxxii



INTRODUCTION

Chapter 24, “Namespaces,” explains namespaces. It discusses how Visual Studio uses namespaces
to categorize code and to prevent name collisions. It describes a project’s root namespace, tells how
Visual Basic uses namespaces to resolve names (such as function and class names), and demonstrates
how you can add namespaces to an application yourself.

Chapter 25, “Collection Classes,” explains classes included in the NET Framework that you can
use to hold groups of objects. It describes the various collection, dictionary, queue, and stack classes;
tells how to make strongly typed versions of those classes; and gives some guidance on deciding
which class to use under different circumstances.

Chapter 26, “Generics,” explains how you can build classes that can work with arbitrary data
types. For example, you can build a generic binary tree, and then later use it to build classes to rep-
resent binary trees of customer orders, employees, or work items.

Part IV: Interacting with the Environment

The chapters in this part of the book explain how an application can interact with its environment.
They show how the program can save and load data in external sources (such as the system registry,
resource files, and text files); work with the computer’s printer, screen, keyboard, and mouse; and
interact with the user through standard dialog box controls.

Chapter 27, “Printing,” explains different ways that a program can send output to the printer.

It shows how you can use the PrintDocument object to generate printout data. You can then use
the PrintDocument to print the data immediately, use a PrintDialog control to let the user select the
printer and set its characteristics, or use a PrintPreviewDialog control to let the user preview

the results before printing.

Chapter 28, “Configuration and Resources,” describes some of the ways that a Visual Basic pro-
gram can store configuration and resource values for use at run time. Some of the most useful of
these include environment variables, the registry, configuration files, and resource files.

Chapter 29, “Streams,” explains the classes that a Visual Basic application can use to work with
stream data. Streams allow you to manipulate different kinds of data, such as files or chunks of
memory, in a uniform way.

Chapter 30, “Filesystem Objects,” describes classes that let a Visual Basic application interact with
the filesystem. These include classes such as Directory, Directorylnfo, File, and FileInfo that make it
easy to create, examine, move, search, rename, and delete directories and files.

Part V: Appendices

The book’s appendices provide a categorized reference of the Visual Basic 2012 language. You can
use them to quickly review the syntax of a particular command or to refresh your memory of what a
particular class can do. The chapters earlier in the book give more context, explaining how to
perform specific tasks and why one approach might be better than another.

XxXiii



INTRODUCTION

Appendix A, “Useful Control Properties, Methods, and Events,” describes properties, methods, and
events that are useful with many different kinds of controls.

Appendix B, “Variable Declarations and Data Types,” summarizes the syntax for declaring
variables. It also gives the sizes and ranges of allowed values for the fundamental data types.

Appendix C, “Operators,” summarizes the standard operators such as +, <<, OrElse, and Like.
It also gives the syntax for operator overloading.

Appendix D, “Subroutine and Function Declarations,” summarizes the syntax for subroutine,
function, and property procedure declarations. It also summarizes the syntax for using lambda
functions and lambda statements (subroutines).

Appendix E, “Control Statements,” summarizes statements that control program flow, such as
If Then, Select Case, and looping statements.

Appendix F, “Error Handling,” summarizes Try Catch error handling blocks.

Appendix G, “Windows Forms Controls and Components,” summarizes standard Windows Forms
controls and components provided by Visual Basic 2012.

Appendix H, “WPF Controls,” summarizes the most useful WPF controls.

Appendix I, “Visual Basic Power Packs,” lists some additional tools that you can download to make
Visual Basic development easier.

Appendix J, “Form Objects,” describes forms. Forms are just another type of control but they
play such a key role in Visual Basic applications that they deserve special attention in their own
appendix.

Appendix K, “Classes and Structures,” summarizes the syntax for declaring classes and structures,
and defining their constructors and events.

Appendix L, “LINQ,” summarizes LINQ and PLINQ syntax.
Appendix M, “Generics,” summarizes the syntax for declaring generic classes.

Appendix N, “Graphics,” summarizes the objects used to generate graphics in Visual Basic 2012.
The earlier chapters in the book cover graphics only in passing while explaining how to print. This
appendix provides more detail and a summary of the most useful graphics classes.

Appendix O, “Useful Exception Classes,” lists some of the more useful exception classes defined by
Visual Basic. You may want to throw these exceptions in your own code.

Appendix P, “Date and Time Format Specifiers,” summarizes standard and custom specifiers that
you can use to format dates and times. For example, they let you display a time using a 12-hour or
24-hour clock.

Appendix Q, “Other Format Specifiers,” summarizes formatting for numbers and enumerated
types.

Appendix R, “The Application Class,” summarizes the Application class that provides properties
and methods for controlling the current application.

XXXiV



INTRODUCTION

Appendix S, “The My Namespace,” describes the My namespace, which provides shortcuts to
useful features scattered around other parts of the NET Framework. It provides shortcuts for work-
ing with the application, computer hardware, application forms, resources, and the current user.

Appendix T, “Streams,” summarizes the Visual Basic stream classes such as Stream, FileStream,
MemoryStream, TextReader, and CryptoStream.

Appendix U, “Filesystem Classes,” summarizes methods that an application can use to learn about
and manipulate the filesystem. It explains classic Visual Basic methods such as FreeFile, WriteLine, and
ChDir, as well as newer .NET Framework classes such as FileSystem, Directory, and File.

Appendix V, “Visual Studio Versions,” describes the Visual Studio version that I used when writing this
book and explains which versions you can use to reproduce the examples described here.

HOW TO USE THIS BOOK

If you are an experienced Visual Basic .NET programmer, you may want to skim the language
basics covered in the first parts of the book. You may find a few new features that have appeared in
Visual Basic 2012, so you probably shouldn’t skip these chapters entirely, but most of the basic lan-
guage features are the same as in previous versions.

Intermediate programmers and those with less experience with Visual Basic .NET should take these
chapters a bit more slowly. The chapters in Part III, “Object-Oriented Programming,” cover particu-
larly tricky topics. Learning all the variations on inheritance and interfaces can be rather confusing

so don’t skip those chapters unless you have previous experience with object-oriented programming.

Beginners should spend more time on these first chapters because they set the stage for the mate-
rial that follows. It will be a lot easier for you to follow a discussion of file management or regular
expressions if you are not confused by the error-handling code that the examples take for granted.

Programming is a skill best learned by doing. You can pick up the book and read through it quickly
if you like (well, as quickly as you can given how long it is), but the information is more likely to
stick if you open the development environment and experiment with some programs of your own.

Learning by doing may encourage you to skip sections of the book. For example, Chapter 1 covers
the IDE in detail. After you've read for a while, you may want to skip some sections and start
experimenting with the environment on your own. I encourage you to do so. Lessons learned by
doing last longer than those learned by reading. Later, when you have some experience with the
development environment, you can go back and examine Chapter 1 in more detail to see if you
missed anything during your experimentation.

The final part of the book is a Visual Basic 2012 reference. These appendices present more concise,
categorized information about the language. You can use these appendices to recall the details of
specific operations. For example, you can read Chapter 27 to learn what generic classes are for and
how to create them. Later you can use Appendix M to refresh your memory of the syntax for declar-
ing a generic class.

XXXV



INTRODUCTION

NECESSARY EQUIPMENT

To read this book and understand the examples, you will need no special equipment. To use Visual Basic
2012 and to run the examples found on the book’s web page, you need any computer that can reason-
ably run Visual Basic 2012. That means a reasonably modern, fast computer with a lot of memory. See
the Visual Basic 2012 documentation for Microsoft’s exact requirements and recommendations. (I use a
dual-core 1.83 GHz Intel Core 2CPU system with 2 GB of memory and 164 GB of hard disk space run-
ning Windows 7 Ultimate. It’s a nice system and works well but I wouldn’t say it’s overkill.)

To build Visual Basic 2012 programs, you will also need a copy of Visual Basic 2012. You can
download the free Express Edition of Visual Basic (and purchase other editions) at www.microsoft
.com/visualstudio/products.

Don’t bother trying to run the examples shown here if you have a pre-.NET version of Visual Basic
such as Visual Basic 6. The changes between Visual Basic 6 and Visual Basic .NET are huge, and
many Visual Basic .NET concepts don’t translate well into Visual Basic 6. With some experience in
C#, it would be much easier to translate the example programs into that language.

Much of the Visual Basic 2012 release is compatible with Visual Basic 2010 and earlier versions

of Visual Basic .NET, however, so you can make many of the examples work with earlier versions of
Visual Basic .NET. You will not be able to load the example programs downloaded from the book’s
website, however, because Visual Basic programs are not generally backward compatible with ear-
lier versions. You will need to open the source code files in an editor such as WordPad and copy and
paste the significant portions of the code into your version of Visual Basic.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of conventions
have been used throughout the book.

For styles in the text:
> Important words are highlighted when they are introduced.
Keyboard strokes are shown like this: Ctrl+A.

> Filenames, URLs, and code within the text are shown like this: persistence.properties.
Code is presented in the following way:

We use a monofont type for most code examples.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code files that accompany the book. All the source code used in this book
is available for download at www.wrox.com. Specifically for this book, the code download is on the
Download Code tab at:

www.wrox.com/remtitle.cgi?isbn=1118314077

XXXVi


http://www.microsoft.com/visualstudio/products
http://www.microsoft.com/visualstudio/products
http://www.wrox.com
http://www.wrox.com/remtitle.cgi?isbn=1118314077

INTRODUCTION

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978-1-118-
31407-4) to find the code. And a complete list of code downloads for all current Wrox books is
available at www.wrox.com/dynamic/books/download.aspx.

At the beginning of each chapter, we’ve provided a list of the major code files for the chapter.
Throughout each chapter, you’ll also find references to the names of code files as needed in the text.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform. Once you download the code, just decompress it with an appropriate
compression tool.

FIND IT FAST

Because many books have similar titles, you may find it easiest to locate the book by
its ISBN: 978-1-118-31407-4.

Once you download the code, just decompress it with your favorite compression tool. Note that the
programs won’t run or even load in Visual Studio properly if you don’t decompress them. If Visual
Studio can’t open an example program, make sure you have decompressed it.

Alternatively, you can go to the main Wrox code download page at www.wrox.com/dynamic/
books/download.aspx to see the code available for this book and all other Wrox books.

You can also download the book’s source code from its web page on my VB Helper website
www.vb-helper.com/vb_prog_ref.htm. That page allows you to download all of the book’s code
in one big chunk or by individual chapter.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of my books, like a spelling mistake or
faulty piece of code, I would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping me provide higher qual-
ity information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

XXXVii


http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.vb-helper.com/vb_prog_ref.htm
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/misc-pages/booklist.shtml

INTRODUCTION

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsup-
port.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fix the problem in sub-
sequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com you will find a number of different forums that will help you not only as you read
this book but also as you develop your own applications. To join the forums, just follow these steps:

1. Goto p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

JOIN THE FUN

You can read messages in the forums without joining P2P, but in order to post your
own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Using the P2P forums allows other readers to benefit from your questions and any answers they gen-
erate. I monitor my book’s forums and respond whenever I can help.

If you have other comments, suggestions, or questions that you don’t want to post to the forums,
feel free to e-mail me at RodStephens@vb-helper.com. I can’t promise to solve every problem but
I’ll try to help you out if I can.

XXXViii


http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
mailto:RodStephens@vb-helper.com

INTRODUCTION

IMPORTANT URLS

Here’s a summary of important URLs:

> www.vb-helper.com — My VB Helper website. Contains thousands of tips, tricks, and
examples for Visual Basic developers.

> www.vb-helper.com/vb_prog_reg.htm — This book’s web page on my VB Helper web-
site. Includes basic information, code downloads, errata, and more.

>  p2p.wrox.com — Wrox P2P forums.

www.wrox.com — The Wrox website. Contains code downloads, errata, and other informa-
tion. Search for the book by title or ISBN.

> RodStephens@vb-helper.com — My e-mail address. I hope to hear from you!

XXXiX


http://www.vb-helper.com
http://www.vb-helper.com/vb_prog_reg.htm
http://p2p.wrox.com
http://www.wrox.com
mailto://RodStephens@vb-helper.com




PART |
IDE

» CHAPTER 1: Introduction to the IDE

» CHAPTER 2: Menus, Toolbars, and Windows
» CHAPTER 3: Windows Forms Designer

» CHAPTER 4: WPF Designer

» CHAPTER 5: Visual Basic Code Editor

» CHAPTER 6: Debugging






Introduction to the IDE

WHAT'’S IN THIS CHAPTER

Configuring the Visual Studio IDE for Visual Basic development
Understanding projects and solutions

Creating a simple project

Y VYV YV VY

Copying solutions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

INTRODUCING THE IDE

The chapters in the first part of this book describe the Visual Studio integrated development
environment (IDE). They explain the most important windows, menus, and toolbars that
make up the environment, and show how to customize them to suit your needs. They explain
some of the tools that provide help while you are writing Visual Basic applications and how to
use the IDE to debug programs.

Even if you are an experienced Visual Basic programmer, you should at least skim this
material. The IDE is extremely complex and provides hundreds (if not thousands) of
commands, menus, toolbars, windows, context menus, and other tools for editing, running,
and debugging Visual Basic projects.

Even after you’ve read these chapters, you should periodically spend some time wandering
through the IDE to see what you’ve missed. Every month or so, spend a few minutes exploring
little-used menus and right-clicking things to see what their context menus contain. As you
become a more proficient Visual Basic programmer, you will find uses for tools that you may
have dismissed or not understood before.


http://WROX.COM

4 | CHAPTER1 INTRODUCTION TO THE IDE

This chapter explains how to get started using the IDE. It tells how to configure the IDE for
different kinds of development. It explains Visual Basic projects and solutions, and shows how

to create, run, and save new projects. This chapter is mostly an introduction to the chapters that
follow. The other chapters in this part of the book provide much more detail about particular tasks,
such as using the IDE’s menus, customizing menus and toolbars, and using the Windows Forms
Designer to build forms.

DIFFERENT IDE APPEARANCES

Before you start reading about the IDE and viewing screen shots, it’s important to understand
that the Visual Studio IDE is extremely customizable. You can move, hide, or modify the menus,
toolbars, and windows; create your own toolbars; dock, undock, or rearrange the toolbars and
windows; and change the behavior of the built-in text editors (change their indentation, colors for
different kinds of text, and so forth).

NOTE These chapters describe the basic Visual Studio development environment
as it is initially installed. After you've moved things around to suit your needs,
your IDE may look nothing like the pictures in this book. If a figure doesn’t look
exactly like what you see on your computer, don’t worry too much about it.

To avoid confusion, you should probably not customize the IDE’s basic menus and toolbars too
much. Removing the help commands from the Help menu and adding them to the Edit menu will
only cause confusion later. Moving or removing commands will also make it more difficult to follow
the examples in this and other books, and will make it more difficult to follow instructions given by
others who might be able to help you when you have problems.

Instead of making drastic changes to the default menus and toolbars, hide the menus and toolbars
that you don’t want and create new customized toolbars to suit your needs. Then you can find the
original standard toolbars if you decide you need them later.

The screens shown in this book may not look exactly like the ones on your system for several other
reasons as well. Visual Studio looks different on different operating systems. The figures in this
book were taken on a computer running Windows 8 so they display the Windows 8 look and feel.
Additionally, some commands may not behave exactly the same way on different operating systems.

Visual Studio will also look different depending on which version you have installed. The

free Visual Basic 2012 Express Edition product has fewer tools than other editions such as the
high-end Team Suite. The figures in this book were captured while using Team Suite, so if you have
another version, you may not see all of the tools shown here. Menu items, toolbars, and other details
may also be slightly different for different versions. Usually you can find moved items with a little
digging through the menus and customizations.



IDE Configurations | 5

FOR MORE INFORMATION

You can learn about Visual Studio’s free Express editions at http: / /www
.microsoft.com/express. Learn about Visual Basic in general at the Visual
Basic homepage: http://msdn.microsoft.com/vbasic.

Finally, you may be using different configuration settings from the ones used while writing this
book. You can configure Visual Studio to use settings customized for developing projects using
Visual Basic, C#, web tools, and other technologies. This book assumes your installation is
configured for Visual Basic development, and the screen shots may look different if you have selected
a different configuration. The following section says more about different IDE configurations and
tells how you can select a particular configuration.

IDE CONFIGURATIONS

When you install it, Visual Studio asks you what kinds of development settings you want to use. The
most obvious choice for a Visual Basic developer is Visual Basic Development Settings. This choice
customizes Visual Studio to work more easily with Visual Basic, and is a good selection if you will
focus on Visual Basic development.

Another reasonable choice is General Development Settings. This option makes Visual Studio behave
more like Visual Studio 2003. It’s a good choice if you’re used to Visual Studio 2003, or if you expect
to use other Visual Studio languages, such as C#, somewhat regularly because these settings are fairly
effective for C# development and Visual Basic development.

This book assumes that you have configured
Visual Studio for Visual Basic development. If you
have chosen a different configuration, some of the I:I@ Chaose + Default Collection o Setings
figures in this book may look different from what
you see on your screen. Some of the menu items

Import and Export Settings Wizard _

Which collection of settings do you want to reset to?

£} General Development Settings Description:

. . . ightSwitch Development Settings Optimizes the environment so you can
available may be slightly different, or may appear o A ;u:i}i:ﬂ::i:?XWEZ‘:;(Z:":}E?GUDM.
: : : . “Wisual Basic Development Settings
in a different order. Usually, the items are available B o ooyt S e o e

. £} Wisual C++ Development Settings ta make common Visual Basic commands
somewhere, but you may have to search a bit to 8 Vil P Deveopment eings movesceese
£} Web Development
ﬁnd them. £} Web Developrment (Code Only)

If you later decide that you want to switch
configurations, open the Tools menu and select
Import and Export Settings to display the Import
and Export Settings Wizard. Select the Reset All
Settings option button and click Next. On the
second page, tell the wizard whether to save your

[ <Previous | [ Emsh ][ cancd |

current settings and click Next. On the wizard’s FIGURE 1-1: Use the Tools menu’s Import and
final page (shown in Figure 1-1), select the type of ~ Export Settings command to change the Visual
configuration you want and click Finish. When Studio configuration.

the wizard is done, click Close.


http://www.microsoft.com/express
http://www.microsoft.com/express
http://msdn.microsoft.com/vbasic

6 | CHAPTER1 INTRODUCTION TO THE IDE

PROJECTS AND SOLUTIONS

Visual Studio groups files into projects and solutions. A project is a group of files that produces
some specific output. This output may take many forms such as a compiled executable program, a
dynamic-link library (DLL) of classes for use by other projects, or a control library for use on other
Windows forms.

A solution is a group of one or more projects that should be managed together. For example,
suppose that you are building a server application that provides access to your customer order
database. You are also building a client program that each of your sales representatives will use to
query the server application. Because these two projects are closely related, it might make sense
to manage them in a single solution. When you open the solution, you get instant access to all the
files in both projects.

Both projects and solutions can include associated files that are useful for building the application
but that do not become part of a final compiled product. For example, a project might include the
application’s proposal and architecture documents. These are not included in the compiled code,
but it can be useful to associate them with the project so they are easy to find, open, and edit while
you are working on the project.

When you open the project, Visual Studio lists those documents along with the program files. If you
double-click one of these documents, Visual Studio opens the file using an appropriate application.
For example, if you double-click a file with a .doc, .docm, or .docx extension, Visual Studio
normally opens it with Microsoft Word.

To associate one of these files with a project or solution, right-click the project file at the top of the
Solution Explorer (more on the Solution Explorer shortly). In the context menu that appears, select
the Add command’s New Item entry, and use the resulting dialog box to select the file you want to add.

CUT OUT CLUTTER

You can add any file to a project or solution, but it’s not a good idea to cram dozens
of unrelated files into the same project. Although you may sometimes want to refer
to an unrelated file while working on a project, the extra clutter brings additional
chances for confusion. It will be less confusing to shrink the Visual Basic IDE to

an icon and open the file using an external editor such as Word or WordPad. If you
won’t use a file very often with the project, don’t add it.

STARTING THE IDE

When you launch Visual Studio, it initially displays the Start Page shown in Figure 1-2 by default.
The Start Page’s Recent Projects section lists projects that you have worked on recently and provides
links that let you open an existing project or website, or create a new project or website. The Get
Started tab contains links to help topics that may be useful to beginners.



Starting the IDE | 7

b Start Page - Microsoft Visual Studio Quick Launch (Ctrl+1) P = B
FILE  EDIT  WIEW [DEBUG TEAM  SQL  TOOLS TEST AMALYZE  WINDOW  HELP
@ - P Atach.. - A
GETSTARTED  LATEST NEWS
Welcome Windows 8 Windows Azure  Web
What's Mew Getting Started hanage your projects i

Wirhat's news in Wisual Studio

WiFhat's new in WET Framework

Error List  Task List  Immediate Window  Output

Getting started with Wisual
Studio

Getting started wiith Blend
Learn mare about Visual Studio

Discowver extensions, add-ons
and samples

“What is an M3DM subscription?

the cloud

Learn more about features,
including tearn collaboration
wiith code rewiews

See what’s news, or sign up for
an account,

Aaojdxg wWea | Jdadojdig uonn|os

FIGURE 1-2: By default, Visual Studio initially displays the Start Page.

Click the Guidance and Resources tab to see general development topics such as a development
overview, information about managing source code, and information about unit testing.

Click the Latest News tab to see an RSS feed listing current articles and stories about Visual Studio
development. To change the feed, simply enter a new URL in the tab’s text box.

Use the links on the left of the Start Page to open or create new projects. Click New Project to start
a new project. Click Open Project to browse for a project to open. Click one of the Recent Project
links to quickly open a project that you have recently edited.

Instead of displaying the Start Page, Visual Studio can take one of several other actions when it
starts. To change the startup action, open the Tools menu and select Options. Then select the Show
All Settings check box at the bottom of the dialog box so you can see all of the options and open
the Environment folder’s Startup item. In the At Startup drop-down box, you can select one of the

following options:

> Open Home Page

> Load Last Loaded Solution
> Show Open Project Dialog Box
>

Show New Project Dialog Box



8 | CHAPTER1 INTRODUCTION TO THE IDE

> Show Empty Environment
> Show Start Page
Pick one and click OK.

CREATING A PROJECT

After you open Visual Studio, you can use the Start Page’s New Project link or the File menu’s New
Project command to open the New Project dialog box shown in Figure 1-3.

New Project [ .

P Recent ‘ MET Framewark 4.5 "| Sort by: | Default "| 5

= Search Installed Terng P~

4 [nstalled 2 Type: Visual Basic

4 Templates A project for creating an application with a

3 : VB Windows user interface
4 Visual Basic r WRF Application Wisual Basic
Weindows hetro style -
. VB
Windmws E Console &pplication Wisual Basic
Web
q VB
I Office &E! Class Library Wisual Basic
Cloud
: VB
Reporting ‘HB!! Portable Class Library “Wisual Basic B
> SharePoint E -
Sikverlight WPF Browser Application Wisual Basic
<m3]
Test
VB
WACE N Empty Praject Wisual Basic
Warkflow
_uVB
LightSwitch _'Ll Windows Service Wisual Basic
b Other Languages T
I Other Project Types Hi! WYPF Custom Cantrol Library Wisual Basic
<m>
el e WWRF User Control Libra Wisual Basi [l
ry 15ual basic
b Online i
VB =
< | [ 1l >
Hame: Windowsdpplication]

FIGURE 1-3: The New Project dialog box lets you start a new project.

Use the Templates tree view on the left to select the project category that you want. Then select a
specific project type on the right. In Figure 1-3, the Windows Forms Application project type
is selected. Enter a name for the new project in the text box at the bottom.

After you fill in the new project’s information, click OK to create the project.

NOTE Visual Studio initially creates the project in a temporary directory. If you
close the project without saving it, it is discarded.




Creating a Project | 9

Figure 1-4 shows the IDE immediately after starting a new Windows Forms Application project.
Remember that the IDE is extremely configurable, so it may not look much like Figure 1-4 after you
have rearranged things to your liking (and I’ve arranged things to my liking here).

b WindowsApplication] - Microsoft Visual Studio QIcklalinehiiGal 10 P Cx
FILE EDIT WIEW PROJECT BULD DEBUS TEAM SOL  DATA FORMAT TOOLS TEST ANALYZE WINDOW  HELP

=0 N - b St~ G. @ Detug =
E,U' o s w BX > Salution Explarer e s w fC
E
g Search Toolbox P~ @ e-aga@

b All Windows Forms ~ P Form1 =[=] Search Salution Bxplarer Ctrl+) P -
4 Common Controls

WindowsApplication 1

Pairt:
5 Bom < & My Project
uttan 2 App.config
CheckBex b B Formivh
B=  CheckedlistBox
B Combobox Solution Explarer Team Explorer
B DateTimePicker = 6 Properties wow X
A Label b Form1 System.Windows.Forms.Farm =
A LinkLabel 1

ListBax Padding 0000 ~
i ListView RightToleft o
(- MaskedTextBox RightTolLeftLayon False
MonthCalendar Showlcon True
Le  Motifylcon 2 ShowlnTaskbar  True
EE  MumericUpDown Size 300, 300
Bl PictureBox e SizeGripStyle  Duto
= R T ST o Wi dowsDeraltlo

- ; 0%iarmi Search ErrorLis @ - Tagd

RadioButt A 4 ; 0ar Messag N
E(Z adioButton o le i = —_— Text Form1 =
= RichTextBox I e 1he olummn rojec TQpMost Eale
TextBox Transnarencuken 1 e
= ToolTip Text
= TreeWiew The text associated with the contral,
B WebBrowser | ErrorList | Task List | Immediate Window | Output

FIGURE 1-4: Initially a new project looks more or less like this.

The key pieces of the IDE are labeled with numbers in Figure 1-4. The following list briefly
describes each of these pieces:

1.  Menus — The menus contain standard Visual Studio commands. These generally manipu-
late the current solution and the modules it contains, although you can customize the menus
as needed. Visual Studio changes the menus and their contents depending on the object you
currently have selected. In Figure 1-4, a Form Designer (marked with the number 4) is open
so the IDE is displaying the menus for editing forms.

2. Toolbars — Toolbars contain tools that you can use to perform frequently needed actions.
The same commands may be available in menus, but they are easier and faster to use in
toolbars. The IDE defines several standard toolbars such as Formatting, Debug, and Image
Editor. You can also build your own custom toolbars to hold your favorite tools. Visual
Studio changes the toolbars displayed to match the object you currently have selected.

3.  Toolbox — The Toolbox contains tools appropriate for the item that you currently have
selected and for the project type that you are working on. In Figure 1-4, a Form Designer



10 | CHAPTER1 INTRODUCTION TO THE IDE

7.

is selected in a Windows Forms application so the Toolbox contains tools appropriate for a
Form Designer. These include Windows Forms controls and components, plus tools in the
other Toolbox tabs.

Form Designer — A Form Designer lets you modify the graphical design of a form. Select a
control tool from the Toolbox, and click and drag to place an instance of the control on the
form. Use the Properties window (marked with the number 6) to change the new control’s
properties. In Figure 1-4, no control is selected, so the Properties window shows the

form’s properties rather than a control’s.

Solution Explorer — The Solution Explorer lets you manage the files associated with

the current solution. For example, in Figure 1-4, you could select Form1.vb in the Project
Explorer and then click the View Code button (the second icon from the right at the

top of the Solution Explorer) to open the form’s code editor. You can also right-click

an object in the Solution Explorer to get a list of appropriate commands for that object.

Properties — The Properties window lets you change an object’s properties at design time.
When you select an object in a Form Designer or in the Solution Explorer, the Properties
window displays that object’s properties. To change a property’s value, simply click the
property and enter the new value.

Error List — The Error List window shows errors and warnings in the current project.
For example, if a program uses a variable that is not declared, this list will say so.

If you look at the bottom of Figure 1-4, you’ll notice that the Error List window has a series of tabs.
The Task List tab displays items flagged for further action such as To Do items. The Immediate
window lets you type and execute Visual Basic commands, possibly while a program is running,
but paused.

The Output tab shows output printed by the application. Usually an application interacts with the
user through its forms and dialog boxes, but it can display information here, usually to help you
debug the code.

WHAT WINDOWS?

If you don’t see the Error List, Task List, and other windows, they are probably
hidden. You can display many of them by selecting the appropriate item in the
View menu. Commands to display some of the more exotic windows are located in
other menus, such as the View menu’s Other Windows submenu and the Debug
menu’s Windows submenu.

As soon as you create a new project, it is ready to run. If you open the Debug menu and select Start
Debugging, the program will run. It displays only an empty form containing no controls, but the
form automatically handles a multitude of mundane windowing tasks for you.



Saving a Project | 11

READY TO RUN

If you’re using the Visual Basic environment settings, you can simply press F5 to

start the program.

Before you write a single line of code, the form lets you resize, minimize, restore, maximize, and
close the form. The form draws its title bar, borders, and system menu, and repaints itself as needed
when it is covered and restored. The operating system also automatically handles many tasks such
as displaying the form in the Windows taskbar and Task Manager. Some operating systems, such as
Windows 7 and Vista, automatically generate thumbnail previews for the Flip and Flip 3D tools that
you display by pressing Alt+Tab or Windows+Tab, respectively. Visual Basic and the operating
system do a ton of work for you before you even touch the project!

The form contains no controls, can’t open files, doesn’t process data, in fact doesn’t really do
anything unique, but a lot of the setup is done for you. It handles the windowing chores for you so

you can focus on your particular problem.

SAVING A PROJECT

Later chapters explain in depth how to add controls
to a form and how to write code to interact with the
form. For now, suppose you have built a project
complete with controls and code.

If you try to close Visual Studio or start a new project,
the dialog box shown in Figure 1-5 appears. Click
Save to make the Save Project dialog box shown in
Figure 1-6 appear. Click Discard to throw away the
existing project. Click Cancel to continue editing

the current project.

Close Project

' b Do you want to save ar discard changes to the current
project?

| Sawve | | Disgard | ‘ Cancel ‘

FIGURE 1-5: Before closing Visual Studio or
starting a new project, you must decide what
to do with the previous project.

Narne: ‘WindowsApp\icatium

Locatian:

Solution Mame:

FIGURE 1-6: Use this dialog box to save a new project.

Save Project _
‘ Cihlsers\Rod\Docurments\Wisual Studio 2012\Prajects v| | Browse.., |
‘ WindowsSpplicationl | Create directony for solution
[]Add ta source contral
Sawve | | Cancel




12 | CHAPTER1 INTRODUCTION TO THE IDE

As you work with the new project, Visual Studio saves its form definitions and code in a temporary
location. Each time you run the program, Visual Studio updates the files so it doesn’t lose
everything if it crashes. The files are still temporary, however.

When you are ready to make the new project permanent, open the File menu and select Save All to
display the Save Project dialog box shown in Figure 1-6.

The Name field shows the name that you originally gave the project when you created it. Verify
that the name is okay or change it.

Next, enter the location where you want the project saved. The default location is similar to the
rather non-intuitive value shown in Figure 1-6. (This image was taken while I was logged in as

the user named Developer. When you save a project, the “Developer” part of the location would be
replaced with your username.)

Be sure to pick a good location before you click Save. The next time you build a project, the
default will be the location you specify now so you won’t need to be quite as careful in the future,
assuming you want to build a lot of projects in the same directory.

If you check the Create Directory for Solution box, Visual Studio enables the Solution Name text
box and adds an extra directory above the project directory to hold the solution. This is most
useful when you want to include more than one project in a single solution. For example, you might
want several projects in the same solution to sit in a common solution directory.

If you have Team Foundation Server installed, you can check the Add to Source Control box to
place the new project’s code under source control.

After you have entered the project name and location, and optionally specified a separate solution
directory, click Save.

“SAVE AS” SURVIVAL SKILLS

The File menu’s Save As commands let you save particular pieces of the solution

in new files. For example, if you have a project named OfficeArrangerMain

selected in Project Explorer, the File menu contains a command named Save
OfficeArrangerMain As. This command lets you save the project file with a new
name. Unfortunately it doesn’t make a new copy of the whole project; it just makes
a copy of the project file. That file contains information about the project on a high
level such as references used by the project, files imported by the project, and the
names of the forms included in the project. It does not contain the forms themselves.

Many beginners try to use the File menu’s Save As commands to make copies of a
project or a solution, but that doesn’t work. Instead, use Windows Explorer to
find the directory containing the whole project or solution and make a copy of the
entire directory.

Similarly, if you want to back up a project or send someone a copy of a project, you
need to use the entire solution directory, not just one or two of the many files that
Visual Studio creates.



Summary | 13

SUMMARY

This chapter explained how to get started using the Visual Studio integrated development
environment. It showed how to configure the IDE for different kinds of development and explained
that different configurations might make your version of Visual Studio look different from the
screen shots shown in this book. It explained what Visual Basic projects and solutions are,

and showed how to create, run, and save a new project.

The next few chapters describe parts of the IDE in greater detail. Chapter 2, “Menus, Toolbars,
and Windows,” describes the commands available in the IDE and the menus, toolbars, and
secondary windows that hold them.






Menus, Toolbars, and Windows

WHAT'’S IN THIS CHAPTER

Finding IDE menus and tools
Setting Option Explicit, Option Strict, and Option Infer
Adding external tools to open a browser or send e-mail

Rearranging IDE windows

Y Y Y Y VY

Displaying control properties and events

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

IDE TOOLS

The Visual Studio IDE is incredibly powerful and provides hundreds of tools for building

and modifying projects. The price you pay for all of these powerful tools is extra complexity.
Because so many tools are available, it can take some digging to find the tool you want, even if
you know exactly what you need.

This chapter describes the menus, toolbars, and windows that contain the tools provided
by the IDE. It explains some of the most useful tools provided by the IDE and tells where to
find them, provided you haven’t moved them while customizing the IDE.

This chapter also tells how you can customize the menus and toolbars to give you easy access
to the commands that you use most frequently and how to hide those that you don’t need.


http://WROX.COM

16 |

CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

MENUS

The IDE’s menus contain standard Visual Studio commands. These are generally commands that
manipulate the project and the modules it contains. Some of the concepts are similar to those used
by any Windows application (File => New, File &> Save, Edit & Copy), but many of the details are
specific to Visual Studio programming, so the following sections describe them in a bit more detail.

The menus are customizable, so you can add, remove, and rearrange the menus and the items
they contain. This can be quite confusing, however, if you later need to find a command that you
have removed from its normal place in the menus. Some developers place extra commands in
standard menus, particularly the Tools menu, but it is generally risky to remove standard menu
items. Usually it is safest to leave the standard menus alone and make custom menus and toolbars
to hold customizations.

Many of the menus’ most useful commands are also available in other ways. Many provide
keyboard shortcuts that make using them quick and easy. For example, Ctrl+N opens the New
Project dialog box just as if you had selected the File ©> New Project menu command. If you find
yourself using the same command very frequently, look in the menu and learn its keyboard shortcut
to save time later.

Many menu commands are also available in standard toolbars. For example, the Debug toolbar
contains many of the same commands that are in the Debug menu. If you use a set of menu commands
frequently, you may want to display the corresponding toolbar to make using the commands easier.

Visual Studio also provides many commands through context menus. For example, if you right-click
a project in the Solution Explorer, the context menu includes an Add Reference command that
displays the Add Reference dialog box just as if you had invoked Project = Add Reference. Often it
is easier to find a command by right-clicking an object related to whatever you want to do than it is
to wander through the menus.

The following sections describe the general layout of the standard menus and briefly explain their
most important commands. You might want to open the menus in Visual Studio as you read these
sections, so you can follow along and see what other commands might be available.

MOVING MENUS

Visual Studio displays different menus and different commands in menus depending
on what editor is active. For example, when you have a form open in the Windows
Forms Designer, Visual Studio displays a Format menu that you can use to arrange
controls on the form. When you have a code editor open, the Format menu is hidden
because it doesn’t apply to code.

File

The File menu contains commands that deal with creating, opening, saving, and closing projects and
project files. The following list describes the most important commands contained in the File menu
and its submenus:



Menus | 17

New Project — This command displays a dialog box that lets you create new Windows
applications, class libraries, console applications, control libraries, and more. Select the type
of project you want to start, enter a project name, and click OK.

New Web Site — This command lets you start a new website project. It displays a dialog
box where you can select the type of website to create from among choices such as ASP.NET
Web Site, ASP.NET Empty Web Site, and WCF Service.

Open Project — This command lets you open an existing project.
Open Web Site — This command lets you open an existing website project.

Open File — This command displays a dialog box that lets you select a file to open. The
IDE uses integrated editors to let you edit the new file. For example, a simple bitmap editor
lets you set a bitmap’s size, change its number of colors, and draw on it. When you close the
file, Visual Studio asks if you want to save it. Note that this doesn’t automatically add

the file to your current project. You can save the file and use the Project = Add Existing
Item command if you want to do that.

Add — This submenu lets you add new items to the current solution. This submenu’s most
useful commands for Visual Basic developers are New Project and Existing Project, which
add a new or existing Visual Basic project to the current solution.

Close — This command closes the current editor. For example, if you were editing a form in
the Windows Forms Designer, this command closes the designer.

Close Project — This command closes the entire project and all of the files it contains. If
you have a solution open, this command is labeled Close Solution and it closes the entire
solution.

Save Form1.vb — This command saves the currently open file, in this example, Form1 .vb.
Save Form1.vb As — This command lets you save the currently open file with a new name.

Save All — This command saves all modified files. When you start a new project, the files
are initially stored in a temporary location. This command allows you to pick a directory
where the project should be saved permanently.

Export Template — This command displays the Export Template Wizard, which enables
you to create project or item templates that you can use later when making a new project.

Page Setup and Print — The Page Setup and Print commands let you configure printer
settings and print the current document. These commands are enabled only when it makes
sense to print the current file. For example, they let you print if you have a code editor
open because the code is text but they are disabled while you are using a Windows Forms
Designer.

Recent Files and Recent Projects and Solutions — The Recent Files and Recent Projects and
Solutions submenus let you quickly reopen files, projects, and solutions that you have used
recently.



18

| CHAPTER2 MENUS, TOOLBARS, AND WINDOWS

Edit

The Edit menu contains commands that deal with manipulating text and other objects. These
include standard commands such as the Undo, Redo, Cut, Copy, Paste, and Delete commands that
you’ve seen in other Windows applications.

The following list describes other important commands contained in the Edit menu:

>

Find Symbol — This command lets you search the application for a program symbol rather
than a simple string. You can search for such items as namespaces, types, interfaces,
properties, methods, constants, and variables.

Quick Find — This command displays a Find dialog box where you can search the project
for specific text. A drop-down menu lets you indicate whether the search should include the
current document, the currently selected text, all open documents, the current project, or
the current solution. Options let you determine such things as whether the text must match
case or whole words.

Quick Replace — This command displays the same dialog box as the Quick Find command
except with some extra controls. It includes a text box where you can specify replacement
text, and buttons that let you replace the currently found text or all occurrences of the text.

REGRETFUL REPLACEMENT

Be careful when using Quick Replace. Often it gets carried away and replaces sub-
strings of larger strings so they don’t make sense anymore. For example, suppose
you want to replace the variable name “hand” with “handed.” If you let Quick
Replace run, it will change Handles clauses into “handedles” clauses, which will
confuse Visual Basic. To reduce the chances of this type of error, keep the scope of
the replacement as small as possible and check the result for weird side effects.

Go To — This command lets you jump to a particular line number in the current file.

Insert File As Text — This command lets you select a file and insert its text into the current
location. This can be useful if the file contains a code snippet.

Advanced — The Advanced submenu contains commands for performing more complex
document formatting such as converting text to upper- or lowercase, controlling word wrap,
and commenting and uncommenting code.

Bookmarks — The Bookmarks submenu lets you add, remove, and clear bookmarks, and
move to the next or previous bookmark. You can use bookmarks to move quickly to specific
pieces of code that you have previously marked.

Outlining — The Outlining submenu lets you expand or collapse sections of code, and turn
outlining on and off. Collapsing code that you are not currently editing can make the rest of
the code easier to read.



Menus | 19

View

IntelliSense — The IntelliSense submenu gives access to IntelliSense features. For example,
its List Members command makes IntelliSense display the current object’s properties,
methods, and events.

Next Method and Previous Method — The Next Method and Previous Method commands
move to the next or previous method or class in the current document.

The View menu contains commands that let you hide or display different windows and toolbars in
the Visual Studio IDE. The following list describes the View menu’s most useful commands:

>

Code — This command opens the selected file in a code editor window. For example, to
edit a form’s code, you can click the form in the Solution Explorer and then select
View & Code.

Designer — This command opens the selected file in a graphical editor if one is defined for
that type of file. For example, if the file is a form, this command opens the form in a graphi-
cal form editor. If the file is a class or a code module, the View menu hides this command
because Visual Studio doesn’t have a graphical editor for those file types.

Standard windows — The next several commands in this menu list some explorers, Object
Browser, Error List, Properties window, and Toolbox. These commands restore a previously
hidden window.

Other Windows — The Other Windows submenu lists other standard menus that are not
listed in the View menu itself. These include the Bookmark window, Class View, Command
window, Document Outline, Output, Task List, and many others. Like the standard windows
commands, these commands are useful for recovering lost or hidden windows.

Tab Order — If the currently visible document is a Windows Form that contains controls,
the Tab Order command displays the tab order on top of each control. You can click the
controls in the order you want them to have to set their tab orders quickly and easily. (If you
are working with a WPF form, you must set the controls’ TabIndex properties to set their
tab order.)

Toolbars — The Toolbars submenu lets you hide or display the currently defined toolbars.
This submenu lists the standard toolbars in addition to any custom toolbars you have
created.

Full Screen — This command hides all toolbars and windows except for any editor windows
that you currently have open. This gives you the most space possible for working with the
files you have open. The command adds a small box to the title bar containing a Full Screen
button that you can click to end full-screen mode.

Property Pages — This command displays the current item’s property pages. For example,
if you select a project in the Solution Explorer, this command displays the application’s
property pages similar to those shown in Figure 2-1.



20 | CHAPTER2 MENUS, TOOLBARS, AND WINDOWS

N WindowsApplication - Microsoft Visual Studio Quick Launch (Ctrl+(1) p = B x
ELE  EDIT  WIEW PROJECT  BUILD  DEBUG  TEAM  SOL  DATA  TOOLS  TEST ANALYZE  WINDOW  HELP
St B - < b Start - G (5 o Debug - | AL

I Formitb [Design] -

g g
S =
g ]
A N7A Platfarm: | N/A -
B Compile <
' Debu e
i 9 Assernbly name: Ract namespace: [
S References [Windewsagplicationt | [windowsapplicationt | 3
Resources Target framewark: Application type: i
Services [.MET Framework 4.5 v| [ windaws Farms Application « 3
g Startup farm: lcon: =
Signing [Farm1 v] [(Defautt ican) v] @ k]
My Extensions 3
Security ‘ Assembly Information... ‘ | Wiew Windows Settings ‘ =

Fablih Enable application framework

Cade Analysis
Windows application framework properties
Enable XP visual styles
[] Make single instance application
Sawe My.Settings on Shutdown
Authentication mode:

[Windows v

Shutdown mode: =

ErrorList Task List  Immediate Window  Output

FIGURE 2-1: The View menu’s Property Pages command displays an object’s
property pages.

Project

The Project menu contains commands that let you add and remove items to and from the project.
Which commands are available depends on the currently selected item.

The following list describes the most important commands on the Project menu:

> New items — The first several commands let you add new items to the project. These
commands are fairly self-explanatory. For example, the Add Class command adds a new
class module to the project. Later chapters explain how to use each of these file types.

> Add New Item — This command displays a dialog box that lets you select from a wide
assortment of items such as About Boxes, text files, bitmap files, and class modules.

EASY ICONS

You can build an icon, cursor, or other graphical file right inside Visual Studio. Use the
Add New Item command to add the new file. Visual Studio’s built-in editors let you
draw these files, give them transparent backgrounds, and even set a cursor’s hotspot.
(The hotspot is the pixel that determines where the cursor is pointing. For example, an
arrow cursor’s hotspot is the tip of the arrow.) Note that integrated editors for some
of these file types may be unavailable if you have the Express Edition, although lots of
editors for these file types are available for download on the Internet.



Menus |

21

Add Existing Item — This command lets you browse for a file and add it to the project. This
may be a Visual Basic file (such as a module, form, or class), or some other related file (such
as a related document or image file).

Exclude From Project — This command removes the currently selected item from the
project. Note that this does not delete the file; it just removes it from the project.

Show All Files — This command makes Solution Explorer list files that are normally
hidden. These include resource files used by forms and hidden partial classes such as
designer-generated form code. Normally, you don’t need to work with these files, so they are
hidden. Select this command to show them. Select the command again to hide them again.

Add Reference — This command displays the Reference Manager shown in Figure 2-2. On
the left select the category of the external object, class, or library that you want to find.
For a .NET component, select the Assemblies category’s Framework item. This is what
you’ll want most of the time. For a component object model (COM) component such as an
ActiveX library or control built using Visual Basic 6, select the COM category. Click the
Browse button to manually locate the file that you want to reference.

Reference Manager - WindowsApplication1 _
4 Assernblies Targeting: MET Framework 4.5 Search Assemnblies P~
Framewark Mame Wersion * Mame:
Extensions Fystern.Mumetics 4000 Syster.Runtime Serialization
Systern.Printing 4.00.0 Created by:
Recent Systern.Reflection.Context 4.000 Microsoft Corporation
b Solution Systern.Runtirme.Caching 4.000 Yersion:
Systern.Runtime.Durablelnstancing 4000 4.0.0.0
b CORM Systern Runtime.Rernaoting 4,000 File Yersion:
v TR m 2,000 4.0.30319.17626 builk by:
b Browse Systern.Runtime, Serialization,Farmatters, Soap 4000 FXASRCREL
Systern. Security 4.00.0
Systern.Servicebodel 4.00.0
Systern. Servicehodel Activation 4.000
Systern. Servicebodel Activities 4.000
Systern. Servicebdodel.Channels 4.000
Systern. Servicebdodel Discovery 4.000
Systern, Servicebdodel Routing 4000
Systern. Servicebdodel Web 4000
Systern.ServiceProcess 4.00.0
Systern.Speech 4.0.0.0
SysternWeh 4.000
SwsterniWeb Abstractions 4000 hd

| Browse,., H Ok H Cancel

FIGURE 2-2: Use the Reference Manager to add references to libraries.

Scroll through the list of references until you find the one you want and click the Add button
to select it. A checkmark to the left of an item shows that the item is selected. When you have
made your selections, click OK to add the references to the project. After you have added a
reference to the project, your code can refer to the reference’s public objects. For example, if
the file MyMathLibrary.dll defines a class named MathTools and that class defines a public
function Fibonacci, a project with a reference to this DLL could use the following code:

Dim math_tools As New MyMathLibrary.MathTools
MessageBox.Show ("Fib(5) = " & math_tools.Fibonacci(5))



22 | CHAPTER2 MENUS, TOOLBARS, AND WINDOWS

> Add Service Reference — This com-
mand displays the dialog box shown
in Figure 2-3. You can use this dialog
box to find web services and add ref-
erences to them so your project can
invoke them across the Internet.
Figure 2-3 shows a service reference
for the TempConvert example service.
For more information, go to http://
www.w3schools.com/webservices/

tempconvert .asmx.

>  WindowsApplicationl Properties —
This command displays the application’s
property pages shown in Figure 2-1.

Use the tabs on the left of the application’s
property pages to view and modify different
categories of application settings. You can leave

Add Service Reference (= [

To see a list of available services on a specific server, enter a service URL and click Go. Ta browse for available
senvices, click Discover.

Address:
[t sfwnstschals.comyebservices tempeonvert.asm .,\ \ ‘ Discover |~
Services: Operations;

4 @@ TempConvert @ CelsiusToFahrenheit

*9 TempConvertHttpPost B FahrenheitToCelsius

2 TempConvertSoap

T service(s) found at address httpy/fomwnw3schools.comfuvebservices/tempconvertasms,

Namespace:
[servicereferencet |

FIGURE 2-3: Use the Add Service Reference dialog
box to add references to web services.

many of the property values at their defaults, and many can be set in ways other than by using the
property pages. For example, by default, the Assembly Name and Root Namespace values shown in
Figure 2-1 are set to the name of the project when you first create it. For most projects, that’s fine.

Figure 2-4 shows the Compile property page. This page holds four properties that deserve

special mention.

ﬂ WindowsApplication1 - Microsoft Wisual Studio

Quick Launch (Ctrl+ Q) L = B x

FLE EDIT  WIEW PROJECT BUILD DEBUG TEAM  SOL  DATA TOOLS TEST AMALYZE  WINDOW  HELP

Warning configurations:

e - B - e - - P Start - G 4 Debug - A
g TR vt b [Design] o gf
2 Applicat Ef
g pplication ) n g
< Configuration: | Active (Debug) | Platform: [Active (any CPL) v o
z S
o @
g Dy Build output path: ]
= =
T References g
- 5
RepeEs Compile Options: &
8 g
Ervices Option explicit: Option strict: 1
Settings o <I[or -
Signing 2
Option campare: Option infer: = =
My Extension 3
[Binary < [on
Security
Target CPU;
Publish
[anycru v
Code Analysis
Prefir 32-bit

Condition

Implicit ¢

Late hinding; call could fail at run tirme

Motificatio

MNaone

Implicit type; object assumed

Mone

Use of variable prior to assignment.

Warning |V
>

ErrorList  Task List Immediate Window  Qutput

FIGURE 2-4: The Compile tab contains important properties for controlling code

generation.


http://www.w3schools.com/webservices/tempconvert.asmx
http://www.w3schools.com/webservices/tempconvert.asmx
http://www.w3schools.com/webservices/tempconvert.asmx

Menus | 23

First, Option Explicit determines whether Visual Basic requires you to declare all variables before
using them. Leaving this option turned off can sometimes lead to subtle bugs. For example, suppose
you mistype a variable’s name. If Option Explicit is Off, Visual Basic assumes that you are trying
to create a new variable with a new name. The two variables are not the same, and that can lead to
confusion. If you set Option Explicit to On, the compiler complains that the misspelled variable is
not declared and the problem is easy to fix.

The second compiler option is Option Strict. When this option is turned off, Visual Studio allows
your code to implicitly convert from one data type to another, even if the types are not always com-
patible. For example, your program might be able to assign the value in a string variable to an inte-
ger variable. That will work if the string happens to contain text such as “10” that is a number but
fails if the string contains something else such as “ten.”

If Option Strict is On, the IDE warns you at compile time that the two data types are incompatible,
so you can easily resolve the problem while you are writing the code. You can still use conversion
functions such as Clnt, Int, and Integer.Parse to convert a string into an Integer, but you must take
explicit action to do so. This makes you think about the code and reduces the chances that the con-
version is just an accident. This also helps you use the correct data types and avoid unnecessary con-
versions that may make your program slower.

The third compiler directive, Option Compare, can take the values Binary or Text. If you set
Option Compare to Binary, Visual Basic compares strings using their binary representations. If you
set Option Compare to Text, Visual Basic compares strings using a case-insensitive method that
depends on your computer’s localization settings. Option Compare Binary is faster, but may not
always produce the result you want.

The final compiler directive, Option Infer, determines whether you can omit the data type when
declaring a variable and let Visual Basic deduce its data type from the context. For example, when it
sees the statement Dim x = 1.2, Visual Basic assumes that x must be the Double data type.

The problem with inferred data types is that it is not obvious from the code what data type Visual
Basic should use. In the statement Dim x = 1.2, you need to know Visual Basic’s inference rules to
know whether variable x is a Single, Double, or Decimal.

You can use an Option statement to set the values for each of these options at the top of a code
module. For example, the following code turns Option Explicit on and Option Infer off for
a module:

Option Explicit On
Option Infer Off

Instead of using Option statements in a file, you can use the property page shown in Figure 2-4
to set these options for all of the files in the application.



24 | CHAPTER2 MENUS, TOOLBARS, AND WINDOWS

Build

OPTION RECOMMENDATIONS

To avoid confusion and long debugging sessions, I recommend that you use the
Compile property page to set Option Explicit on, Option Strict on, and Option
Infer off to make Visual Basic as restrictive as possible. Then if you must loosen
these restrictions in a particular file, you can add an Option statement at the top of
the file. For example, you may need to set Option Infer on for a module that uses
LINQ. See Chapter 20, “LINQ,” for more information about LINQ.

The Build menu contains commands that let you compile projects within a solution. The following
list describes the most useful commands contained in the Build menu:

>

Build WindowsApplicationl — This command compiles the currently selected project, in
this case the project WindowsApplication1. Visual Studio examines the project’s files to
see if any have changed since the last time it compiled the project. If any of the files have
changed, Visual Studio saves and recompiles them.

Rebuild WindowsApplicationl — This command recompiles the currently selected project
from scratch. It recompiles every file even if it has not been modified since the last time it
was compiled.

Clean WindowsApplicationl — This command removes temporary and intermediate files
that were created while building the application, leaving only the source files and the final
result .exe and .dll files.

Publish WindowsApplicationl — This command displays the Publish Wizard, which walks
you through the process of making your application available for distribution in a local file,
file share, FTP site, or website.

If your solution contains more than one application, the Build menu also contains the solution-
related commands Build Solution, Rebuild Solution, and Clean Solution. These are similar to their
application counterparts except they apply to every application in the solution.

Debug

The Debug menu contains commands that help you debug a program. These commands help you
run the program in the debugger, move through the code, set and clear breakpoints, and generally
follow the code’s execution to see what it’s doing and hopefully what it’s doing wrong.

For more information about the Debug menu and debugging Visual Basic code, see Chapter 6,
“Debugging.”

Data

The Data menu contains commands that deal with data and data sources. Some of the commands in
this menu are visible and enabled only if you are designing a form and that form contains the proper
data objects.



Menus | 25

The following list describes the most useful Data menu commands:

> Show Data Sources — This command displays the Data Sources window, where you can
work with the program’s data sources. For example, you can drag and drop tables and fields
from this window onto a form to create controls bound to the data source.

> Preview Data — This command displays a dialog box that lets you load data into a DataSet
and view it at design time.

> Add New Data Source — This command displays the Data Source Configuration Wizard,
which walks you through the process of adding a data source to the project.

Format

The Format menu contains commands that arrange controls on a form. The commands are grouped
into submenus containing related commands. The following list describes the Format menu’s submenus:

> Align — This submenu contains commands that align the controls you have selected in
various ways. It contains the commands Lefts, Centers, Rights, Tops, Middles, Bottoms,
and “to Grid.” For example, the Lefts command aligns the controls so their left edges line
up nicely. The “to Grid” command snaps the controls to the nearest grid position.

> Make Same Size — This submenu contains commands that make the dimensions of the
controls you have selected the same. It contains the commands Width, Height, Both, and
Size to Grid. The Size to Grid command adjusts the selected controls’ widths so that they
are a multiple of the alignment grid size. (This command is disabled unless the Windows
Forms Designer’s LayoutMode is set to SnapToGrid. To set this, open the Tools menu, select
Options, go to the Windows Forms Designer tab, open the General subtab, and set the
LayoutMode property.)

> Horizontal Spacing — This submenu contains commands that change the horizontal
spacing between the controls you have selected. It contains the commands Make Equal,
Increase, Decrease, and Remove.

> Vertical Spacing — This submenu contains the same commands as the Horizontal Spacing
submenu except it adjusts the controls’ vertical spacing.

> Center in Form — This submenu contains the commands Horizontally and Vertically that
center the selected controls on the form either horizontally or vertically.

>  Order — This submenu contains the commands Bring to Front and Send to Back, which
move the selected controls to the top or bottom of the stacking order.

> Lock Controls — This command locks all of the controls on the form so that you cannot
accidentally move or resize them by clicking and dragging, although you can still move and
resize the controls by changing their Location and Size properties in the Properties window.
Invoking this command again unlocks the controls.

Tools

The Tools menu contains miscellaneous tools that do not fit particularly well in the other menus.
It also contains a few duplicates of commands in other menus to make them easier to find, and
commands that modify the IDE itself.



26 | CHAPTER2 MENUS, TOOLBARS, AND WINDOWS

The following list describes the Tools menu’s most useful commands. Note that some of these com-
mands appear only when a particular type of editor is open. Note also that some may not be avail-
able in Visual Studio Express Edition.

>

Attach to Process — This command displays a dialog box to let you attach the debugger to
a running process. This is useful for debugging programs that you cannot run directly in
the Visual Studio IDE such as Windows services, which run automatically when the
computer starts.

Connect to Database — This command displays the Connection Properties dialog box,
where you can define a database connection. The connection is added to the Server Explorer
window. You can later use the connection to define data adapters and other objects that use
a database connection.

Connect to Server — This command displays a dialog box that lets you connect to a data-
base server.

Code Snippets Manager — This command displays the Code Snippets Manager, which you
can use to add and remove code snippets.

Choose Toolbox Items — This command displays a dialog box that lets you select the
tools displayed in the Toolbox. For instance, some controls are not included in the
Toolbox by default. You can use this command to add them if you will use them
frequently.

Add-in Manager — This command displays the Add-in Manager, which lists the add-in
projects registered on the computer. You can use the Add-in Manager to enable or disable
these add-ins.

Extension Manager — This command displays an Extension Manager dialog box that lets
you find Visual Studio extensions online and install them.

External Tools — This command displays a dialog box that lets you add and remove
commands from the Tools menu. For example, you could add a command to launch
WordPad, MS Paint, WinZip, and other handy utilities from the Tools menu.

NOTE If you set an external tool’s Command to the location of your favorite
browser and its Arguments to a web address, you can easily open that address
by selecting your tool from the Tools menu. You can even set the Arguments to
a mailto address as in mailto:RodStephens@vb-helper.com to quickly send
e-mail from the Tools menu.

Import/Export Settings — This command displays a dialog box that you can use to save,
restore, or reset your Visual Studio IDE settings. Use this dialog box to configure

your development environment for general development, project management, SQL Server
development, Visual Basic, C#, C++, or web development.


mailto://RodStephens@vb-helper.com

Menus | 27

>

>

Customize — This command allows you to customize the Visual Studio IDE.

Options — This command allows you to specify options for the Visual Studio IDE. See the
following text for more details.

The Tools menu’s Options command displays the dialog box shown in Figure 2-5. This dialog box
contains a huge number of pages of options that configure the Visual Studio IDE.

Options _

=

Task List ~ 4 Code Generation Settings

Web Browser Optirnized Code Generation True
I: Projects and Solutions 4 Layout Settings
I Source Contral b GridSize 8.8
> Text Editar Lay 8 Snaplines
b Debugging ShowGrid True
4 EErbermar']l'EE TDDIS SnapToGrid True
4 ;ta ase Tools 4 Object Bound Smart Tag Settings
4 FHTIADLDIE: X Autoratically Open Smart Tags True
E OfficeT::\?ﬂer 4 Refactoring
b Eackage Manager EnahleRefactoringOnRename True
[ 30L Server Tools = Aloclbox
b Text Templating AutoToolboxPopulate True
I Web Performance Test Toals
4 Windows Forms Designer LayoutMode

General
Data Ul Custornization when the designer is closed and reopened.
Workflow Desianer

Taoggles the layout maode for the designer. Changes to this property will be seen

| 0K | | Cancel

FIGURE 2-5: The Options dialog box lets you specify IDE options.

The following list describes the Options dialog box’s most important categories:

>

Environment — Contains general IDE settings such as whether the IDE uses tabs or
multiple windows to display documents, the number of items shown in the most recently
used file lists, and how often the IDE saves AutoRecover information. The Fonts and Colors
subsection lets you determine the colors used by the editors for different types of text. For
example, comments are shown in green by default, but you can change this color.

Projects and Solutions — Contains the default settings for Option Explicit, Option Strict,
and Option Compare.

Source Control — Contains entries that deal with the source code control system (for example,
Visual Studio Team Foundation Server or Visual SourceSafe). These systems provide file
locking and differencing tools that let multiple developers work on the same project without
interfering with each other.

Text Editor — Contains entries that specify the text editor’s features. For example, you can
use these pages to determine whether long lines are automatically wrapped, whether line
numbers are displayed, and whether the editor provides smart indentation. The Basic &> VB
Specific subsection lets you specify options such as whether the editor uses outlining, dis-
plays procedure separators, or suggests corrections for errors.



28 | CHAPTER2 MENUS, TOOLBARS, AND WINDOWS

Test

Debugging — Contains debugging settings such as whether the debugger displays messages
as modules are loaded and unloaded, and whether it should allow Edit-and-Continue.

Database Tools — Contains database parameters such as default lengths for fields of various
types and how long to let long queries run before canceling them.

HTML Designer — Contains options for configuring HTML Designer. These options
determine such settings as the spacing of the display grid and whether the designer starts in
source or design view.

Office Tools — Contains settings that specify how the keyboard should work when you use
Excel or Word files within Visual Studio.

Test Tools — Contains settings that determine how testing tools behave.

Windows Forms Designer — Contains settings that control the Windows Forms Designer.
For example, this section lets you determine whether the designer uses a snap-to grid or
snap lines and how far apart grid points are.

The Test menu, which is not available in Visual Studio Express Edition, contains commands that
control the Visual Studio testing tools. These tools let you perform such actions as coverage testing
(to see if every line of code is executed), regression testing (to see if changes to the code broke any-
thing), and load testing (to see how the application performs with a lot of simulated users running at
the same time).

The following list briefly describes the Test menu’s most useful commands:

>  New Test — This command displays a dialog box that lets you create various kinds of tests
for the application.

>  Load Metadata File — This command lets you load a test metadata file. These XML files
describe test lists, each of which can contain tests. This command lets you load test lists into
different projects.

> Create New Test List — This command lets you make a new test list. Test lists let you group
related tests so that you can execute them together. For example, you might have test lists
for user interface testing, print tests, database tests, and so forth.

>  Run — This command starts executing the currently active test project without the
debugger.
Debug — This command starts executing the currently active test project with the debugger.
Windows — This command displays test-related windows including Test View, Test List
Editor, Test Results, Code Coverage Results, and Test Runs.

Window

The Window menu contains commands that control Visual Studio’s windows. Which commands are
enabled depends on the type of window that has the focus. For example, if focus is on a code editor,



Menus | 29

the Split command is enabled and the Float, Dock, and Dock as Tabbed Document commands are
disabled, but when the Solution Explorer window has the focus, the opposite is true.

The following list briefly describes the most useful of these commands:

>

Help

Split — This command splits a code window into two panes that can display different parts
of the code at the same time. This command changes to Remove Split when you use it.

Float, Dock, Dock as Tabbed Document — Secondary windows such as the Toolbox,
Solution Explorer, and Properties windows can be displayed as dockable, floating, or tabbed
documents. A dockable window can be attached to the edges of the IDE or docked with
other secondary windows. A floating window stays in its own independent window even

if you drag it to a position where it would normally dock. A tabbed document window is
displayed in the main editing area in the center of the IDE with the forms, classes, and other
project files.

Auto Hide — This command puts a secondary window in Auto Hide mode. The window
disappears, and its title is displayed at the IDE’s nearest edge. When you click the title or
hover over it, the window reappears so that you can use it. If you click another window, this
window hides itself again automatically.

Hide — This command removes the window.
Auto Hide All — This command makes all secondary windows enter Auto Hide mode.

New Horizontal Tab Group — This command splits the main document window horizon-
tally so that you can view two different documents at the same time.

New Vertical Tab Group — This command splits the main document window vertically so
that you can view two different documents at the same time.

Close All Documents — This command closes all documents.

Reset Window Layout — This command resets the window layout to a default
configuration.

Form1.vb — The bottom part of the Window menu lists open documents such as form,
code, and bitmap editors. The menu displays a checkmark next to the currently active docu-
ment. You can select one of these entries to view the corresponding document.

Windows — If you have too many open documents to display in the Window

menu, select this command to see a list of the windows in a dialog box. This dialog box
lets you switch to another document, close one or more documents, or save documents.
By pressing Ctrl+Click or Shift+Click you can select more than one document and quickly
close them.

The Help menu displays the usual assortment of help commands. You should be familiar with most
of these from previous experience. The following list summarizes some of the more interesting non-
standard commands:



30 | CHAPTER2 MENUS, TOOLBARS, AND WINDOWS

> Set Help Preference — This command lets you indicate whether you prefer to use local or
online help.

»  MSDN Forums — This command opens an MSDN community forums web page where you
can post questions and search for answers.

> Report a Bug — This command opens Microsoft Connect where you can report bugs, make
suggestions, and look for hot fixes for known problems.

> Samples — This command opens a Microsoft web page containing links to Visual Studio
documentation and samples.

> Customer Feedback Options — This command displays a dialog box that lets you indi-
cate whether you want to participate in Microsoft’s anonymous Customer Experience
Improvement Program. If you join, Microsoft collects anonymous information about your
system configuration and how you use its software.

> Check for Updates — This command checks online for Visual Studio updates.

> Technical Support — This command opens a help page describing various support options.
The page includes phone numbers and links to more information.

TOOLBARS

The Visual Studio toolbars are easy to rearrange. Simply grab the four gray dots on a toolbar’s left
or upper edge and drag the toolbar to its new position. Use the Tools menu’s Customize command
to show or hide toolbars. Select a toolbar and click the Modify Selection drop-down to make a tool-
bar dock to the IDE’s top, left, right, or bottom edges.

You can use the IDE’s menu commands to determine which toolbars are visible, to determine what
they contain, and to make custom toolbars of your own.

Many menu commands are also available in standard toolbars. For example, the Debug

toolbar contains many of the same commands that are in the Debug menu. If you use a set of
menu commands frequently, you may want to display the corresponding toolbar to make using the
commands easier. Alternatively, you can make your own custom toolbar and fill it with your
favorite commands.

SECONDARY WINDOWS

You can rearrange secondary windows such as the Toolbox and Solution Explorer even more
easily than you can rearrange toolbars. Click and drag the window’s title bar to move

it. As the window moves, the IDE displays drop icons and blue drop areas to help you dock
the window, as shown in Figure 2-6. This figure probably looks somewhat confusing, but it’s
fairly easy to use.



Secondary Windows | 31

ﬂ WindowsApplication] - Microsoft Wisual Studio Quick Launch (Ctrl+0) ,F = B0 x
FILE  EDIT  WIEMY PROJECT BUILD DEBUG  TEAM  SOL  DATA  TOOLS  TEST  ANAIVZE  WINDOW — HELP
Bk i3-S . b Start - G & Debug - | A
g Toolbox = S BX Formlub® Form1uh [Design]” # X — ~ Properties = cow X
@ Search Toolbox p- = - WindowsApplication1 Project Prop -
=
3 b AllVindows Forms |~ | ad Farmi [=]m]x] | EE =)
" 4 Cormmon Contrals o
b E Project File WindowsSpplication
& s ‘ Project Folder CiUsers\Rod\Desktc
Buttan (o
CheckBox I 3
IS Checkedlingor | !
& ComboBox i
B DoteTimePicker | D 4 D l:’ “’( ’D
A Label ,j e-end
& Loy | | on Explorer (Ctrl+) P -
D i ListBox ‘ — 0 D
“o ListWiew o Wy Praject
Bl MaskedTextBo: g B Service References
tanthCalendar A App.config
ke Matifylean L] = b R Farnluh
BB HumericUpDown Solution Explorer . Team Explarer
El  PictureBox
B ProgiessBar St 5
@ RadioButton - arm 0 Messages  Search Error List P~
B5  RichTextBox Descrip..  File Line Calumn Praject |~
TextBox €71 Wisnot  Formlvh 4 9 WindowsApglication]|
declared. ml
= ToolTip It may be Project File
= Treeliew inaccessib x ~ | The name of the file containing build,
@ E L /i configuration, and other inforrnatio..
Wi'ehBrowser v rror List Task List Immediate Window  Outpor

FIGURE 2-6: Use the IDE’s docking icons to help you dock windows.

When you drag the window over another window, the IDE displays docking icons for the other win-
dow. In Figure 2-6, these are the icons in the center that look like little windows. In Figure 2-6 the
cursor is hovering over one of these icons.

The four icons on the sides dock the window to the corresponding edge of the other window. The
center icon places the dropped window in a tab within the other window.

When you drag the mouse over one of the docking icons, the IDE displays a pale blue rectangle to
give you an idea of where the window will land if you drop it. In Figure 2-6, the mouse is over the
main document window’s right docking icon, so the blue rectangle shows the dropped window tak-
ing up the right half of the main document window.

If you drop a window somewhere other than on a docking icon, the window becomes free-floating.

When you drop a window on the main document area, it becomes a tabbed document within that
area, and you cannot later pull it out. To free the window, select it and use the Window menu’s

Dock or Float command.

NOTE Somietimes the IDE is so cluttered with windows that it’s hard to figure out
exactly where the window will be dropped. It’s usually fairly easy to just move the
mouse around a bit and watch the pale blue rectangle to see what’s happening.




32 | CHAPTER2 MENUS, TOOLBARS, AND WINDOWS

This section described some of the general features of the IDE’s secondary windows. The follow-
ing sections describe two of the most important of those secondary windows: the Toolbox and the
Properties window.

Toolbox

The Toolbox window displays tools that you can use with the currently active document. The tools
are available when you are editing a Windows Form, WPF Form, UserControl, web page, or other
item that can contain objects such as controls and components.

The tools are grouped into sections called tabs, although they don’t look much like the tabs on
most documents. The Toolbox in Figure 2-6 displays tools for the Windows Forms Designer. The
Common Controls tab is showing its tools as icons. The Containers and Menus & Toolbars tabs are
listing their tools by name. Other tabs are hidden.

You can customize the Toolbox by right-clicking a tab and selecting one of the commands in the
context menu. The following list briefly describes the most useful of these commands:

> List View — This command toggles the current tab to display tools as either a list of names
(as in the Containers tab in Figure 2-6) or a series of icons (as in the Common Controls tab
in Figure 2-6).

> Show All — This command shows or hides less commonly used tabs such as Data, WPF
Interoperability, Visual Basic Power Packs, and many others.

> Choose Items — This command displays a dialog box where you can select the items that
should appear in a tab.

> Sort Items Alphabetically — This command sorts the items within a Toolbox tab
alphabetically.

> Reset Toolbox — This command restores the Toolbox to a default configuration. This
removes any items you may have added by using the Choose Items command.

> Add Tab — This command creates a new tab where you can place your favorite tools. You
can drag tools from one tab to another. Hold down the Ctrl key while dragging to add a
copy of the tool to the new tab without removing it from the old tab.

> Delete Tab — This command deletes a tab.
Rename Tab — This command lets you rename a tab.

Move Up, Move Down — This command moves the clicked tab up or down in the Toolbox.
You can also click and drag the tabs to new positions.

If you right-click a tool in the Toolbox, the context menu contains most of these commands plus
Cut, Copy, Paste, Delete, and Rename Item.



Summary | 33

Properties Window

When you are designing a form, the Properties window allows you to
view and modify the properties of the form and of the controls that it
contains. Figure 2-7 shows the Properties window displaying properties
for a Button control named btnCalculate. You can see in the figure that
the control’s Text property is “Calculate” so that’s what the button dis-
plays to the user.

Figure 2-7 shows some important features of the Properties window that
deserve special mention. At the top of the window is a drop-down list
that holds the names of all of the controls on the form. To select a con-
trol, you can either click it on the Windows Forms Designer or select it
from this list.

The buttons in the row below the drop-down determine what items are
displayed in the window and how they are arranged. If you click the left-
most button, the window lists properties grouped by category. For exam-
ple, the Appearance category contains properties that affect the control’s
appearance such as BackColor, Font, and Image. If you click the second
icon that holds the letters A and Z, the window lists the control’s proper-
ties alphabetically.

Praperties

btnCalculate SysternWindows.FormsB -

MaximumSize 00 -

finirmumSize oo
Modifiers Friend

Padding aooo
RightToleft Mo

Size 75,23
Tablndex a
TabStop True
Tag

I e ]

Texttlign MiddleCenter
TextlmageRelatic Overlay
UseCornpatibleT False
Usebdnermonic  True
UseVisualStyleBa True
UsetaitCursor  False

Yisible True v

Text
The text associated with the control.

FIGURE 2-7: The
Properties window lets
you view and modify
control properties.

NOTE Arranging properties alphabetically makes finding properties easier for
many developers.

The third icon makes the window display the control’s properties, and the fourth icon (which
displays a lightning bolt) makes the window display the control’s events instead. (Yes, it’s a little
odd that the Properties window displays either properties or events, but there is no Events window.)

For more information on using the Properties window to edit properties and create event handlers
in the Windows Forms Designer, see Chapter 3, “Windows Forms Designer.”

SUMMARY

The Visual Studio integrated development environment provides a huge number of tools for manipu-
lating projects. Menus and toolbars contain hundreds if not thousands of commands for creating,
loading, saving, and editing different kinds of projects and files.

This chapter described the most useful and important commands available in the IDE’s menus and
toolbars. The kinds of menus, toolbars, and commands that are available depend on the type of
window that currently has focus, in addition to the project’s current state. For example, the Format



34 |

CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

menu contains commands that arrange controls on a form so most of its commands are enabled only
when you are using a Windows Forms Designer and you have controls selected.

This chapter also described important IDE windows such as the Error List, Solution Explorer,
and Properties window. One of the most important of those windows is the Toolbox, which is
used mostly to add controls and components to forms in the Windows Form Designer. Chapter 3,
“Windows Forms Designer,” explains how to use the Windows Forms Designer to build the forms
that make up most Windows applications.



Windows Forms Designer

WHAT'’S IN THIS CHAPTER

Creating and manipulating controls
Setting control properties
Using smart tags

Creating event handlers

Y Y Y VY Y

Using relaxed delegates

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

INTRODUCING WINDOWS FORMS DESIGNER

The Windows Forms Designer allows you to design forms for typical applications that run

on the Windows desktop. It lets you add, size, and move controls on a form. Together with the
Properties window, it also lets you change a control’s properties to determine its appearance
and behavior.

This chapter provides an introduction to the Windows Forms Designer. It explains how to
add controls to a form, move and size controls, set control properties, and add code to respond
to control events. It also describes tips and tricks that make working with controls easier.

SETTING DESIGNER OPTIONS

When you first install Visual Studio, the Windows Forms Designer is configured to be quite
usable. You can open a form immediately and use the Toolbox to place controls on it. You
can use the mouse to move and resize controls. You can use the Format menu to arrange and


http://WROX.COM

36 |

CHAPTER 3 WINDOWS FORMS DESIGNER

size controls. Overall the Windows Forms Designer provides a first-class intuitive WYSIWYG
(“what you see is what you get”) experience.

Behind the scenes, however, there are a few configuration options that control the designer’s
behavior and that you should know about to get the most out of the designer.

To view the designer’s options, open the Tools menu, select Options, open the Windows Forms
Designer branch, and select the General page to display the dialog box shown in Figure 3-1.

Ervviranrment

Projects and Solutions
Source Control

Text Editor
Debugging
Performance Toals
Database Toals

F# Toals

HThAL Designer
Office Toals

Package Manager
S0L Server Tools

Text Ternplating

Wieh Performance Test Toals

Windows Forms Designer

LT YT YT OYTOT W OT OV OW W W W W

General
Data Ul Custarnization

-

Workflow Designer

Options

S

Code Generation Settings
Optirized Code Generation

4 Layout Settings

GridSize

Layouthdode

ShowiGrid

SnapToGrid

Object Bound Smart Tag Settings

-

S

Automatically Open Smart Tags

S

Refactoring
EnableRefactoringOnRename

S

Toolbox

AutoToolboxPopulate

LayoutMode

True

8,8
Snaplines
True
True
True

True

True

[ I

Toggles the layout mode for the designer. Changes to this property will be seen
when the designer is closed and reopened,

e ]

Cancel

FIGURE 3-1: This dialog box lets you control the Windows Forms Designer’s behavior.

The following list describes the most important of these settings:

> Optimized Code Generation — Determines whether Visual Studio generates optimized
code. This setting is here instead of some more code-oriented part of the Options dialog box
because some controls may be incompatible with code optimization.

> Grid Size — Determines the horizontal and vertical dimensions of the sizing grid for use
when LayoutMode is SnapToGrid.

> LayoutMode — Determines whether Visual Studio uses snap-to-grid or snap lines. If this
is SnapToGrid, objects automatically snap to the nearest grid point when you drag or resize
them. When this is SnapLines, resized controls automatically snap to lines that align
with the edges or centers of other controls, or with the form’s margins. Both of these
options make it easy to build controls that are consistently sized and that align along their
edges. The two options have a very different feel, however, so you might want to experiment
with both to see which one you like best.

> Automatically Open Smart Tags — Determines whether Visual Studio displays smart tags

by default.



Adding Controls | 37

> EnableRefactoringOnRename — Determines whether Visual Studio performs refactoring
when you rename a control. (Refactoring is the process of restructuring the code, hopefully
to make it better.) If this setting is True and you change a control’s name, Visual Studio
updates any code that uses that control so it uses the new name. If this setting is False and
you rename a control, any code that refers to the control still uses its old name, so the code
will no longer work.

> AutoToolboxPopulate — Determines whether Visual Studio adds components built by the
solution to the Toolbox window.

USEFUL OPTIONS

Which LayoutMode you should use is a matter of preference. I know many
developers who use each style. The EnableRefactoringOnRename option can
save you a lot of trouble when you rename controls, so it’s almost always worth
leaving the setting as True.

ADDING CONTROLS

The Windows Forms Designer allows you to add controls to a form in several ways.

First, if you double-click a control on the Toolbox, Visual Studio places an instance of the control
on the form in a default location and at a default size. You can then use the mouse to move and
resize the control.

NOTE When you use this method, the new control is placed inside the currently
selected container on the form. If the currently selected control is a GroupBox,
the new control is placed inside the GroupBox. If the currently selected control is
a TextBox that is inside a Panel, the new control is placed inside the Panel.

Second, if you click a control in the Toolbox, the mouse cursor changes while the mouse is over the
form. The new cursor looks like a plus sign with a small image of the control’s Toolbox icon next to
it. If you click the form, Visual Studio adds a control at that location with a default size. Instead

of just clicking, you can click and drag to specify the new control’s location and size. After you
place the new control, the mouse returns to a pointer cursor so you can click existing controls to
select them.



38

CHAPTER 3 WINDOWS FORMS DESIGNER

NOTE If you hold down the Control key when you click or drag on the form, the
designer adds the new control to the form and keeps the control’s Toolbox tool
selected so you can add another instance of the control. For example, suppose
you need to create a series of TextBoxes to hold a user’s name, street, city, state,
and ZIP code. Select the TextBox tool in the Toolbox. Then you can quickly use
Ctrl+Click five times to create the TextBoxes. Press the Esc key to stop adding
TextBoxes and then drag them into their correct positions.

SELECTING CONTROLS

When you first create a control, the designer selects it.

The designer indicates that the control is selected by
surrounding it with white boxes. In Figure 3-2, the Button2
control is selected.

To select a control on the designer later, when you haven’t just
added it, simply click it.

