
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

VISUAL BASIC® 2012

PROGRAMMER’S REFERENCE

INTRODUCTION . xxvii

 � PART I IDE

CHAPTER 1 Introduction to the IDE . 3

CHAPTER 2 Menus, Toolbars, and Windows. .15

CHAPTER 3 Windows Forms Designer . 35

CHAPTER 4 WPF Designer . 45

CHAPTER 5 Visual Basic Code Editor. 55

CHAPTER 6 Debugging . 69

 � PART II GETTING STARTED

CHAPTER 7 Selecting Windows Forms Controls .81

CHAPTER 8 Using Windows Forms Controls . 97

CHAPTER 9 Windows Forms . 115

CHAPTER 10 Selecting WPF Controls . 131

CHAPTER 11 Using WPF Controls . 143

CHAPTER 12 WPF Windows . 171

CHAPTER 13 Program and Module Structure . 179

CHAPTER 14 Data Types, Variables, and Constants . 203

CHAPTER 15 Operators . 251

CHAPTER 16 Subroutines and Functions . 267

CHAPTER 17 Program Control Statements . 299

CHAPTER 18 Error Handling . 321

CHAPTER 19 Database Controls and Objects . 337

CHAPTER 20 LINQ . 381

CHAPTER 21 Metro-Style Applications .417

www.allitebooks.com

http://www.allitebooks.org

 � PART III OBJECT-ORIENTED PROGRAMMING

CHAPTER 22 OOP Concepts . 433

CHAPTER 23 Classes and Structures . 449

CHAPTER 24 Namespaces . 481

CHAPTER 25 Collection Classes . 493

CHAPTER 26 Generics . 515

 � PART IV INTERACTING WITH THE ENVIRONMENT

CHAPTER 27 Printing . 529

CHAPTER 28 Confi guration and Resources . 547

CHAPTER 29 Streams . 571

CHAPTER 30 Filesystem Objects . 585

 � PART V APPENDICES

APPENDIX A Useful Control Properties, Methods, and Events 611

APPENDIX B Variable Declarations and Data Types . 619

APPENDIX C Operators . 629

APPENDIX D Subroutine and Function Declarations . 637

APPENDIX E Control Statements . 641

APPENDIX F Error Handling . 647

APPENDIX G Windows Forms Controls and Components . 649

APPENDIX H WPF Controls . 657

APPENDIX I Visual Basic Power Packs . 665

APPENDIX J Form Objects . 669

APPENDIX K Classes and Structures . 681

APPENDIX L LINQ . 685

APPENDIX M Generics . 695

APPENDIX N Graphics . 699

APPENDIX O Useful Exception Classes . 711

APPENDIX P Date and Time Format Specifi ers . 715

www.allitebooks.com

http://www.allitebooks.org

APPENDIX Q Other Format Specifi ers . 719

APPENDIX R The Application Class . 725

APPENDIX S The My Namespace . 729

APPENDIX T Streams . 747

APPENDIX U Filesystem Classes . 755

APPENDIX V Visual Studio Versions .771

INDEX . 773

www.allitebooks.com

http://www.allitebooks.org

Visual Basic® 2012
PROGRAMMER’S REFERENCE

Rod Stephens

John Wiley & Sons, Inc.

Visual Basic® 2012 Programmer’s Reference

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-31407-4
ISBN: 978-1-118-33208-5 (ebk)
ISBN: 978-1-118-33535-2 (ebk)
ISBN: 978-1-118-43938-8 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012940034

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other coun-
tries, and may not be used without written permission. Visual Basic is a registered trademark of Microsoft Corporation.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any
product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com
http://booksupport.wiley.com

ABOUT THE AUTHOR

ROD STEPHENS started out as a mathematician, but while studying at MIT, he
discovered how much fun programming is and has been programming profes-
sionally ever since. During his career, he has worked on an eclectic assortment of
applications in such fi elds as telephone switching, billing, repair dispatching, tax
processing, wastewater treatment, concert ticket sales, cartography, and training
for professional football players.

Rod is a Microsoft Visual Basic Most Valuable Professional (MVP) and has taught
introductory programming at ITT Technical Institute. He has written more than

two dozen books that have been translated into languages from all over the world, and more than
250 magazine articles covering Visual Basic, C#, Visual Basic for Applications, Delphi, and Java.

Rod’s popular VB Helper website (www.vb-helper.com) receives several million hits per month and
contains thousands of pages of tips, tricks, and example programs for Visual Basic programmers,
as well as example code for this book. His C# Helper website (www.csharphelper.com) contains
similar material for C# programmers.

You can contact Rod at RodStephens@csharphelper.com or RodStephens@vb-helper.com.

ABOUT THE TECHNICAL EDITOR

BRIAN HOCHGURTEL has been doing .NET development for over ten years, and actually started his
.NET experience with Rod Stephens when they wrote the Wiley book Visual Basic .NET and XML
together in 2002. Currently Brian works as a SharePoint Developer and Administrator for a large
defense contractor in Colorado.

http://www.vb-helper.com
http://www.csharphelper.com
mailto:RodStephens@csharphelper.com
mailto://RodStephens@vb-helper.com

Executive Editor

Robert Elliott

Senior Project Editor

Adaobi Obi Tulton

Technical Editor

Brian Hochgurtel

Production Editor

Daniel Scribner

Copy Editor

Kim Cofer

Editorial Manager

Mary Beth Wakefi eld

Freelancer Editorial Manager

Rosemarie Graham

Associate Director of Marketing

David Mayhew

Marketing Manager

Ashley Zurcher

Business Manager

Amy Knies

Production Manager

Tim Tate

Vice President and Executive Group

Publisher

Richard Swadley

Vice President and Executive Publisher

Neil Edde

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Katie Crocker

Proofreader

Nicole Hirschman

Indexer

Ron Strauss

Cover Designer

Ryan Sneed

Cover Image

© Erik Isakson / Tetra Images / JupiterImages

CREDITS

ACKNOWLEDGMENTS

THANKS TO BOB ELLIOTT, Adaobi Obi Tulton, Sydney Jones, Rayna Erlick, Kim Cofer, Daniel
Scribner, and all of the others who worked so hard to make this book possible.

Thanks also to Brian Hochgurtel for giving me another perspective and the benefi t of his valuable
experience.

CONTENTS

INTRODUCTION xxvii

PART I: IDE

CHAPTER 1: INTRODUCTION TO THE IDE 3

Introducing the IDE 3

Diff erent IDE Appearances 4

IDE Confi gurations 5

Projects and Solutions 6

Starting the IDE 6

Creating a Project 8

Saving a Project 11

Summary 13

CHAPTER 2: MENUS, TOOLBARS, AND WINDOWS 15

IDE Tools 15

Menus 16

File 16

Edit 18

View 19

Project 20

Build 24

Debug 24

Data 24

Format 25

Tools 25

Test 28

Window 28

Help 29

Toolbars 30

Secondary Windows 30

Toolbox 32

Properties Window 33

Summary 33

xii

CONTENTS

CHAPTER 3: WINDOWS FORMS DESIGNER 35

Introducing Windows Forms Designer 35

Setting Designer Options 35

Adding Controls 37

Selecting Controls 38

Copying Controls 39

Moving and Sizing Controls 40

Arranging Controls 40

Setting Properties 40

Setting Group Properties 41

Using Smart Tags 41

Adding Code to Controls 42

Summary 43

CHAPTER 4: WPF DESIGNER 45

Introducing WPF Designer 45

Editor Weaknesses 46

Recognizing Designer Windows 47

Adding Controls 48

Selecting Controls 49

Moving and Sizing Controls 50

Setting Properties 51

Setting Group Properties 51

Adding Code to Controls 52

Summary 53

CHAPTER 5: VISUAL BASIC CODE EDITOR 55

Editing Code 55

Margin Icons 56

Outlining 58

Tooltips 59

IntelliSense 60

Code Coloring and Highlighting 61

Code Snippets 63

Architectural Tools 64

Rename 64

Go To Defi nition 64

Go To Type Defi nition 64

Highlight References 65

Find All References 65

Generate From Usage 65

xiii

CONTENTS

The Code Editor at Run Time 66

Summary 68

CHAPTER 6: DEBUGGING 69

Debugging and Testing 69

The Debug Menu 70

The Debug ➪ Windows Submenu 72

The Breakpoints Window 74

The Command and Immediate Windows 75

Summary 77

PART II: GETTING STARTED

CHAPTER 7: SELECTING WINDOWS FORMS CONTROLS 81

Controls 81

Controls Overview 82

Choosing Controls 86

Containing and Arranging Controls 87

Making Selections 89

Entering Data 90

Displaying Data 90

Providing Feedback 91

Initiating Action 92

Displaying Graphics 94

Displaying Dialog Boxes 94

Third-Party Controls 95

Summary 96

CHAPTER 8: USING WINDOWS FORMS CONTROLS 97

Using Controls and Components 97

Controls and Components 98

Creating Controls 99

Properties 101

Properties at Design Time 101

Properties at Run Time 104

Useful Control Properties 106

Position and Size Properties 109

Methods 110

Events 110

xiv

CONTENTS

Creating Event Handlers at Design Time 111

Validation Events 112

Summary 114

CHAPTER 9: WINDOWS FORMS 115

Using Forms 115

Transparency 116

About, Splash, and Login Forms 117

Mouse Cursors 118

Icons 120

Application Icons 121

Notifi cation Icons 121

Properties Adopted by Child Controls 122

Property Reset Methods 123

Overriding WndProc 123

MRU Lists 125

Dialog Boxes 126

Wizards 128

Summary 129

CHAPTER 10: SELECTING WPF CONTROLS 131

WPF Controls and Code 131

Controls Overview 132

Containing and Arranging Controls 133

Making Selections 136

Entering Data 137

Displaying Data 137

Providing Feedback 138

Initiating Action 138

Presenting Graphics and Media 139

Providing Navigation 140

Managing Documents 140

Digital Ink 141

Summary 142

CHAPTER 11: USING WPF CONTROLS 143

WPF Controls 143

WPF Concepts 144

Separation of User Interface and Code 144

WPF Control Hierarchies 145

xv

CONTENTS

WPF in the IDE 145

Editing XAML 146

Editing Visual Basic Code 147

XAML Features 148

Objects 148

Resources 151

Styles 152

Templates 153

Transformations 156

Animations 156

Drawing Objects 159

Procedural WPF 162

Documents 166

Flow Documents 166

Fixed Documents 168

XPS Documents 169

Summary 169

CHAPTER 12: WPF WINDOWS 171

Using WPF Windows 171

Window Applications 172

Page Applications 174

Browser Applications 174

Frame Applications 176

Summary 177

CHAPTER 13: PROGRAM AND MODULE STRUCTURE 179

Solutions and Projects 179

Hidden Files 180

Code File Structure 184

Code Regions 185

Conditional Compilation 186

Namespaces 193

Typographic Code Elements 195

Comments 195

XML Comments 195

Line Continuation 198

Implicit Line Continuation 199

Line Joining 200

Summary 200

xvi

CONTENTS

CHAPTER 14: DATA TYPES, VARIABLES, AND CONSTANTS 203

Variables 203

Data Types 204

Type Characters 207

Data Type Conversion 210

Narrowing Conversions 210

Data Type Parsing Methods 212

Widening Conversions 213

The Convert Class 213

ToString 213

Variable Declarations 214

Attribute_List 214

Accessibility 215

Shared 216

Shadows 216

ReadOnly 219

Dim 219

WithEvents 220

Name 221

Bounds_List 222

New 223

As Type and Inferred Types 224

Initialization_Expression 225

Initializing Collections 228

Multiple Variable Declarations 229

Option Explicit and Option Strict 230

Scope 233

Block Scope 233

Procedure Scope 234

Module Scope 234

Namespace Scope 235

Restricting Scope 235

Parameter Declarations 236

Property Procedures 238

Enumerated Data Types 240

Anonymous Types 243

Nullable Types 244

Constants 244

Accessibility 245

As Type 245

Initialization_Expression 246

xvii

CONTENTS

Delegates 246

Naming Conventions 248

Summary 249

CHAPTER 15: OPERATORS 251

Understanding Operators 251

Arithmetic Operators 252

Concatenation Operators 253

Comparison Operators 253

Logical Operators 255

Bitwise Operators 257

Operator Precedence 257

Assignment Operators 259

The StringBuilder Class 260

Date and TimeSpan Operations 261

Operator Overloading 262

Summary 266

CHAPTER 16: SUBROUTINES AND FUNCTIONS 267

Managing Code 267

Subroutines 268

Attribute_List 268

Inheritance_Mode 272

Accessibility 273

Subroutine_Name 274

Parameters 274

Implements interface.subroutine 279

Statements 281

Functions 281

Property Procedures 283

Extension Methods 284

Lambda Functions 285

Relaxed Delegates 287

Asynchronous Methods 290

Calling EndInvoke Directly 291

Handling a Callback 293

Using Async and Await 295

Summary 297

xviii

CONTENTS

CHAPTER 17: PROGRAM CONTROL STATEMENTS 299

Controlling Programs 299

Decision Statements 299

Single-Line If Then 300

Multiline If Then 300

Select Case 301

Enumerated Values 304

IIf 304

If 306

Choose 306

Looping Statements 308

For Next 308

Non-Integer For Next Loops 311

For Each 311

Enumerators 314

Iterators 316

Do Loop Statements 316

While End 318

Summary 318

CHAPTER 18: ERROR HANDLING 321

The Struggle for Perfection 321

Bugs versus Unplanned Conditions 322

Catching Bugs 323

Catching Unplanned Conditions 324

Global Exception Handling 326

Structured Error Handling 328

Exception Objects 330

Throwing Exceptions 331

Re-throwing Exceptions 333

Custom Exceptions 334

Debugging 335

Summary 336

CHAPTER 19: DATABASE CONTROLS AND OBJECTS 337

Data Sources 337

Automatically Connecting to Data 338

Connecting to the Data Source 338

Adding Data Controls to the Form 341

Automatically Created Objects 344

xix

CONTENTS

Other Data Objects 345

Data Overview 346

Connection Objects 347

Transaction Objects 350

Data Adapters 352

Command Objects 356

DataSet 358

DataTable 360

DataRow 363

DataColumn 365

DataRelation 366

Constraints 368

DataView 370

DataRowView 373

Simple Data Binding 373

CurrencyManager 374

Complex Data Binding 377

Summary 379

CHAPTER 20: LINQ 381

The Many Faces of LINQ 381

Introduction to LINQ 383

Basic LINQ Query Syntax 384

From 385

Where 386

Order By 386

Select 387

Using LINQ Results 389

Advanced LINQ Query Syntax 390

Join 390

Group By 391

Aggregate Functions 393

Set Operations 394

Limiting Results 394

LINQ Functions 395

LINQ Extension Methods 397

Method-Based Queries 397

Method-Based Queries with Lambda Functions 399

Extending LINQ 401

LINQ to Objects 403

LINQ to XML 404

XML Literals 404

xx

CONTENTS

LINQ into XML 405

LINQ out of XML 406

LINQ to ADO.NET 409

LINQ to SQL and LINQ to Entities 409

LINQ to DataSet 410

PLINQ 413

Summary 414

CHAPTER 21: METRO-STYLE APPLICATIONS 417

Building Metro-Style Applications 417

Starting a New Project 418

Special Image Files 419

Building MetroBones 420

Control Layout 421

XAML Code 421

Zooming in on the Controls 424

Visual Basic Code 424

Testing 428

Summary 429

PART III: OBJECT-ORIENTED PROGRAMMING

CHAPTER 22: OOP CONCEPTS 433

Introducing OOP 433

Classes 434

Encapsulation 436

Inheritance 437

Inheritance Hierarchies 438

Refi nement and Abstraction 438

“Has-a” and “Is-a” Relationships 441

Adding and Modifying Class Features 441

Interface Inheritance 443

Polymorphism 444

Method Overloading 445

Extension Methods 446

Summary 447

CHAPTER 23: CLASSES AND STRUCTURES 449

Packaging Data 449

Classes 450

xxi

CONTENTS

Attribute_list 450

Partial 451

Accessibility 452

Shadows 453

Inheritance 454

Implements interface 456

Structures 456

Structures Cannot Inherit 457

Structures Are Value Types 457

Memory Required 457

Heap and Stack Performance 459

Object Assignment 459

Parameter Passing 460

Boxing and Unboxing 461

Class Instantiation Details 461

Structure Instantiation Details 464

Garbage Collection 466

Finalize 467

Dispose 469

Constants, Properties, and Methods 471

Events 473

Declaring Events 473

Raising Events 474

Catching Events 475

Shared Variables 477

Shared Methods 477

Summary 479

CHAPTER 24: NAMESPACES 481

Handling Name Confl icts 481

The Imports Statement 482

Automatic Imports 484

Namespace Aliases 486

Namespace Elements 486

The Root Namespace 487

Making Namespaces 487

Classes, Structures, and Modules 488

Resolving Namespaces 489

Summary 492

xxii

CONTENTS

CHAPTER 25: COLLECTION CLASSES 493

Grouping Data 493

What Is a Collection? 494

Arrays 494

Array Dimensions 496

Lower Bounds 497

Resizing 497

Speed 498

Other Array Class Features 498

Collections 499

ArrayList 499

StringCollection 501

NameValueCollection 501

Dictionaries 503

ListDictionary 503

Hashtable 504

HybridDictionary 505

StringDictionary 505

SortedList 505

CollectionsUtil 505

Stacks and Queues 506

Stack 506

Queue 508

Generics 509

Collection Initializers 511

Iterators 512

Summary 513

CHAPTER 26: GENERICS 515

Class Creators 515

Advantages of Generics 516

Defi ning Generics 516

Generic Constructors 517

Multiple Types 518

Constrained Types 520

Instantiating Generic Classes 521

Imports Aliases 522

Derived Classes 523

Generic Collection Classes 523

Generic Methods 524

xxiii

CONTENTS

Generics and Extension Methods 524

Summary 526

PART IV: INTERACTING WITH THE ENVIRONMENT

CHAPTER 27: PRINTING 529

Printing Concepts 529

Basic Printing 530

Drawing Basics 534

Graphics Objects 534

Pens 536

Brushes 538

A Booklet Example 540

Summary 545

CHAPTER 28: CONFIGURATION AND RESOURCES 547

The Need for Confi guration 547

My 548

Me and My 549

My Sections 549

Environment 550

Setting Environment Variables 550

Using Environ 551

Using System.Environment 551

Registry 553

Native Visual Basic Registry Methods 554

My.Computer.Registry 556

Confi guration Files 559

Resource Files 562

Application Resources 562

Using Application Resources 563

Embedded Resources 564

Localization Resources 564

Application 566

Application Properties 566

Application Methods 567

Application Events 568

Summary 569

xxiv

CONTENTS

CHAPTER 29: STREAMS 571

Stream Concepts 571

Stream 572

FileStream 574

MemoryStream 575

BinaryReader and BinaryWriter 576

TextReader and TextWriter 578

StringReader and StringWriter 579

StreamReader and StreamWriter 580

OpenText, CreateText, and AppendText 581

Custom Stream Classes 582

Summary 583

CHAPTER 30: FILESYSTEM OBJECTS 585

Programming Approaches 585

Permissions 586

Visual Basic Methods 586

File Methods 586

File System Methods 588

Sequential-File Access 589

Random-File Access 589

Binary-File Access 592

.NET Framework Classes 592

Directory 592

File 594

DriveInfo 595

DirectoryInfo 596

FileInfo 598

FileSystemWatcher 600

Path 602

My.Computer.FileSystem 604

My.Computer.FileSystem.SpecialDirectories 606

Summary 606

PART V: APPENDICES

APPENDIX A: USEFUL CONTROL PROPERTIES, METHODS,
AND EVENTS 611

APPENDIX B: VARIABLE DECLARATIONS AND DATA TYPES 619

APPENDIX C: OPERATORS 629

xxv

CONTENTS

APPENDIX D: SUBROUTINE AND FUNCTION DECLARATIONS 637

APPENDIX E: CONTROL STATEMENTS 641

APPENDIX F: ERROR HANDLING 647

APPENDIX G: WINDOWS FORMS CONTROLS AND COMPONENTS 649

APPENDIX H: WPF CONTROLS 657

APPENDIX I: VISUAL BASIC POWER PACKS 665

APPENDIX J: FORM OBJECTS 669

APPENDIX K: CLASSES AND STRUCTURES 681

APPENDIX L: LINQ 685

APPENDIX M: GENERICS 695

APPENDIX N: GRAPHICS 699

APPENDIX O: USEFUL EXCEPTION CLASSES 711

APPENDIX P: DATE AND TIME FORMAT SPECIFIERS 715

APPENDIX Q: OTHER FORMAT SPECIFIERS 719

APPENDIX R: THE APPLICATION CLASS 725

APPENDIX S: THE MY NAMESPACE 729

APPENDIX T: STREAMS 747

APPENDIX U: FILESYSTEM CLASSES 755

APPENDIX V: VISUAL STUDIO VERSIONS 771

INDEX 773

INTRODUCTION

IT HAS BEEN SAID THAT SIR ISAAC NEWTON was the last person to know everything. He was an
accomplished physicist (his three laws of motion were the basis of classical mechanics, which defi ned
astrophysics for three centuries), mathematician (he was one of the inventors of calculus and
developed Newton’s Method for fi nding roots of equations), astronomer, natural philosopher,
and alchemist (okay, maybe the last one was a mistake). He invented the refl ecting telescope, a the-
ory of color, and a law of cooling, and he studied the speed of sound.

Just as important, he was born before relativity, quantum mechanics, gene sequencing, thermody-
namics, parallel computation, and a swarm of other extremely diffi cult branches of science.

If you ever used Visual Basic 3, you too could have known everything. Visual Basic 3 was a reason-
ably small but powerful language. Visual Basic 4 added classes to the language and made Visual
Basic much more complicated. Versions 4, 5, and 6 added more support for database programming
and other topics such as custom controls, but Visual Basic was still a fairly understandable lan-
guage, and if you took the time you could become an expert in just about all of it.

Visual Basic .NET changed the language in much more fundamental ways and made it much harder
to understand every last detail of Visual Basic. The .NET Framework added powerful new tools to
Visual Basic, but those tools came at the cost of increased complexity. Associated technologies have
been added to the language at an ever-increasing rate, so today it is impossible for anyone to be an
expert on every topic that deals with Visual Basic.

To cover every nook and cranny in Visual Basic you would need an in-depth understanding of data-
base technologies, custom controls, custom property editors, XML, cryptography, serialization,
two- and three-dimensional graphics, multi-threading, refl ection, the code document object model
(DOM), diagnostics, globalization, web services, inter-process communication, work fl ow, Offi ce,
ASP, Windows Forms, WPF, and much more.

This book doesn’t even attempt to cover all of these topics. Instead, it provides a broad, solid under-
standing of essential Visual Basic topics. It explains the powerful development environment that
makes Visual Basic such a productive language. It describes the Visual Basic language itself and
explains how to use it to perform a host of important development tasks.

It also explains the forms, windows, controls, and other objects that Visual Basic provides for build-
ing applications in a modern windowing environment.

This book may not cover every possible topic related to Visual Basic, but it does cover the majority
of the technologies that developers need to build sophisticated applications.

xxviii

INTRODUCTION

Fourth-generation languages (4GLs) are natural languages, such as SQL. They let developers use a
language that is sort of similar to a human language to execute programming tasks. For example,
the SQL statement “SELECT * FROM Customers WHERE Balance > 50” tells the database to
return information about customers who owe more than $50.

Fifth-generation languages (5GLs) provide powerful, highly graphical development environments to
allow developers to use the underlying language in more sophisticated ways. The emphasis is more
on the development environment than on the language itself.

The Visual Studio development environment is an extremely powerful fi fth-generation tool. It pro-
vides graphical editors to make building forms and editing properties easy and intuitive; IntelliSense
to help developers remember what to type next; auto-completion so developers can use meaning-
ful variable names without needing to waste time typing them completely by hand; tools that show
call hierarchies indicating which routines call which others; and breakpoints, watches, and other
advanced debugging tools that make building applications easier.

Visual Studio is so powerful that the answer to the question of whether you should use it is practi-
cally obvious: If you want to write powerful applications that run in a Windows operating system,
you should use Visual Studio.

Visual Basic is not the only language that uses Visual Studio. The C# language does, too, so now the
question is, should you use Visual Basic or C#?

SHOULD YOU USE VISUAL BASIC 2012?

Software engineers talk about fi ve generations of languages (so far). A fi rst-generation language
(1GL) is machine language: 0s and 1s. For example, the binary command 00110010 00001110
00010010 00000000 might mean to combine the register CL with the value at address 12H by
using the exclusive-or (XOR) operation. Pretty incomprehensible, right? You actually had to pro-
gram some early computers by painstakingly toggling switches to enter 0s and 1s!

A second-generation language (2GL) is an assembly language that provides terse mnemonics for
machine instructions. It provides few additional tools beyond an easier way to write machine code.
In assembly language, the previous XOR command might look like “XOR CL, [12H].” It’s a lot
better than assembly language but it’s still pretty hard to read. Third-generation languages (3GLs)
are higher-level languages such as Pascal and FORTRAN. They provide much more sophisticated
language elements such as subroutines, loops, and data structures. In Visual Basic, the previous
example might look something like total = total Xor value.

WHERE DID THE REGISTER GO?

Higher-level languages generally don’t directly use registers or memory addresses.
Instead they work with variables with names such as total and value. The lan-
guage’s compiler automatically fi gures out when a value should be placed in a regis-
ter or other location.

xxix

INTRODUCTION

A Visual Basic programmer’s joke asks, “What’s the difference between Visual Basic .NET and C#?
About three months!” The implication is that Visual Basic .NET syntax is easier to understand and
building applications with it is faster. Similarly, C# programmers have their jokes about Visual Basic
.NET, implying that C# is more powerful.

In fact, Visual Basic .NET is not a whole lot easier to use than C#, and C# is not signifi cantly more
powerful. The basic form of the two languages is very similar. Aside from a few stylistic differences
(Visual Basic is line-oriented; C# uses lots of braces and semicolons), the languages are comparable.
Both use the Visual Studio development environment, both provide access to the .NET Framework
of support classes and tools, and both provide similar syntax for performing basic programming
tasks.

The main difference between these languages is one of style. If you have experience with previous
versions of Visual Basic, you will probably fi nd Visual Basic 2012 easier to get used to. If you have
experience with C++ or Java, you will probably fi nd C# (or Visual C++ or Visual J#) easy to learn.

Visual Basic does have some ties with other Microsoft products that increase its value. For example,
Active Server Pages (ASP) and ASP.NET use Visual Basic to create interactive web pages. Microsoft
Offi ce applications (Word, Excel, PowerPoint, and so forth) and many third-party tools use Visual
Basic for Applications (VBA) as a macro programming language. If you know Visual Basic, you
have a big head start in using these other languages. ASP and VBA are based on pre-.NET versions
of Visual Basic, so you won’t instantly know how to use them, but you’ll have an advantage if you
need to learn ASP or VBA.

If you are new to programming, either Visual Basic 2012 or C# is a good choice. I think Visual
Basic 2012 is a little easier to learn, but I may be slightly biased because I’ve been using Visual Basic
since long before C# was invented. You won’t be making a big mistake either way, and you can eas-
ily switch later, if necessary.

WHO SHOULD READ THIS BOOK

This book is intended for programmers of all levels. It describes the Visual Basic 2012 language
from scratch, so you don’t need experience with previous versions of the language. The book also
covers many intermediate and advanced topics. It covers topics in enough depth that even experi-
enced developers will discover new tips, tricks, and language details. After you have mastered the
language, you may still fi nd useful tidbits throughout the book, and the reference appendices will
help you look up easily forgotten details.

LOTS OF LANGUAGES

Visual Studio also supports a few other languages including Visual C++, Visual J#,
and Visual F#, and in theory it could support others in the future. Visual Studio was
originally built for Visual Basic and C# so it provides the most support for these.

xxx

INTRODUCTION

The chapters move quickly through the more introductory material. If you have never programmed
before and are intimidated by computers, you might want to read a more introductory book fi rst. If
you are a beginner who’s not afraid of the computer, you should have few problems learning Visual
Basic 2012 from this book.

If you have programmed in any other language, fundamentals such as variable declarations, data
types, and arrays should be familiar to you, so you should have no problem with this book. The
index and reference appendices should be particularly useful in helping you translate from the lan-
guages you already know into the corresponding Visual Basic syntax.

HOW THIS BOOK IS ORGANIZED

The chapters in this book are divided into four parts plus appendices. The chapters in each part
are described here. If you are an experienced programmer, you can use these descriptions to decide
which chapters to skim and which to read in detail.

Part I: IDE

The chapters in this part of the book describe the Visual Studio integrated development environ-
ment (IDE) from a Visual Basic developer’s point of view. The IDE is mostly the same for
C# and other developers but there are a few differences such as which keyboard shortcuts perform
which tasks.

Chapter 1, “Introduction to the IDE,” explains how to get started using the Visual Studio integrated
development environment. It tells how to confi gure the IDE for different kinds of development. It
defi nes and describes Visual Basic projects and solutions, and shows how to create, run, and save a
new project.

Chapter 2, “Menus, Toolbars, and Windows,” describes the most useful and important commands
available in the IDE’s menus and toolbars. The IDE’s menus and toolbars include hundreds of com-
mands, so this chapter covers only those that are the most useful.

Chapter 3, “Windows Forms Designer,” describes the designer you can use to build Windows
Forms. It explains how to create, size, move, and copy controls. It tells how to set control properties
and add code to respond to control events.

Chapter 4, “WPF Designer,” explains how to use the Windows Presentation Foundation (WPF)
form designer. This chapter is similar to Chapter 3 except that it covers WPF forms instead of
Windows Forms.

Chapter 5, “Visual Basic Code Editor,” describes one of the most important windows used by
developers: the code editor. It explains how to write code, set breakpoints, use code snippets, and
get the most out of IntelliSense.

Chapter 6, “Debugging,” explains debugging tools provided by Visual Studio. It describes the
debugging windows and explains techniques such as setting complex breakpoints to locate bugs.

xxxi

INTRODUCTION

Part II: Getting Started

The chapters in this part of the book explain the bulk of the Visual Basic language and the objects
that support it. They explain the forms, windows, controls, and other objects that a program
uses to build a user interface, and they tell how you can put code behind those objects to implement
the program’s functionality.

Chapter 7, “Selecting Windows Forms Controls,” provides an overview of the Windows Forms con-
trols that you can put on a form. It groups the controls by category to help you fi nd the controls you
can use for a particular purpose.

Chapter 8, “Using Windows Forms Controls,” gives more detail about how you can use Windows
Forms controls. It explains how you can create controls at design time or run time, how to set com-
plex property values, and how to use useful properties that are common to many different kinds of
controls. It explains how to add event handlers to process control events and how to validate user-
entered data.

Chapter 9, “Windows Forms,” describes the forms you use in a Windows Forms application.
Technically, forms are just another kind of control, but their unique position in the application’s
architecture means they have some special properties, and this chapter describes them.

Chapter 10, “Selecting WPF Controls,” provides an overview of WPF controls. It groups the con-
trols by category to help you fi nd the controls you can use for a particular purpose. This chapter is
similar to Chapter 7 except it covers WPF controls instead of Windows Forms controls.

Chapter 11, “Using WPF Controls,” gives more detail about how you can use WPF controls.
This chapter is similar to Chapter 8 except it deals with WPF controls instead of Windows Forms
controls.

Chapter 12, “WPF Windows,” describes the windows that WPF applications use in place of
Windows forms. This chapter is similar to Chapter 9 except it deals with WPF windows instead
of Windows forms.

Chapter 13, “Program and Module Structure,” describes the most important fi les that make up a
Visual Basic project. It describes some of the hidden fi les that projects contain and explains some
of the structure that you can give to code within a module, such as code regions and conditionally
compiled code.

Chapter 14, “Data Types, Variables, and Constants,” explains the standard data types provided by
Visual Basic. It shows how to declare and initialize variables and constants, and explains variable
scope. It discusses technical topics, such as value and reference types, passing parameters by value
or reference, and creating parameter variables on the fl y. It also explains how to create and initialize
arrays, enumerated types, and structures.

Chapter 15, “Operators,” describes the operators a program uses to perform calculations. These
include mathematical operators (+, *, \), string operators (&), and Boolean operators (And, Or).
The chapter explains operator precedence and potentially confusing type conversion issues that

xxxii

INTRODUCTION

arise when an expression combines more than one type of operator (for example, arithmetic and
Boolean).

Chapter 16, “Subroutines and Functions,” explains how you can use subroutines and functions
to break a program into manageable pieces. It describes routine overloading and scope. It also
describes lambda functions and relaxed delegates.

Chapter 17, “Program Control Statements,” describes the statements that a Visual Basic program
uses to control code execution. These include decision statements, such as If, Then, and Else, and
looping statements, such as For and Next.

Chapter 18, “Error Handling,” explains error handling and debugging techniques. It describes
the Try Catch structured error handler and discusses typical actions a program might take when
it catches an error. It also describes important techniques for preventing errors and making errors
more obvious when they do occur.

Chapter 19, “Database Controls and Objects,” explains how to use the standard Visual Basic
database controls. These include database components that manage connections to a database,
DataSet components that hold data within an application, and data adapter controls that move data
between databases and DataSets.

Chapter 20, “LINQ,” describes language integrated query (LINQ) features. It explains how you
can write SQL-like queries to select data from or into objects, XML, or database objects. It also
explains PLINQ, a parallel version of LINQ that can provide improved performance on multi-core
systems.

Chapter 21, “Metro-Style Applications,” explains how to build Metro-style applications that run
on Windows 8. It explains special considerations that you should take into account when writing
 Metro applications such as loading fi les asynchronously.

Part III: Object-Oriented Programming

This part explains fundamental concepts in object-oriented programming (OOP) with Visual Basic.
It also describes some of the more important classes and objects that you can use when building an
application.

Chapter 22, “OOP Concepts,” explains the fundamental ideas behind object-oriented programming
(OOP). It describes the three main features of OOP: encapsulation, polymorphism, and inheritance.
It explains the benefi ts of these features, and tells how you can take advantage of them in Visual
Basic.

Chapter 23, “Classes and Structures,” explains how to declare and use classes and structures.
It explains what classes and structures are, and it describes their differences. It shows the basic
declaration syntax and tells how to create instances of classes and structures. It also explains some
of the trickier class issues such as private class scope, declaring events, and shared variables and
methods.

xxxiii

INTRODUCTION

Chapter 24, “Namespaces,” explains namespaces. It discusses how Visual Studio uses namespaces
to categorize code and to prevent name collisions. It describes a project’s root namespace, tells how
Visual Basic uses namespaces to resolve names (such as function and class names), and demonstrates
how you can add namespaces to an application yourself.

Chapter 25, “Collection Classes,” explains classes included in the .NET Framework that you can
use to hold groups of objects. It describes the various collection, dictionary, queue, and stack classes;
tells how to make strongly typed versions of those classes; and gives some guidance on deciding
which class to use under different circumstances.

Chapter 26, “Generics,” explains how you can build classes that can work with arbitrary data
types. For example, you can build a generic binary tree, and then later use it to build classes to rep-
resent binary trees of customer orders, employees, or work items.

Part IV: Interacting with the Environment

The chapters in this part of the book explain how an application can interact with its environment.
They show how the program can save and load data in external sources (such as the system registry,
resource fi les, and text fi les); work with the computer’s printer, screen, keyboard, and mouse; and
interact with the user through standard dialog box controls.

Chapter 27, “Printing,” explains different ways that a program can send output to the printer.
It shows how you can use the PrintDocument object to generate printout data. You can then use
the PrintDocument to print the data immediately, use a PrintDialog control to let the user select the
printer and set its characteristics, or use a PrintPreviewDialog control to let the user preview
the results before printing.

Chapter 28, “Confi guration and Resources,” describes some of the ways that a Visual Basic pro-
gram can store confi guration and resource values for use at run time. Some of the most useful of
these include environment variables, the registry, confi guration fi les, and resource fi les.

Chapter 29, “Streams,” explains the classes that a Visual Basic application can use to work with
stream data. Streams allow you to manipulate different kinds of data, such as fi les or chunks of
memory, in a uniform way.

Chapter 30, “Filesystem Objects,” describes classes that let a Visual Basic application interact with
the fi lesystem. These include classes such as Directory, DirectoryInfo, File, and FileInfo that make it
easy to create, examine, move, search, rename, and delete directories and fi les.

Part V: Appendices

The book’s appendices provide a categorized reference of the Visual Basic 2012 language. You can
use them to quickly review the syntax of a particular command or to refresh your memory of what a
particular class can do. The chapters earlier in the book give more context, explaining how to
perform specifi c tasks and why one approach might be better than another.

xxxiv

INTRODUCTION

Appendix A, “Useful Control Properties, Methods, and Events,” describes properties, methods, and
events that are useful with many different kinds of controls.

Appendix B, “Variable Declarations and Data Types,” summarizes the syntax for declaring
variables. It also gives the sizes and ranges of allowed values for the fundamental data types.

Appendix C, “Operators,” summarizes the standard operators such as +, <<, OrElse, and Like.
It also gives the syntax for operator overloading.

Appendix D, “Subroutine and Function Declarations,” summarizes the syntax for subroutine,
function, and property procedure declarations. It also summarizes the syntax for using lambda
functions and lambda statements (subroutines).

Appendix E, “Control Statements,” summarizes statements that control program fl ow, such as
If Then, Select Case, and looping statements.

Appendix F, “Error Handling,” summarizes Try Catch error handling blocks.

Appendix G, “Windows Forms Controls and Components,” summarizes standard Windows Forms
controls and components provided by Visual Basic 2012.

Appendix H, “WPF Controls,” summarizes the most useful WPF controls.

Appendix I, “Visual Basic Power Packs,” lists some additional tools that you can download to make
Visual Basic development easier.

Appendix J, “Form Objects,” describes forms. Forms are just another type of control but they
play such a key role in Visual Basic applications that they deserve special attention in their own
appendix.

Appendix K, “Classes and Structures,” summarizes the syntax for declaring classes and structures,
and defi ning their constructors and events.

Appendix L, “LINQ,” summarizes LINQ and PLINQ syntax.

Appendix M, “Generics,” summarizes the syntax for declaring generic classes.

Appendix N, “Graphics,” summarizes the objects used to generate graphics in Visual Basic 2012.
The earlier chapters in the book cover graphics only in passing while explaining how to print. This
appendix provides more detail and a summary of the most useful graphics classes.

Appendix O, “Useful Exception Classes,” lists some of the more useful exception classes defi ned by
Visual Basic. You may want to throw these exceptions in your own code.

Appendix P, “Date and Time Format Specifi ers,” summarizes standard and custom specifi ers that
you can use to format dates and times. For example, they let you display a time using a 12-hour or
24-hour clock.

Appendix Q, “Other Format Specifi ers,” summarizes formatting for numbers and enumerated
types.

Appendix R, “The Application Class,” summarizes the Application class that provides properties
and methods for controlling the current application.

xxxv

INTRODUCTION

Appendix S, “The My Namespace,” describes the My namespace, which provides shortcuts to
useful features scattered around other parts of the .NET Framework. It provides shortcuts for work-
ing with the application, computer hardware, application forms, resources, and the current user.

Appendix T, “Streams,” summarizes the Visual Basic stream classes such as Stream, FileStream,
MemoryStream, TextReader, and CryptoStream.

Appendix U, “Filesystem Classes,” summarizes methods that an application can use to learn about
and manipulate the fi lesystem. It explains classic Visual Basic methods such as FreeFile, WriteLine, and
ChDir, as well as newer .NET Framework classes such as FileSystem, Directory, and File.

Appendix V, “Visual Studio Versions,” describes the Visual Studio version that I used when writing this
book and explains which versions you can use to reproduce the examples described here.

HOW TO USE THIS BOOK

If you are an experienced Visual Basic .NET programmer, you may want to skim the language
basics covered in the fi rst parts of the book. You may fi nd a few new features that have appeared in
Visual Basic 2012, so you probably shouldn’t skip these chapters entirely, but most of the basic lan-
guage features are the same as in previous versions.

Intermediate programmers and those with less experience with Visual Basic .NET should take these
chapters a bit more slowly. The chapters in Part III, “Object-Oriented Programming,” cover particu-
larly tricky topics. Learning all the variations on inheritance and interfaces can be rather confusing
so don’t skip those chapters unless you have previous experience with object-oriented programming.

Beginners should spend more time on these fi rst chapters because they set the stage for the mate-
rial that follows. It will be a lot easier for you to follow a discussion of fi le management or regular
expressions if you are not confused by the error-handling code that the examples take for granted.

Programming is a skill best learned by doing. You can pick up the book and read through it quickly
if you like (well, as quickly as you can given how long it is), but the information is more likely to
stick if you open the development environment and experiment with some programs of your own.

Learning by doing may encourage you to skip sections of the book. For example, Chapter 1 covers
the IDE in detail. After you’ve read for a while, you may want to skip some sections and start
experimenting with the environment on your own. I encourage you to do so. Lessons learned by
doing last longer than those learned by reading. Later, when you have some experience with the
development environment, you can go back and examine Chapter 1 in more detail to see if you
missed anything during your experimentation.

The fi nal part of the book is a Visual Basic 2012 reference. These appendices present more concise,
categorized information about the language. You can use these appendices to recall the details of
specifi c operations. For example, you can read Chapter 27 to learn what generic classes are for and
how to create them. Later you can use Appendix M to refresh your memory of the syntax for declar-
ing a generic class.

xxxvi

INTRODUCTION

NECESSARY EQUIPMENT

To read this book and understand the examples, you will need no special equipment. To use Visual Basic
2012 and to run the examples found on the book’s web page, you need any computer that can reason-
ably run Visual Basic 2012. That means a reasonably modern, fast computer with a lot of memory. See
the Visual Basic 2012 documentation for Microsoft’s exact requirements and recommendations. (I use a
dual-core 1.83 GHz Intel Core 2CPU system with 2 GB of memory and 164 GB of hard disk space run-
ning Windows 7 Ultimate. It’s a nice system and works well but I wouldn’t say it’s overkill.)

To build Visual Basic 2012 programs, you will also need a copy of Visual Basic 2012. You can
download the free Express Edition of Visual Basic (and purchase other editions) at www.microsoft
.com/visualstudio/products.

Don’t bother trying to run the examples shown here if you have a pre-.NET version of Visual Basic
such as Visual Basic 6. The changes between Visual Basic 6 and Visual Basic .NET are huge, and
many Visual Basic .NET concepts don’t translate well into Visual Basic 6. With some experience in
C#, it would be much easier to translate the example programs into that language.

Much of the Visual Basic 2012 release is compatible with Visual Basic 2010 and earlier versions
of Visual Basic .NET, however, so you can make many of the examples work with earlier versions of
Visual Basic .NET. You will not be able to load the example programs downloaded from the book’s
website, however, because Visual Basic programs are not generally backward compatible with ear-
lier versions. You will need to open the source code fi les in an editor such as WordPad and copy and
paste the signifi cant portions of the code into your version of Visual Basic.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of conventions
have been used throughout the book.

For styles in the text:

 ➤ Important words are highlighted when they are introduced.

 ➤ Keyboard strokes are shown like this: Ctrl+A.

 ➤ Filenames, URLs, and code wit hin the text are shown like this: persistence.properties.
Code is presented in the following way:

We use a monofont type for most code examples.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. Specifi cally for this book, the code download is on the
Download Code tab at:

www.wrox.com/remtitle.cgi?isbn=1118314077

http://www.microsoft.com/visualstudio/products
http://www.microsoft.com/visualstudio/products
http://www.wrox.com
http://www.wrox.com/remtitle.cgi?isbn=1118314077

xxxvii

INTRODUCTION

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978-1-118-
31407-4) to fi nd the code. And a complete list of code downloads for all current Wrox books is
available at www.wrox.com/dynamic/books/download.aspx.

At the beginning of each chapter, we’ve provided a list of the major code fi les for the chapter.
Throughout each chapter, you’ll also fi nd references to the names of code fi les as needed in the text.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform. Once you download the code, just decompress it with an appropriate
compression tool.

FIND IT FAST

Because many books have similar titles, you may fi nd it easiest to locate the book by
its ISBN: 978-1-118-31407-4.

Once you download the code, just decompress it with your favorite compression tool. Note that the
programs won’t run or even load in Visual Studio properly if you don’t decompress them. If Visual
Studio can’t open an example program, make sure you have decompressed it.

Alternatively, you can go to the main Wrox code download page at www.wrox.com/dynamic/
books/download.aspx to see the code available for this book and all other Wrox books.

You can also download the book’s source code from its web page on my VB Helper website
www.vb-helper.com/vb_prog_ref.htm. That page allows you to download all of the book’s code
in one big chunk or by individual chapter.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of my books, like a spelling mistake or
faulty piece of code, I would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping me provide higher qual-
ity information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.vb-helper.com/vb_prog_ref.htm
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/misc-pages/booklist.shtml

xxxviii

INTRODUCTION

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsup-
port.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fi x the problem in sub-
sequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com you will fi nd a number of different forums that will help you not only as you read
this book but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

JOIN THE FUN

You can read messages in the forums without joining P2P, but in order to post your
own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Using the P2P forums allows other readers to benefi t from your questions and any answers they gen-
erate. I monitor my book’s forums and respond whenever I can help.

If you have other comments, suggestions, or questions that you don’t want to post to the forums,
feel free to e-mail me at RodStephens@vb-helper.com. I can’t promise to solve every problem but
I’ll try to help you out if I can.

http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
mailto:RodStephens@vb-helper.com

xxxix

INTRODUCTION

IMPORTANT URLS

Here’s a summary of important URLs:

 ➤ www.vb-helper.com — My VB Helper website. Contains thousands of tips, tricks, and
examples for Visual Basic developers.

 ➤ www.vb-helper.com/vb_prog_reg.htm — This book’s web page on my VB Helper web-
site. Includes basic information, code downloads, errata, and more.

 ➤ p2p.wrox.com — Wrox P2P forums.

 ➤ www.wrox.com — The Wrox website. Contains code downloads, errata, and other informa-
tion. Search for the book by title or ISBN.

 ➤ RodStephens@vb-helper.com — My e-mail address. I hope to hear from you!

http://www.vb-helper.com
http://www.vb-helper.com/vb_prog_reg.htm
http://p2p.wrox.com
http://www.wrox.com
mailto://RodStephens@vb-helper.com

 PART I
IDE

 � CHAPTER 1: Introduction to the IDE

 � CHAPTER 2: Menus, Toolbars, and Windows

 � CHAPTER 3: Windows Forms Designer

 � CHAPTER 4: WPF Designer

 � CHAPTER 5: Visual Basic Code Editor

 � CHAPTER 6: Debugging

Introduction to the IDE

WHAT’S IN THIS CHAPTER

 ➤ Confi guring the Visual Studio IDE for Visual Basic development

 ➤ Understanding projects and solutions

 ➤ Creating a simple project

 ➤ Copying solutions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

INTRODUCING THE IDE

The chapters in the fi rst part of this book describe the Visual Studio integrated development
environment (IDE). They explain the most important windows, menus, and toolbars that
make up the environment, and show how to customize them to suit your needs. They explain
some of the tools that provide help while you are writing Visual Basic applications and how to
use the IDE to debug programs.

Even if you are an experienced Visual Basic programmer, you should at least skim this
 material. The IDE is extremely complex and provides hundreds (if not thousands) of
 commands, menus, toolbars, windows, context menus, and other tools for editing, running,
and debugging Visual Basic projects.

Even after you’ve read these chapters, you should periodically spend some time wandering
through the IDE to see what you’ve missed. Every month or so, spend a few minutes exploring
little-used menus and right-clicking things to see what their context menus contain. As you
become a more profi cient Visual Basic programmer, you will fi nd uses for tools that you may
have dismissed or not understood before.

1

http://WROX.COM

4 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

This chapter explains how to get started using the IDE. It tells how to confi gure the IDE for
 different kinds of development. It explains Visual Basic projects and solutions, and shows how
to create, run, and save new projects. This chapter is mostly an introduction to the chapters that
 follow. The other chapters in this part of the book provide much more detail about particular tasks,
such as using the IDE’s menus, customizing menus and toolbars, and using the Windows Forms
Designer to build forms.

DIFFERENT IDE APPEARANCES

Before you start reading about the IDE and viewing screen shots, it’s important to understand
that the Visual Studio IDE is extremely customizable. You can move, hide, or modify the menus,
toolbars, and windows; create your own toolbars; dock, undock, or rearrange the toolbars and
windows; and change the behavior of the built-in text editors (change their indentation, colors for
different kinds of text, and so forth).

NOTE These chapters describe the basic Visual Studio development environment
as it is initially installed. After you’ve moved things around to suit your needs,
your IDE may look nothing like the pictures in this book. If a fi gure doesn’t look
exactly like what you see on your computer, don’t worry too much about it.

To avoid confusion, you should probably not customize the IDE’s basic menus and toolbars too
much. Removing the help commands from the Help menu and adding them to the Edit menu will
only cause confusion later. Moving or removing commands will also make it more diffi cult to follow
the examples in this and other books, and will make it more diffi cult to follow instructions given by
others who might be able to help you when you have problems.

Instead of making drastic changes to the default menus and toolbars, hide the menus and toolbars
that you don’t want and create new customized toolbars to suit your needs. Then you can fi nd the
original standard toolbars if you decide you need them later.

The screens shown in this book may not look exactly like the ones on your system for several other
reasons as well. Visual Studio looks different on different operating systems. The fi gures in this
book were taken on a computer running Windows 8 so they display the Windows 8 look and feel.
Additionally, some commands may not behave exactly the same way on different operating systems.

Visual Studio will also look different depending on which version you have installed. The
free Visual Basic 2012 Express Edition product has fewer tools than other editions such as the
high-end Team Suite. The fi gures in this book were captured while using Team Suite, so if you have
another version, you may not see all of the tools shown here. Menu items, toolbars, and other details
may also be slightly different for different versions. Usually you can fi nd moved items with a little
digging through the menus and customizations.

IDE Confi gurations ❘ 5

FOR MORE INFORMATION

You can learn about Visual Studio’s free Express editions at http://www
.microsoft.com/express. Learn about Visual Basic in general at the Visual
Basic homepage: http://msdn.microsoft.com/vbasic.

Finally, you may be using different confi guration settings from the ones used while writing this
book. You can confi gure Visual Studio to use settings customized for developing projects using
Visual Basic, C#, web tools, and other technologies. This book assumes your installation is
 confi gured for Visual Basic development, and the screen shots may look different if you have selected
a different confi guration. The following section says more about different IDE confi gurations and
tells how you can select a particular confi guration.

IDE CONFIGURATIONS

When you install it, Visual Studio asks you what kinds of development settings you want to use. The
most obvious choice for a Visual Basic developer is Visual Basic Development Settings. This choice
customizes Visual Studio to work more easily with Visual Basic, and is a good selection if you will
focus on Visual Basic development.

Another reasonable choice is General Development Settings. This option makes Visual Studio behave
more like Visual Studio 2003. It’s a good choice if you’re used to Visual Studio 2003, or if you expect
to use other Visual Studio languages, such as C#, somewhat regularly because these settings are fairly
effective for C# development and Visual Basic development.

This book assumes that you have confi gured
Visual Studio for Visual Basic development. If you
have chosen a different confi guration, some of the
 fi gures in this book may look different from what
you see on your screen. Some of the menu items
available may be slightly different, or may appear
in a different order. Usually, the items are available
somewhere, but you may have to search a bit to
fi nd them.

If you later decide that you want to switch
 confi gurations, open the Tools menu and select
Import and Export Settings to display the Import
and Export Settings Wizard. Select the Reset All
Settings option button and click Next. On the
second page, tell the wizard whether to save your
current settings and click Next. On the wizard’s
fi nal page (shown in Figure 1-1), select the type of
confi guration you want and click Finish. When
the wizard is done, click Close.

FIGURE 1-1: Use the Tools menu’s Import and

Export Settings command to change the Visual

Studio confi guration.

http://www.microsoft.com/express
http://www.microsoft.com/express
http://msdn.microsoft.com/vbasic

6 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

PROJECTS AND SOLUTIONS

Visual Studio groups fi les into projects and solutions. A project is a group of fi les that produces
some specifi c output. This output may take many forms such as a compiled executable program, a
dynamic-link library (DLL) of classes for use by other projects, or a control library for use on other
Windows forms.

A solution is a group of one or more projects that should be managed together. For example,
 suppose that you are building a server application that provides access to your customer order
 database. You are also building a client program that each of your sales representatives will use to
query the server application. Because these two projects are closely related, it might make sense
to manage them in a single solution. When you open the solution, you get instant access to all the
fi les in both projects.

Both projects and solutions can include associated fi les that are useful for building the application
but that do not become part of a fi nal compiled product. For example, a project might include the
application’s proposal and architecture documents. These are not included in the compiled code,
but it can be useful to associate them with the project so they are easy to fi nd, open, and edit while
you are working on the project.

When you open the project, Visual Studio lists those documents along with the program fi les. If you
double-click one of these documents, Visual Studio opens the fi le using an appropriate application.
For example, if you double-click a fi le with a .doc, .docm, or .docx extension, Visual Studio
normally opens it with Microsoft Word.

To associate one of these fi les with a project or solution, right-click the project fi le at the top of the
Solution Explorer (more on the Solution Explorer shortly). In the context menu that appears, select
the Add command’s New Item entry, and use the resulting dialog box to select the fi le you want to add.

CUT OUT CLUTTER

You can add any fi le to a project or solution, but it’s not a good idea to cram dozens
of unrelated fi les into the same project. Although you may sometimes want to refer
to an unrelated fi le while working on a project, the extra clutter brings additional
chances for confusion. It will be less confusing to shrink the Visual Basic IDE to
an icon and open the fi le using an external editor such as Word or WordPad. If you
won’t use a fi le very often with the project, don’t add it.

STARTING THE IDE

When you launch Visual Studio, it initially displays the Start Page shown in Figure 1-2 by default.
The Start Page’s Recent Projects section lists projects that you have worked on recently and provides
links that let you open an existing project or website, or create a new project or website. The Get
Started tab contains links to help topics that may be useful to beginners.

Starting the IDE ❘ 7

Click the Guidance and Resources tab to see general development topics such as a development
 overview, information about managing source code, and information about unit testing.

Click the Latest News tab to see an RSS feed listing current articles and stories about Visual Studio
development. To change the feed, simply enter a new URL in the tab’s text box.

Use the links on the left of the Start Page to open or create new projects. Click New Project to start
a new project. Click Open Project to browse for a project to open. Click one of the Recent Project
links to quickly open a project that you have recently edited.

Instead of displaying the Start Page, Visual Studio can take one of several other actions when it
starts. To change the startup action, open the Tools menu and select Options. Then select the Show
All Settings check box at the bottom of the dialog box so you can see all of the options and open
the Environment folder’s Startup item. In the At Startup drop-down box, you can select one of the
 following options:

 ➤ Open Home Page

 ➤ Load Last Loaded Solution

 ➤ Show Open Project Dialog Box

 ➤ Show New Project Dialog Box

FIGURE 1-2: By default, Visual Studio initially displays the Start Page.

8 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

 ➤ Show Empty Environment

 ➤ Show Start Page

Pick one and click OK.

CREATING A PROJECT

After you open Visual Studio, you can use the Start Page’s New Project link or the File menu’s New
Project command to open the New Project dialog box shown in Figure 1-3.

FIGURE 1-3: The New Project dialog box lets you start a new project.

Use the Templates tree view on the left to select the project category that you want. Then select a
specifi c project type on the right. In Figure 1-3, the Windows Forms Application project type
is selected. Enter a name for the new project in the text box at the bottom.

After you fi ll in the new project’s information, click OK to create the project.

NOTE Visual Studio initially creates the project in a temporary directory. If you
close the project without saving it, it is discarded.

Creating a Project ❘ 9

Figure 1-4 shows the IDE immediately after starting a new Windows Forms Application project.
Remember that the IDE is extremely confi gurable, so it may not look much like Figure 1-4 after you
have rearranged things to your liking (and I’ve arranged things to my liking here).

1

2

3 5

64

7

FIGURE 1-4: Initially a new project looks more or less like this.

The key pieces of the IDE are labeled with numbers in Figure 1-4. The following list briefl y
describes each of these pieces:

 1. Menus — The menus contain standard Visual Studio commands. These generally manipu-
late the current solution and the modules it contains, although you can customize the menus
as needed. Visual Studio changes the menus and their contents depending on the object you
currently have selected. In Figure 1-4, a Form Designer (marked with the number 4) is open
so the IDE is displaying the menus for editing forms.

 2. Toolbars — Toolbars contain tools that you can use to perform frequently needed actions.
The same commands may be available in menus, but they are easier and faster to use in
toolbars. The IDE defi nes several standard toolbars such as Formatting, Debug, and Image
Editor. You can also build your own custom toolbars to hold your favorite tools. Visual
Studio changes the toolbars displayed to match the object you currently have selected.

 3. Toolbox — The Toolbox contains tools appropriate for the item that you currently have
selected and for the project type that you are working on. In Figure 1-4, a Form Designer

10 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

is selected in a Windows Forms application so the Toolbox contains tools appropriate for a
Form Designer. These include Windows Forms controls and components, plus tools in the
other Toolbox tabs.

 4. Form Designer — A Form Designer lets you modify the graphical design of a form. Select a
control tool from the Toolbox, and click and drag to place an instance of the control on the
form. Use the Properties window (marked with the number 6) to change the new control’s
properties. In Figure 1-4, no control is selected, so the Properties window shows the
form’s properties rather than a control’s.

 5. Solution Explorer — The Solution Explorer lets you manage the fi les associated with
the current solution. For example, in Figure 1-4, you could select Form1.vb in the Project
Explorer and then click the View Code button (the second icon from the right at the
top of the Solution Explorer) to open the form’s code editor. You can also right-click
an object in the Solution Explorer to get a list of appropriate commands for that object.

 6. Properties — The Properties window lets you change an object’s properties at design time.
When you select an object in a Form Designer or in the Solution Explorer, the Properties
window displays that object’s properties. To change a property’s value, simply click the
property and enter the new value.

 7. Error List — The Error List window shows errors and warnings in the current project.
For example, if a program uses a variable that is not declared, this list will say so.

If you look at the bottom of Figure 1-4, you’ll notice that the Error List window has a series of tabs.
The Task List tab displays items fl agged for further action such as To Do items. The Immediate
window lets you type and execute Visual Basic commands, possibly while a program is running,
but paused.

The Output tab shows output printed by the application. Usually an application interacts with the
user through its forms and dialog boxes, but it can display information here, usually to help you
debug the code.

WHAT WINDOWS?

If you don’t see the Error List, Task List, and other windows, they are probably
hidden. You can display many of them by selecting the appropriate item in the
View menu. Commands to display some of the more exotic windows are located in
other menus, such as the View menu’s Other Windows submenu and the Debug
menu’s Windows submenu.

As soon as you create a new project, it is ready to run. If you open the Debug menu and select Start
Debugging, the program will run. It displays only an empty form containing no controls, but the
form automatically handles a multitude of mundane windowing tasks for you.

Saving a Project ❘ 11

Before you write a single line of code, the form lets you resize, minimize, restore, maximize, and
close the form. The form draws its title bar, borders, and system menu, and repaints itself as needed
when it is covered and restored. The operating system also automatically handles many tasks such
as displaying the form in the Windows taskbar and Task Manager. Some operating systems, such as
Windows 7 and Vista, automatically generate thumbnail previews for the Flip and Flip 3D tools that
you display by pressing Alt+Tab or Windows+Tab, respectively. Visual Basic and the operating
system do a ton of work for you before you even touch the project!

The form contains no controls, can’t open fi les, doesn’t process data, in fact doesn’t really do
anything unique, but a lot of the setup is done for you. It handles the windowing chores for you so
you can focus on your particular problem.

SAVING A PROJECT

Later chapters explain in depth how to add controls
to a form and how to write code to interact with the
form. For now, suppose you have built a project
complete with controls and code.

If you try to close Visual Studio or start a new project,
the dialog box shown in Figure 1-5 appears. Click
Save to make the Save Project dialog box shown in
Figure 1-6 appear. Click Discard to throw away the
existing project. Click Cancel to continue editing
the current project.

READY TO RUN

If you’re using the Visual Basic environment settings, you can simply press F5 to
start the program.

FIGURE 1-5: Before closing Visual Studio or

starting a new project, you must decide what

to do with the previous project.

FIGURE 1-6: Use this dialog box to save a new project.

12 ❘ CHAPTER 1 INTRODUCTION TO THE IDE

As you work with the new project, Visual Studio saves its form defi nitions and code in a temporary
location. Each time you run the program, Visual Studio updates the fi les so it doesn’t lose
everything if it crashes. The fi les are still temporary, however.

When you are ready to make the new project permanent, open the File menu and select Save All to
display the Save Project dialog box shown in Figure 1-6.

The Name fi eld shows the name that you originally gave the project when you created it. Verify
that the name is okay or change it.

Next, enter the location where you want the project saved. The default location is similar to the
rather non-intuitive value shown in Figure 1-6. (This image was taken while I was logged in as
the user named Developer. When you save a project, the “Developer” part of the location would be
replaced with your username.)

Be sure to pick a good location before you click Save. The next time you build a project, the
default will be the location you specify now so you won’t need to be quite as careful in the future,
assuming you want to build a lot of projects in the same directory.

If you check the Create Directory for Solution box, Visual Studio enables the Solution Name text
box and adds an extra directory above the project directory to hold the solution. This is most
useful when you want to include more than one project in a single solution. For example, you might
want several projects in the same solution to sit in a common solution directory.

If you have Team Foundation Server installed, you can check the Add to Source Control box to
place the new project’s code under source control.

After you have entered the project name and location, and optionally specifi ed a separate solution
directory, click Save.

“SAVE AS” SURVIVAL SKILLS

The File menu’s Save As commands let you save particular pieces of the solution
in new fi les. For example, if you have a project named Offi ceArrangerMain
selected in Project Explorer, the File menu contains a command named Save
Offi ceArrangerMain As. This command lets you save the project fi le with a new
name. Unfortunately it doesn’t make a new copy of the whole project; it just makes
a copy of the project fi le. That fi le contains information about the project on a high
level such as references used by the project, fi les imported by the project, and the
names of the forms included in the project. It does not contain the forms themselves.

Many beginners try to use the File menu’s Save As commands to make copies of a
project or a solution, but that doesn’t work. Instead, use Windows Explorer to
fi nd the directory containing the whole project or solution and make a copy of the
entire directory.

Similarly, if you want to back up a project or send someone a copy of a project, you
need to use the entire solution directory, not just one or two of the many fi les that
Visual Studio creates.

Summary ❘ 13

SUMMARY

This chapter explained how to get started using the Visual Studio integrated development
 environment. It showed how to confi gure the IDE for different kinds of development and explained
that different confi gurations might make your version of Visual Studio look different from the
screen shots shown in this book. It explained what Visual Basic projects and solutions are,
and showed how to create, run, and save a new project.

The next few chapters describe parts of the IDE in greater detail. Chapter 2, “Menus, Toolbars,
and Windows,” describes the commands available in the IDE and the menus, toolbars, and
secondary windows that hold them.

Menus, Toolbars, and Windows

WHAT’S IN THIS CHAPTER

 ➤ Finding IDE menus and tools

 ➤ Setting Option Explicit, Option Strict, and Option Infer

 ➤ Adding external tools to open a browser or send e-mail

 ➤ Rearranging IDE windows

 ➤ Displaying control properties and events

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

IDE TOOLS

The Visual Studio IDE is incredibly powerful and provides hundreds of tools for building
and modifying projects. The price you pay for all of these powerful tools is extra complexity.
Because so many tools are available, it can take some digging to fi nd the tool you want, even if
you know exactly what you need.

This chapter describes the menus, toolbars, and windows that contain the tools provided
by the IDE. It explains some of the most useful tools provided by the IDE and tells where to
fi nd them, provided you haven’t moved them while customizing the IDE.

This chapter also tells how you can customize the menus and toolbars to give you easy access
to the commands that you use most frequently and how to hide those that you don’t need.

2

http://WROX.COM

16 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

MENUS

The IDE’s menus contain standard Visual Studio commands. These are generally commands that
manipulate the project and the modules it contains. Some of the concepts are similar to those used
by any Windows application (File ➪ New, File ➪ Save, Edit ➪ Copy), but many of the details are
specifi c to Visual Studio programming, so the following sections describe them in a bit more detail.

The menus are customizable, so you can add, remove, and rearrange the menus and the items
they contain. This can be quite confusing, however, if you later need to fi nd a command that you
have removed from its normal place in the menus. Some developers place extra commands in
standard menus, particularly the Tools menu, but it is generally risky to remove standard menu
items. Usually it is safest to leave the standard menus alone and make custom menus and toolbars
to hold customizations.

Many of the menus’ most useful commands are also available in other ways. Many provide
keyboard shortcuts that make using them quick and easy. For example, Ctrl+N opens the New
Project dialog box just as if you had selected the File ➪ New Project menu command. If you fi nd
yourself using the same command very frequently, look in the menu and learn its keyboard shortcut
to save time later.

Many menu commands are also available in standard toolbars. For example, the Debug toolbar
contains many of the same commands that are in the Debug menu. If you use a set of menu commands
frequently, you may want to display the corresponding toolbar to make using the commands easier.

Visual Studio also provides many commands through context menus. For example, if you right-click
a project in the Solution Explorer, the context menu includes an Add Reference command that
displays the Add Reference dialog box just as if you had invoked Project ➪ Add Reference. Often it
is easier to fi nd a command by right-clicking an object related to whatever you want to do than it is
to wander through the menus.

The following sections describe the general layout of the standard menus and briefl y explain their
most important commands. You might want to open the menus in Visual Studio as you read these
sections, so you can follow along and see what other commands might be available.

MOVING MENUS

Visual Studio displays different menus and different commands in menus depending
on what editor is active. For example, when you have a form open in the Windows
Forms Designer, Visual Studio displays a Format menu that you can use to arrange
controls on the form. When you have a code editor open, the Format menu is hidden
because it doesn’t apply to code.

File

The File menu contains commands that deal with creating, opening, saving, and closing projects and
project fi les. The following list describes the most important commands contained in the File menu
and its submenus:

Menus ❘ 17

 ➤ New Project — This command displays a dialog box that lets you create new Windows
applications, class libraries, console applications, control libraries, and more. Select the type
of project you want to start, enter a project name, and click OK.

 ➤ New Web Site — This command lets you start a new website project. It displays a dialog
box where you can select the type of website to create from among choices such as ASP.NET
Web Site, ASP.NET Empty Web Site, and WCF Service.

 ➤ Open Project — This command lets you open an existing project.

 ➤ Open Web Site — This command lets you open an existing website project.

 ➤ Open File — This command displays a dialog box that lets you select a fi le to open. The
IDE uses integrated editors to let you edit the new fi le. For example, a simple bitmap editor
lets you set a bitmap’s size, change its number of colors, and draw on it. When you close the
fi le, Visual Studio asks if you want to save it. Note that this doesn’t automatically add
the fi le to your current project. You can save the fi le and use the Project ➪ Add Existing
Item command if you want to do that.

 ➤ Add — This submenu lets you add new items to the current solution. This submenu’s most
useful commands for Visual Basic developers are New Project and Existing Project, which
add a new or existing Visual Basic project to the current solution.

 ➤ Close — This command closes the current editor. For example, if you were editing a form in
the Windows Forms Designer, this command closes the designer.

 ➤ Close Project — This command closes the entire project and all of the fi les it contains. If
you have a solution open, this command is labeled Close Solution and it closes the entire
solution.

 ➤ Save Form1.vb — This command saves the currently open fi le, in this example, Form1.vb.

 ➤ Save Form1.vb As — This command lets you save the currently open fi le with a new name.

 ➤ Save All — This command saves all modifi ed fi les. When you start a new project, the fi les
are initially stored in a temporary location. This command allows you to pick a directory
where the project should be saved permanently.

 ➤ Export Template — This command displays the Export Template Wizard, which enables
you to create project or item templates that you can use later when making a new project.

 ➤ Page Setup and Print — The Page Setup and Print commands let you confi gure printer
settings and print the current document. These commands are enabled only when it makes
sense to print the current fi le. For example, they let you print if you have a code editor
open because the code is text but they are disabled while you are using a Windows Forms
Designer.

 ➤ Recent Files and Recent Projects and Solutions — The Recent Files and Recent Projects and
Solutions submenus let you quickly reopen fi les, projects, and solutions that you have used
recently.

18 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

Edit

The Edit menu contains commands that deal with manipulating text and other objects. These
include standard commands such as the Undo, Redo, Cut, Copy, Paste, and Delete commands that
you’ve seen in other Windows applications.

The following list describes other important commands contained in the Edit menu:

 ➤ Find Symbol — This command lets you search the application for a program symbol rather
than a simple string. You can search for such items as namespaces, types, interfaces,
properties, methods, constants, and variables.

 ➤ Quick Find — This command displays a Find dialog box where you can search the project
for specifi c text. A drop-down menu lets you indicate whether the search should include the
current document, the currently selected text, all open documents, the current project, or
the current solution. Options let you determine such things as whether the text must match
case or whole words.

 ➤ Quick Replace — This command displays the same dialog box as the Quick Find command
except with some extra controls. It includes a text box where you can specify replacement
text, and buttons that let you replace the currently found text or all occurrences of the text.

REGRETFUL REPLACEMENT

Be careful when using Quick Replace. Often it gets carried away and replaces sub-
strings of larger strings so they don’t make sense anymore. For example, suppose
you want to replace the variable name “hand” with “handed.” If you let Quick
Replace run, it will change Handles clauses into “handedles” clauses, which will
confuse Visual Basic. To reduce the chances of this type of error, keep the scope of
the replacement as small as possible and check the result for weird side effects.

 ➤ Go To — This command lets you jump to a particular line number in the current fi le.

 ➤ Insert File As Text — This command lets you select a fi le and insert its text into the current
location. This can be useful if the fi le contains a code snippet.

 ➤ Advanced — The Advanced submenu contains commands for performing more complex
document formatting such as converting text to upper- or lowercase, controlling word wrap,
and commenting and uncommenting code.

 ➤ Bookmarks — The Bookmarks submenu lets you add, remove, and clear bookmarks, and
move to the next or previous bookmark. You can use bookmarks to move quickly to specifi c
pieces of code that you have previously marked.

 ➤ Outlining — The Outlining submenu lets you expand or collapse sections of code, and turn
outlining on and off. Collapsing code that you are not currently editing can make the rest of
the code easier to read.

Menus ❘ 19

 ➤ IntelliSense — The IntelliSense submenu gives access to IntelliSense features. For example,
its List Members command makes IntelliSense display the current object’s properties,
methods, and events.

 ➤ Next Method and Previous Method — The Next Method and Previous Method commands
move to the next or previous method or class in the current document.

View

The View menu contains commands that let you hide or display different windows and toolbars in
the Visual Studio IDE. The following list describes the View menu’s most useful commands:

 ➤ Code — This command opens the selected fi le in a code editor window. For example, to
edit a form’s code, you can click the form in the Solution Explorer and then select
View ➪ Code.

 ➤ Designer — This command opens the selected fi le in a graphical editor if one is defi ned for
that type of fi le. For example, if the fi le is a form, this command opens the form in a graphi-
cal form editor. If the fi le is a class or a code module, the View menu hides this command
because Visual Studio doesn’t have a graphical editor for those fi le types.

 ➤ Standard windows — The next several commands in this menu list some explorers, Object
Browser, Error List, Properties window, and Toolbox. These commands restore a previously
hidden window.

 ➤ Other Windows — The Other Windows submenu lists other standard menus that are not
listed in the View menu itself. These include the Bookmark window, Class View, Command
window, Document Outline, Output, Task List, and many others. Like the standard windows
commands, these commands are useful for recovering lost or hidden windows.

 ➤ Tab Order — If the currently visible document is a Windows Form that contains controls,
the Tab Order command displays the tab order on top of each control. You can click the
controls in the order you want them to have to set their tab orders quickly and easily. (If you
are working with a WPF form, you must set the controls’ TabIndex properties to set their
tab order.)

 ➤ Toolbars — The Toolbars submenu lets you hide or display the currently defi ned toolbars.
This submenu lists the standard toolbars in addition to any custom toolbars you have
created.

 ➤ Full Screen — This command hides all toolbars and windows except for any editor windows
that you currently have open. This gives you the most space possible for working with the
fi les you have open. The command adds a small box to the title bar containing a Full Screen
button that you can click to end full-screen mode.

 ➤ Property Pages — This command displays the current item’s property pages. For example,
if you select a project in the Solution Explorer, this command displays the application’s
property pages similar to those shown in Figure 2-1.

20 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

Project

The Project menu contains commands that let you add and remove items to and from the project.
Which commands are available depends on the currently selected item.

The following list describes the most important commands on the Project menu:

 ➤ New items — The fi rst several commands let you add new items to the project. These
commands are fairly self-explanatory. For example, the Add Class command adds a new
class module to the project. Later chapters explain how to use each of these fi le types.

 ➤ Add New Item — This command displays a dialog box that lets you select from a wide
assortment of items such as About Boxes, text fi les, bitmap fi les, and class modules.

EASY ICONS

You can build an icon, cursor, or other graphical fi le right inside Visual Studio. Use the
Add New Item command to add the new fi le. Visual Studio’s built-in editors let you
draw these fi les, give them transparent backgrounds, and even set a cursor’s hotspot.
(The hotspot is the pixel that determines where the cursor is pointing. For example, an
arrow cursor’s hotspot is the tip of the arrow.) Note that integrated editors for some
of these fi le types may be unavailable if you have the Express Edition, although lots of
editors for these fi le types are available for download on the Internet.

FIGURE 2-1: The View menu’s Property Pages command displays an object’s

property pages.

Menus ❘ 21

 ➤ Add Existing Item — This command lets you browse for a fi le and add it to the project. This
may be a Visual Basic fi le (such as a module, form, or class), or some other related fi le (such
as a related document or image fi le).

 ➤ Exclude From Project — This command removes the currently selected item from the
 project. Note that this does not delete the fi le; it just removes it from the project.

 ➤ Show All Files — This command makes Solution Explorer list fi les that are normally
 hidden. These include resource fi les used by forms and hidden partial classes such as
designer-generated form code. Normally, you don’t need to work with these fi les, so they are
hidden. Select this command to show them. Select the command again to hide them again.

 ➤ Add Reference — This command displays the Reference Manager shown in Figure 2-2. On
the left select the category of the external object, class, or library that you want to fi nd.
For a .NET component, select the Assemblies category’s Framework item. This is what
you’ll want most of the time. For a component object model (COM) component such as an
ActiveX library or control built using Visual Basic 6, select the COM category. Click the
Browse button to manually locate the fi le that you want to reference.

FIGURE 2-2: Use the Reference Manager to add references to libraries.

Scroll through the list of references until you fi nd the one you want and click the Add button
to select it. A checkmark to the left of an item shows that the item is selected. When you have
made your selections, click OK to add the references to the project. After you have added a
reference to the project, your code can refer to the reference’s public objects. For example, if
the fi le MyMathLibrary.dll defi nes a class named MathTools and that class defi nes a public
function Fibonacci, a project with a reference to this DLL could use the following code:

Dim math_tools As New MyMathLibrary.MathTools
MessageBox.Show(“Fib(5) = “ & math_tools.Fibonacci(5))

22 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

 ➤ Add Service Reference — This com-
mand displays the dialog box shown
in Figure 2-3. You can use this dialog
box to fi nd web services and add ref-
erences to them so your project can
invoke them across the Internet.
Figure 2-3 shows a service reference
for the TempConvert example service.
For more information, go to http://
www.w3schools.com/webservices/

tempconvert.asmx.

 ➤ WindowsApplication1 Properties —
This command displays the application’s
property pages shown in Figure 2-1.

Use the tabs on the left of the application’s
property pages to view and modify different
categories of application settings. You can leave
many of the property values at their defaults, and many can be set in ways other than by using the
property pages. For example, by default, the Assembly Name and Root Namespace values shown in
Figure 2-1 are set to the name of the project when you fi rst create it. For most projects, that’s fi ne.

Figure 2-4 shows the Compile property page. This page holds four properties that deserve
special mention.

FIGURE 2-3: Use the Add Service Reference dialog

box to add references to web services.

FIGURE 2-4: The Compile tab contains important properties for controlling code

generation.

http://www.w3schools.com/webservices/tempconvert.asmx
http://www.w3schools.com/webservices/tempconvert.asmx
http://www.w3schools.com/webservices/tempconvert.asmx

Menus ❘ 23

First, Option Explicit determines whether Visual Basic requires you to declare all variables before
using them. Leaving this option turned off can sometimes lead to subtle bugs. For example, suppose
you mistype a variable’s name. If Option Explicit is Off, Visual Basic assumes that you are trying
to create a new variable with a new name. The two variables are not the same, and that can lead to
confusion. If you set Option Explicit to On, the compiler complains that the misspelled variable is
not declared and the problem is easy to fi x.

The second compiler option is Option Strict. When this option is turned off, Visual Studio allows
your code to implicitly convert from one data type to another, even if the types are not always com-
patible. For example, your program might be able to assign the value in a string variable to an inte-
ger variable. That will work if the string happens to contain text such as “10” that is a number but
fails if the string contains something else such as “ten.”

If Option Strict is On, the IDE warns you at compile time that the two data types are incompatible,
so you can easily resolve the problem while you are writing the code. You can still use conversion
functions such as CInt, Int, and Integer.Parse to convert a string into an Integer, but you must take
explicit action to do so. This makes you think about the code and reduces the chances that the con-
version is just an accident. This also helps you use the correct data types and avoid unnecessary con-
versions that may make your program slower.

The third compiler directive, Option Compare, can take the values Binary or Text. If you set
Option Compare to Binary, Visual Basic compares strings using their binary representations. If you
set Option Compare to Text, Visual Basic compares strings using a case-insensitive method that
depends on your computer’s localization settings. Option Compare Binary is faster, but may not
always produce the result you want.

The fi nal compiler directive, Option Infer, determines whether you can omit the data type when
declaring a variable and let Visual Basic deduce its data type from the context. For example, when it
sees the statement Dim x = 1.2, Visual Basic assumes that x must be the Double data type.

The problem with inferred data types is that it is not obvious from the code what data type Visual
Basic should use. In the statement Dim x = 1.2, you need to know Visual Basic’s inference rules to
know whether variable x is a Single, Double, or Decimal.

You can use an Option statement to set the values for each of these options at the top of a code
module. For example, the following code turns Option Explicit on and Option Infer off for
a module:

Option Explicit On
Option Infer Off

Instead of using Option statements in a fi le, you can use the property page shown in Figure 2-4
to set these options for all of the fi les in the application.

24 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

Build

The Build menu contains commands that let you compile projects within a solution. The following
list describes the most useful commands contained in the Build menu:

 ➤ Build WindowsApplication1 — This command compiles the currently selected project, in
this case the project WindowsApplication1. Visual Studio examines the project’s fi les to
see if any have changed since the last time it compiled the project. If any of the fi les have
changed, Visual Studio saves and recompiles them.

 ➤ Rebuild WindowsApplication1 — This command recompiles the currently selected project
from scratch. It recompiles every fi le even if it has not been modifi ed since the last time it
was compiled.

 ➤ Clean WindowsApplication1 — This command removes temporary and intermediate fi les
that were created while building the application, leaving only the source fi les and the fi nal
result .exe and .dll fi les.

 ➤ Publish WindowsApplication1 — This command displays the Publish Wizard, which walks
you through the process of making your application available for distribution in a local fi le,
fi le share, FTP site, or website.

If your solution contains more than one application, the Build menu also contains the solution-
related commands Build Solution, Rebuild Solution, and Clean Solution. These are similar to their
application counterparts except they apply to every application in the solution.

Debug

The Debug menu contains commands that help you debug a program. These commands help you
run the program in the debugger, move through the code, set and clear breakpoints, and generally
follow the code’s execution to see what it’s doing and hopefully what it’s doing wrong.

For more information about the Debug menu and debugging Visual Basic code, see Chapter 6,
“Debugging.”

Data

The Data menu contains commands that deal with data and data sources. Some of the commands in
this menu are visible and enabled only if you are designing a form and that form contains the proper
data objects.

OPTION RECOMMENDATIONS

To avoid confusion and long debugging sessions, I recommend that you use the
Compile property page to set Option Explicit on, Option Strict on, and Option
Infer off to make Visual Basic as restrictive as possible. Then if you must loosen
these restrictions in a particular fi le, you can add an Option statement at the top of
the fi le. For example, you may need to set Option Infer on for a module that uses
LINQ. See Chapter 20, “LINQ,” for more information about LINQ.

Menus ❘ 25

The following list describes the most useful Data menu commands:

 ➤ Show Data Sources — This command displays the Data Sources window, where you can
work with the program’s data sources. For example, you can drag and drop tables and fi elds
from this window onto a form to create controls bound to the data source.

 ➤ Preview Data — This command displays a dialog box that lets you load data into a DataSet
and view it at design time.

 ➤ Add New Data Source — This command displays the Data Source Confi guration Wizard,
which walks you through the process of adding a data source to the project.

Format

The Format menu contains commands that arrange controls on a form. The commands are grouped
into submenus containing related commands. The following list describes the Format menu’s submenus:

 ➤ Align — This submenu contains commands that align the controls you have selected in
various ways. It contains the commands Lefts, Centers, Rights, Tops, Middles, Bottoms,
and “to Grid.” For example, the Lefts command aligns the controls so their left edges line
up nicely. The “to Grid” command snaps the controls to the nearest grid position.

 ➤ Make Same Size — This submenu contains commands that make the dimensions of the
controls you have selected the same. It contains the commands Width, Height, Both, and
Size to Grid. The Size to Grid command adjusts the selected controls’ widths so that they
are a multiple of the alignment grid size. (This command is disabled unless the Windows
Forms Designer’s LayoutMode is set to SnapToGrid. To set this, open the Tools menu, select
Options, go to the Windows Forms Designer tab, open the General subtab, and set the
LayoutMode property.)

 ➤ Horizontal Spacing — This submenu contains commands that change the horizontal
spacing between the controls you have selected. It contains the commands Make Equal,
Increase, Decrease, and Remove.

 ➤ Vertical Spacing — This submenu contains the same commands as the Horizontal Spacing
submenu except it adjusts the controls’ vertical spacing.

 ➤ Center in Form — This submenu contains the commands Horizontally and Vertically that
center the selected controls on the form either horizontally or vertically.

 ➤ Order — This submenu contains the commands Bring to Front and Send to Back, which
move the selected controls to the top or bottom of the stacking order.

 ➤ Lock Controls — This command locks all of the controls on the form so that you cannot
accidentally move or resize them by clicking and dragging, although you can still move and
resize the controls by changing their Location and Size properties in the Properties window.
Invoking this command again unlocks the controls.

Tools

The Tools menu contains miscellaneous tools that do not fi t particularly well in the other menus.
It also contains a few duplicates of commands in other menus to make them easier to fi nd, and
commands that modify the IDE itself.

26 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

The following list describes the Tools menu’s most useful commands. Note that some of these com-
mands appear only when a particular type of editor is open. Note also that some may not be avail-
able in Visual Studio Express Edition.

 ➤ Attach to Process — This command displays a dialog box to let you attach the debugger to
a running process. This is useful for debugging programs that you cannot run directly in
the Visual Studio IDE such as Windows services, which run automatically when the
computer starts.

 ➤ Connect to Database — This command displays the Connection Properties dialog box,
where you can defi ne a database connection. The connection is added to the Server Explorer
window. You can later use the connection to defi ne data adapters and other objects that use
a database connection.

 ➤ Connect to Server — This command displays a dialog box that lets you connect to a data-
base server.

 ➤ Code Snippets Manager — This command displays the Code Snippets Manager, which you
can use to add and remove code snippets.

 ➤ Choose Toolbox Items — This command displays a dialog box that lets you select the
tools displayed in the Toolbox. For instance, some controls are not included in the
Toolbox by default. You can use this command to add them if you will use them
frequently.

 ➤ Add-in Manager — This command displays the Add-in Manager, which lists the add-in
projects registered on the computer. You can use the Add-in Manager to enable or disable
these add-ins.

 ➤ Extension Manager — This command displays an Extension Manager dialog box that lets
you fi nd Visual Studio extensions online and install them.

 ➤ External Tools — This command displays a dialog box that lets you add and remove
commands from the Tools menu. For example, you could add a command to launch
WordPad, MS Paint, WinZip, and other handy utilities from the Tools menu.

NOTE If you set an external tool’s Command to the location of your favorite
browser and its Arguments to a web address, you can easily open that address
by selecting your tool from the Tools menu. You can even set the Arguments to
a mailto address as in mailto:RodStephens@vb-helper.com to quickly send
e-mail from the Tools menu.

 ➤ Import/Export Settings — This command displays a dialog box that you can use to save,
restore, or reset your Visual Studio IDE settings. Use this dialog box to confi gure
your development environment for general development, project management, SQL Server
development, Visual Basic, C#, C++, or web development.

mailto://RodStephens@vb-helper.com

Menus ❘ 27

 ➤ Customize — This command allows you to customize the Visual Studio IDE.

 ➤ Options — This command allows you to specify options for the Visual Studio IDE. See the
following text for more details.

The Tools menu’s Options command displays the dialog box shown in Figure 2-5. This dialog box
contains a huge number of pages of options that confi gure the Visual Studio IDE.

FIGURE 2-5: The Options dialog box lets you specify IDE options.

The following list describes the Options dialog box’s most important categories:

 ➤ Environment — Contains general IDE settings such as whether the IDE uses tabs or
multiple windows to display documents, the number of items shown in the most recently
used fi le lists, and how often the IDE saves AutoRecover information. The Fonts and Colors
subsection lets you determine the colors used by the editors for different types of text. For
example, comments are shown in green by default, but you can change this color.

 ➤ Projects and Solutions — Contains the default settings for Option Explicit, Option Strict,
and Option Compare.

 ➤ Source Control — Contains entries that deal with the source code control system (for example,
Visual Studio Team Foundation Server or Visual SourceSafe). These systems provide fi le
locking and differencing tools that let multiple developers work on the same project without
interfering with each other.

 ➤ Text Editor — Contains entries that specify the text editor’s features. For example, you can
use these pages to determine whether long lines are automatically wrapped, whether line
numbers are displayed, and whether the editor provides smart indentation. The Basic ➪ VB
Specifi c subsection lets you specify options such as whether the editor uses outlining, dis-
plays procedure separators, or suggests corrections for errors.

28 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

 ➤ Debugging — Contains debugging settings such as whether the debugger displays messages
as modules are loaded and unloaded, and whether it should allow Edit-and-Continue.

 ➤ Database Tools — Contains database parameters such as default lengths for fi elds of various
types and how long to let long queries run before canceling them.

 ➤ HTML Designer — Contains options for confi guring HTML Designer. These options
determine such settings as the spacing of the display grid and whether the designer starts in
source or design view.

 ➤ Offi ce Tools — Contains settings that specify how the keyboard should work when you use
Excel or Word fi les within Visual Studio.

 ➤ Test Tools — Contains settings that determine how testing tools behave.

 ➤ Windows Forms Designer — Contains settings that control the Windows Forms Designer.
For example, this section lets you determine whether the designer uses a snap-to grid or
snap lines and how far apart grid points are.

Test

The Test menu, which is not available in Visual Studio Express Edition, contains commands that
control the Visual Studio testing tools. These tools let you perform such actions as coverage testing
(to see if every line of code is executed), regression testing (to see if changes to the code broke any-
thing), and load testing (to see how the application performs with a lot of simulated users running at
the same time).

The following list briefl y describes the Test menu’s most useful commands:

 ➤ New Test — This command displays a dialog box that lets you create various kinds of tests
for the application.

 ➤ Load Metadata File — This command lets you load a test metadata fi le. These XML fi les
describe test lists, each of which can contain tests. This command lets you load test lists into
different projects.

 ➤ Create New Test List — This command lets you make a new test list. Test lists let you group
related tests so that you can execute them together. For example, you might have test lists
for user interface testing, print tests, database tests, and so forth.

 ➤ Run — This command starts executing the currently active test project without the
debugger.

 ➤ Debug — This command starts executing the currently active test project with the debugger.

 ➤ Windows — This command displays test-related windows including Test View, Test List
Editor, Test Results, Code Coverage Results, and Test Runs.

Window

The Window menu contains commands that control Visual Studio’s windows. Which commands are
enabled depends on the type of window that has the focus. For example, if focus is on a code editor,

Menus ❘ 29

the Split command is enabled and the Float, Dock, and Dock as Tabbed Document commands are
disabled, but when the Solution Explorer window has the focus, the opposite is true.

The following list briefl y describes the most useful of these commands:

 ➤ Split — This command splits a code window into two panes that can display different parts
of the code at the same time. This command changes to Remove Split when you use it.

 ➤ Float, Dock, Dock as Tabbed Document — Secondary windows such as the Toolbox,
Solution Explorer, and Properties windows can be displayed as dockable, fl oating, or tabbed
documents. A dockable window can be attached to the edges of the IDE or docked with
other secondary windows. A fl oating window stays in its own independent window even
if you drag it to a position where it would normally dock. A tabbed document window is
displayed in the main editing area in the center of the IDE with the forms, classes, and other
project fi les.

 ➤ Auto Hide — This command puts a secondary window in Auto Hide mode. The window
disappears, and its title is displayed at the IDE’s nearest edge. When you click the title or
hover over it, the window reappears so that you can use it. If you click another window, this
window hides itself again automatically.

 ➤ Hide — This command removes the window.

 ➤ Auto Hide All — This command makes all secondary windows enter Auto Hide mode.

 ➤ New Horizontal Tab Group — This command splits the main document window horizon-
tally so that you can view two different documents at the same time.

 ➤ New Vertical Tab Group — This command splits the main document window vertically so
that you can view two different documents at the same time.

 ➤ Close All Documents — This command closes all documents.

 ➤ Reset Window Layout — This command resets the window layout to a default
confi guration.

 ➤ Form1.vb — The bottom part of the Window menu lists open documents such as form,
code, and bitmap editors. The menu displays a checkmark next to the currently active docu-
ment. You can select one of these entries to view the corresponding document.

 ➤ Windows — If you have too many open documents to display in the Window
menu, select this command to see a list of the windows in a dialog box. This dialog box
lets you switch to another document, close one or more documents, or save documents.
By pressing Ctrl+Click or Shift+Click you can select more than one document and quickly
close them.

Help

The Help menu displays the usual assortment of help commands. You should be familiar with most
of these from previous experience. The following list summarizes some of the more interesting non-
standard commands:

30 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

 ➤ Set Help Preference — This command lets you indicate whether you prefer to use local or
online help.

 ➤ MSDN Forums — This command opens an MSDN community forums web page where you
can post questions and search for answers.

 ➤ Report a Bug — This command opens Microsoft Connect where you can report bugs, make
suggestions, and look for hot fi xes for known problems.

 ➤ Samples — This command opens a Microsoft web page containing links to Visual Studio
documentation and samples.

 ➤ Customer Feedback Options — This command displays a dialog box that lets you indi-
cate whether you want to participate in Microsoft’s anonymous Customer Experience
Improvement Program. If you join, Microsoft collects anonymous information about your
system confi guration and how you use its software.

 ➤ Check for Updates — This command checks online for Visual Studio updates.

 ➤ Technical Support — This command opens a help page describing various support options.
The page includes phone numbers and links to more information.

TOOLBARS

The Visual Studio toolbars are easy to rearrange. Simply grab the four gray dots on a toolbar’s left
or upper edge and drag the toolbar to its new position. Use the Tools menu’s Customize command
to show or hide toolbars. Select a toolbar and click the Modify Selection drop-down to make a tool-
bar dock to the IDE’s top, left, right, or bottom edges.

You can use the IDE’s menu commands to determine which toolbars are visible, to determine what
they contain, and to make custom toolbars of your own.

Many menu commands are also available in standard toolbars. For example, the Debug
toolbar contains many of the same commands that are in the Debug menu. If you use a set of
menu commands frequently, you may want to display the corresponding toolbar to make using the
commands easier. Alternatively, you can make your own custom toolbar and fi ll it with your
favorite commands.

SECONDARY WINDOWS

You can rearrange secondary windows such as the Toolbox and Solution Explorer even more
easily than you can rearrange toolbars. Click and drag the window’s title bar to move
it. As the window moves, the IDE displays drop icons and blue drop areas to help you dock
the window, as shown in Figure 2-6. This fi gure probably looks somewhat confusing, but it’s
fairly easy to use.

Secondary Windows ❘ 31

When you drag the window over another window, the IDE displays docking icons for the other win-
dow. In Figure 2-6, these are the icons in the center that look like little windows. In Figure 2-6 the
cursor is hovering over one of these icons.

The four icons on the sides dock the window to the corresponding edge of the other window. The
center icon places the dropped window in a tab within the other window.

When you drag the mouse over one of the docking icons, the IDE displays a pale blue rectangle to
give you an idea of where the window will land if you drop it. In Figure 2-6, the mouse is over the
main document window’s right docking icon, so the blue rectangle shows the dropped window tak-
ing up the right half of the main document window.

If you drop a window somewhere other than on a docking icon, the window becomes free-fl oating.

When you drop a window on the main document area, it becomes a tabbed document within that
area, and you cannot later pull it out. To free the window, select it and use the Window menu’s
Dock or Float command.

NOTE Sometimes the IDE is so cluttered with windows that it’s hard to fi gure out
exactly where the window will be dropped. It’s usually fairly easy to just move the
mouse around a bit and watch the pale blue rectangle to see what’s happening.

FIGURE 2-6: Use the IDE’s docking icons to help you dock windows.

32 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

This section described some of the general features of the IDE’s secondary windows. The follow-
ing sections describe two of the most important of those secondary windows: the Toolbox and the
Properties window.

Toolbox

The Toolbox window displays tools that you can use with the currently active document. The tools
are available when you are editing a Windows Form, WPF Form, UserControl, web page, or other
item that can contain objects such as controls and components.

The tools are grouped into sections called tabs, although they don’t look much like the tabs on
most documents. The Toolbox in Figure 2-6 displays tools for the Windows Forms Designer. The
Common Controls tab is showing its tools as icons. The Containers and Menus & Toolbars tabs are
listing their tools by name. Other tabs are hidden.

You can customize the Toolbox by right-clicking a tab and selecting one of the commands in the
context menu. The following list briefl y describes the most useful of these commands:

 ➤ List View — This command toggles the current tab to display tools as either a list of names
(as in the Containers tab in Figure 2-6) or a series of icons (as in the Common Controls tab
in Figure 2-6).

 ➤ Show All — This command shows or hides less commonly used tabs such as Data, WPF
Interoperability, Visual Basic Power Packs, and many others.

 ➤ Choose Items — This command displays a dialog box where you can select the items that
should appear in a tab.

 ➤ Sort Items Alphabetically — This command sorts the items within a Toolbox tab
alphabetically.

 ➤ Reset Toolbox — This command restores the Toolbox to a default confi guration. This
removes any items you may have added by using the Choose Items command.

 ➤ Add Tab — This command creates a new tab where you can place your favorite tools. You
can drag tools from one tab to another. Hold down the Ctrl key while dragging to add a
copy of the tool to the new tab without removing it from the old tab.

 ➤ Delete Tab — This command deletes a tab.

 ➤ Rename Tab — This command lets you rename a tab.

 ➤ Move Up, Move Down — This command moves the clicked tab up or down in the Toolbox.
You can also click and drag the tabs to new positions.

If you right-click a tool in the Toolbox, the context menu contains most of these commands plus
Cut, Copy, Paste, Delete, and Rename Item.

Summary ❘ 33

Properties Window

When you are designing a form, the Properties window allows you to
view and modify the properties of the form and of the controls that it
contains. Figure 2-7 shows the Properties window displaying properties
for a Button control named btnCalculate. You can see in the fi gure that
the control’s Text property is “Calculate” so that’s what the button dis-
plays to the user.

Figure 2-7 shows some important features of the Properties window that
deserve special mention. At the top of the window is a drop-down list
that holds the names of all of the controls on the form. To select a con-
trol, you can either click it on the Windows Forms Designer or select it
from this list.

The buttons in the row below the drop-down determine what items are
displayed in the window and how they are arranged. If you click the left-
most button, the window lists properties grouped by category. For exam-
ple, the Appearance category contains properties that affect the control’s
appearance such as BackColor, Font, and Image. If you click the second
icon that holds the letters A and Z, the window lists the control’s proper-
ties alphabetically.

FIGURE 2-7: The

Properties window lets

you view and modify

control properties.

NOTE Arranging properties alphabetically makes fi nding properties easier for
many developers.

The third icon makes the window display the control’s properties, and the fourth icon (which
displays a lightning bolt) makes the window display the control’s events instead. (Yes, it’s a little
odd that the Properties window displays either properties or events, but there is no Events window.)

For more information on using the Properties window to edit properties and create event handlers
in the Windows Forms Designer, see Chapter 3, “Windows Forms Designer.”

SUMMARY

The Visual Studio integrated development environment provides a huge number of tools for manipu-
lating projects. Menus and toolbars contain hundreds if not thousands of commands for creating,
loading, saving, and editing different kinds of projects and fi les.

This chapter described the most useful and important commands available in the IDE’s menus and
toolbars. The kinds of menus, toolbars, and commands that are available depend on the type of
window that currently has focus, in addition to the project’s current state. For example, the Format

34 ❘ CHAPTER 2 MENUS, TOOLBARS, AND WINDOWS

menu contains commands that arrange controls on a form so most of its commands are enabled only
when you are using a Windows Forms Designer and you have controls selected.

This chapter also described important IDE windows such as the Error List, Solution Explorer,
and Properties window. One of the most important of those windows is the Toolbox, which is
used mostly to add controls and components to forms in the Windows Form Designer. Chapter 3,
“Windows Forms Designer,” explains how to use the Windows Forms Designer to build the forms
that make up most Windows applications.

Windows Forms Designer

WHAT’S IN THIS CHAPTER

 ➤ Creating and manipulating controls

 ➤ Setting control properties

 ➤ Using smart tags

 ➤ Creating event handlers

 ➤ Using relaxed delegates

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

INTRODUCING WINDOWS FORMS DESIGNER

The Windows Forms Designer allows you to design forms for typical applications that run
on the Windows desktop. It lets you add, size, and move controls on a form. Together with the
Properties window, it also lets you change a control’s properties to determine its appearance
and behavior.

This chapter provides an introduction to the Windows Forms Designer. It explains how to
add controls to a form, move and size controls, set control properties, and add code to respond
to control events. It also describes tips and tricks that make working with controls easier.

SETTING DESIGNER OPTIONS

When you fi rst install Visual Studio, the Windows Forms Designer is confi gured to be quite
usable. You can open a form immediately and use the Toolbox to place controls on it. You
can use the mouse to move and resize controls. You can use the Format menu to arrange and

3

http://WROX.COM

36 ❘ CHAPTER 3 WINDOWS FORMS DESIGNER

size controls. Overall the Windows Forms Designer provides a fi rst-class intuitive WYSIWYG
(“what you see is what you get”) experience.

Behind the scenes, however, there are a few confi guration options that control the designer’s
behavior and that you should know about to get the most out of the designer.

To view the designer’s options, open the Tools menu, select Options, open the Windows Forms
Designer branch, and select the General page to display the dialog box shown in Figure 3-1.

FIGURE 3-1: This dialog box lets you control the Windows Forms Designer’s behavior.

The following list describes the most important of these settings:

 ➤ Optimized Code Generation — Determines whether Visual Studio generates optimized
code. This setting is here instead of some more code-oriented part of the Options dialog box
because some controls may be incompatible with code optimization.

 ➤ Grid Size — Determines the horizontal and vertical dimensions of the sizing grid for use
when LayoutMode is SnapToGrid.

 ➤ LayoutMode — Determines whether Visual Studio uses snap-to-grid or snap lines. If this
is SnapToGrid, objects automatically snap to the nearest grid point when you drag or resize
them. When this is SnapLines, resized controls automatically snap to lines that align
with the edges or centers of other controls, or with the form’s margins. Both of these
options make it easy to build controls that are consistently sized and that align along their
edges. The two options have a very different feel, however, so you might want to experiment
with both to see which one you like best.

 ➤ Automatically Open Smart Tags — Determines whether Visual Studio displays smart tags
by default.

Adding Controls ❘ 37

 ➤ EnableRefactoringOnRename — Determines whether Visual Studio performs refactoring
when you rename a control. (Refactoring is the process of restructuring the code, hopefully
to make it better.) If this setting is True and you change a control’s name, Visual Studio
updates any code that uses that control so it uses the new name. If this setting is False and
you rename a control, any code that refers to the control still uses its old name, so the code
will no longer work.

 ➤ AutoToolboxPopulate — Determines whether Visual Studio adds components built by the
solution to the Toolbox window.

ADDING CONTROLS

The Windows Forms Designer allows you to add controls to a form in several ways.

First, if you double-click a control on the Toolbox, Visual Studio places an instance of the control
on the form in a default location and at a default size. You can then use the mouse to move and
resize the control.

NOTE When you use this method, the new control is placed inside the currently
selected container on the form. If the currently selected control is a GroupBox,
the new control is placed inside the GroupBox. If the currently selected control is
a TextBox that is inside a Panel, the new control is placed inside the Panel.

Second, if you click a control in the Toolbox, the mouse cursor changes while the mouse is over the
form. The new cursor looks like a plus sign with a small image of the control’s Toolbox icon next to
it. If you click the form, Visual Studio adds a control at that location with a default size. Instead
of just clicking, you can click and drag to specify the new control’s location and size. After you
place the new control, the mouse returns to a pointer cursor so you can click existing controls to
select them.

USEFUL OPTIONS

Which LayoutMode you should use is a matter of preference. I know many
 developers who use each style. The EnableRefactoringOnRename option can
save you a lot of trouble when you rename controls, so it’s almost always worth
leaving the setting as True.

38 ❘ CHAPTER 3 WINDOWS FORMS DESIGNER

SELECTING CONTROLS

When you fi rst create a control, the designer selects it.
The designer indicates that the control is selected by
 surrounding it with white boxes. In Figure 3-2, the Button2
control is selected.

To select a control on the designer later, when you haven’t just
added it, simply click it.

You can click and drag to select a group of controls. As you
drag the mouse, the designer displays a rectangle so you can
tell which controls will be selected. When you release the
mouse button, all of the controls that overlap the rectangle at
least partly are selected.

When you select a group of controls, the designer
surrounds most of them with black boxes. It surrounds a
 special “master” control with white boxes. In Figure 3-3, four
buttons are selected. Button1 is the “master” control so it is
surrounded by white boxes.

The designer uses the “master” control to adjust the others if
you use the Format menu’s commands. For example, if you
use the Format ➪ Make Same Size ➪ Height command, the
designer gives the “black box” controls the same height as
the “master” control. Similarly the Format ➪ Align ➪ Tops
command moves the “black box” controls so their tops are
aligned with the top of the “master” control.

To change the “master” control, simply click the control that
you want to use as the “master.”

After you have selected some controls, you can Shift�Click or Ctrl�Click to add and remove single
controls from the selection. You can Shift�Click-and-drag or Ctrl�Click-and-drag to add and
remove groups of controls from the selection.

NOTE If you hold down the Control key when you click or drag on the form, the
designer adds the new control to the form and keeps the control’s Toolbox tool
selected so you can add another instance of the control. For example, suppose
you need to create a series of TextBoxes to hold a user’s name, street, city, state,
and ZIP code. Select the TextBox tool in the Toolbox. Then you can quickly use
Ctrl+Click fi ve times to create the TextBoxes. Press the Esc key to stop adding
TextBoxes and then drag them into their correct positions.

FIGURE 3-2: The designer surrounds a

selected control with white boxes.

FIGURE 3-3: The selection’s “master”

control is surrounded by white boxes.

Copying Controls ❘ 39

COPYING CONTROLS

A particularly useful technique for building a series of similar controls is to build one and then use
copy and paste to make others.

For example, to build the name, street, city, state, and ZIP code TextBoxes described in the previous
section, you could start by adding the name TextBox to the form. Next, set all of the properties that
you want the control copies to share. For example, you may want to adjust the TextBox’s width,
set its MaxLength property to 20, and set its Anchor property to Top, Left, Right so it resizes
 horizontally when its container resizes. Now select the control on the designer and press Ctrl�C to
copy it. Then press Ctrl�V repeatedly to make copies for the other controls. Drag the controls into
position and you have quickly built all of the controls with their shared properties already set.

You can also use copy and paste to copy a group of controls. For example, suppose you want to
make name, street, city, state, and ZIP code TextBoxes but you also want Label controls to the left
of the TextBoxes. First create the name Label and TextBox, set their properties, and position them
so their baselines are lined up and the Label is to the left of the TextBox as desired. Click and drag
to select both controls and then press Ctrl�C to copy them both. Now when you press Ctrl�V,
the designer makes a copy of the Label and the TextBox. The copies have aligned baselines and the
Label is to the left of the TextBox as in the originals. The new controls are even both selected so
you can use the mouse to grab them both and drag them into position.

TRICKY CLICKS

Under some circumstances, the designer will not remove its selection even if you
click the form off of the selected controls. To deselect all of the controls, either click
a control that is not selected or press the Esc key.

CONTAINER CONFUSION

When you paste a copied control, the new control is placed inside whatever con-
tainer is currently selected on the form. This can be confusing if you quickly copy
and paste a container. For example, suppose you want to make three GroupBoxes.
You build one and size it the way you want it. Then you press Ctrl�C, Ctrl�V,
Ctrl�V. The fi rst GroupBox is copied and the fi rst copy is pasted inside the original
GroupBox. Then the second copy is placed inside the fi rst copy. The result is some-
what confusing and you’ll probably need to drag the copies out onto the form before
you can place them where you want.

40 ❘ CHAPTER 3 WINDOWS FORMS DESIGNER

MOVING AND SIZING CONTROLS

Moving a control in the Windows Forms Designer is easy. Simply click the control and drag it to its
new position.

To move a group of controls, select the controls that you want. Then click one of the controls and
drag to move the whole group.

Note that you can drag controls in and out of container controls such as the FlowLayoutPanel,
GroupBox, and Panel. When you drag a control into a new container, the mouse cursor acquires
a little fuzzy rectangle on the lower right. If you are dragging a control and you see this appear, you
know that dropping the control at the current position will move it into a new container. The new
container indicator appears if you are dragging a control from the form into a container, from
a container onto the form, or from one container to another.

Resizing a control is almost as easy as moving one. Click a control to select it. Then click and drag
one of the white boxes surrounding the control to change its size.

To resize a group of controls, select the group. Then click and drag one of the boxes surrounding
one of the controls. When you drag the mouse, the control beside the box you picked is resized as if
it were the only control selected. The other selected controls resize in the same manner. For example,
if you widen the clicked control by eight pixels, all of the other controls widen by eight pixels, too.

ARRANGING CONTROLS

The Format menu contains several submenus that hold tools that make arranging controls easier.
For example, the Format menu’s Align submenu contains commands that let you align controls ver-
tically and horizontally along their edges or centers.

For a description of this menu’s commands, see the section “Format” in Chapter 2, “Menus,
Toolbars, and Windows.” (Or just experiment with these commands — they aren’t too complicated.)

For more information about how the selection’s “white box master” control determines how other
controls are adjusted, see the section “Selecting Controls” earlier in this chapter.

SETTING PROPERTIES

When you select a control, the Properties window allows you to view and edit the control’s
 properties. For most properties, you can simply click the property and type a new value for the
 control. Some properties are more complex than others and provide drop-down lists or special
 dialog boxes to set the property’s value. Most of the editors provided for setting property values are
fairly self-explanatory, so they are not described in detail here.

NOTE You can press Ctrl�Z and Ctrl�Y to undo and redo changes in the
Windows Form Designer, respectively, so you should feel free to experiment.
You can change property values and add or remove controls and restore the form
if you don’t like the changes.

Setting Properties ❘ 41

In addition to using the Properties window to set a single control’s properties one at a time, you
can quickly set property values for groups of controls in a couple of ways. The following sections
describe some of the most useful of these techniques.

Setting Group Properties

If you select a group of controls, you can sometimes use the Properties window to give all of the
controls the same property value all at once. For example, suppose you select a group of TextBoxes.
Then you can use the Properties window to simultaneously give them the same values for their
Anchor, Text, MultiLine, Font, and other properties.

Sometimes, this even works when you select different kinds of controls at the same time. For
 example, if you select some TextBoxes and some Labels, you can set all of the controls’ Text
 properties at the same time. You cannot set the TextBoxes’ MultiLine properties, however, because
the Labels do not have a MultiLine property.

Using Smart Tags

Many controls display a smart tag when you select them on
the designer. The smart tag looks like a little box contain-
ing a right-pointing triangle. When you click the smart tag,
a small dialog box appears to let you perform common
tasks for the control quickly and easily.

Figure 3-4 shows a PictureBox with the smart tag
expanded. Because the smart tag’s dialog box is visible, the
smart tag indicator shows a left-pointing triangle. If you
click this, the dialog box disappears.

The PictureBox control’s smart tag dialog box lets you
choose an image for the control, set the control’s SizeMode,
or dock the control in its container. These actions set the
control’s Image, SizeMode, and Dock properties.

FIGURE 3-4: The PictureBox control’s

smart tag lets you set common control

properties.

BLANKING TEXT

One handy use for this technique is to set the Text property to a blank string for a
group of TextBox controls. Unfortunately, if the selected TextBoxes have different
Text values, the Properties window displays a blank value for the Text property.
If you then try to make the property blank, the Properties window doesn’t think
you’ve changed the value, so it doesn’t blank the controls’ Text properties.

To work around this restriction, fi rst set the Text property to any non-blank value
(“x” will do) to give all of the controls the same value. Then delete the Text value to
blank all of the controls.

42 ❘ CHAPTER 3 WINDOWS FORMS DESIGNER

Many controls, particularly the more complicated kinds, provide smart tags to let you perform com-
mon actions without using the Properties window.

ADDING CODE TO CONTROLS

After you have added controls to a form and set their properties, the next step is to add code to the
form that responds to control events and that manipulates the controls.

You use the code editor to write code that responds to control events. The code editor is described in
Chapter 5, “Visual Basic Code Editor,” but you can open the code editor from the Windows Forms
Designer.

An event handler is a code routine that catches an event raised by a control and takes some action.
Almost all program action is started from an event handler. Even actions started automatically by a
timer or when a form fi rst appears begin when an event handler catches a timer’s events.

If you double-click a control on the Windows Forms Designer, Visual Studio creates an empty event
handler to handle the control’s default event and it opens the event handler in the code editor. For
example, the following code shows the event handler the IDE built for a Button control named
Button1. The default event for a Button is Click, so this code is a Click event handler.

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

End Sub

RELAX, DON’T WORRY

Relaxed delegates let you remove the parameters from the event handler’s declara-
tion if you don’t need them. For example, if you use separate event handlers for each
button, you probably don’t need the parameters to fi gure out what’s happening. If
the user clicks the button named btnExit, the btnExit_Click event handler executes
and the program can exit.

In this case, you can remove the parameters to simplify the code. The following
code shows the simplifi ed btnExit_Click event handler (without any code in it):

Private Sub btnExit_Click() Handles btnExit.Click

End Sub

Another way to build an event handler and open the code editor is to select the control on
the Windows Forms Designer. Then click the Events icon (the lightning bolt) near the top of the
Properties window to make the window show a list of events for the control as shown in

Summary ❘ 43

Figure 3-5. Double-click an event in the window to create an event
handler for it and to open it in the code editor.

If you select more than one control in the Windows Forms Designer and
then double-click an event, Visual Studio makes an event handler that
catches the event for all of the selected controls. To create the following
event handler, I selected three Buttons and double-clicked the Click event:

Private Sub Button2_Click(sender As Object, e As EventArgs) _
 Handles Button3.Click, Button2.Click, Button1.Click

End Sub

Note that I added the line continuation in the fi rst line of the preceding
code so it would fi t in the book. Visual Studio makes it all one long line.

The event handler’s name is Button2_Click instead of Button1_Click or
some other name because Button2 was the “white box master” control for
the selected controls. See the section “Selecting Controls” earlier in this chapter for more
information about a selection’s “master” control.

FIGURE 3- 5: Click the

Events icon to make the

Properties window

display a control’s events.

TOO MANY HANDLERS

If you select a group of controls and then double-click them, Visual Studio makes a
separate event handler for each control. If you want the same event handler to catch
events from all of the controls, click the event handler button on the Properties win-
dow and then double-click the event name there instead.

SUMMARY

The Windows Forms Designer allows you to build forms for use in Windows applications. It
lets you add controls to a form, and resize and move the controls. Together with the Properties
window, it lets you view and modify control properties, and create event handlers to interact
with the controls.

This chapter introduced the Windows Forms Designer and explained how you can take advantage
of its features. Future chapters provide much more of the detail necessary for building forms.
Chapter 7, “Selecting Windows Forms Controls,” and Chapter 8, “Using Windows Forms
Controls,” provide more information about the kinds of controls you can use with the Windows
Forms Designer. Chapter 9, “Windows Forms,” says a lot more about how Windows Forms work
and what you can do with them.

44 ❘ CHAPTER 3 WINDOWS FORMS DESIGNER

There are other ways to build applications that have user interfaces that run on the computer,
 however. Windows Presentation Foundation (WPF) lets you build applications that have a very
 different look and feel. Certain kinds of WPF applications can also run in the Windows 8 Metro
interface, something that Windows Forms applications cannot do.

Chapter 4, “WPF Designer,” describes the designer that you use to build Windows Presentation
Foundation applications. In some ways it is similar to the Windows Forms Designer. For example,
you use the Toolbox to place controls on the form, and you use the Properties window to view and
edit control properties much as you do when using the Windows Forms Designer. In other ways the
two designers are quite different, however, so you’ll need the information in Chapter 4 if you want
to build WPF applications.

WPF Designer

WHAT’S IN THIS CHAPTER

 ➤ What is WPF?

 ➤ Creating and manipulating controls

 ➤ Setting control properties

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

INTRODUCING WPF DESIGNER

Windows Forms controls allow you to build powerful desktop applications. WPF (Windows
Presentation Foundation) is a new set of controls that you can also use to build desktop
 applications. While WPF and Windows Forms controls provide many similar features, the
WPF controls are more closely tied to high performance graphics libraries so they can provide
many sophisticated graphical features that are missing from Windows Forms controls. For
example, WPF controls can draw themselves at any scale without losing resolution, can
display gradient backgrounds, and can contain other controls in a more fl exible and consistent
way than Windows Forms controls can. For a specifi c example of this last feature, a Windows
Forms Button control can hold only text. A WPF Button control can hold other controls such
as a Grid that contains several Images and TextBlocks to make a much richer experience.

In addition to giving WPF new features, Microsoft is positioning it, or more precisely the Silverlight
subset of WPF, for use in building applications on its future platforms. You can build applications
in Silverlight for the Windows 8 operating system, the Windows Phone operating system, or web
applications. Windows Forms programs still have an important role on desktop systems but
Microsoft seems determined to make WPF and Silverlight be the development tools of the future.
You can still build Windows Forms applications and run them on the Windows 8 desktop, but you
need to use WPF to build programs that can run within the Windows 8 Metro interface.

4

http://WROX.COM

46 ❘ CHAPTER 4 WPF DESIGNER

The WPF (Windows Presentation Foundation) Designer allows you to build WPF windows (including
those used by Metro-style applications) interactively much as the Windows Forms Designer lets you
build Windows Forms. It provides a WYSIWYG (what you see is what you get) surface where you can
add controls to a window. If you select one or more controls on the designer’s surface, the Properties
window displays the objects’ properties and lets you edit many of them.

In addition to the WYSIWYG design surface, the designer provides a XAML (Extensible
Application Markup Language) code editor. Here you can view and edit the XAML code that
defi nes the user interface. This lets you edit properties and arrange controls in ways that are
 impossible using the WYSIWYG designer.

NOTE XAML is pronounced “zammel.”

This chapter provides an introduction to the WPF Designer. It explains how to add controls to a
window, move and size controls, set control properties, and add code to respond to control events.

FOR MORE INFORMATION

Windows Presentation Foundation is quite large and complex, requiring you to
learn about a whole new set of controls, objects, properties, animations, and other
items. It even uses a whole new system for properties and events that isn’t used by
Windows Forms.

The chapters in this book cover WPF in enough detail to get you started and let you
build an effective application, but there’s much more to WPF. For more details, see
my book WPF Programmer’s Reference: Windows Presentation Foundation with
C# 2010 and .NET 4.0 (Stephens, Wrox, 2009). Some of the code examples use C#
but most of the code uses XAML code, which is described by the book, so they’re
applicable to Visual Basic as well. You can learn more and download the book’s
example code in C# and Visual Basic versions on the book’s web page at http://www
.vb-helper.com/wpf.htm.

EDITOR WEAKNESSES

Visual Studio’s Windows Forms Designer has been around for a long time, and over the years it has
become extremely powerful. In contrast, the WPF Designer is relatively new and lacks many of the
features included in its more mature cousin.

Although the WPF Designer is a WYSIWYG tool, it has a lot of weak spots. A small sampling of
these weaknesses includes:

 ➤ The Properties window does not provide editors for many types of objects, and many of
the editors it does provide are incomplete. For example, the Properties window provides no

http://www.vb-helper.com/wpf.htm
http://www.vb-helper.com/wpf.htm

Recognizing Designer Windows ❘ 47

tools for editing a control’s Clip property, which determines the geometry used to clip the
control’s contents.

 ➤ The Properties window provides tooltips describing properties but only when the mouse is
hovering over the property’s name, not while you are editing the property. Some of the tips
are also fairly incomplete, saying things like Integer Canvas.ZIndex.

 ➤ The designer surface has no snap-to-grid mode.

 ➤ The XAML code editor’s IntelliSense is incomplete and doesn’t provide help in many places
where it would be useful (although it’s much better than nothing).

The WYSIWYG designer has enough weaknesses that it is often easier to build parts of a user inter-
face by using the XAML code editor. For example, the designer provides no methods for making
resources, styles, and templates, three items that are essential for building a maintainable interface.
Fortunately, these things are not too diffi cult to build in the XAML code editor.

In all fairness, the WPF Designer has improved greatly since its fi rst version and includes several
enhancements added since the previous version, including better enumerated property support and
primitive brush editors. It also crashes much less often and gets confused about how to draw its
controls much less frequently. Hopefully it will catch up with the Windows Forms Designer someday.

All of these issues aside, the WPF Designer is a powerful tool. It lets you quickly build the basic
structures of a WPF window and layout controls. You may need to rearrange controls somewhat
and build additional elements such as resources and styles in the XAML editor, but the WYSIWYG
surface can get you started.

Though the XAML editor also has shortcomings, it does provide the tools you need to fi ne-tune the
user interface initially built by the designer surface. Together the two pieces of the WPF Designer
give you everything you need to build aesthetically pleasing and compelling WPF user interfaces.

BUILDING WITH BLEND

Microsoft’s Expression Blend product provides some of the features that are missing
from the WPF Designer. For example, it provides better tools for creating styles and
templates, better brush editors, and the ability to record property animations.

It still has its drawbacks (one being the fact that there is no free version) but it com-
plements Visual Studio’s WPF Designer nicely. Learn more about Expression Blend
or download a trial copy at http://www.microsoft.com/expression/products/
blend_overview.aspx.

RECOGNIZING DESIGNER WINDOWS

Figure 4-1 shows the Visual Studio IDE displaying the WPF Designer. You can rearrange the IDE’s
windows, but normally the Toolbox is on the left and the Properties window is on the right, below

http://www.microsoft.com/expression/products/blend_overview.aspx
http://www.microsoft.com/expression/products/blend_overview.aspx

48 ❘ CHAPTER 4 WPF DESIGNER

You can click the up and down arrow label between the WYSIWYG designer and the XAML editor
to make the two switch panes. This is useful if you make one pane large and the other small. Then
you can quickly switch back and forth, moving the one you want into the bigger pane as you move
from using the WYSIWYG designer to the XAML editor.

If there is an error in the XAML code, the designer may display a message at its top indicating that
errors exist. You can click that label to open the Error list to see the types of errors. You can then fi x
them in the XAML editor and refresh the designer.

ADDING CONTROLS

The WPF Designer allows you to add controls to a form in several ways that are similar to those
provided by the Windows Forms Designer. If you are familiar with that topic you might want to
skip this section.

First, if you double-click a control on the Toolbox, Visual Studio places an instance of the control
on the window in a default location and at a default size. You can then use the mouse to move and
resize the control.

FIGURE 4-1: The WPF Designer includes a WYSIWYG design surface and a XAML code editor.

Solution Explorer. The WPF Designer is shown in the middle with its WYSIWYG design surface on
top and its XAML code editor on the bottom.

Selecting Controls ❘ 49

Second, if you click a control in the Toolbox, the mouse cursor changes to a crosshair while the
mouse is over the window. If you click the window, Visual Studio adds a control at that location
with a default size. Instead of just clicking, you can click and drag to specify the new control’s
location and size.

If you hold down the Ctrl key when you select a tool from the Toolbox, that tool remains selected
even after you create a control on the window so you can add another instance of the control. For
example, suppose you need to create a series of TextBoxes to hold a user’s name, street, city, state,
and ZIP code. Hold the Ctrl key and click the TextBox tool in the Toolbox. Then you can quickly
click fi ve times to create the TextBoxes. Click another tool or the arrow tool in the Toolbox to stop
adding TextBoxes.

SELECTING CONTROLS

When you fi rst create a control, the designer selects it. The designer indicates that the control
is selected by surrounding it with light gray boxes. In Figure 4-1, the button on the lower right is
selected.

To select a control on the designer later, simply click it. You can also click and drag to select a group
of controls. As you drag the mouse, the designer displays a rectangle so you can tell which controls
will be selected. When you release the mouse button, all of the controls that overlap the rectangle at
least partly are selected.

When you select a group of controls, the designer surrounds them with light gray boxes and a light
blue border.

After you have selected some controls, you can Shift+Click to add new controls to the selection or
Ctrl+Click to toggle a control’s membership in the selection. You can also Shift+Click-and-drag
or Ctrl+Click-and-drag to add or toggle groups of controls from the selection.

CONTAINER CONFUSION

When you use this method, the new control is placed inside the currently selected
container on the window. If the currently selected control is a StackPanel, the new
control is placed inside the StackPanel. If the currently selected control is a TextBox
that is inside a Grid, the new control is placed inside the Grid.

NOTE You can quickly deselect all controls by pressing the Esc key.

50 ❘ CHAPTER 4 WPF DESIGNER

MOVING AND SIZING CONTROLS

Moving controls in the WPF Designer is easy. Simply click and drag the control to its new position.

To move a group of controls, select the controls that you want to move. Then click one of the con-
trols and drag to move the whole group.

Note that you can drag controls in and out of container controls such as the Grid or StackPanel.
When you drag a control over a new container, the designer draws a box around the container and
displays a tooltip that says “Press Alt to place inside container” where container is the name of the
container. If the container doesn’t have a name, the tooltip shows the container’s control type in
braces as in [Grid]. As the tooltip indicates, if you press Alt and then drop the control, it goes
into the new container. If you drop the control without pressing Alt, the control lands above or
below the container.

As you drag a control, the designer displays snap lines to show how the control lines up with other
controls. It displays lines when the control’s edges align with another control’s edges. For some con-
trols, it displays lines when the control’s text baseline aligns with the text baselines of other controls.

Figure 4-2 shows the designer dragging the lower button.
Four red dashed snap lines show that this control’s edges
line up with the left and right edges of the upper button,
the left edge of the Rectangle control at the bottom,
and the upper edge of the Ellipse control to the right.

Resizing a control is almost as easy as moving one. Click
a control to select it. Then click and drag one of the light
gray boxes surrounding the control to change its size.

If you hover the mouse near but not over a gray box at one
of the control’s corners, the cursor changes to a curved
arrow. You can then click and drag to rotate the control.

If you hover the mouse near but not over a gray box on
one of the control’s edges, the cursor changes to two arrow
heads separated by a slash. Then you can click and drag
to skew the control. For example, if you drag the top of a
TextBlock to the right, the result looks italicized.

WPF controls provide a fairly complex set of properties to
determine how they are anchored to their containers. Fortunately, the WPF Designer provides aids
to make understanding control anchoring easier.

When you select a control, the designer displays symbols next to the container’s edges showing
how the control is anchored. A thin solid line ending in two closed chain links on the container’s
edge means the control’s edge remains the same distance from the container’s edge even when the
container resizes. In Figure 4-2, the selected button’s bottom and right edges are connected to its
container’s bottom and right edges. When the window resizes, the button moves to stay the same
distance from those edges.

FIGURE 4-2: Snap lines show how moving

controls align with other controls.

Setting Group Properties ❘ 51

If you look closely at Figure 4-2, you can also see small numbers on the lines connecting the
button’s bottom and right edges to those of its container. In this example the numbers indicate that
the button will remain 164 pixels from the container’s right edge and 109 pixels from the container’s
bottom edge.

Broken chain links near the container’s edge mean that edge is free to fl oat if the container resizes.
In Figure 4-2, the button’s left and top edges are not anchored to the container’s edges so the button
will move and keep its original size if the container resizes.

If a control’s opposite sides are both attached to the container, the control will grow and shrink as
the container resizes so it can keep both edges the same distance from those of the container.

ATTACHMENT ANXIETY

The designer will not allow you to remove the attachment from all of a control’s
edges (so they all display broken chain links). If you remove one anchor, the
designer changes the opposite side’s anchor symbol to joined links if it isn’t that
way already.

You can easily change a control’s edge anchors by simply clicking the symbol. If you click joined
links, the designer breaks the links and vice versa.

SETTING PROPERTIES

When you select a control, the Properties window allows you to view and edit the control’s proper-
ties. For Boolean properties, the Properties window displays a box that you can check or uncheck to
indicate whether the property’s value should be True or False.

For many other properties, you can simply click the property and type a new value for the control in
a text box.

Still other properties provide custom editors to make it easier to set their values. For example, the
Fill property is a brush that determines how the background of a control is fi lled. The Properties
window provides a brush editor that lets you defi ne the brush fairly easily.

SETTING GROUP PROPERTIES

If you select a group of controls, you can sometimes use the Properties window to give all of the
controls the same property value all at once. For example, suppose you select a group of TextBoxes.
Then you can use the Properties window to give them the same values for their Width, Height,
Margin, MaxLength, and many other properties.

Sometimes, this even works if you select different kinds of controls at the same time. For example,
if you select some TextBoxes and some Labels, you can set all of the controls’ Width, Height, and

52 ❘ CHAPTER 4 WPF DESIGNER

Margin properties at the same time. You cannot set the controls’ MaxLength properties because the
Labels do not have a MaxLength property.

ADDING CODE TO CONTROLS

After you have added the appropriate controls to a form and set their properties, the next step is to
add code to the form that responds to control events and manipulates the controls.

You can add some kinds of code declaratively in the XAML editor. For example, you can make a
trigger respond to a change in a control’s property or to a control’s event.

You can also write Visual Basic source code to respond to control events just as you would in a Windows
Forms application. If you double-click a control on the WPF Designer, Visual Studio creates an empty
event handler to catch the control’s default event, and it opens the event handler in the code editor.

For example, the following code shows the event handler the IDE built for a Button control. The
default event for a Button is Click, so this code is a Click event handler.

Private Sub Button_Click(sender As Object, e As RoutedEventArgs)

End Sub

SIT BACK AND RELAX

As is the case with Windows Forms, you can use relaxed delegates to remove
unneeded parameters from event handlers. For example, the following code shows
the previous event handler with the unnecessary parameters removed:

Private Sub Button_Click()

End Sub

ATTACHMENT VARIATIONS

How the event is attached to the control depends on whether the control has a
name. If the control’s Name property is set to some value, Visual Studio uses
a Handles clause in the Visual Basic code to indicate the control that uses the event.
If the control does not have a name, Visual Studio defi nes the connection between
the control and the event handler in the XAML code.

Another way to build an event handler and open the code editor is to select the control on the WPF
Designer. Then click the Events icon (the lightning bolt) near the top of the Properties window to
make the window show a list of events for the control. Double-click an event in the window to open
a new event handler for it in the code editor.

Summary ❘ 53

You can also create a new event handler for named controls within the code editor. The upper-left
part of the code editor displays a drop-down listing the window’s controls. If you select a control
from the list, you can then pick an event for that control from a second drop-down in the code
editor’s upper right. If you select an event, the code editor makes a corresponding empty event
handler.

SUMMARY

The WPF Designer allows you to build windows for use in WPF applications. It lets you add
 controls to the window, and to resize, move, and align the controls. Together with the Properties
window, it lets you view and modify control properties, and create event handlers to interact with
the controls.

This chapter introduced the WPF Designer and explained how you can take advantage of its
 features. Other chapters provide much more of the detail that is necessary for building windows.
Chapter 10, “Selecting WPF Controls,” and Chapter 11, “Using WPF Controls,” provide more
information about the kinds of controls you can use with the WPF Designer. Chapter 12, “WPF
Windows,” says more about WPF windows and pages.

The Windows Forms Designer and the WPF Designer let you add controls to forms and windows,
respectively, but almost no program consists solely of controls. Most programs also include code
behind the scenes to take action when different events occur, such as the user pressing a button.
Chapter 5, “Visual Basic Code Editor,” describes the code editor that you can use to edit the code
that sits behind Windows Forms and WPF control events. Later chapters explain the Visual Basic
language that you use within the code editor.

Visual Basic Code Editor

WHAT’S IN THIS CHAPTER

 ➤ Understanding margin icons

 ➤ Understanding IntelliSense

 ➤ Using code snippets

 ➤ Generating types from usage

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

 ➤ Fibonacci

 ➤ FillArray

EDITING CODE

The Visual Studio IDE includes editors for many different kinds of documents, including
several different kinds of code. For example, it has HyperText Markup Language (HTML),
eXtensible Markup Language (XML), eXtensible Application Markup Language (XAML),
and Visual Basic editors. These editors share some common features, such as displaying
comments and keywords in different colors.

As a Visual Basic developer, you will use the Visual Basic code editor frequently, so you should
spend a few minutes learning about its specialized features. The most obvious feature of the code
editor is that it lets you type code into a module, but the code editor is far more than a simple text
editor such as Notepad. It provides many features to make writing correct Visual Basic code easier.

This chapter describes some of the most important of these features. Many of these tools are
invaluable for understanding and navigating through the code so, even if you have worked

5

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

56 ❘ CHAPTER 5 VISUAL BASIC CODE EDITOR

MARGIN ICONS

The gray margin to the left of the line numbers contains icons giving information about the
corresponding lines of code. The following table describes the icons on lines 4 through 13.

Figure 5-1 shows the code editor displaying some Visual Basic code at run time. To make referring to
the code lines easier, this fi gure displays line numbers. To display line numbers, invoke the Tools menu’s
Options command, navigate to the Text Editor ➪ Basic ➪ General page, and check the Line Numbers box.

FANTASTIC FEATURES

The Visual Basic code editor provides many features that are not provided by other
Visual Studio editors. For example, the HTML, XML, and XAML editors do not
provide breakpoints or features that let you step through executing code.

FIGURE 5-1: The Visual Basic code editor provides many

features, including line numbers and icons that indicate break-

points and bookmarks.

LINE ICON INDICATES

4 Arrow Execution is paused at this line

5 Red circle A breakpoint

6 Hollow red circle A disabled breakpoint

with Visual Studio before, you should take some time to read through this chapter and experiment
with the tools it describes.

Margin Icons ❘ 57

LINE ICON INDICATES

7 Red circle with plus sign A breakpoint with a condition or hit count test

11 Red diamond A breakpoint that executes an action when reached

12 Gray ribbon A bookmark

13 Hollow diamond and plus sign A disabled breakpoint with a hit test or condition

that performs an action

These icons can combine to indicate more than one condition. For example, line 13 shows a blue and
white rectangle to indicate a bookmark, a hollow red diamond to indicate a disabled breakpoint that
performs an action, and a plus sign to indicate that the breakpoint has a condition or hit count test.

Note that the editor marks some of these lines in other ways than just an icon. It highlights the
currently executing line with a yellow background. It marks lines that hold enabled breakpoints with
white text on a red background. It surrounds lines with disabled breakpoints with red boxes.

To add or remove a simple breakpoint, click in the gray margin.

To make a more complex breakpoint, click in the margin to create a simple breakpoint. Then
right-click the breakpoint icon and select one of the context menu’s commands. The following list
describes these commands:

 ➤ Delete Breakpoint — Removes the breakpoint.

 ➤ Disable Breakpoint — Disables the breakpoint. When the breakpoint is disabled, this
command changes to Enable Breakpoint.

 ➤ Location — Lets you change the breakpoint’s line number. Usually it is easier to click in the
margin to remove the old breakpoint and then create a new one.

 ➤ Condition — Lets you place a condition on the breakpoint. For example, you can make
the breakpoint stop execution only when the variable num_employees has a value
greater than 100.

 ➤ Hit Count — Lets you set a hit count condition on the breakpoint. For example, you can
make the breakpoint stop execution when it has been reached a certain number of times.

BREAK TIME

A breakpoint is a line of code that you have fl agged to stop execution so you can
test and debug the program. When you run the program in the IDE, the program
stops at the breakpoint and lets you see what routines called what other routines,
examine variable values, change variables, and so forth to fi gure out what’s
happening. For more information on breakpoints and debugging, see Chapter 6,
“Debugging.”

58 ❘ CHAPTER 5 VISUAL BASIC CODE EDITOR

 ➤ Filter — Lets you restrict the breakpoint so it is set only in certain processes or threads.

 ➤ When Hit — Lets you specify the action that the breakpoint performs when it triggers. For
example, it might display a message in the Output window.

 ➤ Edit Labels — Lets you add labels to a breakpoint. Later you can select this option to view,
change, or remove the breakpoint’s labels.

 ➤ Export — Lets you export information about the breakpoint into an XML fi le.

To add or remove a bookmark, place the cursor on a line and then click the Toggle Bookmark
tool. You can fi nd this tool, which looks like the blue and white bookmark icon, in the Text
Editor toolbar, at the top of the Bookmarks window (View ➪ Other Windows ➪ Bookmark ➪

Window), and in the Edit menu’s Bookmarks submenu. Other bookmark tools let you move to the
next or previous bookmark, the next or previous bookmark in the current folder, or the next or
previous bookmark in the current document. Still others let you disable all bookmarks and
delete a bookmark.

OUTLINING

By default, the code editor displays an outline view of code. If you look at the fi rst line in
Figure 5-1, you’ll see a box with a minus sign in it just to the right of the line number. That box
represents the outlining for the Form1 class. If you click this box, the editor collapses the class’s
defi nition and displays it as a box containing a plus sign. If you then click the new box, the editor
expands the class’s defi nition again.

Near the bottom of Figure 5-1, you can see that the RandomizeArray subroutine has been collapsed.
The ellipsis and rectangle around the routine name provide an extra indication that this code is
hidden.

The editor automatically creates outlining
entries for namespaces, classes and their
methods, and modules and their methods.
You can also use the Region statement to
group a section of code for outlining. For
example, you can place several related
subroutines in a region so you can collapse
and expand the routines as a group.

Figure 5-2 shows more examples of
outlining. Line 33 begins a region named
Randomization Methods that contains
two collapsed subroutines. Notice that
the corresponding End Region statement
includes a comment that I added giving the
region’s name. This is not required but it
makes the code easier to understand when
you are looking at the end of a region.

FIGURE 5-2: The code editor outlines namespaces, classes

and their methods, modules and their methods, and regions.

Tooltips ❘ 59

Line 57 contains a collapsed region named Utility Functions. Notice that this region is nested inside
the Randomization Methods region.

Line 129 starts a module named HelperRoutines that contains one collapsed subroutine.

Finally, line 144 holds the collapsed ImageResources namespace.

Notice that the line numbers skip values for any collapsed lines. For example, the
Randomize2DArray subroutine is collapsed on line 36. This subroutine contains 7 lines (including
the Sub statement), so the next visible line is labeled 43.

COLLAPSED CODE COMMENTS

Notice that comments before a subroutine are not collapsed with the subroutine.
You can make reading collapsed code easier by placing a short descriptive comment
before each routine.

TOOLTIPS

If you hover the mouse over a variable at design time, the editor displays a tooltip describing the
variable. For example, if you hover over an integer variable named num_actions, the tooltip displays
“Dim num_actions As Integer.”

If you hover over a subroutine or function call
(not the routine’s defi nition, but a call to it),
the tooltip displays information about that
routine. For example, if you hover over a call to
the Fibonacci function, the tooltip reads, “Private
Function Fibonacci (n As Long) as Long.”

At run time, if you hover over a variable,
the tooltip displays the variable’s value.
If the variable is complex (such as an array or
structure), the tooltip displays the variable’s
name and a plus sign. If you click or hover over
the plus sign, the tooltip expands to show the
variable’s members.

In Figure 5-3, the mouse hovered over variable
values. The editor displayed a plus sign and
the text “values {Length=100}.” When the
mouse hovered over the plus sign, the editor
displayed the values shown in the fi gure.
Moving the mouse over the up and down
arrows at the top and bottom of the list makes
the values scroll.

FIGURE 5-3: You can hover the mouse over a

 variable at run time to see its value.

60 ❘ CHAPTER 5 VISUAL BASIC CODE EDITOR

If a variable has properties that are references to other objects, you can hover over their plus signs
to expand those objects. You can continue following the plus signs to drill into the variable’s object
hierarchy as deeply as you like.

INTELLISENSE

If you start typing a line of code, the editor tries to anticipate what you will type. For example, if
you type “Me.” the editor knows that you are about to use one of the current object’s properties or
methods.

IntelliSense displays a list of the properties and methods that you might be trying to select. As you
type more of the property or method name, IntelliSense scrolls to show the choices that match what
you have typed so far.

In Figure 5-4, the code includes the text “Me.set,” so IntelliSense is displaying the current object’s
methods that begin with the string “set.”

FIGURE 5-4: IntelliSense displays a list of properties and methods that you

might be trying to type.

While the IntelliSense window is visible, you can use the up and down arrows to scroll through
the list. While IntelliSense is displaying the item that you want to use, you can press the Tab key to
accept that item and make IntelliSense type it for you. Press the Escape key to close the IntelliSense
window and type the rest manually.

After you fi nish typing a method and its opening parenthesis, IntelliSense displays information
about the method’s parameters. Figure 5-5 shows parameter information for a form object’s
SetBounds method. This method takes four parameters: x, y, width, and height.

Code Coloring and Highlighting ❘ 61

IntelliSense shows a brief description of the current parameter x. As you enter parameter
values, IntelliSense moves on to describe the other parameters.

IntelliSense also indicates whether overloaded versions of the method exist. In Figure 5-5,
the IntelliSense tooltip starts with “1 of 2” to indicate that it is describing the fi rst of two available
versions. You can use the up and down arrows to move through the list of overloaded versions.

CODE COLORING AND HIGHLIGHTING

The code editor displays different types of code items in different colors (although they all appear
black or gray in this book). You can change the colors used for different items by selecting the Tools
menu’s Options command and opening the Environment ➪ Fonts and Colors option page.

FIGURE 5-5: IntelliSense displays information about a method’s parameters.

COLOR CONFUSION

To avoid confusion, you should probably leave the editor’s colors alone unless you
have a good reason to change them.

The following table describes some of the default colors that the code editor uses to highlight
different code elements.

62 ❘ CHAPTER 5 VISUAL BASIC CODE EDITOR

A few other items that may sometimes be worth changing have white backgrounds and black text by
default. These include identifi ers (variable names, types, object properties and methods, namespace
names, and so forth), and numbers.

When the code editor fi nds an error in your code, it highlights the error with a wavy underline. If
you hover over the underline, the editor displays a tooltip describing the error. If Visual Studio can
guess what you are trying to do, it adds a small fl at rectangle to the end of the wavy error line to
indicate that it may have useful suggestions.

The assignment statement i = “12” shown
in Figure 5-6 has an error because it tried to
assign a string value to an integer variable
and that violates the Option Strict On
setting. The editor displays the wavy error
underline and a suggestion indicator because
it thinks it knows a way to fi x this error. The
Error List window at the bottom also shows
a description of the error.

If you hover over the suggestion indicator,
the editor displays an error correction icon.
If you click the icon, Visual Studio displays
a dialog box describing the error and listing
some actions that you may want to take.
Figure 5-7 shows the suggestion dialog box
for the error in Figure 5-6. If you click the
text over the revised sample code, or if you
double-click the sample code, the editor
makes the change.

ITEM HIGHLIGHTING

Comment Green text

Compiler error Underlined with a wavy blue underline

Keyword Blue text

Other error Underlined with a wavy purple underline

Preprocessor keyword Blue text

Read-only region Light gray background

User-defi ned types Navy text

Warning Underlined with a wavy green underline

FIGURE 5-6: If the code editor thinks it can fi gure out

what’s wrong, it displays a suggestion indicator.

Code Snippets ❘ 63

CODE SNIPPETS

A code snippet is a piece of code that you
might fi nd useful in many applications. It is
stored in a snippet library so that you can
quickly insert it into a new application.

Visual Studio comes with hundreds of
snippets for performing standard tasks.
Before you start working on a complicated
piece of code, you should glance at the
snippets that are already available to you.
In fact, it would be worth your time to
use the Code Snippet Manager available
from the Tools menu to take a good look at
the available snippets right now before you
start a new project. There’s little point in
reinventing methods for calculating statistical
values if someone has already done it and
given you the code.

To insert a snippet, right-click where you
want to insert the code and select Insert
Snippet to make the editor display a list of
snippet categories. Double-click a category
to fi nd the kinds of snippets that you want.
If you select a snippet, a tooltip pops up
to describe it. Figure 5-8 shows the editor
preparing to insert the snippet named “Inserts
a test method” from the Test snippet category.

Double-click the snippet to insert it into your
code.

The snippet may include values that you should replace in your code. These replacement values are
highlighted with a light green background, and the fi rst value is initially selected. If you hover the
mouse over one of these values, a tooltip appears
to describe the value. You can use the Tab key to
jump between replacement values.

Figure 5-9 shows the code inserted by a
snippet that creates a new property. The
text newPropertyValue is highlighted and
selected. Other selected text includes String
and NewProperty. The mouse is hovering over
newPropertyValue, so the tooltip explains that
value’s purpose.

FIGURE 5-7: The error suggestion dialog box proposes

likely solutions to an error.

FIGURE 5-8: When you select a code snippet, a pop-up

describes it.

FIGURE 5-9: Values that you should replace in a

snippet are highlighted.

64 ❘ CHAPTER 5 VISUAL BASIC CODE EDITOR

ARCHITECTURAL TOOLS

The code editor provides several powerful tools that can help you understand the structure of your
code and how to navigate through its pieces. They can give you a better understanding of how the
pieces of the program fi t together, and they can help you track down important code snippets, such
as where a variable or type is defi ned and where one piece of code is called by others.

The following sections describe the most useful of these kinds of architectural tools and explain
how to invoke them.

Rename

If you right-click the defi nition or occurrence of a symbol, such as a variable, subroutine, function,
or class, and select Rename, Visual Studio displays a dialog box where you can enter a new name
for the item. If you enter a name and click OK, Visual Studio updates all references to that symbol.
If the symbol is a variable, it changes all references to the variable so they use the new name.

This is much safer than using a simple textual fi nd-and-replace, which can wreak havoc with strings
that contain your target string. For example, if you textually replace the variable name factor
with issue, your Factorial function becomes Issueial. In contrast, if you right-click the
factor variable, select Rename, and set the new name to issue, Visual Studio only updates
references to the variable.

CORRUPTED COMMENTS

Unfortunately, Rename still leaves any comments that discuss the factor variable
unchanged. You’ll have to search the comments to fi x them.

Go To Defi nition

If you right-click a symbol or type, such as a variable, function, or class, and select Go To
Defi nition, the code editor jumps to the location where the symbol is defi ned. For example, it would
jump to a variable’s declaration or a function’s defi nition.

If the symbol you clicked is defi ned by Visual Basic or a library rather than your code, Visual Studio
opens the Object Browser and displays the symbol’s defi nition there.

Go To Type Defi nition

If you right-click a variable and click Go To Type Defi nition, the code editor jumps to the location
where the symbol’s data type is defi ned. For example, if you right-click a variable of type Employee,
the editor would jump to the defi nition of the Employee class.

Architectural Tools ❘ 65

If you click a variable that has one of the predefi ned data types such as Integer, Double, or String,
the editor displays the Object Browser entry for that type.

Highlight References

Whenever the cursor sits on a symbol, the code editor highlights all references to that symbol by
giving them a light gray background. It’s a subtle effect, so you may not even notice it unless you’re
looking for it.

Reference highlighting makes it easier to see where a symbol such as a variable or subroutine is used,
although it only really works locally. If a subroutine is called from many pieces of code that are far
apart, you’ll see only the ones that are currently visible in the code editor’s window.

When you have a reference highlighted, you can use Ctrl+Shift+Up Arrow and Ctrl+Shift+Down
Arrow to move to the next or previous reference.

To learn more about references to a symbol that are farther away, use the Find All References
command described next.

Find All References

If you right-click a symbol such as a subroutine or variable and select Find All References, Visual
Studio displays a list of everywhere in the program that uses that symbol.

For example, if you right-click a call to a function named Fibonacci, the list includes all calls to that
function plus the function’s defi nition.

You can double-click any of the listed references to make the code editor quickly jump to that
reference.

Generate From Usage

The code editor can provide methods for automatically generating pieces of code in the form of
suggested error corrections. For example, suppose you have not defi ned a Person class but you type
the following code:

Dim new_student As New Person()

The code editor correctly fl ags this as an error because the Person class doesn’t exist. It underlines
the word Person with a blue squiggly line and displays a short red rectangle near it. If you hover
over the rectangle, you’ll see an error icon. If you then click the icon, Visual Studio displays a list of
suggested corrections that include:

 ➤ Change Person to Version

 ➤ Generate ‘Class Person’

 ➤ Generate New Type

The fi rst choice assumes you have made a simple spelling error.

66 ❘ CHAPTER 5 VISUAL BASIC CODE EDITOR

The second choice creates a new empty class named Person.
You can fi ll in its properties and methods later.

The third choice displays the dialog box shown in Figure
5-10 so you can make Person another data type that might
make sense such as an Enum or Structure. The dialog box
lets you set the type’s access to Default, Friend, or Public,
and specify the fi le where Visual Studio should create the
new type.

Now suppose you create an empty Person class and then
type the following code:

new_student.FirstName = “Zaphod”

The code editor also fl ags this statement as an error. If you
click the error icon this time, the suggested solution says:

Generate property stub for ‘FirstName’ in
‘WindowsApplication1.Person’

If you click this text, Visual Studio adds the following simple property to the Person class:

Property FirstName As String

The code editor can also generate a constructor for the class if you enter the following code:

Dim another_person As New Person(“Trillian”)

This code is fl agged as an error because no constructor is defi ned that takes a parameter. The error
suggestions can make a constructor for you, although you’ll need to edit it to give it code that
handles the parameter.

This also causes a new error because the class now has a constructor that takes a single parameter,
but not one that takes no parameters, so the earlier statement Dim new_student As New Person()
is fl agged as an error.

By now you can probably guess what’s coming: If you click the error icon, the suggestions can make
a constructor for this case, too.

Similarly, you can use the error suggestions to generate stubs for subroutines and functions. Simply
use the new items as if they already exist, use the error suggestions to build stubs, and then fi ll in the
appropriate code.

THE CODE EDITOR AT RUN TIME

The code editor behaves slightly differently at run time and design time. Many of its design-time
features still work. Breakpoints, bookmarks, IntelliSense, and snippets still work.

FIGURE 5-10: The Generate New Type

dialog box lets you create a new Class,

Enum, or Structure.

The Code Editor at Run Time ❘ 67

At run time, the editor adds new tools for controlling the program’s execution. Right-click a value
and select Add Watch or QuickWatch to examine and monitor the value. Use the Step Into, Step
Over, and Step Out commands on the Debug menu or toolbar to make the program walk through
the code. Hover the mouse over a variable to see a tooltip giving the variable’s value (see the section
“Tooltips” earlier in this chapter for more information).

ESSENTIAL SHORTCUTS

Some very handy runtime shortcuts are F5 (Start Debugging), F8 (Step Into),
Shift+F8 (Step Over), and Ctrl+F9 (Set Next Statement). Some particularly
handy code editing shortcuts are F9 (Toggle Breakpoint) and Shift+Space
(Open IntelliSense). You might want to write down these and any others that you
use frequently.

(Note that some shortcuts are different if you don’t have Visual Studio set up for
Visual Basic development. If the IDE is customized for C# or general development,
Step Over is F10 and Step Into is F11.)

Right-click and select Show Next Statement to move the cursor to the next statement that the
program will execute. Select Run To Cursor to make the program continue running until it reaches
the cursor’s current line.

Right-click and select Set Next Statement to make the program skip to a new location. You can also
drag the yellow arrow indicating the next statement to a new location in the left margin.

REPOSITION RESTRICTIONS

There are some restrictions on where you can move the execution position.
For example, you cannot jump out of one routine and into another.

By using all of these runtime features, you can walk through the code while it executes and learn
exactly what it is doing at each step. You can see the values of variables, follow paths of execution
through If-Then statements, step in and out of routines, and run until particular conditions are met.

For more information on the Debug menu and its submenus, see the section “Debug” in Chapter 2,
“Menus, Toolbars, and Windows.” For more information on debugging techniques, see Chapter 6,
“Debugging.”

You can discover other runtime features by exploring the editor at run time. Right-click different
parts of the editor to see which commands are available in that mode.

68 ❘ CHAPTER 5 VISUAL BASIC CODE EDITOR

SUMMARY

The Visual Basic code editor is one of the most important IDE windows for Visual Basic developers.
You can use the Windows Forms Designer alone to place controls on a form but the form can’t do
much without code behind those controls.

The Visual Basic code editor lets you type code into a module, but it also does much more. It
provides tooltips that let you view variable values; outlining that lets you expand and collapse
code, so you can focus on your current task; IntelliSense that helps you remember what methods
are available and what their parameters are; code coloring and highlighting that immediately
fl ags errors; and code snippets that let you reuse complex pieces of code that perform useful tasks.
Architectural tools let you quickly fi nd symbol and type defi nitions, jump to specifi c pieces of
code, and easily see where a symbol is being used in the currently visible code. The code editor can
even automatically generate stubs for classes, constructors, properties, and methods.

Many of these tools help you understand how the code works as you write it. Chapter 6,
“Debugging,” explains IDE tools that help you understand the code when it runs. Those tools let
you walk through the code as it executes to see exactly what it is doing and what it is doing wrong.

Debugging

WHAT’S IN THIS CHAPTER

 ➤ The Debug menu

 ➤ Breakpoints

 ➤ The Command and Immediate windows

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

DEBUGGING AND TESTING

The Visual Basic code editor described in Chapter 5, “Visual Basic Code Editor,” provides
tools that make writing Visual Basic applications relatively easy. Features such as error
indicators, tooltips, and IntelliSense help you write code that obeys the rules of Visual Basic
syntax.

No code editor or any other tool can guarantee that the code you write actually does what
you want it to do. Debugging is the process of modifying the code to make it run and produce
correct results.

NOTE Testing tools such as those included in some versions of Visual Studio and
third-party tools such as NUnit (http://www.nunit.org) can do a lot to ensure
that your code runs correctly, but they work only if the code you write does the
right things. If you need a billing system but write an inventory application, no
tool will save you.

6

http://www.nunit.org
http://WROX.COM

70 ❘ CHAPTER 6 DEBUGGING

Effectively using these debugging tools can make fi nding problems in the code much easier, so you
should spend some time learning how to use them. They can mean the difference between fi nding a
tricky error in minutes, hours, or days.

The commands visible in the Debug window change depending on several conditions, such
as the type of fi le you have open, whether the program is running, the line of code that contains
the cursor, and whether that line contains a breakpoint. The following list briefl y describes the
most important menu items available while execution is stopped at a line of code that contains
a breakpoint:

 ➤ Windows — This submenu’s commands display other debugging-related windows. This
submenu is described in more detail in the following section, “The Debug ➪ Windows
Submenu.”

 ➤ Continue — This command resumes program execution. The program runs until it fi nishes,
it reaches another breakpoint, it encounters an error, or you stop it.

 ➤ Break All — This command stops execution of all programs running within the debugger.
This may include more than one program if you are debugging more than one application
at the same time. This can be useful, for example, if two programs work closely together.

Depending on the application’s complexity, debugging can be extremely diffi cult. Although Visual
Studio cannot do your debugging for you, it does include features that make debugging easier.
It allows you to stop execution while the program is running so you can examine and modify
variables, explore data structures, and step through the code to follow its execution path.

This chapter explains Visual Basic’s most important debugging tools. It describes the tools available
in the Debug menu and the other IDE windows that are most useful for debugging.

THE DEBUG MENU

The Debug menu contains commands that help you debug a program. These commands help you
run the program in the debugger, move through the code, set and clear breakpoints, and generally
follow the code’s execution to see what it’s doing and hopefully what it’s doing wrong.

GIVE ME A BREAK

A breakpoint is a line of code that is marked to temporarily stop execution so you
can test the code and fi gure out what’s happening. The section “The Breakpoints
Window” later in this chapter says a lot more about how to use breakpoints, but
breakpoints are mentioned a lot between now and then so it’s useful to have some
idea of what they are now.

The Debug Menu ❘ 71

For example, suppose that your code calls a subroutine that causes a divide-by-zero exception.
Use the dialog box to select Common Language Runtime Exceptions ➪ System ➪ System
.DivideByZeroException (use the Find button to fi nd it quickly). When you select the Thrown

 ➤ Stop Debugging — This command halts the program’s execution and ends its debugging
session. The program stops immediately, so it does not get a chance to execute any cleanup
code that it may contain.

 ➤ Step Into — This command makes the debugger execute the current line of code. If that
code invokes a function, subroutine, or some other procedure, the point of execution moves
into that procedure. It is not always obvious whether a line of code invokes a procedure. For
example, a line of code that sets an object’s property may be simply setting a value or it may
be invoking a property procedure.

 ➤ Step Over — This command makes the debugger execute the current line of code. If that
code invokes a function, subroutine, or some other procedure, the debugger calls that
routine but does not step into it, so you don’t need to step through its code. However, if a
breakpoint is set inside that routine, execution will stop at the breakpoint.

 ➤ Step Out — This command makes the debugger run until it leaves the routine it is currently
executing. Execution pauses when the program reaches the line of code that called this
routine.

 ➤ QuickWatch — This command displays a dialog box that gives information about the
selected code object.

 ➤ Exceptions — This command displays the dialog box shown in Figure 6-1. When you select
a Thrown check box, the debugger stops whenever the selected type of error occurs. If
you select a User-unhandled check box, the debugger stops when the selected type of error
occurs and the program does not catch it with error-handling code.

FIGURE 6-1: The Exceptions dialog box lets you determine how Visual Basic

handles uncaught exceptions.

72 ❘ CHAPTER 6 DEBUGGING

check box, the debugger stops in the subroutine when the divide-by-zero exception occurs,
even if the code is protected by an error handler. When you select the User-unhandled check
box, the debugger stops only if no error handler is active when the error occurs.

 ➤ Toggle Breakpoint — This command toggles whether the current code line contains a
breakpoint. When execution reaches a line with an active breakpoint, execution pauses so
you can examine the code and program variables. You can also toggle a line’s breakpoint by
clicking the margin to the left of the line in the code editor or by placing the cursor in the
line of code and pressing F9.

 ➤ New Breakpoint — This submenu contains the Break At Function command. This
command displays a dialog box that lets you specify a function where the program
should break.

 ➤ Delete All Breakpoints — This command removes all breakpoints from the entire solution.

 ➤ Disable All Breakpoints — This command disables all breakpoints but leaves them in the
solution so you can re-enable them later if you want.

 ➤ Enable All Breakpoints — This command enables all disabled breakpoints.

THE DEBUG ➪ WINDOWS SUBMENU

The Debug menu’s Windows submenu contains commands that display debugging-related
windows. The following list briefl y describes the most useful of these commands. The sections
that follow this one provide more detail about the Breakpoints, Command, and Immediate
windows.

 ➤ Immediate — This command displays the Immediate window, where you can type and
execute ad hoc Visual Basic statements. The section “The Command and Immediate
Windows” later in this chapter describes this window in a bit more detail.

 ➤ Locals — This command displays the Locals window, which displays the values of variables
defi ned in the local context. To change a value, click it and enter the new value. Click the
plus and minus signs to the left of a value to expand or collapse it. Note that a value may be
an object, so you may be able to expand it further.

 ➤ Breakpoints — This command
displays the Breakpoints window
shown in Figure 6-2. This dialog
box shows the solution’s breakpoints,
their locations, and their conditions.
Select or clear the check boxes on the
left to enable or disable breakpoints.
Right-click a breakpoint to delete it
or to edit its location, condition, hit
count, action, and other properties.

FIGURE 6-2: The Breakpoints window helps you manage

breakpoints.

The Debug ➪ Windows Submenu ❘ 73

Use the dialog box’s toolbar to create a new function breakpoint, delete a breakpoint,
delete all breakpoints, enable or disable all breakpoints, go to a breakpoint’s source code,
and change the columns displayed by the dialog box. See the section “The Breakpoints
Window” later in this chapter for more detail.

 ➤ Output — This command displays the Output window, which displays output produced by
Debug and Trace statements.

 ➤ Autos — This command displays the Autos window, which displays the values of local and
global variables used in the current line of code and in the previous line.

 ➤ Call Stack — This command displays the Call Stack window, which lists the routines that
have called other routines to reach the program’s current point of execution. Double-click a
line to jump to the corresponding code in the program’s call stack. This technique lets you
move up the call stack to examine the code that called the routines that are running.

 ➤ Threads — This command displays the Threads window. A thread is a separate execution
path that is running within a program. A multi-threaded application can have several
threads running to perform more than one task at the same time. The Threads window lets
you control the threads’ priority and suspended status.

 ➤ Parallel Tasks — This command lists all of the application’s running tasks. This is useful for
debugging parallel applications.

 ➤ Parallel Stacks — This command shows the call stacks for tasks running in parallel.

 ➤ Watch — The Watch submenu contains the commands Watch 1, Watch 2, Watch 3,
and Watch 4. These commands display four different watch windows that let you easily keep
track of variable values. You can use each window to keep track of different sets of related
variables. When you create a watch using the Debug menu’s QuickWatch command described
earlier, the new watch is placed in the Watch 1 window. You can click and drag watches from
one watch window to another to make a copy of the watch in the second window.

You can also click the Name column in the empty line at the bottom of a watch window and
enter an expression to watch.

WONDERFUL WATCHES

A useful IDE trick is to drag Watch windows 2, 3, and 4 onto Watch 1 so that they
all become tabs on the same window. Then you can easily use the tabs to group and
examine four sets of watches.

 ➤ Modules — This command displays the Modules window, which displays information
about the DLL and EXE fi les used by the program. It shows each module’s fi lename and
path. It indicates whether the module is optimized, whether it is your code (rather than

74 ❘ CHAPTER 6 DEBUGGING

an installed library), and whether debugging symbols are loaded. The window shows each
module’s load order (lower-numbered modules are loaded fi rst), version, and timestamp.
Click a column to sort the modules by that column.

 ➤ Processes — This window lists processes that are attached to the Visual Studio session. This
includes any programs launched by Visual Studio and processes that you attached to using
the Debug menu’s Attach to Process command.

Usually, when these debug windows are visible at run time, they occupy separate tabs in the same
area at the bottom of the IDE. That lets you switch between them quickly and easily without them
taking up too much space.

THE BREAKPOINTS WINDOW

A breakpoint is a line of code that you have fl agged to stop execution. When the program reaches
that line, execution stops and Visual Studio displays the code in a code editor window. This lets you
examine or set variables, see which routine called the one containing the code, and otherwise try to
fi gure out what the code is doing.

The Breakpoints window lists all the breakpoints you have defi ned for the program. This is useful
for a couple of reasons. First, if you defi ne a lot of breakpoints, it can be hard to fi nd them all later.
Although other commands let you disable, enable, or remove all of the breakpoints at once, at times
you may need to fi nd a particular breakpoint.

A common debugging strategy is to comment out broken code, add new code, and set a breakpoint
near the modifi cation so that you can see how the new code works. When you have fi nished testing
the code, you probably want to remove either the old code or the new code, so you don’t want to
blindly remove all of the program’s breakpoints.

The Breakpoints window lists all of the breakpoints and, if you double-click a breakpoint in the list,
you can easily jump to the code that holds it.

Right-click a breakpoint and select Condition
to display the dialog box shown in Figure 6-3.
By default, a breakpoint stops execution
whenever it is reached. You can use this
dialog box to add an additional condition
that determines whether the breakpoint
activates when it is reached. In this example,
the breakpoint stops execution only if the
expression (n < 10) AndAlso (result
> 1000) is True when the code reaches the
breakpoint.

NOTE Note that specifying a breakpoint condition can slow execution
considerably because Visual Basic must evaluate the condition frequently.

FIGURE 6-3: The Breakpoint Condition dialog box lets

you specify a condition that determines whether Visual

Studio stops at the breakpoint.

The Command and Immediate Windows ❘ 75

Right-click a breakpoint and select Hit Count
to display the Breakpoint Hit Count dialog
box shown in Figure 6-4. Each time the
code reaches a breakpoint, it increments the
breakpoint’s hit count. You can use this dialog
box to make the breakpoint’s activation
depend on the hit count’s value.

From the drop-down list you can select one
of the following options:

 ➤ Break Always

 ➤ Break When the Hit Count Is Equal To

 ➤ Break When the Hit Count Is a Multiple Of

 ➤ Break When the Hit Count Is Greater Than or Equal To

If you select any but the fi rst option, you can enter a value in the text box and the program will
pause execution when the breakpoint has been reached the appropriate number of times. For
example, if you select the option Break When the Hit Count Is a Multiple Of and enter 2 into the
text box, execution will pause every second time it reaches the breakpoint.

Right-click a breakpoint and select When Hit to display the When Breakpoint Is Hit dialog box.
This dialog box lets you specify the actions that Visual Basic takes when the breakpoint is activated.
Select the Print a Message check box to make the program display a message in the Output
window. Select the Continue Execution check box to make the program continue running without
stopping after it displays its message.

THE COMMAND AND IMMEDIATE WINDOWS

The Command and Immediate windows enable you to execute commands while the program is
stopped in the debugger. One of the more useful commands in each of these windows is the Debug
.Print statement. For example, in the Command window, the command Debug.Print x displays the
value of the variable x. In the Immediate window, the statement must follow normal Visual Basic
syntax so the command is Debug.Print(x).

You can use a question mark as an abbreviation for Debug.Print. The following text shows how
the command might appear in the Command window. Here the > symbol is the command prompt
provided by the window and 123 is the result: the value of variable x. In the Immediate window, the
statement would not include the > character.

>? x
123

The command >immed tells the Command window to open the Immediate window. Conversely, the
command >cmd (you need to type the > in the Immediate window) tells the Immediate window to
open the Command window.

FIGURE 6-4: The Breakpoint Hit Count dialog box lets

you make a breakpoint’s activation depend on the

number of times the code has reached it.

76 ❘ CHAPTER 6 DEBUGGING

Although there is some overlap between these two windows, they serve two mostly different
purposes. The Command window can issue commands to the Visual Studio IDE. Typically, these
are commands that do or could appear in menus and toolbars. For example, the following command
uses the Debug menu’s QuickWatch command to open a QuickWatch window for the variable
first_name:

>Debug.QuickWatch first_name

One particularly useful command is Tools.Alias. This command lists command aliases defi ned
by the IDE. For example, >Tools.Alias ? indicates that ? is the alias for Debug.Print and
>Tools.Alias ?? indicates that ?? is the alias for Debug.QuickWatch.

The Command window includes some IntelliSense support. If you type the name of a menu, for
example, Debug or Tools, IntelliSense will display the commands available within that menu.

The Command window issues commands to the IDE. In contrast, the Immediate window
executes Visual Basic statements. For example, suppose that you have written a subroutine named
CheckPrinter. Then the following statement in the Immediate window executes that subroutine:

CheckPrinter

You can execute subroutines in the Immediate window to quickly and easily test routines without
writing user interface code to handle all possible situations. You can call a subroutine or function,
passing it different parameters to see what happens. If you set breakpoints within the routine, the
debugger will pause there.

You can also set the values of global variables and then call routines that use them. The following
Immediate window commands set the value of the PrinterName variable and then call the
CheckPrinter subroutine:

PrinterName = “LP_REMOTE”
CheckPrinter

You can execute much more complex statements in the Command and Immediate windows. For
example, suppose that your program uses the following statement to open a fi le for reading:

Dim fs As FileStream = File.OpenRead(
 “C:\Program Files\Customer Orders\Summary” &
 DateTime.Now().ToString(“yymmdd”) & “.dat”)

Suppose that the program is failing because some other part of the program is deleting the fi le. You
can type the following code (all on one line) into the Immediate window to see if the fi le exists. As
you step through different pieces of the code, you can use this statement repeatedly to learn when
the fi le is deleted.

?System.IO.File.Exists(“C:\Program Files\Customer Orders\Summary” &
 DateTime.Now().ToString(“yymmdd”) & “.dat”)

Summary ❘ 77

The Immediate window evaluates the complicated string expression to produce a fi lename. It then
uses the System.IO.File.Exists command to determine whether the fi le exists and displays True or
False accordingly.

SUMMARY

Although Visual Basic cannot debug your applications for you, it provides all of the tools you need
to get the job done. By using the tools in the Debug menu and the IDE’s debugging-related windows,
you can get a good idea about what your program is doing and what it is doing wrong.

This chapter and the others in the fi rst part of this book described the basic pieces of the Visual
Studio development environment. They described the windows, menus, and toolbars that you use to
build and debug Visual Basic applications.

The next part of the book provides more detail about the steps you follow to build an application
before you debug it. Chapter 7, “Selecting Windows Forms Controls,” describes the most common
controls that you can use to build Windows Forms applications. It explains the purposes of
those controls to help you decide which controls to use in different situations.

 PART II
Getting Started

 � CHAPTER 7: Selecting Windows Forms Controls

 � CHAPTER 8: Using Windows Forms Controls

 � CHAPTER 9: Windows Forms

 � CHAPTER 10: Selecting WPF Controls

 � CHAPTER 11: Using WPF Controls

 � CHAPTER 12: WPF Windows

 � CHAPTER 13: Program and Module Structure

 � CHAPTER 14: Data Types, Variables, and Constants

 � CHAPTER 15: Operators

 � CHAPTER 16: Subroutines and Functions

 � CHAPTER 17: Program Control Statements

 � CHAPTER 18: Error Handling

 � CHAPTER 19: Database Controls and Objects

 � CHAPTER 20: LINQ

 � CHAPTER 21: Metro-Style Applications

Selecting Windows
Forms Controls

WHAT’S IN THIS CHAPTER

 ➤ Control summaries

 ➤ Using controls to restrict selection

 ➤ Containing and arranging controls

 ➤ Selection controls

 ➤ Display and feedback controls

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

CONTROLS

A control is a programming entity that has a graphical component. A control sits on a form and
interacts with the user, providing information and possibly allowing the user to manipulate it.
Text boxes, labels, buttons, scroll bars, drop-down lists, menu items, toolstrips, and just about
everything else that you can see and interact with in a Windows application is a control.

Controls are an extremely important part of any interactive application. They give
information to the user (Label, ToolTip, TreeView, PictureBox) and organize the information
so that it’s easier to understand (GroupBox, Panel, TabControl). They enable the user
to enter data (TextBox, RichTextBox, ComboBox, MonthCalendar), select options
(RadioButton, CheckBox, ListBox), tell the application to take action (Button, MenuStrip,
ContextMenuStrip), and interact with objects outside of the application (OpenFileDialog,
SaveFileDialog, PrintDocument, PrintPreviewDialog). Some controls also provide support for
other controls (ImageList, ToolTip, ContextMenuStrip, ErrorProvider).

7

http://WROX.COM

82 ❘ CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

This chapter provides a very brief description of the standard Windows Forms controls together
with some tips that can help you decide which control to use for different purposes. Appendix G,
“Windows Forms Controls and Components,” covers the
controls in much greater detail, describing each control’s
most useful properties, methods, and events.

CONTROLS OVERVIEW

Figure 7-1 shows the Visual Basic Toolbox displaying
the standard Windows Forms controls. Because you can
add and remove controls on the Toolbox, you may
see a slightly different selection of tools on your
computer.

The following table briefl y describes the controls shown in
Figure 7-1 in the order in which they appear in the fi gure
(starting at the top, or row 1, and reading from left
to right).

CONTROL PURPOSE

Row 1

Pointer This is the pointer tool, not a control. Click this tool to deselect any

selected controls on a form. Then you can select new controls.

BackgroundWorker Executes a task asynchronously and notifi es the main program of its

 progress and when it is fi nished.

BindingNavigator Provides a user interface for navigating through a data source. For

 example, it provides buttons that let the user move back and forth through

the data, add records, delete records, and so forth.

BindingSource Encapsulates a form’s data source and provides methods for navigating

through the data.

Button A simple push button. When the user clicks it, the program can perform

some action.

CheckBox A box that the user can check and clear.

CheckedListBox A list of items with check boxes that the user can check and clear.

FIGURE 7-1: Visual Basic provides a

large number of standard controls for

Windows Forms.

Controls Overview ❘ 83

CONTROL PURPOSE

ColorDialog Lets the user pick a standard or custom color.

ComboBox A text box with an attached list or drop-down list that the user can use to

enter or select a textual value.

ContextMenuStrip A menu that appears when the user right-clicks a control. You set a control’s

ContextMenuStrip property to this control, and the rest is automatic.

Row 2

DataGridView A powerful grid control that lets you display large amounts of complex data

with hierarchical or web-like relationships relatively easily.

DataSet An in-memory store of data with properties similar to those of a relational

database. It holds objects representing tables containing rows and

 columns, and can represent many database concepts such as indexes

and foreign key relationships.

DateTimePicker Lets the user select a date and time in one of several styles.

DirectoryEntry Represents a node in an Active Directory hierarchy.

DirectorySearcher Performs searches of an Active Directory hierarchy.

DomainUpDown Lets the user scroll through a list of choices by clicking up-arrow and

down-arrow buttons.

ErrorProvider Displays an error indicator next to a control that is associated with an error.

EventLog Provides access to Windows event logs.

FileSystemWatcher Notifi es the application of changes to a directory or fi le.

FlowLayoutPanel Displays the controls it contains in rows or columns.

Row 3

FolderBrowserDialog Lets the user select a folder.

FontDialog Lets the user specify a font’s characteristics (name, size, boldness, and so forth).

GroupBox Groups related controls for clarity. It also defi nes a default RadioButton

group for any RadioButtons that it contains.

HelpProvider Displays help for controls that have help if the user sets focus on the

control and presses F1.

HScrollBar A horizontal scroll bar.

continues

84 ❘ CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

CONTROL PURPOSE

ImageList Contains a series of images that other controls can use. For example, the

images that a TabControl displays on its tabs are stored in an associated

ImageList control. Your code can also pull images from an ImageList for its

own use.

Label Displays read-only text that the user cannot modify or select by clicking

and dragging.

LinkLabel Displays a label, parts of which may be hyperlinks. When the user clicks a

hyperlink, the program can take some action.

ListBox Displays a list of items that the user can select. Depending on the control’s

properties, the user can select one or several items at the same time.

ListView Displays a list of items in one of four possible views: LargeIcon, SmallIcon,

List, and Details.

Row 4

MaskedTextBox A text box that requires the input to match a specifi c format (such as a

phone number or ZIP code format).

MenuStrip Represents the form’s main menus, submenus, and menu items.

MessageQueue Provides communication between diff erent applications.

MonthCalendar Displays a calendar that allows the user to select a range of dates.

NotifyIcon Displays an icon in the system tray or status area.

NumericUpDown Lets the user change a number by clicking up- and down-arrow buttons, or

by pressing up-arrow and down-arrow keys.

OpenFileDialog Lets the user select a fi le for opening.

PageSetupDialog Lets the user specify properties for printed pages. For example, it lets the

user specify the printer’s paper tray, page size, margins, and orientation

(portrait or landscape).

Panel A control container. The control can automatically provide scroll bars and

defi nes a RadioButton group for any RadioButtons that it contains.

PerformanceCounter Provides access to Windows performance counters.

(continued)

Controls Overview ❘ 85

CONTROL PURPOSE

Row 5

PictureBox Displays a picture.

PrintDialog Displays a standard print dialog box. The user can select the printer, pages

to print, and printer settings.

PrintDocument Represents output to be sent to the printer. A program can use this object

to print and display print previews.

PrintPreviewControl Displays a print preview within one of the application’s forms.

PrintPreviewDialog Displays a print preview in a standard dialog box.

Process Allows the program to interact with processes, including starting and

stopping them.

ProgressBar Displays a series of colored bars to show the progress of a long operation.

PropertyGrid Displays information about an object in a format similar to the one used by

the Properties window at design time.

RadioButton Represents one of an exclusive set of options. When the user selects a

RadioButton, Visual Basic deselects all other RadioButton controls in the same

group. Groups are defi ned by GroupBox and Panel controls and the Form class.

RichTextBox A text box that supports Rich Text extensions. The control can display

diff erent pieces of text with diff erent font names, sizes, bolding, and so

forth. It also provides paragraph-level formatting for justifi cation, bullets,

hanging indentation, and more.

Row 6

SaveFileDialog Lets the user select the name of a fi le where the program will save data.

SerialPort Represents a serial port and provides methods for controlling, reading

from, and writing to it.

ServiceController Represents a Windows service and lets you manipulate services.

SplitContainer Lets the user drag a divider vertically or horizontally to split available space

between two areas within the control.

Splitter Provides a divider that the user can drag to split available space between

two controls. The Dock properties and stacking orders of the controls and

the Splitter determine how the controls are arranged and resized. The

SplitContainer control automatically provides a Splitter between two

containers, so it is usually easier and less confusing to use.

continues

86 ❘ CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

CHOOSING CONTROLS

Keeping all of the intricacies of each of these controls in mind at once is a daunting task. With so
many powerful tools to choose from, it’s not always easy to pick the one that’s best for a particular
situation.

To simplify error-handling code, you should generally pick the most restrictive control that can
accomplish a given task, because more restrictive controls give the user fewer options for entering
invalid data.

CONTROL PURPOSE

StatusStrip Provides an area (usually at the bottom of the form) where the application

can display status messages, small pictures, and other indicators of the

application’s state.

TabControl Displays a series of tabs attached to pages that contain their own controls.

The user clicks a tab to display the associated page.

TableLayoutPanel Displays the controls it contains in a grid.

TextBox Displays some text that the user can edit.

Timer Triggers an event periodically. The program can take action when the

event occurs.

Row 7

ToolStrip Displays a series of buttons, drop-downs, and other tools that let the user

control the application.

ToolStripContainer A container that allows a ToolStrip control to dock to some or all of its

edges. You might dock a ToolStripContainer to a form to allow the user to

dock a ToolStrip to each of the form’s edges.

ToolTip Displays a tooltip if the user hovers the mouse over an associated control.

TrackBar Allows the user to drag a pointer along a bar to select a numeric value.

TreeView Displays hierarchical data in a graphical, tree-like form.

VScrollBar A vertical scroll bar.

WebBrowser A web browser in a control. You can place this control on a form and use

its methods to navigate to a web page. The control displays the results

exactly as if the user were using a standalone browser. One handy use for

this control is displaying web-based help.

(continued)

Choosing Controls ❘ 87

For example, suppose that the user must pick from the choices Small, Medium, and Large. The
application could let the user type a value in a TextBox control, but then the user could type Huge
or Weasel. The program would need to verify that the user typed one of the valid choices and
display an error message if the text was invalid. The program might also need to use precious screen
real estate to list the choices to help the user remember what to type.

A better idea would be to use a group of three RadioButton controls or a ComboBox with
DropDownStyle set to DropDownList. Then the user can easily see the choices available and can
only select a valid choice. If the program initializes the controls with a default value rather than
leaves them initially undefi ned, it knows that there is always a valid choice selected.

COMMON SENSE DEFENSE

Restrictive controls also make the application more secure. By presenting users with
a list of choices rather than letting them type in whatever they like, the program
can protect itself from attack. For example, two of the most common attacks on
websites are buffer overfl ow attacks, in which the attacker enters far more text
than intended in a text box, and SQL injection attacks, in which the attacker enters
carefully designed gibberish into a text box to confuse a database. Requiring the
user to select options rather than typing neutralizes both of these attacks.

The following sections summarize different categories of controls and provide some tips about when
to use each.

Containing and Arranging Controls

These controls contain, group, and help arrange other controls. These controls include
FlowLayoutPanel, TableLayoutPanel, GroupBox, Panel, TabControl, and SplitContainer.

The FlowLayoutPanel arranges the controls it contains in rows or columns. For example, when
its FlowDirection property is LeftToRight, the control arranges its contents in rows from left
to right. It positions its contents in a row until it runs out of room and then it starts a new row.
FlowLayoutPanel is particularly useful for toolboxes and other situations where the goal is to
display as many of the contained controls as possible at one time, and the exact arrangement of the
controls isn’t too important.

The TableLayoutPanel control displays its contents in a grid. All the cells in a particular row
have the same height, and all the cells in a particular column have the same width. In contrast, the
FlowLayoutPanel control simply places controls next to each other until it fi lls a row and then starts
a new one.

A GroupBox control is good for visibly grouping related controls or for grouping RadioButton
controls into a RadioButton group. (The RadioButton control is discussed later in this chapter in
the section “Making Selections.”) It provides a visible border and caption so that it can help the user
make sense out of a very complicated form.

88 ❘ CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

Like the GroupBox, the Panel control can contain controls and defi ne RadioButton groups, but
its real advantage is its ability to automatically display scroll bars. If you set a Panel control’s
AutoScroll property to True and the Panel resizes so its content cannot fi t, the control automatically
displays scroll bars that the user can adjust to see different parts of the content. Scrolling back and
forth can be cumbersome for the user, however, so this is not the best way to display data if the user
must view it all frequently. If the user must jump back and forth between different controls inside a
scrolling Panel, it may be better to use a TabControl.

A TabControl displays data grouped by pages. The tabs enable the user to quickly jump from
page to page. The control can display scroll bars if the tabs don’t all fi t at once, although that
makes using the control much more awkward. TabControl works well if the data falls into natural
groupings that you can use for the tab pages. It doesn’t work as well if the user must frequently
compare values on one page with those on another, forcing the user to jump back and forth.

The SplitContainer control allows the user to divide an area between two adjacent regions.
A SplitContainer contains two Panel controls in which you can place your own controls. When the
user drags the splitter between the two panels, the control resizes the panels accordingly. You can
set the Panels’ AutoScroll properties to True to make them automatically provide scroll bars when
necessary.

SplitContainer is helpful when the form isn’t big enough to hold all the data the program must
display, and the user should be able to trade area in one part of the form for area in another. It is
particularly useful when the user must compare values in the two areas by viewing them at the
same time.

