
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Web Coding &
Development

A L L - I N - O N E

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Web Coding &
Development

A L L - I N - O N E

by Paul McFedries

www.allitebooks.com

http://www.allitebooks.org

Web Coding & Development All-in-One For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without
written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018935649

ISBN: 978-1-119-47392-3; ISBN: 978-1-119-47383-1 (ePDF); ISBN: 978-1-119-47379-4 (ePub)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Book 1: Getting Ready to Code for the Web 5
CHAPTER 1: How Web Coding and Development Work . 7
CHAPTER 2: Setting Up Your Web Development Home . 21
CHAPTER 3:	 Finding	and	Setting	Up a Web	Host . 35

Book 2: Coding the Front End, Part 1: HTML & CSS 47
CHAPTER 1: Structuring the Page with HTML . 49
CHAPTER 2: Styling the Page with CSS . 79
CHAPTER 3:	 Sizing	and	Positioning	Page	Elements . 103
CHAPTER 4: Creating the Page Layout . 127

Book 3: Coding the Front End, Part 2: JavaScript 167
CHAPTER 1: An Overview of JavaScript . 169
CHAPTER 2:	 Understanding	Variables . 183
CHAPTER 3:	 Building	Expressions . 197
CHAPTER 4:	 Controlling	the	Flow	of JavaScript . 225
CHAPTER 5:	 Harnessing	the	Power	of Functions . 249
CHAPTER 6:	 Working	with	Objects . 267
CHAPTER 7:	 Working	with	Arrays . 291
CHAPTER 8:	 Manipulating	Strings,	Dates,	and	Numbers . 311
CHAPTER 9: Debugging Your Code . 341

Book 4: Coding the Front End, Part 3: jQuery 363
CHAPTER 1:	 Developing	Pages	Faster	with	jQuery . 365
CHAPTER 2:	 Livening	Up	Your	Page with	Events	and Animation 387
CHAPTER 3:	 Getting	to	Know	jQuery	UI . 411

Book 5: Coding the Back End: PHP and MySQL 433
CHAPTER 1:	 Learning	PHP	Coding	Basics . 435
CHAPTER 2:	 Building	and	Querying	MySQL	Databases . 467
CHAPTER 3:	 Using	PHP	to	Access	MySQL	Data . 493

Book 6: Coding Dynamic Web Pages . 507
CHAPTER 1:	 Melding	PHP	and	JavaScript	with	Ajax and	JSON 509
CHAPTER 2:	 Building	and	Processing	Web	Forms . 533
CHAPTER 3:	 Validating	Form	Data . 565

Book 7: Coding Web Apps . 591
CHAPTER 1: Planning a Web App . 593
CHAPTER 2: Laying the Foundation . 619
CHAPTER 3: Managing Data . 637
CHAPTER 4:	 Managing	App	Users . 673

Book 8: Coding Mobile Web Apps . 721
CHAPTER 1:	 Exploring	Mobile-First	Web	Development . 723
CHAPTER 2: Building a Mobile Web App . 739

Index . 769

Table of Contents vii

Table of Contents
INTRODUCTION . 1

About	This	Book .2
Foolish	Assumptions .3

“I’ve	never	coded	before!” . .3
“I	have	coded	before!” .3

Icons	Used	in	This	Book .4
Beyond the Book .4

BOOK 1: GETTING READY TO CODE FOR THE WEB 5

CHAPTER 1: How Web Coding and Development Work 7
The	Nuts	and	Bolts	of	Web	Coding	and Development 8

How	the	web	works .8
How	the	web	works,	take	two .11

Understanding	the	Front	End:	HTML	and	CSS .12
Adding	structure:	HTML .13
Adding	style:	CSS .14

Understanding	the	Back	End:	PHP	and	MySQL .15
Storing	data	on	the	server:	MySQL .16
Accessing	data	on	the	server:	PHP .16

How It	All	Fits	Together:	JavaScript	and	jQuery .16
Front	end,	meet	back	end:	JavaScript .16
Making	your	web	coding	life	easier:	jQuery 17

How	Dynamic	Web	Pages	Work .18
What	Is	a	Web	App? .19
What	Is	a	Mobile	Web	App? .19
What’s	the	Difference	between	Web	Coding	
and	Web	Development? .20

CHAPTER 2: Setting Up Your Web Development Home 21
What	Is	a	Local	Web	Development	Environment? 22
Do	You	Need	a	Local	Web	Development	Environment? 22
Setting	Up	the	XAMPP	for	Windows	Development	Environment 23

Installing	XAMPP	for	Windows .24
Running	the	XAMPP	for	Windows	Control	Panel 26
Accessing	your	local	web	server .27

Setting	Up	the	XAMPP	for	OS	X	Development	Environment 29
Installing	XAMPP	for	OS	X .29
Running the XAMPP Application Manager .30
Accessing	your	local	web	server .31

Choosing	Your	Text	Editor .33

viii Web Coding & Development All-in-One For Dummies

CHAPTER 3:	 Finding	and	Setting	Up a Web	Host 35
Understanding	Web	Hosting	Providers .36

Using	your	existing	Internet	provider .36
Finding	a	free	hosting	provider .37
Signing	up	with	a	commercial	hosting provider 37

A	Buyer’s	Guide	to	Web	Hosting .37
Finding	a	Web	Host .40
Finding	Your	Way	around	Your	New	Web	Home 41

Your	directory	and	your	web	address .42
Making	your	hard	disk	mirror	your web	home 42
Uploading	your	site	files .44
Making	changes	to	your	web	files .45

BOOK 2: CODING THE FRONT END, PART 1:
HTML & CSS . 47

CHAPTER 1: Structuring the Page with HTML . 49
Getting the Hang of HTML .50
Understanding	Tag	Attributes .52
Learning the Fundamental Structure of an HTML5 Web Page 53

Giving your page a title .54
Adding	some	text .56

Some	Notes	on	Structure	versus	Style .57
Applying	the	Basic	Text	Tags .58

Emphasizing	text .58
Marking	important	text . .59
Nesting	tags .60
Adding	headings .60
Adding	quotations .61

Creating	Links . .62
Linking	basics .62
Anchors	aweigh:	Internal	links .63

Building	Bulleted	and	Numbered	Lists .65
Making	your	point	with	bulleted	lists .65
Numbered	lists:	Easy	as	one,	two,	three .67

Inserting	Special	Characters .68
Inserting	Images .69
Carving Up the Page .71

The <header> tag .71
The <nav> tag .72
The <main> tag .73
The <article> tag .74
The	<section>	tag .74
The	<aside>	tag .75

Table of Contents ix

The <footer> tag .75
Handling	non-semantic	content	with	<div> .76
Handling	words	and	characters	with	 77

CHAPTER 2: Styling the Page with CSS . 79
Figuring	Out	Cascading	Style	Sheets .80

Styles:	Bundles	of	formatting	options .80
Sheets:	Collections	of	styles .80
Cascading:	How	styles	propagate .81

Getting	the	Hang	of	CSS	Rules	and	Declarations 81
Adding	Styles	to	a	Page .83

Inserting	inline	styles .83
Embedding	an	internal	style	sheet .84
Linking	to	an	external	style	sheet .86

Styling	Page	Text .87
Setting	the	type	size .87
Getting	comfy	with	CSS	measurement	units 88
Applying a font family .89
Making	text	bold .91
Styling	text	with	italics .91
Styling	links .91
Aligning	paragraph	text .92
Indenting	a	paragraph’s	first	line .92

Working	with	Colors .93
Specifying a color .93
Coloring	text .94
Coloring the background .94

Getting to Know the Web Page Family .95
Using	CSS	Selectors .96

The	class	selector .97
The	id	selector .98
The	descendant	selector .99
The	child	selector .99

Revisiting	the	Cascade .100

CHAPTER 3: Sizing and Positioning Page Elements 103
Learning	about	the	CSS	Box	Model .104
Styling	Sizes .105
Adding Padding .107
Building	Borders .109
Making	Margins .110

Resetting	the	padding	and	margin .111
Collapsing	margins	ahead! .111

Getting a Grip on Page Flow .113

x Web Coding & Development All-in-One For Dummies

Floating	Elements .115
Clearing	your	floats .116
Collapsing	containers	ahead! .117

Positioning	Elements .120
Using	relative	positioning .121
Giving	absolute	positioning	a	whirl .122
Trying	out	fixed	positioning .125

CHAPTER 4: Creating the Page Layout . 127
What	Is	Page	Layout? .128
Laying	Out	Page	Elements	with	Floats .128
Laying	Out	Page	Elements	with Inline Blocks .132
Making	Flexible	Layouts	with	Flexbox .136

Setting	up	the	flex	container .137
Aligning	flex	items	along	the	primary	axis .139
Aligning	flex	items	along	the	secondary	axis 140
Centering an element horizontally and vertically 141
Laying	out	a	navigation	bar	with	flexbox .143
Allowing	flex	items	to	grow .144
Allowing	flex	items	to	shrink .146
Laying	out	content	columns	with	flexbox .149
Flexbox	browser	support .152