You can click and drag to select a group of controls. As you
drag the mouse, the designer displays a rectangle so you can
tell which controls will be selected. When you release the
mouse button, all of the controls that overlap the rectangle at
least partly are selected.

When you select a group of controls, the designer

surrounds most of them with black boxes. It surrounds a
special “master” control with white boxes. In Figure 3-3, four
buttons are selected. Button1 is the “master” control so it is
surrounded by white boxes.

The designer uses the “master” control to adjust the others if
you use the Format menu’s commands. For example, if you
use the Format = Make Same Size => Height command, the
designer gives the “black box” controls the same height as
the “master” control. Similarly the Format > Align = Tops
command moves the “black box” controls so their tops are
aligned with the top of the “master” control.

To change the “master” control, simply click the control that
you want to use as the “master.”

[m] x
m Windowspplication - Form1.whb [Design]*
Farmnlwb [Design]* & X -
agl Form =S

u]

FIGURE 3-2: The designer surrounds a
selected control with white boxes.

[m] x
m WindowsApplication - Forrnlwb [Design]*
Forrnlub [Design]* & X -
o Form1 [=][=]Be

" Butow -

i |

FIGURE 3-3: The selection’s “master”
control is surrounded by white boxes.

After you have selected some controls, you can Shift+Click or Ctrl+Click to add and remove single
controls from the selection. You can Shift+Click-and-drag or Ctrl+Click-and-drag to add and

remove groups of controls from the selection.



Copying Controls | 39

TRICKY CLICKS

Under some circumstances, the designer will not remove its selection even if you
click the form off of the selected controls. To deselect all of the controls, either click
a control that is not selected or press the Esc key.

COPYING CONTROLS

A particularly useful technique for building a series of similar controls is to build one and then use
copy and paste to make others.

For example, to build the name, street, city, state, and ZIP code TextBoxes described in the previous
section, you could start by adding the name TextBox to the form. Next, set all of the properties that
you want the control copies to share. For example, you may want to adjust the TextBox’s width,

set its MaxLength property to 20, and set its Anchor property to Top, Left, Right so it resizes
horizontally when its container resizes. Now select the control on the designer and press Ctrl+C to
copy it. Then press Ctrl+V repeatedly to make copies for the other controls. Drag the controls into
position and you have quickly built all of the controls with their shared properties already set.

CONTAINER CONFUSION

When you paste a copied control, the new control is placed inside whatever con-
tainer is currently selected on the form. This can be confusing if you quickly copy
and paste a container. For example, suppose you want to make three GroupBoxes.
You build one and size it the way you want it. Then you press Ctrl+C, Ctrl+V,
Ctrl+V. The first GroupBox is copied and the first copy is pasted inside the original
GroupBox. Then the second copy is placed inside the first copy. The result is some-
what confusing and you’ll probably need to drag the copies out onto the form before
you can place them where you want.

You can also use copy and paste to copy a group of controls. For example, suppose you want to
make name, street, city, state, and ZIP code TextBoxes but you also want Label controls to the left
of the TextBoxes. First create the name Label and TextBox, set their properties, and position them
so their baselines are lined up and the Label is to the left of the TextBox as desired. Click and drag
to select both controls and then press Ctrl+C to copy them both. Now when you press Ctrl+V,

the designer makes a copy of the Label and the TextBox. The copies have aligned baselines and the
Label is to the left of the TextBox as in the originals. The new controls are even both selected so
you can use the mouse to grab them both and drag them into position.



40 |

CHAPTER 3 WINDOWS FORMS DESIGNER

MOVING AND SIZING CONTROLS

Moving a control in the Windows Forms Designer is easy. Simply click the control and drag it to its
new position.

To move a group of controls, select the controls that you want. Then click one of the controls and
drag to move the whole group.

Note that you can drag controls in and out of container controls such as the FlowLayoutPanel,
GroupBox, and Panel. When you drag a control into a new container, the mouse cursor acquires

a little fuzzy rectangle on the lower right. If you are dragging a control and you see this appear, you
know that dropping the control at the current position will move it into a new container. The new
container indicator appears if you are dragging a control from the form into a container, from

a container onto the form, or from one container to another.

Resizing a control is almost as easy as moving one. Click a control to select it. Then click and drag
one of the white boxes surrounding the control to change its size.

To resize a group of controls, select the group. Then click and drag one of the boxes surrounding
one of the controls. When you drag the mouse, the control beside the box you picked is resized as if
it were the only control selected. The other selected controls resize in the same manner. For example,
if you widen the clicked control by eight pixels, all of the other controls widen by eight pixels, too.

ARRANGING CONTROLS

The Format menu contains several submenus that hold tools that make arranging controls easier.
For example, the Format menu’s Align submenu contains commands that let you align controls ver-
tically and horizontally along their edges or centers.

For a description of this menu’s commands, see the section “Format” in Chapter 2, “Menus,
Toolbars, and Windows.” (Or just experiment with these commands — they aren’t too complicated.)

For more information about how the selection’s “white box master” control determines how other
controls are adjusted, see the section “Selecting Controls” earlier in this chapter.

SETTING PROPERTIES

When you select a control, the Properties window allows you to view and edit the control’s
properties. For most properties, you can simply click the property and type a new value for the
control. Some properties are more complex than others and provide drop-down lists or special
dialog boxes to set the property’s value. Most of the editors provided for setting property values are
fairly self-explanatory, so they are not described in detail here.

NOTE You can press Ctrl+Z and Ctrl+Y to undo and redo changes in the
Windows Form Designer, respectively, so you should feel free to experiment.
You can change property values and add or remove controls and restore the form
if you don’t like the changes.




Setting Properties | 41

In addition to using the Properties window to set a single control’s properties one at a time, you
can quickly set property values for groups of controls in a couple of ways. The following sections
describe some of the most useful of these techniques.

Setting Group Properties

If you select a group of controls, you can sometimes use the Properties window to give all of the
controls the same property value all at once. For example, suppose you select a group of TextBoxes.
Then you can use the Properties window to simultaneously give them the same values for their
Anchor, Text, MultiLine, Font, and other properties.

Sometimes, this even works when you select different kinds of controls at the same time. For
example, if you select some TextBoxes and some Labels, you can set all of the controls’ Text
properties at the same time. You cannot set the TextBoxes’ MultiLine properties, however, because
the Labels do not have a MultiLine property.

BLANKING TEXT

One handy use for this technique is to set the Text property to a blank string for a
group of TextBox controls. Unfortunately, if the selected TextBoxes have different
Text values, the Properties window displays a blank value for the Text property.
If you then try to make the property blank, the Properties window doesn’t think
you’ve changed the value, so it doesn’t blank the controls’ Text properties.

To work around this restriction, first set the Text property to any non-blank value
(“x” will do) to give all of the controls the same value. Then delete the Text value to
blank all of the controls.

Using Smart Tags

Many controls display a smart tag when you select them on

- . o ox
the designer. The smart tag looks like a little box contain- || U et s
ing a right-pointing triangle. When you click the smart tag, .
a small dialog box appears to let you perform common I— = @] ‘
tasks for the control quickly and easily. T PictureBox Tasks
Choose Image...
Figure 3-4 shows a PictureBox with the smart tag tremegyemee! Size Mode: | Hormal ]

expanded. Because the smart tag’s dialog box is visible, the Dock in Parert Container
smart tag indicator shows a left-pointing triangle. If you
click this, the dialog box disappears.

The PictureBox control’s smart tag dialog box lets you
choose an image for the control, set the control’s SizeMode,  FIGURE 3-4: The PictureBox control’s
or dock the control in its container. These actions set the smart tag lets you set common control
control’s Image, SizeMode, and Dock properties. properties.




42 | CHAPTER3 WINDOWS FORMS DESIGNER

Many controls, particularly the more complicated kinds, provide smart tags to let you perform com-
mon actions without using the Properties window.

ADDING CODE TO CONTROLS

After you have added controls to a form and set their properties, the next step is to add code to the
form that responds to control events and that manipulates the controls.

You use the code editor to write code that responds to control events. The code editor is described in
Chapter 5, “Visual Basic Code Editor,” but you can open the code editor from the Windows Forms
Designer.

An event handler is a code routine that catches an event raised by a control and takes some action.
Almost all program action is started from an event handler. Even actions started automatically by a
timer or when a form first appears begin when an event handler catches a timer’s events.

If you double-click a control on the Windows Forms Designer, Visual Studio creates an empty event
handler to handle the control’s default event and it opens the event handler in the code editor. For
example, the following code shows the event handler the IDE built for a Button control named
Buttonl. The default event for a Button is Click, so this code is a Click event handler.

Private Sub Buttonl_Click(sender As Object, e As EventArgs) Handles Buttonl.Click

End Sub

RELAX, DON'T WORRY

Relaxed delegates let you remove the parameters from the event handler’s declara-
tion if you don’t need them. For example, if you use separate event handlers for each
button, you probably don’t need the parameters to figure out what’s happening. If
the user clicks the button named btnExit, the btnExit_Click event handler executes
and the program can exit.

In this case, you can remove the parameters to simplify the code. The following
code shows the simplified btnExit_Click event handler (without any code in it):

Private Sub btnExit_Click() Handles btnExit.Click

End Sub

Another way to build an event handler and open the code editor is to select the control on
the Windows Forms Designer. Then click the Events icon (the lightning bolt) near the top of the
Properties window to make the window show a list of events for the control as shown in



Summary | 43

Figure 3-5. Double-click an event in the window to create an event

Button1 Systern.Windows.Forms Button -

handler for it and to open it in the code editor. o8]

If you select more than one control in the Windows Forms Designer and Wmmnmkk IEA
then double-click an event, Visual Studio makes an event handler that Clientsize Changerd -
catches the event for all of the selected controls. To create the following .

event handler, I selected three Buttons and double-clicked the Click event: E:Z‘;?ﬁ'ﬁ:ﬂ:;:;d
DockChanged
Private Sub Button2_Click(sender As Object, e As EventArgs) g:g;::r

Handles Button3.Click, Button2.Click, Buttonl.Click Dragleave =

Click
End Sub Occurs when the componentis clicked.

FIGURE 3-5: Click the
Events icon to make the
Properties window

The event handler’s name is Button2_Click instead of Button1_Click or display a control’s events.
some other name because Button2 was the “white box master” control for

the selected controls. See the section “Selecting Controls” earlier in this chapter for more
information about a selection’s “master” control.

Note that I added the line continuation in the first line of the preceding
code so it would fit in the book. Visual Studio makes it all one long line.

TOO MANY HANDLERS

If you select a group of controls and then double-click them, Visual Studio makes a
separate event handler for each control. If you want the same event handler to catch
events from all of the controls, click the event handler button on the Properties win-
dow and then double-click the event name there instead.

SUMMARY

The Windows Forms Designer allows you to build forms for use in Windows applications. It
lets you add controls to a form, and resize and move the controls. Together with the Properties
window, it lets you view and modify control properties, and create event handlers to interact
with the controls.

This chapter introduced the Windows Forms Designer and explained how you can take advantage
of its features. Future chapters provide much more of the detail necessary for building forms.
Chapter 7, “Selecting Windows Forms Controls,” and Chapter 8, “Using Windows Forms
Controls,” provide more information about the kinds of controls you can use with the Windows
Forms Designer. Chapter 9, “Windows Forms,” says a lot more about how Windows Forms work
and what you can do with them.



44 | CHAPTER3 WINDOWS FORMS DESIGNER

There are other ways to build applications that have user interfaces that run on the computer,
however. Windows Presentation Foundation (WPF) lets you build applications that have a very
different look and feel. Certain kinds of WPF applications can also run in the Windows 8 Metro
interface, something that Windows Forms applications cannot do.

Chapter 4, “WPF Designer,” describes the designer that you use to build Windows Presentation
Foundation applications. In some ways it is similar to the Windows Forms Designer. For example,
you use the Toolbox to place controls on the form, and you use the Properties window to view and
edit control properties much as you do when using the Windows Forms Designer. In other ways the
two designers are quite different, however, so you’ll need the information in Chapter 4 if you want
to build WPF applications.



WPF Designer

WHAT'’S IN THIS CHAPTER

>  Whatis WPF?
>  Creating and manipulating controls

> Setting control properties

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

INTRODUCING WPF DESIGNER

Windows Forms controls allow you to build powerful desktop applications. WPF (Windows
Presentation Foundation) is a new set of controls that you can also use to build desktop
applications. While WPF and Windows Forms controls provide many similar features, the
WPF controls are more closely tied to high performance graphics libraries so they can provide
many sophisticated graphical features that are missing from Windows Forms controls. For
example, WPF controls can draw themselves at any scale without losing resolution, can
display gradient backgrounds, and can contain other controls in a more flexible and consistent
way than Windows Forms controls can. For a specific example of this last feature, a Windows
Forms Button control can hold only text. A WPF Button control can hold other controls such
as a Grid that contains several Images and TextBlocks to make a much richer experience.

In addition to giving WPF new features, Microsoft is positioning it, or more precisely the Silverlight
subset of WPE, for use in building applications on its future platforms. You can build applications
in Silverlight for the Windows 8 operating system, the Windows Phone operating system, or web
applications. Windows Forms programs still have an important role on desktop systems but
Microsoft seems determined to make WPF and Silverlight be the development tools of the future.
You can still build Windows Forms applications and run them on the Windows 8 desktop, but you
need to use WPF to build programs that can run within the Windows 8 Metro interface.


http://WROX.COM

46 | CHAPTER4 WPF DESIGNER

The WPF (Windows Presentation Foundation) Designer allows you to build WPF windows (including
those used by Metro-style applications) interactively much as the Windows Forms Designer lets you
build Windows Forms. It provides a WYSIWYG (what you see is what you get) surface where you can
add controls to a window. If you select one or more controls on the designer’s surface, the Properties
window displays the objects’ properties and lets you edit many of them.

In addition to the WYSIWYG design surface, the designer provides a XAML (Extensible
Application Markup Language) code editor. Here you can view and edit the XAML code that
defines the user interface. This lets you edit properties and arrange controls in ways that are
impossible using the WYSIWYG designer.

NOTE XAML is pronounced “zammel.”

This chapter provides an introduction to the WPF Designer. It explains how to add controls to a
window, move and size controls, set control properties, and add code to respond to control events.

FOR MORE INFORMATION

Windows Presentation Foundation is quite large and complex, requiring you to
learn about a whole new set of controls, objects, properties, animations, and other
items. It even uses a whole new system for properties and events that isn’t used by
Windows Forms.

The chapters in this book cover WPF in enough detail to get you started and let you
build an effective application, but there’s much more to WPF. For more details, see
my book WPF Programmer’s Reference: Windows Presentation Foundation with
C# 2010 and .NET 4.0 (Stephens, Wrox, 2009). Some of the code examples use C#
but most of the code uses XAML code, which is described by the book, so they’re
applicable to Visual Basic as well. You can learn more and download the book’s
example code in C# and Visual Basic versions on the book’s web page at http: / /www
.vb-helper.com/wpf.htm.

EDITOR WEAKNESSES

Visual Studio’s Windows Forms Designer has been around for a long time, and over the years it has
become extremely powerful. In contrast, the WPF Designer is relatively new and lacks many of the
features included in its more mature cousin.

Although the WPF Designer is a WYSIWYG tool, it has a lot of weak spots. A small sampling of
these weaknesses includes:

> The Properties window does not provide editors for many types of objects, and many of
the editors it does provide are incomplete. For example, the Properties window provides no


http://www.vb-helper.com/wpf.htm
http://www.vb-helper.com/wpf.htm

Recognizing Designer Windows | 47

tools for editing a control’s Clip property, which determines the geometry used to clip the
control’s contents.

> The Properties window provides tooltips describing properties but only when the mouse is
hovering over the property’s name, not while you are editing the property. Some of the tips
are also fairly incomplete, saying things like Integer Canvas.ZIndex.

> The designer surface has no snap-to-grid mode.

>  The XAML code editor’s IntelliSense is incomplete and doesn’t provide help in many places
where it would be useful (although it’s much better than nothing).

The WYSIWYG designer has enough weaknesses that it is often easier to build parts of a user inter-
face by using the XAML code editor. For example, the designer provides no methods for making
resources, styles, and templates, three items that are essential for building a maintainable interface.
Fortunately, these things are not too difficult to build in the XAML code editor.

In all fairness, the WPF Designer has improved greatly since its first version and includes several
enhancements added since the previous version, including better enumerated property support and
primitive brush editors. It also crashes much less often and gets confused about how to draw its
controls much less frequently. Hopefully it will catch up with the Windows Forms Designer someday.

All of these issues aside, the WPF Designer is a powerful tool. It lets you quickly build the basic
structures of a WPF window and layout controls. You may need to rearrange controls somewhat
and build additional elements such as resources and styles in the XAMUL editor, but the WYSIWYG

surface can get you started.

Though the XAML editor also has shortcomings, it does provide the tools you need to fine-tune the
user interface initially built by the designer surface. Together the two pieces of the WPF Designer
give you everything you need to build aesthetically pleasing and compelling WPF user interfaces.

BUILDING WITH BLEND

Microsoft’s Expression Blend product provides some of the features that are missing
from the WPF Designer. For example, it provides better tools for creating styles and
templates, better brush editors, and the ability to record property animations.

It still has its drawbacks (one being the fact that there is no free version) but it com-
plements Visual Studio’s WPF Designer nicely. Learn more about Expression Blend
OrdO“Hﬂoad:1tﬁalCopyathttp://www.microsoft.com/expression/products/

blend_overview.aspx.

RECOGNIZING DESIGNER WINDOWS

Figure 4-1 shows the Visual Studio IDE displaying the WPF Designer. You can rearrange the IDE’s
windows, but normally the Toolbox is on the left and the Properties window is on the right, below


http://www.microsoft.com/expression/products/blend_overview.aspx
http://www.microsoft.com/expression/products/blend_overview.aspx

48 | CHAPTER4 WPF DESIGNER

Solution Explorer. The WPF Designer is shown in the middle with its WYSIWYG design surface on
top and its XAML code editor on the bottom.

ﬂ WpfApplication - Microsoft Yisual Studio Quick Launch (Ctrl +0) A = 0O x
FILE  EDIT  WIEW  PROJECT  BUILD  DEEUG  TEAW SOl DATA  DESIGM  FORMAT  TOOLS  TEST  AMALVZE  WINDOW  HELP
- RS - 92 - P Start - G. & Debug + el =
5 Toolbox = 1 X Maintindow.samlvh > Solution Explarer = v B
2
E Search Toolbox Pl @& o-20a
[ Acommn R Unhite LAl | Search Solution Bxplorer {Ctrie) P -
5 Pointer
£ A | ] [7E] WpfApplication1
" H  Border | J Wl Project
g Q@ sun | g ianris
gﬁ CheckBox = b Iy Applicationsaml
S B comboBox : : & | D MainWindowsaml
@ Datacrid [Aextfiox | L
f# Grid |
B Image B
Label = Solution Explorer . Team Explorer
9 202 € Button p <P P 2
EE  ListBox o [ e ————— 1
RadioButton
S h | @ MName <NoName> [#]| #
1 Fectangle : 5
e utton
StackPanel v XE)
03 TabControl mr‘""g o :T ] "mE Search Properties b
3 Design : = ~
TextBlock R Ve MR S e e b =
TextBox Title="MainWindow" Height="25@" Width="325"> = b Brush ‘;!
|= <6rid> - |
. b Appearance
Al (_:Dntms <Button Content="Button" HorizontalAlignment="Left" Vel | hi ‘,l
k  Pointer <Button Content="Button" HorizontalAlignment="Left" vej®| 4 Common
H  Border <TextBox HorizontalAlignment="Left" Height="23" Texthri | Conied Button
Q) Button </Grids IsCancel =]
B4 Calendar [ enasmsa . -
L e V| 100% =< [ 1 > IsDefault 0 7
Error List Task List  Immediate Window  Output

FIGURE 4-1: The WPF Designer includes a WYSIWYG design surface and a XAML code editor.

You can click the up and down arrow label between the WYSIWYG designer and the XAML editor
to make the two switch panes. This is useful if you make one pane large and the other small. Then

you can quickly switch back and forth, moving the one you want into the bigger pane as you move
from using the WYSIWYG designer to the XAML editor.

If there is an error in the XAML code, the designer may display a message at its top indicating that
errors exist. You can click that label to open the Error list to see the types of errors. You can then fix
them in the XAML editor and refresh the designer.

ADDING CONTROLS

The WPF Designer allows you to add controls to a form in several ways that are similar to those
provided by the Windows Forms Designer. If you are familiar with that topic you might want to
skip this section.

First, if you double-click a control on the Toolbox, Visual Studio places an instance of the control
on the window in a default location and at a default size. You can then use the mouse to move and
resize the control.



Selecting Controls | 49

CONTAINER CONFUSION

When you use this method, the new control is placed inside the currently selected
container on the window. If the currently selected control is a StackPanel, the new
control is placed inside the StackPanel. If the currently selected control is a TextBox
that is inside a Grid, the new control is placed inside the Grid.

Second, if you click a control in the Toolbox, the mouse cursor changes to a crosshair while the
mouse is over the window. If you click the window, Visual Studio adds a control at that location
with a default size. Instead of just clicking, you can click and drag to specify the new control’s
location and size.

If you hold down the Ctrl key when you select a tool from the Toolbox, that tool remains selected
even after you create a control on the window so you can add another instance of the control. For
example, suppose you need to create a series of TextBoxes to hold a user’s name, street, city, state,
and ZIP code. Hold the Ctrl key and click the TextBox tool in the Toolbox. Then you can quickly
click five times to create the TextBoxes. Click another tool or the arrow tool in the Toolbox to stop
adding TextBoxes.

SELECTING CONTROLS

When you first create a control, the designer selects it. The designer indicates that the control
is selected by surrounding it with light gray boxes. In Figure 4-1, the button on the lower right is
selected.

To select a control on the designer later, simply click it. You can also click and drag to select a group
of controls. As you drag the mouse, the designer displays a rectangle so you can tell which controls
will be selected. When you release the mouse button, all of the controls that overlap the rectangle at
least partly are selected.

When you select a group of controls, the designer surrounds them with light gray boxes and a light

blue border.

After you have selected some controls, you can Shift+Click to add new controls to the selection or
Ctrl+Click to toggle a control’s membership in the selection. You can also Shift+Click-and-drag
or Ctrl+Click-and-drag to add or toggle groups of controls from the selection.

NOTE You can quickly deselect all controls by pressing the Esc key.




50 |

CHAPTER 4 WPF DESIGNER

MOVING AND SIZING CONTROLS

Moving controls in the WPF Designer is easy. Simply click and drag the control to its new position.

To move a group of controls, select the controls that you want to move. Then click one of the con-
trols and drag to move the whole group.

Note that you can drag controls in and out of container controls such as the Grid or StackPanel.
When you drag a control over a new container, the designer draws a box around the container and
displays a tooltip that says “Press Alt to place inside container” where container is the name of the
container. If the container doesn’t have a name, the tooltip shows the container’s control type in
braces as in [Grid]. As the tooltip indicates, if you press Alt and then drop the control, it goes

into the new container. If you drop the control without pressing Alt, the control lands above or
below the container.

As you drag a control, the designer displays snap lines to show how the control lines up with other
controls. It displays lines when the control’s edges align with another control’s edges. For some con-
trols, it displays lines when the control’s text baseline aligns with the text baselines of other controls.

Figure 4-2 shows the designer dragging the lower button.
Four red dashed snap lines show that this control’s edges
line up with the left and right edges of the upper button,

the left edge of the Rectangle control at the bottom, . . =
and the upper edge of the Ellipse control to the right.

- ] X
m Wipfapplication? - kain\indowesam (™

Resizing a control is almost as easy as moving one. Click
a control to select it. Then click and drag one of the light
gray boxes surrounding the control to change its size.

If you hover the mouse near but not over a gray box at one
of the control’s corners, the cursor changes to a curved
arrow. You can then click and drag to rotate the control.

If you hover the mouse near but not over a gray box on
one of the control’s edges, the cursor changes to two arrow wo% - [ w3 @ [« i HE
heads separated by a slash. Then you can click and drag R BT 25
to skew the control. For example, if you drag the top of a FIGURE 4-2: Snap lines show how moving
TextBlock to the right, the result looks italicized. controls align with other controls.

v

WPF controls provide a fairly complex set of properties to
determine how they are anchored to their containers. Fortunately, the WPF Designer provides aids
to make understanding control anchoring easier.

When you select a control, the designer displays symbols next to the container’s edges showing
how the control is anchored. A thin solid line ending in two closed chain links on the container’s
edge means the control’s edge remains the same distance from the container’s edge even when the
container resizes. In Figure 4-2, the selected button’s bottom and right edges are connected to its
container’s bottom and right edges. When the window resizes, the button moves to stay the same
distance from those edges.



Setting Group Properties | 51

If you look closely at Figure 4-2, you can also see small numbers on the lines connecting the
button’s bottom and right edges to those of its container. In this example the numbers indicate that
the button will remain 164 pixels from the container’s right edge and 109 pixels from the container’s
bottom edge.

Broken chain links near the container’s edge mean that edge is free to float if the container resizes.
In Figure 4-2, the button’s left and top edges are not anchored to the container’s edges so the button
will move and keep its original size if the container resizes.

If a control’s opposite sides are both attached to the container, the control will grow and shrink as
the container resizes so it can keep both edges the same distance from those of the container.

ATTACHMENT ANXIETY

The designer will not allow you to remove the attachment from all of a control’s
edges (so they all display broken chain links). If you remove one anchor, the
designer changes the opposite side’s anchor symbol to joined links if it isn’t that
way already.

You can easily change a control’s edge anchors by simply clicking the symbol. If you click joined
links, the designer breaks the links and vice versa.

SETTING PROPERTIES

When you select a control, the Properties window allows you to view and edit the control’s proper-
ties. For Boolean properties, the Properties window displays a box that you can check or uncheck to
indicate whether the property’s value should be True or False.

For many other properties, you can simply click the property and type a new value for the control in
a text box.

Still other properties provide custom editors to make it easier to set their values. For example, the
Fill property is a brush that determines how the background of a control is filled. The Properties
window provides a brush editor that lets you define the brush fairly easily.

SETTING GROUP PROPERTIES

If you select a group of controls, you can sometimes use the Properties window to give all of the
controls the same property value all at once. For example, suppose you select a group of TextBoxes.
Then you can use the Properties window to give them the same values for their Width, Height,
Margin, MaxLength, and many other properties.

Sometimes, this even works if you select different kinds of controls at the same time. For example,
if you select some TextBoxes and some Labels, you can set all of the controls’ Width, Height, and



52 | CHAPTER4 WPF DESIGNER

Margin properties at the same time. You cannot set the controls’ MaxLength properties because the
Labels do not have a MaxLength property.

ADDING CODE TO CONTROLS

After you have added the appropriate controls to a form and set their properties, the next step is to
add code to the form that responds to control events and manipulates the controls.

You can add some kinds of code declaratively in the XAML editor. For example, you can make a
trigger respond to a change in a control’s property or to a control’s event.

You can also write Visual Basic source code to respond to control events just as you would in a Windows
Forms application. If you double-click a control on the WPF Designer, Visual Studio creates an empty
event handler to catch the control’s default event, and it opens the event handler in the code editor.

For example, the following code shows the event handler the IDE built for a Button control. The
default event for a Button is Click, so this code is a Click event handler.

Private Sub Button_Click(sender As Object, e As RoutedEventArgs)

End Sub

SIT BACK AND RELAX

As is the case with Windows Forms, you can use relaxed delegates to remove
unneeded parameters from event handlers. For example, the following code shows
the previous event handler with the unnecessary parameters removed:

Private Sub Button_Click()

End Sub

Another way to build an event handler and open the code editor is to select the control on the WPF
Designer. Then click the Events icon (the lightning bolt) near the top of the Properties window to
make the window show a list of events for the control. Double-click an event in the window to open
a new event handler for it in the code editor.

ATTACHMENT VARIATIONS

How the event is attached to the control depends on whether the control has a
name. If the control’s Name property is set to some value, Visual Studio uses

a Handles clause in the Visual Basic code to indicate the control that uses the event.
If the control does not have a name, Visual Studio defines the connection between
the control and the event handler in the XAML code.



Summary | 53

You can also create a new event handler for named controls within the code editor. The upper-left
part of the code editor displays a drop-down listing the window’s controls. If you select a control
from the list, you can then pick an event for that control from a second drop-down in the code
editor’s upper right. If you select an event, the code editor makes a corresponding empty event

handler.

SUMMARY

The WPF Designer allows you to build windows for use in WPF applications. It lets you add
controls to the window, and to resize, move, and align the controls. Together with the Properties
window, it lets you view and modify control properties, and create event handlers to interact with
the controls.

This chapter introduced the WPF Designer and explained how you can take advantage of its
features. Other chapters provide much more of the detail that is necessary for building windows.
Chapter 10, “Selecting WPF Controls,” and Chapter 11, “Using WPF Controls,” provide more
information about the kinds of controls you can use with the WPF Designer. Chapter 12, “WPF
Windows,” says more about WPF windows and pages.

The Windows Forms Designer and the WPF Designer let you add controls to forms and windows,
respectively, but almost no program consists solely of controls. Most programs also include code
behind the scenes to take action when different events occur, such as the user pressing a button.
Chapter 5, “Visual Basic Code Editor,” describes the code editor that you can use to edit the code
that sits behind Windows Forms and WPF control events. Later chapters explain the Visual Basic
language that you use within the code editor.






Visual Basic Code Editor

WHAT'’S IN THIS CHAPTER

Understanding margin icons
Understanding IntelliSense

Using code snippets

Yy Y VY Y

Generating types from usage

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

> Fibonacci

> FillArray

EDITING CODE

The Visual Studio IDE includes editors for many different kinds of documents, including
several different kinds of code. For example, it has HyperText Markup Language (HTML),
eXtensible Markup Language (XML), eXtensible Application Markup Language (XAML),
and Visual Basic editors. These editors share some common features, such as displaying
comments and keywords in different colors.

As a Visual Basic developer, you will use the Visual Basic code editor frequently, so you should
spend a few minutes learning about its specialized features. The most obvious feature of the code
editor is that it lets you type code into a module, but the code editor is far more than a simple text
editor such as Notepad. It provides many features to make writing correct Visual Basic code easier.

This chapter describes some of the most important of these features. Many of these tools are
invaluable for understanding and navigating through the code so, even if you have worked


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

56 | CHAPTERS5 VISUAL BASIC CODE EDITOR

with Visual Studio before, you should take some time to read through this chapter and experiment
with the tools it describes.

FANTASTIC FEATURES

The Visual Basic code editor provides many features that are not provided by other
Visual Studio editors. For example, the HTML, XML, and XAML editors do not
provide breakpoints or features that let you step through executing code.

Figure 5-1 shows the code editor displaying some Visual Basic code at run time. To make referring to
the code lines easier, this figure displays line numbers. To display line numbers, invoke the Tools menu’s
Options command, navigate to the Text Editor &> Basic > General page, and check the Line Numbers box.

- B o
w Fibonacci - Form.wb®
Formlwb* & X -
@, btnCalculats - % Click -
1 EPublic Class Forml —
2 ' Calculate and display the Fibonacci number. ~
3 B Private Sub btnCalculate Click() Handles btnCalculate.Click |-
[+ 4 Dim n As Long = Long.Parse(txthumber.Text)
[ ] 5
@] 6
(-] 7
a8
9 ' Calculate the nth Fibonacci number recursively.
1e [ Private Function Fibonacci{ByVsl n As Long) As Long
& If (n <= 2) Then Return n
Dim result As Long = Fibonacci(n - 1) + Fibonacci(n - 2)
& Return result
End Function
' Randomize the array.
17 B Private Sub RandomizeArray(Of T)(ByVal values() As T) 7
o - <[ m [ >

FIGURE 5-1: The Visual Basic code editor provides many
features, including line numbers and icons that indicate break-
points and bookmarks.

MARGIN ICONS

The gray margin to the left of the line numbers contains icons giving information about the
corresponding lines of code. The following table describes the icons on lines 4 through 13.

LINE ICON INDICATES
4 Arrow Execution is paused at this line
5 Red circle A breakpoint

6 Hollow red circle A disabled breakpoint



Marginlcons | 57

LINE

il

12

13

ICON INDICATES

Red circle with plus sign A breakpoint with a condition or hit count test

Red diamond A breakpoint that executes an action when reached
Gray ribbon A bookmark

Hollow diamond and plus sign A disabled breakpoint with a hit test or condition

that performs an action

BREAK TIME

A breakpoint is a line of code that you have flagged to stop execution so you can
test and debug the program. When you run the program in the IDE, the program
stops at the breakpoint and lets you see what routines called what other routines,
examine variable values, change variables, and so forth to figure out what’s
happening. For more information on breakpoints and debugging, see Chapter 6,
“Debugging.”

These icons can combine to indicate more than one condition. For example, line 13 shows a blue and
white rectangle to indicate a bookmark, a hollow red diamond to indicate a disabled breakpoint that
performs an action, and a plus sign to indicate that the breakpoint has a condition or hit count test.

Note that the editor marks some of these lines in other ways than just an icon. It highlights the
currently executing line with a yellow background. It marks lines that hold enabled breakpoints with
white text on a red background. It surrounds lines with disabled breakpoints with red boxes.

To add or remove a simple breakpoint, click in the gray margin.

To make a more complex breakpoint, click in the margin to create a simple breakpoint. Then
right-click the breakpoint icon and select one of the context menu’s commands. The following list
describes these commands:

>

>

Delete Breakpoint — Removes the breakpoint.

Disable Breakpoint — Disables the breakpoint. When the breakpoint is disabled, this
command changes to Enable Breakpoint.

Location — Lets you change the breakpoint’s line number. Usually it is easier to click in the
margin to remove the old breakpoint and then create a new one.

Condition — Lets you place a condition on the breakpoint. For example, you can make
the breakpoint stop execution only when the variable num_employees has a value
greater than 100.

Hit Count — Lets you set a hit count condition on the breakpoint. For example, you can
make the breakpoint stop execution when it has been reached a certain number of times.



58 | CHAPTERS5 VISUAL BASIC CODE EDITOR

> Filter — Lets you restrict the breakpoint so it is set only in certain processes or threads.

When Hit — Lets you specify the action that the breakpoint performs when it triggers. For
example, it might display a message in the Output window.

> Edit Labels — Lets you add labels to a breakpoint. Later you can select this option to view,
change, or remove the breakpoint’s labels.

> Export — Lets you export information about the breakpoint into an XML file.

To add or remove a bookmark, place the cursor on a line and then click the Toggle Bookmark
tool. You can find this tool, which looks like the blue and white bookmark icon, in the Text
Editor toolbar, at the top of the Bookmarks window (View &> Other Windows = Bookmark &
Window), and in the Edit menu’s Bookmarks submenu. Other bookmark tools let you move to the
next or previous bookmark, the next or previous bookmark in the current folder, or the next or
previous bookmark in the current document. Still others let you disable all bookmarks and

delete a bookmark.

OUTLINING

By default, the code editor displays an outline view of code. If you look at the first line in

Figure 5-1, you’ll see a box with a minus sign in it just to the right of the line number. That box
represents the outlining for the Form1 class. If you click this box, the editor collapses the class’s
definition and displays it as a box containing a plus sign. If you then click the new box, the editor

expands the class’s definition again.

Near the bottom of Figure 5-1, you can see that the RandomizeArray subroutine has been collapsed.
The ellipsis and rectangle around the routine name provide an extra indication that this code is

hidden.

The editor automatically creates outlining
entries for namespaces, classes and their
methods, and modules and their methods.
You can also use the Region statement to
group a section of code for outlining. For
example, you can place several related
subroutines in a region so you can collapse
and expand the routines as a group.

Figure 5-2 shows more examples of
outlining. Line 33 begins a region named
Randomization Methods that contains
two collapsed subroutines. Notice that

the corresponding End Region statement
includes a comment that I added giving the
region’s name. This is not required but it
makes the code easier to understand when
you are looking at the end of a region.

= a p.s
D Fibonacei - Formib
Formlwb* & X -
@, bnCalculate - 5 Click -
32 +
33 [C#Region "Randomization Methods™ ~
34
35, ' Randomize a 2-dimensional array.
36 M \P'i‘.-a:e Sub Randomize2DArray(0f T)(ByVal values(,) As T) ...

44 ' Make an array of random strings.

e Function MakeRandomstrings(ByVal num strings As Intege—

125 |4#End Region ' Randomization Methods
End Class
129 EModule HelperRoutines

' Log an error message.
] [Public Sub LogError(ByVal message As String)

End Module

144 +'|Law'e;pa:e ImageResources ‘

v
wow - < m >

FIGURE 5-2: The code editor outlines namespaces, classes
and their methods, modules and their methods, and regions.




Tooltips | 59

Line 57 contains a collapsed region named Utility Functions. Notice that this region is nested inside
the Randomization Methods region.

Line 129 starts a module named HelperRoutines that contains one collapsed subroutine.
Finally, line 144 holds the collapsed ImageResources namespace.

Notice that the line numbers skip values for any collapsed lines. For example, the
Randomize2DArray subroutine is collapsed on line 36. This subroutine contains 7 lines (including
the Sub statement), so the next visible line is labeled 43.

COLLAPSED CODE COMMENTS

Notice that comments before a subroutine are not collapsed with the subroutine.
You can make reading collapsed code easier by placing a short descriptive comment
before each routine.

TOOLTIPS

If you hover the mouse over a variable at design time, the editor displays a tooltip describing the
variable. For example, if you hover over an integer variable named num_actions, the tooltip displays
“Dim num_actions As Integer.”

If you hover over a subroutine or function call 0 Filanay - Formive =B &
(not the routine’s definition, but a call to it), -
the tooltip displays information about that % (Form1 Events) - % Load =
routine. For example, if you hover over a call to e HEEST. *
the Fibonacci function, the tooltip reads, “Private e e e e
Function Fibonacci (n As Long) as Long.” 5 For i As Integer = @ To values.length -
6 values(i) = i = 4

At run time, if you hover over a variable, p e
the tooltip displays the variable’s value. & g ot tiritetine(values-Lengthll
If the variable is complex (such as an array or L> .fnd Class el Glo =
structure), the tooltip displays the variable’s 7 3 gg 1
name and a plus sign. If you click or hover over e 9
the plus sign, the tooltip expands to show the 5 E:; -
variable’s members. < E% e

] 64
In Figure 5-3, the mouse hovered over variable s (% e
values. The editor displayed a plus sign and e ) 121
the text “values {Length=100}.” When the 2 Sii %
mouse hovered over the plus sign, the editor = e
displayed the values shown in the figure. =
Moving the mouse over the up and down waw - < [ :
arrows at the top and bottom of the list makes FIGURE 5-3: You can hover the mouse over a

the values scroll. variable at run time to see its value.



60 | CHAPTERS5 VISUAL BASIC CODE EDITOR

If a variable has properties that are references to other objects, you can hover over their plus signs
to expand those objects. You can continue following the plus signs to drill into the variable’s object
hierarchy as deeply as you like.

INTELLISENSE

If you start typing a line of code, the editor tries to anticipate what you will type. For example, if
you type “Me.” the editor knows that you are about to use one of the current object’s properties or
methods.

IntelliSense displays a list of the properties and methods that you might be trying to select. As you
type more of the property or method name, IntelliSense scrolls to show the choices that match what
you have typed so far.

In Figure 5-4, the code includes the text “Me.set,” so IntelliSense is displaying the current object’s
methods that begin with the string “set.”

n Windows&pplication1 - Form1.wb*

Twb* B X =
% (Form1 Events) - # Load
=Public Class Forml

] Private Sub Forml_Load(sender As Object, e As EventArgs) Handles|
Me.set]

QMR WN R

End E;d 2ub ol SetAutoScrollMargin Public Sub SetAutoScrollMargin(x As Integer, y As Integer)
85 @, SetAutoSizeMode Sets the size of the auto-scroll margins.
=

@ SetBounds .
@ SetDesktopBounds

@ SetDesktoplocation

@, SetDisplayRectLocation

@, SetScrollState

@, SetToplevel

Common | All

™

100%  ~[<] m 3

FIGURE 5-4: IntelliSense displays a list of properties and methods that you
might be trying to type.

While the IntelliSense window is visible, you can use the up and down arrows to scroll through
the list. While IntelliSense is displaying the item that you want to use, you can press the Tab key to
accept that item and make IntelliSense type it for you. Press the Escape key to close the IntelliSense
window and type the rest manually.

After you finish typing a method and its opening parenthesis, IntelliSense displays information
about the method’s parameters. Figure 5-5 shows parameter information for a form object’s
SetBounds method. This method takes four parameters: x, y, width, and height.



Code Coloring and Highlighting | 61

m Windowsapplication - Form1.vb*

:

# (Form1 EBwvents) - # Load -
EPublic Class Forml Lo

~
= Private Sub Forml_Load(sender As Object, e As EventArgs) Handles| |
4 Me . SetBounds (|

End

e e S 4 1of 2 ¥ SetBounds(x As Integer, y As Integer, width As Integer, height As Integer)
2 Sets the bounds of the control to the specified location and size.
x: The new System Windows.Forms. Control Left property value of the control
F 3 |Accepr.Buftcn I |
3 A;:cgsswi:}iifybinject 3 B
J AccessibleDescription
%2 AccessibleObject
#3 AccessViolationException
#3 ActivationContext
= AddressOf
100% | <[ ' = Aggregate
#3 AggregateException v

[N

Commen | All

FIGURE 5-5: IntelliSense displays information about a method’s parameters.

IntelliSense shows a brief description of the current parameter x. As you enter parameter
values, IntelliSense moves on to describe the other parameters.

IntelliSense also indicates whether overloaded versions of the method exist. In Figure 5-5,
the IntelliSense tooltip starts with “1 of 2” to indicate that it is describing the first of two available
versions. You can use the up and down arrows to move through the list of overloaded versions.

CODE COLORING AND HIGHLIGHTING

The code editor displays different types of code items in different colors (although they all appear
black or gray in this book). You can change the colors used for different items by selecting the Tools
menu’s Options command and opening the Environment &> Fonts and Colors option page.

COLOR CONFUSION

To avoid confusion, you should probably leave the editor’s colors alone unless you
have a good reason to change them.

The following table describes some of the default colors that the code editor uses to highlight
different code elements.



62 | CHAPTERS5 VISUAL BASIC CODE EDITOR

ITEM HIGHLIGHTING

Comment Green text

Compiler error Underlined with a wavy blue underline
Keyword Blue text

Other error Underlined with a wavy purple underline
Preprocessor keyword Blue text

Read-only region Light gray background

User-defined types Navy text

Warning Underlined with a wavy green underline

A few other items that may sometimes be worth changing have white backgrounds and black text by
default. These include identifiers (variable names, types, object properties and methods, namespace
names, and so forth), and numbers.

When the code editor finds an error in your code, it highlights the error with a wavy underline. If
you hover over the underline, the editor displays a tooltip describing the error. If Visual Studio can
guess what you are trying to do, it adds a small flat rectangle to the end of the wavy error line to
indicate that it may have useful suggestions.

The assignment statement i = "12" shown
in Figure 5-6 has an error because it tried to
. . . . Harios ki .. Quick Launch (Ctrl +Q) ] = L
assign a string value to an integer variable [ e o oo RIS
. . - FILE EDIT WEW PROECT BUILD DEBUG TEAM S5QL DATA TOOLS TEST
and that violates the Option Strict On ANALYZE WANDOW  HELe

setting. The editor displays the wavy error Sio @ [k St LS
underline and a suggestion indicator because Formiab? X Fomilab [Designl
88 % (Formi Events) -[# Load

>k |4

samuadasg smioidxg wes)  ass0|dsg uonnjog

1 Option Strict On

2

3 EPublic Class Forml J
4 H Private Sub Forml_Load(sender As Object, e As Eventirgs) Hi

it thinks it knows a way to fix this error. The
Error List window at the bottom also shows

%0190 $3n0S KIRQ

a description of the error. s Din 1 4 Tntager |
. o 7 | Endsub

If you hover over the suggestion indicator, = | [Eadictacs =
the editor displays an error correction icon. 100t i<l 4 :
If you click the icon, Visual Studio displays Y- [ 16| ST ErY—™ e
a dialog box describing the error and listing Deseription Fie Line  Column  Project

. 1 Option Strict On disallows implicit Formlab 6 Window 1
some actions that you may want to take. Sl e ool

Figure 5-7 shows the suggestion dialog box

Error List Task List Immediate Window  Output

for the error in Figure 5-6. If you click the

text over the revised sample code, or if you
double-click the sample code, the editor
makes the change.

FIGURE 5-6: If the code editor thinks it can figure out
what’s wrong, it displays a suggestion indicator.



Code Snippets | 63

CODE SNIPPETS Dq WindowsApplication - Microsoft.., Quick Launch (Ctrl+0) P = 0O X ‘

FILE  EDIT  VEW PROJECT BULD DEBUG TEAM SOL  DATA TOOLS  TEST
. . . ANABLYZE  WINDOW — HELP
A code snippet is a piece of code that you -5 B-EMd M .6

might find useful in many applications. It is | § Fontib® = | Formtub [Desgn - £
stored in a snippet library so that you can ‘ ¢ BT —— < # Loaa B
. . L. . . Ie 5 N E
quickly insert it into a new application. g e o [ 3
‘ % 4 [ Private Sub Forml_Load(sender As Object, e As EventArgs) Hig|
: : : 5 Dim i As Integer =
Visual Studio comes with hundreds of 7 2 o g
snippets for performing standard tasks. T by A . . 3
. R : Option Strict On disallows implicit conversions from i
Before you start working on a complicated TR ‘String to ' Integer" ol
piece of code, you should glance at the ol | H |
. . Y - [@1Enor Private Sub Forml_Load(sender As Object, e | =
snippets that are already available to you. ey N8 Lde It
In fact, it would be worth your time to /1 Option SuictOn disslows ¢g Crags o
. . conversions from "String't | o >
use the Code Snippet Manager available = '
W] Expand All Previews
from the Tools menu to take a good look at Errar List | Task List | Immedite ramwns o
the available snippets right now before you
start a new project. There’s little point in FIGURE 5-7: The error suggestion dialog box proposes

reinventing methods for calculating statistical ~likely solutions to an error.
values if someone has already done it and
given you the code.

To insert a snippet, right-click where you
want to insert the code and select Insert —
Snippet to make the editor display a list of “3 Form1 ~ B Declerations

snippet categories. Double-click a category il ey =
to find the kinds of snippets that you want. (e e

If you select a snippet, a tooltip pops up T e | B
to describe it. Figure 5-8 shows the editor L
preparing to insert the snippet named “Inserts 5
a test method” from the Test snippet category. — '@* " :

O Windowstpplicationt - Form b+

Bowom e

sk Inserts 3 test class.

FIGURE 5-8: When you select a code snippet, a pop-up

Double-click the snippet to insert it into your  4ocribes it.

code.

The snippet may include values that you should replace in your code. These replacement values are
highlighted with a light green background, and the first value is initially selected. If you hover the
mouse over one of these values, a tooltip appears

to describe the value. You can use the Tab key to R — s o

. indowsfpplication] - Form1.vb*

jump between replacement values. o—— i
. . “3Form1 ~ EM (Declarations) -

Figure 5-9 shows the code inserted by a 1 SPublic Class Fornl ) =

2 Private newPropertyValue As String A
snippet that creates a new property. The 33 PP ™ Replace ti with the private varible name,
text newPropertyValue is highlighted and o e i
. . 7.8 Set(ByVal value As String)

selected. Other selected text includes String : ., Teseropertyvatie = vle

and NewProperty. The mouse is hovering over o

newPropertyValue, so the tooltip explains that i [ u :

value’s purpose. FIGURE 5-9: Values that you should replace in a

snippet are highlighted.



64 | CHAPTERS5 VISUAL BASIC CODE EDITOR

ARCHITECTURAL TOOLS

The code editor provides several powerful tools that can help you understand the structure of your
code and how to navigate through its pieces. They can give you a better understanding of how the
pieces of the program fit together, and they can help you track down important code snippets, such
as where a variable or type is defined and where one piece of code is called by others.

The following sections describe the most useful of these kinds of architectural tools and explain
how to invoke them.

Rename

If you right-click the definition or occurrence of a symbol, such as a variable, subroutine, function,
or class, and select Rename, Visual Studio displays a dialog box where you can enter a new name
for the item. If you enter a name and click OK, Visual Studio updates all references to that symbol.
If the symbol is a variable, it changes all references to the variable so they use the new name.

This is much safer than using a simple textual find-and-replace, which can wreak havoc with strings
that contain your target string. For example, if you textually replace the variable name factor

with issue, your Factorial function becomes Issueial. In contrast, if you right-click the

factor variable, select Rename, and set the new name to issue, Visual Studio only updates
references to the variable.

CORRUPTED COMMENTS

Unfortunately, Rename still leaves any comments that discuss the factor variable
unchanged. You’ll have to search the comments to fix them.

Go To Definition

If you right-click a symbol or type, such as a variable, function, or class, and select Go To
Definition, the code editor jumps to the location where the symbol is defined. For example, it would
jump to a variable’s declaration or a function’s definition.

If the symbol you clicked is defined by Visual Basic or a library rather than your code, Visual Studio
opens the Object Browser and displays the symbol’s definition there.

Go To Type Definition

If you right-click a variable and click Go To Type Definition, the code editor jumps to the location
where the symbol’s data type is defined. For example, if you right-click a variable of type Employee,
the editor would jump to the definition of the Employee class.



Architectural Tools | 65

If you click a variable that has one of the predefined data types such as Integer, Double, or String,
the editor displays the Object Browser entry for that type.

Highlight References

Whenever the cursor sits on a symbol, the code editor highlights all references to that symbol by
giving them a light gray background. It’s a subtle effect, so you may not even notice it unless you’re
looking for it.

Reference highlighting makes it easier to see where a symbol such as a variable or subroutine is used,
although it only really works locally. If a subroutine is called from many pieces of code that are far
apart, you’ll see only the ones that are currently visible in the code editor’s window.

When you have a reference highlighted, you can use Ctrl+Shift+Up Arrow and Ctrl+Shift+Down
Arrow to move to the next or previous reference.

To learn more about references to a symbol that are farther away, use the Find All References
command described next.

Find All References

If you right-click a symbol such as a subroutine or variable and select Find All References, Visual
Studio displays a list of everywhere in the program that uses that symbol.

For example, if you right-click a call to a function named Fibonacci, the list includes all calls to that
function plus the function’s definition.

You can double-click any of the listed references to make the code editor quickly jump to that
reference.

Generate From Usage

The code editor can provide methods for automatically generating pieces of code in the form of
suggested error corrections. For example, suppose you have not defined a Person class but you type
the following code:

Dim new_student As New Person()

The code editor correctly flags this as an error because the Person class doesn’t exist. It underlines
the word Person with a blue squiggly line and displays a short red rectangle near it. If you hover
over the rectangle, you’ll see an error icon. If you then click the icon, Visual Studio displays a list of
suggested corrections that include:

> Change Person to Version
> Generate ‘Class Person’
> Generate New Type

The first choice assumes you have made a simple spelling error.



66 | CHAPTERS5 VISUAL BASIC CODE EDITOR

The second choice creates a new empty class named Person. Generate NewType |2 [IGH|
You can fill in its properties and methods later. ,
Type Details:
The third choice displays the dialog box shown in Figure Access: Kinc: Name;
5-10 so you can make Person another data type that might Defoult_[~] [Class  [x] Person
. Cl
make sense such as an Enum or Structure. The dialog box -
lets you set the type’s access to Default, Friend, or Public, Location: Srucure ¥
and specify the file where Visual Studio should create the Project;
new type |WmdnwsAppl\cat|nn1 |'|
File Marre:
Now suppose you create an empty Person class and then @® Create new file
type the following code: [Personssh [-]
() Add ta existing file
Ci it Fil -
new_student.FirstName = "Zaphod" R

The code editor also flags this statement as an error. If you

click the error icon this time, the suggested solution says: FIGURE 5-10: The Generate New Type

dialog box lets you create a new Class,
Generate property stub for ‘FirstName’ in Enum, or Structure.
‘WindowsApplicationl.Person’

If you click this text, Visual Studio adds the following simple property to the Person class:
Property FirstName As String

The code editor can also generate a constructor for the class if you enter the following code:
Dim another_person As New Person("Trillian")

This code is flagged as an error because no constructor is defined that takes a parameter. The error
suggestions can make a constructor for you, although you’ll need to edit it to give it code that
handles the parameter.

This also causes a new error because the class now has a constructor that takes a single parameter,
but not one that takes no parameters, so the earlier statement Dim new_student As New Person /()
is flagged as an error.

By now you can probably guess what’s coming: If you click the error icon, the suggestions can make
a constructor for this case, too.

Similarly, you can use the error suggestions to generate stubs for subroutines and functions. Simply
use the new items as if they already exist, use the error suggestions to build stubs, and then fill in the
appropriate code.

THE CODE EDITOR AT RUN TIME

The code editor behaves slightly differently at run time and design time. Many of its design-time
features still work. Breakpoints, bookmarks, IntelliSense, and snippets still work.



The Code Editor at Run Time | 67

At run time, the editor adds new tools for controlling the program’s execution. Right-click a value
and select Add Watch or QuickWatch to examine and monitor the value. Use the Step Into, Step
Over, and Step Out commands on the Debug menu or toolbar to make the program walk through
the code. Hover the mouse over a variable to see a tooltip giving the variable’s value (see the section
“Tooltips” earlier in this chapter for more information).

ESSENTIAL SHORTCUTS

Some very handy runtime shortcuts are ES (Start Debugging), F8 (Step Into),
Shift+F8 (Step Over), and Ctrl+F9 (Set Next Statement). Some particularly
handy code editing shortcuts are F9 (Toggle Breakpoint) and Shift+Space

(Open IntelliSense). You might want to write down these and any others that you
use frequently.

(Note that some shortcuts are different if you don’t have Visual Studio set up for
Visual Basic development. If the IDE is customized for C# or general development,
Step Over is F10 and Step Into is F11.)

Right-click and select Show Next Statement to move the cursor to the next statement that the
program will execute. Select Run To Cursor to make the program continue running until it reaches
the cursor’s current line.

Right-click and select Set Next Statement to make the program skip to a new location. You can also
drag the yellow arrow indicating the next statement to a new location in the left margin.

REPOSITION RESTRICTIONS

There are some restrictions on where you can move the execution position.
For example, you cannot jump out of one routine and into another.

By using all of these runtime features, you can walk through the code while it executes and learn
exactly what it is doing at each step. You can see the values of variables, follow paths of execution
through If-Then statements, step in and out of routines, and run until particular conditions are met.

For more information on the Debug menu and its submenus, see the section “Debug” in Chapter 2,
“Menus, Toolbars, and Windows.” For more information on debugging techniques, see Chapter 6,
“Debugging.”

You can discover other runtime features by exploring the editor at run time. Right-click different
parts of the editor to see which commands are available in that mode.



68 | CHAPTERS5 VISUAL BASIC CODE EDITOR

SUMMARY

The Visual Basic code editor is one of the most important IDE windows for Visual Basic developers.
You can use the Windows Forms Designer alone to place controls on a form but the form can’t do
much without code behind those controls.

The Visual Basic code editor lets you type code into a module, but it also does much more. It
provides tooltips that let you view variable values; outlining that lets you expand and collapse
code, so you can focus on your current task; IntelliSense that helps you remember what methods
are available and what their parameters are; code coloring and highlighting that immediately

flags errors; and code snippets that let you reuse complex pieces of code that perform useful tasks.
Architectural tools let you quickly find symbol and type definitions, jump to specific pieces of
code, and easily see where a symbol is being used in the currently visible code. The code editor can
even automatically generate stubs for classes, constructors, properties, and methods.

Many of these tools help you understand how the code works as you write it. Chapter 6,
“Debugging,” explains IDE tools that help you understand the code when it runs. Those tools let
you walk through the code as it executes to see exactly what it is doing and what it is doing wrong.



Debugging

WHAT'’S IN THIS CHAPTER

»  The Debug menu
> Breakpoints

»  The Command and Immediate windows

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

DEBUGGING AND TESTING

The Visual Basic code editor described in Chapter 5, “Visual Basic Code Editor,” provides
tools that make writing Visual Basic applications relatively easy. Features such as error
indicators, tooltips, and IntelliSense help you write code that obeys the rules of Visual Basic
syntax.

No code editor or any other tool can guarantee that the code you write actually does what
you want it to do. Debugging is the process of modifying the code to make it run and produce
correct results.

NOTE Testing tools such as those included in some versions of Visual Studio and
third-party tools such as NUnit (http: //www.nunit.org) can do a lot to ensure
that your code runs correctly, but they work only if the code you write does the
right things. If you need a billing system but write an inventory application, no
tool will save you.



http://www.nunit.org
http://WROX.COM

70 | CHAPTER6 DEBUGGING

Depending on the application’s complexity, debugging can be extremely difficult. Although Visual
Studio cannot do your debugging for you, it does include features that make debugging easier.

It allows you to stop execution while the program is running so you can examine and modify
variables, explore data structures, and step through the code to follow its execution path.

This chapter explains Visual Basic’s most important debugging tools. It describes the tools available
in the Debug menu and the other IDE windows that are most useful for debugging.

THE DEBUG MENU

The Debug menu contains commands that help you debug a program. These commands help you
run the program in the debugger, move through the code, set and clear breakpoints, and generally
follow the code’s execution to see what it’s doing and hopefully what it’s doing wrong.

GIVE ME A BREAK

A breakpoint is a line of code that is marked to temporarily stop execution so you
can test the code and figure out what’s happening. The section “The Breakpoints
Window” later in this chapter says a lot more about how to use breakpoints, but
breakpoints are mentioned a lot between now and then so it’s useful to have some
idea of what they are now.

Effectively using these debugging tools can make finding problems in the code much easier, so you
should spend some time learning how to use them. They can mean the difference between finding a
tricky error in minutes, hours, or days.

The commands visible in the Debug window change depending on several conditions, such

as the type of file you have open, whether the program is running, the line of code that contains
the cursor, and whether that line contains a breakpoint. The following list briefly describes the
most important menu items available while execution is stopped at a line of code that contains
a breakpoint:

>  Windows — This submenu’s commands display other debugging-related windows. This
submenu is described in more detail in the following section, “The Debug &> Windows
Submenu.”

> Continue — This command resumes program execution. The program runs until it finishes,
it reaches another breakpoint, it encounters an error, or you stop it.

> Break All — This command stops execution of all programs running within the debugger.
This may include more than one program if you are debugging more than one application
at the same time. This can be useful, for example, if two programs work closely together.



The Debug Menu | 71

Stop Debugging — This command halts the program’s execution and ends its debugging
session. The program stops immediately, so it does not get a chance to execute any cleanup
code that it may contain.

Step Into — This command makes the debugger execute the current line of code. If that
code invokes a function, subroutine, or some other procedure, the point of execution moves
into that procedure. It is not always obvious whether a line of code invokes a procedure. For
example, a line of code that sets an object’s property may be simply setting a value or it may
be invoking a property procedure.

Step Over — This command makes the debugger execute the current line of code. If that
code invokes a function, subroutine, or some other procedure, the debugger calls that
routine but does not step into it, so you don’t need to step through its code. However, if a
breakpoint is set inside that routine, execution will stop at the breakpoint.

Step Out — This command makes the debugger run until it leaves the routine it is currently
executing. Execution pauses when the program reaches the line of code that called this
routine.

QuickWatch — This command displays a dialog box that gives information about the
selected code object.

Exceptions — This command displays the dialog box shown in Figure 6-1. When you select
a Thrown check box, the debugger stops whenever the selected type of error occurs. If

you select a User-unhandled check box, the debugger stops when the selected type of error
occurs and the program does not catch it with error-handling code.

Exceptions _

Break when an exception is: Add...

Mame Thrown User-unhandled

. 0O Delete

= guage Runtime Exceptions O

+ GPU Memory Access Exceptions |

+ JavaScript Runtime Exceptions O

+ Managed Debugging Assistants O

+ Mative Run-Time Checks | e e

- Win32 Exceptions O

Beset &l

0K

Cancel

FIGURE 6-1: The Exceptions dialog box lets you determine how Visual Basic
handles uncaught exceptions.

For example, suppose that your code calls a subroutine that causes a divide-by-zero exception.
Use the dialog box to select Common Language Runtime Exceptions &> System = System
.DivideByZeroException (use the Find button to find it quickly). When you select the Thrown



72 | CHAPTER6 DEBUGGING

check box, the debugger stops in the subroutine when the divide-by-zero exception occurs,
even if the code is protected by an error handler. When you select the User-unhandled check
box, the debugger stops only if no error handler is active when the error occurs.

Toggle Breakpoint — This command toggles whether the current code line contains a
breakpoint. When execution reaches a line with an active breakpoint, execution pauses so
you can examine the code and program variables. You can also toggle a line’s breakpoint by
clicking the margin to the left of the line in the code editor or by placing the cursor in the
line of code and pressing F9.

New Breakpoint — This submenu contains the Break At Function command. This
command displays a dialog box that lets you specify a function where the program

should break.
Delete All Breakpoints — This command removes all breakpoints from the entire solution.

Disable All Breakpoints — This command disables all breakpoints but leaves them in the
solution so you can re-enable them later if you want.

Enable All Breakpoints — This command enables all disabled breakpoints.

THE DEBUG = WINDOWS SUBMENU

The Debug menu’s Windows submenu contains commands that display debugging-related
windows. The following list briefly describes the most useful of these commands. The sections
that follow this one provide more detail about the Breakpoints, Command, and Immediate
windows.

>

Immediate — This command displays the Immediate window, where you can type and
execute ad hoc Visual Basic statements. The section “The Command and Immediate
Windows” later in this chapter describes this window in a bit more detail.

Locals — This command displays the Locals window, which displays the values of variables
defined in the local context. To change a value, click it and enter the new value. Click the
plus and minus signs to the left of a value to expand or collapse it. Note that a value may be
an object, so you may be able to expand it further.

Breakpoints — This command
displays the Breakpoints window
shown in Figure 6-2. This dialog
box shows the solution’s breakpoints,
their locations, and their conditions.

= Columns = | Search:
Labels  Condition Hit Caunt
{no conditiom) break ahuays (currently 0)
when 'result < 10"is true  break always {(currently 0)
Form 1.¥b, line 4 character 13 {no candition) break ahways (currently 1)

i [V @ Farmluwb, line 5 character 13 (no condition) break ahways (currently O)
Select or clear the check boxes on the [0 Form1ub, line 6 character 8 (0 cnfidten) break akways (currently 0)
. . @ Formiub, line 7 character 5 wihen result < 10'is true  break ahways (currently 0
left to enable or disable breakpoints.
Right-click a breakpoint to delete it Breakpoints | Immediate Window
or to edit its location, condition, hit FIGURE 6-2: The Breakpoints window helps you manage

count, action, and other properties. breakpoints.



The Debug = Windows Submenu | 73

Use the dialog box’s toolbar to create a new function breakpoint, delete a breakpoint,
delete all breakpoints, enable or disable all breakpoints, go to a breakpoint’s source code,
and change the columns displayed by the dialog box. See the section “The Breakpoints
Window” later in this chapter for more detail.

Output — This command displays the Output window, which displays output produced by
Debug and Trace statements.

Autos — This command displays the Autos window, which displays the values of local and
global variables used in the current line of code and in the previous line.

Call Stack — This command displays the Call Stack window, which lists the routines that
have called other routines to reach the program’s current point of execution. Double-click a
line to jump to the corresponding code in the program’s call stack. This technique lets you
move up the call stack to examine the code that called the routines that are running.

Threads — This command displays the Threads window. A thread is a separate execution
path that is running within a program. A multi-threaded application can have several
threads running to perform more than one task at the same time. The Threads window lets
you control the threads’ priority and suspended status.

Parallel Tasks — This command lists all of the application’s running tasks. This is useful for
debugging parallel applications.

Parallel Stacks — This command shows the call stacks for tasks running in parallel.

Watch — The Watch submenu contains the commands Watch 1, Watch 2, Watch 3,

and Watch 4. These commands display four different watch windows that let you easily keep
track of variable values. You can use each window to keep track of different sets of related
variables. When you create a watch using the Debug menu’s QuickWatch command described
earlier, the new watch is placed in the Watch 1 window. You can click and drag watches from
one watch window to another to make a copy of the watch in the second window.

You can also click the Name column in the empty line at the bottom of a watch window and
enter an expression to watch.

WONDERFUL WATCHES

A useful IDE trick is to drag Watch windows 2, 3, and 4 onto Watch 1 so that they
all become tabs on the same window. Then you can easily use the tabs to group and
examine four sets of watches.

Modules — This command displays the Modules window, which displays information
about the DLL and EXE files used by the program. It shows each module’s filename and
path. It indicates whether the module is optimized, whether it is your code (rather than



74 |

CHAPTER 6 DEBUGGING

an installed library), and whether debugging symbols are loaded. The window shows each
module’s load order (lower-numbered modules are loaded first), version, and timestamp.
Click a column to sort the modules by that column.

> Processes — This window lists processes that are attached to the Visual Studio session. This
includes any programs launched by Visual Studio and processes that you attached to using
the Debug menu’s Attach to Process command.

Usually, when these debug windows are visible at run time, they occupy separate tabs in the same
area at the bottom of the IDE. That lets you switch between them quickly and easily without them
taking up too much space.

THE BREAKPOINTS WINDOW

A breakpoint is a line of code that you have flagged to stop execution. When the program reaches
that line, execution stops and Visual Studio displays the code in a code editor window. This lets you
examine or set variables, see which routine called the one containing the code, and otherwise try to
figure out what the code is doing.

The Breakpoints window lists all the breakpoints you have defined for the program. This is useful
for a couple of reasons. First, if you define a lot of breakpoints, it can be hard to find them all later.
Although other commands let you disable, enable, or remove all of the breakpoints at once, at times
you may need to find a particular breakpoint.

A common debugging strategy is to comment out broken code, add new code, and set a breakpoint
near the modification so that you can see how the new code works. When you have finished testing
the code, you probably want to remove either the old code or the new code, so you don’t want to
blindly remove all of the program’s breakpoints.

The Breakpoints window lists all of the breakpoints and, if you double-click a breakpoint in the list,
you can easily jump to the code that holds it.

Breakpoint Condition (= S|

Right-click a breakpoint and select Condition

. . . . When the breakpaoint location is reached, the expression is evaluated and the breakpoint
to dlsplay the dlalog bOX shown mn Flgure 6-3. iz hit only if the expression is true or has changed,
By default? a breakpoint stops execution conditon
whenever it is reached. You can use this [ < 13 ndaisa Gesult > 1060 |
dialog box to add an additional condition ® s true
that determines whether the breakpoint O Has changed
activates when it is reached. In this example, \ ok [ Caneel |
the breakpoint stops execution only if the
expression (n < 10) AndAlso (result FIGURE 6-3: The Breakpoint Condition dialog box lets
> 1000) is True when the code reaches the you specify a condition that determines whether Visual
breakpoint. Studio stops at the breakpoint.

NOTE Note that specifying a breakpoint condition can slow execution
considerably because Visual Basic must evaluate the condition frequently.




The Command and Immediate Windows | 75

Right-click a breakpoint and select Hit Count e [z ]
to display the Breakpoint Hit Count dialog o o o

. . . & breakpaint is hitwhen the breakpoint location is reached and the candition is
bOX ShOWn mn Flgure 6—-4, EaCh time the satisfied. The hit count is the nurmber of tirmes the hreakpoint has been hit.

code reaches a breakpoint, it increments the
breakpoint’s hit count. You can use this dialog
box to make the breakpoint’s activation

When the breakpaint is hit:

|breakwhen the hit count is a rmultiple of v| | 2 |

Current hit count; 1

depend on the hit count’s value.
] ]

From the drop-down list you can select one
of the following options: FIGURE 6-4: The Breakpoint Hit Count dialog box lets
you make a breakpoint’s activation depend on the
number of times the code has reached it.

> Break Always

> Break When the Hit Count Is Equal To

> Break When the Hit Count Is a Multiple Of

> Break When the Hit Count Is Greater Than or Equal To

If you select any but the first option, you can enter a value in the text box and the program will
pause execution when the breakpoint has been reached the appropriate number of times. For
example, if you select the option Break When the Hit Count Is a Multiple Of and enter 2 into the
text box, execution will pause every second time it reaches the breakpoint.

Right-click a breakpoint and select When Hit to display the When Breakpoint Is Hit dialog box.
This dialog box lets you specify the actions that Visual Basic takes when the breakpoint is activated.
Select the Print a Message check box to make the program display a message in the Output
window. Select the Continue Execution check box to make the program continue running without
stopping after it displays its message.

THE COMMAND AND IMMEDIATE WINDOWS

The Command and Immediate windows enable you to execute commands while the program is
stopped in the debugger. One of the more useful commands in each of these windows is the Debug
.Print statement. For example, in the Command window, the command Debug.Print x displays the
value of the variable x. In the Immediate window, the statement must follow normal Visual Basic
syntax so the command is Debug.Print(x).

You can use a question mark as an abbreviation for Debug.Print. The following text shows how

the command might appear in the Command window. Here the > symbol is the command prompt
provided by the window and 123 is the result: the value of variable x. In the Immediate window, the
statement would not include the > character.

>? X

123

The command >immed tells the Command window to open the Immediate window. Conversely, the
command >cmd (you need to type the > in the Immediate window) tells the Immediate window to
open the Command window.



76 | CHAPTER6 DEBUGGING

Although there is some overlap between these two windows, they serve two mostly different
purposes. The Command window can issue commands to the Visual Studio IDE. Typically, these
are commands that do or could appear in menus and toolbars. For example, the following command
uses the Debug menu’s QuickWatch command to open a QuickWatch window for the variable

first_name:
>Debug.QuickWatch first_name

One particularly useful command is Tools.Alias. This command lists command aliases defined
by the IDE. For example, >Tools.Alias ? indicates that ? is the alias for bebug.Print and
>Tools.Alias ?? indicates that 22 is the alias for Debug.QuickWatch.

The Command window includes some IntelliSense support. If you type the name of a menu, for
example, Debug or Tools, IntelliSense will display the commands available within that menu.

The Command window issues commands to the IDE. In contrast, the Immediate window
executes Visual Basic statements. For example, suppose that you have written a subroutine named
CheckPrinter. Then the following statement in the Immediate window executes that subroutine:

CheckPrinter

You can execute subroutines in the Immediate window to quickly and easily test routines without
writing user interface code to handle all possible situations. You can call a subroutine or function,
passing it different parameters to see what happens. If you set breakpoints within the routine, the
debugger will pause there.

You can also set the values of global variables and then call routines that use them. The following
Immediate window commands set the value of the PrinterName variable and then call the
CheckPrinter subroutine:

PrinterName = "LP_REMOTE"
CheckPrinter

You can execute much more complex statements in the Command and Immediate windows. For
example, suppose that your program uses the following statement to open a file for reading:

Dim fs As FileStream = File.OpenRead (
"C:\Program Files\Customer Orders\Summary" &
DateTime.Now () .ToString ("yymmdd") & ".dat")

Suppose that the program is failing because some other part of the program is deleting the file. You
can type the following code (all on one line) into the Immediate window to see if the file exists. As
you step through different pieces of the code, you can use this statement repeatedly to learn when
the file is deleted.

?System.I0.File.Exists("C:\Program Files\Customer Orders\Summary" &
DateTime.Now () .ToString ("yymmdd") & ".dat")



Summary | 77

The Immediate window evaluates the complicated string expression to produce a filename. It then
uses the System.IO.File.Exists command to determine whether the file exists and displays True or
False accordingly.

SUMMARY

Although Visual Basic cannot debug your applications for you, it provides all of the tools you need
to get the job done. By using the tools in the Debug menu and the IDE’s debugging-related windows,
you can get a good idea about what your program is doing and what it is doing wrong.

This chapter and the others in the first part of this book described the basic pieces of the Visual
Studio development environment. They described the windows, menus, and toolbars that you use to
build and debug Visual Basic applications.

The next part of the book provides more detail about the steps you follow to build an application
before you debug it. Chapter 7, “Selecting Windows Forms Controls,” describes the most common
controls that you can use to build Windows Forms applications. It explains the purposes of

those controls to help you decide which controls to use in different situations.






PART Il
Getting Started

» CHAPTER 7: Selecting Windows Forms Controls
» CHAPTER 8: Using Windows Forms Controls

» CHAPTER 9: Windows Forms

» CHAPTER 10: Selecting WPF Controls

» CHAPTER 11: Using WPF Controls

» CHAPTER 12: WPF Windows

» CHAPTER 13: Program and Module Structure

» CHAPTER 14: Data Types, Variables, and Constants
» CHAPTER 15: Operators

» CHAPTER 16: Subroutines and Functions

» CHAPTER 17: Program Control Statements

» CHAPTER 18: Error Handling

» CHAPTER 19: Database Controls and Objects

» CHAPTER 20: LINQ

» CHAPTER 21: Metro-Style Applications






Selecting Windows
Forms Controls

WHAT'’S IN THIS CHAPTER

> Control summaries
Using controls to restrict selection
Containing and arranging controls

>
>
> Selection controls
>

Display and feedback controls

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

CONTROLS

A control is a programming entity that has a graphical component. A control sits on a form and
interacts with the user, providing information and possibly allowing the user to manipulate it.
Text boxes, labels, buttons, scroll bars, drop-down lists, menu items, toolstrips, and just about
everything else that you can see and interact with in a Windows application is a control.

Controls are an extremely important part of any interactive application. They give
information to the user (Label, ToolTip, TreeView, PictureBox) and organize the information
so that it’s easier to understand (GroupBox, Panel, TabControl). They enable the user

to enter data (TextBox, RichTextBox, ComboBox, MonthCalendar), select options
(RadioButton, CheckBox, ListBox), tell the application to take action (Button, MenuStrip,
ContextMenuStrip), and interact with objects outside of the application (OpenFileDialog,
SaveFileDialog, PrintDocument, PrintPreviewDialog). Some controls also provide support for
other controls (ImageList, ToolTip, ContextMenuStrip, ErrorProvider).


http://WROX.COM

82 | CHAPTER7 SELECTING WINDOWS FORMS CONTROLS

This chapter provides a very brief description of the standard Windows Forms controls together
with some tips that can help you decide which control to use for different purposes. Appendix G,
“Windows Forms Controls and Components,” covers the

controls in much greater detail, describing each control’s

most useful properties, methods, and events. e — P
4 Al Windows Forms -~
Nreresenemns
CONTROLS OVERVIEW #AERMPAPES AR FE
D EOH -3 A AE
Figure 7-1 shows the Visual Basic Toolbox displaying . 5 g L E 5
tl(ljedstagdard Windows 1Formshcor}ltuﬁ)s. Because you can HE&aDFrFem o =
add and remove controls on the Toolbox, you may Do = ¢ LD &
see a slightly different selection of tools on your -
E Ot iR
computer.
I Common Controls o
T.he follow‘ing table bri.eﬂy df?scribes the Cont.rols shown in FIGURE 7-1: Visual Basic provides a
Figure 7-1 in the order in which they appear in the figure large number of standard controls for
(starting at the top, or row 1, and reading from left Windows Forms.
to right).
CONTROL PURPOSE
Row 1
Pointer This is the pointer tool, not a control. Click this tool to deselect any
selected controls on a form. Then you can select new controls.
BackgroundWorker Executes a task asynchronously and notifies the main program of its

BindingNavigator

BindingSource

Button

CheckBox

CheckedListBox

progress and when it is finished.

Provides a user interface for navigating through a data source. For
example, it provides buttons that let the user move back and forth through
the data, add records, delete records, and so forth.

Encapsulates a form’s data source and provides methods for navigating
through the data.

A simple push button. When the user clicks it, the program can perform
some action.

A box that the user can check and clear.

A list of items with check boxes that the user can check and clear.



Controls Overview | 83

CONTROL
ColorDialog

ComboBox

ContextMenuStrip

Row 2

DataGridView

DataSet

DateTimePicker
DirectoryEntry
DirectorySearcher

DomainUpDown

ErrorProvider
EventLog
FileSystemWatcher
FlowLayoutPanel

Row 3

FolderBrowserDialog

FontDialog

GroupBox

HelpProvider

HScrollBar

PURPOSE
Lets the user pick a standard or custom color.

A text box with an attached list or drop-down list that the user can use to
enter or select a textual value.

A menu that appears when the user right-clicks a control. You set a control’s
ContextMenuStrip property to this control, and the rest is automatic.

A powerful grid control that lets you display large amounts of complex data
with hierarchical or web-like relationships relatively easily.

An in-memory store of data with properties similar to those of a relational
database. It holds objects representing tables containing rows and
columns, and can represent many database concepts such as indexes
and foreign key relationships.

Lets the user select a date and time in one of several styles.
Represents a node in an Active Directory hierarchy.
Performs searches of an Active Directory hierarchy.

Lets the user scroll through a list of choices by clicking up-arrow and
down-arrow buttons.

Displays an error indicator next to a control that is associated with an error.
Provides access to Windows event logs.
Notifies the application of changes to a directory or file.

Displays the controls it contains in rows or columns.

Lets the user select a folder.
Lets the user specify a font’s characteristics (name, size, boldness, and so forth).

Groups related controls for clarity. It also defines a default RadioButton
group for any RadioButtons that it contains.

Displays help for controls that have help if the user sets focus on the
control and presses F1.

A horizontal scroll bar.

continues



84 | CHAPTER7 SELECTING WINDOWS FORMS CONTROLS

(continued)
CONTROL

ImagelList

Label

LinkLabel

ListBox

ListView

Row 4

MaskedTextBox

MenuStrip
MessageQueue
MonthCalendar
Notifylcon

NumericUpDown

OpenFileDialog

PageSetupDialog

Panel

PerformanceCounter

PURPOSE

Contains a series of images that other controls can use. For example, the
images that a TabControl displays on its tabs are stored in an associated
ImagelList control. Your code can also pull images from an ImageList for its
own use.

Displays read-only text that the user cannot modify or select by clicking
and dragging.

Displays a label, parts of which may be hyperlinks. When the user clicks a
hyperlink, the program can take some action.

Displays a list of items that the user can select. Depending on the control’s
properties, the user can select one or several items at the same time.

Displays a list of items in one of four possible views: Largelcon, Smalllcon,
List, and Details.

A text box that requires the input to match a specific format (such as a
phone number or ZIP code format).

Represents the form’s main menus, submenus, and menu items.
Provides communication between different applications.

Displays a calendar that allows the user to select a range of dates.
Displays an icon in the system tray or status area.

Lets the user change a number by clicking up- and down-arrow buttons, or
by pressing up-arrow and down-arrow keys.

Lets the user select a file for opening.

Lets the user specify properties for printed pages. For example, it lets the
user specify the printer’s paper tray, page size, margins, and orientation
(portrait or landscape).

A control container. The control can automatically provide scroll bars and
defines a RadioButton group for any RadioButtons that it contains.

Provides access to Windows performance counters.