Although you can nest SplitContainers inside other SplitContainers, they are easiest to use when
they separate only two areas. Large groups of SplitContainers separating many areas are usually
clumsy and confusing.

These container controls help arrange the controls they contain. The Anchor and Dock properties
of any controls inside the containers work relative to the containers. For example, suppose you place
a series of buttons with Anchor = Top, Left, Right inside a SplitContainer so that they are as wide
as the Panel containing them. When you drag the splitter, the buttons automatically resize to fi t the
width of their Panel.

GREAT GROUPS

The rule of thumb in user interface design is that a user can evaluate around
seven items (plus or minus two) at any given time. A list of fi ve or six choices is
manageable, but a list containing dozens of options can be confusing.

By placing choices into categories visibly separated in GroupBox controls, you can
make the interface much easier for the user to understand. Rather than try to
keep dozens of options straight all at once, the user can mentally break the problem
into smaller pieces and consider each group of options separately.

Choosing Controls ❘ 89

Making Selections

Selection controls enable the user to choose values. If you use them carefully, you can reduce the
chances of the user making an invalid selection, so you can reduce the amount of error-handling
code you need to write.

These controls include CheckBox, CheckedListBox, ComboBox, ListBox, RadioButton,
DateTimePicker, MonthCalendar, DomainUpDown, NumericUpDown, TrackBar, HScrollBar, and
VScrollBar.

CheckBox enables the user to select an option or not, independently of all other selections. If you
want the user to select only one of a set of options, use a RadioButton instead. If a form requires
more than, say, fi ve to seven CheckBox controls that have related purposes, consider using a
CheckedListBox instead.

The CheckedListBox control enables the user to select among several independent options. It is
basically a series of CheckBox controls arranged in a list that provides scroll bars if necessary.

The ComboBox control enables the user to make one brief selection. This control is particularly
useful when its DropDownStyle property is set to DropDownList because then the user must pick
a value from a list. If you want to allow the user to select a value or enter one that is not on the list,
set the control’s DropDownStyle to Simple or DropDown. This control does roughly the same things
as a simple ListBox but takes less space.

The ListBox control displays a list of items that the user can select. You can confi gure the control
to let the user select one or more items. A ListBox takes more room than a ComboBox but can be
easier to use if the list is very long.

LONG LISTS

If you have a long list and want to allow the user to select many items, it is
relatively easy for the user to accidentally deselect all of the previous selections by
clicking a new item. To make things easier for the user, you should consider using a
CheckedListBox, which doesn’t have that problem.

The RadioButton control lets the user pick one of a set of options. For example, three RadioButton
controls might represent the choices Small, Medium, and Large. If the user selects one, Visual Basic
automatically deselects the others. This control is useful when the list of choices is relatively small,
and there is a benefi t to allowing the user to see all of the choices at the same time. If the list of
choices is long, consider using a ListBox or ComboBox.

The DateTimePicker and MonthCalendar controls enable the user to select dates and times. They
validate the user’s selections, so they are generally better than other controls for selecting dates and
times. For example, if you use a TextBox to let the user enter month, date, and year, you must write
extra validation code to ensure that the user doesn’t enter February 29, 2013.

90 ❘ CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

The DomainUpDown and NumericUpDown controls let the user scroll through a list of values. If
the list is relatively short, a ListBox or ComboBox may be easier for the user. The DomainUpDown
and NumericUpDown controls take very little space, however, so they may be helpful on very
crowded forms. By holding down one of the controls’ arrow buttons, the user can scroll very quickly
through the values, so these controls can also be useful when they represent a long list of choices.

The TrackBar control lets the user drag a pointer to select an integer value. This is usually a more
intuitive way to select a value than a NumericUpDown control, although it takes a lot more space
on the form. It also requires some dexterity if the number of values allowed is large.

The HScrollBar and VScrollBar controls let the user drag a “thumb” across a bar to select an
integral value much as the TrackBar does. HScrollBar, VScrollBar, and TrackBar even have similar
properties. The main difference is in the controls’ appearances. On one hand, the two scroll bar
controls allow more fl exible sizing (the TrackBar has defi nite ideas about how tall it should be for
a given width), and they may seem more elegant to some users. On the other hand, most users are
familiar with the scroll bars’ normal purpose of scrolling an area on the form, so using them as
numeric selection bars may sometimes be confusing.

Entering Data

Sometimes it is impractical to use the selection controls described in the previous section. For
example, the user cannot reasonably enter a long work history or comments using a ComboBox or
RadioButton.

The RichTextBox, TextBox, and MaskedTextBox controls let the user enter text with few
restrictions. These controls are most useful when the user must enter a large amount of textual data
that doesn’t require any validation.

The TextBox control is less complex and easier to use than the RichTextBox control, so you may
want to use it unless you need the RichTextBox control’s extra features. If you need those features
(such as multiple fonts, indentation, paragraph alignment, superscripting and subscripting, multiple
colors, more than one level of undo/redo, and so forth), you need to use a RichTextBox.

The MaskedTextBox control is a TextBox control that requires the user to enter data in a particular
format. For example, it can help the user enter a phone number of the form 234-567-8901. This
is useful only for short fi elds where the format is tightly constrained. In those cases, however, it
reduces the chances of the user making mistakes.

Displaying Data

These controls display data to the user: Label, DataGridView, ListView, TreeView, and
PropertyGrid.

The Label control displays a simple piece of text that the user can view but not select or modify.
Because you cannot select the text, you cannot copy it to the clipboard. If the text contains a value
that you think the user might want to copy to the clipboard and paste into another application
(for example, serial numbers, phone numbers, e-mail addresses, URLs, and so forth), you can use a
TextBox control with its ReadOnly property set to True to allow the user to select and copy the text
but not edit it.

Choosing Controls ❘ 91

The DataGridView control can display table-like data. The control can also display several tables
linked with master/detail relationships and the user can quickly navigate through the data. You can
also confi gure this control to allow the user to update the data.

The ListView control displays data that is naturally viewed as a series of icons or as a list of values
with columns providing extra detail. With a little extra work, you can sort the data by item or by
detail columns.

The TreeView control displays hierarchical data in a tree-like format similar to the directory display
provided by Windows Explorer. You can determine whether the control allows the user to edit the
nodes’ labels.

The PropertyGrid control displays information about an object in a format similar to the one used
by the Properties window at design time. The control enables the user to organize the properties
alphabetically or by category and lets the user edit the property values.

Providing Feedback

These controls provide feedback to the user: ToolTip, HelpProvider, ErrorProvider, NotifyIcon,
StatusStrip, and ProgressBar. Their general goal is to tell the user what is going on without being
distracting. For example, the ErrorProvider fl ags a fi eld as incorrect but doesn’t prevent the user
from continuing to enter data in other fi elds.

DISRUPTIVE VALIDATION

You can force users to fi x errors by using a TextBox’s Validating event handler. For
example, if the event handler determines that a TextBox’s value is invalid, it can set
its e.Cancel parameter to True to prevent the user from moving out of the TextBox
or closing the application.

I don’t recommend this approach, however, particularly if the users are performing
“heads down” data entry, because it interrupts their fl ow of work. Instead, use an
ErrorProvider to fl ag the error and let the user fi x the problem when it’s convenient.

For more information on validation events, see the section “Validation Events” in
Chapter 8.

The ToolTip control provides the user with a brief hint about a control’s purpose when the user
hovers the mouse over it. The HelpProvider gives the user more detailed help about a control’s
purpose when the user sets focus to the control and presses F1. A high-quality application provides
both tooltips and F1 help for every control. These features are unobtrusive and appear only if
the user needs them, so it is better to err on the side of providing too much help rather than
not enough.

92 ❘ CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

The NotifyIcon control can display a small icon in the taskbar notifi cation area to let the user easily
learn the application’s status. This is particularly useful for applications that run in the background
without the user’s constant attention. If the application needs immediate action from the user, it
should display a dialog or message box rather than rely on a NotifyIcon.

TOO MANY TOOLTIPS?

It may seem silly to place tooltips on every single control. For example, does it really
make sense to place a tooltip on a TextBox that sits next to a label that says “Phone
Number”? Surprisingly the answer is yes. It turns out that some screen reader
applications for the visually impaired get important cues from tooltips. Giving that
TextBox a tooltip can help some users fi gure out what data they should enter. The
ErrorProvider control fl ags a control as containing invalid data. It is better to use
selection controls that do not allow the user to enter invalid data, but this control is
useful when that is not possible.

WHAT’S THE TRAY?

The taskbar notifi cation area, also called the Windows system tray, is the small
area in the taskbar, usually on the right, that displays the current time and icons
indicating the status of various running applications.

The StatusStrip control displays an area (usually at the bottom of the form) where the program can
give the user some information about its state. This information can be in the form of small images
or short text messages. It can contain a lot more information than a NotifyIcon, although it is
visible only when the form is displayed.

The ProgressBar indicates how much of a long task has been completed. Usually, the task is
performed synchronously, so the user is left staring at the form while it completes. The ProgressBar
lets the user know that the operation is not stuck.

Initiating Action

Every kind of control responds to events, so every control can initiate an action. Nevertheless, users
expect only certain kinds of controls to perform signifi cant actions. For example, users expect
clicking a button to start an action, but they don’t expect clicking a label or check box to start a
long process.

To prevent confusion, you should start actions from the controls most often used to start actions.
These controls include Button, MenuStrip, ContextMenuStrip, ToolStrip, LinkLabel, TrackBar,
HScrollBar, VScrollBar, and Timer. All except the Timer control let the user initiate the action.

Choosing Controls ❘ 93

All of these controls interact with the program through event handlers. For example, the Button
control’s Click event handler normally makes the program perform some action when the user clicks
the button.

Other controls also provide events that can initiate action. For example, the CheckBox control
provides CheckChanged and Click events that you could use to perform some action. By catching
the proper events, you can use almost any control to initiate an action. Because the main intent
of those controls is not to execute code, they are not listed in this section.

The Button control enables the user to tell the program to execute a particular function. A button
is normally always visible on its form, so it is most useful when the user must perform the action
frequently or the action is part of the program’s central purpose. For actions that are performed less
often, use a MenuStrip or ContextMenuStrip control.

Items in a MenuStrip control also enable the user to make the program perform an action. You must
perform more steps to open the menu, fi nd the item, and select it than you must to click a button,
so a Button control is faster and easier. On the other hand, menus take up less form real estate than
buttons. You can also assign keyboard shortcuts (such as F5 or Ctrl+S) to frequently used menu
items, making them even easier to invoke than buttons.

A ContextMenuStrip control provides the same advantages and disadvantages as a MenuStrip
control. ContextMenuStrip is available only from certain controls on the form, however, so it
is useful for commands that are appropriate only within specifi c contexts. For example, a Save
command applies to all the data loaded by a program, so it makes sense to put it in a MenuStrip.
A command that deletes a particular object in a drawing applies only to that object. By placing the
command in a ContextMenuStrip control attached to the object, the program keeps the command
hidden when the user is working on other things. It also makes the relationship between the action
(delete) and the object clear to both the user and the program.

The ToolStrip control combines some of the best features of menus and buttons. It displays a series
of buttons so they are easy to use without navigating through a menu. The buttons are small and
grouped at the top of the form, so they don’t take up as much space as a series of larger buttons.

It is common to place buttons or ToolStrip buttons on a form to duplicate frequently used menu
commands. The menu commands provide keyboard shortcuts for more advanced users, and the buttons
make it easy to invoke the commands for less-experienced users. More advanced applications such as
Visual Studio may provide customizations that allow the user to decide which ToolStrips are visible.

The LinkLabel control displays text much as a Label control does. It also displays some text in blue
with an underline, displays a special cursor when the user moves over that text, and raises an event if
the user clicks the text. That makes the control appropriate when clicking a piece of text should perform
some action. For example, on a web page, clicking a link typically navigates to the link’s web page.

The TrackBar, HScrollBar, and VScrollBar controls let the user drag a “thumb” across a bar to
select an integral value. As mentioned in the section “Making Selections” earlier in this chapter,
you can use these controls to let the user select a numeric value. However, they can also be used
to perform some action interactively. For example, the scroll bars are often used to scroll an area
on the form. More generally, they are used to make the program take action based on some new
value. For example, you could use a scroll bar to let the user select new red, green, and blue color

94 ❘ CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

components for an image. As the user changes a scroll bar’s value, the program can update the
image’s colors.

The Timer control triggers some action at a regular interval. When the Timer control raises
its Timer event, the program takes action.

Displaying Graphics

These controls display graphics, either on the screen or on a printout: Form, PictureBox,
PrintPreviewControl, PrintDocument, and PrintPreviewDialog.

A Form provides methods for drawing, but it’s often better to draw in a PictureBox control instead
of on the form itself. That makes it easier to move the drawing if you later need to redesign the
form. For example, if you decide that the picture might be too big, it is easy to move a PictureBox
control into a scrolling Panel control. It would be much harder to rewrite the code to move the
drawing from the Form into a PictureBox control later.

PrintPreviewControl displays a print preview for a PrintDocument object. The program
responds to events raised by the PrintDocument object and generates the output to be printed.
PrintPreviewControl displays the results within a control on one of the program’s forms.

The PrintPreviewDialog control displays graphics from a PrintDocument object much as a
PrintPreviewControl does, but it provides its own dialog box. Unless you need to arrange the print
preview in some special way, it is easier to use a PrintPreviewDialog than it is to build your
own preview dialog box with a PrintPreviewControl. The PrintPreviewDialog control provides
many features that enable the user to zoom, scroll, and move through the pages of the preview
document. Implementing those features yourself would be a lot of work.

Displaying Dialog Boxes

Visual Basic provides a rich assortment of dialog boxes that enable the user to make standard
selections. Figuring out which of these dialog boxes to use is usually easy because each has a
very specifi c purpose. The following table lists the dialog boxes and their purposes.

DIALOG PURPOSE

ColorDialog Select a color.

FolderBrowserDialog Select a folder (directory).

FontDialog Select a font.

OpenFileDialog Select a fi le to open.

PageSetupDialog Specify page setup for printing.

PrintDialog Print a document.

PrintPreviewDialog Display a print preview.

SaveFileDialog Select a fi le for saving.

Third-Party Controls ❘ 95

THIRD-PARTY CONTROLS

Visual Basic comes with a large number of useful controls all ready to go, but many other controls
are available that you can use if you need them. If you right-click the Toolbox and select Choose
Items, you can select from a huge list of .NET Framework and COM components available on
your system.

You can obtain more controls provided by other companies and available for purchase and
sometimes for free on the web. Many of these controls perform specialized tasks such as generating
bar codes, making shaped forms, warping images, and providing special graphical effects.

Other controls extend the standard controls to provide more power or fl exibility. Several controls
are available that draw two- and three-dimensional charts and graphs. Other controls provide more
powerful reporting services than those provided by Visual Studio’s own tools.

If you search the web for “windows forms controls,” you will fi nd lots of websites where you can
download controls for free or for a fee. A few places you might like to explore include:

 ➤ MVPs.org (http://www.mvps.org), a site leading to resources provided by people related
to Microsoft’s Most Valuable Professional (MVP) program. The Common Controls
Replacement Project (http://ccrp.mvps.org) provides controls that duplicate and enhance
standard Visual Basic 6 controls. Development on this project has stopped but some of
the old Visual Basic 6 controls may give you some ideas for building controls of your own.
MVPs.org is also a good general resource.

 ➤ Windows Forms .NET (http://windowsclient.net), Microsoft’s offi cial WPF and
Windows Forms .NET community.

 ➤ ASP.NET (http://www.asp.net), Microsoft’s offi cial ASP.NET community.

 ➤ CNET (http://download.cnet.com/windows).

 ➤ Shareware.com (http://www.shareware.com).

 ➤ Shareware Connection (http://www.sharewareconnection.com).

You should use these as a starting point for your own search, not as a defi nitive list. You can
download controls from hundreds (if not thousands) of websites.

CONTROL CHAOS

You should also show some restraint in downloading third-party controls and
products in general. Every time you add another control to a project, you make
the project depend on that control. If you later move the project to a newer version
of Visual Basic, you must ensure that the control works with that version. Similarly,
if the vendor makes a new version of the control, you must fi nd out if it works
with your version of Visual Basic. If it doesn’t, you may be stuck using an older,
unsupported version of the control.

continues

http://www.mvps.org
http://ccrp.mvps.org
http://windowsclient.net
http://www.asp.net
http://download.cnet.com/windows
http://www.shareware.com
http://www.sharewareconnection.com
http://Shareware.com
http://MVPs.org
http://MVPs.org

96 ❘ CHAPTER 7 SELECTING WINDOWS FORMS CONTROLS

SUMMARY

Controls form the main connection between the user and the application. They allow the application
to give information to the user, and they allow the user to control the application. Controls are
everywhere in practically every Windows application. Only a tiny percentage of applications that
run completely in the background can do without controls.

This chapter briefl y described the purposes of the standard Visual Basic controls and provided a few
tips for selecting the controls appropriate for different purposes.

Even knowing all about the controls doesn’t guarantee that you can produce an adequate user
interface. There’s a whole science to designing user interfaces that are intuitive and easy to use.
A good design enables the user to get a job done naturally and with a minimum of wasted
work. A bad interface can encumber the user and turn even a simple job into an exercise in beating
the application into submission.

For more information on building usable applications, read some books on user-interface design.
They explain standard interface issues and solutions. You can also learn a lot by studying other
successful applications. Look at the layout of their forms and dialog boxes. You shouldn’t steal their
designs outright, but you can try to understand why they arrange their controls in the ways they do.
Look at applications that you like and fi nd particularly easy to use. Compare them with applications
that you fi nd awkward and confusing.

This chapter provided an introduction to Windows Forms controls to help you decide which
controls to use for different purposes. Chapter 8, “Using Windows Forms Controls,” explains in
greater detail how you can use the controls that you select. It tells how to add a control to a form at
design time or run time, and explains how to use a control’s properties, methods, and events.

If controls and tools interact with each other, the problem becomes much more
diffi cult. If anything changes, you must fi nd a set of versions for all of the tools that
can work correctly together.

I try to keep my use of third-party controls to a bare minimum because, when I
write a book, I generally cannot assume that you have a particular third-party
control. I use tools such as WinZip (http://www.WinZip.com) and FileZilla
(http://filezilla-project.org) outside of projects, but nothing inside them.

Use a third-party control if it will save you a lot of work. But, before you do, ask
yourself how much work it would be to do without the control and how much work
it will be to replace the control later if you need to move to a new version of Visual
Basic.

And of course, if you download a control from a source that isn’t trustworthy, you
could be downloading a virus.

continued

http://www.WinZip.com
http://filezilla-project.org

Using Windows Forms Controls

WHAT’S IN THIS CHAPTER

 ➤ Creating controls at run time

 ➤ Setting properties at design time and run time

 ➤ Particularly useful properties

 ➤ Validation events

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

 ➤ AnchorButton

 ➤ DeferredValidation

 ➤ Docking

 ➤ MakeButtons

 ➤ UseTableLayoutPanel

USING CONTROLS AND COMPONENTS

As Chapter 7 mentioned, a control is a programming entity that has a graphical component.
Text boxes, labels, list boxes, check boxes, menus, and practically everything else that you see
in a Windows application is a control.

A component is similar to a control, except it is not visible at run time. When you add a
component to a form at design time, it appears in the component tray below the bottom of
the form. You can select the component and use the Properties window to view and change its
properties just as you can with a control. At run time, the component is invisible to the user,
although it may display a visible object such as a menu, dialog box, or status icon.

8

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

98 ❘ CHAPTER 8 USING WINDOWS FORMS CONTROLS

This chapter explains controls and components in general terms. It describes different kinds
of controls and components. It explains how your program can use them at design time and
run time to give the user information and to allow the user to control your application. It also
explains in general terms how a control’s properties, methods, and events work, and it lists some
of the most useful properties, methods, and events provided by the Control class. Other controls
that are derived from this class inherit those properties, methods, and events unless they are
explicitly overridden.

CONTROLS AND COMPONENTS

Controls are graphic by nature. Buttons, text boxes, and labels provide graphical input and feedback
for the user. They display data and let the user trigger program actions. Some controls (such as grid
controls, tree view controls, and calendar controls) are quite powerful and provide a rich variety of
tools for interacting with the user.

In contrast, components are represented by graphical icons at design time and are hidden at run
time. They may display some other object (such as a dialog box, menu, or graphical indicator), but
the component itself is hidden from the user.

Many components display information to the user. Others provide information needed by graphical
controls. For example, a program can use connection, data adapter, and data set components to
defi ne data that should be selected from a database. Then a Grid control can display the data to the
user. Because the connection, data adapter, and data set objects are components, you can defi ne
their properties at design time without writing code.

Figure 8-1 shows a form at design time that contains several components. The components appear
in the component tray at the bottom of the form, not on
the form’s graphical surface.

This example contains four components. Timer1 fi res an
event periodically so the program can take some action
at specifi ed time intervals. ErrorProvider1 displays an
error icon and error messages for certain controls on the
form such as TextBoxes. BackgroundWorker1 performs
tasks asynchronously while the main program works
independently. ImageList1 contains a series of images
for use by another control such as a Button, ListView,
or TreeView.

Aside from the lack of a graphical component on the
form, working with components is very similar to working
with controls. You use the Properties window to set a
component’s properties, the code editor to defi ne its event
handlers, and code to call its methods. The rest of this
chapter focuses on controls, but the same concepts apply
just as well to components.

FIGURE 8-1: At design time components

appear in the component tray below

a form.

Creating Controls ❘ 99

CREATING CONTROLS

Usually you add controls to a form graphically at design time. In some cases, however, you may
want to add new controls to a form while the program is running. This gives you a bit more
fl exibility so that you can change the program’s appearance at run time in response to the program’s
needs or the user’s commands.

For example, you may not know how many pieces of data you will need to display until run time.
Sometimes you can display unknown amounts of data using a list, grid, or other control that can
hold a variable number of items, but other times you might like to display the data in a series of
labels or text boxes. In cases such as these, you need to create new controls at run time.

The following code shows how a program might create a new Label control at run time. First
it declares a variable of type Label and initializes it with the New keyword. It uses the label’s
SetBounds method to position the label on the form and sets its Text property to “Hello World!”
The code then adds the label to the current form’s Controls collection. (“Me” is a keyword that
means “the object currently executing code,” which in this case is the form.)

Dim lbl As New Label
lbl.SetBounds(10, 50, 100, 25)
lbl.Text = “Hello World!”
Me.Controls.Add(lbl)

CHANGING CONTAINERS

To place a control inside a container other than the form, add the control to
the container’s Controls collection. For example, to add the previous Label to a
GroupBox named grpLabels, you would use the statement grpLabels.Controls
.Add(lbl).

Usually, a label just displays a message so you don’t need to catch its events. Other controls such
as buttons and scroll bars, however, are not very useful if the program cannot respond to their
events.

You can take two approaches to catching a new control’s events. First, you can use the WithEvents
keyword when you declare the control’s variable. Then you can open the form in the code editor,
select the variable’s name from the left drop-down list, and select an event from the right drop-down
list to give the control an event handler.

The following code demonstrates this approach. It declares a class-level variable btnHi using the
WithEvents keyword. When you click the btnMakeHiButton button, its event handler initializes
the variable to create the Hi button. It sets the control’s position and text, and adds it to the form’s

100 ❘ CHAPTER 8 USING WINDOWS FORMS CONTROLS

Controls collection. When the user clicks this button, the btnHi_Click event handler executes and
displays a message.

‘ Declare the btnHi button WithEvents.
Private WithEvents btnHi As Button

‘ Make the new btnHi button.
Private Sub btnMakeHiButton_Click() Handles btnMakeHiButton.Click
 btnHi = New Button()
 btnHi.SetBounds(16, 16, 80, 23)
 btnHi.Text = “Say Hi”
 Me.Controls.Add(btnHi)
End Sub

‘ The user clicked the btnHi button.
Private Sub btnHi_Click() Handles btnHi.Click
 MessageBox.Show(“Hi”)
End Sub

This fi rst approach works if you know the number and types of the controls you will need ahead of
time. Then you can defi ne variables for them all using the WithEvents keyword. If you don’t know
how many controls you need to create, however, this isn’t practical. For example, suppose that you
want to create a button for each fi le in a directory. When the user clicks a button, the fi le should
open. If you don’t know how many fi les the directory will hold, you don’t know how many variables
you’ll need.

One solution to this dilemma is to use the AddHandler statement to add event handlers to the new
controls. The following code demonstrates this approach. When you click the btnMakeHelloButton
button, its Click event handler creates a new Button object, storing it in a locally declared variable.
It sets the button’s position and text and adds it to the form’s Controls collection as before. Next,
the program uses the AddHandler statement to make subroutine Hello_Click an event handler
for the button’s Click event. When the user clicks the new button, subroutine Hello_Click displays
a message.

‘ Make a new Hello button.
Private Sub btnMakeHelloButton_Click() Handles btnMakeHelloButton.Click
 ‘ Make the button.
 Dim btnHello As New Button()
 btnHello.SetBounds(240, 64, 80, 23)
 btnHello.Text = “Say Hello”
 Me.Controls.Add(btnHello)

 ‘ Add a Click event handler to the button.
 AddHandler btnHello.Click, AddressOf Hello_Click
End Sub

‘ The user clicked the Hello button.
Private Sub Hello_Click()
 MessageBox.Show(“Hello”)
End Sub

Properties ❘ 101

TAG, YOU’RE IT

When you build controls at run time, particularly if you don’t know how many
controls you may create, the Tag property can be very useful. You can place
something in a new control’s Tag property to help identify it. For example, you
might store a control number in each new control’s Tag property and make them all
use the same event handlers. The event handlers can check the Tag property to see
which control raised the event.

You can use the same routine as an event handler for more than one button. In that case, the code
can convert the sender parameter into a Button object and use the button’s Name, Text, and other
properties to determine which button was pressed.

To remove a control from the form, simply remove it from the form’s Controls collection. To free the
resources associated with the control, set any variables that refer to it to Nothing. For example,
the following code removes the btnHi control created by the fi rst example:

Me.Controls.Remove(btnHi)
btnHi = Nothing

This code can remove controls that you created interactively at design time, as well as controls you
create during run time.

PROPERTIES

A property is some value associated with a control. Often, a property corresponds in an obvious
way to the control’s appearance or behavior. For example, the Text property represents the text
that the control displays, BackColor represents the control’s background color, Top and Left
represent the control’s position, and so forth.

Many properties, including Text, BackColor, Top, and Left, apply to many kinds of controls. Other
properties work only with certain specifi c types of controls. For example, the ToolStrip control
has an ImageList property that indicates the ImageList control containing the images the ToolStrip
should display. Only a few controls such as Button and TabControl have an ImageList property.

The following sections explain how you can manipulate a control’s properties interactively at design
time or using code at run time.

Properties at Design Time

To modify a control’s properties at design time, open its form in the Windows Forms Designer and
click the control. The Properties window lets you view and edit the control’s properties.

You can set many properties by clicking a property’s value in the Properties window and then typing
the new value. This works with simple string and numeric values such as the controls’ Name and
Text properties, and it works with some other properties where typing a value makes some sense.

102 ❘ CHAPTER 8 USING WINDOWS FORMS CONTROLS

For example, the HScrollBar control (horizontal scrollbar) has
Minimum, Maximum, and Value properties that determine the
control’s minimum, maximum, and current values, respectively. You
can click those properties in the Properties window and enter new
values. When you press the Enter key or move to another property,
the control validates the value you typed. If you entered a value
that doesn’t make sense (for example, if you typed ABC instead of a
numeric value), the IDE reports the error and lets you fi x it.

Compound Properties

A few properties have compound values. The Location property
includes the X and Y coordinates of the control’s upper-left corner.
The Size property contains the control’s width and height. The Font
property is an object that has its own font name, size, boldness, and
other font properties.

The Properties window displays these properties with a plus sign
on the left. Figure 8-2 shows the Properties window displaying a
TextBox’s properties. Notice the plus sign next to the Lines property
near the bottom.

When you click the plus sign, the window expands the property to
show the values that it contains. Figure 8-2 shows the Font property expanded. You can click
the Font property’s subvalues and set them independently just as you can set any other property
value.

When you expand a compound property, the plus sign changes to a minus sign (see the Font prop-
erty in Figure 8-2). Click this minus sign to collapse the property and hide its members.

Some compound properties provide more sophisticated methods for setting the property’s values.
If you click the ellipsis button to the right of the Font property shown in Figure 8-2, the IDE
presents a font selection dialog box that lets you set many of the font’s properties.

Restricted Properties

Some properties allow more restricted values. For example, the Visible property is a Boolean, so it can
only take the values True and False. When you click the property, a drop-down arrow appears on the
right. If you click this arrow, a drop-down list lets you select one of the choices, True or False.

Many properties have enumerated values. The Button control’s FlatStyle property allows the values
Flat, Popup, Standard, and System. When you click the drop-down arrow to the right of this
property, a drop-down list appears to let you select one of those values.

You can also double-click the property to cycle through its allowed values. After you select a
property, you can use the up and down arrows to move through the values.

Some properties allow different values at different times. For example, some properties contain
references to other controls. The Button control’s ImageList property is a reference to an ImageList

FIGURE 8-2: The Properties

window lets you change

complex properties at

design time.

Properties ❘ 103

component that contains the picture that the Button should display.
If you click the drop-down arrow to the right of this value, the
Properties window displays a list of the ImageList components
on the form that you might use for this property. This list also
contains the entry (none), which you can select to remove any
previous control reference in the property.

Many properties take very specialized values and provide specialized
property editors to let you select values easily. For example, the
Anchor property lets you anchor a control’s edges to the edges of its
container. Normally, a control is anchored to the top and left edges
of the container so that it remains in the same position even if the
container is resized. If you also anchor the control on the right, its
right edge moves in or out as the container gets wider or narrower.
This lets you make controls that resize with their containers in
certain useful ways.

If you select the Anchor property and click the drop-down arrow on
the right, the Properties window displays the small graphical editor
shown in Figure 8-3. Click the skinny rectangles on the left, top, right, or bottom to anchor or
unanchor (sometimes called fl oat) the control on those sides. Press the Enter key to accept your
choices or press Esc to cancel them.

Other complex properties may provide other editors. These are generally self-explanatory. Click the
ellipsis or drop-down arrow to the right of a property value to open the editor, and experiment to
see how these editors work.

You can right-click any property’s name and select Reset to reset the property to a default value.
Many complex properties can take the value “(none),” and for those properties, selecting Reset
usually sets the value to “(none).”

Collection Properties

Some properties represent collections of objects. For example, the ListBox control displays a list of
items. Its Items property is a collection containing those items. The Properties window displays the
value of this property as “(Collection).” If you select this property and click the ellipsis to the right,
the Properties window displays a simple dialog box where you can edit the text displayed by the
control’s items. This dialog box is quite straightforward: Enter the items’ text on separate lines and
click OK.

Other properties are much more complex. For example, to create a TabControl that displays
images on its tabs, you must also create an ImageList component. Select the ImageList
component’s Images property, and click the ellipsis to the right to display the dialog box shown
in Figure 8-4. When you click the Add button, the dialog box displays a fi le selection dialog box
that lets you add an image fi le to the control. The list on the left shows you the images you have
loaded and includes a small thumbnail picture of each image. The values on the right show you
the images’ properties.

FIGURE 8-3: Some proper-

ties, such as Anchor, provide

specialized editors to let you

select their values.

104 ❘ CHAPTER 8 USING WINDOWS FORMS CONTROLS

After you add pictures to the ImageList
control, create a TabControl. Select its
ImageList property, click the drop-down
arrow on the right, and select the ImageList
control that you created previously. Next,
select the TabControl’s TabPages property,
and click the ellipsis on the right to see the
dialog box shown in Figure 8-5.

Use the Add button to add tab pages to the
control. To set a tab’s image, select a tab
page, click its ImageIndex property, click the
drop-down arrow to the right, and pick
the number of the image in the ImageList
that you want to use for this tab.

Some properties even contain a collection of
objects, each of which contains a collection
of objects. For example, the ListView
control has an Items property that is a
collection of items. Each item is an object
that has a SubItems property, which is itself
a collection. When you display the ListView
control as a list with details, an object in
the Items collection represents a row in the
view and its SubItems values represent
the secondary values in the row.

To set these values at design time, select the
ListView control and click the ellipsis to
the right of its Items property in the
Properties window. Create an item in the
editor, and click the ellipsis to the right of
the item’s SubItems property.

Other complicated properties provide similarly complex editors. Although they may implement
involved relationships among various controls and components, they are usually easy enough to
fi gure out with a little experimentation.

Properties at Run Time

Visual Basic lets you set most control properties at design time, but often you will need to get and
modify property values at run time. For example, you might need to change a label’s text to tell the
user what is happening, disable a button because it is not allowed at a particular moment, or read
the value selected by the user from a list.

As far as your code is concerned, a property is just like any other public variable defi ned by an
object. You get or set a property by using the name of the control, followed by a dot, followed by

FIGURE 8-4: This dialog box lets you load images into an

ImageList control at design time.

FIGURE 8-5: This dialog box lets you edit a TabControl’s

tab pages.

Properties ❘ 105

the name of the property. For example, the following code examines the text in the TextBox
named txtPath. If the text doesn’t end with a / character, the code adds one. This code both reads
and sets the Text property:

If Not txtPath.Text.EndsWith(“/”) Then txtPath.Text &= “/”

If a property contains a reference to an object, you can use that object’s properties and methods in
your code. The following code displays a message box indicating whether the txtPath control’s font
is bold. It examines the TextBox control’s Font property. That property returns a reference to a Font
object that has a Bold property.

If txtPath.Font.Bold Then
 MessageBox.Show(“Bold”)
Else
 MessageBox.Show(“Not Bold”)
End If

FINALIZED FONTS

A Font object’s properties are read-only, so the code cannot set the value of txtPath
.Font.Bold. To change the TextBox control’s font, the code would need to create a
new font as in the statement:

txtPath.Font = New Font(txtPath.Font, FontStyle.Bold)

This code passes the Font object’s constructor a copy of the TextBox control’s
current font to use as a template, and a value indicating that the new font should
be bold.

If a property represents a collection or array, you can loop through or iterate over the property just
as if it were declared as a normal collection or array. The following code lists the items the user has
selected in the ListBox control named lstChoices:

For Each selected_item As Object In lstChoices.SelectedItems()
 Debug.WriteLine(selected_item.ToString())
Next selected_item

A few properties are read-only at run time, so your code can examine them but not change their
values. For example, a Panel’s Controls property returns a collection holding references to the
controls inside the Panel. This property is read-only at run time so you cannot set it equal to a
new collection. (The collection provides methods for adding and removing controls so you don’t
really need to replace the whole collection; you can change the controls that it contains instead.)

Note also that at design time, this collection doesn’t appear in the Properties window. Instead of
explicitly working with the collection, you add and remove controls interactively by moving them in
and out of the Panel control on the form.

106 ❘ CHAPTER 8 USING WINDOWS FORMS CONTROLS

A control’s Bottom property is also read-only and not shown in the Properties window. It represents
the distance between the top of the control’s container and the control’s bottom edge. This value
is really just the control’s Top property plus its Height property (control.Bottom = control.Top +
control.Height), so you can modify it using those properties instead of setting the Bottom
property directly.

Useful Control Properties

This section describes some of the most useful properties provided by the Control class.
Appendix A, “Useful Control Properties, Methods, and Events,” summarizes these and other
Control properties for quick reference.

All controls (including the Form control) inherit directly or indirectly from the Control class. That
means they inherit the Control class’s properties, methods, and events (unless they take explicit
action to override the Control class’s behavior).

Although these properties are available to all controls that inherit from the Control class, many are
considered advanced, so they are not shown
by the IntelliSense pop-up’s Common tab. For
example, a program is intended to set a control’s
position by using its Location property not its
Left and Top properties, so Location is in the
Common tab whereas Left and Top are only in
the Advanced tab.

Figure 8-6 shows the Common tab on the
IntelliSense pop-up for a Label control. It shows
the Location property but not the Left property.
If you click the All tab, you can see Left and the
other advanced properties.

When you type the control’s name and enough
of the string Left to differentiate it from the
Location property (in this case “lblDirectory
.Le”), the pop-up automatically switches to show

THE ELUSIVE WRITE-ONLY PROPERTY

In theory, a property can also be write-only at run time. Such a property is really
more like a subroutine than a property because it just passes a value to the control,
so most controls use a subroutine instead. In practice, read/write properties are
the norm, read-only properties are uncommon, and write-only properties are
extremely rare.

FIGURE 8-6: The Location property is on the

IntelliSense Common tab but the Left property is not.

Properties ❘ 107

a smaller version of the IntelliSense pop-up listing only properties that contain “Le” such as Left,
RightToLeft, and TopLevelControl.

Many of the Control class’s properties are straightforward, but a few deserve special attention.
The following sections describe some of the more confusing properties in greater detail.

Anchor

The Anchor property allows a control to automatically resize itself when its container is resized.
Anchor determines which of the control’s edges should remain a fi xed distance from the
corresponding edges of the container.

Normally a control’s Anchor property is set to Top, Left. That means the control’s top and
left positions remain fi xed when the container resizes. If the control’s upper-left corner is at the
point (8, 16) initially, it remains at the position (8, 16) when you resize the container. This is
the normal control behavior, and it makes the control appear fi xed on the container.

Now suppose that you set a control’s Anchor property to Top, Right, and you place the control in
the container’s upper-right corner. When you resize the container, the control moves, so it remains
in the upper-right corner.

If you set two opposite Anchor values, the control resizes itself to satisfy them both. For example,
suppose that you make a button that starts 8 pixels from its container’s left, right, and top edges.
Then suppose that you set the control’s Anchor property to Top, Left, Right. When you resize the
container, the control resizes itself so that it is always 8 pixels from the container’s left, right, and
top edges.

In a more common scenario, many forms have Label controls on the left with Anchor set to Top,
Left so they remain fi xed on the form. On the right, the form holds TextBoxes and other controls
with Anchor set to Top, Left, Right, so they resize themselves to take advantage of the resizing
form’s new width.

Similarly, you can make controls that stretch vertically as the form resizes. For example, if you set
a ListBox control’s Anchor property to Top, Left, Bottom, the control stretches vertically to take
advantage of the form’s height and display as much of its list of items as possible.

If you do not provide any Anchor value for either the vertical or the horizontal directions, the control
anchors its center to the container’s center. For example, suppose you position a Button control in
the bottom middle of the form and you set its Anchor property to Bottom. Because you placed the
control in the middle of the form, the control’s center coincides with the form’s center. When you
resize the form, the control moves so it remains centered horizontally.

If you place other controls on either side of the centered one, they will all move so they remain
together centered as a group as the form resizes. You may want to experiment with this property to
see the effect.

At run time, you can set a control’s Anchor property to AnchorStyles.None or to a Boolean
combination of the values AnchorStyles.Top, AnchorStyles.Bottom, AnchorStyles.Left, and
AnchorStyles.Right. For example, the example program AnchorButton, available for download on

108 ❘ CHAPTER 8 USING WINDOWS FORMS CONTROLS

the book’s website, uses the following code to move the btnAnchored control to the form’s
lower-right corner and set its Anchor property to Bottom, Right, so it stays there:

Private Sub Form1_Load() Handles MyBase.Load
 btnAnchored.Location = New Point(
 Me.ClientSize.Width - btnAnchored.Width,
 Me.ClientSize.Height - btnAnchored.Height)
 btnAnchored.Anchor = AnchorStyles.Bottom Or AnchorStyles.Right
End Sub

Dock

The Dock property determines whether a control attaches itself to one or more of its container’s
sides. For example, if you set a control’s Dock property to Top, the control docks to the top of its
container so it fi lls the container from left to right and is fl ush with the top of the container. If
the container is resized, the control remains at the top, keeps its height, and resizes itself to fi ll the
container’s width. This is how a typical toolbar behaves. The effect is similar to placing the control
at the top of the container so that it fi lls the container’s width and then setting its Anchor property
to Top, Left, Right.

You can set a control’s Dock property to Top, Bottom, Left, Right, Fill, or None. The value Fill
makes the control dock to all of its container’s remaining interior space. If it is the only control in
the container, then it fi lls the whole container.

If the container holds more than one control with Dock set to a value other than None, the controls
are arranged according to their stacking order (also called the Z-order). The control that is fi rst
in the stacking order (the one that would normally be drawn fi rst at the back) is positioned
fi rst using its Dock value. The control that comes next in the stacking order is arranged second in
the remaining space, and so on until all of the controls are positioned.

Figure 8-7 shows example program Docking, which is available for download on the book’s website.
It contains four TextBoxes with Dock set to different values. The fi rst in the stacking order has
Dock set to Left, so it occupies the left edge of the form. The next control has Dock set to Top, so
it occupies the top edge of the form’s remaining area. The third control has Dock set to Right, so it
occupies the right edge of the form’s remaining area. Finally, the last control has Dock set to Fill, so
it fi lls the rest of the form.

Controls docked to an edge resize to fi ll the container in one dimension.
For example, a control with Dock set to Top fi lls whatever width the
container has available. A control with Dock set to Fill resizes to fi ll all of
the form’s available space.

The Dock property does not arrange controls very intelligently when you
resize the container. For example, suppose that you have two controls,
one above the other. The fi rst has Dock set to Top and the second has
Dock set to Fill. You can arrange the controls so that they evenly divide
the form vertically. When you make the form taller, however, the second
control, with Dock set to Fill, takes up all of the new space, and the
other control keeps its original size.

FIGURE 8-7: Docked

controls are arranged

according to their stack-

ing order.

Properties ❘ 109

You cannot use the Dock or Anchor properties to make controls divide a form evenly when it is
resized, but you can do that with a TableLayoutPanel control. For example, to make two TextBoxes
divide a form horizontally, create TableLayoutPanel and dock it to fi ll the form. Give the control
one row and two columns. Edit the Columns collection so each column is sized by percentage and
the percent value is 50 percent. (This is the default for a new TableLayoutPanel so you don’t need to
change anything.) Now add the two TextBoxes to the TableLayoutPanel and dock them so they fi ll
the two cells. Now when the user resizes the form, the TableLayoutPanel resizes, its columns
divide the available space evenly, the TextBoxes resize to fi ll the columns.

Example program UseTableLayoutPanel, which is available for download on the book’s website,
demonstrates this method.

You can also use a SplitContainer to divide a form. The user can drag the divider between the two
panels to adjust the size allocated to each.

Position and Size Properties

Controls contain many position and size properties, and the differences among them can be
confusing. Some of the more bewildering aspects of controls are client area, non-client area, and
display area.

A control’s client area is the area inside the control where you can draw things or place other
controls. A control’s non-client area is everything else. In a typical form, the borders and title bar
are the non-client area. The client area is the space inside the borders and below the title bar where
you can place controls or draw graphics.

MENUS AND CLIENT AREA

A form’s menus can make the client and non-client areas a bit confusing. Logically,
you might think of the menus as part of the non-client area because you normally
place controls below them. Nevertheless, the menus are themselves controls and
you can even place other controls above or below the menus (although that would
be very strange and confusing to the user), so they are really contained in the
client area.

A control’s display area is the client area minus any internal decoration. For example, a GroupBox
displays an internal border and a title. Although you can place controls over these, you normally
wouldn’t. The display area contains the space inside the GroupBox’s borders and below the
space where the title sits.

The following table summarizes properties related to the control’s size and position.

110 ❘ CHAPTER 8 USING WINDOWS FORMS CONTROLS

METHODS

A method executes code associated with a control. The method can be a function that returns a
value or a subroutine that does something without returning a value.

Because methods execute code, you cannot invoke them at design time. You can only invoke them
by using code at run time.

Appendix A summarizes the Control class’s most useful methods. Controls that inherit from the
Control class also inherit these methods unless they have overridden the Control class’s behavior.

EVENTS

A control or other object raises an event to let the program know about some change in
circumstances. Sometimes raising an event is also called fi ring the event. Specifi c control classes
provide events that are relevant to their special purposes. For example, the Button control provides a
Click event to let the program know when the user clicks the button.

The program responds to an event by executing code in an event handler that catches the event
and takes whatever action is appropriate. Each event defi nes its own event handler format and
determines the parameters that the event handler will receive. Often, these parameters give
additional information about the event.

PROPERTY DATA TYPE READ/WRITE PURPOSE

Bounds Rectangle Read/Write The control’s size and position within its

container including non-client areas.

ClientRectangle Rectangle Read The size and position of the client area within

the control.

ClientSize Size Read/Write The size of the client area. If you set this value,

the control adjusts its size to make room for the

non-client area, while giving you this client size.

DisplayRectangle Rectangle Read The size and position of the area within the

control where you would normally draw or

place other controls.

Location Point Read/Write The position of the control’s upper-left corner

within its container.

Size Point Read/Write The control’s size including non-client areas.

Left, Top, Width,

Height

Integer Read/Write The control’s size and position within its

container including non-client areas.

Bottom, Right Integer Read The position of the control’s lower and right

edges within its container.

Events ❘ 111

For example, when part of the form is covered and exposed, the form raises its Paint event. The Paint
event handler takes as a parameter an object of type PaintEventArgs named e. That object’s Graphics
property is a reference to a Graphics object that the program can use to redraw the form’s contents.

Some event handlers take parameters that are used to send information about the event back to
the object that raised it. For example, the Form class’s FormClosing event handler has a parameter
of type FormClosingEventArgs. That parameter is an object that has a property named Cancel. If
the program sets Cancel to True, the Form cancels the FormClosing event and remains open. For
example, the event handler can verify that the data entered by the user was properly formatted. If the
values don’t make sense, the program can display an error message and keep the form open.

Although many of a control’s most useful events are specifi c to the control type, controls do inherit
some common events from the Control class. Appendix A summarizes the Control class’s most
important events. Controls that inherit from the Control class also inherit these events unless they
have overridden the Control class’s behavior.

Creating Event Handlers at Design Time

You can create an event handler at design time in a couple of ways. If you open a form in the
Windows Forms Designer and double-click a control, the code editor opens and displays the control’s
default event handler. For example, a TextBox control opens its TextChanged event handler, a Button
control opens its Click event handler, and the form itself opens its Load event handler.

To create some other non-default event handler for a control, select the control and then click the
Properties window’s Events button (which looks like a lightning bolt). This makes the Properties
window list the control’s most commonly used
events. If you have defi ned event handlers already,
possibly for other controls, you can select them
from the events’ drop-down lists. Double-click an
event’s entry to create a new event handler.

To create event handlers inside the code editor,
open the code window, select the control from the
left drop-down list, and then select an event from
the right drop-down list, as shown in Figure 8-8.
To create an event handler for the form itself, select
“(Form1 Events)” from the left drop-down and then
select an event from the right drop-down.

The code window creates an event handler
with the correct parameters and return value.
For example, the following code shows an empty
TextBox control’s Click event handler. Now you
just need to fi ll in the code that you want to
execute when the event occurs.

Private Sub txtLeft_Click(sender As Object, e As EventArgs) Handles txtLeft.Click

End Sub

FIGURE 8-8: To create an event handler in the code

window, select a control from the left drop-down,

and then select an event from the right drop-down.

112 ❘ CHAPTER 8 USING WINDOWS FORMS CONTROLS

RELAX

Visual Basic supports relaxed delegates, which allow you to omit the parameters
from the event handler’s declaration if you don’t need to use them. Simply create the
event handler as usual and then delete the parameters.

To make code easier to read, this book omits parameters wherever they are not
needed. For example, the following code shows a relaxed version of the previous
Click event handler:

Private Sub txtLeft_Click() Handles txtLeft.Click

End Sub

The section “Creating Controls” earlier in this chapter explains how you can use code to add and
remove event handlers at run time.

Validation Events

Data validation is an important part of many applications. Visual Basic provides two events to make
validating data easier: Validating and Validated. The following sections describe three approaches to
using those events to validate data.

Integrated Validation

The Validating event fi res when the code should validate a control’s data. This happens when a
control has the input focus and the form tries to close, or when focus moves to another control that
has its CausesValidation property set to True. Integrated validation uses the Validating event to
perform all validation.

The Validating event handler can verify
that the data in a control has a legal value and take
appropriate action if it doesn’t. For example, the
IntegratedValidation example program, which is
available for download, is shown in Figure 8-9. Each
of the program’s TextBoxes has a Validating event
handler that requires its value to be non-blank
before the user can move to another control. In
Figure 8-9 I entered the Name and Street values,
and then tried to tab past the City fi eld. The
program used an ErrorProvider component named
erroMissingData to display an error indicator beside
the City fi eld and prevented me from moving to a
new control.

FIGURE 8-9: The IntegratedValidation example

program displays an error indicator next to a

TextBox if the user tries to leave that control

without entering a value.

Events ❘ 113

The following code shows the program’s Validating event handler. Notice that the Handles clause
lists all fi ve TextBoxes’ Validating events so this event handler catches the Validating event for all
fi ve controls.

‘ Verify that this field is not blank.
Private Sub txtValidating(sender As Object,
 e As System.ComponentModel.CancelEventArgs) Handles _
 txtName.Validating, txtStreet.Validating, txtCity.Validating,
 txtState.Validating, txtZip.Validating
 ‘ Convert sender into a TextBox.
 Dim txt As TextBox = DirectCast(sender, TextBox)

 ‘ See if it’s blank.
 If (txt.Text.Length > 0) Then
 ‘ It’s not blank. Clear any error.
 errMissingData.SetError(txt, “”)
 Else
 ‘ It’s blank. Show an error.
 errMissingData.SetError(txt, “This field is required.”)

 ‘ Do not allow focus to leave the control.
 e.Cancel = True
 End If
End Sub

The event handler receives a reference to the control that raised the event in its sender parameter. The
code uses DirectCast to convert that generic Object into a TextBox object. It then checks whether
the TextBox’s value is blank. If the text is non-blank, the code calls the ErrorProvider’s SetError
method to clear any error that was previously set for the TextBox. If the TextBox’s value is blank, the
code uses the ErrorProvider to display an error indicator. It then sets e.Cancel to prevent focus from
leaving the TextBox.

Deferred Validation

By keeping focus in the control that contains the error, the previous approach forces the user to fi x
problems as soon as possible. In some applications, it may be better to let the user continue fi lling
out other fi elds and fi x the problems later. For example, a user who is touch-typing data into several
fi elds may not look up to see the error until much later, after entering a series of invalid values in the
fi rst fi eld and wasting a lot of time.

The DeferredValidation example program, which is available for download, uses the following code
to let the user continue entering values in other fi elds and fi x errors later:

‘ Verify that this field is not blank.
Private Sub txtValidating(sender As Object,
 e As System.ComponentModel.CancelEventArgs) Handles _
 txtName.Validating, txtStreet.Validating, txtCity.Validating,
 txtState.Validating, txtZip.Validating
 ‘ Convert sender into a TextBox.
 Dim txt As TextBox = DirectCast(sender, TextBox)

 ‘ See if it’s blank.
 If (txt.Text.Length > 0) Then

114 ❘ CHAPTER 8 USING WINDOWS FORMS CONTROLS

 ‘ It’s not blank. Clear any error.
 errMissingData.SetError(txt, “”)
 Else
 ‘ It’s blank. Show an error.
 errMissingData.SetError(txt, “This field is required.”)
 End If
End Sub

‘ See if any field is blank.
Private Sub Form1_FormClosing(sender As Object,
 e As FormClosingEventArgs) Handles Me.FormClosing
 If (txtName.Text.Length = 0) Then e.Cancel = True
 If (txtStreet.Text.Length = 0) Then e.Cancel = True
 If (txtCity.Text.Length = 0) Then e.Cancel = True
 If (txtState.Text.Length = 0) Then e.Cancel = True
 If (txtZip.Text.Length = 0) Then e.Cancel = True
End Sub

The Validating event handler is very similar to the one used by the IntegratedValidation program. If
a value is missing, it still displays an error message but this version doesn’t set e.Cancel to True so it
doesn’t prevent the user from moving to the next fi eld.

When the user tries to close the form, the FormClosing event handler rechecks all of the TextBoxes
and if any have blank values it sets e.Cancel to True to prevent the form from closing. (A more
elaborate program might also display an error message telling the user which TextBox had an
invalid value. It could even use that TextBox’s Focus method to set focus to that control so the user
can fi x the problem more easily.)

VALIDATING BUTTONS

If the form is a dialog box, you could validate the form’s data in an OK button’s
Click event handler instead of in the form’s FormClosing event.

Similarly, you may want to validate the data when the user clicks some other
button. On a New Order form, you might validate all of the fi elds when the user
clicks the Submit button.

SUMMARY

This chapter described controls, components, and objects in general terms. It told how to create
controls and how to use their properties, methods, and events. It spent some extra time explaining
two common data-validation strategies.

All controls inherit directly or indirectly from the Control class so any properties, methods, and
events defi ned by the Control class are inherited by those other controls. The Form class also
inherits from the Control class so it also inherits all of that class’s properties, methods, and events.
In some sense a Form is just another control but it does have special needs and provides special
features that are not shared with other controls. To help you use these features effectively,
Chapter 9, “Windows Forms,” describes the Form class in greater detail.

Windows Forms

WHAT’S IN THIS CHAPTER

 ➤ About, splash, and login forms

 ➤ Cursors and icons

 ➤ Overriding WndProc

 ➤ Building wizards

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

 ➤ CustomDialog

 ➤ Splash

 ➤ UseWaitCursor

 ➤ ViewWindowsMessages

USING FORMS

The Visual Basic Windows Form class is a descendant of the Control class. The inheritance trail
is Control ➪ ScrollableControl ➪ ContainerControl ➪ Form. That means a form is a type of
control. Except where overridden, it inherits the properties, methods, and events defi ned by the
Control class. In many ways, a form is just another kind of control like a TextBox or ComboBox.

At the same time, Forms have their own special features that set them apart from other kinds
of controls. You usually place controls inside a form, but you rarely place a form inside another
form. Forms also play a very central role in most Visual Basic applications. They are the largest
graphical unit with which the user interacts directly. The user can minimize, restore, maximize,
and close forms. They package the content provided by the other controls so that the user can
manage them in a meaningful way.

9

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

116 ❘ CHAPTER 9 WINDOWS FORMS

This chapter describes some of the special features of Windows Forms not provided by other
objects. It focuses on different ways that typical applications use forms. For example, it explains
how to create shaped forms, build About dialog boxes, and set a form’s icon.

The chapter covers the Form object’s properties, methods, and events only in passing. For a detailed
description of specifi c Form properties, methods, and events, see Appendix J, “Form Objects.”

TRANSPARENCY

The Form object provides a couple of properties that you can use to make a form partially trans-
parent. Opacity determines the form’s opaqueness. At design time, the Properties window shows
Opacity as a percentage where 100 percent means the form is completely opaque, and 0 percent
means that the form is completely transparent. At run time, your program must treat Opacity as a
fl oating-point value between 0 (completely transparent) and 1 (completely opaque).

A program can use an Opacity value less than 100 percent to let the user see what lies below the
form. For example, you might build a partially transparent Search dialog box so the user could see
the underlying document as a search progresses.

If Opacity is greater than 0 percent, the form behaves normally aside from its ghostlike appearance.
The user can click it, interact with its controls, minimize and maximize it, and grab its borders to
resize it.

If Opacity is 0 percent, the form is completely transparent and the user can interact with the
form only through the keyboard. For example, the user can press the Tab key to move between
the form’s controls, type text, press the Spacebar to invoke a button that has the focus, and press
Enter or Esc to fi re the form’s Accept and Cancel buttons; however, the form and its controls will
not detect mouse clicks. The user also cannot see the form (obviously), so fi guring out which control
has the focus can be next to impossible.

TOO MUCH TRANSLUCENCY

Most applications don’t need translucent forms. A well-designed application allows
the user to move windows around so they don’t obscure each other. Translucent
forms can be confusing, may create extra confusion for users with special needs,
and incur a performance penalty. They’re an interesting special effect but are not
generally necessary.

If Opacity is 2 percent, the form is still invisible, but it recognizes mouse clicks, so it can obscure the
windows below.

A second property that helps determine the form’s transparency is TransparencyKey. This property
is a color that tells Visual Basic which parts of the form should be completely transparent. When the
form is rendered, any areas with this color as their background colors are not drawn.

About, Splash, and Login Forms ❘ 117

The most common use for TransparencyKey is to create shaped forms or skins. Set the form’s
FormBorderStyle property to None to remove the borders, title bar, and system buttons. Set the
form’s BackColor and TransparencyKey properties to a color that you don’t want to appear on
the form. Then draw the shape you want the form to have in some other color.

Figure 9-1 shows the Smiley example program, which has a form shaped like a smiley face. The
form’s TransparencyKey and BackColor properties are both red so the form is transparent.
The Paint event handler draws the image on the form. These sorts of forms make interesting splash
screens and About dialog boxes, although they are often too distracting for use in a program’s main
user interface.

If you use Opacity and TransparencyKey together, pixels that match
TransparencyKey are completely removed and any remaining pixels
are shown according to the Opacity value.

ABOUT, SPLASH, AND LOGIN FORMS

The TransparencyKey and Opacity properties enable you to
build forms with unusual and interesting shapes. Although these
would be distracting if used for the bulk of an application, they
can add a little interest to About dialog boxes, splash screens,
and login forms.

These three kinds of forms have quite a bit in common. Usually,
they display the application’s name, version number, copyright in
formation, trademarks, and so forth. They may also display a serial
number, the name of the registered user, and a website or phone number where the user can get
customer support.

The main difference between these forms is in how the user dismisses them. A splash screen auto-
matically disappears after a few seconds. The user closes an About dialog box by clicking an OK
button. A login form closes when the user enters a valid username and password and then clicks
OK. It also closes if the user clicks Cancel, although then it doesn’t display the main application.

FIGURE 9-1: The

TransparencyKey property

lets you make shaped forms

such as this one.

REMOVING THE SPLASH

Sometimes a splash screen is displayed while the application initializes, loads needed
data, and otherwise prepares itself for work. In that case, the application removes
the splash screen after initialization is complete or a few seconds have passed,
whichever comes second.

The forms also differ slightly in the controls they contain. A splash screen needs a Timer to deter-
mine when it is time to close the form. An About dialog box needs a single OK button. A login form
needs TextBoxes to hold the username and password, two Labels to identify them, and OK and
Cancel buttons.

118 ❘ CHAPTER 9 WINDOWS FORMS

Splash screens and login forms greet the user, so there’s no need to provide both in the same appli-
cation. However, that still leaves you with the task of building two nearly identical forms: splash
and About, or login and About. With a little planning, you can use a single form as a splash screen,
About dialog box, and login form. At run time, you can add whichever set of controls is appropriate
to the form’s use. Alternatively, you can build the form with all three sets of controls at design time
and then hide the ones you don’t need for a particular purpose.

The following code shows how example program Splash, which is available for download on the
book’s website, displays a form either as a splash screen or as an About dialog box:

‘ Display as a splash screen.
Public Sub ShowSplash()
 Me.tmrUnload.Enabled = True ‘ The Timer closes the dialog.
 Me.TopMost = True ‘ Keep on top of main form.
 Me.Show() ‘ Show non-modally.
End Sub

‘ Unload the splash screen.
Private Sub tmrUnload_Tick() Handles tmrUnload.Tick
 Me.Close()
End Sub

‘ Display as an About dialog.
Public Sub ShowAbout()
 btnOK.Visible = True ‘ The OK button closes the dialog.
 Me.ShowDialog() ‘ Show modally.
End Sub

‘ Close the About dialog.
Private Sub btnOK_Click() Handles btnOK.Click
 Me.Close()
End Sub

The form contains both a Timer named tmrUnload and an OK button named btnAboutOk. The
form’s ShowSplash method enables the tmrUnload control and calls Show to display the form.
The Timer’s Interval property was set to 3,000 milliseconds at design time, so its Tick event fi res
after three seconds and closes the form.

The ShowAbout method makes the btnOk button visible and calls ShowDialog to display the form
modally. A modal form holds the application’s focus so the user cannot interact with other parts
of the application until the modal form is dismissed. When the user clicks the button, the button’s
Click event handler closes the form.

MOUSE CURSORS

A form’s Cursor property determines the kind of mouse cursor the form displays. The Form class
inherits the Cursor property from the Control class, so other controls have a Cursor property, too. If
you want to give a particular control a special cursor, you can set its Cursor property. For example,

Mouse Cursors ❘ 119

if you use a Label control as a hyperlink, you could make it display a pointing hand similar to those
displayed by web browsers to let the user know that the control is a hyperlink.

The Cursors class provides several standard cursors as shared values. For example, the following
statement sets a form’s cursor to the system default cursor (normally an arrow pointing up and to
the left):

Me.Cursor = Cursors.Default

Figure 9-2 shows example program ShowCursors, which is available for download on the book’s
website, displaying the names and images of the standard cursors defi ned by the Cursors class in
Windows 8. In other versions of Windows, some of the cursors may appear differently.

FIGURE 9-2: The Cursors class defi nes standard cursors.

Unless a control explicitly sets its own cursor, it inherits the cursor of its container. If the control is
placed directly on the form, it displays whatever cursor the form is currently displaying. That means
you can set the cursor for a form and all of its controls in a single step by setting the form’s cursor.

Similarly, if a control is contained within a GroupBox, Panel, or other container control, it inherits
the container’s cursor. You can set the cursor for all the controls within a container by setting the
cursor for the container.

One common use for cursors is to give the user a hint when the application is busy. The program
sets its cursor to Cursors.WaitCursor when it begins a long task and then sets it back to Cursors
.Default when it fi nishes. The UseWaitCursor example program, which is available for download on
the book’s website, uses the following code to display a wait cursor when you click its button:

Me.Cursor = Cursors.WaitCursor
‘ Perform the long task.
...
Me.Cursor = Cursors.Default

If the program displays more than one form, it must set the cursors for each form individually.
It can set the cursors manually, or it can loop through the My.Application.OpenForms collection.

120 ❘ CHAPTER 9 WINDOWS FORMS

The UseMultipleWaitCursors example program, which is available for download on the book’s web-
site, uses the following SetAllCursors subroutine to display a wait cursor on each of its forms when
you click its button:

Private Sub SetAllCursors(the_cursor As Cursor)
 For Each frm As Form In My.Application.OpenForms
 frm.Cursor = the_cursor
 Next frm
End Sub

The following code shows how the program uses the SetAllCursors subroutine while performing a
long task:

SetAllCursors(Cursors.WaitCursor)
‘ Perform the long task.
...
SetAllCursors(Cursors.Default)

To use a custom cursor, create a new Cursor object using a fi le or resource containing cursor or icon
data. Then assign the new object to the form’s Cursor property. The SmileCursor example program,
which is available for download on the book’s website, uses the following code to display a custom
cursor:

Me.Cursor = New Cursor(My.Resources.SmileIcon.Handle)

ICONS

Each form in a Visual Basic application has its own icon. A form’s icon is displayed on the left side
of its title bar, in the system’s taskbar, and by applications such as the Task Manager and Windows
Explorer.

Some of these applications display icons at different sizes. For example, Windows Explorer uses
32 × 32 pixel icons for its Large Icons view and 16 × 16 pixel icons for its other views. Toolbar
icons come in 16 × 16, 24 × 24, and 32 × 32 pixel sizes. Windows uses still other sizes for different
 purposes. For more information on various pixel sizes used by Windows Vista, see http://msdn2
.microsoft.com/aa511280.aspx.

If an icon fi le doesn’t provide whatever size Windows needs, the system shrinks or enlarges an exist-
ing image to fi t. That may produce an ugly result. To get the best appearance, you should ensure
that icon fi les include at least 16 × 16 and 32 × 32 pixel sizes. Depending on the characteristics of
your system, you may also want to include other sizes.

The integrated Visual Studio icon editor enables you to defi ne images for various color models
ranging from monochrome to 24-bit color, and sizes ranging from 16 × 16 to 256 × 256 pixels. It
even lets you build icon images with custom sizes such as 32 × 48 pixels, although it is unlikely that
Windows will need to use those.

To use this editor, open Solution Explorer and double-click the My Project entry to open the Project
Properties window. Select the Resources tab, open the Add Resource drop-down, and select Add

http://msdn2.microsoft.com/aa511280.aspx
http://msdn2.microsoft.com/aa511280.aspx

Icons ❘ 121

New Icon. Use the drawing tools to build the icons. Right-click the icon and use the Current Icon
Image Types submenu to work with icons of different sizes. Right-click and select New Image type
to add new image sizes or color formats.

ICON-A-THON

The integrated icon editor works and is free but it’s fairly cumbersome. Many
developers use other icon editors such as IconForge (http://www.favicon.com/
iconforge.html), IconEdit (http://www.iconedit.com), IconEdit 2 (no relation
between this and IconEdit, http://www.iconedit2.com), and RealWorld Cursor
Editor (http://www.rw-designer.com/cursor-maker). Note that I don’t endorse
one over the others.

To assign an icon to a form at design time, open the Windows Forms Designer and select the Icon
property in the Properties window. Click the ellipsis button on the right and select the icon fi le that
you want to use.

To assign an icon to a form at run time, set the form’s Icon property to an Icon object. The
 following code sets the form’s Icon property to an icon resource named MainFormIcon:

Me.Icon = My.Resources.MainFormIcon

Some applications change their icons to provide an indication of their status. For example, a
 process-monitoring program might turn its icon red when it detects an error. It could even switch
back and forth between two icons to make the icon blink in the taskbar.

Application Icons

Windows displays a form’s icon in the form’s title bar, in the taskbar, and in the Task Manager.
Applications (such as Windows Explorer) that look at the application as a whole rather than at its
individual forms display an icon assigned to the application, not to a particular form. To set the
application’s icon, open Solution Explorer and double-click the My Project entry to open the Project
Properties window. On the Application tab, open the Icon drop-down list, and select the icon fi le
that you want to use or select <Browse . . . > to look for the fi le you want to use.

Notifi cation Icons

Visual Basic applications can display one other kind of icon by using the NotifyIcon control. This
control can display an icon in the system tray. The system tray (also called the status area) is the
little area holding small icons that is usually placed in the lower-left part of the taskbar.

The control’s Icon property determines the icon that it displays. A typical application will change
this icon to give information about the program’s status. For example, a program that monitors the
system’s load could use its system tray icon to give the user an idea of the current load. Notifi cation
icons are particularly useful for programs that have no user interface or that run in the background
so that the user isn’t usually looking at the program’s forms.

http://www.favicon.com/iconforge.html
http://www.favicon.com/iconforge.html
http://www.iconedit.com
http://www.iconedit2.com
http://www.rw-designer.com/cursor-maker

122 ❘ CHAPTER 9 WINDOWS FORMS

Notifi cation icons also often include a context menu that appears when the user right-clicks the
icon. The items in the menu enable the user to control the application. If the program has no other
visible interface, this may be the only way the user can control it.

PROPERTIES ADOPTED BY CHILD CONTROLS

Some properties are adopted by many of the child controls contained in a parent control or in a
form. For example, by default, a Label control uses the same background color as the form that con-
tains it. If you change the form’s BackColor property, its Label controls change to display the same
color. Similarly if a GroupBox contains a Label and you change the GroupBox’s BackColor prop-
erty, its Label changes to match.

Some properties adopted by a form’s controls include BackColor, ContextMenu, Cursor, Enabled,
Font, and ForeColor. Not all controls use all of these properties, however. For example, a TextBox
only matches its form’s Enabled and Font properties.

If you explicitly set one of these properties for a control, its value takes precedence over the form’s
settings. For example, if you set a Label control’s BackColor property to red, the control keeps its
red background even if you change the Form’s BackColor property.

Some of these properties are also not tremendously useful to the Form object itself, but they give
guidance to the form’s controls. For example, a form doesn’t automatically display text on its sur-
face, so it never really uses its Font property. Its Label, TextBox, ComboBox, List, RadioButton,
CheckBox, and many other controls adopt the value of this property, however, so the form’s Font
property serves as a central location to defi ne the font for all of these controls. If you change the
form’s Font property, even at run time, all of the form’s controls change to match. The change
applies to all of the form’s controls, even those contained within GroupBoxes, Panels, and other
container controls.

These properties can also help your application remain consistent both with the controls on the
form and with other parts of the application. For example, the following code draws the string
“Hello World!” on the form whenever the form needs to be repainted. This code explicitly creates
the Comic Sans MS font.

Private Sub Form1_Paint(sender As Object, e As PaintEventArgs) Handles Me.Paint
 Using new_font As New Font(“Comic Sans MS”, 20)
 e.Graphics.DrawString(“Hello World!”,
 new_font, Brushes.Black, 10, 10)
 End Using
End Sub

Rather than making different parts of the program build their own fonts, you can use the forms’
Font properties as shown in the following code. This makes the code simpler and ensures that differ-
ent pieces of code use the same font.

Private Sub Form1_Paint(sender As Object, e As PaintEventArgs) Handles Me.Paint
 e.Graphics.DrawString(“Hello World!”, Me.Font, Brushes.Black, 10, 100)
End Sub

Overriding WndProc ❘ 123

As a nice bonus, changing the form’s Font property raises a Paint event, so, if the form’s font
changes, this code automatically runs again and redraws the text using the new font.

PROPERTY RESET METHODS

The Form class provides several methods that reset certain property values to their defaults. The most
useful of those methods are ResetBackColor, ResetCursor, ResetFont, ResetForeColor, and ResetText.

If you change one of the corresponding form properties, either at design time or at run time, these
methods restore them to their default values. The default values may vary from system to system,
but currently on my computer BackColor is reset to Control, Cursor is reset to Default, Font is reset
to 8.25-point regular (not bold or italic) Microsoft Sans Serif, ForeColor is reset to ControlText,
and Text is reset to an empty string.

Because the controls on a form adopt many of these properties (all except Text), these methods also
reset the controls on the form.

OVERRIDING WNDPROC

The Windows operating system sends all sorts of messages to applications that tell them about changes
in the Windows environment. Messages tell forms to draw, move, resize, hide, minimize, close, respond
to changes in the Windows environment, and do just about everything else related to Windows.

All Windows applications have a subroutine tucked away somewhere that responds to those mes-
sages. That routine is traditionally called a WindowProc. A Visual Basic .NET form processes these
messages in a routine named WndProc. You can override that routine to take special actions when
the form receives certain messages.

Example program FixedAspectRatio, which is available on the book’s website, looks for WM_
SIZING messages. When it fi nds those messages, it adjusts the form’s new width and height so they
always have the same aspect ratio (ratio of height to width).

WNDPROC WARNING

When you override the WndProc method, it is very important that the new method
calls the base class’s version of WndProc as shown in the following statement:

MyBase.WndProc(m)

If the program doesn’t do this, it won’t respond properly to events. For example, the
form won’t be able to draw itself correctly, resize or move itself, or even create itself
properly.

NOTE Of these methods, IntelliSense only shows ResetText even on its All tab.
You have type them yourself.

124 ❘ CHAPTER 9 WINDOWS FORMS

When you override the WndProc method, you must also fi gure out what messages to intercept, what
parameters those messages take, and what you can do to affect them safely. One way to learn about
messages is to insert the following WndProc and then perform the action that you want to study
(resizing the form, in this example):

Protected Overrides Sub WndProc(ByRef m As Message)
 Debug.WriteLine(m.ToString())
 MyBase.WndProc(m)
End Sub

Example program ViewWindowsMessages, which is available for download on the book’s website,
uses this code to display information about the messages it receives.

The following statement shows the result for the WM_SIZING message sent to the form while the
user resizes it. It at least shows the message name (WM_SIZING) and its numeric value (hexadecimal
0x214).

msg=0x214 (WM_SIZING) hwnd=0x30b8c wparam=0x2 lparam=0x590e29c result=0x0

Searching for the message name on the Microsoft website and on other programming sites usu-
ally gives you the other information you need to know (such as what m.WParam and m.LParam
mean).

Note also that the Form class inherits the WndProc subroutine from the Control class, so all other
Windows Forms controls inherit it as well. That means you can override their WndProc routines to
change their behaviors.

For example, the following code shows how the NoCtxMnuTextBox class works. This control is
derived from the TextBox control. Its WndProc subroutine checks for WM_CONTEXTMENU
messages and calls the base class’s WndProc for all other messages. By failing to process the
WM_CONTEXTMENU message, the control prevents itself from displaying the TextBox control’s
normal Copy/Cut/Paste context menu when you right-click it.

Public Class NoCtxMnuTextBox
 Inherits System.Windows.Forms.TextBox

 Protected Overrides Sub WndProc(ByRef m As Message)
 Const WM_CONTEXTMENU As Integer = &H7B

 If m.Msg <> WM_CONTEXTMENU Then
 MyBase.WndProc(m)
 End If
 End Sub
End Class

The NoContextMenu example program, which is available for download on the book’s
website, uses similar code to display a text box that does not display a context menu when you
right-click it.

MRU Lists ❘ 125

MRU LISTS

A Most Recently Used list (MRU list) is a series of menu items (usually at the bottom of an applica-
tion’s File menu) that displays the fi les most recently accessed by the user. If the user clicks one of
these menu items, the program reopens the corresponding fi le.

By convention, these menu items begin with the accelerator characters 1, 2, 3, and so forth. If you
opened the File menu and pressed 2, for example, the program would reopen the second fi le in the
MRU list.

When the user opens a new fi le or saves a fi le with a new name, that fi le is placed at the top of the
list. Most applications display up to four items in the MRU list and, if the list ever contains more
items, the oldest are removed.

Most applications remove a fi le from the MRU list if the application tries to open it and fails. For
example, if the user selects an MRU menu item but the corresponding fi le has been removed from
the system, the program removes the fi le’s menu item.

Building an MRU list isn’t too diffi cult in Visual Basic. The MruList example program, which is
available for download on the book’s website, uses the MruList class to manage its MRU list. This
class manages a menu that you want to use as an MRU list and updates the menu as the user opens
and closes fi les. For example, if you confi gure the class to allow four MRU list entries and the user
opens a fi fth fi le, the class removes the oldest entry and adds the new one.

The class saves and restores the MRU list in the system’s Registry. When the user selects a fi le from the
MRU list, the class raises an event so the main program’s code can open the corresponding fi le.
The class also provides an Add method that the main program can use to add new fi les to the MRU
list when the user opens a new fi le. Download the example and look at its code for more details.

The following code shows how the main MruList program uses the MruList class. This program is
a simple text viewer that lets the user open and view fi les.

Public Class Form1
 Private WithEvents m_MruList As MruList

 ‘ Initialize the MRU list.
 Private Sub Form1_Load() Handles Me.Load
 m_MruList = New MruList(“SdiMruList”, mnuFile, 4)
 End Sub

 ‘ Let the user open a file.
 Private Sub mnuFileOpen_Click() Handles mnuFileOpen.Click
 If dlgOpen.ShowDialog() = Windows.Forms.DialogResult.OK Then
 OpenFile(dlgOpen.FileName)
 End If
 End Sub

 ‘ Open a file selected from the MRU list.
 Private Sub m_MruList_OpenFile(file_name As String) _
 Handles m_MruList.OpenFile

126 ❘ CHAPTER 9 WINDOWS FORMS

 OpenFile(file_name)
 End Sub

 ‘ Open a file and add it to the MRU list.
 Private Sub OpenFile(file_name As String)
 txtContents.Text = File.ReadAll(file_name)
 txtContents.Select(0, 0)
 m_MruList.Add(file_name)
 Me.Text = “[“ & New FileInfo(file_name).Name & “]”
 End Sub
End Class

The program declares an MruList variable named m_MruList. It uses the WithEvents keyword so
that it is easy to catch the object’s OpenFile event.

The form’s New event handler initializes the MruList object, passing it the application’s name, the
File menu, and the number of items the MRU list should hold.

When the user selects the File menu’s Open command, the program displays an open fi le dialog box.
If the user selects a fi le and clicks OK, the program calls subroutine OpenFile, passing it the name of
the selected fi le.

If the user selects a fi le from the MRU list, the m_MruList_OpenFile event handler executes and
calls subroutine OpenFile, passing it the name of the selected fi le.

Subroutine OpenFile loads the fi le’s contents into the txtContents TextBox control. It then calls the
MruList object’s Add method, passing it the fi le’s name. It fi nishes by setting the form’s caption to
the fi le’s name without its directory path.

You could easily convert the MruList class into a component so you could place it directly on the
form. If you give the component ApplicationName, FileMenu, and MaxEntries properties, you can
set those values at design time.

DIALOG BOXES

Using a form as a dialog box is easy. Create the form and give it whatever controls it needs to do its
job. Add one or more buttons to let the user dismiss the dialog box. Many dialog boxes use OK and
Cancel buttons, but you can also use Yes, No, Retry, and others.

You may also want to set the form’s FormBorderStyle property to FixedDialog to make the form
non-resizable, although that’s not mandatory.

Set the form’s AcceptButton property to the button that you want to invoke if the user presses the
Enter key. Set its CancelButton property to the button you want to invoke when the user presses the
Esc key.

The form’s DialogResult property indicates the dialog box’s return value. If the main program dis-
plays the dialog box by using its ShowDialog method, ShowDialog returns the DialogResult value.

The CustomDialog example program, which is available for download on the book’s website,
uses the following code to display a dialog box and react to its result.

Dialog Boxes ❘ 127

Private Sub btnShowDialog_Click() Handles btnShowDialog.Click
 Dim dlg As New dlgEmployee
 If dlg.ShowDialog() = Windows.Forms.DialogResult.OK Then
 MessageBox.Show(
 dlg.txtFirstName.Text & “ “ &
 dlg.txtLastName.Text)
 Else
 MessageBox.Show(“Canceled”)
 End If
End Sub

This code creates a new instance of the dlgEmployee form and displays it by calling its ShowDialog
method. If the user clicks OK, ShowDialog returns DialogResult.OK and the program displays the
fi rst and last names entered on the dialog box. If the user clicks the Cancel button, ShowDialog
returns DialogResult.Cancel and the program displays the message “Canceled.”

If the user clicks the Cancel button or closes the form by using the system menu (or the little “X”
in the upper-right corner), the form automatically sets its DialogResult property to Cancel and
closes the form.

If the user clicks some other button, your event handler should set DialogResult to an appropriate
value. Setting this value automatically closes the form.

The following code shows how the dlgEmployee form reacts when the user clicks the OK but-
ton. It checks whether the fi rst and last name TextBox controls contain non-blank values. If either
value is blank, the event handler displays an error message and returns without setting the form’s
DialogResult property. If both values are non-blank, the code sets DialogResult to OK, and
setting DialogResult closes the form.

Private Sub btnOk_Click() Handles btnOk.Click
 ‘ Verify that the first name is present.
 If txtFirstName.Text.Length = 0 Then
 MessageBox.Show(
 “Please enter a First Name”,
 “First Name Required”,
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation)
 txtFirstName.Select()
 Exit Sub
 End If

 ‘ Verify that the last name is present.
 If txtLastName.Text.Length = 0 Then
 MessageBox.Show(
 “Please enter a Last Name”,

NOTE You can also set a button’s DialogResult property to indicate the value
that the dialog box should return when the user clicks that button. When the
user clicks the button, Visual Basic sets the form’s DialogResult property
automatically.

128 ❘ CHAPTER 9 WINDOWS FORMS

 “Last Name Required”,
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation)
 txtLastName.Select()
 Exit Sub
 End If

 ‘ Accept the dialog.
 Me.DialogResult = Windows.Forms.DialogResult.OK
End Sub

CANCEL WITHOUT EVENTS

Note that the dialog box doesn’t need an event handler for the Cancel button. If you
set the form’s CancelButton property to the button and if the user clicks it, Visual
Basic automatically sets the form’s DialogResult to Cancel and closes the form.

WIZARDS

One common type of dialog box is called a wizard. A wizard
is a form that guides the user through a series of steps to do
something. For example, building a database connection is com-
plicated, so Visual Basic provides a data connection confi gura-
tion wizard that helps the user enter the correct information for
different kinds of databases. When it fi nishes, the wizard adds a
connection object to the current form.

Figure 9-3 shows one kind of wizard. The user enters data on
each tab and then moves on to the next one. This wizard asks
the user to enter an employee’s name, identifi cation (Social
Security number and Employee ID), address and phone number,
offi ce location and extension, and privileges.
Many tabbed wizards also include Next and
Previous buttons to help you move from one tab
to another.

When the user has fi lled in all the fi elds,
the wizard enables the OK button. When the
user clicks the OK or Cancel button, control
returns to the main program, which handles the
result just as it handles any other dialog box.

Figure 9-4 shows a different style of wizard.
Instead of tabs, it uses buttons to let the user
move through pages of fi elds. The wizard
enables a button only when the user has fi lled
in the necessary information on the previous

FIGURE 9-3: A wizard guides the

user through the steps of some

complicated task.

FIGURE 9-4: This wizard uses buttons instead of tabs

to move through its pages of data.

Summary ❘ 129

page. In Figure 9-4, the Offi ce button is disabled because the user has not fi lled in all the fi elds on
the Address page.

The button style is sometimes better at helping the user fi ll in all of the required fi elds because the
user must fi nish fi lling in one page before moving on to the next. In a tabbed wizard, the user might
leave a required fi eld blank or use an incorrect format (for example, an invalid phone number) on
the fi rst tab and not realize it until clicking the OK button.

SUMMARY

Although forms are just one kind of control, they have some very special characteristics. They form
the basic pieces of an application that sit on the desktop, and they have many properties, methods,
and events that set them apart from other controls. Appendix J provides more information about
form properties, methods, and events.

This chapter described some of the more typical uses of forms. It explained how to build About,
splash, and login forms; manage a form’s mouse cursor and icon; override WndProc to intercept a
form’s Windows messages; and make dialog boxes and wizards. After you master these tasks, you
can build the forms that implement the large-scale pieces of an application.

Chapters 7, 8, and 9 described Windows Forms controls and the Form class. The next three chap-
ters provide corresponding information for Windows Presentation Foundation (WPF) controls and
forms. Chapter 10, “Selecting WPF Controls,” starts by providing an overview of WPF controls
and giving tips on which you might like to use for given purposes, much as Chapter 7 did for
Windows Forms controls.

 Selecting WPF Controls

WHAT’S IN THIS CHAPTER

 ➤ Control Summaries

 ➤ Containing and arranging controls

 ➤ Selection controls

 ➤ Display and feedback controls

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter includes
several examples that demonstrate particularly useful WPF control features. These examples
include the following:

 ➤ DrawingShapes

 ➤ EllipseClick

 ➤ FormImage

 ➤ UseExpander

 ➤ UseScrollViewer

WPF CONTROLS AND CODE

Windows Presentation Foundation (WPF) provides a whole new method for building user inter-
faces. Although it bears a superfi cial resemblance to Windows Forms, WPF provides new controls,
a new event architecture, and a new foundation for building and interacting with properties.

WPF also provides tools for separating the user interface from the code behind the interface
so that the two pieces can potentially be built by separate user interface designers and Visual
Basic developers. It includes a new eXtensible Application Markup Language (XAML,

10

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://wrox.com
http://WROX.COM

132 ❘ CHAPTER 10 SELECTING WPF CONTROLS

pronounced “zammel”) that lets you build a user interface by using declarative statements rather
than executable code. XAML lets you determine the size, position, and other properties of the WPF
controls on a form. It lets you defi ne styles that can be shared among many controls, and it lets you
defi ne transformations and animations that affect the controls.

As is the case in Windows Forms applications, controls play a central role in WPF applications.
Different kinds of controls give information to the user (Label, StatusBar, TreeView, ListView,
Image) and organize the information so that it’s easy to understand (Border, StackPanel, DockPanel,
TabControl). They enable the user to enter data (TextBox, TextBlock, ComboBox, PasswordBox),
select options (RadioButton, CheckBox, ListBox), and control the application (Button, Menu, Slider).

To make an application as effective as possible, you should match controls with your application’s
needs. Although many controls may work for a particular task, some controls usually work better
than others. For example, you could display status information by changing a button’s caption, but
that’s not really what buttons do best. A label in a status bar is usually a better way to give the user
status information because the user will expect and understand it. Users generally don’t expect to
see status information in a button with changing text.

This chapter briefl y describes the most common WPF controls so you can understand which
controls work best for different purposes. To help you fi nd the controls you need, the sections
later in this chapter group controls by their general function. For example, if you need to display
status to the user, look in the section “Providing Feedback.”

I provide only brief descriptions of the WPF controls in this chapter, and some tips that can help you
decide which control to use for different purposes. The following chapter, “Using WPF Controls,” covers
the controls in much greater detail, describing each control’s most useful properties, methods, and events.

FOR MORE INFORMATION

This chapter and those that follow provide only the briefest glance at WPF. They
explain enough to get you started, but for greater detail and more in-depth infor-
mation, see a book about WPF such as my book WPF Programmer’s Reference:
Windows Presentation Foundation with C# 2010 and .NET 4.0 (Wrox, Stephens,
2010, http://www.amazon.com/exec/obidos/ASIN/0470477229/vbhelper).

CONTROLS OVERVIEW

You can group WPF controls into several categories. Some of these correspond naturally to the pur-
poses of Windows Forms controls. Other categories play a more important role in WPF than they
do in Windows Forms applications.

In particular, WPF controls rely heavily on layout controls that arrange and organize the controls
that they contain. Windows Forms developers often simply arrange controls on a form with fi xed

http://www.amazon.com/exec/obidos/ASIN/0470477229/vbhelper

Containing and Arranging Controls ❘ 133

sizes and positions. A WPF application is more likely to arrange the controls in a hierarchy of
StackPanel and Grid controls and let those controls arrange their contents.

The recent proliferation of screen formats makes this idea more important than ever. If you write
programs running on everything from traditional desktop systems to Windows 8 tablets, your pro-
grams will need the ability to rearrange their controls automatically. A smartphone can even switch
from portrait to landscape orientation while a program is running, so the program must respond to
make effective use of the available space. I won’t claim that most applications should be able to run
on a tiny phone screen or a 17″ laptop without any changes, but good use of container controls can
simplify some of the changes you’ll need to make.

The following sections describe the main categories of WPF controls. The example programs
for this chapter, which are available on the book’s website, demonstrate many of the controls’
basic uses.

CONCEALED CONTROLS

Not all of the controls described here are available by default when you create a
new WPF application. You need to add some of these controls to the Toolbox before
you can use them. To add a control that is missing, right-click a Toolbox section
and select Choose Items. On the Choose Toolbox Items dialog box, select the WPF
Components tab, check the boxes next to the controls that you want, and click OK.

Note, also, that some additional controls may be available in the Choose Toolbox
Items dialog box that are not described here. The following sections describe only
the most commonly used controls.

CONTAINING AND ARRANGING CONTROLS

Layout controls determine the arrangement of the controls that they contain. For example, they may
arrange controls vertically, horizontally, or in rows and columns.

The preferred style for WPF control arrangement is to make container controls determine the posi-
tions of their children and let the children take advantage of whatever space is allowed. This can be
particularly useful for localized applications where you cannot easily predict how much space a con-
trol will need in a particular language.

For example, suppose a form contains a StackPanel control. The StackPanel contains several buttons
that launch application dialog boxes. If you remove the buttons’ Width properties, the buttons auto-
matically size themselves to fi t the StackPanel horizontally. Now if you need to make the buttons
wider to hold text for a new language, you can simply widen the form. The StackPanel widens to fi ll
the form and the buttons widen to fi t the StackPanel.

134 ❘ CHAPTER 10 SELECTING WPF CONTROLS

Example program ResizingButtons, which is available for download on the book’s website, demon-
strates buttons with fi xed heights but widths that resize when their container resizes.

CONTROL PURPOSE

Border1 Provides a visible border or background to the contents.

BulletDecorator2 Contains two children. The fi rst is used as a bullet and the second is aligned with

the fi rst. For example, you can use this to align bullet images next to labels. (See

example program UseBulletDecorator, available for download on the book’s

website.)

Canvas Creates an area in which you can explicitly position children by specifying their

Width, Height, Canvas.Left, and Canvas.Top properties. (See example program

UseCanvas, available for download on the book’s website.)

DockPanel Docks its children to its left, right, top, or bottom much as the Dock property does

in a Windows Forms application. If the control’s LastChildFill property is True, the

control makes its last child control fi ll the remaining space. (See example program

UseDockPanel, available for download on the book’s website.)

Expander1 Displays a header with an expanded/collapsed indicator. The user can click the

header or indicator to expand or collapse the control’s single content item. (See

example program UseExpander, available for download on the book’s website.)

Grid Displays children in rows and columns. This is somewhat similar to the Windows

Forms TableLayoutPanel control. Grid is one of the most useful container

controls.

GridSplitter Enables the user to resize two rows or columns in a Grid control.

GridView Displays data in columns within a ListView control.

GroupBox1 Displays a border and caption much as a Windows Forms GroupBox control does.

NOTE In a Windows Forms application, you can achieve a similar effect by
using Anchor and Dock properties.

Layout controls are also important because they can hold lots of other controls. Some of the WPF
controls can hold only a single content item. For example, an Expander can hold only a single item.
However, if you place another layout control such as a StackPanel inside the Expander, you can then
place lots of other controls inside the StackPanel.

The following table briefl y describes the WPF controls that are intended mainly to contain and
arrange other controls.

Containing and Arranging Controls ❘ 135

CONTROL PURPOSE

Panel Panel is the parent class for Canvas, DockPanel, Grid, TabPanel,

ToolbarOverfl owPanel, UniformGrid, StackPanel, VirtualizingPanel, and

WrapPanel. Usually you should use one of those classes instead of Panel, but

you can also use Panel to implement your own custom panel controls.

ScrollViewer1 Provides vertical and horizontal scroll bars for a single content element.

(See example program UseScrollViewer, available for download on the book’s

website.)

Separator Separates two controls inside a layout control. (See example program

UseSeparator, available for download on the book’s website.)

StackPanel Arranges children in a single row or column. If there are too many controls,

those that don’t fi t are clipped. StackPanel is one of the most useful container

controls.

TabControl Arranges children in tabs. TabItem controls contain the items that should be dis-

played in the tabs. (See example program UseTabControl, available for download

on the book’s website.)

TabItem1 Holds the content for one TabControl tab.

Viewbox1 Stretches its single child to fi ll the Viewbox. The Stretch property determines

whether the control stretches its child uniformly (without changing the width-to-

height ratio). (See example program UseViewbox, available for download on the

book’s website.)

Virtualizing

StackPanel

Generates child items to hold items that can fi t in the available area. For example,

when working with a ListBox bound to a data source, the VirtualizingStackPanel

generates only the items that will fi t within the ListBox. If the control is not bound

to a data source, this control behaves like a StackPanel.

WrapPanel Arranges children in rows/columns depending on its Orientation property.

When a row/column is full, the next child moves to a new row/column. This is

similar to the Windows Forms FlowLayoutPanel control. (See example program

UseWrapPanel, available for download on the book’s website.)

1This control can hold only a single child.
2This control should hold exactly two children. Controls with no footnote can hold any number of
children.

Many of the layout controls have the ability to resize their children if you let them. For example, if
you place a Button inside a Grid control’s fi rst row and column, by default the Button resizes when
its row and column resize. The control’s Margin property determines how far from the cell’s edges
the Button’s edges lie.

136 ❘ CHAPTER 10 SELECTING WPF CONTROLS

If a child control explicitly defi nes its Width and Height properties, those properties override the
parent’s arrangement policy. For example, if you set Width and Height for a Button inside a Grid,
the Button does not resize when its Grid cell does.

To get the effect that you want, consider how the control’s Margin, Width, and Height properties
interact with the parent layout control.

MAKING SELECTIONS

Selection controls enable the user to choose values. If you use them carefully, you can reduce the
chances of the user making an invalid selection, so you can reduce the amount of error-handling
code you need to write.

The following table briefl y describes the WPF controls that allow the user to select choices.

CONTROL PURPOSE

CheckBox Lets the user select an item or not. Each CheckBox choice is independent of all

others.

ComboBox Displays items in a drop-down list. ComboBoxItem controls contain the items

displayed in the list. (See example program UseComboBox, available for

download on the book’s website.)

ComboBoxItem1 Holds the content for one ComboBox item.

ListBox Displays items in a list. ListBoxItem controls contain the items displayed in the

list. The control automatically displays scroll bars when needed. (See example

program UseListBox, available for download on the book’s website.)

ListBoxItem1 Holds the content for one ListBox item.

RadioButton Lets the user pick from among a set of options. If the user checks one

RadioButton, all others with the same parent become unchecked. (See example

program UseRadioButtons, available for download on the book’s website.)

ScrollBar Allows the user to drag a “thumb” to select a numeric value. Usually scroll bars

are used internally by other controls such as the ScrollViewer, and your applica-

tions should use a Slider instead. (See example program UseScrollBar, available

for download on the book’s website.)

Slider Allows the user to drag a “thumb” to select a numeric value. Similar to the

Windows Forms TrackBar control. (See example program UseSlider, available for

download on the book’s website.)

1This control can hold only a single child.

Displaying Data ❘ 137

ENTERING DATA

Sometimes, it is impractical to use the selection controls described in the previous section.
For example, the user cannot reasonably enter biographical data or comments using a Combo
Box or RadioButton. In those cases, you can provide a text control where the user can type
information.

The following table briefl y describes the WPF controls that allow the user to enter text.

CONTROL PURPOSE

PasswordBox Similar to a TextBox but displays a mask character instead of the characters that

the user types. (See example program UsePasswordBox, available for download

on the book’s website.)

RichTextBox Similar to a TextBox but contains text in the form of a document object. See the

section “Managing Documents” later in this chapter for more information on

documents.

TextBox Allows the user to enter simple text. Optionally can allow carriage returns and

tabs, and can wrap text.

DISPLAYING DATA

These controls are used primarily to display data to the user. The following table briefl y describes
these WPF controls.

CONTROL PURPOSE

Label Displays non-editable text.

TextBlock Displays more complex non-editable text. This control’s contents can include inline

tags to indicate special formatting. Tags can include AnchoredBlock, Bold, Hyperlink,

InlineUIContainer, Italic, LineBreak, Run, Span, and Underline.

TreeView Displays hierarchical data in a tree-like format similar to the directory display provided

by Windows Explorer.

138 ❘ CHAPTER 10 SELECTING WPF CONTROLS

PROVIDING FEEDBACK

The following controls provide feedback to the user. Like the controls that display data in the previ-
ous section, these controls are intended to give information to the user and not to interact with the
user. The following table briefl y describes these WPF controls.

CONTROL PURPOSE

Popup Displays content in a window above another control. Usually you can use the

Tooltip and ContextMenu controls instead of a Popup. (See example program

UsePopup, available for download on the book’s website.)

ProgressBar Indicates the fraction of a long task that has been completed. If the task is

performed synchronously, the user is left staring at the form while it completes.

The ProgressBar lets the user know that the operation is not stuck. (See example

program UseProgressBar, available for download on the book’s website.)

StatusBar Displays a container at the bottom of the form where you can place controls hold-

ing status information. Though you can place anything inside a StatusBar, this

control is intended to hold summary status information, not tools. Generally, Menus,

ComboBoxes, Buttons, Toolbars, and other controls that let the user manipulate

the application do not belong in a StatusBar. (See example program UseStatusBar,

available for download on the book’s website.)

StatusBarItem1 Holds the content for one StatusBar item.

ToolTip Displays a tooltip. To give a control a simple textual tooltip, set its Tooltip property.

Use the Tooltip control to build more complex tooltips. For example, a Tooltip con-

trol might contain a StackPanel that holds other controls. (See example program

UseToolTip, available for download on the book’s website.)

1This control can hold only a single child.

INITIATING ACTION

Every kind of control responds to events, so every control can initiate an action. In practice, however,
users expect only certain kinds of controls to perform actions. For example, they generally don’t expect
the application to launch into a time-consuming calculation when the mouse moves over a label.

The following table summarizes controls that normally initiate action.

CONTROL PURPOSE

Button1 Raises a Click event that the program can catch to perform an action. (See example

program UseButtonRepeatButton, available for download on the book’s website.)

ContextMenu Displays a context menu for other controls. Normally the ContextMenu contains

MenuItem controls. (See example program UseMenuContextMenu, available for

download on the book’s website.)

Presenting Graphics and Media ❘ 139

CONTROL PURPOSE

Menu Displays a menu for the form. Normally, the Menu contains MenuItem controls

representing the top-level menus. Those items contain other MenuItem controls

representing commands. (See example program UseMenuContextMenu, available

for download on the book’s website.)

MenuItem Contains an item in a ContextMenu or Menu.

PrintDialog Displays a standard Windows print dialog. You shouldn’t place a PrintDialog on

a window. Instead use code to build and display the PrintDialog. (See example

program UsePrintDialog, available for download on the book’s website.)

RepeatButton1 Acts as a Button that raises its Click event repeatedly when it is pressed and held

down. (See example program UseButtonRepeatButton, available for download on

the book’s website.)

ToolBar Contains items. Normally, the control sits across the top of the form and contains

command items such as buttons and combo boxes. (See example program

UseToolBar, available for download on the book’s website.)

ToolBarTray Contains ToolBars and allows the user to drag them into new positions.

(See example program UseToolBar, available for download on the book’s website.)

1This control can hold only a single child.

PRESENTING GRAPHICS AND MEDIA

Any WPF control can display an image. Example program FormImage, which is available for
download on the book’s website, uses the following XAML code to fi ll a Grid control’s
background:

<Window x:Class=”MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
 Title=”FormImage” Height=”300” Width=”300”>
 <Window.Resources>
 <ImageBrush ImageSource=”smile.bmp” x:Key=”brSmile” />
 </Window.Resources>
 <Grid Background=”{StaticResource brSmile}”>

 </Grid>
</Window>

Although a Grid control can display an image or other graphic, its real purpose is to arrange
other controls. The following table describes controls whose main purpose is to present graphics
and media.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

140 ❘ CHAPTER 10 SELECTING WPF CONTROLS

CONTROL PURPOSE

Ellipse Displays an ellipse.

Image Displays a bitmap image, for example, from a .bmp, .jpg, or .png fi le. Can

optionally stretch the image with or without distortion.

Line Draws a line segment.

MediaElement Presents audio and video. To let you control the media, it provides Play, Pause,

and Stop methods, and Volume and SpeedRatio properties. (See example pro-

gram UseMediaElement, available for download on the book’s website.)

Path Draws a series of drawing instructions.

Polygon Draws a closed polygon.

Polyline Draws a series of connected line segments.

Rectangle Draws a rectangle, optionally with rounded corners.

The shape drawing objects (Ellipse, Line, Path, Polygon, Polyline, and Rectangle) all provide Stroke,
StrokeThickness, and Fill properties to let you control their appearance. Although these controls
are primarily intended to draw simple (or not so simple) shapes, like any other control they provide
a full assortment of events. For example, they provide an IsMouseOver property and a MouseUp
event that you can use to make these objects behave like simple buttons.

Example program DrawingShapes, which is available for download on the book’s website, demon-
strates several of these shape controls. Program EllipseClick, which is also available for download,
uses triggers to change the color of an Ellipse when the mouse is over it, and displays a message
when you click the Ellipse.

PROVIDING NAVIGATION

The Frame control provides support for navigation through external websites or the application’s
pages. Use the control’s Navigate method to display a web page or a XAML page. The Frame pro-
vides back and forward arrows to let the user navigate through the pages visited.

Example program UseFrame, which is available for download on the book’s website, uses a Frame
control to provide navigation between two Page objects.

MANAGING DOCUMENTS

WPF includes three different kinds of documents: fl ow documents, fi xed documents, and XPS
documents. These different kinds of documents provide support for high-end text viewing and
printing.

Digital Ink ❘ 141

The following table summarizes the controls that WPF provides for viewing these kinds of
documents.

CONTROL PURPOSE

DocumentViewer Displays fi xed documents page by page.

FlowDocument

PageViewer

Displays a fl ow document one page at a time. If the control is wide enough, it

may display multiple columns although it still displays only one page at a time.

FlowDocument

Reader

Displays fl ow documents in one of three modes. When in single page mode,

it acts as a FlowDocumentReader. When in scrolling mode, it acts as a

FlowDocumentScrollViewer. In book reading mode, it displays two pages side

by side much as a real book does.

FlowDocument

ScollViewer

Displays an entire fl ow document in a single long scrolling page and provides

scroll bars to let the user move through the document.

DIGITAL INK

Digital ink controls provide support for stylus input from tablet PCs (where you use a plastic stylus
similar to a pen to draw right on a tablet PC’s touch screen). Normally you would only use digital
ink in a tablet PC application where the user is expected to enter data by drawing on the screen with
a stylus. These applications usually provide text recognition to understand what the user is writing.
They also use the stylus to perform the same operations they would perform with the mouse on a
desktop system. For example, they let you tap to click buttons, and tap and drag to move items.

Although ink controls are most useful for tablet PCs, WPF includes two ink controls that you can
use in any Visual Basic application.

CONTROL PURPOSE

InkCanvas Displays or captures ink strokes.

InkPresenter Displays ink strokes.

XPS EXPLAINED

XPS (XML Paper Specifi cation) is a Microsoft standard that defi nes fi xed-format
documents similar to PDF fi les. An XPS reader can view an XPS fi le but will not
reformat it as a web browser might rearrange the text on a web page. For more
information, see the section “XPS Documents” in Chapter 11.

142 ❘ CHAPTER 10 SELECTING WPF CONTROLS

SUMMARY

Controls are the link between the user and the application. They allow the application to give infor-
mation to the user, and they allow the user to control the application.

This chapter briefl y described the most important WPF controls grouped by category. You can use
the categories to help you decide which controls to use for a particular situation. If the user must
select an item, consider the controls in the “Making Selections” section. If the application needs to
display status information, look at the controls in the “Providing Feedback” section.

This chapter gave only a brief introduction to the WPF controls and provided some hints about
each control’s purpose. Chapter 11, “Using WPF Controls,” describes the controls in greater detail.
It explains the most important properties, methods, and events provided by the most useful WPF
controls.

Using WPF Controls

WHAT’S IN THIS CHAPTER

 ➤ Resources, styles, and templates

 ➤ Graphical transformations

 ➤ Animation

 ➤ Drawing objects

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter includes several
examples that demonstrate particularly useful WPF features. These examples include the following:

 ➤ ButtonTemplate

 ➤ Calculator

 ➤ ProceduralAnimatedButton

 ➤ ProceduralCalculator

 ➤ SpinAndGrowButton

WPF CONTROLS

The code behind WPF controls is the same as the code behind Windows Forms controls. That means
that everything the earlier chapters have explained about applications, forms, controls, Visual Basic
code, error handling, drawing, printing, reports, and so forth still work almost exactly as before.

Chapter 10, “Selecting WPF Controls,” briefl y described the most common WPF controls, grouped
by category to help you pick the control that best suits a particular task. This chapter provides more
detail about WPF. It explains some of the more important concepts that underlie WPF. It also gives
more detail about how particular controls work and tells how you can use them in your applications.

11

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

144 ❘ CHAPTER 11 USING WPF CONTROLS

WPF is a huge topic. It basically reproduces all of the functionality of Windows Forms
programming, and then some. This chapter cannot hope to cover all of the concepts, tools, and
techniques used by WPF. Instead, it introduces some of the more important concepts and explains
how to build basic WPF forms.

WPF CONCEPTS

WPF applications are similar in concept to Windows Forms applications in many respects. Both
display a form or window that contains controls. Controls in both systems provide properties,
methods, and events that determine the control’s appearance and behavior.

Windows Forms applications use a set of controls provided by the System.Windows.Forms
namespace. WPF applications use a different set of controls in the System.Windows
.Controls namespace. Many of these controls serve similar functions to those used by Windows
Forms applications, but they provide a different set of capabilities. For example, both namespaces
have buttons, labels, combo boxes, and check boxes, but their appearances and abilities are different.

WPF uses these similar, but different, controls for two main reasons:

 ➤ To take better advantage of the graphics capabilities of modern computer hardware and
software. The new controls can more easily provide graphical effects such as transparent
or translucent backgrounds, gradient shading, rotation, two- and three-dimensional
appearance, multimedia, and other effects.

 ➤ To provide a greater separation between the user interface and the code behind it. The fol-
lowing sections describe this idea and some of the other key WPF concepts in greater detail.

Separation of User Interface and Code

The idea of separating the user interface from the code isn’t new. Visual Basic developers have been
building thin user interface applications for years. Here, the user interface contains as little code as
possible, and calls routines written in libraries to do most of the work.

Unfortunately, the code that calls those libraries sits inside the same fi le that defi nes the user inter-
face, at least in Windows Forms applications. That means you cannot completely separate the code
from the user interface. For example, if one developer wants to modify the user interface, another
developer cannot simultaneously modify the code behind it.

WPF separates the user interface from the code more completely. The program stores the user
interface defi nition in a XAML fi le.

Associated with a XAML fi le is a code fi le containing Visual Basic code. It contains any code you
write to respond to events and manipulate the controls much as Windows Forms code can. Unlike
the case with Windows Forms, WPF keeps the user interface defi nition and the code behind it in two
separate fi les so, in theory at least, different developers can work on the user interface and the code
at the same time. For example, a graphics designer can use the Expression Blend design tool to build
the user interface, defi ning the forms’ labels, menus, buttons, and other controls. Then a Visual
Basic developer can attach code to handle the controls’ events.

WPF in the IDE ❘ 145

NOTE Expression Blend is fairly expensive, although it’s included in Expression
Studio and is available to MSDN subscribers. It provides some useful tools that
are missing from Visual Studio, however, such as tools to record animations. If
you frequently need to build property animations, you should give it a try.

You can learn more about Expression Blend and download a trial version at
http://expression.microsoft.com.

Because the user interface defi nition is separate from the code behind it, the graphic designer can
later edit the XAML to rearrange controls, change their appearance, and otherwise modify the user
interface while the code behind it should still work unchanged.

WPF Control Hierarchies

In a WPF application, the Window class plays a role similar to the one played by a Form in a
Windows Forms application. However, a Form can contain any number of controls while a Window
can contain only one. If you want a WPF form to display more than one control, you must fi rst give
it some kind of container control, and then place other controls inside that one.

For example, when you create a WPF application, its Window initially contains a Grid control that
can hold any number of other controls, optionally arranged in rows and columns. Other container
controls include Canvas, DockPanel, DocumentViewer, Frame, StackPanel, and TabControl.

The result is a tree-like control hierarchy with a single Window object serving as the root element.
This matches the hierarchical nature of XAML. Because XAML is a form of XML, and XML fi les
must have a single root element, XAML fi les must also have a single root element. When you look
at XAML fi les later in this chapter, you will fi nd that they begin with a
Window element that contains all other elements.

Many non-container controls can hold only a single element, and that
element is determined by the control’s Content property. For example, you
can set a Button control’s Content property to the text that you want
to display.

A control’s Content property can have only a single value, but that
value does not need to be something simple such as text. For example,
Figure 11-1 shows a Button containing a Grid control that holds
three labels.

WPF IN THE IDE

The Visual Studio IDE includes editors for manipulating WPF Window classes and controls.
Although many of the details are different, the basic operation of the IDE is the same whether you
are building a Windows Forms application or a WPF application. For example, you can use the WPF
Window Designer to edit a WPF window. You can select controls from the Toolbox and place them
on the window much as you place controls on a Windows Form.

FIGURE 11-1: This

Button contains a Grid

that holds three labels.

http://expression.microsoft.com

146 ❘ CHAPTER 11 USING WPF CONTROLS

Despite their broad similarities, the Windows Forms Designer and the WPF Window Designer differ
in detail. Although the Properties window displays properties for WPF controls much as it does for
Windows Forms controls, many of the property values are not displayed in similar ways.

The window represents many Boolean properties with check boxes. It represents other properties
that take enumerated values with combo boxes where you can select a value or type one in (if you
know the allowed values).

Future Visual Studio releases may make Expression Blend more consistent with Visual Studio,
although some more advanced features (such as animation recording) are likely to remain only in
Expression Blend to encourage developers to buy it.

Note that the editors in the Properties window merely build the XAML code that defi nes the user
interface. You can always edit the XAML manually to achieve effects that the Properties window
does not support directly.

The following sections explain how to write XAML code and the Visual Basic code behind it.

Editing XAML

Figure 11-2 shows the IDE displaying a new WPF project. Most of the areas should look familiar
from Windows Forms development. The Toolbox on the left contains tools that you can place on the
window in the middle area. Solution Explorer on the right shows the fi les used by the application. The
Properties window shows property values for the currently selected control in the middle. The selected
object in Figure 11-2 is the main Window, so the top of the Properties window shows its type: Window.

FIGURE 11-2: The IDE looks almost the same for Windows Forms and WPF applications.

WPF in the IDE ❘ 147

One large difference between the IDE’s appearance when building a WPF application versus a
Windows Forms application is the central editor. In a Windows Forms application, you edit a form
with the Windows Forms Designer. In a WPF application, you use the graphical XAML editor
shown in Figure 11-2 to edit a Window object’s XAML code. The upper half of this area shows
a graphical editor where you can drag controls from the Toolbox much as you design a Windows
Form. The lower part of the editor shows the resulting XAML code.

If you look closely at Figure 11-2, you can see the Window element that includes the rest of the fi le.
When you fi rst build an application, the Window object’s element contains a single Grid control.

Usually, it is easiest to build WPF Window objects by using the graphical editor and the Toolbox.
When you select a control in the graphical editor, you can view and modify its properties in the
Properties window. If you can’t get a desired effect by using the Properties window, you can use the
XAML view at the bottom to edit the XAML code by hand. For example, the Properties window
won’t let you set a non-container control’s Content property to another control, but you can do this
easily with XAML code. For example, to place a Grid inside a Button control, simply type the Grid
control’s defi nition between the Button control’s start and end tags.

The graphical editor and the Properties window don’t give you access to all of XAML’s features, but
they do let you build a basic user interface for WPF applications. Once you have defi ned the
window’s basic structure, you can use XAML to fi ne-tune the result.

Editing Visual Basic Code

Each XAML fi le is associated with a Visual Basic code fi le. When you fi rst create a WPF project, that
fi le is opened by default. If you look closely at the central designer in Figure 11-2, you’ll see that the
XAML fi le MainWindow.xaml is open and visible in the designer. Another tab contains the corre-
sponding Visual Basic fi le MainWindow.xaml.vb. Click that tab to view the Visual Basic source code.

The following text shows the Visual Basic source code initially created for a XAML fi le:

Class MainWindow

End Class

You can add event handlers to this fi le just as you can add event handlers to Windows Forms code.
Use the left drop-down to select a control or MainWindow Events. Then use the right drop-down
list to select an event for that object.

One difference between WPF and Windows Forms event programming is that WPF controls are
not given names by default so they don’t appear in the code editor’s left drop-down list. If you want
to use the editor’s drop-downs to create an event handler for a control, you must give the control a
name either by using the Properties window or by typing it into the XAML code.

Another way to create an event handler is to double-click a control on the WPF Window Designer.

In addition to event handlers, you can also add non-event handler subroutines and functions to the
Visual Basic code fi le just as you can in any other Visual Basic fi le.

Inside the Visual Basic code fi le, you can get and set control properties and call control methods,
just as you can in a Windows Forms project.

148 ❘ CHAPTER 11 USING WPF CONTROLS

Anything you can do by using the WPF graphical designer or declaratively with XAML you can also
do procedurally with Visual Basic code. The following section, “XAML Features,” describes some
of the things that you can do with XAML and shows examples. The section “Procedural WPF”
later in this chapter explains how you can implement some of the same features with Visual Basic
code instead of XAML.

XAML FEATURES

XAML is a form of XML that defi nes certain allowed combinations of XML elements. For
 example, a XAML fi le should have a single root element that represents a Window. That object can
have a single child element that is normally a container. The container can hold several children
with specifi cally defi ned properties such as Width and Height.

XAML is a very complicated language, and many of its features are available only in certain places
within the fi le. For example, inside a Button element you can place attributes such as Background,
BorderThickness, Margin, Width, Height, and Content. The XAML text editor provides IntelliSense
that makes fi guring out what is allowed in different places easier, but building a XAML fi le can still
be quite challenging.

NOTE One good way to learn XAML is to go online and search for examples.
The Microsoft website has lots of examples, as do several other sites. Although
the documentation isn’t always easy to use, the examples can help you learn
specifi c techniques. Some good places to start include the XAML overview at
http://msdn2.microsoft.com/ms752059.aspx and the Windows Presentation
Foundation development page at http://msdn2.microsoft.com/ms754130
.aspx. My book WPF Programmer’s Reference (Wrox, Stephens, 2010,
http://www.amazon.com/exec/obidos/ASIN/0470477229/vbhelper) also
 provides lots of examples of useful techniques.

The following sections describe some of the basic building blocks of a XAML application. They
explain how to build objects; how to use resources, styles, and templates to make objects consistent
and easier to modify; and how to use transformations and animations to make objects interactive.
The section “Procedural WPF” later in this chapter explains how to do these things in Visual Basic
code instead of XAML.

Objects

WPF objects are represented by XML elements in the XAML fi le. Their properties are represented
either by attributes within the base elements or as separate elements within the main element.

http://www.amazon.com/exec/obidos/ASIN/0470477229/vbhelper
http://msdn2.microsoft.com/ms752059.aspx
http://msdn2.microsoft.com/ms754130.aspx
http://msdn2.microsoft.com/ms754130.aspx

XAML Features ❘ 149

For example, the following XAML code shows a Window containing a Grid object. The Grid
 element contains a Background attribute that makes the object’s background red.

<Window x:Class=”MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”MainWindow” Height=”235” Width=”300”>
 <Grid Background=”Red”>

 </Grid>
</Window>

More complicated properties must be set in their own sub-elements. The following code shows a
similar Grid that has a linear gradient background:

<Window x:Class=”MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”MainWindow” Height=”235” Width=”300”>
 <Grid>
 <Grid.Background>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”>
 <GradientStop Color=”Red” Offset=”0.0” />
 <GradientStop Color=”White” Offset=”0.5” />
 <GradientStop Color=”Blue” Offset=”1.0” />
 </LinearGradientBrush>
 </Grid.Background>
 </Grid>
</Window>

Instead of using a Background attribute, the Grid element contains a Grid.Background element.
That, in turn, contains a LinearGradientBrush element that defi nes the background. The StartPoint
and EndPoint attributes indicate that the gradient should start at the upper-left corner of the grid
(0, 0) and end at the lower right (1, 1). The GradientStop elements inside the brush’s defi nition set
the colors that the brush should display at different fractions of the way through the gradient.
In this example, the gradient starts red, changes to white halfway through, and changes to blue
at the end.

NOTE You cannot defi ne an object’s Background property more than once. If
you include a Background attribute and a Grid.Background element for the
same grid, the XAML editor complains.

Object elements often contain other elements that further defi ne the object. The following code
defi nes a grid that has two rows and three columns. (From now on I’m leaving out the Window
element to save space.) The rows each occupy 50 percent of the grid’s height. The fi rst column is
50 pixels wide and the other two columns each take up 50 percent of the remaining width.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

150 ❘ CHAPTER 11 USING WPF CONTROLS

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”50*” />
 <RowDefinition Height=”50*” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”50” />
 <ColumnDefinition Width=”50*” />
 <ColumnDefinition Width=”50*” />
 </Grid.ColumnDefinitions>
</Grid>

When you use a * in measurements, the control divides its height or width proportionally among
items that contain a *. For example, if a grid has two rows with height 50*, they each get half of the
control’s height. If the two rows have heights 10* and 20*, the fi rst is half as tall as the second.

If the control also contains items without a *, their space is taken out fi rst. For example, suppose a
grid defi nes rows with heights 10, 20*, and 30*. In that case the fi rst row has height 10, the second
row gets 20/50 of the remaining height, and the third row gets the rest.

An object element’s body can also contain content for the object. In some cases, the content is simple
text. The following example defi nes a Button object that has the caption Click Me:

<Button Margin=”2,2,2,2” Name=”btnClickMe”>Click Me</Button>

An object’s content may also contain other objects. The following code defi nes a grid with three
rows and three columns holding nine buttons:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”33*” />
 <RowDefinition Height=”33*” />
 <RowDefinition Height=”33*” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”33*” />
 <ColumnDefinition Width=”33*” />
 <ColumnDefinition Width=”33*” />
 </Grid.ColumnDefinitions>
 <Button Grid.Row=”0” Grid.Column=”0” Margin=”5”>0, 0</Button>
 <Button Grid.Row=”0” Grid.Column=”1” Margin=”5”>0, 1</Button>
 <Button Grid.Row=”0” Grid.Column=”2” Margin=”5”>0, 2</Button>
 <Button Grid.Row=”1” Grid.Column=”0” Margin=”5”>1, 0</Button>
 <Button Grid.Row=”1” Grid.Column=”1” Margin=”5”>1, 1</Button>
 <Button Grid.Row=”1” Grid.Column=”2” Margin=”5”>1, 2</Button>
 <Button Grid.Row=”2” Grid.Column=”0” Margin=”5”>2, 0</Button>
 <Button Grid.Row=”2” Grid.Column=”1” Margin=”5”>2, 1</Button>
 <Button Grid.Row=”2” Grid.Column=”2” Margin=”5”>2, 2</Button>
</Grid>

Usually, it is easiest to start building a Window by using the graphical XAML editor, but you may
eventually want to look at the XAML code to see what the editor has done. It often produces almost

XAML Features ❘ 151

but not quite what you want. For example, if you size and position a control by using click and drag,
the editor may set its Margin property to 10,10,11,9 when you really want 10,10,10,10 (or just 10).

It can also sometimes be hard to place controls exactly where you want them. You can fi x some of
these values in the Properties window, but sometimes it’s just easier to edit the XAML code directly.

Resources

Example program Calculator, which is available for download on the
book’s website, is shown in Figure 11-3. This program contains three
groups of buttons that use radial gradient backgrounds with similar
colors. The number buttons, +/–, and the decimal point have yellow
backgrounds drawn with RadialGradientBrush objects. The CE, C,
and = buttons have blue backgrounds, and the operator buttons have
green backgrounds.

You could build each button separately, including the appropriate
RadialGradientBrush objects to give each button the correct background.
Suppose, however, you decide to change the color of all of the number
buttons from yellow to red. You would have to edit each of their 12
RadialGradientBrush objects to give them their new colors. In addition
to being a lot of work, those changes would give you plenty of chances to
make mistakes. The changes would be even harder if you decide to change
the numbers of colors used by the brushes (perhaps having the brush shade
from yellow to red to orange), or if you want to use a completely different brush for the buttons such
as a LinearGradientBrush.

One of the ways XAML makes maintaining projects such as this one easier is by letting
you defi ne resources. You can then use the resources when defi ning objects. In this example, you
can defi ne resources to represent button backgrounds and then use those resources to set each
button’s Background property. If you later need to change the backgrounds, you only need to update
the resources.

The following code shows how the Calculator application shown in Figure 11-3 creates a
LinearGradientBrush resource called brResult, which the program uses to draw the result text box
at the top. Ellipses show where code has been omitted to make it easier to read.

<Window x:Class=”Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” Title=”XamlCalculator”
 Height=”292” Width=”227” Focusable=”True”>
 <Window.Resources>
 ...
 <LinearGradientBrush x:Key=”brResult” StartPoint=”0,0” EndPoint=”1,1”>
 <GradientStop Color=”LightBlue” Offset=”0.0” />
 <GradientStop Color=”AliceBlue” Offset=”1.0” />
 </LinearGradientBrush>
 ...
 </Window.Resources>
 ...
</Window>

FIGURE 11-3: This pro-

gram uses resources to

simplify maintenance.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

152 ❘ CHAPTER 11 USING WPF CONTROLS

The Window element contains a Window.Resources tag that contains the resource defi nitions. The
LinearGradientBrush element defi nes the brush. One of this element’s more important attributes is
x:Key, which identifi es the brush for later use.

The following code shows how the Calculator program defi nes the Label that displays calculation
results. The Background attribute refers to the resource brResult.

<Label Name=”lblResult”
 Background=”{StaticResource brResult}”
 Grid.ColumnSpan=”4”
 Margin=”2,2,2,2”
 HorizontalContentAlignment=”Right”
 VerticalContentAlignment=”Center”>0</Label>

Later if you decide to change the background color for the result label, you only need to change the
defi nition of the brResult resource. This example uses that resource for only one label so you don’t
save a huge amount of work by defi ning a resource. The program’s buttons, however, reuse the same
resources many times. Instead of reusing the background resources directly, however, the buttons
use styles as described in the next section.

Styles

Resources make it easy to create many controls that share an attribute such as a background. Styles
take attributes a step further by allowing you to bundle multiple attributes into one package. For
example, you could defi ne a style that includes background, width, height, and font properties. Then
you could use the style to help defi ne controls.

You can also use styles to defi ne other styles. For example, you can make a base style to be applied
to every button in an application. Then you can derive other styles for different kinds of buttons
from the base style.

The following example defi nes a style named styAllButtons. It contains Setter elements that set
control properties. This style sets a control’s Focusable property to False and its Margin property
to 2,2,2,2.

<Style x:Key=”styAllButtons”>
 <Setter Property=”Control.Focusable” Value=”false” />
 <Setter Property=”Control.Margin” Value=”2,2,2,2” />
</Style>

The following code defi nes a style named styClear for the calculator’s C, CE, and = buttons:

<Style x:Key=”styClear” BasedOn=”{StaticResource styAllButtons}”>
 <Setter Property=”Control.Background” Value=”{StaticResource brClear}” />
 <Setter Property=”Grid.Row” Value=”1” />
 <Setter Property=”Control.Margin” Value=”2,20,2,2” />
</Style>

The BasedOn attribute makes the new style start with the properties defi ned by styAllButtons. The
new style then uses two Setter elements to add new values for the Background (set to the brush

XAML Features ❘ 153

resource brClear) and Grid.Row properties (these buttons are all in row 1 in the calculator). It then
overrides the styAllButtons style’s value for the Margin property to increase the margin above
these buttons.

The following code shows how the program defi nes its C button. By setting the button’s style
to styClear, the code sets most of the button’s properties with a single statement. It then sets the
button’s Grid.Column property and its content (those values are different for the C, CE,
and = buttons).

<Button Name=”btnC”
 Style=”{StaticResource styClear}”
 Grid.Column=”1”>C</Button>

Styles let the program keep all of the common properties for a set of controls in a single location.
Now if you decided to change the color of the C, CE, and = buttons, you would need to change only
the defi nition of the brClear brush. If you wanted to change the brushes’ margins, you would need
to change only the styClear style.

As the previous code shows, styles also keep the controls’ defi nitions very simple.

Styles also let you easily change the controls’ properties later. For example, if you later decide to
specify the font family and font size for the calculator’s C, CE, and = buttons, you only need to add
the appropriate Setter elements to styClear instead of adding a new property to every button. If you
want to set the font for every button in the program, you simply add the appropriate Setter elements
to styAllButtons, and the other styles automatically pick up the changes.

Templates

Templates determine how controls are drawn and how they behave by default. For example, the
default button template makes buttons turn light blue when the mouse hovers over them. When
you press a button down, it grows slightly darker and shows a thin shadow along its upper and left
edges. By using Template elements, you can override these default behaviors.

The following code contained in the Window.Resources section defi nes a button template:

<Style TargetType=”Button”>
 <Setter Property=”Margin” Value=”2,2,2,2” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”{x:Type Button}”>
 <Grid>
 <Polygon x:Name=”pgnBorder”
 Stroke=”Purple”
 StrokeThickness=”5”
 Points=”0.2,0 0.8,0 1,0.2 1,0.8 0.8,1 0.2,1 0,0.8 0,0.2”
 Stretch=”Fill”
 Fill=”{StaticResource brOctagonUp}”>
 </Polygon>
 <ContentPresenter HorizontalAlignment=”Center”
 VerticalAlignment=”Center” />
 </Grid>

154 ❘ CHAPTER 11 USING WPF CONTROLS

 <!-- Triggers -->
 <ControlTemplate.Triggers>
 <Trigger Property=”IsMouseOver” Value=”true”>
 <Setter TargetName=”pgnBorder” Property=”Stroke” Value=”Black” />
 <Setter TargetName=”pgnBorder” Property=”Fill”
 Value=”{StaticResource brOctagonOver}” />
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

The code begins with a Style element that contains two Setter elements. The fi rst Setter sets a
button’s Margin property to 2,2,2,2. The second Setter sets a Template property. The Setter’s value
is a ControlTemplate element targeted at Buttons.

The ControlTemplate contains a Grid that it uses to hold other elements. In this example, the Grid
holds a Polygon element named pgnBorder. The Points attribute lists the points used to draw the
polygon. Because the polygon’s Fill attribute is set to Stretch, the polygon is stretched to fi ll
its parent area, and Points coordinates are on a 0.0 to 1.0 scale within this area. The polygon’s Fill
attribute is set to the brOctagonUp brush defi ned elsewhere in the Window.Resources section and
not shown here. This is a RadialGradientBrush that shades from white in the center to red at
the edges.

The ControlTemplate element also contains a Triggers section. The single Trigger element in this
section executes when the button’s IsMouseOver condition is true. When that happens, a Setter
changes the pgnBorder polygon’s Stroke property to Black. A second Setter sets the polygon’s Fill
property to another brush named brOctagonOver. This brush (which also isn’t shown here) shades
from red in the center to white at the edges.

Because this style does not have an x:Key attribute, it applies to any button in the Window that
doesn’t have a Style set explicitly.

Example program ButtonTemplate uses the following code to create its controls:

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”0.25*” />
 <ColumnDefinition Width=”0.25*” />
 <ColumnDefinition Width=”0.25*” />
 <ColumnDefinition Width=”0.25*” />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”0.50*” />
 <RowDefinition Height=”0.50*” />
 </Grid.RowDefinitions>
 <Button Name=”btnOne” Content=”One” Grid.Row=”1” Grid.Column=”0” />
 <Button Name=”btnTwo” Content=”Two” Grid.Row=”1” Grid.Column=”1” />
 <Button Name=”btnThree” Content=”Three” Grid.Row=”1” Grid.Column=”2” />
 <Button Name=”btnFour” Content=”Four” Grid.Row=”1” Grid.Column=”3” />

XAML Features ❘ 155

 <Button Name=”btnClickMe” Content=”Click Me”
 Style=”{StaticResource styYellowButton}” />
 <Button Name=”btnYellow” Content=”I’m Yellow”
 Style=”{StaticResource styYellowButton}” Grid.Column=”2” Grid.Row=”0” />
</Grid>

The Window contains a Grid that holds six buttons. The fi rst four buttons do not explicitly set their
Style, so they use the previously defi ned octagonal style.

The fi nal buttons set their Style attributes to styYellowButton (also defi ned in the Windows.
Resources section, but not shown here) so they display a yellow background. That style also
positions the button’s text in the upper center. When you hover the mouse over these buttons, they
switch to an orange background. If you press the mouse down on these buttons, they change to a
red background with white text that says “Pushed!” Download the ButtonTemplate example
program to see how the triggers work.

Figure 11-4 shows the result. The mouse is pressed on the upper-right button so it has turned red
and is displaying the text “Pushed!”

FIGURE 11-4: Templates let you change the appearance and

behavior of objects such as buttons.

TAME TEMPLATES

You can use templates to change the appearance and behavior of XAML objects to
give your applications distinctive appearances, but you probably shouldn’t get too
carried away. Although you can make buttons radically change their colors, shapes,
captions, and other characteristics when the user interacts with them, doing so may
be very distracting. Use templates to make your applications distinctive, but not
overwhelming.

Also be careful not to make controls hard for those with accessibility issues. For
example, if you use subtle color differences to distinguish button states, users with
impaired color vision, those who have trouble seeing small items, and even those
using their computers under poor lighting conditions may have trouble using your
program. Similarly using sounds to indicate state won’t help hearing impaired users
(and may annoy people sitting at nearby desks).

156 ❘ CHAPTER 11 USING WPF CONTROLS

Transformations

Standard graphical properties such as Foreground and FontFamily determine a control’s basic
appearance, but you can further modify that appearance by using a RenderTransform element.
The following code creates a button that has been rotated 270 degrees. The Button
.RenderTransform element contains a RotateTransform element that represents the rotation.

<Button Name=”btnSideways”
 Content=”Sideways”
 Background=”{StaticResource brButton}”
 Margin=”-6,-6.5,0,0”
 Height=”43”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Width=”94”>
 <Button.RenderTransform>
 <RotateTransform Angle=”270” CenterX=”75” CenterY=”50” />
 </Button.RenderTransform>
</Button>

XAML also provides TranslateTransform and
ScaleTransform elements that let you translate and scale
an object. Example program RotatedButtons, which is
available for download on the book’s website and shown
in Figure 11-5, uses transformations to draw several
buttons that have been rotated and scaled vertically and
horizontally.

XAML also defi nes a TransformGroup element that you can
use to perform a series of transformations on an object. For
example, a TransformGroup would let you translate, scale,
rotate, and then translate an object again.

Animations

The section “Templates” earlier in this chapter shows how to use Triggers to make an object change
its appearance in response to events. For example, it shows how to make a button change its
background and border color when the mouse moves over it.

XAML also provides methods for scripting more complicated actions that take place over a
defi ned period of time. For example, you can make a button spin slowly for two seconds when the
user clicks it.

You use a trigger to start the animation and a Storyboard object to control it. A Storyboard contains
information about the state the animation should have at various times during the animation.

The SpinButton example program, which is available for download on the book’s website, uses the
following code to make a button rotate around its center when it is clicked:

FIGURE 11-5: Buttons can be rotated

and scaled vertically and horizon-

tally by using RotateTransform and

ScaleTransform.

XAML Features ❘ 157

<Button Name=”btnSpinMe” Content=”Spin Me”
 Width=”150” Height=”100”>
 <Button.Background>
 <RadialGradientBrush
 Center=”0.5,0.5”
 RadiusX=”1.0” RadiusY=”1.0”>
 <GradientStop Color=”Yellow” Offset=”0.0” />
 <GradientStop Color=”Orange” Offset=”1.0” />
 </RadialGradientBrush>
 </Button.Background>
 <Button.RenderTransform>
 <RotateTransform x:Name=”rotButton” Angle=”0” CenterX=”75” CenterY=”50” />
 </Button.RenderTransform>
 <Button.Triggers>
 <EventTrigger RoutedEvent=”Button.Click”>
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard
 Storyboard.TargetName=”rotButton”
 Storyboard.TargetProperty=”(RotateTransform.Angle)”>
 <DoubleAnimationUsingKeyFrames>
 <SplineDoubleKeyFrame KeyTime=”0:0:00.0” Value=”0.0” />
 <SplineDoubleKeyFrame KeyTime=”0:0:00.2” Value=”30.0” />
 <SplineDoubleKeyFrame KeyTime=”0:0:00.8” Value=”330.0” />
 <SplineDoubleKeyFrame KeyTime=”0:0:01.0” Value=”360.0” />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Button.Triggers>
</Button>

Much of this code should seem familiar by now. The Button element’s attributes set its name,
 contents, and size. A Background element fi lls the button with a RadialGradientBrush.

The Button element contains a RenderTransform element similar to the ones described in the
 previous section. In this case, the transform is a RotateTransform with angle of rotation initially set
to 0 so that the button appears in its normal orientation. Its center is set to the middle of the button.
The transform is named rotButton so that other code can refer to it later.

After the transform element, the code contains a Triggers section. This section holds an EventTrigger
element that responds to the Button.Click routed event.

A routed event is a new kind of event developed for WPF. Routed events travel up and down
through a WPF application’s hierarchy of controls so interested controls can catch and process the
events. For simple purposes, however, a routed event behaves much like a Windows Forms event
does and you can catch it with a normal Visual Basic event handler. When the user clicks the button,
the Button.Click event fi res and this trigger springs into action.

The trigger’s Actions element contains the tasks that the trigger should perform when it runs. In this
example, the trigger performs the BeginStoryboard action. Inside the BeginStoryboard element is a
Storyboard element that represents the things that the storyboard should do.

158 ❘ CHAPTER 11 USING WPF CONTROLS

The Storyboard element’s TargetName attribute gives the target object on which the storyboard
should act, in this case the RotateTransform object named rotButton. The TargetProperty
attribute tells what property of the target button the storyboard should manipulate, in this example
the object’s RotateTransform.Angle property.

The Storyboard element contains a DoubleAnimationUsingKeyFrames element. A key frame is a
specifi c point in an animation sequence with known values. The program automatically calculates
values between the key frame values to make the animation smooth.

This DoubleAnimationUsingKeyFrames element holds a collection of SplineDoubleKeyFrame
elements that defi ne the animation’s key values. Each key frame gives its time within the animation
in hours, minutes, and seconds, and the value that the controlled property should have at that
point in the animation. In this example, the rotation transformation’s angle should have a value
of 0 when the storyboard starts, a value of 30 when the animation is 20 percent complete, a
value of 330 when the storyboard is 80 percent complete, and a value of 360 when the storyboard
fi nishes. The result is that the button rotates slowly for the fi rst 0.2 seconds, spins relatively quickly
for the next 0.6 seconds, and then fi nishes rotating at a more leisurely pace.

Example program SpinButton animates a single property, the button’s angle of rotation, but you can
animate more than one property at the same time if you like. The SpinAndGrowButton example
program, which is available for download on the book’s website, simultaneously animates a button’s
angle of rotation and size. This example has two key differences from program SpinButton.

First, the new button’s RenderTransform element contains a TransformGroup that contains two
transformations, one that determines the button’s angle of rotation and one that determines
its scaling:

<Button.RenderTransform>
 <TransformGroup>
 <RotateTransform x:Name=”rotButton” Angle=”0” CenterX=”50” CenterY=”25” />
 <ScaleTransform x:Name=”scaButton” ScaleX=”1” ScaleY=”1”
 CenterX=”50” CenterY=”25” />
 </TransformGroup>
</Button.RenderTransform>

The second difference is in the new button’s Storyboard. The following code omits the anima-
tion’s TargetName and TargetProperty from the Storyboard element’s attributes. It includes three
DoubleAnimationUsingKeyFrame elements inside the Storyboard, and it is there that it sets the

STORYBOARD START

When I see “BeginStoryboard,” I think of the beginning of a storyboard. Actually,
this element more properly means “start the storyboard.” When this element
executes, it starts the storyboard running. (The name “ExecuteStoryboard” or
“PlayStoryboard” might have been more intuitive.)

XAML Features ❘ 159

TargetName and TargetProperty. The three animations update the button’s angle of rotation,
horizontal scale, and vertical scale.

<Storyboard>
 <!-- Rotate -->
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”rotButton”
 Storyboard.TargetProperty=”(RotateTransform.Angle)”>
 <SplineDoubleKeyFrame KeyTime=”0:0:00.0” Value=”0.0” />
 <SplineDoubleKeyFrame KeyTime=”0:0:01.0” Value=”360.0” />
 </DoubleAnimationUsingKeyFrames>

 <!-- ScaleX -->
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”scaButton”
 Storyboard.TargetProperty=”(ScaleTransform.ScaleX)”>
 <SplineDoubleKeyFrame KeyTime=”0:0:00.0” Value=”1.0” />
 <SplineDoubleKeyFrame KeyTime=”0:0:00.5” Value=”2.0” />
 <SplineDoubleKeyFrame KeyTime=”0:0:01.0” Value=”1.0” />
 </DoubleAnimationUsingKeyFrames>

 <!-- ScaleY -->
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”scaButton”
 Storyboard.TargetProperty=”(ScaleTransform.ScaleY)”>
 <SplineDoubleKeyFrame KeyTime=”0:0:00.0” Value=”1.0” />
 <SplineDoubleKeyFrame KeyTime=”0:0:00.5” Value=”2.0” />
 <SplineDoubleKeyFrame KeyTime=”0:0:01.0” Value=”1.0” />
 </DoubleAnimationUsingKeyFrames>
</Storyboard>

By using XAML Storyboards, you can build complex animations that run when certain events
occur. As with templates, however, you should use some restraint when building storyboard
animations. A few small animations can make an application more interesting, but too many
large animations can distract and annoy the user.

Drawing Objects

WPF provides several objects for drawing two-dimensional shapes, the most useful of which are
Line, Ellipse, Rectangle, Polygon, Polyline, and Path.

Most of these are relatively straightforward and you can learn more about them by searching the
online help. They all provide Stroke and StrokeThickness properties to determine the appearance
and thickness of their borders and a Fill property to determine how a shape is fi lled (although Line
ignores the Fill property because it doesn’t draw a closed curve).

The Path object is the most confusing of these so it deserves some special attention. Instead of
drawing a single simple shape, the Path object draws a series of shapes such as lines, arcs, and
curves. A Path object can be incredibly complex, and can include any of the other drawing objects
plus a few others that draw smooth curves.

160 ❘ CHAPTER 11 USING WPF CONTROLS

You can defi ne a Path object in two ways. First, you can make the Path element contain other
elements (Line, Ellipse, and so forth) that defi ne objects drawn by the path.

The second (and more concise) method is to use the Path element’s Data attribute. This is a text
attribute that contains a series of coded commands for drawing shapes. For example, the following
code makes the Path move to the point (20, 20), and then draw to connect the following points
(80, 20), (50, 60), (90, 100), and (50, 120):

<Path Stroke=”Gray” StrokeThickness=”5” Grid.Column=”1” Grid.Row=”1”
 Data=”M 20,20 L 80,20 50,60 90,100 50,120” />

You can use spaces or commas to separate point coordinates. To make it easier to read the code,
I use commas between a point’s X and Y coordinates and spaces between points, as in the
previous example.

Some commands allow both uppercase and lowercase command letters. For those commands, the
lowercase version means that the following points’ coordinates are relative to the previous points’
coordinates. For example, the following data makes the object move to the point (10, 20) and then
draws to the absolute coordinates (30, 40):

Data=”M 10,20 L 30,40”

In contrast, the following data moves to the point (10, 20) as before, but then moves distance (30, 40)
relative to the current position. The result is that the line ends at point (10 + 30, 20 + 40) = (40, 60).

Data=”M 10,20 l 30,40”

There isn’t enough room for a complete discussion of the Path object, but the following table
summarizes the commands that you can include in the Data attribute.

COMMAND RESULT EXAMPLE

F0 Sets the fi ll rule to the odd/even rule. F0

F1 Sets the fi ll rule to the non-zero rule. F1

M or m Moves to the following point without drawing. M 10,10

L or l Draws a line to the following point(s). L 10,10 20,20 30,10

H or h Draws a horizontal line from the current point to the

given X coordinate.

h 50

V or v Draws a vertical line from the current point to the

given Y coordinate.

v 30

XAML Features ❘ 161

COMMAND RESULT EXAMPLE

C or c Draws a cubic Bezier curve. This command takes three

points as parameters: two control points and an endpoint.

The curve starts at the current point moving toward the fi rst

control point. It ends at the endpoint, coming from the

direction of the second control point.

C 20,20 60,0 50,50

S or s Draws a smooth cubic Bezier curve. This command takes

two points as parameters: a control point and an endpoint.

The curve defi nes an initial control point by refl ecting the

second control point used by the previous S command, and

then uses it plus its two points to draw a cubic Bezier curve.

This makes a series of Bezier curves join smoothly.

S 60,0 50,50

S 80,60 50,70

Q or q Draws a quadratic Bezier curve. This command takes two

points as parameters: a control point and an endpoint. The

curve starts at the current point moving toward the control

point. It ends at the endpoint, coming from the direction of

the control point.

Q 80,20 50,60

T or t Draws a smooth quadratic Bezier curve. This command

takes one point as a parameter: an endpoint. The curve

defi nes a control point by refl ecting the control point used

by the previous T command, and then uses it to draw a

quadratic Bezier curve. The result is a smooth curve that

passes through each of the points given as parameters to

successive T commands.

T 80,20 T 50,60

T 90,100

A or a Draws an elliptical arc. This command takes fi ve parameters:

size—The X and Y radii of the arc

rotation_angle—The ellipse’s angle of rotation

large_angle—0 if the arc should span less than 180; 1 if the

arc should span 180 degrees or more

sweep_direction—0 if the arc should sweep

counter-clockwise; 1 if it should sweep clockwise

end_point—The point where the arc should end

A 50,20 0 1 0 60,80

Z or z Closes the fi gure by drawing a line from the current point to

the Path’s starting point.

Z

Example program Shapes, which is shown in Figure 11-6 and which is available for download on
the book’s website, demonstrates several different Path objects.

162 ❘ CHAPTER 11 USING WPF CONTROLS

Example program BezierCurves, which is shown in Figure 11-7
and is also available for download on the book’s website, shows
examples of the four different kinds of Bezier curves. This
program also draws a gray polyline behind each to show the
curves’ parameters.

The cubic Bezier curve on the left connects the two endpoints
using the two middle points to determine the curve’s direction
at the endpoints.

The smooth cubic Bezier curve shown next passes through the
fi rst, third, and fi fth points. The second point determines
the curve’s direction as it leaves the fi rst point and as it
enters the third point. The curve automatically defi nes a control
point to determine the direction leaving the third point, so the
curve passes through the point smoothly. Finally, the fourth
point determines the curve’s direction as it ends
at the fi fth point.

The next curve shows two quadratic Bezier
curves. The fi rst curve connects the fi rst and
third points, with the second point determining
the curve’s direction at both points. The second
curve connects the third and fi fth points, using
the fourth to determine its direction.

The fi nal curve in Figure 11-7 uses an M
command to move to the point (20, 20). It then
uses three smooth quadratic Bezier curves to
connect the following three points. The curve automatically defi nes the control points it needs
to connect the points smoothly.

With all of these drawing objects at your disposal, particularly the powerful Path object, you can
draw just about anything you need. The graphical XAML editor does not provide interactive tools
for drawing shapes, but you can draw them by using the XAML text editor. It may help to sketch
out what you want to draw on graph paper fi rst.

PROCEDURAL WPF

The previous sections explained how to use XAML to build WPF windows. By using XAML, you
can defi ne controls, resources, styles, templates, transformations, and even animations.

Behind the scenes, an application reads the XAML code, and then builds corresponding controls
and other objects to make the user interface. Often, it’s easiest to build forms by using the XAML
editor, but if necessary, your Visual Basic code can build exactly the same objects.

FIGURE 11-6: Example program

Shapes demonstrates the Polygon,

Polyline, Ellipse, Line, and Path

objects.

FIGURE 11-7: The Path object can draw Bezier curves.

Procedural WPF ❘ 163

For example, the MakeButton example program, which is available for download on the book’s
website, uses the following Visual Basic code to add a button to its WPF window when you click the
initial button:

‘ Add a new Button to the StackPanel.
Private Sub btnMakeButton_Click() Handles btnMakeButton.Click
 Dim btn As New Button()
 btn.Content = “Make Button”
 AddHandler btn.Click, AddressOf btnMakeButton_Click
 stkButtons.Children.Add(btn)
End Sub

The code starts by creating a new Button object and setting its Content property to the string Make
Button. It uses an AddHandler statement to make the btnMakeButton_Click event handler catch
the new button’s Click event. Finally the code adds the new button to the stkButtons StackPanel
control’s Children collection.

Example program ProceduralAnimatedButton, which is available for download on the book’s web-
site, uses Visual Basic code to implement several of the techniques described earlier using XAML
code. It creates a brush object and uses it to defi ne a Style for buttons. It then creates three Buttons
using that Style.

When the mouse moves over a button, the program’s code builds and plays an animation to enlarge
the button. When the mouse moves off of the button, the code restores the button to its original size.

The following code builds the user interface objects when the program’s window loads:

Private WithEvents btnCenter As Button
Private Const BIG_SCALE As Double = 1.5

Private Sub Window1_Loaded() Handles Me.Loaded
 ‘ Make a style for the buttons.
 Dim br_button As New RadialGradientBrush(
 Colors.HotPink, Colors.Red)
 br_button.Center = New Point(0.5, 0.5)
 br_button.RadiusX = 1
 br_button.RadiusY = 1

 Dim style_button As New Style(GetType(Button))
 style_button.Setters.Add(New Setter(Control.BackgroundProperty,
 br_button))
 style_button.Setters.Add(New Setter(Control.WidthProperty, CDbl(70)))
 style_button.Setters.Add(New Setter(Control.HeightProperty, CDbl(40)))

NOTE Usually you should build the interface with XAML to increase the
separation between the user interface and the code. However, it may sometimes
be easier to build dynamic elements in code (for example, in response to data
loaded at run time, inputs from the user, or errors).

164 ❘ CHAPTER 11 USING WPF CONTROLS

 style_button.Setters.Add(New Setter(Control.MarginProperty,
 New Thickness(5)))

 ‘ Set the transform origin to (0.5, 0.5).
 style_button.Setters.Add(New Setter(
 Control.RenderTransformOriginProperty, New Point(0.5, 0.5)))

 ‘ Make a StackPanel to hold the buttons.
 Dim stack_panel As New StackPanel()
 stack_panel.Margin = New Thickness(20)

 ‘ Add the Left button.
 Dim btn_left As Button
 btn_left = New Button()
 btn_left.Style = style_button
 btn_left.Content = “Left”
 btn_left.RenderTransform = New ScaleTransform(1, 1)
 btn_left.SetValue(
 StackPanel.HorizontalAlignmentProperty,
 Windows.HorizontalAlignment.Left)
 AddHandler btn_left.MouseEnter, AddressOf btn_MouseEnter
 AddHandler btn_left.MouseLeave, AddressOf btn_MouseLeave
 stack_panel.Children.Add(btn_left)

 ‘ Make the Center button.
 btnCenter = New Button()
 btnCenter.Style = style_button
 btnCenter.Content = “Center”
 btnCenter.RenderTransform = New ScaleTransform(1, 1)
 btnCenter.SetValue(
 StackPanel.HorizontalAlignmentProperty,
 Windows.HorizontalAlignment.Center)
 AddHandler btnCenter.MouseEnter, AddressOf btn_MouseEnter
 AddHandler btnCenter.MouseLeave, AddressOf btn_MouseLeave
 stack_panel.Children.Add(btnCenter)

 ‘ Make the Right button.
 Dim btn_right As New Button
 btn_right.Style = style_button
 btn_right.Content = “Right”
 btn_right.RenderTransform = New ScaleTransform(1, 1)
 btn_right.SetValue(
 StackPanel.HorizontalAlignmentProperty,
 Windows.HorizontalAlignment.Right)
 AddHandler btn_right.MouseEnter, AddressOf btn_MouseEnter
 AddHandler btn_right.MouseLeave, AddressOf btn_MouseLeave
 Stack_panel.Children.Add(btn_right)

 Me.Content = stack_panel
End Sub

This code starts by declaring a Button control using the WithEvents keyword. The program makes
three buttons, but only catches the Click event for this one. The code also defi nes a constant that
determines how large the button will grow when it enlarges.

Procedural WPF ❘ 165

When the window loads, the code creates a RadialGradientBrush and defi nes its properties. It then
creates a Style object that can apply to Button objects. It adds several Setter objects to the Style to
set a Button control’s Background, Width, Height, Margin, and RenderTransformOrigin properties.

Next, the code creates a StackPanel object. This will be the window’s main control and will replace
the Grid control that Visual Studio creates by default.

The program then makes three Button objects. It sets various Button properties, including set-
ting the Style property to the Style object created earlier. It also sets each Button control’s
RenderTransform property to a ScaleTransform object that initially scales the Button by a factor of 1
vertically and horizontally. It will later use this transformation to make the Button grow and shrink.

The code uses each Button control’s SetValue method to set its HorizontalAlignment property for
the StackPanel. The code uses AddHandler to give each Button an event handler for its MouseEnter
and MouseLeave events. Finally, the code adds the Button controls to the StackPanel’s Children
collection.

The window’s Loaded event handler fi nishes by setting the window’s Content property to the new
StackPanel containing the Button controls.

The following code shows how the program responds when the mouse moves over a Button:

‘ The mouse moved over the button.
‘ Make it larger.
Private Sub btn_MouseEnter(btn As Button, e As MouseEventArgs)
 ‘ Get the button’s transformation.
 Dim scale_transform As ScaleTransform =
 DirectCast(btn.RenderTransform, ScaleTransform)

 ‘ Create a DoubleAnimation.
 Dim ani As New DoubleAnimation(1, BIG_SCALE,
 New Duration(TimeSpan.FromSeconds(0.15)))

 ‘ Create a clock for the animation.
 Dim ani_clock As AnimationClock = ani.CreateClock()

 ‘ Associate the clock with the transform’s
 ‘ ScaleX and ScaleY properties.
 scale_transform.ApplyAnimationClock(
 ScaleTransform.ScaleXProperty, ani_clock)
 scale_transform.ApplyAnimationClock(
 ScaleTransform.ScaleYProperty, ani_clock)
End Sub

This code fi rst gets the button’s ScaleTransform object. It then creates a DoubleAnimation object
to change a value from 1 to the BIG_SCALE value (defi ned as 1.5 in the earlier Const state-
ment) over a period of 0.15 seconds. It uses the object’s CreateClock statement to make an
AnimationClock to control the animation. Finally, the code calls the ScaleTransformation object’s
ApplyAnimationClock method twice, once for its horizontal and vertical scales. The result is
that the Button control’s ScaleTransform object increases the Button control’s scale vertically and
horizontally.

166 ❘ CHAPTER 11 USING WPF CONTROLS

The btn_MouseLeave event handler is very similar, except
that it animates the Button controls’ scale values shrinking
from BIG_SCALE to 1.

Figure 11-8 shows example program
ProceduralAnimatedButton in action with the mouse resting
over the center button.

Other examples available for download on the book’s website
demonstrate other procedural WPF techniques. For example,
program ProceduralCalculator builds a calculator similar to
the one shown in Figure 11-3, but it builds its user interface
in Visual Basic code. Example program GridButtonCode uses
Visual Basic code to build a button that holds a grid similar
to the one shown in Figure 11-1.

DOCUMENTS

WPF includes three different kinds of documents: fl ow documents, fi xed documents, and XPS
(XML Paper Specifi cation) documents. These different kinds of documents provide support for
high-end text and printing capabilities.

For example, fi xed documents allow you to generate a document that keeps the same layout whether
it is viewed on a monitor, printed at low-resolution, or printed at a very high-resolution. On each
device, the document uses the features available on that device to give the best result possible.

Each of these three kinds of documents is quite complex so there isn’t room to do them justice here.
However, the following three sections provide an overview and give brief examples.

Flow Documents

Flow documents are designed to display as much data as possible in the best way possible,
depending on runtime constraints such as the size of the control displaying the document. If the
control grows, the document rearranges its contents to take advantage of the new available space. If
the control shrinks, the document again rearranges its contents to fi t the available space. The effect
sort of mimics the way a web browser behaves, rearranging the objects it displays as it is resized.

The WPF FlowDocument control represents a fl ow document. The FlowDocument can contain four
basic content elements: List, Section, Paragraph, and Table. These have rather obvious purposes: to
display data in a list, group data in a section, group data in a paragraph, or display data in a table,
respectively.

Although the main emphasis of these elements is on text, they can contain other objects. For
example, a Paragraph can contain controls such as Button, Label, TextBox, and Grid. It can also
contain shapes such as Polygon, Ellipse, and Path.

A fi fth content element, BlockUIElement, can hold user interface controls such a Button, Label, and
TextBox. A BlockUIElement can hold only one child, but if that child is a container such as a Grid
or StackPanel, then the child can contain other controls.

FIGURE 11-8: Program

ProceduralAnimatedButton uses

Visual Basic code to animate buttons.

Documents ❘ 167

WMF provides three types of objects for displaying FlowDocuments: FlowDocumentReader,
FlowDocumentPageViewer, and FlowDocumentScrollViewer.

The FlowDocumentReader lets the user pick from three different viewing modes: single page, book
reading, and scrolling. In single page mode, the reader displays the document one page at a time.
The object determines how big to make a page based on its size. If the reader is wide enough, it will
display the FlowDocument in two or more columns, although it still considers its surface to hold a
single page at a time, even if that page uses several columns.

In book reading mode, the reader displays two pages at a time. The object divides its surface into
left and right halves, and fi lls each with a “page” of data. The reader always displays two pages, no
matter how big or small it is.

In scrolling mode, the reader displays all of the document’s contents in a single long page, and it
provides a scroll bar to allow the user to scroll down through the document. This is similar to the
way web browsers handle a very tall web page.

Example program UseFlowDocumentReader, shown in Figure 11-9 and available for download on
the book’s website, shows a FlowDocumentReader object displaying a document in book reading
mode. The program’s View menu lets you change the viewing mode.

FIGURE 11-9: This FlowDocumentReader is using book reading mode.

168 ❘ CHAPTER 11 USING WPF CONTROLS

This program demonstrates several useful features of FlowDocument objects. The section headers
are contained in Paragraph objects that use a Style that defi nes their font. If you wanted to change
the appearance of all of the headers, you would only need to change the Style.

The FlowDocument uses a LinearGradientBrush that shades from black to gray as the text moves
left to right. (The effect is more striking on a monitor if you use a colored gradient.)

The document contains a table in its fi rst section, Button and TextBox controls, an Ellipse, and a
Grid that holds a Polygon. It uses the Floater element to allow another Grid containing a Polygon
and a text caption to fl oat to a position where it will fi t nicely in the display. The document also
holds a list, one item of which contains a Polygon drawing a triangle.

The bottom of the FlowDocumentReader displays a toolbar. If you click the magnifying glass
button on the left, a search text box appears next to it. You can enter text to search for, and the
reader will let you scroll back and forth through any matches.

In the middle of the toolbar, the reader displays the current page number and the total number
of pages. The three buttons to the right let the user select the single page, book reading, and
scrolling views. Finally, the slider on the lower right lets the user adjust the document’s scale to
zoom in or out.

The FlowDocumentPageViewer and FlowDocumentScrollViewer objects behave as the
FlowDocumentReader does in its single page and scrolling modes, respectively. (The big difference
is that FlowDocumentReader can display documents in several modes while the others use only one.
If you want to offer the reader several options, use FlowDocumentReader. If you want to restrict the
view available, use one of the other kinds of viewers.)

Example programs UseFlowDocumentPageViewer and UseFlowDocumentScrollViewer, which are
both available for download on the book’s website, demonstrate these controls.

NOTE If you display a FlowDocument element itself, it acts as a
FlowDocumentReader. See example program UseFlowDocument, which is
available for download on the book’s website.

Fixed Documents

A FixedDocument represents a document that should always be displayed exactly as it was
originally composed. Whereas a FlowDocument rearranges its content to take advantage of its
current size, all of the content in a FixedDocument remains where it was originally placed. If a
FlowDocument is similar to a web browser, then a FixedDocument is similar to an Adobe Acrobat
PDF document.

The FixedDocument object contains one or more PageContent objects, each containing a FixedPage
object. It is in the FixedPage object that you place your content. You can use the usual assortment of
containers to arrange controls and other objects inside the FixedPage object.

Summary ❘ 169

A program can use a DocumentViewer to display a FixedDocument. The DocumentViewer provides
tools to let the user print, zoom in and out, size the document to fi t the viewer, display the document
in one- or two-page modes, and search for text within the document.

Example program UseFixedDocument, which is available for download on the book’s website,
displays a FixedDocument inside a DocumentViewer.

XPS Documents

In addition to fl ow documents and fi xed documents, WPF also defi nes a third kind of document
called XML Paper Specifi cation (XPS) documents. XPS is an XML-based open standard used to
represent fi xed documents.

An XPS document is stored in a fi le called a package. The package is made up of pieces called parts.
Physically, the parts are arranged as fi les and folders. When you save the document to disk, it is
stored as a ZIP-compressed collection of these physical fi les and folders. If you change the fi le’s
extension from .xps to .zip, you can read the fi les using any ZIP-enabled viewer. For example,
Windows Explorer will let you browse through the ZIP fi le.

Logically, the document’s parts form a hierarchical representation of the document. (Remember
that the document uses an XML format, and XML is hierarchical, so the document is also
hierarchical.) The document itself may contain a FixedDocumentSequence object that contains
one or more FixedDocument objects. The FixedDocument objects are similar to the ones described
in the previous section, so they can hold container controls that contain any number of objects
arranged in a hierarchical way.

In addition to the features provided by FixedDocuments, XPS documents also allow you to digitally
sign the package. That tells others that you signed it, gives them the time and date that you signed
it, and ensures that the document has not been modifi ed since then. A document can contain
more than one signature, and you can provide different levels of security on different parts of the
document. For example, you could prevent others from changing the document’s body, but allow
them to add annotations.

Like the other WPF document objects, XPS documents are quite complex, and there isn’t room to
do them justice here. See Microsoft’s online help (http://msdn2.microsoft.com/system
.windows.xps and http://www.microsoft.com/whdc/xps/xpsspec.mspx are good places
to start) and search the web for more detailed information and examples.

SUMMARY

One of the main goals of WPF is to separate the user interface more completely from the code
behind it. XAML lets you declaratively build a user interface and then later add code to handle the
events that the application needs to perform. Because the user interface is separate from the code,
you can assign different developers to work on each of them. You can have a graphics designer use
a graphical XAML editor to build the user interface and have a Visual Basic developer write the
underlying code. Later, the graphical designer can modify the user interface without forcing you to
rewrite the code.

http://www.microsoft.com/whdc/xps/xpsspec.mspx
http://msdn2.microsoft.com/system.windows.xps
http://msdn2.microsoft.com/system.windows.xps

170 ❘ CHAPTER 11 USING WPF CONTROLS

WPF includes hundreds of new objects for defi ning user interfaces. These objects let you build
windows that take advantage of modern computer graphics hardware and can provide advanced
features such as rotated and scaled controls. New drawing objects let you produce complex graphics
at design time such as polygons, Bezier curves, and complex paths.

Resources and styles let you customize objects so that they are easy to change in a central location.
Triggers, animations, and storyboards let the interface interact with the user at a very high level, so
the bulk of your code doesn’t need to handle these more cosmetic chores.

New document objects let you display information that can fl ow to take best advantage of the
available space, or that remain in fi xed positions on any display device. Powerful document viewers
let users scroll through documents, zoom in and out, print, and copy data to the clipboard.

WPF provides a huge number of powerful features, and this chapter barely scratched the surface.

In Windows Forms applications, Form objects play a special role. They represent the top-level user
interface components in which all other controls reside.

In a WPF application, the situation is a little less obvious. A top-level object in a WPF application
can be a Window, which roughly corresponds to a Form, but it can also be some other object
such as a Page or FlowDocument that is designed to run inside a container such as a web browser.
Chapter 12, “WPF Windows,” describes the Windows class and these other top-level classes, and
explains their special roles in WPF applications.

WPF Windows

WHAT’S IN THIS CHAPTER

 ➤ Window and Page applications

 ➤ Browser and Frame applications

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

 ➤ BrowserApp

 ➤ FrameApp

 ➤ UseDialog

USING WPF WINDOWS

In Windows Forms applications, Form objects play a special role. They represent the top-level
user interface components in which all other controls reside. Ignoring behind-the-scenes chores
such as parsing command-line arguments and messing with the operating system, a typical
Windows Forms application starts by displaying a Form object. That Form may provide
buttons, menus, and other controls that open other Form objects, but all of the controls are
contained in Form objects.

In WPF applications, you can display controls on a Window, an object that is basically the
WPF version of a Form. Alternatively, you can display controls in a Page. A Page is a lot
like a Window without decorations such as borders, title bar, and system menus (maximize,
minimize, restore, close, and so forth). A Page must be hosted inside another object that
provides these decorations. Usually, a Page is displayed in a web browser, but the WPF Frame
control can also display Page objects.

12

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://wrox.com
http://WROX.COM

172 ❘ CHAPTER 12 WPF WINDOWS

This chapter explains how you can use these top-level objects, Window and Page, in your WPF
applications. It explains how a program can display and manage multiple Window and Page
objects, and provides some examples showing simple navigation schemes.

NOTE Metro-style applications display controls inside a UserControl object.
Metro-style applications are described in Chapter 21.

WINDOW APPLICATIONS

A typical desktop WPF application displays its controls in Window objects. To create this type of
application, select the File menu’s New Project command to display the New Project dialog box.
On the Visual Basic ➪ Windows tab, select WPF Application, enter a project name, and click OK.

The new application begins with a single Window class named Window1. Open the Solution
Explorer and double-click the Window1.xaml entry to edit the Window’s controls. Double-click the
Window1.xaml.vb entry to edit the Visual Basic code behind the Window.

CODE-BEHIND

The code behind a Window is called its code-behind. It’s not a very imaginative
term, but it’s easy to remember.

To add other Window classes, open the Project menu and select Add Window. Enter a name for the
class and click OK.

To display a window in code, create a variable that refers to a new instance of the window. Call its
Show method to display the window non-modally, or call its ShowDialog method to display
the window modally. The following code creates a new window of type Window2 and displays
it modally:

Dim win2 As New Window2()
win2.ShowDialog()

Although several similarities exist between the way a program uses a Window and the way it uses a
Form, there are many signifi cant differences.

For example, both classes have a DialogResult property that indicates how the user closed the
form. Both classes’ ShowDialog methods return this result, so the code can easily determine
the form’s DialogResult value. In a Form, the DialogResult property is a value of type DialogResult,
an enumerated type that provides values such as OK, Cancel, Yes, and No to indicate which button

Window Applications ❘ 173

the user clicked to close the form. If the code sets this value, the form automatically hides, so the
calling ShowDialog method returns.

In contrast, a WPF Window’s DialogResult value is a Boolean intended to indicate whether the user
accepted or canceled the dialog box. If you need more detail (did the user click Yes, No, or Cancel?),
you’ll need to provide code in the dialog box to remember which button the user clicked. If the code
sets DialogResult, the window automatically closes so the calling ShowDialog method returns.
Unfortunately, the window closes rather than hides so you cannot display the dialog box again.
(You cannot display a window after it has closed.) If you want to remember which button the user
clicked and then hide the window without closing it, you’ll need to implement your own property
rather than DialogResult, and you’ll need to hide the window explicitly.

The Windows Forms and WPF Button classes also both have properties that you can use to defi ne a
dialog box’s default and cancel buttons, but they work in different ways.

You can set a Windows Forms Button object’s DialogResult property to the value you want the
button to give to the form’s DialogResult property. If the user clicks the button, it assigns the form’s
DialogResult value and hides the form so the calling ShowDialog method returns that value.

In a WPF application, you can set a button’s IsCancel property to True to indicate that the button
is the form’s cancel button. If the user presses the Escape key or clicks the button, the button sets
the form’s DialogResult property and closes the form so the calling ShowDialog method returns.
Unfortunately, the button closes the form rather than merely hiding it so, as before, you cannot
display the dialog box again.

You can also set a WPF button’s IsDefault property to indicate that it should fi re if the user presses
the Enter key. Unfortunately, this does not automatically set the form’s DialogResult property and
does not close the dialog box.

Example program UseDialog, which is available for download on the book’s website, shows one
approach to solving this problem. The dialog class Window2 contains three buttons labeled Yes,
No, and Cancel.

The following code shows how the dialog box handles button clicks. The single btn_Click
event handler fi res for all three of the buttons. It saves the button’s text in the public variable
UserClicked and then closes the form.

Partial Public Class Window2
 Public UserClicked As String = “Cancel”

 Private Sub btn_Click(btn As Button, e As RoutedEventArgs) _
 Handles btnYes.Click, btnNo.Click, btnCancel.Click
 UserClicked = btn.Content
 Me.Close()
 End Sub
End Class

The following code shows how the program’s main window displays the dialog box and
checks the result. When you click the Show Dialog button, the program creates a new dialog
window and displays it modally. It then checks the dialog box’s UserClicked property to see which
button the user clicked.

174 ❘ CHAPTER 12 WPF WINDOWS

Private Sub btnShowDialog_Click() Handles btnShowDialog.Click
 Dim win2 As New Window2()
 win2.ShowDialog()
 Select Case win2.UserClicked
 Case “Yes”
 MessageBox.Show(“You clicked Yes”, “Yes”, MessageBoxButton.OK)
 Case “No”
 MessageBox.Show(“You clicked No”, “No”, MessageBoxButton.OK)
 Case “Cancel”
 MessageBox.Show(“You clicked Cancel”, “Cancel”, _
 MessageBoxButton.OK)
 End Select
End Sub

Most of the things that you can do with a Form you can do with a Window. For example, you can:

 ➤ Create new instances of Window classes.

 ➤ Display Windows modally or non-modally.

 ➤ Close or hide Windows.

 ➤ View and manipulate the properties of one Window from within the code of another
Window.

Nevertheless, the details of Form and Window operations may be different. You may need to use
slightly different properties, and you may need to take a slightly different approach, but Window is a
fairly powerful class and with some perseverance you should be able to build usable interfaces with it.

PAGE APPLICATIONS

A Page is similar to a borderless Window. It doesn’t provide its own decorations (border, title bar,
and so forth), but instead relies on its container to provide those elements.

Often a Page is hosted by a web browser, although the WPF Frame control can also display Page
objects.

The following sections explain how you can use Page objects to build WPF applications.

Browser Applications

To make a XAML Browser Application (XBAP, pronounced ex-bap), select the File menu’s New
Project command to display the New Project dialog box. On the Visual Basic ➪ Windows tab, select
WPF Browser Application, enter a project name, and click OK.

EXCITING XBAPS

For an interesting site that has lots of information about XBAPs including a FAQ,
tutorial, and samples, see XBap.org (http://www.xbap.org).

http://www.xbap.org
http://XBap.org

Page Applications ❘ 175

The new application begins with a single Page class named Page1. You can view and edit this Page
exactly as you would view and edit a Window. Open the Solution Explorer and double-click the
Page1.xaml entry to edit the Page’s controls. Double-click the Page1.xaml.vb entry to edit
the Visual Basic code behind the Page.

To run the application, open the Debug menu and select Start Debugging. Internet Explorer should
open and display the initial Page. Visual Studio is nicely integrated with this instance of Internet
Explorer so you can set breakpoints in the code to stop execution and debug the code just as you can
debug a Windows Forms application or a WPF Window application.

To add other Page classes to the application, open the Project menu and select Add Page. Enter a
name for the class and click OK.

To display a Page in code, create a variable that refers to a new instance of the Page. Then use the
current Page’s NavigationService object’s Navigate method to display the new Page.

The following code creates a new page of type Page2, and then uses the NavigationService object
to display it:

Dim p2 As New Page2()
NavigationService.Navigate(p2)

Because the application is hosted inside a browser, there are several differences in the ways the
user will interact with the application. Rather than displaying new forms and dialog boxes,
the application will generally display new material within the same browser.

This design has several consequences. For example, the previous code creates a new instance of the
Page2 class and displays it. If the user were to execute this same code later, it would create a second
instance of the class and display it. Because these are two instances of the class, they do not have the
same controls, so any changes the user makes (entering text, checking radio buttons, and so forth)
are not shared between the two pages. When the second instance appears, the user may wonder
where all of the previous selections have gone.

The program can prevent this confusion by using a single application-global variable to hold
references to the Page2 instance. Every time the program needs to show this page, it can display the
same instance. That instance will display the same control values so the user’s selections are preserved.

That approach solves one problem but leads to another. Because the application runs inside a browser,
the browser’s navigation and history tools work with it. If you press the browser’s Back button, it will
display the previous page. That part works relatively transparently, but every time the application uses
NavigationService.Navigate to display a Page, that Page is added to the browser’s history.

To see why this is an issue, suppose the application has an initial Page that contains a button
leading to a second Page. That Page has a button that navigates back to the fi rst page. If the user
moves back and forth several times, the browser’s history will be cluttered with entries such as
Page 1, Page 2, Page 1, Page 2, and so forth. Although this represents the user’s actual path through
the Pages, it isn’t very useful.

You can reduce clutter in the browser’s history by using the NavigationService object’s GoForward
and GoBack methods whenever it makes sense. In this example, it would probably make sense for
the second Page to use the GoBack method to return to the main page. Instead of creating a new

176 ❘ CHAPTER 12 WPF WINDOWS

entry in the history as the Navigate method does, GoBack moves back one position in the existing
history. After several trips between the two Pages, the history will contain only those two Pages,
one possibly available via the browser’s Back button and one possibly available via the browser’s
Next button.

Example program BrowserApp demonstrates this technique. The program uses two Pages that
provide buttons to navigate to each other. Both Pages also contain a text box where you can enter
some text, just to verify that the values are preserved when you navigate between the pages.

The following code shows how the main Page navigates to the second Page. If the NavigationService
can go forward, the code calls its GoForward method. If the NavigationService cannot go forward,
the code uses its Navigate method to visit a new Page2 object.

Private Sub btnPage2_Click() Handles btnPage2.Click
 If NavigationService.CanGoForward Then
 NavigationService.GoForward()
 Else
 NavigationService.Navigate(New Page2())
 End If
End Sub

The following code shows how the second Page returns to the fi rst. This code simply calls the
NavigationService object’s GoBack method.

Private Sub btnBack_Click() Handles btnBack.Click
 Me.NavigationService.GoBack()
End Sub

Once you’ve built an XBAP, you can run it by pointing a web browser at the compiled xbap fi le.
When I built the previous example program, the fi le BrowserApp.xbap was created in the project’s
bin/Debug directory and the fi le successfully loaded in both Internet Explorer and Firefox.

Building a Page class is almost exactly the same as building a Window class. You use the same
XAML editor and Visual Basic code behind the scenes. The main difference is in how you navigate
between the application’s forms. In a WPF application, you create Window objects and use their
Show or ShowDialog methods. In an XBAP, you create Page objects and use the NavigationService
object’s navigation methods.

Frame Applications

Although Page objects normally sit inside a browser, the WPF
Frame control can also host them. The program simply navigates
the Frame control to a Page, and the rest works exactly as it does
for an XBAP.

Example program FrameApp, which is available for download on
the book’s website and shown in Figure 12-1, uses the following
code to load a Page1 object into its Frame control:

fraPages.Navigate(New Page1())

FIGURE 12-1: The Frame control

provides navigation between

Page objects.

Summary ❘ 177

This example contains the same Page1 and Page2 classes used by the BrowserApp example program
described in the previous section.

If an XBAP runs so easily in a browser, why would you want to host pages in a Frame control?

One reason is that you can place multiple frames within a Window to let the user view different
pieces of information or perform different tasks at the same time. For example, you can display help
in a separate frame, possibly in a separate Window.

If you build each frame’s contents in a separate XBAP, you can load the frames at run time. That
makes replacing XBAPs to upgrade or change their contents easy.

The Frame control also provides simple browser-style navigation that uses Next and Back buttons
and that may be easier for users to navigate in some situations. Microsoft’s web page “Top Rules
for the Windows Vista User Experience” at http://msdn2.microsoft.com/Aa511327.aspx lists
as Rule 7 “Use Windows Explorer-hosted, navigation-based user interfaces, provide a Back button.”
That page argues that this style of interaction simplifi es navigation even in traditional applications.

STRENGTH OR WEAKNESS?

Personally I think Microsoft is claiming a weakness as a strength. Web browsers
use this type of navigation because they have no context to provide more organized
navigation other than the hyperlinks provided by web pages. There are certainly
cases where this style of navigation is reasonable (for example, in wizards that lead
the user through a series of steps), but many desktop applications are more natural
if the user can open separate windows for different tasks. Let me know what you
think at RodStephens@vb-helper.com.

The Frame control gives you more control than a browser does. For example, it provides easier
access to Page history. You can also determine a Frame control’s size, whereas you have no control
over a browser’s size and position.

Displaying Page objects within a Frame control won’t make sense for every application, but for some
it can be a useful technique.

SUMMARY

In a Windows Forms application, everything is contained in Form objects. Some of those Form
classes may be dialog boxes or derived from the Form class, but ultimately everything is contained
in a form.

In a WPF application, controls may be contained in Window objects or in Page objects. Window
objects sit on the desktop much as Windows Forms do. Page objects must be hosted inside
something else, usually a browser or a Frame control in a Window. The PageFunction class provides

http://msdn2.microsoft.com/Aa511327.aspx
mailto://RodStephens@vb-helper.com

178 ❘ CHAPTER 12 WPF WINDOWS

a modifi ed version of a Page that makes it easier to pass values back and forth between
coordinated Pages.

Chapters 7 through 12 give useful background on working with controls. They explain how
to select and use both Windows Forms and WPF controls. They also explain the top-level user
interface classes: Form for Windows Forms applications, and Window, Page, and PageFunction for
WPF applications.

Although these are huge topics, there’s even more to building a Visual Basic application than just
controls. You also need to understand the code behind the Form or Window that lets the program
take the controls’ values, manipulate those values, and display a result in other controls. The next
several chapters cover these topics in detail. Chapter 13, “Program and Module Structure,” starts
the process by explaining the fi les that make up a Visual Basic project and the structure contained
within code fi les.

Program and Module
Structure

WHAT’S IN THIS CHAPTER

 ➤ Project fi les

 ➤ Code fi le structure and regions

 ➤ Conditional compilation

 ➤ The Debug and Trace objects

 ➤ Namespaces

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

 ➤ CompilerConstantsInCode

 ➤ EmployeeAssert

 ➤ ShowAssemblyInfo

 ➤ WpfCompilerConstantsInCode

SOLUTIONS AND PROJECTS

A Visual Basic solution contains one or more related projects. A project contains fi les related
to some topic. Usually, a project produces some kind of compiled output such as an executable
program, class library, or control library. The project includes all the fi les related to the
output, including source code fi les, resource fi les, documentation fi les, and whatever other
kinds of fi les you decide to add to it.

13

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

180 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

This chapter describes the basic structure of a Visual Basic
project. It explains the functions of some of the most common
fi les and tells how you can use them to manage your applications.

This chapter also explains the basic structure of source code fi les.
It explains regions, namespaces, and modules. It describes some
simple typographic features provided by Visual Basic such as
comments, line continuation, and line labels. These features do
not execute programming commands themselves, but they are an
important part of how you can structure your code.

HIDDEN FILES

Figure 13-1 shows the Solution Explorer window for a solution
that contains two projects. The solution named MySolution
contains two projects named WindowsApplication1 and
WindowsApplication2. Each project contains a My Project item
that represents the project’s properties, various fi les containing
project confi guration settings, and a form named Form1.

In WindowsApplication2, the Show All Files button has been
clicked (the highlighted button third from the right at the
top of the picture) so that you can see all the project’s fi les.
WindowsApplication1 has similar fi les, but they are hidden by
default.

These fi les are generated by Visual Basic for various purposes. For
example, Resources.resx contains resources used by the project
and Settings.settings contains project settings.

FIGURE 13-1: A solution contains

one or more projects that contain

fi les.

RESOURCES AND SETTINGS

Resources are chunks of data that are distributed with the application but that are
not intended to be modifi ed by the program. (Technically, you can change resource
values, but then they are acting more as settings than resources, so I won’t cover
that here. In fact, changing resources in a strongly named resource fi le raises an
alarm indicating that someone may have tampered with the fi le.) These might
include prompt strings, error message strings, icons, and sound fi les.

For example, resources are commonly used for customizing applications for dif-
ferent languages. You build different resource fi les for different languages, and the
program loads its prompts and error messages from the appropriate resource fi le.
Chapter 28, “Confi guration and Resources,” has more to say about resources.

Hidden Files ❘ 181

Settings are values that control the execution of the application. These might
include fl ags telling the program what options to display or how to perform certain
tasks. For example, you could build different profi les to provide settings that make
the program run in a restricted demo mode or in a fully licensed mode. Normally,
settings for .NET applications are stored in .config fi les, although an applica-
tion can also store settings in the registry, XML, or .ini fi les. For example, this
article discusses saving settings in XML fi les: http://www.devsource.com/c/a/
Techniques/XML-Serialization-Better-than-the-Registry.

The following list describes the fi les contained in WindowsApplication2 and shown in
Figure 13-1. The exact fi les you see for an application may be different from those shown here,
but this list should give you an idea of what’s involved in building a project. Note that most of
these fi les are generated automatically by Visual Studio and you shouldn’t edit them manually. If
you change them directly, you are likely to lose your changes when Visual Studio rebuilds them
and you may even confuse Visual Studio.

 ➤ WindowsApplication2 — This folder represents the entire project. You can expand or
collapse it to show and hide the project’s details.

 ➤ My Project — This folder represents the project’s assembly information, application-level
events, resources, and confi guration settings. Double-click the My Project entry to view and
edit these values.

 ➤ Application.myapp — This XML fi le defi nes application properties (such as whether it’s
a single instance program and whether its shutdown mode is AfterMainFormCloses or
AfterAllFormsClose).

 ➤ Application.Designer.vb — This fi le contains code that works with the values defi ned in
Application.myapp.

 ➤ AssemblyInfo.vb — This fi le contains information about the application’s assembly such as
copyright information, company name, trademark information, and assembly version.

 ➤ Resources.resx — This resource fi le contains the project’s resources.

 ➤ Resources.Designer.vb — This fi le contains Visual Basic code for manipulating resources
defi ned in Resources.resx. For example, if you defi ne a string resource named Greeting in
Resources.resx, Visual Basic adds a read-only property to this module so you can use the
value of Greeting as shown in the following code:

MessageBox.Show(My.Resources.Greeting)

 ➤ Settings.settings — This fi le contains settings that you can defi ne to control the
application.

http://www.devsource.com/c/a/Techniques/XML-Serialization-Better-than-the-Registry
http://www.devsource.com/c/a/Techniques/XML-Serialization-Better-than-the-Registry

182 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

 ➤ Settings.Designer.vb — This fi le contains Visual Basic code for manipulating settings
defi ned in Settings.settings, much as Resources.Designer.vb contains code for
working with Resources.resx. For example, the following code uses the UserMode setting:

If My.Settings.UserMode = “Clerk” Then ...

 ➤ References — This folder lists references to external components such as DLLs and COM
components.

 ➤ bin — This folder is used to build the application before it is executed. The Debug or
Release subfolder contains the compiled .exe fi le (depending on whether this is a debug
or release build).

 ➤ obj — This folder and its Debug and Release subfolders are used to build the application
before it is executed.

 ➤ ApplicationEvents.vb — This code fi le contains application-level event handlers for the
MyApplication object. For example, it contains the application’s Startup, Shutdown, and
NetworkAvailabilityChanged event handlers.

 ➤ Form1.vb — This is a form fi le. It contains the code you write for the form, its controls,
their event handlers, and so forth. If you double-click this fi le in Solution Explorer, Visual
Studio opens it in the Form Designer.

 ➤ Form1.Designer.vb — This fi le contains designer-generated Visual Basic code that builds
the form. It initializes the form when it is created, adds the controls you placed on the form,
and defi nes variables with the WithEvents keyword for the controls so that you can easily
catch their events.

 ➤ Form1 — This entry represents the code-behind that you add to the form. If you
double-click this fi le in Solution Explorer, Visual Studio opens the form’s code in the code
editor. Alternatively, you can open the code by right-clicking the Form.vb entry
and selecting View Code.

Some projects may have other hidden fi les. For example, when you add controls to a form, the
designer adds a resource fi le to the form to hold any resources needed by the controls.

Normally, you do not need to work directly with the hidden fi les, and doing so can mess up your
application. At best, the changes you make will be lost. At worst, you may confuse Visual Studio so
it can no longer load your project.

Instead you should use other tools to modify the hidden fi les indirectly. For example, the fi les
Resources.Designer.vb, Settings.Designer.vb, and Form1.Designer.vb are automatically
generated when you modify their corresponding source fi les Resources.resx, Settings.settings,
and Form1.vb.

You don’t even need to work with all of those source fi les directly. For example, if you double-
click the My Project item in Solution Explorer, the property pages shown in Figure 13-2 appear.
The Application tab shown in this fi gure lets you set high-level application settings. The View
Application Events button at the bottom right of the fi gure lets you edit the application-level events
stored in ApplicationEvents.vb.