Shaping	the	Overall	Page	Layout	with CSS	Grid 153
Setting up the grid container .154
Specifying	the	grid	rows	and	columns .154
Creating	grid	gaps .155
Assigning	grid	items	to	rows	and	columns 157
Aligning	grid	items .160
Laying	out	content	columns	with	Grid .161
Grid	browser	support .163

Providing	Fallbacks	for	Page	Layouts .164

BOOK 3: CODING THE FRONT END, PART 2:
JAVASCRIPT . 167

CHAPTER 1: An Overview of JavaScript . 169
JavaScript:	Controlling	the	Machine .170
What	Is	a	Programming	Language? .171
Is	JavaScript	Hard	to	Learn? .172
What	Can	You	Do	with	JavaScript? .173
What	Can’t	You	Do	with	JavaScript? .174
What	Do	You	Need	to	Get	Started? .175
Basic	Script	Construction .175

The	<script>	tag .175
Handling	browsers	with	JavaScript	turned	off 176

Table of Contents xi

Where	do	you	put	the	<script>	tag? .176
Example	#1:	Displaying	a	message	to	the	user 177
Example	#2:	Writing	text	to	the	page .179

Adding	Comments	to	Your	Code .180
Creating	External	JavaScript	Files .181

CHAPTER 2: Understanding Variables . 183
What	Is	a	Variable? .184

Declaring a variable .184
Storing a value in a variable .185
Using	variables	in	statements .186

Naming	Variables:	Rules	and	Best	Practices .187
Rules	for	naming	variables .187
Ideas	for	good	variable	names .188

Understanding	Literal	Data	Types .189
Working	with	numeric	literals .189
Working	with	string	literals .191
Working	with	Boolean	literals .193

JavaScript	Reserved	Words .193
JavaScript	Keywords .194

CHAPTER 3: Building Expressions . 197
Understanding	Expression	Structure .197
Building	Numeric	Expressions .199

A	quick	look	at	the	arithmetic	operators .199
Using	the	addition	(+)	operator .200
Using	the	increment	(++)	operator .200
Using	the	subtraction	and	negation	(-)	operators 201
Using	the	decrement	(--)	operator .202
Using	the	multiplication	(*)	operator .202
Using	the	division	(/)	operator .202
Using	the	modulus	(%)	operator .204
Using	the	arithmetic	assignment	operators 204

Building	String	Expressions .205
Building	Comparison	Expressions .208

The	comparison	operators .208
Using	the	equal	(==)	operator .208
Using	the	not	equal	(!=)	operator .209
Using	the	greater	than	(>)	operator .209
Using	the	less	than	(<)	operator .209
Using	the	greater	than	or	equal	(>=)	operator 210
Using	the	less	than	or	equal	(<=)	operator 210
The	comparison	operators	and	data	conversion 211
Using	the	identity	(===)	operator .212
Using	the	non-identity	(!==)	operator .212

xii Web Coding & Development All-in-One For Dummies

Using	strings	in	comparison	expressions .213
Using	the	ternary	(?:)	operator .214

Building	Logical	Expressions .215
The	logical	operators .215
Using	the	AND	(&&)	operator .215
Using	the	OR	(||)	operator . .216
Using	the	NOT	(!)	Operator .217
Advanced	notes	on	the	&&	and	||	operators 217

Understanding	Operator	Precedence .219
The order of precedence .220
Controlling the order of precedence .221

CHAPTER 4:	 Controlling	the	Flow	of JavaScript 225
Understanding	JavaScript’s	Control Structures 226
Making	True/False	Decisions	with	if()	Statements 226
Branching	with	if(). . .else	Statements .228
Making	Multiple	Decisions .229

Using	the	AND	(??)	and	OR	(||)	operators .230
Nesting	multiple	if()	statements .230
Using	the	switch()	statement .231

Understanding	Code	Looping .234
Using	while()	Loops .235
Using	for()	Loops .237
Using	do. . .while()	Loops .241
Controlling	Loop	Execution .243

Exiting	a	loop	using	the	break	statement .243
Bypassing	loop	statements	using	the	continue	statement 245

Avoiding	Infinite	Loops .246

CHAPTER 5:	 Harnessing	the	Power	of Functions 249
What	Is	a	Function? .250
The Structure of a Function .250
Where	Do	You	Put	a	Function? .251
Calling a Function .252

Calling	a	function	when	the	<script>	tag	is	parsed 252
Calling	a	function	after	the	page	is	loaded 253
Calling	a	function	in	response	to	an	event 254

Passing	Values	to	Functions .255
Passing	a	single	value	to	a	function .256
Passing	multiple	values	to	a	function .257

Returning	a	Value	from	a	Function .258
Understanding	Local	versus	Global	Variables .259

Working	with	local	scope .260
Working	with	global	scope .261

Using	Recursive	Functions .262

Table of Contents xiii

CHAPTER 6: Working with Objects . 267
What	Is	an	Object? .267
The JavaScript Object Hierarchy .269
Manipulating	Object	Properties .271

Referencing a property .271
Some	objects	are	properties .272
Changing the value of a property .273

Working	with	Object	Methods .273
Playing Around with the window Object .275

Referencing the window object .275
Some	window	object	properties	you should	know 275
Working	with	JavaScript	timeouts	and	intervals 276
Interacting	with	the	user .280

Programming the document Object .284
Specifying an element .284
Working	with	elements .287

CHAPTER 7: Working with Arrays . 291
What	Is	an	Array? .291
Declaring an Array .293
Populating an Array with Data .294

Declaring	and	populating	an	array	at	the	same	time 295
Using	a	loop	to	populate	an	array . .296
Using	a	loop	to	work	with	array	data .297

Creating	Multidimensional	Arrays .299
Using	the	Array	Object .300

The length property .300
Concatenating	to	create	a	new	array:	concat() 301
Creating	a	string	from	an	array’s	elements:	join()302
Removing	an	array’s	last	element:	pop() .303
Adding	elements	to	the	end	of	an	array:	push() 303
Reversing	the	order	of	an	array’s	elements:	reverse() 304
Removing	an	array’s	first	element:	shift() .305
Returning	a	subset	of	an	array:	slice() .305
Ordering	array	elements:	sort() .306
Removing,	replacing,	and	inserting	elements:	splice() 308
Inserting	elements	at	the	beginning	of	an	array:	unshift() 310

CHAPTER 8: Manipulating Strings, Dates, and Numbers 311
Manipulating	Text	with	the	String	Object .311

Determining	the	length	of	a	string .312
Finding	substrings .313
Methods	that	extract	substrings .315

xiv Web Coding & Development All-in-One For Dummies

Dealing	with	Dates	and	Times .323
Arguments	used	with	the	Date	object .324
Working with the Date object .324
Extracting	information	about	a	date . .325
Setting the date .330
Performing	date	calculations .332

Working	with	Numbers:	The	Math	Object .335
Converting	between	strings	and	numbers 336
The	Math	object’s	properties	and	methods338

CHAPTER 9: Debugging Your Code . 341
Understanding	JavaScript’s	Error	Types .342

Syntax	errors .342
Runtime	errors .342
Logic	errors .343

Getting	to	Know	Your	Debugging	Tools .344
Debugging	with	the	Console .345

Displaying	the	console	in	various	browsers 346
Logging	data	to	the	Console .346
Executing	code	in	the	Console .347

Pausing	Your	Code .348
Entering	break	mode .348
Exiting	break	mode .350

Stepping through Your Code .350
Stepping	into	some	code .351
Stepping	over	some	code .351
Stepping	out	of	some	code .352

Monitoring	Script	Values .352
Viewing	a	single	variable	value .352
Viewing	all	variable	values .353
Adding	a	watch	expression .354

More	Debugging	Strategies .355
Top	Ten	Most	Common	JavaScript	Errors .356
Top	Ten	Most	Common	JavaScript	Error	Messages 359

BOOK 4: CODING THE FRONT END, PART 3: jQUERY 363

CHAPTER 1: Developing Pages Faster with jQuery 365
Getting	Started	with	jQuery .366

How	to	include	jQuery	in	your	web	page .366
Understanding	the	$	function .368
Where	to	put	jQuery	code .368

Table of Contents xv

Selecting	Elements	with	jQuery .369
Using	the	basic	selectors .370
Working	with	jQuery	sets .371

Manipulating	Page	Elements	with	jQuery .373
Adding an element .374
Replacing	an	element’s	HTML .375
Replacing	an	element’s	text .376
Removing an element .377

Modifying	CSS	with	jQuery .377
Working	with	CSS	properties .378
Manipulating	classes .382

Tweaking	HTML	Attributes	with	jQuery .385
Reading an attribute value .385
Setting an attribute value .385
Removing an attribute .386

CHAPTER 2:	 Livening	Up	Your	Page with	Events	
and Animation . 387
Building	Reactive	Pages	with	Events .388