Controls Overview | 85

CONTROL
Row 5
PictureBox

PrintDialog

PrintDocument

PrintPreviewControl
PrintPreviewDialog

Process

ProgressBar

PropertyGrid

RadioButton

RichTextBox

Row 6
SaveFileDialog

SerialPort

ServiceController

SplitContainer

Splitter

PURPOSE

Displays a picture.

Displays a standard print dialog box. The user can select the printer, pages
to print, and printer settings.

Represents output to be sent to the printer. A program can use this object
to print and display print previews.

Displays a print preview within one of the application’s forms.
Displays a print preview in a standard dialog box.

Allows the program to interact with processes, including starting and
stopping them.

Displays a series of colored bars to show the progress of a long operation.

Displays information about an object in a format similar to the one used by
the Properties window at design time.

Represents one of an exclusive set of options. When the user selects a
RadioButton, Visual Basic deselects all other RadioButton controls in the same
group. Groups are defined by GroupBox and Panel controls and the Form class.

A text box that supports Rich Text extensions. The control can display
different pieces of text with different font names, sizes, bolding, and so
forth. It also provides paragraph-level formatting for justification, bullets,
hanging indentation, and more.

Lets the user select the name of a file where the program will save data.

Represents a serial port and provides methods for controlling, reading
from, and writing to it.

Represents a Windows service and lets you manipulate services.

Lets the user drag a divider vertically or horizontally to split available space
between two areas within the control.

Provides a divider that the user can drag to split available space between
two controls. The Dock properties and stacking orders of the controls and
the Splitter determine how the controls are arranged and resized. The
SplitContainer control automatically provides a Splitter between two
containers, so it is usually easier and less confusing to use.

continues



86 | CHAPTER7 SELECTING WINDOWS FORMS CONTROLS

(continued)
CONTROL PURPOSE

StatusStrip Provides an area (usually at the bottom of the form) where the application
can display status messages, small pictures, and other indicators of the
application’s state.

TabControl Displays a series of tabs attached to pages that contain their own controls.
The user clicks a tab to display the associated page.

TableLayoutPanel Displays the controls it contains in a grid.
TextBox Displays some text that the user can edit.
Timer Triggers an event periodically. The program can take action when the

event occurs.

Row 7

ToolStrip Displays a series of buttons, drop-downs, and other tools that let the user
control the application.

ToolStripContainer A container that allows a ToolStrip control to dock to some or all of its
edges. You might dock a ToolStripContainer to a form to allow the user to
dock a ToolStrip to each of the form’s edges.

ToolTip Displays a tooltip if the user hovers the mouse over an associated control.

TrackBar Allows the user to drag a pointer along a bar to select a numeric value.

TreeView Displays hierarchical data in a graphical, tree-like form.

VScrollBar A vertical scroll bar.

WebBrowser A web browser in a control. You can place this control on a form and use

its methods to navigate to a web page. The control displays the results
exactly as if the user were using a standalone browser. One handy use for
this control is displaying web-based help.

CHOOSING CONTROLS

Keeping all of the intricacies of each of these controls in mind at once is a daunting task. With so
many powerful tools to choose from, it’s not always easy to pick the one that’s best for a particular
situation.

To simplify error-handling code, you should generally pick the most restrictive control that can
accomplish a given task, because more restrictive controls give the user fewer options for entering
invalid data.



Choosing Controls | 87

For example, suppose that the user must pick from the choices Small, Medium, and Large. The
application could let the user type a value in a TextBox control, but then the user could type Huge
or Weasel. The program would need to verify that the user typed one of the valid choices and
display an error message if the text was invalid. The program might also need to use precious screen
real estate to list the choices to help the user remember what to type.

A better idea would be to use a group of three RadioButton controls or a ComboBox with
DropDownStyle set to DropDownList. Then the user can easily see the choices available and can
only select a valid choice. If the program initializes the controls with a default value rather than
leaves them initially undefined, it knows that there is always a valid choice selected.

COMMON SENSE DEFENSE

Restrictive controls also make the application more secure. By presenting users with
a list of choices rather than letting them type in whatever they like, the program
can protect itself from attack. For example, two of the most common attacks on
websites are buffer overflow attacks, in which the attacker enters far more text
than intended in a text box, and SQL injection attacks, in which the attacker enters
carefully designed gibberish into a text box to confuse a database. Requiring the
user to select options rather than typing neutralizes both of these attacks.

The following sections summarize different categories of controls and provide some tips about when
to use each.

Containing and Arranging Controls

These controls contain, group, and help arrange other controls. These controls include
FlowLayoutPanel, TableLayoutPanel, GroupBox, Panel, TabControl, and SplitContainer.

The FlowLayoutPanel arranges the controls it contains in rows or columns. For example, when

its FlowDirection property is LeftToRight, the control arranges its contents in rows from left

to right. It positions its contents in a row until it runs out of room and then it starts a new row.
FlowLayoutPanel is particularly useful for toolboxes and other situations where the goal is to
display as many of the contained controls as possible at one time, and the exact arrangement of the
controls isn’t too important.

The TableLayoutPanel control displays its contents in a grid. All the cells in a particular row

have the same height, and all the cells in a particular column have the same width. In contrast, the
FlowLayoutPanel control simply places controls next to each other until it fills a row and then starts
a new one.

A GroupBox control is good for visibly grouping related controls or for grouping RadioButton
controls into a RadioButton group. (The RadioButton control is discussed later in this chapter in
the section “Making Selections.”) It provides a visible border and caption so that it can help the user
make sense out of a very complicated form.



CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

GREAT GROUPS

The rule of thumb in user interface design is that a user can evaluate around
seven items (plus or minus two) at any given time. A list of five or six choices is
manageable, but a list containing dozens of options can be confusing.

By placing choices into categories visibly separated in GroupBox controls, you can
make the interface much easier for the user to understand. Rather than try to

keep dozens of options straight all at once, the user can mentally break the problem
into smaller pieces and consider each group of options separately.

Like the GroupBox, the Panel control can contain controls and define RadioButton groups, but

its real advantage is its ability to automatically display scroll bars. If you set a Panel control’s
AutoScroll property to True and the Panel resizes so its content cannot fit, the control automatically
displays scroll bars that the user can adjust to see different parts of the content. Scrolling back and
forth can be cumbersome for the user, however, so this is not the best way to display data if the user
must view it all frequently. If the user must jump back and forth between different controls inside a
scrolling Panel, it may be better to use a TabControl.

A TabControl displays data grouped by pages. The tabs enable the user to quickly jump from
page to page. The control can display scroll bars if the tabs don’t all fit at once, although that
makes using the control much more awkward. TabControl works well if the data falls into natural
groupings that you can use for the tab pages. It doesn’t work as well if the user must frequently
compare values on one page with those on another, forcing the user to jump back and forth.

The SplitContainer control allows the user to divide an area between two adjacent regions.

A SplitContainer contains two Panel controls in which you can place your own controls. When the
user drags the splitter between the two panels, the control resizes the panels accordingly. You can
set the Panels’ AutoScroll properties to True to make them automatically provide scroll bars when
necessary.

SplitContainer is helpful when the form isn’t big enough to hold all the data the program must
display, and the user should be able to trade area in one part of the form for area in another. It is
particularly useful when the user must compare values in the two areas by viewing them at the
same time.

Although you can nest SplitContainers inside other SplitContainers, they are easiest to use when
they separate only two areas. Large groups of SplitContainers separating many areas are usually
clumsy and confusing.

These container controls help arrange the controls they contain. The Anchor and Dock properties
of any controls inside the containers work relative to the containers. For example, suppose you place
a series of buttons with Anchor = Top, Left, Right inside a SplitContainer so that they are as wide
as the Panel containing them. When you drag the splitter, the buttons automatically resize to fit the
width of their Panel.



Choosing Controls | 89

Making Selections

Selection controls enable the user to choose values. If you use them carefully, you can reduce the
chances of the user making an invalid selection, so you can reduce the amount of error-handling
code you need to write.

These controls include CheckBox, CheckedListBox, ComboBox, ListBox, RadioButton,
DateTimePicker, MonthCalendar, DomainUpDown, NumericUpDown, TrackBar, HScrollBar, and
VScrollBar.

CheckBox enables the user to select an option or not, independently of all other selections. If you
want the user to select only one of a set of options, use a RadioButton instead. If a form requires
more than, say, five to seven CheckBox controls that have related purposes, consider using a
CheckedListBox instead.

The CheckedListBox control enables the user to select among several independent options. It is
basically a series of CheckBox controls arranged in a list that provides scroll bars if necessary.

The ComboBox control enables the user to make one brief selection. This control is particularly
useful when its DropDownStyle property is set to DropDownList because then the user must pick

a value from a list. If you want to allow the user to select a value or enter one that is not on the list,
set the control’s DropDownStyle to Simple or DropDown. This control does roughly the same things
as a simple ListBox but takes less space.

The ListBox control displays a list of items that the user can select. You can configure the control
to let the user select one or more items. A ListBox takes more room than a ComboBox but can be
easier to use if the list is very long.

LONG LISTS

If you have a long list and want to allow the user to select many items, it is
relatively easy for the user to accidentally deselect all of the previous selections by
clicking a new item. To make things easier for the user, you should consider using a
CheckedListBox, which doesn’t have that problem.

The RadioButton control lets the user pick one of a set of options. For example, three RadioButton
controls might represent the choices Small, Medium, and Large. If the user selects one, Visual Basic
automatically deselects the others. This control is useful when the list of choices is relatively small,
and there is a benefit to allowing the user to see all of the choices at the same time. If the list of
choices is long, consider using a ListBox or ComboBox.

The DateTimePicker and MonthCalendar controls enable the user to select dates and times. They
validate the user’s selections, so they are generally better than other controls for selecting dates and
times. For example, if you use a TextBox to let the user enter month, date, and year, you must write
extra validation code to ensure that the user doesn’t enter February 29, 2013.



20

CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

The DomainUpDown and NumericUpDown controls let the user scroll through a list of values. If
the list is relatively short, a ListBox or ComboBox may be easier for the user. The DomainUpDown
and NumericUpDown controls take very little space, however, so they may be helpful on very
crowded forms. By holding down one of the controls’ arrow buttons, the user can scroll very quickly
through the values, so these controls can also be useful when they represent a long list of choices.

The TrackBar control lets the user drag a pointer to select an integer value. This is usually a more
intuitive way to select a value than a NumericUpDown control, although it takes a lot more space
on the form. It also requires some dexterity if the number of values allowed is large.

The HScrollBar and VScrollBar controls let the user drag a “thumb” across a bar to select an
integral value much as the TrackBar does. HScrollBar, VScrollBar, and TrackBar even have similar
properties. The main difference is in the controls’ appearances. On one hand, the two scroll bar
controls allow more flexible sizing (the TrackBar has definite ideas about how tall it should be for
a given width), and they may seem more elegant to some users. On the other hand, most users are
familiar with the scroll bars’ normal purpose of scrolling an area on the form, so using them as
numeric selection bars may sometimes be confusing.

Entering Data

Sometimes it is impractical to use the selection controls described in the previous section. For
example, the user cannot reasonably enter a long work history or comments using a ComboBox or
RadioButton.

The RichTextBox, TextBox, and MaskedTextBox controls let the user enter text with few
restrictions. These controls are most useful when the user must enter a large amount of textual data
that doesn’t require any validation.

The TextBox control is less complex and easier to use than the RichTextBox control, so you may
want to use it unless you need the RichTextBox control’s extra features. If you need those features
(such as multiple fonts, indentation, paragraph alignment, superscripting and subscripting, multiple
colors, more than one level of undo/redo, and so forth), you need to use a RichTextBox.

The MaskedTextBox control is a TextBox control that requires the user to enter data in a particular
format. For example, it can help the user enter a phone number of the form 234-567-8901. This

is useful only for short fields where the format is tightly constrained. In those cases, however, it
reduces the chances of the user making mistakes.

Displaying Data

These controls display data to the user: Label, DataGridView, ListView, TreeView, and
PropertyGrid.

The Label control displays a simple piece of text that the user can view but not select or modify.
Because you cannot select the text, you cannot copy it to the clipboard. If the text contains a value
that you think the user might want to copy to the clipboard and paste into another application

(for example, serial numbers, phone numbers, e-mail addresses, URLs, and so forth), you can use a
TextBox control with its ReadOnly property set to True to allow the user to select and copy the text
but not edit it.



Choosing Controls | 91

The DataGridView control can display table-like data. The control can also display several tables
linked with master/detail relationships and the user can quickly navigate through the data. You can
also configure this control to allow the user to update the data.

The ListView control displays data that is naturally viewed as a series of icons or as a list of values
with columns providing extra detail. With a little extra work, you can sort the data by item or by
detail columns.

The TreeView control displays hierarchical data in a tree-like format similar to the directory display
provided by Windows Explorer. You can determine whether the control allows the user to edit the
nodes’ labels.

The PropertyGrid control displays information about an object in a format similar to the one used
by the Properties window at design time. The control enables the user to organize the properties
alphabetically or by category and lets the user edit the property values.

Providing Feedback

These controls provide feedback to the user: ToolTip, HelpProvider, ErrorProvider, Notifylcon,
StatusStrip, and ProgressBar. Their general goal is to tell the user what is going on without being
distracting. For example, the ErrorProvider flags a field as incorrect but doesn’t prevent the user
from continuing to enter data in other fields.

DISRUPTIVE VALIDATION

You can force users to fix errors by using a TextBox’s Validating event handler. For
example, if the event handler determines that a TextBox’s value is invalid, it can set
its e.Cancel parameter to True to prevent the user from moving out of the TextBox
or closing the application.

I don’t recommend this approach, however, particularly if the users are performing
“heads down” data entry, because it interrupts their flow of work. Instead, use an
ErrorProvider to flag the error and let the user fix the problem when it’s convenient.

For more information on validation events, see the section “Validation Events” in

Chapter 8.

The ToolTip control provides the user with a brief hint about a control’s purpose when the user
hovers the mouse over it. The HelpProvider gives the user more detailed help about a control’s
purpose when the user sets focus to the control and presses F1. A high-quality application provides
both tooltips and F1 help for every control. These features are unobtrusive and appear only if

the user needs them, so it is better to err on the side of providing too much help rather than

not enough.



92 | CHAPTER7 SELECTING WINDOWS FORMS CONTROLS

TOO MANY TOOLTIPS?

It may seem silly to place tooltips on every single control. For example, does it really
make sense to place a tooltip on a TextBox that sits next to a label that says “Phone
Number”? Surprisingly the answer is yes. It turns out that some screen reader
applications for the visually impaired get important cues from tooltips. Giving that
TextBox a tooltip can help some users figure out what data they should enter. The
ErrorProvider control flags a control as containing invalid data. It is better to use
selection controls that do not allow the user to enter invalid data, but this control is
useful when that is not possible.

The Notifylcon control can display a small icon in the taskbar notification area to let the user easily
learn the application’s status. This is particularly useful for applications that run in the background
without the user’s constant attention. If the application needs immediate action from the user, it
should display a dialog or message box rather than rely on a Notifylcon.

WHAT’S THE TRAY?

The taskbar notification area, also called the Windows system tray, is the small
area in the taskbar, usually on the right, that displays the current time and icons
indicating the status of various running applications.

The StatusStrip control displays an area (usually at the bottom of the form) where the program can
give the user some information about its state. This information can be in the form of small images
or short text messages. It can contain a lot more information than a Notifylcon, although it is
visible only when the form is displayed.

The ProgressBar indicates how much of a long task has been completed. Usually, the task is
performed synchronously, so the user is left staring at the form while it completes. The ProgressBar
lets the user know that the operation is not stuck.

Initiating Action

Every kind of control responds to events, so every control can initiate an action. Nevertheless, users
expect only certain kinds of controls to perform significant actions. For example, users expect
clicking a button to start an action, but they don’t expect clicking a label or check box to start a
long process.

To prevent confusion, you should start actions from the controls most often used to start actions.
These controls include Button, MenuStrip, ContextMenuStrip, ToolStrip, LinkLabel, TrackBar,
HScrollBar, VScrollBar, and Timer. All except the Timer control let the user initiate the action.



Choosing Controls | 93

All of these controls interact with the program through event handlers. For example, the Button
control’s Click event handler normally makes the program perform some action when the user clicks
the button.

Other controls also provide events that can initiate action. For example, the CheckBox control
provides CheckChanged and Click events that you could use to perform some action. By catching
the proper events, you can use almost any control to initiate an action. Because the main intent
of those controls is not to execute code, they are not listed in this section.

The Button control enables the user to tell the program to execute a particular function. A button
is normally always visible on its form, so it is most useful when the user must perform the action
frequently or the action is part of the program’s central purpose. For actions that are performed less
often, use a MenuStrip or ContextMenuStrip control.

Items in a MenuStrip control also enable the user to make the program perform an action. You must
perform more steps to open the menu, find the item, and select it than you must to click a button,

so a Button control is faster and easier. On the other hand, menus take up less form real estate than
buttons. You can also assign keyboard shortcuts (such as F5 or Ctrl+S) to frequently used menu
items, making them even easier to invoke than buttons.

A ContextMenuStrip control provides the same advantages and disadvantages as a MenuStrip
control. ContextMenuStrip is available only from certain controls on the form, however, so it

is useful for commands that are appropriate only within specific contexts. For example, a Save
command applies to all the data loaded by a program, so it makes sense to put it in a MenuStrip.
A command that deletes a particular object in a drawing applies only to that object. By placing the
command in a ContextMenuStrip control attached to the object, the program keeps the command
hidden when the user is working on other things. It also makes the relationship between the action
(delete) and the object clear to both the user and the program.

The ToolStrip control combines some of the best features of menus and buttons. It displays a series
of buttons so they are easy to use without navigating through a menu. The buttons are small and
grouped at the top of the form, so they don’t take up as much space as a series of larger buttons.

It is common to place buttons or ToolStrip buttons on a form to duplicate frequently used menu
commands. The menu commands provide keyboard shortcuts for more advanced users, and the buttons
make it easy to invoke the commands for less-experienced users. More advanced applications such as
Visual Studio may provide customizations that allow the user to decide which ToolStrips are visible.

The LinkLabel control displays text much as a Label control does. It also displays some text in blue
with an underline, displays a special cursor when the user moves over that text, and raises an event if
the user clicks the text. That makes the control appropriate when clicking a piece of text should perform
some action. For example, on a web page, clicking a link typically navigates to the link’s web page.

The TrackBar, HScrollBar, and VScrollBar controls let the user drag a “thumb” across a bar to
select an integral value. As mentioned in the section “Making Selections” earlier in this chapter,
you can use these controls to let the user select a numeric value. However, they can also be used
to perform some action interactively. For example, the scroll bars are often used to scroll an area
on the form. More generally, they are used to make the program take action based on some new
value. For example, you could use a scroll bar to let the user select new red, green, and blue color



94 | CHAPTER7 SELECTING WINDOWS FORMS CONTROLS

components for an image. As the user changes a scroll bar’s value, the program can update the
image’s colors.

The Timer control triggers some action at a regular interval. When the Timer control raises
its Timer event, the program takes action.

Displaying Graphics

These controls display graphics, either on the screen or on a printout: Form, PictureBox,
PrintPreviewControl, PrintDocument, and PrintPreviewDialog.

A Form provides methods for drawing, but it’s often better to draw in a PictureBox control instead
of on the form itself. That makes it easier to move the drawing if you later need to redesign the
form. For example, if you decide that the picture might be too big, it is easy to move a PictureBox
control into a scrolling Panel control. It would be much harder to rewrite the code to move the
drawing from the Form into a PictureBox control later.

PrintPreviewControl displays a print preview for a PrintDocument object. The program
responds to events raised by the PrintDocument object and generates the output to be printed.
PrintPreviewControl displays the results within a control on one of the program’s forms.

The PrintPreviewDialog control displays graphics from a PrintDocument object much as a
PrintPreviewControl does, but it provides its own dialog box. Unless you need to arrange the print
preview in some special way, it is easier to use a PrintPreviewDialog than it is to build your

own preview dialog box with a PrintPreviewControl. The PrintPreviewDialog control provides
many features that enable the user to zoom, scroll, and move through the pages of the preview
document. Implementing those features yourself would be a lot of work.

Displaying Dialog Boxes

Visual Basic provides a rich assortment of dialog boxes that enable the user to make standard
selections. Figuring out which of these dialog boxes to use is usually easy because each has a
very specific purpose. The following table lists the dialog boxes and their purposes.

DIALOG PURPOSE

ColorDialog Select a color.
FolderBrowserDialog Select a folder (directory).
FontDialog Select a font.

OpenFileDialog Select a file to open.
PageSetupDialog Specify page setup for printing.
PrintDialog Print a document.
PrintPreviewDialog Display a print preview.

SaveFileDialog Select a file for saving.



Third-Party Controls | 95

THIRD-PARTY CONTROLS

Visual Basic comes with a large number of useful controls all ready to go, but many other controls
are available that you can use if you need them. If you right-click the Toolbox and select Choose
Items, you can select from a huge list of .NET Framework and COM components available on
your system.

You can obtain more controls provided by other companies and available for purchase and
sometimes for free on the web. Many of these controls perform specialized tasks such as generating
bar codes, making shaped forms, warping images, and providing special graphical effects.

Other controls extend the standard controls to provide more power or flexibility. Several controls
are available that draw two- and three-dimensional charts and graphs. Other controls provide more
powerful reporting services than those provided by Visual Studio’s own tools.

If you search the web for “windows forms controls,” you will find lots of websites where you can
download controls for free or for a fee. A few places you might like to explore include:

>  MVPs.org (http://www.mvps .org), a site leading to resources provided by people related
to Microsoft’s Most Valuable Professional (MVP) program. The Common Controls
Replacement Project (http://ccrp.mvps.org) provides controls that duplicate and enhance
standard Visual Basic 6 controls. Development on this project has stopped but some of
the old Visual Basic 6 controls may give you some ideas for building controls of your own.
MVPs.org is also a good general resource.

\

Windows Forms .NET (http://windowsclient.net), Microsoft’s official WPF and
Windows Forms .NET community.

ASP.NET (http: //www.asp.net), Microsoft’s official ASP.NET community.
CNET (http://download.cnet.com/windows).

Shareware.com (http: //www.shareware.com).

Y VYV VY

Shareware Connection (http://www.sharewareconnection.com).

You should use these as a starting point for your own search, not as a definitive list. You can
download controls from hundreds (if not thousands) of websites.

CONTROL CHAOS

You should also show some restraint in downloading third-party controls and
products in general. Every time you add another control to a project, you make

the project depend on that control. If you later move the project to a newer version
of Visual Basic, you must ensure that the control works with that version. Similarly,
if the vendor makes a new version of the control, you must find out if it works

with your version of Visual Basic. If it doesn’t, you may be stuck using an older,

unsupported version of the control. .
continues


http://www.mvps.org
http://ccrp.mvps.org
http://windowsclient.net
http://www.asp.net
http://download.cnet.com/windows
http://www.shareware.com
http://www.sharewareconnection.com
http://Shareware.com
http://MVPs.org
http://MVPs.org

96 |

CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

continued

If controls and tools interact with each other, the problem becomes much more
difficult. If anything changes, you must find a set of versions for all of the tools that
can work correctly together.

I try to keep my use of third-party controls to a bare minimum because, when I
write a book, I generally cannot assume that you have a particular third-party
control. I use tools such as WinZip (http: //www.WinZip.com) and FileZilla
(http://filezilla-project.org) outside of projects, but nothing inside them.

Use a third-party control if it will save you a lot of work. But, before you do, ask
yourself how much work it would be to do without the control and how much work
it will be to replace the control later if you need to move to a new version of Visual
Basic.

And of course, if you download a control from a source that isn’t trustworthy, you
could be downloading a virus.

SUMMARY

Controls form the main connection between the user and the application. They allow the application
to give information to the user, and they allow the user to control the application. Controls are
everywhere in practically every Windows application. Only a tiny percentage of applications that
run completely in the background can do without controls.

This chapter briefly described the purposes of the standard Visual Basic controls and provided a few
tips for selecting the controls appropriate for different purposes.

Even knowing all about the controls doesn’t guarantee that you can produce an adequate user
interface. There’s a whole science to designing user interfaces that are intuitive and easy to use.

A good design enables the user to get a job done naturally and with a minimum of wasted

work. A bad interface can encumber the user and turn even a simple job into an exercise in beating
the application into submission.

For more information on building usable applications, read some books on user-interface design.
They explain standard interface issues and solutions. You can also learn a lot by studying other
successful applications. Look at the layout of their forms and dialog boxes. You shouldn’t steal their
designs outright, but you can try to understand why they arrange their controls in the ways they do.
Look at applications that you like and find particularly easy to use. Compare them with applications
that you find awkward and confusing.

This chapter provided an introduction to Windows Forms controls to help you decide which
controls to use for different purposes. Chapter 8, “Using Windows Forms Controls,” explains in
greater detail how you can use the controls that you select. It tells how to add a control to a form at
design time or run time, and explains how to use a control’s properties, methods, and events.


http://www.WinZip.com
http://filezilla-project.org

Using Windows Forms Controls

WHAT'’S IN THIS CHAPTER

Creating controls at run time
Setting properties at design time and run time

Particularly useful properties

Yy Y VY Y

Validation events

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

> AnchorButton
DeferredValidation
Docking
MakeButtons

UseTableLayoutPanel

Y Y VY Y

USING CONTROLS AND COMPONENTS

As Chapter 7 mentioned, a control is a programming entity that has a graphical component.
Text boxes, labels, list boxes, check boxes, menus, and practically everything else that you see
in a Windows application is a control.

A component is similar to a control, except it is not visible at run time. When you add a
component to a form at design time, it appears in the component tray below the bottom of
the form. You can select the component and use the Properties window to view and change its
properties just as you can with a control. At run time, the component is invisible to the user,
although it may display a visible object such as a menu, dialog box, or status icon.


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

98 | CHAPTER8 USING WINDOWS FORMS CONTROLS

This chapter explains controls and components in general terms. It describes different kinds

of controls and components. It explains how your program can use them at design time and

run time to give the user information and to allow the user to control your application. It also
explains in general terms how a control’s properties, methods, and events work, and it lists some
of the most useful properties, methods, and events provided by the Control class. Other controls
that are derived from this class inherit those properties, methods, and events unless they are
explicitly overridden.

CONTROLS AND COMPONENTS

Controls are graphic by nature. Buttons, text boxes, and labels provide graphical input and feedback
for the user. They display data and let the user trigger program actions. Some controls (such as grid
controls, tree view controls, and calendar controls) are quite powerful and provide a rich variety of
tools for interacting with the user.

In contrast, components are represented by graphical icons at design time and are hidden at run
time. They may display some other object (such as a dialog box, menu, or graphical indicator), but
the component itself is hidden from the user.

Many components display information to the user. Others provide information needed by graphical
controls. For example, a program can use connection, data adapter, and data set components to
define data that should be selected from a database. Then a Grid control can display the data to the
user. Because the connection, data adapter, and data set objects are components, you can define
their properties at design time without writing code.

Figure 8-1 shows a form at design time that contains several components. The components appear
in the component tray at the bottom of the form, not on

the form’s graphical Surface' M WindowsApplication2 - FormTab [ B
This example contains four components. Timer1 fires an -
event periodically so the program can take some action ——— s

at specified time intervals. ErrorProviderl displays an ol Form =l
error icon and error messages for certain controls on the

form such as TextBoxes. BackgroundWorkerl performs 5

tasks asynchronously while the main program works

independently. ImageList] contains a series of images
for use by another control such as a Button, ListView,
or TreeView.

Aside from the lack of a graphical component on the ® Timerl € EnorProvider!
form, working with components is very similar to working

o
with controls. You use the Properties window to set a & BackgroundWorker! B imageListi
component’s properties, the code editor to define its event
handlers, and code to call its methods. The rest of this FIGURE 8-1: At design time components
chapter focuses on controls, but the same concepts apply ar:rpear in the component tray below
a form.

just as well to components.



Creating Controls | 99

CREATING CONTROLS

Usually you add controls to a form graphically at design time. In some cases, however, you may
want to add new controls to a form while the program is running. This gives you a bit more
flexibility so that you can change the program’s appearance at run time in response to the program’s
needs or the user’s commands.

For example, you may not know how many pieces of data you will need to display until run time.
Sometimes you can display unknown amounts of data using a list, grid, or other control that can
hold a variable number of items, but other times you might like to display the data in a series of
labels or text boxes. In cases such as these, you need to create new controls at run time.

The following code shows how a program might create a new Label control at run time. First

it declares a variable of type Label and initializes it with the New keyword. It uses the label’s
SetBounds method to position the label on the form and sets its Text property to “Hello World!”
The code then adds the label to the current form’s Controls collection. (“Me” is a keyword that
means “the object currently executing code,” which in this case is the form.)

Dim 1bl As New Label
1bl.SetBounds (10, 50, 100, 25)
1bl.Text = "Hello World!"
Me.Controls.Add(1bl)

CHANGING CONTAINERS

To place a control inside a container other than the form, add the control to

the container’s Controls collection. For example, to add the previous Label to a
GroupBox named grpLabels, you would use the statement grpLabels.Controls
.Add (1bl).

Usually, a label just displays a message so you don’t need to catch its events. Other controls such
as buttons and scroll bars, however, are not very useful if the program cannot respond to their
events.

You can take two approaches to catching a new control’s events. First, you can use the WithEvents
keyword when you declare the control’s variable. Then you can open the form in the code editor,
select the variable’s name from the left drop-down list, and select an event from the right drop-down
list to give the control an event handler.

The following code demonstrates this approach. It declares a class-level variable btnHi using the
WithEvents keyword. When you click the btnMakeHiButton button, its event handler initializes
the variable to create the Hi button. It sets the control’s position and text, and adds it to the form’s



100 | CHAPTER 8 USING WINDOWS FORMS CONTROLS

Controls collection. When the user clicks this button, the btnHi_Click event handler executes and
displays a message.

' Declare the btnHi button WithEvents.
Private WithEvents btnHi As Button

' Make the new btnHi button.
Private Sub btnMakeHiButton_Click() Handles btnMakeHiButton.Click
btnHi = New Button()
btnHi.SetBounds (16, 16, 80, 23)
btnHi.Text = "Say Hi"
Me.Controls.Add (btnHi)
End Sub

' The user clicked the btnHi button.

Private Sub btnHi_Click() Handles btnHi.Click
MessageBox.Show ("Hi")

End Sub

This first approach works if you know the number and types of the controls you will need ahead of
time. Then you can define variables for them all using the WithEvents keyword. If you don’t know
how many controls you need to create, however, this isn’t practical. For example, suppose that you
want to create a button for each file in a directory. When the user clicks a button, the file should
open. If you don’t know how many files the directory will hold, you don’t know how many variables
you’ll need.

One solution to this dilemma is to use the AddHandler statement to add event handlers to the new
controls. The following code demonstrates this approach. When you click the btnMakeHelloButton
button, its Click event handler creates a new Button object, storing it in a locally declared variable.
It sets the button’s position and text and adds it to the form’s Controls collection as before. Next,
the program uses the AddHandler statement to make subroutine Hello_Click an event handler

for the button’s Click event. When the user clicks the new button, subroutine Hello_Click displays
a message.

' Make a new Hello button.
Private Sub btnMakeHelloButton_Click() Handles btnMakeHelloButton.Click
' Make the button.
Dim btnHello As New Button()
btnHello.SetBounds (240, 64, 80, 23)
btnHello.Text = "Say Hello"
Me.Controls.Add (btnHello)

' Add a Click event handler to the button.
AddHandler btnHello.Click, AddressOf Hello_Click
End Sub

' The user clicked the Hello button.

Private Sub Hello_Click()
MessageBox.Show("Hello")

End Sub



Properties | 101

TAG, YOU'RE IT

When you build controls at run time, particularly if you don’t know how many
controls you may create, the Tag property can be very useful. You can place
something in a new control’s Tag property to help identify it. For example, you
might store a control number in each new control’s Tag property and make them all
use the same event handlers. The event handlers can check the Tag property to see
which control raised the event.

You can use the same routine as an event handler for more than one button. In that case, the code
can convert the sender parameter into a Button object and use the button’s Name, Text, and other
properties to determine which button was pressed.

To remove a control from the form, simply remove it from the form’s Controls collection. To free the
resources associated with the control, set any variables that refer to it to Nothing. For example,
the following code removes the btnHi control created by the first example:

Me.Controls.Remove (btnHi)
btnHi = Nothing

This code can remove controls that you created interactively at design time, as well as controls you
create during run time.

PROPERTIES

A property is some value associated with a control. Often, a property corresponds in an obvious
way to the control’s appearance or behavior. For example, the Text property represents the text
that the control displays, BackColor represents the control’s background color, Top and Left
represent the control’s position, and so forth.

Many properties, including Text, BackColor, Top, and Left, apply to many kinds of controls. Other
properties work only with certain specific types of controls. For example, the ToolStrip control
has an ImageList property that indicates the ImageList control containing the images the ToolStrip
should display. Only a few controls such as Button and TabControl have an ImageList property.

The following sections explain how you can manipulate a control’s properties interactively at design
time or using code at run time.

Properties at Design Time

To modify a control’s properties at design time, open its form in the Windows Forms Designer and
click the control. The Properties window lets you view and edit the control’s properties.

You can set many properties by clicking a property’s value in the Properties window and then typing
the new value. This works with simple string and numeric values such as the controls’ Name and
Text properties, and it works with some other properties where typing a value makes some sense.



102 |

CHAPTER 8 USING WINDOWS FORMS CONTROLS

For example, the HScrollBar control (horizontal scrollbar) has Propertie: > O X
Minimum, Maximum, and Value properties that determine the el it el
control’s minimum, maximum, and current values, respectively. You °"ém%m;md" -
can click those properties in the Properties window and enter new O T icrosoft Sans Serit]
values. When you press the Enter key or move to another property, e MhcrasoriSans S
the control validates the value you typed. If you entered a value Uit Point
that doesn’t make sense (for example, if you typed ABC instead of a zzlizh,,m e
numeric value), the IDE reports the error and lets you fix it. E:Ii“:‘-‘m“'“"t ::::

Strikeout False

Compound Properties T
A few properties have compound values. The Location property il
includes the X and Y coordinates of the control’s upper-left corner. [oondlinnic o En IR
. . . - |conPadding on Error 0

The Size property contains the control’s width and height. The Font TreNane NoControl
property is an object that has its own font name, size, boldness, and o Stingll Seeay v
other font properties. Ft

The font used to display text in the contral,

The Properties window displays these properties with a plus sign

on the left. Figure 8-2 shows the Properties window displaying a
TextBox’s properties. Notice the plus sign next to the Lines property
near the bottom.

FIGURE 8-2: The Properties
window lets you change
complex properties at
design time.

When you click the plus sign, the window expands the property to

show the values that it contains. Figure 8-2 shows the Font property expanded. You can click
the Font property’s subvalues and set them independently just as you can set any other property
value.

When you expand a compound property, the plus sign changes to a minus sign (see the Font prop-
erty in Figure 8-2). Click this minus sign to collapse the property and hide its members.

Some compound properties provide more sophisticated methods for setting the property’s values.
If you click the ellipsis button to the right of the Font property shown in Figure 8-2, the IDE
presents a font selection dialog box that lets you set many of the font’s properties.

Restricted Properties

Some properties allow more restricted values. For example, the Visible property is a Boolean, so it can
only take the values True and False. When you click the property, a drop-down arrow appears on the
right. If you click this arrow, a drop-down list lets you select one of the choices, True or False.

Many properties have enumerated values. The Button control’s FlatStyle property allows the values
Flat, Popup, Standard, and System. When you click the drop-down arrow to the right of this
property, a drop-down list appears to let you select one of those values.

You can also double-click the property to cycle through its allowed values. After you select a
property, you can use the up and down arrows to move through the values.

Some properties allow different values at different times. For example, some properties contain
references to other controls. The Button control’s ImageList property is a reference to an ImageList



Properties | 103

component that contains the picture that the Button should display.

If you click the drop-down arrow to the right of this value, the pAnakce Rt toncystem i Minciows Formsiisy
. . . . . @ [A =1 &

Properties window displays a list of the ImageList components s=[pi)[@] #

. . . . taBindi ~
on the form that you might use for this property. This list also EEJ::-.;)“ 29 biaMakeHiButton |
contains the entry (none), which you can select to remove any AccessibleDescripti

revious control reference in the propert ot
p prop Y- AccessibleRole Default
. .1 . .. AllewDrop False
Many properties take very specialized values and provide specialized Bncror . AT &
property editors to let you select values easily. For example, the AutoElipsis — 0
. Autosi

Anchor property lets you anchor a control’s edges to the edges of its e
container. Normally, a control is anchored to the top and left edges Rack ol

. . . . .. . Anchor
of the container so that it remains in the same position even if the Diines tha adges of s eoniainer  which s
container is resized. If you also anchor the control on the right, its ko et
right edge moves in or out as the container gets wider or narrower. FIGURE 8-3: Some proper-
This lets you make controls that resize with their containers in ties, such as Anchor, provide
certain useful ways. specialized editors to let you

) select their values.
If you select the Anchor property and click the drop-down arrow on

the right, the Properties window displays the small graphical editor

shown in Figure 8-3. Click the skinny rectangles on the left, top, right, or bottom to anchor or
unanchor (sometimes called float) the control on those sides. Press the Enter key to accept your
choices or press Esc to cancel them.

Other complex properties may provide other editors. These are generally self-explanatory. Click the
ellipsis or drop-down arrow to the right of a property value to open the editor, and experiment to
see how these editors work.

You can right-click any property’s name and select Reset to reset the property to a default value.
Many complex properties can take the value “(none),” and for those properties, selecting Reset
usually sets the value to “(none).”

Collection Properties

Some properties represent collections of objects. For example, the ListBox control displays a list of
items. Its Items property is a collection containing those items. The Properties window displays the
value of this property as “(Collection).” If you select this property and click the ellipsis to the right,
the Properties window displays a simple dialog box where you can edit the text displayed by the

control’s items. This dialog box is quite straightforward: Enter the items’ text on separate lines and

click OK.

Other properties are much more complex. For example, to create a TabControl that displays
images on its tabs, you must also create an ImageList component. Select the ImageList
component’s Images property, and click the ellipsis to the right to display the dialog box shown
in Figure 8-4. When you click the Add button, the dialog box displays a file selection dialog box
that lets you add an image file to the control. The list on the left shows you the images you have
loaded and includes a small thumbnail picture of each image. The values on the right show you
the images’ properties.



104 |

CHAPTER 8 USING WINDOWS FORMS CONTROLS

After you add pictures to the ImageList
control, create a TabControl. Select its
ImageList property, click the drop-down
arrow on the right, and select the ImageList
control that you created previously. Next,
select the TabControl’s TabPages property,
and click the ellipsis on the right to see the
dialog box shown in Figure 8-5.

Use the Add button to add tab pages to the
control. To set a tab’s image, select a tab
page, click its Imagelndex property, click the
drop-down arrow to the right, and pick

the number of the image in the ImageList
that you want to use for this tab.

Some properties even contain a collection of
objects, each of which contains a collection
of objects. For example, the ListView
control has an Items property that is a
collection of items. Each item is an object
that has a Subltems property, which is itself
a collection. When you display the ListView
control as a list with details, an object in
the Items collection represents a row in the
view and its Subltems values represent

the secondary values in the row.

To set these values at design time, select the
ListView control and click the ellipsis to
the right of its Items property in the
Properties window. Create an item in the
editor, and click the ellipsis to the right of
the item’s Subltems property.

Images Collection Editor ER
Members: Task.bmp properties:
0 Alertsbmp
1 Audiobmp
2|0 beok_open.brnp HorizantalResoluti 71.0836
3 Ervelope.bmp i Todkehs
4 Refresh.bimp AN e
D Tosk bro b PhysicalDimension 16, 16
PiscelFarmst Format2bppRgb
RawFarmat Brop
b Size 16,16
VerticalResolution 71,9836
Add [[ Bemowe

FIGURE 8-4: This dialog box lets you load images into an
Imagelist control at design time.

TabPage Collection Editor (=
Mermbers: pagedlarms properties:
0| pageTasks il =
: Sound 4 Layout A
page .oun ¢ AutoScroll False
3| pagelLibrary
b AutoScrolMargir 0,0
4| pageRefresh
b AutoScrolMinSiz 0,0
b Margin 3,333
b Padding 3,2,3,2
b Size 348,217
4 Misc
Imagelndex 0 [v]
ImageKey [] tnone =
et ‘ ‘ p— ToolTipText .

FIGURE 8-5: This dialog box lets you edit a TabControl’s

tab pages.

Other complicated properties provide similarly complex editors. Although they may implement
involved relationships among various controls and components, they are usually easy enough to

figure out with a little experimentation.

Properties at Run Time

Visual Basic lets you set most control properties at design time, but often you will need to get and
modify property values at run time. For example, you might need to change a label’s text to tell the
user what is happening, disable a button because it is not allowed at a particular moment, or read

the value selected by the user from a list.

As far as your code is concerned, a property is just like any other public variable defined by an
object. You get or set a property by using the name of the control, followed by a dot, followed by



Properties | 105

the name of the property. For example, the following code examines the text in the TextBox
named txtPath. If the text doesn’t end with a / character, the code adds one. This code both reads
and sets the Text property:

If Not txtPath.Text.EndsWith("/") Then txtPath.Text &= "/"

If a property contains a reference to an object, you can use that object’s properties and methods in
your code. The following code displays a message box indicating whether the txtPath control’s font
is bold. It examines the TextBox control’s Font property. That property returns a reference to a Font
object that has a Bold property.

If txtPath.Font.Bold Then
MessageBox.Show ("Bold")
Else
MessageBox.Show ("Not Bold")
End If

FINALIZED FONTS

A Font object’s properties are read-only, so the code cannot set the value of txtPath
.Font.Bold. To change the TextBox control’s font, the code would need to create a
new font as in the statement:

txtPath.Font = New Font (txtPath.Font, FontStyle.Bold)

This code passes the Font object’s constructor a copy of the TextBox control’s
current font to use as a template, and a value indicating that the new font should

be bold.

If a property represents a collection or array, you can loop through or iterate over the property just
as if it were declared as a normal collection or array. The following code lists the items the user has
selected in the ListBox control named IstChoices:

For Each selected_item As Object In lstChoices.SelectedItems ()
Debug.WriteLine (selected_item.ToString())
Next selected_item

A few properties are read-only at run time, so your code can examine them but not change their
values. For example, a Panel’s Controls property returns a collection holding references to the
controls inside the Panel. This property is read-only at run time so you cannot set it equal to a
new collection. (The collection provides methods for adding and removing controls so you don’t
really need to replace the whole collection; you can change the controls that it contains instead.)

Note also that at design time, this collection doesn’t appear in the Properties window. Instead of
explicitly working with the collection, you add and remove controls interactively by moving them in
and out of the Panel control on the form.



106

| CHAPTER 8 USING WINDOWS FORMS CONTROLS

A control’s Bottom property is also read-only and not shown in the Properties window. It represents
the distance between the top of the control’s container and the control’s bottom edge. This value

is really just the control’s Top property plus its Height property (control.Bottom = control.Top +
control.Height), so you can modify it using those properties instead of setting the Bottom

property directly.

THE ELUSIVE WRITE-ONLY PROPERTY

In theory, a property can also be write-only at run time. Such a property is really
more like a subroutine than a property because it just passes a value to the control,
so most controls use a subroutine instead. In practice, read/write properties are
the norm, read-only properties are uncommon, and write-only properties are

extremely rare.

Useful Control Properties

This section describes some of the most useful properties provided by the Control class.
Appendix A, “Useful Control Properties, Methods, and Events,” summarizes these and other

Control properties for quick reference.

All controls (including the Form control) inherit directly or indirectly from the Control class. That
means they inherit the Control class’s properties, methods, and events (unless they take explicit

action to override the Control class’s behavior).

Although these properties are available to all controls that inherit from the Control class, many are

considered advanced, so they are not shown

by the IntelliSense pop-up’s Common tab. For
example, a program is intended to set a control’s
position by using its Location property not its
Left and Top properties, so Location is in the
Common tab whereas Left and Top are only in
the Advanced tab.

Figure 8-6 shows the Common tab on the
IntelliSense pop-up for a Label control. It shows
the Location property but not the Left property.
If you click the All tab, you can see Left and the
other advanced properties.

When you type the control’s name and enough
of the string Left to differentiate it from the
Location property (in this case “IblDirectory
.Le”), the pop-up automatically switches to show

“ WindowsSpplicationd - Form1ab®

4

£ (Form Bvents)
1 ElPublic €lass Forml

2 ' Set the initial directory.

3 B Private Sub Forml_Load(sender As Object, e As Ever

- 1blDirectory.|

5

6

- # Load

> [k 4

End Sub

Hid o
End Class 2 e

F# Image

& Imagelist

& |sHandleCreated

*~

& MaximumSize E'
& MinimumSize

& Name

& Parent ~

Cemmon | All

w00 -|¢ [ | >

FIGURE 8-6: The Location property is on the
IntelliSense Common tab but the Left property is not.



Properties | 107

a smaller version of the IntelliSense pop-up listing only properties that contain “Le” such as Left,
RightToLeft, and TopLevelControl.

Many of the Control class’s properties are straightforward, but a few deserve special attention.
The following sections describe some of the more confusing properties in greater detail.

Anchor

The Anchor property allows a control to automatically resize itself when its container is resized.
Anchor determines which of the control’s edges should remain a fixed distance from the
corresponding edges of the container.

Normally a control’s Anchor property is set to Top, Left. That means the control’s top and

left positions remain fixed when the container resizes. If the control’s upper-left corner is at the
point (8, 16) initially, it remains at the position (8, 16) when you resize the container. This is
the normal control behavior, and it makes the control appear fixed on the container.

Now suppose that you set a control’s Anchor property to Top, Right, and you place the control in
the container’s upper-right corner. When you resize the container, the control moves, so it remains
in the upper-right corner.

If you set two opposite Anchor values, the control resizes itself to satisfy them both. For example,
suppose that you make a button that starts 8 pixels from its container’s left, right, and top edges.
Then suppose that you set the control’s Anchor property to Top, Left, Right. When you resize the
container, the control resizes itself so that it is always 8 pixels from the container’s left, right, and
top edges.

In a more common scenario, many forms have Label controls on the left with Anchor set to Top,
Left so they remain fixed on the form. On the right, the form holds TextBoxes and other controls
with Anchor set to Top, Left, Right, so they resize themselves to take advantage of the resizing
form’s new width.

Similarly, you can make controls that stretch vertically as the form resizes. For example, if you set
a ListBox control’s Anchor property to Top, Left, Bottom, the control stretches vertically to take
advantage of the form’s height and display as much of its list of items as possible.

If you do not provide any Anchor value for either the vertical or the horizontal directions, the control
anchors its center to the container’s center. For example, suppose you position a Button control in
the bottom middle of the form and you set its Anchor property to Bottom. Because you placed the
control in the middle of the form, the control’s center coincides with the form’s center. When you
resize the form, the control moves so it remains centered horizontally.

If you place other controls on either side of the centered one, they will all move so they remain
together centered as a group as the form resizes. You may want to experiment with this property to
see the effect.

At run time, you can set a control’s Anchor property to AnchorStyles.None or to a Boolean
combination of the values AnchorStyles.Top, AnchorStyles.Bottom, AnchorStyles.Left, and
AnchorStyles.Right. For example, the example program AnchorButton, available for download on



108

| CHAPTER8 USING WINDOWS FORMS CONTROLS

the book’s website, uses the following code to move the btnAnchored control to the form’s
lower-right corner and set its Anchor property to Bottom, Right, so it stays there:

Private Sub Forml_Load() Handles MyBase.Load
btnAnchored.Location = New Point (
Me.ClientSize.Width - btnAnchored.Width,
Me.ClientSize.Height - btnAnchored.Height)
btnAnchored.Anchor = AnchorStyles.Bottom Or AnchorStyles.Right
End Sub

Dock

The Dock property determines whether a control attaches itself to one or more of its container’s
sides. For example, if you set a control’s Dock property to Top, the control docks to the top of its
container so it fills the container from left to right and is flush with the top of the container. If

the container is resized, the control remains at the top, keeps its height, and resizes itself to fill the
container’s width. This is how a typical toolbar behaves. The effect is similar to placing the control
at the top of the container so that it fills the container’s width and then setting its Anchor property
to Top, Left, Right.

You can set a control’s Dock property to Top, Bottom, Left, Right, Fill, or None. The value Fill
makes the control dock to all of its container’s remaining interior space. If it is the only control in
the container, then it fills the whole container.

If the container holds more than one control with Dock set to a value other than None, the controls
are arranged according to their stacking order (also called the Z-order). The control that is first

in the stacking order (the one that would normally be drawn first at the back) is positioned

first using its Dock value. The control that comes next in the stacking order is arranged second in
the remaining space, and so on until all of the controls are positioned.

Figure 8-7 shows example program Docking, which is available for download on the book’s website.
It contains four TextBoxes with Dock set to different values. The first in the stacking order has
Dock set to Left, so it occupies the left edge of the form. The next control has Dock set to Top, so

it occupies the top edge of the form’s remaining area. The third control has Dock set to Right, so it
occupies the right edge of the form’s remaining area. Finally, the last control has Dock set to Fill, so
it fills the rest of the form.

Controls docked to an edge resize to fill the container in one dimension.
For example, a control with Dock set to Top fills whatever width the
H : - :JIIII
container has available. A control with Dock set to Fill resizes to fill all of S
the form’s available space.

Left Top

The Dock property does not arrange controls very intelligently when you
resize the container. For example, suppose that you have two controls,
one above the other. The first has Dock set to Top and the second has
Dock set to Fill. You can arrange the controls so that they evenly divide
the form vertically. When you make the form taller, however, the second . "\ arranged
control, with Dock set to Fill, takes up all of the new space, and the according to their stack-
other control keeps its original size. ing order.

Fil Fiight

FIGURE 8-7: Docked



Properties | 109

You cannot use the Dock or Anchor properties to make controls divide a form evenly when it is
resized, but you can do that with a TableLayoutPanel control. For example, to make two TextBoxes
divide a form horizontally, create TableLayoutPanel and dock it to fill the form. Give the control
one row and two columns. Edit the Columns collection so each column is sized by percentage and
the percent value is 50 percent. (This is the default for a new TableLayoutPanel so you don’t need to
change anything.) Now add the two TextBoxes to the TableLayoutPanel and dock them so they fill
the two cells. Now when the user resizes the form, the TableLayoutPanel resizes, its columns

divide the available space evenly, the TextBoxes resize to fill the columns.

Example program UseTableLayoutPanel, which is available for download on the book’s website,
demonstrates this method.

You can also use a SplitContainer to divide a form. The user can drag the divider between the two
panels to adjust the size allocated to each.

Position and Size Properties

Controls contain many position and size properties, and the differences among them can be
confusing. Some of the more bewildering aspects of controls are client area, non-client area, and
display area.

A control’s client area is the area inside the control where you can draw things or place other
controls. A control’s non-client area is everything else. In a typical form, the borders and title bar
are the non-client area. The client area is the space inside the borders and below the title bar where
you can place controls or draw graphics.

MENUS AND CLIENT AREA

A form’s menus can make the client and non-client areas a bit confusing. Logically,
you might think of the menus as part of the non-client area because you normally
place controls below them. Nevertheless, the menus are themselves controls and
you can even place other controls above or below the menus (although that would
be very strange and confusing to the user), so they are really contained in the
client area.

A control’s display area is the client area minus any internal decoration. For example, a GroupBox
displays an internal border and a title. Although you can place controls over these, you normally
wouldn’t. The display area contains the space inside the GroupBox’s borders and below the

space where the title sits.

The following table summarizes properties related to the control’s size and position.



110 | CHAPTER 8 USING WINDOWS FORMS CONTROLS

PROPERTY DATA TYPE READ/WRITE PURPOSE

Bounds Rectangle Read/Write The control’s size and position within its
container including non-client areas.

ClientRectangle Rectangle Read The size and position of the client area within
the control.
ClientSize Size Read/Write The size of the client area. If you set this value,

the control adjusts its size to make room for the
non-client area, while giving you this client size.

DisplayRectangle Rectangle Read The size and position of the area within the
control where you would normally draw or
place other controls.

Location Point Read/Write The position of the control’s upper-left corner
within its container.

Size Point Read/Write The control’s size including non-client areas.
Left, Top, Width, Integer Read/Write The control’s size and position within its
Height container including non-client areas.
Bottom, Right Integer Read The position of the control’s lower and right

edges within its container.

METHODS

A method executes code associated with a control. The method can be a function that returns a
value or a subroutine that does something without returning a value.

Because methods execute code, you cannot invoke them at design time. You can only invoke them
by using code at run time.

Appendix A summarizes the Control class’s most useful methods. Controls that inherit from the
Control class also inherit these methods unless they have overridden the Control class’s behavior.

EVENTS

A control or other object raises an event to let the program know about some change in
circumstances. Sometimes raising an event is also called firing the event. Specific control classes
provide events that are relevant to their special purposes. For example, the Button control provides a
Click event to let the program know when the user clicks the button.

The program responds to an event by executing code in an event handler that catches the event
and takes whatever action is appropriate. Each event defines its own event handler format and
determines the parameters that the event handler will receive. Often, these parameters give
additional information about the event.



Events | 111

For example, when part of the form is covered and exposed, the form raises its Paint event. The Paint
event handler takes as a parameter an object of type PaintEventArgs named e. That object’s Graphics
property is a reference to a Graphics object that the program can use to redraw the form’s contents.

Some event handlers take parameters that are used to send information about the event back to

the object that raised it. For example, the Form class’s FormClosing event handler has a parameter
of type FormClosingEventArgs. That parameter is an object that has a property named Cancel. If

the program sets Cancel to True, the Form cancels the FormClosing event and remains open. For
example, the event handler can verify that the data entered by the user was properly formatted. If the
values don’t make sense, the program can display an error message and keep the form open.

Although many of a control’s most useful events are specific to the control type, controls do inherit
some common events from the Control class. Appendix A summarizes the Control class’s most
important events. Controls that inherit from the Control class also inherit these events unless they
have overridden the Control class’s behavior.

Creating Event Handlers at Design Time

You can create an event handler at design time in a couple of ways. If you open a form in the
Windows Forms Designer and double-click a control, the code editor opens and displays the control’s
default event handler. For example, a TextBox control opens its TextChanged event handler, a Button
control opens its Click event handler, and the form itself opens its Load event handler.

To create some other non-default event handler for a control, select the control and then click the
Properties window’s Events button (which looks like a lightning bolt). This makes the Properties
window list the control’s most commonly used
events. If you have defined event handlers already,

. " = B &
possibly for other controls, you can select them D UseTableLaoutPanel - Fort v
from the events’ drop-down lists. Double-click an : z

5 h dl @, tatleft ~ BIE (Declarations) I
event’s entry to create a new event handler. T Creni T o [ T .
2
. . £ AcceptsTabChanged -
To create event handlers inside the code editor, ] (od o E - E
open the code window, select the control from the # BindingContextChanged
. ¥ BorderStyleCh d

left drop-down list, and then select an event from i

. ) ) | ausesWalidationChanged
the right drop-down list, as shown in Figure 8-8. 5 Changelicues
To create an event handler for the form itself, select : 3‘“6 -

IEntaIZe nge
“(Form1 Events)” from the left drop-down and then O e
select an event from the right drop-down. # ContextifenuStripChanged
# Controlfdded
The code window creates an event handler : E”""”'ciem”vzd
1 a4 - ursarChange =

with the correct parameters and return value. L -
For example, the following code shows an empty FIGURE 8-8: To create an event handler in the code
TextBox control’s Click event handler. Now you window, select a control from the left drop-down,
just need to fill in the code that you want to and then select an event from the right drop-down.

execute when the event occurs.

Private Sub txtLeft_Click(sender As Object, e As EventArgs) Handles txtLeft.Click

End Sub



112 | CHAPTERS8 USING WINDOWS FORMS CONTROLS

RELAX

Visual Basic supports relaxed delegates, which allow you to omit the parameters
from the event handler’s declaration if you don’t need to use them. Simply create the
event handler as usual and then delete the parameters.

To make code easier to read, this book omits parameters wherever they are not
needed. For example, the following code shows a relaxed version of the previous
Click event handler:

Private Sub txtLeft_Click() Handles txtLeft.Click

End Sub

The section “Creating Controls” earlier in this chapter explains how you can use code to add and
remove event handlers at run time.

Validation Events

Data validation is an important part of many applications. Visual Basic provides two events to make
validating data easier: Validating and Validated. The following sections describe three approaches to
using those events to validate data.

Integrated Validation

The Validating event fires when the code should validate a control’s data. This happens when a
control has the input focus and the form tries to close, or when focus moves to another control that
has its CausesValidation property set to True. Integrated validation uses the Validating event to
perform all validation.

The Validating event handler can verify
that the data in a control has a legal value and take

appropriate action if it doesn’t. For example, the = IntegratedValidation | = [ = [
IntegratedValidation example program, which is Name: [Fiod |

available for download, is shown in Figure 8-9. Each Stest: [Stophers |

of the program’s TextBoxes has a Validating event Oy | I

handler that requires its value to be non-blank State: | [y
before the user can move to another control. In 26 | |

Figure 8-9 I entered the Name and Street values,

and then tried to tab past the City field. The

program used an ErrorProvider component named FIGURE 8-9: The IntegratedValidation example

erroMissingData to display an error indicator beside  rogram displays an error indicator next to a
the City field and prevented me from moving to a TextBox if the user tries to leave that control
new control. without entering a value.



Events | 113

The following code shows the program’s Validating event handler. Notice that the Handles clause
lists all five TextBoxes’ Validating events so this event handler catches the Validating event for all

five controls.

' Verify that this field is not blank.
Private Sub txtValidating(sender As Object,
e As System.ComponentModel.CancelEventArgs) Handles _
txtName.Validating, txtStreet.Validating, txtCity.Validating,
txtState.Validating, txtZip.Validating
' Convert sender into a TextBox.
Dim txt As TextBox = DirectCast (sender, TextBox)

' See if it's blank.

If (txt.Text.Length > 0) Then
' It's not blank. Clear any error.
errMissingData.SetError (txt, "")

Else
' It's blank. Show an error.
errMissingData.SetError (txt, "This field is required.")

' Do not allow focus to leave the control.
e.Cancel = True
End If
End Sub

The event handler receives a reference to the control that raised the event in its sender parameter. The
code uses DirectCast to convert that generic Object into a TextBox object. It then checks whether

the TextBox’s value is blank. If the text is non-blank, the code calls the ErrorProvider’s SetError
method to clear any error that was previously set for the TextBox. If the TextBox’s value is blank, the
code uses the ErrorProvider to display an error indicator. It then sets e.Cancel to prevent focus from

leaving the TextBox.

Deferred Validation

By keeping focus in the control that contains the error, the previous approach forces the user to fix
problems as soon as possible. In some applications, it may be better to let the user continue filling
out other fields and fix the problems later. For example, a user who is touch-typing data into several
fields may not look up to see the error until much later, after entering a series of invalid values in the
first field and wasting a lot of time.

The DeferredValidation example program, which is available for download, uses the following code
to let the user continue entering values in other fields and fix errors later:

' Verify that this field is not blank.
Private Sub txtValidating(sender As Object,
e As System.ComponentModel.CancelEventArgs) Handles _
txtName.Validating, txtStreet.Validating, txtCity.Validating,
txtState.Validating, txtZip.Validating
' Convert sender into a TextBox.
Dim txt As TextBox = DirectCast (sender, TextBox)

' See if it's blank.
If (txt.Text.Length > 0) Then



114 | CHAPTERS8 USING WINDOWS FORMS CONTROLS

' It's not blank. Clear any error.
errMissingData.SetError (txt, "")
Else
' It's blank. Show an error.
errMissingData.SetError (txt, "This field is required.")
End If
End Sub

' See if any field is blank.
Private Sub Forml_FormClosing (sender As Object,
e As FormClosingEventArgs) Handles Me.FormClosing
If (txtName.Text.Length = 0) Then e.Cancel = True

If (txtStreet.Text.Length = 0) Then e.Cancel = True
If (txtCity.Text.Length = 0) Then e.Cancel = True
If (txtState.Text.Length = 0) Then e.Cancel = True
If (txtZip.Text.Length = 0) Then e.Cancel = True

End Sub

The Validating event handler is very similar to the one used by the IntegratedValidation program. If
a value is missing, it still displays an error message but this version doesn’t set e.Cancel to True so it
doesn’t prevent the user from moving to the next field.

When the user tries to close the form, the FormClosing event handler rechecks all of the TextBoxes
and if any have blank values it sets e.Cancel to True to prevent the form from closing. (A more
elaborate program might also display an error message telling the user which TextBox had an
invalid value. It could even use that TextBox’s Focus method to set focus to that control so the user
can fix the problem more easily.)

VALIDATING BUTTONS

If the form is a dialog box, you could validate the form’s data in an OK button’s
Click event handler instead of in the form’s FormClosing event.

Similarly, you may want to validate the data when the user clicks some other
button. On a New Order form, you might validate all of the fields when the user
clicks the Submit button.

SUMMARY

This chapter described controls, components, and objects in general terms. It told how to create
controls and how to use their properties, methods, and events. It spent some extra time explaining
two common data-validation strategies.

All controls inherit directly or indirectly from the Control class so any properties, methods, and
events defined by the Control class are inherited by those other controls. The Form class also
inherits from the Control class so it also inherits all of that class’s properties, methods, and events.
In some sense a Form is just another control but it does have special needs and provides special
features that are not shared with other controls. To help you use these features effectively,

Chapter 9, “Windows Forms,” describes the Form class in greater detail.



Windows Forms

WHAT’S IN THIS CHAPTER

About, splash, and login forms
Cursors and icons

Overriding WndProc

Y VYV VY

Building wizards

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: / /www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

> CustomDialog
> Splash

> UseWaitCursor
>

ViewWindowsMessages

USING FORMS

The Visual Basic Windows Form class is a descendant of the Control class. The inheritance trail
is Control & ScrollableControl = ContainerControl &> Form. That means a form is a type of
control. Except where overridden, it inherits the properties, methods, and events defined by the
Control class. In many ways, a form is just another kind of control like a TextBox or ComboBox.

At the same time, Forms have their own special features that set them apart from other kinds
of controls. You usually place controls inside a form, but you rarely place a form inside another
form. Forms also play a very central role in most Visual Basic applications. They are the largest
graphical unit with which the user interacts directly. The user can minimize, restore, maximize,
and close forms. They package the content provided by the other controls so that the user can
manage them in a meaningful way.


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

116 | CHAPTER9 WINDOWS FORMS

This chapter describes some of the special features of Windows Forms not provided by other
objects. It focuses on different ways that typical applications use forms. For example, it explains
how to create shaped forms, build About dialog boxes, and set a form’s icon.

The chapter covers the Form object’s properties, methods, and events only in passing. For a detailed
description of specific Form properties, methods, and events, see Appendix J, “Form Objects.”

TRANSPARENCY

The Form object provides a couple of properties that you can use to make a form partially trans-
parent. Opacity determines the form’s opaqueness. At design time, the Properties window shows
Opacity as a percentage where 100 percent means the form is completely opaque, and 0 percent
means that the form is completely transparent. At run time, your program must treat Opacity as a
floating-point value between 0 (completely transparent) and 1 (completely opaque).

A program can use an Opacity value less than 100 percent to let the user see what lies below the
form. For example, you might build a partially transparent Search dialog box so the user could see
the underlying document as a search progresses.

If Opacity is greater than 0 percent, the form behaves normally aside from its ghostlike appearance.
The user can click it, interact with its controls, minimize and maximize it, and grab its borders to
resize it.

If Opacity is 0 percent, the form is completely transparent and the user can interact with the

form only through the keyboard. For example, the user can press the Tab key to move between

the form’s controls, type text, press the Spacebar to invoke a button that has the focus, and press
Enter or Esc to fire the form’s Accept and Cancel buttons; however, the form and its controls will
not detect mouse clicks. The user also cannot see the form (obviously), so figuring out which control
has the focus can be next to impossible.

TOO MUCH TRANSLUCENCY

Most applications don’t need translucent forms. A well-designed application allows
the user to move windows around so they don’t obscure each other. Translucent
forms can be confusing, may create extra confusion for users with special needs,
and incur a performance penalty. They’re an interesting special effect but are not
generally necessary.

If Opacity is 2 percent, the form is still invisible, but it recognizes mouse clicks, so it can obscure the
windows below.

A second property that helps determine the form’s transparency is TransparencyKey. This property
is a color that tells Visual Basic which parts of the form should be completely transparent. When the
form is rendered, any areas with this color as their background colors are not drawn.



About, Splash, and Login Forms | 117

The most common use for TransparencyKey is to create shaped forms or skins. Set the form’s
FormBorderStyle property to None to remove the borders, title bar, and system buttons. Set the
form’s BackColor and TransparencyKey properties to a color that you don’t want to appear on
the form. Then draw the shape you want the form to have in some other color.

Figure 9-1 shows the Smiley example program, which has a form shaped like a smiley face. The
form’s TransparencyKey and BackColor properties are both red so the form is transparent.

The Paint event handler draws the image on the form. These sorts of forms make interesting splash
screens and About dialog boxes, although they are often too distracting for use in a program’s main
user interface.

If you use Opacity and TransparencyKey together, pixels that match & Sub Formi_Paint{sender As Object, d
TransparencyKey are completely removed and any remaining pixels :
are shown according to the Opacity value.

ABOUT, SPLASH, AND LOGIN FORMS

The TransparencyKey and Opacity properties enable you to
build forms with unusual and interesting shapes. Although these
would be distracting if used for the bulk of an application, they
can add a little interest to About dialog boxes, splash screens,

Dim eye width™& eger = ClientSi

and login forms. FIGURE 9-1: The

) ) o TransparencyKey property
These three kinds of forms have quite a bit in common. Usually, lets you make shaped forms
they display the application’s name, version number, copyright in such as this one.

formation, trademarks, and so forth. They may also display a serial
number, the name of the registered user, and a website or phone number where the user can get
customer support.

The main difference between these forms is in how the user dismisses them. A splash screen auto-
matically disappears after a few seconds. The user closes an About dialog box by clicking an OK
button. A login form closes when the user enters a valid username and password and then clicks
OK. It also closes if the user clicks Cancel, although then it doesn’t display the main application.

REMOVING THE SPLASH

Sometimes a splash screen is displayed while the application initializes, loads needed
data, and otherwise prepares itself for work. In that case, the application removes
the splash screen after initialization is complete or a few seconds have passed,
whichever comes second.

The forms also differ slightly in the controls they contain. A splash screen needs a Timer to deter-
mine when it is time to close the form. An About dialog box needs a single OK button. A login form
needs TextBoxes to hold the username and password, two Labels to identify them, and OK and
Cancel buttons.



118

| CHAPTER9 WINDOWS FORMS

Splash screens and login forms greet the user, so there’s no need to provide both in the same appli-
cation. However, that still leaves you with the task of building two nearly identical forms: splash
and About, or login and About. With a little planning, you can use a single form as a splash screen,
About dialog box, and login form. At run time, you can add whichever set of controls is appropriate
to the form’s use. Alternatively, you can build the form with all three sets of controls at design time
and then hide the ones you don’t need for a particular purpose.

The following code shows how example program Splash, which is available for download on the
book’s website, displays a form either as a splash screen or as an About dialog box:

' Display as a splash screen.
Public Sub ShowSplash()
Me.tmrUnload.Enabled = True ' The Timer closes the dialog.

Me.TopMost = True ' Keep on top of main form.
Me.Show () ' Show non-modally.
End Sub

Unload the splash screen.

Private Sub tmrUnload_Tick() Handles tmrUnload.Tick
Me.Close()

End Sub

' Display as an About dialog.
Public Sub ShowAbout ()

btnOK.Visible = True ' The OK button closes the dialog.
Me.ShowDialog () ' Show modally.
End Sub

' Close the About dialog.

Private Sub btnOK_Click() Handles btnOK.Click
Me.Close()

End Sub

The form contains both a Timer named tmrUnload and an OK button named btnAboutOk. The
form’s ShowSplash method enables the tmrUnload control and calls Show to display the form.
The Timer’s Interval property was set to 3,000 milliseconds at design time, so its Tick event fires
after three seconds and closes the form.

The ShowAbout method makes the btnOk button visible and calls ShowDialog to display the form
modally. A modal form holds the application’s focus so the user cannot interact with other parts
of the application until the modal form is dismissed. When the user clicks the button, the button’s
Click event handler closes the form.

MOUSE CURSORS

A form’s Cursor property determines the kind of mouse cursor the form displays. The Form class
inherits the Cursor property from the Control class, so other controls have a Cursor property, too. If
you want to give a particular control a special cursor, you can set its Cursor property. For example,



Mouse Cursors | 119

if you use a Label control as a hyperlink, you could make it display a pointing hand similar to those
displayed by web browsers to let the user know that the control is a hyperlink.

The Cursors class provides several standard cursors as shared values. For example, the following
statement sets a form’s cursor to the system default cursor (normally an arrow pointing up and to

the left):

Me.Cursor = Cursors.Default

Figure 9-2 shows example program ShowCursors, which is available for download on the book’s
website, displaying the names and images of the standard cursors defined by the Cursors class in
Windows 8. In other versions of Windows, some of the cursors may appear differently.

o ShowCursors - [e[5]
AppStarting %3 |Beam I PanMorth i SizeMNE 5w g"m
Arrow b Mo @ Panhs v SizeM5 @

Cross | NoMove2D ‘3' PanSE » SizeNw/SE W&E
Default NaotdoveH Pan5 outh SizewE =
efaul % otoveHoriz PRY a5 oul L, ize
Hand @ Mokoveiiert -~ PanS'w! % Upéirow ‘E
-
Help %? PanEast .’ Pan'west ‘. W5 plit +
HSplit 'I‘ PanNE N Sizeall G%ED WiaitCurzor O

FIGURE 9-2: The Cursors class defines standard cursors.

Unless a control explicitly sets its own cursor, it inherits the cursor of its container. If the control is
placed directly on the form, it displays whatever cursor the form is currently displaying. That means
you can set the cursor for a form and all of its controls in a single step by setting the form’s cursor.

Similarly, if a control is contained within a GroupBox, Panel, or other container control, it inherits
the container’s cursor. You can set the cursor for all the controls within a container by setting the
cursor for the container.

One common use for cursors is to give the user a hint when the application is busy. The program
sets its cursor to Cursors.WaitCursor when it begins a long task and then sets it back to Cursors
.Default when it finishes. The UseWaitCursor example program, which is available for download on
the book’s website, uses the following code to display a wait cursor when you click its button:

Me.Cursor = Cursors.WaitCursor
' Perform the long task.

Me.Cursor = Cursors.Default

If the program displays more than one form, it must set the cursors for each form individually.
It can set the cursors manually, or it can loop through the My.Application.OpenForms collection.



120

CHAPTER 9 WINDOWS FORMS

The UseMultipleWaitCursors example program, which is available for download on the book’s web-
site, uses the following SetAllCursors subroutine to display a wait cursor on each of its forms when
you click its button:

Private Sub SetAllCursors (the_cursor As Cursor)
For Each frm As Form In My.Application.OpenForms
frm.Cursor = the_cursor
Next frm
End Sub

The following code shows how the program uses the SetAllCursors subroutine while performing a
long task:

SetAllCursors (Cursors.WaitCursor)
' Perform the long task.

SetAllCursors (Cursors.Default)

To use a custom cursor, create a new Cursor object using a file or resource containing cursor or icon
data. Then assign the new object to the form’s Cursor property. The SmileCursor example program,
which is available for download on the book’s website, uses the following code to display a custom
cursor:

Me.Cursor = New Cursor (My.Resources.SmileIcon.Handle)

ICONS

Each form in a Visual Basic application has its own icon. A form’s icon is displayed on the left side
of its title bar, in the system’s taskbar, and by applications such as the Task Manager and Windows
Explorer.

Some of these applications display icons at different sizes. For example, Windows Explorer uses
32 x 32 pixel icons for its Large Icons view and 16 x 16 pixel icons for its other views. Toolbar
icons come in 16 x 16, 24 x 24, and 32 x 32 pixel sizes. Windows uses still other sizes for different
purposes. For more information on various pixel sizes used by Windows Vista, see http://msdn2
.microsoft.com/aa511280.aspx.

If an icon file doesn’t provide whatever size Windows needs, the system shrinks or enlarges an exist-
ing image to fit. That may produce an ugly result. To get the best appearance, you should ensure
that icon files include at least 16 x 16 and 32 x 32 pixel sizes. Depending on the characteristics of
your system, you may also want to include other sizes.

The integrated Visual Studio icon editor enables you to define images for various color models
ranging from monochrome to 24-bit color, and sizes ranging from 16 x 16 to 256 x 256 pixels. It
even lets you build icon images with custom sizes such as 32 x 48 pixels, although it is unlikely that
Windows will need to use those.

To use this editor, open Solution Explorer and double-click the My Project entry to open the Project
Properties window. Select the Resources tab, open the Add Resource drop-down, and select Add


http://msdn2.microsoft.com/aa511280.aspx
http://msdn2.microsoft.com/aa511280.aspx

Icons | 121

New Icon. Use the drawing tools to build the icons. Right-click the icon and use the Current Icon
Image Types submenu to work with icons of different sizes. Right-click and select New Image type
to add new image sizes or color formats.

ICON-A-THON

The integrated icon editor works and is free but it’s fairly cuambersome. Many
developers use other icon editors such as IconForge (http: //www. favicon.com/
iconforge.html), IconEdit (http: //www.iconedit.com), IconEdit 2 (no relation
between this and IconEdit, http://www.iconedit2.com), and RealWorld Cursor
Editor (http: //www.rw-designer.com/cursor-maker). Note that I don’t endorse
one over the others.

To assign an icon to a form at design time, open the Windows Forms Designer and select the Icon
property in the Properties window. Click the ellipsis button on the right and select the icon file that
you want to use.

To assign an icon to a form at run time, set the form’s Icon property to an Icon object. The
following code sets the form’s Icon property to an icon resource named MainFormIcon:

Me.Icon = My.Resources.MainFormIcon

Some applications change their icons to provide an indication of their status. For example, a
process-monitoring program might turn its icon red when it detects an error. It could even switch
back and forth between two icons to make the icon blink in the taskbar.

Application Icons

Windows displays a form’s icon in the form’s title bar, in the taskbar, and in the Task Manager.
Applications (such as Windows Explorer) that look at the application as a whole rather than at its
individual forms display an icon assigned to the application, not to a particular form. To set the
application’s icon, open Solution Explorer and double-click the My Project entry to open the Project
Properties window. On the Application tab, open the Icon drop-down list, and select the icon file
that you want to use or select <Browse . . . > to look for the file you want to use.

Notification Icons

Visual Basic applications can display one other kind of icon by using the Notifylcon control. This
control can display an icon in the system tray. The system tray (also called the status area) is the
little area holding small icons that is usually placed in the lower-left part of the taskbar.

The control’s Icon property determines the icon that it displays. A typical application will change
this icon to give information about the program’s status. For example, a program that monitors the
system’s load could use its system tray icon to give the user an idea of the current load. Notification
icons are particularly useful for programs that have no user interface or that run in the background
so that the user isn’t usually looking at the program’s forms.


http://www.favicon.com/iconforge.html
http://www.favicon.com/iconforge.html
http://www.iconedit.com
http://www.iconedit2.com
http://www.rw-designer.com/cursor-maker

122

CHAPTER 9 WINDOWS FORMS

Notification icons also often include a context menu that appears when the user right-clicks the
icon. The items in the menu enable the user to control the application. If the program has no other
visible interface, this may be the only way the user can control it.

PROPERTIES ADOPTED BY CHILD CONTROLS

Some properties are adopted by many of the child controls contained in a parent control or in a
form. For example, by default, a Label control uses the same background color as the form that con-
tains it. If you change the form’s BackColor property, its Label controls change to display the same
color. Similarly if a GroupBox contains a Label and you change the GroupBox’s BackColor prop-
erty, its Label changes to match.

Some properties adopted by a form’s controls include BackColor, ContextMenu, Cursor, Enabled,
Font, and ForeColor. Not all controls use all of these properties, however. For example, a TextBox
only matches its form’s Enabled and Font properties.

If you explicitly set one of these properties for a control, its value takes precedence over the form’s
settings. For example, if you set a Label control’s BackColor property to red, the control keeps its
red background even if you change the Form’s BackColor property.

Some of these properties are also not tremendously useful to the Form object itself, but they give
guidance to the form’s controls. For example, a form doesn’t automatically display text on its sur-
face, so it never really uses its Font property. Its Label, TextBox, ComboBox, List, RadioButton,
CheckBox, and many other controls adopt the value of this property, however, so the form’s Font
property serves as a central location to define the font for all of these controls. If you change the
form’s Font property, even at run time, all of the form’s controls change to match. The change
applies to all of the form’s controls, even those contained within GroupBoxes, Panels, and other
container controls.

These properties can also help your application remain consistent both with the controls on the
form and with other parts of the application. For example, the following code draws the string
“Hello World!” on the form whenever the form needs to be repainted. This code explicitly creates
the Comic Sans MS font.

Private Sub Forml_Paint (sender As Object, e As PaintEventArgs) Handles Me.Paint
Using new_font As New Font ("Comic Sans MS", 20)
e.Graphics.DrawString ("Hello World!",
new_font, Brushes.Black, 10, 10)
End Using
End Sub

Rather than making different parts of the program build their own fonts, you can use the forms’
Font properties as shown in the following code. This makes the code simpler and ensures that differ-
ent pieces of code use the same font.

Private Sub Forml_Paint (sender As Object, e As PaintEventArgs) Handles Me.Paint
e.Graphics.DrawString ("Hello World!", Me.Font, Brushes.Black, 10, 100)
End Sub



Overriding WndProc | 123

As a nice bonus, changing the form’s Font property raises a Paint event, so, if the form’s font
changes, this code automatically runs again and redraws the text using the new font.

PROPERTY RESET METHODS

The Form class provides several methods that reset certain property values to their defaults. The most
useful of those methods are ResetBackColor, ResetCursor, ResetFont, ResetForeColor, and ResetText.

If you change one of the corresponding form properties, either at design time or at run time, these
methods restore them to their default values. The default values may vary from system to system,
but currently on my computer BackColor is reset to Control, Cursor is reset to Default, Font is reset
to 8.25-point regular (not bold or italic) Microsoft Sans Serif, ForeColor is reset to ControlText,
and Text is reset to an empty string.

Because the controls on a form adopt many of these properties (all except Text), these methods also
reset the controls on the form.

NOTE Of these methods, IntelliSense only shows ResetText even on its All tab.
You have type them yourself.

OVERRIDING WNDPROC

The Windows operating system sends all sorts of messages to applications that tell them about changes
in the Windows environment. Messages tell forms to draw, move, resize, hide, minimize, close, respond
to changes in the Windows environment, and do just about everything else related to Windows.