Hidden Files ❘ 183

FIGURE 13-2: These property pages let you defi ne the project’s resources, settings, and

general confi guration.

The References tab shown in Figure 13-2 lets you view,
add, and remove project references. As you can probably
guess, the Resources and Settings tabs let you edit the
project’s resources and settings.

A particularly important section hidden away in these
tabs is the assembly information. When you click the
Assembly Information button shown in Figure 13-2, the
dialog box shown in Figure 13-3 appears.

Many of the items in this dialog box, such as the
application’s title and description, are self-explanatory.
They are simply strings that the assembly carries
around for identifi cation. The assembly and fi le versions
are used by the Visual Studio run time to verify
compatibility between an application’s components. The
GUID (which stands for “globally unique identifi er”
and is pronounced to rhyme with “squid”) uniquely
identifi es the assembly and is generated by Visual

FIGURE 13-3: The Assembly Information

dialog box lets you defi ne basic project

information such as title, copyright, and

version number.

184 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

Studio. The Make Assembly COM-Visible check box lets you determine whether the assembly
should make types defi ned in the assembly visible to COM applications. For more information on
this dialog box, see http://msdn2.microsoft.com/1h52t681.aspx.

The My.Application.Info namespace provides easy access to these values at run time. Example program
ShowAssemblyInfo uses the following code to display this information in a series of labels when it starts:

Private Sub Form1_Load() Handles MyBase.Load
 lblCompanyName.Text = My.Application.Info.CompanyName
 lblDescription.Text = My.Application.Info.Description
 lblCopyright.Text = My.Application.Info.Copyright
 lblTrademark.Text = My.Application.Info.Trademark
 lblDirectoryPath.Text = My.Application.Info.DirectoryPath
 lblProductName.Text = My.Application.Info.ProductName
 lblTitle.Text = My.Application.Info.Title
 lblVersion.Text = My.Application.Info.Version.ToString
End Sub

CODE FILE STRUCTURE

A form, class, or code module should contain the following sections in this order (if they are
present — you can omit some):

 ➤ Option statements — Option Explicit, Option Strict, Option Compare, or Option Infer. By
default, Option Explicit is on, Option Strict is off, Option Compare is binary, and Option
Infer is on.

 ➤ Imports statements — These declare namespaces that the module will use.

 ➤ A Main subroutine — The routine that starts execution when the program runs.

 ➤ Class, Module, and Namespace statements — As needed.

DEBUGGING OPTIONS

To uncover potentially annoying and sometimes elusive bugs, turn Option Explicit
on, Option Strict on, and Option Infer off. The section “Project” in Chapter 2
describes these options.

Some of these items may be missing. For example, Option and Imports statements are optional.
Note that an executable Windows program can start from a Main subroutine or it can start by
displaying a form, in which case it doesn’t need a Main subroutine. (In that case, the program starts
with the automatically generated New subroutine in the fi le Application.Designer.vb.) Classes
and code modules don’t need Main subroutines.

The following code shows a simple code module. It sets Option Explicit On (so variables must be
declared before used), Option Strict On (so implicit type conversions cause an error), and Option

http://msdn2.microsoft.com/1h52t681.aspx

Code File Structure ❘ 185

Infer Off (so you must give variables explicit data types). It imports the System.IO namespace so the
program can easily use the classes defi ned there. It then defi nes the Employee class.

Option Explicit On
Option Strict On
Option Infer Off

Imports System.IO

Public Class Employee
 ...
End Class

Usually, you put each class or module in a separate fi le, but you can add multiple Class or Module
statements to the same fi le if you like.

Class and Module statements defi ne top-level nodes in the code hierarchy. Click the minus sign to
the left of one of these statements in the code editor to collapse the code it contains. When the code
is collapsed, click the plus sign to the left of it to expand the code.

The project can freely refer to any public class, or to any public variable or routine in a module. If
two modules contain a variable or routine with the same name, the program can select the version
it wants by prefi xing the name with the module’s name. For example, if the AccountingTools and
BillingTools modules both have a subroutine named ConnectToDatabase, the following statement
executes the version in the BillingTools module:

BillingTools.ConnectToDatabase()

Code Regions

Class and Module statements defi ne regions of code that you can expand or collapse to make
the code easier to understand. Subroutines and functions also defi ne collapsible code sections. In
addition to these, you can use the Region statement to create your own collapsible sections of code.
You can place subroutines that have a common purpose in a region so you can collapse and expand
the code as needed. The following code shows a simple region:

#Region “Drawing Routines”
 ...
#End Region

RENAME, DON’T REPLACE

Instead of using a global fi nd and replace to rename a variable, class, or other pro-
gramming entity, use Visual Basic’s renaming feature. Right-click the entity you
want to rename and select Rename. Enter the new name and click OK. Visual Basic
will change all occurrences of the entity in every module as needed.

continues

186 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

By itself, the End Region statement does not tell you which region it is ending. You can make
your code easier to understand, particularly if you have many regions in the same module, by
adding a comment after the End Region statement giving the name of the region, as shown in
the following code:

#Region “Drawing Routines”
 ...
#End Region ‘ Drawing Routines

continued

Using rename instead of global replace makes it easier to rename one variable while
not renaming other variables with the same name in different scopes. It also pre-
vents annoying replacement errors. For example, if you use global replace to change
“man” to “person,” you may accidentally change “manager” to “personager” and
“command” to “compersond.”

REAL-LIFE REGIONS

I use regions a lot in my code. They make it easy to collapse code that I’m not
working on and they group related code into meaningful sections. Just building the
regions helps me put related material together and makes reading the code easier.

Sometimes it may be easier to move related pieces of code into separate fi les. The Partial keyword
allows you to place parts of a class in different fi les. For example, you could move a form’s code
for loading and saving data into a separate fi le and use the Partial keyword to indicate that the code
was part of the form. Chapter 23, “Classes and Structures,” describes the Partial keyword in detail.

However, you cannot use the Partial keyword with modules so a module’s code must all go in one
fi le. In that case, you can use regions to similarly separate a group of related routines and make the
code easier to read.

Conditional Compilation

Conditional compilation statements allow you to include or exclude code from the program’s
compilation. The basic conditional compilation statement is similar to a multiline If-Then-Else
statement. The following code shows a typical statement. If the value condition1 is True, the code in
code_block_1 is included in the compiled program. If that value is False but the value condition2 is
True, the code in code_block_2 becomes part of the compiled program. If neither condition is True,
the code in code_block_3 is included in the program.

#If condition1 Then
 code_block_1 ...
#ElseIf condition2 Then

Code File Structure ❘ 187

 code_block_2 ...
#Else
 code_block_3 ...
#End if

It is important to understand that the code not included by the conditional compilation statements is
completely omitted from the executable program. At compile time, Visual Studio decides whether or
not a block of code should be included. That means any code that is omitted does not take up space
in the executable program. It also means that you cannot set the execution statement to omitted
lines in the debugger because those lines are not present.

In contrast, a normal If-Then-Else statement includes all the code in every code block in the
executable program, and then decides which code to execute at run time.

Because the conditional compilation statement evaluates its conditions at compile time, those
conditions must be expressions that can be evaluated at compile time. For example, they can be
expressions containing values that you have defi ned using compiler directives (described shortly).
They cannot include values generated at run time (such as the values of variables).

In fact, a conditional compilation statement actually evaluates its conditions at design time,
not compile time, so it can give feedback while you are writing the code. For example, suppose
Option Explicit is set to On. Because the fi rst condition is True, the variable X is declared as a
string. Option Explicit On disallows implicit conversion from an integer to a string, so the IDE
fl ags the statement as an error.

#If True Then
 Dim X As String
#Else
 Dim X As Integer
#End If

 X = 10

That much makes sense, but it’s also important to realize that the code not included in the
compilation is not evaluated by the IDE. If the fi rst condition in the previous code were False, the
code would work properly because variable X would be declared as an integer. The IDE doesn’t
evaluate the other code, so it doesn’t notice that there is an error if the condition is False. You
probably won’t notice the error until you try to actually use the other code.

You can set conditional compilation constants in two main ways: in code and in the project’s
compilation settings.

Setting Constants in Code

To set conditional compilation constants explicitly in your program, use a #Const statement, as
shown in the following code:

#Const UserType = “Clerk”

#If UserType = “Clerk” Then
 ‘ Do stuff appropriate for clerks ...

188 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

 ...
#ElseIf UserType = “Supervisor” Then
 ‘ Do stuff appropriate for supervisors ...
 ...
#Else
 ‘ Do stuff appropriate for others ...
 ...
#End if

Note that these constants are defi ned only after the point at which they appear in the code. If you
use a constant before it is defi ned, its value is False. (Unfortunately Option Explicit doesn’t apply to
these constants so the IDE doesn’t notice that they are undefi ned at that point.)

To avoid possible confusion, many programmers defi ne these constants at the beginning of the fi le
so they don’t need to worry about using a variable before it is defi ned.

Also note that your code can redefi ne a constant using a new #Const statement later. That means
these are not really constants in the sense that their values are unchangeable.

Setting Constants with the Project’s Compilation Settings

To set constants with the project’s compilation settings, open Solution Explorer and double-click
My Project. Select the Compile tab and click its Advanced Compile Options button to open the
Advanced Compiler Settings dialog box shown in Figure 13-4. Enter the names and values of the
constants in the Custom Constants text box. Enter each value in the form ConstantName=Value,
separating multiple constants with commas.

Constants that you specify on the Advanced Compiler Settings dialog box are available everywhere
in the project. However, your code can redefi ne the constant using a #Const directive. The constant
has the new value until the end of the fi le or until you redefi ne it again.

FIGURE 13-4: Use the Advanced Compiler Settings dialog box

to defi ne compilation constants.

Code File Structure ❘ 189

Example program CompilerConstantsSettings, which is available for download on the book’s
website, includes constants set on this dialog box and code to check their values.

Predefi ned Constants

Visual Basic automatically defi nes several conditional compilation constants that you can use to
determine the code that your application compiles. The following table describes these constants.

CONSTANT CASE

Compilation constant values are case-sensitive. For example, you should compare
CONFIG to “Debug” not “debug” or “DEBUG.”

CONSTANT MEANING

CONFIG A string that gives the name of the current build. Typically, this will be

“Debug” or “Release.”

DEBUG A Boolean that indicates whether this is a debug build. By default, this

value is True when you build a project’s Debug confi guration.

PLATFORM A string that tells you the target platform for the application’s current

confi guration. Unless you change this, the value is “AnyCPU.”

TARGET A string that tells the kind of application the project builds. This can be

winexe (Windows Form or WPF application), exe (console application),

library (class library), or module (code module).

TRACE A Boolean that indicates whether the Trace object should generate

output in the Output window.

VBC_VER A number giving Visual Basic’s major and minor version numbers. The

value for Visual Basic 2005 is 8.0 and the value for Visual Basic 2008

is 9.0. The value for Visual Basic 2010 should logically be 10.0 but it

was not updated so it remained 9.0. The value for Visual Basic 2012

is 11.0.

_MyType A string that tells what kind of application this is. Typical values are

“Console” for a console application, “Windows” for a class or Windows

control library, and “WindowsForms” for a Windows Forms application.

MORE ON _MYTYPE

For more information on _MyType and how it relates to other special compilation
constants, see http://msdn2.microsoft.com/ms233781.aspx.

http://msdn2.microsoft.com/ms233781.aspx

190 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

Example program CompilerConstantsInCode, which is available for download on the
book’s website, shows how a program can check these compiler constants. Example program
WpfCompilerConstantsInCode, which is also available for download, is a WPF version of the same
program.

The following sections describe the DEBUG, TRACE, and CONFIG constants and their normal
uses in more detail.

DEBUG

Normally when you make a debug build, Visual Basic sets the DEBUG constant to True. When you
compile a release build, Visual Basic sets DEBUG to False. The Confi guration Manager lets you
select the Debug build, the Release build, or other builds that you defi ne yourself.

After you have activated the Confi guration Manager, you can open it by clicking the project in
the Solution Explorer and then selecting the Build menu’s Confi guration Manager command.
Figure 13-5 shows the Confi guration Manager. Select Debug or Release from the drop-down list,
and click Close.

FIGURE 13-5: Use the Confi guration Manager to select a Debug or Release

build.

THE MISSING MANAGER MYSTERY

If the Confi guration Manager is not available in the Build menu, open the Tools
menu and select the Options command. Open the Projects and Solutions node’s
General entry, and select the Show Advanced Build Confi gurations check box.

Code File Structure ❘ 191

When the DEBUG constant is True, the Debug object’s methods send output to the Output
window. When the DEBUG constant is not True, the Debug object’s methods do not generate any
code, so the object doesn’t produce any output. This makes the Debug object useful for displaying
diagnostic messages during development and then hiding the messages in release builds sent to
customers.

The following sections describe some of the Debug object’s most useful properties and methods.

Assert

The Debug.Assert method evaluates a Boolean expression and, if the expression is False, displays
an error message. This method can optionally take as parameters an error message and a detailed
message to display. The following code shows how a program might use Debug.Assert to verify that
the variable NumEmployees is greater than zero:

Debug.Assert(NumEmployees > 0,
 “The number of employees must be greater than zero.”,
 “The program cannot generate timesheets if no employees are defined”)

Example program EmployeeAssert, which is available for download on the book’s website,
demonstrates this Debug.Assert statement.

If NumEmployees is less than or equal to zero, this statement displays an error dialog box that
shows the error message and the detailed message. It also displays a long stack dump that shows
exactly what code called what other code to reach this point of execution. Only the fi rst few entries
will make sense to practically anyone because the stack dump quickly moves out of the application’s
code and into the supporting Visual Basic libraries that execute the program.

The dialog box also displays three buttons labeled Abort, Retry, and Ignore. If you click the Abort
button, the program immediately halts. If you click Retry, the program breaks into the debugger,
so you can examine the code. If you click Ignore, the program continues as if the Assert statement’s
condition was True.

A good use for the Assert method is to verify that a routine’s parameters or other variable values are
reasonable before starting calculations. For example, suppose that the AssignJob subroutine assigns
a repairperson to a job. The routine could begin with a series of Assert statements that verify that
the person exists, the job exists, the person has the skills necessary to perform the job, and so forth.
It is usually easier to fi x code if you catch these sorts of errors before starting a long calculation or
database modifi cation that may later fail because, for example, the repairperson doesn’t have the
right kind of truck to perform the job.

If the DEBUG constant is not True, the Assert method does nothing. This lets you automatically
remove these rather obscure error messages from the compiled executable that you send to
customers. The dialog box with its messages and stack dump is so technical that it would terrify
many users anyway, so there’s no point infl icting it on them.

Fail

The Debug.Fail method displays an error message just as Debug.Assert does when its Boolean
condition parameter is False.

192 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

IndentSize, Indent, Unindent, and IndentLevel

These properties and methods determine the amount of indentation used when the Debug object
writes into the Output window. You can use them to indent the output produced by subroutines to
show the program’s structure more clearly.

The IndentSize property indicates the number of spaces that should be used for each level of
indentation. The IndentLevel property determines the current indentation level. For example, if
IndentSize is 4 and IndentLevel is 2, output is indented by eight spaces.

The Indent and Unindent methods increase and decrease the indentation level by one.

Write, WriteLine, WriteIf, and WriteLineIf

These routines send output to the Output window. The Write method prints text and stops without
starting a new line. WriteLine prints text and follows it with a new line.

The WriteIf and WriteLineIf methods take a Boolean parameter and act the same as Write and
WriteLine if the parameter’s value is True.

TRACE

The Trace object is very similar to the Debug object and provides the same set of properties and
methods. The difference is that it generates output when the TRACE constant is defi ned rather than
when the DEBUG constant is defi ned.

Normally, the TRACE constant is defi ned for both debug and release builds so Trace.Assert and
other Trace object methods work in both builds. By default, DEBUG is defi ned only for debug
builds, so you get Debug messages for debug builds.

You can add listener objects to the Trace object (or the Debug object) to perform different actions
on any Trace output. For example, a listener could write the Trace output into a log fi le.

CONFIG

The CONFIG constant’s value is the name of the type of build. Normally, this is either Debug
or Release, but you can also create your own build confi gurations. You can use these for interim
builds, point releases, alpha and beta releases, or any other release category you can think of.

To create a new build type, click the project in the Solution Explorer and then select the Build
menu’s Confi guration Manager command to display the dialog box shown in Figure 13-5. Open
the Active Solution Confi guration drop-down and select <New. . . > to display the New Project
Confi guration dialog box. Enter a name for the new confi guration, select the existing confi guration
from which the new one should initially copy its settings, and click OK.

The following code shows how to use the CONFIG compiler constant to determine which build is
being made and take different actions accordingly:

#If CONFIG = “Debug” Then
 ‘ Do stuff for a Debug build ...
#ElseIf CONFIG = “Release” Then
 ‘ Do stuff for a Release build ...

Code File Structure ❘ 193

#ElseIf CONFIG = “InterimBuild” Then
 ‘ Do stuff for a custom InterimBuild ...
#Else
 MessageBox.Show(“Unknown build type”)
#End if

One reason you might want to make different confi gurations is to handle variations among
operating systems. Your code can decide which confi guration is in effect and then execute the
appropriate code to handle the target operating system. For example, it might need to work around
the reduced privileges that are granted by default on Vista.

Namespaces

Visual Studio uses namespaces to categorize code. A namespace can contain other namespaces,
which can contain others, forming a hierarchy of namespaces.

You can defi ne your own namespaces to help categorize your code. By placing different routines in
separate namespaces, you can allow pieces of code to include only the namespaces they are actually
using. That makes it easier to ignore the routines that the program isn’t using. It also allows more
than one namespace to defi ne items that have the same names.

For example, you could defi ne an Accounting namespace that contains the AccountsReceivable
and AccountsPayable namespaces. Each of those might contain a subroutine named
ListOutstandingInvoices. The program could select one version or the other by calling either
Accounting.AccountsReceivable.ListOutstandingInvoices or Accounting.AccountsPayable
.ListOutstandingInvoices.

You can use the Namespace statement only at the fi le level or inside another namespace, not within
a class or module. Within a namespace, you can defi ne nested namespaces, classes, or modules.

The following example defi nes the AccountingModules namespace. That namespace contains
the two classes PayableItem and ReceivableItem, the module AccountingRoutines, and the nested
namespace OrderEntryModules. The AccountingRoutines module defi nes the PayInvoice subroutine.
All the classes, modules, and namespaces may defi ne other items.

Namespace AccountingModules
 Public Class PayableItem
 ...
 End Class

 Public Class ReceivableItem
 ...
 End Class

 Module AccountingRoutines
 Public Sub PayInvoice(ByVal invoice_number As Long)
 ...
 End Sub
 ...
 End Module

194 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

 Namespace OrderEntryModules
 Public Class OrderEntryClerk
 ...
 End Class
 ...
 End Namespace
End Namespace

Code using a module’s namespace does not need to explicitly identify the module. If a module
defi nes a variable or routine that has a unique name, you do not need to specify the module’s name
to use that item. In this example, there is only one subroutine named PayInvoice, so the code can
invoke it as AccountingModules.PayInvoice. If the AccountingModules namespace contained
another module that defi ned a PayInvoice subroutine, the code would need to indicate which version
to use as in AccountingModules.AccountingRoutines.PayInvoice.

Although modules are transparent within their namespaces, nested namespaces are not. Because
the nested OrderEntryModules namespace defi nes the OrderEntryClerk class, the code must
specify the full namespace path to the class, as in the following code:

Dim oe_clerk As New AccountingModules.OrderEntryModules.OrderEntryClerk

NORMAL NAMESPACES

Note that a Visual Basic project defi nes its own namespace that contains everything
else in the project. Normally, the namespace has the same name as the project.
To view or modify this root namespace, double-click the Solution Explorer’s My
Project entry to open the project’s property pages and select the Application tab.
Enter the new root namespace name in the text box labeled Root Namespace in the
upper right.

You can use an Imports statement to simplify access to a namespace inside a fi le. For example,
suppose that you are working on the GeneralAccounting project that has the root namespace
GeneralAccounting. The fi rst statement in the following code allows the program to use items
defi ned in the AccountingModules namespace without prefi xing them with AccountingModules.
The second statement lets the program use items defi ned in the AccountingModules nested
namespace OrderEntryModules. The last two lines of code declare variables using classes defi ned in
those namespaces.

Imports GeneralAccounting.AccountingModules
Imports GeneralAccounting.AccountingModules.OrderEntryModules
...
Private m_OverdueItem As PayableItem ‘ In the AccountingModules namespace.
Private m_ThisClerk As OrderEntryClerk ‘ In the namespace
 ‘ AccountingModules.OrderEntryModules.

Typographic Code Elements ❘ 195

TYPOGRAPHIC CODE ELEMENTS

A few typographic code elements can make a program’s structure a bit easier to understand. They
do not execute programming commands themselves, but they are an important part of how you can
structure your code. These elements include comments, line continuation and joining characters,
and line labels.

Comments

Comments can help other developers (or you at a later date) understand the program’s purpose,
structure, and method. You start a comment by typing a single quotation mark (‘) that is not inside
a quoted string. All of the characters starting at the quote and continuing until the end of the line
are part of the comment and are ignored by Visual Basic.

If a line with a comment ends with a line continuation character (described shortly), Visual Basic
ignores that character. That means the line is not continued onto the next line, so the comment ends
with the current line. In other words, you cannot use line continuation characters to make a multi-
line comment.

To quickly comment or uncomment a large block of code, click and drag to select the code using the
mouse and then open the Edit menu’s Advanced submenu. Select the Comment Selection command
to comment out the selection or select Uncomment Selection to remove the comment characters
from the front of the selection. Those commands are also available more conveniently as buttons in
the Standard toolbar. Use the View menu’s Toolbars submenu to show or hide this toolbar.

Another way to quickly remove a chunk of code from the program is to surround it with compiler
directives, as in the following code:

#If False Then
 Dim A As Integer
 Dim B As Integer
 Dim C As Integer
#End if

Use comments to make your code clear. Comments do not slow down the executable program (some
superstitious developers think they must slow the code because they make the fi le bigger), so there’s
no good reason to avoid them.

XML Comments

A normal comment is just a piece of text that gives information to a developer trying to read your
code. XML comments let you add some context to a comment. For example, you can mark a
comment as a summary describing a subroutine.

Visual Studio automatically extracts XML comments to build an XML fi le describing the project.
This fi le displays the hierarchical shape of the project, showing comments for the project’s modules,
namespaces, classes, and other elements.

The result is not particularly easy to read, but you can use it to automatically generate more useful
documentation such as reports or web pages.

196 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

You can place a block of XML comments before code elements that are not contained in methods.
Generally, you use them to describe a module, class, variable, property, method, or event.

To begin a comment block, place the cursor on the line before the element you want to
describe and type three single quotes (‘’’). Visual Studio automatically inserts a template
for an appropriate XML comment block. If the element that follows takes parameters, it
includes sections describing the parameters, so it is in your best interest to completely defi ne
the parameters before you create the XML comment block. Otherwise you’ll need to add the
appropriate comment sections by hand later.

The following code shows the XML comment block created for a simple subroutine. It includes
a summary area to describe the subroutine, two param sections to describe the subroutine’s
parameters, and a remarks section to provide additional detail.

‘’’ <summary>
‘’’
‘’’ </summary>
‘’’ <param name=”jobs”></param>
‘’’ <param name=”employees”></param>
‘’’ <remarks></remarks>
Public Sub AssignJobs(ByVal jobs() As Job, ByVal employees() As Employee)

End Sub

Note that XML elements can span multiple lines, as the summary element does in this example.

You can add more XML comment sections to the block simply by typing them, following the
convention that they should begin with three single quotes. For example, the following code adds
some content for the comments in the previous code and an extra WrittenBy element that contains a
date attribute:

‘’’ <summary>
‘’’ Assigns jobs to employees, maximizing the total value of jobs assigned.
‘’’ </summary>
‘’’ <param name=”jobs”>The array of Jobs to assign.</param>
‘’’ <param name=”employees”>The array of Employees to assign.</param>
‘’’ <remarks>The full assignment is not guaranteed to be unique.</remarks>
‘’’ <WrittenBy date=”4/1/12”>Rod Stephens</WrittenBy>
Public Sub AssignJobs(ByVal jobs() As Job, ByVal employees() As Employee)

End Sub

COMMENT CONVENTIONS

Note that I just made up the WrittenBy element and its date attribute — they’re not
part of some XML comment standard. You can put anything you want in there,
although the comments will be easiest to use if you use standard elements such as
param and remarks whenever possible.

Typographic Code Elements ❘ 197

The following code shows the beginning of an application that assigns jobs to employees. The
project contains two fi les, a form named Form1.vb and a code module named JobStuff.vb.
The form contains very little code. The code module defi nes the Job and Employee classes
and the AssignJobs subroutine. Each of these has an XML comment block.

Public Class Form1
 Private Jobs() As Job
 Private Employees() As Employee
End Class

Module JobStuff
 Public Class Job
 Public JobNumber As Integer
 ‘’’ <summary>
 ‘’’ A list of skills required to perform this job.
 ‘’’ </summary>
 ‘’’ <remarks>Represent required equipment as skills.</remarks>
 Public SkillsRequired As New Collection
 ‘’’ <summary>
 ‘’’ The value of this job.
 ‘’’ </summary>
 ‘’’ <remarks>Higher numbers indicate more priority.</remarks>
 Public Priority As Integer
 End Class

Public Class Employee
 Public FirstName As String
 Public LastName As String
 ‘’’ <summary>
 ‘’’ A list of skills this employee has.
 ‘’’ </summary>
 ‘’’ <remarks>Represent special equipment as skills.</remarks>
 Public Skills As New Collection
 End Class

 ‘’’ <summary>
 ‘’’ Assigns jobs to employees.
 ‘’’ </summary>
 ‘’’ <param name=”jobs”>Array of Jobs to assign.</param>
 ‘’’ <param name=”employees”>Array of Employees to assign jobs.</param>
 ‘’’ <remarks>Maximizes total value of jobs assigned.</remarks>

These XML comments are somewhat bulky and hard to read. In the previous
example, it isn’t easy to pick out the subroutine’s most important summary infor-
mation with a quick glance at the code. To make reading XML comments easier,
Visual Basic defi nes an outlining section for each XML comment block. If you click
the minus sign to the left of the fi rst line in the block, the whole block collapses and
shows only the summary information. If you then click the plus sign to the left of
the summary, Visual Studio expands the comments to show them all.

198 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

 ‘’’ <WrittenBy date=”7/26/04”>Rod Stephens</WrittenBy>
 Public Sub AssignJobs(ByVal jobs() As Job, ByVal employees() As Employee)

 End Sub
End Module

In addition to providing documentation for
your use, XML comments let IntelliSense
provide additional information about your
code. Figure 13-6 shows IntelliSense displaying
information about the AssignJobs subroutine.
It gets the description of the subroutine
(Assigns jobs to employees) and the description
of the jobs parameter (Array of jobs to assign)
from the subroutine’s XML comments.

When you compile the application, Visual Studio extracts the XML comments and places them in
an XML fi le with the same name as the executable fi le in the project’s bin\Debug directory. The
result isn’t very readable but you can use it to generate more palatable documentation. Some
third-party tools such as doxygen (http://www.doxygen.org) can also extract XML comments
and build documentation.

Example program AssignJobs, which is available for download on the book’s website, defi nes job
assignment classes that you can view with the Object Browser. If you compile the program (which
actually doesn’t do any job assignment, it just defi nes the classes), you can examine its XML
documentation.

Line Continuation

Line continuation characters let you break long lines across multiple shorter lines so that they are
easier to read. To continue a line, end it with a space followed by an underscore (_). Visual Basic
treats the following code as if it were all on one long line:

Dim background_color As Color = _
 Color.FromName(_
 My.Resources.ResourceManager.GetString(_
 “MainFormBackgroundColor”))

As the earlier section about comments explains, you cannot continue comments. A comment
includes any space and underscore at the end of its line so the comment does not apply to the
following line.

You can break a line just about anywhere that a space is allowed and between program elements.
For example, you can break a line after the opening parenthesis in a parameter list, as shown in the
following code:

AReallyReallyLongSubroutineNameThatTakesFiveParameters(_
 parameter1, parameter2, parameter3, parameter4, parameter5)

You cannot break a line inside a quoted string. If you want to break a string, end the string and
concatenate it with the rest of the string on the next line, as in the following example:

FIGURE 13-6: IntelliSense uses XML comments

to display information about a subroutine and its

parameters.

http://www.doxygen.org

Typographic Code Elements ❘ 199

Dim txt As String = “To break a long string across multiple lines, “ & _
 “end the string and concatenate it with the rest of “ & _
 “the string on the next line.”

Visual Basic does not enforce its usual indentation rules on continued lines, so you can indent the
lines in any way you like to make the code’s structure more clear. For example, many programmers
align parameters in long subroutine calls like this:

DoSomething(_
 parameter1, _
 parameter2, _
 parameter3)

Implicit Line Continuation

Visual Basic can also guess where you are continuing a line even if you don’t use the line
continuation character, at least sometimes. For example, Visual Basic can fi gure out that the
statement shown in the following code isn’t complete until the fi nal line so it treats all of this code as
if it were written on a single long line:

Dim background_color As Color =
 Color.FromName(
 My.Resources.ResourceManager.GetString(
 “MainFormBackgroundColor”
)
)

Visual Basic does not allow implicit line continuation in all cases, however. For example, in
the following code the Next i statement is split across two lines. Because a Next statement’s
variable name is optional, Visual Basic doesn’t know that the following i is required so it doesn’t
look for it.

For i As Integer = 1 To 10

Next
 i

In fact, the only place you can break the statement For i As Integer = 1 To 10 without a line
continuation character and without confusing Visual Basic is after the equals sign. That’s a pretty
confusing place to break the code anyway so I would recommend against it.

Some places that Visual Basic does allow implicit line continuation include:

 ➤ After an equals sign

 ➤ After a binary operator such as + or *

 ➤ After commas

 ➤ After opening parentheses or brackets and before closing parentheses or brackets

The following code shows a few examples:

200 ❘ CHAPTER 13 PROGRAM AND MODULE STRUCTURE

<
 ComClass()
>
Public Class Employee
 Public Function CalculateStuff(
 ByRef v1 As Integer,
 ByRef v2 As Integer
)

 Dim a As Integer =
 Math.Max(
 v1,
 v2 +
 12
)
 Return a
 End Function

 ...
End Class

Line Joining

Not only can you break a long statement across multiple lines, but you can also join short statements
on a single line. To use two statements on a single line, separate them with a colon (:). The following
line of code contains three statements that store the red, green, and blue components of a form’s
background color in the variables r, g, and b, respectively:

r = BackColor.R : g = BackColor.G : b = BackColor.B

Line joining is most useful when you have many lines in a row that all have a very similar structure.
By scanning down the lines, you can tell if there are differences that may indicate a bug.

Use line joining with some caution. If the statements are long, or if you have a series of joined
lines with dissimilar structure, combining lots of statements on a single line can make the code
harder to read. If the code is easier to read with each statement on a separate line, write the
code that way. Using more lines doesn’t cost extra or make the code run any slower.

SUMMARY

A Visual Studio solution contains a hierarchical arrangement of items. At the top level, it contains
one or more projects. Each project contains several standard items such as My Project (that
represents the project as a whole), References (that records information about references to external
objects), the bin and obj items (that are used by Visual Studio when building the application), and
app.confi g (that holds confi guration information). Projects also contain form, class, and other code
modules.

Normally, many of these fi les are hidden, and you do not need to edit them directly. For example, if
you double-click Solution Explorer’s My Project entry, you can use the project’s Properties pages to

Summary ❘ 201

view and modify application values. Other hidden fi les store code and resources that determine a
form’s appearance, and you can modify them by altering the form with the Form Designer.

Within a code module, you can use modules, classes, regions, and namespaces to group related code
into blocks. You can use conditional compilation statements and conditional compilation constants
to determine which code is compiled into the executable program. The Debug and Trace objects let
you generate messages and alerts, depending on whether certain predefi ned constants are defi ned.

Finally, typographic elements such as comments, line continuation, and line joining let you format
the code so that it is easier to read and understand. XML comments provide additional information
that is useful to IntelliSense and can help you automatically generate more readable documentation.

None of these components are required by Visual Basic but they can make the difference
between understanding the code quickly and completely, and not understanding it at all. Over an
application’s lifetime of development, debugging, upgrading, and maintenance, this can determine a
project’s success or failure.

This chapter described structural elements that make up code fi les. Within those elements, you
can place the code that gathers, manipulates, stores, and displays data. Chapter 14, “Data Types,
Variables, and Constants,” describes the variables that a program uses to hold data values. It
explains how to declare variables, what types of data they can hold, and how Visual Basic converts
from one data type to another.

Data Types, Variables,
and Constants

WHAT’S IN THIS CHAPTER

 ➤ Data types

 ➤ Type characters

 ➤ Narrowing and widening conversions

 ➤ Variable declarations and initialization

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox
.com/remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this
chapter is divided into the following major examples:

 ➤ AccessLevelEnum

 ➤ NullableTypes

 ➤ ShadowsTest

 ➤ UseDelegates

VARIABLES

Variables are among the most fundamental building blocks of a program. A variable is a
program object that stores a value. The value can be a number, letter, string, date, structure
containing other values, or an object representing both data and related actions.

When a variable contains a value, the program can manipulate it. It can perform arithmetic
operations on numbers, string operations on strings (concatenation, calculating substrings,
fi nding a target within a string), date operations (fi nd the difference between two dates, add a
time period to a date), and so forth.

14

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://wrox.com
http://WROX.COM

204 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Four factors determine a variable’s exact behavior:

 ➤ Data type determines the kind of data it can hold (integer, character, string, and so forth).

 ➤ Scope defi nes the code that can access the variable. For example, if you declare a variable
inside a For loop, only other code inside the For loop can use the variable. If you declare a
variable at the top of a subroutine, all the code in the subroutine can use the variable.

 ➤ Accessibility determines what code in other modules can access the variable. If you declare
a variable at the module level (outside of any subroutine in the module) and you use the
Private keyword, then only the code in the module can use the variable. If you use the Public
keyword, then code in other modules can use the variable as well.

 ➤ Lifetime determines how long the variable’s value is valid. A variable inside a subroutine
that is declared with a normal Dim statement is created when the subroutine begins and is
destroyed when it exits. If the subroutine runs again, it creates a new copy of the variable
and its value is reset. If the variable is declared with the Static keyword, however, the same
instance of the variable is used whenever the subroutine runs. That means the variable’s
value is preserved between calls to the subroutine.

For example, a variable declared within a subroutine has scope equal to the subroutine. Code out-
side of the subroutine cannot access the variable. If a variable is declared on a module level outside
any subroutine, it has module scope. If it is declared with the Private keyword, it is accessible only
to code within the module. If it is declared with the Public keyword, then it is also accessible to code
outside of the module.

Visibility is a concept that combines scope, accessibility, and lifetime. It determines whether a cer-
tain piece of code can use a variable. If the variable is accessible to the code, the code is within the
variable’s scope, and the variable is within its lifetime (has been created and not yet destroyed), then
the variable is visible to the code.

This chapter explains the syntax for declaring variables in Visual Basic. It explains how you can
use different declarations to determine a variable’s data type, scope, accessibility, and lifetime. It
discusses some of the issues you should consider when selecting a type of declaration, and describes
some concepts, such as anonymous and nullable types, which can complicate variable declarations.
This chapter also explains ways you can initialize objects, arrays, and collections quickly and easily.

Constants, parameters, and property procedures all have concepts of scope and data type that are
similar to those of variables, so they are also described here.

The chapter fi nishes with a brief explanation of naming conventions. Which naming rules you adopt
isn’t as important as the fact that you adopt some. This chapter discusses where you can fi nd the conven-
tions used by Microsoft Consulting Services. From those, you can build your own coding conventions.

DATA TYPES

The smallest piece of data a computer can handle is a bit, a single value that can be either 0 or 1.
Eight bits are grouped into a byte. Computers typically measure disk space and memory space in
kilobytes (1,024 bytes), megabytes (1,024 kilobytes), and gigabytes (1,024 megabytes).

Data Types ❘ 205

Multiple bytes are grouped into words that may contain 2, 4, or more bytes depending on the
computer hardware. Most computers these days use 4-byte (32-bit) words, although 8-byte
(64-bit) computers are becoming more common.

Visual Basic also groups bytes in different ways to form data types with a higher logical meaning.
For example, it uses 4 bytes to make an integer, a numeric data type that can hold values
between −2,147,483,648 and 2,147,483,647.

The following table summarizes Visual Basic’s elementary data types.

TYPE SIZE VALUES

Boolean 2 bytes True or False

Byte 1 byte 0 to 255 (unsigned byte)

SByte 1 byte −128 to 127 (signed byte)

Char 2 bytes 0 to 65,535 (unsigned character)

Short 2 bytes −32,768 to 32,767

UShort 2 bytes 0 through 65,535 (unsigned short)

Integer 4 bytes −2,147,483,648 to 2,147,483,647

UInteger 4 bytes 0 through 4,294,967,295 (unsigned integer)

Long 8 bytes −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

ULong 8 bytes 0 through 18,446,744,073,709,551,615 (unsigned long)

Decimal 16 bytes 0 to +/−79,228,162,514,264,337,593,543,950,335 with no decimal

point; 0 to +/−7.9228162514264337593543950335 with 28 places

to the right of the decimal place

Single 4 bytes −3.4028235E+38 to −1.401298E-45 (negative values)

1.401298E-45 to 3.4028235E+38 (positive values)

Double 8 bytes −1.79769313486231570E+308 to −4.94065645841246544E-324

(negative values) 4.94065645841246544E-324 to

1.79769313486231570E+308 (positive values)

String varies Depending on the platform, a string can hold approximately 0 to

2 billion Unicode characters

Date 8 bytes January 1, 0001 0:0:00 to December 31, 9999 11:59:59 pm

Object 4 bytes Points to any type of data

Structure varies Structure members have their own ranges

206 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Signed types such as Integer and Decimal can store positive and negative numbers. Unsigned types
such as Byte and UInteger can only store positive values and they use the extra space that would
have been used to store sign information to store larger values.

Normally in a program you think of the Char data type as holding a single character. That could be
a simple Roman letter or digit, but Visual Basic uses 2-byte Unicode characters so the Char type can
also hold more complex characters from other alphabets such as Kanji and Cyrillic.

The System namespace also provides integer data types that specify their numbers of bits explicitly.
For example, Int32 represents a 32-bit integer. Using these values instead of Integer emphasizes the
fact that the variable uses 32 bits. That can sometimes make code clearer. For example, suppose that
you need to call an application programming interface (API) function that takes a 32-bit integer as a
parameter. You can make it obvious that you are using a 32-bit integer by giving the parameter the
Int32 type.

The data types that explicitly give their sizes are Int16, Int32, Int64, UInt16, UInt32, and UInt64.

The Integer data type is usually the fastest of the integral types. You will generally get better per-
formance using Integers than you will with the Char, Byte, Short, Long, or Decimal data types.
You should stick with the Integer data type unless you need the extra range provided by Long and
Decimal, or you need to save space with the smaller Char and Byte data types. In many cases, the
space savings you will get using the Char and Byte data types isn’t worth the extra time and effort,
unless you are working with a very large array of values.

Note that you cannot safely assume that a variable’s storage requirements are exactly the same as its
size. In some cases, the program may move a variable so that it begins on a boundary that is natural
for the hardware platform. For example, if you make a structure containing several Short (2-byte)
variables, the program may insert 2 extra bytes between them so they can all start on 4-byte
boundaries because that may be more effi cient for the hardware. For more information on
structures, see Chapter 23, “Classes and Structures.”

ALIGNMENT ATTRIBUTES

Actually, you can use the StructLayout attribute to change the way Visual
Basic allocates the memory for a structure. In that case you may be able to
determine exactly how the structure is laid out. This is a fairly advanced topic
and is not covered in this book. For more information, see http://msdn
.microsoft.com/system.runtime.interopservices.structlayoutattribute

.aspx.

Some data types also come with some additional overhead. For example, an array stores some extra
information about each of its dimensions.

http://msdn.microsoft.com/system.runtime.interopservices.structlayoutattribute.aspx
http://msdn.microsoft.com/system.runtime.interopservices.structlayoutattribute.aspx
http://msdn.microsoft.com/system.runtime.interopservices.structlayoutattribute.aspx

Type Characters ❘ 207

TYPE CHARACTERS

Data type characters identify a value’s data type. The following table lists the data type characters
of Visual Basic.

CHARACTER DATA TYPE

% Integer

& Long

@ Decimal

! Single

Double

$ String

You can specify a variable’s data type by adding a data type character after a variable’s name
when you declare it. When you use the variable later, you can omit the data type character if
you like. For example, the following code declares variable num_desserts as a Long and
satisfaction_quotient as a Double. It then assigns values to these variables.

Dim num_desserts&
Dim satisfaction_quotient#

num_desserts = 100
satisfaction_quotient# = 1.23

If you have Option Explicit turned off, you can include a data type character the fi rst time you use
the variable to determine its data type. If you omit the character, Visual Basic picks a default data
type based on the value you assign to the variable.

If the value you assign is an integral value that will fi t in an Integer, Visual Basic makes the variable
an Integer. If the value is too big for an Integer, Visual Basic makes the variable a Long. If the value
contains a decimal point, Visual Basic makes the variable a Double.

If you set a variable equal to a True or False, Visual Basic makes it a Boolean.

In Visual Basic, you surround date values with # characters. If you assign a variable to a date
value, Visual Basic gives the variable the Date data type. The following code assigns Boolean and
Date variables:

a_boolean = True
a_date = #12/31/2007#

208 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

In addition to data type characters, Visual Basic provides a set of literal type characters that
determine the data type of literal values. These are values that you explicitly type into your code
in statements such as assignment and initialization statements. The following table lists the literal
type characters of Visual Basic.

CHARACTER DATA TYPE

S Short

US UShort

I Integer

UI UInteger

L Long

UL ULong

D Decimal

F Single (F for fl oating point)

R Double (R for real)

c Char (note lowercase c)

A literal type character determines the data type of a literal value in your code and may indirectly
determine the data type of a variable assigned to it. For example, suppose that the following code is
the fi rst use of the variables i and ch (with Option Explicit turned off):

i = 123L
ch = “X”c

Normally, Visual Basic would make i an Integer because the value 123 fi ts in an Integer. Because
the literal value 123 ends with the L character, however, the value is a Long, so the variable i is
also a Long.

Similarly, Visual Basic would normally make variable ch a String because the value “X” looks like
a string. The c following the value tells Visual Basic to make this a Char variable instead.

Visual Basic also lets you precede a literal integer value with &H to indicate that it is hexadecimal
(base 16) or &O to indicate that it is octal (base 8). For example, the following three statements set
the variable flags to the same value. The fi rst statement uses the decimal value 100, the second
uses the hexadecimal value &H64, and the third uses the octal value &O144.

flags = 100 ‘ Decimal 100.
flags = &H64 ‘ Hexadecimal &H64 = 6 * 16 + 4 = 96 + 4 = 100.
flags = &O144 ‘ Octal &O144 = 1 * 64 + 4 * 8 + 4 = 64 + 32 + 4 = 100.

Type Characters ❘ 209

Sometimes you must use literal type characters to make a value match a variable’s data type.
For example, consider the following code:

Dim ch As Char
ch = “X” ‘ Error because “X” is a String.
ch = “X”c ‘ Okay because “X”c is a Char.

Dim amount As Decimal
amount = 12.34 ‘ Error because 12.34 is a Double.
amount = 12.34D ‘ Okay because 12.34D is a Decimal.

The fi rst assignment tries to assign the value “X” to a Char variable. This throws an error because
“X” is a String value so it won’t fi t in a Char variable. Although it is obvious to a programmer
that this code is trying to assign the character X to the variable, Visual Basic thinks the types
don’t match.

The second assignment statement works because it assigns the Char value “X”c to the variable. The
next assignment fails when it tries to assign the Double value 12.34 to a Decimal variable. The fi nal
assignment works because the value 12.34D is a Decimal literal.

The following code shows another way to accomplish these assignments. This version uses the
data type conversion functions CChar and CDec to convert the values into the proper data
types. The following section, “Data Type Conversion,” has more to say about data type
conversion functions.

ch = CChar(“X”)
amount = CDec(12.34)

Using data type characters, literal type characters, and the Visual Basic default data type
assignments can lead to very confusing code. You cannot expect every programmer to notice
that a particular variable is a Single because it is followed by ! in its fi rst use but not in others.
You can make your code less confusing by using variable declarations that include explicit
data types.

BASE CONVERSIONS

The Hex and Oct functions let you convert numeric values into hexadecimal and
octal strings, respectively. In some sense, this is the opposite of what the &H
and &O codes do: make Visual Basic interpret a string literal as hexadecimal or
octal number.

The following code displays the value of the variable flags in decimal,
 hexadecimal, and octal:

Debug.WriteLine(flags) ‘ Decimal.
Debug.WriteLine(Hex(flags)) ‘ Hexadecimal.
Debug.WriteLine(Oct(flags)) ‘ Octal.

210 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

DATA TYPE CONVERSION

Normally, you assign a value to a variable that has the same data type as the value. For example,
you assign a string value to a String variable, you assign an integer value to an Integer variable,
and so forth. Whether you can assign a value of one type to a variable of another type depends on
whether the conversion is a narrowing or widening conversion.

Narrowing Conversions

A narrowing conversion is one where data is converted from one type to another type that cannot
hold all of the possible values allowed by the original data type. For example, the following code
copies the value from a Long variable into an Integer variable. A Long value can hold values that
are too big to fi t in an Integer, so this is a narrowing conversion. The value contained in the Long
variable may or may not fi t in the Integer.

Dim an_integer As Integer
Dim a_long As Long
...
an_integer = a_long

The following code shows a less obvious example. Here the code assigns the value in a String
variable to an Integer variable. If the string happens to contain a number (for example, “10”), the
assignment works. If the string contains a non-numeric value (such as “Hello”), the assignment fails
with an error.

Dim an_integer As Integer
Dim a_string As String
...
an_integer = a_string

Another non-obvious narrowing conversion is from a class to a derived class. Suppose that the
Employee class inherits from the Person class. Then setting an Employee variable equal to a Person
object, as shown in the following code, is a narrowing conversion because you cannot know without
additional information whether the Person is a valid Employee. All Employees are Persons, but
not all Persons are Employees.

Dim an_employee As Employee
Dim a_person As Person
...
an_employee = a_person

If you have Option Strict turned on, Visual Basic will not allow implicit narrowing
conversions. If Option Strict is off, Visual Basic will attempt an implicit narrowing conversion
and generate an error at run time if the conversion fails.

To make a narrowing conversion with Option Strict turned on, you must explicitly use a data
type conversion function. Visual Basic will attempt the conversion and generate an error if it fails.
For example, the CByte function converts a numeric value into a Byte value, so you could use the
following code to copy an Integer value into a Byte variable:

Data Type Conversion ❘ 211

Dim an_integer As Integer
Dim a_byte As Byte
...
a_byte = CByte(an_integer)

If the Integer variable contains a value less than 0 or greater than 255, the value will not fi t in a Byte
variable so CByte throws an error.

The following table lists the data type conversion functions of Visual Basic.

FUNCTION CONVERTS TO

CBool Boolean

CByte Byte

CChar Char

CDate Date

CDbl Double

CDec Decimal

CInt Integer

CLng Long

CObj Object

CSByte SByte

CShort Short

CSng Single

CStr String

CUInt UInteger

CULng ULong

CUShort UShort

The CInt and CLng functions round fractional values off to the nearest whole number. If the
fractional part of a number is exactly 0.5, the functions round to the nearest even whole number.
For example, 0.5 rounds down to 0, 0.6 rounds up to 1, and 1.5 rounds up to 2.

In contrast, the Fix and Int functions truncate fractional values. Fix truncates toward zero, so
Fix(–0.9) is 0 and Fix(0.9) is 0. Int truncates downward, so Int(–0.9) is –1 and Int(0.9) is 0.

212 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Fix and Int also differ from CInt and CLng because they return the same data type they are passed.
CInt always returns an Integer no matter what type of value you pass it. If you pass a Long into Fix,
Fix returns a Long. In fact, if you pass a Double into Fix, Fix returns a Double.

The CType function takes as parameters a value and a data type, and it converts the value into
that type if possible. For example, the following code uses CType to perform a narrowing conver-
sion from a Long to an Integer. Because the value of a_long can fi t within an integer, the
conversion succeeds.

Dim an_integer As Integer
Dim a_long As Long = 100
an_integer = CType(a_long, Integer)

The DirectCast statement changes value types much as CType does, except that it only works
when the variable it is converting implements or inherits from the new type. For example, suppose
the variable dessert_obj has the generic type Object and you know that it points to an object
of type Dessert. Then the following code converts the generic Object into the specifi c Dessert type:

Dim dessert_obj As Object = New Dessert(“Ice Cream”)
Dim my_dessert As Dessert
my_dessert = DirectCast(dessert_obj, Dessert)

DirectCast throws an error if you try to use it to change the object’s data type. For example, the
following code doesn’t work, even though you can always store an integer value in a Long variable:

Dim an_integer As Integer = 100
Dim a_long As Long
a_long = DirectCast(an_integer, Long)

The TryCast statement converts data types much as DirectCast does, except that it returns Nothing
if there is an error, rather than throwing an error.

Data Type Parsing Methods

Each of the fundamental data types (except for String) has a Parse method that attempts to convert
a string into the variable type. For example, the two fi nal statements in the following code both try
to convert the string value txt_entered into an Integer:

Dim txt_entered As String = “112358”
Dim num_entered As Integer
...
num_entered = CInt(txt_entered) ‘ Use CInt.
num_entered = Integer.Parse(txt_entered) ‘ Use Integer.Parse.

Some of these parsing methods can take additional parameters to control the conversion.
For example, the numeric methods can take a parameter that gives the international number style
the string should have.

Data Type Conversion ❘ 213

The class parsing methods have a more object-oriented feel than the conversion functions. They
are also a bit faster. They only parse strings, however, so if you want to convert from a Long to an
Integer, you need to use CInt rather than Integer.Parse or Int32.Parse.

Widening Conversions

In contrast to a narrowing conversion, a widening conversion is one where the new data type is
always big enough to hold the old data type’s values. For example, a Long is big enough to hold any
Integer value, so copying an Integer value into a Long variable is a widening conversion.

Visual Basic allows widening conversions. Note that some widening conversions can still result in a
loss of data. For example, a Decimal variable can store more signifi cant digits than a Single variable
can. A Single can hold any value that a Decimal can but not with the same precision, so if you assign
a Decimal value to a Single variable, you may lose some precision.

The Convert Class

The Convert class provides an assortment of methods for converting a value from one data type to
another. For example, the following code uses the ToInt32 method to convert the string “17” into
a 32-bit integer:

Dim i As Integer = Convert.ToInt32(“17”)

These methods are easy to understand so they make code simple to read. Unfortunately they work
with particular data type sizes such as 16- or 32-bit integer rather than with the system’s default
integer size so they may require you to change your code in the future. For example, if a later version
of Visual Basic assumes 64-bit integers, then you may need to update your calls to Convert methods.

ToString

The ToString method is a conversion function that is so useful it deserves special mention. Every
object has a ToString method that returns a string representation of the object. For example, the
following code converts the integer value num_employees into a string:

Dim txt As String = num_employees.ToString()

Exactly what value ToString returns depends on the object. For example, a double’s ToString
method returns the double formatted as a string. More complicated objects tend to return their
class names rather than their values (although you can change that behavior by overriding
their ToString methods).

ToString can take as a parameter a format string to change the way it formats its result. For example,
the following code displays the value of the double angle with two digits after the decimal point:

MessageBox.Show(angle.ToString(“0.00”))

Appendix P, “Date and Time Format Specifi ers,” and Appendix Q, “Other Format Specifi ers,”
describe format specifi ers in greater detail.

214 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

VARIABLE DECLARATIONS

The complete syntax for a variable declaration is as follows:

[attribute_list] [accessibility] [Shared] [Shadows] [ReadOnly]
Dim [WithEvents] name [(bounds_list)] [As [New] type]
[= initialization_expression]

All declarations have only one thing in common: They contain a variable’s name. Other than the
name, different declarations may have nothing in common. Variable declarations with different
forms can use or omit any other piece of the general declaration syntax. For example, the following
two declarations don’t share a single keyword:

Dim i = 1 ‘ Declare private Integer named i. (Option Explicit Off)
Public j As Integer ‘ Declare public Integer named j.

The many variations supported by a variable declaration make the general syntax rather
 intimidating. In most cases, however, declarations are straightforward. The previous two
 declarations are fairly easy to understand.

The following sections describe the pieces of the general declaration in detail.

Attribute_List

The optional attribute list is a comma-separated list of attributes that apply to the variable.
An attribute further refi nes the defi nition of a variable to give more information to the compiler
and the runtime system.

Attributes are rather specialized and address issues that arise when you perform very specifi c
programming tasks. For example, when you write code to serialize and de-serialize data, you can
use serialization attributes to gain more control over the process.

The following code defi nes the OrderItem class. This class declares three public variables: ItemName,
Price, and Quantity. It uses attributes on its three variables to indicate that ItemName should be
stored as text, Price should be stored as an attribute named Cost, and Quantity should be stored
as an attribute with its default name, Quantity.

Public Class OrderItem
 <XmlText()>
 Public ItemName As String

 <XmlAttributeAttribute(AttributeName:=”Cost”)>
 Public Price As Decimal

 <XmlAttributeAttribute()>
 Public Quantity As Integer
End Class

The following code shows the XML serialization of an OrderItem object:

<OrderItem Cost=”1.25” Quantity=”12”>Cookie</OrderItem>

Variable Declarations ❘ 215

Because attributes are so specialized, they are not described in more detail here. For more
information, see the sections in the online help related to the tasks you need to perform. For
more information on XML serialization attributes, for example, search for “System.Xml
.Serialization Namespace,” or look at these web pages:

 ➤ XML Serialization in the .NET Framework, http://msdn.microsoft.com/ms950721.aspx.

 ➤ Controlling XML Serialization Using Attributes, http://msdn.microsoft.com/2baksw0z
.aspx.

 ➤ Attributes That Control XML Serialization, http://msdn.microsoft.com/83y7df3e.aspx.

For more information on attributes in general, see the “Attributes” section of the Visual Basic
Language Reference or go to http://msdn.microsoft.com/39967861.aspx.

For a list of attributes you can use to modify variable declarations, search the online help for
“Attribute Hierarchy,” or see these web pages:

 ➤ Attributes Used in Visual Basic, http://msdn.microsoft.com/f51fe7sf.aspx.

 ➤ Attribute Class, http://msdn.microsoft.com/system.attribute.aspx. (Look for the
“Inheritance Hierarchy” section to see what attributes inherit from the Attribute class.)

Accessibility

A variable declaration’s accessibility clause can take one of the following values:

 ➤ Public — You can use the Public keyword only for variables declared at the module, class,
structure, namespace, or fi le level but not inside a subroutine. Public indicates that the
variable should be available to all code inside or outside of the variable’s module. This
allows the most access to the variable.

 ➤ Protected — You can use the Protected keyword only at the class level, not inside a module
or inside a routine within a class. Protected indicates that the variable should be accessible
only to code within the same class or a derived class. The variable is available to code in
the same or a derived class, even if the instance of the class is different from the one
containing the variable. For example, one Employee object can access a Protected variable
inside another Employee object.

 ➤ Friend — You can use the Friend keyword only for variables declared at the module, class,
namespace, or fi le level, not inside a subroutine. Friend indicates that the variable should
be available to all code inside or outside of the variable’s module within the same project.
The difference between this and Public is that Public allows code outside of the project
to access the variable. This is generally only an issue for code and control libraries where
some other project may use the library. For example, suppose that you build a code library
containing dozens of routines and then you write a program that uses the library. If the
library declares a variable with the Public keyword, the code in the library and the code
in the main program can use the variable. In contrast, if the library declares a variable with
the Friend keyword, only the code in the library can access the variable, not the code in the
main program.

http://msdn.microsoft.com/ms950721.aspx
http://msdn.microsoft.com/2baksw0z.aspx
http://msdn.microsoft.com/2baksw0z.aspx
http://msdn.microsoft.com/83y7df3e.aspx
http://msdn.microsoft.com/39967861.aspx
http://msdn.microsoft.com/f51fe7sf.aspx
http://msdn.microsoft.com/system.attribute.aspx

216 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

 ➤ Protected Friend — You can use Protected Friend only at the class level, not inside a
module or inside a routine within a class. Protected Friend is the union of the Protected and
Friend keywords. A variable declared Protected Friend is accessible only to code within the
same class or a derived class and only within the same project.

 ➤ Private — You can use the Private keyword only for variables declared at the module,
class, or structure level, not inside a subroutine. A variable declared Private is accessible
only to code in the same module, class, or structure. If the variable is in a class or structure,
it is available to other instances of the class or structure. For example, one Customer object
can access a Private variable inside another Customer object.

 ➤ Static — You can use the Static keyword only for variables declared within a subroutine
or a block within a subroutine (for example, a For loop or Try Catch block). You cannot use
Static with Shared or Shadows. A variable declared Static keeps its value between lifetimes.
For example, if a subroutine sets a Static variable to 27 before it exits, the variable begins
with the value 27 the next time the subroutine executes. The value is stored in memory, so
it is not retained if you exit and restart the whole program. (Use a database, the System
Registry, or some other means of permanent storage if you need to save values between
program runs.)

Shared

You can use the Shared keyword at the class or structure level, not within a module or subroutine.
This keyword means that all instances of the class or structure containing the variable share the
same variable.

For example, suppose that the Order class declares the Shared variable NumOrders to represent
the total number of orders in the application. Then all instances of the Order class share the same
NumOrders variable. If one instance of an Order sets NumOrders to 10, all instances of Order
see NumOrders equal 10.

You can access a Shared variable by using the class’s name. For example, the following code sets the
Orders class’s shared NumOrders value to 101.

Order.NumOrders = 101 ‘ Use the class to set NumOrders = 101.

You cannot use the Shared keyword with the Static keyword. This makes sense because a Shared
variable is in some fashion static to the class or structure that contains it. If one instance of the class
modifi es the variable, the value is available to all other instances. In fact, even if you destroy every
instance of the class or never create any instances at all, the class itself still keeps the variable’s value
safe. That provides a persistence similar to that given by the Static keyword.

Shadows

You can use the Shadows keyword only for variables declared at the class or structure level, not
inside a subroutine. Shadows indicates that the variable hides a variable with the same name in a
base class or structure. In a typical example, a subclass provides a variable with the same name as a
variable declared in one of its ancestor classes.

Variable Declarations ❘ 217

Example program ShadowTest, which is available for download on the book’s website, uses the
following code to demonstrate the Shadows keyword:

Public Class Person
 Public LastName As String
 Public EmployeeId As String
End Class

Public Class Employee
 Inherits Person
 Public Shadows EmployeeId As Long
End Class

Public Class Manager
 Inherits Employee
 Public Shadows LastName As String
End Class

Private Sub TestShadows()
 Dim txt As String = “”

 Dim mgr As New Manager
 mgr.LastName = “Manager Last Name”
 mgr.EmployeeId = 1

 Dim emp As Employee = CType(mgr, Employee)
 emp.LastName = “Employee Last Name”
 emp.EmployeeId = 2

 Dim per As Person = CType(mgr, Person)
 per.LastName = “Person Last Name”
 per.EmployeeId = “A”

 txt &= “Manager: “ & mgr.EmployeeId & “: “ & mgr.LastName & vbCrLf
 txt &= “Employee: “ & emp.EmployeeId & “: “ & emp.LastName & vbCrLf
 txt &= “Person: “ & per.EmployeeId & “: “ & per.LastName & vbCrLf

 txtResults.Text = txt
 txtResults.Select(0, 0)
End Sub

The code defi nes a Person class that contains public String variables LastName and EmployeeId. The
Employee class inherits from Person and declares its own version of the EmployeeId variable. It
uses the Shadows keyword so this version covers the version defi ned by the Person class. Note that
Shadows works here even though the two versions of EmployeeId have different data types: Long
versus String. An Employee object gets the Long version, and a Person object gets the String version.

The Manager class inherits from the Employee class and defi nes its own version of the LastName
variable. A Manager object uses this version, and an Employee or Person object uses the version
defi ned by the Person class.

Having defi ned these three classes, the program works with them to demonstrate shadowing.
First it creates a Manager object, and sets its LastName variable to “Manager Last Name” and its

218 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

EmployeeId variable to 1. The LastName value is stored in the Manager class’s version of
the variable declared with the Shadows keyword. The EmployeeId value is stored in the EmployeeId
variable declared with the Shadows keyword in the Employee class.

The program then creates an Employee variable and makes it point to the Manager object. This
makes sense because Manager inherits from Employee. A Manager is a type of Employee so an
Employee variable can point to a Manager object. The program sets the Employee object’s
LastName variable to “Employee Last Name” and its EmployeeId variable to 2. The LastName
value is stored in the Person class’s version of the variable. The EmployeeId value is stored
in the EmployeeId variable declared with the Shadows keyword in the Employee class. Because
the Manager class does not override this declaration with its own shadowing declaration of
EmployeeId, this value overwrites the value stored by the Manager object.

Next, the program creates a Person variable and makes it point to the same Manager object. Again
this makes sense because a Manager is a type of Person so a Person variable can point to a Manager
object. The program sets the Person object’s LastName variable to “Person Last Name” and its
EmployeeId variable to “A.” The Person class does not inherit, so the program stores the values
in the versions of the variables defi ned by the Person class. Because the Employee class does not
override the Person class’s declaration of LastName with its own shadowing declaration, this
value overwrites the value stored by the Employee object.

Finally, the program prints the values of the EmployeeId and LastName variables for each of the
objects.

The following output shows the program’s results. Notice that the Employee object’s value for
EmployeeId (2) overwrote the value saved by the Manager object (1) and that the Person object’s
value for LastName (Person Last Name) overwrote the value saved by the Employee object
(Employee Last Name).

Manager: 2: Manager Last Name
Employee: 2: Person Last Name
Person: A: Person Last Name

Normally, you don’t need to access shadowed versions of a variable. If you declare a version of
LastName in the Employee class that shadows a declaration in the Person class, you presumably did
it for a good reason and you don’t need to access the shadowed version directly.

However, if you really do need to access the shadowed version, you can use variables from ancestor
classes to do so. For example, the previous example creates Employee and Person objects pointing
to a Manager object to access that object’s shadowed variables.

Within a class, you can similarly cast the Me object to an ancestor class. For example, the following
code in the Manager class makes a Person variable pointing to the same object and sets its shadowed
LastName value:

Public Sub SetPersonEmployeeId(employee_id As String)
 Dim per As Person = CType(Me, Person)
 per.EmployeeId = employee_id
End Sub

Variable Declarations ❘ 219

Code in a class can also use the MyBase keyword to access the variables defi ned by the parent
class. The following code in the Manager class sets the object’s LastName variable declared by the
Employee parent class:

Public Sub SetEmployeeLastName(last_name As String)
 MyBase.LastName = last_name
End Sub

ReadOnly

You can use the ReadOnly keyword only for variables declared at the module, class, or structure
level, not inside a subroutine. ReadOnly indicates that the program can read, but not modify,
the variable’s value.

You can initialize the variable in one of two ways. First, you can include an initialization statement
in the variable’s declaration, as shown in the following code:

Public Class EmployeeCollection
 Public ReadOnly MaxEmployees As Integer = 100
 ...
End Class

Second, you can initialize the variable in the object’s constructors. The following code declares the
ReadOnly variable MaxEmployees. The empty constructor sets this variable to 100. A second
constructor takes an integer parameter and sets the MaxEmployees to its value.

Public Class EmployeeCollection
 Public ReadOnly MaxEmployees As Integer

 Public Sub New()
 MaxEmployees = 100
 End Sub

 Public Sub New(max_employees As Integer)
 MaxEmployees = max_employees
 End Sub
 ...
End Class

After the object is initialized, the program cannot modify the ReadOnly variable. This restriction
applies to code inside the module that declared the variable, as well as code in other modules. If you
want to allow code inside the same module to modify the value but want to prevent code in other
modules from modifying the value, you should use a property procedure instead. See the section
“Property Procedures” later in this chapter for more information.

Dim

The Dim keyword offi cially tells Visual Basic that you want to create a variable.

220 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

You can omit the Dim keyword if you specify Public, Protected, Friend, Protected Friend, Private,
Static, or ReadOnly. In fact, if you include one of these keywords, the Visual Basic editor automati-
cally removes the Dim keyword if you include it.

If you do not specify otherwise, variables you declare using a Dim statement are Private. The follow-
ing two statements are equivalent:

Dim num_people As Integer
Private num_people As Integer

CERTAIN SCOPE

For certainty’s sake, many programmers (including me) explicitly specify Private
to declare private variables. Using Private means that programmers don’t need to
remember that the Dim keyword gives a private variable by default.

One place where the Dim keyword is common is when declaring variables inside subroutines. You
cannot use the Public, Private, Protected, Friend, Protected Friend, or ReadOnly keywords inside a
subroutine so you must use either Static or Dim.

WithEvents

The WithEvents keyword tells Visual Basic that the variable is of an object type that may raise
events that you will want to catch. For example, the following code declares the variable Face as a
PictureBox object that may raise events that you want to catch:

Private WithEvents Face As PictureBox

When you declare a variable with the WithEvents
keyword, Visual Basic creates an entry for it in the
left drop-down list in the module’s code window, as
shown in Figure 14-1.

If you select the object in the left drop-down list,
Visual Basic fi lls the right drop-down list with the
object’s events that you might want to catch, as
shown in Figure 14-2.

If you select an event, Visual Basic creates a corre-
sponding empty event handler. Letting Visual Basic
automatically generate the event handler in this
way is easier than trying to type the event handler
yourself, creating all of the required parameters
by hand. FIGURE 14-1: Visual Basic creates a drop-down

entry for variables declared WithEvents.

Variable Declarations ❘ 221

Declaring variables using the WithEvents
keyword is a powerful technique. You can
make the variable point to an object to catch its
events. Later, if you want to process events from
some other object using the same event handlers,
you can set the variable to point to the new object.
If you no longer want to receive any events, you
can set the variable to Nothing.

Unfortunately, you cannot declare an array using
the WithEvents keyword. That means you cannot
use a simple declaration to allow the same event
handlers to process events from more than one
object. However, you can achieve this by using the
AddHandler method to explicitly set the event
handler routines for a series of objects. For more
information on this technique, see the section
“Catching Events” in Chapter 23.

Name

A declaration’s name clause gives the name of the variable. This must be a valid Visual Basic identi-
fi er. The rules for valid identifi ers are a bit confusing, but generally an identifi er should begin with a
letter or underscore, followed by any number of letters, digits, or underscores.

If the identifi er begins with an underscore (which is unusual), it must contain at least one other
valid character (letter, digit, or underscore) so that Visual Basic doesn’t confuse it with a line
continuation character.

Identifi er names cannot contain special characters such as &, %, #, and $, although some of these
may be used as data type characters.

Here are some examples:

num_employees Valid

NumEmployees Valid

_manager Valid (but unusual)

_ Invalid (contains only a single underscore)

__ Valid (two underscores is valid but could be very confusing)

1st_employee Invalid (doesn’t begin with a letter or underscore)

#employees Invalid (contains the special character #)

FIGURE 14-2: When you select an object declared

WithEvents in the left drop-down list, Visual Basic

fi lls the right drop-down list with events you might

want to catch.

222 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Normal identifi ers cannot be the same as a Visual Basic keyword. However, you can escape an iden-
tifi er (mark it to give it a special meaning) by enclosing it in square brackets, and if you escape an
identifi er, you can give it the same name as a Visual Basic keyword. For example, in the following
code, the ParseString subroutine takes a single parameter named String of type String:

Public Sub ParseString([String] As String)
 Dim values() As String = Split([String])
 ...
End Sub

If you begin writing a call to this subroutine in the code editor, the IntelliSense pop-up describes this
routine as ParseString(String As String).

These rules let you come up with some strange and potentially confusing identifi er names. For
example, you can make escaped variables named String, Boolean, ElseIf, and Case. Depending on
your system’s settings, underscores may be hard to read either on the screen or in printouts. That
may make variables such as __ (two underscores) seem to vanish and may make it hard to tell the
difference between _Name and Name.

Although these identifi ers are all legal, they can be extremely confusing and may lead to long,
frustrating debugging sessions. To avoid confusion, use escaped identifi ers and identifi ers beginning
with an underscore sparingly.

Bounds_List

A variable declaration’s bounds_list clause specifi es bounds for an array. This should be a comma-
separated list of non-negative integers that give the upper bounds for the array’s dimensions. All
dimensions have a lower bound of zero. You can optionally specify the lower bound, but it must
always be zero.

LIMITED LOWER BOUNDS

Henry Ford once said, “Any customer can have a car painted any color that he
wants so long as it is black.” A similar rule applies here: You can specify any lower
bound for an array as long as it’s zero.

The following code declares two arrays in two different ways. The fi rst statement declares
a one-dimensional array of 101 Customer objects with indexes ranging from 0 to 100. The
second statement defi nes a two-dimensional array of Order objects. The fi rst dimension has
bounds ranging from 0 to 100 and the second dimension has bounds ranging from 0 to 10.
The array’s entries are those between orders(0, 0) and orders(100, 10) giving a total of
101 * 11 = 1111 entries. The last two statements defi ne similar arrays, while explicitly declaring
the arrays’ lower bounds.

Variable Declarations ❘ 223

Private customers(100) As Customer
Private orders(100, 10) As Order
Private customers2(0 To 100) As Customer
Private orders2(0 To 100, 0 To 10) As Order

You may fi nd that specifying the lower bound makes the code easier to read because it gives the
lower bound explicitly rather than requiring you to remember that lower bounds are always 0. It
can be particularly helpful for those who have used Visual Basic 6 and earlier versions because those
versions of Visual Basic allowed arrays to have lower bounds other than 0.

Note that declarations of this sort that use an object data type do not instantiate the objects. For
example, the fi rst declaration in the previous example defi nes 101 array entries that all point to
Nothing. They do not initially point to instances of the Customer class. After this declaration, the
program would need to create each object reference individually, as shown in the following code:

Private customers(100) As Customer
For i As Integer = 0 To 100
 customers(i) = New Customer()
Next i

Alternatively, the program can use an initialization statement to declare and initialize the objects in
a single step. See the section “Initialization_Expression” coming up shortly for more information on
initializing arrays in their declarations.

If you provide parentheses but no bounds_list, Visual Basic defi nes the array, but doesn’t create
it with specifi c bounds. Later, you can use the ReDim statement to give it bounds. Note that you
can also use ReDim to change the bounds of an array that you initially give bounds. The following
example declares two arrays named a1 and a2. Initially, the program allocates 11 items for array a1
but no items for array a2. The program then uses ReDim to allocate 21 entries for both arrays.

Dim a1(10) As Integer
Dim a2() As Integer

ReDim a1(20)
ReDim a2(0 To 20)

The ReDim statement cannot change the number of dimensions in an array. If you want to declare
but not initialize a multidimensional array, include commas as if you were defi ning the bounds. The
following code declares a three-dimensional array and initializes it in separate steps:

Dim a1(,,) As Integer

ReDim a1(10, 20, 30)

New

If you are declaring an object variable, the New keyword tells Visual Basic to create a new instance
of the object. Without this keyword, Visual Basic makes an object variable that doesn’t yet hold a
reference to any object. It initially holds Nothing.

224 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

For example, the fi rst line in the following code declares an Employee object variable named
emp1. After that line, the variable is defi ned, but it doesn’t point to anything. The second line
sets emp1 equal to a new Employee object. The last line creates an Employee object variable named
emp2 and assigns it to a new Employee object. This does the same thing as the fi rst and second lines
but in a single statement.

Dim emp1 As Employee
emp1 = New Employee()

Dim emp2 As New Employee()

If the object’s class has constructors that take parameters, you can include the parameters after the
class name. For example, suppose that the Employee class has two constructors: one that takes no
parameters and a constructor that takes fi rst and last name strings as parameters. Then the follow-
ing code creates two Employee objects using the different constructors:

Dim emp1 As New Employee()
Dim emp2 As New Employee(“Rod”, “Stephens”)

As Type and Inferred Types

The As clause tells Visual Basic what kind of variable you are declaring. For example, the following
As statement indicates that the variable cx has type Single:

Dim cx As Single

If Option Infer is on, you do not need to declare a local variable’s data type. If you omit the As
clause, Visual Basic infers the variable’s data type from the value that you assign to it. For example,
the following code declares a variable named message. Because the code assigns a string value to the
variable, Visual Basic infers that the variable should be a String.

Dim message = “Hello!”

Unfortunately, inferred data types make the code harder to understand later. You can fi gure
out that the previous declaration makes a variable that is a String, but it is much more obvious
if you explicitly include the As String clause. In this example, type inference only saves you a
few keystrokes and makes the code slightly harder to understand. Now, consider the following
statement:

Dim x = 1.234

Does this statement make variable x a Single, Double, Decimal, or some other data type?
In this case, it’s much less obvious what data type Visual Basic will decide to use.
(It makes x a Double.)

Variable Declarations ❘ 225

The only times when type inference is essential is when you cannot easily fi gure out the type needed
by a variable. For example, LINQ lets a program generate results that have confusing data types, so
type inference can be very handy when working with LINQ. For more information on LINQ, see
Chapter 20, “LINQ.”

MINIMIZE CONFUSION

To avoid confusion and make the code as easy to read as possible, I recommend that
you turn Option Infer off. Then you can use an Option Infer statement at the top
of any module where type inference would be helpful. Even in those modules,
I recommend that you explicitly give variables data types whenever possible.

INOFFENSIVE INFERENCE

When you create a new project, Option Infer is on by default. To restrict its scope,
turn it off for the project as a whole and then turn it on only in the fi les that need it.

Initialization_Expression

The initialization_expression clause gives data that Visual Basic should use to initialize the
variable. The most straightforward form of initialization assigns a simple value to a variable.
The following code declares the variable num_employees and assigns it the initial value zero:

Dim num_employees As Integer = 0

More complicated data types may require more complex initialization clauses. If the declaration
declares an object variable, you can use the New keyword to initialize the variable. For example,
the fi rst line in the following code declares an Employee variable named emp1 and sets it equal to
a new Employee object. The second statement uses the As New form of declaration to do the same
thing without a separate initialization clause. This version is slightly more compact, but you can use
whichever version seems most natural to you.

Dim emp1 As Employee = New Employee(“Rod”, “Stephens”)
Dim emp2 As New Employee(“Rod”, “Stephens”)

The With keyword allows you to initialize an object without using a special constructor. This state-
ment lets you assign values to an object’s public properties and variables right after the object is
created. The following code creates a new Employee object and sets its FirstName and LastName
values much as the previous statements do:

Dim emp3 As New Employee With {.FirstName = “Rod”, .LastName = “Stephens”}

226 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Initializing Arrays

Arrays have their own special initialization syntax. To declare and initialize an array in one
statement, you must omit the array’s bounds. Visual Basic uses the initialization data to discover
the bounds.

Place the array’s values inside curly braces separated by commas. The following code initializes a
one-dimensional array of integers:

Dim fibonacci() As Integer = {1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 87}

If you have Option Infer on, you can omit the array’s data type and Visual Basic will try to deduce
it from the values that you use to initialize it. For example, the following code creates three arrays.
Visual Basic can infer that the fi rst contains Integers and the second contains Strings. The third
array contains Strings, Integers, and Doubles so Visual Basic makes it an array of Objects.

Dim numbers() = {1, 2, 3}
Dim strings() = {“A”, “B”, “C”}
Dim objects() = {“A”, 12, 1.23}

For a multidimensional array, put commas in the variable’s parentheses to indicate the number of
dimensions. Use curly braces to surround the array data. Nest each dimension of data inside the
previous one, enclosing each dimension’s data with braces and separating entries with commas.

This probably makes the most sense if you think of a multidimensional array as an array of arrays.
For example, a three-dimensional array is an array of two-dimensional arrays. Each of the two-
dimensional arrays is an array of one-dimensional arrays. You can use indentation to make the
array’s structure more obvious.

The following code declares and initializes a two-dimensional array of integers:

Dim int_values(,) As Integer =
 {
 {1, 2, 3},
 {4, 5, 6}
 }

The following code declares and initializes a three-dimensional array of strings. The text for each
value gives its position in the array. For example, the value str_values(0, 1, 1) is “011.”

Dim str_values(,,) As String =
 {
 {
 {“000”, “001”, “002”},
 {“010”, “011”, “012”}
 },
 {
 {“100”, “101”, “102”},
 {“110”, “111”, “112”}
 }
 }

Variable Declarations ❘ 227

Example program InitializeArrays, which is available for download on the book’s website, uses
similar code to demonstrate array initialization.

Note that you must provide the correct number of items for each of the array’s dimensions.
For example, the following declaration is invalid because the array’s second row contains fewer
elements than its fi rst row:

Dim int_values(,) As Integer =
 {
 {1, 2, 3},
 {4, 5}
 }

Initializing Object Arrays

The basic syntax for initializing an array of objects is similar to the syntax you use to initialize any
other array. You still omit the array bounds from the declaration and then include values inside
curly braces. The values you use to initialize the array, however, are different because object vari-
ables do not take simple values such as 12 and “Test” that you would use to initialize integer or
string arrays.

If you create an array of objects without an initialization clause, Visual Basic creates the object
variables but does not create objects for them. Initially, all of the array’s entries are Nothing.

The following code creates an array containing 11 references to Employee objects. Initially, all of the
references are set to Nothing.

Dim employees(0 To 10) As Employee

If you want to initialize the objects, you must initialize each object in the array separately using the
class’s constructors. Optionally, you can add a With statement to set public properties and variables
after creating the object. The following code declares an array of Employee objects. It initializes two
entries using an Employee object constructor that takes as parameters the employees’ fi rst and last
names, two entries with an empty constructor and a With statement, two with an empty constructor
only, and two fi nal entries with the value Nothing.

Dim employees() As Employee =
 {
 New Employee(“Alice”, “Andrews”),
 New Employee(“Bart”, “Brin”),
 New Employee With {.FirstName = “Cindy”, .LastName=”Cant”},
 New Employee With {.FirstName = “Dan”, .LastName=”Diver”},
 New Employee(),
 New Employee(),
 Nothing,
 Nothing
 }

To initialize higher-dimensional arrays of objects, use the syntax described in the previous section.
Use Nothing or the New keyword and object constructors to initialize each array entry individually.

228 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Initializing XML Variables

To initialize an XElement object, declare the XElement variable and set it equal to properly format-
ted XML code. Visual Basic reads the data’s opening tag and then reads XML data until it reaches a
corresponding closing tag so the XML data can include whitespace just as an XML document can.
In particular, it can span multiple lines without line continuation characters.

In fact, if you use line continuation characters within the XML, the underscore characters become
part of the XML data, which is probably not what you want.

For example, the following code declares a variable named book_node that contains XML data
representing a book:

Dim book_node As XElement =
 <Book>
 <Title>The Bug That Was</Title>
 <Year>2012</Year>
 <Pages>376</Pages>
 </Book>

This type of declaration and initialization makes it easy to build XML data directly into your Visual
Basic applications.

You can initialize XML literal values with much more complicated expressions. For example, you
can use LINQ to select values from relational data sources and build results in the form of an XML
document. For more information on LINQ, see Chapter 20.

INITIALIZING COLLECTIONS

Collection classes that provide an Add method such as List, Dictionary, and SortedDictionary have
their own initialization syntax. Instead of using an equals sign as you would with an array initial-
izer, use the From keyword followed by the values that should be added to the collection surrounded
by curly braces.

For example, the following code initializes a new List(Of String):

Dim pies As New List(Of String) From
 {
 “Apple”, “Banana”, “Cherry”, “Coconut Cream”
 }

The items inside the braces must include all of the values needed by the collection’s Add method.
For example, the Dictionary class’s Add method takes two parameters giving the key and value that
should be added so each entry in the initializer should include a key and value.

The following code initializes a Dictionary(Of String, String). The parameters to the class’s Add
method are an item’s key and value so, for example, the value 940-283-1298 has the key Alice Artz.
Later you could look up Alice’s phone number by searching the Dictionary for the item with key
“Alice Artz.”

Initializing Collections ❘ 229

Dim phone_numbers As New Dictionary(Of String, String) From
 {
 {“Alice Artz”, “940-283-1298”},
 {“Bill Bland”, “940-237-3827”},
 {“Carla Careful”, “940-237-1983”}
 }

ADDING ADD

Some collection classes such as Stack and Queue don’t have an Add method, so
From won’t work for them. Fortunately, you can use extension methods (described
in the “Extension Methods” section in Chapter 16, “Subroutines and Functions”)
to add one. The following code adds a simple extension method to the Stack
(Of String) class:

<Extension()>
Public Sub Add(Of T)(the_stack As Stack(Of T), value As T)
 the_stack.Push(value)
End Sub

Now the program can initialize a Stack(Of String) as in the following code:

Dim orders As New Stack(Of String) From
 {
 “Art”, “Beatrice”, “Chuck”
 }

Multiple Variable Declarations

Visual Basic .NET allows you to declare more than one variable in a single declaration statement.
For example, the following statement declares two Integer variables named num_employees and
num_customers:

Private num_employees, num_customers As Integer

You can place accessibility keywords (Private, Public, and so on), Shared, Shadows, and ReadOnly
only at the beginning of the declaration and they apply to all of the variables in the declaration.
In the preceding statement, both num_employees and num_customers are Private.

You can declare variables with different data types by including more than one As clause separated
by commas. The following statement declares two Integer variables and one String variable:

Private emps, custs As Integer, cust As String

You cannot use an initialization statement if multiple variables share the same As clause, but you
can include an initialization statement for variables that have their own As clauses. In the preceding

230 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

example, you cannot initialize the two Integer variables, but you can initialize the String variable as
shown in the following statement:

Private emps, custs As Integer, cust As String = “Cozmo”

To initialize all three variables, you would need to give them each their own As clauses, as shown in
the following example:

Private emps As Integer = 5, custs As Integer = 10, cust As String = “Cozmo”

You can also declare and initialize multiple objects, arrays, and arrays of objects all in the same
statement.

While all of these combinations are legal, they quickly become too confusing to be of much practical
use. Even the relatively simple statement that follows can lead to later misunderstandings. Quickly
glancing at this statement, the programmer may think that all three variables are declared as Long.

Private num_employees, num_customers As Integer, num_orders As Long

You can reduce the possibility of confusion by using one As clause per declaration. Then a program-
mer can easily understand how the variables are defi ned by looking at the beginning and ending of
the declaration. The beginning tells the programmer the variables’ accessibility and whether they are
shared, shadowing other variables, or read-only. The end gives the variables’ data type.

You can also keep the code simple by giving variables with initialization statements their own
declarations. Then a programmer reading the code won’t need to decide whether an initialization
statement applies to one or all of the variables.

There’s nothing particularly wrong with declaring a series of relatively short variables in a single
statement, as long as you don’t fi nd the code confusing. The following statements declare fi ve Integer
variables and three Single variables. Breaking this into eight separate Dim statements would not
make it much clearer.

Dim i, j, k, R, C As Integer
Dim X, Y, Z As Single

OPTION EXPLICIT AND OPTION STRICT

The Option Explicit and Option Strict compiler options play an important role in variable
declarations.

When Option Explicit is set to on, you must declare all variables before you use them. If Option
Explicit is off, Visual Basic automatically creates a new variable whenever it sees a variable that it
has not yet encountered. For example, the following code doesn’t explicitly declare any variables. As
it executes the code, Visual Basic sees the fi rst statement, num_managers = 0. It doesn’t recognize
the variable num_managers, so it creates it. Similarly, it creates the variable i when it sees it in the
For loop.

Option Explicit and Option Strict ❘ 231

Option Explicit Off
Option Strict Off

Public Class Form1
 ...
 Public Sub CountManagers()
 num_managers = 0
 For i = 0 To m_Employees.GetUpperBound(0)
 If m_Employees(i).IsManager Then num_managrs += 1
 Next i

 MessageBox.Show(num_managers)
 End Sub
 ...
End Class

Keeping Option Explicit turned off can lead to two very bad problems. First, it silently hides typo-
graphical errors. If you look closely at the preceding code, you’ll see that the statement inside the
For loop increments the misspelled variable num_managrs instead of the correctly spelled variable
num_managers. Because Option Explicit is off, Visual Basic assumes that you want to use a new
variable, so it creates num_managrs. After the loop fi nishes, the program displays the value of
num_managers, which is zero because it was never incremented.

The second problem that occurs when Option Explicit is off is that Visual Basic doesn’t really know
what you will want to do with the variables it creates for you. It doesn’t know whether you will use
a variable as an Integer, Double, String, or PictureBox. Even after you assign a value to the variable
(say, an Integer), Visual Basic doesn’t know whether you will always use the variable as an Integer or
whether you might later want to save a String in it.

To keep its options open, Visual Basic creates undeclared variables as generic Objects. Then it can
fi ll the variable with just about anything. Unfortunately, this can make the code much less effi cient
than it needs to be. For example, programs are much better at manipulating integers than they are at
manipulating objects. If you are going to use a variable as an integer, creating it as an object makes
the program run much slower.

IMPRECISE INFERENCE

If Option Infer is on, Visual Basic may be able to deduce an explicit data type for a
variable declared without a type. In that case, the program may not incur a perfor-
mance penalty. It won’t be clear from the code whether that’s the case, however, so
it could lead to some confusion.

In more advanced terms, integers are value types, whereas objects are reference
types. A reference type is really a fancy pointer that represents the location of the
actual object in memory. When you treat a value type as a reference type, Visual
Basic performs an operation called boxing, where it wraps the value in an object so
it can use references to the boxed value. If you then perform an operation involving
two boxed values, Visual Basic must unbox them, perform the operation, and then
possibly box the result to store it in another reference variable. All of this boxing
and unboxing has a signifi cant overhead.

232 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Example program TimeGenericObjects, which is available for download on the book’s website,
uses the following code to demonstrate the difference in speed between using variables with explicit
types and using variables of the generic Object type:

Dim num_trials As Integer = Integer.Parse(txtNumTrials.Text)

Dim start_time As DateTime
Dim stop_time As DateTime
Dim elapsed_time As TimeSpan

start_time = Now
For i As Integer = 1 To num_trials

Next i
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lblIntegers.Text = elapsed_time.TotalSeconds.ToString(“0.000000”)
Refresh()

start_time = Now
For j = 1 To num_trials

Next j
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lblObjects.Text = elapsed_time.TotalSeconds.ToString(“0.000000”)

The code executes two For loops. In the fi rst loop, it explicitly declares its looping variable to be of
type Integer. In the second loop, the code doesn’t declare its looping variable (an easy typo to make),
so Visual Basic automatically makes it an Object when it is needed. In one test, the second loop took
more than 60 times as long as the fi rst loop.

The second compiler directive that infl uences variable declaration is Option Strict. When Option
Strict is turned off, Visual Basic silently converts values from one data type to another, even if the
types are not necessarily compatible. For example, Visual Basic will allow the following code to try
to copy the string s into the integer i. If the value in the string happens to be a number (as in the fi rst
case), this works. If the string is not a number (as in the second case), this throws an error at run time.

Dim i As Integer
Dim s As String
s = “10”
i = s ‘ This works.
s = “Hello”
i = s ‘ This Fails.

If you turn Option Strict on, Visual Basic warns you of possibly illegal conversions at compile time.
You can still use conversion functions such as CInt, Int, and Integer.Parse to convert a string into an
Integer, but you must take explicit action to do so.

To avoid confusion and ensure total control of your variable declarations, you should always turn
on Option Explicit and Option Strict.

Scope ❘ 233

For more information on Option Explicit and Option Strict (including instructions for turning these
options on), see the “Project” section in Chapter 2, “Menus, Toolbars, and Windows.”

SCOPE

A variable’s scope determines which other pieces of code can access it. For example, if you declare a
variable inside a subroutine, only code within that subroutine can access the variable. The four
possible levels of scope are (in increasing size of scope) block, procedure, module, and namespace.

Block Scope

A block is a series of statements enclosed in a construct that ends with some sort of End, Else, Loop,
or Next statement. If you declare a variable within a block of code, the variable has block scope,
and only other code within that block can access the variable. Furthermore, only code that appears
after the variable’s declaration can see the variable.

Variables declared in the block’s opening statement are also part of the block. Note that a variable
is visible within any sub-block contained within the variable’s scope.

For example, consider the following code snippet:

For i As Integer = 1 To 5
 Dim j As Integer = 3
 If i = j Then
 Dim M As Integer = i + j
 Debug.WriteLine(“M: “ & M)
 Else
 Dim N As Integer = i * j
 Debug.WriteLine(“N: “ & N)
 End If

 Dim k As Integer = 123
 Debug.WriteLine(“k: “ & k)
Next i

This code uses a For loop with the looping variable i declared in the For statement. The scope of
variable i is block-defi ned by the For loop. Code inside the loop can see variable i, but code outside
of the loop cannot.

Inside the loop, the code declares variable j. This variable’s scope is also the For loop’s block.

If i equals j, the program declares variable M and uses it. This variable’s scope includes only the two
lines between the If and Else statements.

If i doesn’t equal j, the code declares variable N. This variable’s scope includes only the two lines
between the Else and End If statements.

The program then declares variable k. This variable also has block scope, but it is available only
after it is declared, so the code could not have accessed it earlier in the For loop.

234 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Other code constructs that defi ne blocks include the following:

 ➤ Select Case statements — Each Case has its own block.

 ➤ Try Catch statements — The Try section and each Exception statement defi nes a block.
Note also that the exception variable defi ned in each Exception statement is in its own
block. (That means they can all have the same name.)

 ➤ Single-line If Then statements — These are strange and confusing enough that you should
avoid them, but the following code is legal:

 If is_manager Then Dim txt As String = “M” : MessageBox.Show(txt) Else _
 Dim txt As String = “E” : MessageBox.Show(txt)

 ➤ While loops — Variables declared inside the loop are local to the loop.

 ➤ Using statements — Resources acquired by the block and variables declared inside the block
are local to the block.

Because block scope is the most restrictive, you should use it whenever possible to reduce the
chances for confusion. The section “Restricting Scope” later in this chapter talks more about
restricting variable scope.

Procedure Scope

If you declare a variable inside a subroutine, function, or other procedure, but not within a block,
the variable is visible to any code inside the procedure that follows the declaration. The variable
is not visible outside of the procedure. In a sense, the variable has block scope where the block is
the procedure.

A procedure’s parameters also have procedure scope. For example, in the following code, the scope
of the order_object and order_item parameters is the AddOrderItem subroutine:

Public Sub AddOrderItem(order_object As Order, order_item As OrderItem)
 order_object.OrderItems.Add(order_item)
End Sub

Module Scope

A variable with module scope is available to all code in its code module, class, or structure, even
if the code appears before the variable’s declaration. For example, the following code works
even though the DisplayLoanAmount subroutine is declared before the LoanAmount variable that
it displays:

Private Class Lender
 Public Sub DisplayLoanAmount()
 MessageBox.Show(LoanAmount)
 End Sub

 Private LoanAmount As Decimal
 ...
End Class

Scope ❘ 235

To give a variable module scope, you should declare it with the Private, Protected, or Protected
Friend keyword. If you declare the variable Private, it is visible only to code within the same module.

If you declare the variable Protected, it is accessible only to code in its class or a derived class.
(Remember that you can only use the Protected keyword in a class.)

A Protected Friend variable is both Protected and Friend, so it is available only to code that is inside
the variable’s class or a derived class (Protected) and within the same project (Friend).

These keywords apply to both variable and procedure declarations. For example, you can declare a
subroutine, function, or property procedure Private, Protected, or Protected Friend.

For more information on accessibility keywords, see the section “Accessibility” earlier in
this chapter.

Example program ScopeTest, which is available for download on the book’s website, demonstrates
module and procedure scope.

Namespace Scope

By default, a project defi nes a namespace that includes all the project’s variables and code. However,
you can use Namespace statements to create other namespaces if you like. This may be useful to
help categorize the code in your application.

If you declare a variable with the Public keyword, it has namespace scope and is available to all
code in its namespace, whether inside the project or in another project. It is also available to code in
any namespaces nested inside the variable’s namespace. If you do not create any namespaces of your
own, the whole project lies in a single namespace, so you can think of Public variables as having
global scope.

If you declare a variable with the Friend keyword, it has namespace scope and is available to all
code in its namespace within the same project. It is also available to code in any namespaces nested
inside the variable’s namespace within the project. If you do not create any namespaces of your
own, the whole project lies in a single namespace so you can think of Friend variables as having
project scope.

For more information on the Public and Friend keywords, see the section “Accessibility” earlier
in this chapter.

Restricting Scope

There are several reasons why you should give variables the most restrictive scope possible that still
lets them do their jobs.

Limited scope keeps the variable localized so that programmers cannot use the variable incorrectly
in far off code that is unrelated to the variable’s main purpose.

Having fewer variables with global scope means programmers have less to remember when
they are working on the code. They can concentrate on their current work, rather than worrying
about whether variables r and c are declared globally and whether the current code will interfere
with them.

236 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Limiting scope keeps variables closer to their declarations, so it’s easier for programmers to check
the declaration. One of the best examples of this situation is when a For loop declares its looping
variable right in the For statement. A programmer can easily see that the looping variable is an
integer without scrolling to the top of the subroutine hunting for its declaration. It is also easy to
see that the variable has block scope, so other variables with the same names can be used outside
of the loop.

Limited scope means a programmer doesn’t need to worry about whether a variable’s old value will
interfere with the current code, or whether the fi nal value after the current code exits will later inter-
fere with some other code. This is particularly true for looping variables. If a program declares
variable i at the top of a subroutine, and then uses it many times in various loops, you might need
to do a little thinking to be sure the variable’s past values won’t interfere with new loops. If you
declare i separately in each For statement, each loop has its own version of i, so there’s no way they
can interfere with each other.

Finally, variables with larger scope tend to be allocated more often, so they take up memory more
often. For example, block variables and non-static variables declared with procedure scope are
allocated when they are needed and are destroyed when their scope ends, freeing their memory.
A variable declared Static or with module or namespace scope is not freed until your application
exits. If those variables are large arrays, they may take up a lot of memory the entire time your
application is running.

PARAMETER DECLARATIONS

A parameter declaration for a subroutine, function, or property procedure defi nes the names and
types of the parameters passed into it. Parameter declarations always have non-static procedure
scope. Visual Basic creates parameter variables when a procedure begins and destroys them
when the procedure ends. The subroutine’s code can access the parameters, but code outside of the
routine cannot.

For example, the following subroutine takes an integer as a parameter. The subroutine calls this
value employee_id. Code within the subroutine can access employee_id and code outside of the
subroutine cannot.

Public Sub DisplayEmployee(ByVal employee_id As Integer)
 ...
End Sub

A parameter’s basic scope is straightforward (non-static procedure scope), but parameters have some
special features that complicate the situation. Although this isn’t exactly a scoping issue, it’s related
closely enough to scope that it’s worth covering here.

You can declare a parameter ByRef or ByVal (ByVal is the default if you use neither keyword). If you
declare the variable ByVal, which stands for “by value,” the routine makes its own local parameter
variable with procedure scope just as you would expect.

If you declare a parameter with the keyword ByRef, which stands for “by reference,” the
routine does not create a separate copy of the parameter variable. Instead, it uses a reference to the

Parameter Declarations ❘ 237

parameter you pass in, and any changes the routine makes to the value are refl ected in the
calling subroutine.

For example, consider the two routines in the following code that double their parameters:

Sub DoubleItByVal(ByVal X As Single)
 X*= 2
End Sub

Sub DoubleItByRef(ByRef X As Single)
 X*= 2
End Sub

Sub TestParameters()
 Dim value As Single

 value = 10
 DoubleItByVal(value)
 Debug.WriteLine(value)

 value = 10
 DoubleItByRef(value)
 Debug.WriteLine(value)
End Sub

Subroutine DoubleItByVal declares its parameter with the ByVal keyword. Behind the scenes, this
routine makes a new variable named X and copies the value of its argument into that variable. The
parameter X is available within the subroutine. The routine multiplies X by 2 and then exits. At that
point, the parameter variable goes out of scope and is destroyed.

Subroutine DoubleItByRef declares its parameter with the ByRef keyword. This routine’s variable X
is a reference to the variable passed into the routine. The subroutine doubles X and that doubles the
variable in the calling code.

Subroutine TestParameters calls each of these routines. It declares a variable named value, passes
it to subroutine DoubleItByVal, and displays the result after DoubleItByVal returns. Because
DoubleItByVal declares its parameter ByVal, the variable value is not changed so the result is 10.

Subroutine TestParameters then calls subroutine DoubleItByRef and displays the result after
that call returns. Subroutine DoubleItByRef declares its parameter ByRef so the variable value
is changed to 20.

Even this more complex view of how procedures handle parameters has exceptions. If you pass a
literal value or the result of an expression into a procedure by reference, there is no variable to pass
by reference, so Visual Basic creates its own temporary variable. In that case, any changes made to
the ByRef parameter are not returned to the calling routine, because that code did not pass a vari-
able into the procedure. The following code shows statements that pass a literal expression and the
result of an expression into the DoubleItByRef subroutine:

DoubleItByRef(12) ‘ Literal expression.
DoubleItByRef(X + Y) ‘ Result of an expression.

238 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Another case where a ByRef parameter does not modify a variable in the calling code is when
you omit an optional parameter. For example, the following subroutine takes an optional
ByRef parameter. If you call this routine and omit the parameter, Visual Basic creates the
employee_id parameter from scratch so the subroutine can use it in its calculations. Because
you called the routine without passing it a variable, the subroutine does not update a variable.

Sub UpdateEmployee(Optional ByRef employee_id As Integer = 0)
 ...
End Sub

Probably the sneakiest way a ByRef variable can fail to update a variable in the calling routine is if
you enclose the variable in parentheses. The parentheses tell Visual Basic to evaluate their contents
as an expression, so Visual Basic creates a temporary variable to hold the result of the expression.
It then passes the temporary variable into the procedure. If the procedure’s parameter is declared
ByRef, it updates the temporary variable, but not the original variable, so the calling routine doesn’t
see any change to its value.

The following code calls subroutine DoubleItByRef, passing the variable value into the routine
surrounded with parentheses. The DoubleItByRef subroutine doubles the temporary variable
Visual Basic creates, leaving value unchanged.

DoubleItByRef((value))

Keep these issues in mind when you work with parameters. Parameters have non-static procedure
scope but the ByRef keyword can sometimes carry their values outside of the routine.

For more information on routines and their parameters, see Chapter 16.

PROPERTY PROCEDURES

Property procedures are routines that can represent a variable-like value. To other pieces of the
program, property procedures look just like variables, so they deserve mention in this chapter.

The following code shows property procedures that implement a Name property. The Property Get
procedure simply returns the value in the private variable m_Name. The Property Set procedure saves
a new value in the m_Name variable.

Private m_Name As String

Property Name() As String
 Get
 Return m_Name
 End Get
 Set(ByVal Value As String)
 m_Name = Value
 End Set
End Property

Property Procedures ❘ 239

A program could use these procedures exactly as if there were a single public Name variable.
For example, if this code is in the Employee class, the following code shows how a program could
set and then get the Name value for the Employee object named emp:

emp.Name = “Rod Stephens”
MessageBox.Show(emp.Name)

You might want to use property procedures rather than a public variable for several reasons. First,
the routines give you extra control over the getting and setting of the value. For example, you could
use code to validate the value before saving it in the variable. The code could verify that a postal
code or phone number has the proper format and throw an error if the value is badly formatted.

You can also set breakpoints in property procedures. Suppose that your program is crashing because
a piece of code is setting an incorrect value in a variable. If you implement the variable with
property procedures, you can set a breakpoint in the Property Set procedure and stop whenever
the program sets the value. This can help you fi nd the problem relatively quickly.

Property procedures let you set and get values in formats other than those you want to actually use
to store the value. For example, the following code defi nes Name property procedures that save a
name in m_FirstName and m_LastName variables. If your code would often need to use the last
and fi rst names separately, you could also provide property procedures to give access to those
values separately.

Private m_LastName As String
Private m_FirstName As String

Property MyName() As String
 Get
 Return m_FirstName & “ “ & m_LastName
 End Get
 Set(ByVal Value As String)
 m_FirstName = Value.Split(“ “c)(0)
 m_LastName = Value.Split(“ “c)(1)
 End Set
End Property

Finally, you can use property procedures to create read-only and write-only variables. The
following code shows how to make a read-only NumEmployees property procedure and a write-only
NumCustomers property procedure. (Write-only property procedures are unusual but legal.)

Public ReadOnly Property NumEmployees() As Integer
 Get
 ...
 End Get
End Property

Public WriteOnly Property NumCustomers() As Integer
 Set(ByVal Value As Integer)
 ...
 End Set
End Property

240 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

You don’t need to remember all of the syntax for property procedures. If you type the fi rst line and
press Enter, Visual Basic fi lls in the rest of the empty property procedures. If you use the keyword
ReadOnly or WriteOnly, Visual Basic only includes the appropriate procedure.

Visual Basic also allows you to make auto-implemented properties. These are simply
properties that do not have separate property procedures. You declare the property’s name,
and Visual Basic automatically creates the necessary backing variables and property procedures
behind the scenes.

The following code shows a simple FirstName property:

Public Property FirstName As String

You can give a property a default value as in the following code:

Public Property FirstName As String = “<missing>”

You cannot use the ReadOnly or WriteOnly keywords with auto-implemented properties. If you
want to make a read-only or write-only property, you need to write Get and Set procedures as
described earlier.

The advantage of auto-implemented properties is that you don’t need to write as much code. The
disadvantage is that you can’t set breakpoints in the property procedures.

PROPERTY PROCEDURES AS YOU NEED THEM

To get the best of both worlds, you can initially use auto-implemented properties.
Later if you need to set breakpoints in the property procedures, you can redefi ne the
property to include them.

ENUMERATED DATA TYPES

An enumerated type is a discrete list of specifi c values. You defi ne the enumerated type and the
values allowed. Later, if you declare a variable of that data type, it can take only those values.

For example, suppose that you are building a large application where users can have one of three
access levels: clerk, supervisor, and administrator. You could defi ne an enumerated type named
AccessLevels that allows the values Clerk, Supervisor, and Administrator. Now, if you
declare a variable to be of type AccessLevels, Visual Basic will only allow the variable to take
those values.

The following code shows a simple example. It defi nes the AccessLevels type and declares the
variable AccessLevel using the type. Later the MakeSupervisor subroutine sets AccessLevel
to the value AccessLevels.Supervisor. Note that the value is prefi xed with the enumerated
type’s name.

Enumerated Data Types ❘ 241

Public Enum AccessLevels
 Clerk
 Supervisor
 Administrator
End Enum

Private AccessLevel As AccessLevels ‘ The user’s access level.

‘ Set supervisor access level.
Public Sub MakeSupervisor()
 AccessLevel = AccessLevels.Supervisor
End Sub

The syntax for declaring an enumerated type is as follows:

[attribute_list] [accessibility] [Shadows] Enum name [As type]
 [attribute_list] value_name [= initialization_expression]
 [attribute_list] value_name [= initialization_expression]
 ...
End Enum

Most of these terms, including attribute_list and accessibility, are similar to those used by variable
declarations. See the section “Variable Declarations” earlier in this chapter for more information.

The type value must be an integral type and can be Byte, Short, Integer, or Long. If you omit this
value, Visual Basic stores the enumerated type values as integers.

The value_name pieces are the names you want to allow the enumerated type to have. You can
include an initialization_expression for each value if you like. That value must be compatible
with the underlying data type (Byte, Short, Integer, or Long). If you omit a value’s initialization
expression, the value is set to one greater than the previous value, with the fi rst value equal to
zero by default.

In the previous example, Clerk = 0, Supervisor = 1, and Administrator = 2. The
following code changes the numeric assignments so Clerk = 10, Supervisor = 11,
and Administrator = −1:

Public Enum AccessLevels
 Clerk = 10
 Supervisor
 Administrator = -1
End Enum

Usually, all that’s important about an enumerated type is that its values are unique, so you don’t
need to explicitly initialize the values.

Note that you can give enumerated values the same integer value either explicitly or implicitly. For
example, the following code defi nes several equivalent AccessLevels values. The fi rst three values,
Clerk, Supervisor, and Administrator, default to 0, 1, and 2, respectively. The code explicitly
sets User to 0, so it is the same as Clerk. The values Manager and SysAdmin then default to the next
two values, 1 and 2 (the same as Supervisor and Administrator). Finally, the code explicitly
sets Superuser = SysAdmin.

242 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Public Enum AccessLevels
 Clerk
 Supervisor
 Administrator
 User = 0
 Manager
 SysAdmin
 Superuser = SysAdmin
End Enum

This code is somewhat confusing. The following version makes it more obvious that some values are
synonyms for others:

Public Enum AccessLevel
 Clerk
 Supervisor
 Administrator

 User = Clerk
 Manager = Supervisor
 SysAdmin = Administrator
 Superuser = Administrator
End Enum

If you really need to set an enumerated variable to a calculated value for some reason, you can
use the CType function to convert an integer value into the enumerated type. For example, the
following statement uses the value in the variable integer_value to set the value of the variable
AccessLevel. Making you use CType to perform this type of conversion makes it less likely that
you will set an enumerated value accidentally.

AccessLevel = CType(integer_value, AccessLevel)

Another benefi t of enumerated types is that they allow Visual Basic to provide IntelliSense help. If
you type AccessLevel =, Visual Basic provides a list of the allowed AccessLevels values.

A fi nal benefi t of enumerated types is that they provide a ToString method that returns the textual
name of the value. For example, the following code displays the message “Clerk”:

Dim access_level As AccessLevel = Clerk
MessageBox.Show(access_level.ToString())

Example program AccessLevelEnum, which is available for download on the book’s website, makes
an AccessLevels Enum and then displays the results returned by calling ToString for each of
its values.

If you have a variable that can take only a fi xed number of values, you should probably make it
an enumerated type. Also, if you discover that you have defi ned a series of constants to represent
related values, you should consider converting them into an enumerated type. Then you can gain the
benefi ts of the improved Visual Basic type checking and IntelliSense.

Anonymous Types ❘ 243

ANONYMOUS TYPES

An anonymous type is an object data type that is built automatically by Visual Basic and never given a
name for the program to use. The type is used implicitly by the code that needs it and is then discarded.

The following code uses LINQ to select data from an array of BookInfo objects named BookInfos.
It begins by using a LINQ query to fi ll variable book_query with the selected books. It iterates
through the results stored in book_query, adding information about the selected books to a string,
and displays the result in a text box.

Dim book_query =
 From book As BookInfo In BookInfos
 Where book.Year > 1999
 Select book.Title, book.Pages, book.Year
 Order By Year

Dim txt As String = “”
For Each book_data In book_query
 txt &= book_data.Title & “ (“ & book_data.Year & “, “ &
 book_data.Pages & “ pages)” & vbCrLf
Next book_data
txtResult.Text = txt

The book_query variable is an ordered sequence containing objects that hold the data selected by
the query: Title, Pages, and Year. This type of object doesn’t have an explicit defi nition; it is an
anonymous type created by Visual Basic to hold the selected values Title, Pages, and Year. If you
hover the mouse over the book_query variable in the code editor, a tooltip appears giving the
variable’s data type as:

System.Linq.IOrderedEnumerable(Of <anonymous type>)

Later, the code uses a For Each loop to enumerate the objects in book_query. The looping variable
book_data must have the same type as the items in the sequence. The code does not explicitly give
the variable’s data type, so Visual Basic can infer it. If you hover the mouse over the book_data
variable in the code editor, a tooltip appears giving the variable’s data type as:

<anonymous type>

You are not really intended to use anonymous types explicitly. For example, you shouldn’t need to
declare a new object of the anonymous type. They are intended to support LINQ. Although you
won’t use anonymous types explicitly, it’s still helpful to understand what they are.

IMPORTANT INFERENCE

In this example, Visual Basic infers the data types for the book_query and book
variables. This is important because they must use an anonymous type, so you
cannot explicitly give them a type. Because these data types are inferred, the code
will only work if Option Infer is on.

244 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

For more information on LINQ, see Chapter 20.

NULLABLE TYPES

Most relational databases have a concept of a null data value. A null value indicates that a fi eld does
not contain any data. It lets the database distinguish between valid zero or blank values and non-
existing values. For example, a null bank balance would indicate that there is no known balance,
while a 0 would indicate that the balance was 0.

You can create a nullable variable in Visual Basic by adding a question mark either to the variable’s
name or after its data type. You can also declare the variable to be of type Nullable(Of type).
For example, the following code declares three nullable integers:

Dim i As Integer?
Dim j? As Integer
Dim k As Nullable(Of Integer)

To make a nullable variable “null,” set it equal to Nothing. The following code makes variable
num_choices null:

num_choices = Nothing

To see if a nullable variable contains a value, use the Is or IsNot operator to compare it to
Nothing. The following code determines whether the nullable variable num_choices contains a
value. If the variable contains a value, the code increments it. Otherwise the code sets the value to 1.

If num_choices IsNot Nothing Then
 num_choices += 1
Else
 num_choices = 1
End If

Calculations with nullable variables use “null-propagation” rules to ensure that the result makes
sense. For example, if a nullable integer contains no value, it probably doesn’t make sense to add
another number to it. (What is null plus three?)

If one or more operands in an expression contains a null value, the result is a null value. For
example, if num_choices in the previous example contains a null value, then num_choices + 1 is
also a null value. (That’s why the previous code checks explicitly to see whether num_choices is null
before incrementing its value.)

Example program NullableTypes, which is available for download on the book’s website,
demonstrates nullable types.

CONSTANTS

In many respects, a constant is a lot like a read-only variable. Both variable and constant declara-
tions may have attributes, accessibility keywords, and initialization expressions. Both read-only
variables and constants represent a value that the code cannot change after it is assigned.

Constants ❘ 245

The syntax for declaring a constant is as follows:

[attribute_list] [accessibility] [Shadows]
Const name [As type] = initialization_expression

For the general meanings of the various parts of a constant declaration, see the section “Variable
Declarations” earlier in this chapter. The following sections describe differences between read-only
variable and constant declarations.

Accessibility

When you declare a variable, you can omit the Dim keyword if you use any of the keywords Public,
Protected, Friend, Protected Friend, Private, Static, or ReadOnly. You cannot omit the Const
keyword when you declare a constant, because it tells Visual Basic that you are declaring a constant
rather than a variable.

You cannot use the Static, ReadOnly, or Shared keywords in a constant declaration. Static implies
that the value will change over time and the value should be retained when the enclosing routine
starts and stops. Because the code cannot change a constant’s value, that doesn’t make sense.

The ReadOnly keyword would be redundant because you already cannot change a constant’s value.

You use the Shared keyword in a variable declaration within a class to indicate that the variable’s value
is shared by all instances of the class. If one object changes the value, all objects see the changed
value. Because the program cannot change a constant’s value, the value need not be shared. All objects
have the same version of the constant at all times. You can think of a constant as always shared.

You can use the other accessibility keywords in a constant declaration: Public, Protected, Friend,
Protected Friend, and Private.

As Type

If you have Option Strict turned on, you must include the constant’s data type. A constant can only
be an intrinsic type (Boolean, Byte, Short, Integer, Long, Decimal, Single, Double, Char, String,
Date, or Object) or the name of an enumerated type. You cannot declare a constant that is a class,
structure, or array.

If you declare the constant with the Object data type, the initialization_expression must set the
object equal to Nothing. If you want a constant that represents some other object, or a class,
structure, or array, use a read-only variable instead.

Because the generic Object class doesn’t raise any events, and because you cannot make a constant of
some other class type, it doesn’t make sense to use the WithEvents keyword in a constant declaration.

INFER REQUIRED

Though Visual Basic has inferred types for local variables, it does not infer types of con-
stants. If you have Option Strict on, you must explicitly give all constants a data type.

246 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Initialization_Expression

The initialization_expression assigns the constant its never-changing value. You cannot use
variables in the initialization_expression, but you can use conversion functions such as CInt. You
can also use the values of previously defi ned constants and enumeration values. The expression can
include type characters such as # or &H, and if the declaration doesn’t include a type statement
(and Option Explicit is off), the type of the value determines the type of the constant.

The following code demonstrates these capabilities. The fi rst statement uses the CInt function to
convert the value 123.45 into an integer constant. The second and third statements set the values of
two Long constants to hexadecimal values. The next statement combines the values defi ned in the
previous two using a bitwise Or. The fi nal statement sets a constant to a value defi ned by the
enumerated type AccessLevels.

Private Const MAX_VALUES As Integer = CInt(123.45)
Private Const MASK_READ As Long = &H1000&
Private Const MASK_WRITE As Long = &H2000&
Private Const MASK_READ_WRITE As Long = MASK_READ Or MASK_WRITE
Private Const MAX_ACCESS_LEVEL As AccessLevels = AccessLevels.SuperUser

DELEGATES

A delegate is a type that refers to a subroutine, function, or other method. The method can be an
instance method provided by an object, a class’s shared method, or a method defi ned in a code
module. A delegate variable acts as a pointer to a subroutine or function. Delegate variables are
sometimes called type-safe function pointers.

The Delegate keyword defi nes a delegate type and specifi es the parameters and return type of the
method to which the delegate will refer.

The following code demonstrates a delegate:

‘ Define a StringDisplayerType delegate to be a pointer to a subroutine
‘ that has a string parameter.
Private Delegate Sub StringDisplayerType(ByVal str As String)

‘ Declare a StringDisplayerType variable.
Dim DisplayStringRoutine As StringDisplayerType

‘ Assign the variable to a subroutine.
DisplayStringRoutine = AddressOf ShowStringInOutputWindow

‘ Invoke the delegate’s subroutine.
DisplayStringRoutine(“Hello world”)

The code uses a Delegate statement to declare the StringDisplayerType to be a reference
to a subroutine that takes a string as a parameter. Next, the code declares the variable
DisplayStringRoutine to be of this type. This variable can hold a reference to a subroutine that
takes a string parameter. The code then sets the variable equal to the ShowStringInOutputWindow
subroutine. Finally, the code invokes the delegate’s subroutine, passing it a string.

Delegates ❘ 247

The delegate in the preceding example holds a reference to a subroutine defi ned in a code module.
A delegate can also hold the address of a class’s shared method or an instance method. For example,
suppose the Employee class defi nes the shared function GetNumEmployees that returns the number
of employees loaded. Suppose that it also defi nes the instance function ToString that returns an
Employee object’s fi rst and last names.

Example program UseDelegates, which is available for download on the book’s website, uses the
following code to demonstrate delegates for both of these functions:

Dim emp As New Employee(“Rod”, “Stephens”)

‘ Use a delegate pointing to a shared class method.
Private Delegate Function NumEmployeesDelegate() As Integer

Private Sub btnShared_Click() Handles btnShared.Click
 Dim show_num As NumEmployeesDelegate
 show_num = AddressOf Employee.GetNumEmployees
 MessageBox.Show(show_num().ToString, “# Employees”)
End Sub

‘ Use a delegate pointing to a class instance method.
Private Delegate Function GetNameDelegate() As String
Private Sub btnInstance_Click() Handles btnInstance.Click
 Dim show_name As GetNameDelegate
 show_name = AddressOf emp.ToString
 MessageBox.Show(show_name(), “Name”)
End Sub

First, the program declares and initializes an Employee object named emp. It then defi nes a delegate
named NumEmployeesDelegate, which is a pointer to a function that returns an integer. The
btnShared_Click event handler declares a variable of this type, sets it to the address of the
Employee class’s shared GetNumEmployees function, and calls the function. Then the code defi nes
a delegate named GetNameDelegate, which is a pointer to a function that returns a string.
The btnInstance_Click event handler declares a variable of this type, sets it to the address of the
emp object’s ToString function, and then calls the function.

These examples are somewhat contrived because the code could easily invoke the subroutines and
functions directly without delegates, but they show how a program can save a delegate pointing to a
subroutine or function and then call it later. A real application might set the delegate variable’s value
and only use it much later.

A particular delegate variable could hold references to different methods, depending on the program’s
situation. For example, different subroutines might generate output on a form, on the printer, or into
a bitmap fi le. The program could set a delegate variable to any of these routines. Later, the program
could invoke the variable’s routine without needing to know which routine will actually execute.

Another useful technique is to pass a delegate variable into a subroutine or function. For example,
suppose that you are writing a subroutine that sorts an array of Customer objects. This routine
could take as a parameter a delegate variable that references the function to use when comparing the
objects in the array. By passing different functions into the routine, you could make it sort customers
by company name, contact name, customer ID, total past sales, or anything else you can imagine.

248 ❘ CHAPTER 14 DATA TYPES, VARIABLES, AND CONSTANTS

Delegates are particularly confusing to many programmers, but understanding them is worth a little
extra effort. They can add an extra dimension to your programming by essentially allowing you to
manipulate subroutines and functions as if they were data.

NAMING CONVENTIONS

Many development teams adopt naming conventions to make their code more consistent and easier
to read. Different groups have developed their own conventions, and you cannot really say that one
of them is best. It doesn’t really matter which convention you adopt. What is important is that you
develop some coding style that you use consistently.

One rather simple convention is to use lowercase_letters_with_underscores for variables with
routine scope, MixedCaseLetters for variables with module and global scope, and ALL_CAPS
for constants of any scope. For example, the following statement defi nes a module-scope
PictureBox variable:

Private Canvas As PictureBox

Routine names are generally MixedCase.

Many developers carry these rules a bit further and add type prefi x abbreviations to control names.
For example, the following code declares a PictureBox variable:

Dim picCanvas As PictureBox

Some developers add scope prefi xes (m for module, g for global), and some also add type prefi xes
to variables other than controls (such as iNumEmployees for an integer) and even to subroutine
names (as in gstrGetWebmasterName for a global function that returns a string). Visual Studio’s
IntelliSense will tell you a variable’s data type if you hover the mouse over it so these more complex
prefi xes are not as useful as they were before IntelliSense became so powerful. For that reason this
type of prefi x is much less common than it used to be.

No matter which convention you use, the most important piece of a name is the descriptive part.
The name mblnDL tells you that the value is a module-scope Boolean, but it doesn’t tell you what the
value means (and variables with such terrible names are all too common). The name DataIsLoaded
is much more descriptive.

WHAT’S IN A NAME?

I have never seen a project that suffered because it lacked variable prefi xes such as
mbln. However, I have seen developers waste huge amounts of time because the
descriptive parts of variable names were confusing. Take a few seconds to think of a
good, meaningful name.

Summary ❘ 249

Building an all-encompassing naming convention that defi nes abbreviations for every conceivable
type of data, control, object, database component, menu, constant, and routine name takes a lot
of time and more space than it’s worth in a book such as this. For an article that describes the
conventions used by Microsoft Consulting Services, go to http://support.microsoft.com/
kb/110264. It explains everything, including data type abbreviations, making the fi rst part of a
function name contain a verb (GetUserName rather than UserName), and commenting conventions.
That article was written in 2003 and common usage changes over time, but the article can give you
a place to start in defi ning your own naming conventions.

Naming and coding conventions make it easier for other programmers to read your code. Look over
the Microsoft Consulting Services conventions or search the web for others. Select the features that
you think make the most sense and ignore the others. It’s more important that you write consistent
code than that you follow a particular set of rules.

SUMMARY

Two of the most important things you control with a variable declaration are its data type and its
visibility. Visibility combines scope (the piece of code that contains the variable such as a For loop,
subroutine, or module), accessibility (the code that is allowed to access the variable determined by
keywords such as Private, Public, and Friend), and lifetime (when the variable has been created and
not yet destroyed).

To avoid confusion, explicitly declare the data type whenever possible and use the most limited
scope possible for the variable’s purpose. Turn Option Explicit and Option Strict on to allow the
IDE to help you spot potential scope and type errors before they become a problem.

Code that uses LINQ complicates matters somewhat. When you use LINQ, it is generally not
possible to explicitly declare every variable’s data type. A LINQ query can return a sequence of
objects that have an anonymous type. If you enumerate over the sequence, the looping variable will
be of the same anonymous type. In those cases, when you cannot explicitly declare a variable’s type,
use extra caution to make the code easy to understand so you can fi x and maintain it later. For more
information on LINQ, see Chapter 20.

Parameters, property procedures, and constants have similar data type and scope issues. Once you
become comfortable with variable declarations, they should give you little trouble.

One of the most important steps you can take to make your code easier to debug and maintain is
to make your code consistent. A good naming convention can help. Review the guidelines used by
Microsoft Consulting Services, and adopt the pieces that make the most sense to you.

After you know how to declare variables, you are ready to learn how to combine them. Chapter 15,
“Operators,” explains the symbols (such as +, 2, and ^) that you can use to combine variables to
produce new results.

http://support.microsoft.com/kb/110264
http://support.microsoft.com/kb/110264

Operators

WHAT’S IN THIS CHAPTER

 ➤ Arithmetic, concatenation, logical, and bitwise operators

 ➤ Operator precedence

 ➤ The StringBuilder class

 ➤ Operator overloading

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

 ➤ ComplexNumbers

 ➤ MultiplyTimeSpan

 ➤ StringBuilderTest1

 ➤ StringBuilderTest2

UNDERSTANDING OPERATORS

An operator is a basic code element that performs some operation on one or more values to
create a result. The values the operator acts upon are called operands. For example, in the
following statement, the operator is + (addition), the operands are B and C, and the result is
assigned to the variable A:

A = B + C

The Visual Basic operators fall into fi ve categories: arithmetic, concatenation, comparison,
logical, and bitwise. This chapter fi rst explains these categories and the operators they
contain, and then discusses other operator issues such as precedence, assignment operators,

15

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

252 ❘ CHAPTER 15 OPERATORS

and operator overloading. Also included are discussions of some specialized issues that arise when
you work with strings and dates.

ARITHMETIC OPERATORS

The following table lists the arithmetic operators provided by Visual Basic. Most programmers
should be very familiar with most of them. The four operators that may need a little extra
explanation are \, Mod, <<, and >>.

OPERATOR PURPOSE EXAMPLE RESULT

^ Exponentiation 2 ^ 3 (2 to the power 3) = 2 * 2 * 2 = 8

– Negation -2 -2

* Multiplication 2 * 3 6

/ Division 3 / 2 1.5

\ Integer division 17 \ 5 3

Mod Modulus 17 Mod 5 2

+ Addition 2 + 3 5

- Subtraction 3 - 2 1

<< Bit left shift 10110111 << 1 01101110

>> Bit right shift 10110111 >> 1 01011011

The \ operator performs integer division. It returns the result of dividing its fi rst operand by the
second, dropping any remainder. It’s important to understand that the result is truncated toward
zero, not rounded. For example, 7 \ 4 = 1 and –7 \ 4 = –1 rather than 2 and –2 as you
might expect.

The Mod operator returns the remainder after dividing its fi rst operand by its second. For example,
17 Mod 5 = 2 because 17 = 3 * 5 + 2.

The << operator shifts the bits of an Integer value to the left, padding the empty bits on the right
with zeros. For example, the byte value with bits 10110111 shifted 1 bit to the left gives 01101110
and shifting 10110111 2 bits to the left gives 11011100.

The >> operator shifts the bits of a value to the right, padding the empty bits on the left with zeros.
For example, the byte value with bits 10110111 shifted 1 bit to the right gives 01011011 and shifting
10110111 2 bits to the right gives 00101101.

Unfortunately, Visual Basic doesn’t work easily with bit values, so you cannot use a binary value
such as 10110111 in your code. Instead, you must write this value as the hexadecimal value &HB7
or the decimal value 183. The last two entries in the table show the values in binary, so it is easier to
understand how the shifts work.

Comparison Operators ❘ 253

CONCATENATION OPERATORS

Visual Basic provides two concatenation operators: + and &. Both join two strings together. Because
the + symbol also represents an arithmetic operator, your code will be easier to read if you use the
& symbol for concatenation. Using & can also make your code faster and lead to fewer problems
because it lets Visual Basic know that the operands are strings.

COMPARISON OPERATORS

Comparison operators compare one value to another and return a Boolean value (True or False),
depending on the result. The following table lists the comparison operators provided by Visual
Basic. The fi rst six (=, <>, <, <=, >, and >=) are relatively straightforward. Note that the Not operator
is not a comparison operator, so it is not listed here. It is described in the next section, “Logical
Operators.”

OPERATOR PURPOSE EXAMPLE RESULT

= Equals A = B True if A equals B

<> Not equals A <> B True if A does not equal B

< Less than A < B True if A is less than B

<= Less than or equal to A <= B True if A is less than or equal to B

> Greater than A > B True if A is greater than B

>= Greater than or equal to A >= B True if A is greater than or equal to B

Is Equality of two objects emp Is mgr True if emp and mgr refer to the same

object

IsNot Inequality of two objects emp IsNot mgr True if emp and mgr refer to diff erent

objects

CALCULATOR CLEVERNESS

The Calculator application that comes with Windows lets you easily convert
between binary, octal, hexadecimal, and decimal. To start the Calculator, open
the Start menu and select Run. Type calc and click OK. In newer versions of the
 calculator, open the View menu and select Programmer. If your version doesn’t have
Programmer mode, open the View menu and select Scientifi c. Now you can click
the Bin, Oct, Dec, or Hex radio buttons to select a base, enter a value, and select
another base to convert the value.

continues

254 ❘ CHAPTER 15 OPERATORS

TypeOf

... Is

Object is of a certain type TypeOf(obj)

Is Manager

True if obj points to an object that

inherits from Manager

Like Matches a text pattern A Like

“###-####”

True if A contains three digits, a dash,

and four digits

The Is operator returns True if its two operands refer to the same object. For example, if you create
an Order object and make two different variables, A and B, point to it, the expression A Is B is
True. Note that Is returns False if the two operands point to different Order objects that happen to
have the same property values.

The IsNot operator is simply shorthand for a more awkward Not . . . Is construction. For example,
the statement A IsNot Nothing is equivalent to Not (A Is Nothing).

The value Nothing is a special value that means not an object. If you have an object variable, you
can use the Is or IsNot operator to compare it to Nothing to see if it represents anything. Note that
you cannot use Is or IsNot to compare an object variable to 0 or some other numeric value. Is and
IsNot work only with objects such as those stored in variables and the special value Nothing.

The TypeOf operator returns True if its operand is of a certain type or inherits from that type. This
operator is particularly useful when a subroutine takes a parameter that could be of more than one
object type. It can use TypeOf to see which type of object it has.

The Like operator returns True if its fi rst operand matches a pattern specifi ed by its second operand.
Where the pattern includes normal characters, the string must match those characters exactly. The
pattern can also include several special character sequences summarized in the following table.

CHARACTER(S) MEANING

? Matches any single character

* Matches any zero or more characters

Matches any single digit

[characters] Matches any of the characters between the brackets

[!characters] Matches any character not between the brackets

A-Z When inside brackets, matches any character in the range A to Z

You can combine ranges of characters and individual characters inside brackets. For example, the
pattern [a-zA-Z] matches any letter between a and z or between A and Z. The following table lists
some useful patterns for use with the Like operator.

(continued)

Logical Operators ❘ 255

PATTERN MEANING

[2-9]##-#### Seven-digit U.S. phone number

[2-9]##-[2-9]##-#### Ten-digit phone number, including area code

1-[2-9]##-[2-9]##-#### Eleven-digit phone number, beginning with 1 and area code

Five-digit ZIP code

#####-#### Nine-digit ZIP + 4 code

?*@?*.?* E-mail address

For example, the following code checks whether the text box txtPhone contains something that
looks like a 10-digit phone number:

If Not (txtPhone.Text Like “[2-9]##-[2-9]##-####”) Then
 MessageBox.Show(“Please enter a valid phone number”)
End If

These patterns are not completely foolproof. For example, the e-mail address pattern verifi es that
the string contains at least one character, an @ character, at least one other character, a dot, and at
least one more character. For example, it allows RodStephens@vb-helper.com. However, it does
not verify that the extension makes sense, so it also allows RodStephens@vb-helper.commercial,
and it allows more than one @ character, as in RodStephens@vb-helper.com@bad_value.

Regular expressions provide much more powerful pattern-matching capabilities. For an
introduction to regular expressions, see http://www.codeproject.com/Articles/939/
An-Introduction-to-Regular-Expressions.

LOGICAL OPERATORS

Logical operators combine two Boolean values and return True or False, depending on the result.
The following table summarizes Visual Basic’s logical operators.

OPERATOR PURPOSE EXAMPLE RESULT

Not Logical or bitwise negation Not A True if A is false

And Logical or bitwise And A And B True if A and B are both true

Or Logical or bitwise Or A Or B True if A or B or both are true

Xor Logical or bitwise exclusive Or A Xor B True if A or B but not both is true

AndAlso Logical or bitwise And with

short-circuit evaluation

A AndAlso B True if A and B are both true (see

the following notes)

OrElse Logical or bitwise Or with

short-circuit evaluation

A OrElse B True if A or B or both are true

(see notes)

http://www.codeproject.com/Articles/939/An-Introduction-to-Regular-Expressions
http://www.codeproject.com/Articles/939/An-Introduction-to-Regular-Expressions
mailto://RodStephens@vb-helper.com
mailto:RodStephens@vb-helper.commercial
mailto://RodStephens@vb-helper.com@bad_value

256 ❘ CHAPTER 15 OPERATORS

The operators Not, And, and Or are relatively straightforward.

“Xor” stands for “exclusive or,” and the Xor operator returns True if one but not both of its
operands is true. The expression A Xor B is true if A is true or B is true but both are not true.

Xor is useful for situations where exactly one of two things should be true. For example, suppose
you’re running a small software conference with two tracks so two talks are going on at any given
time. Each attendee should sign up for one talk in each time slot but cannot sign up for both because
they’re at the same time. Then you might use code similar to the following to check whether an
attendee has signed up for either talk 1a or talk 1b but not both:

If talk1a Xor talk1b Then
 ‘ This is okay
 ...
End If

The AndAlso and OrElse operators are similar to the And and Or operators, except that they
provide short-circuit evaluation. In short-circuit evaluation, Visual Basic is allowed to stop
evaluating operands if it can deduce the fi nal result without them. For example, consider the
expression A AndAlso B. If Visual Basic evaluates the value A and discovers that it is False, the
program knows that the expression A AndAlso B is also False no matter what value B has, so it
doesn’t need to evaluate B.

Whether the program evaluates both operands doesn’t matter much if A and B are simple Boolean
variables. However, assume that they are time-consuming functions in the following code. For
example, the TimeConsumingFunction routine might need to look up values in a database or
download data from a website. In that case, not evaluating the second operand might save a lot of
time.

If TimeConsumingFunction(“A”) AndAlso TimeConsumingFunction(“B”) Then ...

Just as AndAlso can stop evaluation if it discovers one of its operands is False, the OrElse operand
can stop evaluating if it discovers that one of its operands is True. The expression A OrElse B is
True if either A or B is True. If the program fi nds that A is True, it doesn’t need to evaluate B.

Because AndAlso and OrElse do the same thing as And and Or but sometimes faster, you might
wonder why you would ever use And and Or. The main reason is that the operands may have side
effects. A side effect is some action a routine performs that is not obviously part of the routine.
For example, suppose that the NumEmployees function opens an employee database and returns
the number of employee records, leaving the database open. The fact that this function leaves the
database open is a side effect.

Now, suppose that the NumCustomers function similarly opens the customer database, and then
consider the following statement:

If (NumEmployees() > 0) AndAlso (NumCustomers() > 0) Then ...

After this code executes, you cannot be certain which databases are open. If NumEmployees returns
0, the AndAlso operator’s fi rst operand is False, so it doesn’t evaluate the NumCustomers function
and that function doesn’t open the customer database.

Operator Precedence ❘ 257

The AndAlso and OrElse operators can improve application performance under some
circumstances. However, to avoid possible confusion and long debugging sessions, do not use
AndAlso or OrElse with operands that have side effects.

BITWISE OPERATORS

Bitwise operators work much like logical operators do, except they compare values one bit at a
time. The bitwise negation operator Not fl ips the bits in its operand from 1 to 0 and vice versa. The
following shows an example:

 10110111
Not 01001000

The And operator places a 1 in a result bit if both of the operands have a 1 in that position. The
following shows the results of combining two binary values by using the bitwise And operator:

 10101010
And 00110110
 00100010

The bitwise Or operator places a 1 bit in the result if either of its operands has a 1 in the
corresponding position. The following shows an example:

 10101010
Or 00110110
 10111110

The bitwise Xor operator places a 1 bit in the result if exactly one of its operands, but not both, has
a 1 in the corresponding position. The following shows an example:

 10101010
Xor 00110110
 10011100

There are no bitwise equivalents for the AndAlso and OrElse operators.

OPERATOR PRECEDENCE

When Visual Basic evaluates a complex expression, it must decide the order in which to evaluate
operators. For example, consider the expression 1 + 2 * 3 / 4 + 2. The following text shows three
orders in which you might evaluate this expression to get three different results:

1 + (2 * 3) / (4 + 2) = 1 + 6 / 6 = 2
1 + (2 * 3 / 4) + 2 = 1 + 1.5 + 2 = 4.5
(1 + 2) * 3 / (4 + 2) = 3 * 3 / 6 = 1.5

258 ❘ CHAPTER 15 OPERATORS

Precedence determines which operator Visual Basic executes fi rst. For example, the Visual Basic
precedence rules say the program should evaluate multiplication and division before addition, so the
second equation is correct.

The following table lists the operators in order of precedence. When evaluating an expression, the
program evaluates an operator before it evaluates those lower than it in the list.

OPERATOR DESCRIPTION

() Grouping (parentheses)

^ Exponentiation

- Negation

*, / Multiplication and division

\ Integer division

Mod Modulus

+, -, + Addition, subtraction, and concatenation

& Concatenation

<<, >> Bit shift

=, <>, <, <=, >, >=, Like, Is,

IsNot, TypeOf ... Is

All comparisons

Not Logical and bitwise negation

And, AndAlso Logical and bitwise And with and without short-circuit evaluation

Xor, Or, OrElse Logical and bitwise Xor, and Or with and without short-circuit

evaluation

When operators are on the same line in the table, or if an expression contains more than one
instance of the same operator, the program evaluates them in left-to-right order. For example, * and
/ are on the same line in the table so in the expression 12 * 4 / 20 Visual Basic would perform
the multiplication fi rst. (Of course, it wouldn’t matter much in this example because the result
should be the same either way, at least within the limits of the computer’s precision.)

Parentheses are not really operators, but they do have a higher precedence than the true operators,
so they’re listed to make the table complete. You can always use parentheses to explicitly dictate the
order in which Visual Basic will perform an evaluation.

If there’s the slightest doubt about how Visual Basic will handle an expression, add parentheses to
make it obvious. Even if you can easily fi gure out what an expression means, parentheses often make
the code even easier to read and understand. There’s no extra charge for using parentheses, and they
may avoid some unnecessary confusion.

Assignment Operators ❘ 259

ASSIGNMENT OPERATORS

Visual Basic has always had the simple assignment operator =. Visual Basic .NET added several
new assignment operators to handle some common statements where a value was set equal to itself
combined with some other value. For example, the following two statements both add the value 10
to the variable iterations:

iterations = iterations + 10 ‘ Original syntax.
iterations += 10 ‘ New syntax.

All the other assignment operators work similarly by adding an equals sign to an arithmetic
operator. For example, the statement A ^= B is equivalent to A = A ^ B.

You can still use the original syntax if you like. However, the new syntax sometimes gives you
better performance. If the left-hand side of the assignment is not a simple variable, Visual Basic
may be able to save time by evaluating it only once. For example, the following code adds 0.1 to a
customer order’s discount value. By using +=, the code allows Visual Basic to fi nd the location of this
value only once.

Customers(cust_num).Orders(order_num).Discount += 0.1

PERFORMANCE ANXIETY

In most applications, performance is usually adequate whether you use += or the
older syntax. Usually, you are best off if you use whichever version seems most
natural and easiest to understand and only worry about performance when you are
sure you have a problem.

The complete list of assignment operators is: =, ^=, *=, /=, \=, +=, -=, &=, <<=, and >>=.

If you have Option Strict set to On, the variables must have the appropriate data types. For example,
/= returns a Double, so you cannot use that operator with an Integer, as in the following code:

Dim i As Integer = 100
i /= 2 ‘ Not allowed.

To perform this operation, you must explicitly convert the result into an Integer, as shown in the
following statement:

i = CInt(i / 2)

This makes sense because you are trying to assign the value of fl oating-point division to an Integer.
It’s less obvious why the following code is also illegal. Here the code is trying to assign an Integer
result to a Single variable, so you might think it should work. After all, an Integer value will fi t in a
Single variable.

Dim x As Single
x \= 10 ‘ Not allowed.

260 ❘ CHAPTER 15 OPERATORS

The problem isn’t in the assignment but in performing the calculation. The following statement is
equivalent to the previous one, and it is also illegal:

x = x \ 10 ‘ Not allowed.

The problem with both of these statements is that the \ operator takes as arguments two Integers.
If Option Strict is on, the program will not automatically convert a fl oating-point variable into an
Integer for the \ operator. To make this statement work, you must manually convert the variable
into an Integer data type, as shown in the following example:

x = CLng(x) \ 10 ‘ Allowed.

The += and &= operators both combine strings but &= is less ambiguous, so you should use it
whenever possible. It may also give you better performance because it explicitly tells Visual Basic
that the operands are strings.

THE STRINGBUILDER CLASS

The & and &= operators are useful for concatenating a few strings together. However, if you must
combine a large number of strings, you may get better performance by using the StringBuilder class.
This class is optimized for performing long sequences of concatenations to build big strings.

For small pieces of code, the difference between using a String and a StringBuilder is negligible.
If you need to concatenate a dozen or so strings once, using a StringBuilder won’t make much
difference in run time and may even slow performance slightly.

However, if you make huge strings built up in pieces, or if you build simpler strings but many times
in a loop, StringBuilder may make your program run faster.

Example program StringBuilderTest1, which is available for download on the book’s website,
concatenates the string 1234567890 a large number of times, fi rst using a String variable and then
using a StringBuilder. In one test that performed the concatenation 10,000 times to build strings
100,000 characters long, using a String took roughly 1.6 seconds. Using a StringBuilder, the
program was able to build the string in roughly 0.001 seconds.

Admittedly, building such enormous strings is not a common programming task. Even when the
strings are shorter, you can sometimes see a noticeable difference in performance, particularly if you
must build a large number of such strings.

Example program StringBuilderTest2, which is also available for download, concatenates the
string 1234567890 to itself 100 times, making a string 1,000 characters long. It builds the string
repeatedly for a certain number of trials. In one test building the 1,000-character string 10,000
times, using a String took around 0.95 seconds but using a StringBuilder took only about 0.06
seconds.

Strings and string operations are a bit more intuitive than the StringBuilder class, so your code will
usually be easier to read if you use String variables when performance isn’t a big issue. If you are

Date and TimeSpan Operations ❘ 261

building enormous strings, or are building long strings a huge number of times, the performance
edge given by the StringBuilder class may be worth slightly more complicated-looking code.

DATE AND TIMESPAN OPERATIONS

The Date data type is fundamentally different from other data types. When you perform an
operation on most data types, you get a result that has the same data type or that is at least of some
compatible data type. For example, if you subtract two Integer variables, the result is an Integer.
If you divide two Integers using the / operator, the result is a Double. That’s not another Integer,
but it is a compatible numeric data type used because an Integer cannot always hold the result of a
division.

If you subtract two Date variables, however, the result is not a Date. For example, what’s August 7
minus July 20? It doesn’t make sense to think of the result as a Date. Instead, Visual Basic defi nes
the difference between two Dates as a TimeSpan. A TimeSpan measures the elapsed time between
two Dates. In this example, August 7 minus July 20 is 18 days. (And yes, TimeSpans know all about
leap years.)

The following equations defi ne the arithmetic of Dates and TimeSpans:

 ➤ Date – Date = TimeSpan

 ➤ Date + TimeSpan = Date

 ➤ TimeSpan + TimeSpan = TimeSpan

 ➤ TimeSpan – TimeSpan = TimeSpan

The TimeSpan class also defi nes unary negation (ts2 = -ts1), but other operations (such as
multiplying a TimeSpan by a number) are not defi ned. However, in some cases, you can still perform
the calculation if you must.

Example program MultiplyTimeSpan, which is available for download on the book’s website, uses
the following statement to make the TimeSpan ts2 equal to 12 times the duration of TimeSpan ts1:

ts2 = New TimeSpan(ts1.Ticks * 12)

Sometimes using operators to combine Date and TimeSpan values can be a bit cumbersome. To
make these kinds of calculations easier, the Date data type provides other methods for performing
common operations that are a bit easier to read. Whereas the operator methods take both operands
as parameters, these methods take a single operand as one parameter and use the current object as
the other. For example, a Date object’s Add method adds a TimeSpan to the date and returns the
resulting date. The following table summarizes these methods.

262 ❘ CHAPTER 15 OPERATORS

SYNTAX MEANING

result_date = date1.Add(timespan1) Returns date1 plus timespan1

result_date = date1

.AddYears(num_years)

Returns the date plus the indicated number of years

result_date = date1

.AddMonths(num_months)

Returns the date plus the indicated number of months

result_date = date1

.AddDays(num_days)

Returns the date plus the indicated number of days

result_date = date1

.AddHours(num_hours)

Returns the date plus the indicated number of hours

result_date = date1

.AddMinutes(num_minutes)

Returns the date plus the indicated number of minutes

result_date = date1

.AddSeconds(num_seconds)

Returns the date plus the indicated number of

seconds

result_date = date1

.AddMilliseconds(num_milliseconds)

Returns the date plus the indicated number of

milliseconds

result_date = date1

.AddTicks(num_ticks)

Returns the date plus the indicated number of ticks

(100-nanosecond units)

result_timespan = date1

.Subtract(date2)

Returns the time span between date2 and date1

result_integer = date1

.CompareTo(date2)

Returns a value indicating whether date1 is greater

than, less than, or equal to date2

result_boolean = date1

.Equals(date2)

Returns True if date1 equals date2

The CompareTo method returns a value less than zero if date1 < date2, greater than zero if
date1 > date2, and equal to zero if date1 = date2.

OPERATOR OVERLOADING

Visual Basic defi nes operators for expressions that use standard data types such as Integers and
Boolean values. It defi nes a few operators such as Is and IsNot for objects, but operators such as *
and Mod don’t make sense for objects in general.

Nevertheless, you can also defi ne those operators for your structures and classes, if you like, by
using the Operator statement. This is a more advanced topic, so if you’re new to Visual Basic, you
may want to skip this section and come back to it later, perhaps after you have read Chapter 23,
“Classes and Structures.”

Operator Overloading ❘ 263

The general syntax for operator overloading is:

[<attributes>] Public [Overloads] Shared [Shadows] _
[Widening | Narrowing] Operator symbol (operands) As type
 ...
End Operator

The parts of this declaration are:

 ➤ attributes — Attributes for the operator.

 ➤ Public — All operators must be Public and Shared.

 ➤ Overloads — You can use this only if the operator takes two parameters that are from
a base class and a derived class as its two operators. In that case, it means the operator
overrides the operator defi ned in the base class.

 ➤ Shared — All operators must be Public and Shared.

 ➤ Shadows — The operator replaces a similar operator defi ned in the base class.

 ➤ Widening — Indicates that the operator defi nes a widening conversion that always succeeds
at run time. For example, an Integer always fi ts in a Single, so storing an Integer in a
Single is a widening operation. This operator must catch and handle all errors. The CType
operator must include either the Widening or the Narrowing keyword.

 ➤ Narrowing — Indicates that the operator defi nes a narrowing conversion that may fail at
run time. For example, a Single does not necessarily fi t in an Integer, so storing a Single in
an Integer is a narrowing operation. The CType operator must include either the Widening
or the Narrowing keyword.

 ➤ symbol — The operator’s symbol. This can be +, —, *, /, \, ^, &, <<, >>, =, <>, <, >, <=, >=,
Mod, Not, And, Or, Xor, Like, IsTrue, IsFalse, or CType.

 ➤ operands — Declarations of the objects to be manipulated by the operator. The unary
operators +, —, Not, IsTrue, and IsFalse take a single operand. The binary operators +,
—, *, /, \, ^, &, <<, >>, =, <>, <, >, <=, >=, Mod, And, Or, Xor, Like, and CType take two
operands.

 ➤ type — All operators must have a return type and must return a value by using a Return
statement.

Operator overloading is subject to several constraints:

 ➤ Some operands come in pairs, and if you defi ne one you must defi ne the other. The pairs are
= and <>, < and >, <= and >=, and IsTrue and IsFalse.

 ➤ For the standard unary or binary operators, the class or structure that defi nes the operator
must appear in an operand. For the CType conversion operator, the class or structure must
appear in the operand or return type.

 ➤ The IsTrue and IsFalse operators must return Boolean values.

 ➤ The second operands for the << and >> operators must be Integers.

264 ❘ CHAPTER 15 OPERATORS

If you defi ne an operator, Visual Basic automatically provides the corresponding assignment operator.
For example, if you defi ne the + operator, Visual Basic provides the += assignment operator.

Although you cannot use the IsTrue and IsFalse operators directly, you can use them indirectly. If
you defi ne IsTrue for a class, Visual Basic uses it to determine whether an object should be treated
as True in a Boolean expression. For example, the following statement uses the IsTrue operator to
decide whether the object c1 should be considered True:

if c1 Then ...

If you defi ne the And and IsFalse operators, Visual Basic uses them to handle the AndAlso operator
as well. For this to work, the And operator must return the same type of class or structure where
you defi ne it. For example, suppose you have defi ned And and IsFalse for the Composite class
and suppose variables c1, c2, and c3 are all instances of this class. Then consider the following
statement:

c3 = c1 AndAlso c2

Visual Basic uses IsFalse to evaluate c1. If IsFalse returns True, the program doesn’t bother to
evaluate c2. Instead it assumes the whole statement is False and returns a False value. Because
IsFalse returned True for c1, Visual Basic knows that c1 is a False value, so it sets c3 equal to c1.

This is pretty confusing. It may make more sense if you think about how Visual Basic evaluates
Boolean expressions that use the normal AndAlso operator.

Similarly, if you defi ne the Or and IsTrue operators, Visual Basic automatically provides the OrElse
operator.

Although you generally cannot make two versions of a function in Visual Basic that differ only in
their return types, you can do that for CType conversion operators. When the program tries to make
a conversion, Visual Basic can tell by the type of the result which conversion operator to use.

Example program ComplexNumbers, which is available for download on the book’s website, uses
the following code to defi ne a Complex class that represents a complex number. It defi nes +, –, and
* operators to implement normal addition, subtraction, and multiplication, respectively, on complex
numbers. It also defi nes =, <>, and unary negation operators, and conversion operators that convert
a Complex object into a Double and vice versa.

Public Class Complex
 Public Re As Double
 Public Im As Double

 ‘ Constructors.
 Public Sub New()
 End Sub
 Public Sub New(ByVal real_part As Double, ByVal imaginary_part As Double)
 Re = real_part
 Im = imaginary_part
 End Sub

 ‘ ToString.
 Public Overrides Function ToString() As String

Operator Overloading ❘ 265

 Dim txt As String = Re.ToString
 If Im < 0 Then
 txt &= “ - “ & Math.Abs(Im).ToString
 Else
 txt &= “ + “ & Im.ToString
 End If
 Return txt & “i”
 End Function

 ‘ Operators.
 Public Shared Operator *(ByVal c1 As Complex, ByVal c2 As Complex) _
 As Complex
 Return New Complex(
 c1.Re * c2.Re - c1.Im * c2.Im,
 c1.Re * c2.Im + c1.Im * c2.Re)
 End Operator
 Public Shared Operator +(ByVal c1 As Complex, ByVal c2 As Complex) _
 As Complex
 Return New Complex(
 c1.Re + c2.Re,
 c1.Im + c2.Im)
 End Operator
 Public Shared Operator -(ByVal c1 As Complex, ByVal c2 As Complex) _
 As Complex
 Return New Complex(
 c1.Re - c2.Re,
 c1.Im - c2.Im)
 End Operator
 Public Shared Operator =(ByVal c1 As Complex, ByVal c2 As Complex) _
 As Boolean
 Return (c1.Re = c2.Re) AndAlso (c1.Im = c2.Im)
 End Operator
 Public Shared Operator <>(ByVal c1 As Complex, ByVal c2 As Complex) _
 As Boolean
 Return (c1.Re <> c2.Re) OrElse (c1.Im <> c2.Im)
 End Operator
 Public Shared Operator -(ByVal c1 As Complex) As Complex
 Return New Complex(-c1.Re, -c1.Im)
 End Operator
 Public Shared Narrowing Operator CType(ByVal c1 As Complex) As Double
 Return System.Math.Sqrt(c1.Re * c1.Re + c1.Im * c1.Im)
 End Operator
 Public Shared Widening Operator CType(ByVal d As Double) As Complex
 Return New Complex(d, 0)
 End Operator
End Class

It is easy to get carried away with operator overloading. Just because you can defi ne an operator
for a class doesn’t mean you should. For example, you might be able to concoct some meaning for
addition with the Employee class, but it would probably be a counterintuitive operation. You would
probably be better off writing a subroutine or function with a meaningful name instead of using an
ambiguous operator such as + or >>.

266 ❘ CHAPTER 15 OPERATORS

SUMMARY

A program uses operators to manipulate variables, constants, and literal values to produce new
results. The Visual Basic operators fall into fi ve categories: arithmetic, concatenation, comparison,
logical, and bitwise. In most cases, using operators is straightforward and intuitive.

Operator precedence determines the order in which Visual Basic applies operators when evaluating
an expression. In cases where an expression’s operator precedence is unclear, add parentheses to
make the order obvious. Even if you don’t change the way that Visual Basic handles the statement,
you can make the code more understandable and avoid possibly time-consuming bugs.

The String data type has its own special needs. String manipulation plays a big role in many
applications, so Visual Basic provides a StringBuilder class for manipulating strings more effi ciently.
If your program only works with a few short strings, it probably doesn’t need to use a StringBuilder,
and using the String data type will probably make your code easier to understand. However, if your
application builds enormous strings or concatenates a huge number of strings, you may be able to
save a noticeable amount of time by using the StringBuilder class.

The Date data type also behaves differently from other data types. The normal operators such as +
and – have different meanings here from other data types. For example, a Date minus a Date gives
a TimeSpan, not another Date. These operations generally make sense if you think carefully about
what dates and time spans are.

Just as addition, subtraction, and the other operators have special meaning for Dates and
TimeSpans, you can use operator overloading to defi ne operators for your classes. Defi ning division
or exponentiation may not make much sense for Employees, Customer, or Orders, but in some cases
custom operators can make your code more readable. For example, you might imagine the following
statement adding an OrderItem to a CustomerOrder:

the_order += new_item

This chapter explained how to use operators to combine variables to calculate new results. A
typical program may perform the same set of calculations many times for different variable values.
Although you might be able to perform those calculations in a long series, the resulting code would
be cumbersome and hard to maintain. Chapter 16, “Subroutines and Functions,” explains how you
can use subroutines and functions to break a program into manageable pieces that you can then
reuse to make performing the calculations easier and more consistent.

Subroutines and Functions

WHAT’S IN THIS CHAPTER

 ➤ Subroutines, functions, and property procedures

 ➤ Extension methods

 ➤ Lambda functions

 ➤ Asynchronous methods

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter is
divided into the following major examples:

 ➤ AsyncAwait

 ➤ AsyncCallEndInvoke

 ➤ LambaFunction

 ➤ RelaxedDelegates

MANAGING CODE

Subroutines and functions enable you to break an otherwise unwieldy chunk of code into
manageable pieces. They allow you to extract code that you may need to use under more than one
circumstance and place it in one location where you can call it as needed. This not only reduces
repetition within your code but also enables you to maintain and update the code in a single location.

A subroutine performs a task for the code that invokes it. A function performs a task and then
returns some value. The value may be the result of a calculation or a status code indicating
whether the function succeeded or failed.

Together, subroutines and functions are sometimes called routines or procedures. They are
also sometimes called methods, particularly when they are subroutines or functions belonging
to a class. Subroutines are also occasionally called sub procedures or less formally Subs.

16

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

268 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

This chapter describes subroutines and functions. It explains the syntax for declaring and using each
in a Visual Basic application. It also provides some tips for making routines more maintainable.

SUBROUTINES

A Sub statement defi nes the subroutine’s name. It declares the parameters that the subroutine takes
as arguments and defi nes the parameters’ data types. Code between the Sub statement and an End
Sub statement determines what the subroutine does when it runs.

The syntax for defi ning a subroutine is as follows:

[attribute_list] [inheritance_mode] [accessibility]
Sub subroutine_name([parameters]) [Implements interface.subroutine]
 [statements]
End Sub

The following sections describe the pieces of this declaration.

Attribute_List

The optional attribute list is a comma-separated list of attributes that apply to the subroutine.
An attribute further refi nes the defi nition of a class, method, variable, or other item to give more
information to the compiler and the runtime system.

DELIGHTFUL DECORATIONS

Applying an attribute to a class, variable, method, or other code entity is sometimes
called decorating the entity.

Attributes are specialized and address issues that arise when you perform very specifi c programming
tasks. For example, the Conditional attribute means the subroutine is conditional upon the
defi nition of some compiler constant. Example program AttributeConditional uses the following
code to demonstrate the Conditional attribute:

#Const DEBUG_LIST_CUSTOMERS = True
‘ #Const DEBUG_LIST_EMPLOYEES = True

Private Sub Form1_Load() Handles MyBase.Load
 ListCustomers()
 ListEmployees()

 txtResults.Select(0, 0)
End Sub

<Conditional(“DEBUG_LIST_CUSTOMERS”)>

Subroutines ❘ 269

Private Sub ListCustomers()
 txtResults.Text &= “ListCustomers” & vbCrLf
End Sub

<Conditional(“DEBUG_LIST_EMPLOYEES”)>
Private Sub ListEmployees()
 txtResults.Text &= “ListEmployees” & vbCrLf
End Sub

The code defi nes the compiler constant DEBUG_LIST_CUSTOMERS. The value DEBUG_LIST_EMPLOYEES
is not defi ned because it is commented out.

This program’s Form1_Load event handler calls subroutines ListCustomers and ListEmployees.
ListCustomers is defi ned using the Conditional attribute with parameter DEBUG_LIST_CUSTOMERS.
That tells the compiler to generate code for the routine only if DEBUG_LIST_CUSTOMERS is defi ned.
Because that constant is defi ned, the compiler generates code for this subroutine.

Subroutine ListEmployees is defi ned using the Conditional attribute with parameter
DEBUG_LIST_EMPLOYEES. Because that constant is not defi ned, the compiler does not generate
code for this subroutine and, when Form1_Load calls it, the subroutine call is ignored.

The following text shows the output from this program:

ListCustomers

Visual Basic 2010 defi nes more than 400 attributes. Many have very specialized purposes that
won’t interest you most of the time, so only a few of the most useful are described here. For
example, the Browsable attribute determines whether a property or event should be listed in the
Properties window. It is fairly general and useful, so it’s described shortly. In contrast, the System
.EnterpriseServices.ApplicationQueuing attribute enables queuing for an assembly and allows
it to read method calls from message queues. This attribute is useful only in very specialized
circumstances, so it isn’t described here.

The following list describes some of the most useful attributes. Most of them are in the System
.ComponentModel namespace. Check the online help to fi nd the namespaces for the others and to
learn about each attribute’s parameters. Even these most useful attributes are fairly specialized and
advanced so you may not immediately see their usefulness. If one of them doesn’t make sense, skip
it and scan the list again after you have more experience with such topics as building
custom controls.

 ➤ AttributeUsage — You can build your own custom attributes by inheriting from
the Attribute class. You can give your attribute class the AttributeUsage attribute to specify
how your attribute can be used. You can determine whether an item can have multiple
instances of your attribute, whether your attribute can be inherited by a derived class, and
the kinds of things that can have your attribute (assembly, class, method, and so forth).

 ➤ Browsable — This indicates whether a property or event should be displayed in an editor
such as the Properties window or a PropertyGrid control. If you pass the attribute’s
constructor the value False, the Properties window and PropertyGrid controls do not
display the property.

270 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

 ➤ Category — This indicates the grouping that should hold the property or event in a
visual designer such as the Properties window or a PropertyGrid control. If the user clicks
the Categorized button in the Properties window, the window groups the properties by
category. This attribute tells which category should hold the property. Note that you can
use any string you like and the Properties window will make a new category for you
if necessary.

 ➤ DefaultEvent — This gives a class’s default event name. If the class is a control or
component and you double-click it in the Form Designer, the code editor opens to this event.
For example, the default event for a Button is Click, so when you double-click a Button at
design time, the code editor opens the control’s Click event handler.

 ➤ DefaultProperty — This gives a class’s default property name. Suppose that the Employee
component has LastName set as its default property. Then suppose that you select the
form and click the FormBorderStyle property in the Properties window. Now you click
an Employee. Because Employee doesn’t have a FormBorderStyle property, the Properties
window displays its default property: LastName.

 ➤ DefaultValue — This gives a property a default value. If you right-click the property in the
Properties window and select Reset, the property is reset to this value.

 ➤ Description — This gives a description of the item. If a property has a Description and
you select the property in the Properties window, the window displays the description text
at the bottom.

Visual Basic carries this one step further and also allows you to use XML comments to
provide a description of routines and their parameters for use by IntelliSense. For more
information, see the section “XML Comments” in Chapter 13, “Program and Module
Structure.”

 ➤ Localizable — This determines whether a property should be localizable so you can
easily store different versions of the property for different languages and locales. If this is
True, localized values are automatically stored in the appropriate resource fi les for different
locales and automatically loaded at startup based on the user’s computer settings. If this is
False (the default), all locales share the same property value.

To try this out, set the form’s Localizable property to True and enter a value for the
property. Then set the form’s Language property to another language and give
the localizable property a new value.

 ➤ MergableProperty — This indicates whether or not the property can be merged with the
same property provided by other components in the Properties window. If this is False and
you select more than one instance of a control with the property, the Properties window
does not display the property.

If this is True and you select more than one control with the property, the Properties
window displays the value if the controls all have the same value. If you enter a new value,
all of the controls are updated. This is the way the Text property works for TextBox, Label,
and many other kinds of controls.

Subroutines ❘ 271

 ➤ ParenthesizePropertyName — This indicates whether editors such as the Properties
window should display parentheses around the property’s name. If the name has
parentheses, the Properties window moves it to the top of the list when displaying properties
alphabetically or to the top of its category when displaying properties by category.

 ➤ ReadOnly — This indicates whether designers should treat this property as read-only. The
Properties window displays the property grayed out and doesn’t let the user change its value.
This attribute is a little strange in practice because ReadOnly is a Visual Basic keyword. If
you enter just the attribute name ReadOnly, Visual Basic gets confused. Either use the full
name System.ComponentModel.ReadOnly or enclose the name in square brackets as in
<[ReadOnly](True)>. . . .

 ➤ RecommendedAsConfigurable — This indicates that a property should be tied to the
confi guration fi le. When you select the object at design time and expand the (Dynamic
Properties) item, the property is listed. If you click the ellipsis to the right, a dialog box
appears that lets you map the property to a key in the confi guration fi le.

 ➤ RefreshProperties — This indicates how an editor should refresh the object’s
other properties if this property is changed. The value can be Default (do not refresh
the other properties), Repaint (refresh all other properties), or All (re-query and refresh
all properties).

 ➤ Conditional — This indicates that the method is callable if a compile-time constant
such as DEBUG or MY_CONSTANT is defi ned. If the constant is not defi ned, code for
the method is still generated and parameters in the method call are checked against the
parameter types used by the method, but calls to the method are ignored at run time. If
the method has more than one Conditional attribute, the method is callable if any of the
specifi ed compile-time constants is defi ned.

Note that the constant must be defi ned in the main program, not in the component if you
are building a component. Select the main program, open the Project menu, select the
Properties item at the bottom, open the Confi guration Properties folder, click Build, and in
the Custom constants text box enter a value such as IS_DEFINED=True.

You can also use the compiler directive #If to exclude code completely from compilation.
However, if you eliminate a method in this way, any calls to the routine will generate
compile-time errors because the method doesn’t exist. The Conditional attribute lets you
hide a method while still allowing the code to contain calls to it.

 ➤ DebuggerHidden — This tells debuggers whether a method should be debuggable.
If DebuggerHidden is True, the debugger skips over the method and will not stop at
breakpoints inside it.

 ➤ DebuggerStepThrough — This tells debuggers whether to let the developer step into a
method in the debugger. If the DebuggerStepThrough attribute is present, the IDE will not
step into the method.

 ➤ ToolboxBitmap — This tells the IDE where to fi nd a control or component’s Toolbox
bitmap. This can be a fi le, or it can be a type in an assembly that contains the bitmap and
the bitmap’s name in the assembly. It’s awkward but essential if you’re developing controls
or components.

272 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

 ➤ NonSerializedAttribute — This indicates that a member of a serializable class should not
be serialized. This is useful for excluding values that need not be serialized.

 ➤ Obsolete — This indicates that the item (class, method, property, or whatever) is obsolete.
Optionally, you can specify the message that the code editor should display to the developer
if code uses the item (for example, “Use the NewMethod instead”). You can also indicate
whether the IDE should treat using this item as a warning or an error.

 ➤ Serializable — This indicates that a class is serializable. All public and private fi elds
are serialized by default. Attributes in the System.Xml.Serialization namespace can provide
a lot of control over serializations.

FINDING ATTRIBUTES

Finding the attributes that are useful for a particular task can be tricky. It helps to
realize that attribute classes inherit either directly or indirectly from the Attribute
class. You can get information about the Attribute class at http://msdn2
.microsoft.com/system.attribute.aspx. You can see a list of classes that
inherit from System.Attribute at http://msdn2.microsoft.com/2e39z096.aspx.

Inheritance_Mode

In a routine’s declaration, the inheritance_mode can be one of the values Overloads, Overrides,
Overridable, NotOverridable, MustOverride, Shadows, or Shared. These values determine how
a subroutine declared within a class inherits from the parent class or how it allows inheritance in
derived classes. The following list explains the meanings of these keywords:

 ➤ Overloads — Indicates that the subroutine has the same name as another subroutine
defi ned for this class. The parameter list must be different in the different versions so
that Visual Basic can tell them apart. (If they are the same, this works just like Overrides,
described next.) If you are overloading a subroutine defi ned in a parent class, you must use
this keyword. If you are overloading only subroutines in the same class, you can omit the
keyword. If you use the keyword in any of the overloaded subroutines, however, you must
include it for them all.

 ➤ Overrides — Indicates that this subroutine replaces a subroutine in the parent class that
has the same name and parameters.

 ➤ Overridable — Indicates that a derived class can override this subroutine. This is the
default for a subroutine that overrides another one.

 ➤ NotOverridable — Indicates that a derived class cannot override this subroutine. You can
only use this with a subroutine that overrides another one.

 ➤ MustOverride — Indicates that any derived classes must override this subroutine. When
you use this keyword, you omit all subroutine code and the End Sub statement, as in the
following code:

http://msdn2.microsoft.com/system.attribute.aspx
http://msdn2.microsoft.com/system.attribute.aspx
http://msdn2.microsoft.com/2e39z096.aspx

Subroutines ❘ 273

MustOverride Sub Draw()
MustOverride Sub MoveMap(X As Integer, Y As Integer)
MustOverride Sub Delete()
...

If a class contains a subroutine declared MustOverride, you must declare the class using
the MustInherit keyword. Otherwise, Visual Basic won’t know what to do if you create an
instance of the class and try to call this subroutine, because it contains no code.

MustOverride is handy for defi ning a subroutine that derived classes must implement, but
for which a default implementation in the parent class doesn’t make sense. For example,
suppose that you make a Drawable class that represents a shape that can be drawn and that
you will derive specifi c shape classes such as Rectangle, Ellipse, Line, and so forth. To let
the program draw a generic shape, the Drawable class defi nes the Draw subroutine. Because
Drawable doesn’t have a particular shape, it cannot provide a default implementation of that
subroutine. To require the derived classes to implement Draw, the Drawable class declares it
MustOverride.

 ➤ Shadows — Indicates that this subroutine replaces an item (probably a subroutine) in the
parent class that has the same name, but not necessarily the same parameters. If the parent
class contains more than one overloaded version of the subroutine, this subroutine shadows
them all. If the derived class defi nes more than one overloaded version of the subroutine,
they must all be declared with the Shadows keyword.

 ➤ Shared — Indicates that this subroutine is associated with the class itself, rather than with
a specifi c instance of the class. You should invoke the subroutine by using the class’s name
(ClassName.SharedSub) instead of an instance (class_instance.SharedSub). Because the
subroutine is not associated with a specifi c class instance, it cannot use any properties or
methods that are provided by a specifi c instance. The subroutine can only use other Shared
properties and methods, as well as globally available variables.

Accessibility

A subroutine’s accessibility clause can take one of these values: Public, Protected, Friend, Protected
Friend, or Private. These values determine which pieces of code can invoke the subroutine. The
following list explains these keywords:

 ➤ Public — Indicates that there are no restrictions on the subroutine. Code inside or outside
of the subroutine’s class or module can call it.

 ➤ Protected — Indicates that the subroutine is accessible only to code in the same class or
in a derived class. You can only use the Protected keyword with subroutines declared inside
a class.

 ➤ Friend — Indicates that the subroutine is available to all code inside or outside of the
subroutine’s module within the same project. The difference between this and Public is that
Public allows code outside of the project to access the subroutine. This is generally only an
issue for code and control libraries where some other project may use the library.

274 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

 ➤ Protected Friend — Indicates that the subroutine has both Protected and Friend status.
The subroutine is available only within the same project and within the same class or a
derived class.

 ➤ Private — Indicates that the subroutine is available only within the class or module that
contains it.

To reduce the amount of information that developers must remember, you should generally declare
subroutines with the most restricted accessibility that allows them to do their jobs. If you can,
declare the subroutine Private. Then, developers working on other parts of the application don’t
even need to know that the subroutine exists. They can create other routines with the same name if
necessary and won’t accidentally misuse the subroutine.

Later, if you discover that you need to use the subroutine outside of its class or module, you can
change its declaration to allow greater accessibility.

Subroutine_Name

The subroutine’s name must be a valid Visual Basic identifi er. That means it should begin with a
letter or an underscore. It can then contain zero or more letters, numbers, and underscores. If the
name begins with an underscore, it must include at least one other character so that Visual Basic can
tell it apart from a line continuation character.

Many developers use camel case when naming subroutines so a subroutine’s name consists of several
descriptive words with their fi rst letters capitalized. A good method for generating subroutine
names is to use a short phrase beginning with a verb and describing what the subroutine does. Some
examples include LoadData, SaveNetworkConfi guration, and PrintExpenseReport.

Subroutine names with leading underscores can be hard to read, so you should either save them for
special purposes or avoid them entirely. Names such as _1 and __ (two underscores) are particularly
confusing.

Parameters

The parameters section of the subroutine declaration defi nes the numbers and types of the
parameters that the subroutine takes as arguments. This section also gives the names the subroutine
will use to refer to the values.

Declaring parameters is very similar to declaring variables. See Chapter 14, “Data Types, Variables,
and Constants,” for information on variable declarations, data types, and other related topics.

The following sections describe some of the more important details related to subroutine parameter
declarations.

ByVal

If you include the optional ByVal keyword before a parameter’s declaration, the subroutine makes
its own local copy of the argument. The subroutine can modify this value all it wants and the
corresponding value in the calling procedure isn’t changed.

Subroutines ❘ 275

ByRef

If you declare a parameter with the ByRef keyword, the subroutine does not create a separate copy
of the argument. Instead, it uses a reference to the original argument passed into the subroutine and
any changes the subroutine makes to the value are refl ected in the calling subroutine.

For example, consider the following code. The main program initializes the variable A and prints its
value in the Output window. It then calls subroutine DisplayDouble, which doubles its parameter
X and displays the new value. Because X is declared ByRef, this doubles the value of the variable A
that was passed by the main program into the subroutine. When the subroutine ends and the main
program resumes, it displays the new doubled value of variable A.

Private Sub Main()
 Dim A As Integer = 12
 Debug.WriteLine(“Main: “ & A)
 DisplayDouble(A)
 Debug.WriteLine(“Main: “ & A)
End Sub

Private Sub DisplayDouble(ByRef X As Integer)
 X *= 2
 Debug.WriteLine(“DisplayDouble: “ & X)
End Sub

The following shows the results:

Main: 12
DisplayDouble: 24
Main: 24

Arrays Declared ByVal and ByRef

If you declare an array parameter using ByVal or ByRef, those keywords apply to the array itself, not
to the array’s values. In either case, the subroutine can modify the values inside the array.

If the array is declared ByRef, the subroutine can also change the memory to which the array
points. It can set the parameter to a completely new array and the calling code will see the change in
the array that it passed to the subroutine.

Parenthesized Parameters

A subroutine can fail to update a parameter declared using the ByRef keyword in a couple ways. The
most confusing occurs if you enclose a variable in parentheses when you pass it to the subroutine.
Parentheses tell Visual Basic to evaluate their contents as an expression. Visual Basic creates a
temporary variable to hold the result of the expression and then passes the temporary variable into
the procedure. If the procedure’s parameter is declared ByRef, the subroutine updates the temporary
variable but not the original variable, so the calling routine doesn’t see any change to its value.

The following code calls subroutine DisplayDouble, passing it the variable A surrounded by
parentheses. Subroutine DisplayDouble modifi es its parameter’s value, but the result doesn’t get back
to the variable A.

276 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

Private Sub Main()
 Dim A As Integer = 12
 Debug.WriteLine(“Main: “ & A)
 DisplayDouble((A))
 Debug.WriteLine(“Main: “ & A)
End Sub

Private Sub DisplayDouble(ByRef X As Integer)
 X *= 2
 Debug.WriteLine(“DisplayDouble: “ & X)
End Sub

The following text shows the results:

Main: 12
DisplayDouble: 24
Main: 12

Chapter 14 has more to say about parameters declared with the ByVal and ByRef keywords.

Optional

If you declare a parameter with the Optional keyword, the code that uses it may omit that
parameter. When you declare an optional parameter, you must give it a default value for the
subroutine to use if the parameter is omitted by the calling routine.

The DisplayError subroutine in the following code demonstrates an optional string parameter:

Private Sub DisplayError(Optional error_message As String =
 “An error occurred”)
 MessageBox.Show(error_message)
End Sub

Private Sub PlaceOrder(the_customer As Customer, order_items() As OrderItem)
 ‘ See if the_customer exists.
 If the_customer Is Nothing Then
 DisplayError(“Customer is Nothing in subroutine PlaceOrder”)
 Exit Sub
 End If

 ‘ See if the_customer is valid.
 If Not the_customer.IsValid() Then
 DisplayError()
 Exit Sub
 End If

 ‘ Generate the order.
 ...
End Sub

If the calling routine provides the optional error_message parameter, the subroutine displays
it. If the calling routine leaves this parameter out, DisplayError uses its default message
“An error occurred.”

Subroutines ❘ 277

The PlaceOrder subroutine checks its the_customer parameter. If this parameter is
Nothing, PlaceOrder calls DisplayError to show the message “Customer is Nothing in subroutine
PlaceOrder.” Next, subroutine PlaceOrder calls the_customer’s IsValid function. If IsValid returns
False, the subroutine calls DisplayError this time without the parameter so DisplayError presents
its default message.

Optional parameters must go at the end of the parameter list, so if one parameter uses the Optional
keyword, all of the following parameters must use it, too.

OPTIONAL AND NULLABLE

Nullable parameters can also be optional. For example, the following code defi nes
three subroutines that each take an optional nullable parameter. The fi rst two give
the parameter the default value Nothing, and the third uses the default value 0.

Public Sub Sub1(Optional ByVal x? As Integer = Nothing)
 ...
End Sub

Public Sub Sub2(Optional ByVal x As Integer? = Nothing)
 ...
End Sub

Public Sub Sub3(Optional ByVal x As Nullable(Of Integer) = 0)
 ...
End Sub

Optional parameters are particularly useful for initializing values in a class’s constructor. The
following code shows a DrawableRectangle class. Its constructor takes as parameters the rectangle’s
position and size. All the parameters are optional, so the main program can omit them if it desires.
Because each parameter has default values, the constructor always knows it will have the four
values, so it can always initialize the object’s Bounds variable.

Public Class DrawableRectangle
 Public Bounds As Rectangle

 Public Sub New(
 Optional X As Integer = 0,
 Optional Y As Integer = 0,
 Optional Width As Integer = 100,
 Optional Height As Integer = 100
)
 Bounds = New Rectangle(X, Y, Width, Height)
 End Sub
 ...
End Class

278 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

Note that overloaded subroutines cannot differ only in optional parameters. If a call to the
subroutine omitted the optional parameters, Visual Basic would be unable to tell which version of
the subroutine to use.

Optional versus Overloading

Different developers have varying opinions on whether you should use optional parameters or
overloaded routines under various circumstances. For example, suppose that the FireEmployee
method could take one or two parameters giving either the employee’s name or the name and reason
for dismissal. You could make this a subroutine with the reason parameter optional, or you could
make one overloaded version of the FireEmployee method for each possible parameter list.

One argument in favor of optional parameters is that overloaded methods might duplicate a lot of
code. However, it is easy to make each version of the method call another version that allows more
parameters, passing in default values. For example, in the following code the fi rst version of the
FireEmployee method simply invokes the second version:

Public Sub FireEmployee(employee_name As String)
 FireEmployee(employee_name, “Unknown reason”)
End Sub

Public Sub FireEmployee(employee_name As String, reason As String)
 ...
End Sub

Method overloading is generally superior when the different versions of the routine need to do
something different. You might be able to make a single routine with optional parameters take
different actions based on the values of its optional parameters, but separating the code into
overloaded routines will probably produce a cleaner solution.

Parameter Arrays

Sometimes it is convenient to allow a subroutine to take a variable number of parameters. For
example, a subroutine might take as parameters the addresses of people who should receive e-mail.
It would loop through the names to send each a message.

One approach is to include a long list of optional parameters. For example, the e-mail subroutine
might set the default value for each of its parameters to an empty string. Then it would need to send
e-mail to every address parameter that was not empty.

Unfortunately, this type of subroutine would need to include code to deal with each optional
parameter separately. This would also place an upper limit on the number of parameters the
subroutine can take (however many you are willing to type in the subroutine’s parameter list).

A better solution is to use the ParamArray keyword to make the subroutine’s fi nal argument a
parameter array. A parameter array contains an arbitrary number of parameter values. At run time,
the subroutine can loop through the array to process the parameter values.

The DisplayAverage subroutine shown in the following code takes a parameter array named values.
It fi rst checks the array’s bounds to make sure it contains at least one value. If the array isn’t empty,
the subroutine adds the values it contains and divides by the number of values to calculate the average.

Subroutines ❘ 279

‘ Display the average of a series of values.
Private Sub DisplayAverage(ParamArray values() As Double)
 ‘ Do nothing if there are no parameters.
 If values Is Nothing Then Exit Sub
 If values.Length = 0 Then Exit Sub

 ‘ Display the average.
 MessageBox.Show((values.Sum()/ values.Length).ToString)
End Sub

The following code shows one way the program could use this subroutine. In this example,
DisplayAverage would display the average of the integers 1 through 7, which is 4.

DisplayAverage(1, 2, 3, 4, 5, 6, 7)

Parameter arrays are subject to the following restrictions:

 ➤ A subroutine can have only one parameter array, and it must come last in the parameter list.

 ➤ All other parameters in the parameter list must not be optional.

 ➤ All parameter lists must be declared ByVal.

 ➤ The calling code may pass the value Nothing in the place of the parameter array.
(That’s why the code in the previous example checked whether values was Nothing before
continuing.)

 ➤ The calling code can provide any number of values for the parameter array including zero.
(That’s why the code in the previous example checked whether values.Length was
zero before continuing.)

 ➤ Even though the values passed into a parameter array are in a sense optional, you cannot
use the Optional keyword when you declare the parameter array.

 ➤ All the items in the parameter array must have the same data type. However, you can use an
array that contains the generic Object data type and then it can hold just about anything.

The program can also pass an array of the appropriate data type in place of a series of
values. The following two calls to the DisplayAverage subroutine produce the same result inside the
DisplayAverage subroutine:

DisplayAverage(1, 2, 3, 4, 5, 6, 7)

Dim values() As Double = {1, 2, 3, 4, 5, 6, 7}
DisplayAverage(values)

Implements interface.subroutine

An interface defi nes a set of properties, methods, and events that a class implementing the interface
must provide. An interface is a lot like a class with all of its properties, methods, and events
declared with the MustOverride keyword. Any class that inherits from the base class must provide
implementations of those properties, methods, and events.

280 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

The following code defi nes the IDrawable interface and the IDrawableRectangle that implements it:

Public Interface IDrawable
 Sub Draw(gr As Graphics)
 Function Bounds() As Rectangle
 Property IsVisible As Boolean
End Interface

Public Class DrawableRectangle
 Implements IDrawable

 Public Function Bounds() As Rectangle Implements IDrawable.Bounds

 End Function

 Public Sub Draw(gr As Graphics) Implements IDrawable.Draw

 End Sub

 Public Property IsVisible As Boolean Implements IDrawable.IsVisible
End Class

The IDrawable interface defi nes a Draw subroutine, a Bounds function, and a property named
IsVisible.

The DrawableRectangle class begins with the statement Implements IDrawable. That tells Visual
Basic that the class will implement the IDrawable interface. If you make the class declaration,
type the Implements statement, and then press the Enter key, Visual Basic automatically fi lls in the
declarations you need to satisfy the interface. In this example, it creates the empty Bounds function,
Draw subroutine, and IsVisible property procedures shown here. All you need to do is fi ll in
the details.

If you look at the preceding code, you can see where the subroutine declaration’s Implements
interface.subroutine clause comes into play. In this case, the Draw subroutine implements the
IDrawable interface’s Draw method.

When you type the Implements statement and press the Enter key, Visual Basic generates empty
routines to satisfy the interface; then you don’t need to type the Implements interface.subroutine
clause yourself. Visual Basic enters this for you.

NAMING CONVENTION

Developers often begin the name of interfaces with a capital I so that it’s
obvious that it’s an interface. In fact, it’s such a common practice and has no
disadvantages that it should practically be a requirement. Start interface names with
“I” so other developers know they are interfaces.

Functions ❘ 281

The only time you should need to modify this statement is if you change the interface’s name or
subroutine name or you want to use some other subroutine to satisfy the interface. For example, you
could give the DrawableRectangle class a DrawRectangle method and add Implements IDrawable
.Draw to its declaration. Visual Basic doesn’t care what you call the routine, as long as some routine
implements IDrawable.Draw.

Statements

A subroutine’s statements section contains whatever Visual Basic code is needed to get the routine’s
job done. This can include all the usual variable declarations, For loops, If Then statements, and
other Visual Basic paraphernalia.

The subroutine’s body cannot include module, class, subroutine, function, structure, enumerated
type, or other fi le-level statements. For example, you cannot defi ne a subroutine within another
subroutine.