What’s	an	event? .388
Understanding	the	event	types .389
Setting up an event handler .390
Using	jQuery’s	shortcut	event	handlers .391
Getting data about the event .393
Preventing the default event action .394
Getting your head around event delegation 396
Turning	off	an	event	handler .398

Building	Lively	Pages	with	Animation .398
Hiding	and	showing	elements .399
Fading	elements	out	and	in .400
Sliding	elements . .401
Controlling	the	animation	duration and	pace 402
Example:	Creating	a	web	page	accordion .403
Animating	CSS	properties . .406
Running	code	when	an	animation	ends . .408

CHAPTER 3: Getting to Know jQuery UI . 411
What’s	the	Deal	with	jQuery	UI? .412
Getting	Started	with	jQuery	UI .413
Working	with	the	jQuery	UI	Widgets .415

Dividing	content	into	tabs .415
Creating a navigation menu .418
Displaying	a	message	in	a	dialog . .420
Hiding	and	showing	content	with	an	accordion 422

xvi Web Coding & Development All-in-One For Dummies

Introducing	jQuery	UI	Effects .424
Applying	an	effect .424
Checking	out	the	effects .426

Taking	a	Look	at	jQuery	UI	Interactions .428
Applying an interaction .428
Trying	out	the	interactions .429

BOOK 5: CODING THE BACK END:
PHP AND MYSQL . 433

CHAPTER 1: Learning PHP Coding Basics . 435
Understanding	How	PHP	Scripts	Work .436
Learning	the	Basic	Syntax	of	PHP	Scripts .436
Declaring	PHP	Variables .438
Building	PHP	Expressions .438
Outputting	Text	and	Tags .439

Adding	line	breaks .440
Mixing	and	escaping	quotation	marks .441
Outputting	variables	in	strings .442
Outputting	long	strings .443
Outputting	really	long	strings .444

Working	with	PHP	Arrays .445
Declaring	arrays .445
Giving	associative	arrays	a	look .446
Outputting	array	values .447
Sorting	arrays .448
Looping	through	array	values .450
Creating	multidimensional	arrays .450

Controlling the Flow of Your PHP Code .451
Making	decisions	with	if() .452
Making	decisions	with	switch() .453
Looping	with	while() .454
Looping	with	for() .455
Looping	with	do. . .while() . .456

Working	with	PHP	Functions .456
Passing	values	to	functions .457
Returning a value from a function .458

Working	with	PHP	Objects .458
Rolling	your	own	objects .458
Creating an object .461
Working	with	object	properties .461
Working	with	object	methods .462

Table of Contents xvii

Debugging PHP .463
Configuring	php.ini	for	debugging .463
Accessing	the	PHP	error	log .464
Debugging	with	echo	statements .465
Debugging	with	var_dump()	statements .466

CHAPTER 2: Building and Querying MySQL Databases 467
What	Is	MySQL? .468

Tables:	Containers	for	your	data .468
Queries:	Asking	questions	of	your	data .469

Introducing	phpMyAdmin .470
Importing	data	into	MySQL .471
Backing	up	MySQL	data .473

Creating	a	MySQL	Database	and	Its	Tables .473
Creating	a	MySQL	database .473
Designing	your	table .474
Creating	a	MySQL	table .477
Adding data to a table .479
Creating a primary key .479

Querying	MySQL	Data .480
What	Is	SQL? .480
Creating	a	SELECT	query .481
Understanding	query	criteria .482
Querying	multiple	tables .485
Adding	table	data	with	an	INSERT	query .490
Modifying	table	data	with	an	UPDATE	query491
Removing	table	data	with	a	DELETE	query 492

CHAPTER 3: Using PHP to Access MySQL Data . 493
Understanding	the	Role	of	PHP	and	MySQL	in	Your	Web	App 494
Using	PHP	to	Access	MySQL	Data .495

Parsing	the	query	string .495
Connecting	to	the	MySQL	database .497
Creating	and	running	the	SELECT	query .499
Storing	the	query	results	in	an	array .500
Looping	through	the	query	results .501
Incorporating	query	string	values	in	the	query 501

Creating	and	Running	Insert,	Update,	and	Delete	Queries 504
Separating	Your	MySQL	Login	Credentials .505

xviii Web Coding & Development All-in-One For Dummies

BOOK 6: CODING DYNAMIC WEB PAGES 507

CHAPTER 1: Melding PHP and JavaScript with
Ajax and	JSON . 509
What	Is	Ajax? .510
Making	Ajax	Calls	with	jQuery .511

Learning	more	about	GET	and	POST	requests 511
Handling	POST	requests	in	PHP .513
Using	.load()	to	update	an	element	with server	data 514
Using	.get()	or	.post()	to	communicate	with the	server 523

Introducing	JSON .526
Learning	the	JSON	syntax .526
Declaring	and	using	JSON	variables .527

Returning	Ajax	Data	as	JSON	Text .528
Converting	server	data	to	the	JSON	format 528
Handling	JSON	data	returned	by	the	server 530

CHAPTER 2: Building and Processing Web Forms 533
What	Is	a	Web	Form? .534
Understanding	How	Web	Forms	Work .535
Building an HTML5 Web Form .536

Setting up the form .536
Adding a form button .537
Working	with	text	fields .538
Coding	checkboxes .543
Working	with	radio	buttons .548
Adding	selection	lists .551
Programming	pickers .555

Handling	and	Triggering	Form	Events .557
Setting	the	focus .558
Monitoring	the	focus	event .559
Blurring an element .559
Monitoring the blur event .560
Listening	for	element	changes .560

Submitting the Form .561
Triggering	the	submit	event .562
Preventing	the	default	form	submission .562
Preparing	the	data	for	submission .563
Submitting the form data .563

CHAPTER 3: Validating Form Data . 565
Validating	Form	Data	in	the	Browser .566

Making	a	form	field	mandatory .566
Restricting	the	length	of	a	text	field .567

Table of Contents xix

Setting	maximum	and	minimum	values	on	a	numeric	field 568
Validating	email	fields .569
Making	field	values	conform	to	a	pattern .570
Styling	invalid	fields .571

Validating	Form	Data	on	the	Server .574
Checking	for	required	fields .575
Validating	text	data .578
Validating	a	field	based	on	the	data	type .580
Validating	against	a	pattern .582

Regular	Expressions	Reference .582

BOOK 7: CODING WEB APPS . 591

CHAPTER 1: Planning a Web App . 593
What	Is	a	Web	App? .594
Planning	Your	Web	App:	The	Basics .595

What	is	my	app’s	functionality? .595
What	are	my	app’s	data	requirements? .596
How	will	my	app	work? .597
How	many	pages	will	my	app	require? . .597
What	will	my	app’s	pages	look	like? .598

Planning	Your	Web	App:	Responsiveness .599
Planning	Your	Web	App:	Accessibility .605
Planning	Your	Web	App:	Security .608

Understanding	the	dangers .609
Defending your web app .612

CHAPTER 2: Laying the Foundation . 619
Setting Up the Directory Structure .620

Setting	up	the	public	subdirectory .621
Setting	up	the	private	subdirectory .623

Creating	the	Database	and	Tables .624
Getting	Some	Back-End	Code	Ready .626

Defining	PHP	constants .626
Understanding	PHP	sessions .627
Securing	a	PHP	session .628
Including	code	from	another	PHP	file .629

Creating	the	App	Startup	Files .630
Creating	the	back-end	initialization	file .631
Creating	the	front-end	common	files .633
Building the app home page .635

xx Web Coding & Development All-in-One For Dummies

CHAPTER 3: Managing Data . 637
Handling Data the CRUD Way .638

Starting	the	web	app’s	data	class .639
Creating	a	data	handler	script .640

Creating	New	Data .643
Building the form .643
Sending	the	form	data	to	the	server .648
Adding the data item . .649

Reading	and	Displaying	Data .652
Getting the home page ready for data .652
Making	an	Ajax	request	for	the	data .654
Reading the data .655
Displaying	the	data .656
Filtering the data .657

Updating	and	Editing	Data .661
Deleting Data .668

CHAPTER 4: Managing App Users . 673
Configuring	the	Home	Page .674
Setting	Up	the	Back	End	to	Handle	Users .677

Starting	the	web	app’s	user	class .678
Creating	a	user	handler	script .679

Signing	Up	a	New	User .682
Building the form .683
Sending	the	data	to	the	server .685
Sending	a	verification	email .688
Adding	the	user	to	the	database .689
Verifying	the	user .690

Signing	a	User	In	and	Out . .696
Checking	for	a	signed-in	user .696
Adding the form .697
Checking	the	user’s	credentials .700
Signing	out	a	user .704

Resetting	a	Forgotten	Password .704
Deleting	a	User .714

BOOK 8: CODING MOBILE WEB APPS . 721

CHAPTER 1: Exploring Mobile-First Web Development 723
What	Is	Mobile-First	Web	Development? .724
Learning	the	Principles	of	Mobile-First	Development 725