All Windows applications have a subroutine tucked away somewhere that responds to those mes-
sages. That routine is traditionally called a WindowProc. A Visual Basic .NET form processes these
messages in a routine named WndProc. You can override that routine to take special actions when
the form receives certain messages.

Example program FixedAspectRatio, which is available on the book’s website, looks for WM _
SIZING messages. When it finds those messages, it adjusts the form’s new width and height so they
always have the same aspect ratio (ratio of height to width).

WNDPROC WARNING

When you override the WndProc method, it is very important that the new method
calls the base class’s version of WndProc as shown in the following statement:

MyBase.WndProc (m)

If the program doesn’t do this, it won’t respond properly to events. For example, the
form won’t be able to draw itself correctly, resize or move itself, or even create itself

properly.



124 | CHAPTER9 WINDOWS FORMS

When you override the WndProc method, you must also figure out what messages to intercept, what
parameters those messages take, and what you can do to affect them safely. One way to learn about
messages is to insert the following WndProc and then perform the action that you want to study
(resizing the form, in this example):

Protected Overrides Sub WndProc (ByRef m As Message)
Debug.WriteLine (m.ToString())
MyBase.WndProc (m)

End Sub

Example program ViewWindowsMessages, which is available for download on the book’s website,
uses this code to display information about the messages it receives.

The following statement shows the result for the WM _SIZING message sent to the form while the
user resizes it. It at least shows the message name (WM _SIZING) and its numeric value (hexadecimal
0x214).

msg=0x214 (WM_SIZING) hwnd=0x30b8c wparam=0x2 lparam=0x590e29c result=0x0

Searching for the message name on the Microsoft website and on other programming sites usu-
ally gives you the other information you need to know (such as what m.WParam and m.LParam
mean).

Note also that the Form class inherits the WndProc subroutine from the Control class, so all other
Windows Forms controls inherit it as well. That means you can override their WndProc routines to
change their behaviors.

For example, the following code shows how the NoCtxMnuTextBox class works. This control is
derived from the TextBox control. Its WndProc subroutine checks for WM_CONTEXTMENU
messages and calls the base class’s WndProc for all other messages. By failing to process the
WM_CONTEXTMENU message, the control prevents itself from displaying the TextBox control’s
normal Copy/Cut/Paste context menu when you right-click it.

Public Class NoCtxMnuTextBox
Inherits System.Windows.Forms.TextBox

Protected Overrides Sub WndProc (ByRef m As Message)
Const WM_CONTEXTMENU As Integer = &H7B

If m.Msg <> WM_CONTEXTMENU Then
MyBase.WndProc (m)
End If
End Sub
End Class

The NoContextMenu example program, which is available for download on the book’s
website, uses similar code to display a text box that does not display a context menu when you
right-click it.



MRU Lists | 125

MRU LISTS

A Most Recently Used list (MRU list) is a series of menu items (usually at the bottom of an applica-
tion’s File menu) that displays the files most recently accessed by the user. If the user clicks one of
these menu items, the program reopens the corresponding file.

By convention, these menu items begin with the accelerator characters 1, 2, 3, and so forth. If you
opened the File menu and pressed 2, for example, the program would reopen the second file in the
MRU list.

When the user opens a new file or saves a file with a new name, that file is placed at the top of the
list. Most applications display up to four items in the MRU list and, if the list ever contains more
items, the oldest are removed.

Most applications remove a file from the MRU list if the application tries to open it and fails. For
example, if the user selects an MRU menu item but the corresponding file has been removed from
the system, the program removes the file’s menu item.

Building an MRU list isn’t too difficult in Visual Basic. The MruList example program, which is
available for download on the book’s website, uses the MruList class to manage its MRU list. This
class manages a menu that you want to use as an MRU list and updates the menu as the user opens
and closes files. For example, if you configure the class to allow four MRU list entries and the user
opens a fifth file, the class removes the oldest entry and adds the new one.

The class saves and restores the MRU list in the system’s Registry. When the user selects a file from the
MRU list, the class raises an event so the main program’s code can open the corresponding file.

The class also provides an Add method that the main program can use to add new files to the MRU
list when the user opens a new file. Download the example and look at its code for more details.

The following code shows how the main MruList program uses the MruList class. This program is
a simple text viewer that lets the user open and view files.

Public Class Forml
Private WithEvents m_MruList As MrulList

' Initialize the MRU list.
Private Sub Forml_ILoad() Handles Me.Load

m_MruList = New MruList ("SdiMruList", mnuFile, 4)
End Sub

' Let the user open a file.
Private Sub mnuFileOpen_Click() Handles mnuFileOpen.Click

If dlgOpen.ShowDialog() = Windows.Forms.DialogResult.OK Then
OpenFile (dlgOpen.FileName)
End If
End Sub

' Open a file selected from the MRU list.
Private Sub m_MruList_OpenFile(file_name As String)
Handles m_MruList.OpenFile



126 | CHAPTER9 WINDOWS FORMS

OpenFile(file_name)
End Sub

' Open a file and add it to the MRU list.

Private Sub OpenFile(file_name As String)
txtContents.Text = File.ReadAll (file_name)
txtContents.Select (0, 0)
m_MruList.Add(file_name)

Me.Text = "[" & New FileInfo(file_name) .Name & "]"

End Sub

End Class

The program declares an MruList variable named m_MruList. It uses the WithEvents keyword so
that it is easy to catch the object’s OpenFile event.

The form’s New event handler initializes the MruList object, passing it the application’s name, the
File menu, and the number of items the MRU list should hold.

When the user selects the File menu’s Open command, the program displays an open file dialog box.
If the user selects a file and clicks OK, the program calls subroutine OpenFile, passing it the name of
the selected file.

If the user selects a file from the MRU list, the m_MruList_OpenFile event handler executes and
calls subroutine OpenFile, passing it the name of the selected file.

Subroutine OpenFile loads the file’s contents into the txtContents TextBox control. It then calls the
MrulList object’s Add method, passing it the file’s name. It finishes by setting the form’s caption to
the file’s name without its directory path.

You could easily convert the MruList class into a component so you could place it directly on the
form. If you give the component ApplicationName, FileMenu, and MaxEntries properties, you can
set those values at design time.

DIALOG BOXES

Using a form as a dialog box is easy. Create the form and give it whatever controls it needs to do its
job. Add one or more buttons to let the user dismiss the dialog box. Many dialog boxes use OK and
Cancel buttons, but you can also use Yes, No, Retry, and others.

You may also want to set the form’s FormBorderStyle property to FixedDialog to make the form
non-resizable, although that’s not mandatory.

Set the form’s AcceptButton property to the button that you want to invoke if the user presses the
Enter key. Set its CancelButton property to the button you want to invoke when the user presses the
Esc key.

The form’s DialogResult property indicates the dialog box’s return value. If the main program dis-
plays the dialog box by using its ShowDialog method, ShowDialog returns the DialogResult value.

The CustomDialog example program, which is available for download on the book’s website,
uses the following code to display a dialog box and react to its result.



Dialog Boxes | 127

Private Sub btnShowDialog_Click() Handles btnShowDialog.Click
Dim dlg As New dlgEmployee

If dlg.ShowDialog() = Windows.Forms.DialogResult.OK Then
MessageBox . Show (
dlg.txtFirstName.Text & " " &
dlg.txtLastName.Text)
Else
MessageBox.Show ("Canceled")
End If
End Sub

This code creates a new instance of the dlgEmployee form and displays it by calling its ShowDialog
method. If the user clicks OK, ShowDialog returns DialogResult.OK and the program displays the
first and last names entered on the dialog box. If the user clicks the Cancel button, ShowDialog
returns DialogResult.Cancel and the program displays the message “Canceled.”

If the user clicks the Cancel button or closes the form by using the system menu (or the little “X”
in the upper-right corner), the form automatically sets its DialogResult property to Cancel and
closes the form.

If the user clicks some other button, your event handler should set DialogResult to an appropriate
value. Setting this value automatically closes the form.

NOTE You can also set a button’s DialogResult property to indicate the value
that the dialog box should return when the user clicks that button. When the
user clicks the button, Visual Basic sets the form’s DialogResult property
automatically.

The following code shows how the dlgEmployee form reacts when the user clicks the OK but-
ton. It checks whether the first and last name TextBox controls contain non-blank values. If either
value is blank, the event handler displays an error message and returns without setting the form’s
DialogResult property. If both values are non-blank, the code sets DialogResult to OK, and
setting DialogResult closes the form.

Private Sub btnOk_Click() Handles btnOk.Click
' Verify that the first name is present.
If txtFirstName.Text.Length = 0 Then

MessageBox . Show (
"Please enter a First Name",
"First Name Required",
MessageBoxButtons.OK,
MessageBoxIcon.Exclamation)

txtFirstName.Select ()

Exit Sub

End If

' Verify that the last name is present.
If txtLastName.Text.Length = 0 Then
MessageBox . Show (
"Please enter a Last Name",



128 |

CHAPTER 9 WINDOWS FORMS

"Last Name Required",
MessageBoxButtons.OK,
MessageBoxIcon.Exclamation)
txtLastName.Select ()
Exit Sub
End If

' Accept the dialog.

Me.DialogResult = Windows.Forms.DialogResult.OK
End Sub

CANCEL WITHOUT EVENTS

Note that the dialog box doesn’t need an event handler for the Cancel button. If you
set the form’s CancelButton property to the button and if the user clicks it, Visual
Basic automatically sets the form’s DialogResult to Cancel and closes the form.

WIZARDS

One common type of dialog box is called a wizard. A wizard

is a form that guides the user through a series of steps to do
something. For example, building a database connection is com-
plicated, so Visual Basic provides a data connection configura-
tion wizard that helps the user enter the correct information for
different kinds of databases. When it finishes, the wizard adds a
connection object to the current form.

Figure 9-3 shows one kind of wizard. The user enters data on
each tab and then moves on to the next one. This wizard asks
the user to enter an employee’s name, identification (Social
Security number and Employee ID), address and phone number,
office location and extension, and privileges.

o New Employee [ [= [

| Identification | Address | Office | Privieges

First Name |agd

Middle [nitial

Last Name |Slephens

FIGURE 9-3: A wizard guides the
user through the steps of some
complicated task.

Man.y tabbed wizards also include Next and = Ee e -[o R
Previous buttons to help you move from one tab
Address

to another.

Street |1 234 Programmer P ‘
When the user has filled in all the fields, Ciy [Bugsvile | [[Cancal
the wizard enables the OK button. When the State w0 v
user clicks the OK or Cancel button, control Zp
returns to the main program, which handles the
result just as it handles any other dialog box. e

Cel
Figure 9-4 shows a different style of wizard.
Instead of tabs, it uses buttons to let the user | Mame | | 1D | [Addiess |
move through pages of fields. The wizard
enables a button only when the user has filled FIGURE 9-4: This wizard uses buttons instead of tabs

in the necessary information on the previous to move through its pages of data.



Summary | 129

page. In Figure 9-4, the Office button is disabled because the user has not filled in all the fields on
the Address page.

The button style is sometimes better at helping the user fill in all of the required fields because the
user must finish filling in one page before moving on to the next. In a tabbed wizard, the user might
leave a required field blank or use an incorrect format (for example, an invalid phone number) on
the first tab and not realize it until clicking the OK button.

SUMMARY

Although forms are just one kind of control, they have some very special characteristics. They form
the basic pieces of an application that sit on the desktop, and they have many properties, methods,
and events that set them apart from other controls. Appendix J provides more information about
form properties, methods, and events.

This chapter described some of the more typical uses of forms. It explained how to build About,
splash, and login forms; manage a form’s mouse cursor and icon; override WndProc to intercept a
form’s Windows messages; and make dialog boxes and wizards. After you master these tasks, you
can build the forms that implement the large-scale pieces of an application.

Chapters 7, 8, and 9 described Windows Forms controls and the Form class. The next three chap-
ters provide corresponding information for Windows Presentation Foundation (WPF) controls and
forms. Chapter 10, “Selecting WPF Controls,” starts by providing an overview of WPF controls
and giving tips on which you might like to use for given purposes, much as Chapter 7 did for
Windows Forms controls.






10

Selecting WPF Controls

WHAT'’S IN THIS CHAPTER

Control Summaries
Containing and arranging controls

Selection controls

Yy Y VY Y

Display and feedback controls

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/remtitle
.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter includes
several examples that demonstrate particularly useful WPF control features. These examples
include the following;:

> DrawingShapes
EllipseClick
FormImage

UseExpander

Y Y VY Y

UseScrollViewer

WPF CONTROLS AND CODE

Windows Presentation Foundation (WPF) provides a whole new method for building user inter-
faces. Although it bears a superficial resemblance to Windows Forms, WPF provides new controls,
a new event architecture, and a new foundation for building and interacting with properties.

WPF also provides tools for separating the user interface from the code behind the interface
so that the two pieces can potentially be built by separate user interface designers and Visual
Basic developers. It includes a new eXtensible Application Markup Language (XAML,


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://wrox.com
http://WROX.COM

132 | CHAPTER10 SELECTING WPF CONTROLS

pronounced “zammel”) that lets you build a user interface by using declarative statements rather
than executable code. XAML lets you determine the size, position, and other properties of the WPF
controls on a form. It lets you define styles that can be shared among many controls, and it lets you
define transformations and animations that affect the controls.

As is the case in Windows Forms applications, controls play a central role in WPF applications.
Different kinds of controls give information to the user (Label, StatusBar, TreeView, ListView,
Image) and organize the information so that it’s easy to understand (Border, StackPanel, DockPanel,
TabControl). They enable the user to enter data (TextBox, TextBlock, ComboBox, PasswordBox),
select options (RadioButton, CheckBox, ListBox), and control the application (Button, Menu, Slider).

To make an application as effective as possible, you should match controls with your application’s
needs. Although many controls may work for a particular task, some controls usually work better
than others. For example, you could display status information by changing a button’s caption, but
that’s not really what buttons do best. A label in a status bar is usually a better way to give the user
status information because the user will expect and understand it. Users generally don’t expect to
see status information in a button with changing text.

This chapter briefly describes the most common WPF controls so you can understand which
controls work best for different purposes. To help you find the controls you need, the sections
later in this chapter group controls by their general function. For example, if you need to display
status to the user, look in the section “Providing Feedback.”

I provide only brief descriptions of the WPF controls in this chapter, and some tips that can help you
decide which control to use for different purposes. The following chapter, “Using WPF Controls,” covers
the controls in much greater detail, describing each control’s most useful properties, methods, and events.

FOR MORE INFORMATION

This chapter and those that follow provide only the briefest glance at WPFE. They
explain enough to get you started, but for greater detail and more in-depth infor-
mation, see a book about WPF such as my book WPF Programmer’s Reference:
Windows Presentation Foundation with C# 2010 and .NET 4.0 (Wrox, Stephens,
2010, http: //www.amazon.com/exec/obidos/ASIN/0470477229 /vbhelper).

CONTROLS OVERVIEW

You can group WPF controls into several categories. Some of these correspond naturally to the pur-
poses of Windows Forms controls. Other categories play a more important role in WPF than they
do in Windows Forms applications.

In particular, WPF controls rely heavily on layout controls that arrange and organize the controls
that they contain. Windows Forms developers often simply arrange controls on a form with fixed


http://www.amazon.com/exec/obidos/ASIN/0470477229/vbhelper

Containing and Arranging Controls | 133

sizes and positions. A WPF application is more likely to arrange the controls in a hierarchy of
StackPanel and Grid controls and let those controls arrange their contents.

The recent proliferation of screen formats makes this idea more important than ever. If you write
programs running on everything from traditional desktop systems to Windows 8 tablets, your pro-
grams will need the ability to rearrange their controls automatically. A smartphone can even switch
from portrait to landscape orientation while a program is running, so the program must respond to
make effective use of the available space. I won’t claim that most applications should be able to run
on a tiny phone screen or a 17” laptop without any changes, but good use of container controls can
simplify some of the changes you’ll need to make.

The following sections describe the main categories of WPF controls. The example programs
for this chapter, which are available on the book’s website, demonstrate many of the controls’
basic uses.

CONCEALED CONTROLS

Not all of the controls described here are available by default when you create a
new WPF application. You need to add some of these controls to the Toolbox before
you can use them. To add a control that is missing, right-click a Toolbox section
and select Choose Items. On the Choose Toolbox Items dialog box, select the WPF
Components tab, check the boxes next to the controls that you want, and click OK.

Note, also, that some additional controls may be available in the Choose Toolbox
Items dialog box that are not described here. The following sections describe only
the most commonly used controls.

CONTAINING AND ARRANGING CONTROLS

Layout controls determine the arrangement of the controls that they contain. For example, they may
arrange controls vertically, horizontally, or in rows and columns.

The preferred style for WPF control arrangement is to make container controls determine the posi-
tions of their children and let the children take advantage of whatever space is allowed. This can be
particularly useful for localized applications where you cannot easily predict how much space a con-
trol will need in a particular language.

For example, suppose a form contains a StackPanel control. The StackPanel contains several buttons
that launch application dialog boxes. If you remove the buttons’ Width properties, the buttons auto-
matically size themselves to fit the StackPanel horizontally. Now if you need to make the buttons
wider to hold text for a new language, you can simply widen the form. The StackPanel widens to fill
the form and the buttons widen to fit the StackPanel.



134 | CHAPTER10 SELECTING WPF CONTROLS

Example program ResizingButtons, which is available for download on the book’s website, demon-
strates buttons with fixed heights but widths that resize when their container resizes.

NOTE [n a Windows Forms application, you can achieve a similar effect by
using Anchor and Dock properties.

Layout controls are also important because they can hold lots of other controls. Some of the WPF
controls can hold only a single content item. For example, an Expander can hold only a single item.
However, if you place another layout control such as a StackPanel inside the Expander, you can then
place lots of other controls inside the StackPanel.

The following table briefly describes the WPF controls that are intended mainly to contain and
arrange other controls.

CONTROL
Border'

BulletDecorator?

Canvas

DockPanel

Expander’

Grid

GridSplitter
GridView

GroupBox'

PURPOSE
Provides a visible border or background to the contents.

Contains two children. The first is used as a bullet and the second is aligned with
the first. For example, you can use this to align bullet images next to labels. (See
example program UseBulletDecorator, available for download on the book’s
website.)

Creates an area in which you can explicitly position children by specifying their
Width, Height, Canvas.Left, and Canvas.Top properties. (See example program
UseCanvas, available for download on the book’s website.)

Docks its children to its left, right, top, or bottom much as the Dock property does
in a Windows Forms application. If the control’s LastChildFill property is True, the
control makes its last child control fill the remaining space. (See example program
UseDockPanel, available for download on the book’s website.)

Displays a header with an expanded/collapsed indicator. The user can click the
header or indicator to expand or collapse the control’s single content item. (See
example program UseExpander, available for download on the book’s website.)

Displays children in rows and columns. This is somewhat similar to the Windows
Forms TableLayoutPanel control. Grid is one of the most useful container
controls.

Enables the user to resize two rows or columns in a Grid control.
Displays data in columns within a ListView control.

Displays a border and caption much as a Windows Forms GroupBox control does.



Containing and Arranging Controls | 135

CONTROL

Panel

ScrollViewer'

Separator

StackPanel

TabControl

Tabltem’

Viewbox!

Virtualizing
StackPanel

WrapPanel

PURPOSE

Panel is the parent class for Canvas, DockPanel, Grid, TabPanel,
ToolbarOverflowPanel, UniformGrid, StackPanel, VirtualizingPanel, and
WrapPanel. Usually you should use one of those classes instead of Panel, but
you can also use Panel to implement your own custom panel controls.

Provides vertical and horizontal scroll bars for a single content element.
(See example program UseScrollViewer, available for download on the book’s
website.)

Separates two controls inside a layout control. (See example program
UseSeparator, available for download on the book’s website.)

Arranges children in a single row or column. If there are too many controls,
those that don’t fit are clipped. StackPanel is one of the most useful container
controls.

Arranges children in tabs. Tabltem controls contain the items that should be dis-
played in the tabs. (See example program UseTabControl, available for download
on the book’s website.)

Holds the content for one TabControl tab.

Stretches its single child to fill the Viewbox. The Stretch property determines
whether the control stretches its child uniformly (without changing the width-to-
height ratio). (See example program UseViewbox, available for download on the
book’s website.)

Generates child items to hold items that can fit in the available area. For example,
when working with a ListBox bound to a data source, the VirtualizingStackPanel
generates only the items that will fit within the ListBox. If the control is not bound
to a data source, this control behaves like a StackPanel.

Arranges children in rows/columns depending on its Orientation property.
When a row/column is full, the next child moves to a new row/column. This is
similar to the Windows Forms FlowLayoutPanel control. (See example program
UseWrapPanel, available for download on the book’s website.)

This control can hold only a single child.

2This control should hold exactly two children. Controls with no footnote can hold any number of

children.

Many of the layout controls have the ability to resize their children if you let them. For example, if
you place a Button inside a Grid control’s first row and column, by default the Button resizes when
its row and column resize. The control’s Margin property determines how far from the cell’s edges
the Button’s edges lie.



136 | CHAPTER10 SELECTING WPF CONTROLS

If a child control explicitly defines its Width and Height properties, those properties override the
parent’s arrangement policy. For example, if you set Width and Height for a Button inside a Grid,
the Button does not resize when its Grid cell does.

To get the effect that you want, consider how the control’s Margin, Width, and Height properties
interact with the parent layout control.

MAKING SELECTIONS

Selection controls enable the user to choose values. If you use them carefully, you can reduce the
chances of the user making an invalid selection, so you can reduce the amount of error-handling
code you need to write.

The following table briefly describes the WPF controls that allow the user to select choices.

CONTROL

CheckBox

ComboBox

ComboBoxltem'

ListBox

ListBoxItem'

RadioButton

ScrollBar

Slider

PURPOSE

Lets the user select an item or not. Each CheckBox choice is independent of all
others.

Displays items in a drop-down list. ComboBoxItem controls contain the items
displayed in the list. (See example program UseComboBox, available for
download on the book’s website.)

Holds the content for one ComboBox item.

Displays items in a list. ListBoxltem controls contain the items displayed in the
list. The control automatically displays scroll bars when needed. (See example
program UseListBox, available for download on the book’s website.)

Holds the content for one ListBox item.

Lets the user pick from among a set of options. If the user checks one
RadioButton, all others with the same parent become unchecked. (See example
program UseRadioButtons, available for download on the book’s website.)

Allows the user to drag a “thumb” to select a numeric value. Usually scroll bars
are used internally by other controls such as the ScrollViewer, and your applica-
tions should use a Slider instead. (See example program UseScrollBar, available
for download on the book’s website.)

Allows the user to drag a “thumb” to select a numeric value. Similar to the
Windows Forms TrackBar control. (See example program UseSlider, available for
download on the book’s website.)

This control can hold only a single child.



Displaying Data | 137

ENTERING DATA

Sometimes, it is impractical to use the selection controls described in the previous section.
For example, the user cannot reasonably enter biographical data or comments using a Combo
Box or RadioButton. In those cases, you can provide a text control where the user can type
information.

The following table briefly describes the WPF controls that allow the user to enter text.

CONTROL PURPOSE

PasswordBox Similar to a TextBox but displays a mask character instead of the characters that
the user types. (See example program UsePasswordBox, available for download
on the book’s website.)

RichTextBox Similar to a TextBox but contains text in the form of a document object. See the
section “Managing Documents” later in this chapter for more information on
documents.

TextBox Allows the user to enter simple text. Optionally can allow carriage returns and

tabs, and can wrap text.

DISPLAYING DATA

These controls are used primarily to display data to the user. The following table briefly describes
these WPF controls.

CONTROL PURPOSE
Label Displays non-editable text.
TextBlock Displays more complex non-editable text. This control’s contents can include inline

tags to indicate special formatting. Tags can include AnchoredBlock, Bold, Hyperlink,
InlineUlContainer, Italic, LineBreak, Run, Span, and Underline.

TreeView Displays hierarchical data in a tree-like format similar to the directory display provided
by Windows Explorer.



138 | CHAPTER10 SELECTING WPF CONTROLS

PROVIDING FEEDBACK

The following controls provide feedback to the user. Like the controls that display data in the previ-
ous section, these controls are intended to give information to the user and not to interact with the
user. The following table briefly describes these WPF controls.

CONTROL PURPOSE

Popup Displays content in a window above another control. Usually you can use the
Tooltip and ContextMenu controls instead of a Popup. (See example program
UsePopup, available for download on the book’s website.)

ProgressBar Indicates the fraction of a long task that has been completed. If the task is
performed synchronously, the user is left staring at the form while it completes.
The ProgressBar lets the user know that the operation is not stuck. (See example
program UseProgressBar, available for download on the book’s website.)

StatusBar Displays a container at the bottom of the form where you can place controls hold-
ing status information. Though you can place anything inside a StatusBar, this
control is intended to hold summary status information, not tools. Generally, Menus,
ComboBoxes, Buttons, Toolbars, and other controls that let the user manipulate
the application do not belong in a StatusBar. (See example program UseStatusBar,
available for download on the book’s website.)

StatusBarltem’ Holds the content for one StatusBar item.

ToolTip Displays a tooltip. To give a control a simple textual tooltip, set its Tooltip property.
Use the Tooltip control to build more complex tooltips. For example, a Tooltip con-
trol might contain a StackPanel that holds other controls. (See example program
UseToolTip, available for download on the book’s website.)

This control can hold only a single child.

INITIATING ACTION

Every kind of control responds to events, so every control can initiate an action. In practice, however,
users expect only certain kinds of controls to perform actions. For example, they generally don’t expect
the application to launch into a time-consuming calculation when the mouse moves over a label.

The following table summarizes controls that normally initiate action.

CONTROL PURPOSE

Button' Raises a Click event that the program can catch to perform an action. (See example
program UseButtonRepeatButton, available for download on the book’s website.)

ContextMenu Displays a context menu for other controls. Normally the ContextMenu contains
Menultem controls. (See example program UseMenuContextMenu, available for
download on the book’s website.)



Presenting Graphics and Media | 139

CONTROL PURPOSE

Menu Displays a menu for the form. Normally, the Menu contains Menultem controls
representing the top-level menus. Those items contain other Menultem controls
representing commands. (See example program UseMenuContextMenu, available
for download on the book’s website.)

Menultem Contains an item in a ContextMenu or Menu.

PrintDialog Displays a standard Windows print dialog. You shouldn’t place a PrintDialog on
a window. Instead use code to build and display the PrintDialog. (See example
program UsePrintDialog, available for download on the book’s website.)

RepeatButton’ Acts as a Button that raises its Click event repeatedly when it is pressed and held
down. (See example program UseButtonRepeatButton, available for download on
the book’s website.)

ToolBar Contains items. Normally, the control sits across the top of the form and contains
command items such as buttons and combo boxes. (See example program
UseToolBar, available for download on the book’s website.)

ToolBarTray Contains ToolBars and allows the user to drag them into new positions.
(See example program UseToolBar, available for download on the book’s website.)

This control can hold only a single child.

PRESENTING GRAPHICS AND MEDIA

Any WPF control can display an image. Example program FormImage, which is available for
download on the book’s website, uses the following XAML code to fill a Grid control’s
background:

<Window x:Class="MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
Title="FormImage" Height="300" Width="300">

<Window.Resources>

<ImageBrush ImageSource="smile.bmp" x:Key="brSmile" />
</Window.Resources>
<Grid Background="{StaticResource brSmile}">

</Grid>
</Window>

Although a Grid control can display an image or other graphic, its real purpose is to arrange
other controls. The following table describes controls whose main purpose is to present graphics
and media.


http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

140 | CHAPTER10 SELECTING WPF CONTROLS

CONTROL PURPOSE
Ellipse Displays an ellipse.
Image Displays a bitmap image, for example, from a .bmp, .jpg, or .png file. Can

optionally stretch the image with or without distortion.
Line Draws a line segment.

MediaElement Presents audio and video. To let you control the media, it provides Play, Pause,
and Stop methods, and Volume and SpeedRatio properties. (See example pro-
gram UseMediaElement, available for download on the book’s website.)

Path Draws a series of drawing instructions.

Polygon Draws a closed polygon.

Polyline Draws a series of connected line segments.
Rectangle Draws a rectangle, optionally with rounded corners.

The shape drawing objects (Ellipse, Line, Path, Polygon, Polyline, and Rectangle) all provide Stroke,
StrokeThickness, and Fill properties to let you control their appearance. Although these controls
are primarily intended to draw simple (or not so simple) shapes, like any other control they provide
a full assortment of events. For example, they provide an IsMouseOver property and a MouseUp
event that you can use to make these objects behave like simple buttons.

Example program DrawingShapes, which is available for download on the book’s website, demon-
strates several of these shape controls. Program EllipseClick, which is also available for download,
uses triggers to change the color of an Ellipse when the mouse is over it, and displays a message
when you click the Ellipse.

PROVIDING NAVIGATION

The Frame control provides support for navigation through external websites or the application’s
pages. Use the control’s Navigate method to display a web page or a XAML page. The Frame pro-
vides back and forward arrows to let the user navigate through the pages visited.

Example program UseFrame, which is available for download on the book’s website, uses a Frame
control to provide navigation between two Page objects.

MANAGING DOCUMENTS

WPF includes three different kinds of documents: flow documents, fixed documents, and XPS
documents. These different kinds of documents provide support for high-end text viewing and
printing.



Digital Ink | 141

XPS EXPLAINED

XPS (XML Paper Specification) is a Microsoft standard that defines fixed-format
documents similar to PDF files. An XPS reader can view an XPS file but will not
reformat it as a web browser might rearrange the text on a web page. For more
information, see the section “XPS Documents” in Chapter 11.

The following table summarizes the controls that WPF provides for viewing these kinds of
documents.

CONTROL PURPOSE

DocumentViewer Displays fixed documents page by page.

FlowDocument Displays a flow document one page at a time. If the control is wide enough, it
PageViewer may display multiple columns although it still displays only one page at a time.
FlowDocument Displays flow documents in one of three modes. When in single page mode,
Reader it acts as a FlowDocumentReader. When in scrolling mode, it acts as a

FlowDocumentScrollViewer. In book reading mode, it displays two pages side
by side much as a real book does.

FlowDocument Displays an entire flow document in a single long scrolling page and provides
ScollViewer scroll bars to let the user move through the document.

DIGITAL INK

Digital ink controls provide support for stylus input from tablet PCs (where you use a plastic stylus
similar to a pen to draw right on a tablet PC’s touch screen). Normally you would only use digital
ink in a tablet PC application where the user is expected to enter data by drawing on the screen with
a stylus. These applications usually provide text recognition to understand what the user is writing.
They also use the stylus to perform the same operations they would perform with the mouse on a
desktop system. For example, they let you tap to click buttons, and tap and drag to move items.

Although ink controls are most useful for tablet PCs, WPF includes two ink controls that you can
use in any Visual Basic application.

CONTROL PURPOSE
InkCanvas Displays or captures ink strokes.

InkPresenter Displays ink strokes.



142 | CHAPTER10 SELECTING WPF CONTROLS

SUMMARY

Controls are the link between the user and the application. They allow the application to give infor-
mation to the user, and they allow the user to control the application.

This chapter briefly described the most important WPF controls grouped by category. You can use
the categories to help you decide which controls to use for a particular situation. If the user must
select an item, consider the controls in the “Making Selections” section. If the application needs to
display status information, look at the controls in the “Providing Feedback” section.

This chapter gave only a brief introduction to the WPF controls and provided some hints about
each control’s purpose. Chapter 11, “Using WPF Controls,” describes the controls in greater detail.
It explains the most important properties, methods, and events provided by the most useful WPF
controls.



11

Using WPF Controls

WHAT'’S IN THIS CHAPTER

Yy Y VY Y

Resources, styles, and templates
Graphical transformations
Animation

Drawing objects

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/remtitle
.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter includes several
examples that demonstrate particularly useful WPF features. These examples include the following;:

> ButtonTemplate

> Calculator

> ProceduralAnimatedButton

> ProceduralCalculator

> SpinAndGrowButton
WPF CONTROLS

The code behind WPF controls is the same as the code behind Windows Forms controls. That means
that everything the earlier chapters have explained about applications, forms, controls, Visual Basic
code, error handling, drawing, printing, reports, and so forth still work almost exactly as before.

Chapter 10, “Selecting WPF Controls,” briefly described the most common WPF controls, grouped
by category to help you pick the control that best suits a particular task. This chapter provides more
detail about WPF. It explains some of the more important concepts that underlie WPE. It also gives
more detail about how particular controls work and tells how you can use them in your applications.


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

144 | CHAPTER11 USING WPF CONTROLS

WPF is a huge topic. It basically reproduces all of the functionality of Windows Forms
programming, and then some. This chapter cannot hope to cover all of the concepts, tools, and

techniques used by WPF. Instead, it introduces some of the more important concepts and explains
how to build basic WPF forms.

WPF CONCEPTS

WPF applications are similar in concept to Windows Forms applications in many respects. Both
display a form or window that contains controls. Controls in both systems provide properties,
methods, and events that determine the control’s appearance and behavior.

Windows Forms applications use a set of controls provided by the System.Windows.Forms
namespace. WPF applications use a different set of controls in the System.Windows

.Controls namespace. Many of these controls serve similar functions to those used by Windows
Forms applications, but they provide a different set of capabilities. For example, both namespaces
have buttons, labels, combo boxes, and check boxes, but their appearances and abilities are different.

WPF uses these similar, but different, controls for two main reasons:

> To take better advantage of the graphics capabilities of modern computer hardware and
software. The new controls can more easily provide graphical effects such as transparent
or translucent backgrounds, gradient shading, rotation, two- and three-dimensional
appearance, multimedia, and other effects.

> To provide a greater separation between the user interface and the code behind it. The fol-
lowing sections describe this idea and some of the other key WPF concepts in greater detail.

Separation of User Interface and Code

The idea of separating the user interface from the code isn’t new. Visual Basic developers have been
building thin user interface applications for years. Here, the user interface contains as little code as
possible, and calls routines written in libraries to do most of the work.

Unfortunately, the code that calls those libraries sits inside the same file that defines the user inter-
face, at least in Windows Forms applications. That means you cannot completely separate the code
from the user interface. For example, if one developer wants to modify the user interface, another
developer cannot simultaneously modify the code behind it.

WPF separates the user interface from the code more completely. The program stores the user
interface definition in a XAML file.

Associated with a XAML file is a code file containing Visual Basic code. It contains any code you
write to respond to events and manipulate the controls much as Windows Forms code can. Unlike
the case with Windows Forms, WPF keeps the user interface definition and the code behind it in two
separate files so, in theory at least, different developers can work on the user interface and the code
at the same time. For example, a graphics designer can use the Expression Blend design tool to build
the user interface, defining the forms’ labels, menus, buttons, and other controls. Then a Visual
Basic developer can attach code to handle the controls’ events.



WPF in the IDE | 145

NOTE Expression Blend is fairly expensive, although it’s included in Expression
Studio and is available to MSDN subscribers. It provides some useful tools that
are missing from Visual Studio, however, such as tools to record animations. If
you frequently need to build property animations, you should give it a try.

You can learn more about Expression Blend and download a trial version at
http://expression.microsoft.com.

Because the user interface definition is separate from the code behind it, the graphic designer can
later edit the XAML to rearrange controls, change their appearance, and otherwise modify the user
interface while the code behind it should still work unchanged.

WPF Control Hierarchies

In a WPF application, the Window class plays a role similar to the one played by a Form in a
Windows Forms application. However, a Form can contain any number of controls while a Window
can contain only one. If you want a WPF form to display more than one control, you must first give
it some kind of container control, and then place other controls inside that one.

For example, when you create a WPF application, its Window initially contains a Grid control that
can hold any number of other controls, optionally arranged in rows and columns. Other container
controls include Canvas, DockPanel, DocumentViewer, Frame, StackPanel, and TabControl.

The result is a tree-like control hierarchy with a single Window object serving as the root element.
This matches the hierarchical nature of XAML. Because XAML is a form of XML, and XML files
must have a single root element, XAML files must also have a single root element. When you look
at XAML files later in this chapter, you will find that they begin with a

Window element that contains all other elements. » GridButton = = NEE
Many non-container controls can hold only a single element, and that

element is determined by the control’s Content property. For example, you U

can set a Button control’s Content property to the text that you want In The Middle

to display. R

A control’s Content property can have only a single value, but that

value does not need to be something simple such as text. For example, FIGURE 11-1: This
Figure 11-1 shows a Button containing a Grid control that holds Button contains a Grid
three labels. that holds three labels.

WPF IN THE IDE

The Visual Studio IDE includes editors for manipulating WPF Window classes and controls.
Although many of the details are different, the basic operation of the IDE is the same whether you
are building a Windows Forms application or a WPF application. For example, you can use the WPF
Window Designer to edit a WPF window. You can select controls from the Toolbox and place them
on the window much as you place controls on a Windows Form.


http://expression.microsoft.com

146 | CHAPTER11 USING WPF CONTROLS

Despite their broad similarities, the Windows Forms Designer and the WPF Window Designer differ
in detail. Although the Properties window displays properties for WPF controls much as it does for
Windows Forms controls, many of the property values are not displayed in similar ways.

The window represents many Boolean properties with check boxes. It represents other properties
that take enumerated values with combo boxes where you can select a value or type one in (if you
know the allowed values).

Future Visual Studio releases may make Expression Blend more consistent with Visual Studio,
although some more advanced features (such as animation recording) are likely to remain only in
Expression Blend to encourage developers to buy it.

Note that the editors in the Properties window merely build the XAML code that defines the user
interface. You can always edit the XAML manually to achieve effects that the Properties window
does not support directly.

The following sections explain how to write XAML code and the Visual Basic code behind it.

Editing XAML

Figure 11-2 shows the IDE displaying a new WPF project. Most of the areas should look familiar

from Windows Forms development. The Toolbox on the left contains tools that you can place on the
window in the middle area. Solution Explorer on the right shows the files used by the application. The
Properties window shows property values for the currently selected control in the middle. The selected
object in Figure 11-2 is the main Window, so the top of the Properties window shows its type: Window.

l’d WpfApplication] - Microsoft ¥isual Studio Quick Launch (Ctrl+0) A = 0O x
FILE  EDIT  WIEW  PROJECT BUILLD DEBUG  TE&M  3QL  DATA  DESIGM  FORMAT  TOOLS  TEST  AMALVZE  WANDOW  HELP
(0 - =l 9. St 6. B  Debug - A
T Toolbox s v X MainWindowxamlvb ~  Solution Explorer sescinmice: v B X
% Search Toolbox P~ ke & e-etdiEm|l o
5
i i -ommen VR Een ol Bl o | Search Solution Explorer (Ctrl+ pis
5 Paints
i I:I ED: =t [ Wpfapplication1
oraer & My Praject
2,0' G} Button & App.config
P CheckBox B ] . b D) application.xami
B B ComboBox LB MainWindowesaml
© @ Dattrid Salution Explarer | Tearn Explarer
= Grid
= I Properties i s i
Bl Image £
A Label - b [ Name <|TJD Name> lzl ¥
ES  ListBox = 2 e Type Window
% [
S e 0% (R A <] i 1> Search Properties »
GDesign 11 @xaml nEe@ Arrange by: Category ~ 7
O Rectangle 1 El<uindow x:Class="Mainkindow" = et
StackPanel 2 xmlns="http://schemas.microsoft.com/winfx/20@€ » P Brush
3 TsbContral 3 xnlns :x="http://schemas.microsoft.com/winfx/2¢ | p Apoearance 1=
4 Title="MainWindow" Height="200" Width="325"> |&| |
TextBlock s B <Grid> | 4 Common
T 6 Gt (Grid] New
4 Al WPF Contrals z | </Gridy :
& Posier 8 [ </Window> 2 Cal
H Border % | <] [0 > ResizeMode ~ CanResize
03 Button Error List « cow IX ShowlinTaskbar
B Calendar v - e tarn Phdanss Search Frenrlis 0+ SizeTeCentent  Manual
Bl Camas ~ Output Immediate Window Task List | Error List Title T ~

FIGURE 11-2: The IDE looks almost the same for Windows Forms and WPF applications.



WPF in the IDE | 147

One large difference between the IDE’s appearance when building a WPF application versus a
Windows Forms application is the central editor. In a Windows Forms application, you edit a form
with the Windows Forms Designer. In a WPF application, you use the graphical XAML editor
shown in Figure 11-2 to edit a Window object’s XAML code. The upper half of this area shows

a graphical editor where you can drag controls from the Toolbox much as you design a Windows
Form. The lower part of the editor shows the resulting XAML code.

If you look closely at Figure 11-2, you can see the Window element that includes the rest of the file.
When you first build an application, the Window object’s element contains a single Grid control.

Usually, it is easiest to build WPF Window objects by using the graphical editor and the Toolbox.
When you select a control in the graphical editor, you can view and modify its properties in the
Properties window. If you can’t get a desired effect by using the Properties window, you can use the
XAML view at the bottom to edit the XAML code by hand. For example, the Properties window
won’t let you set a non-container control’s Content property to another control, but you can do this
easily with XAML code. For example, to place a Grid inside a Button control, simply type the Grid
control’s definition between the Button control’s start and end tags.

The graphical editor and the Properties window don’t give you access to all of XAMULs features, but
they do let you build a basic user interface for WPF applications. Once you have defined the
window’s basic structure, you can use XAML to fine-tune the result.

Editing Visual Basic Code

Each XAML file is associated with a Visual Basic code file. When you first create a WPF project, that
file is opened by default. If you look closely at the central designer in Figure 11-2, you’ll see that the
XAML file MainWindow.xaml is open and visible in the designer. Another tab contains the corre-
sponding Visual Basic file Mainwindow.xaml .vb. Click that tab to view the Visual Basic source code.

The following text shows the Visual Basic source code initially created for a XAML file:

Class MainWindow

End Class

You can add event handlers to this file just as you can add event handlers to Windows Forms code.
Use the left drop-down to select a control or MainWindow Events. Then use the right drop-down
list to select an event for that object.

One difference between WPF and Windows Forms event programming is that WPF controls are
not given names by default so they don’t appear in the code editor’s left drop-down list. If you want
to use the editor’s drop-downs to create an event handler for a control, you must give the control a
name either by using the Properties window or by typing it into the XAML code.

Another way to create an event handler is to double-click a control on the WPF Window Designer.

In addition to event handlers, you can also add non-event handler subroutines and functions to the
Visual Basic code file just as you can in any other Visual Basic file.

Inside the Visual Basic code file, you can get and set control properties and call control methods,
just as you can in a Windows Forms project.



148 | CHAPTER11 USING WPF CONTROLS

Anything you can do by using the WPF graphical designer or declaratively with XAML you can also
do procedurally with Visual Basic code. The following section, “XAML Features,” describes some
of the things that you can do with XAML and shows examples. The section “Procedural WPF”
later in this chapter explains how you can implement some of the same features with Visual Basic
code instead of XAML.

XAML FEATURES

XAML is a form of XML that defines certain allowed combinations of XML elements. For
example, a XAML file should have a single root element that represents a Window. That object can
have a single child element that is normally a container. The container can hold several children
with specifically defined properties such as Width and Height.

XAML is a very complicated language, and many of its features are available only in certain places
within the file. For example, inside a Button element you can place attributes such as Background,
BorderThickness, Margin, Width, Height, and Content. The XAML text editor provides IntelliSense
that makes figuring out what is allowed in different places easier, but building a XAML file can still
be quite challenging.

NOTE One good way to learn XAML is to go online and search for examples.
The Microsoft website has lots of examples, as do several other sites. Although
the documentation isn’t always easy to use, the examples can help you learn
specific techniques. Some good places to start include the XAML overview at
http://msdn2.microsoft.com/ms752059.aspx and the Windows Presentation
Foundation development page at http: //msdn2.microsoft.com/ms754130
.aspx. My book WPF Programmer’s Reference (Wrox, Stephens, 2010,
http://www.amazon.com/exec/obidos/ASIN/O470477229/vbhelpe:)ako
provides lots of examples of useful techniques.

The following sections describe some of the basic building blocks of a XAML application. They
explain how to build objects; how to use resources, styles, and templates to make objects consistent
and easier to modify; and how to use transformations and animations to make objects interactive.
The section “Procedural WPFE” later in this chapter explains how to do these things in Visual Basic
code instead of XAML.

Objects

WPF objects are represented by XML elements in the XAML file. Their properties are represented
either by attributes within the base elements or as separate elements within the main element.


http://www.amazon.com/exec/obidos/ASIN/0470477229/vbhelper
http://msdn2.microsoft.com/ms752059.aspx
http://msdn2.microsoft.com/ms754130.aspx
http://msdn2.microsoft.com/ms754130.aspx

XAML Features | 149

For example, the following XAML code shows a Window containing a Grid object. The Grid
element contains a Background attribute that makes the object’s background red.

<Window x:Class="MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="235" Width="300">

<Grid Background="Red">

</Grid>
</Window>

More complicated properties must be set in their own sub-elements. The following code shows a
similar Grid that has a linear gradient background:

<Window x:Class="MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="235" Width="300">
<Grid>
<Grid.Background>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="Red" Offset="0.0" />
<GradientStop Color="White" Offset="0.5" />
<GradientStop Color="Blue" Offset="1.0" />
</LinearGradientBrush>
</Grid.Background>
</Grid>
</Window>

Instead of using a Background attribute, the Grid element contains a Grid.Background element.
That, in turn, contains a LinearGradientBrush element that defines the background. The StartPoint
and EndPoint attributes indicate that the gradient should start at the upper-left corner of the grid
(0, 0) and end at the lower right (1, 1). The GradientStop elements inside the brush’s definition set
the colors that the brush should display at different fractions of the way through the gradient.

In this example, the gradient starts red, changes to white halfway through, and changes to blue

at the end.

NOTE You cannot define an object’s Background property more than once. If
you include a Background attribute and a Grid.Background element for the
same grid, the XAML editor complains.

Object elements often contain other elements that further define the object. The following code
defines a grid that has two rows and three columns. (From now on I’'m leaving out the Window
element to save space.) The rows each occupy 50 percent of the grid’s height. The first column is
50 pixels wide and the other two columns each take up 50 percent of the remaining width.


http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

150 | CHAPTER11 USING WPF CONTROLS

<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="50*" />
<RowDefinition Height="50*" />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="50" />
<ColumnDefinition Width="50*" />
<ColumnDefinition Width="50*" />
</Grid.ColumnDefinitions>
</Grid>

When you use a * in measurements, the control divides its height or width proportionally among
items that contain a *. For example, if a grid has two rows with height 507, they each get half of the
control’s height. If the two rows have heights 10* and 207, the first is half as tall as the second.

If the control also contains items without a *, their space is taken out first. For example, suppose a
grid defines rows with heights 10, 20*, and 30*. In that case the first row has height 10, the second
row gets 20/50 of the remaining height, and the third row gets the rest.

An object element’s body can also contain content for the object. In some cases, the content is simple
text. The following example defines a Button object that has the caption Click Me:

<Button Margin="2,2,2,2" Name="btnClickMe">Click Me</Button>

An object’s content may also contain other objects. The following code defines a grid with three
rows and three columns holding nine buttons:

<Grid>

<Grid.RowDefinitions>

<RowDefinition Height="33*" />

<RowDefinition Height="33*" />

<RowDefinition Height="33*" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="33*" />

<ColumnDefinition Width="33*" />

<ColumnDefinition Width="33*" />
</Grid.ColumnDefinitions>
<Button Grid.Row="0" Grid.Column="0" Margin="5">0, 0</Button>
<Button Grid.Row="0" Grid.Column="1" Margin="5">0, 1</Button>
<Button Grid.Row="0" Grid.Column="2" Margin="5">0, 2</Button>
<Button Grid.Row="1" Grid.Column="0" Margin="5">1, 0</Button>
<Button Grid.Row="1" Grid.Column="1" Margin="5">1, 1</Button>
<Button Grid.Row="1" Grid.Column="2" Margin="5">1, 2</Button>
<Button Grid.Row="2" Grid.Column="0" Margin="5">2, 0</Button>
<Button Grid.Row="2" Grid.Column="1" Margin="5">2, 1</Button>
<Button Grid.Row="2" Grid.Column="2" Margin="5">2, 2</Button>

</Grid>

Usually, it is easiest to start building a Window by using the graphical XAML editor, but you may
eventually want to look at the XAML code to see what the editor has done. It often produces almost



XAML Features | 151

but not quite what you want. For example, if you size and position a control by using click and drag,
the editor may set its Margin property to 10,10,11,9 when you really want 10,10,10,10 (or just 10).

It can also sometimes be hard to place controls exactly where you want them. You can fix some of
these values in the Properties window, but sometimes it’s just easier to edit the XAML code directly.

Resources

Example program Calculator, which is available for download on the ERrmp e |
book’s website, is shown in Figure 11-3. This program contains three
groups of buttons that use radial gradient backgrounds with similar
colors. The number buttons, +/-, and the decimal point have yellow
backgrounds drawn with RadialGradientBrush objects. The CE, C,
and = buttons have blue backgrounds, and the operator buttons have
green backgrounds.

1337

You could build each button separately, including the appropriate
RadialGradientBrush objects to give each button the correct background.
Suppose, however, you decide to change the color of all of the number

buttons from yellow to red. You would have to edit each of their 12 FIGURE 11-3: This pro-
RadialGradientBrush objects to give them their new colors. In addition gram uses resources to
to being a lot of work, those changes would give you plenty of chances to simplify maintenance.

make mistakes. The changes would be even harder if you decide to change

the numbers of colors used by the brushes (perhaps having the brush shade

from yellow to red to orange), or if you want to use a completely different brush for the buttons such
as a LinearGradientBrush.

One of the ways XAML makes maintaining projects such as this one easier is by letting

you define resources. You can then use the resources when defining objects. In this example, you
can define resources to represent button backgrounds and then use those resources to set each
button’s Background property. If you later need to change the backgrounds, you only need to update
the resources.

The following code shows how the Calculator application shown in Figure 11-3 creates a
LinearGradientBrush resource called brResult, which the program uses to draw the result text box
at the top. Ellipses show where code has been omitted to make it easier to read.

<Window x:Class="Windowl"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="XamlCalculator"
Height="292" Width="227" Focusable="True">

<Window.Resources>

<LinearGradientBrush x:Key="brResult" StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="LightBlue" Offset="0.0" />

<GradientStop Color="AliceBlue" Offset="1.0" />
</LinearGradientBrush>

</Window.Resources>

</Window>


http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

152

| CHAPTER11 USING WPF CONTROLS

The Window element contains a Window.Resources tag that contains the resource definitions. The
LinearGradientBrush element defines the brush. One of this element’s more important attributes is
x:Key, which identifies the brush for later use.

The following code shows how the Calculator program defines the Label that displays calculation
results. The Background attribute refers to the resource brResult.

<Label Name="lblResult"
Background="{StaticResource brResult}"
Grid.ColumnSpan="4"
Margin="2,2,2,2"
HorizontalContentAlignment="Right"
VerticalContentAlignment="Center">0</Label>

Later if you decide to change the background color for the result label, you only need to change the
definition of the brResult resource. This example uses that resource for only one label so you don’t
save a huge amount of work by defining a resource. The program’s buttons, however, reuse the same
resources many times. Instead of reusing the background resources directly, however, the buttons
use styles as described in the next section.

Styles

Resources make it easy to create many controls that share an attribute such as a background. Styles
take attributes a step further by allowing you to bundle multiple attributes into one package. For
example, you could define a style that includes background, width, height, and font properties. Then
you could use the style to help define controls.

You can also use styles to define other styles. For example, you can make a base style to be applied
to every button in an application. Then you can derive other styles for different kinds of buttons
from the base style.

The following example defines a style named styAllButtons. It contains Setter elements that set
control properties. This style sets a control’s Focusable property to False and its Margin property
t02,2,2,2.

<Style x:Key="styAllButtons">
<Setter Property="Control.Focusable" Value="false" />
<Setter Property="Control.Margin" Value="2,2,2,2" />
</Style>

The following code defines a style named styClear for the calculator’s C, CE, and = buttons:

<Style x:Key="styClear" BasedOn="{StaticResource styAllButtons}">
<Setter Property="Control.Background" Value="{StaticResource brClear}" />
<Setter Property="Grid.Row" Value="1" />
<Setter Property="Control.Margin" Value="2,20,2,2" />

</Style>

The BasedOn attribute makes the new style start with the properties defined by styAllButtons. The
new style then uses two Setter elements to add new values for the Background (set to the brush



XAML Features | 153

resource brClear) and Grid.Row properties (these buttons are all in row 1 in the calculator). It then
overrides the styAllButtons style’s value for the Margin property to increase the margin above
these buttons.

The following code shows how the program defines its C button. By setting the button’s style

to styClear, the code sets most of the button’s properties with a single statement. It then sets the
button’s Grid.Column property and its content (those values are different for the C, CE,

and = buttons).

<Button Name="btnC"
Style="{StaticResource styClear}"
Grid.Column="1">C</Button>

Styles let the program keep all of the common properties for a set of controls in a single location.
Now if you decided to change the color of the C, CE, and = buttons, you would need to change only
the definition of the brClear brush. If you wanted to change the brushes’ margins, you would need
to change only the styClear style.

As the previous code shows, styles also keep the controls’ definitions very simple.

Styles also let you easily change the controls’ properties later. For example, if you later decide to
specify the font family and font size for the calculator’s C, CE, and = buttons, you only need to add
the appropriate Setter elements to styClear instead of adding a new property to every button. If you
want to set the font for every button in the program, you simply add the appropriate Setter elements
to styAllButtons, and the other styles automatically pick up the changes.

Templates

Templates determine how controls are drawn and how they behave by default. For example, the
default button template makes buttons turn light blue when the mouse hovers over them. When
you press a button down, it grows slightly darker and shows a thin shadow along its upper and left
edges. By using Template elements, you can override these default behaviors.

The following code contained in the Window.Resources section defines a button template:

<Style TargetType="Button">
<Setter Property="Margin" Value="2,2,2,2" />
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type Button}">
<Grid>
<Polygon x:Name="pgnBorder"
Stroke="Purple"
StrokeThickness="5"
points="0.2,0 0.8,0 1,0.2 1,0.8 0.8,1 0.2,1 0,0.8 0,0.2"
Stretch="Fill"
Fill="{StaticResource brOctagonUp}">
</Polygon>
<ContentPresenter HorizontalAlignment="Center"
VerticalAlignment="Center" />
</Grid>



154 | CHAPTER11 USING WPF CONTROLS

<!-- Triggers -->
<ControlTemplate.Triggers>
<Trigger Property="IsMouseOver" Value="true">
<Setter TargetName="pgnBorder" Property="Stroke" Value="Black" />
<Setter TargetName="pgnBorder" Property="Fill"
Value="{StaticResource brOctagonOver}" />
</Trigger>
</ControlTemplate.Triggers>
</ControlTemplate>
</Setter.vValue>
</Setter>
</Style>

The code begins with a Style element that contains two Setter elements. The first Setter sets a
button’s Margin property to 2,2,2,2. The second Setter sets a Template property. The Setter’s value
is a ControlTemplate element targeted at Buttons.

The ControlTemplate contains a Grid that it uses to hold other elements. In this example, the Grid
holds a Polygon element named pgnBorder. The Points attribute lists the points used to draw the
polygon. Because the polygon’s Fill attribute is set to Stretch, the polygon is stretched to fill

its parent area, and Points coordinates are on a 0.0 to 1.0 scale within this area. The polygon’s Fill
attribute is set to the brOctagonUp brush defined elsewhere in the Window.Resources section and
not shown here. This is a RadialGradientBrush that shades from white in the center to red at

the edges.

The ControlTemplate element also contains a Triggers section. The single Trigger element in this
section executes when the button’s IsMouseOver condition is true. When that happens, a Setter
changes the pgnBorder polygon’s Stroke property to Black. A second Setter sets the polygon’s Fill
property to another brush named brOctagonOver. This brush (which also isn’t shown here) shades
from red in the center to white at the edges.

Because this style does not have an x:Key attribute, it applies to any button in the Window that
doesn’t have a Style set explicitly.

Example program ButtonTemplate uses the following code to create its controls:

<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="0.25*" />
<ColumnDefinition Width="0.25*" />
<ColumnDefinition Width="0.25*" />
<ColumnDefinition Width="0.25*" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="0.50*" />
<RowDefinition Height="0.50*" />
</Grid.RowDefinitions>
<Button Name="btnOne" Content="One" Grid.Row="1" Grid.Column="0" />
<Button Name="btnTwo" Content="Two" Grid.Row="1" Grid.Column="1" />
<Button Name="btnThree" Content="Three" Grid.Row="1" Grid.Column="2" />
<Button Name="btnFour" Content="Four" Grid.Row="1" Grid.Column="3" />



XAML Features | 155

<Button Name="btnClickMe" Content="Click Me"
Style="{StaticResource styYellowButton}" />
<Button Name="btnYellow" Content="I'm Yellow"
Style="{StaticResource styYellowButton}" Grid.Column="2" Grid.Row="0" />
</Grid>

The Window contains a Grid that holds six buttons. The first four buttons do not explicitly set their
Style, so they use the previously defined octagonal style.

The final buttons set their Style attributes to styYellowButton (also defined in the Windows.
Resources section, but not shown here) so they display a yellow background. That style also
positions the button’s text in the upper center. When you hover the mouse over these buttons, they
switch to an orange background. If you press the mouse down on these buttons, they change to a
red background with white text that says “Pushed!” Download the ButtonTemplate example
program to see how the triggers work.

Figure 11-4 shows the result. The mouse is pressed on the upper-right button so it has turned red
and is displaying the text “Pushed!”

n ButtonTemplate ==
Click Me i Pushed! Y

R
CoOCOC T

FIGURE 11-4: Templates let you change the appearance and
behavior of objects such as buttons.

TAME TEMPLATES

You can use templates to change the appearance and behavior of XAML objects to
give your applications distinctive appearances, but you probably shouldn’t get too
carried away. Although you can make buttons radically change their colors, shapes,
captions, and other characteristics when the user interacts with them, doing so may
be very distracting. Use templates to make your applications distinctive, but not
overwhelming.

Also be careful not to make controls hard for those with accessibility issues. For
example, if you use subtle color differences to distinguish button states, users with
impaired color vision, those who have trouble seeing small items, and even those
using their computers under poor lighting conditions may have trouble using your
program. Similarly using sounds to indicate state won’t help hearing impaired users
(and may annoy people sitting at nearby desks).



156 | CHAPTER11 USING WPF CONTROLS

Transformations

Standard graphical properties such as Foreground and FontFamily determine a control’s basic
appearance, but you can further modify that appearance by using a RenderTransform element.
The following code creates a button that has been rotated 270 degrees. The Button
.RenderTransform element contains a RotateTransform element that represents the rotation.

<Button Name="btnSideways"
Content="Sideways"
Background="{StaticResource brButton}"
Margin="-6,-6.5,0,0"
Height="43"
HorizontalAlignment="Left"
VerticalAlignment="Top"
Width="94">
<Button.RenderTransform>

<RotateTransform Angle="270" CenterX="75" CenterY="50" />

</Button.RenderTransform>

</Button>
XAML also provides TranslateTransform and = Rotatedbuttons | =12
ScaléTransform elements that let you translate and scale
an object. Example program RotatedButtons, which is [ r~wica= ]

available for download on the book’s website and shown T H
in Figure 11-5, uses transformations to draw several a P -
) < W
buttons that have been rotated and scaled vertically and
horizontally.

Sideways

FIGURE 11-5: Buttons can be rotated
XAML also defines a TransformGroup element that you can : ,
and scaled vertically and horizon-

use to perform a series of transformations on an object. For tally by using RotateTransform and
example, a TransformGroup would let you translate, scale, ScaleTransform.
rotate, and then translate an object again.

Animations

The section “Templates” earlier in this chapter shows how to use Triggers to make an object change
its appearance in response to events. For example, it shows how to make a button change its
background and border color when the mouse moves over it.

XAML also provides methods for scripting more complicated actions that take place over a
defined period of time. For example, you can make a button spin slowly for two seconds when the
user clicks it.

You use a trigger to start the animation and a Storyboard object to control it. A Storyboard contains
information about the state the animation should have at various times during the animation.

The SpinButton example program, which is available for download on the book’s website, uses the
following code to make a button rotate around its center when it is clicked:



XAML Features | 157

<Button Name="btnSpinMe" Content="Spin Me"
Width="150" Height="100">
<Button.Background>
<RadialGradientBrush
Center="0.5,0.5"
RadiusX="1.0" RadiusYy="1.0">
<GradientStop Color="Yellow" Offset="0.0" />
<GradientStop Color="Orange" Offset="1.0" />
</RadialGradientBrush>
</Button.Background>
<Button.RenderTransform>
<RotateTransform x:Name="rotButton" Angle="0" CenterX="75" CenterY="50" />
</Button.RenderTransform>
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard
Storyboard.TargetName="rotButton"
Storyboard.TargetProperty=" (RotateTransform.Angle) ">
<DoubleAnimationUsingKeyFrames>
<SplineDoubleKeyFrame KeyTime="0:0:00.0" Value="0.0" />
<SplineDoubleKeyFrame KeyTime="0:0:00.2" Value="30.0" />
<SplineDoubleKeyFrame KeyTime="0:0:00.8" Value="330.0" />
<SplineDoubleKeyFrame KeyTime="0:0:01.0" Value="360.0" />
</DoubleAnimationUsingKeyFrames>
</Storyboard>
</BeginStoryboard>
</EventTrigger.Actions>
</EventTrigger>
</Button.Triggers>
</Button>

Much of this code should seem familiar by now. The Button element’s attributes set its name,
contents, and size. A Background element fills the button with a RadialGradientBrush.

The Button element contains a RenderTransform element similar to the ones described in the
previous section. In this case, the transform is a RotateTransform with angle of rotation initially set
to 0 so that the button appears in its normal orientation. Its center is set to the middle of the button.
The transform is named rotButton so that other code can refer to it later.

After the transform element, the code contains a Triggers section. This section holds an EventTrigger
element that responds to the Button.Click routed event.

A routed event is a new kind of event developed for WPF. Routed events travel up and down
through a WPF application’s hierarchy of controls so interested controls can catch and process the
events. For simple purposes, however, a routed event behaves much like a Windows Forms event
does and you can catch it with a normal Visual Basic event handler. When the user clicks the button,
the Button.Click event fires and this trigger springs into action.

The trigger’s Actions element contains the tasks that the trigger should perform when it runs. In this
example, the trigger performs the BeginStoryboard action. Inside the BeginStoryboard element is a
Storyboard element that represents the things that the storyboard should do.



158 | CHAPTER11 USING WPF CONTROLS

STORYBOARD START

When I see “BeginStoryboard,” I think of the beginning of a storyboard. Actually,
this element more properly means “start the storyboard.” When this element
executes, it starts the storyboard running. (The name “ExecuteStoryboard” or
“PlayStoryboard” might have been more intuitive.)

The Storyboard element’s TargetName attribute gives the target object on which the storyboard
should act, in this case the RotateTransform object named rotButton. The TargetProperty

attribute tells what property of the target button the storyboard should manipulate, in this example
the object’s RotateTransform.Angle property.

The Storyboard element contains a DoubleAnimationUsingKeyFrames element. A key frame is a
specific point in an animation sequence with known values. The program automatically calculates
values between the key frame values to make the animation smooth.

This DoubleAnimationUsingKeyFrames element holds a collection of SplineDoubleKeyFrame
elements that define the animation’s key values. Each key frame gives its time within the animation
in hours, minutes, and seconds, and the value that the controlled property should have at that
point in the animation. In this example, the rotation transformation’s angle should have a value

of 0 when the storyboard starts, a value of 30 when the animation is 20 percent complete, a

value of 330 when the storyboard is 80 percent complete, and a value of 360 when the storyboard
finishes. The result is that the button rotates slowly for the first 0.2 seconds, spins relatively quickly
for the next 0.6 seconds, and then finishes rotating at a more leisurely pace.

Example program SpinButton animates a single property, the button’s angle of rotation, but you can
animate more than one property at the same time if you like. The SpinAndGrowButton example
program, which is available for download on the book’s website, simultaneously animates a button’s
angle of rotation and size. This example has two key differences from program SpinButton.

First, the new button’s RenderTransform element contains a TransformGroup that contains two
transformations, one that determines the button’s angle of rotation and one that determines
its scaling:

<Button.RenderTransform>
<TransformGroup>
<RotateTransform x:Name="rotButton" Angle="0" CenterX="50" CentervY="25" />
<ScaleTransform x:Name="scaButton" ScaleX="1" ScaleYy="1"
CenterX="50" CenteryY="25" />
</TransformGroup>
</Button.RenderTransform>

The second difference is in the new button’s Storyboard. The following code omits the anima-
tion’s TargetName and TargetProperty from the Storyboard element’s attributes. It includes three
DoubleAnimationUsingKeyFrame elements inside the Storyboard, and it is there that it sets the



XAML Features | 159

TargetName and TargetProperty. The three animations update the button’s angle of rotation,

horizontal scale, and vertical scale.

<Storyboard>
<!-- Rotate -->
<DoubleAnimationUsingKeyFrames
Storyboard.TargetName="rotButton"
Storyboard.TargetProperty=" (RotateTransform.Angle) ">
<SplineDoubleKeyFrame KeyTime="0:0:00.0" Value="0.0"

/>

<SplineDoubleKeyFrame KeyTime="0:0:01.0" Value="360.0" />

</DoubleAnimationUsingKeyFrames>

<!-- ScaleX -->

<DoubleAnimationUsingKeyFrames
Storyboard.TargetName="scaButton"
Storyboard.TargetProperty=" (ScaleTransform.ScaleX) ">
<SplineDoubleKeyFrame KeyTime="0:0:00.0" Value="1.0"
<SplineDoubleKeyFrame KeyTime="0:0:00.5" Value="2.0"
<SplineDoubleKeyFrame KeyTime="0:0:01.0" Value="1.0"

</DoubleAnimationUsingKeyFrames>

<!-- ScaleY -->

<DoubleAnimationUsingKeyFrames
Storyboard.TargetName="scaButton"
Storyboard.TargetProperty="(ScaleTransform.ScaleY) ">
<SplineDoubleKeyFrame KeyTime="0:0:00.0" Value="1.0"
<SplineDoubleKeyFrame KeyTime="0:0:00.5" Value="2.0"
<SplineDoubleKeyFrame KeyTime="0:0:01.0" Value="1.0"
</DoubleAnimationUsingKeyFrames>

</Storyboard>

/>
/>
/>

/>
/>
/>

By using XAML Storyboards, you can build complex animations that run when certain events
occur. As with templates, however, you should use some restraint when building storyboard
animations. A few small animations can make an application more interesting, but too many

large animations can distract and annoy the user.

Drawing Objects

WPF provides several objects for drawing two-dimensional shapes, the most useful of which are

Line, Ellipse, Rectangle, Polygon, Polyline, and Path.

Most of these are relatively straightforward and you can learn more about them by searching the
online help. They all provide Stroke and StrokeThickness properties to determine the appearance

and thickness of their borders and a Fill property to determine how
ignores the Fill property because it doesn’t draw a closed curve).

a shape is filled (although Line

The Path object is the most confusing of these so it deserves some special attention. Instead of
drawing a single simple shape, the Path object draws a series of shapes such as lines, arcs, and
curves. A Path object can be incredibly complex, and can include any of the other drawing objects

plus a few others that draw smooth curves.



160 | CHAPTER11 USING WPF CONTROLS

You can define a Path object in two ways. First, you can make the Path element contain other
elements (Line, Ellipse, and so forth) that define objects drawn by the path.

The second (and more concise) method is to use the Path element’s Data attribute. This is a text
attribute that contains a series of coded commands for drawing shapes. For example, the following
code makes the Path move to the point (20, 20), and then draw to connect the following points

(80, 20), (50, 60), (90, 100), and (50, 120):

<Path Stroke="Gray" StrokeThickness="5" Grid.Column="1" Grid.Row="1"
Data="M 20,20 L 80,20 50,60 90,100 50,120" />

You can use spaces or commas to separate point coordinates. To make it easier to read the code,
I use commas between a point’s x and Y coordinates and spaces between points, as in the
previous example.

Some commands allow both uppercase and lowercase command letters. For those commands, the

lowercase version means that the following points’ coordinates are relative to the previous points’

coordinates. For example, the following data makes the object move to the point (10, 20) and then
draws to the absolute coordinates (30, 40):

Data="M 10,20 L 30,40"

In contrast, the following data moves to the point (10, 20) as before, but then moves distance (30, 40)
relative to the current position. The result is that the line ends at point (10 + 30, 20 + 40) = (40, 60).

Data="M 10,20 1 30,40"

There isn’t enough room for a complete discussion of the Path object, but the following table
summarizes the commands that you can include in the Data attribute.

COMMAND RESULT EXAMPLE

FO Sets the fill rule to the odd/even rule. FO

F1 Sets the fill rule to the non-zero rule. F1

Morm Moves to the following point without drawing. M 10,10

Lorl Draws a line to the following point(s). L 10,10 20,20 30,10
Horh Draws a horizontal line from the current point to the h 50

given X coordinate.

Vorv Draws a vertical line from the current point to the v 30
given Y coordinate.



XAML Features | 161

COMMAND

Corc

Sors

Qorq

Tort

Aora

Zorz

RESULT

Draws a cubic Bezier curve. This command takes three
points as parameters: two control points and an endpoint.
The curve starts at the current point moving toward the first
control point. It ends at the endpoint, coming from the
direction of the second control point.

Draws a smooth cubic Bezier curve. This command takes
two points as parameters: a control point and an endpoint.
The curve defines an initial control point by reflecting the
second control point used by the previous S command, and
then uses it plus its two points to draw a cubic Bezier curve.
This makes a series of Bezier curves join smoothly.

Draws a quadratic Bezier curve. This command takes two
points as parameters: a control point and an endpoint. The
curve starts at the current point moving toward the control
point. It ends at the endpoint, coming from the direction of
the control point.

Draws a smooth quadratic Bezier curve. This command
takes one point as a parameter: an endpoint. The curve
defines a control point by reflecting the control point used
by the previous T command, and then uses it to draw a
quadratic Bezier curve. The result is a smooth curve that
passes through each of the points given as parameters to
successive T commands.

Draws an elliptical arc. This command takes five parameters:

size—The X and Y radii of the arc

rotation_angle—The ellipse’s angle of rotation
large_angle—O if the arc should span less than 180; 1if the
arc should span 180 degrees or more

sweep_direction—O if the arc should sweep
counter-clockwise; 1if it should sweep clockwise
end_point—The point where the arc should end

Closes the figure by drawing a line from the current point to
the Path’s starting point.

EXAMPLE

C 20,20 60,0 50,50

S$60,0 50,50
$80,60 50,70

Q 80,20 50,60

780,20 T 50,60
790,100

A 50,2001060,80

Example program Shapes, which is shown in Figure 11-6 and which is available for download on
the book’s website, demonstrates several different Path objects.



162

CHAPTER 11 USING WPF CONTROLS

Example program BezierCurves, which is shown in Figure 11-7
and is also available for download on the book’s website, shows
examples of the four different kinds of Bezier curves. This
program also draws a gray polyline behind each to show the
curves’ parameters.

€D
X T

The cubic Bezier curve on the left connects the two endpoints
using the two middle points to determine the curve’s direction
at the endpoints.

The smooth cubic Bezier curve shown next passes through the

first, third, and fifth points. The second point determines

the curve’s direction as it leaves the first point and as it

enters the third point. The curve automatically defines a control
point to determine the direction leaving the third point, so the

FIGURE 11-6: Example program
Shapes demonstrates the Polygon,
Polyline, Ellipse, Line, and Path

. . objects.
curve passes through the point smoothly. Finally, the fourth )
point determines the curve’s direction as it ends
at the fifth point. - e HES

Cubic Bezier Smooth Bezier Quadratic Bezier Smooth Quadratic

L33 X

The next curve shows two quadratic Bezier
curves. The first curve connects the first and
third points, with the second point determining
the curve’s direction at both points. The second
curve connects the third and fifth points, using
the fourth to determine its direction.

The final curve in Figure 11-7 uses an M
command to move to the point (20, 20). It then
uses three smooth quadratic Bezier curves to
connect the following three points. The curve automatically defines the control points it needs
to connect the points smoothly.

FIGURE 11-7: The Path object can draw Bezier curves.

With all of these drawing objects at your disposal, particularly the powerful Path object, you can
draw just about anything you need. The graphical XAML editor does not provide interactive tools
for drawing shapes, but you can draw them by using the XAML text editor. It may help to sketch
out what you want to draw on graph paper first.

PROCEDURAL WPF

The previous sections explained how to use XAML to build WPF windows. By using XAML, you
can define controls, resources, styles, templates, transformations, and even animations.

Behind the scenes, an application reads the XAML code, and then builds corresponding controls
and other objects to make the user interface. Often, it’s easiest to build forms by using the XAML
editor, but if necessary, your Visual Basic code can build exactly the same objects.



Procedural WPF | 163

NOTE Usually you should build the interface with XAML to increase the
separation between the user interface and the code. Howeuver, it may sometimes
be easier to build dynamic elements in code (for example, in response to data
loaded at run time, inputs from the user, or errors).

For example, the MakeButton example program, which is available for download on the book’s
website, uses the following Visual Basic code to add a button to its WPF window when you click the
initial button:

' Add a new Button to the StackPanel.

Private Sub btnMakeButton_Click() Handles btnMakeButton.Click
Dim btn As New Button()
btn.Content = "Make Button"
AddHandler btn.Click, AddressOf btnMakeButton_Click
stkButtons.Children.Add (btn)

End Sub

The code starts by creating a new Button object and setting its Content property to the string Make
Button. It uses an AddHandler statement to make the btnMakeButton_Click event handler catch
the new button’s Click event. Finally the code adds the new button to the stkButtons StackPanel
control’s Children collection.

Example program Procedural AnimatedButton, which is available for download on the book’s web-
site, uses Visual Basic code to implement several of the techniques described earlier using XAML
code. It creates a brush object and uses it to define a Style for buttons. It then creates three Buttons
using that Style.

When the mouse moves over a button, the program’s code builds and plays an animation to enlarge
the button. When the mouse moves off of the button, the code restores the button to its original size.

The following code builds the user interface objects when the program’s window loads:

Private WithEvents btnCenter As Button
Private Const BIG_SCALE As Double = 1.5

Private Sub Windowl_Loaded() Handles Me.Loaded
' Make a style for the buttons.
Dim br_button As New RadialGradientBrush (
Colors.HotPink, Colors.Red)
br_button.Center = New Point (0.5, 0.5)
br_button.RadiusX = 1
br_button.RadiusY = 1

Dim style_button As New Style(GetType (Button))

style_button.Setters.Add (New Setter (Control.BackgroundProperty,
br_button))

style_button.Setters.Add (New Setter (Control.WidthProperty, CDbl(70)))

style_button.Setters.Add(New Setter (Control.HeightProperty, CDbl (40)))



164 | CHAPTER11 USING WPF CONTROLS

style_button.Setters.Add (New Setter (Control.MarginProperty,
New Thickness(5)))

' Set the transform origin to (0.5, 0.5).
style_button.Setters.Add (New Setter(
Control.RenderTransformOriginProperty, New Point (0.5, 0.5)))

' Make a StackPanel to hold the buttons.
Dim stack_panel As New StackPanel ()
stack_panel.Margin = New Thickness (20)

' Add the Left button.
Dim btn_left As Button
btn_left = New Button()
btn_left.Style = style_button
btn_left.Content = "Left"
btn_left.RenderTransform = New ScaleTransform(l, 1)
btn_left.SetValue (
StackPanel .HorizontalAlignmentProperty,
Windows.HorizontalAlignment.Left)
AddHandler btn_left.MouseEnter, AddressOf btn_MouseEnter
AddHandler btn_left.MouseLeave, AddressOf btn_MouseLeave
stack_panel.Children.Add (btn_left)

' Make the Center button.
btnCenter = New Button()
btnCenter.Style = style_button
btnCenter.Content = "Center"
btnCenter.RenderTransform = New ScaleTransform(l, 1)
btnCenter.SetvValue (
StackPanel .HorizontalAlignmentProperty,
Windows.HorizontalAlignment.Center)
AddHandler btnCenter.MouseEnter, AddressOf btn_MouseEnter
AddHandler btnCenter.MouseLeave, AddressOf btn_MouseLeave
stack_panel.Children.Add (btnCenter)

' Make the Right button.
Dim btn_right As New Button
btn_right.Style = style_button
btn_right.Content = "Right"
btn_right.RenderTransform = New ScaleTransform(1l, 1)
btn_right.Setvalue (
StackPanel .HorizontalAlignmentProperty,
Windows.HorizontalAlignment.Right)
AddHandler btn_right.MouseEnter, AddressOf btn_MouseEnter
AddHandler btn_right.MouseLeave, AddressOf btn_MouseLeave
Stack_panel.Children.Add (btn_right)

Me.Content = stack_panel
End Sub

This code starts by declaring a Button control using the WithEvents keyword. The program makes
three buttons, but only catches the Click event for this one. The code also defines a constant that
determines how large the button will grow when it enlarges.



Procedural WPF | 165

When the window loads, the code creates a RadialGradientBrush and defines its properties. It then
creates a Style object that can apply to Button objects. It adds several Setter objects to the Style to
set a Button control’s Background, Width, Height, Margin, and RenderTransformOrigin properties.

Next, the code creates a StackPanel object. This will be the window’s main control and will replace
the Grid control that Visual Studio creates by default.

The program then makes three Button objects. It sets various Button properties, including set-

ting the Style property to the Style object created earlier. It also sets each Button control’s
RenderTransform property to a ScaléTransform object that initially scales the Button by a factor of 1
vertically and horizontally. It will later use this transformation to make the Button grow and shrink.

The code uses each Button control’s SetValue method to set its HorizontalAlignment property for
the StackPanel. The code uses AddHandler to give each Button an event handler for its MouseEnter
and MouseLeave events. Finally, the code adds the Button controls to the StackPanel’s Children
collection.

The window’s Loaded event handler finishes by setting the window’s Content property to the new
StackPanel containing the Button controls.

The following code shows how the program responds when the mouse moves over a Button:

' The mouse moved over the button.
' Make it larger.
Private Sub btn_MouseEnter (btn As Button, e As MouseEventArgs)
' Get the button's transformation.
Dim scale_transform As ScaleTransform =
DirectCast (btn.RenderTransform, ScaleTransform)

' Create a DoubleAnimation.
Dim ani As New DoubleAnimation(1l, BIG_SCALE,
New Duration (TimeSpan.FromSeconds (0.15)))

' Create a clock for the animation.
Dim ani_clock As AnimationClock = ani.CreateClock()

' Associate the clock with the transform's
' ScaleX and ScaleY properties.
scale_transform.ApplyAnimationClock (
ScaleTransform.ScaleXProperty, ani_clock)
scale_transform.ApplyAnimationClock (
ScaleTransform.ScaleYProperty, ani_clock)
End Sub

This code first gets the button’s ScaleTransform object. It then creates a DoubleAnimation object
to change a value from 1 to the BIG_SCALE value (defined as 1.5 in the earlier Const state-
ment) over a period of 0.15 seconds. It uses the object’s CreateClock statement to make an
AnimationClock to control the animation. Finally, the code calls the ScaleTransformation object’s
ApplyAnimationClock method twice, once for its horizontal and vertical scales. The result is

that the Button control’s ScaleTransform object increases the Button control’s scale vertically and
horizontally.