One statement that I haven’t mentioned before that you can use within a subroutine is Exit Sub. This
command makes the subroutine immediately exit and return control to the calling routine. Within a
subroutine, the Return statement is equivalent to Exit Sub.

You can use Exit Sub or Return as many times as you like to allow the subroutine to exit under
different conditions. For example, the following subroutine checks whether a phone number has
a 10-digit or 7-digit format. If the phone number matches a 10-digit format, the subroutine exits.
Then if the phone number matches a 7-digit format, the subroutine exits. Finally if the number
doesn’t match either format, the subroutine displays an error message to the user.

Private Sub ValidatePhoneNumber(phone_number As String)
 ‘ Check for a 10-digit phone number.
 If phone_number Like “###-###-####” Then Exit Sub

 ‘ Check for a 7-digit phone number.
 If phone_number Like “###-####” Then Return

 ‘ The phone number is invalid.
 MessageBox.Show(“Invalid phone number “ & phone_number)
End Sub

FUNCTIONS

Functions are basically the same as subroutines, except that they return some sort of value.
The syntax for defi ning a function is as follows:

[attribute_list] [inheritance_mode] [accessibility]
Function function_name([parameters]) [As return_type]
[Implements interface.function]
 [statements]
End function

282 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

This is almost the same as the syntax for defi ning a subroutine. See the section “Subroutines”
earlier in this chapter for information about most of this declaration’s clauses.

One difference is that a function ends with the End Function statement rather than
End Sub. Similarly, a function can exit before reaching its end by using Exit Function rather
than Exit Sub.

The one nontrivial difference between subroutine and function declarations is the clause As
return_type that comes after the function’s parameter list. This tells Visual Basic the type of value
that the function returns.

The function can set its return value in one of two ways. First, it can set its own name
equal to the value that it should return. The Factorial function shown in the following code
calculates the factorial of a number. Written N!, the factorial of N is N * (N1) * (N2) . . .* 1. The
function initializes its result variable to 1, and then loops over the values between 1 and the number
parameter, multiplying these values to the result. It fi nishes by setting its name, Factorial, equal to
the result value that it should return.

Private Function Factorial(number As Integer) As Double
 Dim result As Double = 1

 For i As Integer = 2 To number
 result *= i
 Next i

 Factorial = result
End function

A function can assign and reassign its return value as many times as it wants to before it returns.
Whatever value is assigned last becomes the function’s return value.

The second way a function can assign its return value is to use the Return keyword followed by the
value that the function should return. The following code shows the Factorial function rewritten to
use the Return statement:

Private Function Factorial(number As Integer) As Double
 Dim result As Double = 1

 For i As Integer = 2 To number
 result *= i
 Next i

 Return result
End function

The Return statement is roughly equivalent to setting the function’s name equal to the return
value, and then immediately using an Exit Function statement. The Return statement may allow
the compiler to perform extra optimizations, however, so it is generally preferred to setting the
function’s name equal to the return value. (Return is also the more modern syntax and has become
so common that some developers don’t even recognize the other syntax anymore.)

Property Procedures ❘ 283

PROPERTY PROCEDURES

Property procedures are routines that can represent a property value for a class. The simplest
kind of property is an auto-implemented property. Simply add the Property keyword to a variable
declaration as shown in the following code:

Public Property LastName As String

If you want, you can give the property a default value as in the following code:

Public Property LastName As String = “<missing>”

Behind the scenes, Visual Basic makes a hidden variable to hold the property’s value. When other
parts of the program get or set the value, Visual Basic uses the hidden variable.

This type of property is easy to make but it has few advantages over a simple variable. You can
make the property more powerful if you write your own procedures to get and set the property’s
value. If you write your own procedures you can add validation code, perform complex calculations,
save and restore values in a database, set breakpoints, and add other extras to the property.

A normal read-write property procedure contains a function for returning the property’s value and a
subroutine for assigning it.

The following code shows property procedures that implement a Value property. The Property Get
procedure is a function that returns the value in the private variable m_Value. The Property Set
subroutine saves a new value in the m_Value variable.

Private m_Value As Single

Property Value() As Single
 Get
 Return m_Value
 End Get

 Set(Value As Single)
 m_Value = Value
 End Set
End Property

Although the property is implemented as a pair of property procedures, the program can treat the
value as a simple property. For example, suppose that the OrderItem class contains the preceding
code. Then the following code sets the Value property for the OrderItem object named paper_item:

paper_item.Value = 19.95F

You can add property procedures to any type of object module. For example, you can use property
procedures to implement a property for a form or for a class of your own.

It’s less obvious that you can also use property procedures in a code module. The property
procedures look like an ordinary variable to the routines that use them. If you place the previous

284 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

example in a code module, the program could act as if there were a variable named Value defi ned in
the module.

For more information on property procedures, see the section “Property Procedures” in Chapter 14.

EXTENSION METHODS

Extension methods allow you to add new methods to an existing class without rewriting it or
deriving a new class from it. To make an extension method, place the method in a code module and
decorate its declaration with the Extension attribute. The fi rst parameter determines the class that the
method extends. The method can use that parameter to learn about the item for which the method
was called. The other parameters are passed into the method so it can use them to perform its chores.

EASIER EXTENSIONS

The Extension attribute is defi ned in the System.Runtime.CompilerServices
namespace. Using an Imports statement to import that namespace makes it easier to
write extensions.

For example, the following code adds a MatchesRegexp subroutine to the String class:

‘ Return True if a String matches a regular expression.
<Extension()>
Public Function MatchesRegexp(the_string As String,
 ByVal regular_expression As String) As Boolean
 Dim reg_exp As New Regex(regular_expression)
 Return reg_exp.IsMatch(the_string)
End function

The Extension attribute tells Visual Basic that this is an extension method. The method’s fi rst
parameter is a String so this method extends the String class. The second parameter is a regular
expression. The method returns True if the String matches the regular expression.

The following code shows how a program might use this method to decide whether the string stored
in variable phone_number looks like a valid 7-digit United States phone number:

if Not phone_number.MatchesRegexp(“^[2-9]\d{2}-\d{4}$”) Then
 MessageBox.Show(“Not a valid phone number”)
End if

Example program ValidatePhone, which is available for download on the book’s website,
demonstrates the MatchesRegexp extension method. It also uses the MatchesRegexp method to
defi ne the following three additional extension methods that determine whether a string looks like
a valid 7- or 10-digit United States phone number. These methods simply call the MatchesRegexp
method, passing it appropriate regular expressions.

Lambda Functions ❘ 285

‘ Return True if a String looks like a 7-digit US phone number.
<Extension()>
Public Function IsValidPhoneNumber7digit(the_string As String) As Boolean
 Return the_string.MatchesRegexp(“^[2-9]\d{2}-\d{4}$”)
End Function

‘ Return True if a String looks like a 10-digit US phone number.
<Extension()>
Public Function IsValidPhoneNumber10digit(the_string As String) As Boolean
 Return the_string.MatchesRegexp(“^([2-9]\d{2}-){2}\d{4}$”)
End Function

‘ Return True if a String looks like a 7- or 10-digit US phone number.
<Extension()>
Public Function IsValidPhoneNumberUS(the_string As String) As Boolean
 Return IsValidPhoneNumber7digit(the_string) OrElse
 IsValidPhoneNumber10digit(the_string)
End function

If you build a class and later need to change its features, it’s usually easiest to modify its code
directly. That will cause less confusion than extension methods, which may lie in some obscure
module that seems unrelated to the original class. If you need to add methods to existing classes that
you cannot modify directly, such as String and other classes defi ned by Visual Basic and the .NET
Framework, extension methods can be extremely useful.

LAMBDA FUNCTIONS

Lambda functions are functions that are defi ned within the fl ow of the program’s code. Often they
are defi ned, used, and forgotten in a single statement without ever being given a name.

To defi ne a lambda function for later use, start with the Function keyword. Add the function’s name
and any parameters that it requires, followed by a single statement that evaluates to the value that
the function should return.

Next include either (1) a single statement that evaluates to the value that the function should return,
or (2) a function body that ends with an End Function statement.

The following code fragment shows examples of both of these styles:

Dim square_it = Function(n As Integer) n * n
Dim factorial = Function(n As Integer) As Integer
 Dim result As Integer = 1
 For i As Integer = 2 To n
 result *= i
 Next i
 Return result
 End Function

Debug.WriteLine(square_it(5))
Debug.WriteLine(factorial(5))

286 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

The code fi rst creates a lambda function named square_it that takes parameter n and returns n * n.
It then creates a multiline lambda function named factorial that calculates and returns a number’s
factorial. The code fi nishes by calling both functions and displaying their results.

Example program LambdaFunction, which is available for download on the book’s website,
contains the following code fragment:

‘ Define a lambda function that adds two integers.
Dim plus = Function(i1 As Integer, i2 As Integer) i1 + i2

‘ Get A and B.
Dim A As Integer = Integer.Parse(txtA.Text)
Dim B As Integer = Integer.Parse(txtB.Text)

‘ Call the lambda function to calculate the result.
txtResult.Text = plus(A, B).ToString

This code starts by defi ning a variable named plus. This variable holds a reference to a lambda
function that takes two integers as parameters and returns their sum. The code then gets input
values from text boxes and calls the plus function, passing it those values. It converts the result into
a string and displays it in the txtResult text box.

This example creates a variable to hold a reference to a lambda function and then invokes the function
by using that variable. It could just as easily have invoked the lambda function itself while defi ning it.

Example program InlineFunction, which is also available for download on the book’s website,
demonstrates this in the following line of code. This line defi nes the function and invokes it without
ever saving a reference to it.

txtResult.Text =
 (Function(i1 As Integer, i2 As Integer) i1 + i2)(A, B).ToString

Because lambda functions are declared in a single line of code, they are also called inline functions.
A lambda function defi ned inside a subroutine or function is also sometimes called a nested function.

LAMBDA OR INLINE?

To the extent that anyone distinguishes between lambda and inline functions, the
preceding example is more properly called an inline function because the function
is contained within the line that uses it and is never given a name. The examples
before that one are more properly called lambda functions because they create func-
tions (square_it, factorial, and plus) with references that are used later.

No matter which method the program uses to defi ne a lambda function, it could then pass the
function to another routine that will later call the function. For example, suppose subroutine
PerformCalculations takes as a parameter the function it should use to perform its calculations.

Relaxed Delegates ❘ 287

The following code shows how a program could call subroutine PerformCalculations while passing
it the previous lambda functions:

‘ Define the plus function.
Dim plus = Function(i1 As Integer, i2 As Integer) i1 + i2

‘ Call PerformCalculations passing it the lambda function.
PerformCalculations(plus)

‘ Call PerformCalculations passing it an inline lambda function.
PerformCalculations(Function(i1 As Integer, i2 As Integer) i1 + i2)

Inline functions were invented for use by LINQ and are most often used with LINQ. For
more information about LINQ, see Chapter 20, “LINQ.”

In addition to lambda functions, you can write lambda subroutines that are similar to lambda
functions except they don’t return a value.

The following code defi nes two named lambda subroutines. The fi rst does all of its work on a single
line whereas the second uses the multiline format. After defi ning the subroutines, the code invokes
them to display two messages.

Dim write_msg = Sub(msg As String) Debug.WriteLine(“write_msg: “ & msg)
Dim show_msg = Sub(msg As String)
 MessageBox.Show(“show_msg: “ & msg)
 End Sub

write_msg(“Hi”)
show_msg(“Hi again”)

As with lambda functions, you can build and pass a lambda subroutine into another routine as a
parameter.

RELAXED DELEGATES

If you assign a variable to the value in a variable of a different type, Visual Basic automatically
converts the value into the correct type under some circumstances. If you set a Single variable equal
to an Integer variable, Visual Basic automatically converts the Integer into a Single.

If Option Strict is off, you can also do the reverse: If you assign an Integer variable equal to a Single
variable, Visual Basic converts the Single into an Integer (if it can).

In a similar manner, relaxed delegates let Visual Basic convert method parameters from one data
type to another under certain circumstances. If the code invokes a subroutine by using a delegate,
Visual Basic tries to convert parameters when it can. Probably the easiest way to understand how
this works is to consider an example.

The following code declares a delegate type named TestDelegate. Methods that match this delegate
should be subroutines that take a Control as a parameter.

‘ Declare the delegate type.
Private Delegate Sub TestDelegate(ctl As Control)

288 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

The following code defi nes three subroutines that take parameters of different types. The fi rst takes
an Object as a parameter, the second takes a TextBox, and the third takes no parameters. Note that
the fi rst subroutine cannot work if Option Strict is on. Option Strict disallows late binding, so the
code cannot use a Text property provided by a generic Object.

‘ A more general parameter type.
Private Sub Test1(obj As Object)
 obj.Text = “Test1” ‘ Needs Option Strict off.
End Sub

‘ A more specific parameter type.
Private Sub Test2(text_box As TextBox)
 text_box.Text = “Test2”
End Sub

‘ Parameter omitted.
Private Sub Test3()
 txtField3.Text = “Test3”
End Sub

The following code declares three variables of the TestDelegate type and sets them equal to the
addresses of the three test subroutines:

‘ Make variables of the delegate type hold references to the subroutines.
Private Sub1 As TestDelegate = AddressOf Test1
Private Sub2 As TestDelegate = AddressOf Test2 ‘ Needs Option Strict off.
Private Sub3 As TestDelegate = AddressOf Test3

The fi rst assignment works even though subroutine Test1 does not exactly match the delegate type.
Subroutine Test1 takes an Object as a parameter and TestDelegate takes a Control as a parameter.
When Visual Basic invokes the Sub1 variable, it will pass the subroutine a Control object as a
parameter because Sub1 has type TestDelegate, and that type takes a Control as a parameter.
A Control is a type of Object, so Visual Basic can safely pass a Control in place of an Object
parameter. That allows the code assigning Sub1 to the address of subroutine Test1 to work.

The second line of code that assigns variable Sub2 to subroutine Test2 works only if Option Strict
is off. When Visual Basic invokes the Sub2 variable, it will pass the subroutine a Control object
as a parameter because Sub1 has type TestDelegate, and that type takes a Control as a parameter.
Subroutine Test2 takes a TextBox as a parameter, and not every Control is a TextBox. That means
at design time Visual Basic cannot tell whether it can safely invoke the Sub2 delegate so, if Option
Strict is on, Visual Basic fl ags this assignment as an error. If Option Strict is off, Visual Basic allows
the assignment, although the program will crash if it tries to pass a control that is not a TextBox
into Sub2 at run time.

STRICTLY SPEAKING

This is similar to setting a TextBox variable equal to the value in a Control variable.
If Option Strict is on, Visual Basic will not allow that assignment.

Relaxed Delegates ❘ 289

The fi nal assignment sets variable Sub3 to the address of subroutine Test3. Subroutine Test3 takes
no parameters. This is a special case that Visual Basic allows: If the method does not need to use the
parameters specifi ed by the delegate, it can omit its parameters. Note that the method must omit all
or none of the parameters; it cannot omit some and not others.

The following code invokes the subroutines pointed to by the three TestDelegate variables, passing
each a reference to a different TextBox. Sub1 treats txtField1 as an Object, Sub2 treats txtField2
as a TextBox, and Sub3 ignores its parameter completely.

Sub1(txtField1)
Sub2(txtField2)
Sub3(txtField3)
‘ Test3(txtField3) ‘ This doesn’t work.

The fi nal line of code, that invokes subroutine Test3 directly, doesn’t work. Omitting the parameter
list from a method only works if you access the method from a delegate. If you call the method
directly, the parameter list must match the one declared for the method.

Example program RelaxedDelegates, which is available for download on the book’s website,
demonstrates this code.

All of these relaxed delegate rules are somewhat confusing. They give you a little more fl exibility,
but they can make the code a lot more confusing. You may wonder why you should bother. In fact,
if you use delegates such as those shown in this example, you might want to avoid using relaxed
delegates to keep the code easier to understand.

These rules also apply to event handlers, and in that context they are much more useful. They let
you change an event handler’s parameter types to make them more general or more specifi c, or to
omit them entirely.

The following code shows a simple, standard Button Click event handler. It takes two parameters of
types Object and EventArgs. In this example, the code reads a text fi le into a text box.

Private Sub btnLoad_Click(sender As Object,
 ByVal e As EventArgs) Handles btnLoad.Click
 txtContents.Text = File.ReadAllText(txtFile.Text)
End Sub

Many event handlers must deal explicitly with the control that raised their event. In that case, the
fi rst thing the event handler usually does is convert the generic sender parameter from an Object
into a more specifi c control type.

The following code defi nes a Button Click event handler similar to the previous one but this one
declares its sender parameter to be of type Button. This works as long as the event is actually raised
by a Button so the sender parameter really is a button. If you were to attach this event handler to
a TextBox’s TextChanged event, the program would crash when Visual Basic tried to convert the
TextBox into a Button when it raises the event.

‘ Needs Option Strict off.
Private Sub btnLoad2_Click(btn As Button,
 ByVal e As Object) Handles btnLoad2.Click
 txtContents.Text = File.ReadAllText(txtFile.Text)
End Sub

290 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

Note that this version requires Option Strict off. If Option Strict is on, Visual Basic will not allow
this subroutine to handle a Button’s Click event. This is similar to the way Option Strict prevents
you from setting a Button variable equal to a generic Object variable.

The previous code declares its parameters to have a more restrictive type than those passed into it by
the control raising the event. You can also make the parameters more general. You could declare the
e parameter to be of type Object instead of EventArgs. Usually, that doesn’t help you much. It could
be useful if you want to use the same event handler to catch different kinds of events that provide
different types of arguments, but it’s hard to imagine a really good example where that wouldn’t be
confusing.

A more common situation is where the event handler ignores its parameters completely. Usually each
Button has a separate Click event handler so you don’t need to look at the parameters to fi gure out
which button was clicked.

The following code defi nes a Button Click event handler that takes no parameters. When the user
clicks the btnLoad3 Button, Visual Basic doesn’t pass the event handler any parameters. This code is
easier to read than the previous versions, partly because the Sub statement fi ts all on one line.

Private Sub btnLoad3_Click() Handles btnLoad3.Click
 txtContents.Text = File.ReadAllText(txtFile.Text)
End Sub

Example program RelaxedEventHandlers, which is available for download on the book’s website,
demonstrates relaxed event handlers.

Relaxed delegates may add more confusion than they’re worth if you use delegate variables, but they
can be useful for simplifying event handlers. Declaring parameters with a more specifi c type (for
example, Button instead of Object) can make the code easier to write and understand, although it
has the large drawback of requiring Option Strict off. Omitting parameters when you don’t need
them is an even better technique. It simplifi es the code without forcing you to turn Option Strict off.

ASYNCHRONOUS METHODS

Normally a program calls a routine and control passes to that routine. When the routine fi nishes
executing, control returns to the calling code, which resumes executing its own code. All of this
happens synchronously so the calling code waits until the called routine fi nishes all of its work
before it continues.

Visual Basic provides several methods that you can use to execute code asynchronously. In those
cases a calling piece of code can launch a routine in a separate thread and continue executing
before the routine fi nishes. If your computer has multiple cores or CPUs, the calling code and
the asynchronous routine may both be able to execute simultaneously on separate processors,
potentially saving a lot of time.

Visual Basic provides several methods of various diffi culties for executing code asynchronously. The
following sections describe three of the more manageable approaches.

Asynchronous Methods ❘ 291

Calling EndInvoke Directly

This method uses a delegate’s BeginInvoke method to start a routine executing asynchronously.
Later the code calls EndInvoke to wait for the routine to fi nish and to process the result.

To use this method, fi rst defi ne a delegate that represents the routine that you want to run
asynchronously. Call the delegate’s BeginInvoke method, passing it whatever parameters the method
needs plus two additional parameters: a callback method and a parameter to pass to the callback
method. For this technique, set the extra parameters to Nothing so the routine does not invoke a
callback when it completes. (The following section explains how to use the callback.)

The call to BeginInvoke launches the asynchronous code on its own thread and then returns
immediately so the calling code can perform other tasks.

After the calling code has done as much as it can before the asynchronous thread fi nishes, it should
invoke the delegate’s EndInvoke method. That method waits until the asynchronous thread fi nishes
(if it isn’t already fi nished) and returns the result of the original method.

NOTE It is important that the code call EndInvoke even if the thread is executing
a subroutine rather than a function and the code doesn’t care about any returned
result. The call to EndInvoke lets the program free resources used by the
asynchronous thread.

The AsyncCallEndInvoke example program,
which is shown in Figure 16-1 and available
for download on the book’s website, uses this
approach to generate embossed images for four
different pictures.

The program uses an extension method named
Emboss that allows a Bitmap object to return
an embossed version of itself. The details of that
method aren’t important for this discussion so its
code is not shown here. Download the example
program to see how it works. The only feature of
that method that is important right now is that
it takes a long time to fi nish so running on multiple
threads can make the program faster.

The following code shows how the
AsyncCallEndInvoke program defi nes the delegate it
uses to launch the Emboss extension method:

Private Delegate Function EmbossDelegate(bm As Bitmap) As Bitmap

FIGURE 16-1: The AsyncCallEndInvoke

 example program generates embossed images

asynchronously.

292 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

The Emboss method takes a Bitmap as a parameter (the object that is calling the extension method)
and returns a new Bitmap so the delegate takes a Bitmap as a parameter and returns a Bitmap
as a result.

The following code shows how the program invokes the Emboss extension method asynchronously:

‘ Emboss the images asynchronously.
Private Sub btnAsync_Click(sender As Object, e As EventArgs) _
 Handles btnAsync.Click
 lblElapsedTime.Text = “”
 DisplayOriginalImages()
 Me.Cursor = Cursors.WaitCursor
 Application.DoEvents()

 Dim start_time As Date = Now

 ‘ Get all of the bitmaps.
 Dim bm1 As Bitmap = My.Resources.JackOLanterns
 Dim bm2 As Bitmap = My.Resources.Dunk
 Dim bm3 As Bitmap = My.Resources.Flatirons
 Dim bm4 As Bitmap = My.Resources.world

 ‘ Start the processes.
 Dim caller1 As EmbossDelegate = AddressOf bm1.Emboss
 Dim result1 As IAsyncResult =
 caller1.BeginInvoke(bm1, Nothing, Nothing)

 Dim caller2 As EmbossDelegate = AddressOf bm2.Emboss
 Dim result2 As IAsyncResult =
 caller2.BeginInvoke(bm2, Nothing, Nothing)

 Dim caller3 As EmbossDelegate = AddressOf bm3.Emboss
 Dim result3 As IAsyncResult =
 caller3.BeginInvoke(bm3, Nothing, Nothing)

 Dim caller4 As EmbossDelegate = AddressOf bm4.Emboss
 Dim result4 As IAsyncResult =
 caller4.BeginInvoke(bm4, Nothing, Nothing)

 ‘ Wait for the processes to complete.
 PictureBox1.Image = caller1.EndInvoke(result1)
 PictureBox2.Image = caller2.EndInvoke(result2)
 PictureBox3.Image = caller3.EndInvoke(result3)
 PictureBox4.Image = caller4.EndInvoke(result4)

 ‘ Display the elapsed time.
 Dim stop_time As Date = Now
 Dim elapsed_time As TimeSpan = stop_time - start_time
 lblElapsedTime.Text = elapsed_time.TotalSeconds.ToString(“0.00”) & “ seconds”
 Me.Cursor = Cursors.Default
End Sub

After some preliminaries such as displaying the original images on the form and saving the start
time, the program loads four bitmaps from its resources. Then for each bitmap it creates an

Asynchronous Methods ❘ 293

EmbossDelegate object that refers to the bitmap’s instance of the Emboss extension
method and calls that delegate’s BeginInvoke method. At that point the method can begin
executing asynchronously but the main program’s code continues executing.

After it has called BeginInvoke for all four delegates, the program needs the results of the
asynchronous methods so it calls EndInvoke for all four delegates. It passes EndInvoke the
IAsyncResult object that it received when it called BeginInvoke to give the method information
about the asynchronous call. EndInvoke returns the result of the function that the delegate
represents, in this case the embossed images.

For example, the fi rst delegate, named caller1, refers to the fi rst bitmap’s version of the Emboss
extension method bm1.Emboss. That delegate’s EndInvoke method returns the value returned by
bm1.Emboss, which is an embossed version of the bitmap bm1.

The program assigns the returned bitmaps to the PictureBoxes’ Image properties and displays
the elapsed time.

In one set of tests on my dual-core computer, creating the four embossed images took roughly
12.9 seconds synchronously but only 7.2 seconds asynchronously. Because the computer has
two cores, you might expect the asynchronous version to take only half the time used by the
synchronous version, but there is some overhead in setting up and coordinating the threads. The
result is still an impressive reduction in time, however, and would be even greater on a computer
with more cores.

Handling a Callback

The technique described in the previous section directly calls EndInvoke to make the main UI thread
wait until its asynchronous threads have fi nished before the main program continues.

Another approach is to let the main program continue without waiting for the threads to complete
and then have the threads invoke a callback method when they fi nish.

This approach lets the main program ignore the asynchronous threads for most purposes but it
does make the fl ow of execution less predictable. While the threads are running, the user can do
other things, perhaps even starting new threads that duplicate those that are already running.
When a thread fi nishes, the callback routine executes, possibly interrupting whatever the user is
doing at the time.

There’s one important catch to working with callbacks: Only the thread that created the user
interface (called the UI thread) can directly interact with the controls in the user interface. That
means the asynchronous threads cannot directly assign images to PictureBoxes, display text in
Labels or TextBoxes, move controls around, or otherwise manipulate the controls. Because the
threads invoke the callback methods, those methods cannot directly interact with the controls,
either. In this example that means the callback methods cannot directly assign the PictureBox’s
Image properties.

You can get around this restriction by using the form’s Invoke method. Invoke executes one of the
form’s methods on the UI thread.

294 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

The AsyncHandleCallback example program, which is available for download on the book’s
website, is similar to the AsyncCallEndInvoke example program but it uses callbacks instead of
calling EndInvoke in the program’s main fl ow of execution.

The AsyncHandleCallback program defi nes the Emboss delegate just as the AsyncCallEndInvoke
program does. The following code shows how the program calls BeginInvoke for its fi rst image:

Dim caller1 As EmbossDelegate = AddressOf bm1.Emboss
Dim result1 As IAsyncResult =
 caller1.BeginInvoke(bm1, AddressOf AsyncCallback, PictureBox1)

The code makes a delegate named caller1 that represents the bm1 object’s Emboss method.
It calls the delegate’s BeginInvoke method, passing it the bitmap to process (bm1), the address
of the callback routine (AsyncCallback), and the PictureBox that should display the embossed
result (PictureBox1).

The code performs similar steps for the other images and then the btnAsync_Click event handler
that contains this code ends without waiting for the threads to fi nish.

Later, when a thread fi nishes, it invokes the following callback routine:

‘ Handle a callback.
Private Sub AsyncCallback(result As AsyncResult)
 Dim caller As EmbossDelegate =
 DirectCast(result.AsyncDelegate, EmbossDelegate)

 ‘ Get the parameter we passed to the callback.
 Dim pic As PictureBox = DirectCast(result.AsyncState, PictureBox)

 ‘ Get the method’s return value.
 Dim bm As Bitmap = caller.EndInvoke(result)

 ‘ Use Invoke to display the image on the PictureBox.
 Dim displayer As New SetPictureBoxImageDelegate(AddressOf SetPictureboxImage)
 Me.Invoke(displayer, pic, bm)
End Sub

This code receives as a parameter an AsyncResult object representing the thread’s result. It uses that
result’s AsyncDelegate property to get a reference to the original delegate that the program used to
call BeginInvoke.

The result’s AsyncState property holds whatever value the program passed as the fi nal parameter to
BeginInvoke. In this example, that was the PictureBox that should display the embossed image. The
callback code converts the AsyncState property into a PictureBox.

The code then calls the delegate’s EndInvoke method and saves the result, which is the embossed
bitmap created by the thread.

Because this code is executing in an asynchronous thread, it cannot directly set the PictureBox’s
Image property so it uses Invoke to run the SetPictureBoxImage method on the UI thread. To
do that, it makes a delegate variable pointing to the method and then calls Invoke, passing it the
delegate and the parameters to pass to the SetPictureBoxImage method.

Asynchronous Methods ❘ 295

The following code shows the defi nition of the SetPictureBoxImageDelegate and the
SetPictureBoxImage method:

‘ Set a PictureBox’s Image property.
Private Delegate Sub SetPictureBoxImageDelegate(pic As PictureBox, img As Image)
Private Sub SetPictureBoxImage(pic As PictureBox, img As Image)
 pic.Image = img
End Sub

This method simply sets the PictureBox’s Image property. (I’ve removed some code that displays the
elapsed time to keep the method simple. Download the example to see how that works.)

IGNORING INVOKE

Actually this program seems to work even if the callback sets the PictureBoxes’
Image properties directly, but messing with controls from non-UI threads is a bad
habit and doesn’t work with all properties. Try setting the PictureBox’s BorderStyle
property to None directly in the callback and in subroutine SetPictureBoxImage to
see what happens.

For more information on calling methods asynchronously by using BeginInvoke and EndInvoke,
see the article “Calling Synchronous Methods Asynchronously” at http://msdn.microsoft.com/
library/2e08f6yc.aspx.

Using Async and Await

Calling EndInvoke directly in the UI thread makes the code relatively simple but it means the
program is blocked until all of the asynchronous threads fi nish running. Using a callback allows the
main UI thread to fi nish before the threads do so the UI can interact with the user, but the code is
somewhat more complex, particularly if the callback must manipulate controls, so it needs to use
the form’s Invoke method.

Visual Basic 2012 provides two new keywords that make it easier to use the callback approach
without actually writing callbacks and calling Invoke yourself.

The Async keyword indicates that a routine may have parts that should run asynchronously.
You should apply this keyword to your event handlers and other routines that will start tasks
asynchronously and then wait for them.

The Await keyword makes the program wait until a particular task has fi nished running
asynchronously. When it sees the Await keyword, Visual Basic essentially converts the rest of the
routine into a callback that it invokes when the task has fi nished. One really nice feature of that
“virtual callback” is that it executes on the UI thread so it can manipulate controls directly without
using the form’s Invoke method.

The AsyncAwait example program, which is available for download on the book’s website, is very
similar to the AsyncCallEndInvoke and AsyncHandleCallback example programs but it uses the
Async and Await keywords.

http://msdn.microsoft.com/library/2e08f6yc.aspx
http://msdn.microsoft.com/library/2e08f6yc.aspx

296 ❘ CHAPTER 16 SUBROUTINES AND FUNCTIONS

The following code shows the btnAsync_Click event handler that executes when you click the
program’s Async button:

‘ Emboss the images asynchronously.
Private Async Sub btnAsync_Click(sender As Object, e As EventArgs) _
 Handles btnAsync.Click
 lblElapsedTime.Text = “”
 DisplayOriginalImages()
 Me.Cursor = Cursors.WaitCursor
 Application.DoEvents()

 Dim start_time As Date = Now

 ‘ Get all of the bitmaps.
 Dim bm1 As Bitmap = My.Resources.JackOLanterns
 Dim bm2 As Bitmap = My.Resources.Dunk
 Dim bm3 As Bitmap = My.Resources.Flatirons
 Dim bm4 As Bitmap = My.Resources.world

 ‘Start four embossing tasks running.
 Dim task1 As New Task(Of Bitmap)(AddressOf bm1.Emboss)
 task1.Start()
 Dim task2 As New Task(Of Bitmap)(AddressOf bm2.Emboss)
 task2.Start()
 Dim task3 As New Task(Of Bitmap)(AddressOf bm3.Emboss)
 task3.Start()
 Dim task4 As New Task(Of Bitmap)(AddressOf bm4.Emboss)
 task4.Start()

 ‘ Wait for the tasks to finish.
 PictureBox1.Image = Await task1
 PictureBox2.Image = Await task2
 PictureBox3.Image = Await task3
 PictureBox4.Image = Await task4

 ‘ Display the elapsed time.
 Dim stop_time As Date = Now
 Dim elapsed_time As TimeSpan = stop_time - start_time
 lblElapsedTime.Text = elapsed_time.TotalSeconds.ToString(“0.00”) & “ seconds”
 Me.Cursor = Cursors.Default
End Sub

Because this event handler has parts that run asynchronously, its declaration includes the Async keyword.

The code begins as the previous versions do, saving the start time and retrieving the program’s
bitmaps. It then creates Task objects to make the embossed images on asynchronous threads. The
Of Bitmap part of the Task declarations means that the Tasks return Bitmaps. For each Bitmap, the
program creates a Task to execute the Bitmap’s Emboss method and calls the Task’s Start method to
make it start running on its own thread.

After it has created and launched all four Tasks, the program calls Await for each Task. Each Task
returns a Bitmap and the program displays the Bitmap in the corresponding PictureBox.

Calling Await is very similar to calling EndInvoke directly except that behind the scenes Visual
Basic moves the code that follows into a callback so execution does not block until the Tasks return.

Summary ❘ 297

The btnAsync_Click event handler blocks until the Tasks fi nish, but the program’s control returns
to the event loop so the program can perform other tasks such as responding to the user. This is
similar to the way control returns to the AsyncHandleCallback program’s main code while the
asynchronous threads continue executing.

When the Tasks fi nish, they invoke a behind-the-scenes callback that continues executing the
btnAsync_Click event handler.

The result is a combination of the results of the two previous examples. As in program
AsyncCallEndInvoke, the button’s event handler doesn’t fi nish until all of the Tasks have completed
so you can write that code in a fairly linear fashion without worrying about callbacks. However, the
program actually is using a callback behind the scenes so the button’s event handler doesn’t block
the entire application while it is running. (And you don’t need to create any callbacks yourself.)

To see the difference, run the example program and click the Async button to start building the
embossed images. After one or two of the images are displayed, click the Reset button to display the
original images. Repeat the same steps in the other two examples to see the differences.

For more information about using Async and Await, see the article “Asynchronous Programming
with Async and Await” at http://msdn.microsoft.com/library/hh191443(v=vs.110).aspx.

SUMMARY

Subroutines and functions let you break an application into manageable, reusable pieces. A subroutine
performs a series of commands. A function performs a series of commands and returns a value.

Property procedures use paired functions and subroutines to provide the appearance of a simple property.

These form the fundamental building blocks of the procedural part of an application. Chapters 22
through 26 explain the other half of an application’s structure: the objects that encapsulate the
application’s behavior. Together, the program’s objects and its procedural subroutines and functions
defi ne the application.

This chapter explained how to break an otherwise unwieldy expanse of code into subroutines and
functions of manageable size. It also explained techniques related to subroutines and functions, such
as extension methods and relaxed delegates, that let you use existing classes and events in new ways.

This chapter also explained three ways you can execute pieces of code simultaneously on different
threads of execution. If your computer has multiple cores or CPUs, that may allow you to greatly
improve performance.

The chapters so far have not explained how to write anything other than straight-line code that
executes one statement after another with no deviation. Most programs need to follow more
complex paths of execution, performing some statements only under certain conditions and
repeating others many times. Chapter 17, “Program Control Statements,” describes the statements
that a Visual Basic program uses to control the fl ow of code execution. These include decision
statements (If Then Else, Select Case, IIF, Choose) and looping statements (For Next, For Each, Do
While, While Do, Repeat Until).

http://msdn.microsoft.com/library/hh191443(v=vs.110).aspx

Program Control Statements

WHAT’S IN THIS CHAPTER

 ➤ Decision statements

 ➤ Looping statements

 ➤ Enumerators and iterators

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this
chapter is divided into the following major examples:

 ➤ EnumerateEmployees

 ➤ ExitAndContinue

 ➤ Loops

CONTROLLING PROGRAMS

Program control statements tell an application which other statements to execute under a
particular set of circumstances. They control the path that execution takes through the code.
They include commands that tell the program to execute some statements but not others and
to execute certain statements repeatedly.

The two main categories of control statements are decision statements (or conditional
statements) and looping statements. The following sections describe in detail the decision
and looping statements provided by Visual Basic .NET.

DECISION STATEMENTS

A decision or conditional statement represents a branch in the program. It marks a place
where the program can execute one set of statements or another, or possibly no statements

17

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://wrox.com
http://WROX.COM

300 ❘ CHAPTER 17 PROGRAM CONTROL STATEMENTS

at all, depending on some condition. These include several kinds of If statements, Choose
statements, and Select Case statements.

Single-Line If Then

The single-line If Then statement has two basic forms. The fi rst allows the program to execute a
single statement if some condition is True. The syntax is as follows:

If condition Then statement

If the condition is True, the program executes the statement. In the most common form of single-
line If Then statements, the statement is a single simple command (such as assigning a value to a
variable or calling a subroutine).

The following example checks the emp object’s IsManager property. If IsManager is True, the state-
ment sets the emp object’s Salary property to 90,000.

If emp.IsManager Then emp.Salary = 90000

The second form of the single-line If Then statement uses the Else keyword. The syntax is as follows:

If condition Then statement1 Else statement2

If the condition is True, the code executes the fi rst statement. If the condition is False, the code
executes the second statement. The decision about which statement to execute is an either-or
decision; the code executes one statement or the other, but not both.

This type of single-line If Then Else statement can be confusing if it is too long to easily see in the code
editor. For longer statements, a multiline If Then Else statement is easier to understand and debug. The
performance of single-line and multiline If Then Else statements is comparable (in one test, the multiline
version took only about 80 percent as long), so you should use the one that is easiest for you to read.

The single-line If Then statement can also include Else If clauses. For example, the following code
examines the variable X. If X is 1, the program sets variable txt to “One.” If X has the value 2, the
program sets txt to “Two.” If X is not 1 or 2, the program sets txt to a question mark.

Dim txt As String
If X = 1 Then txt = “One” Else If X = 2 Then txt = “Two” Else txt = “?”

The code can include as many Else If clauses as you like. However, confusing code such as the
preceding example can lead to puzzling bugs that are easy to avoid if you use multiline If Then
statements instead.

In summary, if you can write a simple single-line If Then statement with no Else If or Else clauses,
and the whole thing fi ts nicely on the line so that it’s easy to see the whole thing without confusion,
go ahead. If the statement is too long to read easily, or contains Else If or Else clauses, you are
usually better off using a multiline If Then statement. It may take more lines of code, but the code
will be easier to read, debug, and maintain later.

Multiline If Then

A multiline If Then statement can execute more than one line of code when a condition is True.
The syntax for the simplest form of the multiline If Then statement is as follows:

Decision Statements ❘ 301

If condition Then
 statements ...
End If

If the condition is True, the program executes all the commands that come before the End If
statement.

Like the single-line If Then statement, the multiline version can include Else If and Else clauses.
For possibly historical reasons, ElseIf is spelled as a single word in the multiline If Then statement.
The syntax is as follows:

If condition1 Then
 statements1 ...
ElseIf condition2
 statements2 ...
Else
 statements3 ...
End If

If the fi rst condition is True, the program executes the fi rst set of statements. If the fi rst condition is
False, the code examines the second condition and, if that one is True, the code executes the second
set of statements. The program continues checking conditions until it fi nds one that is True and it
executes the corresponding code.

If the program reaches an Else statement, it executes the corresponding code. If the program reaches
the End If statement without fi nding a True condition or an Else clause, it doesn’t execute any of the
statement blocks.

It is important to understand that the program exits the If Then construction immediately after it
has executed any block of statements. It does not examine the other conditions. This saves the pro-
gram some time and is particularly important if the conditions involve functions. If each test calls a
relatively slow function, skipping these later tests can save the program a signifi cant amount of time.

Select Case

The Select Case statement lets a program execute one of several pieces of code depending on a single
value. The basic syntax is as follows:

Select Case test_value
 Case comparison_expression1
 statements1
 Case comparison_expression2
 statements2
 Case comparison_expression3
 statements3
 ...
 Case Else
 else_statements
End Select

If test_value matches comparison_expression1, the program executes the statements in
the block statements1. If test_value matches comparison_expression2, the program executes

302 ❘ CHAPTER 17 PROGRAM CONTROL STATEMENTS

the statements in the block statements2. The program continues checking the expressions in the
Case statements in order until it matches one, or it runs out of Case statements.

If test_value doesn’t match any of the expressions in the Case statements, the program executes
the code in the else_statements block. Note that you can omit the Case Else section. In that
case, the program executes no code if test_value doesn’t match any of the expressions.

Select Case is functionally equivalent to an If Then Else statement. The following code does the
same thing as the previous Select Case code:

If test_value = comparison_expression1 Then
 statements1
ElseIf test_value = comparison_expression2 Then
 statements2
ElseIf test_value = comparison_expression3 Then
 statements3
...
Else
 else_statements
End If

Select Case is sometimes easier to understand than a long If Then Else statement. It is often faster as
well, largely because Select Case doesn’t need to reevaluate test_value for every Case statement. If
test_value is a simple variable, the difference is insignifi cant, but if test_value represents a slow
function call, the difference can be important. For example, suppose test_value represents a function
that opens a database and looks up a value. The Select Case version will fi nd the value once and use it
in each comparison, whereas the If Then version would reopen the database for each comparison.

The previous If Then example assumes the comparison expressions are constants. A comparison
expression can also specify ranges using the To and Is keywords, and include a comma-separated list
of expressions. These forms are described in the following sections.

To

The To keyword specifi es a range of values that test_value should match. The following code
examines the variable num_items. If num_items is between 1 and 10, the program calls
subroutine ProcessSmallOrder. If num_items is between 11 and 100, the program calls subroutine
ProcessLargeOrder. If num_items is less than 1 or greater than 100, the program beeps.

Select Case num_items
 Case 1 To 10
 ProcessSmallOrder()
 Case 11 To 100
 ProcessLargeOrder()
 Case Else
 Beep()
End Select

Is

The Is keyword lets you perform logical comparisons using the test value. The word Is takes the
place of the test value in the comparison expression. For example, the following code does almost

Decision Statements ❘ 303

the same things as the previous code. If the value num_items is less than or equal to 10, the program
calls subroutine ProcessSmallOrder. If the fi rst Case clause doesn’t apply and num_items is less
than or equal to 100, the program calls subroutine ProcessLargeOrder. If neither of these cases
applies, the program beeps.

Select Case num_items
 Case Is <= 10
 ProcessSmallOrder()
 Case Is <= 100
 ProcessLargeOrder()
 Case Else
 Beep()
End Select

This version is slightly different from the previous one. If num_items is less than 1, this code calls
subroutine ProcessSmallOrder whereas the previous version beeps.

You can use the operators =, <>, <, <=, >, and >= in an Is clause. (In fact, when you use a simple
value in a Case clause as in Case 7, you are implicitly using Is = as in Case Is = 7.)

Comma-Separated Expressions

A comparison expression can include a series of expressions separated by commas. If the test value
matches any of the comparison values, the program executes the corresponding code.

For example, the following code examines the department_name variable. If department_name is
“R & D,” “Test,” or “Computer Operations,” the code adds the text “Building 10” to the address_
text string. If department_name is “Finance,” “Purchasing,” or “Accounting,” the code adds
“Building 7” to the address. More Case clauses could check for other department_name values and
the code could include an Else statement.

Select Case department_name
 Case “R & D”, “Test”, “Computer Operations”
 address_text &= “Building 10”
 Case “Finance”, “Purchasing”, “Accounting”
 address_text &= “Building 7”
 ...
End Select

Note that you cannot use comma-separated expressions in a Case Else clause. For example, the
following code doesn’t work:

Case Else, “Corporate” ‘ This doesn’t work.

You can mix and match constants, To, and Is expressions in a single Case clause, as shown
in the following example. This code checks the variable item_code and calls subroutine
DoSomething if the value is less than 10, between 30 and 40 inclusive, exactly equal to
100, or greater than 200.

304 ❘ CHAPTER 17 PROGRAM CONTROL STATEMENTS

Select Case item_code
 Case Is < 10, 30 To 40, 100, Is > 200
 DoSomething()
 ...
End Select

Enumerated Values

Select Case statements work very naturally with lists of discrete values. You can have a separate Case
statement for each value, or you can list multiple values for one Case statement in a comma-separated list.

Enumerated types defi ned by the Enum statement also work with discrete values, so they work well
with Select Case statements. The enumerated type defi nes the values and the Select Case statement
uses them, as shown in the following code fragment:

Private Enum JobStates
 Pending
 Assigned
 InProgress
 ReadyToTest
 Tested
 Released
End Enum
Private m_JobState As JobStates
...
Select Case m_JobState
 Case Pending
 ...
 Case Assigned
 ...
 Case InProgress
 ...
 Case ReadyToTest
 ...
 Case Tested
 ...
 Case Released
 ...
End Select

To catch bugs when changing an enumerated type, many developers include a Case Else statement
that throws an exception. If you later add a new value to the enumerated type but forget to add cor-
responding code to the Select Case statement, the Select Case statement throws an error when it sees
the new value, so you can fi x the code.

For more information on enumerated types, see the section “Enumerated Data Types” in Chapter
14, “Data Types, Variables, and Constants.”

IIf

The IIf statement evaluates a Boolean expression and then returns one of two values, depending on
whether the expression is True or False. This statement may look more like an assignment statement
or a function call than a decision statement such as If Then.

Decision Statements ❘ 305

The syntax is as follows:

variable = IIf(condition, value_if_true, value_if_false)

For example, the following code examines an Employee object’s IsManager property. If IsManager
is True, the code sets the employee’s Salary to 90,000. If IsManager is False, the code sets the
employee’s Salary to 10,000.

emp.Salary = IIf(emp.IsManager, 90000, 10000)

Note that the IIf statement returns an Object data type. If you have Option Strict turned on, Visual
Basic will not allow this statement, because it assigns a result of type Object to an Integer variable.
To satisfy Visual Basic, you must explicitly convert the value into an Integer, as in the following
code:

emp.Salary = CInt(IIf(emp.IsManager, 90000, 10000))

The IIf statement has several drawbacks. First, it is confusing. When you type an IIf statement,
IntelliSense will remind you that its parameters give a condition, a True value, and a False value.
When you are reading the code, however, you must remember what the different parts of the state-
ment mean. If you use IIf in some other statement, the chances for confusion increase. For example,
consider the following code:

For i = 1 To CInt(IIf(employees_loaded, num_employees, 0))
 ‘ Process employee i.
 ...
Next i

Code is generally much easier to understand if you replace IIf with an appropriate If Then statement.

Another drawback to IIf is that it evaluates both the True and False values whether the condition is
True or False. For example, consider the following code:

num_objects = CInt(IIf(use_groups, CountGroups(), CountIndividuals()))

If the Boolean use_groups is True, this code sets num_objects to the result of the CountGroups func-
tion. If use_groups is False, the code sets num_objects to the result of the CountIndividuals
function. In either case, IIf evaluates both functions no matter which value it actually needs. If
the functions are time-consuming or executed inside a large loop, using IIf can waste a lot of time.

For an even more dangerous example, consider the following code:

num_loaded = CInt(IIf(data_loaded, num_employees, LoadEmployees()))

If data_loaded is True, this statement sets num_loaded = num_employees. If data_loaded is
False, the code sets num_loaded to the value returned by the LoadEmployees function (which loads
the employees and returns the number of employees it loaded).

IIf evaluates both the value num_employees and the value LoadEmployees() no matter what. If
the employees are already loaded, IIf calls LoadEmployees() to load the employees again, ignores

306 ❘ CHAPTER 17 PROGRAM CONTROL STATEMENTS

the returned result, and sets num_loaded = num_employees. LoadEmployees may waste quite a lot
of time loading the data that is already loaded. Even worse, the program may not be able to handle
loading the data when it is already loaded.

A fi nal drawback to IIf is that it is slower than a comparable If Then Else statement. In one test, IIf
took roughly twice as long as a comparable If Then statement.

One case where you can argue that IIf is easier to understand is when you have a long series of very
simple statements. In that case, IIf statements may allow you to easily see the common features in
the code and notice if anything looks wrong. For example, the following code initializes several text
boxes using strings. It uses an IIf statement to set a text box’s value to <Missing> if the string is not
yet initialized.

txtLastName.Text = IIf(last_name Is Nothing, “<Missing>”, last_name)
txtFirstName.Text = IIf(first_name Is Nothing, “<Missing>”, first_name)
txtStreet.Text = IIf(street Is Nothing, “<Missing>”, street)
txtCity.Text = IIf(city Is Nothing, “<Missing>”, city)
txtState.Text = IIf(state Is Nothing, “<Missing>”, state)
txtZip.Text = IIf(zip Is Nothing, “<Missing>”, zip)

To avoid confusing side effects, use IIf only if it makes the code easier to understand.

If

The If statement, not to be confused with an If Then statement, resolves some of the problems
with the IIf statement. It evaluates a Boolean expression and then returns one of two values,
depending on whether the expression is True or False, as IIf does. The difference is that If only
evaluates the return value that it actually returns.

For example, the following code examines an Employee object’s IsManager property. If IsManager
is True, the code sets the employee’s Salary to the result returned by the GetManagerSalary
function and never calls function GetEmployeeSalary. If IsManager is False, the code sets the
employee’s Salary to the result of the GetEmployeeSalary function and never calls function
GetManagerSalary.

emp.Salary = If(emp.IsManager, GetManagerSalary(), GetEmployeeSalary())

Other than the fact that If doesn’t evaluate both of its possible return values, it behaves just as IIf
does.

Choose

The IIf and If statements use a Boolean expression to pick between two values. The Choose state-
ment uses an integer to decide among any number of options. The syntax is as follows:

variable = Choose(index, value1, value2, value3, value4, ...)

If the index parameter is 1, Choose returns the fi rst value, value1; if index is 2, Choose returns
value2; and so forth. If index is less than 1 or greater than the number of values in the parameter
list, Choose returns Nothing.

Decision Statements ❘ 307

This statement has the same drawbacks as IIf. Choose evaluates all of the result values no matter
which one is selected, so it can slow performance. It can be particularly confusing if the values are
functions with side effects.

Often Choose is more confusing than a comparable Select Case statement. If the values look dis-
similar (mixing integers, objects, function calls, and so forth), involve complicated functions, or are
wrapped across multiple lines, a Select Case statement may be easier to read.

However, if the Choose statement’s values are short and easy to understand, and the statement
contains many values, the Choose statement may be easier to read. For example, the following
Choose and Select Case statements do the same thing. Because the Choose statement’s values are
short and easy to understand, this statement is easy to read. The Select Case statement is rather
long. If the program had more choices, the Select Case statement would be even longer, making it
more diffi cult to read.

fruit = Choose(index, “apple”, “banana”, “cherry”, “date”)

Select Case index
 Case 1
 fruit = “apple”
 Case 2
 fruit = “banana”
 Case 3
 fruit = “cherry”
 Case 4
 fruit = “date”
End Select

Although it’s not always clear whether a Choose statement or a Select Case statement will be
easier to read, Select Case is certainly faster. In one test, Choose took more than fi ve times as
long as Select Case. If the code lies inside a frequently executed loop, the speed difference may be
an issue.

Choose and Select Case are not your only options. You can also store the program’s choices in an
array, and then use the index to pick an item from the array. For example, the following code stores
the strings from the previous example in the values array. It then uses the index to pick the right
choice from the array.

Dim fruit_names() As String = {“apple”, “banana”, “cherry”, “date”}

fruit = fruit_names(index - 1)

INTELLIGENT INDEXING

Notice that the code subtracts 1 from the index when using it to pick the right
choice. The Choose statement indexes its values starting with 1, but arrays in Visual
Basic .NET start with index 0. Subtracting 1 allows the program to use the same
index values used in the previous example.

308 ❘ CHAPTER 17 PROGRAM CONTROL STATEMENTS

This version makes you think about the code in a different way. It requires that you know that the
fruit_names array contains the names of the fruits that the program needs. If you understand
the array’s purpose, then the assignment statement is easy to understand.

The assignment code is even slightly faster than Select Case, at least if you can initialize the fruit_
names array ahead of time.

If you fi nd Choose easy to understand and it doesn’t make your code more diffi cult to read in your
particular circumstances, by all means use it. If Select Case seems clearer, use that. If you will need
to perform the assignment many times and pre-building an array of values makes sense, using a
value array might improve your performance.

LOOPING STATEMENTS

Looping statements make the program execute a series of statements repeatedly. The loop can
run for a fi xed number of repetitions, run while some condition is True, or run while some
condition is False.

Broadly speaking, there are two types of looping statements. For Next loops execute a certain number
of times that (in theory at least) is known. For example, a For Next loop may execute a series of state-
ments exactly 10 times. Or, it may execute the statements once for each object in a certain collection. If
you know how many items are in the collection, you know the number of times the loop will execute.

A While loop executes while a condition is True or until a condition is met. Without a lot more
information about the application, it is impossible to tell how many times the code will execute. For
example, suppose a program uses the InputBox function to get names from the user until the user
clicks the Cancel button. In that case, there’s no way for the program to guess how many values the
user will enter before canceling.

The following sections describe the looping statements supported by Visual Basic .NET. The next
two sections describe For Next loops, and the sections after those describe While loops. (Example
program Loops, which is available for download on the book’s website, demonstrates some of these
kinds of loops.)

For Next

The For Next loop is the most common type of looping statement in Visual Basic. The syntax is as
follows:

For variable [As data_type] = start_value To stop_value [Step increment]
 statements
 [Exit For]
 statements
 [Continue For]
 statements
Next [variable]

The value variable is the looping variable that controls the loop. When the program reaches the
For statement, it sets variable equal to start_value. It then compares variable to stop_value.

Looping Statements ❘ 309

If variable has passed stop_value, the loop exits. Note that the loop may not execute even once
depending on the start and stop values.

For example, the following loop runs for the values employee_num = 1, employee_num = 2, . . .,
employee_num = num_employees. If the program has not loaded any employees so
num_employees = 0, the code inside the loop is not executed at all.

For employee_num = As Integer 1 To num_employees
 ProcessEmployee(employee_num)
Next employee_num

After it compares variable to stop_value, the program executes the statements inside the loop.
It then adds increment to variable and starts the process over, again comparing variable to
stop_value. If you omit increment, the program uses an increment of 1.

Note that increment can be negative or a fractional number, as in the following example:

For i As Integer = 3 To 1 Step -0.5
 Debug.WriteLine(i)
Next i

If increment is positive, the program executes as long as variable <= stop_value. If
increment is negative, the program executes as long as variable >= stop_value. This means that
the loop would not execute infi nitely if increment were to move variable away from stop_value.
For example, in the following code start_value = 1 and increment = –1. The variable i would
take the values i = 1, i = 0, i = –1, and so forth, so i will never reach the stop_value of 2.
However, because increment is negative, the loop only executes while i >= 2. Because i starts
with the value 1, the program immediately exits and the loop doesn’t execute at all.

For i As Integer = 1 To 2 Step -1
 Debug.WriteLine(i)
Next i

Visual Basic doesn’t require that you include the variable’s name in the Next statement, although
this makes the code easier to read. If you do specify the name in the Next statement, it must match
the name you use in the For statement.

If you do not specify the looping variable’s data type in the For statement and Option Explicit is on
and Option Infer is off, then you must declare the variable before the loop. For example, the follow-
ing loop declares the variable i outside of the loop:

Dim i As Integer

For i = 1 To 10
 Debug.WriteLine(i)
Next i

Declaring the looping variable in the For statement is a good practice for several reasons. It limits
the scope of the variable so you don’t need to remember what the variable is for in other pieces of
code. It keeps the variable’s declaration close to the code where it is used, so it’s easier to remember

310 ❘ CHAPTER 17 PROGRAM CONTROL STATEMENTS

the variable’s data type. It also lets you more easily reuse counter variables without fear of confu-
sion. If you have several loops that need an arbitrarily named looping variable, they can all declare
and use the variable i without interfering with each other.

The program calculates its start_value and stop_value before the loop begins and it never recal-
culates them, even if their values change. For example, the following code loops from 1 to this_
customer.Orders(1).NumItems. The program calculates this_customer.Orders(1).NumItems
before executing the loop and doesn’t recalculate that value even if it later changes. This saves the
program time, particularly for long expressions such as this one, which could take a noticeable
amount of time to reevaluate each time through a long loop.

For item_num As Integer = 1 To this_customer.Orders(1).NumItems
 this_customer.ProcessItem(item_num)
Next item_num

If you must reevaluate stop_value every time the loop executes, use a While loop instead of a For
Next loop.

The Exit For statement allows the program to leave a For Next loop before it would normally fi nish.
For example, the following code loops through the employees array. When it fi nds an entry with
the IsManager property set to True, it saves the employee’s index and uses Exit For to immediately
stop looping.

Dim manager_index As Integer

For i As Integer = employees.GetLowerBound(0) To employees.GetUpperBound(0)
 If employees(i).IsManager Then
 manager_index = i
 Exit For
 End If
Next i

The Exit For statement exits only the For Next loop immediately surrounding the statement.
If a For Next loop is nested within another For Next loop, the Exit For statement exits only the
inner loop.

The Continue For statement makes the loop jump back to its For statement, increment its looping
variable, and start the loop over again. This is particularly useful if the program doesn’t need to
execute the rest of the steps within the loop’s body and wants to start the next iteration quickly.

OUT OF CONTROL

Your code can change the value of the control variable inside the loop, but that’s
generally not a good idea. The For Next loop has a very specifi c intent, and modify-
ing the control variable inside the loop violates that intent, making the code more
diffi cult to understand and debug. If you must modify the control variable in more
complicated ways than are provided by a For Next loop, use a While loop instead.
Then programmers reading the code won’t expect a simple incrementing loop.

Looping Statements ❘ 311

Non-Integer For Next Loops

Usually a For Next loop’s control variable is an integral data type such as an Integer or Long but
it can be any of the fundamental Visual Basic numeric data types. For example, the following code
uses a variable declared as Single to display the values 1.0, 1.5, 2.0, 2.5, and 3.0:

For x As Single = 1 To 3 Step 0.5
 Debug.WriteLine(x.ToString(“0.0”))
Next x

Because fl oating-point numbers cannot exactly represent every possible value, these data types are
subject to rounding errors that can lead to unexpected results in For Next loops. The preceding
code works as you would expect, at least on my computer. The following code, however, has prob-
lems. Ideally, this code would display values between 1 and 2, incrementing them by 1/7. Because
of rounding errors, however, the value of x after seven trips through the loop is approximately
1.85714316. The program adds 1/7 to this and gets 2.0000003065381731. This is greater than the
stopping value 2, so the program exits the loop and the Debug statement does not execute for x = 2.

For x As Single = 1 To 2 Step 1 / 7
 Debug.WriteLine(x)
Next x

One solution to this type of problem is to convert the code into a loop that uses an Integer control
variable. Integer variables do not have the same problems with rounding errors that fl oating-point
numbers do, so you have more precise control over the values used in the loop.

The following code does roughly the same thing as the previous code. It uses an Integer control
variable, however, so this loop executes exactly eight times as desired. The fi nal value printed into
the Output window by the program is 2.

Dim x As Single

x = 1
For i As Integer = 1 To 8
 Debug.WriteLine(x)
 x += CSng(1 / 7)
Next i

If you look at the value of variable x in the debugger, you will fi nd that its real value during the last
trip through the loop is roughly 2.0000001702989851. If this variable were controlling the For
loop, the program would see that this value is greater than 2, so it would not display its fi nal value.

For Each

A For Each loop iterates over the items in a collection, array, or other container class that supports
For Each loops. The syntax is as follows:

For Each variable [As object_type] In group
 statements
 [Exit For]
 statements

312 ❘ CHAPTER 17 PROGRAM CONTROL STATEMENTS

 [Continue For]
 statements
Next [variable]

Here, group is a collection, array, or other object that supports For Each. As in For Next loops, the
control variable must be declared either in or before the For statement if you have Option Explicit
on and Option Infer off.

ENABLING ENUMERATORS

To support For Each, the group object must implement the System.Collections
.IEnumerable interface. This interface defi nes a GetEnumerator method that returns
an enumerator. For more information, see the next section, “Enumerators.”

The control variable must be of a data type compatible with the objects contained in the group.
If the group contains Employee objects, the variable could be an Employee object. It could also be
a generic Object or any other class that readily converts into an Employee object. For example,
if Employee inherits from the Person class, then the variable could be of type Person.

Visual Basic doesn’t automatically understand what kinds of objects are stored in a collection or
array until it tries to use them. If the control variable’s type is not compatible with an object’s type,
the program generates an error when the For Each loop tries to assign the control variable to that
object’s value.

That means if a collection or array contains more than one type of object, the control variable must
be of a type that can hold all of the objects. If the objects in a collection do not inherit from a com-
mon ancestor class, the code must use a control variable of type Object.

Like For Next loops, For Each loops support the Exit For and Continue For statements.

As is the case with For Next loops, declaring the looping variable in the For Each statement is a
good practice. It limits the scope of the variable, so you don’t need to remember what the variable
is for in other pieces of code. It keeps the variable’s declaration close to the code where it is used, so
it’s easier to remember the variable’s data type. It also lets you more easily reuse counter variables
without fear of confusion. If you have several loops that need an arbitrarily named looping variable,
they can all declare and use the variable obj, person, or whatever else makes sense without interfer-
ing with each other.

Your code can change the value of the control variable inside the loop, but that has no effect on
the loop’s progress through the collection or array. The loop resets the variable to the next object
inside the group and continues as if you had never changed the variable’s value. To avoid confusion,
don’t bother.

Changes to a collection are immediately refl ected in the loop. For example, if the statements inside
the loop add a new object to the end of the collection, then the loop continues until it processes the

Looping Statements ❘ 313

new item. Similarly, if the loop’s code removes an item from the end of the collection (that it has not
yet reached), the loop does not process that item.

The exact effect on the loop depends on whether the item added or removed comes before or
after the object the loop is currently processing. For example, if you remove an item before the
current item, the loop has already examined that item, so there is no change to the loop’s behavior.
If you remove an item after the current one, the loop doesn’t examine it. If you remove the current
item, the loop seems to get confused and exits without raising an error.

Additions and deletions to an array are not refl ected in the loop. If you use a ReDim statement to
add items to the end of the array, the loop does not process them. If you try to access those objects,
however, the program generates an “Index was outside the bounds of the array” error.

If you use ReDim to remove items from the end of the array, the loop processes those items
anyway! If you modify the values in the array, for example, you change an object’s properties or
set an array entry to an entirely new object, the loop sees the changes.

To avoid all these possible sources of confusion, don’t modify a collection or array while a For
Each loop is examining its contents.

CREATIVE COLLECTIONS

If you really must modify a collection while looping through it, create a new collec-
tion and modify that one instead. For example, suppose you want to loop through
the original collection and remove some items. Make the new collection and then
loop through the original, copying the items that you want to keep into the new
collection.

In really complicated situations, you may need to use a While loop and some careful
indexing instead of a For Each loop.

One common scenario when dealing with collections is examining every item in the collection and
removing some of them. If you use a For Each loop, removing the loop’s current item makes the loop
exit prematurely.

Another approach that seems like it might work (but doesn’t) is to use a For Next loop, as shown in
the following code. If the code removes an object from the collection, the loop skips the next item
because its index has been reduced by one and the loop has already passed that position in the
collection. Worse still, the control variable i will increase until it reaches the original value of
employees.Count. If the loop has removed any objects, the collection no longer holds that many
items. The code tries to access an index beyond the end of the collection and throws an error.

Dim emp As Employee

For i As Integer = 1 To employees.Count
 emp = employees(i)
 If emp.IsManager Then employees.Remove(i)
Next i

314 ❘ CHAPTER 17 PROGRAM CONTROL STATEMENTS

One solution to this problem is to use a For Next loop to examine the collection’s objects in reverse
order, as shown in the following example. In this version, the code never needs to use an index after
it has been deleted because it is counting backward. The index of an object in the collection also
doesn’t change unless that object has already been examined by the loop. The loop examines every
item exactly once, no matter which objects are removed.

For i As Integer = employees.Count To 1 Step -1
 emp = employees(i)
 If emp.IsManager Then employees.Remove(i)
Next i

Enumerators

An enumerator is an object that lets you move through the objects contained by some sort of con-
tainer class. For example, collections, arrays, and hash tables provide enumerators. This section
discusses enumerators for collections, but the same ideas apply for these other classes.

You can use an enumerator to view the objects in a collection but not to modify the collection
itself. You can use the enumerator to alter the objects in the collection (for example, to change their
properties), but you can generally not use it to add, remove, or rearrange the objects in the collection.

Initially, an enumerator is positioned before the fi rst item in the collection. Your code can use the
enumerator’s MoveNext method to step to the next object in the collection. MoveNext returns True
if it successfully moves to a new object or False if there are no more objects in the collection.

The Reset method restores the enumerator to its original position before the fi rst object, so you can
step through the collection again.

The Current method returns the object that the enumerator is currently reading. Note that Current
returns a generic Object, so you will probably need to convert the result into a more specifi c data
type before you use it. Invoking Current throws an error if the enumerator is not currently reading
any object. That happens if the enumerator is before the fi rst object or after the last object.

The following example uses an enumerator to loop through the items in a collection named
Employees:

Dim emp As Employee
Dim employee_enumerator As IEnumerator
employee_enumerator = Employees.GetEnumerator()
Do While (employee_enumerator.MoveNext)
 emp = CType(employee_enumerator.Current, Employee)
 Debug.WriteLine(emp.Title & “ “ &.FirstName & “ “ & emp.LastName)
Loop

This code declares an Employee variable named emp and an IEnumerator object named employee_
enumerator. It uses the collection’s GetEnumerator method to obtain an enumerator for the col-
lection. The program then enters a While loop. If employee_enumerator.MoveNext returns True,
the enumerator has successfully moved to the next object in the collection. As long as it has read an
object, the program uses CType to convert the generic object returned by Current into an Employee

Looping Statements ❘ 315

object, and it displays the Employee object’s Title, FirstName, and LastName values. When it has
fi nished processing all of the objects in the collection, employee_enumerator.MoveNext returns
False and the While loop ends.

EXACT ENUMERATORS

Some containers support enumerators that use more specifi c data types. For
example, a program can use a generic List that contains a specifi c kind of object
such as Employee. Then it can use a generic enumerator of the correct type, in this
case IEnumerator(Of Employee). In that case, the enumerator’s Current property
returns an Employee instead of an Object so the code does not need to convert it
into an Employee before using its methods.

Example program EnumerateEmployees, which is available for download on the
book’s website, creates a generic List(Of Employee). It then creates a generic
IEnumerator(Of Employee) for the list and uses it to loop through the list. For
more information on generics, see Chapter 26, “Generics.”

A For Each loop provides roughly the same access to the items in a container class as an enumera-
tor. Under some circumstances, however, an enumerator may provide a more natural way to loop
through a container class than a For Each loop. For example, an enumerator can skip several items
without examining them closely. You can also use an enumerator’s Reset method to restart the enu-
meration. To restart a For Each loop, you would need to repeat the loop, possibly by placing it inside
yet another loop that determines when to stop looping.

The Visual Basic documentation states that an enumerator is valid only as long as you do
not modify the collection. If you add or remove an object to or from the collection, the enumerator
throws an “invalid operation” exception the next time you use it. In at least some cases,
however, this doesn’t seem to be true, and an enumerator can still work even if you modify
its collection. This could lead to extremely confusing situations, however. To avoid unnecessary
confusion, do not modify a collection while you are accessing it with an enumerator.

The IEnumerable interface defi nes the features needed for enumerators so any class that
implements the IEnumerable interface provides enumerators. Any class that supports For Each
must also implement the IEnumerable interface, so any class that supports For Each also supports
enumerators. A few of the classes that implement IEnumerable include the following:

Array HybridDictionary SqlDataReader

ArrayList ListDictionary Stack

Collection MessageQueue String

continues

316 ❘ CHAPTER 17 PROGRAM CONTROL STATEMENTS

Iterators

An iterator is similar in concept to an enumerator. It also provides methods that allow you to
step through the objects in some sort of container object. Iterators are more specialized than
enumerators and work with a particular kind of class. Although you can use a nonspecifi c
IEnumerator object to step through the items contained in any class that implements
IEnumerable (an array, collection, hash table, or whatever), a certain iterator class is
associated with a specifi c container class.

For example, a GraphicsPath object represents a series of connected lines and curves.
A GraphicsPathIterator object can step through the line and curve data contained in a
GraphicsPath object.

Iterators are much more specialized than enumerators. How you use them depends on what you
need to do and on the kind of iterator, so they are not described in detail here.

Do Loop Statements

Visual Basic .NET supports three basic forms of Do Loop statements. The fi rst form is a loop that
repeats forever. The syntax is as follows:

Do
 statements
 [Exit Do]
 statements
 [Continue Do]
 statements
Loop

This kind of Do Loop executes the code it contains until the program somehow ends the loop. The
following loop processes work orders. It calls the WorkOrderAvailable function to see if a work
order is available. If an order is available, the code calls ProcessWorkOrder to process it. The code
then repeats the loop to look for another work order.

CollectionBase OdbcDataReader StringCollection

ControlCollection OleDbDataReader StringDictionary

DataView OracleDataReader TableCellCollection

DictionaryBase Queue TableRowCollection

DictionaryEntries ReadOnlyCollectionBase XmlNode

Hashtable SortedList XmlNodeList

 (continued)

Looping Statements ❘ 317

Do
 ‘ See if a work order is available.
 If WorkOrderAvailable() Then
 ‘ Process the next work order.
 ProcessWorkOrder()
 End If
Loop

This example keeps checking for work orders forever. Most programs include some method for the
loop to end so that the program can eventually stop. For example, the loop might use the Exit Do
statement described shortly to end the loop if the user clicks a Stop button.

The second and third forms of Do Loop statements both include a test to determine whether they
should continue looping. The difference between the two versions is where they place the test.

The next version of Do Loop places its test at the beginning, so the test is evaluated before the code
is executed. If the test initially indicates that the loop should not continue, the statements inside the
loop are never executed. The syntax is as follows:

Do {While | Until} condition
 statements
 [Exit Do]
 statements
 [Continue Do]
 statements
Loop

The fi nal version of Do Loop places its test at the end. In this version, the statements inside the loop
are executed before the loop performs its test. That means that the code is always executed at least
once. The syntax is as follows:

Do
 statements
 [Exit Do]
 statements
 [Continue Do]
 statements
Loop {While | Until} condition

If the code uses the While keyword, the loop executes as long as the condition is True. If the code
uses the Until keyword, the loop executes as long as the condition is False. Note that the statement
Until condition is equivalent to While Not condition. Visual Basic provides these two variations so
that you can pick the one that makes your code more readable. Use the one that makes the most
sense to you.

The Exit Do statement allows the program to leave the nearest enclosing Do loop before it would
normally fi nish. The Continue Do statement makes the loop jump back to its Do statement and start
the loop over again. This is particularly useful if the program doesn’t need to execute the rest of the
steps within the loop and wants to quickly start the next iteration.

318 ❘ CHAPTER 17 PROGRAM CONTROL STATEMENTS

Unlike a For Next or For Each loop, the Do Loop does not automatically increment a looping vari-
able or move to the next object in a collection. The code must explicitly change the loop’s condition
before reaching the Loop statement or calling Continue Do or else the loop will continue forever.

While End

A While End loop is equivalent to a Do While Loop. The syntax is as follows:

While condition
 statements
 [Exit While]
 statements
 [Continue While]
 statements
End While

This is equivalent to the following Do While Loop:

Do While condition
 statements
 [Exit Do]
 statements
 [Continue Do]
 statements
Loop

The Exit While statement exits a While End Loop just as an Exit Do statement exits a Do While
Loop. Similarly, Continue While makes the program return to the top of the loop just as Continue
Do does for Do loops.

The difference between While End and Do While Loop is stylistic, and you can use whichever seems
clearer to you. Because Do Loop provides more fl exibility, having four different versions using While
or Until at the start or fi nish of the loop, you might want to stick to them for consistency’s sake.

SUMMARY

Control statements form the heart of any program. Decision statements determine what commands
are executed, and looping statements determine how many times they are executed.

Single-line and multiline If Then statements, as well as Select Case statements, are the most com-
monly used decision statements. IIf and Choose statements are often more confusing and sometimes
slower, so usually you should use If Then and Select Case statements instead. Under some specifi c

NOTE Example program ExitAndContinue, which is available for download on
the book’s website, demonstrates the Exit and Continue statements for Do and
For loops.

Summary ❘ 319

circumstances, however, IIf and Choose may make your code more readable. Use your judgment and
pick the method that makes the most sense in your application.

For Next, For Each, and Do Loop are the most common looping statements. Some container classes
also support enumerators that let you step through the items in the container. An enumerator can be
more natural than a For Each loop under some circumstances.

A While End loop is equivalent to Do While Loop. You can use whichever you think makes more
sense, although you might want to use Do While because it is more consistent with the other forms
of Do Loop.

Using the control statements described in this chapter, you can build extremely complex and
powerful applications. In fact, you can build applications that are so complex that it is diffi cult to
ensure that they work correctly. Even a relatively simple application sometimes encounters errors.
Chapter 18, “Error Handling,” explains how you can protect an application from unexpected
errors and let it take action to correct any problems, or at least to avoid crashing.

Error Handling

WHAT’S IN THIS CHAPTER

 ➤ Global exception handling

 ➤ Try Catch Finally statements

 ➤ Throwing and re-throwing exceptions

 ➤ Custom exceptions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this
chapter is divided into the following major examples:

 ➤ CustomException

 ➤ GlobalException

 ➤ ShowExceptionInfo

 ➤ ThrowError

 ➤ ValidateInteger

THE STRUGGLE FOR PERFECTION

Although it is theoretically possible to write a program that perfectly predicts every possible
situation that it might encounter, in practice that’s very diffi cult for nontrivial programs. For
large applications, it is extremely diffi cult to plan for every eventuality. Errors in the program’s
design and implementation can introduce bugs that give unexpected results. Users and
corrupted databases may give the application values that it doesn’t expect.

Similarly, changing requirements over time may introduce data that the application was never
intended to handle. The Y2K bug is a good example. When engineers wrote accounting,
auto registration, fi nancial, inventory, and other systems in the 1960s and 1970s, they never

18

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

322 ❘ CHAPTER 18 ERROR HANDLING

dreamed their programs would still be running in the year 2000. At the time, disk storage
and memory were relatively expensive, so they stored years as 2-byte values (for example,
89 meant 1989). When the year 2000 rolled around, the applications couldn’t tell whether the value
01 meant the year 1901 or 2001. In one humorous case, an auto registration system started issuing
horseless carriage license plates to new cars because it thought cars built in 00 must be antiques.

The Y2K problem wasn’t really a bug. It was a case of software used with data that wasn’t part of
its original design.

This chapter explains different kinds of exceptional conditions that can arise in an application.
These range from unplanned data (as in the Y2K problem) to bugs where the code is just plain
wrong. With some advance planning, you can build a robust application that can keep running
gracefully, even when the unexpected happens.

BUGS VERSUS UNPLANNED CONDITIONS

Several different types of unplanned conditions can derail an otherwise high-quality application.
How you should handle these conditions depends on their nature.

For this discussion, a bug is a mistake in the application code. Some bugs become apparent right
away and are easy to fi x. These usually include simple typographic errors in the code and cases
where you misuse an object (for example, by using the wrong control property). Other bugs are sub-
tler and may only be detected long after they occur. For example, a data-entry routine might place
invalid characters into a rarely used fi eld in a Customer object. Only later when the program tries to
access that fi eld will you discover the problem. This kind of bug is diffi cult to track down and fi x,
but you can take some proactive steps to make these sorts of bugs easier to fi nd.

BUGS THROUGHOUT HISTORY

On a historical note, the term “bug” has been used since at least the time of the tele-
graph to mean some sort of defect. Probably the origin of the term in computer science
was an actual moth that was caught between two relays in an early computer in
1947. For a bit more information, including a picture of this fi rst computer bug,
see http://www.jamesshuggins.com/h/tek1/first_computer_bug.htm.

An unplanned condition is some predictable condition that you don’t want to happen, but that
you know could happen despite your best efforts. For example, there are many ways that a simple
printing operation can fail. The printer might be unplugged, disconnected from its computer, dis-
connected from the network, out of toner, out of paper, experiencing a memory fault, clogged by a
paper jam, or just plain broken. These are not bugs, because the application software is not at fault.
There is some condition outside of the program’s control that must be fi xed.

Another common unplanned condition occurs when the user enters invalid data. You may want the user
to enter a value between 1 and 10 in a text box, but the user might enter 0, 9999, or “lunch” instead.

http://www.jamesshuggins.com/h/tek1/first_computer_bug.htm

Bugs versus Unplanned Conditions ❘ 323

You can’t fi x unplanned conditions but you can try to make your program handle them gracefully
and produce some meaningful result instead of crashing.

Catching Bugs

By defi nition, bugs are unplanned. No reasonable programmer sits down and thinks, “Perhaps I’ll
put a bug in this variable declaration.”

Because bugs are unpredictable, you cannot know ahead of time where a bug will lie. However,
you can watch for behavior in the program that indicates that a bug may be present. For example,
suppose that you have a subroutine that sorts a purchase order’s items by cost. If the routine receives
an order with 100,000 items, something is probably wrong. If one of the items is a computer
keyboard with a price of $73 trillion, something is probably wrong. If the customer who placed the
order doesn’t exist, something is probably wrong.

This routine could go ahead and sort the 100,000 items with prices ranging from a few cents to
$73 trillion. Later, the program would try to print a 5,000-page invoice with no shipping or billing
address. Only then would the developers realize that there was a problem.

Rather than trying to work around the problematic data, it would be better if the sorting routine
immediately told developers that something was wrong so they could start trying to fi nd the cause
of the problem. Bugs are easier to fi nd the sooner they are detected. This bug will be easier to fi nd
if the sorting routine notices it, rather than waiting until the application tries to print an invalid
invoice. Your routines can protect themselves and the program as a whole by proactively validating
inputs and outputs, and reporting anything suspicious to developers.

Some developers object to making routines spend considerable effort validating data that they know
is correct. After all, one routine generated this data and passed it to another, so you know that it is
correct because the fi rst routine did its job properly. That’s only true if every routine that touches the
data works perfectly. Because bugs are by defi nition unexpected, you cannot safely assume that all
the routines are perfect and that the data remains uncorrupted.

AUTOMATED BUG CATCHERS

Many companies use automated testing tools to try to fl ush out problems early.
Regression testing tools can execute code to verify that its outcome isn’t changed
after you have made modifi cations to other parts of the application. If you build a
suite of testing routines to validate data and subroutines’ results, you may be able
to work them into an automated testing system, too.

To prevent validation code from slowing down the application, you can use the Debug object’s
Assert method to check for strange conditions. When you are debugging the program, these state-
ments throw an error if they detect something suspicious. When you make a release build to send to
customers, the Debug.Assert code is automatically removed from the application. That makes the
application faster and doesn’t infl ict cryptic error messages on the user.

324 ❘ CHAPTER 18 ERROR HANDLING

You can also use the DEBUG, TRACE, and CONFIG compiler constants to add other input and
output validation code.

Example program SortOrders, which is available for download from the book’s website, uses the
following code to validate a subroutine’s inputs. (This program doesn’t actually do anything; it just
shows how to write input validation code.)

Private Sub SortOrderItems(ByVal the_order As Order)
 ‘ Validate input.
 Debug.Assert(the_order.Items IsNot Nothing, “No items in order”)
 Debug.Assert(the_order.Customer IsNot Nothing, “No customer in order”)
 Debug.Assert(the_order.Items.Count < 100, “Too many order items”)
 ...

 ‘ Sort the items.
 ...

 ‘ Validate output.
#If DEBUG Then
 ‘ Verify that the items are sorted.
 For i As Integer = 2 To the_order.Items.Count
 Dim order_item1 = the_order.Items(i - 1)
 Dim order_item2 = the_order.Items(i)
 Debug.Assert(order_item1.Price <= order_item2.Price,
 “Order items not properly sorted”)
 Next i
#End If
End Sub

The subroutine starts by validating its input. It verifi es that the Order object that it received has an
Items collection and that its Customer property is not Nothing. It also verifi es that the order con-
tains fewer than 100 items. If a larger order comes along during testing, developers can increase this
number to 200 or whatever value makes sense, but there’s no need to start with an unreasonably
large default.

Before the subroutine exits, it loops through the sorted items to verify that they are correctly sorted.
If any item has cost less than the one before it, the program throws an error. Because this test is con-
tained within an #If DEBUG Then statement, this code is removed from release builds.

After you have tested the application long enough, you should have discovered most of these types
of errors. When you make the release build, the compiler automatically removes the validation code,
making the fi nished executable smaller and faster.

Catching Unplanned Conditions

Although you don’t want an unplanned condition to happen, with some careful thought, you can
often predict where one might occur. Typically, these situations arise when the program must work
with something outside of its own code. For example, when the program needs to access a fi le,
printer, web page, fl oppy disk, or CD-ROM, that item may be unavailable. Similarly, whenever the
program takes input from the user, the user may enter invalid data.

Bugs versus Unplanned Conditions ❘ 325

Notice how this differs from the bugs described in the previous section. After suffi cient testing, you
should have found and fi xed most of the bugs. No amount of testing can remove the possibility of
unplanned conditions. No matter what code you use, the user may still remove a fl ash drive from
the drive before the program is ready or unplug the printer while your program is using it.

Whenever you know that an unplanned condition might occur, you should write code to protect the
program from dangerous conditions. It is generally better to test for these conditions ahead of time
before you perform an action that might fail rather than simply attempting to perform the action
and then catching the error when you fail. Testing for problem conditions generally gives you more
complete information about what’s wrong. It’s also usually faster than catching an error because
structured error handling (described shortly) comes with considerable overhead.

For example, the following statement sets an integer variable using the value the user entered in a
text box:

Dim num_items As Integer = Integer.Parse(txtNumItems.Text)

The user might enter a valid value in the text box. Unfortunately, the user may also enter something
that is not a number, a value that is too big to fi t in an integer, or a negative number when you are
expecting a positive one. The user may even leave the fi eld blank.

Example program ValidateInteger uses the following code to validate integer input:

‘ Check for blank entry.
Dim num_items_txt As String = txtNumItems.Text
If num_items_txt.Length < 1 Then
 MessageBox.Show(“Please enter Num Items”)
 txtNumItems.Focus()
 Exit Sub
End If

‘ See if it’s numeric.
If Not IsNumeric(num_items_txt) Then
 MessageBox.Show(“Num Items must be a number”)
 txtNumItems.Select(0, num_items_txt.Length)
 txtNumItems.Focus()
 Exit Sub
End If

‘ Assign the value.
Dim num_items As Integer
Try
 num_items = Integer.Parse(txtNumItems.Text)
Catch ex As Exception
 MessageBox.Show(“Error in Num Items.” & vbCrLf & ex.Message)
 txtNumItems.Select(0, num_items_txt.Length)
 txtNumItems.Focus()
 Exit Sub
End Try

326 ❘ CHAPTER 18 ERROR HANDLING

‘ Check that the value is between 1 and 100.
If num_items < 1 Or num_items > 100 Then
 MessageBox.Show(“Num Items must be between 1 and 100”)
 txtNumItems.Select(0, num_items_txt.Length)
 txtNumItems.Focus()
 Exit Sub
End If

The code checks that the fi eld is not blank and uses the IsNumeric function to verify that the fi eld
contains a numeric value.

Unfortunately, the IsNumeric function doesn’t exactly match the behavior of functions such as
Integer.Parse. IsNumeric returns False for values such as &H10, which is a valid hexadecimal
value that Integer.Parse can correctly interpret. IsNumeric also returns True for values such as
123456789012345 that lie outside of the values allowed by integers and 1.2, which is numeric but
not an integer. Because IsNumeric doesn’t exactly match Integer.Parse, the program still needs to
use a Try Catch block (bolded in the previous code) to protect itself when it actually tries to convert
the string into an integer.

The code fi nishes by verifying that the value lies within a reasonable bound. If the value passes all of
these checks, the code uses the value.

NOTE These checks must always occur so you cannot replace them with Debug
.Assert statements, which are removed from release builds.

A typical program might need to read and validate many values, and retyping this code for each
value would be cumbersome. A better solution is to move it into an IsValidInteger function and
then call the function as needed.

You can write similar routines to validate other types of data fi elds such as phone numbers, e-mail
addresses, street addresses, and so on.

Global Exception Handling

Normally, you should try to catch an error as close as possible to the place where it occurs. If
an error occurs in a particular subroutine, it will be easiest to fi x the bug if you catch it in that
subroutine.

However, bugs often arise in unexpected places. Unless you protect every subroutine with
error-handling code (a fairly common strategy), a bug may arise in code that you have not
protected.

In early versions of Visual Basic, you could not catch that kind of bug, so the application crashed. In
the most recent versions of Visual Basic, however, you can defi ne a global error handler to catch any
bug that isn’t caught by other error-handling code.

Bugs versus Unplanned Conditions ❘ 327

To defi ne application-level event handlers, double-click My Project in the Project Explorer. Open
the Application tab and click the View Application Events button. This opens a code window for
application-level events.

In the left drop-down list, select (MyApplication Events). Then in the right drop-down list, you
can select one of several events including NetworkAvailabilityChanged, Shutdown, Startup,
StartupNextInstance, and UnhandledException. Select the last of these commands to open the
UnhandledException event handler.

In the event handler, you can take whatever action is appropriate for the error. Because you prob-
ably didn’t anticipate the error, there’s usually little chance that the program can correct it properly.
However, you can at least log the error and possibly save data before shutting down the application.

The event parameter e has an ExitApplication property that you can set to True or False to tell
Visual Basic whether the application should terminate.

ERRORS, ERRORS, EVERYWHERE

In fact, some sources of errors are completely beyond your control. For example,
power surges, static electricity, intermittent short circuits, or even stray radiation
striking exactly the right part of a chip can make the computer’s hardware
misbehave so code that should work correctly fails. There’s little you can do to
anticipate these kinds of errors but you can use global error handling to try
to recover from them.

Of course that doesn’t excuse you from rigorously checking your code for errors.
The vast majority of bugs are due to real mistakes in the code or data rather than to
magical cosmic rays fl ipping a single bit on a memory chip.

KEEP RUNNING

Usually it’s better for an application to do the best it can to recover and keep run-
ning instead of exiting. Even if the program must reset itself to a default state, that
at least saves the user the trouble of restarting the application, reopening forms,
arranging toolbars, and otherwise getting the program ready to work. Before you
decide, compare the diffi culty of making the program reset and continue with the
trouble the user will have restarting and getting back to work.

Example program GlobalException uses the following code to display a message giving the
unhandled exception’s error message. It then sets e.ExitApplication to False, so the program
keeps running.

328 ❘ CHAPTER 18 ERROR HANDLING

 Private Sub MyApplication_UnhandledException(sender As Object,
 e As ApplicationServices.UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException
 MessageBox.Show(“Exception caught globally” & vbCrLf & e.Exception.Message)
 e.ExitApplication = False
End Sub

When you run the application in the IDE, Visual Basic stops execution in the debugger when it
reaches the statement that causes the error, so the UnhandledException event handler never
executes. If you run the compiled executable, however, the UnhandledException event fi res and the
global error handler runs.

STRUCTURED ERROR HANDLING

Visual Basic .NET uses the Try Catch block to provide structured error handling. The syntax is as
follows:

Try
 try_statements ...
[Catch ex As exception_type_1
 exception_statements_1 ...
]
[Catch ex As exception_type_2
 exception_statements_2 ...
]
...
[Catch
 final_exception_statements ...
]
[Finally
 finally_statements ...
]
End Try

The program executes the code in the try_statements block. If any of that code throws an exception,
the program jumps to the fi rst Catch statement.

If the exception matches exception_type_1, the program executes the code in exception_statements_1.
The exception type might match the Catch statement’s exception class exactly, or it might be a
subclass of the listed class. For example, suppose that the code in the try_statements block per-
forms a calculation that divides by zero. That raises a DivideByZeroException. That class inherits
from the ArithmeticException class, which inherits from SystemException, which inherits from
Exception. That means the code would stop at the fi rst Catch statement it fi nds that looks for
DivideByZeroException, ArithmeticException, SystemException, or Exception.

If the raised exception does not match the fi rst exception type, the program checks the next Catch
statement. The program keeps comparing the exception to Catch statements until it fi nds one that
applies, or it runs out of Catch statements.

Structured Error Handling ❘ 329

If no Catch statement matches the exception, the exception “bubbles up” to the next level in the call
stack and Visual Basic moves to the routine that called the current one. If that routine has appropri-
ate error-handling code, it deals with the error. If that routine can’t catch the error, the exception
bubbles up again until Visual Basic eventually either fi nds error-handling code that can catch the
exception or runs off the top of the call stack. If it runs off the call stack, Visual Basic calls
the global UnhandledException event handler described in the previous section, if one exists.
If there is no UnhandledException event handler, the program crashes.

If you include a Catch statement with no exception type, that block matches any exception. If the
raised exception doesn’t match any of the previous exception types, the program executes the fi nal_
exception_statements block of code. Note that the statement Catch ex As Exception also matches
all exceptions, so it’s just as good as Catch by itself. It also gives you easy access to the exception
object’s properties and methods.

You can fi gure out what exception classes to use in Catch statements in several ways. First, you can
spend a lot of time digging through the online help. An easier method is to let the program crash
and then look at the error message it produces. Figure 18-1 shows the error message a program
throws when it tries to convert the non-numeric string Hello into an integer with
Integer.Parse. From the exception dialog box’s title, it’s easy to see that the program should
look for a FormatException.

Another way to decide what types of exceptions
to catch is to place a fi nal generic Catch ex As
Exception statement at the end of the Catch list.
Place code inside that Catch block that displays
either the exception’s type name (use TypeName)
or the result of its ToString method. When you
encounter new exception types, you can give them
their own Catch statements and take action that’s
appropriate to that exception type.

CATCH CONTROL

Arrange Catch statements so the most specifi c come fi rst. Otherwise, a more general
statement will catch errors before a more specifi c statement has a chance. For exam-
ple, the generic Exception class matches all other exceptions, so if the fi rst Catch
statement catches Exception, no other Catch statements will ever execute.

If two Catch statements are unrelated, neither will catch the other’s exceptions, so
put the exception more likely to occur fi rst. That will make the code more effi cient
because it looks for the most common problems fi rst. It also keeps the code that is
most likely to execute near the top where it is easier to read.

FIGURE 18-1: When a program crashes, the

message it generates tells you the type of

exception it raised.

330 ❘ CHAPTER 18 ERROR HANDLING

After it has fi nished running the code in try_statements and it has executed any necessary exception
code in a Catch block, the program executes the code in fi nally_statements. The statements in the
Finally section execute whether the code in try_statements succeeds or fails.

You do not need to include any Catch statements in a Try block, but leaving them all out defeats the
Try block’s purpose. If the try_statements raise an error, the program doesn’t have any error code to
execute, so it sends the error up the call stack. Eventually, the program fi nds an active error handler
or the error pops off the top of the stack and the program crashes. You may as well not bother with
the Try block if you aren’t going to use any Catch sections.

A Try block must include at least one Catch or Finally section, although those sections do not need
to contain any code. For example, the following Try block calls subroutine DoSomething and uses
an empty Catch section to ignore any errors that occur:

Try
 DoSomething()
Catch
End Try

Example program ThrowError, which is available for download on the book’s website, shows how a
program can use a Try Catch block to handle errors.

Exception Objects

When a Catch statement catches an exception, its exception variable contains information about the
error that raised the exception. Different exception classes may provide different features, but they
all provide the basic features defi ned by the Exception class from which they are all derived. The
following table lists the most commonly used Exception class properties and methods.

CATCH CATASTROPHES

It may not be possible to take meaningful action when you catch certain exceptions.
For example, if a program uses up all of the available memory, Visual Basic throws
an OutOfMemoryException. If there is no memory available, you may have trouble
doing anything useful. Similarly, if there’s a problem with the fi lesystem, you may
be unable to write error descriptions into a log fi le.

ITEM PURPOSE

InnerException The exception that caused the current exception. For example, suppose

that you write a tool library that catches an exception and then throws a

new custom exception describing the problem in terms of your library. You

should set InnerException to the exception that you caught before you

threw the new exception.

Message Returns a brief message that describes the exception.

Structured Error Handling ❘ 331

Example program ShowExceptionInfo, which is available for download on the book’s website,
displays an exception’s Message, StackTrace, and ToString values.

At a minimum, the program should log or display the Message value for any unexpected exceptions
so you know what exception occurred. It might also log the StackTrace or the result of ToString so
you can see where the exception occurred.

The StackTrace and ToString values can help developers fi nd a bug, but they can be intimidat-
ing to end users. Even the abbreviated format used by the exception’s Message property is usually
not very useful to a user. When the user clicks the Find Outstanding Invoices button, the message
“Attempted to divide by zero” doesn’t really tell the user what the problem is or what to do about it.

When a program catches an error, a good strategy is to record the full ToString message in a log fi le
or e-mail it to a developer. Then display a message that restates the error message in terms that the
user can understand. For example, the program might say the following: “Unable to total outstand-
ing invoices. A bug report has been sent to the development team.” The program should then try
to continue as gracefully as possible. It may not be able to fi nish this calculation, but it should not
crash, and it should allow the user to continue working on other tasks if possible.

Throwing Exceptions

In addition to catching exceptions, your program may need to generate its own exceptions. Because
handling an exception is called catching it, raising an exception is called throwing it. (This is just a
silly pun. People also catch lions and colds, but I don’t think many people throw them. It’s as good a
term as any, however.)

To throw an exception, the program creates an instance of the type of exception it wants to gener-
ate, passing the constructor additional information describing the problem. The program can then
set other exception fi elds if you like. For example, it might set the exception’s Source property to tell
any other code that catches the error where it originated. The program then uses the Throw state-
ment to raise the error. If an error handler is active somewhere in the call stack, Visual Basic jumps
to that point and the error handler processes the exception.

Example program DrawableRect, which is available for download on the book’s website, uses the
following code to show how the DrawableRectangle class can protect itself against invalid input:

Public Class DrawableRectangle
 Public Sub New(new_x As Integer, new_y As Integer,
 new_width As Integer, new_height As Integer)
 ‘ Verify that new_width > 0.

Source Returns the name of the application or object that threw the exception.

StackTrace Returns a string containing a stack trace giving the program’s location

when the error occurred.

TargetSite Returns the name of the method that threw the exception.

ToString Returns a string describing the exception and including the stack trace.

332 ❘ CHAPTER 18 ERROR HANDLING

 If new_width <= 0 Then
 Dim ex As New ArgumentException(
 “DrawableRectangle must have a width greater than zero”,
 “new_width”)
 Throw ex
 End If

 ‘ Verify that new_height> 0.
 If new_height < = 0 Then
 Throw New ArgumentException(
 “DrawableRectangle must have a height greater than zero”,
 “new_height”)
 End If
 ‘ Save the parameter values.
 ...
 End Sub
 ...
End Class

The class’s constructor takes four arguments: an X and Y position, and a width and height. If the
width is less than or equal to zero, the program creates a new ArgumentException object. It passes
the exception’s constructor a description string and the name of the argument that is invalid. After
creating the exception object, the program uses the Throw statement to raise the error. The code
checks the object’s new height similarly, but it creates and throws the exception in a single statement
to demonstrate another style for throwing an error.

The following code shows how a program might use a Try block to protect itself while creating a
new DrawableRectangle object:

Try
 Dim rect As New DrawableRectangle(10, 20, 0, 100)
Catch ex As Exception
 MessageBox.Show(ex.Message)
End Try

When your application needs to throw an exception, it’s easiest to use an existing exception
class. There are a few ways to get lists of exception classes so that you can fi nd one that makes
sense for your application. Appendix O, “Useful Exception Classes,” lists some of the more
useful exception classes. The online help topic, “Introduction to Exception Handling in
Visual Basic .NET” at http://msdn.microsoft.com/aa289505.aspx also has a good list
of exception classes at the end. Microsoft’s web page http://msdn.microsoft.com/system
.exception_derivedtypelist.aspx provides a very long list of exception classes that are
derived from the System.Exception class.

Another method for fi nding exception classes is to open the Object Browser (select the View menu’s
Object Browser command) and search for “Exception.”

When you throw exceptions, you must use your judgment about selecting these classes. For example,
Visual Basic uses the System.Refl ection.AmbiguousMatchException class when it tries to bind

http://msdn.microsoft.com/aa289505.aspx
http://msdn.microsoft.com/system.exception_derivedtypelist.aspx
http://msdn.microsoft.com/system.exception_derivedtypelist.aspx

Structured Error Handling ❘ 333

a subroutine call to an object’s method and it cannot determine which overloaded method to use.
This happens at a lower level than your program will act, so you won’t use that class for exactly the
same purpose but it still may be useful to throw that exception. For example, if your program parses
a string and, based on the string, cannot decide what action to take, you might use this class to
 represent the error, even though you’re not using it exactly as it was originally intended.

Be sure to use the most specifi c exception class possible. Using more generic classes such as
Exception makes it much harder for developers to understand and locate an error. If you cannot fi nd
a good, specifi c fi t, create your own exception class as described in the section “Custom Exceptions”
later in this chapter.

Re-throwing Exceptions

Sometimes when you catch an exception, you cannot completely handle the problem. In that case,
it may make sense to re-throw the exception so a routine higher up in the call stack can take a
crack at it.

To re-throw an error exactly as you caught it, simply use the Throw keyword as in the following
example:

Try
 ‘ Do something hard here.
 ...

Catch ex As ArithmeticException
 ‘ We can handle this exception. Fix it.
 ...

Catch ex As Exception
 ‘ We don’t know what to do with this one. Re-throw it.
 Throw
End Try

If your code can fi gure out more or less why an error is happening but it cannot fi x it, it’s sometimes
a good idea to re-throw the error as a different exception type. For example, suppose a piece of code
causes an ArithmeticException but the underlying cause of the exception is an invalid argument.
In that case it is better to throw an ArgumentException instead of an ArithmeticException because
that will provide more specifi c information higher up in the call stack.

At the same time, however, you don’t want to lose the information contained in the original
ArithmeticException.

The solution is to throw a new ArgumentException but place the original ArithmeticException
in its InnerException property so code that catches the new exception has access to the original
information.

The following code demonstrates this technique:

334 ❘ CHAPTER 18 ERROR HANDLING

Try
 ‘ Do something hard here.
 ...

Catch ex As ArithmeticException
 ‘ This was caused by an invalid argument.
 ‘ Re-throw it as an ArgumentException.
 Throw New ArgumentException(“Invalid argument X in function Whatever.”, ex)

Catch ex As Exception
 ‘ We don’t know what to do with this one. Re-throw it.
 Throw
End Try

Custom Exceptions

When your application needs to raise an exception, it’s easiest to use an existing exception class.
Reusing existing exception classes makes it easier for developers to understand what the exception
means. It also prevents exception proliferation, where the developer needs to watch for dozens or
hundreds of types of exceptions.

Sometimes, however, the predefi ned exceptions don’t fi t your needs. For example, suppose that you
build a class that contains data that may exist for a long time. If the program tries to use an object
that has not refreshed its data for a while, you want to raise some sort of “data expired” exception.
You could squeeze this into the System.TimeoutException class, but that exception doesn’t quite fi t
this use.

Building a custom exception class is easy. Make a new class that inherits from the
System.ApplicationException class. Then, provide constructor methods to let the program
create instances of the class. That’s all there is to it.

By convention, an exception class’s name should end with the word Exception. Also by convention,
you should provide at least three overloaded constructors for developers to use when creating new
instances of the class. (For more information on what constructors are and how to defi ne them, see
the section “Class Instantiation Details” in Chapter 23, “Classes and Structures.”)

The fi rst constructor takes no parameters and initializes the exception with a default message
describing the general type of error.

The other two versions take as parameters an error message, and an error message plus an inner
exception object. These constructors pass their parameters to the base class’s constructors to initial-
ize the object appropriately.

For completeness, you can also make a constructor that takes as parameters a SerializationInfo
object and a StreamingContext object. This version can also pass its parameters to a base class con-
structor to initialize the exception object, so you don’t need to do anything special with the param-
eters. This constructor is useful if the exception will be serialized and deserialized. If you’re not
sure whether you need this constructor, you probably don’t. If you do include it, however, you will
need to import the System.Runtime.Serialization namespace in the exception class’s fi le to defi ne the
SerializationInfo and StreamingContext classes.

Debugging ❘ 335

Example program CustomException, which is available for download on the book’s website, uses
the following code to defi ne the ObjectExpiredException class:

Imports System.Runtime.Serialization

Public Class ObjectExpiredException
 Inherits System.ApplicationException

 ‘ No parameters. Use a default message.
 Public Sub New()
 MyBase.New(“This object has expired”)
 End Sub

 ‘ Set the message.
 Public Sub New(new_message As String)
 MyBase.New(new_message)
 End Sub

 ‘ Set the message and inner exception.
 Public Sub New(new_message As String,
 ByVal inner_exception As Exception)
 MyBase.New(new_message, inner_exception)
 End Sub

 ‘ Include SerializationInfo object and StreamingContext objects.
 Public Sub New(info As SerializationInfo, context As StreamingContext)
 MyBase.New(info, context)
 End Sub
End Class

After you have defi ned the exception class, you can throw and catch it just as you can throw and
catch any exception class defi ned by Visual Basic. For example, the following code throws an
ObjectExpiredException error:

Throw New ObjectExpiredException(“This Customer object has expired.”)

The parent class System.ApplicationException automatically handles the object’s Message,
StackTrace, and ToString properties so you don’t need to implement them yourself.

DEBUGGING

Visual Basic provides a rich set of tools for debugging an application. Using the development
environment, you can stop the program at different lines of code and examine variables, change
variable values, look at the call stack, and call routines to exercise different pieces of the
application. You can step through the program, executing the code one statement at a time to
see what it is doing. You can even make some modifi cations to the source code and let the
program continue running.

Chapter 6, “Debugging,” describes tools that the development environment provides to help you
debug an application. These include tools for stepping through the code, breakpoints, and windows
such as the Immediate, Locals, and Call Stack windows. See Chapter 6 for details.

336 ❘ CHAPTER 18 ERROR HANDLING

In addition to setting breakpoints in the code, you can use the Stop statement to pause execution at
a particular line. This can be particularly useful for detecting unexpected values during testing. For
example, the following statement stops execution if the variable m_NumEmployees is less than 1 or
greater than 100:

If (m_NumEmployees < 1) Or (m_NumEmployees > 100) Then Stop

SUMMARY

In practice, it’s extremely diffi cult to anticipate every condition that might occur within a large
application. You should try to predict as many incorrect situations as possible, but you should also
plan for unforeseen errors. You should write error-checking code that makes bugs obvious when
they occur and recovers from them if possible. You may not be able to anticipate every possible bug,
but with a little thought you can make the program detect and report obviously incorrect values.

You should also look for unplanned conditions (such as the user entering a phone number in a Social
Security number fi eld) and make the program react gracefully. Your program cannot control every-
thing in its environment (such as the user’s actions, printer status, and network connectivity), but it
should be prepared to work when things aren’t exactly the way they should be.

When you do encounter an error, you can use tools such as breakpoints, watches, and the develop-
ment environment’s Locals, Auto, Immediate, and Call Stack windows to fi gure out where the prob-
lem begins and how to fi x it. You may never be able to remove every last bug from a 100,000-line
program, but you can make any remaining bugs relatively harmless and appear so rarely that the
users can do their jobs in relative safety.

Chapters 7 through 12 focused on controls, forms, and other user interface objects. Chapters 13
through 17 focused on the code that lies behind the user interface. Chapter 19, “Database Controls
and Objects,” covers database topics that fall into both the user interface and code-behind catego-
ries. It describes database controls that you can use to build an application’s user interface, as well
as components and other objects that you can use behind the scenes to manipulate databases.

Database Controls and Objects

WHAT’S IN THIS CHAPTER

 ➤ Connecting to data sources

 ➤ Data objects

 ➤ Transactions

 ➤ Data binding

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter
is divided into the following major examples:

 ➤ BindComboBox

 ➤ DataGrids

 ➤ GenerateCommands

 ➤ MemoryDataSet

 ➤ Transactions

DATA SOURCES

The Windows Forms controls described in Chapter 7, “Selecting Windows Forms Controls,”
allow the application and the user to communicate. They let the application display data to the
user, and they let the user control the application.

Visual Basic’s database controls play roughly the same role between the application and a
database. They move data from the database to the application, and they allow the application
to send data back to the database.

19

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

338 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

Database programming is an enormous topic, and many books have been written that focus
 exclusively on database programming. This is such a huge fi eld that no general Visual Basic book
can adequately cover it in any real depth. However, database programming is also a very important
topic, and every Visual Basic programmer should know at least something about using databases
in applications.

This chapter explains how to build data sources and use drag-and-drop to create simple table- and
record-oriented displays. It also explains the most useful controls and objects that Visual Basic
 provides for working with databases. Although this chapter is far from the end of the story, it will
help you get started building basic database applications.

DATA DESTINATIONS

Note that the example programs described in this chapter refer to database
 locations as they are set up on my test computer. If you download them from the
book’s website (http://www.vb-helper.com/vb_prog_ref.htm), you will have
to modify many of them to work with the database locations on your computer.

AUTOMATICALLY CONNECTING TO DATA

Visual Studio provides tools that make getting started with databases remarkably easy. Although
the process is relatively straightforward, it does involve a lot of steps. The steps also allow several
variations, so describing every possible way to build a database connection takes a long time. To
make the process more manageable, the following two sections group the steps in two pieces:
connecting to the data source and adding data controls to the form.

Connecting to the Data Source

To build a simple database program, start a new application and select the Data menu’s Add New
Data Source command to display the Data Source Confi guration Wizard shown in Figure 19-1.

Visual Studio allows you to use databases, web services, and objects as data sources for your
application. The most straightforward choice is Database. Select the type of data source you want
to add (this example assumes it’s a database) and click Next to select a data model. The data
model determines the kinds of objects your code can use to manipulate the data. This example
assumes you will use a DataSet, which provides objects to represent tables and rows in the
database. Pick the data model type and click Next to select a data connection on the page shown
in Figure 19-2.

http://www.vb-helper.com/vb_prog_ref.htm

Automatically Connecting to Data ❘ 339

FIGURE 19-1: Select the data source type for a new connection.

FIGURE 19-2: Pick the data connection or click New Connection to create a

new one.

340 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

If you have previously created data connections, you
can select one from the drop-down list. If you have not
created any data connections, click the New Connection
button to open the Add Connection dialog box shown
in Figure 19-3. (If you see a Change Data Source dialog
box at this point, pick a data source type and click OK to
see the Add Connection dialog box.)

In Figure 19-3 I was selecting an Access database so Data
Source is set to Microsoft Access Database File. If you want
to use SQL Server, Oracle, or some other database, click
the Change button to pick the correct kind of data source.

After you select a data source, the Add Connection
dialog box rearranges itself to let you specify the database.
In Figure 19-3 the dialog box lets you type in an Access
database’s path or click the Browse button to select the
fi le. If the data source is SQL Server, the dialog box lets
you pick the server from a list of those that are running.

FIGURE 19-3: Use the Add Connection

dialog box to create a data connection.

DOWNLOADING DATABASES

You don’t need to have Access to use an Access database in Visual Basic.
However, if you want to give Access a try, you can download a 60-day
trial version at http://office.microsoft.com/en-us/products
/get-microsoft-access-FX102159812.aspx.

Another popular database choice is SQL Server. You can download the free Express
Edition at http://www.microsoft.com/express/sql.

You can also download the open source MySQL database at http://www
.mysql.com.

After you enter all of the required information, click the Test Connection button to see if the wizard
can open the database. If the test fails, recheck the database path (if the database is on a network,
make sure the network connection is available), username, and password and try again.

Once you can test the database connection, click OK.

When you return to the Data Source Confi guration Wizard previously shown in Figure 19-2, the
new connection should be selected in the drop-down list. If you click the plus sign next to the
“Connection string” label at the bottom, the wizard shows the connection information it will
use to connect the data source to the database. For example, this information might look like
the following:

Provider=Microsoft.Jet.OLEDB.4.0;
DataSource=|DataDirectory|\ClassRecords.mdb

http://www.microsoft.com/express/sql
http://office.microsoft.com/en-us/products/get-microsoft-access-FX102159812.aspx
http://office.microsoft.com/en-us/products/get-microsoft-access-FX102159812.aspx
http://www.mysql.com
http://www.mysql.com

Automatically Connecting to Data ❘ 341

When you click Next, the wizard tells you that you have selected a local database fi le that is not part
of the project and it asks if you want to add it to the project. If you click Yes, the wizard adds the
database to the project so it shows up in Project Explorer. If you plan to distribute the database with
the application, you may want to do this to make it easier to manage the database and the Visual
Basic source code together.

Next, the wizard asks whether you want to save the connection string in the project’s confi guration
fi le. If you leave this check box selected, the wizard adds the string to the project’s app.config fi le.

The following shows the part of the confi guration fi le containing the connection string:

<connectionStrings>
 <add name=”Students.My.MySettings.ClassRecordsConnectionString”
 connectionString=”Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=|DataDirectory|\ClassRecords.mdb;
 providerName=”System.Data.OleDb” />
</connectionStrings>

Later, the program uses that value to connect to the database. You can easily make the program
connect to another data source by changing this confi guration setting and then restarting
the application.

PASSWORD PRECAUTION

You should never save real database passwords in the confi guration fi le. The fi le is
stored in plaintext and anyone can read it. If you need to use a password, store a
connection string that contains a placeholder for the real password. At run time,
load the connection string and replace the placeholder with a real password entered
by the user.

You can store an encrypted password in a confi guration fi le, but then the program
must contain the key needed to decrypt the password at run time and a determined
hacker might be able to dig the password out of the code. The best place to store
passwords is in the user’s head.

Adding Data Controls to the Form

At this point you have defi ned the basic connection to the database. Visual Studio knows where
the database is and how to build an appropriate connection string to open it. Now you must decide
what data to pull out of the database and how to display it on the form.

Click Next to display the dialog box shown in Figure 19-4. This page shows the objects available
in the database. In this example, the database contains two tables named Students and TestScores.
By clicking the triangles to the left of the objects, you can expand them to see what they contain.
In Figure 19-4, the tables are expanded so you can see the fi elds they contain.

342 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

Select the database objects that you want to
include in the data source. In Figure 19-4,
both of the tables are selected.

When you click Finish, the wizard adds a
couple of objects to the application. The
Solution Explorer now lists the new fi le
ClassRecordsDataSet.xsd. This is a
schema defi nition fi le that describes the
data source.

When you double-click the schema fi le,
Visual Basic opens it in the editor shown
in Figure 19-5. This display shows the tables
defi ned by the schema, their fi elds, and any relationships defi ned between the tables.

The line between the fi les with the little key on the left and the infi nity symbol on the right
indicates that the tables are joined by a one-to-many relationship. In this example, the Students
.StudentId fi eld and TestScores.StudentId fi eld form a foreign key relationship. That means
every StudentId value in the TestScores table must correspond to some StudentId value in the
Students table. In other words, a test score must be associated with a student who exists.

When you double-click the relationship link or right-click it and select Edit Relation, the editor
displays a dialog box that you can use to modify the relation.

FIGURE 19-4: Select the database objects that you want included in the

data source.

FIGURE 19-5: The Schema Editor shows the tables

defi ned by the schema and their relationships.

Automatically Connecting to Data ❘ 343

At the bottom of the tables shown in Figure 19-5, you can see two table
adapter objects containing the labels Fill, GetData(). These represent data
adapter objects that the program will later use to move data from and to the
data source.

In addition to adding the schema fi le to Solution Explorer, the Data
Source Confi guration Wizard also added a new DataSet object to the
Data Sources window shown in Figure 19-6. (If this window is not visible,
select the Data menu’s Show Data Sources command.)

You can use the triangles to the left of the entries to expand and collapse
the objects in the DataSet. In Figure 19-6, the DataSet is expanded to show
its tables, and the tables are expanded to show their fi elds. Notice that the
TestScores table is listed within the Students table’s entries because it has a
parent/child relationship with that table.

It takes a lot of words and pictures to describe this process,
but using the wizard to build the data source is actually quite
fast. After you have created the data source, you can build a
simple user interface with almost no extra work. Simply drag
objects from the Data Sources window onto the form.

When you click and drag a table from the Data Sources
window onto the form, Visual Basic automatically creates
BindingNavigator and DataGridView controls, and other
components to display the data from the table. Figure 19-7
shows the result at run time.

Instead of dragging an entire table onto the form, you can
drag
individual database columns. In that case, Visual Basic adds controls
to the form to represent the column. Figure 19-8 shows the columns
from the Students table dragged onto a form.

If you select a table in the Data Sources window, a drop-down arrow
appears on the right. Open the drop-down to give the table a
different display style. For example, if you set a table’s style to
Details and drag the table onto a form, Visual Basic displays the
table’s data using a record detail view similar to the one shown in
Figure 19-8. Set the table’s style to DataGridView and drag it onto
the form to get a grid similar
to the one shown in Figure 19-7.

Similarly, you can change the display styles for specifi c columns. Select a column in the Data
Sources window and click its drop-down arrow to make it display in a text box, label, link label,
combo box, or other control. Now, when you drag the column onto a form, or when you drag the
table onto the form to build a record view, Visual Basic uses this type of control to display the
column’s values.

FIGURE 19-6: The

Data Sources

window lists the new

data source.

FIGURE 19-7: Drag and drop a table from

the Data Sources window onto the

form to create a simple DataGridView.

FIGURE 19-8: Drag and drop

table columns onto a form to

create a record-oriented view

instead of a grid.

344 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

AUTOMATICALLY CREATED OBJECTS

When you drag database tables and columns from the Data Sources window onto a form, Visual
Basic does a lot more than simply place a DataGridView control on a form. It also creates about two
dozen other controls and components. Five of the more important of these objects are the DataSet,
TableAdapter, TableAdapterManager, BindingSource, and BindingNavigator.

The program stores data in a DataSet object. A single DataSet object can represent an entire
database. It contains DataTable objects that represent database tables. Each DataTable contains
DataRow objects that represent rows in a table, and each DataRow contains DataColumn objects
representing column values for the row.

The TableAdapter object copies data between the database and the DataSet. It has methods for
performing operations on the database such as selecting, inserting, updating, and deleting records.
Hidden inside the TableAdapter is a connection object that contains information on the database so
that the TableAdapter knows where to fi nd it.

The TableAdapterManager coordinates updates among different TableAdapters. This is most useful
for hierarchical data sets, a topic that is outside the scope of this book. The wizard-generated code
also uses the TableAdapterManager to update the single data set it creates.

The BindingSource object encapsulates all of the DataSet object’s data and provides programmatic
control functions. These perform such actions as moving through the data, adding and deleting
items, and so forth.

The BindingNavigator provides a user interface so the user can control the BindingSource.

Figure 19-9 shows the relationships among the DataSet, TableAdapter, BindingSource, and
BindingNavigator objects. The BindingNavigator is the only one of these components that has a
presence on the form. It is connected to the BindingSource with a dotted arrow to indicate that it
controls the BindingSource but does not actually transfer data back and forth. The other arrows
represent data moving between objects.

FIGURE 19-9: Visual Basic uses TableAdapter, DataSet, BindingSource, and

BindingNavigator objects to display data.

Even working together, all these objects don’t quite do everything you need to make the program
display data. When it creates these objects, Visual Basic also adds the following code to the form:

Other Data Objects ❘ 345

public Class Form1
 Private Sub StudentsBindingNavigatorSaveItem_Click(
 sender As Object, e As EventArgs) _
 Handles StudentsBindingNavigatorSaveItem.Click
 Me.Validate()
 Me.StudentsBindingSource.EndEdit()
 Me.TableAdapterManager.UpdateAll(Me.ClassRecordsDataSet)
 End Sub

 Private Sub Form1_Load(sender As Object, e As EventArgs) _
 Handles MyBase.Load
 ‘TODO: This line of code loads data into the ‘ClassRecordsDataSet.Students’
 ‘ table. You can move, or remove it, as needed.
 Me.StudentsTableAdapter.Fill(Me.ClassRecordsDataSet.Students)
 End Sub
End Class

The StudentsBindingNavigatorSaveItem_Click event handler fi res when the user clicks the
BindingNavigator object’s Save tool. This routine makes the TableAdapter save any changes to the
Students table in the database.

The Form1_Load event handler makes the TableAdapter copy data from the database into the
DataSet when the form loads.

Visual Basic builds all this automatically, and if you ran the program at this point, it would display
data and let you manipulate it. It’s still not perfect, however. It doesn’t perform any data validation,
and it will let you close the application without saving any changes you have made to the data. It’s a
pretty good start for such a small amount of work, however.

OTHER DATA OBJECTS

If you want a simple program that can display and modify data, then the solution described in the
previous sections may be good enough. In that case, you can let Visual Basic do most of the work
for you, and you don’t need to dig into the lower-level details of database access.

You can also use objects similar to those created by Visual Basic to build your own solutions. You
can create your own DataSet, TableAdapter, BindingSource, and BindingNavigator objects to bind
controls to a database. (You can even modify the controls supplied by Visual Basic by overriding
their properties and methods, although that’s a very advanced topic so it isn’t covered here.)

If you need to manipulate the database directly with code, it doesn’t necessarily make sense to create
all these objects. If you simply want to modify a record programmatically, it certainly doesn’t make
sense to create DataGridView, BindingNavigator, and BindingSource objects.

For cases such as this, Visual Basic provides several other kinds of objects that you can use to
interact with databases. These objects fall into the following four categories:

 ➤ Data containers hold data after it has been loaded from the database into the application
much as a DataSet does. You can bind controls to these objects to automatically display and
manipulate the data.

346 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

 ➤ Connections provide information that lets the program connect to the database.

 ➤ Data adapters move data between a database and a data container.

 ➤ Command objects provide instructions for manipulating data. A command object can
select, update, insert, or delete data in the database. It can also execute stored procedures
in the database.

Data container and adapter classes are generic and work with different kinds of databases, but
different types of connection and command objects are specifi c to different kinds of databases.
For example, the connection objects OleDbConnection, SqlConnection, OdbcConnection, and
OracleConnection work with Object Linking and Embedding Database (OLE DB); SQL Server,
including SQL Server Express; Open Database Connectivity (ODBC); and Oracle databases,
respectively. The SQL Server and Oracle objects work only with their specifi c brand of database,
but they are more completely optimized for those databases and may give better performance.

Aside from the different database types they support, the various objects work in more or less the
same way. The following sections explain how an application uses those objects to move data to and
from the database. They describe the most useful properties, methods, and events provided by the
connection, transaction, data adapter, and command objects.

Later sections describe the DataSet and DataView objects and tell how you can use them to bind
controls to display data automatically.

DATA OVERVIEW

An application uses three basic objects to move data to and from a database: a connection, a data
adapter, and a data container such as a DataSet.

The connection object defi nes the connection to the database. It contains information about the
database’s name and location, any username and password needed to access the data, database
engine information, and fl ags that determine the kinds of access the program will need.

The data adapter object defi nes a mapping from the database to the DataSet. It determines
what data is selected from the database, and which database columns are mapped to which
DataSet columns.

The DataSet object stores the data within the application. It can hold more than one table and can
defi ne and enforce relationships among the tables. For example, the database used in the earlier
examples in this chapter has a TestScores table that has a StudentId fi eld. The values in this fi eld
must be values listed in the Students table. This is called a foreign key constraint. The DataSet can
represent this constraint and raise an error if the program tries to create a TestScores record with a
StudentId value that does not appear in the Students table. The section “Constraints” later in this
chapter says more about constraints.

When the connection, data adapter, and DataSet objects are initialized, the program can call the
data adapter’s Fill method to copy data from the database into the DataSet. Later it can call the data
adapter’s Update method to copy any changes to the data from the DataSet back into the database.

Connection Objects ❘ 347

CONNECTION OBJECTS

The connection object manages the application’s connection to the database. It allows a data
adapter to move data in and out of a DataSet.

The different fl avors of connection object (OleDbConnection, SqlConnection, OdbcConnection,
OracleConnection, and so on) provide roughly the same features, but there are some differences.
Check the online help to see if a particular property, method, or event is supported by one of the
fl avors. The web page http://msdn.microsoft.com/32c5dh3b.aspx provides links to pages that
explain how to connect to SQL Server, OLE DB, ODBC, and Oracle data sources. Other links lead
to information on the SqlConnection, OleDbConnection, and OdbcConnection classes.

If you will be working extensively with a particular type of database (for example, SQL Server), you
should also review the features provided by its type of connection object to see if it has special
features for that type of database.

Some connection objects can work with more than one type of database. For example, the
OleDbConnection object works with any database that has an OLE DB (Object Linking and
Embedding Database) provider. Similarly the OdbcConnection object works with databases that
have ODBC (Open Database Connectivity) providers such as MySQL.

Generally, connections that work with a specifi c kind of database (such as SqlConnection and
OracleConnection) give better performance. If you think you might later need to change databases,
you can minimize the amount of work required by sticking to features that are shared by all the
types of connection objects.

NOTE The Toolbox window does not automatically display tools for these
objects. To add them, right-click the Toolbox tab where you want them and
select Choose Items. Select the check boxes next to the tools you want to
add (for example, OracleCommand or OdbcConnection) and click OK.

The following table describes the most useful properties provided by the OleDbConnection and
SqlConnection classes.

PROPERTY PURPOSE

ConnectionString Gets or sets the string that defi nes the connection to the database.

ConnectionTimeout Gets or sets the time the object waits while trying to connect to the database.

If this timeout expires, the object gives up and raises an error.

Database Returns the name of the current database.

DataSource Returns the name of the current database fi le or database server.

continues

http://msdn.microsoft.com/32c5dh3b.aspx

348 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

The ConnectionString property includes many fi elds separated by semicolons. The following text
shows a typical ConnectionString value for an OleDbConnection object that will open an Access
database. The text here shows each embedded fi eld on a separate line, but the actual string would be
all run together in one long line.

Jet OLEDB:Global Partial Bulk Ops=2;
Jet OLEDB:Registry Path=;
Jet OLEDB:Database Locking Mode=1;
Data Source=”C:\Personnel\Data\Personnel.mdb”;
Mode=Share Deny None;
Jet OLEDB:Engine Type=5;
Provider=”Microsoft.Jet.OLEDB.4.0”;
Jet OLEDB:System database=;
Jet OLEDB:SFP=False;
persist security info=False;
Extended Properties=;
Jet OLEDB:Compact Without Replica Repair=False;
Jet OLEDB:Encrypt Database=False;
Jet OLEDB:Create System Database=False;
Jet OLEDB:Don’t Copy Locale on Compact=False;
User ID=Admin;
Jet OLEDB:Global Bulk Transactions=1”

PROPERTY PURPOSE

Provider (OleDbConnection only) Returns the name of the OLE DB database provider

(for example, Microsoft.Jet.OLEDB.4.0).

ServerVersion Returns the database server’s version number. This value is available only

when the connection is open and may look like 04.00.0000.

State Returns the connection’s current state. This value can be Closed, Connecting,

Open, Executing (executing a command), Fetching (fetching data), or Broken

(the connection was open but then broke; you can close and reopen the

connection).

(continued)

NOTE The data source value will be different on your system. In this example,
the database is at C:\Personnel\Data\Personnel.mdb. You would need to
change it to match the location of the data on your system.

Many of these properties are optional and you can omit them. Remembering which ones are
optional (or even which fi elds are allowed for a particular type of connection object) is not always
easy. Fortunately, it’s also not necessary. Instead of typing all these fi elds into your code or in the

Connection Objects ❘ 349

connection control’s ConnectString property in the Properties window, you can let Visual Basic
build the string for you.

Simply follow the steps described in the section “Connecting to the Data Source” earlier in this
chapter. After you build or select the database connection, look at the connection string at the
bottom of the dialog box shown in Figure 19-2. Use the mouse to highlight the connection string
and then press Ctrl+C to copy it to the clipboard.

The following code fragment shows how a program can create, open, use, and close an
OleDbConnection object. The code assumes the database name is in the text box txtDatabase.

‘ Make the connect string.
Dim connect_string As String =
 “Provider=Microsoft.Jet.OLEDB.4.0;” &
 “Data Source=””” & txtDatabase.Text & “””;” &
 “Persist Security Info=False”

‘ Open a database connection.
Using conn_people As New OleDb.OleDbConnection(connect_string)
 conn_people.Open()

 ‘ Do stuff with the connection.
 ‘...

 ‘ Close the connection.
 conn_people.Close()
End Using

Example program CommandInsert, which is available for download on the book’s website, uses
similar code to open a connection before inserting new data into the database.

The following table describes the most useful methods provided by the OleDbConnection and
SqlConnection classes.

METHOD PURPOSE

BeginTransaction Begins a database transaction and returns a transaction object representing

it. A transaction lets the program ensure that a series of commands are

either all performed or all canceled as a group. See the section

“Transaction Objects” later in this chapter for more information.

ChangeDatabase Changes the currently open database.

Close Closes the database connection.

CreateCommand Creates a command object that can perform some action on the database.

The action might select records, create a table, update a record, and so forth.

Open Opens the connection using the values specifi ed in the ConnectionString

property.

350 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

The connection object’s most useful events are InfoMessage and StateChange. The InfoMessage
event occurs when the database provider issues a warning or informational message. The program
can read the message and take action or display it to the user. The StateChange event occurs when
the database connection’s state changes.

Note that you don’t need to open and close a connection directly when you use a data adapter’s Fill
and Update methods. Fill and Update automatically open the connection, perform their tasks, and
then close the connection so that you don’t need to manage the connection object yourself.

TRANSACTION OBJECTS

A transaction defi nes a set of database actions that should be executed “atomically” as a single unit.
Either all of them should occur or none of them should occur, but no action should execute without
all of the others.

The classic example is a transfer of money from one account to another. Suppose a program tries
to subtract money from one account and add it to another. After it subtracts the money from the
fi rst account, however, the program crashes. The database has lost money — a bad situation for
the owners of the accounts.

On the other hand, suppose that the program performs the operations in the reverse order: First it
adds money to the second account and then subtracts it from the fi rst. This time if the program gets
halfway through the operation before crashing, the database has created new money — a bad
situation for the bank.

The solution is to wrap these two operations in a transaction. If the program gets halfway through
the transaction and then crashes, the database engine unwinds the transaction when the database
restarts, so the data looks as if nothing had happened. This isn’t as good as performing the whole
transaction fl awlessly, but at least the database is consistent and the money has been conserved.

To use transactions in Visual Basic, the program uses a connection object’s BeginTransaction
method to open a transaction. It then creates command objects associated with the connection and
the transaction, and it executes them. When it has fi nished, the program can call the transaction
object’s Commit method to make all the actions occur, or it can call Rollback to cancel them all.

Example program Transactions, which is available for download on the book’s website, uses the
following code to perform two operations within a single transaction. This code removes an amount
of money from one account and adds the same amount to another account.

‘ Make a transfer.
Private Sub btnUpdate_Click() Handles btnUpdate.Click
 ‘ Open the connection.
 Using conn_accounts As New OleDbConnection(MakeConnectString())
 conn_accounts.Open()

 ‘ Make the transaction.
 Dim trans As OleDbTransaction =
 conn_accounts.BeginTransaction(IsolationLevel.ReadCommitted)

 ‘ Make a Command for this connection.

Transaction Objects ❘ 351

 ‘ and this transaction.
 Dim cmd As New OleDbCommand(
 “UPDATE Accounts SET Balance=Balance + ? WHERE AccountName=?”,
 conn_accounts,
 trans)

 ‘ Create parameters for the first command.
 cmd.Parameters.Add(New OleDbParameter(“Balance”,
 Decimal.Parse(txtAmount.Text)))
 cmd.Parameters.Add(New OleDbParameter(“AccountName”,
 “Alice’s Software Emporium”))

 ‘ Execute the second command.
 cmd.ExecuteNonQuery()

 ‘ Create parameters for the second command.
 cmd.Parameters.Clear()
 cmd.Parameters.Add(New OleDbParameter(“Balance”,
 -Decimal.Parse(txtAmount.Text)))
 cmd.Parameters.Add(New OleDbParameter(“AccountName”,
 “Bob’s Consulting”))

 ‘ Execute the second command.
 cmd.ExecuteNonQuery()

 ‘ Commit the transaction.
 If MessageBox.Show(
 “Commit transaction?”,
 “Commit?”,
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Question) = Windows.Forms.DialogResult.Yes _
 Then
 ‘ Commit the transaction.
 trans.Commit()
 Else
 ‘ Rollback the transaction.
 trans.Rollback()
 End If

 ‘ Display the current balances.
 ShowValues(conn_accounts)

 ‘ Close the connection.
 conn_accounts.Close()
 End Using
End Sub

The code fi rst creates a connection. It uses the MakeConnectString function to build an appropriate
connection string.

Next the code uses the connection’s BeginTransaction method to make the transaction
object trans.

352 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

The code then defi nes an OleDbCommand object named cmd, setting its command text to the
following text:

UPDATE Accounts SET Balance=Balance + ? WHERE AccountName=?

Note that it passes the transaction object into the command object’s constructor to make the
command part of the transaction.

The question marks in the command text represent parameters to the command. The program
defi nes the parameters’ values by adding two parameter objects to the command object. It then calls
the command’s ExecuteNonQuery method to perform the query.

The code clears the command’s parameters, adds two parameters with different values, and calls the
command’s ExecuteNonQuery method again.

Now the program displays a message box asking whether you want to commit the transaction. If
you click Yes, the program calls the transaction’s Commit method and both of the update operations
occur. If you click No, the program calls the transaction’s Rollback method and both of the update
operations are canceled.

The program fi nishes by calling ShowValues to display the updated data and by closing
the connection.

Instead of clicking Yes or No when the program asks if it should commit the transaction, you can
use the IDE to stop the program. When you then restart the program, you will see that neither
update was processed.

In addition to the Commit and Rollback methods, transaction objects may provide other methods
for performing more complex transactions. For example, the OleDbTransaction class has a Begin
method that enables you to create a nested transaction. Similarly, the SqlTransaction class has a
Save method that creates a “savepoint” that you can use to roll back part of the transaction. See the
online help for the type of transaction object you are using to learn about these methods. The web
page http://msdn.microsoft.com/2k2hy99x.aspx gives an overview of using transactions.

DATA ADAPTERS

A data adapter transfers data between a connection and a DataSet. This object’s most important
methods are Fill and Update, which move data from and to the database, respectively. A data
adapter also provides properties and other methods that can be useful. The following table describes
the object’s most useful properties.

PROPERTY PURPOSE

DeleteCommand The command object that the adapter uses to delete rows.

InsertCommand The command object that the adapter uses to insert rows.

SelectCommand The command object that the adapter uses to select rows.

http://msdn.microsoft.com/2k2hy99x.aspx

Data Adapters ❘ 353

You can create the command objects in a couple of ways. For example, if you use the Data Adapter
Confi guration Wizard (described shortly) to build the adapter at design time, the wizard automatically
creates these objects. You can select the adapter and expand these objects in the Properties window to
read their properties, including the CommandText property that defi nes the commands.

Another way to create these commands is to use a command builder object. If you attach a com-
mand builder to a data adapter, the adapter uses the command builder to generate the commands
it needs automatically.

Example program GenerateCommands uses the following code to determine the commands used
by a data adapter. The code creates a new OleDbCommandBuilder, passing its constructor the
data adapter. It then uses the command builder’s GetDeleteCommand, GetInsertCommand, and
GetUpdateCommand methods to learn about the automatically generated commands.

‘ Attach a command builder to the data adapter
‘ and display the generated commands.
Dim command_builder As New OleDbCommandBuilder(OleDbDataAdapter1)

Dim txt As String = “”

txt &= command_builder.GetDeleteCommand.CommandText & vbCrLf & vbCrLf
txt &= command_builder.GetInsertCommand.CommandText & vbCrLf & vbCrLf
txt &= command_builder.GetUpdateCommand.CommandText & vbCrLf & vbCrLf

txtCommands.Text = txt
txtCommands.Select(0, 0)

The following text shows the results of the previous Debug statements. The DELETE and UPDATE
statements are wrapped across multiple lines. The command builder generated these commands
based on the select statement SELECT * From Books that was used to load the DataSet.

DELETE FROM Books WHERE ((Title = ?) AND ((? = 1 AND URL IS NULL) OR (URL = ?))
AND ((? = 1 AND Year IS NULL) OR (Year = ?)) AND ((? = 1 AND ISBN IS NULL) OR
(ISBN = ?)) AND ((? = 1 AND Pages IS NULL) OR (Pages = ?)))

INSERT INTO Books (Title, URL, Year, ISBN, Pages) VALUES (?, ?, ?, ?, ?)

UPDATE Books SET Title = ?, URL = ?, Year = ?, ISBN = ?, Pages = ? WHERE
((Title = ?) AND ((? = 1 AND URL IS NULL) OR (URL = ?)) AND ((? = 1 AND Year IS
NULL) OR (Year = ?)) AND ((? = 1 AND ISBN IS NULL) OR (ISBN = ?)) AND ((? = 1
AND Pages IS NULL) OR (Pages = ?)))

PROPERTY PURPOSE

TableMappings A collection of DataTableMapping objects that determine how tables in the

database are mapped to tables in the DataSet. Each DataTableMapping

object has a ColumnMappings collection that determines how the columns in

the database table are mapped to columns in the DataSet table.

UpdateCommand The command object that the adapter uses to update rows.

354 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

A data adapter’s TableMappings property enables you to change how the adapter maps data in the
database to the DataSet. For example, you could make it copy the Employees table in the database
into a DataSet table named People. You don’t usually need to change the table and column names,
however, and you can make these changes interactively at design time more easily than you can do
this in code, so you will usually leave these values alone at run time.

To create a data adapter control at design time, open a form in the Windows Forms Designer, select
the Toolbox’s Data tab, and double-click the appropriate data adapter control. (If the data adapter
you want doesn’t appear in the Toolbox, right-
click the Toolbox, select Choose Items, and pick
the data adapter that you want to use.)

When you create a data adapter, the Data Adapter
Confi guration Wizard appears. The wizard’s fi rst
page lets you select or build a data connection
much as the Data Source Confi guration Wizard
does in Figure 19-2. Select or create a connection
as described in the section “Connecting to the
Data Source” earlier in this chapter.

Click Next to display the page shown in
Figure 19-10. Use the option buttons to select the
method the adapter should use to work with the data
source. This determines how the data adapter will
fetch, update, delete, and insert data in the database.

Your options are:

 ➤ Use SQL Statements — Makes the adapter use simple SQL statements to manipulate the data

 ➤ Create New Stored Procedures — Makes
the wizard generate stored procedures
in the database to manipulate the data

 ➤ Use Existing Stored Procedures — Makes
the wizard use procedures you have
already created to manipulate the data

In Figure 19-10, only the fi rst option is enabled
because it is the only option available to the
OleDbDataAdapter used in this example.

When you select the Use SQL Statements option
and click Next, the form shown in Figure 19-11
appears. If you are experienced at writing SQL
statements, enter the SELECT statement that you
want the data adapter to use to select its data.

If you have less experience or are not familiar
with the database’s structure, click the Query Builder button to use the Query Builder shown
in Figure 19-12. The area in the upper left shows the tables currently selected for use by the

FIGURE 19-10: Select the method the data adapter

will use to manipulate database data.

FIGURE 19-11: Enter a SQL SELECT statement or

click the Query Builder button.

Data Adapters ❘ 355

SQL query. Check boxes indicate which fi elds in the tables are selected. To add new tables to the
query, right-click in this area and select Add Table.

FIGURE 19-12: You can use the Query Builder to interactively defi ne

the data that a data adapter selects.

Figure 19-12 shows the Query Builder. The top part shows that the Books table is included in the
query and that its Title, Year, and Pages fi elds are selected.

Below the table and fi eld selection area is a grid that lists the selected fi elds. Columns let you specify
modifi ers for each fi eld. A fi eld’s Alias indicates the name the fi eld is known by when it is returned
by the query. In Figure 19-12, the Year fi eld will be returned with the alias PubYear.

The Output check box determines whether the fi eld is selected. This check box does the same thing
as the one in the upper fi eld selection area.

The Sort Type column lets you indicate that the results should be sorted in either ascending or
descending order. Sort Order determines the order in which the fi elds are sorted. The query shown
in Figure 19-12 sorts fi rst by Year in descending order. If more than one book has the same Year,
they are ordered by Title in ascending order.

The Filter column lets you add conditions to the fi elds. The values in Figure 19-12 make the query
select records only where the Year is greater than 2005. Additional fi elds scrolled off to the right in
Figure 19-12 let you add more fi lters combined with OR. For example, you could select books where
the Year is greater than 2005 OR less than 1990.

356 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

If you place fi lters on more than one fi eld, their conditions are combined with AND. For example, the val-
ues shown in Figure 19-12 select records where Year is greater than 2005 AND Pages is greater than 400.

Below the grid is a text box that shows the SQL code for the query. If you look at the query, you
can see that it selects the fi elds checked in the fi eld selection area at the top, uses an appropriate
WHERE clause, and orders the results properly.

Click the Execute Query button to make the Query Builder run the query and display the results in
the bottom grid. You can use this button to test the query to verify that it makes sense before you
fi nish creating the data adapter.

Click OK to close the Query Builder and return to the Data Adapter Confi guration Wizard.

When you click Next, the Data Adapter Confi guration Wizard displays a summary page indicating
what it did and did not do while creating the data adapter. Depending on the query you use to select
data, the wizard may not generate all of the commands to select, update, insert, and delete data.
For example, if the query joins more than one table, the wizard will be unable to fi gure out how to
update the tables, so it won’t generate insert, update, or delete commands.

Click Finish to close the wizard and see the new data adapter and its new connection object. You
can see the adapter’s DeleteCommand, InsertCommand, SelectCommand, and UpdateCommand
objects in the Properties window. These objects’ CommandText values show the corresponding SQL
statements used by the objects. The wizard also generates default table mappings to transform
database values into DataSet values.

COMMAND OBJECTS

The command object classes (OleDbCommand, SqlCommand, OdbcCommand, and
OracleCommand) defi ne database commands. The command can be a SQL query, or some
non-query statement such as an INSERT, UPDATE, DELETE, or CREATE TABLE statement.

The object’s Connection property gives the database connection object on which it will execute its
command. CommandText gives the SQL text that the command represents.

The CommandType property tells the database the type of command text the command holds.
This can be StoredProcedure (CommandText is the name of a stored procedure), TableDirect
(CommandText is the name of one or more tables from which the database should return data), or
Text (CommandText is a SQL statement).

The command object’s Parameters collection contains parameter objects that defi ne any values
needed to execute the command text.

Example program CommandInsert, which is available for download on the book’s website, uses
the following code to create an OleDbCommand object that executes the bolded SQL statement
INSERT INTO PeopleNames (FirstName, LastName) VALUES (?, ?). The question marks are
placeholders for parameters that will be added later. The code then adds two new OleDbParameter
objects to the command’s Parameters collection. When the code invokes the command’s
ExecuteNonQuery method, the adapter replaces the question marks with these parameter values
in the order in which they appear in the Parameters collection. In this example, the value of
txtFirstName.Text replaces the fi rst question mark and txtLastName.Text replaces the second.

Command Objects ❘ 357

Private Sub btnAdd_Click() Handles btnAdd.Click
 ‘ Make the connect string.
 Dim connect_string As String =
 “Provider=Microsoft.Jet.OLEDB.4.0;” &
 “Data Source=””” & txtDatabase.Text & “””;” &
 “Persist Security Info=False”

 ‘ Open a database connection.
 Using conn_people As New OleDb.OleDbConnection(connect_string)
 conn_people.Open()

 ‘ Make a Command to insert data.
 Dim cmd As New OleDbCommand(
 “INSERT INTO PeopleNames (FirstName, LastName) VALUES (?, ?)”,
 conn_people)

 ‘ Create parameters for the command.
 cmd.Parameters.Add(New OleDbParameter(“FirstName”, txtFirstName.Text))
 cmd.Parameters.Add(New OleDbParameter(“LastName”, txtLastName.Text))

 ‘ Execute the command.
 Try
 cmd.ExecuteNonQuery()
 Catch ex As Exception
 MessageBox.Show(ex.Message)
 End Try

 ‘ Show the current values.
 ShowValues(conn_people)

 ‘ Close the connection.
 conn_people.Close()
 End Using
End Sub

The command object’s Transaction property gives the transaction object with which it is associated.
See the section “Transaction Objects” earlier in this chapter for more information about transactions.

The command object provides three methods for executing its CommandText. ExecuteNonQuery
executes a command that is not a query and that doesn’t return any values. For example, CREATE
TABLE, UPDATE, and INSERT statements do not return any values.

ExecuteScalar executes a command and returns the fi rst column in the fi rst row selected. This is
useful for commands that return a single value such as SELECT COUNT * FROM Users.

ExecuteReader executes a SELECT statement and returns a data reader object (for example,
OleDbDataReader). The program can use this object to navigate through the returned rows of data.

The command object’s two other most useful methods are CreateParameter and Prepare. As you
may be able to guess, CreateParameter adds a new object to the command’s Parameters collection.
The Prepare method compiles the command into a form that the database may be able to execute
more quickly. It is often faster to execute a compiled command many times using different
 parameter values than it is to execute many new commands.

358 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

DataSet

DataSet is the fl agship object when it comes to holding data in memory. It provides all the features
you need to build, load, store, manipulate, and save data similar to that stored in a relational
database. It can hold multiple tables related with complex parent/child relationships and uniqueness
constraints. It provides methods for merging DataSet objects, searching for records that satisfy
criteria, and saving data in different ways (such as into a relational database or an XML fi le).
In many ways, it is like a complete database stored in memory rather than on a disk.

One of the most common ways to use a DataSet object is to load it from a relational database
when the program starts, use various controls to display the data and let the user manipulate it
interactively, and then save the changes back into the database when the program ends.

In variations on this basic theme, the program can load its data from an XML fi le or build a
DataSet in memory without using a database. The program can use controls bound to the DataSet
to let the user view and manipulate complex data with little extra programming.

The following table describes the DataSet object’s most useful properties.

PROPERTY PURPOSE

CaseSensitive Determines whether string comparisons inside DataTable objects are

case-sensitive.

DataSetName The DataSet object’s name. Often, you don’t need to use this for much.

If you need to use the DataSet object’s XML representation, however, this

determines the name of the root element.

DefaultViewManager Returns a DataViewManager object that you can use to determine the

default settings (sort order, fi lter) of DataView objects you create later.

EnforceConstraints Determines whether the DataSet should enforce constraints when

updating data. For example, if you want to add records to a child

table before the master records have been created, you can set

EnforceConstraints to False while you add the data. You should be able to

avoid this sort of problem by adding the records in the correct order.

HasErrors Returns True if any of the DataSet object’s DataTable objects contains errors.

Namespace The DataSet’s namespace. If this is nonblank, the DataSet object’s

XML data’s root node includes an xmlns attribute as in <Scores

xmlns=“my_namespace”>.

Prefi x Determines the XML prefi x that the DataSet uses as an alias for its namespace.

Relations A collection of DataRelation objects that represent parent/child relations

among the columns in diff erent tables.

Tables A collection of DataTable objects representing the tables stored in the DataSet.

Command Objects ❘ 359

The DataSet object’s XML properties affect the way the object reads and writes its data in XML
form. For example, if the Namespace property is my_namespace and the Prefi x property is pfx, the
DataSet object’s XML data might look like the following:

<pfx:Scores xmlns:pfx=”my_namespace”>
 <Students xmlns=”my_namespace”>
 <FirstName>Art</FirstName>
 <LastName>Ant</LastName>
 <StudentId>1</StudentId>
 </Students>
 <Students xmlns=”my_namespace”>
 <FirstName>Bev</FirstName>
 <LastName>Bug</LastName>
 <StudentId>2</StudentId>
 </Students>
 ...
 <TestScores xmlns=”my_namespace”>
 <StudentId>1</StudentId>
 <TestNumber>1</TestNumber>
 <Score>78</Score>
 </TestScores>
 <TestScores xmlns=”my_namespace”>
 <StudentId>1</StudentId>
 <TestNumber>2</TestNumber>
 <Score>81</Score>
 </TestScores>
 ...
</pfx:Scores>

The following table describes the DataSet object’s most useful methods.

METHOD PURPOSE

AcceptChanges Accepts all changes to the data that were made since the data was loaded, or

since the last call to AcceptChanges. When you modify a row in the DataSet, the

row is fl agged as modifi ed. If you delete a row, the row is marked as deleted but

not actually removed. When you call AcceptChanges, new and modifi ed rows

are marked as Unchanged instead of Added or Modifi ed, and deleted rows are

permanently removed.

Clear Removes all rows from the DataSet object’s tables.

Clone Makes a copy of the DataSet including all tables, relations, and constraints, but

not including the data.

Copy Makes a copy of the DataSet including all tables, relations, constraints, and

the data.

continues

360 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

Several of these methods mirror methods provided by other fi ner-grained data objects. For example,
HasChanges returns True if any of the DataSet object’s tables contains changes. The DataTable and
DataRow objects also have HasChanges methods that return True if their more limited scope
contains changes.

These mirrored methods include AcceptChanges, Clear, Clone, Copy, GetChanges, and
RejectChanges. See the following sections that describe the DataTable and DataRow objects for
more information.

DataTable

The DataTable class represents the data in one table within a DataSet. A DataTable contains
DataRow objects representing its data, DataColumn objects that defi ne the table’s columns,
constraint objects that defi ne constraints on the table’s data (for example, a uniqueness constraint
requires that only one row may contain the same value in a particular column), and objects repre-
senting relationships between the table’s columns and the columns in other tables. This object
also provides methods and events for manipulating rows.

The following table describes the DataTable object’s most useful properties.

METHOD PURPOSE

GetChanges Makes a copy of the DataSet containing only the rows that have been modifi ed.

This method’s optional parameter indicates the type of changes that the new

DataSet should contain (added, modifi ed, deleted, or unchanged).

GetXml Returns a string containing the DataSet object’s XML representation.

GetXmlSchema Returns the DataSet object’s XML schema defi nition (XSD).

HasChanges Returns True if any of the DataSet object’s tables contains new, modifi ed, or

deleted rows.

Merge Merges a DataSet, DataTable, or array of DataRow objects into this DataSet.

ReadXml Reads XML data from a stream or fi le into the DataSet.

ReadXmlSchema Reads an XML schema from a stream or fi le into the DataSet.

RejectChanges Undoes any changes made since the DataSet was loaded or since the last call

to AcceptChanges.

WriteXml Writes the DataSet object’s XML data into a fi le or stream. It can optionally

include the DataSet object’s schema.

WriteXmlSchema Writes the DataSet object’s XSD schema into an XML fi le or stream.

(continued)

Command Objects ❘ 361

The DataTable object’s XML properties affect the way the object reads and writes its data in XML
form. For example, if the Namespace property is my_namespace and the Prefi x property is tbl1, one
of the DataTable object’s XML records might look like the following:

<tbl1:Students xmlns:tbl1=”my_namespace”>
 <FirstName xmlns=”my_namespace”>Art</FirstName>
 <LastName xmlns=”my_namespace”>Ant</LastName>
 <StudentId xmlns=”my_namespace”>1</StudentId>
</pfx:Students>

PROPERTY PURPOSE

CaseSensitive Determines whether string comparisons inside the DataTable are case-sensitive.

ChildRelations A collection of DataRelation objects that defi ne parent/child relationships

where this table is the parent.

Columns A collection of DataColumn objects that defi ne the table’s columns (column

name, data type, default value, maximum length, and so forth).

Constraints A collection of Constraint objects that represent restrictions on the table’s data.

A ForeignKeyConstraint requires that the values in some of the table’s columns

must be present in another table. A UniqueConstraint requires that the values

in a set of columns must be unique within the table.

DataSet The DataSet object that contains this DataTable.

DefaultView Returns a DataView object that you can use to view, sort, and fi lter the

table’s rows.

HasErrors Returns True if any of the DataTable object’s rows contains an error.

MinimumCapacity The initial capacity of the table.

Namespace The DataTable object’s namespace. If this is nonblank, the DataTable

object’s XML records’ root nodes include an xmlns attribute as in <Students

xmlns=“my_namespace”>.

ParentRelations A collection of DataRelation objects that defi nes parent/child relationships

where this table is the child.

Prefi x Determines the XML prefi x that the DataTable uses as an alias for its

namespace.

PrimaryKey Gets or sets an array of DataColumn objects that defi ne the table’s primary key.

The primary key is always unique and provides the fastest access to the records.

Rows A collection of DataRow objects containing the table’s data.

TableName The table’s name.

362 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

The following table describes the DataTable object’s most useful methods.

METHOD PURPOSE

AcceptChanges Accepts all changes to the table’s rows that were made since the data was

loaded or since the last call to AcceptChanges.

Clear Removes all rows from the table.

Clone Makes a copy of the DataTable, including all relations and constraints, but not

including the data.

Compute Computes the value of an expression using the rows that satisfy a fi lter condition.

Copy Makes a copy of the DataTable including all relations, constraints, and data.

GetChanges Makes a copy of the DataTable containing only the rows that have been

modifi ed. This method’s optional parameter indicates the type of changes that

the new DataSet should contain (added, modifi ed, deleted, or unchanged).

GetErrors Gets an array of DataRow objects that contain errors.

ImportRow Copies the data in a DataRow object into the DataTable.

LoadDataRow This method takes an array of values as a parameter. It searches the table for a

row with values that match the array’s primary key values. If it doesn’t fi nd such

a row, it uses the values to create the row. The method returns the DataRow

object it found or created.

NewRow Creates a new DataRow object that matches the table’s schema. To add the

new row to the table, you create a new DataRow, fi ll in its fi elds, and use the

table’s Rows.Add method.

RejectChanges Undoes any changes made since the DataTable was loaded or since the last

call to AcceptChanges.

Select Returns an array of DataRow objects selected from the table. Optional param-

eters indicate a fi lter expression that the selected rows must match, sort columns

and sort order, and the row states to select (new, modifi ed, deleted, and so forth).

EVENT PURPOSE

ColumnChanged Occurs after a value has been changed in a column.

ColumnChanging Occurs when a value is being changed in a column.

The DataTable object also provides several useful events, which are listed in the following table.

Command Objects ❘ 363

DataRow

A DataRow object represents the data in one record in a DataTable. This object is relatively simple. It
basically just holds data for the DataTable, and the DataTable object does most of the interesting work.

The following table describes the DataRow object’s most useful properties.

EVENT PURPOSE

RowChanged Occurs after a row has changed. A user might change several of a row’s

columns and ColumnChanged will fi re for each one. RowChanged fi res only

once when the user moves to a new row.

RowChanging Occurs when a row is being changed.

RowDeleted Occurs after a row has been deleted.

RowDeleting Occurs when a row is being deleted.

PROPERTY PURPOSE

HasErrors Returns True if the row’s data has errors.

Item Gets or sets one of the row’s item values by column index or name. Optionally you

can indicate the version of the row that you want so, for example, you can read the

original value in a row that has been modifi ed.

ItemArray Gets or sets all of the row’s values by using an array of generic Objects.

RowError Gets or sets the row’s error message text.

RowState Returns the row’s current state: Added, Deleted, Modifi ed, or Unchanged.

Table Returns a reference to the DataTable containing the row.

If a row has an error message defi ned by its RowError property,
the DataGrid control displays a red circle containing a white
exclamation point to the left of the row as an error indicator. If
you hover the mouse over the error indicator, a tooltip displays
the RowError text. In Figure 19-13, the third row has RowError
set to “Missing registration.”

Example program MemoryDataSetWithErrors, which is
available for download on the book’s website, uses the following
code to set errors on the second row’s third column (remember,
indexes start at zero) and on the third row. The result is
shown in Figure 19-13.

FIGURE 19-13: The DataGrid control

marks a DataRow that has a

nonblank RowError.

364 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

students_table.Rows(1).SetColumnError(2, “Bad name format”)
students_table.Rows(2).RowError = “Missing registration”

The following table describes the DataRow object’s most useful methods.

METHOD PURPOSE

AcceptChanges Accepts all changes to the row that were made since the data was loaded or

since the last call to AcceptChanges.

BeginEdit Puts the row in data-editing mode. This suspends events for the row,

so your code or the user can change several fi elds without triggering

validation events. BeginEdit is implicitly called when the user modifi es

a bound control’s value and EndEdit is implicitly called when you invoke

AcceptChanges.

CancelEdit Cancels the current edit on the row and restores its original values.

ClearErrors Clears the row’s column and row errors.

Delete Deletes the row from its table.

GetChildRows Returns an array of DataRow objects representing this row’s child rows as

specifi ed by a parent/child data relation.

GetColumnError Returns the error text assigned to a column.

GetParentRow Returns a DataRow object representing this row’s parent record as specifi ed

by a parent/child data relation.

GetParentRows Returns an array of DataRow objects representing this row’s parent records as

specifi ed by a data relation.

HasVersion Returns True if the row has a particular version (Current, Default, Original,

or Proposed). For example, while a row is being edited, it has Current and

Proposed versions.

IsNull Indicates whether a particular column contains a NULL value.

RejectChanges Removes any changes made to the row since the data was loaded or since

the last call to AcceptChanges.

SetColumnError Sets the error text for one of the row’s columns. This is similar to a row’s error

text but it applies to a particular column.

SetParentRow Sets the row’s parent row according to a data relation.

Command Objects ❘ 365

DataColumn

The DataColumn object represents a column in a DataTable. It defi nes the column’s name and data
type, and your code can use it to defi ne relationships among different columns.

The following table describes the DataColumn object’s most useful properties.

PROPERTY PURPOSE

AllowDBNull Determines whether the column allows NULL values.

AutoIncrement Determines whether new rows automatically generate auto-incremented

values for the column.

AutoIncrementSeed Determines the starting value for an auto-increment column.

AutoIncrementStep Determines the amount by which an auto-incrementing column’s value is

incremented for new rows.

Caption Gets or sets a caption for the column. Note that some controls may not

use this value. For example, the DataGrid control displays the column’s

ColumnName, not its Caption.

ColumnMapping Determines how the column is saved in the table’s XML data. This property

can have one of the values Attribute (save the column as an attribute of the

row’s element), Element (save the column as a subelement), Hidden (don’t

save the column), and SimpleContent (save the column as XmlText inside

the row’s element). If a column is hidden, the DataGrid control doesn’t

display its value. See the text following this table for an example.

ColumnName Determines the name of the column in the DataTable. Note that data adapt-

ers use the column name to map database columns to DataSet columns, so,

if you change this property without updating the table mapping, the column

will probably not be fi lled.

DataType Determines the column’s data type. Visual Basic supports the data types

Boolean, Byte, Char, DateTime, Decimal, Double, Int16, Int32, Int64, SByte,

Single, String, TimeSpan, UInt16, UInt32, and UInt64.

DefaultValue Determines the default value assigned to the column in new rows.

Expression Sets an expression for the column. You can use this to create calculated

columns. For example, the expression Quantity * Price makes the column

display the value of the Quantity column times the value of the Price column.

MaxLength Determines the maximum length of a text column.

continues

366 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

Example program MemoryDataSetXmlMappedColumns, which is available for download on the
book’s website, uses the following code to defi ne XML column mappings for the Students table. It
indicates that the table’s FirstName and LastName columns should be saved as attributes of the row
elements, and that the StudentId column should be saved as XmlText.

students_table.Columns(“FirstName”).ColumnMapping = MappingType.Attribute
students_table.Columns(“LastName”).ColumnMapping = MappingType.Attribute
students_table.Columns(“StudentId”).ColumnMapping = MappingType.SimpleContent

The following text shows some of the resulting XML Students records:

<Students FirstName=”Art” LastName=”Ant”>1</Students>
<Students FirstName=”Bev” LastName=”Bug”>2</Students>
<Students FirstName=”Cid” LastName=”Cat”>3</Students>
<Students FirstName=”Deb” LastName=”Dove”>4</Students>

DataRelation

A DataRelation object represents a parent/child relationship between sets of columns in different
tables. For example, suppose that a database contains a Students table containing FirstName,
LastName, and StudentId fi elds. The TestScores table has the fi elds StudentId, TestNumber, and
Score. The StudentId fi elds connect the two tables in a parent/child relationship. Each Students
record may correspond to any number of TestScores records. In this example, Students is the parent
table, and TestScores is the child table.

The following code defi nes this relationship. It uses the Students.StudentId fi eld as the parent fi eld
and the TestScores.StudentId fi eld as the child fi eld.

PROPERTY PURPOSE

Namespace The column’s namespace. If this is nonblank, the rows’ XML root nodes

include an xmlns attribute as in <StudentId xmlns=“my_namespace”>

12</StudentId>.

Ordinal Returns the column’s index in the DataTable object’s Columns collection.

Prefi x Determines the XML prefi x that the DataColumn uses as an alias for its

namespace. For example, if Namespace is my_namespace and Prefi x is pfx,

then a row’s StudentId fi eld might be encoded in XML as <pfx:StudentId

xmlns:pfx=“my_namespace”>12</pfx:StudentId>.

ReadOnly Determines whether the column allows changes after a record is created.

Table Returns a reference to the DataTable containing the column.

Unique Determines whether diff erent rows in the table can have the same value for

this column.

(continued)

Command Objects ❘ 367

‘ Make a relationship linking the two tables’ StudentId fields.
scores_dataset.Relations.Add(
 “Student Test Scores”,
 students_table.Columns(“StudentId”),
 test_scores_table.Columns(“StudentId”))

A DataRelation can also relate more than one column in the two tables. For example, two tables
might be linked by the combination of the LastName and FirstName fi elds.

Most programs don’t need to manipulate a relation after it is created. The DataSet object’s Relations.
Add method shown in the previous code creates a relation and thereafter the program can usually
leave it alone. However, the DataRelation object does provide properties and methods in case you do
need to modify one. The following table describes the DataRelation object’s most useful properties.

PROPERTY PURPOSE

ChildColumns Returns an array of DataColumn objects representing the child columns.

ChildKeyConstraint Returns the ForeignKeyConstraint object for this relation.

ChildTable Returns a DataTable object representing the relation’s child table.

DataSet Returns a reference to the DataSet containing the relation.

Nested Determines whether the child data should be nested within parent rows in

the DataSet’s XML representation.

ParentColumns Returns an array of DataColumn objects representing the parent columns.

ParentKeyConstraint Returns the UniqueConstraint object for this relation. This object requires

that the values in the parent’s columns are unique within the parent table.

ParentTable Returns a DataTable object representing the relation’s parent table.

RelationName Determines the relation’s name.

Normally, tables are stored separately in a DataSet object’s XML representation, but you can use
the Nested property to make the XML include one table’s records inside another’s. For example,
suppose that the Students and TestScores tables are linked by a common StudentId fi eld. If you set
this relation’s Nested property to True, the XML data would include the TestScores for a student
within the Students record, as shown in the following:

<Students>
 <FirstName>Deb</FirstName>
 <LastName>Dove</LastName>
 <StudentId>4</StudentId>
 <TestScores>
 <StudentId>4</StudentId>
 <TestNumber>1</TestNumber>

368 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

 <Score>81</Score>
 </TestScores>
 <TestScores>
 <StudentId>4</StudentId>
 <TestNumber>2</TestNumber>
 <Score>68</Score>
 </TestScores>
 ...
</Students>

Example program MemoryDataSetNestedXml, which is available for download on the book’s
website, demonstrates this nested XML structure.

Note that in this representation the TestScores table’s StudentId value is redundant because the same
value is contained in the Students element’s StudentId subelement.

Constraints

A constraint imposes a restriction on the data in a table’s columns. DataSets support two kinds of
constraint objects:

 ➤ ForeignKeyConstraint restricts the values in one table based on the values in another table.
For example, you could require that values in the Addresses table’s State fi eld must exist in
the States table’s StateName fi eld.

 ➤ UniqueConstraint requires that the combination of one or more fi elds within the same table
must be unique. For example, an Employee table might require that the combination of the
FirstName and LastName values be unique.

The following sections describe each of these types of constraint objects in greater detail.

ForeignKeyConstraint

In addition to requiring that values in one table must exist in another table, a ForeignKeyConstraint
can determine how changes to one table propagate to the other. For example, suppose that the
Addresses table has a ForeignKeyConstraint requiring that its State fi eld contain a value that is
present in the States table’s StateName fi eld. If you delete the States table’s record for Colorado, the
constraint could automatically delete all of the Addresses records that used that state’s name.

The following table describes the ForeignKeyConstraint object’s most useful properties.

PROPERTY PURPOSE

AcceptRejectRule Determines the action taken when the AcceptChanges method executes.

This value can be None (do nothing) or Cascade (update the child fi elds’

values to match the new parent fi eld values).

Columns Returns an array containing references to the constraint’s child columns.

ConstraintName Determines the constraint’s name.

Command Objects ❘ 369

UniqueConstraint

If you want to require the values in a single column to be unique, you can set the column’s Unique
property to True. This automatically creates a UniqueConstraint object and adds it to the DataTable.
The following code shows how a program can make the Students table’s StudentId column require
unique values:

students_table.Columns(“StudentId”).Unique = True

You can use the UniqueConstraint object’s constructors to require that a group of fi elds has a unique
combined value. The following code demonstrates that technique:

‘ Make the combined FirstName/LastName unique.
Dim first_last_columns() As DataColumn = {
 students_table.Columns(“FirstName”),
 students_table.Columns(“LastName”)
}
students_table.Constraints.Add(New UniqueConstraint(first_last_columns))

This code makes an array of DataColumn objects representing the Students table’s FirstName and
LastName fi elds. It passes the array into the UniqueConstraint object’s constructor to require that
the FirstName/LastName pair be unique in the table.

After executing this code, the program could add two records with the same FirstName and
different LastNames, or with the same LastName and different FirstNames, but it could not create
two records with the same FirstName and LastName values.

The following table describes the UniqueConstraint object’s properties.

PROPERTY PURPOSE

DeleteRule Determines the action taken when a row is deleted. This value can be

Cascade (delete the child rows), None (do nothing), SetDefault (change

child fi eld values to their default values), or SetNull (change child fi eld

values to NULL).

RelatedColumns Returns an array containing references to the constraint’s parent columns.

RelatedTable Returns a reference to the constraint’s parent table.

Table Returns a reference to the constraint’s child table.

UpdateRule Determines the action taken when a row is updated. This value can be

Cascade (update the child rows’ values to match), None (do nothing),

SetDefault (change child fi eld values to their default values), or SetNull

(change child fi eld values to NULL).

370 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

Example program MemoryDataSet, which is available for download on the book’s website, defi nes
several uniqueness constraints including a constraint requiring that StudentId be unique and a
constraint requiring that the FirstName and LastName combination be unique.

DATAVIEW

A DataView object represents a customizable view of the data contained in a DataTable. You can
use the DataView to select some or all of the DataTable’s data and display it sorted in some manner
without affecting the underlying DataTable.

A program can use multiple DataViews to select and order a table’s data in different ways. You can
then bind the DataViews to controls such as the DataGrid control to display the different views.
If any of the views modifi es its data, for example, by adding or deleting a row, the underlying
DataTable object’s data is updated and any other views that need to see the change are updated
as well.

Example program DataGrids, which is available for download on the book’s website, uses the
following code to demonstrate DataViews:

Private Sub Form1_Load() Handles MyBase.Load
 ‘ Make a DataTable.
 Dim contacts_table As New DataTable(“Contacts”)

 ‘ Add columns.
 contacts_table.Columns.Add(“FirstName”, GetType(String))
 contacts_table.Columns.Add(“LastName”, GetType(String))
 contacts_table.Columns.Add(“Street”, GetType(String))
 contacts_table.Columns.Add(“City”, GetType(String))
 contacts_table.Columns.Add(“State”, GetType(String))
 contacts_table.Columns.Add(“Zip”, GetType(String))

 ‘ Make the combined FirstName/LastName unique.
 Dim first_last_columns() As DataColumn =
 {
 contacts_table.Columns(“FirstName”),
 contacts_table.Columns(“LastName”)
 }
 contacts_table.Constraints.Add(New UniqueConstraint(first_last_columns))

 ‘ Make some contact data.

PROPERTY PURPOSE

Columns Returns an array of DataColumn objects representing the columns that must

be unique.

IsPrimaryKey Returns True if the columns form the table’s primary key.

Table Returns a reference to the DataTable that contains the constraint.

DataView ❘ 371

 contacts_table.Rows.Add(New Object() {“Art”, “Ant”,
 “1234 Ash Pl”, “Bugville”, “CO”, “11111”})
 contacts_table.Rows.Add(New Object() {“Bev”, “Bug”,
 “22 Beach St”, “Bugville”, “CO”, “22222”})
 contacts_table.Rows.Add(New Object() {“Cid”, “Cat”,
 “3 Road Place Lane”, “Programmeria”, “KS”, “33333”})
 contacts_table.Rows.Add(New Object() {“Deb”, “Dove”,
 “414 Debugger Way”, “Programmeria”, “KS”, “44444”})
 contacts_table.Rows.Add(New Object() {“Ed”, “Eager”,
 “5746 Elm Blvd”, “Bugville”, “CO”, “55555”})
 contacts_table.Rows.Add(New Object() {“Fran”, “Fix”,
 “647 Foxglove Ct”, “Bugville”, “CO”, “66666”})
 contacts_table.Rows.Add(New Object() {“Gus”, “Gantry”,
 “71762-B Gooseberry Ave”, “Programmeria”, “KS”, “77777”})
 contacts_table.Rows.Add(New Object() {“Hil”, “Harris”,
 “828 Hurryup St”, “Programmeria”, “KS”, “88888”})

 ‘ Attach grdAll to the DataTable.
 grdAll.DataSource = contacts_table
 grdAll.CaptionText = “All Records”

 ‘ Make a DataView for State = CO.
 Dim dv_co As New DataView(contacts_table)
 dv_co.RowFilter = “State = ‘CO’”
 grdCO.DataSource = dv_co
 grdCO.CaptionText = “CO Records”

 ‘ Make a DataView for FirstName >= E.
 Dim dv_name As New DataView(contacts_table)
 dv_name.RowFilter = “FirstName >= ‘E’”
 grdName.DataSource = dv_name
 grdName.CaptionText = “LastName >= E”
End Sub

The code builds a DataTable named Contacts
containing the fi elds FirstName, LastName,
Street, City, State, and Zip. It places a uniqueness
constraint on the FirstName/LastName pair
and adds some rows of data to the table. It then
binds the DataTable to the DataGrid control
named grdAll. Next the program makes a
DataView named dv_co based on the table, sets
its RowFilter property to make it select rows
where the State fi eld has the value CO, and binds
the DataView to the DataGrid named grdCO.
Finally, the code makes another DataView
with RowFilter set to select records where the
FirstName fi eld is greater than or equal to E and
binds that DataView to the grdName DataGrid.
Figure 19-14 shows the result. FIGURE 19-14: Diff erent DataView objects can

show diff erent views of the same data.

372 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

The following table describes the DataView object’s most useful properties.

PROPERTY PURPOSE

AllowDelete Determines whether the DataView allows row deletion. If this is False, any bound

controls such as the DataGrid will not allow the user to delete rows.

AllowEdit Determines whether the DataView allows row editing. If this is False, any bound

controls will not allow the user to edit rows.

AllowNew Determines whether the DataView allows new rows. If this is False, any bound

controls will not allow the user to add rows.

Count Returns the number of rows selected by the view.

Item Returns a DataRowView object representing a row in the view.

RowFilter A string that determines the records selected by the view.

RowStateFilter The state of the records that should be selected by the view. This can be Added,

CurrentRows (unchanged, new, and modifi ed rows), Deleted, Modifi edCurrent

(current version of modifi ed rows), Modifi edOriginal (original version of modifi ed

rows), None, OriginalRows (original, unchanged, and deleted rows), and

Unchanged.

Sort A string giving the columns that should be used to sort the data.

Table Specifi es the underlying DataTable object.

The following table describes some of the most useful DataView methods.

METHOD PURPOSE

AddNew Adds a new row to the underlying DataTable.

Delete Deletes the row with a specifi c index from the underlying DataTable.

Find Returns the index of a row that matches the view’s sort key columns. This method

returns �1 if no row matches the values it is passed.

FindRows Returns an array of DataRowView objects representing rows that match the view’s

sort key columns.

The DataView object’s Sort property determines not only the fi elds by which the data is sorted but
also the key fi elds used by the Find method. The following code makes the dv_name DataView

Simple Data Binding ❘ 373

sort by FirstName and LastName. It then uses the Find method to display the index of a row with
FirstName = Hil and LastName = Harris.

dv_name.Sort = “FirstName, LastName”
MessageBox.Show(dv_name.Find(New String() {“Hil”, “Harris”}).ToString)

DATAROWVIEW

A DataRow object can hold data for more than one state. For example, if a DataTable row has been
modifi ed, its DataRow object contains the row’s original data and the modifi ed values.

A DataRowView object represents a view of a DataRow object in a particular state. That
state can be Current (the current value), Default (if columns have defi ned default values),
Original (the original values), or Proposed (new values during an edit before EndEdit or
CancelEdit is called).

A DataView object holds DataRowView objects representing a view of a DataTable selecting
particular rows in a particular state.

The DataRowView object’s purpose is to represent a row in a specifi c state so this object is relatively
simple. It basically indicates the chosen state and refers to a DataRow.

The following table describes the DataRowView object’s most useful properties.

PROPERTY PURPOSE

DataView The DataView that contains the DataRowView.

IsEdit Returns True if the row is in editing mode.

IsNew Returns True if the row is new.

Item Gets or sets the value of one of the row’s fi elds.

Row The DataRow object that this DataRowView represents.

RowVersion The version of the DataRow represented by this object (Current, Default, Original,

or Proposed).

SIMPLE DATA BINDING

Binding a simple property such as Text to a data source is relatively easy. First, create a DataSet,
DataTable, or DataView to act as the data source. You can create this object at design time using
controls or at run time using object variables.

374 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

If you build the data source at design time, you can also
bind the property at design time. Select the control that you
want to bind and open the Properties window. Expand the
(DataBindings) entry and fi nd the property that you want to
bind (for example, Text). Click the drop-down arrow on the
right, and use the pop-up display to select the data source item
that you want to bind to the property.

Figure 19-15 shows the pop-up binding the txtTitle control’s
Text property to the dsBooks DataSet object’s Books table’s
Title fi eld.

At run time, your code can bind a simple property to a data
source by using the control’s DataBindings collection. This col-
lection’s Add method takes as parameters the name of the prop-
erty to bind, the data source, and the name of the item in the
data source to bind.

The following statement binds the txtUrl control’s Text property
to the dsBooks DataSet object’s Books table’s URL fi eld:

txtUrl.DataBindings.Add(“Text”, dsBooks.Books, “URL”)

FIGURE 19-15: You can bind a

simple control property to a data

source at design time.

BINDING BASICS

When you bind the fi rst property, Visual Basic adds a BindingSource to the form.
You can reuse this BindingSource to bind other properties. When you open the
drop-down shown in Figure 19-15, expand the existing BindingSource to reuse it
rather than create a new one.

That’s all there is to binding simple properties. By itself, however, this binding doesn’t provide any
form of navigation. If you were to bind the Text properties of a bunch of TextBox controls and run
the program, you would see the data for the data source’s fi rst record and nothing else. To allow the
user to navigate through the data source, you must use a CurrencyManager object.

CURRENCYMANAGER

Some controls such as the DataGrid control provide their own forms of navigation. If you bind a
DataGrid to a DataSet, it allows the user to examine the DataSet object’s tables, view and edit data,
and follow links between the tables. The DataGrid provides its own methods for navigating through

CurrencyManager ❘ 375

the data. For simpler controls, such as the TextBox, which can display only one data value at a time,
you must provide some means for the program to navigate through the data source’s records.

A data source manages its position within its data by using a CurrencyManager object. The
CurrencyManager supervises the list of Binding objects that bind the data source to controls such as
TextBoxes.

NOTE The name CurrencyManager has nothing to do with money. Here
“currency” refers to the current record, not cash.

The following table describes the CurrencyManager object’s most useful properties.

PROPERTY PURPOSE

Bindings A collection of the bindings that the object manages.

Count Returns the number of rows associated with the CurrencyManager.

Current Returns a reference to the current data object (row).

List Returns an object that implements the IList interface that provides the data for the

CurrencyManager. For example, if the data source is a DataSet or DataTable, this

object is a DataView.

Position Gets or sets the current position within the data. For example, in a DataTable this is

the row number.

The CurrencyManager also provides some methods for manipulating the data. The following table
describes the CurrencyManager object’s most useful methods.

METHOD PURPOSE

AddNew Adds a new item to the data source

CancelCurrentEdit Cancels the current editing operation

EndCurrentEdit Ends the current editing operation, accepting any changes

Refresh Refi lls the bound controls

RemoveAt Removes the data source item at a specifi ed index

376 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

The CurrencyManager class raises a PositionChanged event when its position in the data changes.

Example program BindSimple, which is available for download on the book’s website, uses the
following code to navigate through a DataSet:

Public Class Form1
 Private WithEvents MyCurrencyManager As CurrencyManager

 Private Sub Form1_Load() Handles MyBase.Load
 Me.BooksTableAdapter.Fill(Me.BooksDataSet.Books)

 ‘ Get the CurrencyManager.
 MyCurrencyManager = DirectCast(Me.BindingContext(
 BooksBindingSource), CurrencyManager)

 ‘ Display the record number.
 MyCurrencyManager_PositionChanged()
 End Sub

 ‘ Move to the previous record.
 Private Sub btnPrev_Click() Handles btnPrev.Click
 If MyCurrencyManager.Position = 0 Then
 Beep()
 Else
 MyCurrencyManager.Position -= 1
 End If
 End Sub

 ‘ Move to the next record.
 Private Sub btnNext_Click() Handles btnNext.Click
 If MyCurrencyManager.Position >= MyCurrencyManager.Count - 1 Then
 Beep()
 Else
 MyCurrencyManager.Position += 1
 End If
 End Sub

 ‘ Go to the first record.
 Private Sub btnFirst_Click() Handles btnFirst.Click
 MyCurrencyManager.Position = 0
 End Sub

 ‘ Go to the last record.
 Private Sub btnLast_Click() Handles btnLast.Click
 MyCurrencyManager.Position = MyCurrencyManager.Count - 1
 End Sub

 Private Sub MyCurrencyManager_PositionChanged() _
 Handles MyCurrencyManager.PositionChanged
 lblPosition.Text =
 (MyCurrencyManager.Position + 1) & “ of “ & MyCurrencyManager.Count
 End Sub

 ‘ Add a record.

Complex Data Binding ❘ 377

 Private Sub btnAdd_Click() Handles btnAdd.Click
 MyCurrencyManager.AddNew()
 txtTitle.Focus()
 End Sub

 ‘ Delete the current record.
 Private Sub btnDelete_Click() Handles btnDelete.Click
 If MessageBox.Show(“Are you sure you want to remove this record?”,
 “Confirm?”, MessageBoxButtons.YesNo, MessageBoxIcon.Question) =
 Windows.Forms.DialogResult.Yes _
 Then
 MyCurrencyManager.RemoveAt(MyCurrencyManager.Position)
 End If
 End Sub
End Class

When the form loads, the program fi lls its data set and saves a reference to a CurrencyManager
object that controls the data set’s Books table. It then calls subroutine MyCurrency
Manager_PositionChanged to display the current record’s index (this is described shortly).

The fi rst, last, previous, and next record buttons all work by changing the CurrencyManager’s
Position property. For example, the previous record button’s event handler checks whether the
current position is greater than zero, and if it is the code decreases the position by one.

Similarly, the next record button increases the current position by one if the CurrencyManager is
not already displaying the last record.

The fi rst and last record buttons set the position to the indexes of the fi rst and last records, respectively.

Whenever the CurrencyManager’s position changes, its PositionChanged event handler executes.
This code displays the current record’s index in a label
for the user to see.

When the user clicks the add record button, the code calls
the CurrencyManager’s AddNew method to make a new
record. It also sets focus to the fi rst text box to make fi ll-
ing in the new record easier.

Finally, when the user clicks the delete record
button, the code confi rms the deletion and then calls the
CurrencyManager’s RemoveAt method to delete the record.

Figure 19-16 shows the BindSimple program in action.

Example program BindSimpleMemoryDataSet, which
is available for download on the book’s website, is similar to program BindSimple except it uses a
DataSet built-in memory rather than one loaded from a database.

COMPLEX DATA BINDING

For some controls (such as the TextBox and Label) binding the Text property is good enough. Other
controls, however, do not display a simple textual value.

FIGURE 19-16: This program’s buttons

use a CurrencyManager to let the user

add, delete, and navigate through a

table’s records.

378 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

For example, suppose that you have a database containing a Users table with fi elds FirstName,
LastName, and UserType. The UserTypes table has fi elds UserTypeId and UserTypeName.
The Users.UserType fi eld contains a value that should match UserTypes.UserTypeId. The UserTypes
.UserTypeName fi eld contains values such as Programmer, Project Manager, Department Manager,
Program Manager, and Lab Director.

When you build a form to display the Users table data, you would like to use a ComboBox to allow
the user to select only the allowed choices Programmer, Project Manager, and so on. However, the
Users table doesn’t store those string values. Instead it stores the UserTypeId value corresponding
to the UserTypeName value that the user selects. When the user picks a UserTypes.UserTypeName
value, the ComboBox should look up the corresponding UserTypes.UserTypeId value and save it in
the Users.UserType fi eld.

Clearly, the simple binding strategy used for TextBoxes won’t work here. Binding this control
requires two rather complicated steps: defi ning the DataSet and binding the control. Each piece of
the operation is easy, but you must do everything correctly. If you miss any detail, the ComboBox
won’t work, and Visual Basic’s error messages probably won’t give you enough information to fi gure
out how to fi x the problem.

NOTE Example program BindComboBox, which is available for download on
the book’s website, demonstrates this technique. You may want to download this
example and copy the included database ComputerUsers.mdb into a new
directory so you can follow along.

The fi rst step is building a data connection. Select the Data menu’s
Add New Data Source command. Use the Data Source Confi guration
Wizard to make a data source that selects both the Users and the
UserTypes tables from the database.

Next, add a ComboBox named cboUserType to the form. In the
Properties window, select the control’s DataSource property and click
the drop-down arrow on the right. Select the UserTypes table as shown
in Figure 19-17. This tells the ComboBox where to look up values.

When you set this property, Visual Basic also adds a DataSet,
BindingSource, and TableAdapter to the form. These components
provide access to the UserTypes table.

Set the ComboBox’s DisplayMember property to the fi eld in the lookup
table (specifi ed by the DataSource property) that the control will
display to the user. In this example, the fi eld is UserTypeName.

Set the ComboBox’s ValueMember property to the fi eld in the lookup table that represents the
value that the ComboBox will need to read and write from the database. In this example, that’s
the UserTypeId fi eld.

FIGURE 19-17: Set the

ComboBox’s DataSource

property to the UserTypes

table.

Summary ❘ 379

That takes care of telling the ComboBox how to relate display
values with IDs. Next, you need to bind the ComboBox to the
fi eld that it must read and write in the database. In this example,
that’s the Users table’s UserType fi eld. To simplify this binding,
use the Toolbox to add a new BindingSource to the form. Change
its name to UsersBindingSource and set its DataSource property to
the ComputerUsersDataSet as shown in Figure 19-18. Then set the
BindingSource object’s DataMember property to the Users table.

The last ComboBox property you need to set is SelectedValue.
Click the ComboBox, open the Properties window, and expand the
(DataBindings) entry at the top. Click the drop-down arrow to
the right of the SelectedValue property and select the fi eld that the
control must read and write in the database. For this example, that’s
the UsersBindingSource object’s UserType fi eld.