Mobile	first	means	content	first .725
Pick	a	testing	width	that	makes	sense	for	your	site 726
Get	your	content	to	scale	with	the	device .726

Table of Contents xxi

Build	your	CSS	the	mobile-first	way .727
Pick	a	“non-mobile”	breakpoint	that	makes	sense	
for your content .727

Going	Mobile	Faster	with	jQuery	Mobile .729
What	is	jQuery	Mobile? .729
Adding	jQuery	Mobile	to	your	web	app .730

Working	with	Images	in	a	Mobile	App .731
Making	images	responsive .731
Delivering	images	responsively .732

Storing	User	Data	in	the	Browser .734
Understanding	web	storage .735
Adding	data	to	storage .735
Getting	data	from	web	storage .736
Removing	data	from	web	storage .737

CHAPTER 2: Building a Mobile Web App . 739
Building the Button Builder App .740
Getting Some Help from the Web .741
Building	the	App:	HTML .741

Setting	up	the	home	page	skeleton .741
Configuring	the	header .744
Creating the app menu .745
Adding	the	app’s	controls .745

Building	the	App:	CSS .754
Building	the	App:	JavaScript	and	jQuery .757

Setting	up	the	app	data	structures .757
Setting	the	app’s	control	values .758
Getting	the	app’s	control	values .761
Writing	the	custom	CSS	code .763
Running the code . .765
Saving	the	custom	CSS .765
Copying	the	custom	CSS .766
Resetting	the	CSS	to	the	default .767

INDEX . 769

Introduction 1

Introduction

When the web first came to the attention of the world’s non-geeks back in
the mid-1990s, the vastness and variety of its treasures were a wonder
to behold. However, it didn’t take long before a few courageous and

intrepid souls dug a little deeper into this phenomenon and discovered something
truly phenomenal: They could make web pages, too!

Why was that so amazing? Well, think back to those old days and think, in par-
ticular, of what it meant to create what we now call content. Think about televi-
sion shows, radio programs, magazines, newspapers, books, and the other media
of the time. The one thing they all had in common was that their creation was a
decidedly uncommon thing. It required a team of professionals, a massive distribu-
tion system, and a lot of money. In short, it wasn’t something that your average
Okie from Muskogee would have any hope of duplicating.

The web appeared to change all of that because learning HTML was within the
grasp of anybody who could feed himself, it had a built-in massive distribution
system (the Internet, natch), and it required little or no money. For the first time
in history, content was democratized and was no longer defined as the sole prov-
ince of governments and mega-corporations.

Then reality set in.

People soon realized that merely building a website wasn’t enough to attract
“eyeballs,” as the marketers say. A site had to have interesting, useful, or fun
content, or people would stay away in droves. Not only that, but this good con-
tent had to be combined with a solid site design, which meant that web designers
needed a thorough knowledge of HTML and CSS.

But, alas, eventually even all of that was not enough. To make their websites
dynamic and interesting, to make their sites easy to navigate, and to give their
sites those extra bells and whistles that surfers had come to expect, something
more than content, HTML, and CSS was needed.

That missing link was code.

What we’ve all learned the hard way over the past few years is that you simply
can’t put together a world-class website unless you have some coding prowess
in your site design toolkit. You need to know how to program your way out of

2 Web Coding & Development All-in-One For Dummies

the basic problems that afflict most sites; how to use scripting to go beyond the
inherent limitations of HTML and CSS; and how to use code to send and receive
data from a web server. And it isn’t enough just to copy the generic scripts that
are available on the web and paste them into your pages. First of all, most of those
scripts are very poorly written, and second of all, they invariably need some cus-
tomization to work properly on your site.

About This Book
My goal in this book is to give you a complete education on web coding and devel-
opment. You learn how to set up the tools you need, how to use HTML and CSS
to design and build your site, how to use JavaScript and jQuery to program your
pages, and how to use PHP and MySQL to program your web server. My aim is to
show you that these technologies aren’t hard to learn, and that even the greenest
rookie programmers can learn how to put together web pages that will amaze their
family and friends (and themselves).

If you’re looking for lots of programming history, computer science theory, and long-
winded explanations of concepts, I’m sorry but you won’t find it here. My philosophy
throughout this book comes from Linus Torvalds, the creator of the Linux operating
system: “Talk is cheap. Show me the code.” I explain what needs to be explained and
then I move on without further ado (or, most of the time, without any ado at all) to
examples and scripts that do more to illuminate a concept that any verbose explana-
tions I could muster (and believe me, I can muster verbosity with the best of them).

How you approach this book depends on your current level of web coding exper-
tise (or lack thereof):

 » If you’re just starting out, begin at the beginning with Book 1 and work at your
own pace sequentially through to Books 2 and 3. This will give you all the
knowledge you need to pick and choose what you want to learn throughout
the rest of the book.

 » If you know HTML and CSS, you can probably get away with taking a fast look
at Book 2, then settle in with Book 3 and beyond.

 » If you’ve done some JavaScript coding already, I suggest working quickly
through the material in Book 3, then dig into Book 4 a little slower if you don’t
already know jQuery. You’ll then be ready to branch out and explore the rest
of the book as you see fit.

 » If you’re a relatively experienced JavaScript programmer, use Books 3 and 4 as
a refresher, then tackle Book 5 to learn how to code the back end. I’ve got a
few tricks in there that you might find interesting. After that, feel free to

Introduction 3

consider the rest of the book a kind of coding smorgasbord that you can
sample as your web development taste buds dictate.

Foolish Assumptions
This book is not a primer on the Internet or on using the World Wide Web. This is a
coding and development book, pure and simple. This means I assume the following:

 » You know how to operate a basic text editor, and how to get around the
operating system and file system on your computer.

 » You have an Internet connection.

 » You know how to use your web browser.

Yep, that’s it.

“I’ve never coded before!”
If you’ve never done a stitch of computer programming before, even if you’re not
quite sure what programming really is, don’t worry about it for a second because
I had you in mind when I wrote this book. For too many years programming has
been the property of “hackers” and other technowizards. That made some sense
because the programming languages they were using — with bizarre names such
as C++ and Perl — were exceedingly difficult to learn, and even harder to master.

This book’s main coding technologies — HTML, CSS, JavaScript, jQuery, PHP, and
MySQL — are different. They’re nowhere near as hard to learn as those for-nerds-
only languages. I honestly believe that anyone can become a savvy and successful
web coder, and this book is, I hope, the proof of that assertion. Just follow along,
examine my code carefully (particularly in the first few chapters), and practice
what you learn, and you will master web coding and development.

“I have coded before!”
What if you’ve done some programming in the past? For example, you might have
dipped a toe or two in the JavaScript waters already, or you might have dabbled
with HTML and CSS. Will this book be too basic for you? No, not at all. My other
main goal in this book is to provide you with a ton of truly useful examples that
you can customize and incorporate into your own site. The book’s first few chap-
ters start slowly to avoid scaring off those new to this programming business. But

4 Web Coding & Development All-in-One For Dummies

once you get past the basics, I introduce you to lots of great techniques and tricks
that will take your web coding skills to a higher level.

Icons Used in This Book
This icon points out juicy tidbits that are likely to be repeatedly useful to you — so
please don’t forget them.

Think of these icons as the fodder of advice columns. They offer (hopefully) wise
advice or a bit more information about a topic under discussion.

Look out! In this book, you see this icon when I’m trying to help you avoid mis-
takes that can cost you time, money, or embarrassment.

When you see this icon, you’ve come across material that isn’t critical to under-
stand but will satisfy the curious. Think “inquiring minds want to know” when
you see this icon.

Beyond the Book
Some extra content for this book is available on the web. Go online to find the
following:

 » The examples used in the book: You can find these here:

mcfedries.com/webcodingfordummies

The examples are organized by book and then by chapter within each book.
For each example, you can view the code, copy it to your computer’s
clipboard, and run the code in the browser.

 » The WebDev Workshop: To edit the book’s examples and try your own code
and see instant results, fire up the following site:

webdev.mcfedries.com

You won’t break anything, so feel free to use the site run some experiments
and play around with HTML, CSS, JavaScript, and jQuery.

1Getting Ready
to Code for
the Web

Contents at a Glance
CHAPTER 1: How Web Coding and Development Work 7

CHAPTER 2: Setting Up Your Web Development Home 21

CHAPTER 3:	 Finding	and	Setting	Up a Web	Host 35

CHAPTER 1 How Web Coding and Development Work 7

How Web Coding and
Development Work

More than mere consumers of technology, we are makers, adapting
technology to our needs and integrating it into our lives.

— DALE DOUGHERTY

The 1950s were a hobbyist’s paradise with magazines such as Mechanix
Illustrated and Popular Science showing the do-it-yourselfer how to build a
go-kart for the kids and how to soup up a lawnmower with an actual motor!