166 | CHAPTER11 USING WPF CONTROLS

The btn_MouseLeave event handler is very similar, except ") ProceduralAnimatedsution = | O [N
that it animates the Button controls’ scale values shrinking '

from BIG_SCALE to 1. -

Figure 11-8 shows example program

. . . . . Center
Procedural AnimatedButton in action with the mouse resting I

over the center button. -

Other examples available for download on the book’s website
demonstrate other procedural WPF techniques. For example,
program ProceduralCalculator builds a calculator similar to FIGURE 11-8: Program

the one shown in Figure 11-3, but it builds its user interface ProceduralAnimatedButton uses

in Visual Basic code. Example program GridButtonCode uses ~ Visual Basic code to animate buttons.
Visual Basic code to build a button that holds a grid similar

to the one shown in Figure 11-1.

DOCUMENTS

WPF includes three different kinds of documents: flow documents, fixed documents, and XPS
(XML Paper Specification) documents. These different kinds of documents provide support for
high-end text and printing capabilities.

For example, fixed documents allow you to generate a document that keeps the same layout whether
it is viewed on a monitor, printed at low-resolution, or printed at a very high-resolution. On each
device, the document uses the features available on that device to give the best result possible.

Each of these three kinds of documents is quite complex so there isn’t room to do them justice here.
However, the following three sections provide an overview and give brief examples.

Flow Documents

Flow documents are designed to display as much data as possible in the best way possible,
depending on runtime constraints such as the size of the control displaying the document. If the
control grows, the document rearranges its contents to take advantage of the new available space. If
the control shrinks, the document again rearranges its contents to fit the available space. The effect
sort of mimics the way a web browser behaves, rearranging the objects it displays as it is resized.

The WPF FlowDocument control represents a flow document. The FlowDocument can contain four
basic content elements: List, Section, Paragraph, and Table. These have rather obvious purposes: to
display data in a list, group data in a section, group data in a paragraph, or display data in a table,
respectively.

Although the main emphasis of these elements is on text, they can contain other objects. For
example, a Paragraph can contain controls such as Button, Label, TextBox, and Grid. It can also
contain shapes such as Polygon, Ellipse, and Path.

A fifth content element, BlockUIElement, can hold user interface controls such a Button, Label, and
TextBox. A BlockUIElement can hold only one child, but if that child is a container such as a Grid
or StackPanel, then the child can contain other controls.



Documents | 167

WMEF provides three types of objects for displaying FlowDocuments: FlowDocumentReader,
FlowDocumentPageViewer, and FlowDocumentScrollViewer.

The FlowDocumentReader lets the user pick from three different viewing modes: single page, book
reading, and scrolling. In single page mode, the reader displays the document one page at a time.
The object determines how big to make a page based on its size. If the reader is wide enough, it will
display the FlowDocument in two or more columns, although it still considers its surface to hold a
single page at a time, even if that page uses several columns.

In book reading mode, the reader displays two pages at a time. The object divides its surface into
left and right halves, and fills each with a “page” of data. The reader always displays two pages, no
matter how big or small it is.

In scrolling mode, the reader displays all of the document’s contents in a single long page, and it
provides a scroll bar to allow the user to scroll down through the document. This is similar to the
way web browsers handle a very tall web page.

Example program UseFlowDocumentReader, shown in Figure 11-9 and available for download on
the book’s website, shows a FlowDocumentReader object displaying a document in book reading
mode. The program’s View menu lets you change the viewing mode.

= UseFlowDocumentReader [ [o S

View
FlowDocument Elements A Floater holds content that can
float to other locations. For
) ) example, it might be an image
A FlowDocument can contain the following items: with its caption as shown in
Figure 1.
Iltem Purpose
List Display items in a list AlList
Paragraph Group contents into a paragraph . S
Section Group elements into a section Here's a simple list igure 1: AACalng Holygon,
Table Display items in a table such as this one. :
* Apple
As you can probably guess, a Paragraph can contain text. It can « Banana
also contain other elements such as butfons, grids, and polygons « Chermry
The following paragraph contains a Button, TextBox, Ellipse, and a
Grid containing a Polygon. * Triangle
Documents

Elock Ul Button

WPF includes three different kinds of documents: flow documents,
fixed documents, and XPS documenis. These different kinds of

documents provide support for high-end text and printing

capabilities.

For example, fixed documents allow you to generate a document

that keeps the same layout whether it is viewed on a monitor,

printed at low-resolution, or printed at a very high-resolution. On
AText Box each device, the document uses the features available on that

device to give the best result possible

Floaters Each of these three kinds of documents is quite complex so there

isn't room to do them justice here. However, the following three
sections provide an overview of these kinds of documents and give

Js) Tof 20 EEE =

FIGURE 11-9: This FlowDocumentReader is using book reading mode.

o




168 | CHAPTER11 USING WPF CONTROLS

This program demonstrates several useful features of FlowDocument objects. The section headers
are contained in Paragraph objects that use a Style that defines their font. If you wanted to change
the appearance of all of the headers, you would only need to change the Style.

The FlowDocument uses a LinearGradientBrush that shades from black to gray as the text moves
left to right. (The effect is more striking on a monitor if you use a colored gradient.)

The document contains a table in its first section, Button and TextBox controls, an Ellipse, and a
Grid that holds a Polygon. It uses the Floater element to allow another Grid containing a Polygon
and a text caption to float to a position where it will fit nicely in the display. The document also
holds a list, one item of which contains a Polygon drawing a triangle.

The bottom of the FlowDocumentReader displays a toolbar. If you click the magnifying glass
button on the left, a search text box appears next to it. You can enter text to search for, and the
reader will let you scroll back and forth through any matches.

In the middle of the toolbar, the reader displays the current page number and the total number
of pages. The three buttons to the right let the user select the single page, book reading, and
scrolling views. Finally, the slider on the lower right lets the user adjust the document’s scale to
zoom in or out.

The FlowDocumentPageViewer and FlowDocumentScrollViewer objects behave as the
FlowDocumentReader does in its single page and scrolling modes, respectively. (The big difference
is that FlowDocumentReader can display documents in several modes while the others use only one.
If you want to offer the reader several options, use FlowDocumentReader. If you want to restrict the
view available, use one of the other kinds of viewers.)

Example programs UseFlowDocumentPageViewer and UseFlowDocumentScrollViewer, which are
both available for download on the book’s website, demonstrate these controls.

NOTE If you display a FlowDocument element itself, it acts as a
FlowDocumentReader. See example program UseFlowDocument, which is
available for download on the book’s website.

Fixed Documents

A FixedDocument represents a document that should always be displayed exactly as it was
originally composed. Whereas a FlowDocument rearranges its content to take advantage of its
current size, all of the content in a FixedDocument remains where it was originally placed. If a
FlowDocument is similar to a web browser, then a FixedDocument is similar to an Adobe Acrobat
PDF document.

The FixedDocument object contains one or more PageContent objects, each containing a FixedPage
object. It is in the FixedPage object that you place your content. You can use the usual assortment of
containers to arrange controls and other objects inside the FixedPage object.



Summary | 169

A program can use a DocumentViewer to display a FixedDocument. The DocumentViewer provides
tools to let the user print, zoom in and out, size the document to fit the viewer, display the document
in one- or two-page modes, and search for text within the document.

Example program UseFixedDocument, which is available for download on the book’s website,
displays a FixedDocument inside a DocumentViewer.

XPS Documents

In addition to flow documents and fixed documents, WPF also defines a third kind of document
called XML Paper Specification (XPS) documents. XPS is an XML-based open standard used to
represent fixed documents.

An XPS document is stored in a file called a package. The package is made up of pieces called parts.
Physically, the parts are arranged as files and folders. When you save the document to disk, it is
stored as a ZIP-compressed collection of these physical files and folders. If you change the file’s
extension from .xps to .zip, you can read the files using any ZIP-enabled viewer. For example,
Windows Explorer will let you browse through the ZIP file.

Logically, the document’s parts form a hierarchical representation of the document. (Remember
that the document uses an XML format, and XML is hierarchical, so the document is also
hierarchical.) The document itself may contain a FixedDocumentSequence object that contains
one or more FixedDocument objects. The FixedDocument objects are similar to the ones described
in the previous section, so they can hold container controls that contain any number of objects
arranged in a hierarchical way.

In addition to the features provided by FixedDocuments, XPS documents also allow you to digitally
sign the package. That tells others that you signed it, gives them the time and date that you signed
it, and ensures that the document has not been modified since then. A document can contain

more than one signature, and you can provide different levels of security on different parts of the
document. For example, you could prevent others from changing the document’s body, but allow
them to add annotations.

Like the other WPF document objects, XPS documents are quite complex, and there isn’t room to
do them justice here. See Microsoft’s online help (http://msdn2.microsoft.com/system
.windows.xps and http://www.microsoft.com/whdc/xps/Xpsspec.mspx are good places

to start) and search the web for more detailed information and examples.

SUMMARY

One of the main goals of WPF is to separate the user interface more completely from the code
behind it. XAML lets you declaratively build a user interface and then later add code to handle the
events that the application needs to perform. Because the user interface is separate from the code,
you can assign different developers to work on each of them. You can have a graphics designer use
a graphical XAML editor to build the user interface and have a Visual Basic developer write the
underlying code. Later, the graphical designer can modify the user interface without forcing you to
rewrite the code.


http://www.microsoft.com/whdc/xps/xpsspec.mspx
http://msdn2.microsoft.com/system.windows.xps
http://msdn2.microsoft.com/system.windows.xps

170 | CHAPTER11 USING WPF CONTROLS

WPF includes hundreds of new objects for defining user interfaces. These objects let you build
windows that take advantage of modern computer graphics hardware and can provide advanced
features such as rotated and scaled controls. New drawing objects let you produce complex graphics
at design time such as polygons, Bezier curves, and complex paths.

Resources and styles let you customize objects so that they are easy to change in a central location.
Triggers, animations, and storyboards let the interface interact with the user at a very high level, so
the bulk of your code doesn’t need to handle these more cosmetic chores.

New document objects let you display information that can flow to take best advantage of the
available space, or that remain in fixed positions on any display device. Powerful document viewers
let users scroll through documents, zoom in and out, print, and copy data to the clipboard.

WPF provides a huge number of powerful features, and this chapter barely scratched the surface.

In Windows Forms applications, Form objects play a special role. They represent the top-level user
interface components in which all other controls reside.

In a WPF application, the situation is a little less obvious. A top-level object in a WPF application
can be a Window, which roughly corresponds to a Form, but it can also be some other object
such as a Page or FlowDocument that is designed to run inside a container such as a web browser.
Chapter 12, “WPF Windows,” describes the Windows class and these other top-level classes, and
explains their special roles in WPF applications.



12

WPF Windows

WHAT’S IN THIS CHAPTER

> Window and Page applications

>  Browser and Frame applications

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: / /www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

> BrowserApp
> FrameApp
»  UseDialog

USING WPF WINDOWS

In Windows Forms applications, Form objects play a special role. They represent the top-level
user interface components in which all other controls reside. Ignoring behind-the-scenes chores
such as parsing command-line arguments and messing with the operating system, a typical
Windows Forms application starts by displaying a Form object. That Form may provide
buttons, menus, and other controls that open other Form objects, but all of the controls are
contained in Form objects.

In WPF applications, you can display controls on a Window, an object that is basically the
WPF version of a Form. Alternatively, you can display controls in a Page. A Page is a lot

like a Window without decorations such as borders, title bar, and system menus (maximize,
minimize, restore, close, and so forth). A Page must be hosted inside another object that
provides these decorations. Usually, a Page is displayed in a web browser, but the WPF Frame
control can also display Page objects.


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://wrox.com
http://WROX.COM

172 | CHAPTER12 WPF WINDOWS

This chapter explains how you can use these top-level objects, Window and Page, in your WPF
applications. It explains how a program can display and manage multiple Window and Page
objects, and provides some examples showing simple navigation schemes.

NOTE Metro-style applications display controls inside a User Control object.
Metro-style applications are described in Chapter 21.

WINDOW APPLICATIONS

A typical desktop WPF application displays its controls in Window objects. To create this type of
application, select the File menu’s New Project command to display the New Project dialog box.
On the Visual Basic @ Windows tab, select WPF Application, enter a project name, and click OK.

The new application begins with a single Window class named Window1. Open the Solution
Explorer and double-click the Window1.xaml entry to edit the Window’s controls. Double-click the
Window1.xaml.vb entry to edit the Visual Basic code behind the Window.

CODE-BEHIND

The code behind a Window is called its code-behind. It’s not a very imaginative
term, but it’s easy to remember.

To add other Window classes, open the Project menu and select Add Window. Enter a name for the
class and click OK.

To display a window in code, create a variable that refers to a new instance of the window. Call its
Show method to display the window non-modally, or call its ShowDialog method to display

the window modally. The following code creates a new window of type Window2 and displays

it modally:

Dim win2 As New Window2 ()
win2.ShowDialog ()

Although several similarities exist between the way a program uses a Window and the way it uses a
Form, there are many significant differences.

For example, both classes have a DialogResult property that indicates how the user closed the

form. Both classes’ ShowDialog methods return this result, so the code can easily determine

the form’s DialogResult value. In a Form, the DialogResult property is a value of type DialogResult,
an enumerated type that provides values such as OK, Cancel, Yes, and No to indicate which button



Window Applications | 173

the user clicked to close the form. If the code sets this value, the form automatically hides, so the
calling ShowDialog method returns.

In contrast, a WPF Window’s DialogResult value is a Boolean intended to indicate whether the user
accepted or canceled the dialog box. If you need more detail (did the user click Yes, No, or Cancel?),
you’ll need to provide code in the dialog box to remember which button the user clicked. If the code
sets DialogResult, the window automatically closes so the calling ShowDialog method returns.
Unfortunately, the window closes rather than hides so you cannot display the dialog box again.
(You cannot display a window after it has closed.) If you want to remember which button the user
clicked and then hide the window without closing it, you’ll need to implement your own property
rather than DialogResult, and you’ll need to hide the window explicitly.

The Windows Forms and WPF Button classes also both have properties that you can use to define a
dialog box’s default and cancel buttons, but they work in different ways.

You can set a Windows Forms Button object’s DialogResult property to the value you want the
button to give to the form’s DialogResult property. If the user clicks the button, it assigns the form’s
DialogResult value and hides the form so the calling ShowDialog method returns that value.

In a WPF application, you can set a button’s IsCancel property to True to indicate that the button
is the form’s cancel button. If the user presses the Escape key or clicks the button, the button sets
the form’s DialogResult property and closes the form so the calling ShowDialog method returns.
Unfortunately, the button closes the form rather than merely hiding it so, as before, you cannot
display the dialog box again.

You can also set a WPF button’s IsDefault property to indicate that it should fire if the user presses
the Enter key. Unfortunately, this does not automatically set the form’s DialogResult property and
does not close the dialog box.

Example program UseDialog, which is available for download on the book’s website, shows one
approach to solving this problem. The dialog class Window2 contains three buttons labeled Yes,
No, and Cancel.

The following code shows how the dialog box handles button clicks. The single btn_click
event handler fires for all three of the buttons. It saves the button’s text in the public variable
UserClicked and then closes the form.

Partial Public Class Window2
Public UserClicked As String = "Cancel"

Private Sub btn_Click(btn As Button, e As RoutedEventArgs) _
Handles btnYes.Click, btnNo.Click, btnCancel.Click
UserClicked = btn.Content
Me.Close()
End Sub
End Class

The following code shows how the program’s main window displays the dialog box and

checks the result. When you click the Show Dialog button, the program creates a new dialog
window and displays it modally. It then checks the dialog box’s Userclicked property to see which
button the user clicked.



174 | CHAPTER12 WPF WINDOWS

Private Sub btnShowDialog_Click() Handles btnShowDialog.Click
Dim win2 As New Window2 ()
win2.ShowDialog ()
Select Case win2.UserClicked
Case "Yes"

MessageBox.Show("You clicked Yes", "Yes", MessageBoxButton.OK)
Case "No"
MessageBox.Show("You clicked No", "No", MessageBoxButton.OK)
Case "Cancel"
MessageBox.Show("You clicked Cancel", "Cancel", _
MessageBoxButton.OK)
End Select
End Sub

Most of the things that you can do with a Form you can do with a Window. For example, you can:
> Create new instances of Window classes.
> Display Windows modally or non-modally.
> Close or hide Windows.
>

View and manipulate the properties of one Window from within the code of another
Window.

Nevertheless, the details of Form and Window operations may be different. You may need to use
slightly different properties, and you may need to take a slightly different approach, but Window is a
fairly powerful class and with some perseverance you should be able to build usable interfaces with it.

PAGE APPLICATIONS

A Page is similar to a borderless Window. It doesn’t provide its own decorations (border, title bar,
and so forth), but instead relies on its container to provide those elements.

Often a Page is hosted by a web browser, although the WPF Frame control can also display Page
objects.

The following sections explain how you can use Page objects to build WPF applications.

Browser Applications

To make a XAML Browser Application (XBAP, pronounced ex-bap), select the File menu’s New
Project command to display the New Project dialog box. On the Visual Basic = Windows tab, select
WPF Browser Application, enter a project name, and click OK.

EXCITING XBAPS

For an interesting site that has lots of information about XBAPs including a FAQ,
tutorial, and samples, see XBap.org (http: //www.xbap.org).


http://www.xbap.org
http://XBap.org

Page Applications | 175

The new application begins with a single Page class named pagel. You can view and edit this Page
exactly as you would view and edit a Window. Open the Solution Explorer and double-click the
Pagel.xaml entry to edit the Page’s controls. Double-click the Pagel.xaml.vb entry to edit

the Visual Basic code behind the Page.

To run the application, open the Debug menu and select Start Debugging. Internet Explorer should
open and display the initial Page. Visual Studio is nicely integrated with this instance of Internet
Explorer so you can set breakpoints in the code to stop execution and debug the code just as you can
debug a Windows Forms application or a WPF Window application.

To add other Page classes to the application, open the Project menu and select Add Page. Enter a
name for the class and click OK.

To display a Page in code, create a variable that refers to a new instance of the Page. Then use the
current Page’s NavigationService object’s Navigate method to display the new Page.

The following code creates a new page of type Page2, and then uses the Navigationservice object
to display it:

Dim p2 As New Page2 ()
NavigationService.Navigate (p2)

Because the application is hosted inside a browser, there are several differences in the ways the
user will interact with the application. Rather than displaying new forms and dialog boxes,
the application will generally display new material within the same browser.

This design has several consequences. For example, the previous code creates a new instance of the
page?2 class and displays it. If the user were to execute this same code later, it would create a second
instance of the class and display it. Because these are two instances of the class, they do not have the
same controls, so any changes the user makes (entering text, checking radio buttons, and so forth)
are not shared between the two pages. When the second instance appears, the user may wonder
where all of the previous selections have gone.

The program can prevent this confusion by using a single application-global variable to hold
references to the Page?2 instance. Every time the program needs to show this page, it can display the
same instance. That instance will display the same control values so the user’s selections are preserved.

That approach solves one problem but leads to another. Because the application runs inside a browser,
the browser’s navigation and history tools work with it. If you press the browser’s Back button, it will
display the previous page. That part works relatively transparently, but every time the application uses
NavigationService.Navigate to display a Page, that Page is added to the browser’s history.

To see why this is an issue, suppose the application has an initial Page that contains a button
leading to a second Page. That Page has a button that navigates back to the first page. If the user
moves back and forth several times, the browser’s history will be cluttered with entries such as

Page 1, Page 2, Page 1, Page 2, and so forth. Although this represents the user’s actual path through
the Pages, it isn’t very useful.

You can reduce clutter in the browser’s history by using the NavigationService object’s GoForward
and GoBack methods whenever it makes sense. In this example, it would probably make sense for
the second Page to use the GoBack method to return to the main page. Instead of creating a new



176

CHAPTER 12 WPF WINDOWS

Frame Applications

entry in the history as the Navigate method does, GoBack moves back one position in the existing
history. After several trips between the two Pages, the history will contain only those two Pages,
one possibly available via the browser’s Back button and one possibly available via the browser’s
Next button.

Example program BrowserApp demonstrates this technique. The program uses two Pages that
provide buttons to navigate to each other. Both Pages also contain a text box where you can enter
some text, just to verify that the values are preserved when you navigate between the pages.

The following code shows how the main Page navigates to the second Page. If the NavigationService
can go forward, the code calls its GoForward method. If the NavigationService cannot go forward,
the code uses its Navigate method to visit a new Page2 object.

Private Sub btnPage2_Click() Handles btnPage2.Click
If NavigationService.CanGoForward Then
NavigationService.GoForward ()
Else
NavigationService.Navigate (New Page2())
End If
End Sub

The following code shows how the second Page returns to the first. This code simply calls the
NavigationService object’s GoBack method.

Private Sub btnBack Click() Handles btnBack.Click
Me.NavigationService.GoBack ()
End Sub

Once you’ve built an XBAP, you can run it by pointing a web browser at the compiled xbap file.
When I built the previous example program, the file Browserapp.xbap was created in the project’s
bin/Debug directory and the file successfully loaded in both Internet Explorer and Firefox.

Building a Page class is almost exactly the same as building a Window class. You use the same
XAML editor and Visual Basic code behind the scenes. The main difference is in how you navigate
between the application’s forms. In a WPF application, you create Window objects and use their
Show or ShowDialog methods. In an XBAP, you create Page objects and use the NavigationService
object’s navigation methods.

i Manwindow [ =2 [

Although Page objects normally sit inside a browser, the WPF WPF Frame App
Frame control can also host them. The program simply navigates
the Frame control to a Page, and the rest works exactly as it does

for an XBAP.

Example program FrameApp, which is available for download on
the book’s website and shown in Figure 12-1, uses the following
code to load a Pagel object into its Frame control: FIGURE 12-1: The Frame control

Page 2

This is page 2.

provides navigation between
fraPages.Navigate (New Pagel()) Page objects.



Summary | 177

This example contains the same Pagel and Page2 classes used by the BrowserApp example program
described in the previous section.

If an XBAP runs so easily in a browser, why would you want to host pages in a Frame control?

One reason is that you can place multiple frames within a Window to let the user view different
pieces of information or perform different tasks at the same time. For example, you can display help
in a separate frame, possibly in a separate Window.

If you build each frame’s contents in a separate XBAP, you can load the frames at run time. That
makes replacing XBAPs to upgrade or change their contents easy.

The Frame control also provides simple browser-style navigation that uses Next and Back buttons
and that may be easier for users to navigate in some situations. Microsoft’s web page “Top Rules
for the Windows Vista User Experience” at http://msdn2.microsoft.com/Aa511327.aspx lists
as Rule 7 “Use Windows Explorer-hosted, navigation-based user interfaces, provide a Back button.”
That page argues that this style of interaction simplifies navigation even in traditional applications.

STRENGTH OR WEAKNESS?

Personally I think Microsoft is claiming a weakness as a strength. Web browsers
use this type of navigation because they have no context to provide more organized
navigation other than the hyperlinks provided by web pages. There are certainly
cases where this style of navigation is reasonable (for example, in wizards that lead
the user through a series of steps), but many desktop applications are more natural
if the user can open separate windows for different tasks. Let me know what you
think at RodStephens@vb-helper.com.

The Frame control gives you more control than a browser does. For example, it provides easier
access to Page history. You can also determine a Frame control’s size, whereas you have no control
over a browser’s size and position.

Displaying Page objects within a Frame control won’t make sense for every application, but for some
it can be a useful technique.

SUMMARY

In a Windows Forms application, everything is contained in Form objects. Some of those Form
classes may be dialog boxes or derived from the Form class, but ultimately everything is contained
in a form.

In a WPF application, controls may be contained in Window objects or in Page objects. Window
objects sit on the desktop much as Windows Forms do. Page objects must be hosted inside
something else, usually a browser or a Frame control in a Window. The PageFunction class provides


http://msdn2.microsoft.com/Aa511327.aspx
mailto://RodStephens@vb-helper.com

178 | CHAPTER12 WPF WINDOWS

a modified version of a Page that makes it easier to pass values back and forth between
coordinated Pages.

Chapters 7 through 12 give useful background on working with controls. They explain how

to select and use both Windows Forms and WPF controls. They also explain the top-level user
interface classes: Form for Windows Forms applications, and Window, Page, and PageFunction for
WPF applications.

Although these are huge topics, there’s even more to building a Visual Basic application than just
controls. You also need to understand the code behind the Form or Window that lets the program
take the controls’ values, manipulate those values, and display a result in other controls. The next
several chapters cover these topics in detail. Chapter 13, “Program and Module Structure,” starts
the process by explaining the files that make up a Visual Basic project and the structure contained
within code files.



13

Program and Module
Structure

WHAT’S IN THIS CHAPTER

Project files
Code file structure and regions
Conditional compilation

The Debug and Trace objects

Y VYV VY Y Y

Namespaces

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

>  CompilerConstantsInCode
> EmployeeAssert

> ShowAssemblylnfo
>

WpfCompilerConstantsInCode

SOLUTIONS AND PROJECTS

A Visual Basic solution contains one or more related projects. A project contains files related
to some topic. Usually, a project produces some kind of compiled output such as an executable
program, class library, or control library. The project includes all the files related to the
output, including source code files, resource files, documentation files, and whatever other
kinds of files you decide to add to it.


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

180

| CHAPTER13 PROGRAM AND MODULE STRUCTURE

This chapter describes the basic structure of a Visual Basic
project. It explains the functions of some of the most common
files and tells how you can use them to manage your applications.

This chapter also explains the basic structure of source code files.
It explains regions, namespaces, and modules. It describes some
simple typographic features provided by Visual Basic such as
comments, line continuation, and line labels. These features do
not execute programming commands themselves, but they are an
important part of how you can structure your code.

HIDDEN FILES

Figure 13-1 shows the Solution Explorer window for a solution
that contains two projects. The solution named MySolution
contains two projects named WindowsApplication1 and
WindowsApplication2. Each project contains a My Project item
that represents the project’s properties, various files containing
project configuration settings, and a form named Form1.

In WindowsApplication2, the Show All Files button has been
clicked (the highlighted button third from the right at the

top of the picture) so that you can see all the project’s files.
WindowsApplication1 has similar files, but they are hidden by
default.

These files are generated by Visual Basic for various purposes. For
example, Resources. resx contains resources used by the project
and settings.settings contains project settings.

RESOURCES AND SETTINGS

tion Explorer
w °-

Search Solution Explorer (Chrl+) P

IR RE

Rl Solution 'MySolution' (2 projects) -
a WindowsApplication1

F My Project

1 App.config

Formiwh
Pl Windowstpplication?

4 r ct
4 VB Application.myapp
10 Application.Desigrervb
VB Assemnblylnfovh
4 [ Resources.resx
3 Resources.Designervh
4 L} Settings.settings
T Settings.Designerah
4 | References
=B Systern

=0 Systern,Core

=0 Systern.Data

=B Systern.Data.DataSetExtensions
=B Systern.Deployment

=0 Bystern.Drawing

=B Systern\Windows.Forms

=0 SysternXml

B Systern.mlLing

i i Release

1 App.config

VB ApplicationEvents.vh
4 Farmlub

o o, so o o
Solution Explorer | Team Explarer

FIGURE 13-1: A solution contains
one or more projects that contain
files.

Resources are chunks of data that are distributed with the application but that are
not intended to be modified by the program. (Technically, you can change resource
values, but then they are acting more as settings than resources, so I won’t cover
that here. In fact, changing resources in a strongly named resource file raises an
alarm indicating that someone may have tampered with the file.) These might
include prompt strings, error message strings, icons, and sound files.

For example, resources are commonly used for customizing applications for dif-
ferent languages. You build different resource files for different languages, and the
program loads its prompts and error messages from the appropriate resource file.
Chapter 28, “Configuration and Resources,” has more to say about resources.



Hidden Files | 181

Settings are values that control the execution of the application. These might
include flags telling the program what options to display or how to perform certain
tasks. For example, you could build different profiles to provide settings that make
the program run in a restricted demo mode or in a fully licensed mode. Normally,
settings for .NET applications are stored in .config files, although an applica-
tion can also store settings in the registry, XML, or .ini files. For example, this
article discusses saving settings in XML files: http: / /www.devsource.com/c/a/
Techniques/XML-Serialization-Better-than-the-Registry.

The following list describes the files contained in WindowsApplication2 and shown in

Figure 13-1. The exact files you see for an application may be different from those shown here,
but this list should give you an idea of what’s involved in building a project. Note that most of
these files are generated automatically by Visual Studio and you shouldn’t edit them manually. If
you change them directly, you are likely to lose your changes when Visual Studio rebuilds them
and you may even confuse Visual Studio.

> WindowsApplication2 — This folder represents the entire project. You can expand or
collapse it to show and hide the project’s details.

> My Project — This folder represents the project’s assembly information, application-level
events, resources, and configuration settings. Double-click the My Project entry to view and
edit these values.

>  application.myapp — This XML file defines application properties (such as whether it’s
a single instance program and whether its shutdown mode is AfterMainFormCloses or
AfterAllFormsClose).

>  Application.Designer.vb — This file contains code that works with the values defined in
Application.myapp.

>  AssemblyInfo.vb — This file contains information about the application’s assembly such as
copyright information, company name, trademark information, and assembly version.

>  Resources.resx — [l his resource file contains the project’s resources.

Resources.Designer.vb — This file contains Visual Basic code for manipulating resources
defined in Resources.resx. For example, if you define a string resource named Greeting in
Resources.resx, Visual Basic adds a read-only property to this module so you can use the

value of Greeting as shown in the following code:

MessageBox.Show (My .Resources.Greeting)

>  gettings.settings — This file contains settings that you can define to control the
application.


http://www.devsource.com/c/a/Techniques/XML-Serialization-Better-than-the-Registry
http://www.devsource.com/c/a/Techniques/XML-Serialization-Better-than-the-Registry

182 | CHAPTER13 PROGRAM AND MODULE STRUCTURE

>  settings.Designer.vb — This file contains Visual Basic code for manipulating settings
defined in Settings.settings, much as Resources.Designer.vb contains code for
working with Resources.resx. For example, the following code uses the UserMode setting;:

If My.Settings.UserMode = "Clerk" Then ...

> References — This folder lists references to external components such as DLLs and COM
components.

> bin — This folder is used to build the application before it is executed. The Debug or
Release subfolder contains the compiled . exe file (depending on whether this is a debug
or release build).

> obj — This folder and its Debug and Release subfolders are used to build the application
before it is executed.

>  ApplicationEvents.vb — This code file contains application-level event handlers for the
MyApplication object. For example, it contains the application’s Startup, Shutdown, and
Network AvailabilityChanged event handlers.

>  Forml.vb— This is a form file. It contains the code you write for the form, its controls,
their event handlers, and so forth. If you double-click this file in Solution Explorer, Visual
Studio opens it in the Form Designer.

>  Forml.Designer.vb — This file contains designer-generated Visual Basic code that builds
the form. It initializes the form when it is created, adds the controls you placed on the form,
and defines variables with the WithEvents keyword for the controls so that you can easily
catch their events.

> Form1 — This entry represents the code-behind that you add to the form. If you
double-click this file in Solution Explorer, Visual Studio opens the form’s code in the code
editor. Alternatively, you can open the code by right-clicking the Form.vb entry
and selecting View Code.

Some projects may have other hidden files. For example, when you add controls to a form, the
designer adds a resource file to the form to hold any resources needed by the controls.

Normally, you do not need to work directly with the hidden files, and doing so can mess up your
application. At best, the changes you make will be lost. At worst, you may confuse Visual Studio so
it can no longer load your project.

Instead you should use other tools to modify the hidden files indirectly. For example, the files
Resources.Designer.vb, Settings.Designer.vb, and Forml.Designer.vb are automatically
generated when you modify their corresponding source files Resources.resx, Settings.settings,
and Forml .vb.

You don’t even need to work with all of those source files directly. For example, if you double-
click the My Project item in Solution Explorer, the property pages shown in Figure 13-2 appear.
The Application tab shown in this figure lets you set high-level application settings. The View
Application Events button at the bottom right of the figure lets you edit the application-level events
stored in ApplicationEvents.vb.



Hidden Files | 183

w by Eolution - WindowsApplication2

MR tform: | N/,
Campile
Debug Assernbly name: Root namespace:
References |WmdnwsAppl\cat|nn2 | |WmdnwsAppl|catmn2 |
Resources Target framewvork: &pplication type:
Services |‘NETFramework 45 v| |Wmdo\n\rs Forms Application V|
Settings Startup farm: lcon:
Signing |Form1 V| |(Defau\t lcan) V| '

Iy Extensions

‘ Lssernbly Information,. H Wiewe Windowes Settings |

Security

LT Enable application framewark

Code Analysis
Windows application framewark properties
Enable XP wisual styles
[] Make single instance application
Save My, Settings on Shutdown

Authentication mode:

|Wmdnws v‘

Shutdown mode:

|Whem startup form closes v‘

Splash screen:

|(Nome)

v‘ | Wiew &pplication Events

FIGURE 13-2: These property pages let you define the project’s resources, settings, and

general configuration.

The References tab shown in Figure 13-2 lets you view,
add, and remove project references. As you can probably
guess, the Resources and Settings tabs let you edit the
project’s resources and settings.

A particularly important section hidden away in these
tabs is the assembly information. When you click the
Assembly Information button shown in Figure 13-2, the
dialog box shown in Figure 13-3 appears.

Many of the items in this dialog box, such as the
application’s title and description, are self-explanatory.
They are simply strings that the assembly carries
around for identification. The assembly and file versions
are used by the Visual Studio run time to verify
compatibility between an application’s components. The
GUID (which stands for “globally unique identifier”
and is pronounced to rhyme with “squid”) uniquely
identifies the assembly and is generated by Visual

Assembly Information
Title:! |The Showwdssernblylnfo Project ‘
Description: |Disp|ay’s assembly information, ‘
Cormpany: |VE Helper (anivanvb-helper.corn) ‘
Product: |ShowAssemb\y\nfo ‘
Copyright: |copyright @ 2012 |
Trademark: | ‘

Lssembly version: |1

File version:
GUID: |9?7f5371-dfd0-4d82-a'\SE-deedadﬂQef ‘
Meutral language: |(None) v‘

[ Make assernbly COM-Visible

FIGURE 13-3: The Assembly Information
dialog box lets you define basic project
information such as title, copyright, and
version number.



184 | CHAPTER13 PROGRAM AND MODULE STRUCTURE

Studio. The Make Assembly COM-Visible check box lets you determine whether the assembly
should make types defined in the assembly visible to COM applications. For more information on
this dialog box, see http://msdn2.microsoft.com/1h52t681.aspx.

The My.Application.Info namespace provides easy access to these values at run time. Example program
ShowAssemblyInfo uses the following code to display this information in a series of labels when it starts:

Private Sub Forml_Load() Handles MyBase.Load
1blCompanyName.Text = My.Application.Info.CompanyName
lblDescription.Text = My.Application.Info.Description
1blCopyright.Text = My.Application.Info.Copyright
1blTrademark.Text = My.Application.Info.Trademark
1blDirectoryPath.Text = My.Application.Info.DirectoryPath
1blProductName.Text = My.Application.Info.ProductName
1blTitle.Text = My.Application.Info.Title
1blVersion.Text = My.Application.Info.Version.ToString

End Sub

CODE FILE STRUCTURE

A form, class, or code module should contain the following sections in this order (if they are
present — you can omit some):

> Option statements — Option Explicit, Option Strict, Option Compare, or Option Infer. By
default, Option Explicit is on, Option Strict is off, Option Compare is binary, and Option
Infer is on.

> Imports statements — These declare namespaces that the module will use.
A Main subroutine — The routine that starts execution when the program runs.

Class, Module, and Namespace statements — As needed.

DEBUGGING OPTIONS

To uncover potentially annoying and sometimes elusive bugs, turn Option Explicit
on, Option Strict on, and Option Infer off. The section “Project” in Chapter 2
describes these options.

Some of these items may be missing. For example, Option and Imports statements are optional.
Note that an executable Windows program can start from a Main subroutine or it can start by
displaying a form, in which case it doesn’t need a Main subroutine. (In that case, the program starts
with the automatically generated New subroutine in the file Application.Designer.vb.) Classes
and code modules don’t need Main subroutines.

The following code shows a simple code module. It sets Option Explicit On (so variables must be
declared before used), Option Strict On (so implicit type conversions cause an error), and Option


http://msdn2.microsoft.com/1h52t681.aspx

Code File Structure | 185

Infer Off (so you must give variables explicit data types). It imports the System.IO namespace so the
program can easily use the classes defined there. It then defines the Employee class.

Option Explicit On
Option Strict On
Option Infer Off

Imports System.IO

Public Class Employee

End Class
Usually, you put each class or module in a separate file, but you can add multiple Class or Module
statements to the same file if you like.

Class and Module statements define top-level nodes in the code hierarchy. Click the minus sign to
the left of one of these statements in the code editor to collapse the code it contains. When the code
is collapsed, click the plus sign to the left of it to expand the code.

The project can freely refer to any public class, or to any public variable or routine in a module. If
two modules contain a variable or routine with the same name, the program can select the version
it wants by prefixing the name with the module’s name. For example, if the AccountingTools and

BillingTools modules both have a subroutine named ConnectToDatabase, the following statement
executes the version in the BillingTools module:

BillingTools.ConnectToDatabase ()

Code Regions

Class and Module statements define regions of code that you can expand or collapse to make

the code easier to understand. Subroutines and functions also define collapsible code sections. In
addition to these, you can use the Region statement to create your own collapsible sections of code.
You can place subroutines that have a common purpose in a region so you can collapse and expand
the code as needed. The following code shows a simple region:

#Region "Drawing Routines"

#End Region

RENAME, DON’T REPLACE

Instead of using a global find and replace to rename a variable, class, or other pro-
gramming entity, use Visual Basic’s renaming feature. Right-click the entity you
want to rename and select Rename. Enter the new name and click OK. Visual Basic
will change all occurrences of the entity in every module as needed.

continues



186 | CHAPTER13 PROGRAM AND MODULE STRUCTURE

continued

Using rename instead of global replace makes it easier to rename one variable while
not renaming other variables with the same name in different scopes. It also pre-
vents annoying replacement errors. For example, if you use global replace to change
“man” to “person,” you may accidentally change “manager” to “personager” and
“command” to “compersond.”

By itself, the End Region statement does not tell you which region it is ending. You can make
your code easier to understand, particularly if you have many regions in the same module, by
adding a comment after the End Region statement giving the name of the region, as shown in
the following code:

#Region "Drawing Routines"

#End Region ' Drawing Routines

REAL-LIFE REGIONS

I use regions a lot in my code. They make it easy to collapse code that ’'m not
working on and they group related code into meaningful sections. Just building the
regions helps me put related material together and makes reading the code easier.

Sometimes it may be easier to move related pieces of code into separate files. The Partial keyword
allows you to place parts of a class in different files. For example, you could move a form’s code

for loading and saving data into a separate file and use the Partial keyword to indicate that the code
was part of the form. Chapter 23, “Classes and Structures,” describes the Partial keyword in detail.

However, you cannot use the Partial keyword with modules so a module’s code must all go in one
file. In that case, you can use regions to similarly separate a group of related routines and make the
code easier to read.

Conditional Compilation

Conditional compilation statements allow you to include or exclude code from the program’s
compilation. The basic conditional compilation statement is similar to a multiline If-Then-Else
statement. The following code shows a typical statement. If the value conditionl is True, the code in
code_block_1 is included in the compiled program. If that value is False but the value condition2 is
True, the code in code_block_2 becomes part of the compiled program. If neither condition is True,
the code in code_block_3 is included in the program.

#If conditionl Then
code_block_1
#ElseIf condition2 Then



Code File Structure | 187

code_block_ 2
#Else

code_block_3
#End 1if

It is important to understand that the code not included by the conditional compilation statements is
completely omitted from the executable program. At compile time, Visual Studio decides whether or
not a block of code should be included. That means any code that is omitted does not take up space
in the executable program. It also means that you cannot set the execution statement to omitted
lines in the debugger because those lines are not present.

In contrast, a normal If-Then-Else statement includes all the code in every code block in the
executable program, and then decides which code to execute at run time.

Because the conditional compilation statement evaluates its conditions at compile time, those
conditions must be expressions that can be evaluated at compile time. For example, they can be
expressions containing values that you have defined using compiler directives (described shortly).
They cannot include values generated at run time (such as the values of variables).

In fact, a conditional compilation statement actually evaluates its conditions at design time,
not compile time, so it can give feedback while you are writing the code. For example, suppose
Option Explicit is set to On. Because the first condition is True, the variable x is declared as a
string. Option Explicit On disallows implicit conversion from an integer to a string, so the IDE
flags the statement as an error.

#If True Then

Dim X As String
#Else

Dim X As Integer
#End If

X =10

That much makes sense, but it’s also important to realize that the code not included in the
compilation is #ot evaluated by the IDE. If the first condition in the previous code were False, the
code would work properly because variable x would be declared as an integer. The IDE doesn’t
evaluate the other code, so it doesn’t notice that there is an error if the condition is False. You
probably won’t notice the error until you try to actually use the other code.

You can set conditional compilation constants in two main ways: in code and in the project’s
compilation settings.

Setting Constants in Code

To set conditional compilation constants explicitly in your program, use a #Const statement, as
shown in the following code:

#Const UserType = "Clerk"

#If UserType = "Clerk" Then
' Do stuff appropriate for clerks



188

| CHAPTER13 PROGRAM AND MODULE STRUCTURE

#ElseIf UserType = "Supervisor" Then
' Do stuff appropriate for supervisors

#Else
' Do stuff appropriate for others

#End if

Note that these constants are defined only after the point at which they appear in the code. If you
use a constant before it is defined, its value is False. (Unfortunately Option Explicit doesn’t apply to
these constants so the IDE doesn’t notice that they are undefined at that point.)

To avoid possible confusion, many programmers define these constants at the beginning of the file
so they don’t need to worry about using a variable before it is defined.

Also note that your code can redefine a constant using a new #Const statement later. That means
these are not really constants in the sense that their values are unchangeable.

Setting Constants with the Project’s Compilation Settings

To set constants with the project’s compilation settings, open Solution Explorer and double-click
My Project. Select the Compile tab and click its Advanced Compile Options button to open the
Advanced Compiler Settings dialog box shown in Figure 13-4. Enter the names and values of the
constants in the Custom Constants text box. Enter each value in the form ConstantName=Value,
separating multiple constants with commas.

Advanced Compiler Settings [ = |
Optirizations
[ Remove integer overflow checks ] Enable optimizations
DLL pase address: &HO0400000
Generate debug info: [Fun v
Compilation Canstants
Define DEBUG constant Define TRACE canstant

Custom constants:

[DseFastaigorithm=True Greeting="Hello there" Farewell="Gaodbye" |

Exarnple: Name1="Walue1" Mame2="Value2",Narme3="Value3"
Generate gerialization assemblies:

|Auto v ‘

FIGURE 13-4: Use the Advanced Compiler Settings dialog box
to define compilation constants.

Constants that you specify on the Advanced Compiler Settings dialog box are available everywhere
in the project. However, your code can redefine the constant using a #Const directive. The constant
has the new value until the end of the file or until you redefine it again.



Code File Structure | 189

Example program CompilerConstantsSettings, which is available for download on the book’s
website, includes constants set on this dialog box and code to check their values.

Predefined Constants

Visual Basic automatically defines several conditional compilation constants that you can use to
determine the code that your application compiles. The following table describes these constants.

CONSTANT CASE

Compilation constant values are case-sensitive. For example, you should compare
CONFIG to “Debug” not “debug” or “DEBUG.”
CONSTANT  MEANING

CONFIG A string that gives the name of the current build. Typically, this will be
“Debug” or “Release.”

DEBUG A Boolean that indicates whether this is a debug build. By default, this
value is True when you build a project’s Debug configuration.

PLATFORM A string that tells you the target platform for the application’s current
configuration. Unless you change this, the value is “AnyCPU.”

TARGET A string that tells the kind of application the project builds. This can be
winexe (Windows Form or WPF application), exe (console application),
library (class library), or module (code module).

TRACE A Boolean that indicates whether the Trace object should generate
output in the Output window.

VBC_VER A number giving Visual Basic’s major and minor version numbers. The
value for Visual Basic 2005 is 8.0 and the value for Visual Basic 2008
is 9.0. The value for Visual Basic 2010 should logically be 10.0 but it
was not updated so it remained 9.0. The value for Visual Basic 2012
is 11.0.

_MyType A string that tells what kind of application this is. Typical values are
“Console” for a console application, “Windows” for a class or Windows
control library, and “WindowsForms” for a Windows Forms application.

MORE ON _MYTYPE

For more information on _MyType and how it relates to other special compilation
constants, see http://msdn2 .microsoft.com/ms233781.aspx.


http://msdn2.microsoft.com/ms233781.aspx

190

| CHAPTER13 PROGRAM AND MODULE STRUCTURE

Example program CompilerConstantsInCode, which is available for download on the

book’s website, shows how a program can check these compiler constants. Example program
WpfCompilerConstantsInCode, which is also available for download, is a WPF version of the same
program.

The following sections describe the DEBUG, TRACE, and CONFIG constants and their normal
uses in more detail.

DEBUG

Normally when you make a debug build, Visual Basic sets the DEBUG constant to True. When you
compile a release build, Visual Basic sets DEBUG to False. The Configuration Manager lets you
select the Debug build, the Release build, or other builds that you define yourself.

After you have activated the Configuration Manager, you can open it by clicking the project in
the Solution Explorer and then selecting the Build menu’s Configuration Manager command.
Figure 13-5 shows the Configuration Manager. Select Debug or Release from the drop-down list,
and click Close.

Configuration Manager [ =
Active solution configuration: Active solution platform:
Inkerir Build v| [anycru v]
Project contexts {check the project configurations to build or deploy):
Project Configuration Platform Build Deploy

CompilerConstantsinCode

[] any cru [~

Close

FIGURE 13-5: Use the Configuration Manager to select a Debug or Release
build.

THE MISSING MANAGER MYSTERY

If the Configuration Manager is not available in the Build menu, open the Tools
menu and select the Options command. Open the Projects and Solutions node’s
General entry, and select the Show Advanced Build Configurations check box.



Code File Structure | 191

When the DEBUG constant is True, the Debug object’s methods send output to the Output
window. When the DEBUG constant is not True, the Debug object’s methods do not generate any
code, so the object doesn’t produce any output. This makes the Debug object useful for displaying
diagnostic messages during development and then hiding the messages in release builds sent to
customers.

The following sections describe some of the Debug object’s most useful properties and methods.

Assert

The Debug.Assert method evaluates a Boolean expression and, if the expression is False, displays
an error message. This method can optionally take as parameters an error message and a detailed
message to display. The following code shows how a program might use Debug.Assert to verify that
the variable NumEmployees is greater than zero:

Debug.Assert (NumEmployees > 0,
"The number of employees must be greater than zero.",
"The program cannot generate timesheets if no employees are defined")

Example program EmployeeAssert, which is available for download on the book’s website,
demonstrates this Debug.Assert statement.

If NumEmployees is less than or equal to zero, this statement displays an error dialog box that
shows the error message and the detailed message. It also displays a long stack dump that shows
exactly what code called what other code to reach this point of execution. Only the first few entries
will make sense to practically anyone because the stack dump quickly moves out of the application’s
code and into the supporting Visual Basic libraries that execute the program.

The dialog box also displays three buttons labeled Abort, Retry, and Ignore. If you click the Abort
button, the program immediately halts. If you click Retry, the program breaks into the debugger,
so you can examine the code. If you click Ignore, the program continues as if the Assert statement’s
condition was True.

A good use for the Assert method is to verify that a routine’s parameters or other variable values are
reasonable before starting calculations. For example, suppose that the AssignJob subroutine assigns
a repairperson to a job. The routine could begin with a series of Assert statements that verify that
the person exists, the job exists, the person has the skills necessary to perform the job, and so forth.
It is usually easier to fix code if you catch these sorts of errors before starting a long calculation or
database modification that may later fail because, for example, the repairperson doesn’t have the
right kind of truck to perform the job.

If the DEBUG constant is not True, the Assert method does nothing. This lets you automatically
remove these rather obscure error messages from the compiled executable that you send to
customers. The dialog box with its messages and stack dump is so technical that it would terrify
many users anyway, so there’s no point inflicting it on them.

Fail
The Debug.Fail method displays an error message just as Debug.Assert does when its Boolean
condition parameter is False.



192 | CHAPTER13 PROGRAM AND MODULE STRUCTURE

IndentSize, Indent, Unindent, and IndentLevel

These properties and methods determine the amount of indentation used when the Debug object
writes into the Output window. You can use them to indent the output produced by subroutines to
show the program’s structure more clearly.

The IndentSize property indicates the number of spaces that should be used for each level of
indentation. The IndentLevel property determines the current indentation level. For example, if
IndentSize is 4 and IndentLevel is 2, output is indented by eight spaces.

The Indent and Unindent methods increase and decrease the indentation level by one.

Write, WriteLine, Writelf, and WriteLinelf

These routines send output to the Output window. The Write method prints text and stops without
starting a new line. WriteLine prints text and follows it with a new line.

The Writelf and WriteLinelf methods take a Boolean parameter and act the same as Write and
WriteLine if the parameter’s value is True.

TRACE

The Trace object is very similar to the Debug object and provides the same set of properties and
methods. The difference is that it generates output when the TRACE constant is defined rather than
when the DEBUG constant is defined.

Normally, the TRACE constant is defined for both debug and release builds so Trace.Assert and
other Trace object methods work in both builds. By default, DEBUG is defined only for debug
builds, so you get Debug messages for debug builds.

You can add listener objects to the Trace object (or the Debug object) to perform different actions
on any Trace output. For example, a listener could write the Trace output into a log file.

CONFIG

The CONFIG constant’s value is the name of the type of build. Normally, this is either Debug
or Release, but you can also create your own build configurations. You can use these for interim
builds, point releases, alpha and beta releases, or any other release category you can think of.

To create a new build type, click the project in the Solution Explorer and then select the Build
menu’s Configuration Manager command to display the dialog box shown in Figure 13-5. Open
the Active Solution Configuration drop-down and select <New. . . > to display the New Project
Configuration dialog box. Enter a name for the new configuration, select the existing configuration
from which the new one should initially copy its settings, and click OK.

The following code shows how to use the CONFIG compiler constant to determine which build is
being made and take different actions accordingly:

#If CONFIG = "Debug" Then

' Do stuff for a Debug build ...
#ElseIf CONFIG = "Release" Then

' Do stuff for a Release build ...



Code File Structure | 193

#ElseIf CONFIG = "InterimBuild" Then

' Do stuff for a custom InterimBuild ...
#Else

MessageBox.Show ("Unknown build type")
#End if

One reason you might want to make different configurations is to handle variations among
operating systems. Your code can decide which configuration is in effect and then execute the
appropriate code to handle the target operating system. For example, it might need to work around
the reduced privileges that are granted by default on Vista.

Namespaces

Visual Studio uses namespaces to categorize code. A namespace can contain other namespaces,
which can contain others, forming a hierarchy of namespaces.

You can define your own namespaces to help categorize your code. By placing different routines in
separate namespaces, you can allow pieces of code to include only the namespaces they are actually
using. That makes it easier to ignore the routines that the program isn’t using. It also allows more
than one namespace to define items that have the same names.

For example, you could define an Accounting namespace that contains the AccountsReceivable
and AccountsPayable namespaces. Each of those might contain a subroutine named
ListOutstandingInvoices. The program could select one version or the other by calling either
Accounting.AccountsReceivable.ListOutstandingInvoices or Accounting.AccountsPayable
.ListOutstandingInvoices.

You can use the Namespace statement only at the file level or inside another namespace, not within
a class or module. Within a namespace, you can define nested namespaces, classes, or modules.

The following example defines the AccountingModules namespace. That namespace contains

the two classes Payableltem and Receivableltem, the module AccountingRoutines, and the nested
namespace OrderEntryModules. The AccountingRoutines module defines the Paylnvoice subroutine.
All the classes, modules, and namespaces may define other items.

Namespace AccountingModules
Public Class Payableltem

End Ci%és
Public Class ReceivableItem
End Ciéés
Module AccountingRoutines
Public Sub PayInvoice(ByVal invoice_number As Long)

End Sub

End Module



194 | CHAPTER13 PROGRAM AND MODULE STRUCTURE

Namespace OrderEntryModules
Public Class OrderEntryClerk

End Class
End Namespace
End Namespace

Code using a module’s namespace does not need to explicitly identify the module. If a module
defines a variable or routine that has a unique name, you do not need to specify the module’s name
to use that item. In this example, there is only one subroutine named PayInvoice, so the code can
invoke it as AccountingModules.PayInvoice. If the AccountingModules namespace contained
another module that defined a PayInvoice subroutine, the code would need to indicate which version
to use as in AccountingModules.AccountingRoutines.Paylnvoice.

Although modules are transparent within their namespaces, nested namespaces are not. Because
the nested OrderEntryModules namespace defines the OrderEntryClerk class, the code must
specify the full namespace path to the class, as in the following code:

Dim oe_clerk As New AccountingModules.OrderEntryModules.OrderEntryClerk

NORMAL NAMESPACES

Note that a Visual Basic project defines its own namespace that contains everything
else in the project. Normally, the namespace has the same name as the project.

To view or modify this root namespace, double-click the Solution Explorer’s My
Project entry to open the project’s property pages and select the Application tab.
Enter the new root namespace name in the text box labeled Root Namespace in the
upper right.

You can use an Imports statement to simplify access to a namespace inside a file. For example,
suppose that you are working on the General Accounting project that has the root namespace
General Accounting. The first statement in the following code allows the program to use items
defined in the AccountingModules namespace without prefixing them with AccountingModules.
The second statement lets the program use items defined in the AccountingModules nested
namespace OrderEntryModules. The last two lines of code declare variables using classes defined in
those namespaces.

Imports GeneralAccounting.AccountingModules
Imports GeneralAccounting.AccountingModules.OrderEntryModules

Private m_Overdueltem As PayableItem ' In the AccountingModules namespace.
Private m_ThisClerk As OrderEntryClerk ' In the namespace
' AccountingModules.OrderEntryModules.



Typographic Code Elements | 195

TYPOGRAPHIC CODE ELEMENTS

A few typographic code elements can make a program’s structure a bit easier to understand. They
do not execute programming commands themselves, but they are an important part of how you can
structure your code. These elements include comments, line continuation and joining characters,
and line labels.

Comments

Comments can help other developers (or you at a later date) understand the program’s purpose,
structure, and method. You start a comment by typing a single quotation mark (') that is not inside
a quoted string. All of the characters starting at the quote and continuing until the end of the line
are part of the comment and are ignored by Visual Basic.

If a line with a comment ends with a line continuation character (described shortly), Visual Basic
ignores that character. That means the line is zot continued onto the next line, so the comment ends
with the current line. In other words, you cannot use line continuation characters to make a multi-
line comment.

To quickly comment or uncomment a large block of code, click and drag to select the code using the
mouse and then open the Edit menu’s Advanced submenu. Select the Comment Selection command
to comment out the selection or select Uncomment Selection to remove the comment characters
from the front of the selection. Those commands are also available more conveniently as buttons in
the Standard toolbar. Use the View menu’s Toolbars submenu to show or hide this toolbar.

Another way to quickly remove a chunk of code from the program is to surround it with compiler
directives, as in the following code:

#If False Then
Dim A As Integer
Dim B As Integer
Dim C As Integer
#End 1if

Use comments to make your code clear. Comments do not slow down the executable program (some
superstitious developers think they must slow the code because they make the file bigger), so there’s
no good reason to avoid them.

XML Comments

A normal comment is just a piece of text that gives information to a developer trying to read your
code. XML comments let you add some context to a comment. For example, you can mark a
comment as a summary describing a subroutine.

Visual Studio automatically extracts XML comments to build an XML file describing the project.
This file displays the hierarchical shape of the project, showing comments for the project’s modules,
namespaces, classes, and other elements.

The result is not particularly easy to read, but you can use it to automatically generate more useful
documentation such as reports or web pages.



196 | CHAPTER13 PROGRAM AND MODULE STRUCTURE

You can place a block of XML comments before code elements that are not contained in methods.
Generally, you use them to describe a module, class, variable, property, method, or event.

To begin a comment block, place the cursor on the line before the element you want to
describe and type three single quotes (' ' *). Visual Studio automatically inserts a template
for an appropriate XML comment block. If the element that follows takes parameters, it
includes sections describing the parameters, so it is in your best interest to completely define
the parameters before you create the XML comment block. Otherwise you’ll need to add the
appropriate comment sections by hand later.

The following code shows the XML comment block created for a simple subroutine. It includes
a summary area to describe the subroutine, two param sections to describe the subroutine’s
parameters, and a remarks section to provide additional detail.

'Y <summary>

' < /summary>

"' <param name="jobs"></param>

"' <param name="employees"></param>

""" <remarks></remarks>

Public Sub AssignJobs (ByVal jobs() As Job, ByVal employees() As Employee)

End Sub

Note that XML elements can span multiple lines, as the summary element does in this example.

You can add more XML comment sections to the block simply by typing them, following the
convention that they should begin with three single quotes. For example, the following code adds
some content for the comments in the previous code and an extra WrittenBy element that contains a
date attribute:

' <summary>

''' Assigns jobs to employees, maximizing the total value of jobs assigned.
'Y </summary>

"' <param name="jobs">The array of Jobs to assign.</param>

"' <param name="employees">The array of Employees to assign.</param>

"' <remarks>The full assignment is not guaranteed to be unique.</remarks>
"' <WrittenBy date="4/1/12">Rod Stephens</WrittenBy>

Public Sub AssignJobs (ByVal jobs() As Job, ByVal employees() As Employee)

End Sub

COMMENT CONVENTIONS

Note that I just made up the WrittenBy element and its date attribute — they’re not
part of some XML comment standard. You can put anything you want in there,
although the comments will be easiest to use if you use standard elements such as
param and remarks whenever possible.



Typographic Code Elements | 197

These XML comments are somewhat bulky and hard to read. In the previous
example, it isn’t easy to pick out the subroutine’s most important summary infor-
mation with a quick glance at the code. To make reading XML comments easier,
Visual Basic defines an outlining section for each XML comment block. If you click
the minus sign to the left of the first line in the block, the whole block collapses and
shows only the summary information. If you then click the plus sign to the left of
the summary, Visual Studio expands the comments to show them all.

The following code shows the beginning of an application that assigns jobs to employees. The
project contains two files, a form named Form1l .vb and a code module named Jobstuff.vb.
The form contains very little code. The code module defines the Job and Employee classes
and the AssignJobs subroutine. Each of these has an XML comment block.

Public Class Forml

Private Jobs() As Job

Private Employees() As Employee
End Class

Module JobStuff
Public Class Job
Public JobNumber As Integer
'Y <summary>
"' A list of skills required to perform this job.
' </summary>
<remarks>Represent required equipment as skills.</remarks>
Public SkillsRequired As New Collection
'Y <summary>
'''" The value of this job.
'Y </summary>
<remarks>Higher numbers indicate more priority.</remarks>
Public Priority As Integer
End Class

Public Class Employee
Public FirstName As String
Public LastName As String
'Y <summary>
""" A list of skills this employee has.
'Y </summary>
'''" <remarks>Represent special equipment as skills.</remarks>
Public Skills As New Collection
End Class

'Y <summary>

'''" Assigns jobs to employees.

' </summary>

<param name="jobs">Array of Jobs to assign.</param>

<param name="employees">Array of Employees to assign jobs.</param>
<remarks>Maximizes total value of jobs assigned.</remarks>



198 | CHAPTER13 PROGRAM AND MODULE STRUCTURE

""" <WrittenBy date="7/26/04">Rod Stephens</WrittenBy>
Public Sub AssignJobs (ByVal jobs() As Job, ByVal employees() As Employee)

End Sub
End Module

In addition to providing documentation for
your use, XML comments let IntelliSense
provide additional information about your
code. Figure 13-6 shows IntelliSense displaying
information about the AssignJobs subroutine.
It gets the description of the subroutine

Fublic Class Forml
Private Jobs() As Job
Private Employees() As Employee

Private Sub MakeAssignments()
Assigndobs(|

End | Acsignlobs(jobsi) As Assignlobs.JobStuff.Job, employees() As

JobStuff Empl
End Clas o

Assigns jobs to employees.

Jjobs: Array of Jobs to assign.

FIGURE 13-6: IntelliSense uses XML comments

(Assigns jobs to employees) and the description
of the jobs parameter (Array of jobs to assign)
from the subroutine’s XML comments.

to display information about a subroutine and its
parameters.

When you compile the application, Visual Studio extracts the XML comments and places them in
an XML file with the same name as the executable file in the project’s bin\Debug directory. The
result isn’t very readable but you can use it to generate more palatable documentation. Some
third-party tools such as doxygen (http: //www.doxygen.org) can also extract XML comments
and build documentation.

Example program AssignJobs, which is available for download on the book’s website, defines job
assignment classes that you can view with the Object Browser. If you compile the program (which
actually doesn’t do any job assignment, it just defines the classes), you can examine its XML
documentation.

Line Continuation

Line continuation characters let you break long lines across multiple shorter lines so that they are
easier to read. To continue a line, end it with a space followed by an underscore (_). Visual Basic
treats the following code as if it were all on one long line:

Dim background_color As Color = _
Color.FromName ( _
My .Resources.ResourceManager.GetString ( _
"MainFormBackgroundColor"))

As the earlier section about comments explains, you cannot continue comments. A comment
includes any space and underscore at the end of its line so the comment does not apply to the
following line.

You can break a line just about anywhere that a space is allowed and between program elements.
For example, you can break a line after the opening parenthesis in a parameter list, as shown in the
following code:

AReallyReallyLongSubroutineNameThatTakesFiveParameters( _
parameterl, parameter2, parameter3, parameterd, parameter5)

You cannot break a line inside a quoted string. If you want to break a string, end the string and
concatenate it with the rest of the string on the next line, as in the following example:


http://www.doxygen.org

Typographic Code Elements | 199

Dim txt As String = "To break a long string across multiple lines, " &
"end the string and concatenate it with the rest of " &
"the string on the next line."

Visual Basic does not enforce its usual indentation rules on continued lines, so you can indent the
lines in any way you like to make the code’s structure more clear. For example, many programmers
align parameters in long subroutine calls like this:

DoSomething ( _
parameterl,
parameter?,
parameter3)

Implicit Line Continuation

Visual Basic can also guess where you are continuing a line even if you don’t use the line
continuation character, at least sometimes. For example, Visual Basic can figure out that the
statement shown in the following code isn’t complete until the final line so it treats all of this code as
if it were written on a single long line:

Dim background_color As Color =
Color.FromName (
My .Resources.ResourceManager.GetString (
"MainFormBackgroundColor"

Visual Basic does not allow implicit line continuation in all cases, however. For example, in

the following code the Next i statement is split across two lines. Because a Next statement’s
variable name is optional, Visual Basic doesn’t know that the following i is required so it doesn’t
look for it.

For 1 As Integer = 1 To 10

Next
i

In fact, the only place you can break the statement For i As Integer = 1 To 10 without a line
continuation character and without confusing Visual Basic is after the equals sign. That’s a pretty
confusing place to break the code anyway so I would recommend against it.

Some places that Visual Basic does allow implicit line continuation include:
> After an equals sign
> After a binary operator such as + or *
> After commas
> After opening parentheses or brackets and before closing parentheses or brackets

The following code shows a few examples:



200

| CHAPTER13 PROGRAM AND MODULE STRUCTURE

ComClass ()
>
Public Class Employee
Public Function CalculateStuff (
ByRef v1 As Integer,
ByRef v2 As Integer

Dim a As Integer =
Math.Max (
vl,
v2 +
12
)
Return a
End Function

End Class

Line Joining

Not only can you break a long statement across multiple lines, but you can also join short statements
on a single line. To use two statements on a single line, separate them with a colon (:). The following
line of code contains three statements that store the red, green, and blue components of a form’s
background color in the variables r, g, and b, respectively:

r = BackColor.R : g = BackColor.G : b = BackColor.B

Line joining is most useful when you have many lines in a row that all have a very similar structure.
By scanning down the lines, you can tell if there are differences that may indicate a bug.

Use line joining with some caution. If the statements are long, or if you have a series of joined
lines with dissimilar structure, combining lots of statements on a single line can make the code
harder to read. If the code is easier to read with each statement on a separate line, write the
code that way. Using more lines doesn’t cost extra or make the code run any slower.

SUMMARY

A Visual Studio solution contains a hierarchical arrangement of items. At the top level, it contains
one or more projects. Each project contains several standard items such as My Project (that
represents the project as a whole), References (that records information about references to external
objects), the bin and obj items (that are used by Visual Studio when building the application), and
app.config (that holds configuration information). Projects also contain form, class, and other code
modules.

Normally, many of these files are hidden, and you do not need to edit them directly. For example, if
you double-click Solution Explorer’s My Project entry, you can use the project’s Properties pages to



Summary | 201

view and modify application values. Other hidden files store code and resources that determine a
form’s appearance, and you can modify them by altering the form with the Form Designer.

Within a code module, you can use modules, classes, regions, and namespaces to group related code
into blocks. You can use conditional compilation statements and conditional compilation constants
to determine which code is compiled into the executable program. The Debug and Trace objects let
you generate messages and alerts, depending on whether certain predefined constants are defined.

Finally, typographic elements such as comments, line continuation, and line joining let you format
the code so that it is easier to read and understand. XML comments provide additional information
that is useful to IntelliSense and can help you automatically generate more readable documentation.

None of these components are required by Visual Basic but they can make the difference

between understanding the code quickly and completely, and not understanding it at all. Over an
application’s lifetime of development, debugging, upgrading, and maintenance, this can determine a
project’s success or failure.

This chapter described structural elements that make up code files. Within those elements, you

can place the code that gathers, manipulates, stores, and displays data. Chapter 14, “Data Types,
Variables, and Constants,” describes the variables that a program uses to hold data values. It
explains how to declare variables, what types of data they can hold, and how Visual Basic converts
from one data type to another.






14

Data Types, Variables,
and Constants

WHAT’S IN THIS CHAPTER

Data types

Type characters

Y VY

Narrowing and widening conversions

»  Variable declarations and initialization

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox
.com/remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this
chapter is divided into the following major examples:

> AccessLevelEnum
> NullableTypes

> ShadowsTest
>

UseDelegates

VARIABLES

Variables are among the most fundamental building blocks of a program. A variable is a
program object that stores a value. The value can be a number, letter, string, date, structure
containing other values, or an object representing both data and related actions.

When a variable contains a value, the program can manipulate it. It can perform arithmetic
operations on numbers, string operations on strings (concatenation, calculating substrings,
finding a target within a string), date operations (find the difference between two dates, add a
time period to a date), and so forth.


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://wrox.com
http://WROX.COM

204 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

Four factors determine a variable’s exact behavior:
> Data type determines the kind of data it can hold (integer, character, string, and so forth).

> Scope defines the code that can access the variable. For example, if you declare a variable
inside a For loop, only other code inside the For loop can use the variable. If you declare a
variable at the top of a subroutine, all the code in the subroutine can use the variable.

> Accessibility determines what code in other modules can access the variable. If you declare
a variable at the module level (outside of any subroutine in the module) and you use the
Private keyword, then only the code in the module can use the variable. If you use the Public
keyword, then code in other modules can use the variable as well.

> Lifetime determines how long the variable’s value is valid. A variable inside a subroutine
that is declared with a normal Dim statement is created when the subroutine begins and is
destroyed when it exits. If the subroutine runs again, it creates a new copy of the variable
and its value is reset. If the variable is declared with the Static keyword, however, the same
instance of the variable is used whenever the subroutine runs. That means the variable’s
value is preserved between calls to the subroutine.

For example, a variable declared within a subroutine has scope equal to the subroutine. Code out-
side of the subroutine cannot access the variable. If a variable is declared on a module level outside
any subroutine, it has module scope. If it is declared with the Private keyword, it is accessible only
to code within the module. If it is declared with the Public keyword, then it is also accessible to code
outside of the module.

Visibility is a concept that combines scope, accessibility, and lifetime. It determines whether a cer-
tain piece of code can use a variable. If the variable is accessible to the code, the code is within the
variable’s scope, and the variable is within its lifetime (has been created and not yet destroyed), then
the variable is visible to the code.

This chapter explains the syntax for declaring variables in Visual Basic. It explains how you can
use different declarations to determine a variable’s data type, scope, accessibility, and lifetime. It
discusses some of the issues you should consider when selecting a type of declaration, and describes
some concepts, such as anonymous and nullable types, which can complicate variable declarations.
This chapter also explains ways you can initialize objects, arrays, and collections quickly and easily.

Constants, parameters, and property procedures all have concepts of scope and data type that are
similar to those of variables, so they are also described here.

The chapter finishes with a brief explanation of naming conventions. Which naming rules you adopt
isn’t as important as the fact that you adopt some. This chapter discusses where you can find the conven-
tions used by Microsoft Consulting Services. From those, you can build your own coding conventions.

DATA TYPES

The smallest piece of data a computer can handle is a bit, a single value that can be either 0 or 1.
Eight bits are grouped into a byte. Computers typically measure disk space and memory space in
kilobytes (1,024 bytes), megabytes (1,024 kilobytes), and gigabytes (1,024 megabytes).



Data Types | 205

Multiple bytes are grouped into words that may contain 2, 4, or more bytes depending on the
computer hardware. Most computers these days use 4-byte (32-bit) words, although 8-byte
(64-bit) computers are becoming more common.

Visual Basic also groups bytes in different ways to form data types with a higher logical meaning.
For example, it uses 4 bytes to make an integer, a numeric data type that can hold values
between -2,147,483,648 and 2,147,483,647.

The following table summarizes Visual Basic’s elementary data types.

TYPE
Boolean
Byte
SByte
Char
Short
UShort
Integer
Ulnteger
Long
ULong

Decimal

Single

Double

String

Date
Object

Structure

SIZE

2 bytes
1 byte

1 byte
2 bytes
2 bytes
2 bytes
4 bytes
4 bytes
8 bytes
8 bytes

16 bytes

4 bytes

8 bytes

varies

8 bytes
4 bytes

varies

VALUES

True or False

0 to 255 (unsigned byte)

-128 to 127 (signed byte)

0 to 65,535 (unsigned character)

-32,768 to 32,767

0 through 65,535 (unsigned short)

-2,147,483,648 to 2,147,483,647

0 through 4,294,967,295 (unsigned integer)
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
0 through 18,446,744,073,709,551,615 (unsigned long)

0 to +/-79,228,162,514,264,337,593,543,950,335 with no decimal
point; O to +/-7.9228162514264337593543950335 with 28 places
to the right of the decimal place

-3.4028235E+38 to —1.401298E-45 (negative values)
1.401298E-45 to 3.4028235E+38 (positive values)

-1.79769313486231570E+308 to —4.94065645841246544E-324
(negative values) 4.94065645841246544E-324 to
1.79769313486231570E+308 (positive values)

Depending on the platform, a string can hold approximately O to
2 billion Unicode characters

January 1, 0001 0:0:00 to December 31, 9999 11:59:59 pm
Points to any type of data

Structure members have their own ranges



206 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

Signed types such as Integer and Decimal can store positive and negative numbers. Unsigned types
such as Byte and Ulnteger can only store positive values and they use the extra space that would
have been used to store sign information to store larger values.

Normally in a program you think of the Char data type as holding a single character. That could be
a simple Roman letter or digit, but Visual Basic uses 2-byte Unicode characters so the Char type can
also hold more complex characters from other alphabets such as Kanji and Cyrillic.

The System namespace also provides integer data types that specify their numbers of bits explicitly.
For example, Int32 represents a 32-bit integer. Using these values instead of Integer emphasizes the
fact that the variable uses 32 bits. That can sometimes make code clearer. For example, suppose that
you need to call an application programming interface (API) function that takes a 32-bit integer as a
parameter. You can make it obvious that you are using a 32-bit integer by giving the parameter the
Int32 type.

The data types that explicitly give their sizes are Int16, Int32, Int64, Ulnt16, Ulnt32, and Ulnt64.

The Integer data type is usually the fastest of the integral types. You will generally get better per-
formance using Integers than you will with the Char, Byte, Short, Long, or Decimal data types.
You should stick with the Integer data type unless you need the extra range provided by Long and
Decimal, or you need to save space with the smaller Char and Byte data types. In many cases, the
space savings you will get using the Char and Byte data types isn’t worth the extra time and effort,
unless you are working with a very large array of values.

Note that you cannot safely assume that a variable’s storage requirements are exactly the same as its
size. In some cases, the program may move a variable so that it begins on a boundary that is natural
for the hardware platform. For example, if you make a structure containing several Short (2-byte)
variables, the program may insert 2 extra bytes between them so they can all start on 4-byte
boundaries because that may be more efficient for the hardware. For more information on
structures, see Chapter 23, “Classes and Structures.”

ALIGNMENT ATTRIBUTES

Actually, you can use the StructLayout attribute to change the way Visual

Basic allocates the memory for a structure. In that case you may be able to
determine exactly how the structure is laid out. This is a fairly advanced topic
and is not covered in this book. For more information, see http: //msdn
.microsoft.com/system.runtime.interopservices.structlayoutattribute

.aspx.

Some data types also come with some additional overhead. For example, an array stores some extra
information about each of its dimensions.


http://msdn.microsoft.com/system.runtime.interopservices.structlayoutattribute.aspx
http://msdn.microsoft.com/system.runtime.interopservices.structlayoutattribute.aspx
http://msdn.microsoft.com/system.runtime.interopservices.structlayoutattribute.aspx

Type Characters | 207

TYPE CHARACTERS

Data type characters identify a value’s data type. The following table lists the data type characters
of Visual Basic.

CHARACTER DATA TYPE
% Integer

& Long

@ Decimal

! Single

# Double

$ String

You can specify a variable’s data type by adding a data type character after a variable’s name
when you declare it. When you use the variable later, you can omit the data type character if
you like. For example, the following code declares variable num_desserts as a Long and
satisfaction_quotient as a Double. It then assigns values to these variables.

Dim num_desserts&
Dim satisfaction_quotient#

num_desserts = 100
satisfaction_quotient# = 1.23

If you have Option Explicit turned off, you can include a data type character the first time you use
the variable to determine its data type. If you omit the character, Visual Basic picks a default data
type based on the value you assign to the variable.

If the value you assign is an integral value that will fit in an Integer, Visual Basic makes the variable
an Integer. If the value is too big for an Integer, Visual Basic makes the variable a Long. If the value
contains a decimal point, Visual Basic makes the variable a Double.

If you set a variable equal to a True or False, Visual Basic makes it a Boolean.

In Visual Basic, you surround date values with # characters. If you assign a variable to a date
value, Visual Basic gives the variable the Date data type. The following code assigns Boolean and
Date variables:

a_boolean = True
a_date = #12/31/2007#



208 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

In addition to data type characters, Visual Basic provides a set of literal type characters that
determine the data type of literal values. These are values that you explicitly type into your code
in statements such as assignment and initialization statements. The following table lists the literal
type characters of Visual Basic.

CHARACTER DATA TYPE

S Short

us UShort

I Integer

Ul Ulnteger

L Long

UL ULong

D Decimal

F Single (F for floating point)
R Double (R for real)

c Char (note lowercase c)

A literal type character determines the data type of a literal value in your code and may indirectly
determine the data type of a variable assigned to it. For example, suppose that the following code is
the first use of the variables i and ch (with Option Explicit turned off):

i=123L
ch = "X'c

Normally, Visual Basic would make i an Integer because the value 123 fits in an Integer. Because
the literal value 123 ends with the 1. character, however, the value is a Long, so the variable 1 is
also a Long.

Similarly, Visual Basic would normally make variable ch a String because the value "x" looks like
a string. The c following the value tells Visual Basic to make this a Char variable instead.

Visual Basic also lets you precede a literal integer value with &H to indicate that it is hexadecimal
(base 16) or &0 to indicate that it is octal (base 8). For example, the following three statements set
the variable flags to the same value. The first statement uses the decimal value 100, the second
uses the hexadecimal value &H64, and the third uses the octal value &0144.

100 ' Decimal 100.
&H64 ' Hexadecimal &H64 = 6 * 16 + 4 = 96 + 4 = 100.
&0144 ' Octal &0144 =1 * 64 + 4 * 8 + 4 = 64 + 32 + 4 = 100.

flags
flags
flags



Type Characters | 209

BASE CONVERSIONS

The Hex and Oct functions let you convert numeric values into hexadecimal and
octal strings, respectively. In some sense, this is the opposite of what the sH

and &0 codes do: make Visual Basic interpret a string literal as hexadecimal or
octal number.

The following code displays the value of the variable f1ags in decimal,
hexadecimal, and octal:

Debug.WriteLine (flags) ' Decimal.
Debug.WriteLine (Hex(flags)) ' Hexadecimal.
Debug.WriteLine (Oct (flags)) ' Octal.

Sometimes you must use literal type characters to make a value match a variable’s data type.
For example, consider the following code:

Dim ch As Char
ch = "X" ' Error because "X" is a String.
ch = "X"c ' Okay because "X"c is a Char.

Dim amount As Decimal
amount = 12.34 ' Error because 12.34 is a Double.
amount = 12.34D ' Okay because 12.34D is a Decimal.

The first assignment tries to assign the value "x" to a Char variable. This throws an error because
"X" is a String value so it won’t fit in a Char variable. Although it is obvious to a programmer
that this code is trying to assign the character x to the variable, Visual Basic thinks the types
don’t match.

The second assignment statement works because it assigns the Char value "x"c to the variable. The
next assignment fails when it tries to assign the Double value 12.34 to a Decimal variable. The final
assignment works because the value 12.34D is a Decimal literal.

The following code shows another way to accomplish these assignments. This version uses the
data type conversion functions CChar and CDec to convert the values into the proper data
types. The following section, “Data Type Conversion,” has more to say about data type
conversion functions.

ch = CChar("X")
amount = CDec(12.34)

Using data type characters, literal type characters, and the Visual Basic default data type
assignments can lead to very confusing code. You cannot expect every programmer to notice
that a particular variable is a Single because it is followed by ! in its first use but not in others.
You can make your code less confusing by using variable declarations that include explicit
data types.



210 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

DATA TYPE CONVERSION

Normally, you assign a value to a variable that has the same data type as the value. For example,
you assign a string value to a String variable, you assign an integer value to an Integer variable,
and so forth. Whether you can assign a value of one type to a variable of another type depends on
whether the conversion is a narrowing or widening conversion.