Next, create TextBox controls to display the Users table’s FirstName
and LastName fi elds. In the Properties window, open their (Data
Bindings) items and set their Text properties
to the UsersBindingSource object’s FirstName and
LastName fi elds.

Finally, to give the user a way to navigate through the data,
add a BindingNavigator to the form. Set this component’s
BindingSource property to UsersBindingSource and the
program is ready to run. Figure 19-19 shows the
BindComboBox example program, which is available for
download on the book’s website, in action. (I also added a save
button to the BindingNavigator and some code to save changes
when the user clicks it.)

The steps for binding a ListBox control are exactly the same as
those for binding a ComboBox. Example program BindListBox,
which is available for download on the book’s website, works
much as program BindComboBox does, except it uses a ListBox
instead of a ComboBox. As you move through the records, the ListBox selects the appropriate user
type for each user record.

SUMMARY

Working with databases in Visual Basic is an enormous topic. This chapter did not cover every
detail of database programming, but it did explain the basics. It told how to build data sources and
how to drag and drop tables and fi elds from the Data Sources window onto a form. It described
the most important database controls and objects, such as connection, data adapter, DataSet, and
DataTable objects. It also explained the fundamentals of simple and complex data binding, and
using CurrencyManager objects to navigate through data.

For more information on database programming in Visual Basic .NET, see one or more books about
database programming. This is a very broad fi eld so you may want to look at several books about

FIGURE 19-18: Set the

BindingSource object’s

DataSource to the

ComputerUsersDataSet.

FIGURE 19-19: At run time, the

ComboBox displays the fi eld bound

to its DisplayMember property

while updating the fi eld bound to its

SelectedValue property.

380 ❘ CHAPTER 19 DATABASE CONTROLS AND OBJECTS

database design, database maintenance using your particular database (for example, Access or SQL
Server), Visual Basic database programming, and so forth.

If you must build and maintain large databases, you should also read books about database manage-
ment. These can tell you how to design, build, and maintain a database throughout the application’s
lifetime. My book Beginning Database Design Solutions (Rod Stephens, Wrox, 2008) explains how
to analyze database needs and build a robust and effi cient database design.

You should also read about the particular kinds of databases that you need to use. For example,
if you are working with SQL Server databases, get a good book on using SQL Server, such as
Professional Microsoft SQL Server 2008 Programming by Robert Viera (Wrox, 2009).

Becoming an expert database developer is a big task, but the techniques described in this chapter
should at least get you started.

The controls and other objects described in this chapter let a program fi lter, select, and arrange data
taken from a database. Chapter 20, “LINQ,” explains how a program can use LINQ queries to
fi lter, select, and arrange data taken from lists, collections, arrays, and other data structures within
the program’s code.

LINQ

WHAT’S IN THIS CHAPTER

 ➤ LINQ to Objects, LINQ to XML, and LINQ to ADO.NET

 ➤ LINQ query syntax

 ➤ LINQ functions and extension methods

 ➤ Extending LINQ

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter is divided
into the following major examples:

 ➤ GroupByWithTotals

 ➤ JoinExamples

 ➤ LinqFunctions

 ➤ LinqLambda

 ➤ OrderByExamples

THE MANY FACES OF LINQ

LINQ (Language Integrated Query, pronounced “link”) is a data-selection mechanism
designed to give programs the ability to select data in the same way from any data source.
Ideally the program would be able to use exactly the same method to fetch data whether it’s
stored in arrays, lists, relational databases, XML data, Excel worksheets, or some other data
store. Currently the LINQ API supports data stored in relational databases, objects within the
program stored in arrays or lists, and XML data.

20

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

382 ❘ CHAPTER 20 LINQ

LINQ queries often let a program make complex data selections with very little code. For example,
suppose you’re writing a billing program and you want to list customers with outstanding balances
ordered by their balances. You could certainly use Visual Basic code to loop through a customer list
to fi nd the customers and then sort the results, but a LINQ query can fi nd and order them in a few
simple lines. The result isn’t always as fast as optimized Visual Basic code but it is often much sim-
pler for complicated queries such as this one.

LINQ provides dozens of extension methods that apply to all sorts of data-holding objects such as
arrays, dictionaries, and lists. Visual Basic provides a LINQ query syntax that converts SQL-like
queries into calls to the LINQ extension methods to select data.

LINQ tools are divided into the three categories summarized in the following list:

 ➤ LINQ to Objects refers to LINQ functions that interact with Visual Basic objects such as
arrays, dictionaries, and lists. Most of this chapter presents examples using these kinds of
objects to demonstrate LINQ concepts.

 ➤ LINQ to XML refers to LINQ features that read and write XML data. Using LINQ, you
can easily move data between XML hierarchies and other Visual Basic objects.

 ➤ LINQ to ADO.NET refers to LINQ features that let you write LINQ-style queries to
extract data from relational databases.

The fi rst section in this chapter, “Introduction to LINQ,” provides an intuitive introduction to
LINQ. Many of the details about LINQ functions are so complex and technical that they can be
hard to understand, but the basic ideas are really quite simple. The introduction gives examples that
demonstrate the essential concepts to try to give you an understanding of the basics.

The section “Basic LINQ Query Syntax” describes the most useful LINQ query commands. These
let you perform complex queries that select, fi lter, and arrange data taken from program objects.
The next section, “Advanced LINQ Query Syntax,” describes additional LINQ query commands.

“LINQ Functions” describes functions that are provided by LINQ but that are not supported by
Visual Basic’s LINQ query syntax. To use these functions, you must apply them to the arrays, dic-
tionaries, lists, and other objects that they extend.

“LINQ Extension Methods” explains how LINQ extends objects such as arrays, dictionaries, and
lists. It describes method-based queries and explains how you can write your own extensions to
increase the power of method-based queries.

LOTS OF LINQ

This chapter covers only the default LINQ providers included with Visual Basic, but
you can build providers to make LINQ work with just about anything. For a list of
some third-party LINQ providers to Google, Amazon, Excel, Active Directory, and
more, see http://rshelton.com/archive/2008/07/11/list-of-linq-providers
.aspx.

Microsoft also has created a LINQ provider for SharePoint. For more information,
see http://msdn.microsoft.com/library/ee535491.aspx.

http://rshelton.com/archive/2008/07/11/list-of-linq-providers.aspx
http://rshelton.com/archive/2008/07/11/list-of-linq-providers.aspx
http://msdn.microsoft.com/library/ee535491.aspx

Introduction to LINQ ❘ 383

After describing the tools provided by LINQ, most of the rest of the chapter describes the three
main categories of LINQ usage: LINQ to Objects, LINQ to XML, and LINQ to ADO.NET. The
chapter fi nishes by describing Parallel LINQ (PLINQ).

LINQ to Objects is a bit easier to cover effectively than LINQ to XML and LINQ to ADO.NET
because it doesn’t require that you have any special knowledge beyond Visual Basic itself. To under-
stand LINQ to XML properly, you need to understand XML, which is a complex topic in its own
right. Similarly, to get the most out of LINQ to ADO.NET, you need to understand relational data-
bases such as SQL Server, a huge topic about which many books have been written.

Because LINQ to Objects is easiest to cover, this chapter focuses mostly on it, and most of the
examples throughout the chapter deal with LINQ to Objects. The fi nal sections of the chapter do
provide some information about LINQ to XML and LINQ to ADO.NET, however, to give you an
idea of what is possible in those arenas.

INTRODUCTION TO LINQ

The LINQ API provides relatively low-level access to data in various storage formats. Visual Basic
provides a higher-level layer above the LINQ API that makes querying data sources easier. This
higher-level layer uses query expressions to defi ne the data that should be selected from a data
source. These expressions use a SQL-like syntax so they will be familiar to developers who have
worked with relational databases.

For example, suppose a program defi nes a Customer class that provides typical customer properties
such as Name, Phone, StreetAddress, AccountBalance, and so forth. Suppose also that the list
all_customers holds all of the application’s Customer objects. Then the following expression
defi nes a query that selects customers with negative account balances. The results are ordered by
balance in ascending order so customers with the most negative balances (who owe the most) are
listed fi rst. (Example program LinqLambda, which is available for download on the book’s website,
defi nes a simple Customer class and performs a similar query.)

Dim overdue_custs =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Order By cust.AccountBalance Ascending
 Select cust.Name, cust.AccountBalance

Behind the scenes, Visual Basic transforms the query expression into calls to the LINQ API and
fetches the selected data. The program can then loop through the results as shown in the
following code:

For Each cust In overdue_custs
 Debug.WriteLine(cust.Name & “: “ & cust.AccountBalance)
Next cust

There are a couple of interesting things to note about this code. First, the previous code fragments
do not declare data types for the overdue_custs expression or the looping variable cust in the For
Each loop. The data types for both of these variables are inferred automatically by Visual Basic.

384 ❘ CHAPTER 20 LINQ

If you stop the program while it is executing and use the TypeName function to see what types these
variables have, you’ll fi nd that they have the following ungainly names:

WhereSelectEnumerableIterator`2
VB$AnonymousType_0`2

Because these data types have such awkward names, you don’t really want to try to guess them. It’s
much easier to leave Option Infer on and let Visual Basic infer them for you.

In fact, as the previous code fragments show, you never even need to know what these data types
are. The code can defi ne the query without declaring its types, and the For Each loop can iterate
through the results without knowing the data type of the looping variable.

Because the code doesn’t need to know what these data types really are, they are called
anonymous types.

A second interesting fact about this code is that the program doesn’t actually fetch any data when
the query expression is defi ned. It only accesses the data source (in this case the all_customers
list) when the code tries to access the result in the For Each loop. Many programs don’t really need
to distinguish between when the expression is declared and when it is executed. For example, if the
code iterates through the results right after defi ning the query, there isn’t much difference. However,
if it may be a long time between defi ning the query and using it or if the query takes a long time to
execute, the difference may matter.

Third, if you have any experience with relational databases, you’ll notice that the Select clause is in
a different position from where it would be in a SQL statement. In SQL the Select clause comes fi rst
whereas in LINQ it comes at the end. This placement is due to implementation issues Microsoft encoun-
tered while implementing IntelliSense for LINQ. The concept is similar in SQL and LINQ. In both cases
the Select clause tells which “fi elds” you want to select from the data. As long as you remember the dif-
ference in position (or let IntelliSense help you remember), it shouldn’t be too confusing.

INTELLISENSE DEFERRED

Basically IntelliSense doesn’t know what “fi elds” you can select until it knows what
fi elds are available. In the preceding example, the From clause indicates that the
data will be selected from all_customers, a list of Customer objects. It isn’t until
after the From clause that IntelliSense knows that the Select statement can pick
from the Customer class’s properties.

The following sections explain the most useful LINQ keywords that are supported by Visual Basic.

BASIC LINQ QUERY SYNTAX

The following text shows the typical syntax for a LINQ query:

From ... Where ... Order By ... Select ...

Basic LINQ Query Syntax ❘ 385

The following sections describe these four basic clauses. The sections after those describe some of
the other most useful LINQ clauses.

From

The From clause is the only one that is required. It tells where the data comes from and defi nes the
name by which it is known within the LINQ query. Its basic form is:

From query_variable In data_source

Here query_variable is a variable that you are declaring to manipulate the items selected from the
data_source. This is similar to declaring a looping variable in a For or For Each statement.

You can supply a data type for query_variable if you know its type, although because of the anony-
mous types used by LINQ, it’s often easiest to let LINQ infer the data type automatically. For exam-
ple, the following query explicitly indicates that the query variable cust is from the Customer class:

Dim query = From cust As Customer In all_customers

The From clause can include more than one query variable and data source. In that case, the query
selects data from all of the data sources. For example, the following query selects objects from the
all_customers and all_orders lists:

Dim query = From cust In all_customers, ord In all_orders

This query returns the cross-product of the objects in the two lists. In other words, for every object
in the all_customers list, the query returns that object paired with every object in the all_orders
list. If all_customers contains Ann, Bob, and Cindy, and all_orders contains orders numbered 1,
2, 3, then the following text shows the results returned by this query:

Ann Order 1
Ann Order 2
Ann Order 3
Bob Order 1
Bob Order 2
Bob Order 3
Cindy Order 1
Cindy Order 2
Cindy Order 3

Usually, you will want to use a Where clause to join the objects selected from the two lists. For
example, if customers and orders are related by a common CustomerId property, you might use the
following query to select customers together with their corresponding orders rather than all orders:

Dim query = From cust In all_customers, ord In all_orders
 Where cut.CustomerId = ord.CustomerId

If Ann, Bob, and Cindy have CustomerId values 1, 2, 3, and the three orders have the corresponding
CustomerId values, the preceding query would return the following results:

386 ❘ CHAPTER 20 LINQ

Ann Order 1
Bob Order 2
Cindy Order 3

Where

The Where clause applies fi lters to the records selected by the From clause. It can include tests
involving the objects selected and properties of those objects. The last example in the preceding
section shows a particularly useful kind of query that joins objects from two data sources that are
related by common property values. Although the Where clause is often used for simple joins, it can
also execute functions on the selected objects and their properties.

For example, suppose the GoodCustomer class inherits from Customer, a class that has
AccountBalance and PaymentIsLate properties. Also suppose the all_customers list contains
Customer and GoodCustomer objects.

The OwesALot function defi ned in the following code returns True if a Customer owes more
than $50. The query that follows selects objects from all_customers where the object is not a
GoodCustomer and has a PaymentIsLate property of True and for which function OwesALot
returns True.

Private Function OwesALot(ByVal cust As Customer) As Boolean
 Return cust.AccountBalance < -50
End Function

Dim query = From cust In all_customers
 Where Not (TypeOf cust Is GoodCustomer)
 AndAlso cust.PaymentIsLate _
 AndAlso OwesALot(cust)

The Where clause can include just about any Boolean expression, usually involving the selected
objects and their properties. As the preceding example shows, it can include Not, Is, AndAlso, and
function calls. It can also include And, Or, OrElse, Mod, and Like.

Expressions can use any of the arithmetic, date, string, or other comparison operators. The following
query selects Order objects from all_orderitems where the OrderDate property is after April 5, 2012:

Dim query = From ord In all_orders
 Where ord.OrderDate > #4/5/2012#

Order By

The Order By clause makes a query sort the objects selected according to one or more values.
Usually the values are properties of the objects selected. For example, the following query selects
Customer objects from the all_customers list and sorts them by their LastName and FirstName
properties:

Dim query = From cust In all_customers
 Order By cust.LastName, cust.FirstName

Basic LINQ Query Syntax ❘ 387

In this example, customers are sorted fi rst by last name. If two customers have the same last name,
they are sorted by fi rst name.

An Order By clause can also sort objects based on calculated values. For example, suppose some
customers’ names are surrounded by parentheses. Because “(” comes alphabetically before letters,
those customers would normally end up at the beginning of the sorted list. The following query uses
a String class’s Replace method to remove parentheses from the values used in sorting so all names
are positioned in the list as if they did not contain parentheses:

Dim query = From cust In all_customers
 Order By cust.LastName.Replace(“(“, “”).Replace(“)”, “”),
 cust.FirstName.Replace(“(“, “”).Replace(“)”, “”)

Note that the values used for ordering results are not the values selected by the query. The two pre-
ceding queries do not specify what results they select so LINQ takes its default action and selects
the Customer objects in the all_customers list. See the next section, “Select,” for information on
determining the values that the query selects.

To arrange items in descending order, simply add the keyword Descending after an ordering
expression. Each expression can have its own Descending keyword so you can arrange them
independently.

Select

The Select clause lists the fi elds that the query should select into its result. This can be an entire
record taken from a data source or it can be one or more fi elds taken from the data sources. It can
include the results of functions and calculations on the fi elds. It can even include more complicated
results such as the results of nested queries.

You can add an alias to any of the items that the query selects. This is particularly useful for calcu-
lated results.

The following query selects objects from all_customers. It gives the fi rst selected fi eld the alias
Name. That fi eld’s value is the customer’s fi rst and last name separated by a space. The query also
selects the customer’s AccountBalance property, giving it the alias Balance.

Dim query = From cust In all_customers
 Select Name = cust.FirstName & “ “ & cust.LastName,
 Balance = Cust.AccountBalance

The result of the query is an IEnumerable that contains objects of an anonymous type that
holds two fi elds: Name and Balance. The following code shows how you might display the
results:

For obj In query
 Debug.WriteLine(obj.Name & “ “ & FormatCurrency(obj.Balance))
Next obj

388 ❘ CHAPTER 20 LINQ

You can also use the New keyword to create objects of an anonymous type. The following query
builds a result similar to the earlier query but uses New:

Dim query = From cust In all_customers
 Select New With
 {
 .Name = cust.FirstName & “ “ & cust.LastName,
 .Balance = Cust.AccountBalance
 }

This version emphasizes that you are creating new objects, but it is more verbose.

The earlier queries return objects of an anonymous type. If you like, you can defi ne a type to
hold the results and then create new objects of that type in the Select clause. For example, suppose
the CustInfo class has Name and Balance properties. The following query selects the same data
as the preceding query but this time saves the results in a new CustInfo object:

Dim query = From cust In all_customers
 Select New CustInfo With
 {
 .Name = cust.FirstName & “ “ & cust.LastName,
 .Balance = Cust.AccountBalance
 }

The result of this query contains CustInfo objects, not objects of an anonymous type. The following
code shows how a program can use an explicitly typed looping variable to display these results:

For ci As CustInfo In query
 Debug.WriteLine(ci.Name & “ “ & FormatCurrency(ci.Balance))
Next ci

If the CustInfo class provides a constructor that takes a name and account balance as parameters,
you can achieve a similar result by using the constructor instead of the With keyword. The follow-
ing query provides a result similar to the preceding one:

Dim query = From cust In all_customers
 Select New CustInfo(
 cust.FirstName & “ “ & cust.LastName,
 cust.AccountBalance)

From all of these different kinds of examples, you can see the power of LINQ. You can also see the
potential for confusion. The Select clause in particular can take a number of different forms and can
return a complicated set of results.

The following example shows one of the more complicated queries that uses only basic LINQ
syntax. It selects data from multiple sources, uses a common fi eld to join them, adds a Where fi lter,
uses multiple values to order the results, and returns the Customer and Order objects that meet its
criteria.

Dim query = From cust In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId AndAlso

Basic LINQ Query Syntax ❘ 389

 cust.AccountBalance < 0
 Order By cust.CustId, ord.OrderDate
 Select cust, ord

Note that the Select clause changes the scope of the variables involved in the query. Statements that
come after the Select clause can only refer to items in that clause.

For example, the following query selects customer fi rst and last names. The Order By clause comes
after the Select clause so it can only refer to items included in the Select clause. This example orders
the results by the LastName and FirstName fi elds picked by the Select clause.

Dim query = From cust In all_customers
 Select cust.FirstName, cust.LastName
 Order By LastName, FirstName

Because the original cust variable is not chosen by the Select clause, the Order By clause cannot
refer to it.

Note also that if the Select clause gives a result an alias, then any later clause must refer to the alias.
For example, the following query selects the customers’ last and fi rst names concatenated into a fi eld
known by the alias FullName so the Order By clause must use the alias FullName:

Dim query = From cust In all_customers
 Select FullName = cust.LastName & “, “ & cust.FirstName
 Order By FullName

Usually, it is easiest to place Order By and other clauses before the Select clause to avoid confusion.

Using LINQ Results

A LINQ query expression returns an IEnumerable containing the query’s results. A program can
iterate through this result and process the items that it contains.

To determine what objects are contained in the IEnumerable result, you need to look carefully at the
Select clause. If this clause chooses a simple value such as a string or integer, then the result contains
those simple values.

For example, the following query selects customer fi rst and last names concatenated into a single
string. The result is a string, so the query’s IEnumerable result contains strings and the For Each
loop treats them as strings.

Dim query = From cust In all_customers
 Select cust.FirstName & “ “ & cust.LastName

For Each cust_name As String In query
 Debug.WriteLine(cust_name)
Next cust_name

Often the Select clause chooses some sort of object. The following query selects the Customer
objects contained in the all_customers list. The result contains Customer objects, so the code can
explicitly type its looping variable and treat it as a Customer.

390 ❘ CHAPTER 20 LINQ

Dim query = From cust In all_customers
 Select cust

For Each cust As Customer In query
 Debug.WriteLine(cust.LastName & “ owes “ & cust.AccountBalance)
Next cust

ADVANCED LINQ QUERY SYNTAX

The earlier sections described the basic LINQ commands that you might expect to use regularly, but
there’s much more to LINQ than these simple queries. The following sections describe some of the more
advanced LINQ commands that are less intuitive and that you probably won’t need to use as often.

Join

The Join keyword selects data from multiple data sources matching up corresponding fi elds. The fol-
lowing pseudo-code shows the Join command’s syntax:

From variable1 In data source1
Join variable2 In data source2
On variable1.field1 Equals variable2.field2

For example, the following query selects objects from the all_customers list. For each object it
fi nds, it also selects objects from the all_orders list where the two records have the same CustId
value.

Dim query = From cust As Customer In all_customers
 Join ord In all_orders
 On cust.CustId Equals ord.CustId

A LINQ Join is similar to a SQL join except the On clause only allows you to select objects where
fi elds are equal and the Equals keyword is required.

The following query selects a similar set of objects without using the Join keyword. Here the Where
clause makes the link between the all_customers and all_orders lists:

Dim query = From cust As Customer In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId

This is slightly more fl exible because the Where clause can make tests that are more complicated
than the Join statement’s Equals clause.

The Group Join statement selects data much as a Join statement does, but it returns the results dif-
ferently. The Join statement returns an IEnumerable object that holds whatever is selected by the
query (the cust and ord objects in this example).

The Group Join statement returns the same objects but in a different arrangement. Each item
in the IEnumerable result contains an object of the fi rst type (cust in this example) plus another
IEnumerable that holds the corresponding objects of the second type (ord in this example).

Advanced LINQ Query Syntax ❘ 391

For example, the following query selects customers and their corresponding orders much as the
earlier examples do. The new clause Into CustomerOrders means the IEnumerable contain-
ing the orders for each customer should be called CustomerOrders. The = Group part means
CustomerOrders should contain the results of the grouping.

Dim query =
 From cust In all_customers
 Group Join ord In all_orders
 On cust.CustId Equals ord.CustId
 Into CustomerOrders = Group

The following code shows how a program might display these results:

For Each c In query
 ‘ Display the customer.
 Debug.WriteLine(c.cust.ToString())

 ‘ Display the customer’s orders.
 For Each o In c.CustomerOrders
 Debug.WriteLine(Space$(4) & “OrderId: “ & o.OrderId &
 “, Date: “ & o.OrderDate & vbCrLf
 Next o
Next c

Each item in the main IEnumerable contains a cust object and an IEnumerable named
CustomerOrders. Each CustomerOrders object contains ord objects corresponding to the cust
object.

This code loops through the query’s results. Each time through the loop, it displays the cust object’s
information and then loops through its CustomerOrders, displaying each ord object’s information
indented.

Example program JoinExamples, which is available for download on the book’s website, demon-
strates these types of Join queries.

Group By

Like the Group Join clause, the Group By clause lets a program select data from a fl at, relational
style format and build a hierarchical arrangement of objects. It also returns an IEnumerable that
holds objects, each containing another IEnumerable.

The following code shows the basic Group By syntax:

From variable1 In datasource1
Group items By value Into groupname = Group

NOTE Actually, the main result is a GroupJoinIterator, but that inherits from
IEnumerable, so you can treat it as such.

392 ❘ CHAPTER 20 LINQ

Here, items is a list of items whose properties you want selected into the group. In other words, the
properties of the items variables are added to the objects in the nested IEnumerable.

If you omit the items parameter, the query places the objects selected by the rest of the query into
the nested IEnumerable.

The value property tells LINQ on what fi eld to group objects. This value is also stored in the
top-level IEnumerable values.

The groupname parameter gives a name for the group. The objects contained in the top-level
IEnumerable get a property with this name that is an IEnumerable containing the grouped values.

Finally, the = Group clause indicates that the group should contain the fi elds selected by the query.

If this defi nition seems a bit confusing, an example should help. The following query selects objects
from the all_orders list. The Group By statement makes the query group orders with the same
CustId value.

Dim query1 = From ord In all_orders
 Order By ord.CustId, ord.OrderId
 Group ord By ord.CustId Into CustOrders = Group

The result is an IEnumerable that contains objects with two fi elds. The fi rst fi eld is the CustId value
used to defi ne the groups. The second fi eld is an IEnumerable named CustOrders that contains the
group of order objects for each CustId value.

The following code shows how a program might display the results in a TreeView control:

Dim root1 As TreeNode = trvResults.Nodes.Add(“Orders grouped by CustId”)
For Each obj In query1
 ‘ Display the customer id.
 Dim cust_node As TreeNode = root1.Nodes.Add(“Cust Id: “ & obj.CustId)

 ‘ List this customer’s orders.
 For Each ord In obj.CustOrders cust_node.Nodes.Add(“OrderId: “ & ord.OrderId &
 “, Date: “ & ord.OrderDate)
 Next ord
Next obj

The code loops through the top-level IEnumerable. Each time through the loop, it displays the
group’s CustId and then loops through the group’s CustOrders IEnumerable displaying each order’s
ID and date.

Example program SimpleGroupBy, which is available for download on the book’s website, demon-
strates this type of Group By statement.

Another common type of query uses the Group By clause to apply some aggregate function to the
items selected in a group. The following query selects order and order item objects, grouping each
order’s items and displaying each order’s total price:

Advanced LINQ Query Syntax ❘ 393

Dim query1 = From ord In all_orders, ord_item In all_order_items
 Order By ord.CustId, ord.OrderId
 Where ord.OrderId = ord_item.OrderId
 Group ord_item By ord Into
 TotalPrice = Sum(ord_item.Quantity * ord_item.UnitPrice),
 OrderItems = Group

The query selects objects from the all_orders and all_order_items lists using a Where clause to
join them.

The Group ord_item piece places the fi elds of the ord_item object in the group. The By ord piece
makes each group hold items for a particular ord object.

The Into clause selects two values. The fi rst is a sum over all of the group’s ord_item objects
adding up the ord_items’ Quantity times UnitPrice fi elds. The second value selected is the group
named OrderItems.

The following code shows how a program might display the results in a TreeView control named
trvResults:

Dim root1 As TreeNode = trvResults.Nodes.Add(“Orders”)
For Each obj In query1
 ‘ Display the order id.
 Dim cust_node As TreeNode =
 root1.Nodes.Add(“Order Id: “ & obj.ord.OrderId &
 “, Total Price: “ & FormatCurrency(obj.TotalPrice))
 ‘ List this order’s items.
 For Each ord_item In obj.OrderItems
 cust_node.Nodes.Add(ord_item.Description & “: “ &
 ord_item.Quantity & “ @ “ & FormatCurrency(ord_item.UnitPrice))
 Next ord_item
Next obj

Each loop through the query results represents an order. For each order, the program creates a tree
node showing the order’s ID and the TotalPrice value that the query calculated for it.

Next, the code loops through the order’s items stored in the OrderItems group. For each item, it
creates a tree node showing the item’s Description, Quantity, and TotalPrice fi elds.

Example program GroupByWithTotals, which is available for download on the book’s website,
demonstrates this Group By statement.

Aggregate Functions

The preceding section explained how a Group By query can use the Sum aggregate function. LINQ
also supports the reasonably self-explanatory aggregate functions Average, Count, LongCount,
Max, and Min.

The following query selects order objects and their corresponding order items. It uses a Group By
clause to calculate aggregates for each of the orders’ items.

394 ❘ CHAPTER 20 LINQ

Dim query1 = From ord In all_orders, ord_item In all_order_items
 Order By ord.CustId, ord.OrderId
 Where ord.OrderId = ord_item.OrderId
 Group ord_item By ord Into
 TheAverage = Average(ord_item.UnitPrice * ord_item.Quantity),
 TheCount = Count(ord_item.UnitPrice * ord_item.Quantity),
 TheLongCount = LongCount(ord_item.UnitPrice * ord_item.Quantity),
 TheMax = Max(ord_item.UnitPrice * ord_item.Quantity),
 TheMin = Min(ord_item.UnitPrice * ord_item.Quantity),
 TheSum = Sum(ord_item.Quantity * ord_item.UnitPrice)

The following code loops through the query’s results and adds each order’s aggregate values to a
string named txt. It displays the fi nal results in a text box named txtResults.

For Each obj In query1
 ‘ Display the order info.
 txt &= “Order “ & obj.ord.OrderId &
 “, Average: “ & obj.TheAverage &
 “, Count: “ & obj.TheCount &
 “, LongCount: “ & obj.TheLongCount &
 “, Max: “ & obj.TheMax &
 “, Min: “ & obj.TheMin &
 “, Sum: “ & obj.TheSum &
 vbCrLf
Next obj
txtResults.Text = txt

Set Operations

If you add the Distinct keyword to a query, LINQ keeps only one instance of each value selected.
For example, the following query returns a list of IDs for customers who placed an order before
4/15/2012:

Dim query = From ord In all_orders
 Where ord.OrderDate < #4/15/2012#
 Select ord.CustId
 Distinct

The code examines objects in the all_orders list with OrderDate fi elds before 4/15/2012. It selects
those objects’ CustId fi elds and uses the Distinct keyword to remove duplicates. If a particular
customer placed several orders before 4/15/2012, this query lists that customer’s ID only once.

LINQ also provides Union, Intersection, and Except extension methods, but they are not supported
by Visual Basic’s LINQ syntax. See the section “LINQ Functions” later in this chapter for more
information.

Example program SetExamples, which is available for download on the book’s website, demon-
strates these set operations.

Limiting Results

LINQ includes several keywords for limiting the results returned by a query.

LINQ Functions ❘ 395

 ➤ Take makes the query keep a specifi ed number of results and discard the rest.

 ➤ Take While makes the query keep selected results as long as some condition holds and then
discard the rest.

 ➤ Skip makes the query discard a specifi ed number of results and keep the rest.

 ➤ Skip While makes the query discard selected results as long as some condition holds and
then keep the rest.

The following code demonstrates each of these commands:

Dim q1 = From cust In all_customers Take 5
Dim q2 = From cust In all_customers Take While cust.FirstName.Contains(“n”)
Dim q3 = From cust In all_customers Skip 3
Dim q4 = From cust In all_customers Skip While cust.FirstName.Contains(“n”)

The fi rst query selects the fi rst fi ve customers and ignores the rest.

The second query selects customers as long as the FirstName fi eld contains the letter “n.” It then
discards any remaining results, even if a later customer’s FirstName contains an “n.”

The third query discards the fi rst three customers and then selects the rest.

The fi nal query skips customers as long as their FirstName values contain the letter “n” and then
keeps the rest.

Example program LimitingExamples, which is available for download on the book’s website,
demonstrates these commands.

LINQ FUNCTIONS

LINQ provides several functions (implemented as extension methods) that are not supported by
Visual Basic’s LINQ syntax. Though you cannot use these in LINQ queries, you can apply them to
the results of queries to perform useful operations.

For example, the following code defi nes a query that looks for customers named Rod Stephens.
It then applies the FirstOrDefault extension method to the query to return either the fi rst object
selected by the query or Nothing if the query selects no objects.

Dim rod_query = From cust In all_customers
 Where cust.LastName = “Stephens” AndAlso cust.FirstName = “Rod”
Dim rod As Person = rod_query.FirstOrDefault()

The following list describes some of the more useful of these extension methods:

 ➤ Aggregate — Uses a function specifi ed by the code to calculate a custom aggregate.

 ➤ Concat — Concatenates two sequences into a new sequence.

 ➤ Contains — Determines whether the result contains a specifi c value.

396 ❘ CHAPTER 20 LINQ

 ➤ DefaultIfEmpty — If the query’s result is not empty, returns the result. If the result is empty,
returns an IEnumerable containing a default value. Optionally can also specify the default
value (for example, a new object rather than Nothing) to use if the query’s result is empty.

 ➤ ElementAt — Returns an element at a specifi c position in the query’s result. If there is no
element at that position, it throws an exception.

 ➤ ElementAtOrDefault — Returns an element at a specifi c position in the query’s result.
If there is no element at that position, it returns a default value for the data type.

 ➤ Empty — Creates an empty IEnumerable.

 ➤ Except — Returns the items in one IEnumerable that are not in a second IEnumerable.

 ➤ First — Returns the fi rst item in the query’s result. If the query contains no results, it throws
an exception.

 ➤ FirstOrDefault — Returns the fi rst item in the query’s result. If the query contains no
results, it returns a default value for the data type.

 ➤ Intersection — Returns the intersection of two IEnumerable objects. In other words, it
returns an IEnumerable containing items that are in both of the original IEnumerable objects.

 ➤ Last — Returns the last item in the query’s result. If the query contains no results, it throws
an exception.

 ➤ LastOrDefault — Returns the last item in the query’s result. If the query contains no results,
it returns a default value for the data type.

 ➤ Range — Creates an IEnumerable containing a range of integer values.

 ➤ Repeat — Creates an IEnumerable containing a value of a given type repeated a specifi c
number of times.

 ➤ SequenceEqual — Returns True if two sequences are identical.

 ➤ Single — Returns the single item selected by the query. If the query does not contain exactly
one result, it throws an exception.

 ➤ SingleOrDefault — Returns the single item selected by the query. If the query contains no
results, it returns a default value for the data type. If the query contains more than one item,
it throws an exception.

 ➤ Union — Returns the union of two IEnumerable objects. In other words, it returns an
IEnumerable containing items that are in either of the original IEnumerable objects.

Example program FunctionExamples, which is available for download on the book’s website,
demonstrates most of these functions. Example program SetExamples demonstrates Except,
Intersection, and Union.

LINQ also provides functions that convert results into new data types. The following list describes
these methods:

 ➤ AsEnumerable — Converts the result into a typed IEnumerable(Of T).

 ➤ AsQueryable — Converts an IEnumerable into an IQueryable.

LINQ Extension Methods ❘ 397

 ➤ OfType — Removes items that cannot be cast into a specifi c type.

 ➤ ToArray — Places the results in an array.

 ➤ ToDictionary — Places the results in a Dictionary using a selector function to set each
item’s key.

 ➤ ToList — Converts the result into a List(Of T).

 ➤ ToLookup — Places the results in a Lookup (one-to-many dictionary) using a selector func-
tion to set each item’s key.

Note that the ToArray, ToDictionary, ToList, and ToLookup functions force the query to execute
immediately instead of waiting until the program accesses the results.

LINQ EXTENSION METHODS

Visual Basic doesn’t really execute LINQ queries. Instead it converts them into a series of
function calls (provided by extension methods) that perform the query. Though the LINQ
query syntax is generally easier to use, it is sometimes helpful to understand what those function
calls look like.

The following sections explain the general form of these function calls. They explain how the func-
tion calls are built, how you can use these functions directly in your code, and how you can extend
LINQ to add your own LINQ query methods.

Method-Based Queries

Suppose a program defi nes a List(Of Customer) named all_customers and then defi nes the follow-
ing query expression:

Dim q1 =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Order By cust.AccountBalance
 Select cust.Name, cust.AccountBalance

This query fi nds customers that have AccountBalance values less than zero, orders them by
AccountBalance, and returns an IEnumerable object that can enumerate their names and balances.
(Example program LinqLambda, which is available for download on the book’s website, defi nes a
simple Customer class and performs a similar query.)

To perform this selection, Visual Basic converts the query into a series of function calls to form a
method-based query that performs the same tasks as the original query. For example, the following
method-based query returns roughly the same results as the original LINQ query:

Dim q2 = all_customers.
 Where(AddressOf OwesMoney).
 OrderBy(AddressOf OrderByAmount).
 Select(AddressOf SelectFields)

398 ❘ CHAPTER 20 LINQ

This code calls the all_customers list’s Where method. It passes that method the address of the
function OqesMoney, which returns True if a Customer object has a negative account balance.

The code then calls the OrderBy method of the result returned by Where. It passes the OrderBy
method the address of the function OrderByAmount, which returns a Decimal value that OrderBy
can use to order the results of Where.

Finally, the code calls the Select method of the result returned by OrderBy. It passes Select the
address of a function that returns a CustInfo object representing each of the selected Customer
objects. The CustInfo class contains the Customer’s Name and AccountBalance values.

The exact series of method calls generated by Visual Studio to evaluate the LINQ query is somewhat
different from the one shown here. The version shown here uses the OwesMoney, OrderByAmount,
and SelectFields methods that I defi ned in the program to help pick, order, and select data. The
method-based query generated by Visual Basic uses automatically generated anonymous types and
lambda expressions, so it is much uglier.

The following code shows the OwesMoney, OrderByAmount, and SelectFields methods:

Private Function OwesMoney(ByVal c As Customer) As Boolean
 Return c.AccountBalance < 0
End Function

Private Function OrderByAmount(ByVal c As Customer) As Decimal
 Return c.AccountBalance
End Function

Private Function SelectFields(ByVal c As Customer, ByVal index As Integer) _
 As CustInfo
 Return New CustInfo() With
 {
 .CustName = c.Name, .Balance = c.AccountBalance
 }
End Function

Function OwesMoney simply returns True if a Customer’s balance is less than zero. The Where
method calls OwesMoney to see if it should pick a particular Customer for output.

Function OrderByAmount returns a Customer’s balance. The OrderBy method calls
OrderByAmount to order Customer objects.

Function SelectFields returns a CustInfo object representing a Customer.

That explains where the functions passed as parameters come from, but what are Where, OrderBy,
and Select? After all, Where is called as if it were a method provided by the all_customers object.
But all_customers is a List(Of Customer) and that has no such method.

In fact, Where is an extension method added to the IEnumerable interface by the LINQ library. The
generic List class implements IEnumerable so it gains the Where extension method.

Similarly, LINQ adds other extension methods to the IEnumerable interface including Any, All,
Average, Count, Distinct, First, GroupBy, OfType, Repeat, Sum, Union, and many more.

LINQ Extension Methods ❘ 399

Method-Based Queries with Lambda Functions

Lambda functions, or anonymous functions, make building method-based queries somewhat easier.
When you use lambda functions, you don’t need to defi ne separate functions to pass as parameters
to LINQ methods such as Where, OrderBy, and Select. Instead, you can pass a lambda function
directly into the method.

The following code shows a revised version of the previous method-based query. Here the method
bodies have been included as lambda functions.

Dim q3 = all_customers.
 Where(Function(c As Customer) c.AccountBalance < 0).
 OrderBy(Of Decimal)(Function(c As Customer) c.AccountBalance).
 Select(Of CustInfo)(Function(c As Customer, index As Integer) _
 New CustInfo() With
 {
 .CustName = c.Name, .Balance = c.AccountBalance
 }
)

Although this is more concise, not requiring you to build separate functions, it can also be a lot
harder to read and understand. Passing a simple lambda function to the Where or OrderBy method
may not be too confusing, but if you need to use a very complex function you may be better off
making it a separate routine.

The following code shows a reasonable compromise. This code defi nes three lambda functions but
saves them in delegate variables. It then uses the variables in the calls to the LINQ functions. This
version is more concise than the original version and doesn’t require separate functions, but it is
easier to read than the preceding version, which uses purely inline lambda functions.

‘ Query with LINQ and inline function delegates.
Dim owes_money = Function(c As Customer) c.AccountBalance < 0
Dim cust_balance = Function(c As Customer) c.AccountBalance
Dim new_custinfo = Function(c As Customer) New CustInfo() With
 {.Name = c.Name, .Balance = c.AccountBalance}
Dim q4 = all_customers.
 Where(owes_money).
 OrderBy(Of Decimal)(cust_balance).
 Select(Of CustInfo)(new_custinfo)

Note that LINQ cannot always infer a lambda function’s type exactly, so sometimes you need to
give it some hints. The Of Decimal and Of CustInfo clauses in this code tell LINQ the data types
returned by the cust_balance and new_custinfo functions.

HIDDEN GENERICS

The Of Decimal and Of CustInfo clauses use generic versions of the OrderBy and
Select functions. Generics let a function take a data type as a parameter, allowing
it to work more closely with objects of that type. For more information on generics,
see Chapter 26, “Generics,” or http://msdn.microsoft.com/w256ka79.aspx.

http://msdn.microsoft.com/w256ka79.aspx

400 ❘ CHAPTER 20 LINQ

Instead of using these clauses, you could defi ne the functions’ return types in their declarations.
The Func delegate types defi ned in the System namespace let you explicitly defi ne parameters and
return types for functions taking between zero and four parameters. For example, the following
code shows how you might defi ne the cust_balance function, indicating that it takes a Customer as a
parameter and returns a Decimal:

Dim cust_balance As Func(Of Customer, Decimal) =
 Function(c As Customer) c.AccountBalance

If you use this version of cust_balance, you can leave out the Of Decimal clause in the
previous query.

No matter which version of the method-based queries you use, the standard LINQ query
syntax is usually easier to understand, so you may prefer to use that version whenever possible.
Unfortunately, many references describe the LINQ extension methods as if you are going to use
them in method-based queries rather than in LINQ queries. For example, the description of the
OrderBy method at http://msdn.microsoft.com/library/bb534966.aspx includes the
following defi nition:

<ExtensionAttribute()>
Public Shared Function OrderBy(Of TSource, TKey)(_
 source As IEnumerable(Of TSource), _
 key_selector As Func(Of TSource, TKey) _
) As IOrderedEnumerable(Of TSource)

Here, ExtensionAttribute indicates that this is a function that extends another class. The type of the
fi rst parameter, in this case the parameter source has type IEnumerable(Of TSource), gives the class
that this method extends. The other parameters are passed to this method. In other words, this code
allows you to call the OrderBy function for an object of type IEnumerable(Of TSource), passing
it a key_selector of type Func(Of TSource, TKey). Confusing enough for you? For more informa-
tion on extension methods, see the section “Extension Methods” in Chapter 16, “Subroutines and
Functions.”

This online description of how the method’s parameters work is technically correct but may be a bit
too esoteric to be intuitive. It may be easier to understand if you consider a concrete example.

If you look closely at the examples in the preceding section, you can see how this defi nition matches
up with the use of the OrderBy method and the OrderByAmount function. In those examples,
TSource corresponds to the Customer class and TKey corresponds to the Decimal type. In the
defi nition of OrderBy shown here, the source parameter has type IEnumerable(Of Customer). The
key_selector parameter is the OrderByAmount function, which takes a Customer (TSource) param-
eter and returns a Decimal (TKey). The OrderBy method itself returns an IEnumerable(Customer),
corresponding to IEnumerable(TSource).

It all works but it’s a mess. The following syntax is much more intuitive:

Order By <value1> [Ascending/Descending],
 <value2> [Ascending/Descending],
 ...

http://msdn.microsoft.com/library/bb534966.aspx

LINQ Extension Methods ❘ 401

Generally, you should try to use the LINQ query syntax whenever possible, so most of the rest of
this chapter assumes you will do so and describes LINQ methods in this manner rather than with
confusing method specifi cations.

One time when you cannot easily use this type of syntax specifi cation is when you want to extend
the results of a LINQ query to add new features. The following section explains how you can write
extension methods to provide new features for LINQ results.

Extending LINQ

LINQ queries return some sort of IEnumerable object. (Actually they return some sort of
SelectIterator creature but the result implements IEnumerable.) The items in the result may be
simple types such as Customer objects or strings, or they may be of some bizarre anonymous type
that groups several selected fi elds together, but whatever the items are, the result is some sort of
IEnumerable.

Because the result is an IEnumerable, you can add new methods to the result by creating extension
methods for IEnumerable.

For example, the following code defi nes a standard deviation function. It extends the
IEnumerable(Of Decimal) interface so the method applies to the results of a LINQ query that fetches
Decimal values.

‘ Return the standard deviation of

‘ the values in an IEnumerable(Of Decimal).

<Extension()>

Public Function StdDev(source As IEnumerable(Of Decimal)) As Decimal

 ‘ Get the total.

 Dim total As Decimal = 0

 For Each value As Decimal In source

 total += value

 Next value

 ‘ Calculate the mean.

 Dim mean As Decimal = total / source.Count

 ‘ Calculate the sums of the deviations squared.

 Dim total_devs As Decimal = 0

 For Each value As Decimal In source

 Dim dev As Decimal = value - mean

 total_devs += dev * dev

 Next value

 ‘ Return the standard deviation.

 Return Math.Sqrt(total_devs / (source.Count - 1))

End Function

402 ❘ CHAPTER 20 LINQ

Now, the program can apply this method to the result of a LINQ query that selects Decimal values.
The following code uses a LINQ query to select AccountBalance values from the all_customers
list where the AccountBalance is less than zero. It then calls the query’s StdDev extension method
and displays the result.

Dim bal_due =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Select cust.AccountBalance
MessageBox.Show(bal_due.StdDev())

The following code performs the same operations without storing the query in an intermediate
variable:

MessageBox.Show(
 (From cust In all_customers
 Where cust.AccountBalance < 0
 Select cust.AccountBalance).StdDev())

Similarly, you can make other extension methods for IEnumerable to perform other calculations on
the results of LINQ queries.

The following version of the StdDev extension method extends IEnumerable(Of T). To process an
IEnumerable(Of T), this version also takes as a parameter a selector function that returns a Decimal
value for each of the objects in the IEnumerable(Of T).

<Extension()>
Public Function StdDev(Of T)(source As IEnumerable(Of T),
 selector As Func(Of T, Decimal)) As Decimal
 ‘ Get the total.
 Dim total As Decimal = 0
 For Each value As T In source
 total += selector(value)
 Next value

 ‘ Calculate the mean.
 Dim mean As Decimal = total / source.Count

 ‘ Calculate the sums of the deviations squared.
 Dim total_devs As Decimal = 0
 For Each value As T In source
 Dim dev As Decimal = selector(value) - mean
 total_devs += dev * dev
 Next value

NON-STANDARD STANDARDS

There are a couple of different defi nitions for standard deviation. This topic is
outside the scope of this book so it isn’t explored here. For more information, see
http://mathworld.wolfram.com/StandardDeviation.html.

http://mathworld.wolfram.com/StandardDeviation.html

LINQ to Objects ❘ 403

 ‘ Return the standard deviation.
 Return Math.Sqrt(total_devs / (source.Count - 1))
End Function

For example, if a LINQ query selects Customer objects, the result implements IEnumerable
(Of Customer). In that case, the selector function should take as a parameter a Customer object
and it should return a Decimal. The following code shows a simple selector function that returns a
Customer’s AccountBalance:

Private Function TotalBalance(ByVal c As Customer) As Decimal
 Return c.AccountBalance
End Function

The following code shows how a program can use this version of StdDev with this selector
function. The LINQ query selects Customer objects with AccountBalance values less than zero.
The code then calls the query’s StdDev method, passing it the address of the selector function. The
new version of StdDev uses the selector to calculate the standard deviation of the selected Customer
objects’ AccountBalance values, and then the code displays the result.

Dim stddev_due =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Select cust
Dim result As Decimal = stddev_due.StdDev(AddressOf TotalBalance)
MessageBox.Show(result)

LINQ TO OBJECTS

LINQ to Objects refers to methods that let a program extract data from objects that are extended
by LINQ extension methods. These methods extend IEnumerable(Of T) so that they apply to any
class that implements IEnumerable(Of T) including Dictionary(Of T), HashSet(Of T), LinkedList
(Of T), Queue(Of T), SortedDictionary(Of T), SortedList(Of T), Stack(Of T), and others.

For example, the following code searches the all_customers list for customers with negative
account balances. It orders them by account balance and returns their names and balances.

Dim overdue_custs =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Order By cust.AccountBalance Ascending
 Select cust.Name, cust.AccountBalance

The result of this query is an IEnumerable object that the program can iterate through to take action
for the selected customers.

All of the examples shown previously in this chapter use LINQ to Objects, so this section says no
more about them. See the previous sections for more information and examples.

404 ❘ CHAPTER 20 LINQ

LINQ TO XML

LINQ to XML refers to methods that let a program move data between XML objects and other
data-containing objects. For example, using LINQ to XML you can select customer data and use it
to build an XML document.

LINQ provides a new selection of XML elements. These classes contained in the System.Xml
.Linq namespace correspond to the classes in the System.Xml namespace. The names of the new
classes begin with “X” instead of “Xml.” For example, the LINQ class representing an element is
XElement whereas the System.Xml class is XmlElement.

The LINQ versions of the XML classes provide many of the same features as the System.Xml
versions, but they also provide support for new LINQ features.

The following section describes one of the most visible features of the LINQ XML classes: XML
literals. The two sections after that introduce methods for using LINQ to move data into and out of
XML objects.

XML Literals

In addition to features similar to those provided by the System.Xml classes, the System.Xml.Linq
classes provide new LINQ-oriented features. One of the most visible of those features is the ability
to use XML literal values. For example, the following code creates an XDocument object that
contains three Customer elements:

Dim xml_literal As XElement =
 <AllCustomers>
 <Customer FirstName=”Ann” LastName=”Archer”>100.00</Customer>
 <Customer FirstName=”Ben” LastName=”Best”>-24.54</Customer>
 <Customer FirstName=”Carly” LastName=”Cant”>62.40</Customer>
 </AllCustomers>

Visual Basic LINQ translates this literal into an XML object hierarchy holding a root element
named AllCustomers that contains three Customer elements. Each Customer element has two
attributes, FirstName and LastName.

To build the same hierarchy using System.Xml objects would take a lot more work. The
CustomersToXml example program, which is available for download on the book’s website, includes
a System.Xml version in addition to the previous LINQ literal version. The System.Xml version
takes 26 lines of code and is much harder to read than the LINQ literal version.

Other LINQ XML classes such as XDocument, XComment, XCdata, and XProcessingInstruction
also have literal formats, although usually it’s easier to use an XElement instead of an XDocument,
and the others are usually contained in an XElement or XDocument.

The Visual Basic code editor also provides some extra enhancements to make writing XML literals
easier. For example, if you type a new XML tag, when you type the closing “>” character the editor
automatically adds a corresponding closing tag. If you type “<Customer>” the editor adds the
“</Customer>” tag. Later if you change a tag’s name, the code editor automatically changes
the corresponding closing tag.

LINQ to XML ❘ 405

Together these LINQ XML literal tools make building hard-coded XML data much easier than it is
using the System.Xml objects.

LINQ into XML

To select data into XML objects, you can use syntax similar to the syntax you use to build an XML
literal. You then add the special characters <%= ... %> to indicate a “hole” within the literal. Inside
the hole, you replace the ellipsis with a LINQ query that extracts data from Visual Basic objects and
uses them to build new XML objects.

For example, suppose the all_customers list contains Customer objects. The following code builds
an XElement object that contains Customer XML elements for all of the Customer objects:

Dim x_all As XElement = _
 <AllCustomers>
 <%= From cust In all_customers
 Select New XElement(“Customer”,
 New XAttribute(“FirstName”, cust.FirstName),
 New XAttribute(“LastName”, cust.LastName),
 New XText(cust.Balance.ToString(“0.00”)))
 %>
 </AllCustomers>

The following text shows a sample of the resulting XML element:

<AllCustomers>
 <Customer FirstName=”Ann” LastName=”Archer”>100.00</Customer>
 <Customer FirstName=”Ben” LastName=”Best”>-24.54</Customer>
 <Customer FirstName=”Carly” LastName=”Cant”>62.40</Customer>
</AllCustomers>

You can have more than one hole in the XML literal. The following code uses an XML literal that
contains two holes. The fi rst uses a Where clause to select customers with non-negative balances,
and the second selects customers with negative balances. It places these two groups of customers
inside different sub-elements within the resulting XML.

‘ Separate customers with positive and negative balances.
Dim separated As XElement = _
 <AllCustomers>
 <PositiveBalances>
 <%= From cust In x_all.Descendants(“Customer”)
 Where CDec(cust.Value) >= 0
 Order By CDec(cust.Value) Descending
 Select New XElement(“Customer”,
 New XAttribute(“FirstName”,
 CStr(cust.Attribute(“FirstName”))),
 New XAttribute(“LastName”,
 CStr(cust.Attribute(“LastName”))),
 New XText(cust.Value))
 %>
 </PositiveBalances>
 <NegativeBalances>

406 ❘ CHAPTER 20 LINQ

 <%= From cust In x_all.Descendants(“Customer”)
 Where CDec(cust.Value) < 0
 Order By CDec(cust.Value) Descending
 Select New XElement(“Customer”,
 New XAttribute(“FirstName”,
 CStr(cust.Attribute(“FirstName”))),
 New XAttribute(“LastName”,
 CStr(cust.Attribute(“LastName”))),
 New XText(cust.Value))
 %>
 </NegativeBalances>
 </AllCustomers>

The following text shows the resulting XML element:

<AllCustomers>
 <PositiveBalances>
 <Customer FirstName=“Dan” LastName=“Dump”>117.95</Customer>
 <Customer FirstName=“Ann” LastName=“Archer”>100.00</Customer>
 <Customer FirstName=“Carly” LastName=“Cant”>62.40</Customer>
 </PositiveBalances>
 <NegativeBalances>
 <Customer FirstName=“Ben” LastName=“Best”>-24.54</Customer>
 <Customer FirstName=“Frank” LastName=“Fix”>-150.90</Customer>
 <Customer FirstName=“Edna” LastName=“Ever”>-192.75</Customer>
 </NegativeBalances>
</AllCustomers>

Example program LinqToXml, which is available for download on the book’s website, demonstrates
these XML literals containing holes.

LINQ out of XML

The LINQ XML objects provide a standard assortment of LINQ functions that make moving data
from those objects into IEnumerable objects simple. Using these functions, it’s about as easy to select
data from the XML objects as it is from IEnumerable objects such as arrays and lists.

Because the XML objects represent special hierarchical data structures, they also provide methods
to help you search those data structures. For example, the XElement object provides a Descendants
function that searches the object’s descendants for elements of a certain type.

The following code extracts the x_all XElement object’s Customer descendants. It selects their
FirstName and LastName attributes, and the balance saved as each element’s value.

Dim select_all = From cust In x_all.Descendants(“Customer”)
 Order By CDec(cust.Value)
 Select FName = cust.Attribute(“FirstName”).Value,
 LName = cust.Attribute(“LastName”).Value,
 Balance = cust.Value

The program can now loop through the select_all object just as it can loop through any other
IEnumerable selected by a LINQ query.

The following query selects only customers with a negative balance:

LINQ to XML ❘ 407

Dim x_neg = From cust In x_all.Descendants(“Customer”)
 Where CDec(cust.Value) < 0
 Select FName = cust.Attribute(“FirstName”).Value,
 LName = cust.Attribute(“LastName”).Value,
 Balance = cust.Value

Example program LinqToXml, which is available for download on the book’s website, demonstrates
these XML literals containing holes.

The following table describes other methods supported by XElement that a program can use to
navigate through an XML hierarchy. Most of the functions return IEnumerable objects that you can
then use in LINQ queries.

FUNCTION RETURNS

Ancestors IEnumerable containing all ancestors of the element.

AncestorsAndSelf IEnumerable containing this element followed by all of its

ancestors.

Attribute The element’s attribute with a specifi c name.

Attributes IEnumerable containing the element’s attributes.

Descendants IEnumerable containing all descendants of the element.

DescendantsAndSelf IEnumerable containing this element followed by all of its

descendants.

DescendantNodes IEnumerable containing all descendant nodes of the element.

These include all nodes such as XElement and XText.

DescendantNodesAndSelf IEnumerable containing this element followed by all of its

descendant nodes.

Element The fi rst child element with a specifi c name.

Elements IEnumerable containing the immediate children of the element.

ElementsAfterSelf IEnumerable containing the siblings of the element that come

after this element.

ElementsBeforeSelf IEnumerable containing the siblings of the element that come

before this element.

Nodes IEnumerable containing the nodes that are immediate children of

the element. These include all nodes such as XElement and XText.

NodesAfterSelf IEnumerable containing the sibling nodes of the element that

come after this element.

NodesBeforeSelf IEnumerable containing the sibling nodes of the element that

come before this element.

408 ❘ CHAPTER 20 LINQ

Most of these functions that return an IEnumerable take an optional parameter that you can use to
indicate the names of the elements to select. For example, if you pass the Descendants function the
parameter “Customer,” the function returns only the descendants of the element that are named
Customer.

Example program LinqToXmlFunctions, which is available for download on the book’s website,
demonstrates these XML functions.

In addition to these functions, Visual Basic’s LINQ query syntax recognizes several axis selectors.
In XML, an axis is a “direction” in which you can move from a particular node. These include such
directions as the node’s descendants, the node’s immediate children, and the node’s attributes.

The following table gives examples of shorthand expressions for node axes and their functional
equivalents.

SHORTHAND MEANING EQUIVALENT

x...<Customer> Descendants named Customer x.Descendants(“Customer”)

x.<Child> An element named Child that is

a child of this node

x.Element(“Child”)

x.@<FirstName> The value of the FirstName

attribute

x.Attribute(“FirstName”).Value

x.@FirstName The value of the FirstName

attribute

x.Attribute(“FirstName”).Value

For example, consider the following XElement literal:

Dim x_all As XElement =
 <AllCustomers>
 <PositiveBalances>
 <Customer FirstName=“Dan” LastName=“Dump”>117.95</Customer>
 <Customer FirstName=“Ann” LastName=“Archer”>100.00</Customer>
 <Customer FirstName=“Carly” LastName=“Cant”>62.40</Customer>
 </PositiveBalances>
 <NegativeBalances>
 <Customer FirstName=“Ben” LastName=“Best”>-24.54</Customer>
 <Customer FirstName=“Frank” LastName=“Fix”>-150.90</Customer>
 <Customer FirstName=“Edna” LastName=“Ever”>-192.75</Customer>
 </NegativeBalances>
 </AllCustomers>

The following code uses axis shorthand to make several different selections:

‘ Select all Customer descendants of x_all.
Dim desc = x_all.Descendants(“Customer”) ‘ Functional version.
Dim desc2 = x_all.<Customer> ‘ LINQ query version.

‘ Select Customer descendants of x_all where FirstName attribute is Ben.

LINQ to ADO.NET ❘ 409

Dim ben = From cust In x_all.Descendants(“Customer”)
 Where cust.@FirstName = “Ben”

‘ Select Customer descendants of x_all where FirstName attribute is Ann.
Dim ann = From cust In x_all.<Customer>
 Where cust.@<FirstName> = “Ann”

‘ Starting at x_all, go to the NegativeBalances node and find
‘ its descendants that are Customer elements. Select those with
‘ value less than -50.
Dim neg_desc2 = From cust In x_all.<NegativeBalances>...<Customer>
 Where CDec(cust.Value) < -50

Example program LinqAxes, which is available for download on the book’s website, demonstrates
these LINQ query XML axes.

Note that IEnumerable objects allow indexing so you can use an index to select a particular item
from the results of any of these functions that returns an IEnumerable. For example, the following
statement starts at element x_all, goes to descendants named NegativeBalances, gets that element’s
Customer children, and then selects the second of them (indexes are numbered starting with zero):

Dim neg_cust1 = x_all.<NegativeBalances>.<Customer>(1)

Together the LINQ XML functions and query axes operators let you explore XML hierarchies quite
effectively.

In addition to all of these navigational features, the LINQ XML classes provide the usual assort-
ment of methods for manipulating XML hierarchies. Those functions let you fi nd an element’s par-
ent, add and remove elements, and so forth. For more information, see the online help or the MSDN
website.

LINQ TO ADO.NET

LINQ to ADO.NET provides tools that let your applications apply LINQ-style queries to objects
used by ADO.NET to store and interact with relational data.

LINQ to ADO.NET includes three components: LINQ to SQL, LINQ to Entities, and LINQ to
DataSet. The following sections briefl y give additional details about these three pieces.

LINQ to SQL and LINQ to Entities

LINQ to SQL and LINQ to Entities are object-relational mapping (O/RM) tools that build strongly
typed classes for modeling databases. They generate classes to represent the database and the tables
that it contains. LINQ features provided by these classes allow a program to query the database
model objects.

For example, to build a database model for use by LINQ to SQL, select the Project menu’s Add New
Item command and add a new “LINQ to SQL Classes” item to the project. This opens a designer
where you can defi ne the database’s structure.

410 ❘ CHAPTER 20 LINQ

Now you can drag SQL Server database objects from the Server Explorer to build the database
model. If you drag all of the database’s tables onto the designer, you should be able to see all of the
tables and their fi elds, primary keys, relationships, and other structural information.

LINQ to SQL defi nes a DataContext class to represent the database. Suppose a program
defi nes a DataContext class named dcTestScores and creates an instance of it named db.
Then the following code selects all of the records from the Students table ordered by fi rst and
last name:

Dim query = From stu In db.Students
 Order By stu.FirstName, stu.LastName

Microsoft intends LINQ to SQL to be a quick tool for building LINQ-enabled classes for use with
SQL Server databases. The designer can quickly take a SQL Server database, build a model for it,
and then create the necessary classes.

The Entity Framework that includes LINQ to Entities is designed for use in more complicated enter-
prise scenarios. It allows extra abstraction that decouples a data object model from the underly-
ing database. For example, the Entity Framework allows you to store pieces of a single conceptual
object in more than one database table.

Building and managing SQL Server databases and the Entity Framework are topics too large to
cover in this book so LINQ to SQL and LINQ to Entities are not described in more detail here. For
more information, consult the online help or Microsoft’s website. Some of Microsoft’s relevant web-
sites include:

 ➤ LINQ to SQL (http://msdn.microsoft.com/bb386976.aspx)

 ➤ LINQ to SQL: .NET Language-Integrated Query for Relational Data (http://msdn
.microsoft.com/bb425822.aspx)

 ➤ The ADO.NET Entity Framework Overview (http://msdn.microsoft.com/aa697427
.aspx)

LINQ to DataSet

LINQ to DataSet lets a program use LINQ-style queries to select data from DataSet objects.
A DataSet contains an in-memory representation of data contained in tables. Although a DataSet
represents data in a more concrete format than is used by the object models used in LINQ to SQL
and LINQ to Entities, DataSets are useful because they make few assumptions about how the data
was loaded. A DataSet can hold data and provide query capabilities whether the data was loaded
from SQL Server, from some other relational database, or by the program’s code.

The DataSet object itself doesn’t provide many LINQ features. It is mostly useful because it holds
DataTable objects that represent groupings of items, much as IEnumerable objects do.

The DataTable class does not directly support LINQ either, but it has an AsEnumerable method that
converts the DataTable into an IEnumerable, which you already know supports LINQ.

http://msdn.microsoft.com/bb386976.aspx
http://msdn.microsoft.com/bb425822.aspx
http://msdn.microsoft.com/bb425822.aspx
http://msdn.microsoft.com/aa697427.aspx
http://msdn.microsoft.com/aa697427.aspx

LINQ to ADO.NET ❘ 411

Example program LinqToDataSetScores, which is available for download on the book’s website,
demonstrates LINQ to DataSet concepts. This program builds a DataSet that contains two tables.
The Students table has fi elds StudentId, FirstName, and LastName. The Scores table has fi elds
StudentId, TestNumber, and Score.

The example program defi nes class-level variables DtStudents and DtScores that hold references to
the two DataTable objects inside the DataSet.

The program uses the following code to select Students records where the LastName fi eld comes
before “D” alphabetically:

Dim before_d =
 From stu In DtStudents.AsEnumerable()
 Where stu!LastName < “D”
 Order By stu.Field(Of String)(“LastName”)
 Select First = stu!FirstName, Last = stu!LastName

dgStudentsBeforeD.DataSource = before_d.ToList

There are only a few differences between this query and previous LINQ queries. First, the From
clause calls the DataTable object’s AsEnumerable method to convert the table into something that
supports LINQ.

Second, the syntax stu!LastName lets the query access the LastName fi eld in the stu object. The
stu object is a DataRow within the DataTable.

Third, the Order By clause uses the stu object’s Field(Of T) method. The Field(Of T) method
provides strongly typed access to the DataRow object’s fi elds. In this example the LastName fi eld
contains string values. You could just as well have used stu!LastName in the Order By clause, but
Visual Basic wouldn’t provide strong typing.

Finally, the last line of code in this example sets a DataGrid control’s DataSource property equal to
the result returned by the query so the control will display the results. The DataGrid control cannot
display the result directly so the code calls the ToList method to convert the result into a list, which
the DataGrid can use.

The following list summarizes the key differences between a LINQ to DataSet query and a normal
LINQ to Objects query:

 ➤ The LINQ to DataSet query must use the DataTable object’s AsEnumerable method to make
the object queryable.

 ➤ The code can access the fi elds in a DataRow, as in stu!LastName or as in stu.Field(Of
String)(“LastName“).

 ➤ If you want to display the results in a bound control such as a DataGrid or ListBox, use the
query’s ToList method.

WHERE’S IENUMERABLE?

Actually, the AsEnumerable method converts the DataTable into an
EnumerableRowCollection object but that object implements IEnumerable.

412 ❘ CHAPTER 20 LINQ

If you understand these key differences, the rest of the query is similar to those used by LINQ to
Objects. The following code shows two other examples:

‘ Select all students and their scores.
Dim joined =
 From stu In DtStudents.AsEnumerable()
 Join score In DtScores.AsEnumerable()
 On stu!StudentId Equals score!StudentId
 Order By stu!StudentId, score!TestNumber
 Select
 ID = stu!StudentId,
 Name = stu!FirstName & stu!LastName,
 Test = score!TestNumber,
 score!Score
dgJoined.DataSource = joined.ToList

‘ Select students with average scores >= 90.
Dim letter_grade =
 Function(num_score As Double)
 Return Choose(num_score \ 10,
 New Object() {“F”, “F”, “F”, “F”, “F”, “D”, “C”, “B”, “A”, “A”})
 End Function

‘ Add “Where Ave >= 90” after the Group By statement
‘ to select students getting an A.
Dim grade_a =
 From stu In DtStudents.AsEnumerable()
 Join score In DtScores.AsEnumerable()
 On stu!StudentId Equals score!StudentId
 Group score By stu Into
 Ave = Average(CInt(score!Score)), Group
 Order By Ave
 Select Ave,
 Name = stu!FirstName & stu!LastName,
 ID = stu!StudentId,
 Grade = letter_grade(Ave)
dgAverages.DataSource = grade_a.ToList

The fi rst query selects records from the Students table and joins them with the corresponding
records in the Scores table. It displays the results in the dgJoined DataGrid control.

Next, the code defi nes an inline function and saves a reference to it in the variable letter_grade.
This function returns a letter grade for numeric scores between 0 and 100.

The next LINQ query selects corresponding Students and Scores records, and groups them by the
Students records, calculating each Student’s average score at the same time. The query orders the
results by average and selects the students’ averages, names, IDs, and letter grades. Finally, the code
displays the result in the dgAverages DataGrid.

LINQ to DataSet not only allows you to pull data out of a DataSet but also provides a way to put
data into a DataSet. If the query selects DataRow objects, then its CopyToDataTable method con-
verts the query results into a new DataTable object that you can then add to a DataSet.

PLINQ ❘ 413

The following code selects records from the Students table for students with last name less than
“D.” It then uses CopyToDataTable to convert the result into a DataTable and displays the results in
the dgNewTable DataGrid control. It sets the new table’s name and adds it to the DsScores DataSet
object’s collection of tables.

‘ Make a new table.
Dim before_d_rows =
 From stu In DtStudents.AsEnumerable()
 Where stu!LastName < “D”
 Select stu
Dim new_table As DataTable = before_d_rows.CopyToDataTable()
dgNewTable.DataSource = new_table

new_table.TableName = “NewTable”
DsScores.Tables.Add(new_table)

The LinqToDataSetScores example program displays a tab control. The fi rst tab holds a DataGrid
control that uses the DsScores DataSet as its data source, so you can see all of the DataSet’s tables
including the new table. Other tabs show the results of other queries described in this section.

PLINQ

PLINQ (Parallel LINQ, pronounced “plink”) allows a program to execute LINQ queries across
multiple processors or cores in a multi-core system. If you have a multi-core CPU and a nicely paral-
lelizable query, PLINQ may improve your performance considerably.

So what kinds of queries are “nicely parallelizable”? The short, glib answer is, it doesn’t really mat-
ter. Microsoft has gone to great lengths to minimize the overhead of PLINQ, so using PLINQ may
help for some queries and shouldn’t hurt you too much for queries that don’t parallelize nicely.

Simple queries that select items from a data source often work well. If the items in the source can be
examined, selected, and otherwise processed independently, then the query is parallelizable.

Queries that must use multiple items at the same time do not parallelize nicely. For example, adding
an OrderBy function to the query forces the program to gather all of the results before sorting them
so that part of the query at least will not benefi t from PLINQ.

THE NEED FOR SPEED

Some feel that adding parallelism to LINQ is kind of like giving caffeine to a snail.
A snail is slow. Giving it caffeine might speed it up a bit, but you’d get a much big-
ger performance gain if you got rid of the snail and got a cheetah instead.

Similarly, LINQ isn’t all that fast. Adding parallelism will speed it up but you will
probably get a larger speed improvement by moving the data into a database or
using special-purpose algorithms designed to manage your particular data.

continues

414 ❘ CHAPTER 20 LINQ

Adding parallelism to LINQ is remarkably simple. First, add a reference to the System.Threading
library to your program. Then add a call to AsParallel to the enumerable object that you’re search-
ing. For example, the following code uses AsParallel to select the even numbers from the array
numbers:

Dim evens =
 From num In numbers.AsParallel()
 Where num Mod 2 = 0

PUZZLING PARALLELISM

Note that for small enumerable objects (lists containing only a few items) and on
computers that have only a single CPU, the overhead of using AsParallel may
actually slow down execution slightly.

SUMMARY

LINQ provides the ability to perform SQL-like queries within Visual Basic. Depending on which
form of LINQ you are using, the development environment may provide strong type checking and
IntelliSense support.

LINQ to Objects allows a program to query arrays, lists, and other objects that implement the
IEnumerable interface. LINQ to XML and the LINQ XML classes allow a program to extract data
from XML objects and to use LINQ to generate XML hierarchies. LINQ to ADO.NET (which
includes LINQ to SQL, LINQ to Entities, and LINQ to DataSet) allows a program to perform
queries on objects representing data in a relational database. Together these LINQ tools allow a
program to select data in powerful new ways.

Visual Basic includes many features that support LINQ. Extension methods, inline or lambda func-
tions, anonymous types, type inference, and object initializers all help make LINQ possible. If
misused, some of these features can make code harder to read and understand, but used judiciously,
they give you new options for program development.

This argument is true, but you don’t use LINQ because it’s fast; you use it because
it’s convenient, easy to use, and fl exible. Adding parallelism makes it a bit faster
and, as you’ll see shortly, is so easy that it doesn’t cost you much effort.

If you really need signifi cant performance improvements, you should consider
moving the data into a database or more sophisticated data structure, but if you’re
using LINQ anyway, you may as well take advantage of PLINQ when you can.

continued

Summary ❘ 415

For much more information on the various LINQ technologies, see the online help and the web. The
following list includes several useful Microsoft web pages that you can follow to learn more about
LINQ. Some are a bit old but they still provide valuable information.

 ➤ Getting Started with LINQ in Visual Basic — http://msdn.microsoft.com/bb397910
.aspx.

 ➤ Hooked on LINQ (a wiki with some useful information, particularly its “5 Minute
Overviews”) — http://www.hookedonlinq.com/LINQtoSQL5MinuteOverview.ashx.

 ➤ LINQ to SQL — http://msdn.microsoft.com/bb386976.aspx.

 ➤ LINQ to SQL: .NET Language-Integrated Query for Relational Data — http://msdn
.microsoft.com/bb425822.aspx.

 ➤ 101 Visual Basic LINQ Samples — http://msdn.microsoft.com/vstudio/bb688088.

 ➤ LINQ jump page — http://msdn.microsoft.com/bb397926.aspx.

 ➤ Visual Studio 2008 Code Samples — http://msdn.microsoft.com/vbasic/bb330936
.aspx.

 ➤ Visual Studio 2010 Code Samples — http://msdn.microsoft.com/vstudio/dd238515
.aspx.

 ➤ The .NET Standard Query Operators — http://msdn.microsoft.com/bb394939.aspx.

 ➤ Querying DataSets — Introduction to LINQ to DataSet (by Erick Thompson, ADO.NET
Program Manager, in the ADO.NET team blog) — http://blogs.msdn.com/adonet/
archive/2007/01/26/querying-datasets-introduction-to-linq-to-dataset.aspx.

 ➤ LINQ to SQL: .NET Language-Integrated Query for Relational Data — http://msdn
.microsoft.com/bb425822.aspx.

 ➤ The ADO.NET Entity Framework Overview — http://msdn.microsoft.com/aa697427
.aspx.

 ➤ Parallel LINQ (PLINQ) — http://msdn.microsoft.com/dd460688.aspx.

The last several chapters have explained how to build Visual Basic applications that run on the
Microsoft Windows desktop, but Visual Basic programs can also run on the Windows Metro
 platform. Chapter 21 provides an introduction to building Metro-style applications. These
 applications use the same WPF ideas described in several earlier chapters.

http://www.hookedonlinq.com/LINQtoSQL5MinuteOverview.ashx
http://msdn.microsoft.com/bb397910.aspx
http://msdn.microsoft.com/bb397910.aspx
http://msdn.microsoft.com/bb386976.aspx
http://msdn.microsoft.com/bb425822.aspx
http://msdn.microsoft.com/bb425822.aspx
http://msdn.microsoft.com/vstudio/bb688088
http://msdn.microsoft.com/bb397926.aspx
http://msdn.microsoft.com/vbasic/bb330936.aspx
http://msdn.microsoft.com/vbasic/bb330936.aspx
http://msdn.microsoft.com/vstudio/dd238515.aspx
http://msdn.microsoft.com/vstudio/dd238515.aspx
http://msdn.microsoft.com/bb394939.aspx
http://blogs.msdn.com/adonet/archive/2007/01/26/querying-datasets-introduction-to-linq-to-dataset.aspx
http://blogs.msdn.com/adonet/archive/2007/01/26/querying-datasets-introduction-to-linq-to-dataset.aspx
http://msdn.microsoft.com/bb425822.aspx
http://msdn.microsoft.com/bb425822.aspx
http://msdn.microsoft.com/aa697427.aspx
http://msdn.microsoft.com/aa697427.aspx
http://msdn.microsoft.com/dd460688.aspx

21
Metro-Style Applications

WHAT’S IN THIS CHAPTER

 ➤ Changing a program’s Logo, SplashScreen, and other graphical fi les

 ➤ Using the Viewbox control

 ➤ Loading resources in Metro-style applications

 ➤ Testing Metro-style applications

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter on the Download Code tab at
http://www.wrox.com/remtitle.cgi?isbn=9781118314074. The code for this chapter
includes the following example:

 ➤ MetroBones

BUILDING METRO-STYLE APPLICATIONS

The Windows 8 operating system is quite different from other Windows operating sys-
tems such as Vista and Windows 7. Windows 8’s Metro interface doesn’t provide Windows
Explorer to let you browse through the system’s directory structure, doesn’t display a desktop
where you can arrange folders and icons, and doesn’t let you have many programs all running
and visible at the same time. Because the Metro interface is so different from those of previous
operating systems, Metro-style programs must be written in a new way to work properly.

This chapter explains the basic process of building a Metro-style application. It explains how
to create a Metro-style application and give it the images it needs to display properly in the
Windows 8 Metro interface.

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://wrox.com
http://WROX.COM

418 ❘ CHAPTER 21 METRO-STYLE APPLICATIONS

To help you get started, this chapter walks through the most important parts of the MetroBones
application shown in Figure 21-1. This program is a “hangman” game where you try to guess the
letters in a randomly chosen word. When you click a letter button on the bottom, the program dis-
plays it in the top spaces if the letter is part of the current word. If the letter is not part of the cur-
rent word, the program displays a new piece of the skeleton on the left. If you guess all of the word’s
letters before you build the complete skeleton, you win.

FIGURE 21-1: This chapter explains how to build the MetroBones

“hangman” game.

NOTE The artwork for MetroBones was kindly provided by Jeff Scarterfi eld,
the webmaster of DrawCartoonsOnline.com, a site that provides step-by-step
instructions for drawing a huge variety of cartoons.

STARTING A NEW PROJECT

To start a new Metro-style project, select the File menu’s New Project command as usual. In the
New Project dialog box shown in Figure 21-2, expand the project-type tree on the left to fi nd
the category Installed ➪ Templates ➪ Visual Basic ➪ Windows Metro Style and select the type of
 application that you want to create. Enter a project name and click OK.

http://DrawCartoonsOnline.com

Special Image Files ❘ 419

FIGURE 21-2: Select the Windows Metro-style template category to create a

Metro-style application.

This version of Visual Studio stores new projects in a temporary location until you save the
project. That means if Visual Studio crashes before you save the project, you may lose all of the work
you have done. To prevent that, save the project into a directory right after you create it by using the
File menu’s Save All command. After that, Visual Studio automatically saves any changes you make
every time you run the program so your changes should be safe.

SPECIAL IMAGE FILES

A Metro-style application includes several image fi les that are used
for splash screens, icons, and the like. These fi les are Logo.png,
WideLogo.png, SmallLogo.png, and SplashScreen.png.

Logo.png is a 150 × 150 pixel image fi le that is displayed on the
Metro interface if you pin your application to the Metro start window.
Normally the system adds the name of the application at the bottom of
the image in white so you should leave that area blank and fi ll it with
a dark color so the name is visible. Figure 21-3 shows the MetroBones
application in the Metro start window. (The shaded strip at the bot-
tom of the icon is part of the Logo.png fi le. The system automatically
added the program’s name on top of the shaded strip in white text.)

WideLogo.png is a 310 × 150 pixel image fi le that Windows uses if the
application is shown in two columns in the Metro interface.

SmallLogo.png is a 30 × 30 pixel image fi le that the operating system
can use as a smaller representation of the application.

FIGURE 21-3: The fi le Logo

.png determines how the

program appears in

the Metro start window.

420 ❘ CHAPTER 21 METRO-STYLE APPLICATIONS

SplashScreen.png is a 620 × 300 pixel image fi le that is displayed while the program is loading.

The locations of these fi les are set in the application’s manifest. If you open Solution Explorer and
double-click the fi le Package. appxmanifest, you can change these settings in the Manifest Designer
shown in Figure 21-4.

FIGURE 21-4: Use the Manifest Designer to change the application’s logo fi les and

other fundamental properties.

The Manifest Designer also lets you set other application properties such as a wide logo fi le
(in which case the Metro start window displays the application double wide), whether the system
automatically adds the application’s name to its icons, and the application’s initial orientation.

For more information on the Manifest Designer, see the article “Manifest Designer” at
http://msdn.microsoft.com/library/windows/apps/br230259.aspx.

BUILDING METROBONES

Much of the work of building an application such as MetroBones is in creating and arranging its
controls. To save space, I won’t discuss where every control is positioned for MetroBones. You can
look at Figure 21-1 to see the general arrangement and you can download the example program to
see the details.

While I don’t want to cover the code in complete detail, there are a few points worth mentioning.

http://msdn.microsoft.com/library/windows/apps/br230259.aspx

Building MetroBones ❘ 421

Control Layout

The program’s left side holds a stack of Image controls holding skeleton images in various states.
The program hides and displays these controls to show the game’s current state.

The program’s right side contains a vertical StackPanel that holds a series of other controls. Those
controls include:

 ➤ A horizontal StackPanel holding the current word’s letters

 ➤ A TextBlock that can indicate when the user wins or loses

 ➤ Three horizontal StackPanels holding the letter buttons

 ➤ The New Game button

The current word’s letters are displayed as Border controls that hold TextBlocks. They are created at
run time when the program picks a word.

Those controls and the program’s buttons use styles defi ned in the program’s resources to give them
their sizes and appearance. The following section describes the program’s styles.

XAML Code

The most interesting part of XAML code is the defi nition of the resources that determine the
appearance of the program’s buttons. The following code shows the application’s resources. Those
resources are available to the later XAML code to set the controls’ appearance.

<Page.Resources>
 <LinearGradientBrush x:Key=”EnabledBorderBrush”
 StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”LightGreen” Offset=”0”/>
 <GradientStop Color=”DarkGreen” Offset=”1”/>
 </LinearGradientBrush>
 <LinearGradientBrush x:Key=”EnabledFillBrush”
 StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”DarkGreen” Offset=”0”/>
 <GradientStop Color=”LightGreen” Offset=”1”/>
 </LinearGradientBrush>
 <LinearGradientBrush x:Key=”DisabledFillBrush”
 StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”DarkGray” Offset=”0”/>
 <GradientStop Color=”LightGray” Offset=”1”/>
 </LinearGradientBrush>
 <LinearGradientBrush x:Key=”DisabledBorderBrush”
 StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”LightGray” Offset=”0”/>
 <GradientStop Color=”DarkGray” Offset=”1”/>
 </LinearGradientBrush>

 <Style x:Key=”BasicButton” TargetType=”Button”>
 <Setter Property=”Foreground” Value=”Black”/>
 <Setter Property=”Width” Value=”45”/>
 <Setter Property=”Height” Value=”45”/>
 <Setter Property=”Margin” Value=”3”/>

422 ❘ CHAPTER 21 METRO-STYLE APPLICATIONS

 <Setter Property=”FontFamily” Value=”Verdana”/>
 <Setter Property=”FontSize” Value=”16”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <Setter Property=”Background” Value=”{StaticResource EnabledFillBrush}”/>
 <Setter Property=”BorderBrush”
 Value=”{StaticResource EnabledBorderBrush}”/>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Border
 BorderThickness=”3”
 CornerRadius=”7”
 Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”>
 <Grid>
 <ContentPresenter HorizontalAlignment=”Center”
 VerticalAlignment=”Center” Name=”content”/>
 </Grid>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>

 <Style x:Key=”EnabledButton” TargetType=”Button”
 BasedOn=”{StaticResource BasicButton}”/>
 <Style x:Key=”DisabledButton” TargetType=”Button”
 BasedOn=”{StaticResource BasicButton}”>
 <Setter Property=”Background” Value=”{StaticResource DisabledFillBrush}”/>
 <Setter Property=”BorderBrush”
 Value=”{StaticResource DisabledBorderBrush}”/>
 <Setter Property=”Foreground” Value=”Gray”/>
 <Setter Property=”IsEnabled” Value=”False”/>
 </Style>

 <Style x:Key=”LetterBorder” TargetType=”Border”>
 <Setter Property=”BorderBrush”
 Value=”{StaticResource EnabledBorderBrush}”/>
 <Setter Property=”BorderThickness” Value=”3”/>
 <Setter Property=”CornerRadius” Value=”7”/>
 <Setter Property=”Width” Value=”45”/>
 <Setter Property=”Height” Value=”45”/>
 <Setter Property=”Margin” Value=”3”/>
 <Setter Property=”Background”
 Value=”{StaticResource EnabledFillBrush}”/>
 </Style>
 <Style x:Key=”LetterTextBlock” TargetType=”TextBlock”>
 <Setter Property=”FontFamily” Value=”Verdana”/>
 <Setter Property=”FontSize” Value=”16”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <Setter Property=”Foreground” Value=”Black”/>
 <Setter Property=”HorizontalAlignment” Value=”Center”/>
 <Setter Property=”VerticalAlignment” Value=”Center”/>
 </Style>
</Page.Resources>

Building MetroBones ❘ 423

The resources start by defi ning several LinearGradientBrushes. The program uses the
EnabledBorderBrush and EnabledFillBrush to determine how the buttons are outlined and fi lled
when they are enabled. Similarly the DisabledBorderBrush and DisabledFillBrush determine the
buttons’ appearance when they are disabled.

The BasicButton style defi nes the basic characteristics of the program’s buttons. It sets the buttons’
default text color, size, and font. It sets the border and fi ll colors to the EnabledBorderBrush and
EnabledFillBrush.

The BasicButton style also sets the buttons’ template to determine the controls that make up the
button. This template uses a Border control with rounded corners that holds a Grid that contains
the buttons’ content. I created this template because the normal button template includes a lot of
interior space and this program didn’t have enough room to fi t in all of the letter buttons when using
that template.

Unfortunately, when you use a new template the buttons forfeit all of the features of the default
template. In particular, they lose the ability to respond to events so, for example, they don’t fl ash
when the user taps them. I could have added new behaviors to the new template to make the buttons
behave in that way but it would have been more work and didn’t seem necessary for this example.

After defi ning the BasicButton style, the code then defi nes two styles named EnabledButton and
DisabledButton that are based on the BasicButton. EnabledButton simply copies the features of
BasicButton.

DisabledButton copies the features of BasicButton and then overrides some of its properties to make
the button look disabled. It sets the buttons’ border and fi ll brushes to DisabledBorderBrush and
DisabledFillBrush. It also sets the buttons’ foreground color (which is used to draw text) to Gray
and sets the IsEnabled property to False so the buttons won’t respond to user taps.

The resources fi nish by defi ning styles for the controls that display the current word’s letters. The
LetterBorder and LetterTextBlock styles defi ne the appearances of the Border and TextBlock con-
trols that display the letters.

The later XAML code uses some of these styles to determine the controls’ appearance. For example,
the following code shows how the program defi nes the fi rst row of letter buttons:

<StackPanel Orientation=”Horizontal”>
 <Button Style=”{StaticResource DisabledButton}” Name=”btnQ” Content=”Q”/>
 <Button Style=”{StaticResource DisabledButton}” Name=”btnW” Content=”W”/>
 <Button Style=”{StaticResource DisabledButton}” Name=”btnE” Content=”E”/>
 <Button Style=”{StaticResource DisabledButton}” Name=”btnR” Content=”R”/>
 <Button Style=”{StaticResource DisabledButton}” Name=”btnT” Content=”T”/>
 <Button Style=”{StaticResource DisabledButton}” Name=”btnY” Content=”Y”/>
 <Button Style=”{StaticResource DisabledButton}” Name=”btnU” Content=”U”/>
 <Button Style=”{StaticResource DisabledButton}” Name=”btnI” Content=”I”/>
 <Button Style=”{StaticResource DisabledButton}” Name=”btnO” Content=”O”/>
 <Button Style=”{StaticResource DisabledButton}” Name=”btnP” Content=”P”/>
</StackPanel>

The buttons are contained in a horizontal StackPanel. Each button uses the DisabledButton style
so they are initially disabled. The program’s Visual Basic code enables the buttons when they are
needed. Each button has a name that is used by the Visual Basic code and displays a single letter.

424 ❘ CHAPTER 21 METRO-STYLE APPLICATIONS

Zooming in on the Controls

The XAML code that arranges the MetroBones controls create a Grid that is 728 pixels wide and 480
pixels tall. I picked that size because it fi ts nicely on a Windows phone. A Windows Phone device is
required to provide an 800 � 480 pixel screen so that made sense for those devices. (There have long
been rumors of new devices with different screen sizes coming, but they haven’t appeared yet.)

In contrast, a Windows 8 system running Metro applications could have a large number of screen sizes
with varying pixel densities. Anticipated sizes range from 10.1” to 27” screens with pixel densities rang-
ing from 96 dpi to 291 dpi. (See “Scaling to Different Screens” at http://blogs.msdn.com/b/b8/
archive/2012/03/21/scaling-to-different-screens.aspx for a discussion of screen size issues.)

You could simply use this 800 � 480 pixel size. The application would fi t on most Windows 8 devices but
the result would be a relatively small program centered in the middle of a large screen for many devices.

A better approach is to use Silverlight’s arranging controls such as Grid, StackPanel, and WrapGrid
to make the application take best advantage of whatever space is available.

For MetroBones I used a simpler approach. Because the program doesn’t really need more space to
display more information, I just enlarged it. I put the program’s main Grid control inside a Viewbox.
The Viewbox enlarges its contents to fi ll the space occupied by the Viewbox.

One of the nice things about WPF controls, including those used by Silverlight, is that they use the
DirectX graphic library to make themselves scalable. That means you can enlarge the controls as
much as you like and they will remain smooth and not become grainy like a greatly enlarged bitmap
does. The result in MetroBones is that the image of the skeleton and all of the buttons simply get
bigger to fi ll the available space.

The following code shows the part of the MetroBones program’s XAML code that contains the
Viewbox. I’ve omitted most of the code to save space.

<!-- The Viewbox enlarges the basic layout to fill the available area. -->
<Viewbox Margin=”30”>
 <!-- Content area -->
 <Grid Width=”728” Height=”480”>
 ...
 </Grid> <!-- End of content area -->
</Viewbox>

The following section explains how the Visual Basic code uses the styles defi ned in the XAML code
at run time.

Visual Basic Code

The MetroBones program’s Visual Basic code is relatively straightforward but it does demonstrate a
few useful tricks. The code includes only three event handlers, which are described in the following
sections.

The Page_Loaded Event Handler

The Page_Loaded event handler executes when the page is loaded. The following code shows how
this event handler initializes the application so it is ready for use:

http://blogs.msdn.com/b/b8/archive/2012/03/21/scaling-to-different-screens.aspx
http://blogs.msdn.com/b/b8/archive/2012/03/21/scaling-to-different-screens.aspx

Building MetroBones ❘ 425

‘ Array of letter buttons.
Private LetterButtons() As Button

‘ Array of skeleton Image controls.
Private SkeletonImages() As Image

‘ The index of the current skeleton picture.
Private CurrentPictureIndex As Integer = 0

‘ Words.
Private Words() As String

‘ The current word.
Private CurrentWord As String = “”

‘ Controls used to display letters.
Private LetterTextBlocks As New List(Of TextBlock)()

‘ Prepare the program for use.
Private Async Sub Page_Loaded(sender As Object, e As RoutedEventArgs) _
 Handles MyBase.Loaded
 ‘ Make the array of letter Buttons.
 LetterButtons = New Button() _
 {
 btnQ, btnW, btnE, btnR, btnT, btnY, btnU, btnI, btnO, btnP,
 btnA, btnS, btnD, btnF, btnG, btnH, btnJ, btnK, btnL,
 btnZ, btnX, btnC, btnV, btnB, btnN, btnM
 }

 ‘ Make the array of skeleton Images.
 SkeletonImages = New Image() _
 {
 img0, img1, img2, img3, img4, img5, img6
 }

 ‘ Prepare the letter buttons.
 For Each btn As Button In LetterButtons
 AddHandler btn.Click, AddressOf btnLetter_Click
 btn.Tag = btn.Content.ToString()
 Next btn

 ‘ Load the words.
 Words = Await ReadAssetFileLinesAsync(“Words.txt”)
End Sub

The code starts by declaring several class-level variables that are used to keep track of the program’s
state. These variables include:

 ➤ LetterButtons — The Button controls that the user can click to guess a letter

 ➤ SkeletonImages — The Image controls that represent the skeleton in various stages of
completion

 ➤ CurrentPictureIndex — The index of the currently visible skeleton Image control

426 ❘ CHAPTER 21 METRO-STYLE APPLICATIONS

 ➤ Words — An array of words from which the game randomly picks

 ➤ CurrentWord — The currently selected word

 ➤ LetterTextBlocks — The TextBlock controls that hold the current word’s letters

The Page_Loaded event handler initializes some of these variables. It starts by creating the
LetterButtons and SkeletonImages arrays, fi lling them with references to the appropriate controls.

Next the code prepares the letter buttons. It loops over the buttons in the LetterButtons array to add
the btnLetter_Click event handler to each button and to set each button’s Tag property to the letter
it displays.

The code then loads the dictionary fi le Words.txt. Loading a fi le in a Metro-style application is
somewhat complicated so it’s described separately in the following section.

Loading Files

Loading a fi le is a bit more complicated in a Metro-style application than it is in a desktop applica-
tion. A Metro-style application doesn’t have access to the full fi lesystem. It also doesn’t have access
to the very convenient My namespace so it can’t use My.Computer.FileSystem.ReadAllText to easily
read the fi le. Even the System.IO.File class that is provided for Windows Phone applications doesn’t
include the ReadAllText or ReadAllLines methods.

Metro-style applications also assume you will often be downloading fi les over the Internet. To make
that kind of download more effi cient, the Metro-style tools assume downloads will be made asyn-
chronously, and that complicates the program’s code.

You can make it a little easier to handle the asynchronous download of Words.txt in the
MetroBones program by using the Async and Await keywords described in the section “Using
Async and Await” in Chapter 16. When the program should wait for an asynchronous operation to
complete, it adds the Await keyword. Any method that uses Await must be declared with the Async
keyword so code that calls it can use Await to wait for it to complete. Notice that the Page_Loaded
event handler shown in the code in the previous section is declared with the Async keyword.

To load the dictionary fi le, the MetroBones application uses a resource fi le. At design time, I used the
Project menu’s Add Existing Item command to add the fi le Words.txt to the project. I selected
the fi le in Solution Explorer and set its Builds Action property to Resource.

The following code shows how the Page_Loaded event handler loads the dictionary fi le:

Words = Await ReadAssetFileLinesAsync(“Words.txt”)

This code simply calls the ReadAssetFileLinesAsync method and uses the Await keyword to wait for
that method to return. (By convention, the names of asynchronous methods end with “Async.”)

The following code shows the ReadAssetFileLinesAsync method:

‘ Return the file’s contents as an array of lines.
Public Async Function ReadAssetFileLinesAsync(filename As String) _
 As Task(Of String())
 Dim txt As String = Await ReadAssetFileAsync(filename)
 Return txt.Replace(vbCrLf, vbCr).Split(vbCr)
End Function

Building MetroBones ❘ 427

The ReadAssetFileLinesAsync method also uses the Await keyword so it is declared Async. It
returns a Task(Of String()). That means it returns a task that returns an array of strings. The calling
code (the Page_Loaded event handler) uses Await to wait for the task to fi nish so it can collect the
resulting string array.

The ReadAssetFileLinesAsync method calls the ReadAssetFileAsync method described next to
get the contents of an asset fi le, using the Await keyword to wait for ReadAssetFileAsync to fi nish. It
then splits the fi le into lines as before.

The following code shows the ReadAssetFileAsync method:

‘ Return the file’s contents as a string.
Public Async Function ReadAssetFileAsync(filename As String) As Task(Of String)
 ‘ Get the installed location.
 Dim storage_folder As StorageFolder =
 ApplicationModel.Package.Current.InstalledLocation
 storage_folder = Await storage_folder.GetFolderAsync(“Assets”)

 ‘ Get the file.
 Dim storage_file As StorageFile =
 Await storage_folder.GetFileAsync(filename)

 ‘ Use a StreamReader to read the file.
 Using stream_reader As
 New StreamReader(Await storage_file.OpenStreamForReadAsync())
 Return stream_reader.ReadToEnd()
 End Using
End Function

This method also uses the Await keyword so it is declared Async. It returns a Task(Of String): a
task that returns a string.

The code creates a StorageFolder object that represents the program’s installed location. It uses the
GetFolderAsync method to get the installation folder’s Assets subfolder, which is where the
Words.txt fi le is stored. It uses Await to wait for GetFolderAsync to fi nish.

Next the code uses the folder object’s GetFileAsync method to get a StorageFile object representing
the fi le, again using the Await keyword to wait for the operation to fi nish.

The code then creates a StreamReader object associated with the fi le, passing the StreamReader’s
constructor the result of the StorageFile object’s OpenStreamForReadAsync method, using the
Await keyword yet again.

Finally, the code uses the StreamReader’s ReadToEnd method to read the fi le’s contents into a string
and returns the result.

This is a very roundabout method for loading a fi le that is installed with the application. In an
 application that loaded large fi les over the Internet, handling fi les asynchronously would be much
more important.

428 ❘ CHAPTER 21 METRO-STYLE APPLICATIONS

TESTING

After you have created a Metro-style application, you can use Visual
Studio to test it. As is the case with Windows Phone development, you
have a couple of testing options.

Visual Studio’s Standard toolbar has a drop-down that lets you select
where you want to test the program. Figure 21-5 shows the drop-
down expanded to show its choices: Local Machine, Simulator, and
Remote Machine. Click the drop-down arrow on the right to make a
selection and then click the body of the drop-down to start testing.

The Local Machine option makes the application fi ll your computer’s
Metro interface. This is useful for testing the program as it would
appear on your system.

The Simulator option makes the program run in the Microsoft Windows
Simulator shown in Figure 21-6.

FIGURE 21-6: The Microsoft Windows Simulator lets you test Metro applications

at diff erent sizes and orientations.

FIGURE 21-5: Use this

 drop-down in the Standard

toolbar to determine where

the application runs and to

start it.

You can resize the simulator to see what your application would look like on different hardware
platforms and you can use the simulator’s tools to test the application in different orientations.

The Microsoft Windows Simulator takes a while to start. When you try to close the simulator, it
 actually hides so Visual Studio can use it again when you test the program later.

The Remote Machine option lets you test an application on a machine other than the one where you
are running Visual Studio. This is particularly useful for testing features that are not supported by
your development machine. For example, you might be programming on a typical desktop system
but want to test the program on a tablet that has a touch screen.

Summary ❘ 429

SUMMARY

This chapter explained how to create the MetroBones Metro-style application. It explained the
purposes of the Logo.png, SmallLogo.png, SplashScreen.png, and StoreLogo.png fi les, and
explained how to modify them for your applications. The chapter also explained how to use the
Manifest Designer to set application properties such as its initial orientation and a wide logo fi le.

The chapter then explained how to use a Viewbox to enlarge a basic fi xed-size interface so it can fi ll
Metro devices of various sizes. This technique is not as fl exible as using Grid and other arranging
controls to fi ll the available space on different devices, but it is much easier and works quite well for
an application such as MetroBones, which doesn’t display large amounts of data.

The chapter explained how to read resource fi les in Metro-style applications. Because many Metro
fi le processing methods work asynchronously, the program uses the Await keyword to wait for them
to complete.

Finally, the chapter explained how to test Metro applications in the Microsoft Windows Simulator
or on the local machine.

The MetroBones program demonstrates some useful techniques but it barely touches on the things
you can do with Metro-style applications. Some devices that support Metro provide all sorts of other
features such as cameras, accelerometers, orientation sensors, geolocation, and multi-touch input.
The MetroBones program doesn’t demonstrate any of that. Those topics and many others are outside
the scope of this book. For more information, search the Internet or look for a book that focuses on
Windows Metro programming. Many of these concepts are also supported by Windows Phone
programs so you may also get useful information by learning about Windows Phone programming.

The following list gives some links that you may fi nd helpful in Metro-style programming:

 ➤ Metro Style Apps
http://msdn.microsoft.com/windows/apps

 ➤ Create your fi rst Metro style app using C# or Visual Basic
http://msdn.microsoft.com/library/windows/apps/br211380.aspx

 ➤ Metro style apps, downloads for developers
http://msdn.microsoft.com/windows/apps/br229516

 ➤ Windows 8 Metro style app samples
http://code.msdn.microsoft.com/windowsapps/site/search

The chapters in Part II of this book deal mostly with basic programming tasks. They explain how to
select and use controls, use Visual Basic syntax to perform tasks such as looping and error handling,
and use LINQ to simplify complex selection and ordering tasks.

The chapters in Part III deal with the higher-level concepts of object-oriented programming (OOP).
Chapter 22, “OOP Concepts,” introduces fundamental object-oriented concepts that make it easier
to build and maintain complex applications.

http://msdn.microsoft.com/windows/apps
http://msdn.microsoft.com/library/windows/apps/br211380.aspx
http://msdn.microsoft.com/windows/apps/br229516
http://code.msdn.microsoft.com/windowsapps/site/search

 PART III
Object-Oriented Programming

 � CHAPTER 22: OOP Concepts

 � CHAPTER 23: Classes and Structures

 � CHAPTER 24: Namespaces

 � CHAPTER 25: Collection Classes

 � CHAPTER 26: Generics

OOP Concepts

WHAT’S IN THIS CHAPTER

 ➤ Encapsulation and polymorphism

 ➤ Inheritance, refi nement, and abstraction

 ➤ Interface inheritance

 ➤ Method overloading and extension methods

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

INTRODUCING OOP

This chapter explains the fundamental ideas behind object-oriented programming (OOP). It
describes the three main features of OOP languages: encapsulation, inheritance, and polymor-
phism. It explains the benefi ts of these features and describes how you can take advantage of
them in Visual Basic.

This chapter also describes method overloading. In a sense, overloading provides another form of
polymorphism. It lets you create more than one defi nition of the same class method, and Visual
Basic decides which version to use based on the parameters the program passes to the method.

Many of the techniques described in this chapter help you defi ne a new class, but extension
methods let you modify an existing class. For example, you could use extension methods to
add new features to the String class, perhaps to make it encrypt and decrypt text.

Many of the ideas described in this chapter will be familiar to you from your experiences with
forms, controls, and other building blocks of the Visual Basic language. Those building blocks
are object-oriented constructs in their own rights, so they provide you with the benefi ts of
encapsulation, inheritance, and polymorphism whether you knew about them or not.

22

http://WROX.COM

434 ❘ CHAPTER 22 OOP CONCEPTS

CLASSES

A class is a programming entity that gathers together all of the data and behavior that characterizes
some sort of programming abstraction. It wraps the abstraction in a nice, neat package with well-
defi ned interfaces to outside code. Those interfaces determine exactly how code outside of the class
can interact with the class. A class determines which data values are visible outside of the class and
which are hidden. It determines the routines that the class supports and their availability (visible or
hidden).

A class defi nes properties, methods, and events that let the program work with the class:

 ➤ A property is some sort of data value. It may be a simple value (such as a name or number),
or it may be a more complex item (such as an array, collection, or object containing its own
properties, methods, and events).

 ➤ A method is a subroutine or function. It is a piece of code that makes the object defi ned by
the class do something.

 ➤ An event is a notifi cation defi ned by the class. An event calls some other piece of code to tell
it that some condition in a class object has occurred.

For a concrete example, imagine a Job class that represents a piece of work to be done by an
employee. This class might have the properties shown in the following table.

PROPERTY PURPOSE

JobDescription A string describing the job

EstimatedHours The number of hours initially estimated for the job

ActualHours The actual number of hours spent on the job

Status The job’s status (New, Assigned, In Progress, or Done)

ActionTaken A string describing the work performed, parts installed, and so forth

JobCustomer An object of the Customer class that describes the customer for whom the

job is performed (name, address, phone number, service contract number,

and so on)

AssignedEmployee An object of the Employee class that describes the employee assigned to

the job (name, employee ID, Social Security number, and so on)

The JobDescription, EstimatedHours, ActualHours, Status, and ActionTaken properties are rela-
tively simple string and numeric values. The JobCustomer and AssignedEmployee properties are
objects themselves with their own properties, methods, and events.

This class might provide the methods shown in the following table.

Classes ❘ 435

The class could provide the events shown in the following table to keep the main program informed
about the job’s progress.

METHOD PURPOSE

AssignJob Assign the job to an employee

PrintInvoice Print an invoice for the customer after the job is fi nished

EstimatedCost Calculate and return an estimated cost based on the customer’s service

contract type and EstimatedHours

EVENT PURPOSE

Created Occurs when the job is fi rst created

Assigned Occurs when the job is assigned to an employee

Rejected Occurs if an employee refuses to do the job, perhaps because the employee

doesn’t have the right skills or equipment to do the work

Canceled Occurs if the customer cancels the job before it is worked

Finished Occurs when the job is fi nished

In a nutshell, a class is an entity that encapsulates the data and behavior of some programming
abstraction such as a Job, Employee, Customer, LegalAction, TestResult, Report, or just about
anything else you could reasonably want to manipulate as a single entity.

After you have defi ned a class, you can create instances of the class. An instance of the class is an
object of the class type. For example, if you defi ne a Job class, you can then make an instance of the
class that represents a specifi c job, perhaps installing a new computer for a particular customer. The
process of creating an instance of a class is called instantiation.

There are a couple of common analogies to describe instantiation. One compares the class to a blue-
print. After you defi ne the class, you can use it to create any number of instances of the class, much
as you can use the blueprint to make any number of similar houses (instances).

Another analogy compares a class defi nition to a cookie cutter. When you defi ne the cookie cutter,
you can use it to make any number of cookies (instances).

Note that Visual Basic is jam-packed with classes. Every type of control and component (Form,
TextBox, Label, Timer, ErrorProvider, and so forth) is a class. The parent classes Control and
Component are classes. Even Object, from which all other classes derive, is a class. Whenever you
work with any of these (getting or setting properties, calling methods, and responding to events),
you are working with instances of classes.

Because all of these ultimately derive from the Object class, they are often simply called objects. If
you don’t know or don’t care about an item’s class, you can simply refer to it as an object.

436 ❘ CHAPTER 22 OOP CONCEPTS

The following sections, which describe some of the features that OOP languages in general and
Visual Basic in particular, add to this bare-bones defi nition of a class.

ENCAPSULATION

A class’s public interface is the set of properties, methods, and events that are visible to code out-
side of the class. The class may also have private properties, methods, and events that it uses to do
its job. For example, the Job class described in the previous section provides an AssignJob method.
That method might call a private FindQualifi edEmployee function that looks through an employee
database to fi nd someone who has the skills and equipment necessary to do the job. That routine is
not used outside of the class, so it can be declared private.

The class may also include properties and events hidden from code outside of the class. These hidden
properties, methods, and events are not part of the class’s public interface.

The class encapsulates the programming abstraction that it represents (a Job in this ongoing exam-
ple). Its public interface determines what is visible to the application outside of the class. It hides the
ugly details of the class’s implementation from the rest of the world. Because the class hides its inter-
nals in this way, encapsulation is also sometimes called information hiding.

By hiding its internals from the outside world, a class prevents exterior code from messing around
with those internals. It reduces the dependencies between different parts of the application, allowing
only those dependencies that are explicitly permitted by its public interface.

Removing dependencies between different pieces of code makes the code easier to modify and main-
tain. If you must change the way the Job class assigns a job to an employee, you can modify the
AssignJob method appropriately. The code that calls the AssignJob routine doesn’t need to know
that the details have changed. It simply continues to call the method and leaves the details up to the
Job class.

Removing dependencies also helps break the application into smaller, more manageable pieces. A
developer who calls the AssignJob method can concentrate on the job at hand, rather than on how
the routine works. This makes developers more productive and less likely to make mistakes while
modifying the encapsulated code.

The simpler and cleaner a class’s public interface is, the easier it is to use. You should try to hide as
much information and behavior inside a class as possible while still allowing the rest of the program
to do its job. Keep properties, methods, and events as simple and focused as possible. When you
write code that the class needs to use to perform its duties, do not expose that code to the outside

OUTSTANDING OBJECTS

When you read the section “Polymorphism” later in this chapter, you’ll see that this
makes technical, as well as intuitive, sense. Because all classes eventually derive
from the Object class, all instances of all classes are in fact Objects.

Inheritance ❘ 437

program unless it is really necessary. Adding extra features complicates the class’s public interface
and makes the programmer’s job more diffi cult.

This can be a troublesome concept for beginning programmers. Exposing more features for
 developers to use gives them more power, so you might think it would make their jobs easier.
Actually, it makes development more diffi cult. Rather than thinking in terms of giving the
developer more power, you should think about giving the developer more things to worry about and
more ways to make mistakes. Ideally, you should not expose any more features than the developer
will actually need.

INHERITANCE

Inheritance is the process of deriving a child class from a parent class. The child class inherits all
of the properties, methods, and events of the parent class. It can then modify, add to, or subtract
from the parent class. Making a child class inherit from a parent class is also called deriving the
child class from the parent, and subclassing the parent class to form the child class.

For example, suppose you defi ne a Person class that includes variables named FirstName,
LastName, Street, City, State, Zip, Phone, and Email. It might also include a DialPhone method that
dials the person’s phone number on the phone attached to the computer’s modem or on a voice over
Internet protocol (VoIP) provider.

You could then derive the Employee class from the Person class. The Employee class inherits the
FirstName, LastName, Street, City, State, Zip, Phone, and Email variables. It then adds new
EmployeeId, SocialSecurityNumber, Offi ceNumber, Extension, and Salary variables. This class
might override the Person class’s DialPhone
method, so it dials the employee’s offi ce exten-
sion instead of the home phone number.

You can continue deriving classes from these
classes to make as many types of objects as
you need. For example, you could derive the
Manager class from the Employee class and
add fi elds such as Secretary that would refer
to another Employee object that represents the
manager’s secretary. Similarly, you could derive
a Secretary class from Employee that includes a
reference to a Manager object. You could derive
ProjectManager, DepartmentManager, and
DivisionManager from the Manager class,
Customer from the Person class, and so on for
other types of people that the application needs
to use. Figure 22-1 shows these inheritance
relationships.

Employee Customer

Manager Secretary

Project

Manager

Department

Manager

Division

Manager

Person

FIGURE 22-1: You can derive classes from

other classes to form quite complex inheritance

relationships.

438 ❘ CHAPTER 22 OOP CONCEPTS

Inheritance Hierarchies

One of the key benefi ts of inheritance is code reuse. When you derive a class from a parent class, the
child class inherits the parent’s properties, methods, and events, so the child class gets to reuse
the parent’s code. That means you don’t need to implement separate FirstName and LastName
properties for the Person, Employee, Manager, Secretary, and other classes shown in Figure 22-1.
These properties are defi ned only in the Person class, and all of the other classes inherit them.

Code reuse not only saves you the trouble of writing more code but also makes maintenance of the
code easier. Suppose that you build the hierarchy shown in Figure 22-1 and then decide that every-
one needs a new BirthDate property. Instead of adding a new property to every class, you can sim-
ply add it to the Person class, and all of the other classes inherit it.

Similarly, if you need to modify or delete a property or method, you need to make the change only
in the class where it is defi ned, not in all of the classes that inherit it. If the Person class defi nes a
SendEmail method and you must modify it so that it uses a particular e-mail protocol, you need to
change the routine only in the Person class, not in all the classes that inherit it.

MULTIPLE INHERITANCE

Some languages allow multiple inheritance, where one class can be derived from
more than one parent class. For example, suppose that you create a Vehicle class
that defi nes properties of vehicles (number of wheels, horsepower, maximum speed,
acceleration, and so forth) and a House class that defi nes properties of living spaces
(square feet, number of bedrooms, number of bathrooms, and so forth). Using mul-
tiple inheritance, you could derive a MotorHome class from both the Vehicle and
House classes. This class would have the features of both Vehicles and Houses.

Visual Basic does not allow multiple inheritance, so a class can have at most one
parent class. That means relationships such as those shown in Figure 22-1 are
treelike and form an inheritance hierarchy.

If you think you need multiple inheritance, you can use interface inheritance.
Instead of defi ning multiple parent classes, defi ne parent interfaces. Then you can
make the child class implement as many interfaces as you like. The class doesn’t
inherit any code from the interfaces, but at least its behavior is defi ned by the
interfaces. See the section “Implements interface” in Chapter 23, “Classes and
Structures,” for more information on interfaces.

Refi nement and Abstraction

You can think about the relationship between a parent class and its child classes in two
different ways. First, using a top-down view of inheritance, you can think of the child classes
as refi ning the parent class. They provide extra detail that differentiates among different types
of the parent class.

Inheritance ❘ 439

For example, suppose that you start with a broadly defi ned class such as Person. The Person class
would need general fi elds such as name, address, and phone number. It would also need more spe-
cifi c fi elds that do not apply to all types of people. For example, employees would need employee
ID, Social Security number, offi ce number, and department fi elds. In contrast customers would need
customer ID, company name, and discount code fi elds. You could dump all these fi elds in the Person
class, but that would mean stretching the class to make it play two very different roles. A Person
acting as an Employee would not use the Customer fi elds, and vice versa.

A better solution is to derive new Employee and Customer classes that refi ne the Person class and
differentiate between the types of Person.

A bottom-up view of inheritance considers the parent class as abstracting common features out of
the child classes into the parent class. Common elements in the child classes are removed and placed
in the parent class. Because the parent class is more general than the child classes (it includes a larger
group of objects), abstraction is sometimes called generalization.

Suppose that you are building a drawing application and you defi ne classes to represent various
drawing objects such as Circle, Ellipse, Polygon, Rectangle, and DrawingGroup (a group of objects
that should be drawn together). After you work with the code for a while, you may discover that
these classes share a lot of functionality. Some, such as Ellipse, Circle, and Rectangle, are defi ned
by bounding rectangles. All the classes need methods for drawing the object with different pens and
brushes on the screen or on a printer.

You could abstract these classes and create a new parent class named Drawable. That class might
provide basic functionality such as a simple variable to hold a bounding rectangle. This class would
also defi ne a DrawObject routine for drawing the object on the screen or printer. It would declare
that routine with the MustOverride keyword, so each child class would need to provide its own
DrawObject implementation, but the Drawable class would defi ne its parameters.

Sometimes you can pull variables and methods from the child classes into the parent class. In this
example, the Drawable class might include Pen and Brush variables that the objects would use to
draw themselves. Putting code in the parent class reduces the amount of redundant code in the child
classes, making debugging and maintenance easier.

To make the classes more consistent, you could even change their names to refl ect their shared
ancestry. You might change their names to DrawableEllipse, DrawablePolygon, and so forth. This
not only makes it easier to remember that they are all related to the Drawable class but also helps
avoid confusion with class names such as Rectangle that are already used by Visual Basic.

The Drawable parent class also allows the program to handle the drawing objects more uniformly. It
can defi ne a collection named AllDrawables that contains references to all of the current drawing’s
objects. It could then loop through the collection, treating the objects as Drawables, and calling
their DrawObject methods. The section “Polymorphism” later in this chapter provides more details.

Often application architects defi ne class hierarchies using refi nement. They start with broad general
classes and then refi ne them as necessary to differentiate among the kinds of objects that the appli-
cation will need to use. These classes tend to be relatively intuitive, so you can easily imagine their
relationships.

440 ❘ CHAPTER 22 OOP CONCEPTS

Abstraction often arises during development. As you build the application’s classes, you notice that
some have common features. You abstract the classes and pull the common features into a parent
class to reduce redundant code and make the application more maintainable.

Refi nement and abstraction are useful techniques for building inheritance hierarchies, but they have
their dangers. Designers should be careful not to get carried away with unnecessary refi nement or
over refi nement. For example, suppose that you defi ne a Vehicle class. You then refi ne this class by
creating Auto, Truck, and Boat classes. You refi ne the Auto class into Wagon and Sedan classes and
further refi ne those for different drive types (four-wheel drive, automatic, and so forth). If you really
go crazy, you could defi ne classes for specifi c manufacturers, body styles, and color.

The problem with this hierarchy is that it captures more detail than the application needs. If the
program is a repair dispatch application, it might need to know whether a vehicle is a car or truck.
It will not need to differentiate between wagons and sedans, different manufacturers, or colors.
Vehicles with different colors have the same behaviors as far as this application is concerned.
Creating many unnecessary classes makes the object model harder to understand and can lead
to confusion and mistakes. (I worked on one project that failed because of an overly complicated
object model.)

Avoid unnecessary refi nement by refi ning a class only when doing so lets you capture new
information that the application actually needs to know.

Just as you can take refi nement to ridiculous extremes, you can also overdo class abstraction.
Because abstraction is driven by code rather than intuition, it sometimes leads to unintuitive inheri-
tance hierarchies. For example, suppose that your application needs to mail work orders to remote
employees and invoices to customers. If the WorkOrder and Invoice classes have enough code in
common, you might decide to give them a common parent class named MailableItem that contains
the code needed to mail a document to someone.

This type of unintuitive relationship can confuse developers. Because Visual Basic doesn’t allow
multiple inheritance, it can also cause problems if the classes are already members of other inheri-
tance hierarchies. You can avoid some of those problems by moving the common code into a library
and having the classes call the library code. In this example, the WorkOrder and Invoice classes
would call a common set of routines for mailing documents and would not need to be derived from
a common parent class.

Unnecessary refi nement and overabstracted classes lead to overinfl ated inheritance hierarchies.
Sometimes the hierarchy grows very tall and thin. Other times, it may include several root classes
(with no parents) on top of only one or two small classes each. Either of these can be symptoms of
poor designs that include more classes than necessary. If your inheritance hierarchy starts to take
on one of these forms, you should spend some time reevaluating the classes. Ensure that each adds
something meaningful to the application and that the relationships are reasonably intuitive. Too
many classes with confusing relationships can drag a project to a halt as developers spend more time
trying to understand the hierarchy than they spend implementing the individual classes.

If you are unsure whether to add a new class, leave it out. It’s usually easier to add a new class
later if you discover that it is necessary than it is to remove an unnecessary class after
developers start using it.

Inheritance ❘ 441

“Has-a” and “Is-a” Relationships

Refi nement and abstraction are two useful techniques for generating inheritance hierarchies. The
“has-a” and “is-a” relationships can help you understand whether it makes sense to make a new
class using refi nement or abstraction.

The “is-a” relationship means one object is a specifi c type of another class. For example, an
Employee “is-a” specifi c type of Person object. The “is-a” relation maps naturally into inheritance
hierarchies. Because an Employee “is-a” Person, it makes sense to derive the Employee class from
the Person class.

The “has-a” relationship means that one object has some item as an attribute. For example, a
Person object “has-a” street address, city, state, and ZIP code. The “has-a” relation maps most
naturally to embedded objects. For example, you could give the Person class Street, City, State, and
Zip properties.

Suppose that the program also works with WorkOrder, Invoice, and other classes that also have
street, city, state, and ZIP code information. Using abstraction, you might make a HasPostalAddress
class that contains those values. Then you could derive Person, WorkOrder, and Invoice as child
classes. Unfortunately, that makes a rather unintuitive inheritance hierarchy. Deriving the Person,
WorkOrder, and Invoice classes from HasPostalAddress makes those classes seem closely related
when they are actually related almost coincidentally.

A better solution would be to encapsulate the postal address data in its own PostalAddress
class and then include an instance of that class in the Person, WorkOrder, and Invoice
classes.

You make a parent class through abstraction in part to avoid duplication of code. The parent class
contains a single copy of the common variables and code, so the child classes don’t need to have
their own separate versions for you to debug and maintain. Placing an instance of the
PostalAddress class in each of the other classes provides the same benefi t without complicating
the inheritance hierarchy.

You can often view a particular relationship as either an “is-a” or a “has-a” relationship. A Person
“has-a” postal address. At the same time, a Person “is-a” thing that has a postal address. Use your
intuition to decide which view makes more sense. One hint is that postal address is easy to describe
whereas thing that has a postal address is more awkward and ill-defi ned. Also, think about how
the relationship might affect other classes. Do you really want Person, WorkOrder, and Invoice to be
siblings in the inheritance hierarchy? Or would it make more sense for them to just share an
embedded class?

Adding and Modifying Class Features

Adding new properties, methods, and events to a child class is easy. You simply declare them as you
would in any other class. The parent class knows nothing about them, so the new items are added
only to the child class.

442 ❘ CHAPTER 22 OOP CONCEPTS

The following code shows how you could implement the Person and Employee classes in
Visual Basic:

Public Class Person
 Public FirstName As String
 Public LastName As String
 Public Street As String
 Public City As String
 Public State As String
 Public Zip As String
 Public Phone As String
 Public Email As String

 ‘ Dial the phone using Phone property.
 Public Overridable Sub DialPhone()
 MessageBox.Show(“Dial “ & Me.Phone)
 End Sub
End Class

Public Class Employee
 Inherits Person
 Public EmployeeId As Integer
 Public SocialSecurityNumber As String
 Public OfficeNumber As String
 Public Extension As String
 Public Salary As Single

 ‘ Dial the phone using Extension property.
 Public Overrides Sub DialPhone()
 MessageBox.Show(“Dial “ & Me.Extension)
 End Sub
End Class

The Person class includes variables that defi ne the FirstName, LastName, Street, City, State, Zip,
Phone, and Email values. It also defi nes the DialPhone method. The version shown here simply
displays the Person object’s Phone value.

The Employee class inherits from the Person class. It declares its own EmployeeId,
SocialSecurityNumber, Offi ceNumber, Extension, and Salary variables. It also defi nes a new
version of the DialPhone method that displays the Employee object’s Extension value rather
than its Phone value.

The DialPhone method in the Person class is declared with the Overridable keyword to
allow derived classes to override it. The version defi ned in the Employee class is declared
with the Overrides keyword to indicate that it should replace the version defi ned by the
parent class.

A class can also shadow a feature defi ned in a parent class. When you declare a property, method,
or event with the Shadows keyword, it hides any item in the parent that has the same name. This is
very similar to overriding, except that the parent class does not have to declare the item as overrid-
able and the child item needs only to match the parent item’s name.

Inheritance ❘ 443

For example, the parent might defi ne a SendMail subroutine that takes no parameters. If the child
class defi nes a SendMail method that takes some parameters and uses the Shadows keyword, the
child’s version hides the parent’s version.

In fact, the child and parent items don’t even need to be the same kind of item. For example, the
child class could make a subroutine named FirstName that shadows the parent class’s FirstName
variable. This type of change can be confusing, however, so usually you should only shadow items
with similar items.

The following code shows how the Employee class might shadow the Person class’s SendMail
subroutine:

Public Class Person
 ...
 ‘ Send some mail to the person’s address.
 Public Sub SendMail()
 MessageBox.Show(“Mail “ & Street & “, “ & City & “, “ &
 State & “ “ & Zip)
 End Sub
End Class

Public Class Employee
 Inherits Person
 ...
 ‘ Send some mail to the person’s office.
 Public Shadows Sub SendMail()
 MessageBox.Show(“Mail “ & OfficeNumber)
 End Sub
End Class

The Person class displays the mailing address where it would send a letter. A real application might
print a letter on a specifi c printer for someone to mail. The Employee class shadows this routine
with one of its own, which displays the employee’s offi ce number instead of a mailing address.

Interface Inheritance

When you derive one class from another, the child class inherits the properties, methods, and events
defi ned by the parent class. It inherits both the defi nition of those items and the code that imple-
ments them.

Visual Basic also enables you to defi ne an interface. An interface defi nes a class’s behaviors, but does
not provide an implementation. After you have defi ned an interface, a class can use the Implements
keyword to indicate that it provides the behaviors specifi ed by the interface. It’s then up to you to
provide the code that implements the interface.

For example, consider again the MotorHome class. Visual Basic does not allow a class to inherit
from more than one parent class, but a class can implement as many interfaces as you like. You
could defi ne an IVehicle interface (by convention, interface names begin with the capital letter I)
that defi nes properties of vehicles (number of wheels, horsepower, maximum speed, acceleration,
and so forth) and an IHouse interface that defi nes properties of living spaces (square feet, number of

444 ❘ CHAPTER 22 OOP CONCEPTS

bedrooms, number of bathrooms, and so forth). Now, you can make the MotorHome class imple-
ment both of those interfaces. The interfaces do not provide any code, but they do declare that the
MotorHome class implements the interface’s features.

Like true inheritance, interface inheritance provides polymorphism (see the next section,
“Polymorphism,” for more details on this topic). You can use a variable having the type of the inter-
face to refer to objects that defi ne the interface. For example, suppose that the Employee, Manager,
and Customer classes implement the IPerson interface. Then you can use a variable of type IPerson
to refer to an object of type Employee, Manager, or Customer.

Suppose that the people collection contains Employee, Manager, and Customer objects. The follow-
ing code uses a variable of type IPerson to display the objects’ names:

For Each person As IPerson In people
 Debug.WriteLine(person.FirstName & “ “ & person.LastName)
Next person

POLYMORPHISM

Roughly speaking, polymorphism means treating one object as another. In OOP terms, it means
that you can treat an object of one class as if it were from a parent class.

For example, suppose that Employee and Customer are both derived from the Person class. Then
you can treat Employee and Customer objects as if they were Person objects because, in a sense, they
are Person objects. They are specifi c types of Person objects. After all, they provide all of the proper-
ties, methods, and events of a Person object.

Visual Basic enables you to assign a value from a child class to a variable of the parent class. In this
example, you can place an Employee or Customer object in a Person variable, as shown in the fol-
lowing code:

Dim emp As New Employee ‘ Create an Employee.
Dim cust As New Customer ‘ Create a Customer.
Dim per As Person ‘ Declare a Person variable.
per = emp ‘ Okay. An Employee is a Person.
per = cust ‘ Okay. A Customer is a Person.
emp = per ‘ Not okay. A Person is not necessarily an Employee.

One common reason to use polymorphism is to treat a collection of objects in a uniform way that
makes sense in the parent class. For example, suppose that the Person class defi nes the FirstName
and LastName fi elds. The program could defi ne a collection named AllPeople and add references
to Customer and Employee objects to represent all the people that the program needs to work with.
The code could then iterate through the collection, treating each object as a Person, as shown in the
following code:

For Each per As Person In AllPeople
 Debug.WriteLine(per.FirstName & “ “ & per.LastName)
Next Per

Method Overloading ❘ 445

You can only access the features defi ned for the type of variable you actually use to refer to an
object. For example, if you use a Person variable to refer to an Employee object, you can only use
the features defi ned by the Person class, not those added by the Employee class.

If you know that a particular object is of a specifi c subclass, you can convert the variable into a more
specifi c variable type. The following code loops through the AllPeople collection and uses the TypeOf
statement to test each object’s type. It uses DirectCast to convert the more general Person variable into
a variable with a more specifi c class and then uses the new variable to perform class-specifi c tasks.

For Each per As Person In AllPeople
 If TypeOf per Is Employee Then
 Dim emp As Employee = DirectCast(per, Employee)
 ‘ Do something Employee-specific.
 ...
 ElseIf TypeOf per Is Customer Then
 Dim cust As Customer = DirectCast(per, Customer)
 ‘ Do something Customer-specific.
 ...
 End If
Next per

METHOD OVERLOADING

Visual Basic .NET enables you to give a class more than one method with the same name but
with different parameters. The program decides which version of the method to use based on the
parameters being passed to the method.

For example, the Person class shown in the following code has two constructors named New. The
fi rst takes no parameters and initializes the object’s FirstName and LastName variables to
default values. The second overloaded constructor takes two strings as parameters and uses them to
initialize FirstName and LastName.

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New()
 FirstName = “<first>”
 LastName = “<last>”
 End Sub

 Public Sub New(first_name As String, last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

The following code uses these constructors. The fi rst statement passes no parameters to the
constructor, so Visual Basic uses the fi rst version of the New method. The second statement passes
two strings to the constructor, so Visual Basic uses the second constructor.

446 ❘ CHAPTER 22 OOP CONCEPTS

Dim person1 As New Person()
Dim person2 As New Person(“Rod”, “Stephens”)

A common technique for providing constructors that take different numbers of arguments is to
make the simpler constructors call those with more parameters passing them default values. In the
following code, the parameterless constructor calls a constructor that takes two parameters:

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New()
 Me.New(“<first>”, “<last>”)
 End Sub

 Public Sub New(first_name As String, last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

Two overloaded methods cannot differ only by optional parameters. For example, the first_name
and last_name parameters in the previous constructor could not both be optional. If they were,
Visual Basic .NET could not tell which version of the New subroutine to call if the program passed
it no parameters. Although you cannot make the parameters optional in the second constructor, you
can get a similar result by combining the two constructors, as shown in the following code:

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New(
 Optional first_name As String = “<first>”,
 Optional last_name As String = “<last>”)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

Overloaded functions also cannot differ only in their return types. In other words, you cannot have
two versions of a function with the same name and parameters but different return types.

EXTENSION METHODS

Extension methods let you add new subroutines or functions to an existing class without rewriting
it or deriving a new class from it even if you don’t have access to the class’s source code.

To make an extension method, create a new method in a code module and place the System
.Runtime.CompilerServices.Extension attribute before the method’s declaration. (If you like, you

Summary ❘ 447

can add the statement “Imports System.Runtime.CompilerServices” at the top of the fi le so you only
need to use the name Extension for the attribute.)

Then make a normal subroutine or function that takes one or more parameters. The fi rst parameter
determines the class that the method extends. The method can use that parameter to learn about the
item for which the method was called. The other parameters are passed into the method so it can
use them to do its work.

For example, the following code adds a MatchesRegexp subroutine to the String class:

‘ Return True if a String matches a regular expression.
<Extension()>
Public Function MatchesRegexp(the_string As String,
 regular_expression As String) As Boolean
 Dim reg_exp As New Regex(regular_expression)
 Return reg_exp.IsMatch(the_string)
End Function

The Extension attribute tells Visual Basic that this is an extension method. The method’s fi rst
parameter is a String so this method extends the String class. The second parameter is a regular
expression. The method returns True if the String matches the regular expression.

The program can use the extension method just as if it were part of the String class. The follow-
ing code uses the MatchesRegexp method to decide whether the phone_number variable contains a
value that looks like a valid United States phone number:

If Not phone_number.MatchesRegexp(“^[2-9]\d{2}-\d{4}$”) Then
 MessageBox.Show(“Not a valid phone number”)
End If

If used haphazardly, extension methods can blur the purpose of a class. They can make the class do
things for which it was never intended. They add behaviors that the class’s original authors did not
have in mind. The result may be a class that does too many poorly defi ned or unrelated things, and
that is confusing and hard to use properly. They weaken the class’s encapsulation by adding new
features that are not hidden within the control’s code.

If you have access to the class’s source code, make changes to the class within that code. Then if
there is a problem, at least all of the code is together within the class. If you really need to add new
methods to a class that is outside of your control, such as adding new methods to String and other
classes defi ned by Visual Basic and the .NET Framework, you can use extension methods.

SUMMARY

Classes are programming abstractions that group data and related behavior in tightly encapsulated
packages. After you defi ne a class, you can instantiate it to create an instance of the class. You can
interact with the new object by using its properties, methods, and events.

Inheritance enables you to derive one class from another. You can then add, remove, or modify the
behavior that the child class inherits from the parent class. Sometimes it makes sense to think

448 ❘ CHAPTER 22 OOP CONCEPTS

of the classes in inheritance hierarchies in a top-down manner, so child classes refi ne the features of
their parents. At other times, it makes sense to use a bottom-up view and think of a parent class as
abstracting the features of its children.

Interface inheritance lets you defi ne some of the features of a class without using true class inheri-
tance. This gives you another method for using polymorphism and lets you build classes that, in a
sense, appear to inherit from multiple parents.

Polymorphism enables you to treat an object as if it were of an ancestor’s type. For example,
if the Manager class inherits from Employee and Employee inherits from Person, then you can treat
a Manager object as if it were a Manager, Employee, or Person.

In addition to these features, Visual Basic .NET enables you to overload a class’s subroutines, func-
tions, and operators. It lets you create different methods with the same name but different param-
eters. The compiler selects the right version of the method based on the parameters you pass to it.
Extension methods even let you add new subroutines and functions to existing classes when you
don’t have access to the class’s source code.

These object-oriented concepts provide the general background you need to understand classes in
Visual Basic. Chapter 23, “Classes and Structures,” describes the specifi cs of classes and structures
in Visual Basic .NET. It shows how to declare and instantiate classes and structures and explains
the differences between the two.

Classes and Structures

WHAT’S IN THIS CHAPTER

 ➤ Creating classes

 ➤ Diff erences between structures and classes

 ➤ Garbage collection and fi nalization

 ➤ Properties, methods, and events

 ➤ Shared variables and methods

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this
chapter is divided into the following major examples:

 ➤ FinalizeObjects

 ➤ GarbageCollection

 ➤ StructuresAndClasses

 ➤ UseDispose

PACKAGING DATA

A variable holds a single value. It may be a simple value such as an integer or string, or a refer-
ence that points to a more complex entity. Two kinds of more complex entities are classes and
structures.

Classes and structures are both container types. They group several related data values into a
convenient package that you can manipulate as a group.

23

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

450 ❘ CHAPTER 23 CLASSES AND STRUCTURES

For example, an EmployeeInfo structure might contain fi elds that hold information about an
employee (such as fi rst name, last name, employee ID, offi ce number, extension, and so on). If you
make an EmployeeInfo structure and fi ll it with the data for a particular employee, you can then
move the structure around as a single unit instead of passing around a bunch of separate variables
holding the fi rst name, last name, and the rest.

This chapter explains how to declare classes and structures, and how to create instances of them
(instantiate them). It explains the differences between classes and structures and provides some
advice about which to use under different circumstances.

Finally, this chapter describes some of the mechanical issues that you’ll face when building
classes. It explains how garbage collection affects objects. It fi nishes by explaining how to
implement some of the most basic features of classes: constants, properties, methods,
and events.

CLASSES

A class packages data and related behavior. For example, a WorkOrder class might store data
describing a customer’s work order in its properties. It could contain methods (subroutines and
functions) for manipulating the work order. It might provide methods for scheduling the work,
modifying the order’s requirements, and setting the order’s priority.

Here is the syntax for declaring a class:

[attribute_list] [Partial] [accessibility] [Shadows] [inheritance] _
Class name[(Of type_list)]
 [Inherits parent_class]
 [Implements interface]
 statements
End Class

The only things that all class declarations must include are the Class clause (including the class’s
name) and the End Class statement. Everything else is optional. The following code describes a valid
(albeit not very interesting) class:

Class EmptyClass
End Class

The following sections describe the pieces of the general declaration in detail.

Attribute_list

The optional attribute_list is a comma-separated list of attributes that apply to the class. An
attribute further refi nes the defi nition of a class to give more information to the compiler and the
runtime system.

Classes ❘ 451

Attributes are rather specialized. They address issues that arise when you perform very specifi c pro-
gramming tasks. For example, if your application must use drag-and-drop support to copy instances
of the class from one application to another, you must mark the class with the Serializable attribute.

Some attributes are particular to specifi c kinds of classes. For example, the DefaultEvent attribute
gives the Windows Form Designer extra information about component classes. If you double-click a
component on a form, the code designer opens to the component’s default event.

Because attributes are so specialized, they are not described in more detail here. For more informa-
tion, see the sections in the online help that are related to the tasks you need to perform.

For more information on attributes, see Microsoft’s “Attributes in Visual Basic” web page at
http://msdn.microsoft.com/39967861.aspx. For a list of attributes that you can use, go to
Microsoft’s “Attribute Class” web page at http://msdn.microsoft.com/system.attribute.aspx
and look at the “Inheritance Hierarchy” section.

Partial

The Partial keyword tells Visual Basic that the current declaration defi nes only part of the class. The
following code shows the Employee class broken into two pieces:

Partial Public Class Employee
 Public FirstName As String
 Public LastName As String
 ...
End Class

AVOID COMMA DRAMA

Instead of using commas to separate multiple attributes inside one set of brackets,
you can place each attribute inside its own brackets. For example, the following
code defi nes two classes, each having two attributes: Serializable and Obsolete.

<Serializable(), Obsolete(“No longer supported. Use Sku instead”)>
Public Class SkuNumber
 ...
End Class

<Serializable()>
<Obsolete(“No longer supported. Use ProductType instead”)>
Public Class Product
 ...
End Class

Which style you should use is a matter of personal preference, although it’s slightly
easier to insert or remove attributes with the second style because you can add or
remove whole lines at a time without messing up the commas.

http://msdn.microsoft.com/39967861.aspx
http://msdn.microsoft.com/system.attribute.aspx

452 ❘ CHAPTER 23 CLASSES AND STRUCTURES

... other code, possibly unrelated to the Employee class ...

Partial Public Class Employee
 Public Email As String
 ...
End Class

The program could contain any number of other pieces of the Employee class, possibly in differ-
ent code modules. At compile time, Visual Basic fi nds these pieces and combines them to defi ne the
class.

One of the primary benefi ts of classes is that they hold the code and data associated with the class
together in a nice package. Scattering the pieces of a class in this way makes the package less self-
contained and may lead to confusion. To prevent confusion, you should avoid splitting a class unless
you have a good reason to (for example, to allow different developers to work on different pieces of
the class at the same time or if one piece must have Option Strict turned off).

At least one of the pieces of the class must be declared with the Partial keyword, but in the other
pieces it is optional. Explicitly providing the keyword in all of the class’s partial defi nitions empha-
sizes the fact that the class is broken into pieces and may reduce confusion.

Accessibility

A class’s accessibility clause takes one of the following values: Public, Protected, Friend, Protected
Friend, or Private.

Public indicates that the class should be available to all code inside or outside of the class’s module.
This enables the most access to the class. Any code can create and manipulate instances of the class.

You can use the Protected keyword only if the class you are declaring is contained inside another
class. For example, the following code defi nes an Employee class that contains a protected
EmployeeAddress class:

Public Class Employee
 Public FirstName As String
 Public LastName As String
 Protected Address As EmployeeAddress

 Protected Class EmployeeAddress
 Public Street As String
 Public City As String
 Public State As String
 Public Zip As String
 End Class

 ... other code ...
End Class

Because the EmployeeAddress class is declared with the Protected keyword, it is visible only within
the enclosing Employee class and any derived classes. For example, if the Manager class inherits
from the Employee class, code within the Manager class can access the Address variable.

Classes ❘ 453

The Friend keyword indicates that the class should be available to all code inside or outside of the
class’s module within the same project. The difference between this and Public is that Public allows
code outside of the project to access the class. This is generally only an issue for code libraries (.dll
fi les) and control libraries. For example, suppose that you build a code library containing dozens of
routines and then you write a program that uses the library. If the library declares a class with the
Public keyword, the code in the library and the code in the main program can use the class.
If the library declares a class with the Friend keyword, only the code in the library can access the
class, not the code in the main program.

Protected Friend is the union of the Protected and Friend keywords. A class declared Protected
Friend is accessible only to code within the enclosing class or a derived class and only within the
same project.

A class declared Private is accessible only to code in the enclosing module, class, or structure.
If the EmployeeAddress class were declared Private, only code within the Employee class could use
that class.

If you do not specify an accessibility level, it defaults to Friend.

Shadows

The Shadows keyword indicates that the class hides the defi nition of some other entity in an ances-
tor class.

The following code shows an Employee class that declares a public class Offi ceInfo and defi nes an
instance of that class named Offi ce. The derived class Manager inherits from Employee. It declares
a new version of the Offi ceInfo class with the Shadows keyword. It defi nes an instance of this class
named ManagerOffi ce.

Public Class Employee
 Public Class OfficeInfo
 Public OfficeNumber As String
 Public Extension As String
 End Class

 Public FirstName As String
 Public LastName As String
 Public Office As New OfficeInfo
End Class

Public Class Manager
 Inherits Employee

 Public Shadows Class OfficeInfo
 Public OfficeNumber As String
 Public Extension As String
 Public SecretaryOfficeNumber As String
 Public SecretaryExtension As String
 End Class

 Public ManagerOffice As New OfficeInfo
End Class

454 ❘ CHAPTER 23 CLASSES AND STRUCTURES

The following code uses the Employee and Manager classes. It creates instances of the two classes
and sets their Offi ce.Extension properties. Both of those values are part of the Employee class’s
 version of the Offi ceInfo class. Next, the code sets the Manager object’s ManagerOffi ce
.SecretaryExtension value.

Dim emp As New Employee
Dim mgr As New Manager
emp.Office.Extension = “1111”
mgr.Office.Extension = “2222”
mgr.ManagerOffice.SecretaryExtension = “3333”

Note that the Manager class contains two different objects of type Offi ceInfo. Its Offi ce property
is the Employee class’s fl avor of Offi ceInfo class. Its ManagerOffi ce value is the Manager class’s
version of Offi ceInfo.

The presence of these different classes with the same name can be confusing. Usually, you are better
off not using the Shadows keyword in the declarations and giving the classes different names. In this
case, you could call the Manager class’s included class ManagerOffi ceInfo.

Inheritance

A class’s inheritance clause can take the value MustInherit or NotInheritable.

MustInherit prohibits the program from creating instances of the class. The program should create
an instance of a derived class instead. This kind of class is sometimes called an abstract class.

By using MustInherit, you can make a parent class that defi nes some of the behavior that should be
implemented by derived classes without implementing the functionality itself. The parent class is not
intended to be used itself, just to help defi ne the derived classes.

The NotInheritable keyword does the opposite of the MustInherit keyword. MustInherit says that a
class must be inherited to be instantiated. NotInheritable says no class can inherit from this one.

You can use NotInheritable to stop other developers from making new versions of the classes you
have built. This isn’t really necessary if you design a well-defi ned object model before you start pro-
gramming and if everyone obeys it. NotInheritable can prevent unnecessary proliferation of classes
if developers don’t pay attention, however. For example, declaring the Car class NotInheritable
would prevent overeager developers from deriving FrontWheelDriveCar, RedCar, and Subaru classes
from the Car class.

EXTENSION TENSION

Extension methods allow developers to add new subroutines and functions to a
class even if it is marked NotInheritable. This can ruin the class’s focus of purpose,
making it harder to understand and use safely. It also violates the intent of the
NotInheritable keyword so you should avoid it if possible. For more information,
see the section “Extension Methods” in Chapter 22, “OOP Concepts.”

Classes ❘ 455

Of type_list

The Of type_list clause makes the class generic. It allows the program to create instances of
the class that work with different data types. For example, the following code defi nes a generic Tree
class. The class includes a public variable named RootObject that has the data type given in
the class’s Of data_type clause.

Public Class Tree(Of data_type)
 Public RootObject As data_type
 ...
End Class

When you read this declaration, you should think “Tree of something,” where something is defi ned
later when you make an instance of the class.

The following code fragment declares and instantiates the variable my_tree to be a “Tree of
Employee.” It then sets its RootObject variable to a new Employee object.

Dim my_tree As New Tree(Of Employee)
my_tree.RootObject = New Employee
...

Chapter 26, “Generics,” discusses generic classes further.

Inherits parent_class

The Inherits statement indicates that the class (the child class) is derived from another class (the par-
ent class). The child class automatically inherits the parent’s properties, methods, and events.

The following code defi nes an Employee class that contains LastName, FirstName, Offi ceNumber,
and Phone variables. It then derives the Manager class from the Employee class. The Manager class
adds new SecretaryOffi ceNumber and SecretaryPhone variables. These are available to instances of
the Manager class but not to the Employee class.

Public Class Employee
 Public FirstName As String
 Public LastName As String
 Public OfficeNumber As String
 Public Phone As String
End Class

Public Class Manager
 Inherits Employee

 Public SecretaryOfficeNumber As String
 Public SecretaryPhone As String
End Class

If a class inherits from another class, the Inherits statement must be the fi rst statement after the
Class statement that is not blank or a comment. Also note that a class can inherit from at most one
parent class, so a class defi nition can include at most one Inherits statement.

For more information on inheritance, see the section “Inheritance” in Chapter 22.

456 ❘ CHAPTER 23 CLASSES AND STRUCTURES

Implements interface

The Implements keyword indicates that a class will implement an interface. An interface defi nes
behaviors that the implementing class must provide, but it does not provide any implementation for
the behaviors.

For example, the following code defi nes the IDomicile interface. (By convention, the names of
interfaces should begin with the capital letter I.)

Public Interface IDomicile
 Property SquareFeet As Integer
 ReadOnly Property NeedsFireSystem As Boolean
 Sub Clean()
End Interface

The House class shown in the following code implements the IDomicile interface. When you type
the Implements statement and press Enter, Visual Basic automatically generates empty routines to
provide the features defi ned by the interface.

Public Class House
 Implements IDomicile

 Public Sub Clean() Implements IDomicile.Clean

 End Sub

 Public ReadOnly Property NeedsFireSystem As Boolean _
 Implements IDomicile.NeedsFireSystem
 Get

 End Get
 End Property

 Public Property SquareFeet As Integer Implements IDomicile.SquareFeet
End Class

If a class declaration uses any Implements statements, they must come after any Inherits statement
and before any other statements (other than blank lines and comments).

For more information on interfaces and how you can use them to mimic inheritance, see the section
“Interface Inheritance” in Chapter 22.

STRUCTURES

Structures are very similar to classes. The syntax for declaring a structure is as follows:

[attribute_list] [Partial] [accessibility] [Shadows] _
Structure name[(Of type_list)]
 [Implements interface]
 statements
End Structure

Structures ❘ 457

The only thing that all structure declarations must include is the Structure clause (including the
structure’s name) and the End Structure statement. The rest is optional.

Unlike a class, however, a structure cannot be empty. It must contain at least one variable or event
declaration. The following code defi nes a valid structure. Its only member is a Private variable, so
this structure wouldn’t be of much use, but it is valid.

Structure EmptyStructure
 Private Num As Integer
End Structure

The structure’s attribute_list and accessibility clauses, Shadows and Partial keywords, and the
Implements statement are the same as those for classes. See the earlier sections discussing these key-
words for details.

There are two main differences between a structure and a class: Structures cannot inherit, and
structures are value types rather than reference types.

Structures Cannot Inherit

Unlike a class, a structure cannot inherit so it cannot use the MustInherit, NotInheritable, or
Inherits keywords; however, like a class, a structure can implement any number of interfaces. You
can use interface inheritance to defi ne inheritance-mimicking hierarchies of structures, and you can
simulate multiple inheritance by making a structure implement multiple interfaces.

Structures Are Value Types

The biggest difference between a structure and a class is in how each allocates memory for its data.
Classes are reference types. That means an instance of a class is actually a reference to the object’s
storage in memory. When you create an instance of a class, Visual Basic creates a reference that
points to the object’s actual location in memory.

In contrast, structures are value types. An instance of a struc-
ture contains the data inside the structure rather than simply
points to it. Figure 23-1 illustrates the difference.

The difference between reference and value type has several impor-
tant consequences that are described in the following sections.

Memory Required

The difference in memory required by classes and structures is
small when you consider only a single object. If you look at an
array, however, the distinction is more important. An array of
class objects contains references to data in some other part
of memory. When you fi rst declare the array, the references all
have the value Nothing, so they don’t point to any data and no
memory is allocated for the data. The references take 4 bytes
each, so the array uses only 4 bytes per array entry.

FIGURE 23-1: A structure contains

the data, whereas a class object

contains a reference that points

to data.

FirstName

Structure

LastName

Street

City

State

Zip

FirstName

ClassObject

LastName

Street

City

State

Zip

(Reference)

458 ❘ CHAPTER 23 CLASSES AND STRUCTURES

ONE SIZE DOESN’T FIT ALL

Actually, the size of a reference is not necessarily 4 bytes. On a 64-bit system, refer-
ences are larger. In general, you should not assume a reference has a particular size.
Just be aware that references take relatively little memory.

PERFORMANCE ANXIETY

In theory, you may see a slight performance benefi t to using an array of structures
if you want them initialized to default values. The array will be allocated and later
freed in a single step, and its memory will be contiguous, so for some applications,
this kind of array may reduce paging.

The garbage collector can also mark the array’s memory as in use in a single step,
whereas it must follow the references to class objects separately.

In practice, however, the differences are so small that you should not use per-
formance to decide which approach to use. Usually, you are best off picking the
method that makes the most logical sense, and not worrying too much about the
slight performance difference.

An array of structure instances, on the other hand,
allocates space for the data inside the array. If each
structure object takes up 1000 bytes of memory,
then an array containing N items uses 1000 * N bytes
of memory. Each structure instance’s memory is
allocated, whether or not its fi elds contain meaning-
ful data.

Figure 23-2 illustrates this situation. The array
of class objects on the left uses very little memory
when the references are Nothing. The array of
structure objects on the right uses a lot
of memory even if its elements have not been
initialized.

If you must use a large array of objects where only
a few at a time will have values other than Nothing,
using a class may save the program a considerable
amount of memory. If you will need most
of the objects to have values other than Nothing at
the same time, it may be faster to allocate all the
memory at once using a structure. This will also use
slightly less memory, because an array of class refer-
ences requires 4 extra bytes per entry to hold the
references.

FirstName

Structure

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

Class

Reference <Nothing>

Reference <Nothing>

Reference <Nothing>

FIGURE 23-2: An array of class objects contains

small references to data, many of which may

be Nothing. An array of structures takes up a

 signifi cant amount of memory.

Structures ❘ 459

Heap and Stack Performance

Visual Basic programs allocate variables from two pools of memory called the stack and the heap.
Programs take memory for value types (such as integers and dates) from the stack.

Space for reference types comes from the heap. More than one reference can point to the same chunk
of memory allocated on the heap. That makes garbage collection and other heap-management issues
more complex than using the stack, so using the heap is generally slower than using the stack.

Because structures are value types and classes are reference types, structures are allocated on the
stack and class objects are allocated on the heap. That makes structures faster than classes. The
exact difference for a particular program depends on the application.

Note that arrays are themselves reference types, so all arrays are allocated from the heap whether
they contain structures or references to class objects. The memory for an array of structures is allo-
cated all at once, however, so there is still some benefi t to using structures. All the memory in an
array of structures is contiguous, so the program can access its elements more quickly than it would
if the memory were scattered throughout the heap.

Object Assignment

When you assign one reference type variable
to another, you make a new reference to an
existing object. When you are fi nished, the
two variables point to the same object. If you
change the object’s fi elds using one variable,
the fi elds shown by the other are also changed.

In contrast, if you set one value type vari-
able equal to another, Visual Basic copies the
data from one to the other. If you later change
the fi elds in one object, the fi elds in the other
remain unchanged. Figure 23-3 illustrates the
difference for classes and structures.

Example program StructuresAndClasses uses the following code to demonstrate this difference:

Dim cperson1 As New CPerson
Dim cperson2 As CPerson
cperson1.FirstName = “Alice”
cperson2 = cperson1
cperson2.FirstName = “Ben”
MessageBox.Show(cperson1.FirstName & vbCrLf & cperson2.FirstName)

Dim sperson1 As New SPerson
Dim sperson2 As SPerson
sperson1.FirstName = “Alice”
sperson2 = sperson1
sperson2.FirstName = “Ben”
MessageBox.Show(sperson1.FirstName & vbCrLf & sperson2.FirstName)

The code creates a CPerson class object and sets its fi rst name value. It then assigns another CPerson
variable to the same object. Because CPerson is a class, the two variables refer to the same piece of

Class Structure

FirstName

LastName

Street

City

State

Zip

A B
FirstName

A

LastName

Street

City

State

Zip

FirstName

B

LastName

Street

City

State

Zip

FIGURE 23-3: Assigning one class reference to

another makes them both point to the same object.

Assigning one structure variable to another makes a

new copy of the data.

460 ❘ CHAPTER 23 CLASSES AND STRUCTURES

memory so when the code sets the new variable’s fi rst name value it overwrites the previous vari-
able’s fi rst name value. The message box displays the name Ben twice.

The code performs the same steps again but this time it uses structure variables instead of class
variables. The code makes an SPerson structure and sets its fi rst name value. When it sets the second
SPerson variable equal to the fi rst one, that makes a copy of the structure. Now when the code sets
the second variable’s fi rst name to Ben, it does not overwrite the previous variable’s fi rst name value.
The message box displays the names Alice and Ben.

Parameter Passing

When you pass a parameter to a function or subroutine, you can pass it by reference using the ByRef
keyword or by value using the ByVal keyword. If you pass a parameter by reference, any changes
that the routine makes are refl ected in the original parameter passed into the routine.

For example, consider the following code.

Public Sub TestByRef()
 Dim i As Integer = 1

 PassByVal(i)
 MessageBox.Show(i.ToString) ‘ i = 1.

 PassByRef(i)
 MessageBox.Show(i.ToString) ‘ i = 2.
End Sub

Public Sub PassByVal(ByVal the_value As Integer)
 the_value *= 2
End Sub

Public Sub PassByRef(ByRef the_value As Integer)
 the_value *= 2
End Sub

Subroutine TestByRef creates an integer named i and sets its value to 1. It then calls subroutine
PassByVal. That routine declares its parameter with the ByVal keyword, so i is passed by value.
PassByVal multiplies its parameter by 2 and ends. Because the parameter was declared ByVal, the
original variable i is unchanged, so the message box displays the value 1.

Next the program calls subroutine PassByRef, passing it the variable i. Subroutine PassByRef
declares its parameter with the ByRef keyword, so a reference to the variable is passed into the rou-
tine. PassByRef doubles its parameter and ends. Because the parameter is declared with the ByRef
keyword, the value of variable i is modifi ed so the message box displays the value 2.

When you work with class references and structures, you must think a bit harder about how ByRef
and ByVal work. There are four possible combinations: class ByVal, structure ByVal, class
ByRef, and structure ByRef.

If you pass a class reference to a routine by value, the routine receives a copy of the reference. If it
changes the reference (perhaps making it point to a new object), the original reference passed into
the routine remains unchanged. It still points to the same object it did when it was passed to the

Class Instantiation Details ❘ 461

routine. However, the routine can change the values in the object to which the reference points. If
the reference points to a Person object, the routine can change the object’s FirstName, LastName,
and other fi elds. It cannot change the reference itself to make it point to a different Person object,
but it can change the object’s data.

In contrast, suppose that you pass a structure into a routine by value. In that case, the routine
receives a copy of the entire structure. The routine can change the values contained in its copy of the
structure, but the original structure’s values remain unchanged. It cannot change the original struc-
ture’s fi elds the way it could if the parameter were a reference type.

If you pass a class reference variable by reference, the routine can not only modify the values in the
reference’s object but also make the reference point to a different object. For example, the routine
could use the New keyword to make the variable point to a completely new object.

If you pass a structure by reference, the routine receives a pointer to the structure’s data. If it
changes the structure’s data, the fi elds in the original variable passed into the routine are modifi ed.
(The result is similar to what happens if you pass a class reference by value.)

In addition to these differences in behavior, passing class references and structures by reference or
by value can make differences in performance. When you pass a reference to data, Visual Basic only
needs to send the routine a 4-byte value. If you pass a structure into a routine by value, Visual Basic
must duplicate the entire structure, so the routine can use its own copy. If the structure is very large,
that may take a little extra time.

Boxing and Unboxing

Visual Basic allows a program to treat any variable as an object. For example, a collection class
stores objects. If you add a simple value type such as an Integer to a collection, Visual Basic wraps
the Integer in an object and adds that object to the collection.

The process of wrapping the Integer in an object is called boxing. Later, if you need to use the
Integer as a value type again, the program unboxes it. Because structures are value types,
the program must box and unbox them whenever it treats them as objects, and that adds some
extra overhead.

Some operations that require boxing and possibly unboxing include assigning a structure to an
Object variable, passing a structure to a routine that takes an Object as a parameter, or adding
a structure to a collection class. Note that this last operation includes adding a structure to a
collection used by a control or other object. For example, adding a structure to a ListBox control’s
Items collection requires boxing.

Note that arrays are themselves reference types, so treating an array as an object doesn’t require
boxing.

CLASS INSTANTIATION DETAILS

When you declare a reference variable, Visual Basic allocates space for the reference. Initially,
that reference is set to Nothing, so it doesn’t point to anything and no memory is allocated for an
actual object.

462 ❘ CHAPTER 23 CLASSES AND STRUCTURES

You create an object by using the New keyword. Creating an actual object is called instantiating
the class.

The following code shows a simple object declaration and instantiation. The fi rst line declares the
reference variable. The second line makes the variable point to a new Employee object.

Dim emp As Employee ‘ Declare a reference to an Employee object.
emp = New Employee ‘ Make a new Employee object and make emp point to it.

Visual Basic also enables you to declare and initialize a variable in a single statement. The following
code shows how to declare and initialize an object reference in one statement:

Dim emp As Employee = New Employee ‘ Declare and instantiate an object.

Visual Basic lets you declare a variable to be of a new object type, as shown in the following state-
ment. This version has the same effect as the preceding one but is slightly more compact.

Dim emp As New Employee ‘ Declare and instantiate an object.

Both of these versions that defi ne and initialize an object in a single statement ensure that the vari-
able is initialized right away. They guarantee that the object is instantiated before you try to use it.
If you place these kinds of declarations immediately before the code where the object is used, they
also make it easy to see where the object is defi ned.

Although you can declare and instantiate a reference variable separately, value type variables are
allocated when they are declared. Because structures are value types, when you declare one
you also allocate space for its data, so you don’t need to use the New keyword to initialize a struc-
ture variable.

Both classes and structures can provide special subroutines called constructors. A constructor is a
special subroutine named New that Visual Basic calls when a new instance of the class or structure
is created. The constructor can perform initialization tasks to get the new object ready for use.

A constructor can optionally take parameters to help in initializing the object. For example, the
Person class shown in the following code has a constructor that takes as parameters fi rst and last
names and saves them in the control’s FirstName and LastName variables:

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New(ByVal first_name As String, ByVal last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

The following code shows how a program might use this constructor to create a new Person object:

Dim author As New Person(“Rod”, “Stephens”)

Class Instantiation Details ❘ 463

You can overload the New method just as you can overload other class methods. The different over-
loaded versions of the constructor must have different parameter lists so that Visual Basic can decide
which one to use when it creates a new object.

The following code shows a Person class that provides two constructors. The fi rst takes two strings
as parameters and copies them into the object’s FirstName and LastName values. The second
version takes no parameters and invokes the fi rst constructor to set the object’s FirstName and
LastName values to <unknown>.

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New(first_name As String, last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub

 Public Sub New()
 Me.New(“<unknown>”, “<unknown>”)
 End Sub
End Class

The following code uses each of these constructors:

Dim person1 As New Person ‘ <unknown> <unknown>.
Dim person2 As New Person(“Olga”, “O’Toole”) ‘ Olga O’Toole.

If you do not provide any constructors for a class, Visual Basic allows the program to use the
New keyword with no parameters. If you create any constructor, however, Visual Basic does not
allow the program to use this default empty constructor (without parameters) unless you build one
explicitly. For example, if the previous version of the Person class did not include a parameterless
constructor, the program could not use the fi rst declaration in the previous code that doesn’t include
any parameters.

You can use this feature to ensure that the program assigns required values to an object. In this case,
it would mean that the program could not create a Person object without assigning FirstName and
LastName values.

If you want to allow an empty constructor in addition to other constructors, an alternative is to cre-
ate a single constructor with optional parameters. The following code shows this approach. With
this class, the program could create a new Person object, passing its constructor zero, one, or two
parameters.

Public Class Person
 Public FirstName As String
 Public LastName As String

 Public Sub New(

464 ❘ CHAPTER 23 CLASSES AND STRUCTURES

 Optional first_name As String = “<unknown>”,
 Optional last_name As String = “<unknown>”)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

When you use a class’s parameterless constructor to create an object, you can also include a With
clause to initialize the object’s properties. The following code uses the Person class’s parameter-
less constructor to make a new Person object. The With statement then sets values for the object’s
FirstName and LastName values.

Dim author As New Person() With {.FirstName = “Rod”, .LastName = “Stephens”}

STRUCTURE INSTANTIATION DETAILS

Structures handle instantiation somewhat differently from object references. When you declare a ref-
erence variable, Visual Basic does not automatically allocate the object to which the variable points.
In contrast, when you declare a value type such as a structure, Visual Basic automatically allocates
space for the variable’s data. That means you never need to use the New keyword to instantiate a
structure.

However, the Visual Basic compiler warns you if you do not explicitly initialize a structure variable
before using it. To satisfy the compiler, you can use the New keyword to initialize the variable when
you declare it.

A structure can also provide constructors, and you can use those constructors to initialize the struc-
ture. The following code defi nes the SPerson structure and gives it a constructor that takes two
parameters, the second optional:

Public Structure SPerson
 Public FirstName As String
 Public LastName As String

 Public Sub New(
 ByVal first_name As String,
 Optional ByVal last_name As String = “<unknown>”)
 FirstName = first_name
 LastName = last_name
 End Sub
End Structure

To use a structure’s constructor, you initialize the structure with the New keyword much as you
initialize a reference variable. The following code allocates an SPerson structure variable using the
two-parameter constructor:

Dim artist As New SPerson(“Sergio”, “Aragones”)

Structure Instantiation Details ❘ 465

You can also use structure constructors later to reinitialize a variable or set its values, as shown
here:

‘ Allocate the artist variable.
Dim artist As SPerson

‘ Do something with artist.
...

‘ Reset FirstName and LastName to Nothing.
artist = New SPerson
...

‘ Set FirstName and LastName to Bill Amend.
artist = New SPerson(“Bill”, “Amend”)

As is the case with classes, you can use a With clause to set structure values when you initialize
a structure variable. For example, the following code creates a new SPerson structure and sets its
FirstName and LastName values:

Dim artist As New SPerson() With {.FirstName = “Anna”, .LastName = “Aux”}

NEW NEEDED

Although you can create a structure without using the New keyword, you cannot
include a With clause unless you use New.

Structure and class constructors are very similar, but there are some major differences:

 ➤ A structure cannot declare a constructor that takes no parameters.

 ➤ A structure cannot provide a constructor with all optional parameters, because that would
allow the program to call it with no parameters.

 ➤ Visual Basic always allows the program to use a default parameterless constructor to
declare a structure variable, but you cannot make it use your parameterless constructor.
Unfortunately, that means you cannot use a default constructor to guarantee that the
program always initializes the structure’s values as you can with a class. If you need that
feature, you should use a class instead of a structure.

 ➤ You also cannot provide initialization values for variables declared within a structure as you
can with a class. That means you cannot use this technique to provide default values for the
structure’s variables.

The following code demonstrates these differences. The CPerson class defi nes initial values for its
FirstName and LastName variables, provides an empty constructor, and provides a two-parameter
constructor. The SPerson structure cannot defi ne initial values for FirstName and LastName and
cannot provide an empty constructor.

466 ❘ CHAPTER 23 CLASSES AND STRUCTURES

‘ Class.
Public Class CPerson
 Public FirstName As String = “<unknown>” ‘ Initialization value allowed.
 Public LastName As String = “<unknown>” ‘ Initialization value allowed.

 ‘ Empty constructor allowed.
 Public Sub New()
 End Sub

 ‘ Two-parameter constructor allowed.
 Public Sub New(first_name As String, last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Class

‘ Structure.
Public Structure SPerson
 Public FirstName As String ‘ = “<unknown>” ‘ Initialization NOT allowed.
 Public LastName As String ‘ = “<unknown>” ‘ Initialization NOT allowed.

 ‘’ Empty constructor NOT allowed.
 ‘Public Sub New()
 ‘End Sub

 ‘ Two-parameter constructor allowed.
 Public Sub New(first_name As String, last_name As String)
 FirstName = first_name
 LastName = last_name
 End Sub
End Structure

GARBAGE COLLECTION

When a program starts, the system allocates a chunk of memory for the program called the man-
aged heap. When it allocates data for reference types (class objects), Visual Basic uses memory from
this heap. (For more information about the stack and heap and their relative performance, see the
section “Heap and Stack Performance” earlier in this chapter.)

When the program no longer needs to use a reference object, Visual Basic does not mark the heap
memory as free for later use. If you set a reference variable to Nothing so that no variable points
to the object, the object’s memory is no longer available to the program, but Visual Basic does not
reuse the object’s heap memory, at least not right away.

The optimizing engine of the garbage collector (GC) determines when it needs to clean up the heap.
If the program allocates and frees many reference objects, a lot of the heap may be full of memory
that is no longer used. In that case, the garbage collector will decide to clean house.

When it runs, the garbage collector examines all the program’s reference variables, parameters
that are object references, CPU registers, and other items that might point to heap objects. It uses
those values to build a graph describing the heap memory that the program can still access. It then

Garbage Collection ❘ 467

compacts the objects in the heap and updates the program’s references so they can fi nd any moved
items. The garbage collector then updates the heap itself so that the program can allocate memory
from the unused portion.

When it destroys an object, the garbage collector frees the object’s memory and any managed
resources it contains. It may not free unmanaged resources, however. You can determine when
and how an object frees its managed and unmanaged resources by using the Finalize and Dispose
methods.

Finalize

When it destroys an object, the garbage collector frees any managed resources used by that object.
For example, suppose that an unused object contains a reference to an open fi le stream. When the
garbage collector runs, it notices that the fi le stream is inaccessible to the program, so it destroys
the fi le stream, as well as the object that contains its reference.

However, suppose that the object uses an unmanaged resource that is outside of the scope of objects
that Visual Basic understands. For example, suppose the object holds an integer representing a fi le
handle, network connection, or channel to a hardware device that Visual Basic doesn’t understand.
In that case, the garbage collector doesn’t know how to free that resource.

You can tell the garbage collector what to do by overriding the class’s Finalize method, which is
inherited from the Object class. The garbage collector calls an object’s Finalize method before per-
manently removing the object from the heap. Note that there are no guarantees about exactly when
the garbage collector calls this method, or the order in which different objects’ Finalize methods are
called. Two objects’ Finalize methods may be called in either order even if one contains a reference
to the other or if one was freed long before the other. If you must guarantee a specifi c order, you
must provide more specifi c cleanup methods of your own.

Example program GarbageCollection uses the following code to demonstrate the Finalize method:

Public Class Form1
 Public Running As Boolean

 Private Class Junk
 Public MyForm As Form1

 Public Sub New(my_form As Form1)
 MyForm = my_form
 End Sub

 ‘ Garbage collection started.
 Protected Overrides Sub Finalize()
 ‘ Stop making objects.
 MyForm.Running = False
 End Sub
 End Class

 ‘ Make objects until garbage collection starts.
 Private Sub btnCreateObjects_Click() Handles btnCreateObjects.Click
 Running = True

468 ❘ CHAPTER 23 CLASSES AND STRUCTURES

 Dim new_obj As Junk
 Dim max_i As Long
 For i As Long = 1 To 1000000
 new_obj = New Junk(Me)

 If Not Running Then
 max_i = i
 Exit For
 End If
 Next i
 MessageBox.Show(“Allocated “ & max_i.ToString & “ objects”)
 End Sub
End Class

The Form1 class defi nes the public variable Running. It then defi nes the Junk class, which contains
a variable referring to the Form1 class. This class’s constructor saves a reference to the Form1 object
that created it. Its Finalize method sets the Form1 object’s Running value to False.

When the user clicks the form’s Create Objects button, the btnCreateObjects_Click event handler
sets Running to True and starts creating Junk objects, passing the constructor this form as a
parameter. The routine keeps creating new objects as long as Running is True. Note that each time
the routine creates a new object, the old object that the variable new_obj used to point to becomes
inaccessible to the program so it is available for garbage collection.

Eventually the program’s heap runs low, so the garbage collector executes. When it destroys one
of the Junk objects, the object’s Finalize subroutine executes and sets the form’s Running value
to False. When the garbage collector fi nishes, the btnCreateObjects_Click event handler sees that
Running is False, so it stops creating new Junk objects. It displays the number of the last Junk object
it created and is done.

In one test, this program created 30,456 Junk objects before the garbage collector ran. In a second
trial run immediately after the fi rst, the program created 59,150 objects, and in a third it created
26,191. The garbage collector gives you little control over when it fi nalizes objects.

Visual Basic also calls every object’s Finalize method when the program ends. Again, there are no
guarantees about the exact timing or order of the calls to different objects’ Finalize methods.

Example program FinalizeObjects, which is available for download on the book’s website, uses the
following code to test the Finalize method when the program ends:

Public Class Form1
 Private Class Numbered
 Private Number As Integer
 Public Sub New(my_number As Integer)
 Number = my_number
 End Sub

 ‘ Garbage collection started.
 Protected Overrides Sub Finalize()
 ‘ Display the object’s number.
 Debug.WriteLine(“Finalized object “ & Number)
 End Sub

Garbage Collection ❘ 469

 End Class

 ‘ Make objects until garbage collection starts.
 Private Sub btnGo_Click() Handles btnGo.Click
 Static i As Integer = 0
 i += 1
 Dim new_numbered As New Numbered(i)
 Debug.WriteLine(“Created object “ & i.ToString)
 End Sub
End Class

The Numbered class contains a variable Number and initializes that value in its constructor. Its
Finalize method writes the object’s number in the Output window.

The btnGo_Click event handler creates a new Numbered object, giving it a new number. When the
event handler ends, the new_numbered variable referring to the Numbered object goes out of scope,
so the object is no longer available to the program. If you look at the Output window at this time,
you will probably fi nd that the program has not bothered to fi nalize the object yet. If you click the
button several times and then close the application, Visual Basic calls each object’s Finalize method.
If you click the button fi ve times, you should see fi ve messages displayed by the objects’ Finalize
methods.

If your class allocates unmanaged resources, you should give it a Finalize method to free them.

MEMORY MADNESS

Better still, use and free unmanaged resources as quickly as possible, not even wait-
ing for fi nalization if you can. Unmanaged resources, in particular memory allo-
cated in strange ways such as by using Marshal, can cause strange behaviors and
leaks if you don’t free them properly and promptly.

Dispose

Because Visual Basic doesn’t keep track of whether an object is reachable at any given moment, it
doesn’t know when it can permanently destroy an object until the program ends or the garbage
collector reclaims it. That means the object’s memory and resources may remain unused for quite a
while. The memory itself isn’t a big issue. If the program’s heap runs out of space, the garbage
collector runs to reclaim some of the unused memory.

If the object contains a reference to a resource, however, that resource is not freed until the object is
fi nalized, and that can have dire consequences. You generally don’t want control of a fi le, network
connection, scanner, or other scarce system resource left to the whims of the garbage collector.

By convention, the Dispose subroutine frees an object’s resources. Before a program frees an
object that contains important resources, it can call that object’s Dispose method to free the
resources explicitly.

470 ❘ CHAPTER 23 CLASSES AND STRUCTURES

To handle the case where the program does not call Dispose, the class should also free any unman-
aged resources that it holds in its Finalize subroutine. Because Finalize is executed whether or not
the program calls Dispose, the class must also be able to execute both the Dispose and the Finalize
subroutines without harm. For example, if the program shuts down some piece of unusual
hardware, it probably should not shut down the device twice.

To make building a Dispose method a little easier, Visual Basic defi nes the IDisposable interface,
which declares the Dispose method. If you enter the statement Implements IDisposable and press
Enter, Visual Basic creates an empty Dispose method for you.

Example program UseDispose, which is available for download on the book’s website, uses the
following code to demonstrate the Dispose and Finalize methods:

Public Class Form1
 Private Class Named
 Implements IDisposable

 ‘ Save our name.
 Public Name As String
 Public Sub New(new_name As String)
 Name = new_name
 End Sub

 ‘ Free resources.
 Protected Overrides Sub Finalize()
 Dispose()
 End Sub

 ‘ Display our name.
 Public Sub Dispose() Implements System.IDisposable.Dispose
 Static done_before As Boolean = False
 If done_before Then Exit Sub
 done_before = True

 Debug.WriteLine(Name)
 End Sub
 End Class

 ‘ Make an object and dispose it.
 Private Sub btnDispose_Click() Handles btnDispose.Click
 Static i As Integer = 0
 i += 1
 Dim obj As New Named(“Dispose “ & i)
 obj.Dispose()
 End Sub

 ‘ Make an object and do not dispose it.
 Private Sub btnNoDispose_Click() Handles btnNoDispose.Click
 Static i As Integer = 0
 i += 1
 Dim obj As New Named(“No Dispose “ & i)
 End Sub
End Class

Constants, Properties, and Methods ❘ 471

The Named class has a Name variable that contains a string identifying an object. Its Finalize
method simply calls its Dispose method. Dispose uses a static variable named done_before to
ensure that it performs its task only once. If it has not already run, the Dispose method displays the
object’s name. In a real application, this method would free whatever resources the object holds.
Whether the program explicitly calls Dispose, or whether the garbage collector calls the object’s
Finalize method, this code is executed exactly once.

The main program has two buttons labeled Dispose and No Dispose. When you click the Dispose
button, the btnDispose_Click event handler makes a Named object, giving it a new name, and then
calls the object’s Dispose method, which immediately displays the object’s name.

When you click the No Dispose button, the btnNoDispose_Click event handler makes a new Named
object with a new name and then ends without calling the object’s Dispose method. Later, when the
garbage collector runs or when the program ends, the object’s Finalize method executes and calls
Dispose, which displays the object’s name.

If your class allocates managed or unmanaged resources and you don’t want to wait for the garbage
collector to get around to freeing them, you should implement a Dispose method and use it when
you no longer need an object.

CONSTANTS, PROPERTIES, AND METHODS

The way you declare constants, properties, and methods within a class is the same as the way you
declare them outside a class. The main difference is that the context of the declaration is the class
rather than a namespace. For example, a variable declared Private within a class is available only to
code within the class.

For information on declaring variables and constants, see Chapter 14, “Data Types, Variables, and
Constants.” For information on declaring methods, see Chapter 16, “Subroutines and Functions,”
which also describes property procedures, special routines that implement a property for a class.

One issue that is sometimes confusing is that the unit of scope of a class is the class’s code, not the
code within a specifi c instance of the class. If you declare a variable within a class Private, then
all code within the class can access the variable, whether or not that code belongs to the instance of
the object that contains the variable.

For example, consider the following Student class. The Scores array is Private to the class, so you
might think that a Student object could only access its own scores. In fact, any Student object can
access any other Student object’s Scores array as well. The CompareToStudent subroutine calculates
the total score for the current Student object. It then calculates the total score for another student
and displays the results.

Public Class Student
 Public FirstName As String
 Public LastName As String
 Private Scores() As Integer
 ...
 Public Sub CompareToStudent(other_student As Student)
 Dim my_score As Integer = 0

472 ❘ CHAPTER 23 CLASSES AND STRUCTURES

 For i As Integer = 0 To Scores.GetUpperBound(0)
 my_score += Scores(i)
 Next i

 Dim other_score As Integer = 0
 For i As Integer = 0 To other_student.Scores.GetUpperBound(0)
 other_score += other_student.Scores(i)
 Next i

 Debug.WriteLine(“My score: “ & my_score)
 Debug.WriteLine(“Other score: “ & other_score)
 End Sub
 ...
End Class

Breaking the encapsulation provided by the objects in this way can lead to unnecessary confusion.
It is generally better to try to access an object’s Private data only from within that object. You can
provide access routines that make using the object’s data easier.

The following version of the Student class includes a TotalScore function that returns the total of a
Student object’s scores. This function works only with its own object’s scores, so it does not pry into
another object’s data. The CompareToStudent subroutine uses the TotalScore function to display the
total score for its object and for a comparison object.

Public Class Student
 Public FirstName As String
 Public LastName As String
 Private Scores() As Integer
 ...
 Public Sub CompareToStudent(other_student As Student)
 Debug.WriteLine(“My score: “ & TotalScore())
 Debug.WriteLine(“Other score: “ & other_student.TotalScore())
 End Sub

 ‘ Return the total of this student’s scores.
 Private Function TotalScore() As Integer
 Dim total_score As Integer = 0
 For i As Integer = 0 To Scores.GetUpperBound(0)
 total_score += Scores(i)
 Next i

 Return total_score
 End Function
 ...
End Class

Function TotalScore is itself declared Private, so only code within the class can use it. In this exam-
ple, the CompareToStudent subroutine calls another object’s Private TotalScore function, so the
separation between the two objects is not absolute, but at least CompareToStudent doesn’t need to
look directly at the other object’s data.

Events ❘ 473

EVENTS

Properties let the application view and modify an object’s data. Methods let the program invoke
the object’s behaviors and perform actions. Together, properties and methods let the program send
information (data values or commands) to the object.

In a sense, events do the reverse: They let the object send information to the program. When some-
thing noteworthy occurs in an object’s code, the object can raise an event to tell the main program
about it. The main program can then decide what to do about the event.

For example, the most commonly used event is probably a Button’s Click event. When the user
presses and releases the mouse over a Button object, the object raises its Click event to tell the pro-
gram that this has happened. Normally the program performs some action in response.

The following sections describe events. They explain how a class declares events and how other
parts of the program can catch events.

Declaring Events

A class object can raise events whenever it needs to notify the program of changing circumstances.
Normally, the class declares the event using the Event keyword. The following text shows the Event
statement’s syntax:

[attribute_list] [accessibility] [Shadows] _
Event event_name([parameters]) [Implements interface.event]

The following sections describe the pieces of this declaration. Some of these are similar to earlier
sections that describe constant, variable, and class declarations. By now, you should notice some
similarity in the use of the attribute_list and accessibility clauses. For more information on constant
and variable declarations, see Chapter 14. For more information on class declarations, refer to the
section “Classes” earlier in this chapter.

attribute_list

The attribute_list defi nes attributes that apply to the event. For example, the following declaration
defi nes a description that the code editor should display for the ScoreAdded event:

Imports System.ComponentModel

Public Class Student
 <Description(“Occurs when a score is added to the object”)>
 Public Event ScoreAdded(test_number As Integer)
 ...
End Class

accessibility

The accessibility value can take one of the following values: Public, Protected, Friend, Protected
Friend, or Private. These values determine which pieces of code can catch the event.

474 ❘ CHAPTER 23 CLASSES AND STRUCTURES

The meanings of these keywords are very similar to those of the class accessibility
keywords described earlier in this chapter. See the section “Accessibility” earlier in this
chapter for details.

Shadows

The Shadows keyword indicates that this event replaces an event in the parent class that has the
same name but not necessarily the same parameters.

parameters

The parameters clause gives the parameters that the event will pass to event handlers. The syntax
for the parameter list is the same as the syntax for declaring the parameter list for a subroutine or
function.

If an event declares a parameter with the ByRef keyword, the code that catches the event can modify
that parameter’s value. When the event handler ends, the class code that raised the event can read
the new parameter value.

Implements interface.event

If the class implements an interface and the interface defi nes an event, this clause identifi es this event
as the one defi ned by the interface. For example, the IStudent interface shown in the following code
defi nes the ScoreChanged event handler. The Student class implements the IStudent interface. The
declaration of the ScoreChanged event handler uses the Implements keyword to indicate that this
event handler provides the event handler defi ned by the IStudent interface.

Public Interface IStudent
 Event ScoreChanged()
 ...

End Interface

Public Class Student
 Implements IStudent

 Public Event ScoreChanged() Implements IStudent.ScoreChanged
 ...
End Class

Raising Events

After it has declared an event, a class raises it with the RaiseEvent keyword. It should pass the event
whatever parameters were defi ned in the Event statement.

For example, the Student class shown in the following code declares a ScoreChange event.
The AddScore method shown in the following code makes room for a new score, adds the score
to the Scores array, and then raises the ScoreChanged event, passing the event handler the index
of the score in the Scores array.

Events ❘ 475

Public Class Student
 Private Scores() As Integer
 ...
 Public Event ScoreChanged(ByVal test_number As Integer)
 ...
 Public Sub AddScore(ByVal new_score As Integer)
 ReDim Preserve Scores(Scores.Length)
 Scores(Scores.Length - 1) = new_score
 RaiseEvent ScoreChanged(Scores.Length - 1)
 End Sub
 ...
End Class

Catching Events

You can catch an object’s events in two ways. First, you can declare the object variable using the
WithEvents keyword, as shown in the following code:

Private WithEvents TopStudent As Student

Then in the code editor, click the left drop-down list and select the variable’s name. In the right
drop-down list, select the event. This makes the code editor create an empty event handler similar to
the following one. When the object raises its ScoreChanged event, the event handler executes.

Private Sub TopStudent_ScoreChanged(test_number As Integer) _
 Handles TopStudent.ScoreChanged

End Sub

The second method for catching events is to use the AddHandler statement to defi ne an event han-
dler for the event at run time. First, write the event handler subroutine. This subroutine must take
parameters of the proper type to match those defi ned by the event’s declaration in the class.

The following code shows a subroutine that can handle the ScoreChanged event. Note that the
parameter’s name has been changed, but its accessibility (ByRef or ByVal) and data type must match
those declared for the ScoreChanged event.

Private Sub HandleScoreChanged(quiz_num As Integer)

End Sub

After you build the event handler routine, use the AddHandler statement to assign the routine to a
particular object’s event. The following statement makes the HandleScoreChanged event handler
catch the TopStudent object’s ScoreChanged event:

AddHandler TopStudent.ScoreChanged, AddressOf HandleScoreChanged

AddHandler is particularly convenient if you want to work with an array of objects. The fol-
lowing code shows how a program might create an array of Student objects and then use the
HandleScoreChanged subroutine to catch the ScoreChanged event for all of them:

476 ❘ CHAPTER 23 CLASSES AND STRUCTURES

‘ Create an array of Student objects.
Const MAX_STUDENT As Integer = 30
Dim students(0 To MAX_STUDENT) As Student
For i As Integer = 0 To MAX_STUDENT
 students(i) = New Student
 AddHandler students(i).ScoreChanged, AddressOf HandleScoreChanged
Next i
...