Sixty years later, we’re now firmly entrenched in the age of do-it-yourself tech,
where folks indulge their inner geek to engage in various forms of digital tinker-
ing and hacking. The personification of this high-tech hobbyist renaissance is the
maker, a modern artisan who lives to create things, rather than merely consume
them. Today’s makers exhibit a wide range of talents, but the skill most sought-
after not only by would-be makers themselves, but by the people who hire them,
is web coding and development.

Have you ever visited a website and thought, “Hey, I can do better than that!”?
Have you found yourself growing tired of merely reading text and viewing images

Chapter 1

IN THIS CHAPTER

 » Learning how the web works

 » Understanding the front-end
technologies of HTML and CSS

 » Understanding the back-end
technologies of MySQL and PHP

 » Figuring out how JavaScript fits into
all of this

 » Learning about dynamic web pages,
web apps, and mobile web apps

8 BOOK 1 Getting Ready to Code for the Web

that someone else has put on the web? Is there something creative in you —
stories, images, expertise, opinions — that you want to share with the world? If
you answered a resounding “Yes!” to any of these questions, then congratula-
tions: You have everything you need to get started with web coding and develop-
ment. You have, in short, the makings of a maker.

The Nuts and Bolts of Web Coding
and Development

If, as the King said very gravely in Lewis Carroll’s Alice in Wonderland, it’s best to
“begin at the beginning,” then you’ve come to the right place. My goal here is to
get you off on the right foot by showing you what web coding and web develop-
ment are.

How the web works
Before you can understand web coding and development, you need to take a step
back and understand a bit about how the web itself works. In particular, you need
to know what happens behind the scenes when you click a link or type a web page
address into your browser. Fortunately, you don’t need to be a network engineer
to understand this stuff, because I can explain the basics without much in the way
of jargon. Here’s a high-level blow-by-blow of what happens:

1. You tell the web browser the web page you want to visit.

You do that either by clicking a link to the page or by typing the location —
known as the uniform resource locator or URL (usually pronounced “you-are-ell,”
but also sometimes “earl”) — into the browser’s address bar (see Figure 1-1).

2. The browser decodes the URL.

Decoding the URL means two things: First, it checks the prefix of the URL to see
what type of resource you’re requesting; this is usually http:// or https://,
both of which indicate that the resource is a web page. Second, it gets the

FIGURE 1-1:
One way to get

to a web page is
to type the URL
in the browser’s

address bar.

H
ow

 W
eb

 C
od

in
g

an
d

D
ev

el
op

m
en

t
W

or
k

CHAPTER 1 How Web Coding and Development Work 9

URL’s domain name — the something.com or whatever.org part — and asks
the domain name system (DNS) to translate this into a unique location — called
the IP (Internet Protocol) address — for the web server that hosts the page (see
Figure 1-2).

3. The browser contacts the web server and requests the web page.

With the web server’s unique IP address in hand, the web browser sets up a
communications channel with the server and then uses that channel to send
along a request for the web page (see Figure 1-3).

4. The web server decodes the page request.

Decoding the page request involves a number of steps. First, if the web server
is shared between multiple user accounts, the server begins by locating the
user account that owns the requested page. The server then uses the page
address to find the directory that holds the page and the file in which the page
code is stored (see Figure 1-4).

FIGURE 1-2:
The browser
extracts the

prefix, domain,
and the server
address from

the URL.

FIGURE 1-3:
The browser asks

the web server
for the web page.

FIGURE 1-4:
The server

uses the page
request to get

the account,
directory, and

filename.

10 BOOK 1 Getting Ready to Code for the Web

5. The web server sends the web page file to the web browser (see
Figure 1-5).

6. The web browser decodes the web page file.

Decoding the page file means looking for text to display, instructions on how to
display that text, and other resources required by the page, such as images
and fonts (see Figure 1-6).

7. If the web page requires more resources, the web browser asks the
server to pass along those resources (see Figure 1-7).

8. For each of the requested resources, the web server locates the associ-
ated file and sends it to the browser (see Figure 1-8).

FIGURE 1-5:
The web server

sends the
requested web
page file to the

browser.

FIGURE 1-6:
The web browser

scours the page
file to see if it

needs anything
else from the

server.

FIGURE 1-7:
The web browser
goes back to the
server to ask for

the other data
needed to display

the web page.

H
ow

 W
eb

 C
od

in
g

an
d

D
ev

el
op

m
en

t
W

or
k

CHAPTER 1 How Web Coding and Development Work 11

9. The web browser gathers up all the text, images, and other resources and
displays the page in all its digital splendor in the browser’s content
window (see Figure 1-9).

How the web works, take two
Another way to look at this process is to think of the web as a giant mall or shop-
ping center, where each website is a storefront in that mall. When you request a
web page from a particular site, the browser takes you into that site’s store and
asks the clerk for the web page. The clerk goes into the back of the store, locates
the page, and hands it to the browser. The browser checks the page and asks for
any other needed files, which the clerk retrieves from the back. This process is
repeated until the browser has everything it needs, and it then puts all the page
pieces together for you, right there in the front of the store.

FIGURE 1-8:
The web server

sends the
browser the rest
of the requested

files.

FIGURE 1-9:
At long last,

the web browser
displays the

web page.

12 BOOK 1 Getting Ready to Code for the Web

This metaphor might seem a bit silly, but it serves to introduce yet another meta-
phor, which itself illustrates one of the most important concepts in web develop-
ment. In the same way that our website store has a front and a back, so, too, is web
development separated into a front end and a back end:

 » Front end: That part of the web page that the web browser displays in the
browser window. That is, it’s the page stuff you see and interact with.

 » Back end: That part of the web page that resides on the web server. That is,
it’s the page stuff that the server gathers based on the requests it receives
from the browser.

As a consumer of web pages, you only ever deal with the front end, and even then
you only passively engage with the page by reading its content, looking at its
images, or clicking its links or buttons.

However, as a maker of web pages — that is, as a web developer — your job entails
dealing with both the front end and the back end. Moreover, that job includes cod-
ing what others see on the front end, coding how the server gathers its data on the
back end, and coding the intermediate tasks that tie the two together.

Understanding the Front End:
HTML and CSS

As I mention in the previous section, the front end of the web development process
involves what users see and interact with in the web browser window. It’s the
job of the web developer to take a page design — which you might come up with
yourself, but is more often something cooked up by a creative type who special-
izes in web design — and make it web-ready. Getting a design ready for the web
means translating the design into the code required for the browser to display the
page somewhat faithfully. (I added the hedge word “somewhat” there because it’s
not always easy to take a design that looks great in Photoshop or Illustrator and
make it look just as good on the web. However, with the techniques you learn in
this book, you’ll almost always be able to come pretty close.)

You need code to create the front end of a web page because without it your page
will be quite dull. For example, consider the following text:

COPENHAGEN—Researchers from Aalborg University announced today
that they have finally discovered the long sought-after
Soup-Nuts Continuum. Scientists around the world have been

H
ow

 W
eb

 C
od

in
g

an
d

D
ev

el
op

m
en

t
W

or
k

CHAPTER 1 How Web Coding and Development Work 13

searching for this elusive item ever since Albert Einstein's
mother-in-law proposed its existence in 1922.

"Today is an incredible day for the physics community and for
humanity as a whole," said senior researcher Lars Grüntwerk.
"Today, for the first time in history, we are on the verge of
knowing everything from soup to, well, you know, nuts."

If you plop that text onto the web, you get the result shown in Figure 1-10. As you
can see, the text is very plain, and the browser didn’t even bother to include the
paragraph break.

So, if you can’t just throw naked text onto the web, what’s a would-be web devel-
oper to do? Ah, that’s where you start earning your web scout merit badges by
adding code that tells the browser how you want the text displayed. That code
comes in two flavors: structure and formatting.

Adding structure: HTML
The first thing you usually do to code a web page is give it some structure. This
means breaking up the text into paragraphs, adding special sections such as a
header and footer, organizing text into bulleted or numbered lists, dividing the
page into columns, and much more. The web coding technology that governs
these and other web page structures is called (deep breath) Hypertext Markup Lan-
guage, or HTML, for short.

HTML consists of a few dozen special symbols called tags that you sprinkle strate-
gically throughout the page. For example, if you want to tell the web browser that
a particular chunk of text is a separate paragraph, you place the <p> tag (the p here
is short for paragraph) before the text and the </p> tag after the text.

In the code that follows, I’ve added these paragraph tags to the plain text that I
show earlier. As you can see in Figure 1-11, the web browser displays the text as
two separate paragraphs, no questions asked.

<p>
COPENHAGEN—Researchers from Aalborg University announced today

that they have finally discovered the long sought-after

FIGURE 1-10:
Text-only

web pages are
dishwater-dull.

14 BOOK 1 Getting Ready to Code for the Web

Soup-Nuts Continuum. Scientists around the world have been
searching for this elusive item ever since Albert Einstein's
mother-in-law proposed its existence in 1922.

</p>
<p>
"Today is an incredible day for the physics community and for

humanity as a whole," said senior researcher Lars Grüntwerk.
"Today, for the first time in history, we are on the verge of
knowing everything from soup to, well, you know, nuts."