Narrowing Conversions

A narrowing conversion is one where data is converted from one type to another type that cannot
hold all of the possible values allowed by the original data type. For example, the following code
copies the value from a Long variable into an Integer variable. A Long value can hold values that
are too big to fit in an Integer, so this is a narrowing conversion. The value contained in the Long
variable may or may not fit in the Integer.

Dim an_integer As Integer
Dim a_long As Long

an_integer = a_long

The following code shows a less obvious example. Here the code assigns the value in a String
variable to an Integer variable. If the string happens to contain a number (for example, “10”), the
assignment works. If the string contains a non-numeric value (such as “Hello”), the assignment fails
with an error.

Dim an_integer As Integer
Dim a_string As String

an_integer = a_string

Another non-obvious narrowing conversion is from a class to a derived class. Suppose that the
Employee class inherits from the Person class. Then setting an Employee variable equal to a Person
object, as shown in the following code, is a narrowing conversion because you cannot know without
additional information whether the Person is a valid Employee. All Employees are Persons, but

not all Persons are Employees.

Dim an_employee As Employee
Dim a_person As Person

an_employee = a_person

If you have Option Strict turned on, Visual Basic will not allow implicit narrowing
conversions. If Option Strict is off, Visual Basic will attempt an implicit narrowing conversion
and generate an error at run time if the conversion fails.

To make a narrowing conversion with Option Strict turned on, you must explicitly use a data
type conversion function. Visual Basic will attempt the conversion and generate an error if it fails.
For example, the CByte function converts a numeric value into a Byte value, so you could use the
following code to copy an Integer value into a Byte variable:



Data Type Conversion | 211

Dim an_integer As Integer
Dim a_byte As Byte

a_byte = CByte(an_integer)

If the Integer variable contains a value less than 0 or greater than 255, the value will not fit in a Byte
variable so CByte throws an error.

The following table lists the data type conversion functions of Visual Basic.

FUNCTION CONVERTS TO
CBool Boolean
CByte Byte
CChar Char
CDhate Date
CDbl Double
CDec Decimal
CInt Integer
CLng Long
CObj Object
CSByte SByte
CShort Short
CSng Single
CStr String
CUInt Ulnteger
CULng ULong
CUShort UShort

The CInt and CLng functions round fractional values off to the nearest whole number. If the
fractional part of a number is exactly 0.5, the functions round to the nearest even whole number.
For example, 0.5 rounds down to 0, 0.6 rounds up to 1, and 1.5 rounds up to 2.

In contrast, the Fix and Int functions truncate fractional values. Fix truncates toward zero, so
Fix(-0.9) is 0 and Fix(0.9) is 0. Int truncates downward, so Int(=0.9) is =1 and Int(0.9) is 0.



212

| CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Fix and Int also differ from CInt and CLng because they return the same data type they are passed.
Clnt always returns an Integer no matter what type of value you pass it. If you pass a Long into Fix,
Fix returns a Long. In fact, if you pass a Double into Fix, Fix returns a Double.

The CType function takes as parameters a value and a data type, and it converts the value into
that type if possible. For example, the following code uses CType to perform a narrowing conver-
sion from a Long to an Integer. Because the value of a_long can fit within an integer, the
conversion succeeds.

Dim an_integer As Integer
Dim a_long As Long = 100
an_integer = CType(a_long, Integer)

The DirectCast statement changes value types much as CType does, except that it only works
when the variable it is converting implements or inherits from the new type. For example, suppose
the variable dessert_obj has the generic type Object and you know that it points to an object

of type Dessert. Then the following code converts the generic Object into the specific Dessert type:

Dim dessert_obj As Object = New Dessert("Ice Cream")
Dim my_ dessert As Dessert
my_dessert = DirectCast (dessert_obj, Dessert)

DirectCast throws an error if you try to use it to change the object’s data type. For example, the
following code doesn’t work, even though you can always store an integer value in a Long variable:

Dim an_integer As Integer = 100
Dim a_long As Long
a_long = DirectCast (an_integer, Long)

The TryCast statement converts data types much as DirectCast does, except that it returns Nothing
if there is an error, rather than throwing an error.

Data Type Parsing Methods

Each of the fundamental data types (except for String) has a Parse method that attempts to convert
a string into the variable type. For example, the two final statements in the following code both try
to convert the string value txt_entered into an Integer:

Dim txt_entered As String = "112358"
Dim num_entered As Integer

num_entered CInt (txt_entered) ' Use CInt.
num_entered = Integer.Parse(txt_entered) ' Use Integer.Parse.

Some of these parsing methods can take additional parameters to control the conversion.
For example, the numeric methods can take a parameter that gives the international number style
the string should have.



Data Type Conversion | 213

The class parsing methods have a more object-oriented feel than the conversion functions. They
are also a bit faster. They only parse strings, however, so if you want to convert from a Long to an
Integer, you need to use Clnt rather than Integer.Parse or Int32.Parse.

Widening Conversions

In contrast to a narrowing conversion, a widening conversion is one where the new data type is
always big enough to hold the old data type’s values. For example, a Long is big enough to hold any
Integer value, so copying an Integer value into a Long variable is a widening conversion.

Visual Basic allows widening conversions. Note that some widening conversions can still result in a
loss of data. For example, a Decimal variable can store more significant digits than a Single variable
can. A Single can hold any value that a Decimal can but not with the same precision, so if you assign
a Decimal value to a Single variable, you may lose some precision.

The Convert Class

The Convert class provides an assortment of methods for converting a value from one data type to
another. For example, the following code uses the ToInt32 method to convert the string “17” into
a 32-bit integer:

Dim i As Integer = Convert.ToInt32("17")

These methods are easy to understand so they make code simple to read. Unfortunately they work
with particular data type sizes such as 16- or 32-bit integer rather than with the system’s default
integer size so they may require you to change your code in the future. For example, if a later version
of Visual Basic assumes 64-bit integers, then you may need to update your calls to Convert methods.

ToString

The ToString method is a conversion function that is so useful it deserves special mention. Every
object has a ToString method that returns a string representation of the object. For example, the
following code converts the integer value num_employees into a string:

Dim txt As String = num_employees.ToString ()

Exactly what value ToString returns depends on the object. For example, a double’s ToString
method returns the double formatted as a string. More complicated objects tend to return their
class names rather than their values (although you can change that behavior by overriding
their ToString methods).

ToString can take as a parameter a format string to change the way it formats its result. For example,
the following code displays the value of the double angle with two digits after the decimal point:

MessageBox.Show (angle.ToString ("0.00"))

Appendix P, “Date and Time Format Specifiers,” and Appendix Q, “Other Format Specifiers,”
describe format specifiers in greater detail.



214 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

VARIABLE DECLARATIONS

The complete syntax for a variable declaration is as follows:

[attribute_list] [accessibility] [Shared] [Shadows] [ReadOnly]
Dim [WithEvents] name [ (bounds_list)] [As [New] typel]
[= initialization_expression]

All declarations have only one thing in common: They contain a variable’s name. Other than the
name, different declarations may have nothing in common. Variable declarations with different
forms can use or omit any other piece of the general declaration syntax. For example, the following
two declarations don’t share a single keyword:

Dim 1 =1 ' Declare private Integer named i. (Option Explicit Off)
Public j As Integer ' Declare public Integer named jJ.

The many variations supported by a variable declaration make the general syntax rather
intimidating. In most cases, however, declarations are straightforward. The previous two
declarations are fairly easy to understand.

The following sections describe the pieces of the general declaration in detail.

Attribute_List

The optional attribute list is a comma-separated list of attributes that apply to the variable.
An attribute further refines the definition of a variable to give more information to the compiler
and the runtime system.

Attributes are rather specialized and address issues that arise when you perform very specific
programming tasks. For example, when you write code to serialize and de-serialize data, you can
use serialization attributes to gain more control over the process.

The following code defines the Orderltem class. This class declares three public variables: TtemName,
Price, and Quantity. It uses attributes on its three variables to indicate that ItemName should be
stored as text, Price should be stored as an attribute named cost, and Quantity should be stored
as an attribute with its default name, Quantity.

Public Class OrderItem
<XmlText ()>
Public ItemName As String

<XmlAttributeAttribute (AttributeName:="Cost")>
Public Price As Decimal

<XmlAttributeAttribute()>
Public Quantity As Integer
End Class

The following code shows the XML serialization of an Orderltem object:

<OrderItem Cost="1.25" Quantity="12">Cookie</OrderItem>



Variable Declarations | 215

Because attributes are so specialized, they are not described in more detail here. For more
information, see the sections in the online help related to the tasks you need to perform. For
more information on XML serialization attributes, for example, search for “System.Xml
.Serialization Namespace,” or look at these web pages:

» XML Serialization in the .NET Framework, http://msdn.microsoft.com/ms950721 .aspx.

> Controlling XML Serialization Using Attributes, http://msdn.microsoft.com/2baksw0z

.aspx.
»  Attributes That Control XML Serialization, http://msdn.microsoft.com/83y7df3e.aspx.

For more information on attributes in general, see the “Attributes” section of the Visual Basic
Language Reference or go to http://msdn.microsoft.com/39967861.aspx.

For a list of attributes you can use to modify variable declarations, search the online help for
“Attribute Hierarchy,” or see these web pages:

> Attributes Used in Visual Basic, http://msdn.microsoft.com/f51fe7sf.aspx.

>  Attribute Class, http://msdn.microsoft.com/system.attribute.aspx. (Look for the
“Inheritance Hierarchy” section to see what attributes inherit from the Attribute class.)

Accessibility
A variable declaration’s accessibility clause can take one of the following values:

> public — You can use the Public keyword only for variables declared at the module, class,
structure, namespace, or file level but not inside a subroutine. Public indicates that the
variable should be available to all code inside or outside of the variable’s module. This
allows the most access to the variable.

>  protected — You can use the Protected keyword only at the class level, not inside a module
or inside a routine within a class. Protected indicates that the variable should be accessible
only to code within the same class or a derived class. The variable is available to code in
the same or a derived class, even if the instance of the class is different from the one
containing the variable. For example, one Employee object can access a Protected variable
inside another Employee object.

>  Friend — You can use the Friend keyword only for variables declared at the module, class,
namespace, or file level, not inside a subroutine. Friend indicates that the variable should
be available to all code inside or outside of the variable’s module within the same project.
The difference between this and Public is that Public allows code outside of the project
to access the variable. This is generally only an issue for code and control libraries where
some other project may use the library. For example, suppose that you build a code library
containing dozens of routines and then you write a program that uses the library. If the
library declares a variable with the Public keyword, the code in the library and the code
in the main program can use the variable. In contrast, if the library declares a variable with
the Friend keyword, only the code in the library can access the variable, not the code in the
main program.


http://msdn.microsoft.com/ms950721.aspx
http://msdn.microsoft.com/2baksw0z.aspx
http://msdn.microsoft.com/2baksw0z.aspx
http://msdn.microsoft.com/83y7df3e.aspx
http://msdn.microsoft.com/39967861.aspx
http://msdn.microsoft.com/f51fe7sf.aspx
http://msdn.microsoft.com/system.attribute.aspx

216

CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

>  pProtected Friend — You can use Protected Friend only at the class level, not inside a
module or inside a routine within a class. Protected Friend is the union of the Protected and
Friend keywords. A variable declared Protected Friend is accessible only to code within the
same class or a derived class and only within the same project.

>  private — You can use the Private keyword only for variables declared at the module,
class, or structure level, not inside a subroutine. A variable declared Private is accessible
only to code in the same module, class, or structure. If the variable is in a class or structure,
it is available to other instances of the class or structure. For example, one Customer object
can access a Private variable inside another Customer object.

> static — You can use the Static keyword only for variables declared within a subroutine
or a block within a subroutine (for example, a For loop or Try Catch block). You cannot use
Static with Shared or Shadows. A variable declared Static keeps its value between lifetimes.
For example, if a subroutine sets a Static variable to 27 before it exits, the variable begins
with the value 27 the next time the subroutine executes. The value is stored in memory, so
it is not retained if you exit and restart the whole program. (Use a database, the System
Registry, or some other means of permanent storage if you need to save values between
program runs.)

Shared

You can use the Shared keyword at the class or structure level, not within a module or subroutine.
This keyword means that all instances of the class or structure containing the variable share the
same variable.

For example, suppose that the Order class declares the Shared variable Numorders to represent
the total number of orders in the application. Then all instances of the Order class share the same
NumOrders variable. If one instance of an Order sets NumOrders to 10, all instances of Order

see NumOrders equal 10.

You can access a Shared variable by using the class’s name. For example, the following code sets the
Orders class’s shared Numorders value to 101.

Order .NumOrders = 101 ' Use the class to set NumOrders = 101.

You cannot use the Shared keyword with the Static keyword. This makes sense because a Shared
variable is in some fashion static to the class or structure that contains it. If one instance of the class
modifies the variable, the value is available to all other instances. In fact, even if you destroy every
instance of the class or never create any instances at all, the class itself still keeps the variable’s value
safe. That provides a persistence similar to that given by the Static keyword.

Shadows

You can use the Shadows keyword only for variables declared at the class or structure level, not
inside a subroutine. Shadows indicates that the variable hides a variable with the same name in a
base class or structure. In a typical example, a subclass provides a variable with the same name as a
variable declared in one of its ancestor classes.



Variable Declarations

| 217

Example program ShadowTest, which is available for download on the book’s website, uses the

following code to demonstrate the Shadows keyword:

Public Class Person
Public LastName As String
Public EmployeeId As String
End Class

Public Class Employee

Inherits Person

Public Shadows EmployeeId As Long
End Class

Public Class Manager

Inherits Employee

Public Shadows LastName As String
End Class

Private Sub TestShadows ()
Dim txt As String = ""

Dim mgr As New Manager
mgr.LastName = "Manager Last Name"
mgr.EmployeelId = 1

Dim emp As Employee = CType(mgr, Employee)
emp.LastName = "Employee Last Name"
emp .EmployeeId = 2

Dim per As Person = CType (mgr, Person)
per.LastName = "Person Last Name"
per.EmployeeId = "A"

txXt &= "Manager: " & mgr.EmployeeId & ": " & mgr.LastName & vbCrLf
txt &= "Employee: " & emp.Employeeld & ": " & emp.LastName & vbCrLf
txt &= "Person: " & per.Employeeld & ": " & per.LastName & vbCrLf

txtResults.Text = txt
txtResults.Select (0, 0)
End Sub

The code defines a Person class that contains public String variables LastName and Employee1d. The

Employee class inherits from Person and declares its own version of the EmployeeId variable. It

uses the Shadows keyword so this version covers the version defined by the Person class. Note that

Shadows works here even though the two versions of EmployeeTd have different data types: Long

versus String. An Employee object gets the Long version, and a Person object gets the String version.

The Manager class inherits from the Employee class and defines its own version of the LastName
variable. A Manager object uses this version, and an Employee or Person object uses the version

defined by the Person class.

Having defined these three classes, the program works with them to demonstrate shadowing.

First it creates a Manager object, and sets its LastName variable to “Manager Last Name” and its



218

CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

EmployeeId variable to 1. The LastName value is stored in the Manager class’s version of
the variable declared with the Shadows keyword. The EmployeeTd value is stored in the EmployeeId
variable declared with the Shadows keyword in the Employee class.

The program then creates an Employee variable and makes it point to the Manager object. This
makes sense because Manager inherits from Employee. A Manager is a type of Employee so an
Employee variable can point to a Manager object. The program sets the Employee object’s
LastName variable to “Employee Last Name” and its EmployeeId variable to 2. The LastName
value is stored in the Person class’s version of the variable. The Employee1d value is stored

in the EmployeeId variable declared with the Shadows keyword in the Employee class. Because
the Manager class does not override this declaration with its own shadowing declaration of
EmployeeId, this value overwrites the value stored by the Manager object.

Next, the program creates a Person variable and makes it point to the same Manager object. Again
this makes sense because a Manager is a type of Person so a Person variable can point to a Manager
object. The program sets the Person object’s LastName variable to “Person Last Name” and its
EmployeeId variable to “A.” The Person class does not inherit, so the program stores the values

in the versions of the variables defined by the Person class. Because the Employee class does not
override the Person class’s declaration of LastName with its own shadowing declaration, this

value overwrites the value stored by the Employee object.

Finally, the program prints the values of the Employee1d and LastName variables for each of the
objects.

The following output shows the program’s results. Notice that the Employee object’s value for
EmployeeId (2) overwrote the value saved by the Manager object (1) and that the Person object’s
value for LastName (Person Last Name) overwrote the value saved by the Employee object
(Employee Last Name).

Manager: 2: Manager Last Name
Employee: 2: Person Last Name
Person: A: Person Last Name

Normally, you don’t need to access shadowed versions of a variable. If you declare a version of
LastName in the Employee class that shadows a declaration in the Person class, you presumably did
it for a good reason and you don’t need to access the shadowed version directly.

However, if you really do need to access the shadowed version, you can use variables from ancestor
classes to do so. For example, the previous example creates Employee and Person objects pointing
to a Manager object to access that object’s shadowed variables.

Within a class, you can similarly cast the Me object to an ancestor class. For example, the following
code in the Manager class makes a Person variable pointing to the same object and sets its shadowed
LastName value:

Public Sub SetPersonEmployeeld(employee_id As String)
Dim per As Person = CType (Me, Person)
per.EmployeeId = employee_id

End Sub



Variable Declarations | 219

Code in a class can also use the vyBase keyword to access the variables defined by the parent
class. The following code in the Manager class sets the object’s LastName variable declared by the
Employee parent class:

Public Sub SetEmployeeLastName (last_name As String)
MyBase.LastName = last_name
End Sub

ReadOnly

You can use the ReadOnly keyword only for variables declared at the module, class, or structure
level, not inside a subroutine. ReadOnly indicates that the program can read, but not modify,
the variable’s value.

You can initialize the variable in one of two ways. First, you can include an initialization statement
in the variable’s declaration, as shown in the following code:

Public Class EmployeeCollection
Public ReadOnly MaxEmployees As Integer = 100

End Class
Second, you can initialize the variable in the object’s constructors. The following code declares the

ReadOnly variable MaxEmployees. The empty constructor sets this variable to 100. A second
constructor takes an integer parameter and sets the MaxEmployees to its value.

Public Class EmployeeCollection
Public ReadOnly MaxEmployees As Integer

Public Sub New()
MaxEmployees = 100
End Sub

Public Sub New(max_employees As Integer)
MaxEmployees = max_employees
End Sub

End Class
After the object is initialized, the program cannot modify the ReadOnly variable. This restriction
applies to code inside the module that declared the variable, as well as code in other modules. If you
want to allow code inside the same module to modify the value but want to prevent code in other

modules from modifying the value, you should use a property procedure instead. See the section
“Property Procedures” later in this chapter for more information.

Dim

The Dim keyword officially tells Visual Basic that you want to create a variable.



220 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

You can omit the Dim keyword if you specify Public, Protected, Friend, Protected Friend, Private,
Static, or ReadOnly. In fact, if you include one of these keywords, the Visual Basic editor automati-
cally removes the Dim keyword if you include it.

If you do not specify otherwise, variables you declare using a Dim statement are Private. The follow-
ing two statements are equivalent:

Dim num_people As Integer
Private num_people As Integer

CERTAIN SCOPE

For certainty’s sake, many programmers (including me) explicitly specify Private
to declare private variables. Using Private means that programmers don’t need to
remember that the Dim keyword gives a private variable by default.

One place where the Dim keyword is common is when declaring variables inside subroutines. You
cannot use the Public, Private, Protected, Friend, Protected Friend, or ReadOnly keywords inside a
subroutine so you must use either Static or Dim.

WithEvents

The WithEvents keyword tells Visual Basic that the variable is of an object type that may raise
events that you will want to catch. For example, the following code declares the variable Face as a
PictureBox object that may raise events that you want to catch:

Private WithEvents Face As PictureBox

nq WithEventsControls - Form1.vb = 8
When you declare a variable with the WithEvents e "
keyword, Visual Basic creates an entry for it in the ©, Face [ #imectorations s
left drop-down list in the module’s code window, as 85 (General) e —_— =
shown in Figure 14-1. “’;“"“1

(Form1 Events)

If you select the object in the left drop-down list, e
Visual Basic fills the right drop-down list with the
object’s events that you might want to catch, as E
shown in Figure 14-2.
If you select an event, Visual Basic creates a corre-
sponding empty event handler. Letting Visual Basic
automatically generate the event handler in this
way is easier than trying to type the event handler _ _ v
yourself, creating all of the required parameters 22 Rk = -
by hand. FIGURE 14-1: Visual Basic creates a drop-down

entry for variables declared WithEvents.



Variable Declarations | 221

Declaring variables using the WithEvents

- a x
. . “ WithEwventsContrals - Form b
keyword is a powerful technique. You can
make the variable point to an object to catch its . Frrr——— -
events. Later, if you want to process events from 1 EPublic Class Fornl £ LgadCompleted -
. . 2 Private 'I.\lithEvent§ LosdP ch q
some other object using the same event handlers, 3 gzdiiaare:thiangs
. . . 4 |End Class % LocationChanged
you can set the variable to point to the new object. : o
ostFocus
If you no longer want to receive any events, you £ MarginChanged
can set the variable to Nothing. £ WGl
£ MouseClick
Unfortunately, you cannot declare an array using i oD bl E
. PouseD own 3
the WithEvents keyword. That means you cannot - Mot B
use a simple declaration to allow the same event 5 MouseHover
handlers to process events from more than one e
. . . . £ MouseMove
object. However, you can achieve this by using the £ housellp Y
AddHandler method to explicitly set the event TR - 7 5

handler routines for a series of objects. For more FIGURE 14-2: When you select an object declared

WithEvents in the left drop-down list, Visual Basic
fills the right drop-down list with events you might
want to catch.

information on this technique, see the section
“Catching Events” in Chapter 23.

Name

A declaration’s name clause gives the name of the variable. This must be a valid Visual Basic identi-
fier. The rules for valid identifiers are a bit confusing, but generally an identifier should begin with a
letter or underscore, followed by any number of letters, digits, or underscores.

If the identifier begins with an underscore (which is unusual), it must contain at least one other
valid character (letter, digit, or underscore) so that Visual Basic doesn’t confuse it with a line
continuation character.

Identifier names cannot contain special characters such as &, %, #, and $, although some of these
may be used as data type characters.

Here are some examples:

num_employees Valid
NumEmployees Valid
_manager Valid (but unusual)

_ Invalid (contains only a single underscore)
_ Valid (two underscores is valid but could be very confusing)
lst_employee Invalid (doesn’t begin with a letter or underscore)

#employees Invalid (contains the special character #)



222 | CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Normal identifiers cannot be the same as a Visual Basic keyword. However, you can escape an iden-
tifier (mark it to give it a special meaning) by enclosing it in square brackets, and if you escape an
identifier, you can give it the same name as a Visual Basic keyword. For example, in the following
code, the Parsestring subroutine takes a single parameter named string of type String:

Public Sub ParseString([String] As String)
Dim values() As String = Split([String])

End Sub
If you begin writing a call to this subroutine in the code editor, the IntelliSense pop-up describes this
routine as ParseString(String As String).

These rules let you come up with some strange and potentially confusing identifier names. For
example, you can make escaped variables named String, Boolean, Elself, and Case. Depending on
your system’s settings, underscores may be hard to read either on the screen or in printouts. That
may make variables such as __ (two underscores) seem to vanish and may make it hard to tell the
difference between _Name and Name.

Although these identifiers are all legal, they can be extremely confusing and may lead to long,
frustrating debugging sessions. To avoid confusion, use escaped identifiers and identifiers beginning
with an underscore sparingly.

Bounds_ List

A variable declaration’s bounds_list clause specifies bounds for an array. This should be a comma-
separated list of non-negative integers that give the upper bounds for the array’s dimensions. All
dimensions have a lower bound of zero. You can optionally specify the lower bound, but it must
always be zero.

LIMITED LOWER BOUNDS

Henry Ford once said, “Any customer can have a car painted any color that he
wants so long as it is black.” A similar rule applies here: You can specify any lower
bound for an array as long as it’s zero.

The following code declares two arrays in two different ways. The first statement declares

a one-dimensional array of 101 Customer objects with indexes ranging from 0 to 100. The
second statement defines a two-dimensional array of Order objects. The first dimension has
bounds ranging from 0 to 100 and the second dimension has bounds ranging from 0 to 10.

The array’s entries are those between orders (0, 0) and orders (100, 10) giving a total of
101 * 11 = 1111 entries. The last two statements define similar arrays, while explicitly declaring
the arrays’ lower bounds.



Variable Declarations | 223

Private customers(100) As Customer

Private orders (100, 10) As Order

Private customers2 (0 To 100) As Customer
Private orders2(0 To 100, 0 To 10) As Order

You may find that specifying the lower bound makes the code easier to read because it gives the
lower bound explicitly rather than requiring you to remember that lower bounds are always 0. It
can be particularly helpful for those who have used Visual Basic 6 and earlier versions because those
versions of Visual Basic allowed arrays to have lower bounds other than 0.

Note that declarations of this sort that use an object data type do not instantiate the objects. For
example, the first declaration in the previous example defines 101 array entries that all point to
Nothing. They do not initially point to instances of the Customer class. After this declaration, the
program would need to create each object reference individually, as shown in the following code:

Private customers(100) As Customer
For 1 As Integer = 0 To 100

customers (i) = New Customer ()
Next 1

Alternatively, the program can use an initialization statement to declare and initialize the objects in
a single step. See the section “Initialization_Expression” coming up shortly for more information on
initializing arrays in their declarations.

If you provide parentheses but no bounds_list, Visual Basic defines the array, but doesn’t create

it with specific bounds. Later, you can use the ReDim statement to give it bounds. Note that you
can also use ReDim to change the bounds of an array that you initially give bounds. The following
example declares two arrays named a1 and a2. Initially, the program allocates 11 items for array a1l
but no items for array a2. The program then uses ReDim to allocate 21 entries for both arrays.

Dim al(10) As Integer
Dim a2 () As Integer

ReDim al(20)
ReDim a2 (0 To 20)

The ReDim statement cannot change the number of dimensions in an array. If you want to declare
but not initialize a multidimensional array, include commas as if you were defining the bounds. The
following code declares a three-dimensional array and initializes it in separate steps:

Dim al(,,) As Integer

ReDim al (10, 20, 30)

New

If you are declaring an object variable, the New keyword tells Visual Basic to create a new instance
of the object. Without this keyword, Visual Basic makes an object variable that doesn’t yet hold a
reference to any object. It initially holds Nothing.



224 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

For example, the first line in the following code declares an Employee object variable named

empl. After that line, the variable is defined, but it doesn’t point to anything. The second line

sets empl equal to a new Employee object. The last line creates an Employee object variable named
emp2 and assigns it to a new Employee object. This does the same thing as the first and second lines
but in a single statement.

Dim empl As Employee
empl = New Employee()

Dim emp2 As New Employee ()

If the object’s class has constructors that take parameters, you can include the parameters after the
class name. For example, suppose that the Employee class has two constructors: one that takes no
parameters and a constructor that takes first and last name strings as parameters. Then the follow-
ing code creates two Employee objects using the different constructors:

Dim empl As New Employee()
Dim emp2 As New Employee("Rod", "Stephens")

As Type and Inferred Types

The As clause tells Visual Basic what kind of variable you are declaring. For example, the following
As statement indicates that the variable cx has type Single:

Dim cx As Single

If Option Infer is on, you do not need to declare a local variable’s data type. If you omit the As
clause, Visual Basic infers the variable’s data type from the value that you assign to it. For example,
the following code declares a variable named message. Because the code assigns a string value to the
variable, Visual Basic infers that the variable should be a String.

Dim message = "Hello!"

Unfortunately, inferred data types make the code harder to understand later. You can figure
out that the previous declaration makes a variable that is a String, but it is much more obvious
if you explicitly include the As String clause. In this example, type inference only saves you a
few keystrokes and makes the code slightly harder to understand. Now, consider the following
statement:

Dim x = 1.234

Does this statement make variable x a Single, Double, Decimal, or some other data type?
In this case, it’s much less obvious what data type Visual Basic will decide to use.
(It makes x a Double.)



Variable Declarations | 225

MINIMIZE CONFUSION

To avoid confusion and make the code as easy to read as possible, I recommend that
you turn Option Infer off. Then you can use an Option Infer statement at the top

of any module where type inference would be helpful. Even in those modules,

I recommend that you explicitly give variables data types whenever possible.

The only times when type inference is essential is when you cannot easily figure out the type needed
by a variable. For example, LINQ lets a program generate results that have confusing data types, so
type inference can be very handy when working with LINQ. For more information on LINQ), see
Chapter 20, “LINQ.”

INOFFENSIVE INFERENCE

When you create a new project, Option Infer is on by default. To restrict its scope,
turn it off for the project as a whole and then turn it on only in the files that need it.

Initialization_Expression

The initialization_expression clause gives data that Visual Basic should use to initialize the
variable. The most straightforward form of initialization assigns a simple value to a variable.
The following code declares the variable num_employees and assigns it the initial value zero:

Dim num_employees As Integer = 0

More complicated data types may require more complex initialization clauses. If the declaration
declares an object variable, you can use the New keyword to initialize the variable. For example,
the first line in the following code declares an Employee variable named emp1 and sets it equal to

a new Employee object. The second statement uses the As New form of declaration to do the same
thing without a separate initialization clause. This version is slightly more compact, but you can use
whichever version seems most natural to you.

Dim empl As Employee = New Employee("Rod", "Stephens")
Dim emp2 As New Employee ("Rod", "Stephens")

The With keyword allows you to initialize an object without using a special constructor. This state-
ment lets you assign values to an object’s public properties and variables right after the object is
created. The following code creates a new Employee object and sets its FirstName and LastName
values much as the previous statements do:

Dim emp3 As New Employee With {.FirstName = "Rod", .LastName = "Stephens"}



226 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

Initializing Arrays
Arrays have their own special initialization syntax. To declare and initialize an array in one

statement, you must omit the array’s bounds. Visual Basic uses the initialization data to discover
the bounds.

Place the array’s values inside curly braces separated by commas. The following code initializes a
one-dimensional array of integers:

Dim fibonacci() As Integer = {1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 87}

If you have Option Infer on, you can omit the array’s data type and Visual Basic will try to deduce
it from the values that you use to initialize it. For example, the following code creates three arrays.
Visual Basic can infer that the first contains Integers and the second contains Strings. The third
array contains Strings, Integers, and Doubles so Visual Basic makes it an array of Objects.

Dim numbers() = {1, 2, 3}
Dim strings() = {"A", "B", "C"}
Dim objects() = {"A", 12, 1.23}

For a multidimensional array, put commas in the variable’s parentheses to indicate the number of
dimensions. Use curly braces to surround the array data. Nest each dimension of data inside the
previous one, enclosing each dimension’s data with braces and separating entries with commas.

This probably makes the most sense if you think of a multidimensional array as an array of arrays.
For example, a three-dimensional array is an array of two-dimensional arrays. Each of the two-
dimensional arrays is an array of one-dimensional arrays. You can use indentation to make the
array’s structure more obvious.

The following code declares and initializes a two-dimensional array of integers:

Dim int_values(,) As Integer =
{
{1, 2, 3},
{4, 5, 6}

The following code declares and initializes a three-dimensional array of strings. The text for each
value gives its position in the array. For example, the value str_values (0, 1, 1) is “011.”

Dim str_values(,,) As String =
{

{
{"000", "001", "002"},
{"010", "011", "012"}

}

{
{"100", "101", "102"},
{*110", *111", 112"}



Variable Declarations | 227

Example program InitializeArrays, which is available for download on the book’s website, uses
similar code to demonstrate array initialization.

Note that you must provide the correct number of items for each of the array’s dimensions.
For example, the following declaration is invalid because the array’s second row contains fewer
elements than its first row:

Dim int_values(,) As Integer =
{
{1, 2, 31},
{4, 5}
}

Initializing Object Arrays

The basic syntax for initializing an array of objects is similar to the syntax you use to initialize any
other array. You still omit the array bounds from the declaration and then include values inside
curly braces. The values you use to initialize the array, however, are different because object vari-
ables do not take simple values such as 12 and "Test" that you would use to initialize integer or
string arrays.

If you create an array of objects without an initialization clause, Visual Basic creates the object
variables but does not create objects for them. Initially, all of the array’s entries are Nothing.

The following code creates an array containing 11 references to Employee objects. Initially, all of the
references are set to Nothing.

Dim employees (0 To 10) As Employee

If you want to initialize the objects, you must initialize each object in the array separately using the
class’s constructors. Optionally, you can add a With statement to set public properties and variables
after creating the object. The following code declares an array of Employee objects. It initializes two
entries using an Employee object constructor that takes as parameters the employees’ first and last
names, two entries with an empty constructor and a With statement, two with an empty constructor
only, and two final entries with the value Nothing.

Dim employees() As Employee =

{
New Employee("Alice", "Andrews"),
New Employee("Bart", "Brin"),
New Employee With {.FirstName = "Cindy", .LastName="Cant"},
New Employee With {.FirstName = "Dan", .LastName="Diver"},
New Employee(),
New Employee(),
Nothing,
Nothing
}

To initialize higher-dimensional arrays of objects, use the syntax described in the previous section.
Use Nothing or the New keyword and object constructors to initialize each array entry individually.



228 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

Initializing XML Variables

To initialize an XElement object, declare the XElement variable and set it equal to properly format-
ted XML code. Visual Basic reads the data’s opening tag and then reads XML data until it reaches a
corresponding closing tag so the XML data can include whitespace just as an XML document can.
In particular, it can span multiple lines without line continuation characters.

In fact, if you use line continuation characters within the XML, the underscore characters become
part of the XML data, which is probably not what you want.

For example, the following code declares a variable named book_node that contains XML data
representing a book:

Dim book_node As XElement =
<Book>
<Title>The Bug That Was</Title>
<Year>2012</Year>
<Pages>376</Pages>
</Book>

This type of declaration and initialization makes it easy to build XML data directly into your Visual
Basic applications.

You can initialize XML literal values with much more complicated expressions. For example, you
can use LINQ to select values from relational data sources and build results in the form of an XML
document. For more information on LINQ, see Chapter 20.

INITIALIZING COLLECTIONS

Collection classes that provide an Add method such as List, Dictionary, and SortedDictionary have
their own initialization syntax. Instead of using an equals sign as you would with an array initial-
izer, use the From keyword followed by the values that should be added to the collection surrounded
by curly braces.

For example, the following code initializes a new List(Of String):

Dim pies As New List (Of String) From
{
"Apple", "Banana", "Cherry", "Coconut Cream"
}

The items inside the braces must include all of the values needed by the collection’s Add method.
For example, the Dictionary class’s Add method takes two parameters giving the key and value that
should be added so each entry in the initializer should include a key and value.

The following code initializes a Dictionary(Of String, String). The parameters to the class’s Add
method are an item’s key and value so, for example, the value 940-283-1298 has the key Alice Artz.
Later you could look up Alice’s phone number by searching the Dictionary for the item with key
“Alice Artz.”



Initializing Collections | 229

Dim phone_numbers As New Dictionary (Of String, String) From
{
{"Alice Artz", "940-283-1298"}
{"Bill Bland", "940-237-3827"},
{"Carla Careful", "940-237-1983"}

ADDING ADD

Some collection classes such as Stack and Queue don’t have an Add method, so
From won’t work for them. Fortunately, you can use extension methods (described
in the “Extension Methods” section in Chapter 16, “Subroutines and Functions™)
to add one. The following code adds a simple extension method to the Stack

(Of String) class:

<Extension()>

Public Sub Add(Of T) (the_stack As Stack(Of T), value As T)
the_stack.Push (value)

End Sub

Now the program can initialize a Stack(Of String) as in the following code:

Dim orders As New Stack(Of String) From
{

"Art", "Beatrice", "Chuck"

Multiple Variable Declarations

Visual Basic .NET allows you to declare more than one variable in a single declaration statement.
For example, the following statement declares two Integer variables named num_employees and
num_customers:

Private num_employees, num_customers As Integer

You can place accessibility keywords (Private, Public, and so on), Shared, Shadows, and ReadOnly
only at the beginning of the declaration and they apply to all of the variables in the declaration.
In the preceding statement, both num_employees and num_customers are Private.

You can declare variables with different data types by including more than one As clause separated
by commas. The following statement declares two Integer variables and one String variable:

Private emps, custs As Integer, cust As String

You cannot use an initialization statement if multiple variables share the same As clause, but you
can include an initialization statement for variables that have their own As clauses. In the preceding



230

| CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

example, you cannot initialize the two Integer variables, but you can initialize the String variable as
shown in the following statement:

Private emps, custs As Integer, cust As String = "Cozmo"

To initialize all three variables, you would need to give them each their own As clauses, as shown in
the following example:

Private emps As Integer = 5, custs As Integer = 10, cust As String = "Cozmo"

You can also declare and initialize multiple objects, arrays, and arrays of objects all in the same
statement.

While all of these combinations are legal, they quickly become too confusing to be of much practical
use. Even the relatively simple statement that follows can lead to later misunderstandings. Quickly
glancing at this statement, the programmer may think that all three variables are declared as Long.

Private num_employees, num_customers As Integer, num_orders As Long

You can reduce the possibility of confusion by using one As clause per declaration. Then a program-
mer can easily understand how the variables are defined by looking at the beginning and ending of
the declaration. The beginning tells the programmer the variables’ accessibility and whether they are
shared, shadowing other variables, or read-only. The end gives the variables’ data type.

You can also keep the code simple by giving variables with initialization statements their own
declarations. Then a programmer reading the code won’t need to decide whether an initialization
statement applies to one or all of the variables.

There’s nothing particularly wrong with declaring a series of relatively short variables in a single
statement, as long as you don’t find the code confusing. The following statements declare five Integer
variables and three Single variables. Breaking this into eight separate Dim statements would not
make it much clearer.

Dim i, j, k, R, C As Integer
Dim X, Y, Z As Single

OPTION EXPLICIT AND OPTION STRICT

The Option Explicit and Option Strict compiler options play an important role in variable
declarations.

When Option Explicit is set to on, you must declare all variables before you use them. If Option
Explicit is off, Visual Basic automatically creates a new variable whenever it sees a variable that it
has not yet encountered. For example, the following code doesn’t explicitly declare any variables. As
it executes the code, Visual Basic sees the first statement, num_managers = 0. It doesn’t recognize
the variable num_managers, so it creates it. Similarly, it creates the variable i when it sees it in the
For loop.



Option Explicit and Option Strict | 231

Option Explicit Off
Option Strict Off

Public Class Forml

Public Sub CountManagers ()
num_managers = 0
For 1 = 0 To m_Employees.GetUpperBound (0)
If m_Employees (i) .IsManager Then num_managrs += 1
Next i

MessageBox . Show (num_managers)
End Sub

End Class
Keeping Option Explicit turned off can lead to two very bad problems. First, it silently hides typo-
graphical errors. If you look closely at the preceding code, you’ll see that the statement inside the
For loop increments the misspelled variable num_managrs instead of the correctly spelled variable
num_managers. Because Option Explicit is off, Visual Basic assumes that you want to use a new

variable, so it creates num_managrs. After the loop finishes, the program displays the value of
num_managers, which is zero because it was never incremented.

The second problem that occurs when Option Explicit is off is that Visual Basic doesn’t really know
what you will want to do with the variables it creates for you. It doesn’t know whether you will use
a variable as an Integer, Double, String, or PictureBox. Even after you assign a value to the variable
(say, an Integer), Visual Basic doesn’t know whether you will always use the variable as an Integer or
whether you might later want to save a String in it.

To keep its options open, Visual Basic creates undeclared variables as generic Objects. Then it can
fill the variable with just about anything. Unfortunately, this can make the code much less efficient
than it needs to be. For example, programs are much better at manipulating integers than they are at
manipulating objects. If you are going to use a variable as an integer, creating it as an object makes
the program run much slower.

IMPRECISE INFERENCE

If Option Infer is on, Visual Basic may be able to deduce an explicit data type for a
variable declared without a type. In that case, the program may not incur a perfor-
mance penalty. It won’t be clear from the code whether that’s the case, however, so
it could lead to some confusion.

In more advanced terms, integers are value types, whereas objects are reference
types. A reference type is really a fancy pointer that represents the location of the
actual object in memory. When you treat a value type as a reference type, Visual
Basic performs an operation called boxing, where it wraps the value in an object so
it can use references to the boxed value. If you then perform an operation involving
two boxed values, Visual Basic must unbox them, perform the operation, and then
possibly box the result to store it in another reference variable. All of this boxing
and unboxing has a significant overhead.



232

| CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Example program TimeGenericObjects, which is available for download on the book’s website,
uses the following code to demonstrate the difference in speed between using variables with explicit
types and using variables of the generic Object type:

Dim num_trials As Integer = Integer.Parse(txtNumTrials.Text)

Dim start_time As DateTime
Dim stop_time As DateTime
Dim elapsed_time As TimeSpan

start_time = Now
For 1 As Integer = 1 To num_trials

Next 1

stop_time = Now

elapsed_time = stop_time.Subtract (start_time)

lblIntegers.Text = elapsed_time.TotalSeconds.ToString("0.000000")
Refresh ()

start_time = Now
For j = 1 To num_trials

Next jJ

stop_time = Now

elapsed_time = stop_time.Subtract (start_time)

1blObjects.Text = elapsed_time.TotalSeconds.ToString("0.000000")

The code executes two For loops. In the first loop, it explicitly declares its looping variable to be of
type Integer. In the second loop, the code doesn’t declare its looping variable (an easy typo to make),
so Visual Basic automatically makes it an Object when it is needed. In one test, the second loop took
more than 60 times as long as the first loop.

The second compiler directive that influences variable declaration is Option Strict. When Option
Strict is turned off, Visual Basic silently converts values from one data type to another, even if the
types are not necessarily compatible. For example, Visual Basic will allow the following code to try

to copy the string s into the integer i. If the value in the string happens to be a number (as in the first
case), this works. If the string is not a number (as in the second case), this throws an error at run time.

Dim i As Integer

Dim s As String

s = "10"

= s ' This works.
= "Hello"

= s ' This Fails.

e b

If you turn Option Strict on, Visual Basic warns you of possibly illegal conversions at compile time.
You can still use conversion functions such as Clnt, Int, and Integer.Parse to convert a string into an
Integer, but you must take explicit action to do so.

To avoid confusion and ensure total control of your variable declarations, you should always turn
on Option Explicit and Option Strict.



Scope | 233

For more information on Option Explicit and Option Strict (including instructions for turning these
options on), see the “Project” section in Chapter 2, “Menus, Toolbars, and Windows.”

SCOPE

A variable’s scope determines which other pieces of code can access it. For example, if you declare a
variable inside a subroutine, only code within that subroutine can access the variable. The four
possible levels of scope are (in increasing size of scope) block, procedure, module, and namespace.

Block Scope

A block is a series of statements enclosed in a construct that ends with some sort of End, Else, Loop,
or Next statement. If you declare a variable within a block of code, the variable has block scope,
and only other code within that block can access the variable. Furthermore, only code that appears
after the variable’s declaration can see the variable.

Variables declared in the block’s opening statement are also part of the block. Note that a variable
is visible within any sub-block contained within the variable’s scope.

For example, consider the following code snippet:

For i As Integer = 1 To 5
Dim j As Integer = 3
If i = j Then
Dim M As Integer = i + j

Debug.WriteLine("M: " & M)
Else

Dim N As Integer = 1 * j

Debug.WriteLine("N: " & N)
End If

Dim k As Integer = 123
Debug.WriteLine("k: " & k)
Next i

This code uses a For loop with the looping variable i declared in the For statement. The scope of
variable i is block-defined by the For loop. Code inside the loop can see variable i, but code outside
of the loop cannot.

Inside the loop, the code declares variable 5. This variable’s scope is also the For loop’s block.

If i equals 5, the program declares variable m and uses it. This variable’s scope includes only the two
lines between the If and Else statements.

If i doesn’t equal 3, the code declares variable N. This variable’s scope includes only the two lines
between the Else and End If statements.

The program then declares variable k. This variable also has block scope, but it is available only
after it is declared, so the code could not have accessed it earlier in the For loop.



234 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

Other code constructs that define blocks include the following:

>

>

Select Case statements — Each Case has its own block.

Try Catch statements — The Try section and each Exception statement defines a block.
Note also that the exception variable defined in each Exception statement is in its own
block. (That means they can all have the same name.)

Single-line Tf Then statements — These are strange and confusing enough that you should
avoid them, but the following code is legal:

If is_manager Then Dim txt As String = "M" : MessageBox.Show(txt) Else _
Dim txt As String = "E" : MessageBox.Show (txt)

While loops — Variables declared inside the loop are local to the loop.

Using statements — Resources acquired by the block and variables declared inside the block
are local to the block.

Because block scope is the most restrictive, you should use it whenever possible to reduce the
chances for confusion. The section “Restricting Scope” later in this chapter talks more about
restricting variable scope.

Procedure Scope

If you declare a variable inside a subroutine, function, or other procedure, but not within a block,
the variable is visible to any code inside the procedure that follows the declaration. The variable
is not visible outside of the procedure. In a sense, the variable has block scope where the block is
the procedure.

A procedure’s parameters also have procedure scope. For example, in the following code, the scope
of the order_object and order_item parameters is the AddorderItem subroutine:

Public Sub AddOrderItem(order_object As Order, order_item As OrderItem)

order_object.OrderItems.Add (order_item)

End Sub

Module Scope

A variable with module scope is available to all code in its code module, class, or structure, even
if the code appears before the variable’s declaration. For example, the following code works

even though the Displayl.oanamount subroutine is declared before the Loanamount variable that
it displays:

Private Class Lender

Public Sub DisplayLoanAmount ()
MessageBox . Show (LoanAmount)
End Sub

Private LoanAmount As Decimal

End Class



Scope | 235

To give a variable module scope, you should declare it with the Private, Protected, or Protected
Friend keyword. If you declare the variable Private, it is visible only to code within the same module.

If you declare the variable Protected, it is accessible only to code in its class or a derived class.
(Remember that you can only use the Protected keyword in a class.)

A Protected Friend variable is both Protected and Friend, so it is available only to code that is inside
the variable’s class or a derived class (Protected) and within the same project (Friend).

These keywords apply to both variable and procedure declarations. For example, you can declare a
subroutine, function, or property procedure Private, Protected, or Protected Friend.

For more information on accessibility keywords, see the section “Accessibility” earlier in
this chapter.

Example program ScopeTest, which is available for download on the book’s website, demonstrates
module and procedure scope.

Namespace Scope

By default, a project defines a namespace that includes all the project’s variables and code. However,
you can use Namespace statements to create other namespaces if you like. This may be useful to
help categorize the code in your application.

If you declare a variable with the Public keyword, it has namespace scope and is available to all
code in its namespace, whether inside the project or in another project. It is also available to code in
any namespaces nested inside the variable’s namespace. If you do not create any namespaces of your
own, the whole project lies in a single namespace, so you can think of Public variables as having
global scope.

If you declare a variable with the Friend keyword, it has namespace scope and is available to all
code in its namespace within the same project. It is also available to code in any namespaces nested
inside the variable’s namespace within the project. If you do not create any namespaces of your
own, the whole project lies in a single namespace so you can think of Friend variables as having
project scope.

For more information on the Public and Friend keywords, see the section “Accessibility” earlier
in this chapter.

Restricting Scope

There are several reasons why you should give variables the most restrictive scope possible that still
lets them do their jobs.

Limited scope keeps the variable localized so that programmers cannot use the variable incorrectly
in far off code that is unrelated to the variable’s main purpose.

Having fewer variables with global scope means programmers have less to remember when

they are working on the code. They can concentrate on their current work, rather than worrying
about whether variables r and c are declared globally and whether the current code will interfere
with them.



236 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

Limiting scope keeps variables closer to their declarations, so it’s easier for programmers to check
the declaration. One of the best examples of this situation is when a For loop declares its looping
variable right in the For statement. A programmer can easily see that the looping variable is an
integer without scrolling to the top of the subroutine hunting for its declaration. It is also easy to
see that the variable has block scope, so other variables with the same names can be used outside
of the loop.

Limited scope means a programmer doesn’t need to worry about whether a variable’s old value will
interfere with the current code, or whether the final value after the current code exits will later inter-
fere with some other code. This is particularly true for looping variables. If a program declares
variable i at the top of a subroutine, and then uses it many times in various loops, you might need
to do a little thinking to be sure the variable’s past values won’t interfere with new loops. If you
declare i separately in each For statement, each loop has its own version of i, so there’s no way they
can interfere with each other.

Finally, variables with larger scope tend to be allocated more often, so they take up memory more
often. For example, block variables and non-static variables declared with procedure scope are
allocated when they are needed and are destroyed when their scope ends, freeing their memory.

A variable declared Static or with module or namespace scope is not freed until your application
exits. If those variables are large arrays, they may take up a lot of memory the entire time your
application is running.

PARAMETER DECLARATIONS

A parameter declaration for a subroutine, function, or property procedure defines the names and
types of the parameters passed into it. Parameter declarations always have non-static procedure
scope. Visual Basic creates parameter variables when a procedure begins and destroys them

when the procedure ends. The subroutine’s code can access the parameters, but code outside of the
routine cannot.

For example, the following subroutine takes an integer as a parameter. The subroutine calls this
value employee_id. Code within the subroutine can access employee_id and code outside of the
subroutine cannot.

Public Sub DisplayEmployee (ByVal employee_id As Integer)
End Sub
A parameter’s basic scope is straightforward (non-static procedure scope), but parameters have some

special features that complicate the situation. Although this isn’t exactly a scoping issue, it’s related
closely enough to scope that it’s worth covering here.

You can declare a parameter ByRef or ByVal (ByVal is the default if you use neither keyword). If you
declare the variable ByVal, which stands for “by value,” the routine makes its own local parameter
variable with procedure scope just as you would expect.

If you declare a parameter with the keyword ByRef, which stands for “by reference,” the
routine does not create a separate copy of the parameter variable. Instead, it uses a reference to the



Parameter Declarations | 237

parameter you pass in, and any changes the routine makes to the value are reflected in the
calling subroutine.

For example, consider the two routines in the following code that double their parameters:

Sub DoubleItByVal (ByVal X As Single)
X*= 2
End Sub

Sub DoubleItByRef (ByRef X As Single)
X*= 2
End Sub

Sub TestParameters ()
Dim value As Single

value = 10
DoubleItByVal (value)
Debug.WriteLine (value)

value = 10

DoubleItByRef (value)

Debug.WriteLine (value)
End Sub

Subroutine DoubleTtByVal declares its parameter with the ByVal keyword. Behind the scenes, this
routine makes a new variable named x and copies the value of its argument into that variable. The
parameter X is available within the subroutine. The routine multiplies x by 2 and then exits. At that
point, the parameter variable goes out of scope and is destroyed.

Subroutine DoubleTtByRef declares its parameter with the ByRef keyword. This routine’s variable x
is a reference to the variable passed into the routine. The subroutine doubles x and that doubles the
variable in the calling code.

Subroutine TestParameters calls each of these routines. It declares a variable named value, passes
it to subroutine DoubleTtByVal, and displays the result after DoubleTtByval returns. Because
DoubleItByVal declares its parameter ByVal, the variable value is not changed so the result is 10.

Subroutine TestParameters then calls subroutine DoubleItByRef and displays the result after
that call returns. Subroutine DoubleTItByRef declares its parameter ByRef so the variable value
is changed to 20.

Even this more complex view of how procedures handle parameters has exceptions. If you pass a
literal value or the result of an expression into a procedure by reference, there is no variable to pass
by reference, so Visual Basic creates its own temporary variable. In that case, any changes made to
the ByRef parameter are not returned to the calling routine, because that code did not pass a vari-
able into the procedure. The following code shows statements that pass a literal expression and the
result of an expression into the DoubleTtByRef subroutine:

DoubleItByRef (12) ' Literal expression.
DoubleItByRef (X + Y) ' Result of an expression.



238

| CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Another case where a ByRef parameter does not modify a variable in the calling code is when
you omit an optional parameter. For example, the following subroutine takes an optional
ByRef parameter. If you call this routine and omit the parameter, Visual Basic creates the
employee_id parameter from scratch so the subroutine can use it in its calculations. Because
you called the routine without passing it a variable, the subroutine does not update a variable.

Sub UpdateEmployee (Optional ByRef employee_id As Integer = 0)

End Sub
Probably the sneakiest way a ByRef variable can fail to update a variable in the calling routine is if
you enclose the variable in parentheses. The parentheses tell Visual Basic to evaluate their contents
as an expression, so Visual Basic creates a temporary variable to hold the result of the expression.
It then passes the temporary variable into the procedure. If the procedure’s parameter is declared

ByRef, it updates the temporary variable, but not the original variable, so the calling routine doesn’t
see any change to its value.

The following code calls subroutine DoubleItByRef, passing the variable value into the routine
surrounded with parentheses. The DoubleItByRef subroutine doubles the temporary variable
Visual Basic creates, leaving value unchanged.

DoubleItByRef ((value))

Keep these issues in mind when you work with parameters. Parameters have non-static procedure
scope but the ByRef keyword can sometimes carry their values outside of the routine.

For more information on routines and their parameters, see Chapter 16.

PROPERTY PROCEDURES

Property procedures are routines that can represent a variable-like value. To other pieces of the
program, property procedures look just like variables, so they deserve mention in this chapter.

The following code shows property procedures that implement a Name property. The Property Get
procedure simply returns the value in the private variable m_Name. The Property Set procedure saves
a new value in the m_Name variable.

Private m_Name As String

Property Name() As String
Get
Return m_Name
End Get
Set (ByVal Value As String)
m_Name = Value
End Set
End Property



Property Procedures | 239

A program could use these procedures exactly as if there were a single public Name variable.
For example, if this code is in the Employee class, the following code shows how a program could
set and then get the Name value for the Employee object named emp:

emp.Name = "Rod Stephens"
MessageBox . Show (emp . Name)

You might want to use property procedures rather than a public variable for several reasons. First,
the routines give you extra control over the getting and setting of the value. For example, you could
use code to validate the value before saving it in the variable. The code could verify that a postal
code or phone number has the proper format and throw an error if the value is badly formatted.

You can also set breakpoints in property procedures. Suppose that your program is crashing because
a piece of code is setting an incorrect value in a variable. If you implement the variable with
property procedures, you can set a breakpoint in the Property Set procedure and stop whenever

the program sets the value. This can help you find the problem relatively quickly.

Property procedures let you set and get values in formats other than those you want to actually use
to store the value. For example, the following code defines Name property procedures that save a
name in m_FirstName and m_LastName variables. If your code would often need to use the last
and first names separately, you could also provide property procedures to give access to those
values separately.

Private m_LastName As String
Private m_FirstName As String

Property MyName () As String

Get
Return m_FirstName & " " & m_LastName
End Get
Set (ByVal Value As String)
m_FirstName = Value.Split(" "c) (0)
m_LastName = Value.Split(" "c) (1)

End Set
End Property

Finally, you can use property procedures to create read-only and write-only variables. The
following code shows how to make a read-only NumEnployees property procedure and a write-only
NumCustomers property procedure. (Write-only property procedures are unusual but legal.)

Public ReadOnly Property NumEmployees () As Integer
Get

End Get
End Property

Public WriteOnly Property NumCustomers () As Integer
Set (ByVal Value As Integer)
End Set

End Property



240 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

You don’t need to remember all of the syntax for property procedures. If you type the first line and
press Enter, Visual Basic fills in the rest of the empty property procedures. If you use the keyword
ReadOnly or WriteOnly, Visual Basic only includes the appropriate procedure.

Visual Basic also allows you to make auto-implemented properties. These are simply
properties that do not have separate property procedures. You declare the property’s name,
and Visual Basic automatically creates the necessary backing variables and property procedures
behind the scenes.

The following code shows a simple FirstName property:
Public Property FirstName As String

You can give a property a default value as in the following code:
Public Property FirstName As String = "<missing>"

You cannot use the ReadOnly or WriteOnly keywords with auto-implemented properties. If you
want to make a read-only or write-only property, you need to write Get and Set procedures as
described earlier.

The advantage of auto-implemented properties is that you don’t need to write as much code. The
disadvantage is that you can’t set breakpoints in the property procedures.

PROPERTY PROCEDURES AS YOU NEED THEM

To get the best of both worlds, you can initially use auto-implemented properties.
Later if you need to set breakpoints in the property procedures, you can redefine the
property to include them.

ENUMERATED DATA TYPES

An enumerated type is a discrete list of specific values. You define the enumerated type and the
values allowed. Later, if you declare a variable of that data type, it can take only those values.

For example, suppose that you are building a large application where users can have one of three
access levels: clerk, supervisor, and administrator. You could define an enumerated type named
AccessLevels that allows the values clerk, Supervisor, and Administrator. Now, if you
declare a variable to be of type AccessLevels, Visual Basic will only allow the variable to take
those values.

The following code shows a simple example. It defines the AccessLevels type and declares the
variable AccessLevel using the type. Later the MakeSupervisor subroutine sets AccessLevel
to the value AccessLevels.Supervisor. Note that the value is prefixed with the enumerated
type’s name.



Enumerated Data Types | 241

Public Enum AccessLevels
Clerk
Supervisor
Administrator

End Enum

Private AccessLevel As AccessLevels ' The user's access level.
' Set supervisor access level.
Public Sub MakeSupervisor ()

AccessLevel = AccessLevels.Supervisor
End Sub

The syntax for declaring an enumerated type is as follows:

[attribute_list] [accessibility] [Shadows] Enum name [As type]

[attribute_list] value_name [= initialization_expression]
[attribute_list] value_name [= initialization_expression]
End Enum

Most of these terms, including attribute_list and accessibility, are similar to those used by variable
declarations. See the section “Variable Declarations™ earlier in this chapter for more information.

The type value must be an integral type and can be Byte, Short, Integer, or Long. If you omit this
value, Visual Basic stores the enumerated type values as integers.

The value_name pieces are the names you want to allow the enumerated type to have. You can
include an initialization_expression for each value if you like. That value must be compatible
with the underlying data type (Byte, Short, Integer, or Long). If you omit a value’s initialization
expression, the value is set to one greater than the previous value, with the first value equal to
zero by default.

In the previous example, clerk = 0, Supervisor = 1,and Administrator = 2. The
following code changes the numeric assignments so clerk = 10, Supervisor = 11,
and administrator = -1:

Public Enum AccessLevels
Clerk = 10
Supervisor
Administrator = -1

End Enum

Usually, all that’s important about an enumerated type is that its values are unique, so you don’t
need to explicitly initialize the values.

Note that you can give enumerated values the same integer value either explicitly or implicitly. For
example, the following code defines several equivalent AccessLevels values. The first three values,
Clerk, Supervisor, and Administrator, default to 0, 1, and 2, respectively. The code explicitly
sets User to 0, so it is the same as Clerk. The values Manager and SysAdmin then default to the next
two values, 1 and 2 (the same as Supervisor and Administrator). Finally, the code explicitly

sets Superuser = SysAdmin.



242

| CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Public Enum AccessLevels
Clerk
Supervisor
Administrator
User = 0
Manager
SysAdmin
Superuser = SysAdmin
End Enum

This code is somewhat confusing. The following version makes it more obvious that some values are
synonyms for others:

Public Enum AccessLevel
Clerk
Supervisor
Administrator

User = Clerk

Manager = Supervisor

SysAdmin = Administrator

Superuser = Administrator
End Enum

If you really need to set an enumerated variable to a calculated value for some reason, you can
use the CType function to convert an integer value into the enumerated type. For example, the
following statement uses the value in the variable integer_value to set the value of the variable
AccessLevel. Making you use CType to perform this type of conversion makes it less likely that
you will set an enumerated value accidentally.

AccessLevel = CType(integer_value, AccessLevel)

Another benefit of enumerated types is that they allow Visual Basic to provide IntelliSense help. If
you type AccessLevel =, Visual Basic provides a list of the allowed AccessLevels values.

A final benefit of enumerated types is that they provide a ToString method that returns the textual
name of the value. For example, the following code displays the message “Clerk”:

Dim access_level As AccessLevel = Clerk
MessageBox.Show (access_level.ToString())

Example program AccessLevelEnum, which is available for download on the book’s website, makes
an AccessLevels Enum and then displays the results returned by calling ToString for each of
its values.

If you have a variable that can take only a fixed number of values, you should probably make it

an enumerated type. Also, if you discover that you have defined a series of constants to represent
related values, you should consider converting them into an enumerated type. Then you can gain the
benefits of the improved Visual Basic type checking and IntelliSense.



Anonymous Types | 243

ANONYMOUS TYPES

An anonymous type is an object data type that is built automatically by Visual Basic and never given a
name for the program to use. The type is used implicitly by the code that needs it and is then discarded.

The following code uses LINQ to select data from an array of BookInfo objects named BookInfos.
It begins by using a LINQ query to fill variable book_guery with the selected books. It iterates
through the results stored in book_query, adding information about the selected books to a string,
and displays the result in a text box.

Dim book_query =
From book As BookInfo In BookInfos
Where book.Year > 1999
Select book.Title, book.Pages, book.Year
Order By Year

Dim txt As String = ""
For Each book_data In book_query
txt &= book_data.Title & " (" & book_data.Year & ", " &
book_data.Pages & " pages)" & vbCrLf
Next book_data
txtResult.Text = txt

The book_guery variable is an ordered sequence containing objects that hold the data selected by
the query: Title, Pages, and Year. This type of object doesn’t have an explicit definition; it is an
anonymous type created by Visual Basic to hold the selected values Title, Pages, and Year. If you
hover the mouse over the book_query variable in the code editor, a tooltip appears giving the
variable’s data type as:

System.Ling.IOrderedEnumerable (Of <anonymous type>)

Later, the code uses a For Each loop to enumerate the objects in book_query. The looping variable
book_data must have the same type as the items in the sequence. The code does not explicitly give
the variable’s data type, so Visual Basic can infer it. If you hover the mouse over the book_data
variable in the code editor, a tooltip appears giving the variable’s data type as:

<anonymous type>

You are not really intended to use anonymous types explicitly. For example, you shouldn’t need to
declare a new object of the anonymous type. They are intended to support LINQ. Although you
won’t use anonymous types explicitly, it’s still helpful to understand what they are.

IMPORTANT INFERENCE

In this example, Visual Basic infers the data types for the book_query and book
variables. This is important because they must use an anonymous type, so you
cannot explicitly give them a type. Because these data types are inferred, the code
will only work if Option Infer is on.



244 | CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

For more information on LINQ, see Chapter 20.

NULLABLE TYPES

Most relational databases have a concept of a null data value. A null value indicates that a field does
not contain any data. It lets the database distinguish between valid zero or blank values and non-
existing values. For example, a null bank balance would indicate that there is no known balance,
while a 0 would indicate that the balance was 0.

You can create a nullable variable in Visual Basic by adding a question mark either to the variable’s
name or after its data type. You can also declare the variable to be of type Nullable(Of #ype).
For example, the following code declares three nullable integers:

Dim i As Integer?
Dim j? As Integer
Dim k As Nullable(Of Integer)

To make a nullable variable “null,” set it equal to Nothing. The following code makes variable
num_choices null:

num_choices = Nothing

To see if a nullable variable contains a value, use the Is or IsNot operator to compare it to
Nothing. The following code determines whether the nullable variable num_choices contains a
value. If the variable contains a value, the code increments it. Otherwise the code sets the value to 1.

If num_choices IsNot Nothing Then
num_choices += 1

Else
num_choices = 1

End If

Calculations with nullable variables use “null-propagation” rules to ensure that the result makes
sense. For example, if a nullable integer contains no value, it probably doesn’t make sense to add
another number to it. (What is null plus three?)

If one or more operands in an expression contains a null value, the result is a null value. For
example, if num_choices in the previous example contains a null value, then num_choices + 11is
also a null value. (That’s why the previous code checks explicitly to see whether num_choices is null
before incrementing its value.)

Example program NullableTypes, which is available for download on the book’s website,
demonstrates nullable types.

CONSTANTS

In many respects, a constant is a lot like a read-only variable. Both variable and constant declara-
tions may have attributes, accessibility keywords, and initialization expressions. Both read-only
variables and constants represent a value that the code cannot change after it is assigned.



Constants | 245

The syntax for declaring a constant is as follows:

[attribute_list] [accessibility] [Shadows]
Const name [As type] = initialization_expression

For the general meanings of the various parts of a constant declaration, see the section “Variable
Declarations” earlier in this chapter. The following sections describe differences between read-only
variable and constant declarations.

Accessibility

When you declare a variable, you can omit the Dim keyword if you use any of the keywords Public,
Protected, Friend, Protected Friend, Private, Static, or ReadOnly. You cannot omit the Const
keyword when you declare a constant, because it tells Visual Basic that you are declaring a constant
rather than a variable.

You cannot use the Static, ReadOnly, or Shared keywords in a constant declaration. Static implies
that the value will change over time and the value should be retained when the enclosing routine
starts and stops. Because the code cannot change a constant’s value, that doesn’t make sense.

The ReadOnly keyword would be redundant because you already cannot change a constant’s value.

You use the Shared keyword in a variable declaration within a class to indicate that the variable’s value
is shared by all instances of the class. If one object changes the value, all objects see the changed

value. Because the program cannot change a constant’s value, the value need not be shared. All objects
have the same version of the constant at all times. You can think of a constant as always shared.

You can use the other accessibility keywords in a constant declaration: Public, Protected, Friend,
Protected Friend, and Private.

As Type

If you have Option Strict turned on, you must include the constant’s data type. A constant can only
be an intrinsic type (Boolean, Byte, Short, Integer, Long, Decimal, Single, Double, Char, String,
Date, or Object) or the name of an enumerated type. You cannot declare a constant that is a class,
structure, or array.

If you declare the constant with the Object data type, the initialization_expression must set the
object equal to Nothing. If you want a constant that represents some other object, or a class,
structure, or array, use a read-only variable instead.

Because the generic Object class doesn’t raise any events, and because you cannot make a constant of
some other class type, it doesn’t make sense to use the WithEvents keyword in a constant declaration.

INFER REQUIRED

Though Visual Basic has inferred types for local variables, it does not infer types of con-
stants. If you have Option Strict on, you must explicitly give all constants a data type.



246 | CHAPTER14 DATA TYPES, VARIABLES, AND CONSTANTS

Initialization_Expression

The initialization_expression assigns the constant its never-changing value. You cannot use
variables in the initialization_expression, but you can use conversion functions such as Clnt. You
can also use the values of previously defined constants and enumeration values. The expression can
include type characters such as # or &H, and if the declaration doesn’t include a type statement

(and Option Explicit is off), the type of the value determines the type of the constant.

The following code demonstrates these capabilities. The first statement uses the Clnt function to
convert the value 123 .45 into an integer constant. The second and third statements set the values of
two Long constants to hexadecimal values. The next statement combines the values defined in the
previous two using a bitwise Or. The final statement sets a constant to a value defined by the
enunwrmedtypeAccessLevels

Private Const MAX_VALUES As Integer = CInt(123.45)

Private Const MASK_READ As Long = &H1000&

Private Const MASK_WRITE As Long = &H2000&

Private Const MASK_READ_WRITE As Long = MASK READ Or MASK_WRITE

Private Const MAX_ ACCESS_LEVEL As AccessLevels = AccessLevels.SuperUser

DELEGATES

A delegate is a type that refers to a subroutine, function, or other method. The method can be an
instance method provided by an object, a class’s shared method, or a method defined in a code
module. A delegate variable acts as a pointer to a subroutine or function. Delegate variables are
sometimes called type-safe function pointers.

The Delegate keyword defines a delegate type and specifies the parameters and return type of the
method to which the delegate will refer.

The following code demonstrates a delegate:

' Define a StringDisplayerType delegate to be a pointer to a subroutine
' that has a string parameter.
Private Delegate Sub StringDisplayerType (ByVal str As String)

' Declare a StringDisplayerType variable.
Dim DisplayStringRoutine As StringDisplayerType

' Assign the variable to a subroutine.
DisplayStringRoutine = AddressOf ShowStringInOutputWindow

' Invoke the delegate's subroutine.
DisplayStringRoutine ("Hello world")

The code uses a Delegate statement to declare the StringDisplayerType to be a reference

to a subroutine that takes a string as a parameter. Next, the code declares the variable
DisplayStringRoutine to be of this type. This variable can hold a reference to a subroutine that
takes a string parameter. The code then sets the variable equal to the showStringInoutputwindow
subroutine. Finally, the code invokes the delegate’s subroutine, passing it a string.



Delegates | 247

The delegate in the preceding example holds a reference to a subroutine defined in a code module.

A delegate can also hold the address of a class’s shared method or an instance method. For example,
suppose the Employee class defines the shared function GetNumEmployees that returns the number
of employees loaded. Suppose that it also defines the instance function ToString that returns an
Employee object’s first and last names.

Example program UseDelegates, which is available for download on the book’s website, uses the
following code to demonstrate delegates for both of these functions:

Dim emp As New Employee("Rod", "Stephens")

' Use a delegate pointing to a shared class method.
Private Delegate Function NumEmployeesDelegate() As Integer

Private Sub btnShared Click() Handles btnShared.Click
Dim show_num As NumEmployeesDelegate
show_num = AddressOf Employee.GetNumEmployees
MessageBox.Show (show_num () .ToString, "# Employees")
End Sub

' Use a delegate pointing to a class instance method.
Private Delegate Function GetNameDelegate() As String
Private Sub btnInstance_Click() Handles btnInstance.Click
Dim show_name As GetNameDelegate
show_name = AddressOf emp.ToString
MessageBox.Show (show_name (), "Name")
End Sub

First, the program declares and initializes an Employee object named emp. It then defines a delegate
named NumEmployeesDelegate, which is a pointer to a function that returns an integer. The
btnShared_Click event handler declares a variable of this type, sets it to the address of the
Employee class’s shared GetNumEmployees function, and calls the function. Then the code defines
a delegate named GetNameDelegate, which is a pointer to a function that returns a string.

The btnInstance_Click event handler declares a variable of this type, sets it to the address of the
emp object’s ToString function, and then calls the function.

These examples are somewhat contrived because the code could easily invoke the subroutines and
functions directly without delegates, but they show how a program can save a delegate pointing to a
subroutine or function and then call it later. A real application might set the delegate variable’s value
and only use it much later.

A particular delegate variable could hold references to different methods, depending on the program’s
situation. For example, different subroutines might generate output on a form, on the printer, or into
a bitmap file. The program could set a delegate variable to any of these routines. Later, the program
could invoke the variable’s routine without needing to know which routine will actually execute.

Another useful technique is to pass a delegate variable into a subroutine or function. For example,
suppose that you are writing a subroutine that sorts an array of Customer objects. This routine
could take as a parameter a delegate variable that references the function to use when comparing the
objects in the array. By passing different functions into the routine, you could make it sort customers
by company name, contact name, customer ID, total past sales, or anything else you can imagine.



248 | CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Delegates are particularly confusing to many programmers, but understanding them is worth a little
extra effort. They can add an extra dimension to your programming by essentially allowing you to
manipulate subroutines and functions as if they were data.

NAMING CONVENTIONS

Many development teams adopt naming conventions to make their code more consistent and easier
to read. Different groups have developed their own conventions, and you cannot really say that one
of them is best. It doesn’t really matter which convention you adopt. What is important is that you
develop some coding style that you use consistently.

One rather simple convention is to use lowercase_letters_with_underscores for variables with
routine scope, MixedCaseLetters for variables with module and global scope, and aL1,_caps

for constants of any scope. For example, the following statement defines a module-scope
PictureBox variable:

Private Canvas As PictureBox

Routine names are generally Mixedcase.

Many developers carry these rules a bit further and add type prefix abbreviations to control names.
For example, the following code declares a PictureBox variable:

Dim picCanvas As PictureBox

Some developers add scope prefixes (m for module, g for global), and some also add type prefixes
to variables other than controls (such as iNumEmployees for an integer) and even to subroutine
names (as in gstrGetWebmasterName for a global function that returns a string). Visual Studio’s
IntelliSense will tell you a variable’s data type if you hover the mouse over it so these more complex
prefixes are not as useful as they were before IntelliSense became so powerful. For that reason this
type of prefix is much less common than it used to be.

No matter which convention you use, the most important piece of a name is the descriptive part.
The name mb1nDL tells you that the value is a module-scope Boolean, but it doesn’t tell you what the
value means (and variables with such terrible names are all too common). The name DataTsLoaded
is much more descriptive.

WHAT’S IN A NAME?

I have never seen a project that suffered because it lacked variable prefixes such as
mbln. However, I have seen developers waste huge amounts of time because the
descriptive parts of variable names were confusing. Take a few seconds to think of a
good, meaningful name.



Summary | 249

Building an all-encompassing naming convention that defines abbreviations for every conceivable
type of data, control, object, database component, menu, constant, and routine name takes a lot

of time and more space than it’s worth in a book such as this. For an article that describes the
conventions used by Microsoft Consulting Services, go to http://support .microsoft.com/
kb/110264. It explains everything, including data type abbreviations, making the first part of a
function name contain a verb (GetUserName rather than UserName), and commenting conventions.
That article was written in 2003 and common usage changes over time, but the article can give you
a place to start in defining your own naming conventions.

Naming and coding conventions make it easier for other programmers to read your code. Look over
the Microsoft Consulting Services conventions or search the web for others. Select the features that
you think make the most sense and ignore the others. It’s more important that you write consistent
code than that you follow a particular set of rules.

SUMMARY

Two of the most important things you control with a variable declaration are its data type and its
visibility. Visibility combines scope (the piece of code that contains the variable such as a For loop,
subroutine, or module), accessibility (the code that is allowed to access the variable determined by
keywords such as Private, Public, and Friend), and lifetime (when the variable has been created and
not yet destroyed).

To avoid confusion, explicitly declare the data type whenever possible and use the most limited
scope possible for the variable’s purpose. Turn Option Explicit and Option Strict on to allow the
IDE to help you spot potential scope and type errors before they become a problem.

Code that uses LINQ complicates matters somewhat. When you use LINQ), it is generally not
possible to explicitly declare every variable’s data type. A LINQ query can return a sequence of
objects that have an anonymous type. If you enumerate over the sequence, the looping variable will
be of the same anonymous type. In those cases, when you cannot explicitly declare a variable’s type,
use extra caution to make the code easy to understand so you can fix and maintain it later. For more
information on LINQ, see Chapter 20.

Parameters, property procedures, and constants have similar data type and scope issues. Once you
become comfortable with variable declarations, they should give you little trouble.

One of the most important steps you can take to make your code easier to debug and maintain is
to make your code consistent. A good naming convention can help. Review the guidelines used by
Microsoft Consulting Services, and adopt the pieces that make the most sense to you.

After you know how to declare variables, you are ready to learn how to combine them. Chapter 15,
“QOperators,” explains the symbols (such as +, 2, and ~) that you can use to combine variables to
produce new results.


http://support.microsoft.com/kb/110264
http://support.microsoft.com/kb/110264




15

Operators

WHAT'’S IN THIS CHAPTER

Arithmetic, concatenation, logical, and bitwise operators
Operator precedence

The StringBuilder class

Yy Y VY Y

Operator overloading

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

> ComplexNumbers
> MultiplyTimeSpan
> StringBuilderTest1
>

StringBuilderTest2

UNDERSTANDING OPERATORS

An operator is a basic code element that performs some operation on one or more values to
create a result. The values the operator acts upon are called operands. For example, in the
following statement, the operator is + (addition), the operands are B and ¢, and the result is
assigned to the variable a:

A=B+C
The Visual Basic operators fall into five categories: arithmetic, concatenation, comparison,

logical, and bitwise. This chapter first explains these categories and the operators they
contain, and then discusses other operator issues such as precedence, assignment operators,


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

252 | CHAPTER15 OPERATORS

and operator overloading. Also included are discussions of some specialized issues that arise when
you work with strings and dates.

ARITHMETIC OPERATORS

The following table lists the arithmetic operators provided by Visual Basic. Most programmers
should be very familiar with most of them. The four operators that may need a little extra
explanation are \, Mod, <<, and >>.

OPERATOR PURPOSE EXAMPLE RESULT

~ Exponentiation 2~ 3 (2tothe power3)=2 * 2 * 2 = 8
- Negation -2 -2

* Multiplication 2 % 3 6

/ Division 3/ 2 1.5

\ Integer division 17 \ 5 3

Mod Modulus 17 Mod 5 2

+ Addition 2 + 3 5

- Subtraction 3 -2 1

<< Bit left shift 10110111 << 1 01101110
>> Bit right shift 10110111 >> 1 01011011

The \ operator performs integer division. It returns the result of dividing its first operand by the
second, dropping any remainder. It’s important to understand that the result is truncated toward
zero, not rounded. For example, 7 \ 4 = 1and -7 \ 4 = -1 rather than 2 and -2 as you
might expect.

The Mod operator returns the remainder after dividing its first operand by its second. For example,
17 Mod 5 = 2 because 17 = 3 * 5 + 2.

The << operator shifts the bits of an Integer value to the left, padding the empty bits on the right
with zeros. For example, the byte value with bits 10110111 shifted 1 bit to the left gives 01101110
and shifting 10110111 2 bits to the left gives 11011100.

The >> operator shifts the bits of a value to the right, padding the empty bits on the left with zeros.
For example, the byte value with bits 10110111 shifted 1 bit to the right gives 01011011 and shifting
10110111 2 bits to the right gives 00101101.

Unfortunately, Visual Basic doesn’t work easily with bit values, so you cannot use a binary value
such as 10110111 in your code. Instead, you must write this value as the hexadecimal value &HB7
or the decimal value 183. The last two entries in the table show the values in binary, so it is easier to
understand how the shifts work.



Comparison Operators | 253

CALCULATOR CLEVERNESS

The Calculator application that comes with Windows lets you easily convert
between binary, octal, hexadecimal, and decimal. To start the Calculator, open

the Start menu and select Run. Type calc and click OK. In newer versions of the
calculator, open the View menu and select Programmer. If your version doesn’t have
Programmer mode, open the View menu and select Scientific. Now you can click
the Bin, Oct, Dec, or Hex radio buttons to select a base, enter a value, and select
another base to convert the value.

CONCATENATION OPERATORS

Visual Basic provides two concatenation operators: + and &. Both join two strings together. Because
the + symbol also represents an arithmetic operator, your code will be easier to read if you use the
& symbol for concatenation. Using & can also make your code faster and lead to fewer problems
because it lets Visual Basic know that the operands are strings.

COMPARISON OPERATORS

Comparison operators compare one value to another and return a Boolean value (True or False),
depending on the result. The following table lists the comparison operators provided by Visual
Basic. The first six (=, <>, <, <=, >, and >=) are relatively straightforward. Note that the Not operator
is not a comparison operator, so it is not listed here. It is described in the next section, “Logical
Operators.”