If you plan to use AddHandler in this way, you may want to ensure that the events provide enough
information for the event handler to fi gure out which object raised the event. For example, you might
modify the ScoreChanged event so that it passes a reference to the object raising the event into the
event handler. Then the shared event handler can determine which Student object had a score change.

AddHandler lets you add an event handler to an event. Conversely, RemoveHandler lets you remove
an event handler from an event. The syntax is similar to the syntax for AddHandler, as shown here:

RemoveHandler TopStudent.ScoreChanged, AddressOf HandleScoreChanged

Note that relaxed delegates allow an event handler to declare its parameters to have different data
types from those provided by the event, as long as the new data types are compatible, or to omit the
parameters entirely.

For example, suppose the Student class defi nes a ScoreChanged event that takes an Integer param-
eter. The following three subroutines could all catch this event. The fi rst matches the event’s
 parameters precisely. The second version declares its quiz_num parameter to be a Long. Long is
compatible with Integer so, when it invokes the event handler, Visual Basic can convert the Integer
value into a Long parameter safely. The third version of the event handler declares no parameters so
the event’s Integer value is ignored.

Private Sub HandleScoreChanged1(quiz_num As Integer)

End Sub

Private Sub HandleScoreChanged2(quiz_num As Long)

End Sub

Private Sub HandleScoreChanged3()

End Sub

STRICTLY SPEAKING

The second version works because you can always store an Integer value in a Long
parameter. The reverse is not always true: A Long value won’t necessarily fi t in
an Integer. If the event is declared with a Long parameter but the event handler is
declared with an Integer parameter, the result depends on the Option Strict setting.
If Option Strict is off, Visual Basic allows the code and tries to convert the Long
value into an Integer parameter, possibly crashing at runtime. If Option Strict is on,
Visual Basic fl ags this as an error.

Events ❘ 477

For more information, see the section “Relaxed Delegates” in Chapter 16.

Shared Variables

If you declare a variable in a class with the Shared keyword, all objects of the class share a single
instance of that variable. Any instance of the class can get or set the variable’s value. Code outside of
the class can use the class itself to get or set the variable’s value.

For example, suppose the Student class declares a shared NumStudents variable and uses it, as
shown in the following code:

Public Class Student
 Shared NumStudents As Integer

 Public Sub ShowNumStudents()
 MessageBox.Show(“# Students: “ & NumStudents)
 End Sub
 ...
End Class

In this case, all instances of the Student class share the same NumStudents value. The following
code creates a Student object. It uses the class to set the shared NumStudents value and then calls
the student’s ShowNumStudents method.

Dim student1 As New Student
Student.NumStudents = 100
student1.ShowNumStudents()

Because all instances of the class share the
same variable, any changes to the value that
you make using one object are visible to all
the others. Figure 23-4 illustrates this idea.
Each Student class instance has its own
FirstName, LastName, Scores, and other
individual data values, but they all share the
same NumStudents value.

Shared Methods

Shared methods are a little less intuitive than shared variables. Like shared variables, shared meth-
ods are accessible using the class’s name. For example, the NewStudent function shown in the
following code is declared with the Shared keyword. This function creates a new Student object, ini-
tializes it by adding it to some sort of database, and then returns the new object.

Public Class Student
 ...
 ‘ Return a new Student.
 Public Shared Function NewStudent() As Student
 ‘ Instantiate the Student.

NumStudents

S
tu

d
e

n
t

In
s
ta

n
c
e

s

FirstName

LastName

Scores

...

NumStudents

Student Class

NumStudents

FirstName

LastName

Scores

...

NumStudents

FirstName

LastName

Scores

...

FIGURE 23-4: If a variable in a class is declared Shared,

all instances of a class share the same value.

478 ❘ CHAPTER 23 CLASSES AND STRUCTURES

 Dim new_student As New Student

 ‘ Add the new student to the database.
 ‘ ...

 ‘ Return the new student.
 Return new_student
 End Function
 ...
End Class

This type of function that creates a new instance of a class is sometimes called a factory method. In
some cases, you can use an appropriate constructor instead of a factory method. One time when a
factory method is useful is when object creation might fail. If data passed to the method is invalid,
some resource (such as a database) prohibits the new object (perhaps a new Student has the same
name as an existing Student), or the object may come from more than one place (for example, it may
be either a new object or one taken from a pool of existing objects). In those cases, a factory method
can return Nothing. A constructor could raise an error, but it cannot return Nothing if it fails.

If you want to force the program to use a factory method rather than create an instance of
the object directly, give the class a private constructor. Code that lies outside of the class cannot
use the constructor because it is private. It also cannot use the default constructor associated with
the New statement because the class has an explicitly defi ned constructor. The code must create new
objects by using the factory method, which can use the private constructor because it’s inside the
class.

As is the case with shared variables, you access a shared method by using the class’s name.

The following code declares the student1 variable and initializes it by calling the NewStudent fac-
tory method using the class’s name:

Dim student1 As Student = Student.NewStudent()

One oddity of shared methods is that they
can use class variables and methods only
if they are also shared. If you think about
accessing a shared method through the
class name, this makes sense. Because you
don’t use an instance of the class to call
the method, there is no instance to give the
method data.

Figure 23-5 illustrates the situation.
The shared NewStudent method is
contained within the class itself and has
access to the NumStudents variable. If it
wanted to use a FirstName, LastName, or
Scores value, however, it needs to use an
instance of the class.

NewStudent method

NumStudents

Student Class

NumStudents

S
tu

d
e

n
t

In
s
ta

n
c
e

s

FirstName

LastName

Scores

...

NumStudents

FirstName

LastName

Scores

...

NumStudents

FirstName

LastName

Scores

...

FIGURE 23-5: A shared method can only access other

shared variables and methods.

Summary ❘ 479

SUMMARY

Classes and structures are very similar. Both are container types that group related variables, meth-
ods, and events in a single entity.

Most developers use classes exclusively, primarily because structures are relatively new and develop-
ers are more familiar with classes. Structures also cannot take advantage of inheritance.

Another signifi cant factor when picking between classes and structures, however, is their difference
in variable type. Classes are reference types, whereas structures are value types. This gives them
 different behaviors when defi ning and initializing objects and when passing objects to routines by
value and by reference.

When you understand the differences between classes and structures, you can select the one that is
more appropriate for your application.

If you build enough classes and structures, you may start to have naming collisions. It is common
for developers working on different projects to defi ne similar business classes such as Employee,
Customer, Order, and InventoryItem. Although these objects may be similar, they may differ in
important details. The Customer class defi ned for a billing application might include lots of account
and billing address information, whereas a repair assignment application might focus on the cus-
tomer’s equipment and needs.

Having two Customer classes around can result in confusion and programs that cannot easily inter-
act with each other. Namespaces can help categorize code and differentiate among classes. You can
defi ne separate namespaces for the billing and repair assignment applications, and use them to tell
which version of the Customer class you need for a particular purpose.

Chapter 24, “Namespaces,” describes namespaces in detail. It explains how to create namespaces
and how to use them to refer to classes created in other modules.

Namespaces

WHAT’S IN THIS CHAPTER

 ➤ Namespace aliases

 ➤ Making new namespaces

 ➤ Class, structure, and module name contexts

 ➤ Resolving namespaces

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this
chapter is divided into the following major examples:

 ➤ DrawDashes

 ➤ DrawDashesImportsDashStyle

 ➤ DrawDashesWithImports

 ➤ JobNamespaces

 ➤ NamespaceHierarchy

HANDLING NAME CONFLICTS

In large applications, it is fairly common to have name collisions. One developer might create
an Employee class, while another makes a function named Employee that returns the employee
ID for a particular person’s name. Or two developers might build different Employee classes
that have different properties and different purposes. When multiple items have the same
name, this is called a namespace collision or namespace pollution.

24

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

482 ❘ CHAPTER 24 NAMESPACES

These sorts of name confl icts are most common when programmers are not working closely
together. For example, different developers working on the payroll and human resources systems
might both defi ne Employee classes with slightly different purposes.

Namespaces enable you to classify and distinguish among programming entities that have the same
name. For example, you might build the payroll system in the Payroll namespace and the human
resources system in the HumanResources namespace. Then, the two Employee classes would have
the fully qualifi ed names Payroll.Employee and HumanResources.Employee, so they could coexist
peacefully and the program could tell them apart.

The following code shows how an application would declare objects of these two types:

Dim payroll_emp As Payroll.Employee
Dim hr_emp As HumanResources.Employee

Namespaces can contain other namespaces, so you can build a hierarchical structure that groups
different entities. You can divide the Payroll namespace into pieces to give developers working on
that project some isolation from each other.

Namespaces can be confusing at fi rst, but they are really fairly simple. They just break up the code
into manageable pieces so that you can group parts of the program and tell different parts from
each other.

This chapter describes namespaces. It explains how to use namespaces to categorize programming
items and how to use them to select the right versions of items with the same name.

THE IMPORTS STATEMENT

Visual Studio defi nes thousands of variables, classes, routines, and other entities to provide tools for
your applications. It categorizes them in namespaces to prevent name collisions and to make it easier
for you to fi nd the items you need.

The .NET Framework root namespaces are named Microsoft and System. The Microsoft namespace
includes namespaces that support different programming languages and tools. For example, typical
namespaces include CSharp, JScript, and VisualBasic, which contain types and other tools that
support the C#, JScript, and Visual Basic languages. The Microsoft namespace also includes the
Win32 namespace, which provides classes that handle operating system events and that manipulate
the registry.

The System namespace contains a huge number of useful programming items, including
many nested namespaces. For example, the System.Drawing namespace contains classes related
to drawing, System.Data contains classes related to databases, System.Threading holds classes
dealing with multithreading, and System.Security includes classes for working with security and
cryptography.

Note that these namespaces are not necessarily available to your program at all times. For example,
by default, the Microsoft.JScript namespace is not available to Visual Basic programs. To use it, you
must fi rst add a reference to the Microsoft.JScript.dll library.

The Imports Statement ❘ 483

Visual Studio includes so many programming tools that the namespace hierarchy is truly enor-
mous. Namespaces are refi ned into sub-namespaces, which may be further broken into more
namespaces until they reach a manageable size. Although this makes it easier to differentiate among
all of the different programming entities, it makes the fully qualifi ed names of some classes rather
cumbersome.

Example program DrawDashes, which is available for download on the book’s website, uses the
 following code to draw a rectangle inside its form. Fully qualifi ed names such as System.Drawing
.Drawing2D.DashStyle.DashDotDot are so long that they make the code hard to read.

Private Sub DrawDashedBox(gr As System.Drawing.Graphics)
 gr.Clear(Me.BackColor)

 Dim rect As System.Drawing.Rectangle = Me.ClientRectangle
 rect.X += 10
 rect.Y += 10
 rect.Width -= 20
 rect.Height -= 20

 Using my_pen As New System.Drawing.Pen(System.Drawing.Color.Blue, 5)
 my_pen.DashStyle = System.Drawing.Drawing2D.DashStyle.DashDotDot
 gr.DrawRectangle(my_pen, rect)
 End Using
End Sub

You can use the Imports statement at the top of the fi le to make using namespaces easier. After
you import a namespace, your code can use the items it contains without specifying the
namespace.

Example program DrawDashesWithImports, which is also available for download on the book’s
website, uses the following code. It imports the System.Drawing and System.Drawing.Drawing2D
namespaces so it doesn’t need to mention the namespaces in its object declarations. This version is
much easier to read.

Imports System.Drawing
Imports System.Drawing.Drawing2D
...
Private Sub DrawDashedBox(gr As Graphics)
 gr.Clear(Me.BackColor)

 Dim rect As Rectangle = Me.ClientRectangle
 rect.X += 10
 rect.Y += 10
 rect.Width -= 20
 rect.Height -= 20

 Using my_pen As New Pen(Color.Blue, 5)
 my_pen.DashStyle = DashStyle.DashDotDot
 gr.DrawRectangle(my_pen, rect)
 End Using
End Sub

484 ❘ CHAPTER 24 NAMESPACES

A fi le can include any number of Imports statements. The statements must appear at the beginning
of the fi le, and they defi ne namespace shortcuts for the entire fi le. If you want different pieces of
code to use different sets of Imports statements, you must place the pieces of code in different fi les.
If the pieces of code are in the same class, use the Partial keyword so you can split the class into
multiple fi les.

COLLISION PROVISION

If a program imports two namespaces that defi ne classes with the same names,
Visual Basic may become confused and give you an ambiguous reference error.
To fi x the problem, the code must use fully qualifi ed names to select the right
versions.

For example, suppose that the Payroll and HumanResources modules both defi ne
Employee classes. Then you must use the fully qualifi ed names Payroll.Employee
and HumanResources.Employee to differentiate between the two within the
same fi le.

The complete syntax for the Imports statement is as follows:

Imports [alias =] namespace[.element]

Later sections in this chapter describe namespace aliases and elements in detail.

Automatic Imports

Visual Basic lets you quickly import a namespace for all of the modules in a project. In Solution
Explorer, double-click My Project. Click the References tab to display the page shown in
Figure 24-1.

DRAWING DEFAULTS

System.Drawing is automatically imported by default in Windows Forms applica-
tions so you normally don’t need to import it. See the following section for more
information on automatic imports.

The Imports Statement ❘ 485

In the Imported namespaces list at the bottom, select the check boxes next to the namespaces that
you want to import. The program’s fi les will be able to use the objects defi ned in these namespaces
without including Imports statements.

This is most useful when most of the program’s modules need to import the same namespaces.
Including the Imports statement in the fi les makes it easier for developers to see which namespaces
are available, however, so you might want to do this instead, particularly if you use unusual
namespaces.

By default, Visual Basic imports namespaces for the type of application you are building. For exam-
ple, when you start a Windows Form application, Visual Basic imports the following namespaces:

 ➤ Microsoft.VisualBasic

 ➤ System

 ➤ System.Collections

 ➤ System.Collections.Generic

 ➤ System.Data

FIGURE 24-1: Use the My Project References tab to import namespaces for every

module in a project.

486 ❘ CHAPTER 24 NAMESPACES

 ➤ System.Drawing

 ➤ System.Diagnostics

 ➤ System.Windows.Forms

 ➤ System.Linq

 ➤ System.Xml.Linq

 ➤ System.Threading.Tasks

You can use the upper half of the References property page to manage project references. Use the
Add and Remove buttons to add and remove references to libraries.

Click the Unused References button near the top in Figure 24-1 to see a list of libraries that are
referenced but not currently used by the project. Before you distribute the program, you can remove
the unused references.

Namespace Aliases

You can use the alias clause to defi ne a shorthand notation for the namespace. For instance, the
following code imports the System.Drawing.Drawing2D namespace and gives it the alias D2. Later,
it uses D2 as shorthand for the fully qualifi ed namespace.

Imports D2 = System.Drawing.Drawing2D
...
Dim dash_style As D2.DashStyle = D2.DashStyle.DashDotDot

This technique is handy if you need to use two namespaces that defi ne different classes with the
same name. Normally, if two namespaces defi ne classes with the same name, you must use the fully
qualifi ed class names so that Visual Basic can tell them apart. You can use aliases to indicate the
namespaces more concisely.

Namespace Elements

In addition to importing a namespace, you can import an element within the namespace. This is
particularly useful for enumerated types.

For example, the following code imports the System.Drawing.Drawing2D namespace, which defi nes
the DrawStyle enumeration. It declares the variable dash_style to be of the DashStyle type and sets
its value to DashStyle.DashDotDot.

Imports System.Drawing.Drawing2D
...
Dim dash_style As DashStyle = DashStyle.DashDotDot
...

Example program DrawDashesImportsDashStyle, which is available for download on the book’s
website, uses the following code to import the System.Drawing.Drawing2D.DashStyle enumeration.
That allows it to set the value of my_pen.DashStyle to DashDotDot without needing to specify the
name of the enumeration (DashStyle).

Making Namespaces ❘ 487

Imports System.Drawing.Drawing2D
Imports System.Drawing.Drawing2D.DashStyle
...
my_pen.DashStyle = DashDotDot
...

THE ROOT NAMESPACE

Every project has a root namespace, and every item in the project is contained directly or indirectly
within that namespace. To view or change the project’s root namespace, open Solution Explorer
and double-click the My Projects entry. View or modify the root namespace in the Application tab’s
Root Namespace text box.

MAKING NAMESPACES

You can create new namespaces nested within the root namespace to further categorize your code.
The easiest way to create a namespace is by using the Namespace statement. The following code
declares a namespace called SchedulingClasses. It includes the defi nition of the TimeSlot class and
possibly other classes.

Namespace SchedulingClasses
 Public Class TimeSlot
 ...
 End Class
 ...
End Namespace

Code inside the namespace can refer to the TimeSlot class as simply TimeSlot. Code outside of the
namespace can refer to the class using the namespace as shown in the following code (assuming
MyApplication is the project’s root namespace):

Dim time_slot As New MyApplication.SchedulingClasses.TimeSlot

You can nest namespaces within other namespaces to any depth. In fact, because all of your applica-
tion’s code is contained within the root namespace, any namespace you create is already contained
within another namespace. There is no way to make a namespace that is not contained within the
root namespace.

If you want to make a namespace that lies outside of the application’s root namespace, you must
create a library project. Then the code in that project lies within its own root namespace.

A Namespace statement can appear only at the namespace level. You cannot create a namespace
within a module, class, structure, or method.

Inside a namespace, you can defi ne other namespaces, classes, structures, modules, enumerated
types, and interfaces. You cannot directly defi ne variables, properties, subroutines, functions, or
events. Those items must be contained within some other entity (such as a class, structure, module,
or interface).

488 ❘ CHAPTER 24 NAMESPACES

You can use more than one Namespace statement to defi ne pieces of the same namespace. For exam-
ple, the following code uses a Namespace statement to make the OrderEntryClasses namespace, and
it defi nes the Employee class inside it. Later, the code uses another Namespace statement to add the
Customer class to the same namespace. In this case, the single namespace contains both classes.

Namespace OrderEntryClasses
 Public Class Employee
 ...
 End Class
End Namespace
...
Namespace OrderEntryClasses
 Public Class Customer
 ...
 End Class
End Namespace

Example program NamespaceHierarchy, which is available for download on the book’s website,
defi nes several nested namespaces.

Scattering pieces of a namespace throughout your code will probably confuse other developers. One
case where it might make sense to break a namespace into pieces would be if you want to put differ-
ent classes in different code fi les, either to prevent any one fi le from becoming too big or to
allow different programmers to work on the fi les at the same time. In that case, it might make sense
to place related pieces of the application in the same namespace but in different fi les.

CLASSES, STRUCTURES, AND MODULES

Classes, structures, and modules create their own name contexts that are similar in some ways
to namespaces. For example, a class or structure can contain the defi nition of another class or
structure, as shown in the following code:

Public Class Class1
 Public Class Class2
 ...
 End Class

 Public Structure Struct1
 Public Name As String

 Public Structure Struct2
 Public Name As String
 End Structure
 End Structure
End Class

You can access public module members and shared class or structure members using a fully quali-
fi ed syntax similar to the one used by namespaces. For example, the following code creates the
GlobalValues module and defi nes the public variable MaxJobs within it. Later, the program can set
MaxJobs using its fully qualifi ed name.

Resolving Namespaces ❘ 489

Module GlobalValues
 Public MaxJobs As Integer
 ...
End Module
...
MyApplication.GlobalValues.MaxJobs = 100

Although these cases look very similar to namespaces, they really are not. One big difference is that
you cannot use a Namespace statement inside a class, structure, or module.

IntelliSense gives another clue that Visual Basic treats classes, structures, and modules differently
from namespaces. The IntelliSense pop-up shown in Figure 24-2 displays curly braces { } next to
the FinanceStuff and JobClasses namespaces, but it displays different icons for the classes Employer
and Form1, and the module Module1. When you select a namespace, IntelliSense also displays a
tooltip (on the right in Figure 24-2) indicating that it is a namespace and giving its name.

FIGURE 24-2: IntelliSense displays curly braces { } to the left of namespaces

such as FinanceStuff and Job Classes.

RESOLVING NAMESPACES

Normally, Visual Basic does a pretty good job of resolving namespaces, so you don’t need to
worry too much about the process. If you import a namespace, you can omit the namespace in any
 declarations that you use. If you have not imported a namespace, you can fully qualify declarations
that use the namespace and you’re done. There are some in-between cases, however, that can be
confusing. To understand them, you will fi nd it helpful to know a bit more about how Visual Basic
resolves namespaces.

When Visual Basic sees a reference that uses a fully qualifi ed namespace, it looks in that namespace
for the item it needs and that’s that. It either succeeds or fails. For example, the following code
declares a variable of type System.Collections.Hashtable. Visual Basic looks in the System.Collections
namespace and tries to fi nd the Hashtable class. If the class is not there, the declaration fails.

Dim hash_table As New System.Collections.Hashtable

When Visual Basic encounters a qualifi ed namespace, it fi rst assumes that it is fully qualifi ed. If it
cannot resolve the reference as described in the previous paragraph, it tries to treat the reference as

490 ❘ CHAPTER 24 NAMESPACES

partially qualifi ed and it looks in the current namespace for a resolution. For example, suppose you
declare a variable as shown in the following code:

Dim emp As JobClasses.Employee

In this case, Visual Basic searches the current namespace for a nested namespace called JobClasses.
If it fi nds such a namespace, it looks for the Employee class in that namespace.

If Visual Basic cannot resolve a namespace using these methods, it moves up the namespace hierar-
chy and tries again. For example, suppose that the current code is in the MyApplication.JobStuff
.EmployeeClasses.TimeSheetRoutines namespace. Now, suppose that the SalaryLevel class is defi ned
in the MyApplication.JobStuff namespace and consider the following code:

Dim salary_level As New SalaryLevel

Visual Basic examines the current namespace MyApplication.JobStuff.EmployeeClasses
.TimeSheetRoutines and doesn’t fi nd a defi nition for SalaryLevel. It moves up the namespace hier-
archy and searches the MyApplication.JobStuff.EmployeeClasses namespace, again failing to fi nd
SalaryLevel. It moves up the hierarchy again to the MyApplication.JobStuff namespace, and there it
fi nally fi nds the SalaryLevel class.

Movement up the namespace hierarchy can sometimes be a bit confusing. It may lead Visual Basic to
resolve references in an ancestor of the current namespace, in some sort of “uncle/aunt” namespace,
or in a “cousin” namespace.

For example, consider the namespace hierarchy shown in Figure 24-3.

 ➤ The root namespace MyApplication contains the namespaces BusinessClasses and
AssignmentStuff.

 ➤ The BusinessClasses namespace defi nes the Employee and Customer classes.

 ➤ The AssignmentStuff namespace contains the AssignmentGlobals module, which defi nes the
MakeAssignment subroutine and a different version of the Employee class.

Namespace

BusinessClasses

MyApplication

AssignmentStuff

Class

Employee
AssignmentGlobals

Module
Class

Customer

AssignEmployee
Subroutine

MakeAssignment

Subroutine

Class

Employee

Namespace

Namespace

FIGURE 24-3: Visual Basic may search all over the namespace

hierarchy to resolve a declaration.

Resolving Namespaces ❘ 491

Now, suppose that the Customer class contains the following subroutine:

Public Sub AssignEmployee()
 AssignmentStuff.AssignmentGlobals.MakeAssignment(Me)
 ...
End Sub

This code lies in the MyApplication.BusinessClasses namespace. Visual Basic cannot fi nd a meaning
for the AssignmentStuff namespace locally in that context, so it moves up the namespace hierarchy
to MyApplication, where it fi nds the AssignmentStuff namespace. Within that namespace, it fi nds
the AssignmentGlobals module and the MakeAssignment subroutine that it contains.

Visual Basic can also peer into modules as if their public contents were part of the namespace itself.
That means you can rewrite the previous code in the following slightly simpler version:

Public Sub AssignEmployee()
 AssignmentStuff.MakeAssignment(Me)
 ...
End Sub

In this example, there is only one MakeAssignment subroutine, so there’s little doubt that Visual Basic
has found the correct one. If different namespaces defi ne items with the same names, the situation can
be more confusing. Suppose that the Customer class declares an object that is from the Employee class
defi ned in the MyApplication.AssignmentStuff namespace, as shown in the following code:

Dim emp As New AssignmentStuff.Employee

If you understand how Visual Basic performs namespace resolution, you can fi gure out that the
object is of the Employee class defi ned in the MyApplication.AssignmentStuff namespace. This isn’t
completely obvious, however.

If you add an Imports statements to the program, the situation gets more confusing. Suppose that
the program imports the AssignmentStuff namespace and then the Customer class declares a vari-
able of type Employee. Because this code is in the BusinessClasses namespace, Visual Basic uses that
namespace’s version of Employee. If the code is in some other namespace (such as MyApplication),
the program uses the imported AssignmentStuff version of the class.

Finally, suppose that the program imports both BusinessClasses and AssignmentStuff
.AssignmentGlobals and then makes the following declaration in another namespace. In this case,
Visual Basic cannot decide which version of the class to use, so it generates an error.

Dim emp As Employee

This example is so confusing, however, that you would probably be better off restructuring the
namespaces and possibly renaming one of the versions of the Employee class rather than trying to
fi gure out how Visual Basic is resolving the namespaces.

You can simplify these issues by avoiding duplicate names across all namespaces. When you do
use duplicate names, you can use fully qualifi ed namespaces to avoid ambiguity. You can also use
Imports statements to make namespace aliases and then use the aliases to avoid ambiguity more
concisely.

492 ❘ CHAPTER 24 NAMESPACES

SUMMARY

Namespaces are everywhere in Visual Basic. Every piece of code you write is contained in some
namespace, even if it is only the application’s root namespace. Despite the pervasiveness of
namespaces, many developers never need to use them explicitly, so they fi nd them somewhat
mystifying.

Namespaces are really quite simple, however. They merely divide programming items into a hierar-
chy. They enable you to categorize related items and resolve name collisions in different parts of the
application.

You can use the Imports statement to allow the program to refer to items in a namespace without
giving fully qualifi ed names. A namespace alias lets you explicitly specify an item’s namespace in
an abbreviated form. This is particularly useful for resolving ambiguous names that appear in more
than one namespace included by Imports statements.

This chapter described namespaces in general. Chapter 25, “Collection Classes,” describes some of
the useful classes for grouping object classes, including those in the System.Collections and System
.Collections.Generic namespaces.

Collection Classes

WHAT’S IN THIS CHAPTER

 ➤ Arrays

 ➤ Collection classes

 ➤ Generics

 ➤ Collection initializers

 ➤ Iterators

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=9781118314074 on the Download Code tab. The code for this
chapter is divided into the following major examples:

 ➤ ArraySpeeds

 ➤ GenericEmployeeList

 ➤ GenericStringList

 ➤ UseCaseInsensitiveSortedList

 ➤ UseQueue

GROUPING DATA

Visual Basic .NET includes a large assortment of prebuilt classes that store and manage groups
of objects. These collection classes provide a wide variety of different features, so the right
class for a particular purpose depends on your application.

This chapter describes these different kinds of collection classes and provides tips for selecting
the right one for various purposes.

25

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

494 ❘ CHAPTER 25 COLLECTION CLASSES

WHAT IS A COLLECTION?

The word collection means a group of objects that should be kept together. For example, a coin
collection is a group of coins that you keep together because they are rare, valuable, or otherwise
interesting.

Unfortunately, the idea of a collection is such a useful concept that Visual Basic adopted the
word and made a specifi c class named Collection. The Collection class does keep a group of
objects together, but it reserves for its own use the perfect word for other similar kinds of groups
of objects.

That leads to some semantic ambiguity when you talk about collection classes. Do you mean the
Collection class? Or do you mean some other class that groups objects? Even the Visual Basic docu-
mentation has this problem and sometimes uses collection classes to mean classes that group things
together.

This chapter describes the Collection class, as well as other collection classes.

One of the most basic Visual Basic entities that groups objects is an array. An array stores data val-
ues or references to objects in a simple block of memory with one entry directly following another.
The Array class provides some special methods for manipulating arrays (such as reversing, sorting,
or searching an array).

The Collection class provides a few specifi c features for working with its group of objects. It enables
you to add an item to the Collection, optionally specifying a key for the item. You can then search
for the item or remove the item using its key or its index in the Collection.

One of the most useful features of the Collection class is that it supports enumerators and For Each
loops. That lets you easily loop over the objects in a Collection without worrying about the number
of objects it contains.

Other classes derived from the Collection class provide additional features. For example, the
Hashtable class can store a large number of objects with associated keys very effi ciently. Dictionary
is essentially a strongly typed generic Hashtable. The Hashtable class uses the Object data type for
its key/value pairs and the Dictionary class uses more specifi c data types that you specify such as
Strings or Employees. The section “Dictionaries” later in this chapter describes the Dictionary class
in more detail.

The Queue class makes it easy to work with objects in fi rst-in-fi rst-out (FIFO) order. In contrast the
Stack class helps you work with objects in a last-in-fi rst-out order (LIFO).

The remainder of this chapter describes these classes in greater detail.

ARRAYS

Visual Basic .NET provides two basic kinds of arrays. First, it provides the normal arrays that you
get when you declare a variable by using parentheses. For example, the following code declares an
array of Integers named “squares”:

Arrays ❘ 495

Private Sub ShowSquaresNormalArray()
 Dim squares(10) As Integer

 For i As Integer = 0 To 10
 squares(i) = i * i
 Next i

 Dim txt As String = “”
 For i As Integer = 0 To 10
 txt &= squares(i).ToString & vbCrLf
 Next i
 MessageBox.Show(txt)
End Sub

The array contains 11 items with indexes ranging from 0 to 10. The code loops over the items, set-
ting each one’s value. Next, it loops over the values again, adding them to a string. When it has fi n-
ished building the string, the program displays the result.

INITIALIZING ARRAYS

You can initialize an array as in the following code:

Dim fibonacci() As Integer = {1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 87}

If you have Option Infer turned on, you can omit the data type as in the following:

Dim numbers() = {1, 2, 3}

For more information on array initialization, see the section “Initializing Arrays” in
Chapter 14, “Data Types, Variables, and Constants.”

The Visual Basic Array class provides another kind of array. This kind of array is actually an object
that provides methods for managing the items stored in the array.

The following code shows the previous version of the code rewritten to use an Array object:

Private Sub ShowSquaresArrayObject()
 Dim squares As Array =
 Array.CreateInstance(GetType(Integer), 11)

 For i As Integer = 0 To 10
 squares.SetValue(i * i, i)
 Next i

496 ❘ CHAPTER 25 COLLECTION CLASSES

 Dim txt As String = “”
 For i As Integer = 0 To 10
 txt &= squares.GetValue(i).ToString & vbCrLf
 Next i
 MessageBox.Show(txt)
End Sub

This version creates the array by using the Array class’s shared CreateInstance method,
passing it the data type that the array should contain and the number of items that it should
hold. The code then loops over the items using the array’s SetValue method to set the items’
values. If you have Option Strict turned off, the code can set the items’ values exactly as
before by using the statement squares(i) = i * i. If Option Strict is on, you need to use
SetValue.

Next, the program loops over the items again, using the array’s GetValue method to add
the item values to a string. If Option Strict is off, you can use the same syntax as
before: txt &= squares(i).ToString & vbCrLf. If Option Strict is on, you need to use
the array’s GetValue method. After building the string, the program displays it in a message
box as before.

Example program ShowSquares uses similar code to build a list of squares by using a normal array
and by using an Array object.

The following sections describe the similarities and differences between normal arrays and Array
objects.

Array Dimensions

Both normal variable arrays and Array objects can support multiple dimensions. The following
statement declares a three-dimensional array with 11 items in the fi rst dimension, 11 in the second,
and 21 in the third. It then sets the value for the item in position (1, 2, 3).

Dim values(10, 10, 20) As Integer
values(1, 2, 3) = 100

The following code does the same thing with an Array object:

Dim values As Array =
 Array.CreateInstance(GetType(Integer), 11, 21, 31)
values.SetValue(100, 1, 2, 3)

If Option Strict is off, the code can use the same syntax for getting and setting the
Array item’s value. The following code sets the (1, 2, 3) item’s value to 100 and then
displays its value:

Option Strict Off
...
values(1, 2, 3) = 100
Debug.WriteLine(values(1, 2, 3))

Arrays ❘ 497

Lower Bounds

A normal array of variables always has lower bound 0 in every dimension. The following code
declares an array with indexes ranging from 0 to 10:

Dim values(10) As Integer

You can fake a variable array that has nonzero lower bounds, but it requires extra work on your
part. You must add or subtract an appropriate amount from each index to map the indexes you
want to use to the underlying zero-based indexes.

Array objects can handle nonzero lower bounds for you. The following code creates a two-dimen-
sional array with indexes ranging from 1 to 10 in the fi rst dimension, and 101 to 120 in the second
dimension:

Dim dimension_lengths() As Integer = {10, 20}
Dim lower_bounds() As Integer = {1, 101}
Dim values As Array =
 Array.CreateInstance(GetType(Integer), dimension_lengths, lower_bounds)

The code fi rst defi nes an array containing the number of elements it wants for each dimension (10
in the fi rst dimension and 20 in the second dimension). It then creates an array containing the lower
bounds it wants to use for each dimension (the fi rst dimension starts with index 1 and the second
dimension starts with index 101).

The code then calls the Array class’s shared CreateInstance method, passing it the data type of the
array’s objects, the array of dimension lengths, and the array of lower bounds. The CreateInstance
method uses the arrays of lower bounds and dimensions to create an Array object with the appropri-
ate bounds.

Resizing

You can use the ReDim statement to change a normal array’s dimensions. Add the Preserve keyword
if you want the array to keep its existing values, as shown here:

Dim values(100) As Integer
...
ReDim Preserve values(200)

An Array object cannot resize itself, but it is relatively easy to copy an Array object’s items to
another Array object. The following code creates a values array containing 101 items with indexes
ranging from 0 to 100. Later, it creates a new Array object containing 201 items and uses the values
array’s CopyTo method to copy its values into the new array. The second parameter to CopyTo
gives the index in the destination array where the copy should start placing values.

Dim values As Array =
 Array.CreateInstance(GetType(Integer), 101)
...
Dim new_array As Array =

498 ❘ CHAPTER 25 COLLECTION CLASSES

 Array.CreateInstance(GetType(Integer), 201)
values.CopyTo(new_array, 0)
values = new_array

The Array class’s shared Copy method allows you greater control. It lets you specify the index in the
source array where the copy should start, the index in the destination array where the items should
be copied, and the number of items to be copied.

Although building a new Array object and copying items into it is more cumbersome than using
ReDim to resize a variable array, the process is surprisingly fast.

Speed

There’s no doubt that arrays of variables are much faster than Array objects. In one test, setting and
getting values in an Array object took more than 100 times as long as performing the same opera-
tions in a variable array.

If your application performs only a few hundred array operations, the difference is unimportant. If
your application must access array values many millions of times, you may need to consider using an
array of variables even if the Array class would be more convenient for other reasons (such as non-
zero lower bounds).

Microsoft has also optimized one-dimensional variable arrays, so they
are faster than multidimensional arrays. The difference is much less
dramatic than the difference between variable arrays and Array classes,
however.

Example program ArraySpeeds, which is available for download on
the book’s website, compares the speeds of variable arrays and Array
objects. Enter the number of items that you want to use in the arrays
and click Go. The program builds one- and two-dimensional arrays and
Array objects holding integers. It then fi lls the arrays and displays the
elapsed time.

Figure 25-1 shows the results. Variable arrays are much faster than array
classes, and one-dimensional variable arrays generally seem to be slightly
faster than two-dimensional arrays.

Other Array Class Features

The Array class provides several other useful shared methods. For example, the IndexOf and
LastIndexOf methods return the position of a particular item in an Array.

Methods such as IndexOf and LastIndexOf would be a strong argument supporting Array
objects over normal arrays of variables if it weren’t for one somewhat surprising fact: Those same
methods work with regular arrays of variables, too! The following code fi lls an array of integers and
then uses Array methods to display the indexes of the fi rst item with value 6 and the last item with
value 3:

FIGURE 25-1: Variable

arrays are faster than

Array classes.

Collections ❘ 499

Dim values(10) As Integer
For i As Integer = 0 To 10
 values(i) = i
Next i

MessageBox.Show(Array.IndexOf(values, 6).ToString)
MessageBox.Show(Array.LastIndexOf(values, 3).ToString)

The following table summarizes some other useful Array class methods.

PROPERTY/METHOD PURPOSE

BinarySearch Returns the index of an item in the previously sorted array. The items must

implement the IComparable interface, or you must provide an IComparer

object.

Clear Removes all of the items from the array.

ConvertAll Converts an array of one type into an array of another type.

Exists Determines whether the array contains a particular item.

Reverse Reverses the order of the items in the array.

Sort Sorts the items in the array. The items must implement the IComparable

interface, or you must provide an IComparer object.

Example program ArrayTests, which is available for download on the book’s website, demonstrates
the Array class’s IndexOf, LastIndexOf, Reverse, and BinarySearch methods. It also demonstrates the
Sort method for arrays containing integers, objects that implement the IComparable interface, and
objects that can be sorted with IComparer objects.

COLLECTIONS

The Visual Basic collection classes basically hold items and don’t provide a lot of extra functionality.
Other classes described later in this chapter provide more features.

The following sections describe the simple collection classes in Visual Basic: ArrayList,
StringCollection, and NameValueCollection. They also describe strongly typed collections that you
can build to make code that uses these classes a bit easier to debug and maintain.

ArrayList

The ArrayList class is a resizable array. You can add and remove items from any position in the list
and it resizes itself accordingly. The following table describes some of the class’s more useful proper-
ties and methods.

500 ❘ CHAPTER 25 COLLECTION CLASSES

PROPERTY/METHOD PURPOSE

Add Adds an item at the end of the list.

AddRange Adds the items in an object implementing the ICollection interface to the

end of the list.

BinarySearch Returns the index of an item in the list. The items must implement the

IComparable interface, or you must provide the Sort method with an

IComparer object.

Capacity Gets or sets the number of items that the list can hold.

Clear Removes all of the items from the list.

Contains Returns True if a specifi ed item is in the list.

CopyTo Copies some of the list or the entire list into a one-dimensional Array

object.

Count Returns the number of items currently in the list. This is always less than

or equal to Capacity.

GetRange Returns an ArrayList containing the items in part of the list.

IndexOf Returns the zero-based index of the fi rst occurrence of a specifi ed item in

the list.

Insert Adds an item at a particular position in the list.

InsertRange Adds the items in an object implementing the ICollection interface to a

particular position in the list.

Item Returns the item at a particular position in the list.

LastIndexOf Returns the zero-based index of the last occurrence of a specifi ed item in

the list.

Remove Removes the fi rst occurrence of a specifi ed item from the list.

RemoveAt Removes the item at the specifi ed position in the list.

RemoveRange Removes the items in the specifi ed positions from the list.

Reverse Reverses the order of the items in the list.

SetRange Replaces the items in part of the list with new items taken from an

ICollection object.

Sort Sorts the items in the list. The items must implement the

IComparable interface, or you must provide the Sort method with an

IComparer object.

Collections ❘ 501

PROPERTY/METHOD PURPOSE

ToArray Copies the list’s items into a one-dimensional array. The array can be an

array of objects, an array of a specifi c type, or an Array object (holding

objects).

TrimToSize Reduces the list’s allocated space so that it is just big enough to hold its

items. This sets Capacity = Count.

A single ArrayList object can hold objects of many different kinds. The following code creates an
ArrayList and adds a string, Form object, integer, and Bitmap to it. It then loops through the items
in the list and displays their types.

Dim array_list As New ArrayList
array_list.Add(“What?”)
array_list.Add(Me)
array_list.Add(1001)
array_list.Add(New Bitmap(10, 10))
For Each obj As Object In array_list
 Debug.WriteLine(obj.GetType.ToString)
Next obj

The following text shows the results:

System.String
UseArrayList.Form1
System.Int32
System.Drawing.Bitmap

The value displayed for the second item depends on the name of the project (in this case,
UseArrayList).

StringCollection

A StringCollection is similar to an ArrayList, except that it can hold only strings. Because it works only
with strings, this class provides some extra type checking that the ArrayList does not. For example, if
your program tries to add an Employee object to a StringCollection, the collection raises an error.

To take advantage of this extra error checking, you should always use a StringCollection instead of an
ArrayList if you are working with strings. Of course, if you need other features (such as the fast look-
ups provided by a Hashtable), you should use one of the classes described in the following sections.

NameValueCollection

The NameValueCollection class is a collection that can hold more than one string value for a partic-
ular key (name). For example, you might use employee names as keys. The string values associated

502 ❘ CHAPTER 25 COLLECTION CLASSES

with a particular key could include extension, job title, employee ID, and so forth. Of course, you
could also store the same information by putting extension, job title, employee ID, and the other
fi elds in an object or structure, and then storing the objects or structures in some sort of collection
class such as an ArrayList. A NameValueCollection, however, is useful if you don’t know ahead of
time how many strings will be associated with each key.

The following table describes some of the NameValueCollection’s most useful properties and
methods.

PROPERTY/METHOD DESCRIPTION

Add Adds a new name/value pair to the collection. If the collection already

holds an entry for the name, it adds the new value to that name’s values.

AllKeys Returns a string array holding all of the key values.

Clear Removes all names and values from the collection.

CopyTo Copies items starting at a particular index into a one-dimensional Array

object. This copies only the items (see the Item property), not the keys.

Count Returns the number of key/value pairs in the collection.

Get Gets the items for a particular index or name as a comma-separated list of

values.

GetKey Returns the key for a specifi c index.

GetValues Returns a string array containing the values for a specifi c name or index.

HasKeys Returns True if the collection contains any non-null keys.

Item Gets or sets the item for a particular index or name as a comma-separated

list of values.

Keys Returns a collection containing the keys.

Remove Removes a particular name and all of its values.

Set Sets the item for a particular index or name as a comma-separated list of

values.

Note that there is no easy way to remove a particular value from a name. For example, if a person’s
name is associated with extension, job title, and employee ID, it is not easy to remove only the job
title.

Example program UseNameValueCollection, which is available for download on the book’s website,
demonstrates NameValueCollection class features.

Dictionaries ❘ 503

DICTIONARIES

A dictionary is a collection that associates keys with values. You look up a key, and the diction-
ary provides you with the corresponding value. This is similar to the way a NameValueCollection
works, except that a dictionary’s keys and values need not be strings, and a dictionary associates
each key with a single value object.

Visual Studio provides several different kinds of dictionary classes that are optimized for different
uses. Their differences come largely from the ways in which they store data internally. Although you
don’t need to understand the details of how the dictionaries work internally, you do need to know
how they behave so that you can pick the best one for a particular purpose.

Because all of the dictionary classes provide the same service (associating keys with values), they
have roughly the same properties and methods. The following table describes some of the most use-
ful of these.

PROPERTY/METHOD DESCRIPTION

Add Adds a key/value pair to the dictionary.

Clear Removes all key/value pairs from the dictionary.

Contains Returns True if the dictionary contains a specifi c key.

CopyTo Copies the dictionary’s data starting at a particular position into a one-

dimensional array of DictionaryEntry objects. The DictionaryEntry class

has Key and Value properties.

Count Returns the number of key/value pairs in the dictionary.

Item Gets or sets the value associated with a key.

Keys Returns a collection containing all of the dictionary’s keys.

Remove Removes the key/value pair with a specifi c key.

Values Returns a collection containing all of the dictionary’s values.

The following sections describe different Visual Studio dictionary classes in more detail.

ListDictionary

A ListDictionary stores its data in a linked list. In a linked list, each item is held in an object that
contains its data plus a reference or link to the next item in the list.

Figure 25-2 illustrates a linked list. This list contains the key/value pairs Appetizer/Salad, Entrée/
Sandwich, Drink/Water, and Dessert/Cupcake. The link out of the Dessert/Cupcake item is set to
Nothing, so the program can tell when it has reached the end of the list. A reference variable inside
the ListDictionary class, labeled Top in Figure 25-2, points to the fi rst item in the list.

504 ❘ CHAPTER 25 COLLECTION CLASSES

The links in a linked list make adding and removing items relatively
easy. The ListDictionary simply moves the links to point to new objects,
add objects, remove objects, or insert objects between two others. For
example, to add a new item at the top of the list, you create the new item,
set its link to point to the item that is currently at the top, and then make
the list’s Top variable point to the new item. Other rearrangements are
almost as easy. For more information on how linked lists work, see a book
on algorithms and data structures such as Data Structures and Algorithms
Using Visual Basic.NET (McMillan, Cambridge University Press, 2005).

Unfortunately, if the list grows long, fi nding items in it can take a long
time. To fi nd an item in the list, the program starts at the top and works
its way down, following the links between items, until it fi nds the one
it wants. If the list is short, that doesn’t take very long. If the list holds
100,000 items, this means potentially a 100,000-item crawl from top to
bottom. That means a ListDictionary object’s performance degrades if it
contains too many items.

If you need to store only a few hundred items in the dictionary and you
don’t need to access them frequently, a ListDictionary is fi ne. If you need
to store 100,000 entries, or if you need to access the dictionary’s entries a
huge number of times, you may get better performance using a “heavier”
object such as a Hashtable. A Hashtable has more overhead than a ListDictionary but is faster at
accessing its entries.

Hashtable

A Hashtable looks a lot like a ListDictionary on the outside, but internally it stores its data in a very
different way. Rather than using a linked list, this class uses a hash table to hold data.

A hash table is a data structure that allows extremely fast access to items using their keys. Exactly
how hash tables work is interesting but outside the scope of this book. For more information, see
a book on algorithms and data structures such as Data Structures and Algorithms Using Visual
Basic.NET (McMillan, Cambridge University Press, 2005).

To use a hash table, however, you should know a few of their external characteristics.

Hash tables provide extremely fast lookup but they require a fair amount of extra space. If a hash
table becomes too full, it must resize itself and rearrange the items it contains to remain effi cient.

Resizing a hash table can take some time so the Hashtable class provides some extra tools to help
you avoid resizing.

One overloaded version of the Hashtable class’s constructor takes a parameter that tells how many
items the table should initially be able to hold. If you know you are going to load 1000 items into
the Hashtable, you might initially give it enough room to hold 1500 items. Then the program could
add all 1000 items without fi lling the table too much, so it would still give good performance. If you
don’t set an initial size, the hash table might start out too small and need to resize itself many times
before it could hold 1000 items, and that will slow it down.

Top

Appetizer/Salad

Entrée/Sandwich

Drink/Water

Dessert/Cupcake

FIGURE 25-2: Each item

in a linked list keeps a

reference to the next

item in the list.

CollectionsUtil ❘ 505

Another version of the constructor lets you specify the hash table’s load factor. The load factor is
a number between 0.1 and 1.0 that gives the largest ratio of elements to spots in the table that the
Hashtable will allow before it enlarges its internal table. You can use the load factor to prevent
a Hashtable from becoming too full, which degrades its performance. For example, suppose that the
Hashtable’s capacity is 100 and its load factor is 0.8. Then when it holds 80 elements, the Hashtable
will enlarge its internal table to make more room.

For high-performance lookups, the Hashtable class is a great solution as long as it doesn’t resize too
often and doesn’t become too full.

HybridDictionary

A HybridDictionary is a cross between a ListDictionary and a Hashtable. If the dictionary is
small, the HybridDictionary stores its data in a ListDictionary. If the dictionary grows too large,
HybridDictionary switches to a Hashtable.

If you know that you will only need a few items, use a ListDictionary. If you know you will need to
use a very large number of items, use a Hashtable. If you are unsure whether you will have few or
many items, you can hedge your bet with a HybridDictionary. It’ll take a bit of extra time to switch
from a list to a Hashtable if you add a lot of items, but you’ll save time in the long run if the list does
turn out to be enormous.

StringDictionary

The StringDictionary class uses a hash table to manage keys and values that are all strings. Because
it uses a hash table, it can handle very large data sets quickly.

Its methods are strongly typed to require strings, so they provide extra type checking that can make
fi nding potential bugs easier. For that reason, you should use a StringDictionary instead of a generic
ListDictionary or Hashtable if you want to work exclusively with strings.

SortedList

The SortedList class acts as a Hashtable/Array hybrid. When you access a value by key, it acts as
a hash table. When you access a value by index, it acts as an array containing items sorted by key
value. For example, suppose that you add a number of Job objects to a SortedList named jobs using
their priorities as keys. Then jobs(0) always returns the job with the smallest priority value.

Example program UseSortedList, which is available for download on the book’s website, demon-
strates the SortedList class.

A SortedList is more complicated than a Hashtable or an array, so you should only use it if you need
its special properties.

COLLECTIONSUTIL

Normally Hashtables and SortedLists are case-sensitive. The CollectionsUtil class provides two
shared methods, CreateCaseInsensitiveHashtable and CreateCaseInsensitiveSortedList, that create
Hashtables and SortedLists objects that are case-insensitive.

506 ❘ CHAPTER 25 COLLECTION CLASSES

Example program UseCaseInsensitiveSortedList, which is available for download on the book’s
website, uses code similar to the following to create a normal case-sensitive SortedList. It then
adds two items with keys that differ only in their capitalization. This works because a case-
sensitive SortedList treats the two keys as different values. The code then creates a case-insensitive
SortedList. When it tries to add the same two items, the list raises an exception, complaining that it
already has an object with key value Sport.

Dim sorted_list As SortedList

‘ Use a normal, case-sensitive SortedList.
sorted_list = New SortedList
sorted_list.Add(“Sport”, “Volleyball”)
sorted_list.Add(“sport”, “Golf”) ‘ Okay because Sport <> sport.

‘ Use a case-insensitive SortedList.
sorted_list = CollectionsUtil.CreateCaseInsensitiveSortedList()
sorted_list.Add(“Sport”, “Volleyball”)
sorted_list.Add(“sport”, “Golf”) ‘ Error because Sport = sport.

If you can use case-insensitive Hashtables and SortedLists, you may want to do so to prevent the
program from adding two entries that are supposed to be the same but have different capitalization.
For example, if one routine spells a key value “Law Suit” and another spells it “law suit,” the case-
insensitive Hashtable or SortedList will quickly catch the error. Neither will notice an error if part
of your program spells this “LawSuit.” (You could also add extra logic to remove spaces and special
symbols to increase the chances of fi nding similar terms that should be the same, but a discussion of
these sorts of methods is beyond the scope of this book.)

STACKS AND QUEUES

Stacks and queues are specialized data structures that are useful in many programming applications
that need to add and remove items in a particular order. The Visual Basic Stack and Queue classes
implement stacks and queues.

The difference between a stack and a queue is the order in which they return the items stored in
them. The following two sections describe stacks and queues and explain the ways in which they
return items.

Stack

A stack returns items in last-in-fi rst-out (LIFO, pronounced life-o) order. Because of the LIFO
behavior, a stack is sometimes called a LIFO list or simply a LIFO.

Adding an item to the stack is called pushing the item onto the stack and removing an item is called
popping the item off of the stack. These operations have the names push and pop because a stack is
like a spring-loaded stack of plates in a cafeteria or buffet. You push new plates down onto the top
of the stack and the plates sink into the counter. You pop the top plate off and the stack rises to give
you the next plate.

Stacks and Queues ❘ 507

Figure 25-3 illustrates this kind of stack. If you haven’t
seen this sort of thing before, don’t worry about it. Just
remember that push adds an item and pop removes the
top item.

Normally, you use a Stack object’s Push and Pop methods
to add and remove items, but the Stack class also provides
some cheating methods that let you peek at the Stack’s
top object or convert the Stack into an array. The following
table describes the Stack class’s most useful properties and
methods.

PROPERTY/METHOD PURPOSE

Clear Removes all items from the Stack.

Contains Returns True if the Stack contains a particular object.

CopyTo Copies some or all of the Stack class’s objects into a one-dimensional

array.

Count Returns the number of items in the Stack.

Peek Returns a reference to the Stack class’s top item without removing it from

the Stack.

Pop Returns the Stack class’s top item and removes it from the Stack.

Push Adds an item to the top of the Stack.

ToArray Returns a one-dimensional array containing references to the objects in

the Stack. The Stack class’s top item is placed fi rst in the array.

Push Pop

FIGURE 25-3: A Stack lets you

remove items in last-in-fi rst-out

(LIFO) order.

A Stack allocates memory to store its items. If you Push an object onto a Stack that is completely
full, the Stack must resize itself to make more room and that slows down the operation.

To make memory management more effi cient, the Stack class provides three overloaded construc-
tors. The fi rst takes no parameters and allocates a default initial capacity. The second takes as a
parameter the number of items the Stack should initially be able to hold. If you know that you will
add 10,000 items to the Stack, you can avoid a lot of resizing by initially allocating room for 10,000
items.

The third version of the constructor takes as a parameter an object that implements the ICollection
interface. The constructor allocates enough room to hold the items in the collection and copies them
into the Stack.

Example program UseStack, which is available for download on the book’s website, uses a Stack to
reverse the characters in a string.

508 ❘ CHAPTER 25 COLLECTION CLASSES

Queue
A queue returns items in fi rst-in-fi rst-out (FIFO, pronounced fi fe-o) order. Because of the FIFO
behavior, a queue is sometimes called a FIFO list or simply a FIFO.

A queue is similar to a line at a customer service desk. The fi rst person in line is the fi rst person to
leave it when the service desk is free. Figure 25-4 shows the idea graphically.

PROPERTY/METHOD PURPOSE

Clear Removes all items from the Queue.

Contains Returns True if the Queue contains a particular object.

CopyTo Copies some or all of the Queue class’s objects into a one-dimensional array.

Count Returns the number of items in the Queue.

Dequeue Returns the item that has been in the Queue the longest and removes it

from the Queue.

Enqueue Adds an item to the back of the Queue.

Peek Returns a reference to the Queue class’s oldest item without removing it

from the Queue.

ToArray Returns a one-dimensional array containing references to the objects in

the Queue. The Queue class’s oldest item is placed fi rst in the array.

TrimToSize Frees empty space in the Queue to set its capacity equal to the number of

items it actually contains.

Customer enters queue here

Next customer served Service
Desk

FIGURE 25-4: Customers leave a queue in fi rst-in-fi rst-out (FIFO) order.

Queues are particularly useful for processing items in the order in which they were created. For
example, an order-processing application might keep orders in a queue so that customers who place
orders fi rst are satisfi ed fi rst (or at least their order is shipped fi rst, whether they are satisfi ed or not).

Historically, the routines that add and remove items from a queue are called Enqueue and Dequeue.
The following table describes these methods and the Queue class’s other most useful properties and
methods.

Generics ❘ 509

A Queue allocates memory to store its items. If you Enqueue an object while the queue’s memory is
full, the Queue must resize itself to make more room, and that slows down the operation.

To make memory management more effi cient, the Queue class provides four overloaded construc-
tors. The fi rst takes no parameters and allocates a default initial capacity. If the Queue is full, it
enlarges itself by a default growth factor.

The second constructor takes as a parameter its initial capacity. If you know that you will add 600
items to the Queue, you can save some time by initially allocating room for 600 items. With this
constructor, the Queue also uses a default growth factor.

The third constructor takes as a parameter an object that implements the ICollection interface. The
constructor allocates enough room to hold the items in the collection and copies them into the
Queue. It also uses a default growth factor.

The fi nal version of the constructor takes as parameters an initial capacity and a growth factor
between 1.0 and 10.0. A larger growth factor will mean that the Queue resizes itself less often, but
it may contain a lot of unused space.

Example program UseQueue, which is available for download on the book’s website, demonstrates a
Queue.

GENERICS

Chapter 26 explains how you can build and use generic classes to perform similar actions for objects
of various types. For example, you could build a Tree class that can build a tree of any specifi c
kind of object. Your program could then make a tree of Employees, a tree of Customers, a tree of
Punchlines, or even a tree of trees. Visual Basic comes with a useful assortment of prebuilt generic
collection classes.

The System.Collections.Generic namespace provides several generic collection classes that you
can use to build strongly typed collections. These collections work with a specifi c data type
that you supply in a variable’s declaration. For example, the following code makes a List that
holds strings:

Imports System.Collections.Generic

...
Dim places As New List(Of String)
places.Add(“Chicago”)

The places object’s methods are strongly typed and work only with strings, so they provide extra
error protection that a less specialized collection doesn’t provide. To take advantage of this
extra protection, you should use generic collections whenever possible.

You cannot directly modify a generic collection class, but you can add extension methods to it. For
example, the following code adds an AddPerson method to the generic List(Of Person) class. This
method takes as parameters a fi rst and last name, uses those values to make a Person object, and
adds it to the list.

510 ❘ CHAPTER 25 COLLECTION CLASSES

Module PersonListExtensions
 <Extension()>
 Public Sub AddPerson(person_list As List(Of Person),
 first_name As String, last_name As String)
 Dim per As New Person() With _
 {.FirstName = first_name, .LastName = last_name}
 person_list.Add(per)
 End Sub
End Module

For more information on extension methods, see the section “Extension Methods” in Chapter 16,
“Subroutines and Functions.”

In addition to adding extension methods to a generic class, you can also derive an enhanced collec-
tion from a generic class. For example, the following code defi nes an EmployeeList class that inherits
from the generic List(Of Employee). It then adds an overloaded version of the Add method that takes
fi rst and last names as parameters.

Imports System.Collections.Generic

Public Class EmployeeList
 Inherits List(Of Employee)

 Public Overloads Sub Add(
 first_name As String, last_name As String)
 Dim emp As New Employee(first_name, last_name)
 MyBase.Add(emp)
 End Sub
End Class

COLLECTION PURPOSE

Comparer Compares two objects of the specifi c type and returns –1, 0, or 1 to indicate

whether the fi rst is less than, equal to, or greater than the second

Dictionary A strongly typed dictionary

LinkedList A strongly typed linked list

NO OVERLOADS ALLOWED

Note that extension methods cannot overload a class’s methods. If you want mul-
tiple versions of the Add method as in this example, you need to use a derived class.

The following table lists some of the most useful collection classes defi ned by the System
.Collections.Generic namespace.

Collection Initializers ❘ 511

Example program GenericStringList, which is available for download on the book’s website, demon-
strates a generic List(Of String). Example program GenericEmployeeList, which is also available for
download, derives a strongly typed EmployeeList class from a generic List(Of Employee).

For more information on generics (including instructions for writing your own generic classes), see
Chapter 26.

COLLECTION INITIALIZERS

Initializers allow you to easily initialize collection classes that have an Add method. To initialize a
collection, follow the variable’s instantiation with the keyword From and then a series of comma-
separated values inside braces.

For example, the following code snippet initializes an ArrayList, StringCollection, and generic
List(Of Person). Notice how the generic List’s initializer includes a series of new Person objects that
are initialized with the With keyword.

Dim numbers As New ArrayList() From {1, 2, 3}
Dim names As New StringCollection() From {“Alice”, “Bob”, “Cynthia”}
Dim authors As New List(Of Person) From {
 New Person() With {.FirstName = “Simon”, .LastName = “Green”},
 New Person() With {.FirstName = “Christopher”, .LastName = “Moore”},
 New Person() With {.FirstName = “Terry”, .LastName = “Pratchett”}
}

If a collection’s Add method takes more than one parameter, simply include the appropriate values
for each item inside their own sets of braces. The following code uses this method to initialize a
NameValueCollection and a Dictionary with Integer keys and String values:

Dim phone_numbers As New NameValueCollection() From {
 {“Ashley”, “502-253-3748”},
 {“Jane”, “505-847-2984”},

COLLECTION PURPOSE

LinkedListNode A strongly typed node in a linked list

List A strongly typed list

Queue A strongly typed queue

SortedDictionary A strongly typed sorted dictionary

SortedList A strongly typed sorted list

Stack A strongly typed stack

512 ❘ CHAPTER 25 COLLECTION CLASSES

 {“Mike”, “505-847-3984”},
 {“Shebly”, “502-487-4939”}
}
Dim greetings As New Dictionary(Of Integer, String) From {
 {1, “Hi”},
 {2, “Hello”},
 {3, “Holla”}
}

The same technique works for other collections that need two values such as ListDictionary,
Hashtable, HybridDictionary, StringDictionary, and SortedList.

Unfortunately, you cannot use this method to initialize the Stack and Queue classes. For historical
reasons, the methods in those classes that add new items are called Push and Enqueue rather than
Add, and this method requires the class to have an Add method.

Fortunately, you can write extension methods to give those classes Add methods. The following
code creates Add methods for the Stack and Queue classes:

Module Extensions
 <Extension()>
 Public Sub Add(the_stack As Stack, value As Object)
 the_stack.Push(value)
 End Sub

 <Extension()>
 Public Sub Add(the_queue As Queue, value As Object)
 the_queue.Enqueue(value)
 End Sub
End Module

After you create these extension methods, you can initialize Stacks and Queues as in the following
code:

Dim people_stack As New Stack() From {“Electra”, “Storm”, “Rogue”}
Dim people_queue As New Queue() From {“Xavier”, “Anakin”, “Zaphod”}

ITERATORS

One of the benefi ts of collection classes is that they allow you to use a For Each loop to iterate
through the items they contain. Visual Basic lets you write your own iterator function to provide
access to items in a group. Then other code can loop over those items by using a For Each loop.

To make an iterator, create a function that uses the keyword Iterator before its Function keyword.
Then make the function return the type IEnumerable or a generic version of IEnumerable such as
IEnumerable(Of String). Finally, inside the function, use the Yield statement to return a value in the
enumeration.

For example, the following function enumerates a list of prime numbers:

Summary ❘ 513

Private Iterator Function Primes(
 start_number As Integer, end_number As Integer) As IEnumerable(Of Integer)
 ‘ Define an inline function that returns True if a number is prime.
 Dim is_prime = Function(i)
 If i = 1 Then Return False ‘ 1 is not prime.
 If i = 2 Then Return True ‘ 2 is prime.
 If i Mod 2 = 0 Then Return False ‘ Other even numbers are not prime.
 For test As Integer = 3 To Math.Sqr(i) Step 2
 If i Mod test = 0 Then Return False
 Next test
 Return True
 End Function

 For i As Integer = start_number To end_number
 ‘ If this number is prime, enumerate it.
 If is_prime(i) Then Yield i
 Next i
End Function

The following code shows how a program might use the Primes iterator:

For Each prime As Integer In Primes(1, 1000)
 Debug.WriteLine(prime)
Next prime
Debug.WriteLine(“# Primes: “ & Primes(1, 1000).Count)

SUMMARY

This chapter explained several types of collection classes.

Variable arrays store objects sequentially. They allow fast access at any point in the array. The Array
class lets you make arrays indexed with nonzero lower bounds, although they provide slower per-
formance than arrays of variables, which require lower bounds of zero. The Array class provides
several useful methods for working with Array objects and normal variable arrays, including Sort,
Reverse, IndexOf, LastIndexOf, and BinarySearch.

Collections store data in ways that are different from those used by arrays. An ArrayList stores
items in a linked list. That works well for short lists, but slows down when the list grows large. A
StringCollection holds a collection of strings. StringCollection is an example of a strongly typed
collection (it holds only strings). The NameValueCollection class is a specialized collection that can
hold more than one string value for a given key value.

Dictionaries associate key values with corresponding data values. You look up the key to fi nd the
data much as you might look up a word in the dictionary to fi nd its defi nition. The ListDictionary
class stores its data in a linked list. It is fast for small data sets but slow when it contains too much
data. In contrast a Hashtable has substantial overhead but is extremely fast for large dictionaries.
A HybridDictionary acts as a ListDictionary if it doesn’t contain too much data and switches to a
Hashtable when it gets too big. The StringDictionary class is basically a Hashtable that is strongly
typed to work with strings. The SortedList class is a Hashtable/Array hybrid that lets you access val-
ues by key or in sorted order.

514 ❘ CHAPTER 25 COLLECTION CLASSES

Stack classes provide access to items in last-in-fi rst-out (LIFO) order. Queue classes give access to
their items in fi rst-in-fi rst-out (FIFO) order.

The generic Dictionary, LinkedList, List, Queue, SortedDictionary, SortedList, and Stack classes
enable you to use strongly typed data structures.

Although these classes have very different features for adding, removing, fi nding, and ordering
objects, they share some common traits. For example, those that provide an Add method support
collection initialization. They also all support enumeration by For Each statements.

These classes provide many useful features so you can pick the class that best satisfi es your needs.
Deciding which class is best can be tricky, but making the right choice can mean the difference
between programs that process a large data set in seconds, hours, or not at all. Spend some time
reviewing the different characteristics of the classes so that you can make the best choice possible.

This chapter explained how you can use the generic collection classes provided by the System
.Collections.Generic namespace. Chapter 26, “Generics,” explains how you can build generic classes
of your own. Using generics, you can build strongly typed classes that manipulate objects of any
data type.

 Generics

WHAT’S IN THIS CHAPTER

 ➤ Vantages of generics

 ➤ Defi ning generics

 ➤ Using generics

 ➤ Generic methods

 ➤ Generics and extension methods

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/rem
title.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter is
divided into the following major examples:

 ➤ GenericBinaryTree

 ➤ GenericPairDictionary

 ➤ GenericTreeImportsAlias

 ➤ SortedBinaryTree

 ➤ UseSwitcher

CLASS CREATORS

Classes are often described as cookie cutters for creating objects. You defi ne a class, and then
you can use it to make any number of objects that are instances of the class.

Similarly, a generic is like a cookie cutter for creating classes. You defi ne a generic, and then
you can use it to create any number of classes that have similar features.

26

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

516 ❘ CHAPTER 26 GENERICS

For example, Visual Basic comes with a generic List class. You can use it to make lists of strings,
lists of integers, lists of Employee objects, or lists of just about anything else.

This chapter explains generics. It shows how you can defi ne generics of your own and how you can
use them.

ADVANTAGES OF GENERICS

A generic class takes one or more data types as parameters. An instance of a generic class has those
parameters fi lled in with specifi c data types such as String, TextBox, or Employee.

For example, you can build a list of OrderItem objects, a hash table containing PurchaseOrders
identifi ed by number, or a Queue that contains Customer objects.

Tying generics to specifi c data types gives them several advantages over non-generic classes:

 ➤ Strong typing — Methods can take parameters and return values that have the class’s
instance type. For example, a List(Of String) can hold only String values, its Add method
can only add Strings to the list, and its Item method returns String values. This makes it
more diffi cult to accidentally add the wrong type of object to the collection.

 ➤ IntelliSense — By providing strong typing, a class built from a generic lets Visual Studio
provide IntelliSense. If you make a List(Of Employee), Visual Studio knows that the items in
the collection are Employee objects, so it can give you appropriate IntelliSense.

 ➤ No boxing — Because the class manipulates objects with a specifi c data type, Visual Basic
doesn’t need to convert items to and from the plain Object data type. For example, if a
program stores TextBox controls in a normal collection, the program must convert the
TextBox controls to and from the Object class when it adds and uses items in the collection.
Avoiding these steps makes the code more effi cient.

 ➤ Code reuse — You can use a generic class with more than one data type. For example, if you
have built a generic PriorityQueue class, you can make a PriorityQueue holding Employee,
Customer, Order, or Objection objects. Without generics, you would need to build four
separate classes to build strongly typed priority queues for each of these types of objects.
Reusing this code makes it easier to write, test, debug, and maintain the code.

The main disadvantage to generics is that they are slightly more complicated and confusing than
non-generic classes. If you know that you will only ever need to provide a class that works with a single
type, you can simplify things slightly by not using a generic class. If you think you might want to
reuse the code later for another data type, it’s easier to just build the class generically from the start.

DEFINING GENERICS

Visual Basic allows you to defi ne generic classes, structures, interfaces, procedures, and delegates.
The basic syntax for all of those is similar, so once you know how to make generic classes, making
generic structures, interfaces, and the others is fairly easy.

Defi ning Generics ❘ 517

To defi ne a generic class, make a class declaration as usual. After the class name, add a parenthesis,
the keyword Of, a placeholder for a data type, and a closing parenthesis. The data type placeholder
is similar to a parameter name that you would give to a subroutine except it is a type, not a simple
value. The class’s code can use the name ItemType to refer to the type associated with the instance
of the generic class.

For example, suppose you want to build a binary tree that could hold any kind of data. The follow-
ing code shows how you could defi ne a BinaryNode class to hold the tree’s data:

Public Class BinaryNode(Of T)
 Public Value As T
 Public LeftChild As BinaryNode(Of T)
 Public RightChild As BinaryNode(Of T)
End Class

The class’s declaration takes a type parameter named T. (Many developers use the name T for the
type parameter. If the class takes more than one type parameter separated by commas, they start
each name with T as in TKey and TData.)

The class defi nes a public fi eld named Data that has type T. This is where the node’s data is stored.

The class also defi nes two fi elds that refer to the node’s left and right children in the binary tree.
Those fi elds hold references to objects from this same class: BinaryNode(Of T).

The following code shows how a program could use this class to build a small binary tree of
Employee objects:

‘ Define the tree’s root node.
Dim root As New BinaryNode(Of Employee)
root.Value = New Employee(“Ben”, “Baker”)

‘ Create the root’s left child.
root.LeftChild = New BinaryNode(Of Employee)
root.LeftChild.Value = New Employee(“Ann”, “Archer”)

‘ Create the root’s right child.
root.RightChild = New BinaryNode(Of Employee)
root.RightChild.Value = New Employee(“Cindy”, “Carter”)

Generic Constructors

Generic classes can have constructors just as any other class can. For example, the following con-
structor initializes a BinaryNode object’s LeftChild and RightChild references:

‘ Assign this node’s left and right children.
Public Sub New(new_value As T,
 Optional left_child As BinaryNode(Of T) = Nothing,
 Optional right_child As BinaryNode(Of T) = Nothing)
 Value = new_value
 LeftChild = left_child
 RightChild = right_child
End Sub

518 ❘ CHAPTER 26 GENERICS

To use the constructor, the main program adds normal parameters after the type parameters in the
object declaration. The following code uses the new constructor to create a binary tree similar to the
previous one:

‘ Define the child nodes.
Dim left_child As New BinaryNode(Of Employee)(New Employee(“Ann”, “Archer”))
Dim right_child As New BinaryNode(Of Employee)(New Employee(“Cindy”, “Carter”))

‘ Define the tree’s root node.
Dim root As New BinaryNode(Of Employee)(
 New Employee(“Ben”, “Baker”),
 left_child, right_child)

Multiple Types

If you want the class to work with more than one type, you can add other types to the declaration
separated by commas. For example, suppose that you want to create a dictionary that associates
keys with pairs of data items. Example program GenericPairDictionary uses the following code to
defi ne the generic PairDictionary class. This class acts as a dictionary that associates a key value
with a pair of data values. The class declaration includes three data types named TKey, TValue1,
and TValue2.

‘ A Dictionary that associates a pair of data values with each key.
Public Class PairDictionary(Of TKey, TValue1, TValue2)
 ‘ A structure to hold paired data.
 Private Structure ValuePair
 Public Value1 As TValue1
 Public Value2 As TValue2
 Public Sub New(new_value1 As TValue1, new_value2 As TValue2)
 Value1 = new_value1
 Value2 = new_value2
 End Sub
 End Structure

 ‘ A Dictionary to hold the paired data.
 Private ValueDictionary As New Dictionary(Of TKey, ValuePair)

 ‘ Return the number of data pairs.
 Public ReadOnly Property Count() As Integer
 Get
 Return ValueDictionary.Count
 End Get
 End Property

 ‘ Add a key and value pair.
 Public Sub Add(ByVal key As TKey,
 new_value1 As TValue1,
 new_value2 As TValue2)
 ValueDictionary.Add(key, New ValuePair(new_value1, new_value2))
 End Sub

Defi ning Generics ❘ 519

 ‘ Remove all data.
 Public Sub Clear()
 ValueDictionary.Clear()
 End Sub

 ‘ Return True if PairDictionary contains this key.
 Public Function ContainsKey(key As TKey) As Boolean
 Return ValueDictionary.ContainsKey(key)
 End Function

 ‘ Return a data pair.
 Public Sub GetItem(ByVal key As TKey,
 ByRef data_value1 As TValue1,
 ByRef data_value2 As TValue2)
 Dim data_ pair As DataPair = ValueDictionary.Item(key)
 data_value1 = data_ pair.Value1
 data_value2 = data_ pair.Value2
 End Sub

 ‘ Set a data pair.
 Public Sub SetItem(key As TKey,
 data_value1 As TValue1,
 data_value2 As TValue2)
 ValueDictionary.Item(key) = New DataPair(data_value1, data_value2)
 End Sub

 ‘ Return a collection containing the keys.
 Public ReadOnly Property Keys() As System.Collections.ICollection
 Get
 Return ValueDictionary.Keys()
 End Get
 End Property

 ‘ Remove a particular entry.
 Public Sub Remove(key As TKey) ValueDictionary.Remove(key)
 End Sub
End Class

The PairDictionary class defi nes its own private ValuePair class to hold pairs of data values. The
ValuePair class has two public variables of types TValue1 and TValue2. Its only method is a
constructor that makes initializing the two variables easier.

After defi ning the ValuePair class, the PairDictionary class declares a generic Dictionary object
named ValueDictionary using the key type TKey and data type ValuePair.

PairDictionary provides Count, Add, Clear, ContainsKey, GetItem, SetItem, Keys, and Remove
methods. Notice how it delegates these to the ValueDictionary object and how it uses the ValuePair
class to store values in ValueDictionary.

The following code creates an instance of the generic PairDictionary class that uses integers as keys
and strings for both data values. It adds three entries to the PairDictionary and then retrieves and
displays the entry with key value 32.

520 ❘ CHAPTER 26 GENERICS

‘ Create the PairDictionary and add some data.
Dim pair_dictionary As New PairDictionary(Of Integer, String, String)
pair_dictionary.Add(10, “Ann”, “Archer”)
pair_dictionary.Add(32, “Bill”, “Beach”)
pair_dictionary.Add(17, “Cynthia”, “Campos”)

‘ Print the values for index 32.
Dim value1 As String = “”
Dim value2 As String = “”
pair_dictionary.GetItem(32, value1, value2)
Debug.WriteLine(value1 & “, “ & value2)

Constrained Types

To get the most out of your generic classes, you should make them as fl exible as possible. Depending
on what the class will do, however, you may need to constrain the class’s generic types.

For example, suppose you want to make a generic SortedBinaryNode class similar to the
BinaryNode class described earlier but that keeps its values sorted. When you add a new value to a
node, the program compares the new value to the node’s value and places the new node in the left or
right subtree depending on whether the new value is less than or greater than the node’s value.

For example, suppose node A contains the value 7 and you want to add the value 5 to its subtree. The
new value 5 is less than 7 so node A would put the new value in its left subtree. If node A has no left
child node then it places the new value in a new node and makes that node its left child. If node A
already has a left child, Node A calls that child’s Add method to add the child somewhere in its subtree.

Figuring out whether a new value belongs in a node’s left or right subtree is relatively straightfor-
ward if the node holds integers or strings, but there’s no obvious way to determine whether one
Employee object should be placed before another. The SortedBinaryNode class will only work if the
data type of the objects it holds supports comparison.

One way to allow the nodes to compare items is to require that the items they contain implement
the IComparable interface. Then the program can use their CompareTo methods to see whether one
item is greater than or less than another item.

To require that a generic class’s type implements an interface, add an “As inferface” clause after the
type’s declaration. Example program SortedBinaryTree uses the following SortedBinaryNode class:

Public Class SortedBinaryNode(Of T As IComparable)
 Public Value As T
 Public LeftChild As SortedBinaryNode(Of T)
 Public RightChild As SortedBinaryNode(Of T)

 Public Sub New(new_value As T)
 Value = new_value
 End Sub

 ‘ Add a new value to this node’s subtree.
 Public Sub Add(new_value As T)
 ‘ See if it belongs in the left or right child’s subtree.
 If (new_value.CompareTo(Value) < 0) Then
 ‘ Left subtree.

Instantiating Generic Classes ❘ 521

 If (LeftChild Is Nothing) Then
 ‘ Add it as the new left child.
 LeftChild = New SortedBinaryNode(Of T)(new_value)
 Else
 ‘ Add it in the left subtree.
 LeftChild.Add(new_value)
 End If
 Else
 ‘ Right subtree.
 If (RightChild Is Nothing) Then
 ‘ Add it as the new right child.
 RightChild = New SortedBinaryNode(Of T)(new_value)
 Else
 ‘ Add it in the right subtree.
 RightChild.Add(new_value)
 End If
 End If
 End Sub
End Class

A type’s As clause can specify any number of interfaces and at most one class from which the type
must be derived. It can also include the keyword New to indicate that the type used must provide
a constructor that takes no parameters. If you include more than one constraint, the constraints
should be separated by commas and enclosed in brackets.

The following code defi nes the StrangeGeneric class that takes three type parameters. The fi rst type
must implement the IComparable interface and must provide an empty constructor. The second type
has no constraints, and the third type must be a class that inherits from Control.

Public Class StrangeGeneric(Of T1 As {IComparable, New}, T2, T3 As Control)
 ...
End Class

The following code declares an instance of the StrangeGeneric class:

Dim strange_generic As New StrangeGeneric(Of Integer, Employee, Button)

Constraining a type gives Visual Basic more information about that type, so it lets you use the
properties and methods defi ned by the type. In the previous code, for example, if a variable is of
type T3, then Visual Basic knows that it inherits from the Control class, so you can use Control
properties and methods such as Anchor, BackColor, and Font.

INSTANTIATING GENERIC CLASSES

The previous sections have already shown a few examples of how to use a generic class. The
program declares the class and includes whatever data types are required in an Of clause.
The following code shows how a program might create a generic list of strings:

Imports System.Collections.Generic
...
Dim names As New List(Of String)

522 ❘ CHAPTER 26 GENERICS

To pass parameters to a generic class’s constructor, add a second set of parentheses and any
parameters after the type specifi cations. The following statement creates an IntStringList object,
passing it the types Integer, String, and Employee. It calls the class’s constructor, passing it the value 100.

Dim the_employees As New IntStringList(Of Integer, String, Employee)(100)

If the program needs to use only a few generic classes (for example, a single collection of strings),
this isn’t too bad. If the program needs to use many instances of the class, however, the code
becomes cluttered.

For example, suppose that the TreeNode class shown in the following code represents a node in a
tree. Its MyData fi eld holds some piece of data, and its Children list holds references to child nodes.

Public Class TreeNode(Of T)
 Public MyData As T
 Public Children As New List(Of TreeNode(Of T))

 Public Sub New(ByVal new_data As T)
 MyData = new_data
 End Sub
End Class

The following code uses this class to build a small tree of Employee objects:

Dim root As New TreeNode(Of Employee)(New Employee(“Annabelle”, “Ant”))
Dim child1 As New TreeNode(Of Employee)(New Employee(“Bert”, “Bear”))
Dim child2 As New TreeNode(Of Employee)(New Employee(“Candice”, “Cat”))

root.Children.Add(child1)
root.Children.Add(child2)

Example program GenericTree, which is available for download on the book’s website, uses similar
code to build a generic Tree(Of T) class.

Repeating the nodes’ data types in the fi rst three lines makes the code rather cluttered. Two tech-
niques that you can use to make the code a bit simpler are using an imports alias and deriving a
new class. Both of these let you create a simpler name for the awkward class name TreeNode
(Of Employee).

Imports Aliases

Normally, you use an Imports statement to make it easier to refer to namespaces and the symbols
they contain. However, the Imports statement also lets you defi ne an alias for a namespace entity.
To use this to make using generics easier, create an Imports statement that refers to the type of
generic class you want to use and give it a simple alias.

For example, the following code is in the DataTreeTest namespace. It uses an Imports statement
to refer to a TreeNode of Employee. It gives this entity the alias EmployeeNode. Later, the
program can use the name EmployeeNode instead of the more cumbersome TreeNode
(Of Employee).

Generic Collection Classes ❘ 523

Imports EmployeeNode = DataTreeTest.TreeNode(Of DataTreeTest.Employee)
...
Dim root As New EmployeeNode(New Employee(“Annabelle”, “Ant”))
Dim child1 As New EmployeeNode(New Employee(“Bert”, “Bear”))
Dim child2 As New EmployeeNode(New Employee(“Candice”, “Cat”))

root.Children.Add(child1)
root.Children.Add(child2)
...

Example program GenericTreeImportsAlias demonstrates this approach.

Derived Classes

A second method that simplifi es using generics is to derive a class from the generic class. The
following code derives the EmployeeNode class from TreeNode(Of Employee). Later, it creates
instances of this class to build the tree.

Public Class EmployeeNode
 Inherits TreeNode(Of Employee)
 Public Sub New(new_data As Employee)
 MyBase.New(new_data)
 End Sub
End Class
...
Dim root As New EmployeeNode(New Employee(“Annabelle”, “Ant”))
Dim child1 As New EmployeeNode(New Employee(“Bert”, “Bear”))
Dim child2 As New EmployeeNode(New Employee(“Candice”, “Cat”))

root.Children.Add(child1)
root.Children.Add(child2)
...

Example program GenericTreeSubclass demonstrates this approach.

If you use this technique, you can also add extra convenience functions to the derived class. For
example, the following code shows a new EmployeeNode constructor that creates the Employee
object that it holds:

Public Sub New(first_name As String, last_name As String)
 MyBase.New(New Employee(first_name, last_name))
End Sub

GENERIC COLLECTION CLASSES

The System.Collections.Generic namespace defi nes several generic classes. These are basically
collection classes that use generics to work with the data type you specify. See the section
“Generics” near the end of Chapter 25, “Collection Classes,” for more information and a list of
the more useful predefi ned generic collection classes.

524 ❘ CHAPTER 26 GENERICS

GENERIC METHODS

Generics are usually used to build classes that are not data type–specifi c such as the generic
collection classes. You can also give a class (generic or otherwise) a generic method. Just as a generic
class is not tied to a particular data type, the parameters of a generic method are not tied to a
specifi c data type.

The method’s declaration includes an Of clause similar to the one used by generic classes, followed
by the method’s parameter list.

Example program UseSwitcher uses the following code to defi ne a generic Switch subroutine. This
subroutine defi nes the generic type T and takes two parameters of type T. If this were a function,
you could use the type T for its return value if you wanted. Subroutine Switch declares a variable
temp of type T and uses it to switch the values of its parameters.

Public Class Switcher
 Public Sub Switch(Of T)(ByRef thing1 As T, ByRef thing2 As T)
 Dim temp As T = thing1
 thing1 = thing2
 thing2 = temp
 End Sub
End Class

GENERIC CLASSES AND METHODS

The Switcher class is not generic but it contains a generic method. Note that a
generic class can also contain generic and non-generic methods. You can also create
generic methods in code modules.

The following code uses a Switcher object to switch the values of two Person variables. In the call to
the Switch method, Visual Basic uses the fi rst parameter to infer that the type T is Person and then
requires the second parameter to have the same type.

Dim person1 As New Person(“Anna”)
Dim person2 As New Person(“Bill”)
Dim a_switcher As New Switcher()
a_switcher.Switch(person1, person2)

GENERICS AND EXTENSION METHODS

Just as extension methods allow you to add new features to existing classes, they also allow you
to add new features to generic classes. For example, suppose you have an application that uses a
List(Of Person). This List class is a generic collection class defi ned in the System.Collections
.Generic namespace.

Generics and Extension Methods ❘ 525

The generic class is not defi ned in your code so you cannot modify it, but you can add extension
methods to it. The following code adds an AddPerson method to List(Of Person) that takes as
parameters a fi rst and last name, uses those values to make a Person object, and adds it to
the list:

Module PersonListExtensions
 <Extension()>
 Public Sub AddPerson(person_list As List(Of Person),
 first_name As String, last_name As String)
 Dim per As New Person() With _
 {.FirstName = first_name, .LastName = last_name}
 person_list.Add(per)
 End Sub
End Module

This example adds an extension method to a specifi c instance of a generic class. In this example, the
code adds the method to List(Of Person). With a little more work, you can add a generic extension
method to a generic class itself instead of adding it to an instance of the class.

Example program GenericNumDistinct uses the following code to add a NumDistinct function to the
generic List(Of T) class for any type T. The declaration identifi es its generic type T. The fi rst
parameter has type List(Of T) so this method extends List(Of T). The function has an Integer
return type.

Module ListExtensions
 <Extension()>
 Public Function NumDistinct(Of T)(the_list As List(Of T)) As Integer
 Return the_list.Distinct().Count()
 End Function
End Module

The generic List(Of T) class provides a Distinct method that returns a new list containing the
distinct objects in the original list. The NumDistinct function calls that method and returns the new
list’s Count value.

The following code shows how a program could call this function. It creates a new List(Of String)
and gives it some data. It then calls the list’s NumDistinct function.

Dim name_list As New List(Of String)
name_list.Add(“Llamaar Aarchibald”)
name_list.Add(“Dudley Eversol”)
...

MessageBox.Show(“The list contains “ &
 name_list.Count() & “ entries and “ &
 name_list.NumDistinct() & “ distinct entries”)

For more information on extension methods, see the section “Extension Methods” in Chapter 16,
“Subroutines and Functions.”

526 ❘ CHAPTER 26 GENERICS

SUMMARY

A class abstracts the properties and behaviors of a set of objects to form a template that you can use
to make objects that implement those properties and behaviors. After you defi ne the class, you can
make many instances of it, and they will all have the features defi ned by the class.

Generics take abstraction one level higher. A generic class abstracts the features of a set of classes
defi ned for any given data types. It determines the properties and methods that any class in the
generic group provides. After you defi ne the generic class, you can easily make classes that work
with different data types but that all provide the common set of features defi ned by the generic.

By defi ning common functionality, generic classes let you reuse code to perform similar actions
for different data types. By allowing you to parameterize the class instances with a data type,
they let you build strongly typed classes quickly and easily. That, in turn, lets Visual Basic provide
IntelliSense to make programming faster and easier.

Together these benefi ts — easier code reuse, strong typing, and IntelliSense support — help you
write, test, debug, and maintain code more easily.

The programs described in this book so far are relatively self-contained. They take input from the
user, perform some calculations, and display the results on the program’s forms.

The chapters in the next part of the book explain ways a program can interact with the system.
Chapter 27, “Printing,” explains how to generate output on a printer.

PART IV
Interacting with the Environment

 � CHAPTER 27: Printing

 � CHAPTER 28: Confi guration and Resources

 � CHAPTER 29: Streams

 � CHAPTER 30: Filesystem Objects

27
Printing

WHAT’S IN THIS CHAPTER

 ➤ Basic printing

 ➤ Drawing basics

 ➤ Pens and brushes

 ➤ PrintDocument events

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter is divided
into the following major examples:

 ➤ BrushSamples

 ➤ DrawInPaintEvent

 ➤ DrawOnBitmap

 ➤ PrintBooklet

 ➤ UsePrintPreviewDialog

PRINTING CONCEPTS

Visual Basic .NET provides several good tools for printing. String formatting objects enable
you to determine how text is wrapped and truncated if it won’t fi t in a printing area. Methods
provided by Graphics objects enable you to easily scale, rotate, and translate drawing commands.

The basic process, however, seems somewhat backward to many programmers. Rather than
issuing commands to a printer object, a program responds to requests to draw pages generated
by a PrintDocument object. Instead of telling the printer what to do, the program responds to
the PrintDocument object’s requests for data.

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

530 ❘ CHAPTER 27 PRINTING

The following section describes the basic process and explains this backward-seeming approach. The
sections after that explain how to print specifi c items such as shapes and text, and how to scale, center,
and otherwise arrange the results.

BASIC PRINTING

The PrintDocument class sits at the heart of Visual Basic’s printing process. The program creates
an instance of this class and installs event handlers to catch its events. When the object must
perform printing-related tasks, it raises events to ask the program for help.

The PrintDocument object raises four key events:

 ➤ BeginPrint — The PrintDocument raises its BeginPrint event when it is about to start
printing. The program can initialize data structures, load data, connect to databases, and
perform any other chores it must do to get ready to print.

 ➤ QueryPageSettings — Before it prints a page, the PrintDocument object raises its
QueryPageSettings event. A program can catch this event and modify the document’s
margins for the page that it is about to print.

 ➤ PrintPage — The PrintDocument object raises its PrintPage event to generate a page. The
program must catch this event and use the Graphics object provided by the event handler’s
parameters to generate output. When it is fi nished, the event handler should set the value
e.HasMorePages to True or False to tell the PrintDocument whether there are more pages to
generate after this one.

 ➤ EndPrint — When it has fi nished printing, the PrintDocument object raises its EndPrint
event. The program can catch this event to clean up any resources it used while printing. It
can free data structures, close data fi les and database connections, and perform any other
necessary cleanup chores.

Having created a PrintDocument object and its event handlers, you can do three things with it.
First you can call the object’s Print method to immediately send a printout to the currently selected
printer. The PrintDocument object raises its events as necessary as it generates the printout.

Second, you can set a PrintPreviewDialog control’s
Document property to the PrintDocument object and
then call the dialog box’s ShowDialog method. The
PrintPreviewDialog displays the print preview window
shown in Figure 27-1, using the PrintDocument object
to generate the output it displays.

The preview dialog box’s printer button on the left
sends the printout to the printer. Note that this makes
the PrintDocument object regenerate the printout
using its events, this time sending the results to the
printer instead of to the print preview dialog box. The
magnifying glass button displays a drop-down list

FIGURE 27-1: The PrintPreviewDialog control

lets the user zoom in and out and view the

printout’s various pages.

Basic Printing ❘ 531

where the user can select various scales for viewing the printout. The next fi ve buttons let the user
display one, two, three, four, or six of the printout’s pages at the same time. The Close button closes
the dialog box and the Page up/down arrows let the user move through the printout’s pages.

The PrintPreviewControl displays a print preview much as the PrintPreviewDialog control does,
except that it sits on your form. It does not provide all the buttons that the dialog box does, but it
does provide methods that let you implement similar features. For example, it lets your program set
the zoom level, the number of columns in the display, and so forth.

The third thing you can do with a PrintDocument is assign it to a PrintDialog object’s Document
property and then call the dialog box’s ShowDialog method. This displays a dialog box that lets the
user select the printer and set its properties (for example, selecting landscape or portrait orientation).
When the user clicks the dialog box’s Print button, the dialog box uses the PrintDocument object to
send the printout to the printer.

PREVIEW POSSIBILITIES

Your results could look different from those shown here. The print preview adjusts
its appearance based on such factors as the type of printer you are using, its settings,
the size of the paper you are using, and the paper’s orientation.

Example program UsePrintPreviewDialog uses the following code to preview and print a page
showing the page’s bounds and margin bounds. This is just about the smallest program that
demonstrates all three uses for a PrintDocument object: printing immediately, displaying a print
preview dialog box, and displaying a print dialog box.

Imports System.Drawing.Printing

Public Class Form1
 Private WithEvents MyPrintDocument As PrintDocument

 Private PageNumber As Integer

 ‘ Display a print preview dialog.
 Private Sub btnPrintPreview_Click() Handles btnPrintPreview.Click
 PageNumber = 1
 MyPrintDocument = New PrintDocument
 dlgPrintPreview.Document = MyPrintDocument
 dlgPrintPreview.ShowDialog()
 End Sub

 ‘ Display a print dialog.
 Private Sub btnPrintDialog_Click() Handles btnPrintDialog.Click
 PageNumber = 1
 MyPrintDocument = New PrintDocument
 dlgPrint.Document = MyPrintDocument
 dlgPrint.ShowDialog()
 End Sub

532 ❘ CHAPTER 27 PRINTING

 ‘ Print now.
 Private Sub btnPrintNow_Click() Handles btnPrintNow.Click
 PageNumber = 1
 MyPrintDocument = New PrintDocument
 MyPrintDocument.Print()
 End Sub

 ‘ Print a page with a diamond on it.
 Private Sub MyPrintDocument_PrintPage(
 sender As Object, e As PrintPageEventArgs) Handles MyPrintDocument.PrintPage
 e.Graphics.SmoothingMode = Drawing2D.SmoothingMode.AntiAlias
 e.Graphics.TextRenderingHint =
 Drawing.Text.TextRenderingHint.AntiAliasGridFit

 Using the_font As New Font(“Times New Roman”, 300)
 Using string_format As New StringFormat
 string_format.Alignment = StringAlignment.Center
 string_format.LineAlignment = StringAlignment.Center

 e.Graphics.DrawString(PageNumber.ToString,
 the_font, Brushes.Black,
 e.MarginBounds, string_format)
 End Using ‘ string_format
 End Using ‘ the_font

 Using the_pen As New Pen(Color.Black, 10)
 Select Case PageNumber
 Case 1 ‘ Draw a triangle.
 Dim points() As Point =
 {
 New Point(e.MarginBounds.Left + e.MarginBounds.Width \ 2,
 e.MarginBounds.Top),
 New Point(e.MarginBounds.Right, e.MarginBounds.Bottom),
 New Point(e.MarginBounds.Left, e.MarginBounds.Bottom)
 }
 e.Graphics.DrawPolygon(the_pen, points)

 Case 2 ‘ Draw a rectangle.
 e.Graphics.DrawRectangle(the_pen, e.MarginBounds)

 Case 3 ‘ Draw a diamond.
 Dim points() As Point = {
 New Point(e.MarginBounds.Left + e.MarginBounds.Width \ 2,
 e.MarginBounds.Top),
 New Point(e.MarginBounds.Right,
 e.MarginBounds.Top + e.MarginBounds.Height \ 2),
 New Point(e.MarginBounds.Left + e.MarginBounds.Width \ 2,
 e.MarginBounds.Bottom),
 New Point(e.MarginBounds.Left,
 e.MarginBounds.Top + e.MarginBounds.Height \ 2)
 }
 e.Graphics.DrawPolygon(the_pen, points)

Basic Printing ❘ 533

 End Select
 End Using ‘ the_pen

 PageNumber += 1
 e.HasMorePages = PageNumber <= 3
 End Sub
End Class

The code declares a PrintDocument object named MyPrintDocument. It uses the WithEvents
keyword, so it can easily catch the object’s events.

Next, the code defi nes the variable PageNumber. It uses this variable later to keep track of the page
it is printing.

If the user clicks the Print Preview button, the btnPrintPreview_Click event handler resets
PageNumber to 1, assigns MyPrintDocument to a new PrintDocument object, sets the
PrintPreviewDialog object’s Document property equal to the new PrintDocument object, and
invokes the dialog box’s ShowDialog method.

If the user clicks the Print Dialog button, the btnPrintDialog_Click event handler resets
PageNumber to 1, assigns MyPrintDocument to a new PrintDocument object, sets the PrintDialog
object’s Document property equal to the new PrintDocument object, and calls the dialog box’s
ShowDialog method.

If the user clicks the Print Now button, the btnPrintNow_Click event handler resets PageNumber to
1, assigns MyPrintDocument to a new PrintDocument object, and calls its Print method.

In all three cases, the PrintDocument object raises its PrintPage event when it is ready to print a
page. The PrintPage event handler shown here demonstrates several techniques that are worth
mentioning briefl y.

The e.Graphics parameter holds a reference to the Graphics object that the event handler should use
to produce the printed page. The section “Graphics Objects” later in this chapter says more about
Graphics objects.

The event handler starts by setting the Graphics object’s SmoothingMode property to AntiAlias.
That makes the object produce smoother results when it draws lines, ellipses, and other shapes. This
slows drawing slightly but, unless the shapes you’re drawing are extremely complex, it doesn’t take
too much extra time and the result is usually worth it.

Next, the event handler sets the Graphics object’s TextRenderingHint property to AntiAliasGridFit.
This also slows drawing somewhat but usually makes text appear smoother (except for very small
fonts).

The event handler then creates a large 300-point font. Like many graphical classes including pens
and brushes, the Font class implements the IDisposable method so the program creates the font in a
Using statement so its resources are automatically freed when the Using block ends.

Inside the Using block, the program creates a StringFormat object. It sets that object’s Alignment
and LineAlignment properties to Center to center text vertically and horizontally. The code
then calls the Graphics object’s DrawString method to draw the current page number. It passes

534 ❘ CHAPTER 27 PRINTING

DrawString the page’s MarginBounds so it knows to place the text inside the page’s margins. It also
passes DrawString the StringFormat object to make it center the text vertically and horizontally
within the MarginBounds.

The event handler then creates a 10-pixel-wide black pen. Depending on the current page number,
the code draws a triangle, rectangle, or diamond. The following sections provide a bit more
information about how the Graphics object’s drawing methods work.

After it has drawn the page, the code increments PageNumber and sets e.HasMorePages to True
if it has not yet printed all three pages. Figure 27-1 shows the program displaying its print preview
dialog box.

DRAWING BASICS

The previous section describes the UsePrintPreview example program, which draws some simple
shapes and text. It focuses mostly on the PrintDocument events that support the printing process,
however, and glosses over exactly how the graphics are drawn.

A program uses three things to produce graphics: a Graphics object, pens, and brushes. It uses those
things whether the output should be printed on a printer, displayed on the screen, or drawn into an
image fi le such as a bitmap or JPG fi le.

The following sections describe Graphics objects, pens, and brushes.

Graphics Objects

A Graphics object represents a drawing surface. You can think of it as the canvas or paper on which
the program will draw.

The Graphics class provides many methods for drawing lines, rectangles, curves, and other
shapes. The following table summarizes these methods.

METHOD DESCRIPTION

DrawArc Draws an arc of an ellipse.

DrawBezier Draws a Bézier curve.

DrawBeziers Draws a series of Bézier curves.

DrawClosedCurve Draws a smooth closed curve that joins a series of points, connecting the

fi nal point to the fi rst point.

DrawCurve Draws a smooth curve that joins a series of points. This is similar to a

Draw ClosedCurve, except that it doesn’t connect the fi nal point to the

fi rst point.

DrawEllipse Draws an ellipse. (To draw a circle, draw an ellipse with equal width

and height.)

Drawing Basics ❘ 535

The methods listed in the preceding table draw the outline of something such as a line, rectangle,
or ellipse. The Graphics class also provides corresponding methods that fi ll many of these shapes.
For example, the DrawRectangle method outlines a rectangle, and the corresponding FillRectangle
method fi lls a rectangle. The fi lling methods include FillClosedCurve, FillEllipse, FillPath, FillPie,
FillPolygon, FillRectangle, and FillRectangles.

The “Draw” methods take a pen as a parameter and use that pen to determine how the outline is
drawn. In contrast, the “Fill” methods take a brush as a parameter and use the brush to decide how
to fi ll the area.

The one exception is the DrawString method. Even though its name begins with “Draw,” this
method takes a brush as a parameter and uses it to fi ll the text. The following two sections describe
pens and brushes in greater detail.

See the online help for specifi c information about the Graphics class’s drawing and fi lling methods.
You can fi nd links to the pages describing these methods at the Graphics class’s web page http://
msdn.microsoft.com/library/system.drawing.graphics.

METHOD DESCRIPTION

DrawIcon Draws an icon.

DrawIconUnstretched Draws an icon without scaling. If you know that you will not resize the icon,

this may be faster than the DrawIcon method.

DrawImage Draws an image. Bitmap is a subclass of Image, so you can use this

method to draw a Bitmap.

DrawImageUnscaled Draws an image without scaling. If you know that you will not resize the

image, this may be faster than the DrawImage method.

DrawLine Draws a line.

DrawLines Draws a series of connected lines. If you need to draw a series of

connected lines, this is much faster than using DrawLine repeatedly.

DrawPath Draws a GraphicsPath object.

DrawPie Draws a pie slice taken from an ellipse.

DrawPolygon Draws a polygon. This is similar to DrawLines, except that it connects the

last point to the fi rst point.

DrawRectangle Draws a rectangle with horizontal and vertical sides.

DrawRectangles Draws a series of rectangles. If you need to draw a series of rectangles,

this is much faster than using DrawRectangle repeatedly.

DrawString Draws text.

http://msdn.microsoft.com/library/system.drawing.graphics
http://msdn.microsoft.com/library/system.drawing.graphics

536 ❘ CHAPTER 27 PRINTING

There are several ways a program can obtain a Graphics object on which to draw. For example,
a PrintDocument’s PrintPage event handler provides a parameter named e that has a property
named Graphics that is a Graphics object that represents the printout being generated. The
UsePrintPreviewDialog example program described earlier uses the following code to draw the
triangle shown on its fi rst printed page:

Dim points() As Point =
{
 New Point(e.MarginBounds.Left + e.MarginBounds.Width \ 2,
 e.MarginBounds.Top),
 New Point(e.MarginBounds.Right, e.MarginBounds.Bottom),
 New Point(e.MarginBounds.Left, e.MarginBounds.Bottom)
}
e.Graphics.DrawPolygon(the_pen, points)

This code creates an array of Points that defi ne the triangle’s corners. It then calls the e.Graphics
object’s DrawPolygon method, passing it a Pen object (pens are described in the next section) and
the Points.

Just as the PrintPage event provides a Graphics object on which a program can draw, so too does the
Paint event. When a form, PictureBox, or other control is hidden and then exposed, it raises a Paint
event. The e.Graphics parameter gives the program a Graphics object that it can use to redraw the
control’s contents. The DrawInPaintEvent example program, which is available for download on the
book’s website, demonstrates this technique.

The last common way to obtain a Graphics object is to create one that is associated with a Bitmap.
The program can then use the Graphics object to draw on the Bitmap. The DrawOnBitmap example
program, which is also available for download on the book’s website, uses the following code to
draw on a Bitmap and display it on the form’s background:

‘ Draw on a bitmap and use it as the form’s background.
Private Sub Form1_Load() Handles MyBase.Load
 Dim bm As New Bitmap(16, 16)
 Using gr As Graphics = Graphics.FromImage(bm)
 gr.DrawEllipse(Pens.Blue, 2, 2, 12, 12)
 End Using
 Me.BackgroundImage = bm
End Sub

When the program starts, this code creates a 16 � 16 pixel Bitmap and associates a Graphics object
with it. It draws a circle on the Bitmap and then sets the form’s BackgroundImage property to the
Bitmap.

Pens

The Pen object determines how lines are drawn. It determines the lines’ color, thickness, dash style,
join style, and end cap style.

A program can explicitly create Pen objects, but often it can simply use one of the more than 280
pens that are predefi ned by the Pens class. For example, the following code draws a rectangle using
a hot pink line that’s one pixel wide:

Drawing Basics ❘ 537

gr.DrawRectangle(Pens.HotPink, 10, 10, 50, 50)

The following table summarizes the Pen class’s constructors:

CONSTRUCTORS DESCRIPTION

Pen(brush) Creates a pen of thickness 1 using the indicated Brush.

Pen(color) Creates a pen of thickness 1 using the indicated color.

Pen(brush, thickness) Creates a pen with the indicated thickness (a Single) using a Brush.

Pen(color, thickness) Creates a pen with the indicated thickness (a Single) using the

indicated color.

The following table describes some of the Pen class’s most useful properties and methods:

PROPERTY OR METHOD PURPOSE

Brush Determines the Brush used to fi ll lines.

Color Determines the lines’ color.

CompoundArray Lets you draw lines that are striped lengthwise.

CustomEndCap Determines the line’s end cap.

CustomStartCap Determines the line’s start cap.

DashCap Determines the cap drawn at the ends of dashes. This can be Flat, Round, or

Triangle.

DashOff set Determines the distance from the start of the line to the start of the fi rst dash.

DashPattern An array of Singles that specifi es a custom dash pattern. The array entries

tell how many pixels to draw, skip, draw, skip, and so forth. Note that these

values are scaled if the pen is not one pixel wide.

DashStyle Determines the line’s dash style. This value can be Dash, DashDot,

DashDotDot, Dot, Solid, or Custom. If you set the DashPattern property, this

value is set to Custom. Note that the dashes and gaps between them are

scaled if the pen is not one pixel wide.

EndCap Determines the cap used at the end of the line. This value can be

ArrowAnchor, DiamondAnchor, Flat, NoAnchor, Round, RoundAnchor,

Square, SquareAnchor, Triangle, and Custom. If LineCap is Custom, you

should use a CustomLineCap object to defi ne the cap.

LineJoin Determines how lines are joined by methods that draws connected lines such

as DrawLines or DrawPolygon. This value can be Bevel, Miter, and Round.

continues

538 ❘ CHAPTER 27 PRINTING

PROPERTY OR METHOD PURPOSE

SetLineCap Specifi es the Pen class’s StartCap, EndCap, and LineJoin properties at the

same time.

StartCap Determines the cap used at the start of the line.

Width The width of the pen.

The DrawInPaintEvent example program, which is available for download on the book’s website,
uses the following code to draw two shapes on the program’s form:

Private Sub Form1_Paint(sender As Object, e As PaintEventArgs) Handles Me.Paint
 e.Graphics.SmoothingMode = Drawing2D.SmoothingMode.AntiAlias

 ‘ Draw a dashed ellipse.
 Using ellipse_pen As New Pen(Color.Black, 5)
 ellipse_pen.DashStyle = Drawing2D.DashStyle.DashDotDot
 e.Graphics.DrawEllipse(ellipse_pen, 50, 50, 150, 100)
 End Using

 ‘ Draw a polygon.
 Using polygon_pen As New Pen(Color.Gray, 10)
 polygon_pen.LineJoin = Drawing2D.LineJoin.Bevel
 Dim points() As Point =
 {
 New Point(20, 20),
 New Point(200, 20),
 New Point(100, 50),
 New Point(230, 190),
 New Point(20, 150)
 }
 e.Graphics.DrawPolygon(polygon_pen, points)
 End Using
End Sub

The code creates a black pen of thickness 5. It sets the pen’s DashStyle
property to DashDotDot and then draws an ellipse with it.

The code then creates a gray pen of thickness 10. It sets the pen’s
LineJoin property to Bevel so line joins are beveled and draws a
polygon with it. Figure 27-2 shows the result.

Brushes

The Brush object determines how areas are fi lled when you draw
them using the Graphics object’s methods FillClosedCurve,
FillEllipse, FillPath, FillPie, FillPolygon, FillRectangle, and
FillRectangles. Different types of Brushes fi ll areas with solid colors,
hatch patterns, and color gradients.

(continued)

FIGURE 27-2: The DrawIn-

PaintEvent program

demonstrates dashed lines

and beveled line joins.

Drawing Basics ❘ 539

The Brush class is an abstract or MustInherit class, so you cannot make instances of the Brush class
itself. Instead, you can create instances of one of the derived classes SolidBrush, TextureBrush,
HatchBrush, LinearGradientBrush, and PathGradientBrush. The following table briefl y describes
these classes:

CLASS PURPOSE

SolidBrush Fills areas with a single solid color

TextureBrush Fills areas with a repeating image

HatchBrush Fills areas with a repeating hatch pattern

LinearGradientBrush Fills areas with a linear gradient of two or more colors

PathGradientBrush Fills areas with a color gradient that follows a path

The BrushSamples example program, which is available for download on the book’s website, uses
the following code to demonstrate four kinds of brushes:

‘ Draw some brush samples.
Private Sub Form1_Paint(sender As Object, e As PaintEventArgs) Handles Me.Paint
 Dim rect As New Rectangle(10, 10, 100, 50)
 Using solid_brush As New SolidBrush(Color.Gray)
 e.Graphics.FillRectangle(solid_brush, rect)
 End Using
 rect.Y += 60

 Using gradient_brush As New LinearGradientBrush(
 rect, Color.Black, Color.Gray, 0)
 e.Graphics.FillRectangle(gradient_brush, rect)
 End Using

 rect = New Rectangle(120, 10, 100, 50)
 Using texture_brush As New TextureBrush(My.Resources.smile)
 e.Graphics.FillRectangle(texture_brush, rect)
 End Using
 rect.Y += 60

 Using hatch_brush As New HatchBrush(
 HatchStyle.DiagonalBrick, Color.Black, Color.White)
 e.Graphics.FillRectangle(hatch_brush, rect)
 End Using
End Sub

This example uses SolidBrush, LinearGradientBrush, TextureBrush,
and HatchBrush objects to fi ll four rectangles. You can see the result in
Figure 27-3.

You can fi nd more information about the brush classes at http://msdn
.microsoft.com/library/system.drawing.brush.aspx.

FIGURE 27-3: The

BrushSamples program

fi lls four rectangles with

diff erent kinds of brushes.

http://msdn.microsoft.com/library/system.drawing.brush.aspx
http://msdn.microsoft.com/library/system.drawing.brush.aspx

540 ❘ CHAPTER 27 PRINTING

A BOOKLET EXAMPLE

The UsePrintPreviewDialog example program described earlier draws some text centered on the
program’s three pages of printout. This section describes a more useful example that prints a long
series of paragraphs that may each use a different font size.

The PrintBooklet example program, which is available for download on the book’s website, fi gures
out how to break the text into pages. It assumes that you will print the pages double-sided and then
later staple the results into a booklet. To allow extra room for the staples, the program adds a gutter
to the margin of each page on the side where the staples will be. The program assumes that you will
place the fi rst page on the outside of the booklet, so it adds the gutter to the left margin on odd-
numbered pages and to the right margin on even-numbered pages. Finally, the program displays a
page number in the upper corner opposite the gutter.

In addition to demonstrating event handlers for the PrintDocument class’s events, this example
shows how to use StringFormat objects to align text and break lines at word boundaries, wrap text
within a target rectangle, and measure text to see how much will fi t in a target rectangle.

Figure 27-4 shows the PrintBooklet program’s print preview dialog box, so you can understand
the goals. If you look closely, you can see that the left margins on the fi rst and third pages and the
right margin on the second page are enlarged to allow room for the gutter. (Imagine the second
page printed on the back of the fi rst, so their gutters lie on the same edge of the paper.) You
can also see that the page numbers are in the upper corner on the side that doesn’t have the
gutter.

The program’s Print Preview, Print Dialog,
and Print Now buttons work much as
the UsePrintPreviewDialog program’s
buttons do, displaying the appropriate
dialog boxes or calling the PrintDocument
object’s Print method. The most interesting
differences between this program and the
UsePrintPreviewDialog program are in how
this program stores its text to print and how
it generates pages of printout.

The program uses the following
ParagraphInfo structure to store information
about the text it will print:

‘ Information about the paragraphs to print.
Private Structure ParagraphInfo
 Public FontSize As Integer
 Public Text As String
 Public Sub New(font_size As Integer, txt As String)
 FontSize = font_size
 Text = txt
 End Sub
End Structure

FIGURE 27-4: This preview shows text broken across

pages with a gutter and displaying page numbers along

the outside edges.

A Booklet Example ❘ 541

The following code shows how the program prepares the text it will print:

‘ The PrintDocument.
Private WithEvents MyPrintDocument As New PrintDocument

‘ The paragraphs.
Private AllParagraphs As List(Of ParagraphInfo)
Private ParagraphsToPrint As List(Of ParagraphInfo)
Private PagesPrinted As Integer

‘ Load the paragraph info.
Private Sub Form1_Load() Handles MyBase.Load
 ‘ Attach the PrintDocument to the
 ‘ PrintDialog and PrintPreviewDialog.
 dlgPrint.Document = MyPrintDocument
 dlgPrintPreview.Document = MyPrintDocument

 ‘ Make the text to print.
 AllParagraphs = New List(Of ParagraphInfo)
 AllParagraphs.Add(New ParagraphInfo(45, “28”))
 AllParagraphs.Add(New ParagraphInfo(36, “Printing”))
 ... Code to create other ParagraphInfo structures omitted...
End Sub

This code declares a PrintDocument object named MyPrintDocument. It uses the WithEvents
keyword so it will be easy to catch the object’s events.

The code then declares lists to hold all of the ParagraphInfo structures that it will print and those
that have not yet been printed.

When the program’s form loads, the code initializes these variables and adds a series of
ParagraphInfo structures containing the text it will print to the AllParagraphs collection.

When the PrintDocument object starts drawing a printout, the BeginPrint event handler shown in
the following code executes:

‘ Get ready to print pages.
Private Sub MyPrintDocument_BeginPrint() Handles MyPrintDocument.BeginPrint
 ‘ We have not yet printed any pages.
 PagesPrinted = 0

 ‘ Make a copy of the text to print.
 ParagraphsToPrint = New List(Of ParagraphInfo)
 For Each para_info As ParagraphInfo In AllParagraphs
 ParagraphsToPrint.Add(
 New ParagraphInfo(para_info.FontSize, para_info.Text))
 Next para_info
End Sub

This code resets the page number variable PagesPrinted. It then copies the ParagraphInfo structures
from the AllParagraphs list (which holds all of the data) into the ParagraphsToPrint list (which holds
those paragraphs that have not yet been printed).

542 ❘ CHAPTER 27 PRINTING

After the BeginPrint event handler fi nishes, the PrintDocument object starts printing pages. Before it
prints each page, the object raises its QueryPageSettings event. The program uses the following code
to catch this event and prepare the next page for printing:

‘ Set the margins for the following page.
Private Sub MyPrintDocument_QueryPageSettings(
 sender As Object, e As QueryPageSettingsEventArgs) _
 Handles MyPrintDocument.QueryPageSettings
 ‘ Use a 1 inch gutter (printer units are 100 per inch).
 Const gutter As Integer = 100

 ‘ See if the next page will be the first, odd, or even.
 If PagesPrinted = 0 Then
 ‘ First page. Increase the left margin.
 e.PageSettings.Margins.Left += gutter
 ElseIf (PagesPrinted Mod 2) = 0 Then
 ‘ Odd page. Shift the margins right.
 e.PageSettings.Margins.Left += gutter
 e.PageSettings.Margins.Right -= gutter
 Else
 ‘ Even page. Shift the margins left.
 e.PageSettings.Margins.Left -= gutter
 e.PageSettings.Margins.Right += gutter
 End If
End Sub

This code determines whether the next page will be odd or even numbered and adjusts the page’s
margin appropriately to create the gutter.

After each QueryPageSettings event, the PrintDocument object raises its PrintPage event to generate
the corresponding page. The following code shows the most complicated part of the program, the
PrintPage event handler:

‘ Print the next page.
Private Sub MyPrintDocument_PrintPage(sender As Object, e As PrintPageEventArgs) _
 Handles MyPrintDocument.PrintPage
 ‘ Increment the page number.
 PagesPrinted += 1

 ‘ Draw the margins (for debugging).
 ‘e.Graphics.DrawRectangle(Pens.Red, e.MarginBounds)

 ‘ Print the page number right justified
 ‘ in the upper corner opposite the gutter
 ‘ and outside of the margin.
 Dim x As Integer
 Using string_format As New StringFormat
 ‘ See if this is an odd or even page.
 If (PagesPrinted Mod 2) = 0 Then
 ‘ This is an even page.
 ‘ The gutter is on the right and
 ‘ the page number is on the left.
 x = (e.MarginBounds.Left + e.PageBounds.Left) \ 2
 string_format.Alignment = StringAlignment.Near

A Booklet Example ❘ 543

 Else
 ‘ This is an odd page.
 ‘ The gutter is on the left and
 ‘ the page number is on the right.
 x = (e.MarginBounds.Right + e.PageBounds.Right) \ 2
 string_format.Alignment = StringAlignment.Far
 End If

 ‘ Print the page number.
 Using the_font As New Font(“Times New Roman”, 20,
 FontStyle.Regular, GraphicsUnit.Point)
 e.Graphics.DrawString(PagesPrinted.ToString,
 the_font, Brushes.Black, x,
 (e.MarginBounds.Top + e.PageBounds.Top) \ 2,
 string_format)
 End Using ‘ the_font

 ‘ Draw the rest of the text left justified,
 ‘ wrap at words, and don’t draw partial lines.
 string_format.Alignment = StringAlignment.Near
 string_format.FormatFlags = StringFormatFlags.LineLimit
 string_format.Trimming = StringTrimming.Word

 ‘ Draw some text.
 Dim paragraph_info As ParagraphInfo
 Dim ymin As Integer = e.MarginBounds.Top
 Dim layout_rect As RectangleF
 Dim text_size As SizeF
 Dim characters_fitted As Integer
 Dim lines_filled As Integer
 Do While ParagraphsToPrint.Count > 0
 ‘ Print the next paragraph.
 paragraph_info = ParagraphsToPrint(0)
 ParagraphsToPrint.RemoveAt(0)

 ‘ Get the area available for this paragraph.
 layout_rect = New RectangleF(
 e.MarginBounds.Left, ymin,
 e.MarginBounds.Width,
 e.MarginBounds.Bottom - ymin)
 ‘ Work around bug where MeasureString
 ‘ thinks characters fit if height <= 0.
 If layout_rect.Height < 1 Then layout_rect.Height = 1

 ‘ See how big the text will be and
 ‘ how many characters will fit.
 ‘ Get the font.
 Using the_font As New Font(“Times New Roman”,
 paragraph_info.FontSize, FontStyle.Regular, GraphicsUnit.Point)
 text_size = e.Graphics.MeasureString(
 paragraph_info.Text, the_font,
 New SizeF(layout_rect.Width, layout_rect.Height),
 string_format, characters_fitted, lines_filled)

544 ❘ CHAPTER 27 PRINTING

 ‘ See if any characters will fit.
 If characters_fitted > 0 Then
 ‘ Draw the text.
 e.Graphics.DrawString(paragraph_info.Text,
 the_font, Brushes.Black,
 layout_rect, string_format)

 ‘ Debugging: Draw a rectangle around the text.
 ‘e.Graphics.DrawRectangle(Pens.Green,
 ‘ layout_rect.Left,
 ‘ layout_rect.Top,
 ‘ text_size.Width,
 ‘ text_size.Height)

 ‘ Increase the location where we can start.
 ‘ Add a little interparagraph spacing.
 ymin += CInt(text_size.Height +
 e.Graphics.MeasureString(“M”, the_font).Height / 2)
 End If
 End Using ‘ the_font

 ‘ See if some of the paragraph didn’t fit on the page.
 If characters_fitted < Len(paragraph_info.Text) Then
 ‘ Some of the paragraph didn’t fit.
 ‘ Prepare to print the rest on the next page.
 paragraph_info.Text = paragraph_info.Text.
 Substring(characters_fitted)
 ParagraphsToPrint.Insert(0, paragraph_info)

 ‘ That’s all that will fit on this page.
 Exit Do
 End If
 Loop
 End Using ‘ string_format

 ‘ If we have more paragraphs, we have more pages.
 e.HasMorePages = (ParagraphsToPrint.Count > 0)
End Sub

The PrintPage event handler starts by incrementing the number of pages printed. It then includes
commented code to draw a rectangle around the page’s margins. When you are debugging a printing
routine, drawing this rectangle can help you see where your drawing is in relation to the page’s
margins.

Next, the routine creates a font for the page number. Depending on whether this page is odd or even
numbered, it calculates an X coordinate halfway between the non-gutter margin and the edge of the
printable page. It sets a StringFormat object’s Alignment property to make numbers in the left margin
left-justifi ed and to make numbers in the right margin right-justifi ed. It then draws the page number
at the calculated X position, halfway between the top margin and the paper’s top printable boundary.

The program then prepares to draw the text for this page. It sets the StringFormat object’s
properties so that the text is left-justifi ed and lines wrap at word boundaries instead of in the middle
of words.

Summary ❘ 545

It then sets the FormatFlags property to LineLimit. If only part of a line of text would fi t vertically
on the page, this makes Visual Basic not draw the line rather than draw just the top halves of its
letters.

After this preparation, the program sets variable ymin to the minimum Y coordinate where the
routine can draw text. Initially, this is the page’s top margin. It then enters a Do loop to process as
much text as will fi t on the page.

Inside the loop, the program takes the fi rst ParagraphInfo structure from the ParagraphsToPrint
list and makes a font that has the right size for that paragraph. It creates a RectangleF structure
representing the remaining area on the page. This includes the area between the left and right
margins horizontally, and between ymin and the bottom margin vertically.

The program then uses the e.Graphics object’s MeasureString method to see how much space the
next piece of text will need. It passes MeasureString the layout rectangle’s size and the StringFormat
object so Visual Basic can decide how it will need to wrap the paragraph’s text when it draws it. The
code also passes in the variables characters_fitted and lines_filled. These parameters are
passed by reference so MeasureString can fi ll in the number of characters and lines it could draw
within the target rectangle.

The routine then checks characters_fi tted to see if any characters will fi t in the available area. If any
characters can fi t, the program draws the paragraph. Commented code draws a rectangle around
the text to help with debugging. The program increases ymin by the paragraph’s printed height plus
half of the font’s height to provide a break between paragraphs.

Next, the program determines whether the entire paragraph fi ts in the target rectangle. If some of
the paragraph did not fi t, the program stores the remaining text in the ParagraphInfo structure and
puts the structure back at the beginning of the ParagraphsToPrint list so it can be printed on the
next page. The code then exits the Do loop because the current page is full.

When the page is full or the ParagraphsToPrint list is empty, the PrintPage event handler is fi nished.
The code sets e.HasMorePages to True if m_ParagraphsToPrint is not empty.

Finally, when the PrintDocument has fi nished printing the whole document, the following EndPrint
event handler executes:

‘ Clean up.
Private Sub MyPrintDocument_EndPrint() Handles MyPrintDocument.EndPrint
 ParagraphsToPrint = Nothing
End Sub

The EndPrint event handler cleans up by setting the ParagraphsToPrint variable to Nothing, freeing
up the list’s memory. In this program, freeing the list is a small matter. In a program that allocated
more elaborate data structures, cleaning up in this event handler might be more important.

SUMMARY

The PrintDocument object sits at the heart of the Visual Basic printing process. A program makes
a PrintDocument object and then responds to its BeginPrint, QueryPageSettings, PrintPage, and
EndPrint events to generate a printout.

546 ❘ CHAPTER 27 PRINTING

The PrintDocument object’s Print method immediately generates a printout. You can also attach the
PrintDocument to a PrintDialog, PrintPreviewDialog, or PrintPreviewControl and use those objects
to display previews and generate printouts.

This chapter described printing in general. Using the Graphics object provided by the
PrintDocument object’s PrintPage event, you can print lines, curves, text, images, and anything else
you can draw to the screen.

Appendix I, “Visual Basic Power Packs,” describes some additional tools that you can download
for free. The Printer Compatibility Library and the PrintForm component give you new options for
printing. See Appendix I for more information.

Most of the programs described in this book so far are relatively self-contained. They take input
from the user, perform some calculations, and display the results. Only a few chapters have
interacted much with the outside system. The two exceptions are Chapter 22, which explained how
to use drag and drop and the clipboard to interact with other programs, and this chapter, which
explained how to interact with printers.

The programs described earlier in this book interact only with the user. Printing is one way a
program can interact with some other part of the system. The next chapter, “Confi guration and
Resources,” describes some other ways that a Visual Basic program can interact with the system
by storing confi guration and resource values for use at run time. Some of the most useful of these
methods include environment variables, the Registry, confi guration fi les, and resource fi les.

28
Confi guration and Resources

WHAT’S IN THIS CHAPTER

 ➤ The My namespace

 ➤ Environment variables

 ➤ The registry

 ➤ Confi guration fi les

 ➤ Resource fi les

 ➤ The Application object

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter is divided
into the following major examples:

 ➤ ListEnviron

 ➤ Confi gFile

 ➤ UseResources

 ➤ EmbeddedResources

 ➤ LocalizedUseGerman

THE NEED FOR CONFIGURATION

A very simple application performs a well-defi ned task that changes minimally over time. You
may not need to confi gure such an application for different circumstances.

More complex applications, however, must be confi gured to meet different conditions. For
example, the application might display different data for different kinds of users (such as

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

548 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

data-entry clerks, supervisors, managers, and developers). Similarly, you might confi gure an applica-
tion for various levels of support. You might have different confi gurations for trial, basic, professional,
and enterprise versions.

The application may also need to save state information between sessions. It might remember the
types of forms that were last running, their positions, and their contents. The next time the program
runs, it can restore those forms so the user can get back to work as quickly as possible.

The .NET Framework provides many tools for storing and using application confi guration and
resource information. This chapter describes some of these tools. It starts by describing the My
namespace that was invented to make these tools easier to fi nd. It then tells how an application can
use environment variables, the registry, confi guration fi les, resource fi les, and the Application object
to save and restore confi guration information.

This chapter does not explain how to work with disk fi les more directly. Databases, XML fi les,
text fi les, and other disk fi les are generally intended for storage of larger amounts of data, rather
than simple confi guration and resource information. Those topics are described more thoroughly in
Chapters 19, “Database Controls and Objects,” and 30, “Filesystem Objects.”

MY

In older versions of Visual Basic .NET, programmers discovered that many common tasks were dif-
fi cult to perform. For example, many programs get the name of the user logged on to the computer,
read a text fi le into a string, get the program’s version number, or examine all of the application’s
currently loaded forms. Although you could accomplish all of these tasks in early versions of Visual
Basic .NET, doing so was awkward.

To make these common tasks easier, the My namespace was introduced to provide shortcuts for
basic chores. For example, to read the text in a fi le in Visual Basic .NET 2003, you must create some
sort of object that can work with a fi le such as a StreamReader, use the object to read the fi le (the
ReadToEnd method for a StreamReader), and then dispose of the object. The following code shows
how you might do this in Visual Basic .NET 2003:

Dim stream_reader As New IO.StreamReader(file_name)
Dim file_contents As String = stream_reader.ReadToEnd()

stream_reader.Close()

This isn’t too diffi cult, but it does seem more complicated than such a simple everyday task should be.

The My namespace provides a simpler method for reading a fi le’s contents. The My.Computer
.FileSystem.ReadAllText method reads a text fi le in a single statement. The following statement
reads the text in the fi le C:\Temp\Test.txt:

Dim file_contents As String =
 My.Computer.FileSystem.ReadAllText(“C:\Temp\Test.txt”)

There is nothing new in the My namespace. All the tasks it performs you can already handle using
other methods. The My namespace just makes some things easier.

This section describes the My namespace and the shortcuts it provides.

My ❘ 549

Me and My

Some programmers confuse the Me object and the My namespace. Me is a reference to the object
that is currently executing code. If a piece of code is inside a particular class, Me is a reference to the
class object that is running.

For example, if the class is a form, then within the form’s code, Me returns a reference to the run-
ning form. If the form’s code must change the form’s BackColor property, it can use the Me object
to explicitly refer to its own form. It can also omit the keyword to refer to its form implicitly. That
means the following two statements are equivalent:

Me.BackColor = SystemColors.Control
BackColor = SystemColors.Control

If you build several instances of a class, the code in each instance gets a different value for Me. Each
instance’s Me object returns a reference to that instance.

On the other hand, My isn’t an object at all. It is a namespace that contains objects, values, routines,
and other namespaces that implement common functions. The My namespace is a single unique
entity shared by all of the code throughout the application.

It may help if you try not to think of the My namespace as a thing in and of itself. The
My namespace doesn’t do anything all alone. It needs to be paired with something within the
namespace. Think of My.Application, My.User, My.Computer, and so forth.

My Sections

The following table briefl y outlines the major sections within the My namespace. Other sections of
this chapter and Appendix S, “The My Namespace,” describe these sections in greater detail.

SECTION PURPOSE

My.Application Provides information about the current application: current directory,

culture, and assembly information (such as program version number, log,

splash screen, and forms)

My.Computer Controls the computer hardware and system software: audio, clock,

keyboard, clipboard, mouse, network, printers, registry, and fi lesystem

My.Forms Provides access to an instance of each type of Windows Form defi ned in

the application

My.Resources Provides access to the application’s resources: strings, images, audio,

and so forth

My.Settings Provides access to the application’s settings

My.User Provides access to information about the current user

My.WebServices Provides access to an instance of each XML web service referenced by

the application

550 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

ENVIRONMENT

Environment variables are values that a program can use to learn information about the system.
There are three types of environment variables that apply at the system, user, and process levels. As
you may guess from their names, system-level variables apply to all processes started on the system,
user-level variables apply to processes started by a particular user, and process-level variables apply
to a particular process and any other processes that it starts.

Environment variables may indicate such things as the name of the operating system, the location of
temporary directories, the user’s name, and the number of processors the system has. You can also
store confi guration information in environment variables for your programs to use.

Environment variables are loaded when a process starts, and they are inherited by any process
launched by the initial process. During Visual Basic development, that means the variables are
loaded when you start Visual Studio and they are inherited by the program you are working on
when you start it. If you make changes to the system’s environment variables, you need to close and
reopen Visual Studio before your program will see the changes.

A program can also create temporary process-level variables that are inherited by launched pro-
cesses and that disappear when the original process ends.

Visual Basic provides a couple of tools for working with the application’s environment. The follow-
ing sections describe two: the Environ function and the System.Environment object. Before you can
read environment variables, however, you should know how to set their values.

Setting Environment Variables

Environment variables are normally set on a systemwide basis before the program begins. In older
operating systems, batch fi les such as autoexec.bat set these values. More recent systems provide
Control Panel tools to set environment variables.

Newer systems also use an autoexec.nt fi le to set environment variables that apply only to com-
mand-line (console) applications so they don’t affect GUI applications. Sometimes you can use this
fact to your advantage by giving different kinds of applications different environment settings.

To set environment variables in newer versions of Windows, open the Control Panel and search for
the keyword “environment.” In Windows 8, open the search tool and search the Settings category
for “environment.”

You should fi nd two links with titles similar to “Edit environment variables for your account” and
“Edit the system environment variables.” Click one of those links to display the System Properties
dialog box’s Advanced tab. Click the Environment Variables button to add, remove, and modify
environment variables.

Be careful to use the variables properly. Use system variables when a value should apply to all pro-
cesses started by all users, user variables when a value should apply to all processes started by a
particular user, and process variables when a value should apply to a process and any processes that
it starts.

Environment ❘ 551

REMEMBER TO REFRESH

Remember that Visual Studio won’t see environment variable changes that you
make after it is running. You need to close and reopen Visual Studio before your
program will see the changes.

Using Environ

At run time, a Visual Basic application can use the Environ function to retrieve environment
 variable values. If you pass this function a number, it returns a string giving the statement that
assigns the corresponding environment variable. For example, Environ(1) might return the
 following string:

ALLUSERSPROFILE=C:\ProgramData

You should pass the function a number between 1 and 255. Environ returns a zero-length string if
the number does not correspond to an environment variable. The following code uses this fact to list
all of the application’s environment variables. When it fi nds a variable that has zero length, it knows
it has read all of the variables with values.

For i As Integer = 1 To 255
 If Environ(i).Length = 0 Then Exit For
 Debug.WriteLine(i & “: “ & Environ(i))
Next i

Example program ListEnviron uses similar code to display all of the environment variables’
 assignment statements. Example program ListEnvironValues uses the String class’s Split method to
separate the environment variables’ names and values and displays them in separate columns in a
ListView control.

If you pass the Environ function the name of an environment variable, the function returns the
 variable’s value or Nothing if the variable does not exist. For example, the following code displays a
greeting that includes the names of the user and the computer:

MessageBox.Show(“Welcome “ & Environ(“USERNAME”) & “ on “ & Environ(“COMPUTERNAME”))

Using System.Environment

The Environ function is easy to use, but it’s not very fl exible. It can read environment variable values
but it cannot create or modify them.

The System.Environment object provides methods for getting and setting process-level environment
variables. It also provides properties and methods for working with many other items in the
application’s environment. The following table describes the Environment object’s most useful
properties.

552 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

PROPERTY PURPOSE

CommandLine Returns the process’s command line.

CurrentDirectory Gets or sets the fully qualifi ed path to the current directory.

ExitCode Gets or sets the process’s exit code. If the program starts from a Main

function, that function’s return value also sets the exit code.

HasShutdownStarted Returns True if the Common Language Runtime is shutting down.

MachineName Returns the computer’s NetBIOS name.

NewLine Returns the environment’s defi ned new line string. For example, this might

be a carriage return followed by a line feed.

OSVersion Returns an OperatingSystem object containing information about the

operating system. This object provides the properties ServicePack

(name of the most recent service pack installed), Version (includes Major,

Minor, Build, and Revision; ToString combines them all), VersionString

(combines the operating system name, version, and most recent service

pack), and Platform, which can be UNIX, Win32NT (Windows NT or later),

Win32S (runs on 16-bit Windows to provide access to 32-bit applications),

Win32Windows (Windows 95 or later), or WinCE.

ProcessorCount Returns the number of processors on the computer.

StackTrace Returns a string describing the current stack trace.

SystemDirectory Returns the system directory’s fully qualifi ed path.

TickCount Returns the number of milliseconds that have elapsed since the system

started.

UserDomainName Returns the current user’s network domain name.

UserInteractive Returns True if the process is interactive. This only returns False if the

application is a service process or web service.

UserName Returns the name of the user who started the process.

Version Returns a Version object describing the Common Language Runtime.

This object provides the properties Major, Minor, Build, and Revision. Its

ToString method combines them all.

WorkingSet Returns the amount of physical memory mapped to this process in bytes.

Example program SystemEnvironment displays the values of many of the Environment object’s
properties.

The following table describes the Environment object’s most useful methods.

Registry ❘ 553

METHOD PURPOSE

Exit Ends the process immediately. Form Closing and Closed event

handlers do not execute.

ExpandEnvironmentVariables Replaces environment variable names in a string with their

values. For example, the following code displays the current

user’s name: MessageBox.Show(Environment

.ExpandEnvironmentVariables(“I am %username%.”)).

GetCommandLineArgs Returns an array of strings containing the application’s command-line

arguments. The fi rst entry (with index 0) is the name of the program’s

executable fi le.

GetEnvironmentVariable Returns an environment variable’s value.

GetEnvironmentVariables Returns an IDictionary object containing the names and values of

all environment variables.

GetFolderPath Returns the path to a system folder. This method’s parameter is

a SpecialFolder enumeration value such as Cookies, Desktop,

SendTo, or Recent. See the online help for a complete list of

available folders.

GetLogicalDrives Returns an array of strings containing the names of the logical

drives on the current computer.

SetEnvironmentVariable Creates, modifi es, or deletes an environment variable.

The SetEnvironmentVariable method lets you set environment variables at the system, user,
and process level. If you set a variable’s value to Nothing, this method deletes the variable. For
 system and user values, it updates the registry appropriately to set the values. Example program
EnvironmentVariableLevels uses SetEnvironmentVariable to get and set variable values. For
more information on the SetEnvironmentVariable method, see http://msdn2.microsoft.com/
library/96xafkes.aspx.

NOTE Note that a program needs privilege to write to the registry to set a
 system-level environment variable.

REGISTRY

The system registry is a hierarchical database that stores values for applications on the system. The
hierarchy’s root is named MyComputer and is divided into the several subtrees that are also called
hives. Which hives are available depends on your operating system. The following table summarizes
the most commonly available hives. (The “HKEY” part of each name stands for “hive key.”)

http://msdn2.microsoft.com/library/96xafkes.aspx
http://msdn2.microsoft.com/library/96xafkes.aspx

554 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

REGISTRY BRANCH CONTAINS

HKEY_CLASSES_ROOT Defi nitions of types or classes, and properties associated with those

types.

HKEY_CURRENT_CONFIG Information about the system’s current hardware confi guration.

HKEY_CURRENT_USER The current user’s preferences (such as environment variable settings,

program group information, desktop settings, colors, printers, network

connections, and preferences specifi c to applications). Each user has

separate HKEY_CURRENT_USER values. This is usually the subtree

where a Visual Basic application stores and retrieves its settings.

HKEY_DYN_DATA Performance data for Windows 95, 98, and Me. (Yes, this is a bit

 outdated but this hive is still there.)

HKEY_LOCAL_MACHINE Information about the computer’s physical state including bus type,

system memory, installed hardware and software, and network logon

and security information.

HKEY_USERS Default confi guration information for new users and the current user’s

confi guration.

Depending on your operating system, the registry may also contain the unsupported keys
HKEY_PERFORMANCE_DATA, HKEY_PERFORMANCE_NLSTEXT, and HKEY_
PERFORMANCE_TEXT.

Many applications store information in the registry. The HKEY_CURRENT_USER subtree is
 particularly useful for storing individual users’ preferences and other confi guration information.

Lately, the registry has gone out of style for saving confi guration information. Microsoft now
 recommends that you store this kind of data locally within a user’s data storage area. This makes
sense because it makes it easier to copy the settings (they’re just fi les), helps reduce clutter in
the registry, and reduces the chances that mistakes will corrupt the registry. You can store this
in formation in confi guration fi les (see the section “Confi guration Files” later in this chapter) or
XML fi les.

Visual Basic provides two main ways to access the registry. First, you can use the Visual Basic native
registry methods. Second, you can use the tools in the My.Computer.Registry namespace. These two
methods are described in the following sections.

You can also use API functions to manipulate the registry. These are more complicated and not
 generally necessary because the My.Computer.Registry namespace contains some very powerful
tools, so they are not described here.

Native Visual Basic Registry Methods

Visual Basic provides four methods for saving and reading registry values for a particular application:
SaveSetting, GetSetting, GetAllSettings, and DeleteSetting.

Registry ❘ 555

The SaveSetting method saves a value into a registry key. This routine takes as parameters the name
of the application, a section name, the setting’s name, and the setting’s value. For example, the fol-
lowing code saves the value stored in the MapDirectory variable in the RegistrySettings application’s
Confi g section with the name MapDirectory:

SaveSetting(“RegistrySettings”, “Config”, “MapDirectory”,
 MapDirectory)

SaveSetting automatically creates the application and section areas in the registry if they don’t
already exist.

This value is saved at the following registry location. This is all one name; it just doesn’t fi t on one
line here:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\
 RegistrySettings\Config\MapDirectory

If you use the Visual Basic SaveSetting, GetSetting, GetAllSettings, and DeleteSetting methods, you
don’t need to worry about the fi rst part of this registry path. You only need to remember the applica-
tion name, section name, and setting name.

POWERFUL PRIVILEGES

Windows protects the registry so that you cannot inadvertently damage critical
 values. If you mess up some values, you can wreak havoc on the operating system,
and even make the system unbootable.

To prevent possible chaos, newer versions of Windows don’t let you edit some parts
of the registry without elevated privileges. Fortunately, the part of the registry used
by these routines is accessible to normal users, so you don’t need elevated privileges
to use SaveSetting, GetSetting, GetAllSettings, or DeleteSetting.

The GetSetting function retrieves a registry value. It takes as parameters the application name,
section name, and setting name you used to save the value. It can optionally take a default value to
return if the setting doesn’t exist in the registry. The following code displays the value saved by the
previous call to SaveSetting. If no value is saved in the registry, it displays the string <none>.

MessageBox.Show(GetSetting(“RegistrySettings”, “Config”, “MapDirectory”,
 “<none>”))

The GetAllSettings function returns a two-dimensional array of name and value pairs for a registry
section. The following code uses GetAllSettings to fetch the values stored in the RegistrySettings
application’s Confi g section. It loops through the results, displaying the setting names and values.

Dim settings As String(,) = GetAllSettings(“RegistrySettings”, “Config”)
For i As Integer = 0 To settings.GetUpperBound(0)
 Debug.WriteLine(settings(i, 0) & “ = “ & settings(i, 1))
Next i

556 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

If an application needs to use all of the settings in a section, GetAllSettings may be faster than using
GetSetting repeatedly.

The DeleteSetting method removes a setting, a section, or an entire application’s setting area from
the registry. The following code shows how to remove each of those kinds of items:

‘ Remove the RegistrySettings/Config/CurrentDirectory setting.
DeleteSetting(“RegistrySettings”, “Config”, “CurrentDirectory”)

‘ Remove the RegistrySettings/Config section.
DeleteSetting(“RegistrySettings”, “Config”)

‘ Remove all of the RegistrySettings application’s settings.
DeleteSetting(“RegistrySettings”)

NEATNESS COUNTS

As part of its uninstallation procedure, a program should remove any registry
entries it has made. All too often, programs leave the registry cluttered with gar-
bage. This not only makes it harder to fi gure out what real values the registry con-
tains but can also slow the system down.

In an attempt to combat this problem, Microsoft is promoting XCopy compatibility,
where applications store values in confi guration fi les instead of the registry. Then
you can easily copy and remove these fi les rather than modify the registry.

Example program RegistrySettings demonstrates each of Visual Basic’s Registry commands.

My.Computer.Registry

The My.Computer.Registry namespace provides objects that manipulate the registry. My.Computer
.Registry has seven properties that refer to objects of type RegistryKey. The following table lists
these objects and the corresponding registry subtrees:

MY.COMPUTER.REGISTRY PROPERTY REGISTRY SUBTREE

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfi g HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

DynData HKEY_DYNAMIC_DATA

LocalMachine HKEY_LOCAL_MACHINE

PerformanceData HKEY_PERFORMANCE_DATA

Users HKEY_USERS

Registry ❘ 557

REGISTRY RESTRICTIONS

Some parts of the registry are off limits to programs running as normal users
in recent versions of Windows. Normal users can modify values in HKEY_
CURRENT_USER, but to do more than look in other areas, a program would
probably need to run with elevated privileges. For more information on privilege
elevation, see Microsoft’s article “User Account Control Step-by-Step Guide” at
http://technet.microsoft.com/library/cc709691.aspx.

The program can use these RegistryKey objects to work with the corresponding registry subtree. The
following table describes the most useful properties and methods provided by the RegistryKey class:

PROPERTY OR METHOD PURPOSE

Close Closes the key and writes it to disk if it has been modifi ed.

CreateSubKey Creates a new subkey or opens an existing subkey within this key.

DeleteSubKey Deletes the specifi ed subkey. This method will delete the subkey if it

contains values, but not if it contains other subkeys. The subkey to be

deleted need not be a direct child of this key. For example, the following

code uses the CurrentUser RegistryKey object to delete the descendant

key Software\VB and VBA Program Settings\MyComputerRegistry\Confi g:

My.Computer.Registry.CurrentUser.DeleteSubKey(“Software\

VB and VBA Program Settings\RegistrySettings\Config”)

DeleteSubKeyTree Recursively deletes a subkey and any child subkeys it contains. The sub-

key to be deleted need not be a direct child of this key.

DeleteValue Deletes a value from the key.

Flush Writes any changes to the key into the registry.

GetSubKeyNames Returns an array of strings giving subkey names.

GetValue Returns the value of a specifi ed value within this key.

GetValueKind Returns the type of a specifi ed value within this key. This can be Binary,

DWord, ExpandString, MultiString, QWord, String, or Unknown.

GetValueNames Returns an array of strings giving the names of all of the values con-

tained within the key.

Name Returns the key’s registry path.

OpenSubKey Returns a RegistryKey object representing a descendant key. Parameters

give the subkey name, and indicate whether the returned RegistryKey

should allow you to modify the subkey.

continues

http://technet.microsoft.com/library/cc709691.aspx

558 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

PROPERTY OR METHOD PURPOSE

SetValue Sets a value within the key.

SubKeyCount Returns the number of subkeys that are this key’s direct children.

ToString Returns the key’s name.

ValueCount Returns the number of values stored in this key.

The following example opens the HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\RegistrySettings\Confi g key. It reads the CurrentDirectory value from that key using the
default value C:\ and saves the result in the variable current_directory. It closes the key and then
uses the DeleteSubKey method to delete the RegistrySettings application’s Confi g section.

‘ Open the application’s Config subkey.
Dim config_section As Microsoft.Win32.RegistryKey =
 My.Computer.Registry.CurrentUser.OpenSubKey(
 “Software\VB and VBA Program Settings\RegistrySettings\Config\”)

‘ Get the CurrentDirectory value.
Dim current_directory As String =
 CType(config_section.GetValue(“CurrentDirectory”, “C:\”), String)

‘ Close the subkey.
config_section.Close()

‘ Delete the application’s whole Config section.
My.Computer.Registry.CurrentUser.DeleteSubKey(
 “Software\VB and VBA Program Settings\RegistrySettings\Config”)

The following code shows the equivalent operations using the native registry methods of Visual
Basic:

 ‘ Get the CurrentDirectory value.
Dim current_directory As String =
GetSetting(“RegistrySettings”, “Config”, “CurrentDirectory”, “C:\”)

‘ Delete the application’s whole Config section.
DeleteSetting(“RegistrySettings”, “Config”)

It is generally easier to use the native registry methods of Visual Basic. Those methods work only
with values in the HKEY_CURRENT_USER\Software\VB and VBA Program Settings Registry
subtree, however. If you need to access keys and values outside of this subtree, you must use the
My.Computer.Registry objects.

Example program MyComputerRegistry demonstrates many useful My.Computer.Registry
 operations. It does the same things as program RegistrySettings mentioned in the previous section
except it uses My.Computer.Registry instead of Visual Basic’s native registry methods.

 (continued)

Confi guration Files ❘ 559

CONFIGURATION FILES

Confi guration fi les let you store information for a program to use at run time in a standardized
external fi le. You can change the values in the confi guration fi le, and the program will use the new
value the next time it starts. That enables you to change some of the application’s behavior without
needing to recompile the executable program.

One way to use confi guration fi les is through dynamic properties. Dynamic properties are automati-
cally loaded from the confi guration fi le at run time by Visual Basic.

Start by defi ning the settings you will bind to the dynamic properties. In Solution Explorer, double-
click My Project and select the Settings tab to see the property page shown in Figure 28-1. Use this
page to defi ne the settings that you will load at run time.

A setting’s scope can be Application or User. A setting with
Application scope is shared by all of the program’s users. Settings
with User scope are stored separately for each user so different users
can use and modify their own values.

Next, add a control to a form and select it. In the Properties window,
open the ApplicationSettings entry, click the PropertyBinding sub-
item, and click the ellipsis to the right to display a list of the control’s
properties.

Select the property that you want to load dynamically and click the
drop-down arrow on the right to see a list of defi ned settings that
you might assign to the property. Figure 28-2 shows the Application FIGURE 28-2: Use the drop-

down list to assign a setting

to the dynamic property.

FIGURE 28-1: Use this page to defi ne application settings.

560 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

Setting dialog box with this drop-down list displayed for a control’s Text property. From the list,
select the setting that you want to assign to the property.

Visual Studio adds the setting to the program’s confi guration fi le. If you open Solution Explorer and
double-click the app.confi g entry, you’ll see the new dynamic property.

The following text shows the confi guration setting sections of an App.config fi le. The userSettings
section defi nes the settings shown in Figure 28-1.

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
 ...
 <userSettings>
 <ConfigFile.My.MySettings>
 <setting name=”ForeColorName” serializeAs=”String”>
 <value>Blue</value>
 </setting>
 <setting name=”BackColorName” serializeAs=”String”>
 <value>Yellow</value>
 </setting>
 <setting name=”FontName” serializeAs=”String”>
 <value>Comic Sans MS</value>
 </setting>
 <setting name=”FontSize” serializeAs=”String”>
 <value>48</value>
 </setting>
 <setting name=”Font” serializeAs=”String”>
 <value>Comic Sans MS, 48pt</value>
 </setting>
 <setting name=”ResultText” serializeAs=”String”>
 <value>Result</value>
 </setting>
 <setting name=”ForeColorValue” serializeAs=”String”>
 <value>Blue</value>
 </setting>
 <setting name=”BackColorValue” serializeAs=”String”>
 <value>Yellow</value>
 </setting>
 </ConfigFile.My.MySettings>
 </userSettings>
</configuration>

When the application starts, Visual Basic loads the App.config fi le, reads the settings, and assigns
their values to any properties bound to them.

So far, this is just a very roundabout way to set the control’s property values. The real benefi t of this
method comes later when you want to change a setting. If you look in the compiled application’s
directory (normally the bin\Debug directory when you’re developing the program), you’ll fi nd a fi le
with the same name as the application but with a .config extension. If the application is called
ConfigFile.exe, then this fi le is called ConfigFile.exe.config.

If you open this fi le with any text editor and change the value of a setting, the program uses the new
value the next time it runs. For example, if you change the value of BackColorValue from Yellow to

Confi guration Files ❘ 561

Orange, then the next time the program runs, any controls that use that color for their backgrounds
will now be orange. Instead of recompiling the whole application, you only need to change this text
fi le. If you have distributed the application to a large number of users, you only need to give them
the revised confi guration fi le and not a whole new executable.

When you make a new setting, Visual Basic automatically generates code that adds the setting to the
My.Settings namespace, so the program can easily get the setting’s value. For example, the following
code displays the values of the txtFontSize and txtFontName settings:

MessageBox.Show(My.Settings.FontSize & “pt “ & My.Settings.FontName)

The My.Settings namespace provides several other properties and methods that make working with
settings easy. The following table summarizes the most useful My.Settings properties and methods:

PROPERTY OR METHOD PURPOSE

Item A name-indexed collection of the values for the settings.

Properties A name-indexed collection of SettingsProperty objects that contain information

about the settings, including their names and default values.

Reload Reloads the settings from the confi guration fi le.

Save Saves any modifi ed settings into the confi guration fi le. The program can

modify settings with user scope. Settings with application scope are

read-only.

Example program ShowSettings uses the following code to display the settings listed in the
My.Settings.Properties collection:

Imports System.Configuration

Public Class Form1
 Private Sub Form1_Load() Handles MyBase.Load
 For Each settings_property As SettingsProperty In My.Settings.Properties
 Dim new_item As New ListViewItem(settings_property.Name)
 new_item.SubItems.Add(settings_property.DefaultValue.ToString)
 lvSettings.Items.Add(new_item)
 Next settings_property

 lvSettings.Columns(0).Width = -2
 lvSettings.Columns(1).Width = -2
 End Sub
End Class

When a program closes, it automatically saves any changes to User scope settings. However, if the
program crashes, it does not have a chance to save any changes. If you want to be sure changes are
saved, call My.Settings.Save after the user changes settings.

562 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

Example program SaveSettings uses two settings: a User scope color named FormColor that determines
the form’s background color and an Application scope color named ButtonColor that determines the
background colors of the program’s two buttons. The program provides Form Color and Button Color
buttons to let you change the two color settings. If you change the colors, close the program, and restart
it, you’ll see that the User scope form color is saved, but the Application scope button color is not.

RESOURCE FILES

Resource fi les contain text, images, and other data for the application to load at run time. The intent
of resource fi les is to let you easily replace one set of resources with another.

One of the most common reasons for using resource fi les is to provide different resources for differ-
ent languages. To create installation packages for different languages, you simply ship the executable
and a resource fi le that uses the right language. Alternatively, you can ship resource fi les for all of
the languages you support and then let the application pick the appropriate fi le at run time based
on the user’s computer settings.

Resource fi les are not intended to store application confi guration information and settings. They are
intended to hold values that you might want to change, but only infrequently. You should store fre-
quently changing data in confi guration fi les or the system registry rather than in resource fi les.

The distinction is small and frankly somewhat artifi cial. Both confi guration fi les and resource fi les
store data that you can swap without recompiling the application. Rebuilding resource fi les can be a
little more complex, however, so perhaps the distinction that confi guration and setting data changes
more frequently makes some sense.

Resource fi les can also be embedded within a compiled application. In that case, you cannot swap
the resource fi le without recompiling the application. Although this makes embedded resource fi les
less useful for storing frequently changing information, they still give you a convenient place to
group resource data within the application. This is particularly useful if several parts of the appli-
cation must use the same pieces of data. For example, if every form should display the same back-
ground image, it makes sense to store the image in a common resource fi le that they can all use.

The following sections describe the three most common types of resources: application, embedded,
and localization.

Application Resources

To create application resources in Visual Basic, open Solution Explorer, double-click the My Project
entry, and select the Resources tab. Use the drop-down on the left to select one of the resource
 categories: Strings, Images, Icons, Audio, Files, or Other. Figure 28-3 shows the application’s
Resources tab displaying the application’s images.

If you double-click an item, Visual Studio opens an appropriate editor. For example, if you double-
click a bitmap resource, Visual Studio opens the image in an integrated bitmap editor.

Click the Add Resource drop-down list and select Add Existing File to add a fi le to the program’s
resources. Use the drop-down’s Add New String, Add New Icon, or Add New Text File commands

Resource Files ❘ 563

to add new items to the resource fi le. The drop-down’s New Image item opens a cascading submenu
that lets you create new PNG, bitmap, GIF, JPEG, and TIFF images.

Using Application Resources

When you create application resources, Visual Studio automatically generates code that adds
strongly typed resource properties to the My.Resources namespace. If you open Solution Explorer
and click the Show All Files button, you can see the Resources.Designer.vb fi le that contains
this code. The Solution Explorer path to this fi le is My Project/Resources.resx/Resources
.Designer.vb.

The following code shows the property that Resources.Designer.vb contains to retrieve the
Octahedron image resource:

Friend ReadOnly Property Octahedron() As System.Drawing.Bitmap
 Get
 Dim obj As Object =
 ResourceManager.GetObject(“Octahedron”, resourceCulture)
 Return CType(obj,System.Drawing.Bitmap)
 End Get
End Property

The following code shows how a program can use these My.Resources properties. It sets the
lblGreeting control’s Text property to the string returned by the My.Resources.Greeting property.
Then it sets the form’s BackgroundImage property to the image resource named Dog.

Private Sub Form1_Load() Handles MyBase.Load
 lblGreeting.Text = My.Resources.Greeting
 Me.BackgroundImage = My.Resources.Dog
End Sub

FIGURE 28-3: The Resources tab contains images and other resources

used by the application.

564 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

Because these property procedures are strongly typed, IntelliSense can offer support for them. If you
type My.Resources, IntelliSense lists the values defi ned in the application’s resource fi le.

Example program UseResources uses similar code to set a label’s text and to display an image.

Embedded Resources

In addition to storing resources in the application’s resource fi le Resources.resx, you can add other
resource fi les to the application. Open the Project menu and select the Add New Item command.
Pick the Resources File template, give the fi le a meaningful name, and click OK.

After you add a resource fi le to the project, you can double-click it in Solution Explorer to open it
in the resource editor. Then you can add resources to the fi le exactly as you do for the application’s
resource fi le.

Just as it generates strongly typed properties for application resources, Visual Studio generates simi-
lar code for other embedded resource fi les. You can access these properties by adding the resource
fi le’s name after My.Settings and before the resource name. For example, to get the image resource
named Dog from the Images resource fi le, the program would use My.Settings.Images.Dog.

Example program EmbeddedResources uses the following code to set a Label’s text to the
resource named Greeting in the fi le Strings.resx and to set the form’s background image to
the resource named Dog in the fi le Images.resx:

Public Sub Form1_Load() Handles MyBase.Load
 lblGreeting.Text = My.Resources.Strings.Greeting
 Me.BackgroundImage = My.Resources.Images.Dog
End Sub

Localization Resources

One of the most important reasons for inventing resource fi les was to allow localization: supporting
different text, images, and other items for different languages and cultures. Resources make local-
ization in Visual Studio .NET easy.

First, create a form using whatever language you typically use from day to day. For me, that’s
English as spoken in the United States. Open the form in the form designer and give it whatever con-
trols you need. Set the form’s and controls’ properties as usual.

Next, set the form’s Localizable property to True. Then set the form’s Language property to the fi rst
language you want to support other than the default language that you have been working with so
far. Modify the controls’ properties for the new language.

As you modify a form, Visual Studio saves the changes you make to a new resource fi le attached
to the form. If you open Solution Explorer and click the Show All Files button, you can see these
resource fi les below the form’s fi le.

Example program Localized uses default settings for United States English. It also includes
localizations for generic German (as opposed to German as spoken in Switzerland, Germany,
Liechtenstein, or some other country). If you expand the form’s entry in Solution Explorer, you’ll

Resource Files ❘ 565

fi nd the fi les Form1.resx holding the default settings and Form1.de.resx holding the German
settings.

At run time, the application automatically checks the user’s computer and selects the best resource
fi le based on the system’s regional settings.

Normally, you should let the application pick the appropriate resource fi le automatically, but you can
explicitly select a resource fi le for testing purposes. To do that, open the Solution Explorer and click
the Show All Files button. Find the form’s design fi le (for example, Form1.Designer.vb) and open it.

At the top of the fi le, import the System.Threading and System.Globalization namespaces.

Next, create a parameterless constructor for the form. Add a call to MyBase.New and then set
the current thread’s CurrentCulture and CurrentUICulture properties to a CultureInfo object that
represents the culture that you want to use.

The LocalizedUseGerman example program uses the following code to select the German localiza-
tion when it starts:

Imports System.Threading
Imports System.Globalization

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Class Form1
 Inherits System.Windows.Forms.Form

 Public Sub New()
 MyBase.New()

 ‘ Set the culture and UI culture to German.
 Thread.CurrentThread.CurrentCulture = New CultureInfo(“de-DE”)
 Thread.CurrentThread.CurrentUICulture = New CultureInfo(“de-DE”)

 ‘ This call is required by the designer.
 InitializeComponent()

 ‘ Add any initialization after the InitializeComponent() call.

 End Sub
 ...
End Class

CULTURE COMES FIRST

The program must set the culture and user interface culture before it calls
InitializeComponent because InitializeComponent is where the program sets the
form and control properties.

The rest is automatic. When the form’s InitializeComponent method executes, it loads the resources
it needs for the culture you selected.

566 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

Example program LocalizedUseGerman, which is available for download on the book’s website,
uses this code to open the form localized for German even if your system would not normally select
that version.

For a list of culture codes, see http://msdn.microsoft.com/library/ee825488.aspx.

APPLICATION

The Application object represents the running application at a very high level. It provides properties
and methods for starting an event loop to process Windows messages, possibly for a form. It also
provides methods for controlling and stopping the event loop.

Don’t confuse the Application object with the My.Application namespace. The two have somewhat
similar purposes but very different features.

The following sections describe the Application object’s most useful properties, methods, and
events.

Application Properties

The following table describes the Application object’s most useful properties.

PROPERTY PURPOSE

CommonAppDataPath Returns the path where the program should store application data shared

by all users. By default, this path has the form base_path\company_

name\product_name\product_version. The base_path is typically

C:\Documents and Settings\All Users\Application Data.

CommonAppDataRegistry Returns the registry key where the program should store application

data shared by all users. By default, this path has the form HKEY_

LOCAL_MACHINE\Software\company_name\product_name\

product_version.

CompanyName Returns the application’s company name.

CurrentCulture Gets or sets the CultureInfo object for this thread.

CurrentInputLanguage Gets or sets the InputLanguage for this thread.

ExecutablePath Returns the fully qualifi ed path to the fi le that started the execution,

including the fi lename.

LocalUserAppDataPath Returns the path where the program should store data for this local,

non-roaming user. By default, this path has the form base_path\

company_name\product_name\product_version. The base_path is

typically C:\Documents and Settings\user_name\

Local Settings\Application Data.

http://msdn.microsoft.com/library/ee825488.aspx

Application ❘ 567

PROPERTY PURPOSE

MessageLoop Returns True if the thread has a message loop. If the program begins

with a startup form, this loop is created automatically. If it starts with a

custom Sub Main, the loop doesn’t initially exist and the program must

start it by calling Application.Run.

OpenForms Returns a collection holding references to all of the application’s open

forms.

ProductName Returns the application’s product name.

ProductVersion Gets the product version associated with this application.

StartupPath Returns the fully qualifi ed path to the directory where the program starts.

UserAppDataPath Returns the path where the program should store data for this user. By

default, this path has the form base_path\company_name\product_

name\product_version. The base_path is typically C:\Documents and

Settings\user_name\Application Data.

UserAppDataRegistry Returns the registry key where the program should store application data

for this user. By default, this path has the form HKEY_CURRENT_USER\

Software\company_name\product_name\product_version.

UseWaitCursor Determines whether this thread’s forms display a wait cursor. Set this

to True before performing a long operation, and set it to False when

the operation is fi nished.

To set the CompanyName, ProductName, and ProductVersion, open Solution Explorer, double-click
the My Project entry, and select the Application tab. Then click the Assembly Information button
and enter the values on the Assembly Information dialog box.

Application Methods

The following table describes the Application object’s most useful methods.

METHOD PURPOSE

AddMessageFilter Adds a message fi lter to monitor the event loop’s Windows

messages.

DoEvents Processes Windows messages that are currently in the message

queue. If the thread is performing a long calculation, it would

 normally prevent the rest of the thread from taking action such as

processing these messages. Calling DoEvents lets the user interface

catch up with the user’s actions. Note that you can often avoid the

need for DoEvents if you perform the long task on a separate thread.

continues

568 ❘ CHAPTER 28 CONFIGURATION AND RESOURCES

METHOD PURPOSE

Exit Ends the whole application. This is a rather abrupt halt, and

any forms that are loaded do not execute their FormClosing or

FormClosed event handlers.

ExitThread Ends the current thread. This is a rather abrupt halt, and any

forms running on the thread do not execute their FormClosing or

FormClosed event handlers.

OnThreadException Raises the Application object’s ThreadException event, passing it

an exception. If your application throws an uncaught exception in

the IDE, the IDE halts. That makes it hard to test Application

.ThreadException event handlers. You can call OnThreadException

to invoke the event handler.

RemoveMessageFilter Removes a message fi lter.

Run Runs a message loop for the current thread. If you pass this method

a form object, it displays the form and processes its messages until

the form closes.

SetSuspendState Makes the system suspend operation or hibernate. When the

system hibernates, it writes its memory contents to disk. When

you restart the system, it resumes with its previous desktop and

applications running. When the system suspends operation, it

enters low-power mode. It can resume more quickly than a hiber-

nated system, but memory contents are not saved, so they will be

lost if the computer loses power.

Application Events

The Application object provides a few events that give you information about the application’s
state. The following table describes these events:

EVENT PURPOSE

ApplicationExit Occurs when the application is about to shut down.

Idle Occurs when the application fi nishes executing some code and

is about to enter an idle state to wait for events.

ThreadException Occurs when the application throws an unhandled exception.

ThreadExit Occurs when a thread is about to exit.

When you end an application by unloading its form, the program receives the events FormClosing,
FormClosed, ThreadExit, and ApplicationExit, in that order.

(continued)

Summary ❘ 569

If you end the application by calling the Application object’s Exit method, the program only receives
the ThreadExit and ApplicationExit events. If more than one thread is running, they each receive
ThreadExit events, and then they each receive ApplicationExit events.

SUMMARY

Visual Studio provides many ways to store and use application confi guration and resource informa-
tion. Some of the most useful of these methods include environment variables, the registry, confi gu-
ration fi les, and resource fi les. The My namespace and the Application object make working with
some of these easier.

Store confi guration information that changes relatively often in confi guration fi les. Store less change-
able resources that determine the application’s appearance in resource fi les. If you will distribute the
application in multiple languages, use localized resource fi les to manage the different languages. If
necessary, you can change the data stored in confi guration and resource fi les and redistribute them to
your users without rebuilding the entire application.

You can store small pieces of information between program runs in the system registry. Use databases,
XML fi les, and other fi les to store larger amounts of data.

Using all of these techniques, you can make your application easily confi gurable. You can satisfy the
needs of different kinds of users and customize the application without recompiling it.

This chapter explained ways that a program can save confi guration and resource information using
tools such as the registry, environment variables, and resource fi les. Generally, these kinds of data
are of relatively limited size. If an application needs to store larger amounts of data, it generally uses
a database or fi le.

Chapter 29, “Streams,” explains classes that a Visual Basic application can use to work with stream
data in general and fi les in particular. Using streams attached to fi les, a program can read and write
large amounts of data without cluttering up the registry, environment variables, or resource fi les.

29
Streams

WHAT’S IN THIS CHAPTER

 ➤ File, string, and memory streams

 ➤ Reading and writing streams

 ➤ File.Exists

 ➤ OpenText, CreateText, and AppendText

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter is divided
into the following major examples:

 ➤ FileStreamWrite

 ➤ MemoryStreamWrite

 ➤ StringWriterReader

 ➤ ReadLines

 ➤ OpenCreateAppendText

STREAM CONCEPTS

At some very primitive level, all pieces of data are just piles of bytes. The computer doesn’t really
store invoices, employee records, and recipes. At its most basic level, the computer stores bytes of
data (or even bits, but the computer naturally groups them in bytes). It is only when a program
interprets those bytes that they acquire a higher-level meaning that is valuable to the user.

Although you generally don’t want to treat high-level data as undifferentiated bytes, there are
times when thinking of the data as bytes lets you handle it in more uniform ways.

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://WROX.COM
http://wrox.com

572 ❘ CHAPTER 29 STREAMS

One type of byte-like data is the stream, an ordered series of bytes. Files, data fl owing across a
 network, messages moving through a queue, and even the memory in an array all fi t this description.

Defi ning the abstract idea of a stream lets applications handle these different types of objects
 uniformly. If an encryption or serialization routine manipulates a generic stream of bytes, it doesn’t
need to know whether the stream represents a fi le, a chunk of memory, plaintext, encrypted text, or
data fl owing across a network.

Visual Studio provides several classes for manipulating different kinds of streams. It also provides
higher-level classes for working with this kind of data at a more abstract level. For example, it
 provides classes for working with streams that happen to represent fi les and directories.

This chapter describes some of the classes you can use to manipulate streams. It explains lower-level
classes that you may use only rarely and higher-level classes that let you read and write strings and
fi les relatively easily.

The following table summarizes the most useful stream classes:

CLASS USE

FileStream Read and write bytes in a fi le.

MemoryStream Read and write bytes in memory.

BinaryReader, BinaryWriter Read and write specifi c data types in a stream.

StringReader, StringWriter Read and write text with or without new lines in a string.

StreamReader, StreamWriter Read and write text with or without new lines in a stream

(usually a fi le stream).

STREAM

The Stream class defi nes properties and methods that derived stream classes must provide. These let
the program perform relatively generic tasks with streams such as determining whether the stream
allows writing.

The following table describes the Stream class’s most useful properties:

PROPERTY PURPOSE

CanRead Returns True if the stream supports reading.

CanSeek Returns True if the stream supports seeking to a particular position in the

stream.

CanTimeout Returns True if the stream supports timing out of read and write operations.

CanWrite Returns True if the stream supports writing.

Length Returns the number of bytes in the stream.

Stream ❘ 573

PROPERTY PURPOSE

Position Returns the stream’s current position in its bytes. For a stream that supports

seeking, the program can set this value to move to a particular position.

ReadTimeout Determines the number of milliseconds that a read operation will wait before

timing out.

WriteTimeout Determines the number of milliseconds that a write operation will wait before

timing out.

The following table describes the Stream class’s most useful methods:

METHOD PURPOSE

BeginRead Begins an asynchronous read.

BeginWrite Begins an asynchronous write.

Close Closes the stream and releases any resources it uses (such as fi le handles).

EndRead Waits for an asynchronous read to fi nish.

EndWrite Ends an asynchronous write.

Flush Flushes data from the stream’s buff ers into the underlying storage medium

(device, fi le, memory, and so forth).

Read Reads bytes from the stream and advances its position by that number of bytes.

ReadByte Reads a byte from the stream and advances its position by one byte.

Seek If the stream supports seeking, sets the stream’s position.

SetLength Sets the stream’s length. If the stream is currently longer than the new length, it is

truncated. If the stream is shorter than the new length, it is enlarged. The stream

must support both writing and seeking for this method to work.

Write Writes bytes into the stream and advances the current position by this number of

bytes.

WriteByte Writes one byte into the stream and advances the current position by one byte.

You can learn about the other members of the Stream class at http://msdn.microsoft.com/
system.io.stream.aspx.

http://msdn.microsoft.com/system.io.stream.aspx
http://msdn.microsoft.com/system.io.stream.aspx

574 ❘ CHAPTER 29 STREAMS

FILESTREAM

The FileStream class provides a stream representation of a fi le.

The FileStream class’s parent class Stream defi nes most of its properties and methods. See the pre-
ceding section “Stream” for descriptions of those properties and methods.

FileStream adds two useful new properties to those it inherits from Stream. First, IsAsync returns
True if the FileStream was opened asynchronously. Second, the Name property returns the fi lename
passed into the object’s constructor.

The class also adds two new useful methods to those it inherits from Stream. The Lock method
locks the fi le, so other processes can read it but not modify it. Unlock removes a previous lock.

Overloaded versions of the FileStream class’s constructor let you specify the following:

 ➤ Filename or handle

 ➤ File mode (Append, Create, CreateNew, Open, OpenOrCreate, or Truncate)

 ➤ Access mode (Read, Write, or ReadWrite)

 ➤ File sharing (Inheritable, which allows child processes to inherit the fi le handle, None,
Read, Write, or ReadWrite)

 ➤ Buffer size

 ➤ File options (Asynchronous, DeleteOnClose, Encrypted, None, RandomAccess,
SequentialScan, or WriteThrough)

Example program FileStreamWrite uses the following code to create a fi le. It creates a fi le and uses a
Universal Transformation Format (UTF) UTF8Encoding object to convert a string into an array of
bytes. It writes the bytes into the fi le and then closes the FileStream.

Dim file_name As String = Application.StartupPath & “\test.txt”
Using file_stream As New FileStream(file_name, FileMode.Create)
 Dim bytes As Byte() = New UTF8Encoding().GetBytes(“Hello world!”)

 file_stream.Write(bytes, 0, bytes.Length)
 file_stream.Close()
End Using

NOTE The 8-bit UTF encoding is the most popular type on the web, although
there are other encoding formats such as UTF-7 and UTF-16. For additional
information, see http://unicode.org/faq/utf_bom.html and http://en
.wikipedia.org/wiki/Unicode.

As this example demonstrates, the FileStream class provides only low-level methods for reading and
writing fi les. These methods let you read and write bytes, but not integers, strings, or the other types
of data that you are more likely to want to use.

http://unicode.org/faq/utf_bom.html
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode

MemoryStream ❘ 575

The BinaryReader and BinaryWriter classes let you read and write binary data more easily than the
FileStream class does. The StringReader and StringWriter classes let you read and write string data
more easily than the other classes. See the section “StringReader and StringWriter” describing these
classes later in this chapter for more information.

MEMORYSTREAM

Like FileStream, the MemoryStream class inherits from the Stream class. This class represents
a stream with data stored in memory. Like the FileStream, it provides only relatively primitive
methods for reading and writing data. Usually, you will want to attach a higher-level object to the
MemoryStream to make using it easier.

Example program MemoryStreamWrite uses the following code to write and read from a
MemoryStream object:

Dim memory_stream As New MemoryStream()
Dim binary_writer As New BinaryWriter(memory_stream)
binary_writer.Write(“Peter Piper picked a peck of pickled peppers.”)

Dim binary_reader As New BinaryReader(memory_stream)
memory_stream.Seek(0, SeekOrigin.Begin)
MessageBox.Show(binary_reader.ReadString())
binary_reader.Close()

This program fi rst creates the MemoryStream. It then creates a BinaryWriter attached to the
MemoryStream and uses it to write some text into the stream. Next, the program makes a
BinaryReader object attached to the same MemoryStream. It uses the stream’s Seek method to
rewind the stream to its beginning, and then uses the BinaryReader’s ReadString method to read the
string out of the MemoryStream.

The following example does the same things as the previous example, except it uses the
StreamWriter and StreamReader classes instead of BinaryWriter and BinaryReader. Note that this
version must call the StreamWriter class’s Flush method to ensure that all of the text is written into
the MemoryStream before it can read the memory using the StreamReader.

Using memory_stream As New MemoryStream()
 Dim stream_writer As New StreamWriter(memory_stream)
 stream_writer.Write(“Peter Piper picked a peck of pickled peppers.”)
 stream_writer.Flush()

 Dim stream_reader As New StreamReader(memory_stream)
 memory_stream.Seek(0, SeekOrigin.Begin)
 MessageBox.Show(stream_reader.ReadToEnd())
 stream_reader.Close()
End Using

576 ❘ CHAPTER 29 STREAMS

BINARYREADER AND BINARYWRITER

The BinaryReader and BinaryWriter classes are not stream classes. Instead, they are helper
classes that work with stream classes. They let you read and write data in fi les using a specifi c
encoding. For example, the BinaryReader object’s ReadInt32 method reads a 4-byte (32-bit)
signed integer from the stream. Similarly, the ReadUInt16 method reads a 2-byte (16-bit)
unsigned integer.

These classes still work at a relatively low level, and you should generally use higher-level classes to
read and write data if possible. For example, you shouldn’t tie yourself to a particular representation
of an integer (32- or 16-bit) unless you really must.

BinaryReader and BinaryWriter objects are attached to stream objects that provide access to the
underlying bytes. Both of these classes have a BaseStream property that returns a reference to
the underlying stream. Note also that the Close method provided by each of these classes
automatically closes the underlying stream.

The following table describes the BinaryReader class’s most useful methods.

METHOD PURPOSE

Close Closes the BinaryReader and its underlying stream.

PeekChar Reads the stream’s next character but does not advance the reader’s position,

so other methods can still read the character later.

Read Reads characters from the stream and advances the reader’s position.

ReadBoolean Reads a Boolean from the stream and advances the reader’s position by

1 byte.

ReadByte Reads a byte from the stream and advances the reader’s position by 1 byte.

ReadBytes Reads a number of bytes from the stream into a byte array and advances the

reader’s position by that number of bytes.

ReadChar Reads a character from the stream and advances the reader’s position

 appropriately for the stream’s encoding.

ReadChars Reads a number of characters from the stream, returns the results in a

 character array, and advances the reader’s position appropriately for the

stream’s encoding.

ReadDecimal Reads a decimal value from the stream and advances the reader’s position

by 16 bytes.

ReadDouble Reads an 8-byte fl oating-point value from the stream and advances the

 reader’s position by 8 bytes.

BinaryReader and BinaryWriter ❘ 577

METHOD PURPOSE

ReadInt16 Reads a 2-byte signed integer from the stream and advances the reader’s

position by 2 bytes.

ReadInt32 Reads a 4-byte signed integer from the stream and advances the reader’s

position by 4 bytes.

ReadInt64 Reads an 8-byte signed integer from the stream and advances the reader’s

position by 8 bytes.

ReadSByte Reads a signed byte from the stream and advances the reader’s position

by 1 byte.

ReadSingle Reads a 4-byte fl oating-point value from the stream and advances the read-

er’s position by 4 bytes.

ReadString Reads a string from the current stream and advances the reader’s position

past it. The string begins with its length.

ReadUInt16 Reads a 2-byte unsigned integer from the stream and advances the reader’s

position by 2 bytes.

ReadUInt32 Reads a 4-byte unsigned integer from the stream and advances the reader’s

position by 4 bytes.

ReadUInt64 Reads an 8-byte unsigned integer from the stream and advances the reader’s

position by 8 bytes.

The following table describes the BinaryWriter class’s most useful methods.

METHOD PURPOSE

Close Closes the BinaryWriter and its underlying stream.

Flush Writes any buff ered data into the underlying stream.

Seek Sets the position within the stream.

Write Writes a value into the stream. This method has many overloaded versions that write

characters, arrays of characters, integers, strings, unsigned 64-bit integers, and so

forth.

You can learn about the other members of the BinaryWriter and BinaryReader classes at
http://msdn.microsoft.com/system.io.binarywriter.aspx and http://msdn.microsoft
.com/system.io.binaryreader.aspx, respectively.

http://msdn.microsoft.com/system.io.binarywriter.aspx
http://msdn.microsoft.com/system.io.binaryreader.aspx
http://msdn.microsoft.com/system.io.binaryreader.aspx

578 ❘ CHAPTER 29 STREAMS

TEXTREADER AND TEXTWRITER

Like the BinaryReader and BinaryWriter classes, the TextReader and TextWriter classes are not
stream classes, but they provide properties and methods for working with text, which is stream-
related. TextReader and TextWriter are abstract (MustInherit) classes that defi ne behaviors for
derived classes that read or write text characters. For example, the StringWriter and Stream
Writer classes derived from TextWriter let a program write characters into a string or stream,
respectively. Normally, you would use these derived classes to read and write text, but you
might want to use the TextReader or TextWriter classes to manipulate the underlying classes
more generically. You may also encounter a method that requires a TextReader or TextWriter
object as a parameter. In that case, you could pass the method either a StringReader/String
Writer or a StreamReader/StreamWriter. For more information on these classes, see the sections
“StringReader and StringWriter” and “StreamReader and StreamWriter” later in this
chapter.

The following table describes the TextReader object’s most useful methods.

METHOD PURPOSE

Close Closes the reader and releases any resources that it is using.

Peek Reads the next character from the input without changing the reader’s state, so

other methods can read the character later.

Read Reads data from the input. Overloaded versions of this method read a single

 character or an array of characters up to a specifi ed length.

ReadBlock Reads data from the input into an array of characters.

ReadLine Reads a line of characters from the input and returns the data in a string.

ReadToEnd Reads any remaining characters in the input and returns them in a string.

The TextWriter class has three useful properties. Encoding specifi es the text’s encoding (ASCII,
UTF-8, Unicode, and so forth). The FormatProvider property returns an object that controls for-
matting. For example, you can build a FormatProvider object that knows how to display numbers
in different bases (such as hexadecimal or octal). The NewLine property gets or sets the string used
by the writer to end lines. Usually, this value is something similar to a carriage return or a carriage
return plus a line feed.

The following table describes the TextWriter object’s most useful methods.

StringReader and StringWriter ❘ 579

METHOD PURPOSE

Close Closes the writer and releases any resources it uses.

Flush Writes any buff ered data into the underlying output.

Write Writes a value into the output. This method has many overloaded versions that

write characters, arrays of characters, integers, strings, unsigned 64-bit integers,

and so forth.

WriteLine Writes data into the output followed by the new line sequence.

You can learn about the other members of the TextWriter and TextReader classes at http://msdn
.microsoft.com/system.io.textwriter.aspx and http://msdn.microsoft.com/system
.io.textreader.aspx, respectively.

STRINGREADER AND STRINGWRITER

The StringReader and StringWriter classes let a program read and write text in a string.

These classes are derived from TextReader and TextWriter and inherit the defi nitions of most
of their properties and methods from those classes. See the preceding section “TextReader and
TextWriter” for details.

The StringReader provides methods for reading lines, characters, or blocks of characters from
a string. Its ReadToEnd method returns any of the string that has not already been read. The
StringReader class’s constructor takes as a parameter the string that it should process.

The StringWriter class lets an application build a string. It provides methods to write text into
the string with or without a new-line sequence. Its ToString method returns the StringWriter
class’s string.

The StringWriter stores its string in an underlying StringBuilder class. StringBuilder is designed to
make incrementally building a string more effi cient than building a string by concatenating a series
of values onto a String variable. For example, if an application needs to build a very large string
by concatenating a series of long substrings, it may be more effi cient to use a StringBuilder rather
than add the strings to a normal String variable. StringWriter provides a simple interface to the
StringBuilder class.

The most useful method provided by StringWriter that is not defi ned by the TextWriter parent class
is GetStringBuilder. This method returns a reference to the underlying StringBuilder object that
holds the class’s data.

Example program StringWriterReader uses the following code to demonstrate the StringWriter and
StringReader classes:

‘ Use a StringWriter to write into a string.
Using string_writer As New StringWriter()
 string_writer.WriteLine(“The quick brown fox”)

http://msdn.microsoft.com/system.io.textwriter.aspx
http://msdn.microsoft.com/system.io.textwriter.aspx
http://msdn.microsoft.com/system.io.textreader.aspx
http://msdn.microsoft.com/system.io.textreader.aspx

580 ❘ CHAPTER 29 STREAMS

 string_writer.WriteLine(“jumps over the lazy dog.”)
 MessageBox.Show(string_writer.ToString)

 ‘ Use a StringReader to read from the string.
 Using string_reader As New StringReader(string_writer.ToString)
 string_writer.Close()
 MessageBox.Show(string_reader.ReadLine())
 MessageBox.Show(string_reader.ReadToEnd())
 string_reader.Close()
 End Using
End Using

This code creates a StringWriter object and uses its WriteLine method to add two lines to the
string. It then displays the result of the writer’s ToString method, which returns the writer’s current
contents.