</p>

HTML is one of the fundamental topics of web development, and you learn all
about it in Book 2, Chapter 1.

Adding style: CSS
HTML takes care of the structure of the page, but if you want to change the for-
matting of the page, then you need to turn to a second front-end technology:
cascading style sheets, known almost universally as just CSS. With CSS in hand, you
can play around with the page colors and fonts, you can add margins and bor-
ders around things, and you can mess with the position and dimensions of page
elements.

CSS consists of a large number of properties that enable you to customize many
aspects of the page to make it look the way you want. For example, the width
property lets you specify how wide a page element should be; the font-family
property enables you to specify a typeface for an element; and the font-
size property lets you dictate the type size of an element. Here’s some CSS code
that applies all three of these properties to every p element (that is, every <p>
tag) that appears in a page (note that px is short for pixels):

p {
 width: 700px;
 font-family: sans-serif;
 font-size: 24px;
}

FIGURE 1-11:
Adding paragraph

tags to the text
separates the
text into two
paragraphs.

H
ow

 W
eb

 C
od

in
g

an
d

D
ev

el
op

m
en

t
W

or
k

CHAPTER 1 How Web Coding and Development Work 15

When used with the sample text from the previous two sections, you get the much
nicer-looking text shown in Figure 1-12.

CSS is a cornerstone of web development. You learn much more about it in
Book 2, Chapters 2, 3, and 4.

Understanding the Back End:
PHP and MySQL

Many web pages are all about the front end. That is, they consist of nothing but
text that has been structured by HTML tags and styled by CSS properties, plus a
few extra files such as images and fonts. Sure, all these files are transferred from
the web server to the browser, but that’s the extent of the back end’s involvement.

These simple pages are ideal when you have content that doesn’t change very
often, if ever. With these so-called static pages, you plop in your text, add some
HTML and CSS, perhaps point to an image or two, and you’re done.

But there’s another class of page that has content that changes frequently. It could
be posts added once or twice a day, or sports or weather updates added once or
twice an hour. With these so-called dynamic pages, you might have some text,
HTML, CSS, and other content that’s static, but you almost certainly don’t want
to be updating the changing content by hand.

Rather than making constant manual changes to such pages, you can convince the
back end to do it for you. You do that by taking advantage of two popular back-end
technologies: MySQL and PHP.

FIGURE 1-12:
With the judicious

use of a few
CSS properties,
you can greatly

improve the look
of a page.

16 BOOK 1 Getting Ready to Code for the Web

Storing data on the server: MySQL
MySQL is a relational database management system that runs on the server. You
use it to store the data you want to use as the source for some (or perhaps even all)
of the data you want to display on your web page. Using a tool called Structured
Query Language (SQL, pronounced “ess-kew-ell,” or sometimes “sequel”), you
can specify which subset of your data you want to use.

If phrases such as “relational database management system” and “Structured
Query Language” have you furrowing your brow, don’t sweat it: I explain all in
Book 5, Chapter 2.

Accessing data on the server: PHP
PHP is a programming language used on the server. It’s a very powerful and full-
featured language, but for the purposes of this book, you use PHP mostly to inter-
act with MySQL databases. You can use PHP to extract from MySQL the subset of
data you want to display, manipulate that data into a form that’s readable by the
front end, and then send the data to the browser.

You learn about the PHP language in Book 5, Chapter 1, and you learn how to use
PHP to access MySQL data in Book 5, Chapter 3.

How It All Fits Together:
JavaScript and jQuery

Okay, so now you have a front end consisting of HTML structure and CSS styling,
and a back end consisting of MySQL data and PHP code. How do these two seem-
ingly disparate worlds meet to create a full web page experience?

In the website-as-store metaphor that I introduce earlier in this chapter, I use the
image of a store clerk taking an order from the web browser and then going into
the back of the store to fulfill that order. That clerk is the obvious link between
the front end and the back end, so what technology does that clerk represent? She
actually represents two technologies that I use in this book: JavaScript and jQuery.

Front end, meet back end: JavaScript
The secret sauce that brings the front end and the back end together to create
the vast majority of the web pages you see today, is JavaScript. JavaScript is a

H
ow

 W
eb

 C
od

in
g

an
d

D
ev

el
op

m
en

t
W

or
k

CHAPTER 1 How Web Coding and Development Work 17

programming language and is the default language used for coding websites
today. JavaScript is, first and foremost, a front-end web development language.
That is, JavaScript runs inside the web browser and it has access to everything on
the page: the text, the images, the HTML tags, the CSS properties, and more. Hav-
ing access to all the page stuff means that you can use code to manipulate, modify,
even add and delete web page elements.

But although JavaScript runs in the browser, it’s also capable of reaching out to the
server to access back-end stuff. For example, with JavaScript you can send data
to the server to store that data in a MySQL database. Similarly, with JavaScript
you can request data from the server and then use code to display that data on the
web page.

JavaScript is very powerful, very useful, and very cool, so Book 3 takes nine full
chapters to help you learn it well. Also, you learn how JavaScript acts as a bridge
between the front end and the back end in Book 6, Chapter 1.

Making your web coding life easier: jQuery
JavaScript is extremely powerful, but sometimes using certain JavaScript
statements and structures can be a bit unwieldly. For example, here’s a bit of
JavaScript code:

var subheads = document.getElementsByClassName('subheadings');

This will no doubt look like gibberish to you now, but my purpose here is only to
have you remark the length of that statement. Now compare the following:

var subheads = $('.subheadings');

Believe it or not, these statements do exactly the same thing, except the second
one is written using a JavaScript package called jQuery. jQuery is a collection —
called a library — of JavaScript code that makes it easier and faster to code for the
web. Not only does jQuery give you shorter ways to reference web page elements,
but it also incorporates routines that make it easier for you to manipulate HTML
tags and CSS properties, navigate and manipulate web page elements, add anima-
tion effects, and much more.

jQuery is extremely powerful and useful stuff, and you’ll be thankful you’ve got
it in your web development toolkit. You learn just enough jQuery to be dangerous
in Book 4.

18 BOOK 1 Getting Ready to Code for the Web

How Dynamic Web Pages Work
It’s one thing to know about HTML and CSS and PHP and all the rest, but it’s
quite another to actually do something useful with these technologies. That,
really, is the goal of this book, and to that end the book spends several chapters
later covering how to create wonderful things called dynamic web pages. A dynamic
web page is one that includes content that, rather than being hard-wired into the
page, is generated on-the-fly from the web server. This means the page content
can change based on a request by the user, by data being added to or modified on
the server, or in response to some event, such as the clicking of a button or link.

It likely sounds a bit like voodoo to you now, so perhaps a bit more detail is in
order. For example, suppose you want to use a web page to display some data that
resides on the server. Here’s a general look at the steps involved in that process:

1. JavaScript determines the data that it needs from the server.

JavaScript has various ways it can do this, such as extracting the information
from the URL, reading an item the user has selected from a list, or responding
to a click from the user.

2. JavaScript sends a request for that data to the server.

In most cases, and certainly in every case you see in this book, JavaScript sends
this request by calling a PHP script on the server.

3. The PHP script receives the request and passes it along to MySQL.

The PHP script uses the information obtained from JavaScript to create an SQL
command that MySQL can understand.

4. MySQL uses the SQL command to extract the required information from
the database and then return that data to the PHP script.

5. The PHP script manipulates the returned MySQL data into a form that
JavaScript can use.

JavaScript can’t read raw MySQL data, so one of PHP’s most important tasks is
to convert that data into a format called JavaScript Object Notation (JSON, for
short, and pronounced like the name Jason) that JavaScript is on friendly terms
with (see Book 6, Chapter 1 for more about this process).

6. PHP sends the JSON data back to JavaScript.

7. JavaScript displays the data on the web page.

One of the joys of JavaScript is that you get tremendous control over how you
display the data to the user. Through existing HTML and CSS, and by manipu-
lating these and other web page elements using JavaScript, you can show your
data in the best possible light.

H
ow

 W
eb

 C
od

in
g

an
d

D
ev

el
op

m
en

t
W

or
k

CHAPTER 1 How Web Coding and Development Work 19

To expand on these steps and learn how to create your own dynamic web pages,
check out the three chapters in Book 6.

What Is a Web App?
You no doubt have a bunch of apps residing on your smartphone. If you use
Windows 10 on your PC, then you have not only the pre-installed apps such as
Mail and Calendar, but you might also have one or more apps downloaded from
the Windows Store. If the Mac is more your style, then you’re probably quite
familiar with apps such as Music and Messages, and you might have installed
a few others from the App Store. We live, in other words, in a world full of apps
which, in the context of your phone or computer, are software programs dedicated
to a single topic or task.

So what then is a web app? It’s actually something very similar to an app on a
device or PC. That is, it’s a website, built using web technologies such as HTML,
CSS, and JavaScript, that has two main characteristics:

 » The web app is focused on a single topic or task.