OPERATOR  PURPOSE EXAMPLE RESULT

= Equals A =B True if A equals B

<> Not equals A <> B True if A does not equal B

< Less than A< B True if Ais less than B

<= Less than or equal to A <= B True if A'is less than or equal to B

> Greater than A > B True if A'is greater than B

>= Greater than or equal to A >= B True if A is greater than or equal to B

Is Equality of two objects emp Is mgr True if emp and mgr refer to the same
object

IsNot Inequality of two objects emp IsNot mgr True if emp and mgr refer to different
objects

continues



254 | CHAPTER15 OPERATORS

(continued)
TypeOf Objectis of a certain type  TypeOf (obj) True if obj points to an object that
Is Is Manager inherits from Manager
Like Matches a text pattern A Like True if A contains three digits, a dash,

TR and four digits

The Is operator returns True if its two operands refer to the same object. For example, if you create
an Order object and make two different variables, 2 and B, point to it, the expression o Is B is
True. Note that Is returns False if the two operands point to different Order objects that happen to
have the same property values.

The IsNot operator is simply shorthand for a more awkward Not . . . Is construction. For example,
the statement A IsNot Nothing is equivalent to Not (A Is Nothing).

The value Nothing is a special value that means not an object. If you have an object variable, you
can use the Is or IsNot operator to compare it to Nothing to see if it represents anything. Note that
you cannot use Is or IsNot to compare an object variable to 0 or some other numeric value. Is and
IsNot work only with objects such as those stored in variables and the special value Nothing.

The TypeOf operator returns True if its operand is of a certain type or inherits from that type. This
operator is particularly useful when a subroutine takes a parameter that could be of more than one
object type. It can use TypeOf to see which type of object it has.

The Like operator returns True if its first operand matches a pattern specified by its second operand.
Where the pattern includes normal characters, the string must match those characters exactly. The
pattern can also include several special character sequences summarized in the following table.

CHARACTER(S) MEANING

N Matches any single character

* Matches any zero or more characters

# Matches any single digit

[characters] Matches any of the characters between the brackets
[lcharacters] Matches any character not between the brackets

A-7 When inside brackets, matches any character in the range Ato Z

You can combine ranges of characters and individual characters inside brackets. For example, the
pattern [a-zA-7] matches any letter between a and z or between A and Z. The following table lists
some useful patterns for use with the Like operator.



Logical Operators | 255

PATTERN MEANING

[2-9]##t—H### Seven-digit U.S. phone number

[2-O1##-[2-91 ##-#### Ten-digit phone number, including area code
1-[2-OT##-[2-9] ##-#### Eleven-digit phone number, beginning with 1 and area code
HH#HH# Five-digit ZIP code

HH#H4-H4#H Nine-digit ZIP + 4 code

RF@PF L2 E-mail address

For example, the following code checks whether the text box txtPhone contains something that
looks like a 10-digit phone number:
If Not (txtPhone.Text Like "[2-9]1##-[2-9]##-####") Then

MessageBox.Show ("Please enter a valid phone number")
End If

These patterns are not completely foolproof. For example, the e-mail address pattern verifies that
the string contains at least one character, an @ character, at least one other character, a dot, and at
least one more character. For example, it allows RodStephens@vb-helper.com. However, it does
not verify that the extension makes sense, so it also allows RodStephens@vb-helper.commercial,
and it allows more than one @ character, as in RodStephens@vb-helper.com@bad_value.

Regular expressions provide much more powerful pattern-matching capabilities. For an
introduction to regular expressions, see http://www.codeproject.com/Articles/939/
An-Introduction-to-Regular-Expressions.

LOGICAL OPERATORS

Logical operators combine two Boolean values and return True or False, depending on the result.
The following table summarizes Visual Basic’s logical operators.

OPERATOR PURPOSE EXAMPLE RESULT

Not Logical or bitwise negation Not A True if A is false

And Logical or bitwise And A And B True if A and B are both true

Or Logical or bitwise Or A Or B True if A or B or both are true

Xor Logical or bitwise exclusive Or A Xor B True if A or B but not both is true

AndAlso Logical or bitwise And with A AndAlso B True if A and B are both true (see
short-circuit evaluation the following notes)

OrElse Logical or bitwise Or with A OrElse B True if A or B or both are true

short-circuit evaluation (see notes)


http://www.codeproject.com/Articles/939/An-Introduction-to-Regular-Expressions
http://www.codeproject.com/Articles/939/An-Introduction-to-Regular-Expressions
mailto://RodStephens@vb-helper.com
mailto:RodStephens@vb-helper.commercial
mailto://RodStephens@vb-helper.com@bad_value

256 | CHAPTER15 OPERATORS

The operators Not, And, and Or are relatively straightforward.

“Xor” stands for “exclusive or,” and the Xor operator returns True if one but not both of its
operands is true. The expression A Xor B is true if A is true or B is true but both are not true.

Xor is useful for situations where exactly one of two things should be true. For example, suppose
you’re running a small software conference with two tracks so two talks are going on at any given
time. Each attendee should sign up for one talk in each time slot but cannot sign up for both because
they’re at the same time. Then you might use code similar to the following to check whether an
attendee has signed up for either talk 1a or talk 1b but not both:

If talkla Xor talklb Then
' This is okay

End If

The AndAlso and OrElse operators are similar to the And and Or operators, except that they
provide short-circuit evaluation. In shori-circuit evaluation, Visual Basic is allowed to stop
evaluating operands if it can deduce the final result without them. For example, consider the
expression A Andalso B. If Visual Basic evaluates the value A and discovers that it is False, the
program knows that the expression A Andalso B is also False no matter what value B has, so it
doesn’t need to evaluate B.

Whether the program evaluates both operands doesn’t matter much if A and B are simple Boolean
variables. However, assume that they are time-consuming functions in the following code. For
example, the TimeConsumingFunction routine might need to look up values in a database or
download data from a website. In that case, not evaluating the second operand might save a lot of
time.

If TimeConsumingFunction("A") AndAlso TimeConsumingFunction("B") Then

Just as AndAlso can stop evaluation if it discovers one of its operands is False, the OrElse operand
can stop evaluating if it discovers that one of its operands is True. The expression A OrElse Bis
True if either A or B is True. If the program finds that a is True, it doesn’t need to evaluate B.

Because AndAlso and OrElse do the same thing as And and Or but sometimes faster, you might
wonder why you would ever use And and Or. The main reason is that the operands may have side
effects. A side effect is some action a routine performs that is not obviously part of the routine.
For example, suppose that the NumEmployees function opens an employee database and returns
the number of employee records, leaving the database open. The fact that this function leaves the
database open is a side effect.

Now, suppose that the NumCustomers function similarly opens the customer database, and then
consider the following statement:

If (NumEmployees() > 0) AndAlso (NumCustomers() > 0) Then ...

After this code executes, you cannot be certain which databases are open. If NumEmployees returns
0, the AndAlso operator’s first operand is False, so it doesn’t evaluate the NumCustomers function
and that function doesn’t open the customer database.



Operator Precedence | 257

The AndAlso and OrElse operators can improve application performance under some
circumstances. However, to avoid possible confusion and long debugging sessions, do not use
AndAlso or OrElse with operands that have side effects.

BITWISE OPERATORS

Bitwise operators work much like logical operators do, except they compare values one bit at a

time. The bitwise negation operator Not flips the bits in its operand from 1 to 0 and vice versa. The
following shows an example:

10110111
Not 01001000

The And operator places a 1 in a result bit if both of the operands have a 1 in that position. The
following shows the results of combining two binary values by using the bitwise And operator:
10101010

And 00110110
00100010

The bitwise Or operator places a 1 bit in the result if either of its operands has a 1 in the
corresponding position. The following shows an example:
10101010

Or 00110110
10111110

The bitwise Xor operator places a 1 bit in the result if exactly one of its operands, but not both, has
a 1 in the corresponding position. The following shows an example:

10101010
Xor 00110110
10011100

There are no bitwise equivalents for the AndAlso and OrElse operators.

OPERATOR PRECEDENCE

When Visual Basic evaluates a complex expression, it must decide the order in which to evaluate
operators. For example, consider the expression 1 + 2 * 3 /4 + 2. The following text shows three
orders in which you might evaluate this expression to get three different results:

1+ (2*3)/ (4+2)=1+6/6=2
1+ (2*3/4) +2=1+1.5+2=4.5
(L +2) *3/ (4+2)=3*3/6=1.5



258 | CHAPTER15 OPERATORS

Precedence determines which operator Visual Basic executes first. For example, the Visual Basic

precedence rules say the program should evaluate multiplication and division before addition, so the

second equation is correct.

The following table lists the operators in order of precedence. When evaluating an expression, the

program evaluates an operator before it evaluates those lower than it in the list.

OPERATOR

()

Mod
+, -, +

&

<<, >>

=, <>, <,<=,> >= Like, Is,

IsNot, TypeOf ... Is
Not
And, AndAlso

Xor, Or, OrElse

DESCRIPTION

Grouping (parentheses)

Exponentiation

Negation

Multiplication and division

Integer division

Modulus

Addition, subtraction, and concatenation
Concatenation

Bit shift

All comparisons

Logical and bitwise negation
Logical and bitwise And with and without short-circuit evaluation

Logical and bitwise Xor, and Or with and without short-circuit
evaluation

When operators are on the same line in the table, or if an expression contains more than one
instance of the same operator, the program evaluates them in left-to-right order. For example, * and
/ are on the same line in the table so in the expression 12 * 4 / 20 Visual Basic would perform
the multiplication first. (Of course, it wouldn’t matter much in this example because the result
should be the same either way, at least within the limits of the computer’s precision.)

Parentheses are not really operators, but they do have a higher precedence than the true operators,

so they’re listed to make the table complete. You can always use parentheses to explicitly dictate the
order in which Visual Basic will perform an evaluation.

If there’s the slightest doubt about how Visual Basic will handle an expression, add parentheses to
make it obvious. Even if you can easily figure out what an expression means, parentheses often make
the code even easier to read and understand. There’s no extra charge for using parentheses, and they
may avoid some unnecessary confusion.



Assignment Operators | 259

ASSIGNMENT OPERATORS

Visual Basic has always had the simple assignment operator =. Visual Basic .NET added several
new assignment operators to handle some common statements where a value was set equal to itself
combined with some other value. For example, the following two statements both add the value 10
to the variable iterations

iterations = iterations + 10 ' Original syntax.
iterations += 10 ' New syntax.

All the other assignment operators work similarly by adding an equals sign to an arithmetic
operator. For example, the statement A ~= B is equivalenttoa = A ~ B.

You can still use the original syntax if you like. However, the new syntax sometimes gives you
better performance. If the left-hand side of the assignment is not a simple variable, Visual Basic

may be able to save time by evaluating it only once. For example, the following code adds 0.1 to a
customer order’s discount value. By using +=, the code allows Visual Basic to find the location of this
value only once.

Customers (cust_num) .Orders (order_num) .Discount += 0.1

PERFORMANCE ANXIETY

In most applications, performance is usually adequate whether you use += or the
older syntax. Usually, you are best off if you use whichever version seems most
natural and easiest to understand and only worry about performance when you are
sure you have a problem.

The complete list of assignment operators is: =, *=, *=, /=, \=, +=, -=, &=, <<=, and >>=.

If you have Option Strict set to On, the variables must have the appropriate data types. For example,
/= returns a Double, so you cannot use that operator with an Integer, as in the following code:

Dim i As Integer = 100
i/=2 ' Not allowed.

To perform this operation, you must explicitly convert the result into an Integer, as shown in the
following statement:

i = CInt(i / 2)

This makes sense because you are trying to assign the value of floating-point division to an Integer.
It’s less obvious why the following code is also illegal. Here the code is trying to assign an Integer
result to a Single variable, so you might think it should work. After all, an Integer value will fit in a
Single variable.

Dim x As Single
x \= 10 ' Not allowed.



260 | CHAPTER15 OPERATORS

The problem isn’t in the assignment but in performing the calculation. The following statement is
equivalent to the previous one, and it is also illegal:

x = x \ 10 ' Not allowed.

The problem with both of these statements is that the \ operator takes as arguments two Integers.
If Option Strict is on, the program will not automatically convert a floating-point variable into an
Integer for the \ operator. To make this statement work, you must manually convert the variable
into an Integer data type, as shown in the following example:

x = CLng(x) \ 10 ' Allowed.

The += and &= operators both combine strings but &= is less ambiguous, so you should use it
whenever possible. It may also give you better performance because it explicitly tells Visual Basic
that the operands are strings.

THE STRINGBUILDER CLASS

The & and &= operators are useful for concatenating a few strings together. However, if you must
combine a large number of strings, you may get better performance by using the StringBuilder class.
This class is optimized for performing long sequences of concatenations to build big strings.

For small pieces of code, the difference between using a String and a StringBuilder is negligible.
If you need to concatenate a dozen or so strings once, using a StringBuilder won’t make much
difference in run time and may even slow performance slightly.

However, if you make huge strings built up in pieces, or if you build simpler strings but many times
in a loop, StringBuilder may make your program run faster.

Example program StringBuilderTest1, which is available for download on the book’s website,
concatenates the string 1234567890 a large number of times, first using a String variable and then
using a StringBuilder. In one test that performed the concatenation 10,000 times to build strings
100,000 characters long, using a String took roughly 1.6 seconds. Using a StringBuilder, the
program was able to build the string in roughly 0.001 seconds.

Admittedly, building such enormous strings is not a common programming task. Even when the
strings are shorter, you can sometimes see a noticeable difference in performance, particularly if you
must build a large number of such strings.

Example program StringBuilderTest2, which is also available for download, concatenates the
string 1234567890 to itself 100 times, making a string 1,000 characters long. It builds the string
repeatedly for a certain number of trials. In one test building the 1,000-character string 10,000
times, using a String took around 0.95 seconds but using a StringBuilder took only about 0.06
seconds.

Strings and string operations are a bit more intuitive than the StringBuilder class, so your code will
usually be easier to read if you use String variables when performance isn’t a big issue. If you are



Date and TimeSpan Operations | 261

building enormous strings, or are building long strings a huge number of times, the performance
edge given by the StringBuilder class may be worth slightly more complicated-looking code.

DATE AND TIMESPAN OPERATIONS

The Date data type is fundamentally different from other data types. When you perform an
operation on most data types, you get a result that has the same data type or that is at least of some
compatible data type. For example, if you subtract two Integer variables, the result is an Integer.

If you divide two Integers using the / operator, the result is a Double. That’s not another Integer,
but it is a compatible numeric data type used because an Integer cannot always hold the result of a
division.

If you subtract two Date variables, however, the result is not a Date. For example, what’s August 7
minus July 20? It doesn’t make sense to think of the result as a Date. Instead, Visual Basic defines
the difference between two Dates as a TimeSpan. A TimeSpan measures the elapsed time between
two Dates. In this example, August 7 minus July 20 is 18 days. (And yes, TimeSpans know all about
leap years.)

The following equations define the arithmetic of Dates and TimeSpans:
> Date — Date = TimeSpan
> Date + TimeSpan = Date
> TimeSpan + TimeSpan = TimeSpan
> TimeSpan — TimeSpan = TimeSpan

The TimeSpan class also defines unary negation (ts2 = -ts1), but other operations (such as
multiplying a TimeSpan by a number) are not defined. However, in some cases, you can still perform
the calculation if you must.

Example program MultiplyTimeSpan, which is available for download on the book’s website, uses
the following statement to make the TimeSpan ts2 equal to 12 times the duration of TimeSpan ts1:

ts2 = New TimeSpan(tsl.Ticks * 12)

Sometimes using operators to combine Date and TimeSpan values can be a bit cambersome. To
make these kinds of calculations easier, the Date data type provides other methods for performing
common operations that are a bit easier to read. Whereas the operator methods take both operands
as parameters, these methods take a single operand as one parameter and use the current object as
the other. For example, a Date object’s Add method adds a TimeSpan to the date and returns the
resulting date. The following table summarizes these methods.



262

| CHAPTER15 OPERATORS

SYNTAX
result_date = datel.Add(timespanl)

result_date = datel
.AddYears (num_years)

result_date = datel
.AddMonths (num_months)

result_date = datel
.AddDays (num_days)

result_date = datel
.AddHours (num_hours)

result_date = datel
.AddMinutes (num_minutes)

result_date = datel
.AddSeconds (num_seconds)

result_date = datel
.AddMilliseconds (num_milliseconds)

result_date = datel
.AddTicks (num_ticks)

result_timespan = datel
.Subtract (date2)

result_integer = datel
.CompareTo (date2)

result_boolean = datel
.Equals (date2)

OPERATOR OVERLOADING

“Classes and Structures.”

MEANING
Returns datel plus timespanl

Returns the date plus the indicated number of years

Returns the date plus the indicated number of months

Returns the date plus the indicated number of days

Returns the date plus the indicated number of hours

Returns the date plus the indicated number of minutes

Returns the date plus the indicated number of
seconds

Returns the date plus the indicated number of
milliseconds

Returns the date plus the indicated number of ticks
(100-nanosecond units)

Returns the time span between date2 and datel

Returns a value indicating whether datel is greater
than, less than, or equal to date2

Returns True if datel equals date2

The CompareTo method returns a value less than zero if datel < date2, greater than zero if
datel > date2, and equal to zero if datel = date2.

Visual Basic defines operators for expressions that use standard data types such as Integers and
Boolean values. It defines a few operators such as Is and IsNot for objects, but operators such as *
and Mod don’t make sense for objects in general.

Nevertheless, you can also define those operators for your structures and classes, if you like, by
using the Operator statement. This is a more advanced topic, so if you’re new to Visual Basic, you
may want to skip this section and come back to it later, perhaps after you have read Chapter 23,



Operator Overloading

| 263

The general syntax for operator overloading is:

[ <attributes> ] Public [ Overloads ] Shared [ Shadows ]
[ Widening | Narrowing ] Operator symbol ( operands ) As type

End Operator

The parts of this declaration are:
>  attributes — Attributes for the operator.
> public — All operators must be Public and Shared.

> overloads — You can use this only if the operator takes two parameters that are from
a base class and a derived class as its two operators. In that case, it means the operator
overrides the operator defined in the base class.

> shared — All operators must be Public and Shared.

Shadows — The operator replaces a similar operator defined in the base class.

>  widening — Indicates that the operator defines a widening conversion that always succeeds

at run time. For example, an Integer always fits in a Single, so storing an Integer in a

Single is a widening operation. This operator must catch and handle all errors. The CType

operator must include either the Widening or the Narrowing keyword.

>  Narrowing — Indicates that the operator defines a narrowing conversion that may fail at
run time. For example, a Single does not necessarily fit in an Integer, so storing a Single in
an Integer is a narrowing operation. The CType operator must include either the Widening

or the Narrowing keyword.

> symbol — The operator’s symbol. This can be +, —, *, /, \, ~, &, <<, >>, =, <>, <, >, <=, >=,

Mod, Not, And, Or, Xor, Like, IsTrue, IsFalse, or CType.

>  operands — Declarations of the objects to be manipulated by the operator. The unary
operators +, —, Not, IsTrue, and IsFalse take a single operand. The binary operators +,

= %5 /5 \y Ny &y <<, 3>, =, <>, <, >, <=, >=, Mod, And, Or, Xor, Like, and CType take two

operands.

>  type — All operators must have a return type and must return a value by using a Return

statement.

Operator overloading is subject to several constraints:

> Some operands come in pairs, and if you define one you must define the other. The pairs are

= and <>, < and >, <= and >=, and IsTrue and IsFalse.

> For the standard unary or binary operators, the class or structure that defines the operator
must appear in an operand. For the CType conversion operator, the class or structure must

appear in the operand or return type.
The IsTrue and IsFalse operators must return Boolean values.

The second operands for the << and >> operators must be Integers.



264 | CHAPTER15 OPERATORS

If you define an operator, Visual Basic automatically provides the corresponding assignment operator.
For example, if you define the + operator, Visual Basic provides the += assignment operator.

Although you cannot use the IsTrue and IsFalse operators directly, you can use them indirectly. If
you define IsTrue for a class, Visual Basic uses it to determine whether an object should be treated
as True in a Boolean expression. For example, the following statement uses the IsTrue operator to
decide whether the object c1 should be considered True:

if ¢l Then

If you define the And and IsFalse operators, Visual Basic uses them to handle the AndAlso operator
as well. For this to work, the And operator must return the same type of class or structure where
you define it. For example, suppose you have defined And and IsFalse for the Composite class

and suppose variables c1, c2, and c3 are all instances of this class. Then consider the following
statement:

c3 = ¢l AndAlso c2

Visual Basic uses IsFalse to evaluate c1. If IsFalse returns True, the program doesn’t bother to
evaluate c2. Instead it assumes the whole statement is False and returns a False value. Because
IsFalse returned True for c1, Visual Basic knows that c1 is a False value, so it sets ¢3 equal to c1.

This is pretty confusing. It may make more sense if you think about how Visual Basic evaluates
Boolean expressions that use the normal AndAlso operator.

Similarly, if you define the Or and IsTrue operators, Visual Basic automatically provides the OrElse
operator.

Although you generally cannot make two versions of a function in Visual Basic that differ only in
their return types, you can do that for CType conversion operators. When the program tries to make
a conversion, Visual Basic can tell by the type of the result which conversion operator to use.

Example program ComplexNumbers, which is available for download on the book’s website, uses
the following code to define a Complex class that represents a complex number. It defines +, —, and
* operators to implement normal addition, subtraction, and multiplication, respectively, on complex
numbers. It also defines =, <>, and unary negation operators, and conversion operators that convert
a Complex object into a Double and vice versa.

Public Class Complex
Public Re As Double
Public Im As Double

' Constructors.

Public Sub New/()

End Sub

Public Sub New(ByVal real_part As Double, ByVal imaginary_part As Double)
Re = real_part
Im = imaginary_part

End Sub

' ToString.
Public Overrides Function ToString() As String



Operator Overloading

| 265

Dim txt As String = Re.ToString
If Im < 0 Then

txt &= " - " & Math.Abs(Im).ToString
Else

txt &= " + " & Im.ToString
End If

Return txt & "i"
End Function

' Operators.
Public Shared Operator *(ByVal cl As Complex, ByVal c2 As Complex)
As Complex
Return New Complex (
cl.Re * c2.Re - cl.Im * c2.Im,
cl.Re * c2.Im + cl.Im * c2.Re)
End Operator
Public Shared Operator +(ByVal cl As Complex, ByVal c2 As Complex)
As Complex
Return New Complex (
cl.Re + c2.Re,
cl.Im + c2.Im)
End Operator
Public Shared Operator -(ByVal cl As Complex, ByVal c2 As Complex)
As Complex
Return New Complex (
cl.Re - c2.Re,
cl.Im - c2.Im)
End Operator
Public Shared Operator =(ByVal cl As Complex, ByVal c2 As Complex)
As Boolean
Return (cl.Re = c2.Re) AndAlso (cl.Im = c2.Im)
End Operator
Public Shared Operator <>(ByVal cl As Complex, ByVal c2 As Complex)
As Boolean
Return (cl.Re <> c2.Re) OrElse (cl.Im <> c2.Im)
End Operator
Public Shared Operator -(ByVal cl As Complex) As Complex
Return New Complex(-cl.Re, -cl.Im)
End Operator
Public Shared Narrowing Operator CType (ByVal cl As Complex) As Double
Return System.Math.Sgrt(cl.Re * cl.Re + cl.Im * cl.Im)
End Operator
Public Shared Widening Operator CType (ByVal d As Double) As Complex
Return New Complex(d, 0)
End Operator

End Class

It is easy to get carried away with operator overloading. Just because you can define an operator

for a class doesn’t mean you should. For example, you might be able to concoct some meaning for
addition with the Employee class, but it would probably be a counterintuitive operation. You would
probably be better off writing a subroutine or function with a meaningful name instead of using an

ambiguous operator such as + or >>.



266 | CHAPTER15 OPERATORS

SUMMARY

A program uses operators to manipulate variables, constants, and literal values to produce new
results. The Visual Basic operators fall into five categories: arithmetic, concatenation, comparison,
logical, and bitwise. In most cases, using operators is straightforward and intuitive.

Operator precedence determines the order in which Visual Basic applies operators when evaluating
an expression. In cases where an expression’s operator precedence is unclear, add parentheses to
make the order obvious. Even if you don’t change the way that Visual Basic handles the statement,
you can make the code more understandable and avoid possibly time-consuming bugs.

The String data type has its own special needs. String manipulation plays a big role in many
applications, so Visual Basic provides a StringBuilder class for manipulating strings more efficiently.
If your program only works with a few short strings, it probably doesn’t need to use a StringBuilder,
and using the String data type will probably make your code easier to understand. However, if your
application builds enormous strings or concatenates a huge number of strings, you may be able to
save a noticeable amount of time by using the StringBuilder class.

The Date data type also behaves differently from other data types. The normal operators such as +
and - have different meanings here from other data types. For example, a Date minus a Date gives
a TimeSpan, not another Date. These operations generally make sense if you think carefully about
what dates and time spans are.

Just as addition, subtraction, and the other operators have special meaning for Dates and
TimeSpans, you can use operator overloading to define operators for your classes. Defining division
or exponentiation may not make much sense for Employees, Customer, or Orders, but in some cases
custom operators can make your code more readable. For example, you might imagine the following
statement adding an Orderltem to a CustomerOrder:

the_order += new_item

This chapter explained how to use operators to combine variables to calculate new results. A
typical program may perform the same set of calculations many times for different variable values.
Although you might be able to perform those calculations in a long series, the resulting code would
be cumbersome and hard to maintain. Chapter 16, “Subroutines and Functions,” explains how you
can use subroutines and functions to break a program into manageable pieces that you can then
reuse to make performing the calculations easier and more consistent.



16

Subroutines and Functions

WHAT'’S IN THIS CHAPTER

Subroutines, functions, and property procedures
Extension methods

Lambda functions

Y Y VY

Asynchronous methods

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter is
divided into the following major examples:

> AsyncAwait

> AsyncCallEndInvoke
> LambaFunction
>

RelaxedDelegates

MANAGING CODE

Subroutines and functions enable you to break an otherwise unwieldy chunk of code into
manageable pieces. They allow you to extract code that you may need to use under more than one
circumstance and place it in one location where you can call it as needed. This not only reduces
repetition within your code but also enables you to maintain and update the code in a single location.

A subroutine performs a task for the code that invokes it. A function performs a task and then
returns some value. The value may be the result of a calculation or a status code indicating
whether the function succeeded or failed.

Together, subroutines and functions are sometimes called routines or procedures. They are
also sometimes called methods, particularly when they are subroutines or functions belonging
to a class. Subroutines are also occasionally called sub procedures or less formally Subs.


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

268 | CHAPTER16 SUBROUTINES AND FUNCTIONS

This chapter describes subroutines and functions. It explains the syntax for declaring and using each
in a Visual Basic application. It also provides some tips for making routines more maintainable.

SUBROUTINES

A Sub statement defines the subroutine’s name. It declares the parameters that the subroutine takes
as arguments and defines the parameters’ data types. Code between the Sub statement and an End
Sub statement determines what the subroutine does when it runs.

The syntax for defining a subroutine is as follows:

[attribute list] [inheritance_mode] [accessibility]
Sub subroutine name([parameters]) [ Implements interface.subroutine ]

[ statements ]
End Sub

The following sections describe the pieces of this declaration.

Attribute_List

The optional attribute list is a comma-separated list of attributes that apply to the subroutine.
An attribute further refines the definition of a class, method, variable, or other item to give more

information to the compiler and the runtime system.

DELIGHTFUL DECORATIONS

Applying an attribute to a class, variable, method, or other code entity is sometimes
called decorating the entity.

Attributes are specialized and address issues that arise when you perform very specific programming
tasks. For example, the Conditional attribute means the subroutine is conditional upon the
definition of some compiler constant. Example program AttributeConditional uses the following

code to demonstrate the Conditional attribute:

#Const DEBUG_LIST_CUSTOMERS = True
' #Const DEBUG_LIST_EMPLOYEES = True

Private Sub Forml_Load() Handles MyBase.Load
ListCustomers ()
ListEmployees ()

txtResults.Select (0, 0)
End Sub

<Conditional ("DEBUG_LIST CUSTOMERS")>



Subroutines | 269

Private Sub ListCustomers ()
txtResults.Text &= "ListCustomers" & vbCrLf
End Sub

<Conditional ("DEBUG_LIST_ EMPLOYEES")>
Private Sub ListEmployees ()

txtResults.Text &= "ListEmployees" & vbCrLf
End Sub

The code defines the compiler constant DEBUG_LIST_cUSTOMERS. The value DEBUG_LIST EMPLOYEES
is not defined because it is commented out.

This program’s Form1_Load event handler calls subroutines ListCustomers and ListEmployees.
ListCustomers is defined using the Conditional attribute with parameter DEBUG_LIST CUSTOMERS.
That tells the compiler to generate code for the routine only if DEBUG_LIST CUSTOMERS is defined.
Because that constant is defined, the compiler generates code for this subroutine.

Subroutine ListEmployees is defined using the Conditional attribute with parameter
DEBUG_LIST EMPLOYEES. Because that constant is not defined, the compiler does not generate
code for this subroutine and, when Form1_T.oad calls it, the subroutine call is ignored.

The following text shows the output from this program:
ListCustomers

Visual Basic 2010 defines more than 400 attributes. Many have very specialized purposes that
won’t interest you most of the time, so only a few of the most useful are described here. For
example, the Browsable attribute determines whether a property or event should be listed in the
Properties window. It is fairly general and useful, so it’s described shortly. In contrast, the System
.EnterpriseServices.ApplicationQueuing attribute enables queuing for an assembly and allows

it to read method calls from message queues. This attribute is useful only in very specialized
circumstances, so it isn’t described here.

The following list describes some of the most useful attributes. Most of them are in the System
.ComponentModel namespace. Check the online help to find the namespaces for the others and to
learn about each attribute’s parameters. Even these most useful attributes are fairly specialized and
advanced so you may not immediately see their usefulness. If one of them doesn’t make sense, skip
it and scan the list again after you have more experience with such topics as building

custom controls.

>  AttributeUsage — You can build your own custom attributes by inheriting from
the Attribute class. You can give your attribute class the AttributeUsage attribute to specify
how your attribute can be used. You can determine whether an item can have multiple
instances of your attribute, whether your attribute can be inherited by a derived class, and
the kinds of things that can have your attribute (assembly, class, method, and so forth).

>  Browsable — This indicates whether a property or event should be displayed in an editor
such as the Properties window or a PropertyGrid control. If you pass the attribute’s
constructor the value False, the Properties window and PropertyGrid controls do not
display the property.



270 | CHAPTER16 SUBROUTINES AND FUNCTIONS

>  category — This indicates the grouping that should hold the property or event in a
visual designer such as the Properties window or a PropertyGrid control. If the user clicks
the Categorized button in the Properties window, the window groups the properties by
category. This attribute tells which category should hold the property. Note that you can
use any string you like and the Properties window will make a new category for you
if necessary.

>  DefaultEvent — This gives a class’s default event name. If the class is a control or
component and you double-click it in the Form Designer, the code editor opens to this event.
For example, the default event for a Button is Click, so when you double-click a Button at
design time, the code editor opens the control’s Click event handler.

>  DefaultProperty — This gives a class’s default property name. Suppose that the Employee
component has LastName set as its default property. Then suppose that you select the
form and click the FormBorderStyle property in the Properties window. Now you click
an Employee. Because Employee doesn’t have a FormBorderStyle property, the Properties
window displays its default property: LastName.

>  Defaultvalue — This gives a property a default value. If you right-click the property in the
Properties window and select Reset, the property is reset to this value.

>  Description — This gives a description of the item. If a property has a Description and
you select the property in the Properties window, the window displays the description text
at the bottom.

Visual Basic carries this one step further and also allows you to use XML comments to
provide a description of routines and their parameters for use by IntelliSense. For more
information, see the section “XML Comments” in Chapter 13, “Program and Module
Structure.”

>  Localizable — This determines whether a property should be localizable so you can
easily store different versions of the property for different languages and locales. If this is
True, localized values are automatically stored in the appropriate resource files for different
locales and automatically loaded at startup based on the user’s computer settings. If this is
False (the default), all locales share the same property value.

To try this out, set the form’s Localizable property to True and enter a value for the
property. Then set the form’s Language property to another language and give
the localizable property a new value.

>  MergableProperty — This indicates whether or not the property can be merged with the
same property provided by other components in the Properties window. If this is False and
you select more than one instance of a control with the property, the Properties window
does not display the property.

If this is True and you select more than one control with the property, the Properties
window displays the value if the controls all have the same value. If you enter a new value,
all of the controls are updated. This is the way the Text property works for TextBox, Label,
and many other kinds of controls.



Subroutines | 271

ParenthesizePropertyName — This indicates whether editors such as the Properties
window should display parentheses around the property’s name. If the name has
parentheses, the Properties window moves it to the top of the list when displaying properties
alphabetically or to the top of its category when displaying properties by category.

Readonly — This indicates whether designers should treat this property as read-only. The
Properties window displays the property grayed out and doesn’t let the user change its value.
This attribute is a little strange in practice because ReadOnly is a Visual Basic keyword. If
you enter just the attribute name ReadOnly, Visual Basic gets confused. Either use the full
name System.ComponentModel.ReadOnly or enclose the name in square brackets as in
<[ReadOnly|(True)>. . . .

RecommendedAsConfigurable — This indicates that a property should be tied to the
configuration file. When you select the object at design time and expand the (Dynamic
Properties) item, the property is listed. If you click the ellipsis to the right, a dialog box
appears that lets you map the property to a key in the configuration file.

RefreshProperties — This indicates how an editor should refresh the object’s

other properties if this property is changed. The value can be Default (do not refresh
the other properties), Repaint (refresh all other properties), or All (re-query and refresh
all properties).

Conditional — This indicates that the method is callable if a compile-time constant
such as DEBUG or MY_CONSTANT is defined. If the constant is not defined, code for
the method is still generated and parameters in the method call are checked against the
parameter types used by the method, but calls to the method are ignored at run time. If
the method has more than one Conditional attribute, the method is callable if any of the
specified compile-time constants is defined.

Note that the constant must be defined in the main program, not in the component if you
are building a component. Select the main program, open the Project menu, select the
Properties item at the bottom, open the Configuration Properties folder, click Build, and in
the Custom constants text box enter a value such as IS_DEFINED=True.

You can also use the compiler directive #If to exclude code completely from compilation.
However, if you eliminate a method in this way, any calls to the routine will generate
compile-time errors because the method doesn’t exist. The Conditional attribute lets you
hide a method while still allowing the code to contain calls to it.

DebuggerHidden — This tells debuggers whether a method should be debuggable.
If DebuggerHidden is True, the debugger skips over the method and will not stop at
breakpoints inside it.

DebuggersStepThrough — This tells debuggers whether to let the developer step into a
method in the debugger. If the DebuggerStepThrough attribute is present, the IDE will not
step into the method.

ToolboxBitmap — This tells the IDE where to find a control or component’s Toolbox
bitmap. This can be a file, or it can be a type in an assembly that contains the bitmap and
the bitmap’s name in the assembly. It’s awkward but essential if you’re developing controls
or components.



272 | CHAPTER16 SUBROUTINES AND FUNCTIONS

NonSerializedAttribute — This indicates that a member of a serializable class should not
be serialized. This is useful for excluding values that need not be serialized.

obsolete — This indicates that the item (class, method, property, or whatever) is obsolete.
Optionally, you can specify the message that the code editor should display to the developer
if code uses the item (for example, “Use the NewMethod instead”). You can also indicate
whether the IDE should treat using this item as a warning or an error.

Serializable — This indicates that a class is serializable. All public and private fields
are serialized by default. Attributes in the System.Xml.Serialization namespace can provide
a lot of control over serializations.

FINDING ATTRIBUTES

Finding the attributes that are useful for a particular task can be tricky. It helps to
realize that attribute classes inherit either directly or indirectly from the Attribute
class. You can get information about the Attribute class at http: //msdn2
.microsoft.com/system.attribute.aspx. You can see a list of classes that
inherit from System.Attribute at http: //msdn2.microsoft.com/2e392z096.aspx.

Inheritance_Mode

In a routine’s declaration, the inheritance_mode can be one of the values Overloads, Overrides,
Overridable, NotOverridable, MustOverride, Shadows, or Shared. These values determine how
a subroutine declared within a class inherits from the parent class or how it allows inheritance in
derived classes. The following list explains the meanings of these keywords:

>

overloads — Indicates that the subroutine has the same name as another subroutine
defined for this class. The parameter list must be different in the different versions so

that Visual Basic can tell them apart. (If they are the same, this works just like Overrides,
described next.) If you are overloading a subroutine defined in a parent class, you must use
this keyword. If you are overloading only subroutines in the same class, you can omit the
keyword. If you use the keyword in any of the overloaded subroutines, however, you must
include it for them all.

overrides — Indicates that this subroutine replaces a subroutine in the parent class that
has the same name and parameters.

overridable — Indicates that a derived class can override this subroutine. This is the
default for a subroutine that overrides another one.

NotOverridable — Indicates that a derived class cannot override this subroutine. You can
only use this with a subroutine that overrides another one.

MustOverride — Indicates that any derived classes must override this subroutine. When
you use this keyword, you omit all subroutine code and the End Sub statement, as in the
following code:


http://msdn2.microsoft.com/system.attribute.aspx
http://msdn2.microsoft.com/system.attribute.aspx
http://msdn2.microsoft.com/2e39z096.aspx

Subroutines | 273

MustOverride Sub Draw()
MustOverride Sub MoveMap (X As Integer, Y As Integer)
MustOverride Sub Delete()

If a class contains a subroutine declared MustOverride, you must declare the class using
the MustInherit keyword. Otherwise, Visual Basic won’t know what to do if you create an
instance of the class and try to call this subroutine, because it contains no code.

MustOverride is handy for defining a subroutine that derived classes must implement, but
for which a default implementation in the parent class doesn’t make sense. For example,
suppose that you make a Drawable class that represents a shape that can be drawn and that
you will derive specific shape classes such as Rectangle, Ellipse, Line, and so forth. To let
the program draw a generic shape, the Drawable class defines the Draw subroutine. Because
Drawable doesn’t have a particular shape, it cannot provide a default implementation of that
subroutine. To require the derived classes to implement Draw, the Drawable class declares it
MustOverride.

Shadows — Indicates that this subroutine replaces an item (probably a subroutine) in the
parent class that has the same name, but not necessarily the same parameters. If the parent
class contains more than one overloaded version of the subroutine, this subroutine shadows
them all. If the derived class defines more than one overloaded version of the subroutine,
they must all be declared with the Shadows keyword.

Shared — Indicates that this subroutine is associated with the class itself, rather than with
a specific instance of the class. You should invoke the subroutine by using the class’s name
(ClassName.SharedSub) instead of an instance (class_instance.SharedSub). Because the
subroutine is not associated with a specific class instance, it cannot use any properties or
methods that are provided by a specific instance. The subroutine can only use other Shared
properties and methods, as well as globally available variables.

Accessibility

A subroutine’s accessibility clause can take one of these values: Public, Protected, Friend, Protected
Friend, or Private. These values determine which pieces of code can invoke the subroutine. The
following list explains these keywords:

>

Public — Indicates that there are no restrictions on the subroutine. Code inside or outside
of the subroutine’s class or module can call it.

Protected — Indicates that the subroutine is accessible only to code in the same class or
in a derived class. You can only use the Protected keyword with subroutines declared inside
a class.

Friend — Indicates that the subroutine is available to all code inside or outside of the
subroutine’s module within the same project. The difference between this and Public is that
Public allows code outside of the project to access the subroutine. This is generally only an
issue for code and control libraries where some other project may use the library.



274 | CHAPTER16 SUBROUTINES AND FUNCTIONS

>  protected Friend — Indicates that the subroutine has both Protected and Friend status.
The subroutine is available only within the same project and within the same class or a
derived class.

>  private — Indicates that the subroutine is available only within the class or module that
contains it.

To reduce the amount of information that developers must remember, you should generally declare
subroutines with the most restricted accessibility that allows them to do their jobs. If you can,
declare the subroutine Private. Then, developers working on other parts of the application don’t
even need to know that the subroutine exists. They can create other routines with the same name if
necessary and won’t accidentally misuse the subroutine.

Later, if you discover that you need to use the subroutine outside of its class or module, you can
change its declaration to allow greater accessibility.

Subroutine_Name

The subroutine’s name must be a valid Visual Basic identifier. That means it should begin with a
letter or an underscore. It can then contain zero or more letters, numbers, and underscores. If the
name begins with an underscore, it must include at least one other character so that Visual Basic can
tell it apart from a line continuation character.

Many developers use camel case when naming subroutines so a subroutine’s name consists of several
descriptive words with their first letters capitalized. A good method for generating subroutine

names is to use a short phrase beginning with a verb and describing what the subroutine does. Some
examples include LoadData, SaveNetworkConfiguration, and PrintExpenseReport.

Subroutine names with leading underscores can be hard to read, so you should either save them for
special purposes or avoid them entirely. Names such as _1 and __ (two underscores) are particularly
confusing.

Parameters

The parameters section of the subroutine declaration defines the numbers and types of the
parameters that the subroutine takes as arguments. This section also gives the names the subroutine
will use to refer to the values.

Declaring parameters is very similar to declaring variables. See Chapter 14, “Data Types, Variables,
and Constants,” for information on variable declarations, data types, and other related topics.

The following sections describe some of the more important details related to subroutine parameter
declarations.

ByVal

If you include the optional ByVal keyword before a parameter’s declaration, the subroutine makes
its own local copy of the argument. The subroutine can modify this value all it wants and the
corresponding value in the calling procedure isn’t changed.



Subroutines | 275

ByRef

If you declare a parameter with the ByRef keyword, the subroutine does not create a separate copy
of the argument. Instead, it uses a reference to the original argument passed into the subroutine and
any changes the subroutine makes to the value are reflected in the calling subroutine.

For example, consider the following code. The main program initializes the variable a and prints its
value in the Output window. It then calls subroutine DisplayDouble, which doubles its parameter

x and displays the new value. Because x is declared ByRef, this doubles the value of the variable a
that was passed by the main program into the subroutine. When the subroutine ends and the main
program resumes, it displays the new doubled value of variable a.

Private Sub Main()
Dim A As Integer = 12

Debug.WriteLine("Main: " & A)

DisplayDouble (A)

Debug.WriteLine("Main: " & A)
End Sub

Private Sub DisplayDouble (ByRef X As Integer)
X *= 2
Debug.WriteLine ("DisplayDouble: " & X)
End Sub

The following shows the results:

Main: 12
DisplayDouble: 24
Main: 24

Arrays Declared ByVal and ByRef

If you declare an array parameter using ByVal or ByRef, those keywords apply to the array itself, not
to the array’s values. In either case, the subroutine can modify the values inside the array.

If the array is declared ByRef, the subroutine can also change the memory to which the array
points. It can set the parameter to a completely new array and the calling code will see the change in
the array that it passed to the subroutine.

Parenthesized Parameters

A subroutine can fail to update a parameter declared using the ByRef keyword in a couple ways. The
most confusing occurs if you enclose a variable in parentheses when you pass it to the subroutine.
Parentheses tell Visual Basic to evaluate their contents as an expression. Visual Basic creates a
temporary variable to hold the result of the expression and then passes the temporary variable into
the procedure. If the procedure’s parameter is declared ByRef, the subroutine updates the temporary
variable but not the original variable, so the calling routine doesn’t see any change to its value.

The following code calls subroutine DisplayDouble, passing it the variable a surrounded by
parentheses. Subroutine DisplayDouble modifies its parameter’s value, but the result doesn’t get back
to the variable a.



276 | CHAPTER16 SUBROUTINES AND FUNCTIONS

Private Sub Main()
Dim A As Integer = 12

Debug.WriteLine("Main: " & A)

DisplayDouble( (A))

Debug.WriteLine("Main: " & A)
End Sub

Private Sub DisplayDouble (ByRef X As Integer)
X *= 2
Debug.WriteLine ("DisplayDouble: " & X)
End Sub

The following text shows the results:

Main: 12
DisplayDouble: 24
Main: 12

Chapter 14 has more to say about parameters declared with the ByVal and ByRef keywords.

Optional

If you declare a parameter with the Optional keyword, the code that uses it may omit that
parameter. When you declare an optional parameter, you must give it a default value for the
subroutine to use if the parameter is omitted by the calling routine.

The DisplayError subroutine in the following code demonstrates an optional string parameter:

Private Sub DisplayError (Optional error_message As String =
"An error occurred")
MessageBox.Show (error_message)
End Sub

Private Sub PlaceOrder (the_customer As Customer, order_items() As OrderItem)
' See if the_customer exists.
If the_customer Is Nothing Then
DisplayError ("Customer is Nothing in subroutine PlaceOrder")
Exit Sub
End If
' See if the_customer is valid.
If Not the_customer.IsValid() Then
DisplayError ()
Exit Sub
End If

' Generate the order.
End Sub
If the calling routine provides the optional error_message parameter, the subroutine displays

it. If the calling routine leaves this parameter out, DisplayError uses its default message
“An error occurred.”



Subroutines | 277

The PlaceOrder subroutine checks its the_customer parameter. If this parameter is

Nothing, PlaceOrder calls DisplayError to show the message “Customer is Nothing in subroutine
PlaceOrder.” Next, subroutine PlaceOrder calls the_customer’s IsValid function. If IsValid returns
False, the subroutine calls DisplayError this time without the parameter so DisplayError presents

its default message.

Optional parameters must go at the end of the parameter list, so if one parameter uses the Optional
keyword, all of the following parameters must use it, too.

OPTIONAL AND NULLABLE

Nullable parameters can also be optional. For example, the following code defines
three subroutines that each take an optional nullable parameter. The first two give
the parameter the default value Nothing, and the third uses the default value 0.

Public Sub Subl (Optional ByVal x? As Integer = Nothing)

End Sub

Public Sub Sub2 (Optional ByVal x As Integer? = Nothing)

End Sub

Public Sub Sub3 (Optional ByVal x As Nullable(Of Integer) = 0)

End Sub

Optional parameters are particularly useful for initializing values in a class’s constructor. The
following code shows a DrawableRectangle class. Its constructor takes as parameters the rectangle’s
position and size. All the parameters are optional, so the main program can omit them if it desires.
Because each parameter has default values, the constructor always knows it will have the four
values, so it can always initialize the object’s Bounds variable.

Public Class DrawableRectangle
Public Bounds As Rectangle

Public Sub New (
Optional X As Integer = 0,
Optional Y As Integer = 0,
Optional Width As Integer = 100,
Optional Height As Integer = 100

Bounds = New Rectangle(X, Y, Width, Height)
End Sub

End Class



278 | CHAPTER16 SUBROUTINES AND FUNCTIONS

Note that overloaded subroutines cannot differ only in optional parameters. If a call to the
subroutine omitted the optional parameters, Visual Basic would be unable to tell which version of
the subroutine to use.

Optional versus Overloading

Different developers have varying opinions on whether you should use optional parameters or
overloaded routines under various circumstances. For example, suppose that the FireEmployee
method could take one or two parameters giving either the employee’s name or the name and reason
for dismissal. You could make this a subroutine with the reason parameter optional, or you could
make one overloaded version of the FireEmployee method for each possible parameter list.

One argument in favor of optional parameters is that overloaded methods might duplicate a lot of
code. However, it is easy to make each version of the method call another version that allows more
parameters, passing in default values. For example, in the following code the first version of the
FireEmployee method simply invokes the second version:

Public Sub FireEmployee (employee_name As String)
FireEmployee (employee_name, "Unknown reason")
End Sub

Public Sub FireEmployee (employee_name As String, reason As String)

End Sub
Method overloading is generally superior when the different versions of the routine need to do
something different. You might be able to make a single routine with optional parameters take

different actions based on the values of its optional parameters, but separating the code into
overloaded routines will probably produce a cleaner solution.

Parameter Arrays

Sometimes it is convenient to allow a subroutine to take a variable number of parameters. For
example, a subroutine might take as parameters the addresses of people who should receive e-mail.
It would loop through the names to send each a message.

One approach is to include a long list of optional parameters. For example, the e-mail subroutine
might set the default value for each of its parameters to an empty string. Then it would need to send
e-mail to every address parameter that was not empty.

Unfortunately, this type of subroutine would need to include code to deal with each optional
parameter separately. This would also place an upper limit on the number of parameters the
subroutine can take (however many you are willing to type in the subroutine’s parameter list).

A better solution is to use the ParamArray keyword to make the subroutine’s final argument a
parameter array. A parameter array contains an arbitrary number of parameter values. At run time,
the subroutine can loop through the array to process the parameter values.

The DisplayAverage subroutine shown in the following code takes a parameter array named values.
It first checks the array’s bounds to make sure it contains at least one value. If the array isn’t empty,
the subroutine adds the values it contains and divides by the number of values to calculate the average.



Subroutines | 279

' Display the average of a series of values.

Private Sub DisplayAverage (ParamArray values () As Double)
' Do nothing if there are no parameters.
If values Is Nothing Then Exit Sub
If values.Length = 0 Then Exit Sub

' Display the average.
MessageBox.Show ( (values.Sum()/ values.Length).ToString)
End Sub

The following code shows one way the program could use this subroutine. In this example,
DisplayAverage would display the average of the integers 1 through 7, which is 4.

DisplayAverage(1l, 2, 3, 4, 5, 6, 7)

Parameter arrays are subject to the following restrictions:
> A subroutine can have only one parameter array, and it must come last in the parameter list.
> All other parameters in the parameter list must #ot be optional.
> All parameter lists must be declared ByVal.
>

The calling code may pass the value Nothing in the place of the parameter array.
(That’s why the code in the previous example checked whether values was Nothing before
continuing.)

> The calling code can provide any number of values for the parameter array including zero.
(That’s why the code in the previous example checked whether values.Length was
zero before continuing.)

> Even though the values passed into a parameter array are in a sense optional, you cannot
use the Optional keyword when you declare the parameter array.

> All the items in the parameter array must have the same data type. However, you can use an
array that contains the generic Object data type and then it can hold just about anything.

The program can also pass an array of the appropriate data type in place of a series of
values. The following two calls to the DisplayAverage subroutine produce the same result inside the
DisplayAverage subroutine:

DisplayAverage(l, 2, 3, 4, 5, 6, 7)

Dim values() As Double = {1, 2, 3, 4, 5, 6, 7}
DisplayAverage (values)

Implements interface.subroutine

An interface defines a set of properties, methods, and events that a class implementing the interface
must provide. An interface is a lot like a class with all of its properties, methods, and events
declared with the MustOverride keyword. Any class that inherits from the base class must provide
implementations of those properties, methods, and events.



280

| CHAPTER16 SUBROUTINES AND FUNCTIONS

NAMING CONVENTION

Developers often begin the name of interfaces with a capital I so that it’s

obvious that it’s an interface. In fact, it’s such a common practice and has no
disadvantages that it should practically be a requirement. Start interface names with
“I” so other developers know they are interfaces.

The following code defines the IDrawable interface and the IDrawableRectangle that implements it:

Public Interface IDrawable
Sub Draw(gr As Graphics)
Function Bounds() As Rectangle
Property IsVisible As Boolean
End Interface

Public Class DrawableRectangle
Implements IDrawable

Public Function Bounds () As Rectangle Implements IDrawable.Bounds
End Function

Public Sub Draw(gr As Graphics) Implements IDrawable.Draw

End Sub

Public Property IsVisible As Boolean Implements IDrawable.IsVisible
End Class

The IDrawable interface defines a Draw subroutine, a Bounds function, and a property named
IsVisible.

The DrawableRectangle class begins with the statement Implements IDrawable. That tells Visual
Basic that the class will implement the IDrawable interface. If you make the class declaration,

type the Implements statement, and then press the Enter key, Visual Basic automatically fills in the
declarations you need to satisfy the interface. In this example, it creates the empty Bounds function,
Draw subroutine, and IsVisible property procedures shown here. All you need to do is fill in

the details.

If you look at the preceding code, you can see where the subroutine declaration’s Implements
interface.subroutine clause comes into play. In this case, the Draw subroutine implements the
IDrawable interface’s Draw method.

When you type the Implements statement and press the Enter key, Visual Basic generates empty
routines to satisfy the interface; then you don’t need to type the Implements interface.subroutine
clause yourself. Visual Basic enters this for you.



Functions | 281

The only time you should need to modify this statement is if you change the interface’s name or
subroutine name or you want to use some other subroutine to satisfy the interface. For example, you
could give the DrawableRectangle class a DrawRectangle method and add Implements IDrawable
.Draw to its declaration. Visual Basic doesn’t care what you call the routine, as long as some routine
implements IDrawable.Draw.

Statements

A subroutine’s statements section contains whatever Visual Basic code is needed to get the routine’s
job done. This can include all the usual variable declarations, For loops, If Then statements, and
other Visual Basic paraphernalia.

The subroutine’s body cannot include module, class, subroutine, function, structure, enumerated
type, or other file-level statements. For example, you cannot define a subroutine within another
subroutine.

One statement that I haven’t mentioned before that you can use within a subroutine is Exit Sub. This
command makes the subroutine immediately exit and return control to the calling routine. Within a
subroutine, the Return statement is equivalent to Exit Sub.

You can use Exit Sub or Return as many times as you like to allow the subroutine to exit under
different conditions. For example, the following subroutine checks whether a phone number has
a 10-digit or 7-digit format. If the phone number matches a 10-digit format, the subroutine exits.
Then if the phone number matches a 7-digit format, the subroutine exits. Finally if the number
doesn’t match either format, the subroutine displays an error message to the user.

Private Sub ValidatePhoneNumber (phone_number As String)
' Check for a 10-digit phone number.
If phone_number Like "###-###-####" Then Exit Sub

' Check for a 7-digit phone number.
If phone_number Like "###-####" Then Return

' The phone number is invalid.

MessageBox.Show ("Invalid phone number " & phone_number)
End Sub

FUNCTIONS

Functions are basically the same as subroutines, except that they return some sort of value.
The syntax for defining a function is as follows:

[attribute_list] [inheritance_mode] [accessibility]

Function function_name ([parameters]) [As return_type]
[ Implements interface.function ]
[ statements ]

End function



282 | CHAPTER16 SUBROUTINES AND FUNCTIONS

This is almost the same as the syntax for defining a subroutine. See the section “Subroutines”
earlier in this chapter for information about most of this declaration’s clauses.

One difference is that a function ends with the End Function statement rather than
End Sub. Similarly, a function can exit before reaching its end by using Exit Function rather
than Exit Sub.

The one nontrivial difference between subroutine and function declarations is the clause as
return_type that comes after the function’s parameter list. This tells Visual Basic the type of value
that the function returns.

The function can set its return value in one of two ways. First, it can set its own name

equal to the value that it should return. The Factorial function shown in the following code
calculates the factorial of a number. Written N!, the factorial of Nis N * (N1) * (N2)...* 1. The
function initializes its result variable to 1, and then loops over the values between 1 and the number
parameter, multiplying these values to the result. It finishes by setting its name, Factorial, equal to
the result value that it should return.

Private Function Factorial (number As Integer) As Double
Dim result As Double = 1

For 1 As Integer = 2 To number
result *= i
Next 1

Factorial = result
End function

A function can assign and reassign its return value as many times as it wants to before it returns.
Whatever value is assigned last becomes the function’s return value.

The second way a function can assign its return value is to use the Return keyword followed by the
value that the function should return. The following code shows the Factorial function rewritten to
use the Return statement:

Private Function Factorial (number As Integer) As Double
Dim result As Double = 1

For i As Integer = 2 To number
result *= i
Next 1

Return result
End function

The Return statement is roughly equivalent to setting the function’s name equal to the return
value, and then immediately using an Exit Function statement. The Return statement may allow
the compiler to perform extra optimizations, however, so it is generally preferred to setting the
function’s name equal to the return value. (Return is also the more modern syntax and has become
so common that some developers don’t even recognize the other syntax anymore.)



Property Procedures | 283

PROPERTY PROCEDURES

Property procedures are routines that can represent a property value for a class. The simplest
kind of property is an auto-implemented property. Simply add the Property keyword to a variable
declaration as shown in the following code:

Public Property LastName As String
If you want, you can give the property a default value as in the following code:
Public Property LastName As String = "<missing>"

Behind the scenes, Visual Basic makes a hidden variable to hold the property’s value. When other
parts of the program get or set the value, Visual Basic uses the hidden variable.

This type of property is easy to make but it has few advantages over a simple variable. You can
make the property more powerful if you write your own procedures to get and set the property’s
value. If you write your own procedures you can add validation code, perform complex calculations,
save and restore values in a database, set breakpoints, and add other extras to the property.

A normal read-write property procedure contains a function for returning the property’s value and a
subroutine for assigning it.

The following code shows property procedures that implement a Value property. The Property Get
procedure is a function that returns the value in the private variable m_value. The Property Set
subroutine saves a new value in the m_value variable.

Private m_Value As Single

Property Value() As Single
Get
Return m_Value
End Get

Set (Value As Single)
m_Value = Value
End Set
End Property

Although the property is implemented as a pair of property procedures, the program can treat the
value as a simple property. For example, suppose that the Orderltem class contains the preceding
code. Then the following code sets the Value property for the OrderItem object named paper_item:

paper_item.Value = 19.95F

You can add property procedures to any type of object module. For example, you can use property
procedures to implement a property for a form or for a class of your own.

It’s less obvious that you can also use property procedures in a code module. The property
procedures look like an ordinary variable to the routines that use them. If you place the previous



284 | CHAPTER16 SUBROUTINES AND FUNCTIONS

example in a code module, the program could act as if there were a variable named value defined in
the module.

For more information on property procedures, see the section “Property Procedures” in Chapter 14.

EXTENSION METHODS

Extension methods allow you to add new methods to an existing class without rewriting it or
deriving a new class from it. To make an extension method, place the method in a code module and
decorate its declaration with the Extension attribute. The first parameter determines the class that the
method extends. The method can use that parameter to learn about the item for which the method
was called. The other parameters are passed into the method so it can use them to perform its chores.

EASIER EXTENSIONS

The Extension attribute is defined in the System.Runtime.CompilerServices
namespace. Using an Imports statement to import that namespace makes it easier to
write extensions.

For example, the following code adds a MatchesRegexp subroutine to the String class:

' Return True if a String matches a regular expression.
<Extension()>
Public Function MatchesRegexp (the_string As String,
ByVal regular_expression As String) As Boolean

Dim reg_exp As New Regex(regular_expression)

Return reg_exp.IsMatch(the_string)
End function

The Extension attribute tells Visual Basic that this is an extension method. The method’s first
parameter is a String so this method extends the String class. The second parameter is a regular
expression. The method returns True if the String matches the regular expression.

The following code shows how a program might use this method to decide whether the string stored
in variable phone_number looks like a valid 7-digit United States phone number:

if Not phone_number.MatchesRegexp (""[2-9]\d{2}-\d{4}s$") Then
MessageBox.Show ("Not a valid phone number")
End if

Example program ValidatePhone, which is available for download on the book’s website,
demonstrates the MatchesRegexp extension method. It also uses the MatchesRegexp method to
define the following three additional extension methods that determine whether a string looks like
a valid 7- or 10-digit United States phone number. These methods simply call the MatchesRegexp
method, passing it appropriate regular expressions.



Lambda Functions | 285

Return True if a String looks like a 7-digit US phone number.

<Extension()>

Public Function IsValidPhoneNumber7digit (the_string As String) As Boolean
Return the_string.MatchesRegexp (""[2-91\d{2}-\d{4}s")

End Function

' Return True if a String looks like a 10-digit US phone number.

<Extension()>

Public Function IsValidPhoneNumberl10digit (the_string As String) As Boolean
Return the_string.MatchesRegexp (" ([2-91\d{2}-) {2}\d{4}s")

End Function

' Return True if a String looks like a 7- or 10-digit US phone number.

<Extension()>

Public Function IsValidPhoneNumberUS (the_string As String) As Boolean
Return IsValidPhoneNumber7digit (the_string) OrElse

IsValidPhoneNumber10digit (the_string)
End function

If you build a class and later need to change its features, it’s usually easiest to modify its code
directly. That will cause less confusion than extension methods, which may lie in some obscure
module that seems unrelated to the original class. If you need to add methods to existing classes that
you cannot modify directly, such as String and other classes defined by Visual Basic and the .NET
Framework, extension methods can be extremely useful.

LAMBDA FUNCTIONS

Lambda functions are functions that are defined within the flow of the program’s code. Often they
are defined, used, and forgotten in a single statement without ever being given a name.

To define a lambda function for later use, start with the Function keyword. Add the function’s name
and any parameters that it requires, followed by a single statement that evaluates to the value that
the function should return.

Next include either (1) a single statement that evaluates to the value that the function should return,
or (2) a function body that ends with an End Function statement.

The following code fragment shows examples of both of these styles:

Dim square_it = Function(n As Integer) n * n
Dim factorial = Function(n As Integer) As Integer
Dim result As Integer =1
For 1 As Integer = 2 To n
result *= i
Next i
Return result
End Function

Debug.WriteLine (square_it (5))
Debug.WriteLine (factorial (5))



286 | CHAPTER16 SUBROUTINES AND FUNCTIONS

The code first creates a lambda function named square_it that takes parameter n and returns n * n.
It then creates a multiline lambda function named factorial that calculates and returns a number’s
factorial. The code finishes by calling both functions and displaying their results.

Example program LambdaFunction, which is available for download on the book’s website,
contains the following code fragment:

' Define a lambda function that adds two integers.
Dim plus = Function(il As Integer, i2 As Integer) il + i2

' Get A and B.
Dim A As Integer = Integer.Parse (txtA.Text)
Dim B As Integer = Integer.Parse(txtB.Text)

' Call the lambda function to calculate the result.
txtResult.Text = plus (A, B).ToString

This code starts by defining a variable named plus. This variable holds a reference to a lambda
function that takes two integers as parameters and returns their sum. The code then gets input
values from text boxes and calls the plus function, passing it those values. It converts the result into
a string and displays it in the txtResult text box.

This example creates a variable to hold a reference to a lambda function and then invokes the function
by using that variable. It could just as easily have invoked the lambda function itself while defining it.

Example program InlineFunction, which is also available for download on the book’s website,
demonstrates this in the following line of code. This line defines the function and invokes it without
ever saving a reference to it.

txtResult.Text =
(Function (il As Integer, 12 As Integer) il + i2) (A, B).ToString

Because lambda functions are declared in a single line of code, they are also called inline functions.
A lambda function defined inside a subroutine or function is also sometimes called a nested function.

LAMBDA OR INLINE?

To the extent that anyone distinguishes between lambda and inline functions, the
preceding example is more properly called an inline function because the function
is contained within the line that uses it and is never given a name. The examples
before that one are more properly called lambda functions because they create func-
tions (square_it, factorial, and plus) with references that are used later.

No matter which method the program uses to define a lambda function, it could then pass the
function to another routine that will later call the function. For example, suppose subroutine
PerformCalculations takes as a parameter the function it should use to perform its calculations.



Relaxed Delegates | 287

The following code shows how a program could call subroutine PerformCalculations while passing
it the previous lambda functions:

' Define the plus function.
Dim plus = Function(il As Integer, i2 As Integer) il + 12

' Call PerformCalculations passing it the lambda function.
PerformCalculations (plus)

' Call PerformCalculations passing it an inline lambda function.
PerformCalculations (Function(il As Integer, i2 As Integer) il + i2)

Inline functions were invented for use by LINQ and are most often used with LINQ. For
more information about LINQ, see Chapter 20, “LINQ.”

In addition to lambda functions, you can write lambda subroutines that are similar to lambda
functions except they don’t return a value.

The following code defines two named lambda subroutines. The first does all of its work on a single
line whereas the second uses the multiline format. After defining the subroutines, the code invokes
them to display two messages.

Dim write_msg = Sub(msg As String) Debug.WriteLine("write_msg: " & msg)
Dim show_msg = Sub(msg As String)
MessageBox.Show ("show _msg: " & msg)
End Sub

write_msg("Hi")
show_msg ("Hi again")

As with lambda functions, you can build and pass a lambda subroutine into another routine as a
parameter.

RELAXED DELEGATES

If you assign a variable to the value in a variable of a different type, Visual Basic automatically
converts the value into the correct type under some circumstances. If you set a Single variable equal
to an Integer variable, Visual Basic automatically converts the Integer into a Single.

If Option Strict is off, you can also do the reverse: If you assign an Integer variable equal to a Single
variable, Visual Basic converts the Single into an Integer (if it can).

In a similar manner, relaxed delegates let Visual Basic convert method parameters from one data
type to another under certain circumstances. If the code invokes a subroutine by using a delegate,
Visual Basic tries to convert parameters when it can. Probably the easiest way to understand how
this works is to consider an example.

The following code declares a delegate type named TestDelegate. Methods that match this delegate
should be subroutines that take a Control as a parameter.

' Declare the delegate type.
Private Delegate Sub TestDelegate(ctl As Control)



288

| CHAPTER16 SUBROUTINES AND FUNCTIONS

The following code defines three subroutines that take parameters of different types. The first takes
an Object as a parameter, the second takes a TextBox, and the third takes no parameters. Note that
the first subroutine cannot work if Option Strict is on. Option Strict disallows late binding, so the
code cannot use a Text property provided by a generic Object.

' A more general parameter type.
Private Sub Testl (obj As Object)

obj.Text = "Testl" ' Needs Option Strict off.
End Sub

' A more specific parameter type.

Private Sub Test2 (text_box As TextBox)
text_box.Text = "Test2"

End Sub

' Parameter omitted.

Private Sub Test3()
txtField3.Text = "Test3"

End Sub

The following code declares three variables of the TestDelegate type and sets them equal to the
addresses of the three test subroutines:

' Make variables of the delegate type hold references to the subroutines.
Private Subl As TestDelegate = AddressOf Testl
Private Sub2 As TestDelegate = AddressOf Test2 ' Needs Option Strict off.
Private Sub3 As TestDelegate = AddressOf Test3

The first assignment works even though subroutine Test1 does not exactly match the delegate type.
Subroutine Test1 takes an Object as a parameter and TestDelegate takes a Control as a parameter.
When Visual Basic invokes the Sub1 variable, it will pass the subroutine a Control object as a
parameter because Subl has type TestDelegate, and that type takes a Control as a parameter.

A Control is a type of Object, so Visual Basic can safely pass a Control in place of an Object
parameter. That allows the code assigning Sub1 to the address of subroutine Test1 to work.

The second line of code that assigns variable Sub2 to subroutine Test2 works only if Option Strict
is off. When Visual Basic invokes the Sub2 variable, it will pass the subroutine a Control object

as a parameter because Subl has type TestDelegate, and that type takes a Control as a parameter.
Subroutine Test2 takes a TextBox as a parameter, and not every Control is a TextBox. That means
at design time Visual Basic cannot tell whether it can safely invoke the Sub2 delegate so, if Option
Strict is on, Visual Basic flags this assignment as an error. If Option Strict is off, Visual Basic allows
the assignment, although the program will crash if it tries to pass a control that is not a TextBox
into Sub2 at run time.

STRICTLY SPEAKING

This is similar to setting a TextBox variable equal to the value in a Control variable.
If Option Strict is on, Visual Basic will not allow that assignment.



Relaxed Delegates | 289

The final assignment sets variable Sub3 to the address of subroutine Test3. Subroutine Test3 takes
no parameters. This is a special case that Visual Basic allows: If the method does not need to use the
parameters specified by the delegate, it can omit its parameters. Note that the method must omit all
or none of the parameters; it cannot omit some and not others.

The following code invokes the subroutines pointed to by the three TestDelegate variables, passing
each a reference to a different TextBox. Subl treats txtField1 as an Object, Sub2 treats txtField2
as a TextBox, and Sub3 ignores its parameter completely.

Subl (txtFieldl)
Sub2 (txtField2)
Sub3 (txtField3)
' Test3(txtField3) ' This doesn't work.

The final line of code, that invokes subroutine Test3 directly, doesn’t work. Omitting the parameter
list from a method only works if you access the method from a delegate. If you call the method
directly, the parameter list must match the one declared for the method.

Example program RelaxedDelegates, which is available for download on the book’s website,
demonstrates this code.

All of these relaxed delegate rules are somewhat confusing. They give you a little more flexibility,
but they can make the code a lot more confusing. You may wonder why you should bother. In fact,
if you use delegates such as those shown in this example, you might want to avoid using relaxed
delegates to keep the code easier to understand.

These rules also apply to event handlers, and in that context they are much more useful. They let
you change an event handler’s parameter types to make them more general or more specific, or to
omit them entirely.

The following code shows a simple, standard Button Click event handler. It takes two parameters of
types Object and EventArgs. In this example, the code reads a text file into a text box.

Private Sub btnLoad_Click(sender As Object,

ByVal e As EventArgs) Handles btnLoad.Click
txtContents.Text = File.ReadAllText (txtFile.Text)

End Sub

Many event handlers must deal explicitly with the control that raised their event. In that case, the
first thing the event handler usually does is convert the generic sender parameter from an Object
into a more specific control type.

The following code defines a Button Click event handler similar to the previous one but this one
declares its sender parameter to be of type Button. This works as long as the event is actually raised
by a Button so the sender parameter really is a button. If you were to attach this event handler to

a TextBox’s TextChanged event, the program would crash when Visual Basic tried to convert the
TextBox into a Button when it raises the event.

' Needs Option Strict off.

Private Sub btnLoad2_Click(btn As Button,

ByVal e As Object) Handles btnLoad2.Click
txtContents.Text = File.ReadAllText (txtFile.Text)

End Sub



290

| CHAPTER16 SUBROUTINES AND FUNCTIONS

Note that this version requires Option Strict off. If Option Strict is on, Visual Basic will not allow
this subroutine to handle a Button’s Click event. This is similar to the way Option Strict prevents
you from setting a Button variable equal to a generic Object variable.

The previous code declares its parameters to have a more restrictive type than those passed into it by
the control raising the event. You can also make the parameters more general. You could declare the
e parameter to be of type Object instead of EventArgs. Usually, that doesn’t help you much. It could
be useful if you want to use the same event handler to catch different kinds of events that provide
different types of arguments, but it’s hard to imagine a really good example where that wouldn’t be
confusing.

A more common situation is where the event handler ignores its parameters completely. Usually each
Button has a separate Click event handler so you don’t need to look at the parameters to figure out
which button was clicked.

The following code defines a Button Click event handler that takes no parameters. When the user
clicks the btnLoad3 Button, Visual Basic doesn’t pass the event handler any parameters. This code is
easier to read than the previous versions, partly because the Sub statement fits all on one line.

Private Sub btnLoad3_Click() Handles btnlLoad3.Click
txtContents.Text = File.ReadAllText (txtFile.Text)
End Sub

Example program RelaxedEventHandlers, which is available for download on the book’s website,
demonstrates relaxed event handlers.

Relaxed delegates may add more confusion than they’re worth if you use delegate variables, but they
can be useful for simplifying event handlers. Declaring parameters with a more specific type (for
example, Button instead of Object) can make the code easier to write and understand, although it
has the large drawback of requiring Option Strict off. Omitting parameters when you don’t need
them is an even better technique. It simplifies the code without forcing you to turn Option Strict off.

ASYNCHRONOUS METHODS

Normally a program calls a routine and control passes to that routine. When the routine finishes
executing, control returns to the calling code, which resumes executing its own code. All of this
happens synchronously so the calling code waits until the called routine finishes all of its work
before it continues.

Visual Basic provides several methods that you can use to execute code asynchronously. In those
cases a calling piece of code can launch a routine in a separate thread and continue executing
before the routine finishes. If your computer has multiple cores or CPUs, the calling code and
the asynchronous routine may both be able to execute simultaneously on separate processors,
potentially saving a lot of time.

Visual Basic provides several methods of various difficulties for executing code asynchronously. The
following sections describe three of the more manageable approaches.



Asynchronous Methods | 291

Calling EndInvoke Directly

This method uses a delegate’s Beginlnvoke method to start a routine executing asynchronously.
Later the code calls EndInvoke to wait for the routine to finish and to process the result.

To use this method, first define a delegate that represents the routine that you want to run
asynchronously. Call the delegate’s Beginlnvoke method, passing it whatever parameters the method
needs plus two additional parameters: a callback method and a parameter to pass to the callback
method. For this technique, set the extra parameters to Nothing so the routine does not invoke a
callback when it completes. (The following section explains how to use the callback.)

The call to BeginInvoke launches the asynchronous code on its own thread and then returns
immediately so the calling code can perform other tasks.

After the calling code has done as much as it can before the asynchronous thread finishes, it should
invoke the delegate’s EndInvoke method. That method waits until the asynchronous thread finishes
(if it isn’t already finished) and returns the result of the original method.

NOTE It is important that the code call EndInvoke even if the thread is executing
a subroutine rather than a function and the code doesn’t care about any returned
result. The call to EndInvoke lets the program free resources used by the
asynchronous thread.

The AsyncCallEndInvoke example program, =l
which is shown in Figure 16-1 and available
for download on the book’s website, uses this
approach to generate embossed images for four
different pictures.

Reset | | Spnc | | Aspnc

The program uses an extension method named
Emboss that allows a Bitmap object to return

an embossed version of itself. The details of that
method aren’t important for this discussion so its
code is not shown here. Download the example
program to see how it works. The only feature of
that method that is important right now is that

it takes a long time to finish so running on multiple
threads can make the program faster.

‘ﬁ.OTseconds |

The following code shows how the ~ FIGURE 16-1: The AsyncCallEndinvoke
AsyncCallEndInvoke program deﬁnes the delegate it example program generates embossed images
uses to launch the Emboss extension method: asynchronously.

Private Delegate Function EmbossDelegate (bm As Bitmap) As Bitmap



292 | CHAPTER16 SUBROUTINES AND FUNCTIONS

The Emboss method takes a Bitmap as a parameter (the object that is calling the extension method)
and returns a new Bitmap so the delegate takes a Bitmap as a parameter and returns a Bitmap
as a result.

The following code shows how the program invokes the Emboss extension method asynchronously:

' Emboss the images asynchronously.
Private Sub btnAsync_Click(sender As Object, e As EventArgs)
Handles btnAsync.Click

1blElapsedTime.Text = ""

DisplayOriginalImages ()

Me.Cursor = Cursors.WaitCursor

Application.DoEvents ()

Dim start_time As Date = Now

' Get all of the bitmaps.

Dim bml As Bitmap = My.Resources.JackOLanterns
Dim bm2 As Bitmap My .Resources.Dunk

Dim bm3 As Bitmap My.Resources.Flatirons
Dim bm4 As Bitmap = My.Resources.world

' Start the processes.

Dim callerl As EmbossDelegate = AddressOf bml.Emboss

Dim resultl As IAsyncResult =
callerl.BeginInvoke (bml, Nothing, Nothing)

Dim caller2 As EmbossDelegate = AddressOf bm2.Emboss
Dim result2 As IAsyncResult =
caller2.BeginInvoke (bm2, Nothing, Nothing)

Dim caller3 As EmbossDelegate = AddressOf bm3.Emboss
Dim result3 As IAsyncResult =
caller3.BeginInvoke (bm3, Nothing, Nothing)

Dim caller4 As EmbossDelegate = AddressOf bm4.Emboss
Dim result4 As IAsyncResult =
callerd.BeginInvoke (bm4, Nothing, Nothing)

' Wait for the processes to complete.
PictureBoxl.Image = callerl.EndInvoke (resultl)
PictureBox2.Image = caller2.EndInvoke (result2)
PictureBox3.Image = caller3.EndInvoke (result3)
PictureBox4.Image = callerd4.EndInvoke (result4)

' Display the elapsed time.
Dim stop_time As Date = Now
Dim elapsed_time As TimeSpan = stop_time - start_time
1blElapsedTime.Text = elapsed_time.TotalSeconds.ToString("0.00") & " seconds"
Me.Cursor = Cursors.Default
End Sub

After some preliminaries such as displaying the original images on the form and saving the start
time, the program loads four bitmaps from its resources. Then for each bitmap it creates an



Asynchronous Methods | 293

EmbossDelegate object that refers to the bitmap’s instance of the Emboss extension
method and calls that delegate’s BeginInvoke method. At that point the method can begin
executing asynchronously but the main program’s code continues executing.

After it has called Beginlnvoke for all four delegates, the program needs the results of the
asynchronous methods so it calls EndInvoke for all four delegates. It passes EndInvoke the
IAsyncResult object that it received when it called BeginInvoke to give the method information
about the asynchronous call. EndInvoke returns the result of the function that the delegate
represents, in this case the embossed images.

For example, the first delegate, named calleri, refers to the first bitmap’s version of the Emboss
extension method bm1 . Emboss. That delegate’s EndInvoke method returns the value returned by
bml.Emboss, which is an embossed version of the bitmap bm1.

The program assigns the returned bitmaps to the PictureBoxes’ Image properties and displays
the elapsed time.

In one set of tests on my dual-core computer, creating the four embossed images took roughly
12.9 seconds synchronously but only 7.2 seconds asynchronously. Because the computer has
two cores, you might expect the asynchronous version to take only half the time used by the
synchronous version, but there is some overhead in setting up and coordinating the threads. The
result is still an impressive reduction in time, however, and would be even greater on a computer
with more cores.

Handling a Callback

The technique described in the previous section directly calls EndInvoke to make the main UI thread
wait until its asynchronous threads have finished before the main program continues.

Another approach is to let the main program continue without waiting for the threads to complete
and then have the threads invoke a callback method when they finish.

This approach lets the main program ignore the asynchronous threads for most purposes but it
does make the flow of execution less predictable. While the threads are running, the user can do
other things, perhaps even starting new threads that duplicate those that are already running.
When a thread finishes, the callback routine executes, possibly interrupting whatever the user is
doing at the time.

There’s one important catch to working with callbacks: Only the thread that created the user
interface (called the UI thread) can directly interact with the controls in the user interface. That
means the asynchronous threads cannot directly assign images to PictureBoxes, display text in
Labels or TextBoxes, move controls around, or otherwise manipulate the controls. Because the
threads invoke the callback methods, those methods cannot directly interact with the controls,
either. In this example that means the callback methods cannot directly assign the PictureBox’s
Image properties.

You can get around this restriction by using the form’s Invoke method. Invoke executes one of the
form’s methods on the UI thread.



294 | CHAPTER16 SUBROUTINES AND FUNCTIONS

The AsyncHandleCallback example program, which is available for download on the book’s
website, is similar to the AsyncCallEndInvoke example program but it uses callbacks instead of
calling EndInvoke in the program’s main flow of execution.

The AsyncHandleCallback program defines the Emboss delegate just as the AsyncCallEndInvoke
program does. The following code shows how the program calls BeginInvoke for its first image:

Dim callerl As EmbossDelegate = AddressOf bml.Emboss
Dim resultl As IAsyncResult =
callerl.BeginInvoke (bml, AddressOf AsyncCallback, PictureBoxl)

The code makes a delegate named calleri that represents the bml object’s Emboss method.

It calls the delegate’s BeginInvoke method, passing it the bitmap to process (bm1), the address
of the callback routine (Asynccallback), and the PictureBox that should display the embossed
result (PictureBox1).