Next, the program creates a StringReader, passing its constructor the string from which it will read.
It closes the StringWriter because it is no longer needed.

The code displays the result of the StringReader class’s ReadLine method. Because the StringWriter
created the string as two separate lines, this displays only the fi rst line, “The quick brown fox.”
Next, the code uses the StringReader class’s ReadToEnd method to read and display the rest of the
text, “jumps over the lazy dog.” The code fi nishes by closing the StringReader.

STREAMREADER AND STREAMWRITER

The StreamReader and StreamWriter classes let a program read and write data in a stream. The
underlying stream is usually a FileStream. You can pass a FileStream into these classes’ constructors,
or you can pass a fi lename and the object will create a FileStream automatically.

The StreamReader provides methods for reading lines, characters, or blocks of characters from
the stream. Its ReadToEnd method returns any of the stream that has not already been read. The
EndOfStream method returns True when the StreamReader has reached the end of the stream.

Example program ReadLines uses the following code fragment to read the lines from a fi le and add
them to a ListBox control:

‘ Open the file.
Dim stream_reader As New StreamReader(“Animals.txt”)

‘ Read until we reach the end of the file.
Do Until stream_reader.EndOfStream()
 lstValues.Items.Add(stream_reader.ReadLine())
Loop

‘ Close the file.
stream_reader.Close()

The StreamWriter class provides methods to write text into the stream with or without a new-line
character.

OpenText, CreateText, and AppendText ❘ 581

StreamReader and StreamWriter are derived from the TextReader and TextWriter classes and inherit
the defi nitions of most of their properties and methods from those classes. See the section “TextReader
and TextWriter” earlier in this chapter for a description of these properties and methods.

The StreamWriter class adds a new AutoFlush property that determines whether the writer fl ushes
its buffer after every write.

Example program StreamWriterReader uses the following code to demonstrate the StreamReader
and StreamWriter classes:

Dim file_name As String = Application.StartupPath & “\test.txt”
Using stream_writer As New StreamWriter(file_name)
 stream_writer.Write(“The quick brown fox”)
 stream_writer.WriteLine(“ jumps over the lazy dog.”)
 stream_writer.Close()
End Using

Using stream_reader As New StreamReader(file_name)
 MessageBox.Show(stream_reader.ReadToEnd())
 stream_reader.Close()
End Using

This code generates a fi lename and passes it into a StreamWriter class’s constructor. It uses the
StreamWriter class’s Write and WriteLine methods to place two pieces of text in the fi le and then
closes the fi le. If you were to open the fi le at this point with a text editor, you would see the text.

The program then creates a new StreamReader, passing its constructor the same fi lename. It uses the
reader’s ReadToEnd method to grab the fi le’s contents and displays the results.

This example would have been much more awkward using a FileStream object’s lower-level Write
and Read methods to manipulate byte arrays. Compare this code to the example in the “FileStream”
section earlier in this chapter.

OPENTEXT, CREATETEXT, AND APPENDTEXT

The File class in the System.IO namespace provides four shared methods that are particularly useful
for working with StreamReader and StreamWriter objects associated with text fi les. The following
table summarizes these four methods.

METHOD PURPOSE

Exists Returns True if a fi le with a given path exists.

OpenText Returns a StreamReader that lets you read from an existing text fi le.

CreateText Creates a new text fi le, overwriting any existing fi le at the given path, and returns

a StreamWriter that lets you write into the new fi le.

AppendText If the indicated fi le does not exist, creates the fi le. Whether the fi le is new or previ-

ously existing, returns a StreamWriter that lets you append text at the end of the fi le.

582 ❘ CHAPTER 29 STREAMS

The OpenCreateAppendText example program lets you open an existing fi le, create a new fi le, or
append text at the end of an existing fi le. It uses the following code to demonstrate the Exists and
OpenText methods:

Dim file_name As String = Application.StartupPath & “\test.txt”
If Not Exists(file_name) Then
 txtData.Text = “ < File not found > “
Else
 Using sr As StreamReader = OpenText(file_name)
 txtData.Text = sr.ReadToEnd()
 sr.Close()
 End Using
End If

This code uses Exists to see if the fi le exists. If the fi le does exist, the code uses OpenText to open
the fi le and get a StreamReader associated with it. It uses the StreamReader class’s ReadToEnd
method to display the fi le’s text in the text box txtData.

The OpenCreateAppendText program uses the following code to create a new text fi le:

Dim file_name As String = Application.StartupPath & “\test.txt”
Using sw As StreamWriter = CreateText(file_name)
 sw.Write(txtData.Text)
 sw.Close()
End Using

The code uses CreateText to create a new text fi le named test.txt. If test.txt already
exists, CreateText overwrites it without warning. The program uses the StreamWriter returned
by CreateText to write the contents of the txtData text box into the fi le and closes the fi le.

The OpenCreateAppendText program uses the following code to demonstrate the AppendText
method:

Dim file_name As String = Application.StartupPath & “\test.txt”
Using sw As StreamWriter = AppendText(file_name)
 sw.Write(txtData.Text)
 sw.Close()
End Using

This code uses AppendText to create the fi le if it doesn’t already exist or open it for appending if it
does exist. The program uses the StreamWriter returned by AppendText to write into the fi le and
then closes the fi le.

CUSTOM STREAM CLASSES

Visual Studio provides a few other stream classes with more specialized uses.

The CryptoStream class applies a cryptographic transformation to data that passes through it. For
example, if you attach a CryptoStream to a fi le using a particular cryptographic transformation
and then use it to write data, the CryptoStream automatically transforms the data and produces

Summary ❘ 583

an encrypted fi le. Similarly, you can use a CryptoStream to read an encrypted fi le and recover the
 original text. For more information about the CryptoStream class, see http://msdn.microsoft
.com/library/system.security.cryptography.cryptostream.aspx.

The NetworkStream class represents a socket-based stream over a network connection. You can
use this class to make different applications communicate over a network. For more information
about this class, see http://msdn.microsoft.com/library/system.net.sockets.network
stream.aspx.

Three other special uses of streams are standard input, standard output, and standard error. Console
applications defi ne these streams for reading and writing information to and from the console. An
application can interact directly with these streams by accessing the Console.In, Console.Out, and
Console.Error properties. It can change these streams to new stream objects such as StreamReaders
and StreamWriters by calling the Console.SetIn, Console.SetOut, and Console.SetError methods. For
more information on these streams, see http://msdn.microsoft.com/library/system.console
.aspx.

SUMMARY

Streams let a program consider a wide variety of data sources in a uniform way. If a subroutine
takes a stream as a parameter, it doesn’t need to worry about whether the stream is attached to a
string, fi le, block of memory, or network connection.

Many applications use the StringReader and StringWriter classes to read and write text in strings,
and the StreamReader and StreamWriter classes to read and write text in streams (usually fi les). The
Exists, OpenText, CreateText, and AppendText methods are particularly useful for working with
StreamReader and StreamWriter objects associated with text fi les.

The other stream classes are often used at lower levels or as more abstract classes to allow a
routine to process different kinds of streams in a uniform way. If you focus on the four classes
(StringReader, StringWriter, StreamReader, and StreamWriter), you will quickly learn how to per-
form the most common stream operations.

Programs often use the StreamReader and StreamWriter classes to read and write fi les. Chapter 30,
“Filesystem Objects,” describes classes that let a Visual Basic application interact with the fi lesystem
in other ways. These classes let a program examine, rename, move, and delete fi les and directories.

http://msdn.microsoft.com/library/system.security.cryptography.cryptostream.aspx
http://msdn.microsoft.com/library/system.security.cryptography.cryptostream.aspx
http://msdn.microsoft.com/library/system.net.sockets.networkstream.aspx
http://msdn.microsoft.com/library/system.net.sockets.networkstream.aspx
http://msdn.microsoft.com/library/system.console.aspx
http://msdn.microsoft.com/library/system.console.aspx

Filesystem Objects

WHAT’S IN THIS CHAPTER

 ➤ Creating, reading, writing, and appending to fi les

 ➤ Creating, examining, moving, and deleting directories

 ➤ Random access fi les

 ➤ Working with paths

 ➤ Searching directories for other directories or fi les

 ➤ Searching for fi les that contain a target string

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=9781118314074 on the Download Code tab. The code for this chapter is divided
into the following major examples:

 ➤ RandomAccessEmployees

 ➤ UseFileSystemWatcher

 ➤ GetDriveInfo

 ➤ ShowSpecialDirectories

 ➤ UseFindInFiles

PROGRAMMING APPROACHES

Visual Basic includes a bewildering assortment of objects that you can use to manipulate
drives, directories, and fi les. The stream classes described in Chapter 29 enable you to read
and write fi les, but they don’t really capture any of the special structure of the fi lesystem.

30

http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://www.wrox.com/remtitle.cgi?isbn=9781118314074
http://wrox.com
http://WROX.COM

586 ❘ CHAPTER 30 FILESYSTEM OBJECTS

A Visual Basic application has two main choices for working with the fi lesystem: Visual Basic
methods and .NET Framework classes. This chapter describes these two approaches and the classes
that they use. It fi nishes by describing some of the My namespace properties and methods that
you can use to access fi lesystem tools more easily. For more information on the My namespace,
see the section “My” in Chapter 28, “Confi guration and Resources,” and Appendix S, “The My
Namespace.”

PERMISSIONS

An application cannot perform a task if the user running it doesn’t have the appropriate permis-
sions. Although this is true of any operation a program must perform, permission issues are
 particularly common when working with fi les, and recent versions of the Windows operating system
are particularly strict about enforcing permission requirements.

A common mistake is for developers to build and test an application while logged in as a user who
has a lot of privileges. Sometimes, developers even have system administrator privileges, so their
programs can do pretty much anything on the computer. To ensure that users will have the permis-
sions needed by an application, develop or at least test the code using an account with the privileges
that typical users will have.

VISUAL BASIC METHODS

Visual Basic provides a number of commands for manipulating the fi lesystem. These commands are
relatively fl exible and easy to understand. Most of them have been around since the early days of
Visual Basic, so many long-time Visual Basic developers prefer to use them rather than the newer
.NET Framework methods.

One disadvantage to these methods is that they do not natively allow you to read and write
nonstandard data types. They can handle string, date, integer, long, single, double, and decimal
data. They can also handle structures and arrays of those types. They cannot, however, handle
classes themselves. You can use XML serialization to convert a class object into a string and then
use these methods to read and write the result, but that requires an extra step with some added
complexity.

The section “File System Methods” later in this chapter describes the native fi lesystem methods
of Visual Basic. The sections “Sequential-File Access,”“Random-File Access,” and “Binary-File
Access” later in this chapter describe specifi c issues for working with sequential, random, and
binary fi les.

File Methods

The following table describes the methods Visual Basic provides for working with fi les:

Visual Basic Methods ❘ 587

METHOD PURPOSE

EOF Returns True if a fi le open for reading is at the end of fi le. (EOF stands for

End Of File.)

FileClose Closes an open fi le.

FileGet Reads data from a fi le opened in Random or Binary mode into a variable.

FileGetObject Reads data as an object from a fi le opened in Random or Binary mode into

a variable.

FileOpen Opens a fi le for reading or writing. Parameters indicate the mode (Append,

Binary, Input, Output, or Random), access type (Read, Write, or ReadWrite),

and sharing (Shared, LockRead, LockWrite, or LockReadWrite).

FilePut Writes data from a variable into a fi le opened for Random or Binary access.

FilePutObject Writes an object from a variable into a fi le opened for Random or

Binary access.

FreeFile Returns a fi le number that is not currently associated with any fi le in this

application. You should use FreeFile to get fi le numbers rather than use

arbitrary numbers such as 1.

Input Reads data written into a fi le by the Write method back into a variable.

InputString Reads a specifi c number of characters from the fi le.

LineInput Returns the next line of text from the fi le.

Loc Returns the current position within the fi le.

LOF Returns the fi le’s length in bytes. (LOF stands for Length Of File.)

Print Prints values into the fi le. Multiple values separated by commas are aligned

at tab boundaries.

PrintLine Prints values followed by a new line into the fi le. Multiple values separated

by commas are aligned at tab boundaries.

Seek Moves to the indicated position within the fi le.

Write Writes values into the fi le, delimited appropriately so that they can later be

read by the Input method.

WriteLine Writes values followed by a new line into the fi le, delimited appropriately so

that they can later be read by the Input method.

588 ❘ CHAPTER 30 FILESYSTEM OBJECTS

Many of the Visual Basic fi le methods use a fi le number to represent an open fi le. The fi le number is
just a number used to identify the fi le. There’s nothing magic about it. You just need to be sure not
to use the same fi le number for more than one fi le at the same time. The FreeFile method returns a
number that is not in use so that you know it is safe to use as a fi le number.

The following example uses FreeFile to get an available fi le number. It uses FileOpen to open a fi le
for reading. Then, while the EOF method indicates that the code hasn’t reached the end of the
fi le, the program uses LineInput to read a line from the fi le and it displays the line. When it
fi nishes reading the fi le, the program uses FileClose to close it.

‘ Get an available file number.
Dim file_num As Integer = FreeFile()

‘ Open the file.
FileOpen(file_num, “C:\Temp\test.txt”,
 OpenMode.Input, OpenAccess.Read, OpenShare.Shared)

‘ Read the file’s lines.
Do While Not EOF(file_num)
 ‘ Read a line.
 Dim txt As String = LineInput(file_num)
 Debug.WriteLine(txt)
Loop

‘ Close the file.
FileClose(file_num)

File System Methods

Visual Basic also provides several methods for working with the fi lesystem. The following table
describes methods that manipulate directories and fi les:

METHOD PURPOSE

ChDir Changes the application’s current working directory.

ChDrive Changes the application’s current working drive.

CurDir Returns the application’s current working directory.

Dir Returns a fi le matching a directory path specifi cation that may include wildcards,

and matching certain fi le properties such as ReadOnly, Hidden, or Directory. The

fi rst call to Dir should include a path. Subsequent calls can omit the path to fetch

the next matching fi le for the same initial path. Dir returns fi lenames without the

path and returns Nothing when no more fi les match.

FileCopy Copies a fi le to a new location.

FileDateTime Returns the date and time when the fi le was created or last modifi ed.

Visual Basic Methods ❘ 589

Sequential-File Access

With sequential-fi le access, a program reads or writes the contents of a fi le byte by byte from start to
fi nish with no jumping around. In contrast, in a random-access fi le, the program can jump
freely to any position in the fi le and write data wherever it likes.

A text fi le is a typical sequential fi le. The program can read the text in order, and read it one line
at a time, but it cannot easily jump around within the fi le.

The Input, InputString, LineInput, Print, PrintLine, Write, and WriteLine methods provide
sequential access to fi les.

The Print and PrintLine methods provide mostly unformatted results. If you pass these
methods multiple parameters separated by commas, they align the results on tab boundaries.
Write and WriteLine, on the other hand, delimit their output so that it can be easily read by the
Input method.

A program cannot directly modify only part of a sequential fi le. For example, it cannot modify, add,
or remove a sentence in the middle of a paragraph. If you must modify the fi le, you should read it
into a string, make the changes you want, and then rewrite the fi le.

If you must frequently modify text in the middle of a fi le, you should consider using random or
binary access, or storing the data in a database.

Random-File Access

A random-access fi le contains a series of fi xed-length records. For example, you could create
an employee fi le that contains a series of values defi ning an employee. Each record would have

METHOD PURPOSE

FileLen Returns the length of a fi le in bytes.

GetAttr Returns a value indicating the fi le’s attributes. The value is a combination of the

values vbNormal, vbReadOnly, vbHidden, vbSystem, vbDirectory, vbArchive,

and vbAlias.

Kill Permanently deletes a fi le.

MkDir Creates a new directory.

Rename Renames a directory or fi le.

RmDir Deletes an empty directory.

SetAttr Sets the fi le’s attributes. The attribute value is a combination of the

values vbNormal, vbReadOnly, vbHidden, vbSystem, vbDirectory, vbArchive,

and vbAlias.

590 ❘ CHAPTER 30 FILESYSTEM OBJECTS

fi xed-length fi elds to hold an employee’s ID, fi rst name, last name, street address, and so forth, as
shown in the following structure defi nition:

Structure Employee
 Public Id As Long
 <VBFixedString(20)> Public FirstName As String
 <VBFixedString(20)> Public LastName As String
 <VBFixedString(40)> Public Street As String
 ...
End Structure

When you open a fi le for random access, you can jump to any record in the fi le. That makes certain
kinds of fi le manipulation easier. For example, if the fi le is sorted, you can use a binary search to
locate records in it.

You can overwrite the values in a record within the fi le, but you cannot add or remove records in the
middle of the fi le. If you must make those sorts of changes, you must load the fi le into memory and
then rewrite it from scratch.

The FileGet, FileGetObject, FilePut, and FilePutObject methods read and write records in random-
access fi les. Example program RandomAccessEmployees uses the following code to demonstrate the
FilePut and FileGet methods:

Public Class Form1
 Public Structure Employee
 Public ID As Integer
 <VBFixedString(15) > Public FirstName As String
 <VBFixedString(15) > Public LastName As String

 Public Sub New(new_id As Integer, first_name As String,
 last_name As String)
 ID = new_id
 FirstName = first_name
 LastName = last_name
 End Sub

 Public Overrides Function ToString() As String
 Return ID & “: “ & FirstName & “ “ & LastName
 End Function
 End Structure

 Private Sub btnMakeRecords_Click() Handles btnMakeRecords.Click
 ‘ Declare a record variable.
 Dim emp As New Employee

 ‘ Get an available file number.
 Dim file_num As Integer = FreeFile()

 ‘ Open the file.
 FileOpen(file_num, “MYFILE.DAT”, OpenMode.Random,
 OpenAccess.ReadWrite, OpenShare.Shared, Len(emp))

 ‘ Make some records.

Visual Basic Methods ❘ 591

 FilePut(file_num, New Employee(1, “Alice”, “Altanta”))
 FilePut(file_num, New Employee(2, “Bob”, “Bakersfield”))
 FilePut(file_num, New Employee(3, “Cindy”, “Chicago”))
 FilePut(file_num, New Employee(4, “Dan”, “Denver”))
 FilePut(file_num, New Employee(5, “Erma”, “Eagle”))
 FilePut(file_num, New Employee(6, “Fred”, “Frisco”))

 ‘ Fetch and display the records.
 Dim obj As ValueType = DirectCast(emp, ValueType)
 For Each i As Integer In New Integer() {3, 1, 5, 2, 6}
 FileGet(file_num, obj, i)
 emp = DirectCast(obj, Employee)
 Debug.WriteLine(“[“ & emp.ToString() & “]”)
 Next i

 ‘ Close the file.
 FileClose(file_num)
 End Sub
End Class

First, the code defi nes a structure named Employee to hold the data in a record. Notice how the
code uses the VBFixedString attribute to fl ag the strings as fi xed length. The structure must have
a fi xed length if you want to jump randomly through the fi le because Visual Basic calculates a
record’s position by multiplying a record’s size by its index in the fi le. If records contained strings of
unknown length, the calculation wouldn’t work.

When the user clicks the Make Records button, the btnMakeRecords_Click event handler executes.
This code declares a variable of the record type, Employee. It uses the FreeFile method to get an
available fi le number and uses FileOpen to open the fi le for random access. The fi nal parameter
to FileOpen is the length of the fi le’s records. To calculate this length, the program uses the Len
function, passing it the Employee instance emp.

Next, the program uses the FilePut method to write six records into the fi le. It passes FilePut the
fi le number and a new Employee structure. The structure’s constructor makes initializing the new
records easy.

The program then uses FileGet to retrieve the six records using their indexes as keys, fetching
them out of numeric order to demonstrate random access. It then displays each record’s data in the
Output window surrounded by brackets so you can see where the data starts and ends.

There are two key points to notice here. First, the fi le numbers records starting with 1 not 0, so the
fi rst record in the fi le has index 1.

Second, the FileGet method does not have an overloaded version that takes an Employee structure
as a parameter. Because this example has Option Strict set to On, the code must pass FileGet a
ValueType variable and then convert it into an Employee.

If you set Option Strict to Off, you can pass an Employee variable directly into FileGet.

After it has read and displayed the records, the program uses FileClose to close the fi le.

592 ❘ CHAPTER 30 FILESYSTEM OBJECTS

The following text shows the result. Notice that the fi rst and last names are padded with spaces to
15 characters, the length of the Employee structure’s fi xed-length strings. The last names are also
padded to 15 characters.

[3: Cindy Chicago]
[1: Alice Altanta]
[5: Erma Eagle]
[2: Bob Bakersfield]
[6: Fred Frisco]

Binary-File Access

Binary access is similar to random access, except that it does not require its data to fi t into neat
records. You get control over pretty much every byte in the fi le, and you can jump to an arbitrary
byte number in the fi le. If the items in the fi le are not fi xed-length records, however, you cannot
jump to a particular record because you cannot calculate where that record would begin.

.NET FRAMEWORK CLASSES

The System.IO namespace provides several classes for working with the fi lesystem. The Directory
and File classes provide shared methods that you can use to manipulate the fi lesystem without
creating instances of helper objects.

The DirectoryInfo and FileInfo classes let you work with specifi c relevant fi lesystem objects. For
example, a FileInfo object represents a particular fi le and provides methods to create, rename,
delete, and get information about that fi le.

The following sections describe these and the other classes that the Framework provides to help you
work with the fi lesystem.

Directory

The Directory class provides shared methods for working with directories. These methods let you
create, rename, move, and delete directories. They let you enumerate the fi les and subdirectories
within a directory, and get and set directory information such as the directory’s creation and last
access time.

The following table describes the Directory class’s shared methods:

METHOD PURPOSE

CreateDirectory Creates a directory and any missing ancestors (parent, grandparent,

and so on).

Delete Deletes a directory and its contents. It can delete all subdirectories,

their subdirectories, and so forth to remove the entire directory tree.

Exists Returns True if a path points to an existing directory.

.NET Framework Classes ❘ 593

METHOD PURPOSE

GetCreationTime Returns a directory’s creation date and time.

GetCreationTimeUtc Returns a directory’s creation date and time in Coordinated Universal

Time (UTC).

GetCurrentDirectory Returns the application’s current working directory.

GetDirectories Returns an array of strings holding the fully qualifi ed names of a

directory’s subdirectories.

GetDirectoryRoot Returns the directory root for a path (the path need not exist).

For example, C:\.

GetFiles Returns an array of strings holding the fully qualifi ed names of a

directory’s fi les.

GetFileSystemEntries Returns an array of strings holding the fully qualifi ed names of a

directory’s fi les and subdirectories.

GetLastAccessTime Returns a directory’s last access date and time.

GetLastAccessTimeUtc Returns a directory’s last access date and time in UTC.

GetLastWriteTime Returns the date and time when a directory was last modifi ed.

GetLastWriteTimeUtc Returns the date and time in UTC when a directory was last modifi ed.

GetLogicalDrives Returns an array of strings listing the system’s logical drives as in A:\.

The list only includes drives that are attached. For example, it lists an

empty fl oppy drive and a connected fl ash disk but doesn’t list a fl ash

disk after you disconnect it.

GetParent Returns a DirectoryInfo object representing a directory’s parent.

Move Moves a directory and its contents to a new location on the same

disk volume.

SetCreationTime Sets a directory’s creation date and time.

SetCreationTimeUtc Sets a directory’s creation date and time in UTC.

SetCurrentDirectory Sets the application’s current working directory.

SetLastAccessTime Sets a directory’s last access date and time.

SetLastAccessTimeUtc Sets a directory’s last access date and time in UTC.

SetLastWriteTime Sets a directory’s last write date and time.

SetLastWriteTimeUtc Sets a directory’s last write date and time in UTC.

594 ❘ CHAPTER 30 FILESYSTEM OBJECTS

File

The File class provides shared methods for working with fi les. These methods let you create,
rename, move, and delete fi les. They also make working with fi le streams a bit easier.

The following table describes the File class’s most useful shared methods:

METHOD PURPOSE

AppendAll Adds text to the end of a fi le, creating it if it doesn’t exist, and then

closes the fi le.

AppendText Opens a fi le for appending UTF-8 encoded text and returns a

StreamWriter class attached to it.

Copy Copies a fi le.

Create Creates a new fi le and returns a FileStream attached to it.

CreateText Creates or opens a fi le for writing UTF-8 encoded text and returns a

StreamWriter class attached to it.

Delete Permanently deletes a fi le.

Exists Returns True if the specifi ed fi le exists.

GetAttributes Gets a fi le’s attributes. This is a combination of fl ags defi ned by the

FileAttributes enumeration: Archive, Compressed, Device, Directory,

Encrypted, Hidden, Normal, NotContextIndexed, Offl ine, ReadOnly,

ReparsePoint, SparseFile, System, and Temporary.

GetCreationTime Returns a fi le’s creation date and time.

GetCreationTimeUtc Returns a fi le’s creation date and time in UTC.

GetLastAccessTime Returns a fi le’s last access date and time.

GetLastAccessTimeUtc Returns a fi le’s last access date and time in UTC.

GetLastWriteTime Returns a fi le’s last write date and time.

GetLastWriteTimeUtc Returns a fi le’s last write date and time in UTC.

Move Moves a fi le to a new location.

Open Opens a fi le and returns a FileStream attached to it. Parameters

let you specify the mode (Append, Create, CreateNew, Open,

OpenOrCreate, or Truncate), access (Read, Write, or ReadWrite), and

sharing (Read, Write, ReadWrite, or None) settings.

OpenRead Opens a fi le for reading and returns a FileStream attached to it.

.NET Framework Classes ❘ 595

DriveInfo

A DriveInfo object represents one of the computer’s drives. The following table describes the prop-
erties provided by this class. Note that some of these properties are available only when the drive
is ready, as indicated in the Must Be Ready column. If you try to access them when the drive is
not ready, Visual Basic throws an exception. The program should check the IsReady property to

METHOD PURPOSE

OpenText Opens a UTF-8-encoded text fi le for reading and returns a

StreamReader attached to it.

OpenWrite Opens a fi le for writing and returns a FileStream attached to it.

ReadAllBytes Returns a fi le’s contents in an array of bytes.

ReadAllLines Returns a fi le’s lines in an array of strings.

ReadAllText Returns a fi le’s contents in a string.

Replace Takes three fi le paths as parameters, representing a source fi le, a

destination fi le, and a backup fi le. If the backup fi le exists, this method

permanently deletes it. It then moves the destination fi le to the

backup fi le, and moves the source fi le to the destination fi le.

SetAttributes Sets a fi le’s attributes. This is a combination of fl ags defi ned by the

FileAttributes enumeration: Archive, Compressed, Device, Directory,

Encrypted, Hidden, Normal, NotContextIndexed, Offl ine, ReadOnly,

ReparsePoint, SparseFile, System, and Temporary.

SetCreationTime Sets a fi le’s creation date and time.

SetCreationTimeUtc Sets a fi le’s creation date and time in UTC.

SetLastAccessTime Sets a fi le’s last access date and time.

SetLastAccessTimeUtc Sets a fi le’s last access date and time in UTC.

SetLastWriteTime Sets a fi le’s last write date and time.

SetLastWriteTimeUtc Sets a fi le’s last write date and time in UTC.

WriteAllBytes Creates or replaces a fi le, writes an array of bytes into it, and

closes the fi le.

WriteAllLines Creates or replaces a fi le, writes an array of strings into it, and

closes the fi le.

WriteAllText Creates or replaces a fi le, writes a string into it, and closes the fi le.

596 ❘ CHAPTER 30 FILESYSTEM OBJECTS

determine whether the drive is ready before trying to use the AvailableFreeSpace, DriveFormat,
TotalFreeSpace, or VolumeLabel properties.

DRIVEINFO PROPERTY PURPOSE MUST BE READY

AvailableFreeSpace Returns the amount of free space available on the

drive in bytes.

True

DriveFormat Returns the name of the fi lesystem type such

as NTFS (NT File System) or FAT32 (32-bit File

Allocation Table). (For a comparison of these, see

http://www.ntfs.com/ntfs_vs_fat.htm.)

True

DriveType Returns a DriveType enumeration value indicating

the drive type. This value can be CDRom, Fixed,

Network, NoRootDirectory, Ram, Removable,

or Unknown.

False

IsReady Returns True if the drive is ready. Many DriveInfo

properties are unavailable and raise exceptions if you

try to access them while the drive is not ready.

False

Name Return’s the drive’s name. This is the drive’s root

name (as in A:\ or C:\).

False

RootDirectory Returns a DirectoryInfo object representing the

drive’s root directory. See the following section

“DirectoryInfo” for more information on this class.

False

TotalFreeSpace Returns the total amount of free space on the drive

in bytes.

True

VolumeLabel Gets or sets the drive’s volume label. True

The DriveInfo class also has a public shared method GetDrives that returns an array of DriveInfo
objects describing the system’s drives.

DirectoryInfo

A DirectoryInfo object represents a directory. You can use its properties and methods to create and
delete directories and to move through a directory hierarchy.

The following table describes the most useful public properties and methods provided by the
DirectoryInfo class:

http://www.ntfs.com/ntfs_vs_fat.htm

.NET Framework Classes ❘ 597

PROPERTY OR METHOD PURPOSE

Attributes Gets or sets fl ags for the directory from the FileAttributes enumeration:

Archive, Compressed, Device, Directory, Encrypted, Hidden, Normal,

NotContentIndexed, Offl ine, ReadOnly, ReparsePoint, SparseFile, System,

and Temporary.

Create Creates the directory. You can create a DirectoryInfo object, passing its

constructor the fully qualifi ed name of a directory that doesn’t exist, and

then call the object’s Create method to create the directory.

CreateSubdirectory Creates a subdirectory within the directory and returns a DirectoryInfo

object representing it. The subdirectory’s path must be relative to

the DirectoryInfo object’s directory, but can contain intermediate

subdirectories. For example, the following code creates the

Tools subdirectory and the Bin directory inside that: dir_info

.CreateSubdirectory(“Tools\Bin”).

CreationTime Gets or sets the directory’s creation time.

CreationTimeUtc Gets or sets the directory’s creation time in UTC.

Delete Deletes the directory if it is empty. A parameter lets you tell the object to

delete its contents, too, if it isn’t empty.

Exists Returns True if the directory exists.

Extension Returns the extension part of the directory’s name. Normally, this is an

empty string for directories.

FullName Returns the directory’s fully qualifi ed path.

GetDirectories Returns an array of DirectoryInfo objects representing the directory’s

subdirectories. An optional parameter gives a pattern to match. This

method does not recursively search the subdirectories.

GetFiles Returns an array of FileInfo objects representing fi les inside the directory.

An optional parameter gives a pattern to match. This method does not

recursively search subdirectories.

GetFileSystemInfos Returns a strongly typed array of FileSystemInfo objects, representing

subdirectories and fi les inside the directory. The items in the array

are DirectoryInfo and FileInfo objects, both of which inherit from

FileSystemInfo. An optional parameter gives a pattern to match. This

method does not recursively search subdirectories.

LastAccessTime Gets or sets the directory’s last access time.

LastAccessTimeUtc Gets or sets the directory’s last access time in UTC.

LastWriteTime Gets or sets the directory’s last write time.

continues

598 ❘ CHAPTER 30 FILESYSTEM OBJECTS

FileInfo

A FileInfo object represents a fi le. You can use its properties and methods to create and delete fi les.

The following table describes the most useful public properties and methods provided by the
FileInfo class:

PROPERTY OR METHOD PURPOSE

LastWriteTimeUtc Gets or sets directory’s last write time in UTC.

MoveTo Moves the directory and its contents to a new path.

Name The directory’s name without the path information.

Parent Returns a DirectoryInfo object, representing the directory’s parent. If the

directory is its fi lesystem’s root (for example, C:\), this returns Nothing.

Refresh Refreshes the DirectoryInfo object’s data. For example, if the directory has

been accessed since the object was created, you must call Refresh to load

the new LastAccessTime value.

Root Returns a DirectoryInfo object representing the root of the directory’s

fi lesystem.

ToString Returns the directory’s fully qualifi ed path and name.

PROPERTY OR METHOD PURPOSE

AppendText Returns a StreamWriter that appends text to the fi le.

Attributes Gets or sets fl ags for the fi le from the FileAttributes enumeration:

Archive, Compressed, Device, Directory, Encrypted, Hidden, Normal,

NotContentIndexed, Offl ine, ReadOnly, ReparsePoint, SparseFile,

System, and Temporary.

CopyTo Copies the fi le and returns a FileInfo object, representing the new

fi le. A parameter lets you indicate whether the copy should overwrite

an existing fi le. If the destination path is relative, it is relative to the

 application’s current directory, not to the FileInfo object’s directory.

Create Creates the fi le and returns a FileStream object attached to it. For

example, you can create a FileInfo object, passing its constructor the

name of a fi le that doesn’t exist, and then call the Create method to

 create the fi le.

(continued)

.NET Framework Classes ❘ 599

PROPERTY OR METHOD PURPOSE

CreateText Creates the fi le and returns a StreamWriter attached to it. For example,

you can create a FileInfo object passing its constructor the name of a fi le

that doesn’t exist, and then call the CreateText method to create the fi le.

CreationTime Gets or sets the fi le’s creation time.

CreationTimeUtc Gets or sets the fi le’s creation time in UTC.

Delete Deletes the fi le.

Directory Returns a DirectoryInfo object representing the fi le’s directory.

DirectoryName Returns the name of the fi le’s directory.

Exists Returns True if the fi le exists.

Extension Returns the extension part of the fi le’s name, including the period.

For example, the extension for game.txt is .txt.

FullName Returns the fi le’s fully qualifi ed path and name.

IsReadOnly Returns True if the fi le is marked read-only.

LastAccessTime Gets or sets the fi le’s last access time.

LastAccessTimeUtc Gets or sets the fi le’s last access time in UTC.

LastWriteTime Gets or sets the fi le’s last write time.

LastWriteTimeUtc Gets or sets the fi le’s last write time in UTC.

Length Returns the number of bytes in the fi le.

MoveTo Moves the fi le to a new location. If the destination uses a relative path,

it is relative to the application’s current directory, not to the FileInfo

object’s directory. When this method fi nishes, the FileInfo object is

updated to refer to the fi le’s new location.

Name The fi le’s name without the path information.

Open Opens the fi le with various mode (Append, Create, CreateNew, Open,

OpenOrCreate, or Truncate), access (Read, Write, or ReadWrite), and

sharing (Read, Write, ReadWrite, or None) settings. This method returns

a FileStream object attached to the fi le.

OpenRead Returns a read-only FileStream attached to the fi le.

OpenText Returns a StreamReader with UTF-8 encoding attached to the fi le

for reading.

OpenWrite Returns a write-only FileStream attached to the fi le.

continues

600 ❘ CHAPTER 30 FILESYSTEM OBJECTS

FileSystemWatcher

The FileSystemWatcher class keeps an eye on part of the fi lesystem and raises events to let your
program know if something changes. For example, you could make a FileSystemWatcher monitor a
work directory. When a new fi le with a .job extension arrives, the watcher could raise an event and
your application could process the fi le.

The FileSystemWatcher class’s constructor takes parameters that tell it which directory to watch and
that give it a fi lter for selecting fi les to watch. For example, the fi lter might be “*.txt” to watch for
changes to text fi les. The default fi lter is “*.*”, which catches changes to all fi les that have an exten-
sion. Set the fi lter to the empty string “” to catch changes to all fi les including those without extensions.

The following table describes the FileSystemWatcher class’s most useful properties:

PROPERTY OR METHOD PURPOSE

Refresh Refreshes the FileInfo object’s data. For example, if the fi le has been

accessed since the object was created, you must call Refresh to load

the new LastAccessTime value.

Replace Replaces a target fi le with this one, renaming the old target as a backup

copy. If the backup fi le already exists, it is deleted and replaced with

the target.

ToString Returns the fi le’s fully qualifi ed name.

PROPERTY PURPOSE

EnableRaisingEvents Determines whether the component is enabled. Note that this property is

False by default, so the watcher will not raise any events until you set it to True.

Filter Determines the fi les for which the watcher reports events. You cannot

watch for multiple fi le types as in *.txt and *.dat. Instead use multiple

FileSystemWatcher objects. If you like, you can use AddHandler to make all

of the FileSystemWatcher classes use the same event handlers.

IncludeSubdirectories Determines whether the object watches subdirectories within the main path.

InternalBuff erSize Determines the size of the internal buff er. If the watcher is monitoring a

very active directory, a small buff er may overfl ow.

NotifyFilter Determines the types of changes that the watcher reports. This is a combi-

nation of values defi ned by the NotifyFilters enumeration and can include

the values Attributes, CreationTime, DirectoryName, FileName, LastAccess,

LastWrite, Security, and Size.

Path Determines the path to watch.

(continued)

.NET Framework Classes ❘ 601

The FileSystemWatcher class provides only two really useful methods. The fi rst method, Dispose,
releases resources used by the component. When you are fi nished using a watcher, call its Dispose
method to allow garbage collection to reclaim its resources more effi ciently.

The second method, WaitForChanged, waits for a change synchronously (with an optional timeout).
When a change occurs, the method returns a WaitForChangedResult object, giving information
about the change that occurred.

When the FileSystemWatcher detects a change asynchronously, it raises an event to let the program
know what has happened. The following table describes the class’s events:

NAME DESCRIPTION

Changed A fi le or subdirectory has changed.

Created A fi le or subdirectory was created.

Deleted A fi le or subdirectory was deleted.

Error The watcher’s internal buff er overfl owed.

Renamed A fi le or subdirectory was renamed.

The following simple example shows how to use a FileSystemWatcher to look for new fi les in
a directory:

Private WithEvents JobFileWatcher As FileSystemWatcher

Private Sub Form1_Load() Handles MyBase.Load
 Dim watch_path As String =
 FileSystem.GetParentPath(Application.StartupPath)
 JobFileWatcher = New FileSystemWatcher(watch_path, “*.job”)
 JobFileWatcher.NotifyFilter = NotifyFilters.FileName
 JobFileWatcher.EnableRaisingEvents = True
End Sub

Private Sub JobFileWatcher_Created(sender As Object,
 e As FileSystemEventArgs) Handles JobFileWatcher.Created
 ‘ Process the new file.
 MessageBox.Show(“Process new job: “ & e.FullPath)

 File.Delete(e.FullPath)
End Sub

The program uses the WithEvents keyword to declare a FileSystemWatcher object. When the
 program’s main form loads, the Form1_Load event handler allocates this object. Its constructor sets
the object’s path to the program’s startup directory’s parent. It sets the object’s fi lter to “*.job”
so that the object will watch for changes to fi les that end with a .job extension.

602 ❘ CHAPTER 30 FILESYSTEM OBJECTS

The event handler sets the watcher’s NotifyFilter to FileName, so it will raise its Created event if
a new fi lename appears in the target directory. Unfortunately, the NotifyFilter values (Attributes,
CreationTime, DirectoryName, FileName, LastAccess, LastWrite, Security, and Size) do not
match up well with the events provided by the FileSystemWatcher, so you need to fi gure out which
NotifyFilter values to set to raise different kinds of events.

The Form1_Load event handler fi nishes by setting the watcher’s EnableRaisingEvents property
to True so the object starts watching.

When a .job fi le is created in the watcher’s target directory, the program’s fswJobFiles_Created
executes. The program processes and then deletes the fi le. In this example, the program processes
the fi le by displaying a message giving its fully qualifi ed name. A more realistic example might
read the fi le; parse fi elds, indicating the type of job this is; assign it to an employee for handling; and
then e-mail it to that employee.

The UseFileSystemWatcher example program, which is available for download on the book’s web-
site, uses similar code without the fi lter to look for any new fi le in the program’s startup directory.

Path

The Path class provides shared properties and methods that you can use to manipulate paths. Its
methods return the path’s fi lename, extension, directory name, and so forth. Other methods provide
values that relate to system-generated paths. For example, they can give you the system’s temporary
directory path, or the name of a temporary fi le.

The following table describes the Path class’s most useful public properties.

PROPERTY PURPOSE

AltDirectorySeparatorChar Returns the alternate character used to separate directory levels in a

hierarchical path. Typically this is /.

DirectorySeparatorChar Returns the character used to separate directory levels in a hierarchical

path. Typically this is \ (as in C:\Tests\Billing\2008q2.dat).

InvalidPathChars Returns a character array that holds characters that are not allowed

in a path string. Typically, this array includes characters such as

“, <, >, and |, as well as nonprintable characters such as those with

ASCII values between 0 and 31.

PathSeparator Returns the character used to separate path strings in environment

variables. Typically this is a semicolon (;).

VolumeSeparatorChar Returns the character placed between a volume letter and the rest of

the path. Typically this is a colon (:).

.NET Framework Classes ❘ 603

The following table describes the Path class’s most useful methods.

METHOD PURPOSE

ChangeExtension Changes a path’s extension.

Combine Returns two path strings concatenated.

GetDirectoryName Returns a path’s directory.

GetExtension Returns a path’s extension.

GetFileName Returns a path’s fi lename and extension.

GetFileNameWithoutExtension Returns a path’s fi lename without the extension.

GetFullPath Returns a path’s fully qualifi ed value. This can be particularly

useful for converting a partially relative path into an absolute

path. For example, this statement:

Path.GetFullPath(“C:\Tests\OldTests\

Software\..\..\New\Code”)

returns this result:

“C:\Tests\New\Code”

GetInvalidFileNameChars Returns an array listing characters that are invalid in fi lenames.

GetInvalidPathChars Returns an array listing characters that are invalid in fi le paths.

GetPathRoot Returns a path’s root directory string.

GetRandomFileName Returns a random fi lename.

GetTempFileName Creates a uniquely named, empty temporary fi le and returns

its fully qualifi ed path. Your program can open that fi le for

scratch space, do whatever it needs to do, close the fi le, and

then delete it. A typical fi lename might be C:\Documents and

Settings\Rod\Local Settings\Temp\tmp19D.tmp.

GetTempPath Returns the path to the system’s temporary folder. This is the

path part of the fi lenames returned by GetTempFileName.

HasExtension Returns True if a path includes an extension.

IsPathRooted Returns True if a path is an absolute path. This includes

\Temp\Wherever and C:\Clients\Litigation, but

not Temp\Wherever or .\Uncle.

604 ❘ CHAPTER 30 FILESYSTEM OBJECTS

MY.COMPUTER.FILESYSTEM

The My.Computer.FileSystem object provides tools for working with drives, directories, and
fi les. The following table summarizes this object’s properties.

PROPERTY DESCRIPTION

CurrentDirectory Gets or sets the fully qualifi ed path to the application’s current directory.

Drives Returns a read-only collection of DriveInfo objects describing the system’s

drives.

SpecialDirectories Returns a SpecialDirectoriesProxy object that has properties giving the

 locations of various special directories (such as the system’s temporary

directory and the user’s MyDocuments directory). See the following section

“My.Computer.FileSystem.SpecialDirectories” for more information.

The following list describes the My.Computer.FileSystem object’s methods:

METHOD PURPOSE

CombinePath Combines a base path with a relative path reference and returns a properly

formatted fully qualifi ed path. For example, the following code displays the

name of the directory that is the parent of the application’s current direc-

tory: MessageBox.Show(My.Computer.FileSystem.CombinePath

(My.Computer.FileSystem.CurrentDirectory(), “..”).

CopyDirectory Copies a directory. Parameters indicate whether to overwrite existing fi les,

whether to display a progress indicator, and what to do if the user presses

Cancel during the operation.

CopyFile Copies a fi le. Parameters indicate whether to overwrite existing fi les, whether

to display a progress indicator, and what to do if the user presses Cancel

during the operation.

CreateDirectory Creates a directory. This method will create ancestor directories if necessary.

DeleteDirectory Deletes a directory. Parameters indicate whether to recursively delete

subdirectories, prompt the user for confi rmation, or move the directory into

the Recycle Bin.

DeleteFile Deletes a fi le. Parameters indicate whether to prompt the user for confi rma-

tion or move the fi le into the Recycle Bin, and what to do if the user presses

Cancel while the deletion is in progress.

DirectoryExists Returns True if a specifi ed directory exists.

My.Computer.FileSystem ❘ 605

METHOD PURPOSE

FileExists Returns True if a specifi ed fi le exists.

FindInFiles Returns a read-only collection of strings listing fi les that contain a target string.

GetDirectories Returns a string collection listing subdirectories of a given directory.

Parameters tell whether to recursively search the subdirectories, and the

wildcards to match.

GetDirectoryInfo Returns a DirectoryInfo object for a directory.

GetDriveInfo Returns a DriveInfo object for a drive.

GetFileInfo Returns a FileInfo object for a fi le.

GetFiles Returns a string collection holding the names of fi les within a directory.

Parameters indicate whether the search should recursively search subdirecto-

ries, and give wildcards to match.

GetParentPath Returns the fully qualifi ed path of a path’s parent. For example, this returns a

fi le’s or directory’s parent directory.

MoveDirectory Moves a directory. Parameters indicate whether to overwrite fi les that have

the same name in the destination directory and whether to prompt the user

when such a collision occurs.

MoveFile Moves a fi le. Parameters indicate whether to overwrite a fi le that has the same

name as the fi le’s destination and whether to prompt the user when such a

collision occurs.

OpenTextFieldParser Opens a TextFieldParser object attached to a delimited or fi xed-fi eld fi le such

as a log fi le. You can use the object to parse the fi le.

OpenTextFileReader Opens a StreamReader object attached to a fi le. You can use the object to

read the fi le.

OpenTextFileWriter Opens a StreamWriter object attached to a fi le. You can use the object to

write into the fi le.

ReadAllBytes Reads all of the bytes from a binary fi le into an array.

ReadAllText Reads all of the text from a text fi le into a string.

RenameDirectory Renames a directory within its parent directory.

RenameFile Renames a fi le within its directory.

WriteAllBytes Writes an array of bytes into a binary fi le. A parameter tells whether to append

the data or rewrite the fi le.

WriteAllText Writes a string into a text fi le. A parameter tells whether to append the string

or rewrite the fi le.

606 ❘ CHAPTER 30 FILESYSTEM OBJECTS

MY.COMPUTER.FILESYSTEM.SPECIALDIRECTORIES

The My.Computer.FileSystem.SpecialDirectories property returns an object that has properties
giving the locations of various special directories such as the system’s temporary directory and the
user’s MyDocuments directory.

The following table describes these special directory properties.

PROPERTY PURPOSE

AllUsersApplicationData Application settings for all users

CurrentUserApplicationData Application settings for the current user

Desktop The current user’s desktop directory

MyDocuments The current user’s MyDocuments directory

MyMusic The current user’s MyMusic directory

MyPictures The current user’s MyPictures directory

Programs The current user’s Programs directory

ProgramFiles The current user’s Program Files directory

Temp The current user’s temporary directory

DIRECTORY DEFICIENCIES

Note that these directories may not all exist on a particular system. For example, a
system may not defi ne the MyMusic or MyPictures directories. Trying to access the
value of a missing directory causes a DirectoryNotFoundException. You can use a
Try Catch block to protect the program from the exception.

SUMMARY

Visual Basic provides a native set of methods for reading and writing fi les, including FreeFile,
FileOpen, Input, LineInput, Print, Write, and FileClose. It also provides methods for working with
the fi lesystem (such as ChDir, MkDir, Kill, and RmDir). If you have a lot of previous experience
with Visual Basic, you may prefer these familiar methods.

The System.IO namespace offers many objects that provide even more powerful capabilities than
the native Visual Basic methods. Classes such as Directory, DirectoryInfo, File, and FileInfo make

Summary ❘ 607

it easy to create, examine, move, rename, and delete directories and fi les. The File class’s methods
make it particularly easy to read or write an entire fi le and to create streams attached to fi les for
reading or writing.

The FileSystemWatcher class lets an application keep an eye on a fi le or directory and take action
when it is changed. For example, a program can watch a spooling directory and take action when a
new fi le appears in it.

The Path class provides miscellaneous support for working with paths. For example, it provides
methods for examining a path’s fi lename or extension, and for combining paths.

The My.Computer.FileSystem namespace provides shortcuts to some of the more useful of the
methods offered by the other fi lesystem classes. Its methods let you create, examine, and delete fi les
and directories. The SpecialDirectories object also provides information about the locations of
system directories.

There is considerable overlap among all of these tools, so you don’t need to feel that you have to
use them all. Take a good look so you know what’s there, and then pick the tools that you fi nd the
most comfortable.

The chapters in this book cover a wide variety of Visual Basic programming topics. In the fi rst part
of the book, Chapters 1 through 6 described the Visual Studio integrated development environment
and many of the tools that you use to build Visual Basic programs. In the second part of the book,
Chapters 7 through 21 explained basic topics of Visual Basic programming (such as the language
itself, using standard controls, and drag and drop). In the third part of the book, Chapters 22
through 26 described object-oriented concepts (such as class and structure declaration, namespaces,
and generics). In the fourth part of the book, Chapters 27 through 30 explained the ways a program
can interact with its environment by printing and using techniques such as confi guration fi les, the
registry, streams, and fi lesystem objects.

The rest of this book contains appendices that provide a categorized reference for Visual Basic
.NET. You can use them to quickly review the syntax of a particular command, select from among
several overloaded versions of a routine, or refresh your memory about what a particular class
can do.

 PART V
Appendices

 � APPENDIX A: Useful Control Properties, Methods, and Events

 � APPENDIX B: Variable Declarations and Data Types

 � APPENDIX C: Operators

 � APPENDIX D: Subroutine and Function Declarations

 � APPENDIX E: Control Statements

 � APPENDIX F: Error Handling

 � APPENDIX G: Windows Forms Controls and Components

 � APPENDIX H: WPF Controls

 � APPENDIX I: Visual Basic Power Packs

 � APPENDIX J: Form Objects

 � APPENDIX K: Classes and Structures

 � APPENDIX L: LINQ

 � APPENDIX M: Generics

 � APPENDIX N: Graphics

 � APPENDIX O: Useful Exception Classes

 � APPENDIX P: Date and Time Format Specifi ers

 � APPENDIX Q: Other Format Specifi ers

 � APPENDIX R: The Application Class

 � APPENDIX S: The My Namespace

 � APPENDIX T: Streams

 � APPENDIX U: Filesystem Classes

 � APPENDIX V: Visual Studio Versions

PROPERTIES

The following table lists properties implemented by the Control class. All controls that inherit from
this class inherit these properties unless those other controls override the Control class’s behavior.

Useful Control Properties,
Methods, and Events

A control interacts with a program or user through properties, methods, and events. Although
each type of control provides different features, they are all derived from the Control class.
This class provides many useful properties, methods, and events that other controls inherit if
those other controls don’t take special action to override them. The following sections describe
some of the most useful of these inherited features.

A

CLASSY CONTROLS

You can learn more about the Control class at http://msdn.microsoft.com/
system.windows.forms.control.aspx.

PROPERTY PURPOSE

BackColor The control’s background color.

BackgroundImage The control’s background image.

BackgroundImageLayout Determines how the control’s background image is used to fi ll

the control. This can be Center, None, Stretch, Tile, or Zoom.

continues

http://msdn.microsoft.com/system.windows.forms.control.aspx
http://msdn.microsoft.com/system.windows.forms.control.aspx

612 ❘ APPENDIX A USEFUL CONTROL PROPERTIES, METHODS, AND EVENTS

PROPERTY PURPOSE

Bottom The distance between the top edge of the control’s container and the

bottom edge of the control in pixels. This is read-only. Modify the Top

and Height properties to change this value.

Bounds Determines the control’s size and location, including nonclient areas.

Capture Determines whether the control has captured the mouse.

CausesValidation Determines whether the control makes other controls validate when it

receives the focus.

ClientRectangle Represents the control’s client area.

ClientSize Holds the control’s height and width.

ContainsFocus Indicates whether the control or one of its child controls has the input

focus. This is read-only.

ContextMenuStrip The context menu strip associated with the control.

Controls Collection containing references to the controls contained within this

control.

Cursor The cursor that the control displays when the mouse is over it.

DataBindings The control’s DataBindings, used to bind the control to a data source.

DisplayRectangle A Rectangle giving the control’s display area. Figure A-1 shows two

GroupBoxes with the same size. The GroupBox on the right contains

two labels that cover its ClientRectangle and DisplayRectangle.

Dock Determines the edge of the control’s parent to which the control is

docked. This can be Left, Right, Top, Bottom, Fill, or None.

Enabled Determines whether the control will interact with the user.

Focused Indicates whether the control has the input focus. This is read-only.

Font The control’s font.

ForeColor The control’s foreground color.

Handle The control’s window handle. This is read-only.

HasChildren Indicates whether the control holds any child controls. This is

read-only. Also see the Controls property.

Height The control’s height in pixels.

(continued)

Properties ❘ 613

PROPERTY PURPOSE

InvokeRequired Returns True if the calling code is running on a thread diff erent from

the control’s thread and therefore must use an invoke method to inter-

act with the control. See also the Invoke method.

Left The X coordinate of the control’s left edge in pixels.

Location The position of the control’s upper-left corner.

Margin Determines the spacing between this control and another control’s

margin within an arranging container.

MaximumSize The control’s largest allowed size.

MinimumSize The control’s smallest allowed size.

Modifi erKeys Indicates which modifi er keys (Shift, Ctrl, and Alt) are pressed. This is

read-only.

MouseButtons Indicates which mouse buttons (Left, Right, Middle, None) are pressed.

This is read-only.

MousePosition The mouse’s current position in screen coordinates (where the point

(0, 0) is in the screen’s upper-left corner). This is read-only.

Name The control’s name.

Padding The spacing of the control’s contents.

Parent The parent containing the control.

PreferredSize A size that is big enough to hold the control’s contents.

Region Determines the control’s window region. This is the area in which the

control may draw.

Right The distance between the left edge of the control’s container and the

right edge of the control in pixels. This is read-only. Modify the Left

and Width properties to change this value.

Size The control’s size including client and nonclient areas.

TabIndex The control’s position in its container’s tab order. If more than one

control has the same TabIndex, they are traversed front to back using

the stacking order.

TabStop Determines whether the user can tab to the control.

Tag This property can hold any object that you want to associate with the

control.

continues

614 ❘ APPENDIX A USEFUL CONTROL PROPERTIES, METHODS, AND EVENTS

METHODS

The following table lists useful methods implemented by
the Control class. All controls that inherit from this class
inherit these methods unless they override the Control class’s
behavior.

PROPERTY PURPOSE

Text The control’s text.

Top The Y coordinate of the control’s top edge in pixels.

TopLevelControl The control’s top-level ancestor. Usually that is the outermost Form

containing the control. This is read-only.

Visible Determines whether the control is visible.

Width The control’s width in pixels.

(continued)

FIGURE A-1: The DisplayRectangle

property gives the area in which you

should normally place items within a

control.

METHOD PURPOSE

Sub BringToFront() Brings the control to the front of the stacking order.

Function Contains(ByVal

target As Control) As

Boolean

Returns True if target is contained by this control.

Function CreateGraphics()

As Graphic

Creates a Graphics object that you can use to draw on the control’s

surface.

Sub DrawToBitmap(ByVal

bm As Bitmap, ByVal rect

As Rectangle)

Draws an image of the control including contained controls onto the

Bitmap in the indicated Rectangle.

Function Focus() As

Boolean

Gives the control the input focus.

Methods ❘ 615

METHOD PURPOSE

Function GetChildAtPoint

(ByVal pt As Point) As

Control

Returns the control’s child that contains the indicated point. If more

than one control contains the point, the method returns the control

that is higher in the stacking order.

Function GetPreferredSize

(ByVal proposed_size) As

Size

Returns a size that is big enough to hold the control’s contents.

Function GetType() As Type Returns a Type object representing the control’s class. You can use

this object to get information about the class.

Sub Invalidate() Invalidates some or all of the control and sends it a Paint event so that

it redraws itself.

Sub Invoke(ByVal

delegate As Delegate)

Invokes a delegate on the thread that owns the control.

Function PointToClient

(ByVal screen_point Point)

As Point

Converts a Point in screen coordinates into the control’s coordinate

system.

Function PointToScreen

(ByVal control_point As

Point) As Point

Converts a Point in control coordinates into the screen coordinate

system.

Function RectangleToClient

(ByVal screen_rect As

Rectangle) As Rectangle

Converts a Rectangle in screen coordinates into the control’s

coordinate system.

Function

RectangleToScreen (ByVal

control_rect As Rectangle)

As Rectangle

Converts a Rectangle in control coordinates into the screen

coordinate system.

Sub Refresh() Invalidates the control’s client area, so the control redraws itself and

its child controls.

Sub Scale(ByVal

scale_factor As Single)

Scales the control and any contained controls by multiplying the Left,

Top, Width, and Height properties by scale_factor.

Sub Select() Moves the input focus to the control. Some controls have overloaded

versions.

continues

616 ❘ APPENDIX A USEFUL CONTROL PROPERTIES, METHODS, AND EVENTS

METHOD PURPOSE

Function SelectNextControl

(ByVal ctl As Control, ByVal

forward As Boolean, ByVal

tab_stop_only As Boolean,

ByVal include_nested As

Boolean, ByVal wrap As

Boolean) As Boolean

Moves the input focus to the next control contained within this one.

Sub SendToBack() Sends the control to the back of the stacking order.

Sub SetBounds(ByVal x As

Integer, ByVal y As Integer,

ByVal width As Integer,

ByVal height As Integer)

Sets the control’s position and size.

Sub Show() Displays the control by setting its Visible property to True.

Function ToString() As

String

Returns a textual representation of the control. This is generally the

type of the control followed by its most commonly used property.

Sub Update() Makes the control redraw any invalidated areas.

EVENTS

The following table lists useful events implemented by the Control class. All controls that inherit
from this class inherit these events unless they override the Control class’s behavior.

EVENT PURPOSE

Click Occurs when the user clicks the control. This event is at a higher

logical level than the MouseClick event, and it can be triggered by

actions other than a mouse click (such as pressing the Enter key or a

shortcut key).

ControlAdded Occurs when a new control is added to the control’s contained child

controls.

ControlRemoved Occurs when a control is removed from the control’s contained child

controls.

(continued)

Events ❘ 617

EVENT PURPOSE

DoubleClick Occurs when the user double-clicks the control.

Enter Occurs when the control is entered. This event fi res before the

GotFocus event.

GotFocus Occurs when the control receives the input focus. This event fi res after

the Enter event. Generally, the Enter event is preferred.

HelpRequested Occurs when the user requests help for the control. For example, if

the user moves the focus to a TextBox and presses F1, the TextBox

raises this event.

Invalidated Occurs when part of the control is invalidated.

KeyDown Occurs when the user presses a key while the control has the input

focus.

KeyPress Occurs when the user presses and releases a key while the control

has the input focus.

KeyUp Occurs when the user releases a key while the control has the input

focus.

Leave Occurs when the input focus leaves the control. This event fi res before

the LostFocus event.

LostFocus Occurs when the input focus leaves the control. This event fi res after

the Leave event. Generally, the Leave event is preferred.

MouseClick Occurs when the user clicks the mouse on the control.

MouseDoubleClick Occurs when the user double-clicks the mouse on the control.

MouseDown Occurs when the user presses a mouse button down over the control.

MouseEnter Occurs when the mouse enters the control.

MouseHover Occurs when the mouse hovers over the control.

MouseLeave Occurs when the mouse leaves the control.

MouseMove Occurs when the mouse moves over the control.

MouseUp Occurs when the user releases a mouse button over the control.

MouseWheel Occurs when the user moves the mouse wheel while the control has

the input focus.

Move Occurs when the control is moved. This event fi res before the

LocationChanged event fi res.

continues

618 ❘ APPENDIX A USEFUL CONTROL PROPERTIES, METHODS, AND EVENTS

EVENT PURPOSE

Paint Occurs when the control must redraw itself. Normally the program

draws on the control during this event (if it draws on the control at all).

Resize Occurs while the control is resizing. This event occurs after the Layout

event but before the SizeChanged event.

SizeChanged Occurs while the control is resizing. This event occurs after the Layout

and Move events.

TextChanged Occurs when the control’s Text property changes.

Validated Occurs when the control has successfully fi nished validating its data.

Validating Occurs when the control should validate its data.

(continued)

Variable Declarations
and Data Types

This appendix provides information about variable declarations and data types.

VARIABLE DECLARATIONS

The following code shows a standard variable declaration:

[attribute_list] [accessibility] [Shared] [Shadows] [ReadOnly] _
Dim [WithEvents] name[?] [(bounds_list)] [As [New] type[?]] _
[= initialization_expression]

The following list describes the pieces of this declaration:

 ➤ attribute_list — Comma-separated list of attributes specifi c to a particular task.
For example, <XmlAttributeAttribute(AttributeName:=”Cost”)>.

 ➤ accessibility — Public, Protected, Friend, Protected Friend, Private, or Static.

 ➤ Shared — Means that all instances of the class or structure containing the variable
share the same variable.

 ➤ Shadows — Indicates that the variable hides a variable with the same name in a base
class.

 ➤ ReadOnly — Indicates that the program can read, but not modify, the variable’s value.
You can set the value in an initialization statement or in an object constructor.

 ➤ Dim — Offi cially tells Visual Basic that you want to create a variable. You can omit the
Dim keyword if you specify Public, Protected, Friend, Protected Friend, Private, Static,
or ReadOnly.

B

620 ❘ APPENDIX B VARIABLE DECLARATIONS AND DATA TYPES

 ➤ WithEvents — Tells Visual Basic that the variable is of a specifi c object type that can raise
events that you may want to catch.

 ➤ name — Gives the name of the variable.

 ➤ ? — Indicates this should be a nullable variable. For more information, see the section
“Nullable Types” in Chapter 14, “Data Types, Variables, and Constants.”

 ➤ bounds_list — Bounds for an array.

 ➤ New — Use New to make a new instance of an object variable. Include parameters for the
class’s constructor if appropriate.

 ➤ type — Variable’s data type.

 ➤ initialization_expression — Expression that sets the initial value for the variable.

Visual Basic enables you to declare and initialize more than one variable in a single declaration
statement, but this can make the code more diffi cult to read. To avoid possible later confusion,
declare only variables of one type in a single statement.

INITIALIZATION EXPRESSIONS

Initialization expressions assign a value to a new variable. Simple expressions assign a literal value
to a simple data type. The following example sets the value of a new string variable:

Dim txt As String = “Test”

The assignment expression can also initialize a variable to the result of a function or constructor, as
in the following example:

Dim a_person As Person = New Person(“Rod”, “Stephens”) ‘ Constructor.
Dim num_tools As Integer = CountTools() ‘ Function.

An initialization expression for an object can use the With keyword to specify values for the object’s
public properties as in the following example, which sets the object’s FirstName and LastName
properties:

Dim emp As New Employee With {.FirstName = “Rod”, .LastName = “Stephens”}

To initialize a one-dimensional array, put the array’s values inside braces separated by commas as in
the following code:

Dim fibonacci() As Integer = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89}

To initialize higher-dimensional arrays, place lower-dimensional array values inside braces and
separate them with commas as in the following example, which initializes a two-dimensional array:

From ❘ 621

Dim int_values(,) As Integer =
{
 {1, 2, 3},
 {4, 5, 6}
}

Visual Basic’s type inference system can guess the data type of an array from its initialization if
Option Strict is Off. For example, in the following code, Visual Basic concludes that the array values
hold Integers:

Dim values() = {1, 2, 3} ‘ Integer

If an array initializer holds values of more than one compatible data type, Visual Basic assumes the
array holds the more general type. For example, the following array holds Doubles:

Dim values() = {1, 2, 3.4} ‘ Double

If an array holds values of multiple incompatible data types, Visual Basic makes the array hold
Objects, as in the following example:

Dim values() = {1, 2.3, “three”} ‘ Object

WITH

When you create a new object variable, you can include a With clause to initialize the object’s prop-
erties. The following code uses the Person class’s parameterless constructor to make a new Person
object. The With statement then sets values for the object’s FirstName and LastName values.

Dim author As New Person() With {.FirstName = “Rod”, .LastName = “Stephens”}

FROM

When you declare a collection, you can use the From keyword to initialize the collection. For
example, the following code creates a collection of strings:

Dim fruits As New Collection() From {“Apple”, “Banana”, “Cherry”}

This works for any collection class that has an Add method.

If the collection’s Add method takes more than one parameter, group parameters in brackets, as in
the following example:

Dim fruits As New Dictionary(Of Integer, String)() From
 {{1, “Apple”}, {2, “Banana”}, {2, “Cherry”}}

622 ❘ APPENDIX B VARIABLE DECLARATIONS AND DATA TYPES

If a class does not provide an Add method, you can create one with extension methods.
For example, the following code creates Add methods for the Stack and Queue classes:

Module CollectionExtensions
 ‘ Add method for the Stack class.
 <Extension()>
 Public Sub Add(the_stack As Stack, value As Object)
 the_stack.Push(value)
 End Sub

 ‘ Add method for the Queue class.
 <Extension()>
 Public Sub Add(the_queue As Queue, value As Object)
 the_queue.Enqueue(value)
 End Sub
End Module

USING

To make it easy to call an object’s Dispose method, you can declare a variable in a Using statement.
When the code reaches the corresponding End Using statement, Visual Basic automatically calls the
object’s Dispose method.

You can only place Using statements inside code blocks, not at the module level, so the syntax is
somewhat simpler than the syntax for declaring a variable in general. The following code shows the
syntax for declaring a variable in a Using statement:

Using name [(bounds_list)] [As [New] type] [= initialization_expression]
 ...
End Using

The parts of this statement are described in the section “Variable Declarations” earlier in this
appendix.

If it declares the variable, the Using statement must also initialize it either with the As New syntax
or with an initialization expression.

ENUMERATED TYPE DECLARATIONS

The syntax for declaring an enumerated type is as follows:

[attribute_list] [accessibility] [Shadows] Enum name [As type]
 [attribute_list] value_name [= initialization_expression]
 [attribute_list] value_name [= initialization_expression]
 ...
End Enum

Most of these terms (including attribute_list and accessibility) are similar to those used by vari-
able declarations. See the section “Variable Declarations” earlier in this appendix for more information.

Option Infer ❘ 623

XML VARIABLES

To initialize XML data, declare an XElement variable and set it equal to properly formatted XML
code. For example, the following code declares a variable named book_node that contains XML
data representing a book:

Dim book_node As XElement =
 <Book>
 <Title>The Bug That Was</Title>
 <Year>2012</Year>
 <Pages>376</Year>
 </Book>

OPTION EXPLICIT AND OPTION STRICT

When Option Explicit is on, you must explicitly declare all variables before using them. When
Option Explicit is off, Visual Basic creates a variable the fi rst time it is encountered if it has not
yet been declared. To make your code easier to understand, and to avoid problems (such as Visual
Basic creating a new variable because of a typographical error), you should always turn Option
Explicit on.

When Option Strict is on, Visual Basic will not implicitly perform narrowing type conversions.
For example, if you set an Integer variable equal to a String value, Visual Basic will raise an error
because the String might not contain an Integer value. When Option Strict is off, Visual Basic will
silently attempt narrowing conversions. It tries to convert the String value into an Integer and raises
an error if the String doesn’t contain an integral value. To avoid confusion and potentially slow
conversions, always turn Option Strict on.

OPTION INFER

When Option Infer is on, Visual Basic can infer the data type of a variable from its initialization
expression. For example, Visual Basic would infer that the variable txt in the following code has
data type String:

Dim message = “Hello!”

Because inferred data types do not explicitly give the variable’s data type, they can make the code
harder to understand. To avoid confusion, leave Option Infer off unless you really need it.

For example, LINQ (Language Integrated Query) lets a program generate results that have an
anonymous type. LINQ creates a data type to hold results but the type is not given a name for
the program to use. Instead type inference allows the program to manipulate the results without
ever referring to the type by name. In this case, Option Infer must be on. For more information on
LINQ, see Chapter 20, “LINQ.”

624 ❘ APPENDIX B VARIABLE DECLARATIONS AND DATA TYPES

DATA TYPES

The following table summarizes the Visual Basic data types.

TYPE SIZE VALUES

Boolean 2 bytes True or False

Byte 1 byte 0 to 255 (unsigned byte)

SByte 1 byte –128 to 127 (signed byte)

Char 2 bytes 0 to 65,535 (unsigned character)

Short 2 bytes –32,768 to 32,767

UShort 2 bytes 0 through 65,535 (unsigned short)

Integer 4 bytes –2,147,483,648 to 2,147,483,647

UInteger 4 bytes 0 through 4,294,967,295 (unsigned integer)

Long 8 bytes –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

ULong 8 bytes 0 through 18,446,744,073,709,551,615 (unsigned long)

Decimal 16 bytes 0 to +/–79,228,162,514,264,337,593,543,950,335 with no

decimal point

0 to +/–7.9228162514264337593543950335 with 28 places

Single 4 bytes –3.4028235E+38 to –1.401298E-45 (negative values)

1.401298E–45 to 3.4028235E+38 (positive values)

Double 8 bytes –1.79769313486231570E+308 to

–4.94065645841246544E–324 (negative values)

4.94065645841246544E–324 through

1.79769313486231570E+308 (positive values)

String variable Depending on the platform, approximately 0 to 2 billion

Unicode characters

Date 8 bytes January 1, 0001 0:0:00 to December 31, 9999 11:59:59 pm

Object 4 bytes Points to any type of data

Structure variable Structure members have their own ranges

Literal Type Characters ❘ 625

DATA TYPE CHARACTERS

The following table lists the Visual Basic data type characters.

CHARACTER DATA TYPE

% Integer

& Long

@ Decimal

! Single

Double

$ String

Using data type characters alone to determine a variable’s data type can be confusing, so I
recommend that you use an As clause instead. For example, the following code defi nes two
integer variables and then uses them in nested loops. The declaration of j is more explicit and
easier to understand.

Dim i%
Dim j As Integer

For i = 1 To 10
 For j = 1 To 10
 Debug.WriteLine(i * 100 + j)
 Next j
Next i

LITERAL TYPE CHARACTERS

The following table lists the Visual Basic literal type characters.

CHARACTER DATA TYPE

S Short

US UShort

I Integer

UI UInteger

continues

626 ❘ APPENDIX B VARIABLE DECLARATIONS AND DATA TYPES

CHARACTER DATA TYPE

L Long

UL ULong

D Decimal

F Single (F for “fl oating

point”)

R Double (R for “real”)

c Char (note that this is a

lowercase “c”)

(continued)

DATA TYPE CONVERSION FUNCTIONS

The following table lists the Visual Basic data type conversion functions.

FUNCTION CONVERTS TO

CBool Boolean

CByte Byte

CChar Char

CDate Date

CDbl Double

CDec Decimal

CInt Integer

CLng Long

CObj Object

CSByte SByte

CShort Short

CSng Single

CStr String

Data Type Conversion Functions ❘ 627

FUNCTION CONVERTS TO

CUInt UInteger

CULng ULong

CUShort UShort

Remember that data types have their own parsing methods in addition to these data type
conversion functions. For example, the following code converts the String variable a_string into
an Integer value:

an_integer = Integer.Parse(a_string)

These methods are faster than the corresponding data type conversion functions (in this case, CInt).

The Convert class also provides methods for converting from one data type to another. The
following table lists the most useful Convert class functions.

FUNCTION

ToBoolean ToInt64

ToByte ToSByte

ToChar ToSingle

ToDateTime ToString

ToDecimal ToUInt16

ToDouble ToUInt32

ToInt16 ToUInt64

ToInt32

All of the Convert class functions provide many overloaded versions to convert different kinds of
values. For example, ToInt32 has different versions that take parameters that are Boolean, Byte,
String, and other data types.

The integer functions ToInt16, ToInt32, ToInt64, ToUInt16, ToUInt32, and ToUInt64 also provide
overloaded versions that take as parameters a string value and a base, which can be 2, 8, 10, or 16
to indicate whether the string is in binary, octal, decimal, or hexadecimal, respectively. For example,
the following statement converts the binary value 00100100 into the integer value 36:

Dim value As Integer = Convert.ToInt32(“00100100”, 2)

628 ❘ APPENDIX B VARIABLE DECLARATIONS AND DATA TYPES

CTYPE, DIRECTCAST, AND TRYCAST

The CType and DirectCast statements also perform type conversion. CType converts data from one
type to another type if the types are compatible. For example, the following code converts the string
1234 into an integer:

Dim value As Integer = CType(“1234”, Integer)

DirectCast converts an object reference to a desired type provided the object’s true type
inherits from or has an implementation relationship with the desired type. For example, suppose
the Employee class inherits from the Person class, and consider the following code:

Dim emp1 As New Employee

‘ Works because emp1 is an Employee and a Person.
Dim per1 As Person = DirectCast(emp1, Person)

‘ Works because per1 happens to point to an Employee object.
Dim emp2 As Employee = DirectCast(per1, Employee)

Dim per2 As New Person

‘ Fails because per2 is a Person but not an Employee.
Dim emp3 As Employee = DirectCast(per2, Employee)

This code creates an Employee object. It then uses DirectCast to convert the Employee into a Person
and then to convert the new Person back into an Employee. This works because this object is both
an Employee and a Person.

Next, the code creates a Person object and tries to use DirectCast to convert it into an
Employee. This fails because this Person is not an Employee.

The CType and DirectCast statements throw exceptions if an object cannot be converted into the
desired type. The TryCast statement performs a conversion much as DirectCast does except it
returns Nothing if the conversion fails.

For example, the fi nal line in the previous example throws an exception when it tries to convert
a Person object into an Employee object because a Person is not an Employee. If you replace the
DirectCast statement with TryCast, the statement would return Nothing and the code would set
the value of the variable emp3 to Nothing instead of throwing an exception.

Operators
The Visual Basic operators fall into fi ve main categories: arithmetic, concatenation, compari-
son, logical, and bitwise. The following sections explain these categories and the operators
they contain. The end of this appendix describes special Date and TimeSpan operators, as well
as operator overloading.

ARITHMETIC OPERATORS

The following table lists the arithmetic operators provided by Visual Basic.

C

OPERATOR PURPOSE EXAMPLE RESULT

^ Exponentiation 2 ^ 3 (2 to the power 3) =

2 * 2 * 2 = 8

- Negation -2 -2

* Multiplication 2 * 3 6

/ Division 3 / 2 1.5

\ Integer division 17 \ 5 3

Mod Modulus 17 Mod 5 2

+ Addition 2 + 3 5

- Subtraction 3 - 2 1

<< Bit left shift &H57 << 1 &HAE

>> Bit right shift &H57 >> 1 &H2B

630 ❘ APPENDIX C OPERATORS

The bit shift operators deserve a little extra discussion. These operators shift the binary representation
of a number by a given number of bits either left or right. Unfortunately, Visual Basic doesn’t under-
stand binary so you must manually translate between binary and decimal, octal, or hexadecimal.

For example, the hexadecimal value &H57 is 01010111 in binary. If you shift this one bit to the
left, you get 10101110, which is &HAE in hexadecimal. If you shift the original value one bit to the
right, you get 00101011, which is &H2B in hexadecimal.

When working with binary values, many developers prefer to work in hexadecimal because each hexa-
decimal digit corresponds to four binary bits so you can work with each group of four bits separately.

CONCATENATION OPERATORS

Visual Basic provides two concatenation operators: & and +. Both join two strings together. Because
the + symbol also represents an arithmetic operator, your code will be easier to read if you use the &
symbol for concatenation.

COMPARISON OPERATORS

The following table lists the comparison operators provided by Visual Basic.

OPERATOR PURPOSE EXAMPLE RESULT

= Equals A = B True if A equals B

<> Not equals A <> B True if A does not equal B

< Less than A < B True if A is less than B

<= Less than or equal to A <= B True if A is less than or

equal to B

> Greater than A > B True if A is greater than B

>= Greater than or equal

to

A >= B True if A is greater than

or equal to B

Is Equality of two objects emp Is mgr True if emp and mgr

refer to the same object

IsNot Inequality of two

objects

emp IsNot mgr True if emp and mgr

refer to diff erent objects

TypeOf ... Is ... Object is of a certain

type

TypeOf obj Is

Manager

True if obj points to a

Manager object

Like Matches a text pattern value Like

“###-####“

True if value contains

three digits, a dash,

and four digits

Logical Operators ❘ 631

The following table lists characters that have special meanings to the Like operator.

CHARACTER(S) MEANING

? Matches any single character

* Matches any zero or more characters

Matches any single digit

[characters] Matches any of the characters between the brackets

[!characters] Matches any character not between the brackets

A–Z When inside brackets, matches any character in the range A to Z

The following table lists some useful Like patterns.

PATTERN MEANING

[2–9]##–#### Seven-digit U.S. phone number

[2–9]##–[2–9]##–#### Ten-digit U.S. phone number including area code

1–[2–9]##–[2–9]##–#### Eleven-digit U.S. phone number beginning with 1 and area code

Five-digit U.S. ZIP code

#####–#### Nine-digit U.S. ZIP+4 code

?*@?*.?* E-mail address

[A–Z][0–9][A–Z] [0–9][A–Z][0–9] Canadian postal code

LOGICAL OPERATORS

The following table summarizes the Visual Basic logical operators.

OPERATOR PURPOSE EXAMPLE RESULT

Not Logical negation Not A True if A is false

And Logical And A And B True if A and B are

both true

Or Logical Or A Or B True if A or B or both

are true

continues

632 ❘ APPENDIX C OPERATORS

OPERATOR PURPOSE EXAMPLE RESULT

Xor Logical exclusive Or A Xor B True if A or B (but not

both) is true

AndAlso Logical And with short-

circuit evaluation

A AndAlso B True if A and B are

both true

OrElse Logical Or with short-

circuit evaluation

A OrElse B True if A or B or both

are true

BITWISE OPERATORS

Bitwise operators work much as logical operators do, except that they compare values one bit at a
time. Visual Basic provides bitwise versions of Not, And, Or, and Xor but not bitwise versions of
AndAlso or OrElse.

OPERATOR PRECEDENCE

The following table lists the operators in order of precedence. When evaluating an expression, the
program evaluates an operator before it evaluates those lower than it in the list. When operators are
on the same line in the table, the program evaluates them from left to right as they appear in the
expression.

(continued)

OPERATOR DESCRIPTION

^ Exponentiation

- Negation

*, / Multiplication and division

\ Integer division

Mod Modulus

+, -, + Addition, subtraction, and concatenation

& Concatenation

<<, >> Bit shift

=, <>, <, <=, >, >=, Like, Is, IsNot, TypeOf ...

Is ...

All comparisons

Choose, If, and IIf ❘ 633

OPERATOR DESCRIPTION

Not Logical and bitwise negation

And, AndAlso Logical and bitwise And with and without short-

circuit evaluation

Xor, Or, OrElse Logical and bitwise Xor, and Or with and without

short-circuit evaluation

Use parentheses to change the order of evaluation and to make expressions easier to read.

ASSIGNMENT OPERATORS

The following table summarizes the Visual Basic assignment operators.

OPERATOR EXAMPLE LONG SYNTAX EQUIVALENT

= A = B A = B

^= A ^= B A = A ^ B

*= A *= B A = A * B

/= A /= B A = A / B

\= A \= B A = A \ B

+= A += B A = A + B

-= A -= B A = A - B

&= A &= B A = A & B

<<= A <<= B A = A << B

>>= A >>= B A = A >> B

There are no assignment operators corresponding to Mod or the Boolean operators.

CHOOSE, IF, AND IIF

The Choose, If, and IIf statements return values that you can assign to a variable. These statements
are not really assignment operators (you need to use = to assign their results to a variable) and they
perform decisions so they are described in Appendix E, “Control Statements.”

634 ❘ APPENDIX C OPERATORS

DATE AND TIMESPAN OPERATORS

The Date and TimeSpan data types are related through their operators. The following list shows the
relationships between these two data types:

 ➤ Date − Date = TimeSpan

 ➤ Date + TimeSpan = Date

 ➤ TimeSpan + TimeSpan = TimeSpan

 ➤ TimeSpan − TimeSpan = TimeSpan

The following table lists examples demonstrating convenient methods provided by the Date
data type.

SYNTAX MEANING

result_date = date1

.Add(timespan1)

Returns date1 plus timespan1

result_date = date1

.AddYears(num_years)

Returns the date plus the indicated number of

years

result_date = date1

.AddMonths(num_months)

Returns the date plus the indicated number of

months

result_date = date1

.AddDays(num_days)

Returns the date plus the indicated number of days

result_date = date1

.AddHours(num_hours)

Returns the date plus the indicated number of

hours

result_date = date1

.AddMinutes(num_minutes)

Returns the date plus the indicated number of

minutes

result_date = date1

.AddSeconds(num_seconds)

Returns the date plus the indicated number of

seconds

result_date = date1

.AddMilliseconds(num_milliseconds)

Returns the date plus the indicated number of

milliseconds

result_date = date1

.AddTicks(num_ticks)

Returns the date plus the indicated number of ticks

(100 nanosecond units)

result_timespan = date1

.Subtract(date2)

Returns the time span between date2 and date1

result_integer = date1

.CompareTo(date2)

Returns a value indicating whether date1 is

greater than, less than, or equal to date2

result_boolean = date1

.Equals(date2)

Returns True if date1 equals date2

Operator Overloading ❘ 635

OPERATOR OVERLOADING

The syntax for defi ning an operator for a class is as follows:

[<attributes>] Public [Overloads] Shared [Shadows] _
[Widening | Narrowing] Operator symbol (operands) As type
 ...
End Operator

The operator’s symbol can be:

For example, the following code defi nes the + operator for the ComplexNumber class. This class has
two public properties, Re and Im, that give the number’s real and imaginary parts.

Public Shared Operator +(c1 As ComplexNumber, c2 As ComplexNumber) _
 As ComplexNumber
 Return New ComplexNumber With
 {
 .Re = c1.Re + c2.Re,
 .Im = c1.Im + c2.Im
 }
End Operator

Some operands come in pairs, and if you defi ne one, you must defi ne the other. The pairs are = and
<>, < and >, <= and >=, and IsTrue and IsFalse.

If you defi ne And and IsFalse, Visual Basic uses them to defi ne the AndAlso operator. Similarly, if
you defi ne Or and IsTrue, Visual Basic automatically provides the OrElse operator.

+

-

*

/

\

^

&

<<

>>

=

<>

<

>

<=

>=

Mod

Not

And

Or

Xor

Like

IsTrue

IsFalse

CType

OPERATOR SYMBOLS

Subroutine and Function
Declarations

This appendix provides information about subroutine, function, and generic declarations.
A property procedure includes a subroutine and function pair, so they are also described here.

SUBROUTINES

The syntax for writing a subroutine is as follows:

[attribute_list] [inheritance_mode] [accessibility]
Sub subroutine_name [(parameters)] [Implements interface.procedure]
 [statements]
End Sub

The inheritance_mode can be one of the following values: Overloads, Overrides, Overridable,
NotOverridable, MustOverride, Shadows, or Shared. These values determine how a subroutine
declared within a class inherits from the parent class or how it allows inheritance in derived classes.

The accessibility clause can take one of the following values: Public, Protected, Friend, Protected
Friend, or Private. These values determine which pieces of code can invoke the subroutine.

FUNCTIONS

The syntax for writing a function is as follows:

[attribute_list] [inheritance_mode] [accessibility] _
Function function_name([parameters]) [As return_type]
[Implements interface.function]
 [statements]
End Function

D

638 ❘ APPENDIX D SUBROUTINE AND FUNCTION DECLARATIONS

This is the same as the syntax used for declaring a subroutine, except that a function includes a
return type and ends with End Function.

The inheritance_mode can be one of the values Overloads, Overrides, Overridable, NotOverridable,
MustOverride, Shadows, or Shared. These values determine how a subroutine declared within a
class inherits from the parent class or how it allows inheritance in derived classes.

The accessibility clause can take one of the following values: Public, Protected, Friend, Protected
Friend, or Private. These values determine which pieces of code can invoke the subroutine.

A function assigns its return value by using the Return statement.

PROPERTY PROCEDURES

The syntax for read/write property procedures is as follows:

Property property_name() As data_type
 Get
 ...
 End Get
 Set(Value As data_type)
 ...
 End Set
End Property

The syntax for a read-only property procedure is as follows:

Public ReadOnly Property property_name() As data_type
 Get
 ...
 End Get
End Property

The syntax for a write-only property procedure is as follows:

Public WriteOnly Property property_name() As data_type
 Set(Value As data_type)
 ...
 End Set
End Property

In all three of these cases, you don’t need to remember all the declaration details. If you type the
fi rst line (including the ReadOnly or WriteOnly keywords if you want them) and the last line,
then Visual Basic displays an error indicator telling you that you didn’t include the Get and Set
procedures. If you hover the mouse over the error indicator, the error correction options provide a
link you can click to generate empty procedures automatically.

Auto-implemented properties let you create simple read/write properties without providing Get
and Set. The following code shows the syntax:

Property property_name() As data_type [= initial_value]

Lambda Functions and Expressions ❘ 639

Visual Basic automatically makes a backing variable to hold the property’s value, and Get and Set
routines to access the value.

Note that Visual Basic cannot provide auto-implemented ReadOnly or WriteOnly properties.

LAMBDA FUNCTIONS AND EXPRESSIONS

A lambda function (also called an inline function) is a function declared within another routine.
You can use lambda functions to initialize a delegate or to pass the function to a method that takes
a delegate as a parameter.

For example, the following code creates an inline delegate named F. It then displays the value
of F(12).

Dim F = Function(x As Integer) Sin(x / 2) + 2 * Cos(x / 3)
Debug.WriteLine(F(12))

The following code calls subroutine ApplyFunction. This function takes as parameters an array of
values and a function that it should apply to each of the values. The code passes an inline delegate
that doubles a number into ApplyFunction to double each of the values.

ApplyFunction(values, Function(x As Single) 2 * x)

A lambda subroutine is similar to a lambda function except it doesn’t return a value. The syntax is
similar to the syntax for lambda functions except you use the type Action instead of Function. The
following code creates and invokes a lambda subroutine:

Dim echo As Action(Of Integer) = Sub(x As Integer) Debug.WriteLine(x)
echo(123)

The following code creates a lambda subroutine inline as a parameter to a call to the Array.ForEach
method:

Dim states() As String = {“CO”, “UT”, “KS”, “WY“}
Array.ForEach(Of String)(states,
 Sub(str As String) MessageBox.Show(str))

You can make multiline lambda functions or subroutines. Start a new line after the Sub or Function
statement, include the lines of code that you need, and fi nish with End Sub or End Function.

The following code shows a call to Array.ForEach that uses a multiline lambda subroutine:

Array.ForEach(Of String)(states,
 Sub(str As String)
 Debug.WriteLine(str)
 MessageBox.Show(str)
 End Sub
)

640 ❘ APPENDIX D SUBROUTINE AND FUNCTION DECLARATIONS

EXTENSION METHODS

An extension method adds a new method to an existing class, even if you don’t have access to the
class’s code. For example, you could add a ToFileSize extension method to the Long class to convert
a Long value into a formatted fi le size string as in 1.23 KB or 4.5 GB. Then if size is a Long
variable, the program could invoke the method as in the following code:

MessageBox.Show(“The file size is “ & size.ToFileSize())

To make an extension method, place a method in a code module and decorate it with the Extension
attribute. (The Extension attribute is defi ned in the System.Runtime.CompilerServices namespace.
You may want to import that namespace to make your code easier to read.)

The fi rst parameter to the method determines the class that the method extends. For example,
the following code gives the String class a MatchesRegexp method that returns True if the String
matches a regular expression:

Module StringExtensions
 <Extension()>
 Public Function MatchesRegexp(the_string As String,
 regular_expression As String) As Boolean
 Dim reg_exp As New Regex(regular_expression)
 Return reg_exp.IsMatch(the_string)
 End Function
End Module

Control Statements
Control statements tell an application which other statements to execute under a particular set
of circumstances.

The two main categories of control statements are decision statements and looping
statements. The following sections describe the decision and looping statements provided
by Visual Basic .NET.

DECISION STATEMENTS

A decision statement represents a branch in the program. It marks a place where the program
can execute one set of statements or another or possibly no statements at all. These include If,
Choose, and Select Case statements.

Single-Line If Then

A single-line If Then statement tests a condition and, if the condition is true, executes a piece
of code. The code may include more than one simple statement separated by a colon.

Optional Else If clauses let the program evaluate other conditions and execute corresponding
pieces of code. A fi nal optional Else clause lets the program execute a piece of code if none of
the previous conditions is true.

The syntax for different variations are as follows:

If condition Then statement
If condition Then statement1 Else statement2
If condition1 Then statement1 Else If condition2 Then statement2 _
 Else statement3
If condition Then statement1: statement2
If condition Then statement1: statement2 Else statement3: statement4

E

642 ❘ APPENDIX E CONTROL STATEMENTS

Complicated single-line If Then statements can be confusing and diffi cult to read, so I recommend
using the multiline versions if the statement includes an Else clause or executes more than one
statement.

Multiline If Then

A multiline If Then statement is similar to the single-line version, except the pieces of code executed
by each part of the statement can include multiple lines. Each piece of code ends before the
 following ElseIf, Else, or End If keywords. In complex code, this format is often easier to read than
a complicated single-line If Then statement.

The syntax is as follows:

If condition1 Then
 statements1...
ElseIf condition2
 statements2...
Else
 statements3...
End If

The multiline If statement can contain any number of ElseIf sections.

Select Case

A Select Case statement lets a program execute one of several pieces of code based on a test value.
Select Case is equivalent to a long If Then Else statement.

The syntax is as follows:

Select Case test_value
 Case comparison_expression1
 statements1
 Case comparison_expression2
 statements2
 Case comparison_expression3
 statements3
 ...
 Case Else
 else_statements
End Select

A comparison expression can contain multiple expressions separated by commas, can use the To
keyword to specify a range of values, and can use the Is keyword to evaluate a logical expres-
sion using the test value. The following example’s fi rst case looks for a string in the range “A” to
“Z” or “a” to “z.” Its second and third cases look for values less than “A” and greater than “Z,”
respectively.

Select Case key_pressed
 Case “A” To “Z”, “a” To “z”
 ...

Decision Statements ❘ 643

 Case Is < “A”
 ...
 Case Is > “Z”
 ...
End Select

Many developers always include a Case Else section to catch unexpected situations. If every possible
situation should be covered by other cases, some developers throw an exception inside the Case Else
section to make it easier to fi nd errors.

If and IIf

IIf takes a Boolean value as its fi rst parameter. It returns its second parameter if the value is True,
and it returns its third parameter if the value is False.

The syntax is as follows:

variable = IIf(condition, value_if_true, value_if_false)

Note that IIf always evaluates all of its arguments. For example, if the condition is True, IIf only
returns the second argument, but it evaluates both the second and third arguments.

The If function does the same thing as IIf except it uses short-circuit evaluation, so it only evaluates
the second and third arguments if necessary. If the condition is True in the following code, If
 evaluates the second argument but not the third:

variable = If(condition, value_if_true, value_if_false)

A second form if the If function takes two parameters: an object reference or a nullable type and
a return value. The If function returns the fi rst parameter if it is not Nothing and the second
 argument if it is Nothing. The following code shows the syntax:

variable = If(nullable_value, default_if_nothing)

IIf and If are often confusing and IIf is slower than an If Then Else statement, so you may want to
use If Then Else instead.

Choose

Choose takes an index value as its fi rst parameter and returns the corresponding one of its other
parameters.

The syntax is as follows:

variable = Choose(index, value1, value2, value3, value4, ...)

Choose is rarely used, so it can be confusing. To avoid unnecessary confusion, you may want to use
a Select Case statement instead.

644 ❘ APPENDIX E CONTROL STATEMENTS

LOOPING STATEMENTS

A looping statement makes the program execute a series of statements repeatedly. The loop can run
for a fi xed number of repetitions, run while some condition holds True, run until some condition
holds True, or run indefi nitely.

For Next

A For Next loop executes a piece of code while a loop control variable ranges from one value to
another.

The syntax is as follows:

For variable [As data_type] = start_value To stop_value [Step increment]
 statements
 [Exit For]
 statements
Next [variable]

For Each

A For Each loop executes a piece of code while a loop control variable ranges over all of the items
contained in a group such as a collection or array.

The syntax is as follows:

For Each variable [As object_type] In group
 statements
 [Exit For]
 statements
Next [variable]

The group in this code can also be a LINQ (Language Integrated Query) query. The following code
creates a LINQ query to select information from the book_data array and then uses a For Each loop
to display the results:

Dim book_query = From book_info In book_data
 Select book_info
 Where book_info.Year > = 2000
 Order By book_info.Year
For Each bi In book_query
 Debug.WriteLine(bi.Title)
Next bi

For more information about LINQ, see Chapter 20, “LINQ.”

Do Loop

Do Loop statements come in three forms. First, if the statement has no While or Until clause, the
loop repeats infi nitely or until the code uses an Exit Do, Exit Sub, or some other statement to break
out of the loop.

Looping Statements ❘ 645

The syntax is as follows:

Do
 statements
 [Exit Do]
 statements
Loop

The other two forms of Do Loop statements execute as long as a condition is True (Do While
 condition) or until a condition is True (Do Until condition).

The second form of Do Loop statement tests its condition before it executes, so the code it contains
is not executed even once if the condition is initially False.

The syntax is as follows:

Do {While | Until} condition
 statements
 [Exit Do]
 statements
Loop

The third form of Do Loop statement tests its condition after it executes, so the code it contains is
executed at least once even if the condition is initially False.

The syntax is as follows:

Do
 statements
 [Exit Do]
 statements
Loop {While | Until} condition

While End

The While End loop executes a series of statements as long as a condition is True. It tests its
 condition before it executes, so the code it contains is not executed even once if the condition is
initially False.

The syntax is as follows:

While condition
 statements
 [Exit While]
 statements
End While

This statement is equivalent to the Do Loop:

Do While condition
 statements
 [Exit Do]
 statements
Loop

Error Handling
This appendix provides information on structured error handling that uses the Try Catch
statement.

A Try block attempts to execute some code and reacts if errors occur. The syntax is as follows:

Try
 try_statements...
[Catch ex As exception_type_1
 exception_statements_1...]
[Catch ex As exception_type_2
 exception_statements_2...]
...
[Catch
 final_exception_statements...]
[Finally
 finally_statements...]
End Try

When an error occurs, the program examines the Catch statements in order until it fi nds one
that matches the current exception. The program executes the fi nally_statements after the
try_statements succeed or after any Catch block is done executing.

THROWING EXCEPTIONS

Use the Throw statement to throw an exception, as in the following code:

Throw New ArgumentException(“Width must be greater than zero”)

Exception classes provide several overloaded constructors so you can indicate such things
as the basic error message, the name of the variable that caused the exception, and an inner
exception.

For information on useful exception classes and custom exception classes, see Appendix O,
“Useful Exception Classes.”

F

Note that components inherit from the Component class
and controls inherit from the Control class. Except where
overridden, the components and controls inherit the
properties, methods, and events defi ned by the Component
and Control classes. Chapter 8, “Using Windows Forms
Controls,” discusses some of the more useful properties,
methods, and events provided by the Control class, and many
of those apply to these controls as well. Appendix A, “Useful
Control Properties, Methods, and Events,” summarizes
the Control class’s most useful properties.

Figure G-1 shows the Visual Basic Toolbox displaying the
standard Windows Forms controls.

Windows Forms Controls
and Components

This appendix summarizes the standard controls and components provided by Visual Basic
.NET for use by Windows Forms applications. Some of these are quite complicated, provid-
ing dozens or even hundreds of properties, methods, and events, so it would be impractical to
describe them all completely here. However, it’s still worthwhile having a concise guide to the
most important controls so you know which to pick for a particular task.

 G

MORE INFORMATION

You can fi nd information about most of these controls under the “System.Windows
.Forms Namespace” topic in the MSDN help at http://msdn.microsoft.com
/system.windows.forms.aspx.

FIGURE G-1: Visual Basic

provides a large number of

standard components and

controls for Windows Forms.

http://msdn.microsoft.com/system.windows.forms.aspx
http://msdn.microsoft.com/system.windows.forms.aspx

650 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

The following table lists the components shown in Figure G-1 in the same order in which they
appear in the fi gure. Read the table by rows. For example, the fi rst several entries (Pointer,
BackgroundWorker, BindingNavigator, BindingSource, Button, and so on) correspond to the fi rst
controls in the fi rst row in Figure G-1.

TUNING THE TOOLBOX

You can add and remove controls from the Toolbox. You can add controls built
by Microsoft, other companies, yourself, or other Visual Basic programmers.
Some extra controls even come installed with Visual Basic but are not displayed by
default in the Toolbox. Right-click the Toolbox and select Choose Items to add or
remove items.

Pointer BackgroundWorker BindingNavigator BindingSource

Button CheckBox CheckedListBox ColorDialog

ComboBox ContextMenuStrip DataGridView DataSet

DateTimePicker DirectoryEntry DirectorySearcher DomainUpDown

ErrorProvider EventLog FileSystemWatcher FlowLayoutPanel

FolderBrowserDialog FontDialog GroupBox HelpProvider

HScrollBar ImageList Label LinkLabel

ListBox ListView MaskedTextBox MenuStrip

MessageQueue MonthCalendar NotifyIcon NumericUpDown

OpenFileDialog PageSetupDialog Panel PerformanceCounter

PictureBox PrintDialog PrintDocument PrintPreviewControl

PrintPreviewDialog Process ProgressBar PropertyGrid

RadioButton RichTextBox SaveFileDialog SerialPort

ServiceController SplitContainer Splitter StatusStrip

TabControl TableLayoutPanel TextBox Timer

ToolStrip ToolStripContainer ToolTip TrackBar

TreeView VScrollBar WebBrowser

Control Purposes ❘ 651

CONTROL PURPOSES

The following table summarizes the controls’ purposes.

CONTROL PURPOSE

Pointer This isn’t a control, it’s a tool that lets you select controls in the Windows

Form Designer.

BackgroundWorker A component that simplifi es multithreading. It lets you run code on a

separate thread and receive events to indicate the code’s progress.

BindingNavigator A control that provides a user interface so the user can control a data

source. It initially appears as a toolbar docked to the top of the form,

although you can move it if you like.

BindingSource Provides control of bound data on a form. It provides programmatic

methods for navigating through the data, adding items, deleting items,

and otherwise managing the data at the code level.

Button A simple push button. You can use it to let the user tell the program to

do something.

CheckBox Displays a box that enables the user to select or clear an option.

CheckedListBox Displays a series of items with check boxes in a list format. This enables

the user to pick and choose similar items from a list of choices.

ColorDialog Displays a dialog box that enables the user to select a color from a

standard palette or from a custom color palette.

ComboBox Contains a text box where the user can enter a value. It also provides a list

box or drop-down list where the user can select a value.

ContextMenuStrip Represents a context menu that you can attach to other controls’

ContextMenuStrip properties.

DataGridView Displays a table-like grid showing data from an underlying data source

such as a DataSet or BindingSource. The program can also add rows and

columns directly to the DataGridView.

DataSet Holds data in a relational format. A DataSet provides all the features you

need to build, load, store, manipulate, and save data similar to that stored

in a relational database. For example, it can hold multiple tables related

with complex parent/child relationships and uniqueness constraints.

DateTimePicker Allows the user to select a date and time. The control can display one of

several styles including a series of up/down controls that let the user scroll

through date values (month, day, year), and a drop-down calendar display.

continues

652 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

CONTROL PURPOSE

DirectoryEntry Represents a node or object in an Active Directory hierarchy.

(Active Directory is a service that provides a common, hierarchical view

of distributed resources and services on a network.)

DirectorySearcher Performs searches on an Active Directory hierarchy. See the online help

for more information on Active Directory (http://msdn.microsoft

.com/aa286486.aspx) and the DirectorySearcher component

(http://msdn.microsoft.com/system.directoryservices

.directorysearcher.aspx).

DomainUpDown Displays a list of items that the user can select by using the arrow keys

or by clicking the up and down arrow buttons beside the control. For

example, the control might let the user select one of the values High,

Medium, and Low.

ErrorProvider Displays an error indicator next to controls.

EventLog Lets an application manipulate event logs. Provides methods to create

logs, write and read log messages, and clear logs. For more information,

see the MSDN topic “Logging Application, Server, and Security Events”

(http://msdn.microsoft.com/e6t4tk09.aspx).

FileSystemWatcher Monitors part of the fi lesystem and raises events to let your program know

if something changes. For example, it can notify your program if a fi le is

created in a particular directory. For more information, see Chapter 30,

“Filesystem Objects,” and Appendix U, “Filesystem Classes.”

FlowLayoutPanel Displays the controls that it contains in rows or columns.

FolderBrowserDialog Displays a dialog box that lets the user select a folder (directory) in the

fi lesystem. The program can set the component’s root folder to indicate

where the search should begin.

FontDialog Displays a dialog box that lets the user select a font’s name, size, style

(bold, italic), color, and other characteristics.

GroupBox Displays a caption and border.

HelpProvider When associated with a control, if the user sets focus to the control and

presses the F1 key, the HelpProvider displays help for the control. The

HelpProvider either displays a small tooltip-like pop-up displaying a help

string or opens a help fi le.

HScrollBar A horizontal scroll bar.

ImageList Stores a series of images for use by other controls or by the

program’s code.

(continued)

http://msdn.microsoft.com/aa286486.aspx
http://msdn.microsoft.com/aa286486.aspx
http://msdn.microsoft.com/system.directoryservices.directorysearcher.aspx
http://msdn.microsoft.com/system.directoryservices.directorysearcher.aspx
http://msdn.microsoft.com/e6t4tk09.aspx

Control Purposes ❘ 653

CONTROL PURPOSE

Label Displays a piece of read-only text.

LinkLabel Displays a label that is associated with a hyperlink.

ListBox Displays a list of items that the user can select.

ListView Displays a list of items in one of fi ve possible views: Details (item and

sub-item text on a row), LargeIcon (large icons above the item’s text,

List (small icons to the left of the item’s text with each item on its own row),

SmallIcon (small icons to the left of the item’s text with multiple items

per row), and Tile (large icons to the left of the item’s text).

MaskedTextBox A text box that provides a mask to help guide the user in entering a value

in a particular format. The mask determines which characters are allowed

at diff erent positions in the text.

MenuStrip Represents a form’s menus, submenus, and menu items.

MessageQueue Provides access to a queue on a message-queuing server. An application

can use a message queue to communicate with other applications.

For more information, see http://msdn.microsoft.com/system

.messaging.messagequeue.aspx.

MonthCalendar Displays a calendar that allows the user to select a range of dates. (This

calendar is similar to the one that the DateTimePicker control can display.)

NotifyIcon Displays an icon in the system tray that can indicate the program’s state.

The icon can also display a context menu.

NumericUpDown Displays a number with up and down arrows that you can use to change

the number. If you click an arrow and hold it down, the number

changes repeatedly.

OpenFileDialog Displays a standard dialog box that lets the user select a fi le to open.

PageSetupDialog Displays a dialog box that lets the user specify properties for printed

pages. For example, the user can specify the printer’s paper tray, page

size, margins, and orientation (portrait or landscape).

Panel A container for other controls. By setting the Anchor and Dock properties

of the contained controls, you can make those controls arrange

themselves when the Panel is resized. The control also forms a grouping

for any RadioButtons that it contains and provides a very useful auto-

scroll capability.

PerformanceCounter Represents a Windows NT–style performance counter. You can use the

component’s methods to read, increment, and decrement the counters.

For more information, see http://msdn.microsoft.com/system

.diagnostics.performancecounter.aspx.

continues

http://msdn.microsoft.com/system.messaging.messagequeue.aspx
http://msdn.microsoft.com/system.messaging.messagequeue.aspx
http://msdn.microsoft.com/system.diagnostics.performancecounter.aspx
http://msdn.microsoft.com/system.diagnostics.performancecounter.aspx

654 ❘ APPENDIX G WINDOWS FORMS CONTROLS AND COMPONENTS

CONTROL PURPOSE

PictureBox Displays images. A program can also draw on it in a Paint event handler.

PrintDialog Displays a dialog box that lets the user prepare to print. The dialog box

lets the user select a printer, modify printer properties, select the pages to

print, and determine the number of copies to print.

PrintDocument Represents an object that will be printed. The program generates a

printout by responding to this object’s events, notably the PrintPage

event.

PrintPreviewControl Displays a print preview within one of the program’s forms. Usually it’s

easier to use a PrintPreviewDialog instead.

PrintPreviewDialog Displays a dialog box that shows what a print document will look like

when it is printed.

Process Provides access to the processes running on the computer. You can use

this object to start, stop, and monitor processes.

ProgressBar Lets a program display a visible indication of its progress during a

long task.

PropertyGrid Displays and lets the user edit information about an object in a format

similar to the one used by the Properties window at design time.

RadioButton Represents one of an exclusive set of options.

RichTextBox A text box that supports rich text extensions such as text that is bold,

underlined, italicized, indented, and in diff erent fonts and has other spe-

cial visual properties.

SaveFileDialog Displays a dialog box that lets the user select a fi le for saving.

SerialPort Represents one of the computer’s physical serial ports. It provides

properties and methods for reading and confi guring the port’s baud rate,

break signal, Data Set Ready (DSR) state, port name, parity, and stop bits.

ServiceController Represents a Windows service process. It provides methods that let

you connect to a running or stopped service to control it or get

information about it.

SplitContainer Represents an area divided into two regions either vertically or

horizontally. The control contains a bar (called the splitter) that the user

can drag to adjust the amount of space given to each region.

Splitter Provides the thin strip that users can grab to resize the two panes of a

SplitContainer. A program can also use a Splitter directly to separate any

two other controls.

(continued)

Control Purposes ❘ 655

CONTROL PURPOSE

StatusStrip Provides an area where the application can display brief status

information, usually at the bottom of the form.

TabControl Displays a series of tabs attached to separate pages. Each page is a

control container, holding whatever controls you want for that tab. When

you click a tab at design time or the user clicks one at run time, the control

displays the corresponding page.

TableLayoutPanel Displays the controls that it contains in rows and columns. This makes it

easy to build grids of regularly spaced controls.

TextBox A typical everyday text box. The user can enter and modify text, click

and drag to select text, press Ctrl+C to copy the selected text to the

clipboard, and so forth. Note that a TextBox can use only one foreground

color, background color, and font. For text that uses multiple colors or

fonts, use a RichTextBox.

Timer Periodically raises a Tick event so the program can take action at specifi c

intervals.

ToolStrip Displays a series of buttons, drop-downs, and other tools that the user

can access quickly without navigating through a series of menus.

ToolStripContainer Contains a ToolStripPanel along each of its edges where ToolStrip

controls can dock. The control’s center is fi lled with another

ToolStripPanel that can contain other controls that are not part

of the tool strips.

ToolTip Associates controls with tooltips that should be displayed if the mouse

hovers over the controls.

TrackBar Allows the user to drag a pointer along a bar to select a numeric value.

This control is very similar to a horizontal scroll bar, but with a diff erent

appearance.

TreeView Displays a hierarchical data set graphically. The user can click indicators

beside nodes to collapse or expand their subtrees.

VScrollBar Similar to the HScrollBar control, except that it is oriented vertically

instead of horizontally.

WebBrowser Displays the contents of web pages, XML documents, text fi les, and other

documents understood by the browser. The control can automatically

follow links that the user clicks in the document and provides a standard

web browser context menu, containing commands such as Back, Forward,

Save Background As, and Print.

WPF Controls
This appendix lists the most useful Windows Presentation Foundation (WPF) controls and
briefl y describes their purposes. This list does not include all of the hundreds of classes
that WPF defi nes; it lists only the tools most likely to appear in the window designer’s
Toolbox.

These controls are part of the System.Windows.Controls namespace. In contrast, the
controls used in Windows Forms are contained in the System.Windows.Forms namespace.
Many of the controls in the two namespaces serve very similar purposes, although they
have different capabilities. For example, both namespaces have buttons, labels, combo
boxes, and check boxes but only the System.Windows.Controls classes provide foreground
and background brushes, render transformations, complex content, and XAML-defi ned
triggers.

For much more information about WPF controls and WPF in general, see my book WPF
Programmer’s Reference (Stephens, Wrox 2010). You can learn more about the book at
http://www.vb-helper.com/wpf.htm.

Note that not all of the controls described here are available by default when you create a
new WPF application. You need to add some of these controls to the Toolbox before you can
use them. To add a control that is missing, right-click a Toolbox section and select Choose
Items. On the Choose Toolbox Items dialog box, select the WPF Components tab to display
the dialog box shown in Figure H-1. Check the boxes next to the controls that you want, and
click OK.

Controls in the following table are marked with superscripts 0, 1, or 2 to indicate whether they
can hold 0, 1, or 2 children, respectively. Controls with no superscripts can hold any number
of children.

H

http://www.vb-helper.com/wpf.htm

658 ❘ APPENDIX H WPF CONTROLS

CONTROL PURPOSE

Border1 Provides a visible border around or background behind its contents.

BulletDecorator2 Contains two children. The fi rst is used as a bullet and the second

is aligned with the fi rst. For example, you can use this to align bullet

images next to labels.

Button1 Displays a button that the user can click. Raises a Click event that

the program can catch to perform an action.

Canvas Creates an area in which you can explicitly position children by

specifying their Width, Height, Canvas.Left, and Canvas.Top

properties.

CheckBox1 Allows the user to select or deselect an item. Each CheckBox choice

is independent of all others.

ComboBox Allows the user to select an item from a drop-down list. The list

can contain all sorts of objects, but typically holds a series of

ComboBoxItems.

ComboBoxItem1 Represents an item in a ComboBox control’s list.

ContentControl1 Represents a control that contains a single piece of content. Note,

however, that the content may, in turn, contain other objects.

FIGURE H-1: Use this dialog box to add new WPF controls to the Toolbox.

WPF Controls ❘ 659

CONTROL PURPOSE

ContextMenu Builds a pop-up menu for a control. This element should be inside

the control’s ContextMenu property (for example, inside a <Button

.ContextMenu> element). Normally the ContextMenu contains

MenuItem controls.

DockPanel Docks its children to its left, right, top, or bottom much as the Dock

property does in a Windows Forms application. If the control’s

LastChildFill property is True, the control makes its last child control

fi ll the remaining space.

DocumentViewer1 Displays a FixedDocument. See the section “Fixed Documents” in

Chapter 11, “Using WPF Controls.”

Ellipse0 Displays an ellipse.

Expander1 Displays a header and lets the user expand and contract a single

detail item. The <Expander.Header> sub-element contains the con-

tent displayed in the header.

FlowDocumentPageViewer1 Displays a FlowDocument one page at a time. If the control is wide

enough, it may display multiple columns although it still only displays

one page at a time. See the section “Flow Documents” in Chapter 11.

FlowDocumentReader1 Displays a FlowDocument in one of three modes. When in single
page mode, it acts as a FlowDocumentPageViewer. When in scroll-
ing mode, it acts as a FlowDocumentScrollViewer. In book reading
mode, it displays two pages side by side much as a real book does.

See the section “Flow Documents” in Chapter 11.

FlowDocumentScrollViewer1 Displays a FlowDocument as a single, long, vertically scrolling page.

See the section “Flow Documents” in Chapter 11.

Frame0 Supports navigation and content display. The control can navigate

to a .NET Framework object or to HTML content.

Grid Displays children in rows and columns. This is similar to the

Windows Forms TableLayoutPanel control.

GridSplitter0 Acts as a splitter that allows the user to resize rows or columns in a

Grid.

GridView Displays data in columns within a ListView control.

GridViewColumnHeader1 Represents a column header for a GridViewColumn.

GroupBox1 Displays a visible border with a header. The Header property deter-

mines the content displayed in the header. The control also forms a

grouping for any RadioButtons that it contains.

continues

660 ❘ APPENDIX H WPF CONTROLS

CONTROL PURPOSE

GroupItem1 Used to group items in other controls such as a TreeView.

HeaderedContentControl2 This is the base class for controls that have a single content element

and a header. Although you can create one directly, usually it’s

better to use a subclass such as GroupBox.

HeaderedItemsControl Displays a header and multiple content elements.

Image0 Displays an image. Can optionally stretch the image with or without

distortion.

InkCanvas Displays or captures ink strokes.

InkPresenter0 Displays ink strokes.

ItemsControl Displays a collection of content items.

Label1 Displays non-editable text.

Line0 Draws a line segment.

ListBox Lets the user select items from a list. ListBoxItem objects hold the

items. The control automatically displays scroll bars when needed.

ListBoxItem1 Holds content for display by a ListBox object.

ListView Displays a group of items in various display modes.

ListViewItem1 Contains the content for an item displayed in a ListView.

MediaElement0 Presents audio and video. To let you control the media, it provides Play,

Pause, and Stop methods, and Volume and SpeedRatio properties.

Menu Builds a menu that is visible, in contrast to a ContextMenu, which is

hidden until displayed. Normally, the Menu contains MenuItem

controls representing the top-level menus. Those items contain

other MenuItem controls representing commands.

MenuItem Defi nes a top-level menu, submenu, or menu item for a

ContextMenu or Menu.

NavigationWindow0 Navigates to content and displays it, keeping a navigation history.

Similar to Frame.

Panel Panel is the parent class for Canvas, DockPanel, Grid, TabPanel,

ToolbarOverfl owPanel, UniformGrid, StackPanel, VirtualizingPanel,

and WrapPanel. Usually, you should use one of those classes

instead of Panel, but you can use Panel to implement your own

custom panel controls.

(continued)

WPF Controls ❘ 661

CONTROL PURPOSE

PasswordBox0 A text box where the user can enter sensitive information such as

passwords. The control’s PasswordChar property determines the

character displayed for each character the user types. By default,

this is a solid black circle.

Path0 Contains a series of drawing instructions that make line segments,

arcs, curves, ellipses, and so forth. For more information, see the

section “Drawing Objects” in Chapter 11.

Polygon0 Draws a closed polygon.

Polyline0 Draws a series of connected line segments.

Popup1 Displays content in a window above another control. Usually, you

can use the Tooltip and ContextMenu controls instead of a Popup.

PrintDialog0 Displays a standard Windows print dialog box. You shouldn’t place a

PrintDialog on a window. Instead use code to build and display the

PrintDialog.

ProgressBar0 Indicates the fraction of a long task that has been completed.

Usually, the task is performed synchronously, so the user is left

staring at the form while it completes. The ProgressBar lets the user

know that the operation is not stuck.

RadioButton1 Lets the user pick from among a set of options. If the user checks

one RadioButton, all others with the same parent become

unchecked.

Rectangle0 Draws a rectangle, optionally with rounded corners.

RepeatButton1 Acts as a Button that raises its Click event repeatedly when it is

pressed and held down.

ResizeGrip0 Displays a resize grip similar to the one used on the lower-right cor-

ner of a window.

RichTextBox1 Similar to a TextBox but contains text in the form of a document

object. See the section “Managing Documents” in Chapter 10 for

more information on documents.

ScrollBar0 Allows the user to drag a “thumb” to select a numeric value.

Usually scroll bars are used internally by other controls such as the

ScrollViewer, and your applications should use a Slider instead.

ScrollViewer1 Provides vertical and horizontal scroll bars for a single content

element. Makes a scrollable area that can contain other controls.

continues

662 ❘ APPENDIX H WPF CONTROLS

CONTROL PURPOSE

Separator0 Draws a vertical or horizontal separator in controls that contain other

controls, such as StatusBar, Menu, ListBox, or ToolBar.

Slider0 Enables the user to select a value from a range by sliding a Thumb

along a Track. Similar to the Windows Forms TrackBar control.

StackPanel Arranges children in a single row or column. If there are too many

controls, those that don’t fi t are clipped.

StatusBar Displays a container at the bottom of the form where you can place

controls holding status information. Although you can place

anything inside a StatusBar, this control is intended to hold summary

status information, not tools. Generally, menus, combo boxes,

buttons, toolbars, and other controls that let the user manipulate the

application do not belong in a StatusBar.

StatusBarItem1 Contains an item in a StatusBar.

TabControl Arranges children in tabs. TabItem controls contain the items that

should be displayed in the tabs.

TabItem1 Represents an item in a TabControl. The Header property

determines the content displayed on the tab, and the Content

property determines what’s displayed on the tab’s body.

TextBlock Displays more complex non-editable text. This control’s contents

can include inline tags to indicate special formatting. Tags can

include AnchoredBlock, Bold, Hyperlink, InlineUIContainer, Italic,

LineBreak, Run, Span, and Underline.

TextBox0 Allows the user to enter simple text. Optionally can allow carriage

returns and tabs, and can wrap text.

Thumb0 Represents an area that the user can grab and drag as in a ScrollBar

or Slider.

ToggleButton1 This is the base class for controls that toggle between two states

such as a CheckBox or RadioButton. You can make one directly, but

it’s easier to use CheckBox or RadioButton.

ToolBar Contains a series of tools, typically Button controls, ComboBox

controls, and other small controls. The Header property gives the

ToolBar a header.

ToolBarTray Contains ToolBars and allows the user to drag them into new

positions.

(continued)

WPF Controls ❘ 663

CONTROL PURPOSE

ToolTip1 Displays a tooltip. To give a control a simple textual tooltip, set its

Tooltip property. Use the Tooltip control to build more complex

tooltips. For example, a Tooltip control might contain a StackPanel

that holds other controls.

TreeView Displays hierarchical data with a series of nested collapsible nodes.

TreeViewItems contain the items displayed in the hierarchy.

TreeViewItem Represents an item within a TreeView. The Header attribute or

sub-element determines the content displayed for the item.

UserControl1 A container that you can use to create a simple compound control.

Note, however, that classes derived from UserControl do not

support templates.

Viewbox1 Stretches its single child to fi ll the Viewbox. The Stretch property

determines whether the control stretches its child uniformly (without

changing the width-to-height ratio).

VirtualizingStackPanel Generates child items to hold items that can fi t in the available area.

For example, when working with a ListBox bound to a data source,

the VirtualizingStackPanel generates only the items that will fi t

within the ListBox. If the control is not bound to a data source, this

control behaves like a StackPanel.

Window1 Represents a window, the WPF equivalent of a form. The window

includes two areas: the client area where you normally put controls

and the non-client area where the window displays borders, title bar,

caption, system menus, and so on. Normally, you add a window to

an application by using the Project menu’s Add New Item command.

WrapPanel Arranges children in rows or columns depending on its Orientation

property. When a row or column is full, the next child moves

to a new row or column. This is similar to the Windows Forms

FlowLayoutPanel control.

For more detailed descriptions plus examples using these and other controls, see the Microsoft
online help. You can fi nd a reference for System.Windows.Controls classes at http://msdn
.microsoft.com/system.windows.controls.aspx. You can fi nd a reference for the System
.Windows.Controls.Primitives classes, which include base classes used by other controls, at
http://msdn.microsoft.com/system.windows.controls.primitives.aspx.

For much more information about WPF controls and WPF in general, see my book WPF
Programmer’s Reference. You can learn more about the book at http://www.vb-helper.com/
wpf.htm.

http://www.vb-helper.com/wpf.htm
http://www.vb-helper.com/wpf.htm
http://msdn.microsoft.com/system.windows.controls.primitives.aspx
http://msdn.microsoft.com/system.windows.controls.aspx
http://msdn.microsoft.com/system.windows.controls.aspx

Visual Basic Power Packs
When Visual Basic .NET fi rst appeared, it was missing many features that developers had
found extremely useful in Visual Basic 6. Power Packs were invented to provide objects and
tools to fi ll the need for these missing features and to make programming easier and more
productive in general.

This appendix describes Visual Basic Power Tools provided by Microsoft and other
compatibility tools that you may fi nd useful.

MICROSOFT POWER PACKS

Originally Microsoft provided its Power Packs as a download but now they are included in
Visual Basic. Near the bottom of the Toolbox, you should be able to fi nd a section of tools
named Visual Basic Power Packs that you can add to your forms. The following sections
describe the Power Pack tools. You can learn more about the Power Packs at http://msdn
.microsoft.com/en-us/library/microsoft.visualbasic.powerpacks.aspx.

DataRepeater

The DataRepeater control allows you to defi ne a template of controls to display a piece of
data. The repeater then repeats your template for each row in a data source and displays the
result in a scrollable container.

Line and Shape Controls

The LineShape, OvalShape, and RectangleShape controls let you easily place lines, ovals, and
rectangles on a form without using pens, brushes, and Graphics objects.

Properties let you set the controls’ pens and brushes at design time. The controls support
events such as Click and DoubleClick, and many of the graphical methods provided in the

I

http://msdn.microsoft.com/en-us/library/microsoft.visualbasic.powerpacks.aspx
http://msdn.microsoft.com/en-us/library/microsoft.visualbasic.powerpacks.aspx

666 ❘ APPENDIX I VISUAL BASIC POWER PACKS

GOTDOTNET POWER PACK

The G otDotNet Visual Basic Power Pack includes seven useful controls. Although they were
written in Visual Basic 2003, they can still be useful. The Power Pack comes with source code so
you can upgrade them to Visual Basic 2012 or use their code as a starting point for building your
own controls.

The following list summarizes the seven controls:

 ➤ BlendPanel — Provides a background with linear gradient shading. Note that the WPF
LinearGradientBrush class provides a similar, but more fl exible, effect. Other WPF classes
such as RadialGradientBrush provide even more shading features.

 ➤ UtilityToolbar — A toolbar that has a look and feel similar to the Microsoft Internet
Explorer toolbar.

 ➤ ImageButton — A button with a transparent background. You can use it, for example, to
display a round button over a gradient shaded, or complex, background, without messing
up the background.

System.Drawing namespace. The OvalShape and RectangleShape controls even support linear
gradient brushes that let you add interesting graphical effects at design time.

PrintForm Component

In Visual Basic 6 and earlier versions, the Form control had a PrintForm method that sent an image
of the form to the printer. The result was a bitmap image that usually looked grainy on the printout.
It did not take full advantage of the printer’s high resolution, and it didn’t add extra data that might
not fi t on the monitor but that could fi t on a printout.

Despite these drawbacks, PrintForm was extremely easy to use. The program simply called the
form’s PrintForm method. This is much simpler than generating a high-resolution printout, so
developers often used it to give early versions of an application a printing capability. For many
applications, PrintForm was good enough, and it gave users a WYSIWYG (what you see is what
you get) printing tool, so that’s all many programs needed.

Similarly the PrintForm component enables a Visual Basic .NET application to print a form’s image
quickly and easily.

CAPTURE OR PRINT

You can also use the Form object’s DrawToBitmap method to capture an image of
the form in a bitmap. You can then print the image, display a print preview, save it
into a fi le, or do anything else that you can do with a bitmap. For an example, see
http://www.vb-helper.com/howto_2005_drawtobitmap.html. That example
was written in Visual Basic 2005 but works in later versions, too.

http://www.vb-helper.com/howto_2005_drawtobitmap.html

GotDotNet Power Pack ❘ 667

 ➤ Notifi cationWindow — Displays text and graphics in a pop-up notifi cation window.

 ➤ TaskPane — A container that provides collapsible panes similar to the WPF Expander
control.

 ➤ FolderViewer — Displays a hierarchical view of a directory tree.

 ➤ FileViewer — Displays a list of the fi les in a directory.

Unfortunately, Microsoft closed the GotDotNet website in 2007. Before the site disappeared,
however, I saved a copy of the Power Pack. You can get more information and download it
at http://www.vb-helper.com/tip_gotdotnet_powerpack.html.

http://www.vb-helper.com/tip_gotdotnet_powerpack.html

Form Objects
This appendix describes the most useful properties, methods, and events provided by the
Windows Form class.

The Form class inherits indirectly from the Control class (Control is the Form class’s “great-
grandparent”), so in many ways, a form is just another type of control. Except where overridden,
Form inherits the properties, methods, and events defi ned by the Control class. Chapter 8, “Using
Windows Forms Controls,” discusses some of the more useful properties, methods, and events pro-
vided by the Control class, and most of those apply to the Form class as well. Appendix A, “Useful
Control Properties, Methods, and Events,” summarizes the Control class’s most useful properties.

PROPERTIES

The following table describes some of the most useful Form properties.

 J

PROPERTY DESCRIPTION

AutoScroll Determines whether the form automatically provides scroll bars

when it is too small to display all of the controls it contains.

AutoScrollMargin If AutoScroll is True, the control will provide scroll bars if

necessary to display its controls plus this much margin.

AutoScrollPosition Adjusts the AutoScroll scroll bars so this point on the form is

placed at the upper-left corner of the visible area (if possible).

For example, if a button has location (100, 20), the statement

AutoScrollPosition = New Point(100, 20) scrolls the form so the

button is in the upper-left corner of the visible area.

continues

670 ❘ APPENDIX J FORM OBJECTS

PROPERTY DESCRIPTION

BackColor Determines the form’s background color.

BackgroundImage Determines the image displayed in the form’s background.

BackgroundImageLayout Determines how the BackgroundImage is displayed. This can be

None (the image is displayed at up to normal scale, or compressed,

if necessary, to make it fi t vertically or horizontally), Tile (the image is

tiled to fi ll the form), Center (the image is centered on the form at up

to normal scale, or compressed, if necessary, to make it fi t vertically or

horizontally), Stretch (the image is resized to fi ll the form exactly), or

Zoom (the image is resized to fi ll the form as much as possible without

distorting it).

Bottom Returns the distance between the form’s bottom edge and the top

edge of its container.

Bounds Determines the form’s size and location within its container. These

bounds include the form’s client and non-client areas (such as

the borders and caption area).

CancelButton Determines the button that clicks when the user presses the Escape

key. This button basically gives the form a cancel action. If the form

is being displayed modally, clicking this button either manually or by

pressing Escape automatically closes the form.

Capture Determines whether the form has captured mouse events. While this

is True, all mouse events go to the form’s event handlers. For example,

pressing the mouse button sends the form a MouseDown event even

if the mouse is over a control on the form or if it is off of the form

completely.

ClientRectangle Returns a Rectangle object representing the form’s client area.

ClientSize Gets or sets a Size object representing the client area’s size. If you set

this value, the form automatically adjusts to make the client area this

size while allowing room for its non-client areas (such as borders

and title bar).

ContainsFocus Returns True if the form or one of its controls has the input focus.

ContextMenuStrip Gets or sets the form’s context menu. If the user right-clicks the form,

Visual Basic automatically displays this menu. Note that controls on

the form share this menu unless they have context menus of their

own. Also note that some controls have their own context menus by

default. For example, a TextBox displays a Copy, Cut, Paste menu,

unless you explicitly set its ContextMenu property.

(continued)

Properties ❘ 671

PROPERTY DESCRIPTION

ControlBox Determines whether the form displays a control box (the Minimize,

Maximize, Restore, and Close buttons) on the right side of its

caption area.

Controls Returns a collection containing references to all of the controls on

the form. This includes only the controls contained directly within the

form, and not controls contained within other controls.

Cursor Determines the cursor displayed by the mouse when it is over

the form.

DesktopBounds Determines the form’s location and size on the desktop as

a Rectangle.

DesktopLocation Determines the form’s location on the desktop as a Point.

DialogResult Gets or sets the form’s dialog box result. If code displays the form

modally using its ShowDialog method, the method returns

the DialogResult value the form has when it closes. Setting the form’s

DialogResult value automatically closes the dialog box. Triggering the

form’s CancelButton automatically sets DialogResult to Cancel and

closes the dialog box.

DisplayRectangle Gets a Rectangle representing the form’s display area. This is the area

where you should display things on the form. In theory, this might

not include all of the client area and could exclude form decorations,

although in practice it seems to be the same as ClientRectangle.

Enabled Determines whether the form will respond to user events. If the form

is disabled, all of its controls are disabled and drawn grayed out. The

user can still resize the form, and its controls’ Anchor and Dock prop-

erties still rearrange the controls accordingly. The user can also click

the form’s Minimize, Maximize, Restore, and Close buttons. Note that

you cannot display a form modally using ShowDialog if it is disabled.

Font Determines the form’s font.

ForeColor Determines the foreground color defi ned for the form.

FormBorderStyle Determines the form’s border style. This can be None,

FixedSingle, Fixed3D, FixedDialog, Sizeable, FixedToolWindow, or

SizeableToolWindow.

Handle Returns the form’s integer window handle (hWnd). You can pass this

value to API functions that work with window handles.

HasChildren Returns True if the form contains child controls.

continues

672 ❘ APPENDIX J FORM OBJECTS

PROPERTY DESCRIPTION

Height Determines the form’s height.

HelpButton Determines whether the form displays a Help button with a question

mark in the caption area to the left of the close button. The button is

only visible if the MaximizeBox and MinimizeBox properties are both

False. If the user clicks the Help button, the mouse pointer turns into

a question mark arrow. When the user clicks the form, Visual Basic

raises the form’s HelpRequested event. The form can provide help

based on the location of the click and, if it provides help, it should set

the event handler’s hlpevent.Handled parameter to True.

Icon Determines the form’s icon displayed in the left of the form’s caption

area, in the taskbar, and by the Task Manager. Typically, this icon

should contain images at the sizes 16 x 16 pixels and 32 x 32 pixels,

so diff erent displays can use an image with the correct size

without resizing.

KeyPreview Determines whether the form receives key events before they are

passed to the control with the input focus. If KeyPreview is True, the

form’s key event handlers can see the key, take action, and hide

the key from the control that would normally receive it, if necessary.

Left Determines the distance between the form’s left edge and the

left edge of its container.

Location Determines the coordinates of the form’s upper-left corner.

MainMenuStrip Gets or sets the form’s main menu.

MaximizeBox Determines whether the form displays a Maximize button on the

right of its caption area.

MaximumSize This Size object determines the maximum size the form can take.

MinimizeBox Determines whether the form displays a Minimize button on the right

of its caption area.

MinimumSize This Size object determines the minimum size the form can take.

Modal Returns True if the form is displayed modally.

Name Gets or sets the form’s name. Initially, this is the form’s class name,

but your code can change it to anything, possibly even duplicating

another form’s name.

Opacity Determines the form’s opacity level between 0.0 (transparent)

and 1.0 (opaque). At design time this is displayed as a percentage

0% (transparent) to 100% (opaque).

(continued)

Properties ❘ 673

PROPERTY DESCRIPTION

OwnedForms Returns an array listing this form’s owned forms. To make this form

own another form, call this form’s AddOwnedForm method, passing

it the other form. Owned forms are minimized and restored with the

owner and can never lie behind the owner. Typically, they are used

for things like toolboxes and search forms that should remain above

the owner form.

Region Gets or sets the region that defi nes the area that the form can occupy.

Pieces of the form that lie outside of the region are clipped.

Right Returns the distance between the form’s right edge and the left edge

of its container.

ShowIcon Determines whether the form displays an icon in its title bar. If this

is False, the system displays a default icon in the taskbar and Task

Manager if ShowInTaskbar is True.

ShowInTaskbar Determines whether the form is displayed in the taskbar and

Task Manager.

Size Gets or sets a Size object representing the form’s size, including client

and non-client areas.

SizeGripStyle Determines how the resize grip is shown in the form’s lower-right

corner. This can be Show, Hide, or Auto.

StartPosition Determines the form’s position when it is fi rst displayed at run time.

This can be Manual (use the size and position specifi ed by the form’s

properties), CenterScreen (center the form on the screen taking

the taskbar into account), WindowsDefaultLocation (use a default

position defi ned by Windows and use the form’s specifi ed size),

and WindowsDefaultBounds (use a default position and size defi ned

by Windows).

Tag Gets or sets an object associated with the form. You can use this for

whatever purpose you see fi t.

Text Determines the text displayed in the form’s caption.

Top Determines the distance between the form’s top edge and the top

edge of its container.

TopMost Determines whether the form is a topmost form. A topmost form

always sits above all other non-topmost forms, even when the other

forms have the input focus.

continues

674 ❘ APPENDIX J FORM OBJECTS

METHODS

The following table describes some of the most useful Form methods.

PROPERTY DESCRIPTION

TransparencyKey Gets or sets a color that determines the areas of the form that are

shown as transparent. This applies to the form itself and any controls it

contains. For example, if you set TransparencyKey to the color Colors.

Control, the whole form and the bodies of many of its controls are

invisible, so you will see text and borders fl oating above whatever

forms lie behind.

UseWaitCursor Determines whether the form is currently displaying the wait cursor.

Visible Determines whether the form is visible. If the form is not visible, the

user cannot interact with it. If you set Visible = False, the form’s icon is

also removed from the taskbar and Task Manager.

Width Determines the form’s width.

WindowState Gets or sets the form’s state. This can be Normal, Minimized, or

Maximized.

METHOD DESCRIPTION

Activate Activates the form and gives it the focus. Normally, this pops the form

to the top. Note that forcing a form to the top takes control of the

desktop away from the user, so you should use this method sparingly.

For example, if the user dismisses one form, you might activate the next

form in a logical sequence. You should not activate a form to get the

user’s attention every few minutes.

AddOwnedForm Adds an owned form to this form. Owned forms are minimized and

restored with the owner and can never lie behind the owner. Typically,

they are used for things like toolboxes and search forms that should

remain above the owner form.

BringToFront Brings the form to the top of the Z-order. This applies only to other

forms in the application. This form will pop to the top of other forms in

this program, but not forms in other applications.

Close Closes the form. The program can still prevent the form from closing by

catching the FormClosing event and setting e.Cancel to True.

(continued)

Methods ❘ 675

METHOD DESCRIPTION

Contains Returns True if a specifi ed control is contained in the form. This includes

controls inside GroupBox controls, Panel controls, and other containers,

which are not listed in the form’s Controls collection.

CreateGraphics Creates a Graphics object that the program can use to draw on the

form’s surface. Note that the Paint event handler provides a Graphics

object in its e.Graphics parameter when the form needs to be redrawn.

You should use that object rather than a new one returned by

CreateGraphics while inside a Paint event handler. Otherwise, the Paint

event handler’s version will draw over anything that you draw using the

object returned by CreateGraphics.

GetChildAtPoint Returns a reference to the child control at a specifi c point. Note that

the control is the outermost control at that point. For example, if a

GroupBox contains a Button and you call GetChildAtPoint for a point

above the Button, GetChildAtPoint returns the GroupBox. To fi nd the

Button, you would need to use the GroupBox control’s GetChildAtPoint

method. Note also that the position of the Button within the GroupBox is

relative to the GroupBox control’s origin, so you would need to subtract

the GroupBox control’s position from the X and Y coordinates of the

point relative to the form’s origin.

GetNextControl Returns the next control in the tab order. Parameters indicate the

control to start from and whether the search should move forward or

backward through the tab order.

Hide Hides the form. This sets the form’s Visible property to False.

Invalidate Invalidates some or all of the form’s area and generates a Paint event.

PointToClient Converts a point from screen coordinates into the form’s

coordinate system.

PointToScreen Converts a point from the form’s coordinate system into screen

coordinates.

RectangleToClient Converts a rectangle from screen coordinates into the form’s

coordinate system.

RectangleToScreen Converts a rectangle from the form’s coordinate system into

screen coordinates.

Refresh Invalidates the form’s client area and forces it to redraw itself and

its controls.

RemoveOwnedForm Removes an owned form from this form’s OwnedForms collection.

continues

676 ❘ APPENDIX J FORM OBJECTS

METHOD DESCRIPTION

Scale Resizes the form and the controls it contains by a scale factor. A

second overloaded version scales by diff erent amounts in the X and Y

directions. Note that this doesn’t change the controls’ font sizes, just

their dimensions.

ScrollControlIntoView If the form has AutoScroll set to True, this scrolls to make the indicated

control visible.

SelectNextControl Activates the next control in the tab order. Parameters indicate

the control to start at, whether the search should move forward or

backward through the tab order, whether the search should include

only controls with TabStop set to True or all controls, whether to include

controls nested inside other controls, and whether to wrap around to

the fi rst/last control if the search passes the last/fi rst control.

SendToBack Sends the form to the back of the Z-order. This puts the form behind all

other forms in all applications, although it does not remove the focus

from this form.

SetAutoScrollMargin If AutoScroll is True, this method sets the AutoScroll margin. The control

will provide scroll bars if necessary to display its controls plus this

much margin.

SetBounds Sets some or all of the form’s bounds: X, Y, Width, and Height.

SetDesktopBounds Sets the form’s position and size in desktop coordinates. See

SetDesktopLocation for more information.

SetDesktopLocation Sets the form’s position in desktop coordinates. Desktop coordinates

include only the screen’s working area and do not include the area

occupied by the taskbar. For example, if the taskbar is attached to the

left edge of the screen, the point (0, 0) in screen coordinates is beneath
the taskbar. However, the point (0, 0) in desktop coordinates is just to
the right of the taskbar. If you set the form’s location to (0, 0), part of the

form is hidden by the taskbar. If you set the form’s desktop location to

(0, 0), the form is visible just to the right of the taskbar.

Show Displays the form. This has the same eff ect as setting the form’s Visible

property to True.

ShowDialog Displays the form as a modal dialog box. The user cannot interact

with other parts of the application before this form closes. Note that

some other processes may still be running within the application. For

example, a Timer control on another form still raises Tick events and the

program can still respond to them.

(continued)

Events ❘ 677

EVENTS

The following table describes some of the most useful Form events.

EVENT DESCRIPTION

Activated Occurs when the form activates.

Click Occurs when the user clicks the form. Normally, if the user clicks a control,

the control rather than the form receives the Click event. If the form’s Capture

property is set to True, however, the event goes to the form.

Deactivate Occurs when the form deactivates.

DoubleClick Occurs when the user double-clicks the form. Normally, if the user double-

clicks a control, the control rather than the form receives the DoubleClick

event. If the form’s Capture property is set to True, however, the fi rst click goes

to the form and the second goes to the control.

FormClosed Occurs when the form is closed. The program can still access the form’s prop-

erties, methods, and controls, but it is defi nitely going away. See also the

FormClosing event. Note that if the program calls Application.Exit, the form’s

FormClosed and FormClosing events do not occur. If you want the program

to free resources before the form disappears, it should do so before calling

Application.Exit.

FormClosing Occurs when the form is about to close. The program can cancel the close

(for example, if some data has not been saved) by setting the event handler’s

e.Cancel parameter to True.

GotFocus Occurs when focus moves into the form.

HelpRequested Occurs when the user requests help from the form, usually by pressing F1 or

by pressing a context-sensitive Help button (see the HelpButton property) and

then clicking a control on the form. Help requests move up through control

containers until a HelpRequested event sets its hlpevent.Handled parameter

to True. For example, suppose that the user sets focus to a TextBox contained

in the form and presses F1. The TextBox control’s HelpRequested event han-

dler executes. If that routine doesn’t set hlpevent.Handled to True, the event

bubbles up to the TextBox control’s container, the form, and its HelpRequested

event handler executes.

KeyDown Occurs when the user presses a keyboard key down.

KeyPress Occurs when the user presses and releases a keyboard key.

continues

678 ❘ APPENDIX J FORM OBJECTS

EVENT DESCRIPTION

KeyUp Occurs when the user releases a keyboard key.

Layout Occurs when the form should reposition its child controls. If your code needs

to perform custom repositioning, this is the event where it should do so.

Load Occurs after the form is loaded but before it is displayed. You can perform

one-time initialization tasks here.

LostFocus Occurs when the focus moves out of the form.

MouseClick Occurs when the user clicks the form. You should consider the Click event to

be on a logically higher level than MouseClick. For example, the Click event

may be triggered by actions other than an actual mouse click (such as the user

pressing the Enter key).

MouseDoubleClick Occurs when the user double-clicks the form. You should consider the

DoubleClick event to be on a logically higher level than MouseDoubleClick.

MouseDown Occurs when the user presses the mouse down over the form. Also see the

Capture property.

MouseEnter Occurs when the mouse fi rst moves so it is over the form. If the mouse moves

over one of the form’s controls, that counts as leaving the form, so when it

moves back over an unoccupied part of the form, it raises a MouseEnter event.

MouseHover Occurs when the mouse remains stationary over the form for a while. This

event is raised once when the mouse fi rst hovers and then is not raised again

until the mouse leaves the form and returns. Note that the mouse moving over

one of the form’s controls counts as leaving.

MouseLeave Occurs when the mouse leaves the form. Note that the mouse moving over

one of the form’s controls counts as leaving.

MouseMove Occurs when the mouse moves while over the form.

MouseUp Occurs when the user releases a mouse button. When the user presses a

mouse button down, the form captures subsequent mouse events until the

user releases the button. While the capture is in place, the form receives

MouseMove events, even if the mouse is moved off of the form. It will receive

a MouseHover event, even if the mouse is off of the form, if no such event has

been raised since the last time the mouse moved over the form. When the user

fi nally releases the button, the form receives a MouseUp event and then, if the

mouse is no longer over the form, a MouseLeave event.

(continued)

Events ❘ 679

EVENT DESCRIPTION

MouseWheel Occurs when the user moves the mouse wheel. The event’s e.X and e.Y

parameters give the mouse’s current position. The e.Delta parameter gives

the signed distance by which the wheel has been rotated. Currently, this is

defi ned as 120 detents per notch of the wheel. (A detent is a unit of the wheel’s

rotation. A notch is the amount by which the wheel rotates with a discrete click.

So every time you turn the wheel 1 notch, e.Delta changes by 120 detents.)

Standards dictate that you should scroll data when the accumulated delta

reaches plus or minus 120 detents, and that you should then scroll the data

by the number of lines given by SystemInformation.MouseWheelScrollLines

(currently this is 3). If higher-resolution mouse wheels are added some day,

a notch might send a value smaller than 120, and you could update the

data more often, but you should keep the same ratio: SystemInformation

.MouseWheelScrollLines lines per 120 detents.

Move Occurs when the form is moved.

Paint Occurs when part of the form must be redrawn. You can use the e.ClipRectangle

parameter to see what area needs to be drawn. For very complicated draw-

ings, you may be able to draw more quickly if you only draw the area indicated

by e.ClipRectangle. Note also that Visual Basic clips drawings outside of this

rectangle and may clip some areas inside this rectangle that do not need to be

redrawn. That makes drawing faster in some cases. The idea here is that part of

the form has been covered and exposed so only that part must be redrawn. If

you need to adjust the drawing when the form is resized, you should invalidate

the form in the Resize event handler to force a redraw of the whole form.

Resize Occurs when the form is resized.

ResizeBegin Occurs when the user starts resizing the form.

ResizeEnd Occurs when the user has fi nished resizing the form.

SizeChanged Occurs when the form is resized.

When focus moves into and out of a form, the sequence of events is: Activated, GotFocus,
Deactivate, Validating, Validated, LostFocus.

Typically, when the user clicks the form, the sequence of events is: MouseDown, Click, MouseClick,
MouseUp.

Typically, when the user double-clicks the form, the sequence of events is: MouseDown, Click,
MouseClick, MouseUp, MouseDown, DoubleClick, MouseDoubleClick, MouseUp.

When code resizes the form, the sequence of events is: Resize, SizeChanged.

When the user resizes the form, the sequence of events is: ResizeBegin, Resize, SizeChanged, Resize,
SizeChanged, . . ., ResizeEnd.

680 ❘ APPENDIX J FORM OBJECTS

PROPERTY-CHANGED EVENTS

The Form class provides several events that fi re when certain form properties change. The name of
each of these events has the form PropertyNameChanged where PropertyName is the name of the
corresponding property. For example, the BackColorChanged event fi res when the form’s BackColor
property changes.

The following is a list of these events.

BackColorChanged MaximumSizeChanged

BackgroundImageChanged MinimumSizeChanged

ContextMenuChanged ParentChanged

CursorChanged SizeChanged

DockChanged StyleChanged

EnabledChanged SystemColorsChanged

FontChanged TextChanged

ForeColorChanged VisibleChanged

LocationChanged

The names of most of these events are self-explanatory, so they are not described here. The
exception is the SystemColorsChanged event. This occurs when the system’s colors are changed
either by the user or programmatically.

For example, suppose that you want the form to draw using its ForeColor property and you want
that property to match the active title bar text color. Then, you could use the following code to
update ForeColor when the user changed the system colors:

Private Sub Form2_SystemColorsChanged() Handles MyBase.SystemColorsChanged
 Me.ForeColor = SystemColors.ActiveCaptionText
End Sub

Note that Visual Basic invalidates the form after raising the SystemColorsChanged event, so the
form immediately repaints itself using the new settings.

Classes and Structures
This appendix provides information about class and structure declarations.

CLASSES

The syntax for declaring a class is:

[attribute_list] [Partial] [accessibility] [Shadows] [inheritance] _
Class name [(Of type_list)]
 [Inherits parent_class]
 [Implements interface]
 statements
End Class

The attribute_list can include any number of attribute specifi ers separated by commas.

The accessibility clause can take one of the following values: Public, Protected, Friend,
Protected Friend, and Private.

The Partial keyword indicates that this is only part of the class declaration and that the
program may include other partial declarations for this class.

The Shadows keyword indicates that the class hides the defi nition of some other entity in the
enclosing class’s base class.

The inheritance clause can take the value MustInherit or NotInheritable.

The type_list clause defi nes type parameters for a generic class. For information on generics,
see Chapter 26, “Generics.”

The Inherits statement tells the class from which this class inherits. A class can include at most
one Inherits statement and, if present, this must be the fi rst non-comment statement after the
Class statement.

K

682 ❘ APPENDIX K CLASSES AND STRUCTURES

The Implements statement specifi es an interface that the class implements. A class can implement
any number of interfaces. You can specify interfaces in separate Interface statements or in a single
statement separated by commas.

The following example declares a simple Person class and an Employee class that inherits from it:

Public Class Person

End Class

Public Class Employee
 Inherits Person

End Class

STRUCTURES

The syntax for writing a structure is as follows:

[attribute_list] [Partial] [accessibility] [Shadows] _
Structure name [(Of type_list)]
 [Implements interface]
 statements
End Structure

The structure’s attribute_list, Partial, accessibility, Shadows, type_list, and Implements statements
are the same as those for classes. See the previous section for details.

The major differences between a structure and a class are:

 ➤ Structures cannot use the MustInherit or NotInheritable keyword (because you cannot
inherit from a structure).

 ➤ Structures cannot use the Inherits clause.

 ➤ Structures are value types, whereas classes are reference types. See Chapter 23, “Classes
and Structures,” for information on the consequences of this difference.

CONSTRUCTORS

A constructor is a special subroutine named New.

Class constructors can take any number of parameters. If you provide no constructors, Visual
Basic allows a default empty constructor that takes no parameters. If you provide any constructor,
Visual Basic does not provide a default empty constructor. If you want to allow the program to use
an empty constructor in that case, you must either provide one or provide a constructor with all
optional parameters.

Events ❘ 683

Structure constructors are very similar to class constructors with two major exceptions. First, you
cannot make a structure constructor that takes no parameters. Second, Visual Basic always provides
a default empty constructor, even if you give the structure other constructors.

EVENTS

An event lets an object notify the application that something potentially interesting has occurred.

The syntax for declaring an event is:

[accessibility] [Shadows] Event event_name(parameters)

The accessibility clause can take one of the following values: Public, Protected, Friend, Protected
Friend, or Private.

Use the Shadows keyword to indicate that the event shadows an item with the same name in the
 parent class. Any type of item can shadow any other type of item. For example, an event can shadow
a subroutine, function, or variable. This would be rather bizarre and confusing, but it is possible.

The parameters clause specifi es the parameters that you will pass when raising the event. An
event handler catching the event will receive those parameters. Use ByRef parameters to allow
the event handler to provide feedback to the code that raises the event.

The syntax for raising an event is as follows:

RaiseEvent event_name(arguments)

The arguments that you pass to the event handler must match the parameters declared in the Event
statement.

The following code shows pieces of a SeatAssignment class that raises a NameChanged event when
its Name property changes:

Public Class SeatAssignment
 Public Event NameChanged()
 ...
 Private m_Name As String
 Public Property Name() As String
 Get
 Return m_Name
 End Get
 Set(ByVal value As String)
 m_Name = Ðvalue
 RaiseEvent NameChanged()
 End Set
 End Property
 ...
End Class

LINQ
This appendix provides syntax summaries for the most useful LINQ methods. For more
detailed information, see Chapter 20, “LINQ.”

BASIC LINQ QUERY SYNTAX

The following text shows the typical syntax for a LINQ query:

From ... Where ... Order By ... Select ...

The following sections describe these four basic clauses. The sections after those describe some
of the other most useful LINQ clauses.

From

The From clause tells where the data comes from and defi nes the name by which it is known
within the LINQ query.

From var1 In data_source1, var2 In data_source2, ...

Examples:

Dim query1 = From cust As Customer In all_customers
Dim query2 = From stu In students, score In TestScores

Usually, if you select data from multiple sources, you will want to use a Where clause to join
the results from the sources.

Where

The Where clause applies fi lters to the records selected by the From clause. The syntax is:

Where conditions

L

686 ❘ APPENDIX L LINQ

Use comparison operators (>, <, =), logical operators (Not, Or, AndAlso), object methods
(ToString, Length), and functions to build complex conditions.

For example, the following query selects student and test score data, matching students to their test
scores:

Dim query = From stu In students, score In TestScores
 Where stu.StudentId = score.StudentId

The following example selects only students with last names starting with S:

Dim query = From stu In students, score In TestScores
 Where stu.StudentId = score.StudentId AndAlso
 stu.LastName.ToUpper.StartsWith(“S”)

Order By

The Order By clause makes a query sort the selected objects. For example, the following query
selects students and their scores and orders the results by student last name followed by fi rst name:

Dim query = From stu In students, score In TestScores
 Where stu.StudentId = score.StudentId
 Order By stu.LastName, stu.FirstName

Add the Descending keyword to sort a fi eld in descending order. The following example orders the
results by descending TestAverage value:

Dim query = From stu In students, score In TestScores
 Where stu.StudentId = score.StudentId
 Order By stu.TestAverage Descending

Select

The Select clause lists the fi elds that the query should select into its result. If this is omitted, the
query selects all of the data in the data sources. You can add an alias to the result.

The following query selects customers’ FirstName and LastName values concatenated and gives
the result the alias Name. It also selects the customers’ AccountBalance value and gives it the alias
Balance.

Dim query = From cust In all_customers
 Select Name = cust.FirstName & “ “ & cust.LastName,
 Balance = Cust.AccountBalance

You can pass values from the data sources into functions or constructors. For example, suppose
the Person class has a constructor that takes fi rst and last names as parameters. Then the following
query returns a group of Person objects created from the selected customer data:

Dim query = From cust In all_customers
 Select New Person(cust.FirstName, cust.LastName)

Basic LINQ Query Syntax ❘ 687

Distinct

The Distinct keyword makes a query return only one copy of each result. The following example
selects the distinct CustId values from the all_orders list:

Dim query = From ord In all_orders
 Select ord.CustId
 Distinct

Join

The Join keyword selects data from multiple data sources matching up corresponding fi elds. The fol-
lowing pseudo-code shows the Join command’s syntax:

From variable1 In datasource1
Join variable2 In datasource2
On variable1.field1 Equals variable2.field2

For example, the following query selects corresponding objects from the all_customers and
all_orders lists:

Dim query = From cust As Customer In all_customers
 Join ord In all_orders
 On cust.CustId Equals ord.CustId

Note that you can get a similar result by using a Where clause. The following query selects a similar
set of objects without using the Join keyword:

Dim query = From cust As Customer In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId

Group By

The Group By clause lets a program select data from a fl at, relational style format and build a hier-
archical arrangement of objects. The following code shows the basic Group By syntax:

Group items By value Into groupname = Group

Here, items is a list of items whose properties you want selected into the group, value tells LINQ
on what fi eld to group objects, and groupname gives a name for the group.

The following query selects objects from the all_orders list. The Group By statement makes the
query group orders that have the same CustId value.

Dim query1 = From ord In all_orders
 Order By ord.CustId, ord.OrderId
 Group ord By ord.CustId Into CustOrders = Group

688 ❘ APPENDIX L LINQ

The result is an IEnumerable that contains objects with two fi elds. The fi rst fi eld is the CustId
value used to defi ne a group (the value part in the syntax shown earlier). The second fi eld is an
IEnumerable named CustOrders that contains the group of order objects for each CustId value.

The following code shows how a program might display the results in a TreeView control:

Dim root1 As TreeNode = trvResults.Nodes.Add(“Orders grouped by CustId”)
For Each obj In query1
 ‘ Display the customer id.
 Dim cust_node As TreeNode = root1.Nodes.Add(“Cust Id: “ & obj.CustId)

 ‘ List this customer’s orders.
 For Each ord In obj.CustOrders
 cust_node.Nodes.Add(“OrderId: “ & ord.OrderId &
 “, Date: “ & ord.OrderDate)
 Next ord
Next obj

Another common type of query uses the Group By clause to apply some aggregate function to the
items selected in a group. The following query selects order and order item objects, grouping each
order’s items and displaying each order’s total price:

Dim query1 = From ord In all_orders, ord_item In all_order_items
 Order By ord.CustId, ord.OrderId
 Where ord.OrderId = ord_item.OrderId
 Group ord_item By ord Into
 TotalPrice = Sum(ord_item.Quantity * ord_item.UnitPrice),
 OrderItems = Group

The following code shows how a program might display the results in a TreeView control named
trvResults:

Dim root1 As TreeNode = trvResults.Nodes.Add(“Orders”)
For Each obj In query1
 ‘ Display the customer id.
 Dim cust_node As TreeNode =
 root1.Nodes.Add(“Order Id: “ & obj.ord.OrderId &
 “, Total Price: “ & FormatCurrency(obj.TotalPrice))

 ‘ List this customer’s orders.
 For Each ord_item In obj.OrderItems
 cust_node.Nodes.Add(ord_item.Description & “: “ &
 ord_item.Quantity & “ @ “ &
 FormatCurrency(ord_item.UnitPrice))
 Next ord_item
Next obj

Limiting Results

LINQ includes several keywords for limiting the results returned by a query.

The Take statement makes the query keep a specifi ed number of results and discard the rest.

Using Query Results ❘ 689

The Take While statement makes the query keep selected results as long as some condition holds
and then discard the rest.

The Skip statement makes the query discard a specifi ed number of results and keep the rest.

The Skip While statement makes the query discard selected results as long as so me condition holds
and then keep the rest.

The following code demonstrates each of these commands:

Dim q1 = From cust In all_customers Take 5
Dim q2 = From cust In all_customers Take While cust.FirstName.Contains(“n”)
Dim q3 = From cust In all_customers Skip 3
Dim q4 = From cust In all_customers Skip While cust.FirstName.Contains(“n”)

USING QUERY RESULTS

A LINQ query expression returns an IEnumerable containing the query’s results. A program can
iterate through this result and process the items that it contains.

If the selected data has a well-understood data type, such as strings or objects from a known class,
you can iterate through the result by using an explicitly typed looping variable. The following
example selects customer names and then displays them. The looping variable is explicitly typed as a
string.

Dim query = From cust In all_customers
 Select Name = cust.FirstName & “ “ & cust.LastName
For Each cust_name As String In query
 Debug.WriteLine(cust_name)
Next cust_name

If the returned data type is less well understood, you can use a looping variable with an inferred
data type. The following code selects customers and their orders. It then loops through the results
displaying order dates and numbers, together with the names of the customers who placed the
orders. The looping variable obj has an inferred type.

Dim query = From cust In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId
 Order By ord.OrderDate

For Each obj In query
 Debug.WriteLine(obj.ord.OrderDate & vbTab & obj.ord.OrderId &
 vbTab & obj.cust.Name)
Next obj

690 ❘ APPENDIX L LINQ

LINQ FUNCTIONS

The following table summarizes LINQ extension methods that are not available from Visual Basic
LINQ query syntax.

FUNCTION PURPOSE

Aggregate Uses a function specifi ed by the code to calculate a custom aggregate.

Concat Concatenates two sequences into a new sequence.

Contains Returns True if the result contains a specifi c value.

DefaultIfEmpty Returns the query’s result or a default value if the query returns an empty

result.

ElementAt Returns an element at a specifi c position in the query’s result.

ElementAtOrDefault Returns an element at a specifi c position in the query’s result or a default

value if there is no such position.

Empty Creates an empty IEnumerable.

Except Returns the items in one IEnumerable that are not in a second IEnumerable.

First Returns the fi rst item in the query’s result.

FirstOrDefault Returns the fi rst item in the query’s result or a default value if the query

contains no results.

Intersection Returns the intersection of two IEnumerable objects.

Last Returns the last item in the query’s result.

LastOrDefault Returns the last item in the query’s result or a default value if the query

contains no results.

Range Creates an IEnumerable containing a range of integer values.

Repeat Creates an IEnumerable containing a value repeated a specifi c number of

times.

SequenceEqual Returns True if two sequences are identical.

Single Returns the single item selected by the query.

SingleOrDefault Returns the single item selected by the query or a default value if the query

contains no results.

Union Returns the union of two IEnumerable objects.

LINQ to XML ❘ 691

The following table summarizes LINQ data type conversion functions.

FUNCTION PURPOSE

AsEnumerable Converts the result to IEnumerable(Of T).

AsQueryable Converts an IEnumerable to IQueryable.

OfType Removes items that cannot be cast into a specifi c type.

ToArray Places the results in an array.

ToDictionary Places the results in a Dictionary.

ToList Converts the result to List(Of T).

ToLookup Places the results in a Lookup (one-to-many dictionary).

LINQ TO XML

LINQ provides methods to move data in and out of XML.

LINQ into XML

To select data into XML objects, use the special characters <%= and %> to indicate a “hole” within
the XML literal. Inside the hole, place a LINQ query.

For example, the following code builds an XElement object that contains Customer XML elements
for objects in the all_customers list:

Dim x_all As XElement =
 <AllCustomers>
 <%= From cust In all_customers
 Select New XElement(“Customer”,
 New XAttribute(“FirstName”, cust.FirstName),
 New XAttribute(“LastName”, cust.LastName),
 New XText(cust.Balance.ToString(“0.00”)))
 %>
 </AllCustomers>

LINQ out of XML

XML classes such as XElement provide LINQ functions that allow you to use LINQ queries on
them just as you can select data from IEnumerable objects.

The following code extracts the descendants of the x_all XElement object that have negative
balances. It selects each XML element’s FirstName and LastName attributes, and balance (saved in
the element’s value).

692 ❘ APPENDIX L LINQ

Dim select_all = From cust In x_all.Descendants(“Customer”)
 Where CDec(cust.Value) < 0
 Select FName = cust.Attribute(“FirstName”).Value,
 LName = cust.Attribute(“LastName”).Value,
 Balance = cust.Value

The following table summarizes LINQ methods supported by XElement.

FUNCTION RETURNS

Ancestors IEnumerable containing all ancestors of the element.

AncestorsAndSelf IEnumerable containing this element followed by all ancestors of

the element.

Attribute The element’s attribute with a specifi c name.

Attributes IEnumerable containing the element’s attributes.

Descendants IEnumerable containing all descendants of the element.

DescendantsAndSelf IEnumerable containing this element followed by all descendants

of the element.

DescendantNodes IEnumerable containing all descendant nodes of the element.

These include all nodes such as XElement and XText.

DescendantNodesAndSelf IEnumerable containing this element followed by all descendant

nodes of the element. These include all nodes such as XElement

and XText.

Element The fi rst child element with a specifi c name.

Elements IEnumerable containing the immediate children of the element.

ElementsAfterSelf IEnumerable containing the siblings of the element that come

after this element.

ElementsBeforeSelf IEnumerable containing the siblings of the element that come

before this element.

Nodes IEnumerable containing the nodes that are immediate children

of the element. These include all nodes such as XElement and

XText.

NodesAfterSelf IEnumerable containing the sibling nodes of the element that

come after this element.

NodesBeforeSelf IEnumerable containing the sibling nodes of the element that

come before this element.

LINQ to DataSet ❘ 693

The following table gives examples of shorthand expressions for node axes and their functional
equivalents.

SHORTHAND MEANING EQUIVALENT

x...<Customer> Descendants named Customer. x.Descendants(“Customer”)

x.<Child> An element named Child that is a child of

this node.

x.Attributes(“Child”)

x.@<FirstName>

Or:

x.@FirstName

The value of the FirstName attribute. x.Attributes(“FirstName”).Value

LINQ TO DATASET

LINQ to DataSet refers to methods provided by database objects that support LINQ queries.

The DataSet class itself doesn’t provide many LINQ features, but the DataTable objects that it holds
do. The DataTable has an AsEnumerable method that converts the DataTable into an IEnumerable,
which supports LINQ.

The following list summarizes the key differences between a DataTable query and a normal LINQ
to Objects query:

 ➤ The code must use the DataTable object’s AsEnumerable method to make the object
queryable.

 ➤ The code can access the fi elds in a DataRow as in stu!LastName or as in stu.Field(Of String)
(“LastName”).

 ➤ If you want to display the results in a DataGrid control, use the query’s ToList method.

The following example shows a query that selects student data from the dtStudents DataTable
where the LastName comes before D. It selects the students’ FirstName and LastName fi elds,
and displays the result in a DataGrid control.

Dim before_d =
 From stu In dtStudents.AsEnumerable()
 Where stu!LastName < “D”
 Order By stu.Field(Of String)(“LastName”)
 Select First = stu!FirstName, Last = stu!LastName

dgStudentsBeforeD.DataSource = before_d.ToList

694 ❘ APPENDIX L LINQ

Method-Based Queries

LINQ query keywords including Where, Order By, and Select actually correspond to methods
that take parameters giving the functions they should use to perform their tasks. For example, the
Where method takes as a parameter the address of a function that returns True if an item should be
selected in the query result.

In addition to using standard LINQ query syntax, you can use method-based queries to select
data. The following example selects data from all_customers where the OwesMoney function
returns True. The OrderByAmount function returns values that can be used to order the results and
SelectFields returns an object that contains selected fi elds for a selected item.

Dim q2 = all_customers.
 Where(AddressOf OwesMoney).
 OrderBy(AddressOf OrderByAmount).
 Select(AddressOf SelectFields)

Instead of passing the address of a function to these methods, you can pass lambda functions. The
following code returns a result similar to the preceding query but using lambda functions instead of
addresses of functions:

Dim q3 = all_customers.
 Where(Function(c As Customer) c.AccountBalance < 0).
 OrderBy(Of Decimal)(Function(c As Customer) c.AccountBalance).
 Select(Of CustInfo)(
 Function(c As Customer, index As Integer)
 Return New CustInfo() With
 {.CustName = c.Name, .Balance = c.AccountBalance}
)

PLINQ

Adding parallelism to LINQ is remarkably simple. First, add a reference to the System.Threading
library to your program. Then add a call to the AsParallel to the enumerable object that you’re
searching. For example, the following code uses AsParallel to select the even numbers from the array
numbers:

Dim evens =
 From num In numbers.AsParallel()
 Where num Mod 2 = 0

Generics

This appendix summarizes generic classes, extensions, and methods. The fi nal section in this
appendix describes items that you cannot make generic.

GENERIC CLASSES

The syntax for declaring a generic class is as follows:

[attribute_list] [Partial] [accessibility] [Shadows] [inheritance] _
Class name [(Of type_list)]
 [Inherits parent_class]
 [Implements interface]
 statements
End Class

All of these parts of the declaration are the same as those used by a normal (non-generic) class.
See Chapter 25, “Classes and Structures,” and Appendix K for information about non-generic
classes.

The key to a generic class is the (Of type_list) clause. Here, type_list is a list of data types sepa-
rated by commas that form the generic’s parameter types. Each type can be optionally followed
by the keyword As and a list of constraints that the corresponding type must satisfy. The con-
straint list can contain any number of interfaces and, at most, one class. It can also contain the
New keyword to indicate that the corresponding type must provide a parameterless construc-
tor. If a constraint list contains more than one item, the list must be surrounded by braces.

The following code defi nes the generic MyGeneric class. It takes three type parameters. The
fi rst is named Type1 within the generic’s code and has no constraints. The second type, named
Type2, must satisfy the IComparable interface. The third parameter, named Type3, must
provide a parameterless constructor, must satisfy the IDisposable interface, and must inherit
directly or indirectly from the Person class.

M

696 ❘ APPENDIX M GENERICS

Public Class MyGeneric(Of _
 Type1,
 Type2 As IComparable,
 Type3 As {New, IDisposable, Person})

GENERIC EXTENSIONS

Because of their somewhat idiosyncratic nature, extension methods add an extra level of complexity
to generics.

Normally, a generic class declaration includes the types on which it depends and the code within
the class can use those types. For example, consider the Schedule class shown in the following code,
which represents a schedule of tasks:

’ Represents a schedule of Tasks.
Public Class Schedule(Of Task)
 Public Sub AddTask(ByVal new_task As Task)
 ...
 End Sub
 ...
End Class

The type list for the Schedule class includes a type named Task and the class’s code can use the type
Task. In this example, the AddTask subroutine takes a parameter of this type.

Now suppose you want to add an extension method named Prioritize to the generic Schedule
class. The fi rst parameter in the extension method’s declaration indicates the class that the method
extends. In this case, that should be Schedule(Of Task), but the extension method itself must also be
generic, so it must use a type list just as any other generic method does.

The result is the following declaration.

Imports System.Runtime.CompilerServices

Public Module ScheduleExtensions
 ‘ Prioritizes the schedule.
 <Extension()>
 Sub Prioritize(Of T)(sched As Schedule(Of T))
 Debug.WriteLine(“Prioritizing Schedule of “ & GetType(T).Name)
 ...
 End Sub
End Module

The Prioritize method fi rst includes a type list indicating that it generically depends on a type named
T within this method. It then includes the extension method parameter list. The fi rst parameter (the
only parameter in this example) gives the class that the method extends: Schedule(Of T).

The following code fragment shows how a program could create a Schedule of Job objects and then
call the Prioritize extension:

Prohibited Generics ❘ 697

Dim sched As New Schedule(Of Job)
...
sched.Prioritize()

Generic extension methods can become extremely complicated. For more detailed information about
extension methods in general, see Chapter 16, “Subroutines and Functions,” and the Microsoft
Visual Basic Team blog post at http://blogs.msdn.com/vbteam/pages/articles-about-
extension-methods.aspx, paying special attention to Part 5, “Generics and Extension Methods.”

GENERIC METHODS

In addition to generic classes and extension methods, you can create generic methods. This is simply
a method that takes generic parameters. The following code shows a Switcher class that has a shared
generic Switch method:

Public Class Switcher
 Public Shared Sub Switch(Of T)(ByRef thing1 As T, ByRef thing2 As T)
 Dim temp As T = thing1
 thing1 = thing2
 thing2 = temp
 End Sub
End Class

The Switcher class is not generic, but it contains a generic method. Both generic and non-generic
classes can defi ne both generic and non-generic methods. For example, the following code shows a
code module that contains a generic Switch method:

Module SwitchStuff
 ‘ Switch two variables’ values.
 Public Sub Switch(Of T)(ByRef thing1 As T, ByRef thing2 As T)
 Dim temp As T = thing1
 thing1 = thing2
 thing2 = temp
 End Sub
End Module

The only difference between this code and the previous version is that the previous version includes
the Shared keyword so the program can use the class’s method without instantiating the class.

PROHIBITED GENERICS

Unfortunately (or perhaps fortunately because this could be extremely complicated and confusing),
you cannot make generic lambda functions. The following code shows a lambda function that is
allowed and a generic lambda function that is not allowed:

http://blogs.msdn.com/vbteam/pages/articles-aboutextension-methods.aspx
http://blogs.msdn.com/vbteam/pages/articles-aboutextension-methods.aspx

698 ❘ APPENDIX M GENERICS

‘ Allowed.
Dim max_index1 = Function(lst As List(Of Integer)) lst.Count - 1

‘ Prohibited.
Dim max_index2 = Function(Of T)(lst As List(Of T)) lst.Count - 1

You also cannot make generic properties, operators, events, or constructors.

Graphics

This appendix provides information about graphics classes used by Windows Forms applications.

GRAPHICS NAMESPACES

This section describes the most important graphics namespaces and their most useful classes,
structures, and enumerated values.

System.Drawing

This namespace defi nes the most important graphics objects such as Graphics, Pen, Brush,
Font, FontFamily, Bitmap, Icon, and Image. The following table describes the namespace’s
most useful classes and structures.

CLASSES AND STRUCTURES PURPOSE

Bitmap Represents a bitmap image defi ned by pixel data.

Brush Represents area fi ll characteristics.

Color Defi nes a color’s red, green, blue, and alpha components as

values between 0 and 255. Alpha = 0 means the object is

transparent, and alpha = 255 means it is opaque.

Font Represents a particular font (name, size, and style, such as

italic or bold).

FontFamily Represents a group of typefaces with similar characteristics.

Graphics Represents a drawing surface. Provides methods to draw on

the surface.

N

continues

700 ❘ APPENDIX N GRAPHICS

CLASSES AND STRUCTURES PURPOSE

Icon Represents a Windows icon.

Image Abstract base class from which Bitmap, Icon, and Metafi le inherit.

Metafi le Represents a graphic metafi le that contains drawing commands

(in contrast to rasterized bitmap data).

Pen Represents line drawing characteristics such as color, thickness,

and dash style.

Pens Provides a large number of predefi ned pens with diff erent colors

and thickness 1.

Point Defi nes a point’s X and Y coordinates.

PointF Defi nes a point’s X and Y coordinates with fl oating-point values.

Rectangle Defi nes a rectangle using a Point and a Size.

RectangleF Defi nes a rectangle using a PointF and a SizeF (with fl oating-point

values).

Region Defi nes a shape created from rectangles and paths for use in fi lling,

hit testing, or clipping.

Size Defi nes a width and height.

SizeF Defi nes a width and height with fl oating-point values.

SolidBrush Represents a solid brush.

System.Drawing.Drawing2D

This namespace contains classes for more advanced two-dimensional drawing. Some of these
classes refi ne more basic drawing classes. For example, the HatchBrush class represents a specialized
type of Brush that fi lls with a hatch pattern. Other classes defi ne values for use by other graphics
classes. For example, the Blend class defi nes color-blending parameters for a LinearGradientBrush.

The following table describes this namespace’s most useful classes and enumerations.

CLASSES AND ENUMERATIONS PURPOSE

Blend Defi nes blend characteristics for a LinearGradientBrush.

ColorBlend Defi nes blend characteristics for a PathGradientBrush.

DashCap Enumeration that determines how the ends of each dash in a

dashed line are drawn.

 (continued)

Graphics Namespaces ❘ 701

CLASSES AND ENUMERATIONS PURPOSE

DashStyle Enumeration that determines how a dashed line is drawn.

GraphicsPath Represents a series of connected lines and curves for drawing, fi lling,

or clipping.

HatchBrush Defi nes a Brush that fi lls an area with a hatch pattern.

HatchStyle Enumeration that determines the hatch style used by a HatchBrush

object.

LinearGradientBrush Defi nes a Brush that fi lls an area with a linear color gradient.

LineCap Enumeration that determines how the ends of a line are drawn.

LineJoin Enumeration that determines how lines are joined by a method that

draws connected lines such as Graphics.DrawLines or Graphics

.DrawPolygon.

Matrix Represents a transformation matrix.

PathGradientBrush Defi nes a Brush that fi lls an area with a color gradient that follows

a path.

System.Drawing.Imaging

This namespace contains objects that deal with more advanced bitmap graphics. It includes
classes that defi ne image fi le formats such as GIF and JPG, classes that manage color palettes,
and classes that defi ne metafi les. The following table describes this namespace’s most useful
classes.

CLASS PURPOSE

ColorMap Defi nes a mapping from old color values to new ones.

ColorPalette Represents a palette of color values.

ImageFormat Specifi es an image’s format (.bmp, .emf, .gif, .jpg, and so on).

Metafi le Represents a graphic metafi le that contains drawing instructions.

Metafi leHeader Defi nes the attributes of a Metafi le object.

MetaHeader Contains information about a Windows metafi le (WMF).

WmfPlaceableFileHeader Specifi es how a metafi le should be mapped to an output device.

702 ❘ APPENDIX N GRAPHICS

System.Drawing.Printing

This namespace contains objects for printing and managing the printer’s characteristics. The
following table describes the most useful of these classes.

CLASS PURPOSE

Margins Defi nes the margins for the printed page.

PageSettings Defi nes the page settings either for an entire PrintDocument or for a particular

page. This object has properties that are Margins, PaperSize, PaperSource,

PrinterResolution, and PrinterSettings objects.

PaperSize Defi nes the paper’s size.

PaperSource Defi nes the printer’s paper source.

PrinterResolution Defi nes the printer’s resolution.

PrinterSettings Defi nes the printer’s settings.

System.Drawing.Text

This namespace contains only three classes, all of which are for working with installed fonts. The
following table describes these classes.

CLASS PURPOSE

FontCollection Base class for the derived InstalledFontCollection and

PrivateFontCollection classes.

InstalledFontCollection Provides a list of the system’s installed fonts.

PrivateFontCollection Provides a list of the application’s privately installed fonts.

DRAWING CLASSES

The basic steps for drawing in Visual Basic are to obtain a Graphics object and use its methods to
draw shapes. Brush classes determine how shapes are fi lled, and Pen classes determine how lines
are drawn.

The following sections describe the most useful properties and methods provided by key drawing
classes, including the Graphics, Pen, and Brush classes.

Graphics

The Graphics object represents a drawing surface. It provides many methods for drawing shapes,
fi lling areas, and determining the appearance of drawing results.

Drawing Classes ❘ 703

All of the drawing methods (as opposed to the fi lling methods) except DrawString take a Pen object
as a parameter to determine the lines’ color, thickness, dash style, and other properties. DrawString
takes a Brush object instead of a Pen object as a parameter.

The following table lists the Graphics object’s drawing methods.

DRAWING METHOD PURPOSE

DrawArc Draws an arc of an ellipse.

DrawBezier Draws a Bézier curve.

DrawBeziers Draws a series of connected Bézier curves.

DrawClosedCurve Draws a smooth closed curve that connects a series of points,

joining the fi nal point to the fi rst point.

DrawCurve Draws a smooth curve that connects a series of points.

DrawEllipse Draws an ellipse.

DrawIcon Draws an Icon onto the Graphics object’s drawing surface.

DrawIconUnstretched Draws an Icon object onto the Graphics object’s drawing surface

without scaling.

DrawImage Draws an Image object onto the Graphics object’s drawing

surface.

DrawImageUnscaled Draws an Image object onto the drawing surface without

scaling.

DrawLine Draws a line.

DrawLines Draws a series of connected lines.

DrawPath Draws a GraphicsPath object.

DrawPie Draws a pie slice taken from an ellipse.

DrawPolygon Draws a polygon.

DrawRectangle Draws a rectangle.

DrawRectangles Draws a series of rectangles.

DrawString Draws text.

The following table lists the Graphics object’s area fi lling methods. These methods take Brush
objects as parameters to determine the fi lled shape’s color, hatch pattern, gradient colors, and other
fi ll characteristics.

704 ❘ APPENDIX N GRAPHICS

FILLING METHOD PURPOSE

FillClosedCurve Fills a smooth curve that connects a series of points.

FillEllipse Fills an ellipse.

FillPath Fills a GraphicsPath object.

FillPie Fills a pie slice taken from an ellipse.

FillPolygon Fills a polygon.

FillRectangle Fills a rectangle.

FillRectangles Fills a series of rectangles.

FillRegion Fills a Region object.

The following table lists other useful Graphics object properties and methods.

PROPERTIES AND METHODS PURPOSE

AddMetafi leComment Adds a comment to a metafi le.

Clear Clears the Graphics object and fi lls it with a specifi c color.

Clip Determines the Region object used to clip any drawing the

 program does on the Graphics surface.

Dispose Releases the resources held by the Graphics object.

DpiX Returns the horizontal number of dots per inch (DPI) for this

object’s surface.

DpiY Returns the vertical number of dots per inch (DPI) for this object’s

surface.

EnumerateMetafi le Invokes a callback method for each record defi ned in a metafi le.

ExcludeClip Updates the Graphics object’s clipping region to exclude the area

defi ned by a Region or Rectangle.

FromHdc Creates a new Graphics object from a device context handle

(hDC).

FromHwnd Creates a new Graphics object from a window handle (hWnd).

FromImage Creates a new Graphics object to draw on an Image object.

InterpolationMode Controls anti-aliasing when drawing scaled images to determine

how smooth the result is.

Drawing Classes ❘ 705

PROPERTIES AND METHODS PURPOSE

IntersectClip Updates the Graphics object’s clipping region to be the inter-

section of the current clipping region and the area defi ned by a

Region or Rectangle.

IsVisible Returns True if a specifi ed point is within the Graphics object’s

visible clipping region.

MeasureCharacterRanges Returns an array of Region objects that show where each character

in a string will be drawn.

MeasureString Returns a SizeF structure that gives the size of a string drawn on

the Graphics object with a particular font.

MultiplyTransform Multiplies the Graphics object’s current transformation matrix by

another transformation matrix.

PageScale Determines the amount by which drawing commands are scaled.

PageUnit Determines the units of measurement: Display (depends on the

device, typically pixel for monitors and 1/100 inch for printers),

Document (1/300 inch), Inch, Millimeter, Pixel, or Point (1/72 inch).

RenderingOrigin Determines the point used as a reference when hatching.

ResetClip Resets the object’s clipping region so that the drawing is not

clipped.

ResetTransformation Resets the object’s transformation matrix to the identity matrix.

Restore Restores the Graphics object to a state saved by the Save method.

RotateTransform Adds a rotation to the object’s current transformation.

Save Saves the object’s current state.

ScaleTransform Adds a scaling transformation to the Graphics object’s current

transformation.

SetClip Sets or merges the Graphics object’s clipping area to another

Graphics object, a GraphicsPath object, or a Rectangle.

SmoothingMode Controls anti-aliasing when drawing lines, curves, or fi lled areas.

TextRenderingHint Controls anti-aliasing and hinting when drawing text.

Transform Gets or sets the Graphics object’s transformation matrix.

TransformPoints Applies the object’s current transformation to an array of points.

TranslateTransform Adds a translation transformation to the Graphics object’s current

transformation.

706 ❘ APPENDIX N GRAPHICS

Pen

The Pen object determines the appearance of drawn lines. It determines such properties as a line’s
width, color, and dash style. The following table lists the Pen object’s most useful properties and
methods.

PROPERTIES AND METHODS PURPOSE

Alignment Determines whether the line is drawn inside or centered on the theoretical

perfectly thin line specifi ed by the drawing routine.

Brush Determines the Brush used to fi ll the line.

Color Determines the line’s color.

CompoundArray Lets you draw a line that is striped lengthwise.

CustomEndCap Determines the line’s end cap.

CustomStartCap Determines the line’s start cap.

DashCap Determines the cap drawn at the ends of dashes.

DashOff set Determines the distance from the start of the line to the start of the

fi rst dash.

DashPattern An array of Singles that specifi es a custom dash pattern.

DashStyle Determines the line’s dash style.

EndCap Determines the cap used at the end of the line.

LineJoin Determines how lines are joined by a method that draws connected

lines such as DrawPolygon.

MultiplyTransform Multiplies the Pen object’s current transformation by another transforma-

tion matrix.

ResetTransform Resets the Pen object’s transformation to the identity transformation.

RotateTransform Adds a rotation transformation to the Pen object’s current

transformation.

ScaleTransform Adds a scaling transformation to the Pen object’s current transformation.