 » The web app offers some sort of interface that enables the user to operate
the app in one or more ways.

In short, a web app is a website that looks and acts like an app on a device or
computer. This is opposed to a regular website, which usually tackles several
topics or tasks and has an interface that for the most part only enables users to
navigate the site.

To get the scoop on building your very own web apps, head on over to the
four chapters in Book 7.

What Is a Mobile Web App?
In late 2016, the world reached a milestone of sorts when the percentage of people
accessing the web via mobile devices such as smartphones and tablets surpassed
the percentage of people doing the web thing using desktops and notebooks. The
gap between mobile web users and everyone else has only widened since then, so
it’s safe to say that we live in a mobile web world now.

20 BOOK 1 Getting Ready to Code for the Web

What does that mean for you as a web developer? It means you can’t afford to
ignore mobile users when you build your web pages. It means you can’t code
your web pages using a gigantic desktop monitor and assume that everything will
look great on a relatively tiny smartphone screen. It means that you’d do well to
embrace the mobile web in a big old bear hug by creating not just web apps, but
mobile web apps. What’s the difference? A mobile web app is the same as a web
app — that is, it has content and an interface dedicated to a single topic or task —
but with a design built from the ground up to look good and work well in a mobile
device. This is known as the mobile-first approach to web development, and it’s
one of the hottest topics in the web coding world.

To learn how to create your own mobile web apps, look no farther than the
two chapters in Book 8.

What’s the Difference between Web
Coding and Web Development?

After all this talk of HTML, CSS, MySQL, JavaScript, and jQuery, after the bird’s-
eye view of dynamic sites, web apps, and mobile web apps, you might be won-
dering when the heck I’m going to answer the most pressing question of the all:
What in the name of Sir Tim Berners-Lee (inventor of the web) is the difference
between web coding and web development?

I’m glad you asked! Some people would probably answer that question by saying
that there’s no real difference at all, because “web coding” and “web develop-
ment” are two ways of referring to the same thing: Creating web pages using
programming tools.

Hey, it’s a free country, but to my mind I think there’s a useful distinction to be
made between web coding and web development:

 » Web coding is the pure programming part of creating a web page, particularly
using JavaScript/jQuery on the front end and PHP on the back end.

 » Web development is the complete web page creation package, from building a
page with HTML tags, to formatting the page with CSS, to storing data on the
back end with MySQL, to accessing that data with PHP, to bridging the front
and back ends using JavaScript and jQuery.

However you look at it, this book teaches you everything you need to know to
become both a web coder and a web developer.

CHAPTER 2 Setting Up Your Web Development Home 21

Setting Up Your Web
Development Home

He is happiest, be he king or peasant, who finds peace in his home.

— JOHANN WOLFGANG VON GOETHE

One of the truly amazing things about web development is that, with the
exception of the databases on the server, all you ever work with are basic
text files. But surely all the structure you add with HTML tags requires

some obscure and complex file type? No way, José: It’s text all the way down. What
about all that formatting stuff associated with CSS? Nope: nothing but text. PHP?
Text. JavaScript and jQuery? Text and, again, text.

What this text-only landscape means is that you don’t need any highfalutin,
high-priced software to develop for the web. A humble text editor is all you require
to dip a toe or two in the web coding waters.

But what if you want to get more than your feet wet in web coding? What if you
want to dive in, swim around, perhaps do a little snorkeling? Ah, then you need to
take things up a notch or three and set up a proper web development environment

Chapter 2

IN THIS CHAPTER

 » Understanding the need for a web
development environment

 » Gathering the tools you need for a
local development setup

 » Installing a local web development
environment on a Windows PC

 » Installing a local web development
environment on a Mac

 » Learning what to look for in a good
text editor

22 BOOK 1 Getting Ready to Code for the Web

on your computer. This will give you everything you need to build, test, and refine
your web development projects. In this chapter, you get your web coding adven-
ture off to a rousing start by exploring how to set up a complete web development
environment on your Windows PC or Mac.

What Is a Local Web Development
Environment?

In programming circles, an integrated development environment (IDE) is a collection
of software programs that make it easy and efficient to write code. Most develop-
ment environments are tailored to a particular programming language and come
with tools for editing, testing, and compiling code (that is, converting the code to
its final form as an application).

In the web coding game, we don’t have IDEs, per se, but we do have a similar beast
called a local web development environment, which is also a collection of software. It
usually includes the following:

 » A web server

 » A relational database management system (RDBMS) to run on the web server

 » A server-side programming language

 » An interface for controlling (starting, stopping, and so on) the web server

 » An interface for accessing and manipulating the RDBMS

The key point to grok here is that this is a “local” web development environment,
which means that it gets installed on your PC or Mac. This enables you to build
and test your web development projects right on your computer. You don’t need
a web hosting service or even an Internet connection, for that matter. Everything
runs conveniently on your computer, so you can concentrate on coding and leave
the deployment of the site until you’re ready.

Do You Need a Local Web
Development Environment?

Okay, if it’s possible to use a simple text editor to develop web pages, why not
do just that? After all, every Windows PC and Mac in existence comes with a

Se
tt

in
g

U
p

Yo
ur

 W
eb

D

ev
el

op
m

en
t

H
om

e

CHAPTER 2 Setting Up Your Web Development Home 23

pre-installed text editor, and there are lots of free third-party text editors ripe for
downloading, so why bother installing the software for a local web development
environment?

To be perfectly honest, I’m not going to stand here and tell you that a local web
development setup is a must. Certainly if all you’re doing for now is getting
started with a few static web pages built using HTML, CSS, and JavaScript, then
you don’t yet need access to the back end. Similarly, if you’re building websites
and web apps for your own use and you already have a web host that gives you
access to MySQL and PHP, then you can definitely get away with using just your
trusty text editor.

However, there are two major exceptions that pretty much require you to build
your web stuff locally:

 » If you’re building a website or app for someone else and you don’t have
access to their web server.

 » If you’re building a new version of an existing website or app, which means
that you don’t want to mess with the production code while tinkering (and
therefore making mistakes) with the new code.

That said, there’s also something undeniably cool about having a big-time
web server purring away in the background of your computer. So, even if you
don’t think you’ll need a full-blown web development environment in the short
term, think about installing one anyway, if only so you can say you’re “running
Apache 2.4 locally” at your next cocktail party.

Setting Up the XAMPP for Windows
Development Environment

If you’re running Windows, then I highly recommend the web development envi-
ronment XAMPP for Windows, which in its most recent version (at least as I write
this in early 2018) requires Windows Vista or later. XAMPP for Windows is loaded
with dozens of features, but for our needs the following are the most important:

 » Apache: This is an open-source web server that runs about half of all the
websites on Earth.

 » MariaDB: This is an open-source server database that is fully compatible with
MySQL (discussed in Book 1, Chapter 1).

24 BOOK 1 Getting Ready to Code for the Web

 » PHP: This is the server-side programming language that I talk about briefly in
Book 1, Chapter 1.

 » phpMyAdmin: This is an interface that enables you to access and manipulate
MariaDB databases.

So all of this requires big bucks, right? Nope. XAMPP for Windows is completely
free.

To get started, head for the Apache Friends website at www.apachefriends.org,
and then download XAMPP for Windows. Be sure to get the most recent version.

Installing XAMPP for Windows
Once the download is complete, follow these steps to install XAMPP for Windows:

1. Open the installation file that you downloaded.

The download is an executable file, so you can double-click it to get the
installation off the ground.

2. Enter your User Account Control (UAC) credentials to allow the install.

If you’re the administrator of your PC, click Yes. Otherwise, you need to enter
the username and password of the PC’s administrator account.

3. When XAMPP displays a warning about installing with UAC activated,
click OK.

This oddly worded warning means that if you install XAMPP in the default
folder (usually C:\Program Files), then it might have problems running
normally because UAC imposes restrictions on that folder. You can ignore this
because later (see Step 6) I show you how to install XAMPP in a different folder
that doesn’t suffer from this problem.

4. When the XAMPP Setup Wizard appears, click Next.

5. In the Select Components dialog box (see Figure 2-1), deselect the check
box beside any component you don’t want installed, and then click Next.

For a basic install, you only need Apache, MySQL, PHP, and phpMyAdmin.
If your PC is running low on disk space, consider not installing the other
components. If you’re rich in disk space, go ahead and install everything
because, hey, after all of this you might be inspired to learn Perl (which is
another server-side programming language).

https://www.apachefriends.org/

Se
tt

in
g

U
p

Yo
ur

 W
eb

D

ev
el

op
m

en
t

H
om

e

CHAPTER 2 Setting Up Your Web Development Home 25

6. In the Installation Folder dialog box, type the location where you want
XAMPP installed, then click Next.

Be sure to avoid the folders C:\Program Files and C:\Program Files
(x86), for the reason I described back in Step 3. Most folks create a xampp
folder in C:\ and install everything there (see Figure 2-2).

7. The Setup Wizard lets you know that Bitnami for XAMPP can install
content management systems such as WordPress and Drupal. Click OK.