The code performs similar steps for the other images and then the btnAsync_click event handler
that contains this code ends without waiting for the threads to finish.

Later, when a thread finishes, it invokes the following callback routine:

' Handle a callback.
Private Sub AsyncCallback(result As AsyncResult)
Dim caller As EmbossDelegate =
DirectCast (result.AsyncDelegate, EmbossDelegate)

' Get the parameter we passed to the callback.
Dim pic As PictureBox = DirectCast (result.AsyncState, PictureBox)

' Get the method's return value.
Dim bm As Bitmap = caller.EndInvoke (result)

' Use Invoke to display the image on the PictureBox.
Dim displayer As New SetPictureBoxImageDelegate (AddressOf SetPictureboxImage)
Me.Invoke (displayer, pic, bm)

End Sub

This code receives as a parameter an AsyncResult object representing the thread’s result. It uses that
result’s AsyncDelegate property to get a reference to the original delegate that the program used to
call BeginInvoke.

The result’s AsyncState property holds whatever value the program passed as the final parameter to
BeginInvoke. In this example, that was the PictureBox that should display the embossed image. The
callback code converts the AsyncState property into a PictureBox.

The code then calls the delegate’s EndInvoke method and saves the result, which is the embossed
bitmap created by the thread.

Because this code is executing in an asynchronous thread, it cannot directly set the PictureBox’s
Image property so it uses Invoke to run the SetPictureBoxImage method on the UI thread. To
do that, it makes a delegate variable pointing to the method and then calls Invoke, passing it the
delegate and the parameters to pass to the SetPictureBoxImage method.



Asynchronous Methods | 295

The following code shows the definition of the SetPictureBoxImageDelegate and the
SetPictureBoxImage method:

' Set a PictureBox's Image property.
Private Delegate Sub SetPictureBoxImageDelegate(pic As PictureBox, img As Image)
Private Sub SetPictureBoxImage (pic As PictureBox, img As Image)
pic.Image = img
End Sub

This method simply sets the PictureBox’s Image property. (I’ve removed some code that displays the
elapsed time to keep the method simple. Download the example to see how that works.)

IGNORING INVOKE

Actually this program seems to work even if the callback sets the PictureBoxes’
Image properties directly, but messing with controls from non-UI threads is a bad
habit and doesn’t work with all properties. Try setting the PictureBox’s BorderStyle
property to None directly in the callback and in subroutine SetPictureBoxImage to
see what happens.

For more information on calling methods asynchronously by using BeginInvoke and EndInvoke,
see the article “Calling Synchronous Methods Asynchronously” at http://msdn.microsoft.com/
library/2e08f6yc.aspx.

Using Async and Await

Calling EndInvoke directly in the UI thread makes the code relatively simple but it means the
program is blocked until all of the asynchronous threads finish running. Using a callback allows the
main UI thread to finish before the threads do so the UI can interact with the user, but the code is
somewhat more complex, particularly if the callback must manipulate controls, so it needs to use
the form’s Invoke method.

Visual Basic 2012 provides two new keywords that make it easier to use the callback approach
without actually writing callbacks and calling Invoke yourself.

The Async keyword indicates that a routine may have parts that should run asynchronously.
You should apply this keyword to your event handlers and other routines that will start tasks
asynchronously and then wait for them.

The Await keyword makes the program wait until a particular task has finished running
asynchronously. When it sees the Await keyword, Visual Basic essentially converts the rest of the
routine into a callback that it invokes when the task has finished. One really nice feature of that
“virtual callback” is that it executes on the Ul thread so it can manipulate controls directly without
using the form’s Invoke method.

The AsyncAwait example program, which is available for download on the book’s website, is very
similar to the AsyncCallEndInvoke and AsyncHandleCallback example programs but it uses the
Async and Await keywords.


http://msdn.microsoft.com/library/2e08f6yc.aspx
http://msdn.microsoft.com/library/2e08f6yc.aspx

296 | CHAPTER16 SUBROUTINES AND FUNCTIONS

The following code shows the btnasync_click event handler that executes when you click the
program’s Async button:

' Emboss the images asynchronously.
Private Async Sub btnAsync_Click(sender As Object, e As EventArgs)
Handles btnAsync.Click

1blElapsedTime.Text = ""

DisplayOriginalImages ()

Me.Cursor = Cursors.WaitCursor

Application.DoEvents ()

Dim start_time As Date = Now

' Get all of the bitmaps.

Dim bml As Bitmap = My.Resources.JackOLanterns
Dim bm2 As Bitmap = My.Resources.Dunk

Dim bm3 As Bitmap = My.Resources.Flatirons
Dim bm4 As Bitmap = My.Resources.world

'Start four embossing tasks running.

Dim taskl As New Task (Of Bitmap) (AddressOf bml.Emboss)
taskl.Start ()

Dim task2 As New Task (Of Bitmap) (AddressOf bm2.Emboss)
task2.Start ()

Dim task3 As New Task(Of Bitmap) (AddressOf bm3.Emboss)
task3.Start ()

Dim task4 As New Task (Of Bitmap) (AddressOf bm4.Emboss)
taskd.Start ()

' Wait for the tasks to finish.
PictureBoxl.Image = Await taskl
PictureBox2.Image = Await task2
PictureBox3.Image = Await task3
PictureBox4.Image = Await task4

' Display the elapsed time.
Dim stop_time As Date = Now
Dim elapsed_time As TimeSpan = stop_time - start_time
1blElapsedTime.Text = elapsed_time.TotalSeconds.ToString("0.00") & " seconds"
Me.Cursor = Cursors.Default
End Sub

Because this event handler has parts that run asynchronously, its declaration includes the Async keyword.

The code begins as the previous versions do, saving the start time and retrieving the program’s
bitmaps. It then creates Task objects to make the embossed images on asynchronous threads. The
of Bitmap part of the Task declarations means that the Tasks return Bitmaps. For each Bitmap, the
program creates a Task to execute the Bitmap’s Emboss method and calls the Task’s Start method to
make it start running on its own thread.

After it has created and launched all four Tasks, the program calls Await for each Task. Each Task
returns a Bitmap and the program displays the Bitmap in the corresponding PictureBox.

Calling Await is very similar to calling EndInvoke directly except that behind the scenes Visual
Basic moves the code that follows into a callback so execution does not block until the Tasks return.



Summary | 297

The btnAsync_Click event handler blocks until the Tasks finish, but the program’s control returns
to the event loop so the program can perform other tasks such as responding to the user. This is
similar to the way control returns to the AsyncHandleCallback program’s main code while the
asynchronous threads continue executing.

When the Tasks finish, they invoke a behind-the-scenes callback that continues executing the
btnAsync_Click event handler.

The result is a combination of the results of the two previous examples. As in program
AsyncCallEndInvoke, the button’s event handler doesn’t finish until all of the Tasks have completed
so you can write that code in a fairly linear fashion without worrying about callbacks. However, the
program actually is using a callback behind the scenes so the button’s event handler doesn’t block
the entire application while it is running. (And you don’t need to create any callbacks yourself.)

To see the difference, run the example program and click the Async button to start building the
embossed images. After one or two of the images are displayed, click the Reset button to display the
original images. Repeat the same steps in the other two examples to see the differences.

For more information about using Async and Await, see the article “Asynchronous Programming
with Async and Await” at http://msdn.microsoft.com/library/hh191443 (v=vs.110) .aspx.

SUMMARY

Subroutines and functions let you break an application into manageable, reusable pieces. A subroutine
performs a series of commands. A function performs a series of commands and returns a value.

Property procedures use paired functions and subroutines to provide the appearance of a simple property.

These form the fundamental building blocks of the procedural part of an application. Chapters 22
through 26 explain the other half of an application’s structure: the objects that encapsulate the
application’s behavior. Together, the program’s objects and its procedural subroutines and functions
define the application.

This chapter explained how to break an otherwise unwieldy expanse of code into subroutines and
functions of manageable size. It also explained techniques related to subroutines and functions, such
as extension methods and relaxed delegates, that let you use existing classes and events in new ways.

This chapter also explained three ways you can execute pieces of code simultaneously on different
threads of execution. If your computer has multiple cores or CPUs, that may allow you to greatly
improve performance.

The chapters so far have not explained how to write anything other than straight-line code that
executes one statement after another with no deviation. Most programs need to follow more
complex paths of execution, performing some statements only under certain conditions and
repeating others many times. Chapter 17, “Program Control Statements,” describes the statements
that a Visual Basic program uses to control the flow of code execution. These include decision
statements (If Then Else, Select Case, IIF, Choose) and looping statements (For Next, For Each, Do
While, While Do, Repeat Until).


http://msdn.microsoft.com/library/hh191443(v=vs.110).aspx




17

Program Control Statements

WHAT'’S IN THIS CHAPTER

>  Decision statements
> Looping statements
> Enumerators and iterators

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this
chapter is divided into the following major examples:

> EnumerateEmployees
> ExitAndContinue

> Loops

CONTROLLING PROGRAMS

Program control statements tell an application which other statements to execute under a
particular set of circumstances. They control the path that execution takes through the code.
They include commands that tell the program to execute some statements but not others and
to execute certain statements repeatedly.

The two main categories of control statements are decision statements (or conditional
statements) and looping statements. The following sections describe in detail the decision
and looping statements provided by Visual Basic .NET.

DECISION STATEMENTS

A decision or conditional statement represents a branch in the program. It marks a place
where the program can execute one set of statements or another, or possibly no statements


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://wrox.com
http://WROX.COM

300 | CHAPTER17 PROGRAM CONTROL STATEMENTS

at all,; depending on some condition. These include several kinds of If statements, Choose
statements, and Select Case statements.

Single-Line If Then

The single-line If Then statement has two basic forms. The first allows the program to execute a
single statement if some condition is True. The syntax is as follows:

If condition Then statement

If the condition is True, the program executes the statement. In the most common form of single-
line If Then statements, the statement is a single simple command (such as assigning a value to a
variable or calling a subroutine).

The following example checks the emp object’s TsManager property. If TsManager is True, the state-
ment sets the emp object’s salary property to 90,000.

If emp.IsManager Then emp.Salary = 90000

The second form of the single-line If Then statement uses the Else keyword. The syntax is as follows:

If condition Then statementl Else statement2

If the condition is True, the code executes the first statement. If the condition is False, the code
executes the second statement. The decision about which statement to execute is an either-or
decision; the code executes one statement or the other, but not both.

This type of single-line If Then Else statement can be confusing if it is too long to easily see in the code
editor. For longer statements, a multiline If Then Else statement is easier to understand and debug. The
performance of single-line and multiline If Then Else statements is comparable (in one test, the multiline
version took only about 80 percent as long), so you should use the one that is easiest for you to read.

The single-line If Then statement can also include Else If clauses. For example, the following code
examines the variable x. If x is 1, the program sets variable txt to “One.” If x has the value 2, the
program sets txt to “Two.” If x is not 1 or 2, the program sets txt to a question mark.

Dim txt As String
If X = 1 Then txt = "One" Else If X = 2 Then txt = "Two" Else txt = "?"

The code can include as many Else If clauses as you like. However, confusing code such as the
preceding example can lead to puzzling bugs that are easy to avoid if you use multiline If Then
statements instead.

In summary, if you can write a simple single-line If Then statement with no Else If or Else clauses,
and the whole thing fits nicely on the line so that it’s easy to see the whole thing without confusion,
go ahead. If the statement is too long to read easily, or contains Else If or Else clauses, you are
usually better off using a multiline If Then statement. It may take more lines of code, but the code
will be easier to read, debug, and maintain later.

Multiline If Then

A multiline If Then statement can execute more than one line of code when a condition is True.
The syntax for the simplest form of the multiline If Then statement is as follows:



Decision Statements | 301

If condition Then
statements
End If

If the condition is True, the program executes all the commands that come before the End If
statement.

Like the single-line If Then statement, the multiline version can include Else If and Else clauses.
For possibly historical reasons, Elself is spelled as a single word in the multiline If Then statement.
The syntax is as follows:

If conditionl Then
statementsl
ElseIf condition2
statements?
Else
statements3
End If

If the first condition is True, the program executes the first set of statements. If the first condition is
False, the code examines the second condition and, if that one is True, the code executes the second
set of statements. The program continues checking conditions until it finds one that is True and it
executes the corresponding code.

If the program reaches an Else statement, it executes the corresponding code. If the program reaches
the End If statement without finding a True condition or an Else clause, it doesn’t execute any of the
statement blocks.

It is important to understand that the program exits the If Then construction immediately after it
has executed any block of statements. It does not examine the other conditions. This saves the pro-
gram some time and is particularly important if the conditions involve functions. If each test calls a
relatively slow function, skipping these later tests can save the program a significant amount of time.

Select Case

The Select Case statement lets a program execute one of several pieces of code depending on a single
value. The basic syntax is as follows:

Select Case test_value
Case comparison_expressionl
statementsl
Case comparison_expression2
statements?2
Case comparison_expression3
statements3
Case Else
else_statements
End Select

If test_value matches comparison_expressionl, the program executes the statements in
the block statementsi. If test_value matches comparison_expression2, the program executes



302 | CHAPTER17 PROGRAM CONTROL STATEMENTS

the statements in the block statements2. The program continues checking the expressions in the
Case statements in order until it matches one, or it runs out of Case statements.

If test_value doesn’t match any of the expressions in the Case statements, the program executes
the code in the else_statements block. Note that you can omit the Case Else section. In that
case, the program executes no code if test_value doesn’t match any of the expressions.

Select Case is functionally equivalent to an If Then Else statement. The following code does the
same thing as the previous Select Case code:

If test_value = comparison_expressionl Then
statementsl

ElseIf test_value = comparison_expression2 Then
statements?2

ElseIf test_value = comparison_expression3 Then
statements3

Else
else_statements
End If

Select Case is sometimes easier to understand than a long If Then Else statement. It is often faster as
well, largely because Select Case doesn’t need to reevaluate test_value for every Case statement. If
test_value is a simple variable, the difference is insignificant, but if test_value represents a slow
function call, the difference can be important. For example, suppose test_value represents a function
that opens a database and looks up a value. The Select Case version will find the value once and use it
in each comparison, whereas the If Then version would reopen the database for each comparison.

The previous If Then example assumes the comparison expressions are constants. A comparison
expression can also specify ranges using the To and Is keywords, and include a comma-separated list
of expressions. These forms are described in the following sections.

To

The To keyword specifies a range of values that test_value should match. The following code
examines the variable num_items. If num_items is between 1 and 10, the program calls

subroutine ProcessSmallorder. If num_items is between 11 and 100, the program calls subroutine
ProcessLargeOrder. If num_items is less than 1 or greater than 100, the program beeps.

Select Case num_items
Case 1 To 10
ProcessSmallOrder ()
Case 11 To 100
ProcessLargeOrder ()
Case Else
Beep ()
End Select

Is

The Is keyword lets you perform logical comparisons using the test value. The word Is takes the
place of the test value in the comparison expression. For example, the following code does almost



Decision Statements | 303

the same things as the previous code. If the value num_items is less than or equal to 10, the program
calls subroutine Processsmallorder. If the first Case clause doesn’t apply and num_items is less
than or equal to 100, the program calls subroutine ProcessLargeorder. If neither of these cases
applies, the program beeps.

Select Case num_items
Case Is <= 10

ProcessSmallOrder ()
Case Is <= 100
ProcessLargeOrder ()
Case Else
Beep ()
End Select

This version is slightly different from the previous one. If num_items is less than 1, this code calls
subroutine ProcessSmallorder whereas the previous version beeps.

You can use the operators =, <>, <, <=, >, and >= in an Is clause. (In fact, when you use a simple
value in a Case clause as in case 7, you are implicitly using Is = asin Case Is = 7.)

Comma-Separated Expressions

A comparison expression can include a series of expressions separated by commas. If the test value
matches any of the comparison values, the program executes the corresponding code.

For example, the following code examines the department_name variable. If department_name is
“R & D,” “Test,” or “Computer Operations,” the code adds the text “Building 10” to the address_
text string. If department_name is “Finance,” “Purchasing,” or “Accounting,” the code adds
“Building 7” to the address. More Case clauses could check for other department_name values and
the code could include an Else statement.

Select Case department_name

Case "R & D", "Test", "Computer Operations"
address_text &= "Building 10"
Case "Finance", "Purchasing", "Accounting"

address_text &= "Building 7"
End Select
Note that you cannot use comma-separated expressions in a Case Else clause. For example, the
following code doesn’t work:

Case Else, "Corporate" ' This doesn't work.

You can mix and match constants, To, and Is expressions in a single Case clause, as shown
in the following example. This code checks the variable item_code and calls subroutine
DoSomething if the value is less than 10, between 30 and 40 inclusive, exactly equal to
100, or greater than 200.



304 | CHAPTER17 PROGRAM CONTROL STATEMENTS

Select Case item_code
Case Is < 10, 30 To 40, 100, Is > 200
DoSomething ()

End ééiect
Enumerated Values

Select Case statements work very naturally with lists of discrete values. You can have a separate Case
statement for each value, or you can list multiple values for one Case statement in a comma-separated list.

Enumerated types defined by the Enum statement also work with discrete values, so they work well
with Select Case statements. The enumerated type defines the values and the Select Case statement
uses them, as shown in the following code fragment:

Private Enum JobStates
Pending
Assigned
InProgress
ReadyToTest
Tested
Released
End Enum
Private m_JobState As JobStates

Select Case m_JobState
Case Pending

Case‘Aésigned
Case.iﬁProgress
Case.ééadyToTest
Case.fésted
Case.ééleased

End Select

To catch bugs when changing an enumerated type, many developers include a Case Else statement
that throws an exception. If you later add a new value to the enumerated type but forget to add cor-
responding code to the Select Case statement, the Select Case statement throws an error when it sees
the new value, so you can fix the code.

For more information on enumerated types, see the section “Enumerated Data Types” in Chapter
14, “Data Types, Variables, and Constants.”

lf

The IIf statement evaluates a Boolean expression and then returns one of two values, depending on
whether the expression is True or False. This statement may look more like an assignment statement
or a function call than a decision statement such as If Then.



Decision Statements | 305

The syntax is as follows:
variable = IIf(condition, value_if_ true, value_if_ false)

For example, the following code examines an Employee object’s TsManager property. If TsManager
is True, the code sets the employee’s salary to 90,000. If TsManager is False, the code sets the
employee’s salary to 10,000.

emp.Salary = IIf(emp.IsManager, 90000, 10000)

Note that the IIf statement returns an Object data type. If you have Option Strict turned on, Visual
Basic will not allow this statement, because it assigns a result of type Object to an Integer variable.
To satisfy Visual Basic, you must explicitly convert the value into an Integer, as in the following
code:

emp.Salary = CInt(IIf(emp.IsManager, 90000, 10000))

The IIf statement has several drawbacks. First, it is confusing. When you type an IIf statement,
IntelliSense will remind you that its parameters give a condition, a True value, and a False value.
When you are reading the code, however, you must remember what the different parts of the state-
ment mean. If you use IIf in some other statement, the chances for confusion increase. For example,
consider the following code:

For 1 = 1 To CInt(IIf(employees_loaded, num_employees, 0))
' Process employee 1i.

Next i
Code is generally much easier to understand if you replace IIf with an appropriate If Then statement.

Another drawback to IIf is that it evaluates both the True and False values whether the condition is
True or False. For example, consider the following code:

num_objects = CInt(IIf (use_groups, CountGroups (), CountIndividuals()))

If the Boolean use_groups is True, this code sets num_objects to the result of the countGroups func-
tion. If use_groups is False, the code sets num_objects to the result of the CountIndividuals
function. In either case, IIf evaluates both functions no matter which value it actually needs. If

the functions are time-consuming or executed inside a large loop, using IIf can waste a lot of time.

For an even more dangerous example, consider the following code:
num_loaded = CInt(IIf(data_loaded, num_employees, LoadEmployees()))

If data_loaded is True, this statement sets num_loaded = num_employees. If data_loaded is
False, the code sets num_loaded to the value returned by the LoadEmployees function (which loads
the employees and returns the number of employees it loaded).

IIf evaluates both the value num_employees and the value LoadEmployees () no matter what. If
the employees are already loaded, IIf calls LoadEmployees () to load the employees again, ignores



306

| CHAPTER 17 PROGRAM CONTROL STATEMENTS

If

the returned result, and sets num_loaded = num_employees. LoadEmployees may waste quite a lot
of time loading the data that is already loaded. Even worse, the program may not be able to handle
loading the data when it is already loaded.

A final drawback to IIf is that it is slower than a comparable If Then Else statement. In one test, IIf
took roughly twice as long as a comparable If Then statement.

One case where you can argue that IIf is easier to understand is when you have a long series of very
simple statements. In that case, IIf statements may allow you to easily see the common features in
the code and notice if anything looks wrong. For example, the following code initializes several text
boxes using strings. It uses an IIf statement to set a text box’s value to <Missing> if the string is not
yet initialized.

txtLastName.Text = IIf(last_name Is Nothing, "<Missing>", last_name)
txtFirstName.Text = IIf(first_name Is Nothing, "<Missing>", first_name)
txtStreet.Text = IIf(street Is Nothing, "<Missing>", street)
txtCity.Text = IIf(city Is Nothing, "<Missing>", city)

txtState.Text = IIf(state Is Nothing, "<Missing>", state)

txtZip.Text = IIf(zip Is Nothing, "<Missing>", zip)

To avoid confusing side effects, use IIf only if it makes the code easier to understand.

The If statement, not to be confused with an If Then statement, resolves some of the problems
with the IIf statement. It evaluates a Boolean expression and then returns one of two values,
depending on whether the expression is True or False, as IIf does. The difference is that If only
evaluates the return value that it actually returns.

For example, the following code examines an Employee object’s TsManager property. If TsManager
is True, the code sets the employee’s salary to the result returned by the GetManagersalary
function and never calls function GetEmployeeSalary. If IsManager is False, the code sets the
employee’s salary to the result of the GetEmployeeSalary function and never calls function
GetManagerSalary.

emp.Salary = If(emp.IsManager, GetManagerSalary(), GetEmployeeSalary())

Other than the fact that If doesn’t evaluate both of its possible return values, it behaves just as IIf
does.

Choose

The IIf and If statements use a Boolean expression to pick between two values. The Choose state-
ment uses an integer to decide among any number of options. The syntax is as follows:

variable = Choose(index, valuel, value2, value3, valued, ... )

If the index parameter is 1, Choose returns the first value, valuel; if index is 2, Choose returns
value2; and so forth. If index is less than 1 or greater than the number of values in the parameter
list, Choose returns Nothing.



Decision Statements | 307

This statement has the same drawbacks as IIf. Choose evaluates all of the result values no matter
which one is selected, so it can slow performance. It can be particularly confusing if the values are
functions with side effects.

Often Choose is more confusing than a comparable Select Case statement. If the values look dis-
similar (mixing integers, objects, function calls, and so forth), involve complicated functions, or are
wrapped across multiple lines, a Select Case statement may be easier to read.

However, if the Choose statement’s values are short and easy to understand, and the statement
contains many values, the Choose statement may be easier to read. For example, the following
Choose and Select Case statements do the same thing. Because the Choose statement’s values are
short and easy to understand, this statement is easy to read. The Select Case statement is rather
long. If the program had more choices, the Select Case statement would be even longer, making it
more difficult to read.

fruit = Choose(index, "apple", "banana", "cherry", "date")

Select Case index
Case 1
fruit = "apple"
Case 2
fruit = "banana"
Case 3
fruit = "cherry"
Case 4
fruit = "date"
End Select

Although it’s not always clear whether a Choose statement or a Select Case statement will be
easier to read, Select Case is certainly faster. In one test, Choose took more than five times as
long as Select Case. If the code lies inside a frequently executed loop, the speed difference may be
an issue.

Choose and Select Case are not your only options. You can also store the program’s choices in an
array, and then use the index to pick an item from the array. For example, the following code stores
the strings from the previous example in the values array. It then uses the index to pick the right
choice from the array.

Dim fruit_names() As String = {"apple", "banana", "cherry", "date"}

fruit = fruit_names(index - 1)

INTELLIGENT INDEXING

Notice that the code subtracts 1 from the index when using it to pick the right
choice. The Choose statement indexes its values starting with 1, but arrays in Visual
Basic .NET start with index 0. Subtracting 1 allows the program to use the same
index values used in the previous example.



308 | CHAPTER17 PROGRAM CONTROL STATEMENTS

This version makes you think about the code in a different way. It requires that you know that the
fruit_names array contains the names of the fruits that the program needs. If you understand
the array’s purpose, then the assignment statement is easy to understand.

The assignment code is even slightly faster than Select Case, at least if you can initialize the fruit_
names array ahead of time.

If you find Choose easy to understand and it doesn’t make your code more difficult to read in your
particular circumstances, by all means use it. If Select Case seems clearer, use that. If you will need
to perform the assignment many times and pre-building an array of values makes sense, using a
value array might improve your performance.

LOOPING STATEMENTS

Looping statements make the program execute a series of statements repeatedly. The loop can
run for a fixed number of repetitions, run while some condition is True, or run while some
condition is False.

Broadly speaking, there are two types of looping statements. For Next loops execute a certain number
of times that (in theory at least) is known. For example, a For Next loop may execute a series of state-
ments exactly 10 times. Or, it may execute the statements once for each object in a certain collection. If
you know how many items are in the collection, you know the number of times the loop will execute.

A While loop executes while a condition is True or until a condition is met. Without a lot more
information about the application, it is impossible to tell how many times the code will execute. For
example, suppose a program uses the InputBox function to get names from the user until the user
clicks the Cancel button. In that case, there’s no way for the program to guess how many values the
user will enter before canceling.

The following sections describe the looping statements supported by Visual Basic .NET. The next
two sections describe For Next loops, and the sections after those describe While loops. (Example
program Loops, which is available for download on the book’s website, demonstrates some of these
kinds of loops.)

For Next

The For Next loop is the most common type of looping statement in Visual Basic. The syntax is as
follows:

For variable [As data_type] = start_value To stop_value [Step increment]
statements
[Exit For]
statements
[Continue For]
statements
Next [variable]

The value variable is the looping variable that controls the loop. When the program reaches the
For statement, it sets variable equal to start_value. It then compares variable to stop_value.



Looping Statements | 309

If variable has passed stop_value, the loop exits. Note that the loop may not execute even once
depending on the start and stop values.

For example, the following loop runs for the values employee num = 1, employee num = 2,...,
employee_num = num_employees. If the program has not loaded any employees so
num_employees = 0, the code inside the loop is not executed at all.

For employee_num = As Integer 1 To num_employees
ProcessEmployee (employee_num)
Next employee_num

After it compares variable to stop_value, the program executes the statements inside the loop.
It then adds increment to variable and starts the process over, again comparing variable to
stop_value. If you omit increment, the program uses an increment of 1.

Note that increment can be negative or a fractional number, as in the following example:

For 1 As Integer = 3 To 1 Step -0.5
Debug.WriteLine (1)
Next 1

If increment is positive, the program executes as long as variable <= stop_value. If

increment is negative, the program executes as long as variable >= stop_value. This means that
the loop would not execute infinitely if increment were to move variable away from stop_value.
For example, in the following code start_value = 1 and increment = -1. The variable i would
take the values i = 1,1 = 0,i = -1, and so forth, so i will never reach the stop_value of 2.
However, because increment is negative, the loop only executes while i >= 2. Because i starts
with the value 1, the program immediately exits and the loop doesn’t execute at all.

For i As Integer = 1 To 2 Step -1
Debug.WriteLine (1)
Next 1

Visual Basic doesn’t require that you include the variable’s name in the Next statement, although
this makes the code easier to read. If you do specify the name in the Next statement, it must match
the name you use in the For statement.

If you do not specify the looping variable’s data type in the For statement and Option Explicit is on
and Option Infer is off, then you must declare the variable before the loop. For example, the follow-
ing loop declares the variable i outside of the loop:

Dim i As Integer

For 1 = 1 To 10
Debug.WriteLine (1)
Next 1

Declaring the looping variable in the For statement is a good practice for several reasons. It limits
the scope of the variable so you don’t need to remember what the variable is for in other pieces of
code. It keeps the variable’s declaration close to the code where it is used, so it’s easier to remember



310

CHAPTER 17 PROGRAM CONTROL STATEMENTS

the variable’s data type. It also lets you more easily reuse counter variables without fear of confu-
sion. If you have several loops that need an arbitrarily named looping variable, they can all declare
and use the variable i without interfering with each other.

The program calculates its start_value and stop_value before the loop begins and it never recal-
culates them, even if their values change. For example, the following code loops from 1 to this_
customer.Orders(l).NumItems.Theprogranlcakukuesthis_customer.Orders(l).NumItems
before executing the loop and doesn’t recalculate that value even if it later changes. This saves the
program time, particularly for long expressions such as this one, which could take a noticeable
amount of time to reevaluate each time through a long loop.

For item_num As Integer = 1 To this_customer.Orders (1) .NumItems
this_customer.ProcessItem(item_num)
Next item_num

If you must reevaluate stop_value every time the loop executes, use a While loop instead of a For
Next loop.

The Exit For statement allows the program to leave a For Next loop before it would normally finish.
For example, the following code loops through the employees array. When it finds an entry with
the IsManager property set to True, it saves the employee’s index and uses Exit For to immediately
stop looping.

Dim manager_index As Integer

For 1 As Integer = employees.GetLowerBound(0) To employees.GetUpperBound (0)
If employees(i).IsManager Then
manager_index = i
Exit For
End If
Next 1

The Exit For statement exits only the For Next loop immediately surrounding the statement.
If a For Next loop is nested within another For Next loop, the Exit For statement exits only the
inner loop.

The Continue For statement makes the loop jump back to its For statement, increment its looping
variable, and start the loop over again. This is particularly useful if the program doesn’t need to
execute the rest of the steps within the loop’s body and wants to start the next iteration quickly.

OUT OF CONTROL

Your code can change the value of the control variable inside the loop, but that’s
generally not a good idea. The For Next loop has a very specific intent, and modify-
ing the control variable inside the loop violates that intent, making the code more
difficult to understand and debug. If you must modify the control variable in more
complicated ways than are provided by a For Next loop, use a While loop instead.
Then programmers reading the code won’t expect a simple incrementing loop.



Looping Statements | 311

Non-Integer For Next Loops

Usually a For Next loop’s control variable is an integral data type such as an Integer or Long but
it can be any of the fundamental Visual Basic numeric data types. For example, the following code
uses a variable declared as Single to display the values 1.0, 1.5, 2.0, 2.5, and 3.0:

For x As Single = 1 To 3 Step 0.5
Debug.WriteLine (x.ToString ("0.0"))
Next x

Because floating-point numbers cannot exactly represent every possible value, these data types are
subject to rounding errors that can lead to unexpected results in For Next loops. The preceding
code works as you would expect, at least on my computer. The following code, however, has prob-
lems. Ideally, this code would display values between 1 and 2, incrementing them by 1/7. Because
of rounding errors, however, the value of x after seven trips through the loop is approximately
1.85714316. The program adds 1/7 to this and gets 2.0000003065381731. This is greater than the
stopping value 2, so the program exits the loop and the pebug statement does not execute for x = 2.

For x As Single = 1 To 2 Step 1 / 7
Debug.WriteLine (x)
Next x

One solution to this type of problem is to convert the code into a loop that uses an Integer control
variable. Integer variables do not have the same problems with rounding errors that floating-point
numbers do, so you have more precise control over the values used in the loop.

The following code does roughly the same thing as the previous code. It uses an Integer control
variable, however, so this loop executes exactly eight times as desired. The final value printed into
the Output window by the program is 2.

Dim x As Single

x =1

For 1 As Integer = 1 To 8
Debug.WriteLine (x)
X += CSng(l / 7)

Next 1

If you look at the value of variable x in the debugger, you will find that its real value during the last
trip through the loop is roughly 2.0000001702989851. If this variable were controlling the For
loop, the program would see that this value is greater than 2, so it would not display its final value.

For Each

A For Each loop iterates over the items in a collection, array, or other container class that supports
For Each loops. The syntax is as follows:

For Each variable [As object_type] In group
statements
[Exit For]
statements



312

| CHAPTER 17 PROGRAM CONTROL STATEMENTS

[Continue For]
statements
Next [variable]

Here, group is a collection, array, or other object that supports For Each. As in For Next loops, the
control variable must be declared either in or before the For statement if you have Option Explicit
on and Option Infer off.

ENABLING ENUMERATORS

To support For Each, the group object must implement the System.Collections
JEnumerable interface. This interface defines a GetEnumerator method that returns
an enumerator. For more information, see the next section, “Enumerators.”

The control variable must be of a data type compatible with the objects contained in the group.

If the group contains Employee objects, the variable could be an Employee object. It could also be
a generic Object or any other class that readily converts into an Employee object. For example,

if Employee inherits from the Person class, then the variable could be of type Person.

Visual Basic doesn’t automatically understand what kinds of objects are stored in a collection or
array until it tries to use them. If the control variable’s type is not compatible with an object’s type,
the program generates an error when the For Each loop tries to assign the control variable to that
object’s value.

That means if a collection or array contains more than one type of object, the control variable must
be of a type that can hold all of the objects. If the objects in a collection do not inherit from a com-
mon ancestor class, the code must use a control variable of type Object.

Like For Next loops, For Each loops support the Exit For and Continue For statements.

As is the case with For Next loops, declaring the looping variable in the For Each statement is a
good practice. It limits the scope of the variable, so you don’t need to remember what the variable

is for in other pieces of code. It keeps the variable’s declaration close to the code where it is used, so
it’s easier to remember the variable’s data type. It also lets you more easily reuse counter variables
without fear of confusion. If you have several loops that need an arbitrarily named looping variable,
they can all declare and use the variable obj, person, or whatever else makes sense without interfer-
ing with each other.

Your code can change the value of the control variable inside the loop, but that has no effect on

the loop’s progress through the collection or array. The loop resets the variable to the next object
inside the group and continues as if you had never changed the variable’s value. To avoid confusion,
don’t bother.

Changes to a collection are immediately reflected in the loop. For example, if the statements inside
the loop add a new object to the end of the collection, then the loop continues until it processes the



Looping Statements | 313

new item. Similarly, if the loop’s code removes an item from the end of the collection (that it has not
yet reached), the loop does not process that item.

The exact effect on the loop depends on whether the item added or removed comes before or

after the object the loop is currently processing. For example, if you remove an item before the
current item, the loop has already examined that item, so there is no change to the loop’s behavior.
If you remove an item after the current one, the loop doesn’t examine it. If you remove the current
item, the loop seems to get confused and exits without raising an error.

Additions and deletions to an array are not reflected in the loop. If you use a ReDim statement to
add items to the end of the array, the loop does not process them. If you try to access those objects,
however, the program generates an “Index was outside the bounds of the array” error.

If you use ReDim to remove items from the end of the array, the loop processes those items
anyway! If you modify the values in the array, for example, you change an object’s properties or
set an array entry to an entirely new object, the loop sees the changes.

To avoid all these possible sources of confusion, don’t modify a collection or array while a For
Each loop is examining its contents.

CREATIVE COLLECTIONS

If you really must modify a collection while looping through it, create a new collec-
tion and modify that one instead. For example, suppose you want to loop through
the original collection and remove some items. Make the new collection and then
loop through the original, copying the items that you want to keep into the new
collection.

In really complicated situations, you may need to use a While loop and some careful
indexing instead of a For Each loop.

One common scenario when dealing with collections is examining every item in the collection and
removing some of them. If you use a For Each loop, removing the loop’s current item makes the loop
exit prematurely.

Another approach that seems like it might work (but doesn’t) is to use a For Next loop, as shown in
the following code. If the code removes an object from the collection, the loop skips the next item
because its index has been reduced by one and the loop has already passed that position in the
collection. Worse still, the control variable i will increase until it reaches the original value of
employees.Count. If the loop has removed any objects, the collection no longer holds that many
items. The code tries to access an index beyond the end of the collection and throws an error.

Dim emp As Employee

For 1 As Integer = 1 To employees.Count

emp = employees (i)

If emp.IsManager Then employees.Remove (i)
Next 1



314 | CHAPTER17 PROGRAM CONTROL STATEMENTS

One solution to this problem is to use a For Next loop to examine the collection’s objects in reverse
order, as shown in the following example. In this version, the code never needs to use an index after
it has been deleted because it is counting backward. The index of an object in the collection also
doesn’t change unless that object has already been examined by the loop. The loop examines every
item exactly once, no matter which objects are removed.

For 1 As Integer = employees.Count To 1 Step -1
emp = employees (i)
If emp.IsManager Then employees.Remove (1)
Next 1

Enumerators

An enumerator is an object that lets you move through the objects contained by some sort of con-
tainer class. For example, collections, arrays, and hash tables provide enumerators. This section
discusses enumerators for collections, but the same ideas apply for these other classes.

You can use an enumerator to view the objects in a collection but not to modify the collection
itself. You can use the enumerator to alter the objects in the collection (for example, to change their
properties), but you can generally not use it to add, remove, or rearrange the objects in the collection.

Initially, an enumerator is positioned before the first item in the collection. Your code can use the
enumerator’s MoveNext method to step to the next object in the collection. MoveNext returns True
if it successfully moves to a new object or False if there are no more objects in the collection.

The Reset method restores the enumerator to its original position before the first object, so you can
step through the collection again.

The Current method returns the object that the enumerator is currently reading. Note that Current
returns a generic Object, so you will probably need to convert the result into a more specific data
type before you use it. Invoking Current throws an error if the enumerator is not currently reading
any object. That happens if the enumerator is before the first object or after the last object.

The following example uses an enumerator to loop through the items in a collection named
Employees:

Dim emp As Employee
Dim employee_enumerator As IEnumerator
employee_enumerator = Employees.GetEnumerator ()
Do While (employee_enumerator.MoveNext)
emp = CType(employee_enumerator.Current, Employee)
Debug.WriteLine(emp.Title & " " &.FirstName & " " & emp.LastName)
Loop

This code declares an Employee variable named emp and an IEnumerator object named employee
enumerator. It uses the collection’s GetEnumerator method to obtain an enumerator for the col-
lection. The program then enters a While loop. If employee_enumerator.MoveNext returns True,
the enumerator has successfully moved to the next object in the collection. As long as it has read an
object, the program uses CType to convert the generic object returned by Current into an Employee



Looping Statements | 315

object, and it displays the Employee object’s Title, FirstName, and LastName values. When it has
finished processing all of the objects in the collection, employee_enumerator.MoveNext returns
False and the While loop ends.

EXACT ENUMERATORS

Some containers support enumerators that use more specific data types. For
example, a program can use a generic List that contains a specific kind of object
such as Employee. Then it can use a generic enumerator of the correct type, in this
case IEnumerator (Of Employee). In that case, the enumerator’s Current property
returns an Employee instead of an Object so the code does not need to convert it
into an Employee before using its methods.

Example program EnumerateEmployees, which is available for download on the
book’s website, creates a generic List (0Of Employee). It then creates a generic
IEnumerator (Of Employee) for the list and uses it to loop through the list. For
more information on generics, see Chapter 26, “Generics.”

A For Each loop provides roughly the same access to the items in a container class as an enumera-
tor. Under some circumstances, however, an enumerator may provide a more natural way to loop
through a container class than a For Each loop. For example, an enumerator can skip several items
without examining them closely. You can also use an enumerator’s Reset method to restart the enu-
meration. To restart a For Each loop, you would need to repeat the loop, possibly by placing it inside
yet another loop that determines when to stop looping.

The Visual Basic documentation states that an enumerator is valid only as long as you do

not modify the collection. If you add or remove an object to or from the collection, the enumerator
throws an “invalid operation” exception the next time you use it. In at least some cases,

however, this doesn’t seem to be true, and an enumerator can still work even if you modify

its collection. This could lead to extremely confusing situations, however. To avoid unnecessary
confusion, do not modify a collection while you are accessing it with an enumerator.

The IEnumerable interface defines the features needed for enumerators so any class that
implements the [Enumerable interface provides enumerators. Any class that supports For Each
must also implement the IEnumerable interface, so any class that supports For Each also supports
enumerators. A few of the classes that implement IEnumerable include the following:

Array HybridDictionary SglDataReader
ArrayList ListDictionary Stack
Collection MessageQueue String

continues



316 | CHAPTER17 PROGRAM CONTROL STATEMENTS

(continued)

CollectionBase OdbcDataReader StringCollection

ControlCollection OleDbDataReader StringDictionary

DataView OracleDataReader TableCellCollection

DictionaryBase Queue TableRowCollection

DictionaryEntries ReadOnlyCollectionBase XmINode

Hashtable SortedList XmINodelList
Iterators

An iterator is similar in concept to an enumerator. It also provides methods that allow you to
step through the objects in some sort of container object. Iterators are more specialized than
enumerators and work with a particular kind of class. Although you can use a nonspecific
[Enumerator object to step through the items contained in any class that implements
[Enumerable (an array, collection, hash table, or whatever), a certain iterator class is
associated with a specific container class.

For example, a GraphicsPath object represents a series of connected lines and curves.
A GraphicsPathlterator object can step through the line and curve data contained in a
GraphicsPath object.

Iterators are much more specialized than enumerators. How you use them depends on what you
need to do and on the kind of iterator, so they are not described in detail here.
Do Loop Statements

Visual Basic .NET supports three basic forms of Do Loop statements. The first form is a loop that
repeats forever. The syntax is as follows:

Do
statements
[Exit Do]
statements
[Continue Do]
statements
Loop

This kind of Do Loop executes the code it contains until the program somehow ends the loop. The
following loop processes work orders. It calls the Wworkorderavailable function to see if a work
order is available. If an order is available, the code calls Processworkorder to process it. The code
then repeats the loop to look for another work order.



Looping Statements | 317

Do
' See if a work order is available.
If WorkOrderAvailable() Then
' Process the next work order.
ProcessWorkOrder ()
End If
Loop

This example keeps checking for work orders forever. Most programs include some method for the
loop to end so that the program can eventually stop. For example, the loop might use the Exit Do
statement described shortly to end the loop if the user clicks a Stop button.

The second and third forms of Do Loop statements both include a test to determine whether they
should continue looping. The difference between the two versions is where they place the test.

The next version of Do Loop places its test at the beginning, so the test is evaluated before the code
is executed. If the test initially indicates that the loop should not continue, the statements inside the
loop are never executed. The syntax is as follows:

Do {While | Until} condition
statements
[Exit Do]
statements
[Continue Do]
statements
Loop

The final version of Do Loop places its test at the end. In this version, the statements inside the loop
are executed before the loop performs its test. That means that the code is always executed at least
once. The syntax is as follows:

Do
statements
[Exit Dol
statements
[Continue Do]
statements
Loop {While | Until} condition

If the code uses the While keyword, the loop executes as long as the condition is True. If the code
uses the Until keyword, the loop executes as long as the condition is False. Note that the statement
Until condition is equivalent to While Not condition. Visual Basic provides these two variations so
that you can pick the one that makes your code more readable. Use the one that makes the most
sense to you.

The Exit Do statement allows the program to leave the nearest enclosing Do loop before it would
normally finish. The Continue Do statement makes the loop jump back to its Do statement and start
the loop over again. This is particularly useful if the program doesn’t need to execute the rest of the
steps within the loop and wants to quickly start the next iteration.



318

CHAPTER 177 PROGRAM CONTROL STATEMENTS

NOTE Example program ExitAndContinue, which is available for download on
the book’s website, demonstrates the Exit and Continue statements for Do and
For loops.

Unlike a For Next or For Each loop, the Do Loop does not automatically increment a looping vari-
able or move to the next object in a collection. The code must explicitly change the loop’s condition
before reaching the Loop statement or calling Continue Do or else the loop will continue forever.

While End

A While End loop is equivalent to a Do While Loop. The syntax is as follows:

While condition
statements
[Exit While]
statements
[Continue While]
statements

End While

This is equivalent to the following Do While Loop:

Do While condition
statements
[Exit Do]
statements
[Continue Do]
statements

Loop

The Exit While statement exits a While End Loop just as an Exit Do statement exits a Do While
Loop. Similarly, Continue While makes the program return to the top of the loop just as Continue
Do does for Do loops.

The difference between While End and Do While Loop is stylistic, and you can use whichever seems
clearer to you. Because Do Loop provides more flexibility, having four different versions using While
or Until at the start or finish of the loop, you might want to stick to them for consistency’s sake.

SUMMARY

Control statements form the heart of any program. Decision statements determine what commands
are executed, and looping statements determine how many times they are executed.

Single-line and multiline If Then statements, as well as Select Case statements, are the most com-
monly used decision statements. IIf and Choose statements are often more confusing and sometimes
slower, so usually you should use If Then and Select Case statements instead. Under some specific



Summary | 319

circumstances, however, IIf and Choose may make your code more readable. Use your judgment and
pick the method that makes the most sense in your application.

For Next, For Each, and Do Loop are the most common looping statements. Some container classes
also support enumerators that let you step through the items in the container. An enumerator can be
more natural than a For Each loop under some circumstances.

A While End loop is equivalent to Do While Loop. You can use whichever you think makes more
sense, although you might want to use Do While because it is more consistent with the other forms
of Do Loop.

Using the control statements described in this chapter, you can build extremely complex and
powerful applications. In fact, you can build applications that are so complex that it is difficult to
ensure that they work correctly. Even a relatively simple application sometimes encounters errors.
Chapter 18, “Error Handling,” explains how you can protect an application from unexpected
errors and let it take action to correct any problems, or at least to avoid crashing.






18

Error Handling

WHAT'’S IN THIS CHAPTER

Global exception handling
Try Catch Finally statements

Throwing and re-throwing exceptions

Yy Y VY Y

Custom exceptions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this
chapter is divided into the following major examples:

> CustomException
GlobalException
ShowExceptionInfo

ThrowError

Y Y VY Y

Validatelnteger

THE STRUGGLE FOR PERFECTION

Although it is theoretically possible to write a program that perfectly predicts every possible
situation that it might encounter, in practice that’s very difficult for nontrivial programs. For
large applications, it is extremely difficult to plan for every eventuality. Errors in the program’s
design and implementation can introduce bugs that give unexpected results. Users and
corrupted databases may give the application values that it doesn’t expect.

Similarly, changing requirements over time may introduce data that the application was never
intended to handle. The Y2K bug is a good example. When engineers wrote accounting,
auto registration, financial, inventory, and other systems in the 1960s and 1970s, they never


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

322 | CHAPTER18 ERROR HANDLING

dreamed their programs would still be running in the year 2000. At the time, disk storage

and memory were relatively expensive, so they stored years as 2-byte values (for example,

89 meant 1989). When the year 2000 rolled around, the applications couldn’t tell whether the value
01 meant the year 1901 or 2001. In one humorous case, an auto registration system started issuing
horseless carriage license plates to new cars because it thought cars built in 00 must be antiques.

The Y2K problem wasn’t really a bug. It was a case of software used with data that wasn’t part of
its original design.

This chapter explains different kinds of exceptional conditions that can arise in an application.
These range from unplanned data (as in the Y2K problem) to bugs where the code is just plain

wrong. With some advance planning, you can build a robust application that can keep running
gracefully, even when the unexpected happens.

BUGS VERSUS UNPLANNED CONDITIONS

Several different types of unplanned conditions can derail an otherwise high-quality application.
How you should handle these conditions depends on their nature.

For this discussion, a bug is a mistake in the application code. Some bugs become apparent right
away and are easy to fix. These usually include simple typographic errors in the code and cases
where you misuse an object (for example, by using the wrong control property). Other bugs are sub-
tler and may only be detected long after they occur. For example, a data-entry routine might place
invalid characters into a rarely used field in a Customer object. Only later when the program tries to
access that field will you discover the problem. This kind of bug is difficult to track down and fix,
but you can take some proactive steps to make these sorts of bugs easier to find.

BUGS THROUGHOUT HISTORY

On a historical note, the term “bug” has been used since at least the time of the tele-
graph to mean some sort of defect. Probably the origin of the term in computer science
was an actual moth that was caught between two relays in an early computer in

1947. For a bit more information, including a picture of this first computer bug,

see http://www.jamesshuggins.com/h/tekl/first_computer_bug.htm.

An unplanned condition is some predictable condition that you don’t want to happen, but that

you know could happen despite your best efforts. For example, there are many ways that a simple
printing operation can fail. The printer might be unplugged, disconnected from its computer, dis-
connected from the network, out of toner, out of paper, experiencing a memory fault, clogged by a
paper jam, or just plain broken. These are not bugs, because the application software is not at fault.
There is some condition outside of the program’s control that must be fixed.

Another common unplanned condition occurs when the user enters invalid data. You may want the user
to enter a value between 1 and 10 in a text box, but the user might enter 0, 9999, or “lunch” instead.


http://www.jamesshuggins.com/h/tek1/first_computer_bug.htm

Bugs versus Unplanned Conditions | 323

You can’t fix unplanned conditions but you can try to make your program handle them gracefully
and produce some meaningful result instead of crashing.

Catching Bugs

By definition, bugs are unplanned. No reasonable programmer sits down and thinks, “Perhaps I’ll
put a bug in this variable declaration.”

Because bugs are unpredictable, you cannot know ahead of time where a bug will lie. However,

you can watch for behavior in the program that indicates that a bug may be present. For example,
suppose that you have a subroutine that sorts a purchase order’s items by cost. If the routine receives
an order with 100,000 items, something is probably wrong. If one of the items is a computer
keyboard with a price of $73 trillion, something is probably wrong. If the customer who placed the
order doesn’t exist, something is probably wrong.

This routine could go ahead and sort the 100,000 items with prices ranging from a few cents to
$73 trillion. Later, the program would try to print a 5,000-page invoice with no shipping or billing
address. Only then would the developers realize that there was a problem.

Rather than trying to work around the problematic data, it would be better if the sorting routine
immediately told developers that something was wrong so they could start trying to find the cause
of the problem. Bugs are easier to find the sooner they are detected. This bug will be easier to find
if the sorting routine notices it, rather than waiting until the application tries to print an invalid
invoice. Your routines can protect themselves and the program as a whole by proactively validating
inputs and outputs, and reporting anything suspicious to developers.

Some developers object to making routines spend considerable effort validating data that they know
is correct. After all, one routine generated this data and passed it to another, so you know that it is
correct because the first routine did its job properly. That’s only true if every routine that touches the
data works perfectly. Because bugs are by definition unexpected, you cannot safely assume that all
the routines are perfect and that the data remains uncorrupted.

AUTOMATED BUG CATCHERS

Many companies use automated testing tools to try to flush out problems early.
Regression testing tools can execute code to verify that its outcome isn’t changed
after you have made modifications to other parts of the application. If you build a
suite of testing routines to validate data and subroutines’ results, you may be able
to work them into an automated testing system, too.

To prevent validation code from slowing down the application, you can use the Debug object’s
Assert method to check for strange conditions. When you are debugging the program, these state-
ments throw an error if they detect something suspicious. When you make a release build to send to
customers, the Debug.Assert code is automatically removed from the application. That makes the
application faster and doesn’t inflict cryptic error messages on the user.



324 | CHAPTER18 ERROR HANDLING

You can also use the DEBUG, TRACE, and CONFIG compiler constants to add other input and
output validation code.

Example program SortOrders, which is available for download from the book’s website, uses the
following code to validate a subroutine’s inputs. (This program doesn’t actually do anything; it just
shows how to write input validation code.)

Private Sub SortOrderItems (ByVal the_order As Order)
' Validate input.
Debug.Assert (the_order.Items IsNot Nothing, "No items in order")
Debug.Assert (the_order.Customer IsNot Nothing, "No customer in order")
Debug.Assert (the_order.Items.Count < 100, "Too many order items")

' Sort the items.

' Validate output.
#If DEBUG Then
' Verify that the items are sorted.
For 1 As Integer = 2 To the_order.Items.Count
Dim order_iteml = the_order.Items(i - 1)
Dim order_item2 = the_order.Items (1)
Debug.Assert (order_iteml.Price <= order_item2.Price,
"Order items not properly sorted")
Next 1
#End If
End Sub

The subroutine starts by validating its input. It verifies that the Order object that it received has an
Items collection and that its Customer property is not Nothing. It also verifies that the order con-
tains fewer than 100 items. If a larger order comes along during testing, developers can increase this
number to 200 or whatever value makes sense, but there’s no need to start with an unreasonably
large default.

Before the subroutine exits, it loops through the sorted items to verify that they are correctly sorted.
If any item has cost less than the one before it, the program throws an error. Because this test is con-
tained within an #If DEBUG Then statement, this code is removed from release builds.

After you have tested the application long enough, you should have discovered most of these types
of errors. When you make the release build, the compiler automatically removes the validation code,
making the finished executable smaller and faster.

Catching Unplanned Conditions

Although you don’t want an unplanned condition to happen, with some careful thought, you can
often predict where one might occur. Typically, these situations arise when the program must work
with something outside of its own code. For example, when the program needs to access a file,
printer, web page, floppy disk, or CD-ROM, that item may be unavailable. Similarly, whenever the
program takes input from the user, the user may enter invalid data.



Bugs versus Unplanned Conditions | 325

Notice how this differs from the bugs described in the previous section. After sufficient testing, you
should have found and fixed most of the bugs. No amount of testing can remove the possibility of
unplanned conditions. No matter what code you use, the user may still remove a flash drive from
the drive before the program is ready or unplug the printer while your program is using it.

Whenever you know that an unplanned condition might occur, you should write code to protect the
program from dangerous conditions. It is generally better to test for these conditions ahead of time
before you perform an action that might fail rather than simply attempting to perform the action
and then catching the error when you fail. Testing for problem conditions generally gives you more
complete information about what’s wrong. It’s also usually faster than catching an error because
structured error handling (described shortly) comes with considerable overhead.

For example, the following statement sets an integer variable using the value the user entered in a
text box:

Dim num_items As Integer = Integer.Parse(txtNumItems.Text)

The user might enter a valid value in the text box. Unfortunately, the user may also enter something
that is not a number, a value that is too big to fit in an integer, or a negative number when you are
expecting a positive one. The user may even leave the field blank.

Example program ValidateInteger uses the following code to validate integer input:

' Check for blank entry.

Dim num_items_txt As String = txtNumItems.Text

If num_items_txt.Length < 1 Then
MessageBox.Show ("Please enter Num Items")
txtNumItems.Focus ()
Exit Sub

End If

' See if it's numeric.

If Not IsNumeric (num_items_txt) Then
MessageBox.Show ("Num Items must be a number")
txtNumItems.Select (0, num_items_txt.Length)
txtNumItems.Focus ()

Exit Sub

End If

' Assign the value.

Dim num_items As Integer

Try
num_items = Integer.Parse (txtNumItems.Text)

Catch ex As Exception
MessageBox.Show ("Error in Num Items." & vbCrLf & ex.Message)
txtNumItems.Select (0, num_items_txt.Length)
txtNumItems.Focus ()
Exit Sub

End Try



326 | CHAPTER18 ERROR HANDLING

' Check that the value is between 1 and 100.

If num items < 1 Or num_items > 100 Then
MessageBox.Show ("Num Items must be between 1 and 100")
txtNumItems.Select (0, num_items_txt.Length)
txtNumItems.Focus ()

Exit Sub

End If

The code checks that the field is not blank and uses the IsNumeric function to verify that the field
contains a numeric value.

Unfortunately, the IsNumeric function doesn’t exactly match the behavior of functions such as
Integer.Parse. IsNumeric returns False for values such as &H10, which is a valid hexadecimal

value that Integer.Parse can correctly interpret. [sNumeric also returns True for values such as
123456789012345 that lie outside of the values allowed by integers and 1.2, which is numeric but
not an integer. Because IsNumeric doesn’t exactly match Integer.Parse, the program still needs to
use a Try Catch block (bolded in the previous code) to protect itself when it actually tries to convert
the string into an integer.

The code finishes by verifying that the value lies within a reasonable bound. If the value passes all of
these checks, the code uses the value.

NOTE These checks must always occur so you cannot replace them with Debug
.Assert statements, which are removed from release builds.

A typical program might need to read and validate many values, and retyping this code for each
value would be cumbersome. A better solution is to move it into an IsvalidInteger function and
then call the function as needed.

You can write similar routines to validate other types of data fields such as phone numbers, e-mail
addresses, street addresses, and so on.

Global Exception Handling

Normally, you should try to catch an error as close as possible to the place where it occurs. If
an error occurs in a particular subroutine, it will be easiest to fix the bug if you catch it in that
subroutine.

However, bugs often arise in unexpected places. Unless you protect every subroutine with
error-handling code (a fairly common strategy), a bug may arise in code that you have not
protected.

In early versions of Visual Basic, you could not catch that kind of bug, so the application crashed. In
the most recent versions of Visual Basic, however, you can define a global error handler to catch any
bug that isn’t caught by other error-handling code.



Bugs versus Unplanned Conditions | 327

ERRORS, ERRORS, EVERYWHERE

In fact, some sources of errors are completely beyond your control. For example,
power surges, static electricity, intermittent short circuits, or even stray radiation
striking exactly the right part of a chip can make the computer’s hardware
misbehave so code that should work correctly fails. There’s little you can do to
anticipate these kinds of errors but you can use global error handling to try

to recover from them.

Of course that doesn’t excuse you from rigorously checking your code for errors.
The vast majority of bugs are due to real mistakes in the code or data rather than to
magical cosmic rays flipping a single bit on a memory chip.

To define application-level event handlers, double-click My Project in the Project Explorer. Open
the Application tab and click the View Application Events button. This opens a code window for
application-level events.

In the left drop-down list, select (MyApplication Events). Then in the right drop-down list, you
can select one of several events including Network AvailabilityChanged, Shutdown, Startup,
StartupNextInstance, and UnhandledException. Select the last of these commands to open the
UnhandledException event handler.

In the event handler, you can take whatever action is appropriate for the error. Because you prob-
ably didn’t anticipate the error, there’s usually little chance that the program can correct it properly.
However, you can at least log the error and possibly save data before shutting down the application.

The event parameter e has an ExitApplication property that you can set to True or False to tell
Visual Basic whether the application should terminate.

KEEP RUNNING

Usually it’s better for an application to do the best it can to recover and keep run-
ning instead of exiting. Even if the program must reset itself to a default state, that
at least saves the user the trouble of restarting the application, reopening forms,
arranging toolbars, and otherwise getting the program ready to work. Before you
decide, compare the difficulty of making the program reset and continue with the
trouble the user will have restarting and getting back to work.

Example program GlobalException uses the following code to display a message giving the
unhandled exception’s error message. It then sets e.Exitapplication to False, so the program
keeps running.



328 | CHAPTER18 ERROR HANDLING

Private Sub MyApplication_UnhandledException(sender As Object,
e As ApplicationServices.UnhandledExceptionEventArgs)
Handles Me.UnhandledException

MessageBox.Show ("Exception caught globally" & vbCrLf & e.Exception.Message)
e.ExitApplication = False

End Sub

When you run the application in the IDE, Visual Basic stops execution in the debugger when it
reaches the statement that causes the error, so the UnhandledException event handler never
executes. If you run the compiled executable, however, the UnhandledException event fires and the
global error handler runs.

STRUCTURED ERROR HANDLING

Visual Basic .NET uses the Try Catch block to provide structured error handling. The syntax is as
follows:

Try
try_statements

[Catch ex As exception_type_1
exception_statements_1

1

[Catch ex As exception_type_2
exception_statements_2

1
[Catch
final_exception_statements
1
[Finally
finally_statements

]
End Try

The program executes the code in the try_statements block. If any of that code throws an exception,
the program jumps to the first Catch statement.

If the exception matches exception_type_1, the program executes the code in exception_statements_1.
The exception type might match the Catch statement’s exception class exactly, or it might be a
subclass of the listed class. For example, suppose that the code in the try_statements block per-
forms a calculation that divides by zero. That raises a DivideByZeroException. That class inherits
from the ArithmeticException class, which inherits from SystemException, which inherits from
Exception. That means the code would stop at the first Catch statement it finds that looks for
DivideByZeroException, ArithmeticException, SystemException, or Exception.

If the raised exception does not match the first exception type, the program checks the next Catch
statement. The program keeps comparing the exception to Catch statements until it finds one that
applies, or it runs out of Catch statements.



Structured Error Handling | 329

CATCH CONTROL

Arrange Catch statements so the most specific come first. Otherwise, a more general
statement will catch errors before a more specific statement has a chance. For exam-
ple, the generic Exception class matches all other exceptions, so if the first Catch
statement catches Exception, no other Catch statements will ever execute.

If two Catch statements are unrelated, neither will catch the other’s exceptions, so
put the exception more likely to occur first. That will make the code more efficient
because it looks for the most common problems first. It also keeps the code that is
most likely to execute near the top where it is easier to read.

If no Catch statement matches the exception, the exception “bubbles up” to the next level in the call
stack and Visual Basic moves to the routine that called the current one. If that routine has appropri-
ate error-handling code, it deals with the error. If that routine can’t catch the error, the exception
bubbles up again until Visual Basic eventually either finds error-handling code that can catch the
exception or runs off the top of the call stack. If it runs off the call stack, Visual Basic calls

the global UnhandledException event handler described in the previous section, if one exists.

If there is no UnhandledException event handler, the program crashes.

If you include a Catch statement with no exception type, that block matches any exception. If the
raised exception doesn’t match any of the previous exception types, the program executes the final_
exception_statements block of code. Note that the statement Catch ex As Exception also matches
all exceptions, so it’s just as good as Catch by itself. It also gives you easy access to the exception
object’s properties and methods.

You can figure out what exception classes to use in Catch statements in several ways. First, you can
spend a lot of time digging through the online help. An easier method is to let the program crash
and then look at the error message it produces. Figure 18-1 shows the error message a program
throws when it tries to convert the non-numeric string Hello into an integer with

Integer.Parse. From the exception dialog box’s title, it’s easy to see that the program should

look for a FormatException.

Another way to deCide What types Of exceptions Private Sub btnCalculate_Click(sender As Object, e As EventArgs)
h . 1 ﬁ 1 . C h A ' Get the number of orders.
to catch is to place a nnal generic atch ex As Dim num orders As Integer = Integer.Parse(txtNumOrders.Text):

Exception statement at the end of the Catch list.
Place code inside that Catch block that displays
either the exception’s type name (use TypeName)
or the result of its ToString method. When you
encounter new exception types, you can give them
their own Catch statements and take action that’s
appropriate to that exception type.

Dol Form atException was unhandled

End Sub Input string was not in a correct farmat,

FIGURE 18-1: When a program crashes, the
message it generates tells you the type of
exception it raised.




330 | CHAPTER18 ERROR HANDLING

CATCH CATASTROPHES

It may not be possible to take meaningful action when you catch certain exceptions.
For example, if a program uses up all of the available memory, Visual Basic throws
an OutOfMemoryException. If there is no memory available, you may have trouble
doing anything useful. Similarly, if there’s a problem with the filesystem, you may
be unable to write error descriptions into a log file.

After it has finished running the code in try_statements and it has executed any necessary exception
code in a Catch block, the program executes the code in finally_statements. The statements in the
Finally section execute whether the code in try_statements succeeds or fails.

You do not need to include any Catch statements in a Try block, but leaving them all out defeats the
Try block’s purpose. If the try_statements raise an error, the program doesn’t have any error code to
execute, so it sends the error up the call stack. Eventually, the program finds an active error handler
or the error pops off the top of the stack and the program crashes. You may as well not bother with
the Try block if you aren’t going to use any Catch sections.

A Try block must include at least one Catch or Finally section, although those sections do not need
to contain any code. For example, the following Try block calls subroutine DoSomething and uses
an empty Catch section to ignore any errors that occur:

Try
DoSomething ()

Catch

End Try

Example program ThrowError, which is available for download on the book’s website, shows how a
program can use a Try Catch block to handle errors.

Exception Objects

When a Catch statement catches an exception, its exception variable contains information about the
error that raised the exception. Different exception classes may provide different features, but they
all provide the basic features defined by the Exception class from which they are all derived. The
following table lists the most commonly used Exception class properties and methods.

ITEM PURPOSE

InnerException The exception that caused the current exception. For example, suppose
that you write a tool library that catches an exception and then throws a
new custom exception describing the problem in terms of your library. You
should set InnerException to the exception that you caught before you
threw the new exception.

Message Returns a brief message that describes the exception.



Structured Error Handling | 331

Source Returns the name of the application or object that threw the exception.

StackTrace Returns a string containing a stack trace giving the program’s location
when the error occurred.

TargetSite Returns the name of the method that threw the exception.

ToString Returns a string describing the exception and including the stack trace.

Example program ShowExceptionInfo, which is available for download on the book’s website,
displays an exception’s Message, StackTrace, and ToString values.

At a minimum, the program should log or display the Message value for any unexpected exceptions
so you know what exception occurred. It might also log the StackTrace or the result of ToString so
you can see where the exception occurred.

The StackTrace and ToString values can help developers find a bug, but they can be intimidat-

ing to end users. Even the abbreviated format used by the exception’s Message property is usually
not very useful to a user. When the user clicks the Find Outstanding Invoices button, the message
“Attempted to divide by zero” doesn’t really tell the user what the problem is or what to do about it.

When a program catches an error, a good strategy is to record the full ToString message in a log file
or e-mail it to a developer. Then display a message that restates the error message in terms that the
user can understand. For example, the program might say the following: “Unable to total outstand-
ing invoices. A bug report has been sent to the development team.” The program should then try

to continue as gracefully as possible. It may not be able to finish this calculation, but it should not
crash, and it should allow the user to continue working on other tasks if possible.

Throwing Exceptions

In addition to catching exceptions, your program may need to generate its own exceptions. Because
handling an exception is called catching it, raising an exception is called throwing it. (This is just a
silly pun. People also catch lions and colds, but I don’t think many people throw them. It’s as good a
term as any, however.)

To throw an exception, the program creates an instance of the type of exception it wants to gener-
ate, passing the constructor additional information describing the problem. The program can then
set other exception fields if you like. For example, it might set the exception’s Source property to tell
any other code that catches the error where it originated. The program then uses the Throw state-
ment to raise the error. If an error handler is active somewhere in the call stack, Visual Basic jumps
to that point and the error handler processes the exception.

Example program DrawableRect, which is available for download on the book’s website, uses the
following code to show how the DrawableRectangle class can protect itself against invalid input:

Public Class DrawableRectangle
Public Sub New(new_x As Integer, new_y As Integer,
new_width As Integer, new_height As Integer)
' Verify that new_width > 0.



332

| CHAPTER18 ERROR HANDLING

If new _width <= 0 Then
Dim ex As New ArgumentException (
"DrawableRectangle must have a width greater than zero",
"new_width")
Throw ex
End If

' Verify that new_height> 0.
If new_height < = 0 Then
Throw New ArgumentException (
"DrawableRectangle must have a height greater than zero",
"new_height")
End If
' Save the parameter values.

End Sub
End Class
The class’s constructor takes four arguments: an x and v position, and a width and height. If the
width is less than or equal to zero, the program creates a new ArgumentException object. It passes
the exception’s constructor a description string and the name of the argument that is invalid. After
creating the exception object, the program uses the Throw statement to raise the error. The code

checks the object’s new height similarly, but it creates and throws the exception in a single statement
to demonstrate another style for throwing an error.

The following code shows how a program might use a Try block to protect itself while creating a
new DrawableRectangle object:

Try

Dim rect As New DrawableRectangle (10, 20, 0, 100)
Catch ex As Exception

MessageBox.Show (ex.Message)
End Try

When your application needs to throw an exception, it’s easiest to use an existing exception
class. There are a few ways to get lists of exception classes so that you can find one that makes
sense for your application. Appendix O, “Useful Exception Classes,” lists some of the more
useful exception classes. The online help topic, “Introduction to Exception Handling in
Visual Basic NET” at http://msdn.microsoft.com/aa289505.aspx also has a good list

of exception classes at the end. Microsoft’s web page http://msdn.microsoft.com/system
.exception_derivedtypelist.aspx provides a very long list of exception classes that are
derived from the System.Exception class.

Another method for finding exception classes is to open the Object Browser (select the View menu’s
Object Browser command) and search for “Exception.”

When you throw exceptions, you must use your judgment about selecting these classes. For example,
Visual Basic uses the System.Reflection. AmbiguousMatchException class when it tries to bind


http://msdn.microsoft.com/aa289505.aspx
http://msdn.microsoft.com/system.exception_derivedtypelist.aspx
http://msdn.microsoft.com/system.exception_derivedtypelist.aspx

Structured Error Handling | 333

a subroutine call to an object’s method and it cannot determine which overloaded method to use.
This happens at a lower level than your program will act, so you won’t use that class for exactly the
same purpose but it still may be useful to throw that exception. For example, if your program parses
a string and, based on the string, cannot decide what action to take, you might use this class to
represent the error, even though you’re not using it exactly as it was originally intended.

Be sure to use the most specific exception class possible. Using more generic classes such as
Exception makes it much harder for developers to understand and locate an error. If you cannot find
a good, specific fit, create your own exception class as described in the section “Custom Exceptions”
later in this chapter.

Re-throwing Exceptions

Sometimes when you catch an exception, you cannot completely handle the problem. In that case,
it may make sense to re-throw the exception so a routine higher up in the call stack can take a
crack at it.

To re-throw an error exactly as you caught it, simply use the Throw keyword as in the following
example:

Try
' Do something hard here.

Catch ex As ArithmeticException
' We can handle this exception. Fix it.

Catch ex As Exception
' We don't know what to do with this one. Re-throw it.
Throw

End Try

If your code can figure out more or less why an error is happening but it cannot fix it, it’s sometimes
a good idea to re-throw the error as a different exception type. For example, suppose a piece of code
causes an ArithmeticException but the underlying cause of the exception is an invalid argument.

In that case it is better to throw an ArgumentException instead of an ArithmeticException because
that will provide more specific information higher up in the call stack.

At the same time, however, you don’t want to lose the information contained in the original
ArithmeticException.

The solution is to throw a new ArgumentException but place the original ArithmeticException
in its InnerException property so code that catches the new exception has access to the original
information.

The following code demonstrates this technique:



334 | CHAPTER18 ERROR HANDLING

Try
' Do something hard here.

Catch ex As ArithmeticException
' This was caused by an invalid argument.
' Re-throw it as an ArgumentException.
Throw New ArgumentException("Invalid argument X in function Whatever.", ex)

Catch ex As Exception
' We don't know what to do with this one. Re-throw it.
Throw

End Try

Custom Exceptions

When your application needs to raise an exception, it’s easiest to use an existing exception class.
Reusing existing exception classes makes it easier for developers to understand what the exception
means. It also prevents exception proliferation, where the developer needs to watch for dozens or
hundreds of types of exceptions.

Sometimes, however, the predefined exceptions don’t fit your needs. For example, suppose that you
build a class that contains data that may exist for a long time. If the program tries to use an object
that has not refreshed its data for a while, you want to raise some sort of “data expired” exception.
You could squeeze this into the System.TimeoutException class, but that exception doesn’t quite fit
this use.

Building a custom exception class is easy. Make a new class that inherits from the
System.ApplicationException class. Then, provide constructor methods to let the program
create instances of the class. That’s all there is to it.

By convention, an exception class’s name should end with the word Exception. Also by convention,
you should provide at least three overloaded constructors for developers to use when creating new
instances of the class. (For more information on what constructors are and how to define them, see
the section “Class Instantiation Details” in Chapter 23, “Classes and Structures.”)

The first constructor takes no parameters and initializes the exception with a default message
describing the general type of error.

The other two versions take as parameters an error message, and an error message plus an inner
exception object. These constructors pass their parameters to the base class’s constructors to initial-
ize the object appropriately.

For completeness, you can also make a constructor that takes as parameters a SerializationInfo
object and a StreamingContext object. This version can also pass its parameters to a base class con-
structor to initialize the exception object, so you don’t need to do anything special with the param-
eters. This constructor is useful if the exception will be serialized and deserialized. If you’re not
sure whether you need this constructor, you probably don’t. If you do include it, however, you will
need to import the System.Runtime.Serialization namespace in the exception class’s file to define the
SerializationInfo and StreamingContext classes.



Debugging | 335

Example program CustomException, which is available for download on the book’s website, uses
the following code to define the ObjectExpiredException class:

Imports System.Runtime.Serialization

Public Class ObjectExpiredException
Inherits System.ApplicationException

' No parameters. Use a default message.
Public Sub New()

MyBase.New ("This object has expired")
End Sub

' Set the message.

Public Sub New(new_message As String)
MyBase.New (new_message)

End Sub

' Set the message and inner exception.

Public Sub New(new_message As String,

ByVal inner_exception As Exception)
MyBase.New (new_message, inner_exception)

End Sub

' Include SerializationInfo object and StreamingContext objects.
Public Sub New(info As SerializationInfo, context As StreamingContext)
MyBase.New(info, context)
End Sub
End Class

After you have defined the exception class, you can throw and catch it just as you can throw and
catch any exception class defined by Visual Basic. For example, the following code throws an
ObjectExpiredException error:

Throw New ObjectExpiredException("This Customer object has expired.")

The parent class System.ApplicationException automatically handles the object’s Message,
StackTrace, and ToString properties so you don’t need to implement them yourself.

DEBUGGING

Visual Basic provides a rich set of tools for debugging an application. Using the development
environment, you can stop the program at different lines of code and examine variables, change
variable values, look at the call stack, and call routines to exercise different pieces of the
application. You can step through the program, executing the code one statement at a time to
see what it is doing. You can even make some modifications to the source code and let the
program continue running.

Chapter 6, “Debugging,” describes tools that the development environment provides to help you
debug an application. These include tools for stepping through the code, breakpoints, and windows
such as the Immediate, Locals, and Call Stack windows. See Chapter 6 for details.



336 | CHAPTER18 ERROR HANDLING

In addition to setting breakpoints in the code, you can use the Stop statement to pause execution at
a particular line. This can be particularly useful for detecting unexpected values during testing. For
example, the following statement stops execution if the variable m_NumEmployees is less than 1 or
greater than 100:

If (m_NumEmployees < 1) Or (m_NumEmployees > 100) Then Stop

SUMMARY

In practice, it’s extremely difficult to anticipate every condition that might occur within a large
application. You should try to predict as many incorrect situations as possible, but you should also
plan for unforeseen errors. You should write error-checking code that makes bugs obvious when
they occur and recovers from them if possible. You may not be able to anticipate every possible bug,
but with a little thought you can make the program detect and report obviously incorrect values.

You should also look for unplanned conditions (such as the user entering a phone number in a Social
Security number field) and make the program react gracefully. Your program cannot control every-
thing in its environment (such as the user’s actions, printer status, and network connectivity), but it
should be prepared to work when things aren’t exactly the way they should be.

When you do encounter an error, you can use tools such as breakpoints, watches, and the develop-
ment environment’s Locals, Auto, Immediate, and Call Stack windows to figure out where the prob-
lem begins and how to fix it. You may never be able to remove every last bug from a 100,000-line
program, but you can make any remaining bugs relatively harmless and appear so rarely that the
users can do their jobs in relative safety.

Chapters 7 through 12 focused on controls, forms, and other user interface objects. Chapters 13
through 17 focused on the code that lies behind the user interface. Chapter 19, “Database Controls
and Objects,” covers database topics that fall into both the user interface and code-behind catego-
ries. It describes database controls that you can use to build an application’s user interface, as well
as components and other objects that you can use behind the scenes to manipulate databases.



19

Database Controls and Objects

WHAT'’S IN THIS CHAPTER

Yy Y VY Y

Connecting to data sources
Data objects
Transactions

Data binding

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

> BindComboBox

> DataGrids

> GenerateCommands

> MemoryDataSet

> Transactions
DATA SOURCES

The Windows Forms controls described in Chapter 7, “Selecting Windows Forms Controls,”
allow the application and the user to communicate. They let the application display data to the
user, and they let the user control the application.

Visual Basic’s database controls play roughly the same role between the application and a
database. They move data from the database to the application, and they allow the application
to send data back to the database.


http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

338 | CHAPTER19 DATABASE CONTROLS AND OBJECTS

Database programming is an enormous topic, and many books have been written that focus
exclusively on database programming. This is such a huge field that no general Visual Basic book
can adequately cover it in any real depth. However, database programming is also a very important
topic, and every Visual Basic programmer should know at least something about using databases
in applications.

This chapter explains how to build data sources and use drag-and-drop to create simple table- and
record-oriented displays. It also explains the most useful controls and objects that Visual Basic
provides for working with databases. Although this chapter is far from the end of the story, it will
help you get started building basic database applications.

DATA DESTINATIONS

Note that the example programs described in this chapter refer to database
locations as they are set up on my test computer. If you download them from the
book’s website (http: //www.vb-helper.com/vb_prog_ref .htm), you will have
to modify many of them to work with the database locations on your computer.

AUTOMATICALLY CONNECTING TO DATA

Visual Studio provides tools that make getting started with databases remarkably easy. Although
the process is relatively straightforward, it does involve a lot of steps. The steps also allow several
variations, so describing every possible way to build a database connection takes a long time. To
make the process more manageable, the following two sections group the steps in two pieces:
connecting to the data source and adding data controls to the form.

Connecting to the Data Source

To build a simple database program, start a new application and select the Data menu’s Add New
Data Source command to display the Data Source Configuration Wizard shown in Figure 19-1.

Visual Studio allows you to use databases, web services, and objects as data sources for your
application. The most straightforward choice is Database. Select the type of data source you want
to add (this example assumes it’s a database) and click Next to select a data model. The data
model determines the kinds of objects your code can use to manipulate the data. This example
assumes you will use a DataSet, which provides objects to represent tables and rows in the
database. Pick the data model type and click Next to select a data connection on the page shown
in Figure 19-2.


http://www.vb-helper.com/vb_prog_ref.htm

Automatically Connecting to Data | 339

ij Choose a Data Source Type
[ |

Where will the application get data from?

" o 8 O

Database Service Object

SharePoint

Lets you connect to a database and choose the database objects foryour application,

| < Previous H Next = | |

Finish | | Cancel |

|
FIGURE 19-1: Select the data source type for a new connection.

ij Choose Your Data Connection
™

Which data connection should your application use to connect to the database?
| ClassRecords.rmdb

V| | Mew Connection..,
This connection string appears to contain sensitive data (for exarnple, a passward), which is required to connect to the
database. Howewver, storing sensitive data in the connection string can be a security risk. Do you want to include this
sehsitive data in the connection string?

O Mo, exclude sensitive data fram the connection string, | will set this information in rmy application code,
O Yes, include sensitive data in the connection string,

Connection string that wou will save in the application {expand to see details)

| < Previous H Hext » | ‘ Cancel

FEinish | |

FIGURE 19-2: Pick the data connection or click New Connection to create a
new one.



340 | CHAPTER19 DATABASE CONTROLS AND OBJECTS

If you have previously created data connections, you

can select one from the drop-down list. If you have not
created any data connections, click the New Connection
button to open the Add Connection dialog box shown

in Figure 19-3. (If you see a Change Data Source dialog
box at this point, pick a data source type and click OK to
see the Add Connection dialog box.)

In Figure 19-3 I was selecting an Access databa