SetLineCap This method takes parameters that let you specify the Pen object’s

StartCap, EndCap, and LineJoin properties at the same time.

StartCap Determines the cap used at the start of the line.

Transform Determines the transformation applied to the initially circular “pen tip”

used to draw lines.

Width The width of the pen.

Drawing Classes ❘ 707

Brushes

The Brush class is an abstract class, so you cannot make instances of it. Instead, you must make
instances of one of its derived classes: SolidBrush, TextureBrush, HatchBrush, LinearGradient
Brush, or PathGradientBrush. The following table briefl y describes these classes.

CLASS PURPOSE

SolidBrush Fills areas with a single solid color.

TextureBrush Fills areas with a repeating image.

HatchBrush Fills areas with a repeating hatch pattern.

LinearGradientBrush Fills areas with a linear gradient of two or more colors.

PathGradientBrush Fills areas with a color gradient that follows a path.

GraphicsPath

The GraphicsPath object represents a path defi ned by lines, curves, text, and other drawing com-
mands. You can use Graphics object methods to fi ll and draw a GraphicsPath, and you can use a
GraphicsPath to defi ne a clipping region. The following table lists the GraphicsPath object’s most
useful properties and methods.

PROPERTIES AND METHODS PURPOSE

CloseAllFigures Closes all open fi gures by connecting their last points with their fi rst

points and then starts a new fi gure.

CloseFigure Closes the current fi gure by connecting its last point with its fi rst point

and then starts a new fi gure.

FillMode Determines how the path handles overlaps when you fi ll it. This

 property can take the values Alternate and Winding.

Flatten Converts any curves in the path into a sequence of lines.

GetBounds Returns a RectangleF structure representing the path’s bounding box.

GetLastPoint Returns the last PointF structure in the PathPoints array.

IsOutlineVisible Returns True if the indicated point lies beneath the path’s outline.

IsVisible Returns True if the indicated point lies in the path’s interior.

PathData Returns a PathData object that encapsulates the path’s graphical data.

PathPoints Returns an array of PointF structures giving the points in the path.

continues

708 ❘ APPENDIX N GRAPHICS

PROPERTIES AND METHODS PURPOSE

PathTypes Returns an array of Bytes representing the types of the points

in the path.

PointCount Returns the number of points in the path.

Reset Clears the path data and resets FillMode to Alternate.

Reverse Reverses the order of the path’s data.

StartFigure Starts a new fi gure, so future data is added to the new fi gure.

Transform Applies a transformation matrix to the path.

Warp Applies a warping transformation defi ned by mapping a parallelogram

onto a rectangle to the path.

Widen Enlarges the curves in the path to enclose a line drawn by a

specifi c pen.

StringFormat

The StringFormat object determines how text is formatted. It enables you to draw text that is
 centered vertically or horizontally, aligned on the left or right, and wrapped or truncated. The
 following table lists the StringFormat object’s most useful properties and methods.

PROPERTIES AND METHODS PURPOSE

Alignment Determines the text’s horizontal alignment. This can be Near (left),

Center (middle), or Far (right).

FormatFlags Gets or sets fl ags that modify the StringFormat object’s behavior.

GetTabStops Returns an array of Singles giving the positions of tab stops.

HotkeyPrefi x Determines how the hotkey prefi x character is displayed. This can be

Show, Hide, or None.

LineAlignment Determines the text’s vertical alignment. This can be Near (top),

Center (middle), or Far (bottom).

SetMeasureableCharacter

Ranges

Sets an array of CharacterRange structures representing ranges

of characters that will later be measured by the Graphics object’s

MeasureCharacterRanges method.

SetTabStops Sets an array of Singles giving the positions of tab stops.

Trimming Determines how the text is trimmed if it cannot fi t within a layout

rectangle.

 (continued)

Drawing Classes ❘ 709

Image

The Image class represents the underlying physical drawing surface hidden below the logical layer
created by the Graphics class. Image is an abstract class, so you cannot directly create instances of
it. Instead, you must create instances of its child classes Bitmap and Metafi le.

The following table describes the Image class’s most useful properties and methods, which are
 inherited by the Bitmap and Metafi le classes.

PROPERTIES AND METHODS PURPOSE

Dispose Frees the resources associated with this image.

Flags Returns attribute fl ags for the image.

FromFile Loads an image from a fi le.

FromHbitmap Loads a Bitmap image from a Windows bitmap handle.

FromStream Loads an image from a data stream.

GetBounds Returns a RectangleF structure representing the rectangle’s bounds.

GetPixelFormatSize Returns the color resolution (bits per pixel) for a specifi ed PixelFormat.

GetThumbnailImage Returns a thumbnail representation of the image.

Height Returns the image’s height.

HorizontalResolution Returns the horizontal resolution of the image in pixels per inch.

IsAlphaPixelFormat Returns True if the specifi ed PixelFormat contains alpha information.

Palette Determines the ColorPalette object used by the image.

PhysicalDimension Returns a SizeF structure giving the image’s dimensions in pixels for

Bitmaps and 0.01 millimeters for Metafi les.

PixelFormat Returns the image’s pixel format.

RawFormat Returns an ImageFormat object representing the image’s raw format.

RotateFlip Rotates, fl ips, or rotates and fl ips the image.

Save Saves the image in a fi le or stream with a given data format.

Size Returns a Size structure containing the image’s width and height in

pixels.

VerticalResolution Returns the vertical resolution of the image in pixels per inch.

Width Returns the image’s width.

710 ❘ APPENDIX N GRAPHICS

Bitmap

The Bitmap class represents an image defi ned by pixel data. It inherits the Image class’s properties
and methods described in the previous section. The following table describes some of the most
 useful new methods added by the Bitmap class.

METHOD PURPOSE

FromHicon Loads a Bitmap image from a Windows icon handle.

FromResource Loads a Bitmap image from a Windows resource.

GetPixel Returns a Color representing a specifi ed pixel.

LockBits Locks the Bitmap image’s data in memory, so it cannot move until the

program calls UnlockBits.

MakeTransparent Makes all pixels with a specifi ed color transparent by setting the alpha

component of those pixels to 0.

SetPixel Sets a specifi ed pixel’s Color value.

SetResolution Sets the Bitmap image’s horizontal and vertical resolution in dots per

inch (DPI).

UnlockBits Unlocks the Bitmap image’s data in memory so that the system can

 relocate it, if necessary.

Metafi le

The Metafi le class represents an image defi ned by metafi le records. Those records defi ne drawing
commands so the image can be smoothly scaled. In contrast, a Bitmap contains pixel data that
 cannot be resized without some jagged or fuzzy appearance.

The Metafi le class inherits the Image class’s properties and methods described in the section
“Image” earlier in this appendix. The following table describes some of the most useful new
 methods added by the Metafi le class.

METHOD PURPOSE

GetMetafi leHeader Returns the Metafi leHeader object associated with this Metafi le.

PlayRecord Plays a metafi le record. Use the Graphics class’s EnumerateMetafi le

method to get the data needed to play metafi le records.

Useful Exception Classes

When your program throws an exception, it’s easy enough to use a TryCatch block to catch
the exception and examine it to determine its class. When you want to throw your own excep-
tion, however, you must know what exception classes are available so that you can pick the
right one.

For more information on error handling, see Chapter 18, “Error Handling,” and Appendix F.

STANDARD EXCEPTION CLASSES

The following table lists some of the most useful exception classes in Visual Basic .NET. You
can use one of these when you need to throw an error.

O

CLASS PURPOSE

AmbiguousMatchException The program could not fi gure out which overloaded

object method to use.

ApplicationException This is the ancestor class for all nonfatal application

errors. When you build custom exception classes,

you should inherit from this class, or from one of its

descendants.

ArgumentException An argument is invalid.

ArgumentNullException An argument that cannot be Nothing has the value

Nothing.

ArgumentOutOfRangeException An argument is out of its allowed range.

continues

712 ❘ APPENDIX O USEFUL EXCEPTION CLASSES

CLASS PURPOSE

ArithmeticException An arithmetic, casting, or conversion operation has occurred.

ArrayTypeMismatchException The program tried to store the wrong type of item in an array.

Confi gurationException A confi guration setting is invalid.

ConstraintException A data operation violates a database constraint.

DataException The ancestor class for ADO.NET exception classes.

DirectoryNotFoundException A needed directory is missing.

DivideByZeroException The program tried to divide by zero.

DuplicateNameException An ADO.NET operation encountered a duplicate name (for exam-

ple, it tried to create two tables with the same name).

EvaluateException Occurs when a DataColumn’s Expression property cannot be

evaluated.

FieldAccessException The program tried to access a class property improperly.

FormatException An argument’s format doesn’t match its required format.

IndexOutOfRangeException The program tried to access an item outside of the bounds of an

array or other container.

InvalidCastException The program tried to make an invalid conversion. For example,

Integer.Parse(“ten”).

InvalidOperationException The operation is not currently allowed.

IOException The ancestor class for input/output (I/O) exception classes. A

generic I/O error occurred.

EndOfStreamException A stream reached its end.

FileLoadException Error loading a fi le.

FileNotFoundException Error fi nding a fi le.

InternalBuff erOverfl owException An internal buff er overfl owed.

MemberAccessException The program tried to access a class member improperly.

MethodAccessException The program tried to access a class method improperly.

MissingFieldException The program tried to access a class fi eld that doesn’t exist.

MissingMemberException The program tried to access a class member that doesn’t exist.

(continued)

Standard Exception Classes ❘ 713

CLASS PURPOSE

MissingMethodException The program tried to access a class method that doesn’t exist.

NotFiniteNumberException A fl oating-point number is PositiveInfi nity, NegativeInfi nity, or NaN

(Not a Number). You can get these values from the fl oating-point

classes (as in Single.Nan or Double.PositiveInfi nity).

NotImplementedException The requested operation is not implemented.

NotSupportedException The requested operation is not supported. For example, the pro-

gram might be asking a routine to modify data that was opened as

read-only.

NullReferenceException The program tried to use an object reference that is Nothing.

OutOfMemoryException There isn’t enough memory. Note that sometimes a program can-

not recover from an OutOfMemoryException because it doesn’t

have enough memory to do anything useful. This exception is

most useful if you can predict beforehand that you will run out of

memory before you actually use up all of the memory and crash

the program. For example, if the user wants to generate a really

huge data cache, you may be able to predict how much memory

the program will need, see if it is available, and throw this error

without actually allocating the data cache.

Overfl owException An arithmetic, casting, or conversion operation created an over-

fl ow. For example, the program tried to assign a large Integer

value to a Byte variable.

PolicyException Policy prevents the code from running.

RankException A routine is trying to use an array with the wrong number of

dimensions.

ReadOnlyException The program tried to modify read-only data.

SecurityException A security violation occurred.

SyntaxErrorException A DataColumn’s Expression property contains invalid syntax.

Unauthorized Access Exception The system is denying access because of an I/O or security error.

Use the Throw statement to raise an exception. The following code throws a
DivideByZeroException:

Throw New DivideByZeroException(“No employees are defined.”)

This code passes the exception class’s constructor a message describing the exception. In this case,
the divide by zero exception occurred because the application did not have any employees defi ned.

714 ❘ APPENDIX O USEFUL EXCEPTION CLASSES

Notice that the message explains the reason for the exception, not the mere fact that a division by
zero occurred.

CUSTOM EXCEPTION CLASSES

To defi ne a custom exception class, make a class that inherits from an exception class. To give devel-
opers who use the class the most fl exibility, provide four constructors that delegate their work to the
parent class’s corresponding constructors.

The following code shows the InvalidWorkAssignmentException class. The parameterless construc-
tor passes the Exception class’s constructor a default error message. The other constructors simply
pass their arguments to the Exception class’s other constructors.

Public Class InvalidWorkAssignmentException
 Inherits ApplicationException

 Public Sub New()
 MyBase.New(“This work assignment is invalid”)
 End Sub

 Public Sub New(msg As String)
 MyBase.New(msg)
 End Sub

 Public Sub New(msg As String, inner_exception As Exception)
 MyBase.New(msg, inner_exception)
 End Sub

 Public Sub New(info As SerializationInfo, context As StreamingContext)
 MyBase.New(info, context)
 End Sub
End Class

For more information on custom exception classes, see Chapter 18 and the online documentation
for topics such as “Designing Custom Exceptions” (http://msdn.microsoft.com/ms229064
.aspx) and “Design Guidelines for Exceptions” (http://msdn.microsoft.com/ms229014.aspx),
or search the web for articles such as “Custom Exceptions in VB 2005” by Josh Fitzgerald
(http://www.developer.com/net/vb/article.php/3590931).

http://www.developer.com/net/vb/article.php/3590931
http://msdn.microsoft.com/ms229014.aspx
http://msdn.microsoft.com/ms229064.aspx
http://msdn.microsoft.com/ms229064.aspx

Date and Time Format Specifi ers

A program uses date and time format specifi ers to determine how dates and times are repre-
sented as strings. For example, the Date object’s ToString method returns a string representing
a date and time. An optional parameter to this method tells the object whether to format itself
as in 8/20/2012, 08.20.12 A.D., or Monday, August 20, 2012 2:37:18 pm.

Visual Basic provides two kinds of specifi ers that you can use to determine a date and time
value’s format: standard format specifi ers and custom format specifi ers.

STANDARD FORMAT SPECIFIERS

A standard format specifi er is a single character that you use alone to indicate a standardized
format. For example, the format string d indicates a short date format (as in 8/20/2012).

The following table lists standard format specifi ers that you can use to format date and time
strings. The results depend on the regional settings on the computer. The examples shown in
this table are for a typical computer in the United States.

SPECIFIER MEANING EXAMPLE

d Short date. 8/20/2012

D Long date. Monday, August 20, 2012

t Short time. 2:37 PM

T Long time. 2:37:18 PM

f Full date/time with short time. Monday, August 20, 2012 2:37 PM

F Full date/time with long time. Monday, August 20, 2012 2:37:18 PM

P

continues

716 ❘ APPENDIX P DATE AND TIME FORMAT SPECIFIERS

SPECIFIER MEANING EXAMPLE

g General date/time with short time. 8/20/2012 2:37 PM

G General date/time with long time. 8/20/2012 2:37:18 PM

m or M Month and date. August 20

r or R RFC1123 pattern. Formatting does not

convert the time to Greenwich Mean Time

(GMT), so you should convert local times to

GMT before formatting.

Mon, 20 Aug 2012 14:37:18 GMT

S Sortable ISO 8601 date/time. 2012-08-20T14:37:18

u Universal sortable date/time. Formatting

does not convert the time to universal

time, so you should convert local times to

universal time before formatting.

2012-08-20 14:37:18Z

U Universal full date/time. This is the full

 universal time, not the local time.

Monday, August 20, 2012 9:37:18

PM

y or Y Year and month. August 2012

You can learn more about RFC1123 at http://www.faqs.org/rfcs/rfc1123.html. You can
learn more about ISO 8601 at http://www.iso.org/iso/support/faqs/faqs_widely_used_
standards/widely_used_standards_other/date_and_time_format.htm.

CUSTOM FORMAT SPECIFIERS

Custom format specifi ers describe pieces of a date or time that you can use to build your own cus-
tomized formats. For example, the specifi er ddd indicates the abbreviated day of the week, as in Wed.

The following table lists characters that you can use to build custom formats for date and time
strings.

SPECIFIER MEANING EXAMPLE

d Date of the month. 3

dd Date of the month with two digits. 03

ddd Abbreviated day of the week. Wed

dddd Full day of the week. Wednesday

f Fractions of seconds, one digit. Add additional f’s for up to seven

digits (ff ff ff f).

8

 (continued)

http://www.faqs.org/rfcs/rfc1123.html
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/date_and_time_format.htm
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/date_and_time_format.htm

Custom Format Specifi ers ❘ 717

SPECIFIER MEANING EXAMPLE

g Era. A.D.

h Hour, 12-hour clock with one digit, if possible. 1

hh Hour, 12-hour clock with two digits. 01

H Hour, 24-hour clock with one digit, if possible. 13

HH Hour, 24-hour clock with two digits. 07

m Minutes with one digit, if possible. 9

mm Minutes with two digits. 09

M Month number (1–12) with one digit, if possible. 2

MM Month number (1–12) with two digits. 02

MMM Month abbreviation. Feb

MMMM Full month name. February

s Seconds with one digit, if possible. 3

ss Seconds with two digits. 03

t AM/PM designator with one character. A

tt AM/PM designator with two characters. AM

y Year with up to two digits, not zero-padded. 12

yy Year with two digits. 12

yyyy Year with four digits. 2012

z Time zone off set (hours from GMT in the range –12 to +13). –7

zz Time zone off set with two digits. –07

zzz Time zone off set with two digits of hours and minutes. –07:00

: Time separator.

/ Date separator.

“...” Quoted string. Displays the enclosed characters without trying to

 interpret them.

‘...’ Quoted string. Displays the enclosed characters without trying to

 interpret them.

% Displays the following character as a custom specifi er. (See the follow-

ing discussion.)

\ Displays the next character without trying to interpret it.

718 ❘ APPENDIX P DATE AND TIME FORMAT SPECIFIERS

Some of the custom specifi er characters in this table are the same as characters used by standard speci-
fi ers. For example, if you use the character d alone, Visual Basic interprets it as the standard specifi er
for a short date. If you use the character d in a custom specifi er, Visual Basic interprets it as the date of
the month.

If you want to use a custom specifi er alone, precede it with the % character. The following shows
two queries and their results executed in the Immediate window:

?Now.ToString(“d”)
“8/20/2012”
?Now.ToString(“%d”)
“20”

Custom specifi ers are somewhat sensitive to the computer’s regional settings. For example, they at
least know the local names and abbreviations of the months and days of the week.

The standard specifi ers have even more information about the local culture, however. For example,
the date specifi ers know whether the local culture places months before or after days. The d specifi er
gives the result 8/20/2012 for the en-US culture (English, United States), and it returns 20/08/2012
for the culture en-NZ (English, New Zealand).

To avoid cultural problems on different computers, you should use the standard specifi ers whenever
they will satisfy your needs rather than build your own custom format specifi ers. For example, use d
instead of M/d/yyyy.

Other Format Specifi ers

A program uses format specifi ers to determine how objects are represented as strings.
For example, by using different format specifi ers, you can make an integer’s ToString
method return a value as –12345, –12,345, (12,345), or 012,345–.

Visual Basic provides standard format specifi ers in addition to custom specifi ers. The standard
specifi ers make it easy to display values in often-used formats (such as currency or scientifi c
notation). Custom specifi ers provide more control over how results are composed.

STANDARD NUMERIC FORMAT SPECIFIERS

Standard numeric format specifi ers enable you to easily display commonly used numeric
 formats. The following table lists the standard numeric specifi ers.

SPECIFIER MEANING

C or c Currency. The exact format depends on the computer’s internationalization

settings. If a precision specifi er follows the C, it indicates the number of digits

that should follow the decimal point. On a standard system in the United

States, the value –1234.5678 with the specifi er C produces ($1,234.57).

D or d Decimal. This specifi er works only with integer types. It simply displays the

number’s digits. If a precision specifi er follows the D, it indicates the number of

digits the result should have, padding on the left with zeros, if necessary. If the

value is negative, the result has a minus sign on the left. The value –1234 with

the specifi er D6 produces –001234.

Q

continues

720 ❘ APPENDIX Q OTHER FORMAT SPECIFIERS

SPECIFIER MEANING

E or e Scientifi c notation. The result always has exactly one digit to the left of the decimal

point, followed by more digits, an E or e, a plus or minus sign, and at least three digits

of exponent (padded on the left with zeros, if necessary). If a precision specifi er follows

the E, it indicates the number of digits the result should have after the decimal point.

The value –1234.5678 with the specifi er e2 produces –1.23e+003.

F or f Fixed point. The result contains a minus sign if the value is negative, digits, a decimal

point, and then more digits. If a precision specifi er follows the F, it indicates the

 number of digits the result should have after the decimal point. The value –1234.5678

with the specifi er f3 produces –1234.568.

G or g General. Either scientifi c or fi xed-point notation depending on which is more compact.

N or n Number. The result has a minus sign if the value is negative, digits with thousands

separators, a decimal point, and more digits. If a precision specifi er follows the N, it

indicates the number of digits the result should have after the decimal point.

The value –1234.5678 with the specifi er N3 produces –1,234.568.

P or p Percentage. The value is multiplied by 100 and then formatted according to the

 computer’s settings. If a precision specifi er follows the P, it indicates the number of

digits that should follow the decimal point. On a typical computer, the value 1.2345678

with the specifi er P produces 123.46%.

R or r Round trip. The value is formatted in such a way that the result can be converted back

into its original value. Depending on the data type and value, this may require 17 digits

of precision. The value 1/7 with the specifi er R produces 0.14285714285714285.

X or x Hexadecimal. This works for integer types only. The value is converted into

 hexadecimal. The case of the X or x determines whether hexadecimal digits above 9

are written in uppercase or lowercase. If a precision specifi er follows the X, it indicates

the number of digits the result should have, padding on the left with zeros,

if necessary. The value 183 with the specifi er x4 produces 00b7.

CUSTOM NUMERIC FORMAT SPECIFIERS

Custom numeric format specifi ers describe how a number should be formatted. The following table
lists characters that you can use to build custom numeric formats.

SPECIFIER MEANING

0 A digit or zero. If the number doesn’t have a digit in this position, the speci-

fi er adds a 0. The value 12 with the specifi er 000.00 produces 012.00.

A digit. If the number doesn’t have a digit in this position, nothing is printed.

 (continued)

Numeric Formatting Sections ❘ 721

SPECIFIER MEANING

, If used between two digits (either 0 or #), adds thousands separators to the

result. Note that it will add many comma separators if necessary. The value

1234567 with the specifi er #,# produces 1,234,567.

, If used immediately to the left of the decimal point, the number is divided by

1000 for each comma. The value 1234567 with the specifi er #,#,. produces

1,235.

% Multiplies the number by 100 and inserts the % symbol where it appears in

the specifi er. The value 0.123 with the specifi er .00% produces 12.30%.

E0 or e0 Displays the number in scientifi c notation inserting an E or e between the

number and its exponent. Use # and 0 to format the number before the

exponent. The number of 0s after the E determines the number of digits in

the exponent. If you place a + sign between the E and 0, the result’s expo-

nent includes a + or – sign. If you omit the + sign, the exponent only includes

a sign if it is negative. The value 1234.5678 with the specifi er 00.000E+000

produces 12.346E+002.

\ Displays the following character literally without interpreting it. Use \\ to

 display the \ character. The value 12 with the specifi er #\% produces 12%,

and the same value with the specifi er #% produces 1200%.

‘ABC’ or “ABC” Displays the characters in the quotes literally. The value 12 with the specifi er

#‘%’ (single quotes around the % symbol) produces 12%.

NUMERIC FORMATTING SECTIONS

A numeric format specifi er may contain one, two, or three sections separated by semicolons. If the
specifi er contains one section, the specifi er is used for all numeric values.

If the specifi er contains two sections, the fi rst is used to format values that are positive or zero, and
the second is used to format negative values.

If the specifi er contains three sections, the fi rst is used to format positive values, the second is used
to format negative values, and the third is used to format values that are zero.

The following text shows output from the Immediate window for three values using the format
specifi er #,#.00;<#,#.00>;ZERO:

?(1234.5678).ToString(“#,#.00; <#,#.00>;ZERO”)
1,234.57
?(-1234.5678).ToString(“#,#.00; <#,#.00>;ZERO”)
<1,234.57>
?(0).ToString(“#,#.00; <#,#.00>;ZERO”)
ZERO

722 ❘ APPENDIX Q OTHER FORMAT SPECIFIERS

COMPOSITE FORMATTING

The String.Format, Console.WriteLine, and TextWriter.WriteLine methods provide a different
method for formatting strings. These routines can take a composite formatting string parameter
that contains literal characters plus placeholders for values. Other parameters to the methods give
the values.

The value placeholders have the following format:

{index[,alignment][:format_specifier]}

The index value gives the index numbered from 0 of the parameter that should be inserted in this
placeholder’s position.

The optional alignment value tells the minimum number of spaces the item should use and the result
is padded with spaces, if necessary. If this value is negative, the result is left-justifi ed. If the value is
positive, the result is right-justifi ed.

The format_specifi er indicates how the item should be formatted.

For example, consider the following code:

Dim emp As String = “Crazy Bob”:
Dim sales As Single = -12345.67
MessageBox.Show(String.Format(“{0} {1:earned;lost} {1:c} this year”, emp, sales))

The fi rst placeholder refers to parameter number 0, which has the value “Crazy Bob.” The second
placeholder refers to parameter number 1 and includes a two-part format specifi er that displays
“earned” if the value is positive or zero, and “lost” of the value is negative. The third placeholder
refers to parameter number 1 again, this time formatted as currency.

The following code shows the result:

Crazy Bob lost ($12,345.67) this year

ENUMERATED TYPE FORMATTING

Visual Basic provides special formatting capabilities that can display the values of enumerated
 variables. For example, consider the following code:

Private Enum Dessert
 Cake = 1
 Pie = 2
 Cookie = 3
 IceCream = 4
End Enum
...
Dim dessert_choice As Dessert = Dessert.Cake
MessageBox.Show(dessert_choice.ToString)

This code displays the string “Cake.”

Enumerated Type Formatting ❘ 723

For variables of an enumerated type such as dessert_choice, the ToString method can take a specifi er
that determines how the value is formatted.

The specifi er G or g formats the value as a string if possible. If the value is not a valid entry in the
Enum’s defi nition, the result is the variable’s numeric value. For example, the previous code does not
defi ne a Dessert enumeration for the value 7 so, if you set dessert_choice to 7, then dessert_choice
.ToString(“G”) returns the value 7.

If you defi ne an enumerated type with the Flags attribute, variables of that type can be a combina-
tion of the Enum’s values, as shown in the following code:

<Flags()>
Private Enum Dessert
 Cake = 1
 Pie = 2
 Cookie = 4
 IceCream = 8
End Enum
...
Dim dessert_choice As Dessert = Dessert.IceCream Or Dessert.Cake
MessageBox.Show(dessert_choice.ToString(“G”))

In this case, the G format specifi er returns a string that contains all of the fl ag values separated by
commas. In this example, the result is “Cake, IceCream.” Note that the values are returned in the
order in which they are defi ned by the enumeration, not the order in which they are assigned to the
variable.

If you do not use the Flags attribute when defi ning an enumerated type, the G format specifi er
always returns the variable’s numeric value if it is a combination of values rather than a single value
from the list. In contrast the F specifi er returns a list of comma-separated values if it makes sense.
If you omit the Flags attribute from the previous code, dessert_choice.ToString(“G”) returns 9, but
dessert_choice.ToString(“F”) returns “Cake, IceCream.”

The D or d specifi er always formats the variable as a number.

The specifi er X or x formats the value as a hexadecimal number.

The Application Class

The Application class provides static properties and methods for controlling the application.
This appendix contains a summary of the Application class’s most useful properties,
methods, and events. Chapter 28, “Confi guration and Resources,” has a bit more to say about
the Application class and provides some example code.

PROPERTIES

The follo wing table describes the Application class’s most useful properties.

R

PROPERTY PURPOSE

CommonAppDataPath Returns the path where the program should store application

data that is shared by all users. By default, this path has the form

base_path\company_name\product_name\product_version.

The base_path is typically C:\Documents and Settings\All Users\

Application Data.

CommonAppDataRegistry Returns the registry key where the program should store

application data that is shared by all users. By default, this

path has the form HKEY_LOCAL_MACHINE\Software\

company_name\product_name\product_version.

CompanyName Returns the application’s company name.

CurrentCulture Gets or sets the CultureInfo object for this thread. The

CultureInfo object specifi es information about a specifi c culture

(such as its name, writing system, and calendar, and its formats

for dates, times, and numbers).

continues

726 ❘ APPENDIX R THE APPLICATION CLASS

PROPERTY PURPOSE

CurrentInputLanguage Gets or sets the InputLanguage for this thread. The InputLanguage

object defi nes the layout of the keyboard for the culture. It determines

how the keyboard keys are mapped to the characters in the culture’s

language.

ExecutablePath Returns the fully qualifi ed path to the fi le that started the execution,

including the fi le’s name.

LocalUserAppDataPath Returns the path where the program should store data for this local,

non-roaming user. By default, this path has the form base_path\

company_name\product_name\product_version. The base_path

is typically C:\Documents and Settings\user_name\Local Settings\

Application Data.

MessageLoop Returns True if the thread has a message loop. If the program begins

with a startup form, this loop is created automatically. If it starts with a

custom Sub Main, then the loop doesn’t initially exist, and the program

must start it (if it needs a message loop) by calling Application.Run.

OpenForms Returns a collection holding references to all of the application’s

open forms.

ProductName Returns the application’s product name.

ProductVersion Gets the product version associated with this application.

StartupPath Returns the fully qualifi ed path to the fi le that started the execution,

including the fi le’s name.

UserAppDataPath Returns the path where the program should store data for this user.

By default, this path has the form base_path\company_name\prod

uct_name\product_version. The base_path is typically C:\Documents

and Settings\user_name\Application Data.

UserAppDataRegistry Returns the registry key where the program should store

 application data for this user. By default, this path has the form

HKEY_CURRENT_USER\Software\company_name\product_name\

product_version.

UseWaitCursor Determines whether this thread’s forms display a wait cursor. Set this

to True before performing a long operation, and set it to False when

the operation is fi nished.

(continued)

Methods ❘ 727

METHODS

The following table describes the Application class’s most useful methods.

METHOD PURPOSE

AddMessageFilter Adds a message fi lter to monitor the event loop’s Windows messages.

DoEvents Processes Windows messages that are currently in the message

queue. If the thread is performing a long calculation, it would normally

prevent the rest of the thread from taking action (such as processing

these messages). Calling DoEvents lets the user interface catch up

with the user’s actions. Note that you can often avoid the need for

DoEvents if you perform the long task on a separate thread.

Exit Ends the whole application. This is a rather abrupt halt, and any

loaded forms do not execute their FormClosing or FormClosed event

handlers, so be sure the application has executed any necessary

clean-up code before calling Application.Exit.

ExitThread Ends the current thread. This is a rather abrupt halt, and any forms

on the thread do not execute their FormClosing or FormClosed event

handlers.

OnThreadException Raises the Application object’s ThreadException event, passing

it an exception. (If your application throws an uncaught exception

in the IDE, the IDE halts. That makes it hard to test Application

.ThreadException event handlers. You can call OnThreadException to

invoke the event handler.)

RemoveMessageFilter Removes a message fi lter.

Run Runs a message loop for the current thread. If you pass this method

a form object, it displays the form and processes its messages until

the form closes.

SetSuspendState Makes the system suspend operation or hibernate. When the system

hibernates, it writes its memory contents to disk. When you restart the

system, it resumes with its previous desktop and applications running.

When the system suspends operation, it enters low-power mode. It

can resume more quickly than a hibernated system, but memory con-

tents are not saved, so they will be lost if the computer loses power.

728 ❘ APPENDIX R THE APPLICATION CLASS

EVENTS

The following table describes the Application object’s events.

EVENT PURPOSE

ApplicationExit Occurs when the application is about to shut down.

Idle Occurs when the application fi nishes executing some code and is

about to enter an idle state to wait for events.

ThreadException Occurs when the application throws an unhandled exception.

ThreadExit Occurs when a thread is about to exit.

The My Namespace

The My namespace provides shortcuts to make performing common tasks easier. The follow-
ing sections describe the major items within the My namespace and describe the tools that
they make available.

MY.APPLICATION

My.Application provides information about the current application. It includes properties that
tell you the program’s current directory, culture, Log object, and splash screen. It also includes
information about the application’s assembly, including the program’s version numbering.

The following table describes the most useful My.Application properties, methods, and events.

S

ITEM PURPOSE

ApplicationContext Returns an ApplicationContext object for the currently

executing thread. It provides a reference to the thread’s form.

Its ExitThread method terminates the thread, and its ThreadExit

event fi res when the thread is exiting.

ChangeCurrentCulture Changes the thread’s culture used for string manipulation and

formatting.

ChangeCurrentUICulture Changes the thread’s culture used for retrieving resources.

CommandLineArgs Returns a collection containing the command-line arguments

used when the application was started. The fi rst entry (with

index 0) is the fully qualifi ed name of the executable application.

continues

730 ❘ APPENDIX S THE MY NAMESPACE

ITEM PURPOSE

CurrentCulture Returns a CultureInfo object that represents the settings used for

culture-specifi c string manipulation and formatting. This includes

calendar information, date and time specifi cations, the culture’s name,

keyboard layout, number formats for general numbers (for example,

the thousands separator character and decimal character), currency,

and percentages.

CurrentUICulture Returns a CultureInfo object that represents the culture-specifi c

settings used by the thread to retrieve resources. It determines the

culture used by the Resource Manager and My.Resources.

Deployment Returns the application’s current ApplicationDeployment object

used for ClickOnce deployment. Normally, you don’t need to man-

age deployment yourself, but this object lets you check for updates,

start an update synchronously or asynchronously, download fi les, and

restart the updated application.

DoEvents Makes the application process all of the Windows messages currently

waiting in the message queue. Doing this allows controls to process

messages and update their appearances while the program is

 performing a long calculation. Often, you can avoid using DoEvents

by performing long calculations on a separate thread, so the user

interface can continue running normally.

GetEnvironmentVariable Returns the value of the specifi ed environment variable. For example,

the following code displays the value of the PATH environment

variable:

MessageBox.Show(

 My.Application.GetEnvironmentVariable(“PATH”))

This method raises an exception if the named environment variable

doesn’t exist. The method Environment.GetEnvironmentVariable

 performs the same function, except that it returns Nothing if the

variable doesn’t exist.

Info Returns an AssemblyInfo object that provides information about the

assembly such as assembly name, company name, copyright,

trademark, and version.

IsNetworkDeployed Returns True if the application was deployed over the network. You

should check this property and only try to use the My.Application

.Deployment object if it returns True.

Log An object of the class MyLog. You can use this object’s WriteEntry and

WriteException methods to log messages and exceptions.

(continued)

My.Application ❘ 731

ITEM PURPOSE

MainForm Gets or sets the application’s main form.

NetworkAvailability

Changed

The application raises this event when the network’s availability

changes.

OpenForms Returns a collection containing references to all of the application’s

open forms.

Shutdown The application raises this event when it is shutting down. This event

occurs after all forms’ FormClosing and FormClosed event handlers

have fi nished. Note that it fi res only if the program shuts down

normally. If it exits, these events don’t fi re.

SplashScreen Gets or sets the application’s splash screen.

Startup The application raises this event when it is starting up before it creates

any forms.

StartupNextInstance The application raises this event when the user tries to start a second

instance of a single-instance application.

UICulture Gets the thread’s culture used for retrieving resources.

UnhandledException The application raises this event if it encounters an unhandled

exception.

The following table lists the Info object’s properties. Note that these properties have default blank
values unless you set them by opening the project’s property pages, selecting the Application tab,
and clicking the Assembly Information button.

PROPERTY PURPOSE

AssemblyName Gets the assembly’s name.

CompanyName Gets the assembly’s company name.

Copyright Gets the assembly’s copyright information.

Description Gets the assembly’s description.

DirectoryPath Gets the directory where the assembly is stored.

LoadedAssemblies Returns a collection of Assembly objects for the application’s cur-

rently loaded assemblies.

ProductName Gets the assembly’s product name.

continues

732 ❘ APPENDIX S THE MY NAMESPACE

PROPERTY PURPOSE

StackTrace Gets a stack trace.

Title Gets the assembly’s title.

Trademark Gets the assembly’s trademark information.

Version Gets the assembly’s version number.

WorkingSet Gets the number of bytes mapped to the process context.

(continued)

The project’s Application property page gives you access to most of the Info values at design time.
To open the Application property page, open Solution Explorer, double-click the My Project entry,
and select the Application tab.

To set Info values at design time, open the Application
property page and click the Assembly Information
button, and then enter the assembly information in the
dialog box shown in Figure S-1 and click OK.

To place code in the My.Application object’s
NetworkAvailabilityChanged, Shutdown, Startup,
StartupNextInstance, or UnhandledException event
handlers, open the Application property page and click
the View Application Events button.

To make the application a single-instance application,
open the Application property page and check the
“Make single instance application” box.

MY.COMPUTER

My.Computer provides methods for understanding and
controlling the computer’s hardware and the system
software. It lets you work with the audio system, clock, keyboard, clipboard, mouse, network, print-
ers, registry, and fi lesystem.

The following sections describe the properties, methods, and events available through My.Computer
in detail.

Audio

This object provides access to the computer’s audio system. Its methods let you play a .wav fi le
synchronously or asynchronously, stop a fi le playing asynchronously, or play a system sound. For
example, the following code plays the system’s exclamation sound:

My.Computer.Audio.PlaySystemSound(SystemSounds.Exclamation)

FIGURE S-1: Enter assembly information such

as the application title and version number

on the Assembly Information dialog box.

My.Computer ❘ 733

Clipboard

The Clipboard object enables you to move data in and out of the system’s clipboard. The
My.Computer.Clipboard object provides extra tools that simplify some clipboard operations.
The following table briefl y summarizes the My.Computer.Clipboard object’s methods.

The following table describes the Audio object’s methods.

METHOD PURPOSE

Play Plays .wav data from a fi le, byte array, or stream. The second

parameter can be Background (play asynchronously in the back-

ground), BackgroundLoop (play asynchronously in the background

and repeat when it ends), or WaitToComplete (play synchronously).

PlaySystemSound Plays a system sound. The parameter should be a member of the

SystemSounds enumeration and can have the value Asterisk, Beep,

Exclamation, Hand, or Question.

Stop Stops the sound currently playing asynchronously.

METHOD PURPOSE

Clear Removes all data from the clipboard.

ContainsAudio Returns True if the clipboard contains audio data.

ContainsData Returns True if the clipboard contains data in a specifi c custom format.

ContainsFileDropList Returns True if the clipboard contains a fi le drop list.

ContainsImage Returns True if the clipboard contains image data.

ContainsText Returns True if the clipboard contains textual data.

GetAudioStream Gets audio data from the clipboard.

GetData Gets data in a specifi c custom format from the clipboard.

GetDataObject Gets a DataObject from the clipboard.

GetFileDropList Gets a StringCollection holding the names of the fi les selected for

drop from the clipboard.

GetImage Gets image data from the clipboard.

continues

734 ❘ APPENDIX S THE MY NAMESPACE

Clock

This property returns an object of type Clock that you can use to learn about the current time. The
following table describes this object’s properties.

METHOD PURPOSE

GetText Gets textual data from the clipboard.

SetAudio Saves audio data to the clipboard.

SetData Saves data in a specifi c custom format to the clipboard.

SetDataObject Saves a DataObject to the clipboard.

SetFileDropList Saves a StringCollection containing a series of fully qualifi ed

fi lenames to the clipboard.

SetImage Saves an image to the clipboard.

SetText Saves textual data to the clipboard.

(continued)

PROPERTY PURPOSE

GmtTime Returns a Date object that gives the current local date and time con-

verted into Coordinated Universal Time (UTC) or Greenwich Mean

Time (GMT).

LocalTime Returns a Date object that gives the current local date and time.

TickCount Returns the number of milliseconds since the computer started.

For example, suppose that you live in Colorado, which uses Mountain Standard Time (MST), seven
hours behind Greenwich Mean Time. If My.Computer.Clock.LocalTime returns 2:03 PM, then
My.Computer.Clock.GmtTime returns 9:03 PM.

If you must store a date and time for later use (for example, in a database), you should generally
store it in UTC. Then you can meaningfully compare that value with other times stored on other
computers in different time zones such as those across the Internet.

FileSystem

The FileSystem object provides tools for working with drives, directories, and fi les. The following
table summarizes this object’s properties and methods.

My.Computer ❘ 735

ITEM DESCRIPTION

CombinePath Returns a properly formatted combined path as a string.

CopyDirectory Copies a directory.

CopyFile Copies a fi le.

CreateDirectory Creates a directory.

CurrentDirectory Determines the fully qualifi ed path to the application’s current

directory.

DeleteDirectory Deletes a directory.

DeleteFile Deletes a fi le.

DirectoryExists Returns True if a directory exists.

Drives Returns a read-only collection of DriveInfo objects describing the

system’s drives. See Chapter 30, “Filesystem Objects,” for information

about the DriveInfo class.

FileExists Returns True if a fi le exists.

FindInFiles Returns a collection holding names of fi les that contain a search

string.

GetDirectories Returns a String collection representing the pathnames of

subdirectories within a directory.

GetDirectoryInfo Returns a DirectoryInfo object for the specifi ed path.

GetDriveInfo Returns a DriveInfo object for the specifi ed path.

GetFileInfo Returns a FileInfo object for the specifi ed path.

GetFiles Returns a read-only String collection representing the names of fi les

within a directory.

GetParentPath Returns a string representing the absolute path of the parent of the

provided path.

MoveDirectory Moves a directory.

MoveFile Moves a fi le.

OpenTextFieldParser Opens a TextFieldParser object attached to a delimited or fi xed-fi eld

fi le (such as a log fi le). You can use the object to parse the fi le.

OpenTextFileReader Opens a TextReader object attached to a fi le. You can use the object

to read the fi le.

continues

736 ❘ APPENDIX S THE MY NAMESPACE

ITEM DESCRIPTION

OpenTextFileWriter Opens a TextWriter object attached to a fi le. You can use the object to

write into the fi le.

ReadAllBytes Reads all data from a binary fi le.

ReadAllText Reads all text from a text fi le.

RenameDirectory Renames a directory within its parent directory.

RenameFile Renames a fi le within its directory.

SpecialDirectories Returns a SpecialDirectoriesProxy object that has properties

giving the locations of various special directories such as the system’s

temporary directory and the user’s MyDocuments directory. See the

section “My.Computer.FileSystem.SpecialDirectories” in Chapter 30

for more information.

WriteAllBytes Creates a fi le and writes byte data into it.

WriteAllText Creates a text fi le and writes text into it.

(continued)

Info

The My.Computer.Info object provides information about the computer’s memory and operating
system. The following list describes this object’s properties:

PROPERTY PURPOSE

AvailablePhysicalMemory Returns the computer’s total amount of free physical memory in bytes.

AvailableVirtualMemory Returns the computer’s total amount of free virtual address space

in bytes.

InstalledUICulture Returns the current user-interface culture.

LoadedAssemblies Returns a collection of the assemblies loaded by the application.

OSFullName Returns the computer’s full operating-system name as in Microsoft

Windows XP Home Edition.

OSPlatform Returns the platform identifi er for the operating system of the

 computer. This can be Unix, Win32NT (Windows NT or later), Win32S

(runs on 16-bit Windows to provide access to 32-bit applications),

Win32Windows (Windows 95 or later), or WinCE.

My.Computer ❘ 737

PROPERTY PURPOSE

OSVersion Returns the operating system’s version in a string with the format

major.minor.build.revision.

StackTrace Returns a string containing the application’s current stack trace.

TotalPhysicalMemory Returns the computer’s total amount of physical memory in bytes.

TotalVirtualMemory Returns the computer’s total amount of virtual address space in bytes.

WorkingSet Returns the amount of physical memory mapped to the process

context in bytes.

Keyboard

This object returns information about the current keyboard state. The following table describes this
object’s properties.

PROPERTY PURPOSE

AltKeyDown Returns True if the Alt key is down.

CapsLock Returns True if Caps Lock is on.

CtrlKeyDown Returns True if the Ctrl key is down.

NumLock Returns True if Num Lock is on.

ScrollLock Returns True if Scroll Lock is on.

ShiftKeyDown Returns True if the Shift key is down.

The My.Computer.Keyboard object also provides one method named SendKeys. This method
sends keystrokes to the currently active window just as if the user had typed them. You can use this
method to provide some automated control over applications.

Mouse

The My.Computer.Mouse object provides information about the computer’s mouse. The following
table describes this object’s properties.

738 ❘ APPENDIX S THE MY NAMESPACE

Name

The My.Computer.Name property simply returns the computer’s name.

Network

The My.Computer.Network object provides a few simple properties and methods for working with
the network. Its single property, IsAvailable, returns True if the network is available.

The following table describes the object’s methods.

PROPERTY DESCRIPTION

ButtonsSwapped Returns True if the functions of the mouse’s left and right buttons have

been switched. This can make using the mouse easier for left-handed

users.

WheelExists Returns True if the mouse has a scroll wheel.

WheelScrollLines Returns a number indicating how much to scroll when the mouse

wheel rotates one notch.

METHOD DESCRIPTION

DownloadFile Downloads a fi le from a remote computer. Parameters give such values

as the fi lename, username, password, and connection timeout.

IsAvailable Returns True if the network is available.

Ping Pings a remote computer to see if it is connected to the network.

UploadFile Uploads a fi le to a remote computer. Parameters give such values as the

fi lename, username, password, and connection timeout.

This object also provides one event, NetworkAvailabilityChanged, that you can catch to learn when
the network becomes available or unavailable.

Ports

This object provides one property and a single method. Its SerialPortNames property returns an
array of strings listing the names of the computer’s serial ports.

The OpenSerialPort method opens the serial port with a particular name (optional parameters
give the baud rate, parity, and other port confi guration information) and returns a reference to a
SerialPort object.

The SerialPort class is much more complex than the My.Computer.Ports object. The following table
describes the SerialPort class’s most useful properties.

My.Computer ❘ 739

PROPERTY PURPOSE

BaseStream Returns the underlying Stream object.

BaudRate Gets or sets the port’s baud rate.

BreakState Gets or sets the break signal state.

BytesToRead Returns the number of bytes of data in the receive buff er.

BytesToWrite Returns the number of bytes of data in the send buff er.

CDHolding Returns the state of the port’s Carrier Detect (CD) line.

CtsHolding Returns the state of the port’s Clear-to-Send (CTS) line.

DataBits Gets or sets the standard length of data bits per byte.

DiscardNull Determines whether null characters are ignored.

DsrHolding Returns the state of the Data Set Ready (DSR) signal.

DtrEnable Determines enabling of the Data Terminal Ready (DTR) signal.

Encoding Determines the character encoding for text conversion.

Handshake Determines the handshaking protocol.

IsOpen Returns True if the port is open.

NewLine Determines the end-of-line sequence for the ReadLine and WriteLine

methods. This is a linefeed by default.

Parity Determines the parity-checking protocol.

ParityReplace Determines the character used to replace invalid characters when a

parity error occurs.

PortName Gets or selects the port.

ReadBuff erSize Determines the port’s read buff er size.

ReadTimeout Determines the read timeout in milliseconds.

ReceivedBytesThreshold Determines the number of bytes in the input buff er before a

ReceivedEvent is raised.

RtsEnable Determines whether the Request to Transmit (RTS) signal is enabled.

StopBits Determines the standard number of stop bits per byte.

WriteBuff erSize Determines the port’s write buff er size.

WriteTimeout Determines the write timeout in milliseconds.

740 ❘ APPENDIX S THE MY NAMESPACE

The SerialPort object also has a few events that you can use to learn about changes in the port’s sta-
tus. The following table describes the object’s most useful events.

The following table describes the SerialPort object’s most useful methods.

METHOD PURPOSE

Close Closes the port.

DiscardInBuff er Discards any data that is currently in the read buff er.

DiscardOutBuff er Discards any data that is currently in the write buff er.

GetPortNames Returns an array of strings holding the serial ports’ names.

Open Opens the port’s connection.

Read Reads data from the read buff er.

ReadByte Synchronously reads one byte from the read buff er.

ReadChar Synchronously reads one character from the read buff er.

ReadExisting Reads all immediately available characters in both the stream and the

read buff er.

ReadLine Reads up to the next NewLine value in the read buff er.

ReadTo Reads a string up to the specifi ed value in the read buff er.

Write Writes data into the port’s write buff er.

WriteLine Writes a string and a NewLine into the write buff er.

EVENT PURPOSE

DataReceived Occurs when the port receives data. The e.EventType parameter

indicates the type of data and can be SerialData.Eof (end of fi le

received) or SerialData.Chars (characters were received).

ErrorEvent Occurs when the port encounters an error. The e.EventType parameter

indicates the type of error and can be Frame (framing error), Overrun

(character buff er overrun), RxOver (input buff er overrun), RxParity

(hardware detected parity error), or TxFull (output buff er full).

PinChangedEvent Occurs when the port’s serial pin changes. The e.EventType

 parameter indicates the type of change and can be Break (break in

the input), CDChanged (Receive Line Signal Detect, or RLSD, signal

changed state), CtsChanged (CTS signal changed state), DsrChanged

(DSR signal changed state), and Ring (detected a ring indicator).

My.Computer ❘ 741

My.Computer.Registry also provides two methods, GetValue and SetValue, that get and set registry
values, respectively.

The program can use the RegistryKey objects to work with the corresponding registry
subtrees. The following table describes the most useful properties and methods provided by the
RegistryKey class.

Registry

My.Computer.Registry provides objects that manipulate the registry. My.Computer.Registry has
seven properties that refer to objects of type RegistryKey that represent the registry’s main subtrees
or “hives.”

The following table lists these objects and the corresponding registry hives.

MY.COMPUTER.REGISTRY PROPERTY REGISTRY SUBTREE

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfi g HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

DynData HKEY_DYNAMIC_DATA

LocalMachine HKEY_LOCAL_MACHINE

PerformanceData HKEY_PERFORMANCE_DATA

Users HKEY_USERS

PROPERTY OR METHOD PURPOSE

Close Closes the key and writes it to disk if it has been modifi ed.

CreateSubKey Creates a new subkey or opens an existing subkey within this key.

DeleteSubKey Deletes the specifi ed subkey.

DeleteSubKeyTree Recursively deletes a subkey and any child subkeys it contains.

DeleteValue Deletes a value from the key.

Flush Writes any changes to the key into the registry.

GetSubKeyNames Returns an array of strings giving subkey names.

GetValue Returns the value of a specifi ed value within this key.

continues

742 ❘ APPENDIX S THE MY NAMESPACE

PROPERTY OR METHOD PURPOSE

GetValueKind Returns the type of a specifi ed value within this key. This can be

Binary, DWord, ExpandString, MultiString, QWord, String, or Unknown.

(Unknown is particularly important because the registry can contain

just about any custom data type.)

GetValueNames Returns an array of strings giving the names of all of the values

contained within the key.

Name Returns the key’s registry path.

OpenSubKey Returns a RegistryKey object representing a descendant key.

A parameter indicates whether you need write access to the key.

SetValue Sets a value within the key.

SubKeyCount Returns the number of subkeys that are this key’s direct children.

ToString Returns the key’s name.

ValueCount Returns the number of values stored in this key.

(continued)

Visual Basic’s native registry methods SaveSetting and GetSetting are generally easier to use than
My.Computer.Registry, although they provide access to only part of the registry.

Screen

The My.Computer.Screen property returns a Screen object representing the computer’s main
display. The following table describes the Screen object’s most useful properties.

PROPERTY PURPOSE

AllScreens Returns an array of Screen objects representing all of the system’s

screens.

BitsPerPixel Returns the screen’s color depth in bits per pixel.

Bounds Returns a Rectangle giving the screen’s bounds in pixels.

DeviceName Returns the screen’s device name as in \\.\DISPLAY1.

Primary Returns True if the screen is the computer’s primary screen.

My.Computer ❘ 743

PROPERTY PURPOSE

PrimaryScreen Returns a reference to a Screen object representing the system’s

primary display. For a single display system, the primary display is

the only display.

WorkingArea Returns a Rectangle giving the screen’s working area bounds in pixels.

This is the desktop area excluding taskbars, docked windows, and

docked toolbars.

The following table describes the Screen class’s most useful methods.

METHOD PURPOSE

FromControl Returns a Screen object representing the display that contains the

largest piece of a specifi c control.

FromHandle Returns a Screen object representing the display that contains the

largest piece of the object with a given handle.

FromPoint Returns a Screen object representing the display that contains a

given point.

FromRectangle Returns a Screen object representing the display that contains the

largest piece of a given Rectangle.

GetBounds Returns a Rectangle giving the bounds of the screen that contains

the largest piece of a control, rectangle, or point.

GetWorkingArea Returns a Rectangle giving the working area of the screen that con-

tains the largest piece of a control, rectangle, or point.

The AllScreens and PrimaryScreen properties, and all of these methods, are shared members of the
Windows.Forms.Screen class.

The WorkingArea property does not update after you access the Screen object. If the user moves the
system taskbar, the WorkingArea property does not show the new values.

However, the GetWorkingArea method retrieves the screen’s current working area. If you must
be certain that the user has not moved the taskbar or a docked object, use the GetWorkingArea
method.

744 ❘ APPENDIX S THE MY NAMESPACE

MY.FORMS

My.Forms provides properties that give references to an instance of each of the types of forms
defi ned by the application. If the program begins with a startup form, the corresponding My.Forms
entry refers to that form. For example, suppose the program begins by displaying Form1. Then,
My.Forms.Form1 refers to the startup instance of the Form1 class.

You can also refer to these forms directly. For example, the following two statements set the text
and display the predefi ned instance of the Form2 class:

My.Forms.Form2.Text = “Hello!”
Form2.Show()

Other forms that you create using the New keyword are separate instances from those provided by
My.Forms.

If you know you will only want one instance of a particular form, for example, if the form is a
dialog box, you can use the instance defi ned in the My.Forms collection instead of creating new
instances of the class. If you will need to use more than one instance of the form at the same time,
you must use New to create them.

You can set these properties to Nothing to dispose of the forms, but you can never set them to
anything else. In particular, you cannot set them to new instances of their form classes later. When
you destroy one of these instances, it is gone forever. If you will need to reuse the form later, set its
Visible property to False rather than set it equal to Nothing. Alternatively, you can just create new
instances of the class when you need them and ignore the forms in My.Forms.

MY.RESOURCES

My.Resources provides access to the application’s resources. Its ResourceManager property returns
a reference to a ResourceManager object attached to the project’s resources. You can use this object
to retrieve the application’s resources.

My.Resources also provides strongly typed properties that return the application’s resources. For
example, if you create a string resource named Greeting, the following code sets the form’s caption
to that string’s value:

Me.Text = My.Resources.Greeting

See Chapter 28, “Confi guration and Resources,” for more information on using My.Resources to
access the application’s resources.

MY.USER

My.User returns information about the current user. The following table describes the My.User
object’s most useful properties.

My.User ❘ 745

PROPERTY OR METHOD PURPOSE

CurrentPrincipal Gets or sets an IPrincipal object used for role-based security.

InitializeWithWindowsUser Sets the thread’s principal to the Windows user who started it.

IsAuthenticated Returns True if the user’s identity has been authenticated.

IsInRole Returns True if the user belongs to a certain role.

Name Returns the current user’s name in the format domain\user_name.

Streams

Visual Studio provides several classes that treat data as a stream — an ordered series of
bytes. These classes are not diffi cult to use, but they are similar enough to be confusing. This
appendix summarizes the stream classes and describes their properties and their methods. See
Chapter 29, “Streams,” for more information on streams.

STREAM CLASS SUMMARY

The following table lists the Visual Studio stream classes. It can provide you with some
guidance for selecting a stream class.

T

CLASS PURPOSE

BinaryReader,

BinaryWriter

Read and write data from an underlying stream using routines that

manage specifi c data types (such as ReadDouble and ReadUInt16).

Buff eredStream Adds buff ering to another stream type. This sometimes improves

performance on relatively slow underlying devices.

CryptoStream Applies a cryptographic transformation to its data.

FileStream Represents a fi le as a stream. Usually, you can use a helper

class such as BinaryReader or TextWriter to make working with a

FileStream easier.

MemoryStream Lets you read and write stream data in memory. This is useful when

you need a stream but don’t want to read or write a fi le.

NetworkStream Sends and receives data across a network connection.

continues

748 ❘ APPENDIX T STREAMS

STREAM

The following table describes the Stream class’s most useful properties.

CLASS PURPOSE

Stream A generic stream class. This is a virtual (MustInherit) class, so you

cannot create one directly. Instead, you must instantiate one of its

subclasses.

StreamReader,

StreamWriter

These classes inherit from TextReader and TextWriter. They provide

methods for reading and writing text into an underlying stream, usually

a FileStream.

StringReader, StringWriter These classes inherit from TextReader and TextWriter. They provide

methods for reading and writing text into an underlying string.

TextReader, TextWriter These virtual (MustInherit) classes defi ne methods that make working

with text on an underlying stream easier.

(continued)

PROPERTY PURPOSE

CanRead Returns True if the stream supports reading.

CanSeek Returns True if the stream supports seeking to a particular position in

the stream.

CanTimeout Returns True if the stream supports timeouts.

CanWrite Returns True if the stream supports writing.

Length Returns the number of bytes in the stream.

Position Returns the stream’s current position in its bytes. For a stream that

supports seeking, the program can set this value to move to a

particular position.

ReadTimeout Determines the stream’s read timeout in milliseconds.

WriteTimeout Determines the stream’s write timeout in milliseconds.

BinaryReader and BinaryWriter ❘ 749

The FileStream and MemoryStream classes add only a few methods to those defi ned by the Stream
class. The most important of those are new constructors specifi c to the type of stream. For example,
the FileStream class provides constructors for opening fi les in various modes (append, new, and so
forth).

BINARYREADER AND BINARYWRITER

These are stream helper classes that make it easier to read and write data in specifi c formats onto an
underlying stream. The following table describes the BinaryReader class’s most useful methods.

The following table describes the Stream class’s most useful methods.

METHOD PURPOSE

BeginRead Begins an asynchronous read.

BeginWrite Begins an asynchronous write.

Close Closes the stream and releases any resources it uses (such as fi le

handles).

EndRead Waits for an asynchronous read to fi nish.

EndWrite Ends an asynchronous write.

Flush Flushes data from the stream’s buff ers into the underlying storage

medium (device, fi le, and so on).

Read Reads bytes from the stream and advances its position by that

number of bytes.

ReadByte Reads a byte from the stream and advances its position by 1 byte.

Seek If the stream supports seeking, sets the stream’s position.

SetLength Sets the stream’s length. If the stream is currently longer than the new

length, it is truncated. If the stream is shorter than the new length, it is

enlarged. The stream must support both writing and seeking for this

method to work.

Write Writes bytes into the stream and advances the current position by this

number of bytes.

WriteByte Writes 1 byte into the stream and advances the current position

by 1 byte.

750 ❘ APPENDIX T STREAMS

METHOD PURPOSE

Close Closes the BinaryReader and its underlying stream.

PeekChar Reads the reader’s next character, but does not advance the reader’s

position, so other methods can still read the character later.

Read Reads characters from the stream and advances the reader’s position.

ReadBoolean Reads a Boolean from the stream and advances the reader’s position

by 1 byte.

ReadByte Reads a byte from the stream and advances the reader’s position

by 1 byte.

ReadBytes Reads a number of bytes from the stream into a byte array and

advances the reader’s position by that number of bytes.

ReadChar Reads a character from the stream and advances the reader’s position

according to the stream’s encoding and the character.

ReadChars Reads a number of characters from the stream, returns the results in a

character array, and advances the reader’s position according to the

stream’s encoding and the number of characters.

ReadDecimal Reads a decimal value from the stream and advances the reader’s

position by 16 bytes.

ReadDouble Reads an 8-byte fl oating-point value from the stream and advances

the reader’s position by 8 bytes.

ReadInt16 Reads a 2-byte signed integer from the stream and advances

the reader’s position by 2 bytes.

ReadInt32 Reads a 4-byte signed integer from the stream and advances

the reader’s position by 4 bytes.

ReadInt64 Reads an 8-byte signed integer from the stream and advances

the reader’s position by 8 bytes.

ReadSByte Reads a signed byte from the stream and advances the reader’s

position by 1 byte.

ReadSingle Reads a 4-byte fl oating-point value from the stream and advances

the reader’s position by 4 bytes.

ReadString Reads a string from the current stream and advances the reader’s

position past it. The string begins with its length.

ReadUInt16 Reads a 2-byte unsigned integer from the stream and advances

the reader’s position by 2 bytes.

TextReader and TextWriter ❘ 751

METHOD PURPOSE

ReadUInt32 Reads a 4-byte unsigned integer from the stream and advances

the reader’s position by 4 bytes.

ReadUInt64 Reads an 8-byte unsigned integer from the stream and advances

the reader’s position by 8 bytes.

The following table describes the BinaryWriter class’s most useful methods.

METHOD DESCRIPTION

Close Closes the BinaryWriter and its underlying stream.

Flush Writes any buff ered data into the underlying stream.

Seek Sets the position within the stream.

Write Writes a value into the stream. This method has many overloaded

versions that write characters, arrays of characters, integers, strings,

unsigned 64-bit integers, and so on.

TEXTREADER AND TEXTWRITER

These are stream helper classes that make it easier to read and write text data onto an underlying
stream. The following table describes the TextReader class’s most useful methods.

METHOD PURPOSE

Close Closes the reader and releases any resources that it is using.

Peek Reads the next character from the text without changing the reader’s

state so other methods can read the character later.

Read Reads data from the input. Overloaded versions of this method read a

single character, or an array of characters up to a specifi ed length.

ReadBlock Reads data from the input into an array of characters.

ReadLine Reads a line of characters from the input and returns the data in a string.

ReadToEnd Reads any remaining characters in the input and returns them in a string.

752 ❘ APPENDIX T STREAMS

The following table describes the TextWriter class’s most useful methods.

The following table describes the TextWriter class’s most useful properties.

PROPERTY PURPOSE

Encoding Specifi es the data’s encoding (ASCII, UTF-8, Unicode, and so forth).

FormatProvider Returns an object that controls formatting.

NewLine Gets or sets the stream’s new-line sequence.

METHOD PURPOSE

Close Closes the writer and releases any resources it is using.

Flush Writes any buff ered data into the underlying output.

Write Writes a value into the output. This method has many overloaded

versions that write characters, arrays of characters, integers, strings,

unsigned 64-bit integers, and so forth.

WriteLine Writes data into the output followed by the new-line sequence.

STRINGREADER AND STRINGWRITER

The StringReader and StringWriter classes let a program read and write text in a string. They
implement the features defi ned by their parent classes TextReader and TextWriter. See the section
“TextReader and TextWriter” earlier in this appendix for a list of those features.

STREAMREADER AND STREAMWRITER

The StreamReader and StreamWriter classes let a program read and write data in an underlying
stream, often a FileStream. They implement the features defi ned by their parent classes TextReader
and TextWriter. See the section “TextReader and TextWriter” earlier in this appendix for a list of
the features.

TEXT FILE STREAM METHODS

The System.IO.File class provides several handy methods for working with text fi les. The following
table summarizes these methods.

Text File Stream Methods ❘ 753

METHOD PURPOSE

AppendText Creates a text fi le or opens it for appending if it already exists. Returns

a StreamWriter for writing into the fi le.

CreateText Creates a text fi le, overwriting it if it already exists. Returns a

StreamWriter for writing into the fi le.

Exists Returns True if a fi le exists. It is better practice (and much faster) to

only try to open the fi le if Exists returns True, rather than just try to

open the fi le and catch errors with a Try Catch block.

OpenText Opens an existing text fi le and returns a StreamReader to read from it.

This method throws a FileNotFoundException if the fi le doesn’t exist.

Filesystem Classes

A Visual Basic application can take three basic approaches to fi lesystem manipulation: Visual
Basic methods, System.IO Framework classes, and the My.Computer.FileSystem namespace.
This appendix summarizes the properties, methods, and events provided by these approaches.
For more information on fi lesystem objects, see Chapter 30, “Filesystem Objects.”

VISUAL BASIC METHODS

The following table summarizes the Visual Basic methods for working with fi les. They let a
program create, open, read, write, and learn about fi les.

U

METHOD PURPOSE

EOF Returns True if the fi le is at the end of fi le.

FileClose Closes an open fi le.

FileGet Reads data from a fi le opened in Random and Binary mode into

a variable.

FileGetObject Reads data as an object from a fi le opened in Random and

Binary mode into a variable.

FileOpen Opens a fi le for reading or writing. Parameters indicate the

mode (Append, Binary, Input, Output, or Random), access type

(Read, Write, or ReadWrite), and sharing (Shared, LockRead,

LockWrite, or LockReadWrite).

FilePut Writes data from a variable into a fi le opened for Random or

Binary access.

continues

756 ❘ APPENDIX U FILESYSTEM CLASSES

The following table describes Visual Basic methods that manipulate directories and fi les. They let an
application list, rename, move, copy, and delete fi les and directories.

METHOD PURPOSE

FilePutObject Writes an object from a variable into a fi le opened for Random or

Binary access.

FreeFile Returns a fi le number that is not currently associated with any fi le in

this application. You should use FreeFile to get fi le numbers rather

than use arbitrary numbers such as 1.

Input Reads data written into a fi le by the Write method back into a variable.

InputString Reads a specifi c number of characters from the fi le.

LineInput Returns the next line of text from the fi le.

Loc Returns the current position within the fi le.

LOF Returns the fi le’s length in bytes.

Print Prints values into the fi le. Multiple values separated by commas are

aligned at tab boundaries.

PrintLine Prints values followed by a new line into the fi le. Multiple values

separated by commas are aligned at tab boundaries.

Seek Moves to the indicated position within the fi le.

Write Writes values into the fi le, delimited appropriately so that they can

later be read by the Input method.

WriteLine Writes values followed by a new line into the fi le, delimited

appropriately so that they can later be read by the Input method.

(continued)

METHOD PURPOSE

ChDir Changes the application’s current working directory.

ChDrive Changes the application’s current working drive.

CurDir Returns the application’s current working directory.

Framework Classes ❘ 757

METHOD PURPOSE

Dir Returns a fi le matching a directory path specifi cation that may include

wildcards, and matching certain fi le properties such as ReadOnly,

Hidden, or Directory. The fi rst call to Dir should include a path.

Subsequent calls can omit the path to fetch the next matching fi le

for the initial path. Dir returns fi lenames without the path and returns

Nothing when no more fi les match.

FileCopy Copies a fi le to a new location.

FileDateTime Returns the date and time when the fi le was created or last modifi ed.

FileLen Returns the length of a fi le in bytes.

GetAttr Returns a value indicating the fi le’s attributes. The value is a

combination of the values vbNormal, vbReadOnly, vbHidden,

vbSystem, vbDirectory, vbArchive, and vbAlias.

Kill Permanently deletes a fi le.

MkDir Creates a new directory.

Rename Renames a directory or fi le.

RmDir Deletes an empty directory.

SetAttr Sets the fi le’s attributes. The value is a combination of the values

vbNormal, vbReadOnly, vbHidden, vbSystem, vbDirectory, vbArchive,

and vbAlias.

FRAMEWORK CLASSES

The System.IO namespace provides several classes for working with the fi lesystem. The following
sections describe the properties, methods, and events provided by these classes.

Directory

The Directory class provides shared methods for working with directories. The following table
summarizes its shared methods.

METHOD PURPOSE

CreateDirectory Creates all of the directories along a path.

Delete Deletes a directory and its contents. It can recursively delete all

subdirectories.

Exists Returns True if the path points to an existing directory.

continues

758 ❘ APPENDIX U FILESYSTEM CLASSES

METHOD PURPOSE

GetCreationTime Returns a directory’s creation date and time.

GetCreationTimeUtc Returns a directory’s creation date and time in Coordinated Universal

Time (UTC).

GetCurrentDirectory Returns the application’s current working directory.

GetDirectories Returns an array of strings holding the fully qualifi ed names of a

 directory’s subdirectories.

GetDirectoryRoot Returns the directory root for a path, which need not exist

(for example, C:\).

GetFiles Returns an array of strings holding the fully qualifi ed names of a

 directory’s fi les.

GetFileSystemEntries Returns an array of strings holding the fully qualifi ed names of a

 directory’s fi les and subdirectories.

GetLastAccessTime Returns a directory’s last access date and time.

GetLastAccessTimeUtc Returns a directory’s last access date and time in UTC.

GetLastWriteTime Returns the date and time when a directory was last modifi ed.

GetLastWriteTimeUtc Returns the date and time when a directory was last modifi ed in UTC.

GetLogicalDrives Returns an array of strings listing the system’s logical drives as in

A:\. The list includes drives that are attached. For example, it lists an

empty fl oppy drive and a connected fl ash disk but doesn’t list a fl ash

disk after you disconnect it.

GetParent Returns a DirectoryInfo object representing a directory’s parent directory.

Move Moves a directory and its contents to a new location on the same disk

volume.

SetCreationTime Sets a directory’s creation date and time.

SetCreationTimeUtc Sets a directory’s creation date and time in UTC.

SetCurrentDirectory Sets the application’s current working directory.

SetLastAccessTime Sets a directory’s last access date and time.

SetLastAccessTimeUtc Sets a directory’s last access date and time in UTC.

SetLastWriteTime Sets a directory’s last write date and time.

SetLastWriteTimeUtc Sets a directory’s last write date and time in UTC.

(continued)

Framework Classes ❘ 759

File

The File class provides shared methods for working with fi les. The following table summarizes its
most useful shared methods.

METHOD PURPOSE

AppendAllText Adds text to the end of a fi le, creating it if it doesn’t exist, and then

closes the fi le.

AppendText Opens a fi le for appending UTF-8 encoded text and returns a

StreamWriter attached to it. (For more information on UTF-8, see

http://en.wikipedia.org/wiki/UTF-8.)

Copy Copies a fi le.

Create Creates a new fi le and returns a FileStream attached to it.

CreateText Creates or opens a fi le for writing UTF-8 encoded text and returns a

StreamWriter attached to it.

Delete Permanently deletes a fi le.

Exists Returns True if the specifi ed fi le exists.

GetAttributes Gets a fi le’s attributes. This is a combination of fl ags defi ned by

the FileAttributes enumeration, which defi nes the values Archive,

Compressed, Device, Directory, Encrypted, Hidden, Normal,

NotContextIndexed, Offl ine, ReadOnly, ReparsePoint, SparseFile,

System, and Temporary.

GetCreationTime Returns a fi le’s creation date and time.

GetCreationTimeUtc Returns a fi le’s creation date and time in UTC.

GetLastAccessTime Returns a fi le’s last access date and time.

GetLastAccessTimeUtc Returns a fi le’s last access date and time in UTC.

GetLastWriteTime Returns a fi le’s last write date and time.

GetLastWriteTimeUtc Returns a fi le’s last write date and time in UTC.

Move Moves a fi le to a new location.

Open Opens a fi le and returns a FileStream attached to it. Parameters

let you specify the mode (Append, Create, CreateNew, Open,

OpenOrCreate, or Truncate), access (Read, Write, or ReadWrite), and

sharing (Read, Write, ReadWrite, or None) settings.

OpenRead Opens a fi le for reading and returns a FileStream attached to it.

continues

http://en.wikipedia.org/wiki/UTF-8

760 ❘ APPENDIX U FILESYSTEM CLASSES

METHOD PURPOSE

OpenText Opens a UTF-8 encoded text fi le for reading and returns a

StreamReader attached to it.

OpenWrite Opens a fi le for writing and returns a FileStream attached to it.

ReadAllBytes Returns a fi le’s contents into an array of bytes.

ReadAllLines Returns a fi le’s lines into an array of strings.

ReadAllText Returns a fi le’s contents into a string.

Replace This method takes three fi le paths as parameters representing

a source fi le, a destination fi le, and a backup fi le. If the backup

fi le exists, the method permanently deletes it. It then moves the

 destination fi le to the backup fi le, and moves the source fi le to

the destination fi le. This method throws an exception if either the

source fi le or the destination fi le doesn’t exist.

SetAttributes Sets a fi le’s attributes. This is a combination of fl ags defi ned by

the FileAttributes enumeration, which defi nes the values Archive,

Compressed, Device, Directory, Encrypted, Hidden, Normal,

NotContextIndexed, Offl ine, ReadOnly, ReparsePoint, SparseFile,

System, and Temporary.

SetCreationTime Sets a fi le’s creation date and time.

SetCreationTimeUtc Sets a fi le’s creation date and time in UTC.

SetLastAccessTime Sets a fi le’s last access date and time.

SetLastAccessTimeUtc Sets a fi le’s last access date and time in UTC.

SetLastWriteTime Sets a fi le’s last write date and time.

SetLastWriteTimeUtc Sets a fi le’s last write date and time in UTC.

WriteAllBytes Creates or overwrites a fi le, writes an array of bytes into it, and closes

the fi le.

WriteAllLines Creates or overwrites a fi le, writes an array of strings into it, and

closes the fi le.

WriteAllText Creates or overwrites a fi le, writes a string into it, and closes

the fi le.

(continued)

Framework Classes ❘ 761

DriveInfo

A DriveInfo object represents one of the computer’s drives. The following table describes the
properties provided by this class. The fi nal column in the table indicates whether a drive must be
ready for the property to work without throwing an exception. Use the IsReady property to see
whether the drive is ready before using those properties.

PROPERTY PURPOSE MUST BE READY?

AvailableFreeSpace Returns the amount of free space available on

the drive in bytes. This value takes quotas into

account, so it may not match TotalFreeSpace.

True

DriveFormat Returns the name of the fi lesystem type such

as NTFS or FAT32. (For more information on

NTFS and FAT fi lesystems, search the web.

For example, the page http:// www.ntfs.com/

ntfs_vs_fat.htm compares the FAT, FAT32, and

NTFS fi lesystems.)

True

DriveType Returns a DriveType enumeration value indicating

the drive type. This value can be CDRom, Fixed,

Network, NoRootDirectory, Ram, Removable, or

Unknown.

False

IsReady Returns True if the drive is ready. Many DriveInfo

properties are unavailable and raise exceptions

if you try to access them while the drive is not

ready.

False

Name Return’s the drive’s name. This is the drive’s root

name as in A:\ or C:\.

False

RootDirectory Returns a DirectoryInfo object represent-

ing the drive’s root directory. See the section

“DirectoryInfo” later in this appendix for more

information.

False

TotalFreeSpace Returns the total amount of free space on the

drive in bytes.

True

TotalSize Returns the total amount of space on the drive in

bytes.

True

VolumeLabel Gets or sets the drive’s volume label. True

http://www.ntfs.com/ntfs_vs_fat.htm
http://www.ntfs.com/ntfs_vs_fat.htm

762 ❘ APPENDIX U FILESYSTEM CLASSES

DirectoryInfo

A DirectoryInfo object represents a directory. The following table summarizes its most useful
properties and methods.

PROPERTY OR METHOD PURPOSE

Attributes Gets or sets fl ags from the FileAttributes enumeration for the

directory. These fl ags can include Archive, Compressed, Device,

Directory, Encrypted, Hidden, Normal, NotContentIndexed, Offl ine,

ReadOnly, ReparsePoint, SparseFile, System, and Temporary.

Create Creates the directory. You can create a DirectoryInfo object, passing

its constructor the fully qualifi ed name of a directory that doesn’t exist.

You can then call the object’s Create method to create the directory.

CreateSubdirectory Creates a subdirectory within the directory and returns a DirectoryInfo

object representing it. The subdirectory’s path must be relative to

the DirectoryInfo object’s directory but can contain intermediate

subdirectories. For example, the statement dir_info.

CreateSubdirectory(“Tools\Bin”) creates the Tools subdirectory and

the Bin directory inside that.

CreationTime Gets or sets the directory’s creation time.

CreationTimeUtc Gets or sets the directory’s creation time in UTC.

Delete Deletes the directory if it is empty. A parameter lets you tell the object

to delete its contents, too, if it isn’t empty.

Exists Returns True if the directory exists.

Extension Returns the extension part of the directory’s name. Normally, this is an

empty string for directories.

FullName Returns the directory’s fully qualifi ed path.

GetDirectories Returns an array of DirectoryInfo objects representing the directory’s

subdirectories. An optional parameter gives a pattern to match. This

method does not recursively search the subdirectories.

GetFiles Returns an array of FileInfo objects representing fi les inside the

directory. An optional parameter gives a pattern to match. This method

does not recursively search subdirectories.

GetFileSystemInfos Returns a strongly typed array of FileSystemInfo objects representing

subdirectories and fi les inside the directory. The items in the array

are DirectoryInfo and FileInfo objects, both of which inherit from

FileSystemInfo. An optional parameter gives a pattern to match. This

method does not recursively search subdirectories.

Framework Classes ❘ 763

FileInfo

A FileInfo object represents a fi le. The following table summarizes its most useful properties and
methods.

PROPERTY OR METHOD PURPOSE

LastAccessTime Gets or sets the directory’s last access time.

LastAccessTimeUtc Gets or sets the directory’s last access time in UTC.

LastWriteTime Gets or sets the directory’s last write time.

LastWriteTimeUtc Gets or sets the directory’s last write time in UTC.

MoveTo Moves the directory and its contents to a new path.

Name Returns the directory’s name without the path information.

Parent Returns a DirectoryInfo object representing the directory’s parent.

If the directory is its fi lesystem’s root (for example, C:\), this returns

Nothing.

Refresh Refreshes the DirectoryInfo object’s data. For example, if the directory

has been accessed since the object was created, you must call

Refresh to load the new LastAccessTime value.

Root Returns a DirectoryInfo object representing the root of the directory’s

fi lesystem.

ToString Returns the directory’s fully qualifi ed path and name.

PROPERTY OR METHOD PURPOSE

AppendText Returns a StreamWriter that appends text to the fi le.

Attributes Gets or sets fl ags from the FileAttributes enumeration for the fi le.

These fl ags can include Archive, Compressed, Device, Directory,

Encrypted, Hidden, Normal, NotContentIndexed, Offl ine, ReadOnly,

ReparsePoint, SparseFile, System, and Temporary.

CopyTo Copies the fi le and returns a FileInfo object representing the new fi le.

A parameter lets you indicate whether the copy should overwrite the

destination fi le if it already exists. If the destination path is relative,

it is relative to the application’s current directory, not to the FileInfo

object’s directory.

continues

764 ❘ APPENDIX U FILESYSTEM CLASSES

PROPERTY OR METHOD PURPOSE

Create Creates the fi le and returns a FileStream object attached to it. For

example, you can create a FileInfo object passing its constructor the

name of a fi le that doesn’t exist. Then you can call the Create method

to create the fi le.

CreateText Creates the fi le and returns a StreamWriter attached to it. For example,

you can create a FileInfo object passing its constructor the name of a

fi le that doesn’t exist. Then you can call the CreateText method to

create the fi le.

CreationTime Gets or sets the fi le’s creation time.

CreationTimeUtc Gets or sets the fi le’s creation time in UTC.

Delete Deletes the fi le.

Directory Returns a DirectoryInfo object representing the fi le’s directory.

DirectoryName Returns the name of the fi le’s directory.

Exists Returns True if the fi le exists.

Extension Returns the extension part of the fi le’s name including the period.

For example, the extension for game.txt is .txt.

FullName Returns the fi le’s fully qualifi ed path and name.

IsReadOnly Returns True if the fi le is marked read-only.

LastAccessTime Gets or sets the fi le’s last access time.

LastAccessTimeUtc Gets or sets the fi le’s last access time in UTC.

LastWriteTime Gets or sets the fi le’s last write time.

LastWriteTimeUtc Gets or sets the fi le’s last write time in UTC.

Length Returns the number of bytes in the fi le.

MoveTo Moves the fi le to a new location. If the destination uses a relative path,

it is relative to the application’s current directory, not to the FileInfo

object’s directory. When this method fi nishes, the FileInfo object is

updated to refer to the fi le’s new location.

Name The fi le’s name without the path information.

Open Opens the fi le with diff erent mode (Append, Create, CreateNew,

Open, OpenOrCreate, or Truncate), access (Read, Write, or

ReadWrite), and sharing (Read, Write, ReadWrite, or None) settings.

This method returns a FileStream object attached to the fi le.

(continued)

Framework Classes ❘ 765

PROPERTY OR METHOD PURPOSE

OpenRead Returns a read-only FileStream attached to the fi le.

OpenText Returns a StreamReader with UTF-8 encoding attached to the fi le for

reading.

OpenWrite Returns a write-only FileStream attached to the fi le.

Refresh Refreshes the FileInfo object’s data. For example, if the fi le has been

accessed since the object was created, you must call Refresh to load

the new LastAccessTime value.

Replace Replaces a target fi le with this one, renaming the old target as a

backup copy. If the backup fi le already exists, it is deleted and

replaced with the target.

ToString Returns the fi le’s fully qualifi ed name.

FileSystemWatcher

The FileSystemWatcher class lets an application watch for changes to a fi le or directory. The
following table summarizes its most useful properties.

PROPERTY PURPOSE

EnableRaisingEvents Determines whether the component is enabled. Note that this

property is False by default, so the watcher will not raise any events

until you set it to True.

Filter Determines the fi les for which the watcher reports events. You cannot

watch for multiple fi le types as in *.txt and *.dat. Instead, use

multiple FileSystemWatchers. If you like, you can use AddHandler to

make all of the FileSystemWatchers use the same event handlers.

IncludeSubdirectories Determines whether the object watches subdirectories within the

main path.

InternalBuff erSize Determines the size of the internal buff er. If the watcher is monitoring

a very active directory, a small buff er may overfl ow.

NotifyFilter Determines the types of changes that the watcher reports. This is a

combination of values defi ned by the NotifyFilters enumeration and

can include the values Attributes, CreationTime, DirectoryName,

FileName, LastAccess, LastWrite, Security, and Size.

Path Determines the path to watch.

766 ❘ APPENDIX U FILESYSTEM CLASSES

The following table summarizes the class’s events.

The following table summarizes the FileSystemWatcher class’s two most useful methods.

METHOD PURPOSE

Dispose Releases resources used by the object.

WaitForChanged Synchronously waits for a change to the target fi le or directory.

NAME DESCRIPTION

Changed A fi le or subdirectory has changed.

Created A fi le or subdirectory was created.

Deleted A fi le or subdirectory was deleted.

Error The watcher’s internal buff er overfl owed.

Renamed A fi le or subdirectory was renamed.

Path

The Path class provides shared properties and methods that you can use to manipulate paths. The
following table summarizes its most useful public properties.

PROPERTY PURPOSE

AltDirectorySeparatorChar Returns the alternate character used to separate directory levels in a

hierarchical path (typically /).

DirectorySeparatorChar Returns the character used to separate directory levels in a hierarchi-

cal path (typically \, as in C:\Tests\Billing\2010q2.dat).

InvalidPathChars Returns a character array that holds characters that are not allowed in

a path string. Typically, this array will include characters such as “, <,

>, and |, as well as nonprintable characters such as those with ASCII

values between 0 and 31.

PathSeparator Returns the character used to separate path strings in environment

variables (typically ;).

VolumeSeparatorChar Returns the character placed between a volume letter and the rest of

the path (typically :, as in C:\Tests\Billing\2010q2.dat).

My.Computer.FileSystem ❘ 767

MY.COMPUTER.FILESYSTEM

The My.Computer.FileSystem object provides tools for working with drives, directories, and
fi les. The following table summarizes this object’s properties.

The following table summarizes the Path class’s most useful methods.

METHOD PURPOSE

ChangeExtension Changes a path’s extension.

Combine Returns two path strings concatenated. This does not simplify the

result as the My.Computer.FileSystem.CombinePath method does.

GetDirectoryName Returns a path’s directory.

GetExtension Returns a path’s extension.

GetFileName Returns a path’s fi lename and extension.

GetFileNameWithout

Extension

Returns a path’s fi lename without the extension.

GetFullPath Returns a path’s fully qualifi ed value. This can be particularly useful for

converting a partially relative path into an absolute path. For example,

the statement Path.GetFullPath(“C:\Tests\OldTests\Software\..\..\New\

Code”) returns C:\Tests\New\Code.

GetInvalidFileNameChars Returns a character array that holds characters that are not allowed in

fi lenames.

GetPathRoot Returns a path’s root directory string. For example, the statement

Path.GetPathRoot(“C:\Invoices\Unpaid\Deadbeats”) returns C:\.

GetRandomFileName Returns a random fi lename.

GetTempFileName Creates a uniquely named, empty temporary fi le, and returns its fully

qualifi ed path. Your program can open that fi le for scratch space, do

whatever it needs to do, close the fi le, and then delete it. A typical

fi lename might be C:\Documents and Settings\Rod\Local

Settings\Temp\tmp19D.tmp.

GetTempPath Returns the path to the system’s temporary folder. This is the path part

of the fi lename returned by GetTempFileName.

HasExtension Returns True if a path includes an extension.

IsPathRooted Returns True if a path is an absolute path. This includes \Temp\

Wherever and C:\Clients\Litigation, but not Temp\Wherever or ..\Uncle.

768 ❘ APPENDIX U FILESYSTEM CLASSES

The following list summarizes the My.Computer.FileSystem object’s methods:

PROPERTY DESCRIPTION

CurrentDirectory Gets or sets the fully qualifi ed path to the application’s current

directory.

Drives Returns a read-only collection of DriveInfo objects describing the

system’s drives. See Chapter 30, “Filesystem Objects,” for information

about the DriveInfo class.

SpecialDirectories Returns a SpecialDirectoriesProxy object that has properties giving

the locations of various special directories such as the system’s

 temporary directory and the user’s My Documents directory. See the

section “My.Computer.FileSystem.SpecialDirectories” later in this

appendix for more information.

METHOD PURPOSE

CombinePath Combines a base path with a relative path reference and returns a

properly formatted fully qualifi ed path.

CopyDirectory Copies a directory. Parameters indicate whether to overwrite existing

fi les, whether to display a progress indicator, and what to do if the user

presses Cancel during the operation.

CopyFile Copies a fi le. Parameters indicate whether to overwrite existing fi les,

whether to display a progress indicator, and what to do if the user

presses Cancel during the operation.

CreateDirectory Creates all of the directories along a path.

DeleteDirectory Deletes a directory. Parameters indicate whether to recursively delete

subdirectories, prompt the user for confi rmation, or move the directory

into the Recycle Bin.

DeleteFile Deletes a fi le. Parameters indicate whether to prompt the user for

confi rmation, or move the fi le into the Recycle Bin, and what to do if

the user presses Cancel while the deletion is in progress.

DirectoryExists Returns True if a specifi ed directory exists.

FileExists Returns True if a specifi ed fi le exists.

FindInFiles Returns a collection holding names of fi les that contain a search string.

My.Computer.FileSystem ❘ 769

METHOD PURPOSE

GetDirectories Returns a string collection listing subdirectories of a given directory.

Parameters tell whether to recursively search the subdirectories and

wildcards to match.

GetDirectoryInfo Returns a DirectoryInfo object for a directory. See the section

“DirectoryInfo” earlier in this appendix for more information.

GetDriveInfo Returns a DriveInfo object for a drive. See the section “DriveInfo”

earlier in this appendix for more information.

GetFileInfo Returns a FileInfo object for a fi le. See the section “FileInfo” earlier in

this appendix for more information.

GetFiles Returns a string collection holding the names of fi les within a

directory. Parameters indicate whether the search should recursively

search subdirectories and give wildcards to match.

GetParentPath Returns the fully qualifi ed path of a path’s parent.

MoveDirectory Moves a directory. Parameters indicate whether to overwrite fi les

that have the same name in the destination directory and whether to

prompt the user when such a collision occurs.

MoveFile Moves a fi le. Parameters indicate whether to overwrite a fi le that has

the same name as the fi le’s destination and whether to prompt the

user when such a collision occurs.

OpenTextFieldParser Opens a TextFieldParser object attached to a delimited or fi xed-fi eld

fi le (such as a log fi le). You can use the object to parse the fi le.

OpenTextFileReader Opens a StreamReader object attached to a fi le. You can use the

object to read the fi le.

OpenTextFileWriter Opens a StreamReader object attached to a fi le. You can use the

object to write into the fi le.

ReadAllBytes Reads all the bytes from a binary fi le into an array.

ReadAllText Reads all the text from a text fi le into a string.

RenameDirectory Renames a directory within its parent directory.

RenameFile Renames a fi le within its directory.

WriteAllBytes Writes an array of bytes into a binary fi le. A parameter tells whether to

append the data or rewrite the fi le.

WriteAllText Writes a string into a text fi le. A parameter tells whether to append the

string or rewrite the fi le.

770 ❘ APPENDIX U FILESYSTEM CLASSES

MY.COMPUTER.FILESYSTEM.SPECIALDIRECTORIES

The My.Computer.FileSystem.SpecialDirectories property returns a SpecialDirectoriesProxy
object that has properties giving the locations of various special directories (such as the system’s
temporary directory and the user’s My Documents directory). The following table summarizes
these special directory properties.

PROPERTY PURPOSE

AllUsersApplicationData The directory where applications should store settings for all users

(typically, something like C:\ProgramData\WindowsApplication1\

WindowsApplication1\1.0.0.0).

CurrentUserApplicationData The directory where applications should store settings for the current

user (typically, something like C:\Users\CrazyBob\AppData\Roaming\

WindowsApplication1\WindowsApplication1\1.0.0.0).

Desktop The current user’s desktop directory (typically, C:\Users\CrazyBob\

Desktop).

MyDocuments The current user’s My Documents directory (typically, C:\Users\

CrazyBob\Documents).

MyMusic The current user’s My Music directory (typically, C:\Users\CrazyBob\

Music).

MyPictures The current user’s My Pictures directory (typically, C:\Users\CrazyBob\

Pictures).

ProgramFiles The Program Files directory (typically, C:\Program Files).

Programs The current user’s Programs directory (typically, C:\Users\CrazyBob\

AppData\Roaming\Microsoft\Windows\Start Menu\Programs).

Temp The current user’s temporary directory (typically, C:\Users\CrazyBob\

AppData\Local\Temp).

Visual Studio Versions

Most of the code in this book was written with a prerelease “release candidate” (RC) version
of Visual Studio Ultimate 2012. The code does not require any of the special tools that are
included in the Ultimate edition so they should run in Professional and Premium editions, too.

However, the free product Visual Studio 2012 Express for Windows 8 is another matter.
With the Visual Studio 2012 release, Microsoft introduced Metro-style applications. To
strongly encourage developers to move away from Windows desktop-style applications and
toward Metro-style development, Visual Studio 2012 Express for Windows 8 does not include
templates for building Windows desktop-style applications.

Because Windows desktop programming is a relatively stable and straightforward technology,
I used Windows desktop applications for most of the examples in this book. That means you
may have trouble running or reproducing those examples if you are using Visual Studio 2012
Express for Windows 8.

Fortunately all is not lost! After much impassioned feedback by early testers including
Microsoft MVPs (Most Valuable Professionals), Microsoft decided to create a new edition:
Visual Studio Express 2012 for Windows Desktop. That version, which will let you create
Windows desktop applications, was not available when this was written but should be
available in the fall of 2012.

For more information on the Visual Studio 2012 Ultimate, Premium, and Professional
editions, see http://www.microsoft.com/visualstudio/11/en-us/products/compare.

To download Visual Studio Express RC for Windows 8, see http://msdn.microsoft.com/
windows/apps/hh852659.aspx. (The location of this information may move when Microsoft
posts the fi nal release. You should be able to fi nd it easily by searching online for “Visual
Studio Express RC for Windows 8.”)

V

http://www.microsoft.com/visualstudio/11/en-us/products/compare
http://msdn.microsoft.com/windows/apps/hh852659.aspx
http://msdn.microsoft.com/windows/apps/hh852659.aspx

773

INDEX

Symbols and Numbers

& for concatenation, 253
#Const statements, 187–188
* (asterisk), using in controls, 150
{ } (curly braces), initializing arrays and, 226
<< operator, 252
>> operator, 252
>immed command, 75
: (colons), separating statements with, 200
‘ (single quotation marks), comments and, 195, 196
, (commas)

attribute_list and, 450
comma-separated expressions, 303–304

() (brackets)
multiple attributes and, 450
operators and, 258
reading expressions and, 633

\ operator, 252
8-bit UTF encoding, 574

A

About dialog boxes, 117–118
abstract classes, defi ned, 454
abstraction, inheritance and, 438–440
Access, 340
access

binary-fi le, 592
random-fi le, 589–592
sequential-fi le, 589

accessibility
basics of, 204
constant declaration and, 245
declaring events and, 473–474
keywords, 215–216, 229, 245
structures and classes and, 457
subroutines and, 273–274

accessibility clauses

declaring classes and, 452–453
functions and, 638
subroutines and, 273–274, 637
variable declarations and, 215–216

AccessLevelEnum example, 242
AccountingModules namespace example, 193–194
actions, controls that initiate, 92–94, 138–139
Add Connection dialog box, 340
Add method, 228–229
Add New Item command, 20
Add Service Reference, 21
AddHandler statement, 100
adding

bookmarks, 58
class features, 441–443
controls (Windows Form Designer), 37–38
controls (WPF), 48–49
controls to Toolbox, 133, 650
data controls to forms, 341–343
linear objects to Trace objects, 192
parallelism to LINQ, 413–414

ADO.NET, LINQ to, 409–413
Advanced Compiler Settings dialog box, 188
aggregate functions (LINQ), 393–394
aliases

Imports aliases, 522–523
namespace aliases, 486

ambiguous reference errors, 484
Anchor property, 103, 107–108
AnchorButton example, 107–108
anchoring properties to containers, 50–51
AndAlso operator, 256–257
animations (XAML), 156–159
anonymous types, 243, 384
AppendText method, streams and, 581–582
Application class

events, 728
methods, 727
properties, 725–726

application icons, 121

774

Application object – block scope

Application object, 566–569
application resources, 562–563
applications. See metro-style applications
arithmetic operators, 252–253, 629–630
ArrayList collection class, 499–501
arrays

arrays of objects, initializing, 227
bounds_list clauses and, 222–223
declaring, 222–223, 275
initializing, 226–227
parameter arrays, 278–279

arrays, collections and
Array class basics, 494
Array class methods, 498–499
array dimensions, 496
Array objects, 495–496
basics of, 494–495
defi ned, 494
IndexOf and LastIndexOf methods, 498
lower bounds, 497
resizing arrays and Array objects, 497–498
speed, 498

ArraySpeeds example, 498
As clause, 224
As type, 245
AsEnumerable method, 410, 411
Assembly Information, 183–184
AssignJobs example, 198
AssignJobs subroutine, 197, 198
assignment operators, 259–260, 633
asterisk (*) , using in controls, 150
Async keyword

basics of, 295–297
MetroBones example and, 426

AsyncAwait example, 295–297
AsyncCallEndInvoke example, 291–293
AsyncHandleCallback example, 294–295
asynchronous downloads, 426
asynchronous methods

Async keyword, 295–297
Await keyword, 295–297
basics of, 290
BeginInvoke/EndInvoke, 291–293
callbacks, 293–295

“Asynchronous Programming with Async and Await”,
297

attacks, protection against, 87
attribute lists

subroutines and, 268–272
variable declarations and, 214–215

attribute_list

declaring classes and, 450–451
declaring events and, 473

AttributeConditional, 268–269
attributes

basics of, 451
bundling into packages, 152
decorating with, 268
defi ned, 268
fi nding, 272
listed, 269–272
references, 215

“Attributes in Visual Basic”, 451
Audio object (My.Computer), 732–733
auto-implemented properties, 240, 283, 638
automated bug catchers, 323
automatic Imports, 484–486
Await keyword

basics of, 295–297
MetroBones example and, 426, 427

axis shorthand (XML)
axis, defi ned, 408
examples, 408–409

B

BackColor property (forms), 117
Background properties, defi ning, 149, 151
BeginInvoke asynchronous method, 291–293
BeginPrint event, 530
BezierCurves example, 162
binary-fi le access, 592
BinaryReader class

basics of, 576–577
methods, 749–750

BinaryWriter class
basics of, 576–577
methods, 751

binding, database data
complex, 377–379
simple, 373–374

BindingNavigator, 344, 345
BindingSource objects, 344, 345
BindSimple example, 376–377
Bitmap class, 710
bits

defi ned, 204
streams and, 571–572

bitwise operators, 257, 632
blanking text, 41
block scope, 233–234

775

book reading mode – classes

book reading mode (FlowDocumentReader), 167
bookmarks

adding/removing, 58
Bookmarks submenu, 18

bounds_list clauses, 222–223
boxing

basics of, 461
defi ned, 231
generics and, 516

brackets (())
multiple attributes and, 450
operators and, 258
reading expressions and, 633

Breakpoint Condition dialog box, 74
Breakpoint Hit Count dialog box, 75
breakpoints, 57, 70, 74
Breakpoints window, debugging and, 72–73, 74–75
broken chain links, 51
Browsable attribute, 269
browser applications, 174–176
BrowserApp example, 176
Brush class, 707, 710
BrushSamples example, 539
btnAsync_Click event handler, 294, 296–297
btnExit_Click event handler, 42
buffer overfl ow attacks, 87
bugs vs. unplanned conditions

automated bug catchers, 323
bugs, defi ned, 322
catching bugs, 323–324
catching unplanned conditions, 324–326
global exception handling, 326–328
unplanned conditions, defi ned, 322

Build menu, basic commands, 24
Button control’s Content properties, 145
buttons

in Calculator example, 151–153
default button templates, 153–154
in MetroBones example, 423
validating, 114
wizards and, 128–129

ButtonTemplate example, 154–155
ByRef keyword

parameter declarations and, 236–238
parameter passing and, 460

bytes
basics of, 204–205
streams and, 571–572

ByVal keyword
parameter declarations and, 236–237, 274
parameter passing and, 460

C

Calculator application (Windows), 253
Calculator example, 151
callback asynchronous method, 293–295
“Calling Synchronous Methods Asynchronously”, 295
camel case, when naming subroutines, 274
CancelButton property, 127
cancelling without events, 128
case

camel case when naming subroutines, 274
naming conventions and, 248

case sensitivity
CollectionsUtil class and, 505
compilation constants and, 189

Catch ex As Exception statement, 329
Catch statements, structured error handling and,

328–330
catching events, 110, 475–477
catching exceptions, defi ned, 331
characters (data types), 207–209, 625
CheckBox control, 93
CheckedListBox control, 89
CheckPrinter subroutine, Command window and, 76
child classes

adding and modifying, 441–443
inheritance and, 437
refi nement and, 438–439

child controls
properties adopted by, 122–123
resizing, 135–136

Choose statements, 306–308, 643
CInt function, 211–212, 246
classes. See also collection classes; drawing classes;

.NET framework classes for working with fi lesytems;
specifi c classes
abstract classes, defi ned, 454
basics of, 434–436, 450
Brush class derived classes, 539
class features, adding and modifying, 441–443
constants, properties and methods, declaring

within, 471–472
container types as, 449
declaring, 681–682
defi ned, 515
derived (generics), 523
exception, 711–714
generic, methods and, 524
instantiating (generics), 521–523
instantiation, 461–464
vs. namespaces, 488–489

776

classes – commands

objects and, 435–436
parent, 437, 438–439
streams and, 572. See also specifi c stream classes
vs. structures, 457–458, 459, 465–466, 682
System.Drawing namespace, 699–700
System.Drawing.Drawing2D namespace, 700–701
System.Drawing.Imaging namespace, 701
System.Drawing.Printing namespace, 702
System.Drawing.Text namespace, 702

classes, declaring
accessibility clause, 452–453
attribute_list, 450–451
basics of, 450, 681–682
inheritance clauses, 454–455
interfaces, implementing, 456
Partial keyword, 451–452
Shadows keyword, 453–454

Click event handlers, 52
client area, defi ned (controls), 109
Clipboard object (My.Computer), 733–734
CLng data type function, 211–212
Clock object (My.Computer), 734
Close Project dialog box, 11
>cmd command, Immediate window and, 75
code. See also source code fi le structure

adding to controls (Windows Form Designer),
42–43

adding to controls (WPF), 52–53
code-behind (WPF Windows), 172
collapsed, 59, 185, 186
commenting/uncommenting, 195
Compile tab and, 22
MetroBones example, 424–427
reuse (generics), 516
separating user interface from (WPF), 144–145
snippets, inserting, 63
typographic elements. See typographic code

elements
Visual Basic, behind XAML, 146–148
XAML (MetroBones example), 421–423
XAML, writing, 146–148

code editor (Visual Basic), 55–68
basics of, 55–56
code coloring and highlighting, 61–62
code snippets, 63
event handlers, creating, 111
Generate From Usage, 65–66
Go To Defi nition, 64
Go To Type Defi nition, 64–65
Highlight References, 65

IntelliSense, 60–61
margin icons, 56–58
outlining, 58–59
Rename, 64
at run time, 66–67
tooltips, 59–60

collapsed code
code regions and, 185, 186
ease of reading, 59

collection classes, 493–514
ArrayList, 499–501
arrays and. See arrays, collections and
basics of, 494
Collection class basics, 494
collections vs. Collection class, 494
CollectionsUtil class, 505–506
dictionaries, 503–505
generic, 509–511, 523
initializers, 511–512
iterators, 512–513
NameValueCollection, 501–502
queues, 506, 508–509
stacks, 506–507
StringCollection, 501

collection properties, 103–104
collections, initializing, 228–230
colons (:), separating statements with, 200
color

code coloring, 61–62
of controls and forms, 117, 122

command objects (database programming)
basics of, 356–357
constraints, 368–370
DataColumn, 365–366
DataRelation, 366–368
DataRow, 363–364
DataSet, 358–360
DataTable, 360–363

Command window, debugging and, 75–77
CommandInsert example, 349, 356–357
commands

Build menu, 24
for creating breakpoints, 57–58
Data menu, 24–25
Debug menu, 70–72
Help menu, 29–30
IDE menus, 16
menu commands, toolbars and, 16
Path object Data attribute, 160–161
Test menu, 28
Window menu, 28–29

classes (continued)

777

commas (,) – controls (Windows Forms)

commas (,)
attribute_list and, 450
comma-separated expressions, 303–304

commenting/uncommenting code, 195
comments, 195–198
Common Controls Replacement Project, 95
comparison operators, 253–255, 630–631
Compile property page, 22–24
CompilerConstantsInCode example, 190
ComplexNumbers example, 264–265
component tray, 97, 98
components, 97, 98
composite formatting, 722
compound properties, 102
concatenation operators

basics of, 253, 630
StringBuilder class and, 260

conditional compilation
basics of, 186–187
CONFIG constant, 189, 192–193
constants, setting in code, 187–189
DEBUG constant, 190–192
predefi ned constants, 189–190
TRACE constant, 192

CONFIG constant, 189, 192–193
confi guration and resources, 547–569

Application object, 566–569
confi guration fi les, 559–562
environment variables, 550–553
Me object vs. My namespace, 549
My namespace, 548–549
resource fi les. See resource fi les
system registry. See system registry
when to confi gure, 547–548

Confi guration Manager
CONFIG constant and, 192
DEBUG constant and, 190

ConnectionString property, 348–349
Console.SetIn, Console.SetOut, and Console.SetError

methods, 583
#Const statements, 187–188
constants

basics of, 244–246
declaring within classes, 471
naming, 248

constants (conditional compilation)
predefi ned, 189–190
setting in code, 187–189
setting with project compilation settings,

188–189
constrained types (generics), 520–521

constraints
databases and, 368–370
operator overloading and, 263

constructors
basics of, 682–683
classes and structures and, 462–465
generic, 517–518
Pen class, 536
Queue class, 508

container controls, 49, 50, 133–136
container types, defi ned, 449
containers, anchoring properties to, 50–51
Control class

events, 616–618
methods, 614–616
properties, 106–109, 611–614

control statements
decision statements, 641–643
looping statements, 644–646

controls
basics of, 611
containing and arranging, 134–135
control variables in loops, changing, 310
data controls, adding to forms (databases), 341–343
feedback, 138
GotDotNet Power Pack, 666–667
that contain, selecting, 87–88

controls (MetroBones example)
control layout, 421
Visual Basic code, 424–427
XAML code, 421–423
zooming in on, 424

controls (Windows Forms), 81–114, 337–380
action, initiating, 92–94
adding, 37–38, 48–49
arranging, 40
basics of, 81, 86–87, 98
vs. components, 98
components, defi ned, 97
components, listed, 650
components and, 98, 649–650
control properties, 106–109
copying, 39
creating, 99–101
data display, 90–91
vs. database controls, 337
defi ned, 81, 97
dialog box displaying, 94
event handlers, creating, 111–112
events basic, 110–111
feedback, 91–92

778

controls (Windows Forms) – database data

forms as, 115
graphics displaying, 94
methods, 110
moving and sizing, 40, 50–51
named, 52, 53
position and size properties, 109–110
properties adopted by child controls, 122–123
properties at design time, 101–104
properties at run time, 104–106
properties basics, 101
purposes, listed, 651–655
selecting, 38–39, 49
selection, 89–90
standard, listed, 82–86
text box, 90
that contain and arrange, 87–88
third-party, 95–96
validation events, 112–114
WPF vs. Windows Forms applications, 144

controls (WPF), 131–170, 657
actions, initiating, 138–139
adding, 133
containing and arranging, 133–136
data, displaying, 137
data, entering, 137
digital ink, 141
documents, 140–141, 166–169
feedback, 138
graphics and media and, 139–140
hierarchies, 145
listed, 657–663
navigation support, 140
overview, 132–133
procedural WPF, 162–166
selection, 136
WPF basics, 45–46, 131–142, 144–145
WPF in the IDE, 145–148
XAML features. See XAML (eXtensible

Application Markup Language)
ControlTemplate element, 154
conversions, data types, 208, 210–213, 626–627
Convert class, 213
copying controls (Windows Form Designer), 39
corrupted comments, Rename code editor tool and, 64
CreateText method, streams and, 581–582
CryptoStream class, 582–583
Ctrl+Z and Ctrl+Y, undoing changes with (Windows

Form Designer), 40
CType function, 212, 242
CType statements, 628

curly braces ({ }), initializing arrays and, 226
CurrencyManager object, 374–377
CustInfo objects (LINQ), 388
custom exception classes, 714
custom exceptions, 334–335
“Custom Exceptions in VB 2005”, 714
custom stream classes, 582–583
CustomDialog example, 126
CustomException example, 335
customizing

IDE, 4
Toolbox window, 32

D

data. See also database data
controls allowing data entry, 137
display controls, 90–91, 137
fl ow documents and, 166
MaskedTextBox control, data entry and, 90
RichTextBox control, data entry and, 90
TextBox control, data entry and, 90
validation. See validation events

Data Adapter Confi guration Wizard, 353, 354–356
data adapters, 352–356
data containers, defi ned, 345, 346
Data menu, basic commands, 24–25
Data Source Confi guration Wizard, 25, 338–343, 378
data sources, connecting to, 338–341
Data Structures and Algorithms Using Visual Basic

.NET (McMillan, Cambridge University Press,
2005), 504

data type conversion functions (LINQ), 691
data types

anonymous types, 243
basics of, 204–206, 624
characters, 625
conversion functions, 626–627
CType, DirectCast and TryCast statements and, 628
Data and TimeSpan, 634
data type conversion, 210–213
enumerated types, 240–242
generics and, 516
literal type characters, 625–626
nullable types, 244
type characters, 207–209

database data
complex data binding, 377–379
overview of moving, 346
simple data binding, 373–374

controls (Windows Forms) (continued)

779

database objects – digital ink controls (WPF)

database objects
automatically created, 344–345
connection, 347–350
non-automatically created, 345–346
transaction, 350–352

database programming fundamentals, 337–380
automatically created objects, 344–345
command objects. See command objects (database

programming)
complex data binding, 377–379
connection objects, 347–350
CurrencyManager object, 374–377
data adapters, 352–356
data controls, adding to forms, 341–343
data sources, connecting to, 338–341
database controls vs. Windows Forms controls, 337
DataRow objects, 373
DataView objects, 370–373
moving data, overview, 346
non-automatically created objects, 345–346
simple data binding, 373–374
transaction objects, 350–352

DataColumn object, 365–366
DataGrids example, 370–371
DataGridView

control, 91
creating, 343

DataRelation object, 366–368
DataRepeater control, 665
DataRow object, 363–364, 373
DataSet object

basics of, 344, 345, 348, 358–360
LINQ to, 410–413, 693–694
methods, 359–360
moving data and, 346

DataTable class, 360–363
DataView object, 370–373
date

date and time format specifi ers, 715–718
Date data types, 634
Date operations, 261–262

DEBUG constant, 189, 190–192
Debug menu

basics of, 24, 70–72
Windows submenu, 10, 72–74

Debug.Assert method, 191
Debug.Fail method, 191
debugging, 69–77

basics of, 335–336
Breakpoints window, 74–75
browser applications, 175

Command window, 75–77
Debug menu, 24, 70–72
Debug menu’s Windows submenu, 10, 72–74
defi ned, 69
Immediate window, 75–77

Debug.Print statements, 75
Decimal data types, 205, 206
decision statements

basics of, 299, 641–643
Choose statements, 306–308
Enum statements, 304
enumerated values and, 304
If statements, 306
IIf statements, 304–306
multiline If Then statements, 300–301
Select Case statements, 301–304
single-line If Then statements, 300

declarations. See variable declarations
declaring

classes. See classes, declaring
events, 473–474, 683
structures, 456–457

decorating, defi ned, 268
DeferredValidation example, 113–114
defi nitions (code editor)

Go To Defi nition tool, 64
Go To Type Defi nition tool, 64–65

delegates
basics of, 246–248
relaxed, 287–290

DeleteSetting method, 556
deleting bookmarks, 58
derived classes

Brush class, 539
generics, 523

deriving child classes from parents, 437–438
deselecting controls, 49
design time

event handlers, creating at, 111–112
properties at, 101–104

designer options, Windows Forms Designer, 36–37
“Designing Custom Exceptions”, 714
Development Settings (Visual Basic), 5
dialog boxes

dialog box displaying controls, 94
forms as, 126–128

DialogResult property, 127, 172–173
dictionaries

as collections, 494, 503–505
GenericPairDictionary example, 518–520

digital ink controls (WPF), 141

780

Dim keyword – error handling

Dim keyword, 219–220
dimensions, arrays and, 496
DirectCast statements, 628
directories

methods for working with, 588–589
My.Computer.FileSystem object and, 767–769

Directory class
fi lesystems and, 592–593
methods, 757–758

DirectoryInfo class, 596–598, 762–763
display area, defi ned (controls), 109
DisplayAverage subroutine, 278–279
DisplayError subroutine, 276
Dispose method, 601
Dispose subroutine, 469–471
Distinct keyword (LINQ), 394, 687
Do Loop statements, 316–318, 644–645
Dock property, 108–109
Docking example, 108
documents

controls for viewing, 140–141
WPF, 166–169

DocumentViewers, 169
doxygen, 198
dragging and dropping

attributes and, 451
database columns, 343
Show Data Sources menu command and, 25

DrawableRect example, 331–332
DrawCartoonsOnline.com, 418
DrawDashes example, 483
DrawDashesImportsDashStyle example, 486–487
drawing classes

basics of, 534
Bitmap class, 710
Brush class, 538–539, 707
graphics, basics of, 702
Graphics object, 534–536, 702–705
GraphicsPath object, 707–708
Image class, 709
Metafi le class, 710
Pen object, 536–538, 706
StringFormat object, 708
XAML drawing objects, 159–162

DrawingShapes example, 139, 140
DrawInPaintEvent example, 538
DrawOnBitmap example, 536
DrawToBitmap method, 666
DriveInfo class, 595–596, 761
drives, My.Computer.FileSystem object and, 767–769
dynamic properties, confi guraiton fi les and, 559

E

Each loops, 311–314
Edit menu (IDE), 18–19
editing

Visual Basic code, 147–148
XAML, 146–147

editors. See also code editor (Visual Basic)
icon editor, 120
RealWorld Cursor Editor, 121
Schema Editor, 342
XAML code editor, 46, 47, 48

EllipseClick example, 140
Else keyword, If Then statements and, 300
embedded resources, 564
Emboss method, 290–291, 296
EmployeeAssert example, 191
EnableRefactoringOnRename (Windows Form

Designer), 37
encapsulation, 436–437
End Region statement, 186
EndInvoke asynchronous method, 291–293
EndPrint event, 530
EndPrint event handler, 545
entities, LINQ to Entities, 409–410
Enum statements, 304
enumerated data types, 240–242
enumerated type declarations, 622
enumerated type formatting, 722–723
enumerated values, decision statements and, 304
EnumerateEmployees example, 315
enumerations, System.Drawing.Drawing2D namespace,

700–701
enumerators

for collections, 314–316
defi ned, 314
vs. iterators, 316

Environ function, 551
environment variables, 550–553
error handling, 321–336, 647

bugs vs. unplanned conditions. See bugs vs.
unplanned conditions

debugging, 335–336
structured. See error handling, structured
Y2K bug and, 321–322

error handling, structured
basics of, 328
Catch statements, 328–330
custom exceptions, 334–335
exception objects, 330–331
re-throwing exceptions, 333–334
throwing exceptions, 331–333

http://DrawCartoonsOnline.com

781

Error List window – examples

Error List window, 9, 10
errors

error suggestion dialog box, 63
ErrorProvider, 91
Generate From Usage tool (code editor) and,

65–66
highlighted with code editor, 62

escaping identifi ers, 222
event handlers

building, 52
Click event handlers, 52
code, adding to form controls and, 42–43
creating, 111–112, 147
defi ned, 42–43, 110
MetroBones example, 424–426
removing parameters from, 52

events
adding to child classes, 441
Application class, 728
application events, 568–569
basics of, 110–111, 471, 683
catching, 475–477
catching new control’s events, 99–100
Control class, 616–618
DataTable object, 362–363
declaring, 473–474
defi ned, 110, 434
examples of, 435
FileSystemWatcher class, 601, 766
Form class, listed, 677–680
My.Application object (My.Computer), 729–731
PrintDocument object, 530
raising, 474–475
SerialPort object (My.Computer), 740
shared methods, 477–478
shared variables, 477
validation events, 112–114

examples
AccessLevelEnum, 240, 242
AccountingModules namespace, 193–194
AnchorButton, 107–108
ArraySpeeds, 498
AssignJobs, 198
AsyncAwait, 295–297
AsyncCallEndInvoke, 291–293
AsyncHandleCallback program, 294–295
BezierCurves, 162
BindSimple, 376–377
BrowserApp, 176
BrushSamples, 539
ButtonTemplate, 154–155

Calculator, 151–152
CommandInsert, 349, 356–357
CompilerConstantsInCode, 190
ComplexNumbers, 264
CustomDialog, 126
CustomException, 335
DataGrids, 370–371
DeferredValidation, 113–114
Docking, 108
DrawableRect, 331–332
DrawDashes, 483
DrawDashesImportsDashStyle, 486–487
DrawingShapes, 140
DrawInPaintEvent, 538
DrawOnBitmap, 536
EllipseClick, 140
EmbeddedResources, 564
EmployeeAssert, 191
EnumerateEmployees, 315
ExitAndContinue, 318
FileStreamWrite, 574
FinalizeObjects, 468–469
FixedAspectRatio, 123
FormImage, 139
FrameApp, 176–177
GarbageCollection, 467–468
GenerateCommands, 353
GenericNumDistinct, 525
GenericPairDictionary, 518–520
GlobalException, 327–328
GridButtonCode, 166
InitializeArrays, 226
IntegratedValidation, 112
LambdaFunction, 286
LinqLambda, 397
LinqToDataSetScores, 411
ListEnviron, 551
LocalizedUseGerman, 565–566
MakeButton, 163
MemoryDataSetWithErrors, 363–364
MemoryDataSetXmlMappedColumns, 366
MemoryStreamWrite, 575
MetroBones. See metro-style applications
MruList, 124
MultiplyTimeSpan, 261
NoContextMenu, 124
NullableTypes, 244
OpenCreateAppendText, 582
PrintBooklet, 540–545
ProceduralAnimatedButton, 163, 166
ProceduralCalculator, 166

782

examples – fi lesystems

RandomAccessEmployees, 590–592
ReadLines, 580
RelaxedDelegates, 289
ResizingButtons, 134
RotatedButtons, 156
ShadowTest, 217–218
Shapes, 161
ShowCursors, 119
ShowExceptionInfo, 331
ShowSettings, 561
SmileCursor, 120
SortedBinaryTree, 520–521
SortOrders, 324
SpinAndGrowButton, 158–159
SpinButton, 156–157, 158
Splash, 117
StringBuilderTest1 and Test2, 260
StringWriterReader, 579–580
StructuresAndClasses, 459
TimeGenericObjects, 232
Transactions, 350–352
UseCaseInsensitiveSortedList, 506
UseDelegates, 247
UseDialog, 173–174
UseDispose, 470–471
UseFixedDocument, 169
UseFlowDocumentReader, 167–168
UseFrame, 140
UseMediaElement, 140
UseMultipleWaitCursors, 120
UsePasswordBox, 137
UsePrintPreviewDialog, 531–534, 536, 540
UseSwitcher, 524
UseTableLayoutPanel, 109
UseWaitCursor, 119
ValidateInteger, 325
ValidatePhone, 284
ViewWindowsMessages, 124
website for examples code, 55

exception classes, 711–714
exception objects, structured error handling and, 330–331
exceptions, debugging and, 71
Exists method, streams and, 581–582
Exit For statements, 310
Exit Sub statement, 281
ExitAndContinue example, 318
Export Template Wizard, 17
Expression Blend

attaching code with, 144–145
vs. WPF Designer, 47

expressions, separated by commas, 303–304
eXtensible Application Markup Language. See XAML

(eXtensible Application Markup Language)
eXtensible Markup Language. See XML (eXtensible

Markup Language)
Extension attribute, 284
extension methods

basics of, 284–285, 640
generic classes and, 509–510
generics and, 524–525
in OOP, 446–447, 454

extension methods (LINQ)
basics of, 395–396
method-based queries, 397–398
method-based queries using lambda functions,

399–401

F

Factorial function, 282
factory methods, 478
feedback controls

examples, 138
selecting, 91–92, 138

Fibonacci function, 59
File class, 594–595, 759–760
File menu (IDE), 16–17
FileInfo class, 598–600, 763–765
FilePut and FileGet methods, random-access fi les and,

590–591
fi les

confi guration fi les, 559–562
Files class and, 759–760
image fi les (metro-style applications), 419–420
methods for working with, 586–588, 755–757
My.Computer.FileSystem object and, 767–769
resource fi les. See resource fi les

FileStream class, 572, 574–575
FileStreamWrite example, 574
fi lesystem objects, 585–607

basics of, 585–586
My.Computer, 734–736
.NET framework classes and. See. NET framework

classes for working with fi lesytems
permissions, 586

fi lesystems, 586–592. See also. NET framework classes
for working with fi lesytems
binary-fi le access, 592
manipulation of, 755
methods for working with, 588–589
random-fi le access, 589–592

examples (continued)

783

FileSystemWatcher class – graphical XAML editor

sequential-fi le access, 589
System.IO namespace and, 757

FileSystemWatcher class, 600–602, 765–766
fi lling methods (Graphics object), 704
Finalize method, garbage collection and, 467–469
FinalizeObjects example, 468–469
Find Symbol command, 18
fi ring events, defi ned, 110
Fitzgerald, Josh, 714
Fix and Int data type functions, 211–212
fi xed documents (WPF), 168–169
FixedAspectRatio example, 123
fl oating controls, 103
fl ow documents (WPF), 166–168
FlowDocumentReader, 167
FlowLayoutPanel control, 87
fonts

forms’ Font properties, 122–123
object properties, 105

For Each loops, 311–314, 315, 512, 644
For Next loops, 313–314, 644
foreign key constraints, defi ned, 346
ForeignKeyConstraint object, 368–369
Form class, 669–680

events, listed, 677–679
methods, listed, 674–676
properties, listed, 669–674
property-changed events, 680

Form Designer, 9, 10
Form objects, Windows Forms applications and, 171
format specifi ers

date and time, 715–718
numeric, 719–721
ToString method and, 213

formatting
composite formatting, 722
Format menu’s submenus, 25
numeric formatting sections, 721

FormImage example, 139
forms. See also Windows Forms; Windows Forms

Designer
adding data controls to, 341–343
color of, 117, 122
as controls, 115
as dialog boxes, 126–128
modal forms, defi ned, 118
translucent forms, 116

Frame control, 140
FrameApp example, 176–177
Friend keyword

accessibility and, 215, 453

namespace scope and, 235
subroutines and, 273

From clause (LINQ), 385–386, 685
From keyword, variable declarations and, 621–622
functions

aggregate (LINQ), 393–394
data type conversion, 211
defi ned, 267
lambda, 285–287
LINQ, 395–397, 690
vs. subroutines, 281, 282
syntax of, 281–282
writing, 637–638

G

garbage collector (GC)
basics of, 466–467
Dispose subroutine, 469–471
Finalize method, 467–469

GarbageCollection example, 467–468
generalization, 439–440
Generate From Usage tool (code editor), 65–66
GenerateCommands example, 353
generic collection classes, 509–511
GenericNumDistinct example, 525
GenericPairDictionary example, 518–520
generics

advantages of, 516
basics of, 399
classes, 695–696
collection classes, 523
constrained types, 520–521
constructors, 517–518
defi ned, 515–516
defi ning, 516–517
disadvantages of, 516
extension methods, 524–525, 696–697
instantiating generic classes, 521–523
methods, 524, 697
multiple types, 518–520
prohibited, 697–698

GetAllSettings function, 555–556
GetSetting function, 555
GetStringBuilder method, 579
global exception handling, 326–328
Go To Defi nition tool (code editor), 64
Go To Type Defi nition tool (code editor), 64–65
GotDotNet Visual Basic Power Pack, 666–667
graphical XAML editor, 146–147

784

graphics – inferred data types

graphics
Bitmap class, 710
Brush class, 707
controls and, 98
drawing classes basics, 702
Graphics class methods, 531–532
graphics displaying controls, 94, 139–140
Graphics object, 534–536, 702–705
GraphicsPath object, 707–708
Image class, 709
Metafi le class, 710
namespaces, 699–702
Pen object, 706
StringFormat object, 708

GridButtonCode example, 166
Group By clause (LINQ), 391–393, 687–688
Group Join statement, 390
group properties, setting (WPF), 51–52
GroupBox, form controls and, 37
GroupBox control, 87–88
GroupJoinIterator, 391
groups of controls

copying and pasting, 39
moving, 50
properties, setting, 41
resizing, 40
selecting, 49

Guidance and Resources tab, 7
gutters, 540

H

hangman game. See metro-style applications
“has-a” relationships, 441
Hashtable class, 494, 504–505
heap and stack performance, 459
Help menu, basic commands, 29–30
Hex function, 209
hidden fi les, 180–184
hierarchies

inheritance, 438
of namespaces, 482, 483, 490
WPF controls, 145
XPS documents parts, 169

Highlight References tool (code editor), 65
highlighting of code, 61–62
hit counts, breakpoints and, 75
hives

basics of, 553–554
My.Computer.Registry object, 741

HScrollBar control properties (horizontal scrollbar),
102

HybridDictionary class, 505

I

IconEdit and IconEdit2, 121
IconForge, 121
icons

application icons, 121
building, 20
docking, 31
form icons, 120–121
icon editor, 120
margin icons (code editor), 56–58
notifi cation icons, 121–122

IDE. See also Visual Studio IDE introduced
WPF in the IDE, 145–148

identifi ers names, 221–222
IDrawable interface, 280–281
IDrawableRectangle, 280–281
IEnumerable

interface, 315–316
result (LINQ), 389–390

If statements, 306, 643
If Then statements

multiline, 642
single-line, 641–642

IIf statements, 304–306, 643
Image class, 709
image fi les (metro-style applications), 419–420
ImageList component, 103–104
ImageList property, 102–103
Images Collection Editor dialog box, 103–104
>immed command, 75
Immediate window, debugging and, 72, 75–77
Implements keyword, 456, 474
implicit line continuation, 199–200
Import and Export Settings Wizard, 5
Imports statements

automatic Imports, 484–486
basics of, 482–484
Imports aliases, 522–523
namespace aliases, 486
namespace elements, 486–487

Indent and Unindent methods, 192
IndentLevel property, 192
IndentSize property, 192
indexing, intelligent, Choose statements and, 307
IndexOf method, 498
inferred data types, 224–225

785

Info object (My.Computer) – lifetime

Info object (My.Computer), 730, 731–732, 736–737
information hiding, 436–437
inheritance

basics of, 437
class features, adding and modifying, 441–443
“has-a” and “is-a” relationships, 441
hierarchies, 438
interface, 443–444
multiple, 438
refi nement and abstraction, 438–440
structures and, 457

inheritance clauses, declaring classes and, 454–455
inheritance_mode

functions and, 638
subroutines and, 272–273, 637

Inherits keyword, 457
Inherits parent_class, 455
initialization expressions, variable declarations and,

620–621
initialization_expression clauses, 225–228, 246
InitializeArrays example, 226
InitializeComponent method, 565
initializers, collections, 511–512
initializing

arrays, 226–227, 495
arrays of objects, 227
collections, 228–230
variables, 219, 225, 228, 230
XML variables, 228

inline functions, 285–287, 639
inserting snippets, 63
instances, 435
instantiating generic classes, 521–523
instantiation

basics of, 435
classes, 461–464
structures, 464–466

Int data type function, 211–212
Integer data types, 205, 206
integrated development environment. See Visual Studio

IDE introduced
integrated validation

basics of, 112–113
deferred validation, 113–114

IntelliSense
basics of, 60–61
Common tab, 106
fi elds for selecting (LINQ), 384
generics and, 516
submenu, basics of, 19

interface inheritance, 443–444

interfaces
defi ned, 279, 443
implementing, 279–281
Implements keyword and, 456
public interfaces, defi ned, 436
user interfaces, separating from code (WPF),

144–145
“Introduction to Exception Handling in Visual Basic.

NET”, 332
Is keyword, Select Case statements and, 302–303
“is-a” relationships, refi nement and abstraction

and, 441
Is/IsNot operators, 254
IsNumeric function, 326
iterators

collections, 512–513
vs. enumerators, 316
looping statements and, 316

J

Join keyword (LINQ), 390–391, 687
joins, LINQ vs. SQL, 390

K

key frames, defi ned, 158
keyboard shortcuts in menus, 16
keywords

accessibility and, 245
inheritance_mode, 272–273
for limiting query results (LINQ), 395–396, 694

L

Label control, 90
lambda functions

basics of, 285–287, 639
LambdaFunction example, 286
method-based queries using (LINQ), 399–401

lambda subroutines, 639
LastIndexOf method, 498
last-in-fi rst-out (LIFO) order

queues and, 508
stacks and, 506

Latest News tab, 7
layout controls (WPF), 132, 133–136
LayoutMode (Windows Form Designer), 36, 37
lifetime, variables and, 204

786

Like operator – menus (IDE)

Like operator, 254–255, 631
Like patterns, 631
LinearGradientBrushes (MetroBones example), 423
lines

line continuation, 198–199
line joining, 200
Pen objects and, 536–538

LineShape control, 665
linked lists, ListDictionary class and, 503–504
LINQ (Language Integrated Query), 381–415, 685–694

aggregate functions, 393–394
anonymous types and, 243
basic query syntax, 685–689
basics of, 381–384
From clause, 385–386, 685
Distinct keyword, 687
extending, 401–403
functions, 395–397, 690
Group By clause, 391–393, 687–688
IEnumerable result, 389–390
Join keyword, 390–391, 687
keywords for limiting query results, 395–396
LINQ to ADO.NET, 382, 383, 409–413
LINQ to DataSet, 693–694
LINQ to Objects, 382, 383, 403
LINQ to XML. See LINQ to XML
method-based queries, 397–398, 694
method-based queries using lambda functions,

399–401
Option Infer and, 623
Order By clause, 386–387
PLINQ, 413–414, 694
query results, using, 689
query syntax, 384
results, limiting, 689
Select clause, 387–389, 686–687
set operations, 394
tools, 382
Where clause, 386, 685–686
XML documents, building and, 228

LINQ to XML
basics of, 382, 383, 404, 691–693
LINQ into XML, 405–406, 691
LINQ out of XML, 406–409, 691–692
XML literals, 404–405

LinqLambda example, 397
LinqToDataSetScores example, 411
ListBox control, 89, 103
ListDictionary class, 503–504
listener objects, adding to Trace objects, 192
ListEnviron example, 551

ListView control, 91, 104
literal type characters, 625–626
load factors, hash tables, 505
localization resources, 564–566
LocalizedUseGerman example, 565–566
logical operators, 255–257, 631–632
login forms, 117–118
Long parameters, 476
looping statements

basics of, 299, 308, 644–646
Do Loop, 316–318
For Each loops, 311–314
enumerators, 314–316
iterators, 316
For Next loops, 308–310
non-integer For Next loops, 311
While End loops, 318

lower bounds, arrays and, 497

M

MakeButton example, 163
managed heaps, 466
Manifest Designer, 420
margin icons, 56–58
MaskedTextBox control, 90
master control (Windows Form Designer), 38
MatchesRegexp extension method, 284–285
Me object vs. My namespace, 549
media, controls that present, 139–140
memory

classes vs. structures and, 457–458
managed heaps, 466
OutOfMemoryException, 330
stack and heap and, 459

MemoryDataSetWithErrors example, 363–364
MemoryDataSetXmlMappedColumns example, 366
MemoryStream class, 572, 575
MemoryStreamWrite example, 575
menus (IDE)

basics of, 9, 16
Build, 24
commands, 16
Data, 24–25
Debug, 24
Edit, 18–19
File, 16–17
Format, 25
Help, 29–30
moving, 16

787

Metafi le class – Most Recently Used lists (MRU lists)

Project, 20–24
Test, 28
Tools, 25–28
View, 19–20
Window, 28–29

Metafi le class, 710
method overloading (OOP), 445–446
methods. See also asynchronous methods; extension

methods
adding to child classes, 441
application, 567–568
Application class, 727
Array class, 498–499
ArrayList class, 500–501
Audio object (My.Computer), 733
BinaryReader class, 576–577, 749–750
BinaryWriter class, 577, 751
Bitmap class, 710
Clipboard object (My.Computer), 733–734
Control class, 614–616
CurrencyManager object, 375
Data data type, 634
DataRow object, 364
DataSet object, 359–360
DataTable object, 362
DataView object, 372
declaring within classes, 471
defi ned, 110, 267, 434
dictionary classes, 503
Directory class, 592–593, 757–758
DirectoryInfo class, 762–763
Environment object, 553
examples of, 434–435
File class, 594–595, 759–760
FileInfo class, 598–600, 763–765
FileSystem object (My.Computer), 735–736
FileSystemWatcher class, 766
Form class, 674–676
Graphics class, 531–532
Graphics object, 703–705
GraphicsPath object, 707–708
Image class, 709
LINQ to Objects, 403
that manipulate directories, 756–757
Metafi le class, 710
method-based queries (LINQ), 397–398, 694
My.Application object (My.Computer), 729–731
My.Computer.FileSystem object, 604–605, 768–769
My.Settings namespace, 561
My.User object, 745
NameValueCollection class, 502

Network object (My.Computer), 738
Path class, 603, 767
Pen class, 536–537
Pen object, 706
for performing operations, 261–262
property reset, 123
Queue class, 508
random-access fi les and, 590–591
registry, 548–556
Registry object (My.Computer), 741–742
RegistryKey class, 557–558
Screen object (My.Computer), 743
for sequential access to fi les, 589
SerialPort class, 740
shared, 477–478
Stack class, 507
Stream class, 573, 749
StreamReader and StreamWriter objects and, 581
StringFormat object, 708
supported by XElement, 407, 692
system registry, 554–556
text fi le stream, 752–753
TextReader class, 751
TextReader object, 578
TextWriter class, 752
TextWriter object, 579
for working with directories, 588–589
for working with fi les, 587–589, 755–757

MetroBones example. See metro-style applications
metro-style applications, 417–429

building, 417–418
controls. See controls (MetroBones example)
image fi les, 419–420
new projects, 418–419
testing, 428
Windows 8 and, 417

Microsoft
Expression Blend, 47
Microsoft Consulting Services, naming conventions,

249
Microsoft Research Maps (MSR Maps), 22
Microsoft’s Most Valuable Professional (MVP)

program, 95
namespace, 482
Power Packs, 665–666
Windows Simulator, 428

Mod operator, 252
modal forms, defi ned, 118
module scope, 234–235
modules vs. namespaces, 488–489
Most Recently Used lists (MRU lists), 125–126

788

mouse – .NET framework classes for working with fi lesytems

mouse
dragging controls and, 40
moving docking icons with, 31
Windows Forms and, 118–120

Mouse object (My.Computer), 737–738
moving

controls (Windows Form Designer), 40
controls (WPF), 50–51
database data, 346
docking icons, 31
menus, 16

MRU lists (Windows Forms), 125–126
MruList example, 124
multiline If Then statements, 300–301, 642
multiple dimensions, arrays and, 496
multiple inheritance, 438
multiple types (generics), 518–520
MultiplyTimeSpan example, 261
MustInherit keyword, 454, 457
MustOverride keyword, 272–273
My namespace, 729–745

basics of, 548–549
My.Application object, 729–732
My.Computer. See My.Computer
My.Forms object, 744
My.Resources object, 744
My.User object, 744–745

My.Application object, 729–732
My.Application.Info namespace, 184
MyComputer, 553
My.Computer

Audio object, 732–733
Clipboard object, 733–734
Clock object, 734
FileSystem object, 604–605, 734–736, 767–769
Info object, 736–737
Mouse object, 737–738
Name property, 738
Network object, 738
Ports object, 738–740
Registry object, 741–742
Screen object, 742–743
SerialPort class, 738–740

My.Computer.FileSystem.SpecialDirectories property,
770

My.Computer.Registry namespace, 556–558
My.Forms object, 744
MyGeneric class, 695–696
My.Resources object, 744
My.Settings namespace, 561
MySQL database, 340

_MyType constant, 189
My.User object, 744–745

N

Name property (My.Computer), 738
named controls

attaching events to controls and, 52
event handlers, creating new and, 53

names
identifi ers, 221–222
subroutine names, 274

namespaces, 481–492
basics of, 193–194, 481–482
classes, structures, and modules and, 488–489
creating, 487–488
graphics, 699–702
Imports statements. See Imports statements
namespace aliases, 486
namespace collisions, 481, 484
namespace elements, 486–487
namespace pollution, defi ned, 481
namespace scope, 235
resolving, 489–491
root, 487

NameValueCollection collection class, 501–502
naming

conventions of, 248–249
interfaces, 280
name clauses, variables and, 221–222
name confl icts, 482
projects, 8
Rename tool (code editor), 64
renaming feature, 185–186
subroutines, 274

narrowing conversions, 210–212
navigation

Frame controls and, 177
support controls, 140

nested functions, 286
.NET framework classes for working with fi lesytems,

592–603
Directory class, 592–593
DirectoryInfo class, 596–598
DriveInfo class, 595–596
File class, 594–595
FileInfo class, 598–600
FileSystemWatcher class, 600–602
My.Computer.FileSystem object, 604–605
My.Computer.FileSystem.SpecialDirectories

property, 606

789

Network object (My.Computer) – OwesMoney method (LINQ)

Path class, 602–603
Network object (My.Computer), 738
NetworkStream class, 583
New keyword

LINQ, 388
structure instantiation and, 464–465
variable declarations and, 223–224

New Project dialog, 8
Next loops, 308–311
NoContextMenu example, 124
non-client area, defi ned (controls), 109
non-integer For Next loops, 311
notifi cation icons, 121–122
NotifyIcon control, 92, 121
NotInheritable keyword, 457
null values, defi ned, 244
nullable parameters, 277
nullable types, 244
numeric format specifi ers, 719–721
numeric formatting sections, 721

O

object-oriented programming (OOP). See OOP (object-
oriented programming) fundamentals

objects. See also command objects (database
programming)
arrays of, initializing, 227
assigning, classes vs. structures and, 459
assignment, 459–460
automatically created (databases), 344–345
basics of, 435
classes and, 435–436
connection (databases), 347–350
drawing (XAML), 159–162
non-automatically created (databases), 345–346
transaction (databases), 350–352
XAML, 148–151, 155

Oct function, 209
Of CustInfo clause (LINQ), 399
Of Decimal clause (LINQ), 399
Of type_list clause, 455
OleDbConnection class

methods, 349
objects, 349
properties, 347–348

OOP (object-oriented programming) fundamentals,
433–448
classes, 434–436
encapsulation, 436–437
extension methods, 446–447

inheritance. See inheritance
method overloading, 445–446
polymorphism, 444–445

Opacity property (forms), 116
OpenCreateAppendText example, 582
OpenText method, streams and, 581–582
operators, 251–266

arithmetic, 252–253, 629–630
assignment, 259–260, 633
basics of, 251–252
bitwise, 257, 632
comparison, 253–255, 630–631
concatenation, 253, 630
Data and TimeSpan data types and, 634
Date and Timespan operations, 261–262
logical, 255–257, 631–632
operator overloading, 262–265, 635
precedence, 257–258, 632–633
StringBuilder class and, 260–261

Option Compare compiler directive, 23
Option Explicit compiler option

basics of, 23, 24
debugging and, 184
variable declarations and, 230–233, 623

Option Infer compiler directive
basics of, 23, 24
debugging and, 184–185
As type and, 224–225
variable declarations and, 623

Option Strict compiler option
basics of, 23, 24
debugging and, 184
narrowing conversions and, 210
variable declarations and, 230–233, 623

Optional keyword
vs. overloading, 278
parameters and, 276–278

Options command (Tools menu), 27
Options dialog box, 27–28
Order By clause (LINQ), 386–387, 389
OrderByAmount method (LINQ), 398
OrElse operator, 256–257
outline view of code, 58–59
Outlining submenu, 18
OutOfMemoryException, 330
OvalShape control, 665–666
overloading

extension methods and, 510
operator overloading, 278–281, 635
vs. Optional keyword, 276–278

OwesMoney method (LINQ), 398

790

packages (XPS documents) – properties

P

packages (XPS documents), 169
Page_Loaded event handler (MetroBones example),

424–426
Pages (WPF)

basics of, 171–172
Page applications, 174–177
vs. Windows, 171, 174

Paint event, 536
Panel control, 88
ParagraphInfo structure, 540
parallelism, adding to LINQ, 413–414
ParamArray keyword, 278
parameter declarations, 236–238
parameters

generic classes, 516
parameter passing, 460–461, 474
removing from event handlers with relaxed

delegates, 52
parameters (subroutine declarations)

basics of, 274
ByRef keyword, 275
ByVal keyword, 274
nullable, 277
Optional keyword, 276–278
optional vs. overloading, 278
parameter arrays, 278–279
parenthesized, 275–276

parent classes
inheritance and, 437
refi nement and, 438–439

parentheses (())
operators and, 258
reading expressions and, 633

parenthesized parameters, 275–276
parsing, data type parsing methods, 212–213
Partial keyword, 451–452, 457
parts of XPS documents packages, 169
passing parameters, structures and, 460–461
passwords, precaution about, 341
Path class, 602–603, 766–767
Path object (Drawing objects), 159–160
Pen object, 536–538
PerformCalculations subroutine, 286–287
permissions, fi lesystem objects and, 586
PLINQ (Parallel LINQ), 413–414, 694
polymorphism in OOP, 444–445
popping items off stacks, 506
Ports object (My.Computer), 738–740
position

position properties, 109–110
repositioning toolbars, 30

Power Packs, 665–668
precedence, operators and, 257–258, 632–633
prefi xes, naming conventions and, 248
previewing printing, 530–534
PrintBooklet example, 540–545
PrintForm component, 666
printing, 529–546

“backward” approach to, 529–530
basics of, 530–534
drawing. See drawing classes
PrintBooklet example, 540–545
PrintDocument class, 530
support for (WPF), 166

PrintPage event, 530
PrintPage event handler, 542–544
PrintPreviewControl, 94
PrintPreviewDialog control, 530–531
Private keyword

accessibility and, 216, 453
Dim keyword and, 220
subroutines and, 274

privileges
registries and, 553, 555, 557
testing and, 586

ProceduralAnimatedButton example, 163, 166
ProceduralCalculator example, 166
procedure scope, 234
procedures, defi ned, 267
program control statements, 299–319

basics of, 299
conditional statements. See decision statements
decision statements. See decision statements
looping statements. See looping statements

Project menu (IDE), 20–24
projects

basics of, 6, 179–180
creating, 8–11
hidden fi les and, 180–184
saving, 8–11

properties
adding to child classes, 441
adopted by child controls, 122–123
alphabetical arrangement of, 33
application, 566–567
Application class, 725–726
ArrayList class, 500–501
auto-implemented, 240, 283, 638
basics of, 101, 434
Clock object (My.Computer), 734

791

Properties window – QueryPageSettings event

control, 106–109
Control class, 611–614
CurrencyManager object, 375
data adapter, 352–353
DataColumn object, 365–366
DataRelation object, 367
DataRow object, 363
DataRowView object, 373
DataSet object, 358–359
DataTable object, 360–361
DataView object, 372
declaring within classes, 471
defi ned, 434
at design time, 101–104
dictionary classes, 503
DirectoryInfo class, 596–598, 762–763
DriveInfo class, 761
DriveInfo object, 596
Environment object, 552
examples of, 434
FileInfo class, 598–600, 763–765
FileSystem object (My.Computer), 735–736
FileSystemWatcher class, 600, 765
ForeignKeyConstraint, 368–369
Form class, listed, 669–674
Graphics object, 704–705
GraphicsPath object, 707–708
Image class, 709
Info object (My.Computer), 731–732, 736–737
Keyboard object (My.Computer), 737
Mouse object (My.Computer), 737–738
My.Computer.FileSystem object, 604, 768
My.Computer.FileSystem.SpecialDirectories

property, 606, 770
My.Computer.Registry, 556
My.Settings namespace, 561
My.User object, 745
NameValueCollection class, 502
Path class, 602, 766
Pen class, 536–537
Pen object, 706
position and size, 109–110
Queue class, 508
Registry object (My.Computer), 741–742
RegistryKey class, 557–558
reset methods, 123
at run time, 104–106
Screen object (My.Computer), 742–743
SerialPort class, 739
setting (WPF), 51
setting, (Windows Form Designer), 40–42
Stack class, 507

Stream class, 572–573, 748
StringFormat object, 708
TextWriter class, 752
UniqueConstraint object, 369–370

Properties window
IDE, 9, 10, 33
XAML, 146–147

Property Pages command, 19–20
property procedures

basics of, 238–240, 283–284
reading/writing, 638–639

property-changed events (Form class), 680
Protected Friend keyword

accessibility and, 216, 453
subroutines and, 274

Protected keyword
accessibility and, 215, 452
subroutines and, 273

public interfaces, defi ned, 436
Public keyword

accessibility and, 215, 452
namespace scope and, 235
subroutines and, 273

Publish Wizard, 24
pushing items onto stacks, 506

Q

queries
parallelizable (PLINQ), 413–414
PLINQ and, 413
Query Builder, 354–356

queries (LINQ)
LINQ to DataSet vs. LINQ to Objects, 411–412
LINQ to SQL and LINQ to Entities and, 409
method-based, 397–398
method-based, using lambda functions, 399–401
results, using, 689

queries syntax (LINQ)
aggregate functions, 393–394
basic, 685–689
From clause, 385–386
Group By clause, 391–393
Join keyword, 390–391
keywords for limiting query results, 395–396
Order By clause, 386–387
Select clause, 387–389
set operations, 394
Where clause, 386

query expressions (LINQ), 383
QueryPageSettings event, 530, 542

792

queues – searching

queues, collections and, 506, 508–509
Quick Find command, 18
Quick Replace command, 18

R

raising events
basics of, 474–475
defi ned, 110

RandomAccessEmployees example, 590–592
random-fi le access, 589–592
Randomization Methods region, outlining and,

58–59
RandomizeArray subroutine, 58
ReadAssetFileLinesAsync method, 426–427
ReadLines example, 580
read-only at run time properties, 105–106
ReadOnly keyword, 219
read-only variables, 239, 240
RealWorld Cursor Editor, 121
RectangleShape control, 665–666
ReDim statements, 223, 497
refactoring, defi ned, 37
Reference Manager, 21
reference types, 457
references (code editor)

Find All References, 65
highlighting, 65

refi nement, inheritance and, 438–440
Region statement, outlining and, 58
regions of code, 185–186
registry. See system registry
Registry object (My.Computer), 741–742
RegistryKey objects, 557–558
regular expressions, 255
relaxed delegates

basics of, 112, 287–290
removing parameters from event handlers with, 52

RelaxedDelegates example, 289
removing

bookmarks, 58
controls (Toolbox), 650
parameters from event handlers, 52
splash screens, 117

Rename tool (code editor), 64
renaming feature, 185–186
RenderTransform elements, 156, 157, 158
replacing, Quick Replace command, 18
reset methods

for property values, 123
ResetText method, 123

resetting programs with errors, 327
resizing

arrays and Array objects, 497–498
automatic controls, 107
child controls, 135–136
hash tables, 504

ResizingButtons example, 134
resolving namespaces, 489–491
resources

application, 562–564
basics of, 180
embedded, 564
localization, 564–566
resource fi les basics, 562
XAML, 151–152

Resources.Designer.vb fi le, 563
restricted properties, 102–103
restrictions

parameter arrays, 278–279
restricting scope, 235–236
restrictive controls, 86–87

re-throwing exceptions, 333–334
Return statement, 281, 282
RichTextBox control, 90
root namespaces, 487
RotatedButtons example, 156
routed events, defi ned, 157
routines

property procedures, 283–284
subroutines and, 267

RowError property, 363
run time

creating controls at, 99–101
properties at, 104–106
Visual Basic code editor and, 66–67

S

Save As command (File menu), 12
SaveSetting method, 555
ScaleTransform element, 156
“Scaling to different screens”, 424
Scarterfi eld, Jeff, 418
Schema Editor, 342
scope

defi ned, 233
variables and, 204, 233–236

Screen object (My.Computer), 742–743
screens, splash, 117–118
scrolling mode (FlowDocumentReader), 167
searching

793

secondary windows – starting IDE

Find Symbol command, 18
Quick Find command, 18

secondary windows
Properties window, 33
Toolbox window, 32

sections
My Namespace, 549
numeric formatting, 721

Select Case statements, 301–304, 642–643
Select clause (LINQ), 387–389, 686–687
SelectFields method (LINQ), 398
selection controls

Windows Forms, 89–90
WPF, 136

sequential-fi le access, working with, 589
SerialPort class, 739–740
set operations (LINQ), 394
SetEnvironmentVariable method, 553
settings (applications), 181
shadowing features in parent classes, 442–443
Shadows keyword

declaring classes and, 453–454
declaring events and, 474
inheritance_mode and, 273
structures and classes and, 457
variable declarations and, 216–219

ShadowTest example, 217
Shapes example, 161
Shared keyword

inheritance_mode and, 273
variable declarations and, 216

shared methods, 477–478
shared variables, 477
short-circuit evaluation, 256
shortcuts

keyboard, in menus, 16, 93
menu items, 93
My namespace, 548–549
runtime, 67

shorthand expressions for node axes, 408, 693
ShowCursors example, 119
ShowExceptionInfo example, 331
ShowSettings example, 561
side effects, defi ned, 256
Silverlight, importance of, 45
single page mode (FlowDocumentReader), 167
single quotation marks (‘), comments and, 195, 196
single-line If Then statements, 300, 641–642
size properties, 109–110
sizing

Array objects, 497–498

controls (Windows Form Designer), 40
controls (WPF), 50–51

Skip keyword (LINQ), 394
Skip While keyword (LINQ), 394
smart tags (Windows Form Designer), 41–42
snap-to-grid or snap lines (Windows Form Designer), 36
snippets

code editor and, 63
defi ned, 63

Solution Explorer
basics of, 9, 10
property pages in, 182–183
window, 180

solutions, 6, 179–180
SortedBinaryTree example, 520–521
SortedList class, 505
SortOrders example, 324
source code fi le structure

basics of, 184–185
code regions, 185–186
conditional compilation. See conditional

compilation
namespaces, 193–194

spaces followed by underscores (_), line continuation
and, 198

special characters
identifi er names and, 221
in XML literals, 405

special directory properties, 770
specifi ers

date and time, 715–718
numeric, 719–721

speed, arrays, 498
SpinAndGrowButton example, 158–159
SpinButton example, 156–157, 158
Splash example, 117
splash screens, 117–118
SplitContainer control, 88
SQL

injection attacks, 87
LINQ to, 409–410

SQL Server, 340
SqlConnection class

methods, 349
properties, 347–348

stack performance, 459
stacking order, controls, 108
StackPanel control, 133
stacks, collections and, 506–507
Start Page, 6–7
starting IDE, 6–7

794

statements – “System.Windows.Forms Namespace”

statements. See also Imports statements; program
control statements; specifi c statements
subroutines, 281

Static keyword, accessibility and, 216
status area, defi ned, 121
StdDev extension method, 402–403
storage requirements of variables, 206
Storyboard object, controlling animation with, 156
Storyboards

BeginStoryboard elements, 157–158
Storyboard element, 158

Stream class, 572–573
StreamReader and StreamWriter classes, 572, 580–581,

752
streams, 571–583

BinaryReader and BinaryWriter classes, 572,
576–577

BinaryReader class methods, 576–577, 749–750
BinaryWriter class methods, 577, 751
class methods, 749
class properties, 748
class summary, 747–748
classes and, 572
custom stream classes, 582–583
defi ned, 572
Exists, OpenText, CreateText and AppendText

methods, 581–582
FileStream class, 572, 574–575
MemoryStream class, 572, 575
Stream class, 572–573
StreamReader and StreamWriter classes, 572,

580–581, 752
StringReader and StringWriter classes, 572,

579–580, 752
text fi le methods, 752–753
TextReader class, 578–579, 751
TextWriter class, 578–579, 752

StringBuilder class, operators and, 260–261
StringBuilderTest1 and Test2 examples, 260
StringCollection collection class, 501
StringDictionary class, 505
StringFormat object, 708
StringReader and StringWriter classes, 572, 579–580,

752
strings

converting into variable types, 212–213
hexadecimal and octal, 209

StringWriterReader example, 579–580
Stroke and StrokeThickness properties (Drawing

objects), 159
StructLayout attribute, 206

structures, 449–479
basics of, 682
boxing and unboxing, 461
vs. classes, 457–458, 459, 465–466, 682
declaring, 456–457
heap and stack performance, 459
inheritance and, 457
instantiation, 464–466
vs. namespaces, 488–489
object assignment, 459–460
parameter passing, 460–461
System.Drawing namespace, 699–700
value types and, 457

StructuresAndClasses example, 459
styles (AML), 152–153
stylus input, supporting controls, 141
sub procedures, defi ned, 267
subclassing, parent classes, 437
subroutines

accessibility clause, 273–274
attribute lists, 268–272
basics of, 268
defi ned, 267
vs. functions, 281, 282
implementing interfaces, 279–281
inheritance_mode, 272–273
lambda, 639
parameters. See parameters (subroutine

declarations)
routines and procedures and, 267
statements, 281
subroutine_name, 274
writing, 637

subs, defi ned, 267
subtrees, Registry object (My.Computer), 741
suggestion indicators (code editor), 62
System namespace, 482
system registry

basics of, 553–554
methods, 554–556
My.Computer.Registry namespace, 556–558

system tray, defi ned, 121
System.Collections.IEnumerable interface, 312
System.Drawing namespace, 699–700
System.Drawing.Drawing2D namespace, 700–701
System.Drawing.Imaging namespace, 701
System.Drawing.Printing namespace, 702
System.Environment object, 551–553
System.IO namespace, 757
System.Windows.Controls namespace, 657
“System.Windows.Forms Namespace”, 649

795

System.Windows.Forms namespace – unboxingSystem.Windows.Forms namespace – unboxing

System.Windows.Forms namespace, 657
System.Xml.Linq class, 404

T

TabControl, 88
TableAdapter objects, 344, 345
TableAdapterManager, 344
TableLayoutPanel control, 87
TabPage Collection Editor dialog box, 104
tabs

tool groupings as, 33
wizards using, 128–129

Tag property, creating controls and, 101
Take keyword (LINQ), 394
Take While keyword (LINQ), 394
TARGET constant, 189
taskbar notifi cation area, 92
Team Foundation Server, saving projects and, 12
templates (XAML), 153–155
Test menu, basic commands, 28
TestDelegate delegate type, 287–289
testing

metro-style applications, 428
testing tools, limitations of, 69

text, preparing for printing, 541
text box controls, choosing (Windows Forms), 90
text fi le stream methods, 752–753
Text property, blanking and, 41
TextBox control, 90
TextReader class, 578–579, 751
TextWriter class, 578–579, 752
thin user interface applications, defi ned, 144
third-party controls, 95–96
Throw keyword, 333
throwing exceptions

basics of, 331–333, 647
catching and throwing, defi ned, 331

time and date format specifi ers, 715–718
TimeGenericObjects example, 232
TimeSpan data types, 634
Timespan operations, 261–262
To keyword, Select Case statements and, 302
Toggle Bookmark tool, 58
Toggle Breakpoint command, 72
toolbars

basics of (IDE), 9, 30
FlowDocumentReader, 168
repositioning, 30

Toolbox

adding controls to, 133, 650
building WPF Window objects with, 147
removing controls, 650
Toolbox piece of IDE, 9–10
Toolbox window (IDE), 32
Windows Forms controls and, 82

tools
code editor architectural tools, 64–67
IDE tools basics, 15
LINQ, 382
testing tools’ limitations, 69

Tools menu, basic commands, 25–28
Tools.Alias command, debugging and, 76
ToolStrip control, 93
ToolTip control, 91–92
tooltips

on all controls, 92
shown by mouse hovering, 59–60

ToString method, 213
TRACE constant, 189, 192
Transactions example, 350–352
transformations (XAML), 156
TransformGroup element, 156
TranslateTransform element, 156
translucent forms, 116
TransparencyKey property (forms), 116–117
triggers

Action element, 157
starting animation and, 156
Trigger element, 154

Try blocks, 330, 332
Try Catch blocks, 328
TryCast statements, 628
txtUrl control’s Text property, binding, 374
type values, 241
TypeOf operator, 254
types

anonymous, defi ned, 384
constrained (generics), 520–521
multiple (generics), 518–520

type-safe function pointers, 246
typographic code elements

comments, 195
line continuation, 198–200
line joining, 200
XML comments, 195–198

U

UI threads, callbacks and, 293
unboxing, 461

796

UniqueConstraint object – websites for downloading

UniqueConstraint object, 368, 369–370
unmanaged resources, Finalize method and, 467, 469
unplanned conditions. See bugs vs. unplanned conditions
UseCaseInsensitiveSortedList example, 506
UseDelegates example, 247
UseDialog example, 173–174
UseDispose example, 470–471
UseFixedDocument example, 169
UseFlowDocumentReader example, 167–168
UseFrame example, 140
UseMediaElement example, 140
UsePasswordBox example, 137
UsePrintPreviewDialog example, 531–534, 536, 540
“User Account Control Step-by-Step Guide”, 557
user interface, separating from code (WPF), 144–145
UseSwitcher example, 524
UseTableLayoutPanel example, 109
UseWaitCursor example, 119
Using statements, variable declarations and, 622

V

ValidateInteger example, 325–326
ValidatePhone example, 284–285
validation events

basics of, 112–114
TextBox’s Validating event handler, 91

value Nothing, 254
value types, structures and, 457
variable declarations, 214–228

accessibility clauses, 215–216
attribute lists, 214–215
basics of, 214, 619–620
bounds_list clauses, 222–223
As clause, 224
With clause and, 621
Dim keyword and, 219–220
enumerated type declarations, 622
inferred data types and, 224–225
initialization expressions and, 620–621
initialization_expression clauses, 225–228
From keyword and, 621–622
multiple, 229–230
name clauses, 221–222
New keyword and, 223–224
Option Explicit and Option Strict compiler option

and, 230–233, 623
Option Infer, 623
ReadOnly keyword and, 219
Shadows keyword and, 216–219
Shared keyword and, 216
Using statements, 622

WithEvents keyword and, 220–221
XML variables and, 623

variables
basics of, 203–204
data types and, 222. See also data types
defi ned, 449
delegates, 246–248
initializing, 219, 225, 228, 230
naming, 248–249
parameter declarations and, 236–238
scope, 233–236
shared, 477
visibility and, 204

VBC_VER constant, 189
versions of Visual Studio, 771
View menu (IDE), 19–20
ViewWindowsMessages example, 124
visibility, variables and, 204
Visible property, 102
Visual Studio

Visual Studio 2012 Express for Windows 8, 771
Visual Studio Ultimate 2012, 771
Visual Studio’s free Express editions, 5

Visual Studio IDE introduced, 3–13, 146
complexity of, 3
customization and, 4
IDE menus. See menus (IDE)
IDE tools basics, 15
new WPF project, 146–147
projects, creating, 8–11
projects, saving, 11–12
projects and solutions, 6
Properties window, 33
secondary windows, 30–32
starting, 6–7
toolbars, 30
Toolbox window, 32

W

WaitForChanged method, 601
warnings

database passwords, 341
when overriding WndProc method, 123

Watch windows, making tabs from, 73
websites, attacks on, 87
websites for downloading

Access, 340
code examples from Programmer’s Reference:

Windows Presentation Foundation with C# 2010
and .NET 4.0, 46

797

websites for further information – Windows Forms Designer

code for book examples, 55
Expression Blend, 47, 144–145
GotDotNet Power Pack, 667
MySQL database, 340
SQL Server, 340
Visual Studio versions, 771
windows forms controls, 95
WPF Programmer’s Reference Windows

Presentation Foundation with C# 2010 and
.NET 4.0 (Wrox, Stephens, 2010), 132

websites for further information
_MyType constant, 189
8-bit UTF encoding, 574
“Asynchronous Programming with Async and

Await”, 297
Attribute class, 272
attributes, 215, 451
BinaryWriter and BinaryReader classes, 577
brush classes, 539
bugs, 322
“Calling Synchronous Methods Asynchronously”,

295
connecting to data sources, 347
Console.SetIn, Console.SetOut, and Console.

SetError methods, 583
Control class, 611
controls, 649
CryptoStream class, 583
custom exceptions, 714
doxygen, 198
exception classes, 332
FileZilla, 96
generic extension methods, 697
GotDotNet Power Pack, 667
Graphics class methods, 535
icons editors, 121
“Introduction to Exception Handling in Visual

Basic.NET”, 332
ISO 8601, 716
LINQ providers, 382
LINQ to SQL and LINQ to Entities, 410
Manifest Designer, 420
MSR Maps, 22
naming conventions, 249
NetworkStream class, 583
OrderBy method, 400
Power Packs, 665
regular expressions, 255
RFC1123, 716
“Scaling to different screens”, 424
standard deviation, 402
Stream class, 573

StructLayout attribute, 206
TextWriter and TextReader classes, 579
transactions, 352
“User Account Control Step-by-Step Guide”, 557
Visual Basic general information, 5
Visual Studio versions, 771
Visual Studio’s free Express editions, 5
WinZip, 96
WPF controls, 657
XAML, 148
XBAP, 174
XML serialization, 214–215
XML-Serialization-Better-than-the-Registry, 181
XPS documents, 169

Where clause (LINQ), 385, 386, 685–686
While End loops, 318, 645
widening conversions, 213
Window menu, basic commands, 28–29
windows

recognizing (WPF), 47–48
secondary (IDE), 30–32

Windows (WPF). See WPF Windows
Windows 8

look and feel of IDE, 4
metro-style applications and, 417
Microsoft Windows Simulator, 428

Windows Forms, 115–129
About dialog boxes, 117–118
application icons, 121
basics of, 115
dialog boxes, 126–128
forms defi ned, 115
form’s icons, 120–121
login forms, 117–118
mouse cursors, 118–120
MRU lists, 125–126
notifi cation icons, 121–122
Opacity property, 116
properties adopted by child controls, 122–123
property reset methods, 123
splash screens, 117–118
TransparencyKey property, 116–117
wizards, 128–129
WndProc, 123–124

Windows Forms applications, Form objects and, 171
Windows Forms controls. See controls (Windows Forms)
Windows Forms Designer, 35–44

basics of, 35–36
controls, adding, 37–38
controls, adding code to, 42–43
controls, arranging, 40
controls, copying, 39

798

Windows Forms Designer – Z-order

controls, moving and sizing, 40
controls, selecting, 38–39
options, setting, 36–37
properties, setting, 40–42
vs. WPF Designer, 46, 47
vs. WPF Window Designer, 146

Windows Presentation Foundation. See controls (WPF);
WPF (Windows Presentation Foundation); WPF
Designer

Windows Simulator (Microsoft), 428
Windows system tray, 92
WindowsApplication1 Properties command, 20, 22
With clause, variable declarations and, 621
WithEvents keyword, 220–221
wizards

basics of, 128–129
Data Adapter Confi guration Wizard, 353, 354–356
Data Source Confi guration Wizard, 25, 338–343, 378
defi ned, 128
Export Template Wizard, 17
Import and Export Settings Wizard, 5
Publish Wizard, 24

WndProc, overriding, 123–124
words, defi ned, 205
WPF (Windows Presentation Foundation). See also

controls (WPF)
basics of, 131–132, 144–145
Pages basics, 171
vs. Windows Form Designer, 46, 47
vs. Windows Forms applications, 144
Windows vs. Forms, 171
WPF in the IDE, 145–148

WPF Designer, 45–53
basics of, 45–46
code, adding to controls, 52–53
controls, adding with, 48–49
controls, moving and sizing, 50–51
controls, selecting with, 49
vs. Expression Blend, 47
group properties, setting, 51–52
properties, setting, 51
weaknesses of, 46–47
windows, recognizing, 47–48
vs. Windows Forms Designer, 46, 47

WPF Programmer’s Reference:
Windows Presentation Foundation with C# 2010 and

.NET 4.0 (Wrox, Stephens, 2010), 46, 132, 148, 657
WPF Windows

basics of, 171–172
vs. Forms, 171
Page applications, 174–177

vs. Pages, 171, 174
Window applications, 172–174

Write, WriteLine, WriteIf, and WriteLineIf methods, 192
write-only at run time properties, 106
write-only variables, 239, 240
WYSIWYG

Windows Form Designer and, 36
WPF and, 46, 47, 48

X

XAML (eXtensible Application Markup Language)
animations, 156–159
basics of, 132–133, 148
code editor, 46, 47, 48
controls (MetroBones example), 421–423
drawing objects, 159–162
editing, 146–147
graphical editor, 146–147
objects, 148–151
Properties window, 146–147
resources, 151–152
separating from code, WPF and, 144–145
styles, 152–153
templates, 153–155
transformations, 156

XBAP (XAML Browser Application), 174–176, 177
XCopy, cluttered registries and, 556
XElement, 404, 405, 406, 691–692
XML (eXtensible Markup Language). See also LINQ to

XML
axis shorthand, 408–409
comments, 195–198
serialization, 214–215
variables, declarations and, 623
variables, initializing, 228
XML-Serialization-Better-than-the-Registry, 181

Xor operator, 256
XPS (XML Paper Specifi cation)

basics of, 141
documents (WPF), 169

Y

Y2K bug, 321–322

Z

zooming in on controls (MetroBones example), 424
Z-order, arrangement of controls and, 108

Windows Forms Designer (continued)

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox50 to get started.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
 - ay trial offer.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

with this 15 d

http://www.safaribooksonline.com/wrox50

Related Wrox Books

Beginning ASP.NET 4.5: in C# and VB

written in both C# and VisualBasic. With this book you will gradually build a website example that

server controls, designing consistent pages, displaying data, and more.

Beginning Visual Basic 2012

This book not only shows you how to write Windows applications, web applications with ASP.NET,

your Visual Basic programming career the right way with this practical, thorough guide.

Beginning Microsoft Visual C# 2012

oriented programming and gradually build your skills for web and Windows programming, Windows

steps you’ve learned in this thorough, practical book. If you’ve always wanted to master Visual C#

Professional Visual Basic 2012 and .NET 4.5

If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional

Professional C# 2012 and .NET 4.5

C#, and more.

Related Wrox Books

Beginning ASP.NET 4.5: in C# and VB

written in both C# and VisualBasic. With this book you will gradually build a website example that

server controls, designing consistent pages, displaying data, and more.

Beginning Visual Basic 2012

This book not only shows you how to write Windows applications, web applications with ASP.NET,

your Visual Basic programming career the right way with this practical, thorough guide.

Beginning Microsoft Visual C# 2012

oriented programming and gradually build your skills for web and Windows programming, Windows

steps you’ve learned in this thorough, practical book. If you’ve always wanted to master Visual C#

Professional Visual Basic 2012 and .NET 4.5

If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional

Professional C# 2012 and .NET 4.5

C#, and more.

	Visual Basic® 2012: Programmer's Reference
	About the Author
	About the Technical Editor
	Credits
	Acknowledgments
	Contents
	Introduction
	Should you use visual basic 2012?
	Who Should Read this Book
	How this Book is Organized
	Part I: IDE
	Part II: Getting Started
	Part III: Object-Oriented Programming
	Part IV: Interacting with the Environment
	Part V: Appendices

	How to use this Book
	Necessary Equipment
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com
	Important Urls

	Part I: IDE
	Chapter 1: Introduction to the IDE
	Introducing the IDE
	Different IDE Appearances
	IDE Configurations
	Projects and Solutions
	Starting the IDE
	Creating a Project
	Saving a Project
	Summary

	Chapter 2: Menus, Toolbars, and Windows
	IDE Tools
	Menus
	File
	Edit
	View
	Project
	Build
	Debug
	Data
	Format
	Tools
	Test
	Window
	Help

	Toolbars
	Secondary Windows
	Toolbox
	Properties Window

	Summary

	Chapter 3: Windows forms Designer
	Introducing Windows Forms Designer
	Setting Designer Options
	Adding Controls
	Selecting Controls
	Copying Controls
	Moving and Sizing Controls
	Arranging Controls
	Setting Properties
	Setting Group Properties
	Using Smart Tags

	Adding Code to Controls
	Summary

	Chapter 4: WPF Designer
	Introducing WPF Designer
	Editor Weaknesses
	Recognizing Designer Windows
	Adding Controls
	Selecting Controls
	Moving and Sizing Controls
	Setting Properties
	Setting Group Properties
	Adding Code to Controls
	Summary

	Chapter 5: Visual Basic Code Editor
	Editing Code
	Margin Icons
	Outlining
	Tooltips
	IntelliSense
	Code Coloring and Highlighting
	Code Snippets
	Architectural Tools
	Rename
	Go To Definition
	Go To Type Definition
	Highlight References
	Find All References
	Generate From Usage

	The Code Editor at Run Time
	Summary

	Chapter 6: Debugging
	Debugging and Testing
	The Debug Menu
	The Debug ? Windows Submenu
	The Breakpoints Window
	The Command and Immediate Windows
	Summary

	Part II: Getting Started Chapter
	7: Selecting Windows Forms Controls
	Controls
	Controls Overview
	Choosing Controls
	Containing and Arranging Controls
	Making Selections
	Entering Data
	Displaying Data
	Providing Feedback
	Initiating Action
	Displaying Graphics
	Displaying Dialog Boxes

	Third-Party Controls
	Summary

	Chapter 8: Using Windows forms Controls
	Using Controls and Components
	Controls and Components
	Creating Controls
	Properties
	Properties at Design Time
	Properties at Run Time
	Useful Control Properties
	Position and Size Properties

	Methods
	Events
	Creating Event Handlers at Design Time
	Validation Events

	Summary

	Chapter 9: Windows Forms
	Using Forms
	Transparency
	About, Splash, and Login Forms
	Mouse Cursors
	Icons
	Application Icons
	Notification Icons

	Properties Adopted by Child Controls
	Property Reset Methods
	Overriding WndProc
	MRU Lists
	Dialog Boxes
	Wizards
	Summary

	Chapter 10: Selecting WPF Controls
	WPF Controls and Code
	Controls Overview
	Containing and Arranging Controls
	Making Selections
	Entering Data
	Displaying Data
	Providing Feedback
	Initiating Action
	Presenting Graphics and Media
	Providing Navigation
	Managing Documents
	Digital Ink
	Summary

	Chapter 11: Using WPF Controls
	WPF Controls
	WPF Concepts
	Separation of User Interface and Code
	WPF Control Hierarchies
	WPF in the IDE
	Editing XAML
	Editing Visual Basic Code

	XAML Features
	Objects
	Resources
	Styles
	Templates
	Transformations
	Animations
	Drawing Objects

	Procedural WPF
	Documents
	Flow Documents
	Fixed Documents
	XPS Documents

	Summary

	Chapter 12: WPF Windows
	Using WPF Windows
	Window Applications
	Page Applications
	Browser Applications
	Frame Applications

	Summary

	Chapter 13: Program and Module Structure
	Solutions and Projects
	Hidden Files
	Code File Structure
	Code Regions
	Conditional Compilation
	Namespaces

	Typographic Code Elements
	Comments
	XML Comments
	Line Continuation
	Implicit Line Continuation
	Line Joining

	Summary

	Chapter 14: Data Types, Variables, and Constants
	Variables
	Data Types
	Type Characters
	Data Type Conversion
	Narrowing Conversions
	Data Type Parsing Methods
	Widening Conversions
	The Convert Class
	ToString

	Variable Declarations
	Attribute_List
	Accessibility
	Shared
	Shadows
	ReadOnly
	Dim
	WithEvents
	Name
	Bounds_List
	New
	As Type and Inferred Types
	Initialization_Expression

	Initializing Collections
	Multiple Variable Declarations

	Option Explicit and Option Strict
	Scope
	Block Scope
	Procedure Scope
	Module Scope
	Namespace Scope
	Restricting Scope

	Parameter Declarations
	Property Procedures
	Enumerated Data Types
	Anonymous Types
	Nullable Types
	Constants
	Accessibility
	As Type
	Initialization_Expression

	Delegates
	Naming Conventions
	Summary

	Chapter 15: Operators
	Understanding Operators
	Arithmetic Operators
	Concatenation Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Operator Precedence
	Assignment Operators
	The StringBuilder Class
	Date and TimeSpan Operations
	Operator Overloading
	Summary

	Chapter 16: Subroutines and Functions
	Managing Code
	Subroutines
	Attribute_List
	Inheritance_Mode
	Accessibility
	Subroutine_Name
	Parameters
	Implements interface.subroutine
	Statements

	Functions
	Property Procedures
	Extension Methods
	Lambda Functions
	Relaxed Delegates
	Asynchronous Methods
	Calling EndInvoke Directly
	Handling a Callback
	Using Async and Await

	Summary

	Chapter 17: Program Control Statements
	Controlling Programs
	Decision Statements
	Single-Line If Then
	Multiline If Then
	Select Case
	Enumerated Values
	IIf
	If
	Choose

	Looping Statements
	For Next
	Non-Integer For Next Loops
	For Each
	Enumerators
	Iterators
	Do Loop Statements
	While End

	Summary

	Chapter 18: Error Handling
	The Struggle for Perfection
	Bugs versus Unplanned Conditions
	Catching Bugs
	Catching Unplanned Conditions
	Global Exception Handling

	Structured Error Handling
	Exception Objects
	Throwing Exceptions
	Re-throwing Exceptions
	Custom Exceptions

	Debugging
	Summary

	Chapter 19: Database Controls and Objects
	Data Sources
	Automatically Connecting to Data
	Connecting to the Data Source
	Adding Data Controls to the Form

	Automatically Created Objects
	Other Data Objects
	Data Overview
	Connection Objects
	Transaction Objects
	Data Adapters
	Command Objects
	DataSet
	DataTable
	DataRow
	DataColumn
	DataRelation
	Constraints

	DataView
	DataRowView
	Simple Data Binding
	CurrencyManager
	Complex Data Binding
	Summary

	Chapter 20: LINQ
	The Many Faces of LINQ
	Introduction to LINQ
	Basic LINQ Query Syntax
	From
	Where
	Order By
	Select
	Using LINQ Results

	Advanced LINQ Query Syntax
	Join
	Group By
	Aggregate Functions
	Set Operations
	Limiting Results

	LINQ Functions
	LINQ Extension Methods
	Method-Based Queries
	Method-Based Queries with Lambda Functions
	Extending LINQ

	LINQ to Objects
	LINQ to XML
	XML Literals

	LINQ into XML
	LINQ out of XML
	LINQ to ADO.NET
	LINQ to SQL and LINQ to Entities
	LINQ to DataSet

	PLINQ
	Summary

	Chapter 21: Metro-Style Applications
	Building Metro-Style Applications
	Starting a New Project
	Special Image Files
	Building MetroBones
	Control Layout
	XAML Code
	Zooming in on the Controls
	Visual Basic Code

	Testing
	Summary

	Part III: Object-Oriented Programming
	Chapter 22: OOP Concepts
	Introducing OOP
	Classes
	Encapsulation
	Inheritance
	Inheritance Hierarchies
	Refinement and Abstraction
	"Has-a" and "Is-a" Relationships
	Adding and Modifying Class Features
	Interface Inheritance

	Polymorphism
	Method Overloading
	Extension Methods
	Summary

	Chapter 23: Classes and Structures
	Packaging Data
	Classes
	Attribute_list
	Partial
	Accessibility
	Shadows
	Inheritance
	Implements interface

	Structures
	Structures Cannot Inherit
	Structures Are Value Types
	Memory Required
	Heap and Stack Performance
	Object Assignment
	Parameter Passing
	Boxing and Unboxing

	Class Instantiation Details
	Structure Instantiation Details
	Garbage Collection
	Finalize
	Dispose

	Constants, Properties, and Methods
	Events
	Declaring Events
	Raising Events
	Catching Events
	Shared Variables
	Shared Methods

	Summary

	Chapter 24: Namespaces
	Handling Name Conflicts
	The Imports Statement
	Automatic Imports
	Namespace Aliases
	Namespace Elements

	The Root Namespace
	Making Namespaces
	Classes, Structures, and Modules
	Resolving Namespaces
	Summary

	Chapter 25: Collection Classes
	Grouping Data
	What Is a Collection?
	Arrays
	Array Dimensions
	Lower Bounds
	Resizing
	Speed
	Other Array Class Features

	Collections
	ArrayList
	StringCollection
	NameValueCollection

	Dictionaries
	ListDictionary
	Hashtable
	HybridDictionary
	StringDictionary
	SortedList

	CollectionsUtil
	Stacks and Queues
	Stack
	Queue

	Generics
	Collection Initializers
	Iterators
	Summary

	Chapter 26: Generics
	Class Creators
	Advantages of Generics
	Defining Generics
	Generic Constructors
	Multiple Types
	Constrained Types

	Instantiating Generic Classes
	Imports Aliases
	Derived Classes

	Generic Collection Classes
	Generic Methods
	Generics and Extension Methods
	Summary

	Part IV: Interacting with the Environment
	Chapter 27: Printing
	Printing Concepts
	Basic Printing
	Drawing Basics
	Graphics Objects
	Pens
	Brushes

	A Booklet Example
	Summary

	Chapter 28: Configuration and Resources
	The Need for Configuration
	My
	Me and My
	My Sections

	Environment
	Setting Environment Variables
	Using Environ
	Using System. Environment

	Registry
	Native Visual Basic Registry Methods
	My.Computer.Registry

	Configuration Files
	Resource Files
	Application Resources
	Using Application Resources
	Embedded Resources
	Localization Resources

	Application
	Application Properties
	Application Methods
	Application Events

	Summary

	Chapter 29: Streams
	Stream Concepts
	Stream
	FileStream
	MemoryStream
	BinaryReader and BinaryWriter
	TextReader and TextWriter
	StringReader and StringWriter
	StreamReader and StreamWriter
	OpenText, CreateText, and AppendText
	Custom Stream Classes
	Summary

	Chapter 30: Filesystem Objects
	Programming Approaches
	Permissions
	Visual Basic Methods
	File Methods
	File System Methods
	Sequential-File Access
	Random-File Access
	Binary-File Access

	.NET Framework Classes
	Directory
	File
	DriveInfo
	DirectoryInfo
	FileInfo
	FileSystemWatcher
	Path

	My.Computer.FileSystem
	My.Computer.FileSystem.SpecialDirectories
	Summary

	Part V: Appendices
	Appendix A: Useful Control Properties, Methods, and Events
	Properties
	Methods
	Events

	Appendix B: Variable Declarations and Data Types
	Variable Declarations
	Initialization Expressions
	With
	From
	Using
	Enumerated Type Declarations
	XML Variables
	Option Explicit and Option Strict
	Option Infer
	Data Types
	Data Type Characters
	Literal Type Characters
	Data Type Conversion Functions
	Ctype, Directcast, and Trycast

	Appendix C: Operators
	Arithmetic Operators
	Concatenation Operators
	Comparison Operators
	Logical Operators
	Bitwise Operator
	Operator Precedence
	Assignment Operators
	Choose, If, and Iif
	Date and Timespan Operators
	Operator Overloading

	Appendix D: Subroutine and Function Declarations
	Subroutines
	Functions
	Property Procedures
	Lambda Functions and Expressions
	Extension Methods

	Appendix E: Control Statements
	Decision Statements
	Single-Line If Then
	Multiline If Then
	Select Case
	If and IIf
	Choose

	Looping Statements
	For Next
	For Each
	Do Loop
	While End

	Appendix F: Error Handling
	Throwing Exceptions

	Appendix G: Windows Forms Controls and Components
	Control Purposes

	Appendix H: WPF Controls
	Appendix I: Visual Basic Power Packs
	Microsoft Power Packs
	DataRepeater
	Line and Shape Controls
	PrintForm Component

	Gotdotnet Power Pack

	Appendix J: Form Objects
	Properties
	Methods
	Events
	Property-Changed Events

	Appendix K: Classes and Structures
	Classes
	Structures
	Constructors
	Events

	Appendix L: LINQ
	Basic LINQ Query Syntax
	From
	Where
	Order By
	Select
	Distinct
	Join
	Group By
	Limiting Results

	Using Query Results
	LINQ Functions
	LINQ to XML
	LINQ into XML
	LINQ out of XML
	LINQ to Dataset
	Method-Based Queries

	PLINQ

	Appendix M: Generics
	Generic Classes
	Generic Extensions
	Generic Methods
	Prohibited Generics

	Appendix N: Graphics
	Graphics Namespaces
	System.Drawing
	System.Drawing.Drawing2D
	System.Drawing.Imaging
	System.Drawing.Printing
	System.Drawing.Text

	Drawing Classes
	Graphics
	Pen
	Brushes
	GraphicsPath
	StringFormat
	Image
	Bitmap
	Metafile

	Appendix O: Useful Exception Classes
	Standard Exception Classes
	Custom Exception Classes

	Appendix P: Date and Time Format Specifiers
	Standard Format Specifiers
	Custom Format Specifiers

	Appendix Q: Other Format Specifiers
	Standard Numeric Format Specifiers
	Custom Numeric Format Specifiers
	Numeric Formatting Sections
	Composite Formatting
	Enumerated Type Formatting

	Appendix R: The Application Class
	Properties
	Methods
	Events

	Appendix S: The My Namespace
	My.Application
	My.Computer
	Audio
	Clipboard
	Clock
	FileSystem
	Info
	Keyboard
	Mouse
	Name
	Network
	Ports
	Registry
	Screen

	My.Forms
	My.Resources
	My.User

	Appendix T: Streams
	Stream Class Summary
	Stream
	Binaryreader and Binarywriter
	Textreader and Textwriter
	Stringreader and Stringwriter
	Streamreader and Streamwriter
	Text File Stream Methods

	Appendix U: Filesystem Classes
	Visual Basic Methods
	Framework Classes
	Directory
	File
	DriveInfo
	DirectoryInfo
	FileInfo
	FileSystemWatcher
	Path

	My.Computer.Filesystem
	My.Computer.Filesystem.Specialdirectories

	Appendix V: Visual Studio Versions

	Index
	Advertisement