If you don’t care about any of this, be sure to deselect the Learn More About
Bitnami for XAMPP check box before you click OK.

8. Click Next to begin the installation.

9. If you see a Windows Security Alert similar to the one shown in Figure 2-3,
select the Private Networks check box, deselect the Public Networks
check box, and then click Allow Access.

FIGURE 2-1:
Use this Setup

Wizard dialog box
to deselect the

check box beside
any component
you don’t want

installed.

FIGURE 2-2:
To install XAMPP,

use a subfolder
in the main C:\
folder (such as

C:\xampp).

26 BOOK 1 Getting Ready to Code for the Web

However, just because you select the Private Networks check box, it doesn’t
mean that people on your network can access (much less mess with) your local
web server. XAMPP for Windows is configured out of the box to be accessible
only from the computer on which it’s installed.

10. When the install is complete, click Finish.

Be sure to deselect the Do You Want to Start the Control Panel Now check box.
I talk about the correct way to start the Control Panel in the next section.

Running the XAMPP for
Windows Control Panel
The XAMPP Control Panel enables you to start, stop, and configure the XAMPP
apps, particularly the Apache web server and the MySQL database system. For best
results, you should start the program with administrator privileges, which you
can do by following these steps:

1. Click Start.

2. Find and open the XAMPP folder in the All Apps list.

Depending on your version of Windows, you might have to click All Apps to get
to the All Apps list.

3. Right-click XAMPP Control Panel, click More, and then click Run as
Administrator.

FIGURE 2-3:
If the Windows

Security Alert
 dialog box shows

up, be sure to
allow Apache to

communicate
on your private

network, but not
on any public

networks.

Se
tt

in
g

U
p

Yo
ur

 W
eb

D

ev
el

op
m

en
t

H
om

e

CHAPTER 2 Setting Up Your Web Development Home 27

Depending on your version of Windows, you might not have to click More to
get to the Run as Administrator command.

4. If you’re the administrator of your PC, click Yes. Otherwise, you need to
enter the username and password of the PC’s administrator account.

5. The first time you run the Control Panel, you’re asked to choose a
language. Select the radio button for the language you prefer, then
click Save.

The XAMPP Control Panel appears, as shown in Figure 2-4.

To start an app, click the corresponding Start button. That button name changes
to Stop, meaning you can later stop the service by clicking its Stop button.

You’ll always want the Apache and MySQL apps running, so you can save a bit
of time by having the XAMPP Control Panel launch these two apps automatically
when you open the program. Click Config, select the Apache and MySQL check
boxes, and then click Save.

If when you start an app you see a Windows Security Alert dialog box similar to the
one shown earlier in Figure 2-3. Select the Private Networks check box, deselect
the Public Networks check box, and then click Allow Access.

Accessing your local web server
With XAMPP for Windows installed and Apache up and running, congratulations
are in order: You’ve got a web server running on your PC! That’s great, but how do

FIGURE 2-4:
You use the

XAMPP Control
Panel to control

and configure
apps such as
Apache and

MySQL.

28 BOOK 1 Getting Ready to Code for the Web

you access your shiny, new web server? There are two ways, depending on what
you’re doing:

 » Adding files and folders to the web server: Place the files and folders in the
htdocs subfolder of your main XAMPP install folder. For example, if you
installed XAMPP to C:\xampp, then your web server’s root folder will be
C:\xampp\htdocs.

 » Viewing the files and folders on the server: Open your favorite web
browser and navigate to the localhost address (or to 127.0.0.1, which gets
you to the same place). If you have the XAMPP Control Panel open, you can
also click the Apache app’s Admin button.

By default, your local website is configured to automatically redirect localhost to
localhost/dashboard/, shown in Figure 2-5, which gives you access to several
XAMPP tools.

In the page header, you can use the following links:

 » Apache Friends: Returns you to the main Dashboard page.

 » Applications: Provides information about installing Bitnami applications on
the server.

 » FAQs: Displays a list of XAMPP frequently asked questions.

 » How-To Guides: Displays a list of links to step-by-step guides for a number of
XAMPP for Windows tasks.

 » PHPInfo: Displays a for-geeks-only page of information about the version of
PHP that you have installed.

FIGURE 2-5:
The localhost/

dashboard/
address gives you

access to a few
XAMPP tools.

Se
tt

in
g

U
p

Yo
ur

 W
eb

D

ev
el

op
m

en
t

H
om

e

CHAPTER 2 Setting Up Your Web Development Home 29

 » phpMyAdmin: Opens the phpMyAdmin tool, which lets you create and
manipulate MariaDB/MySQL databases. You can also open phpMyAdmin by
navigating directly to localhost/phpmyadmin/, or in the XAMPP Control
Panel, by clicking the MySQL app’s Admin button. However you get there, just
be sure to have the MySQL app running before you open phpMyAdmin.

Setting Up the XAMPP for OS X
Development Environment

If you’ll be doing your web work on a Mac, then I recommend the web development
environment XAMPP for OS X, which in its most recent version (at least as I write
this in early 2018) requires OS X Snow Leopard (10.6) or later. XAMPP for OS X
is packed with programs and features, but you’ll probably only concern yourself
with the following:

 » Apache: This is an open-source web server that runs about half of all the
websites on Earth.

 » MariaDB: This is an open-source server database that is fully compatible with
MySQL (discussed in Book 1, Chapter 1).

 » PHP: This is the server-side programming language that I mention in Book 1,
Chapter 1.

 » phpMyAdmin: This is an interface that enables you to access and work with
MariaDB databases.

The best news of all is XAMPP for OS X is completely, utterly, and forever free. Nice!
To get the show on the road, surf to the Apache Friends website at www.apache
friends.org, and then download the most recent version of XAMPP for OS X.

Installing XAMPP for OS X
Once the download is done, follow these steps to install XAMPP for OS X:

1. Double-click the installation file that you downloaded.

2. Double-click the XAMPP icon.

3. If macOS warns you about opening an application downloaded from the
Internet, say “It’s cool, bro” and click Open.

4. Enter your macOS administrator password and then click OK.

https://www.apachefriends.org/
https://www.apachefriends.org/

30 BOOK 1 Getting Ready to Code for the Web

5. When the XAMPP Setup Wizard appears, click Next.

6. In the Select Components dialog, deselect the XAMPP Developer Files
check box, as shown in Figure 2-6, and then click Next.

The developer files might sound like they’re right up your alley, but they’re
actually for people who want to add to or modify the code for XAMPP itself.

7. In the Installation Directory dialog, click Next.

8. The Setup Wizard lets you know that Bitnami for XAMPP can install
content management systems such as WordPress and Drupal. Click Next.

If you don’t care about any of this, be sure to deselect the Learn More About
Bitnami for XAMPP check box before you click Next.

9. Click Next to launch the installation.

10. When the install is complete, click Finish.

If you want to head right into the XAMPP Manager, leave the Launch XAMPP
check box selected.

What about the security of your local web server? Fortunately, that’s not an
issue because people on your network can’t access your web server. XAMPP is
configured by default to be accessible only from the Mac on which it’s installed.

Running the XAMPP Application Manager
The XAMPP Application Manager enables you to start, stop, and configure the
XAMPP servers, particularly the Apache web server and the MySQL database
 system. To launch the XAMPP Application Manager, you have two choices:

FIGURE 2-6:
Use this Setup
Wizard dialog

to deselect
the check box
beside XAMPP

Developer Files.

Se
tt

in
g

U
p

Yo
ur

 W
eb

D

ev
el

op
m

en
t

H
om

e

CHAPTER 2 Setting Up Your Web Development Home 31

 » If you still have the final Setup Wizard dialog onscreen, leave the Launch
XAMPP check box selected and click Finish.

 » In Finder, open the Applications folder, open the XAMPP folder, and then
double-click Manager-OSX.

The XAMPP Application Manager appears. To work with the XAMPP servers, click
the Manage Servers tab, shown in Figure 2-7.

In the Manage Servers tab, you can perform the following actions:

 » Start a server. Click the server and then click Start.

 » Start all the servers. Click Start All.

 » Restart a server. Click the server and then click Restart.

 » Restart all the servers. Click Restart All.

 » Stop a server. Click the server and then click Stop.

 » Stop all the servers. Click Stop All.

Accessing your local web server
With XAMPP for OS X installed and Apache up and running, it’s time for high-
fives all around because you’ve got a web server running on your Mac! That’s

FIGURE 2-7:
You use the

XAMPP Control
Panel to control

and configure
services such

as Apache and
MySQL.

32 BOOK 1 Getting Ready to Code for the Web

awesome, but how do you access your web server? There are two ways, depending
on what you’re doing:

 » Adding files and folders to the web server: Place the files and folders in the
htdocs subfolder of your main XAMPP install folder. To get there, open
Applications, then XAMPP, then double-click htdocs. If you have the XAMPP
Application Manager open, click the Welcome tab, click Open Application
Folder, then open htdocs.

 » Viewing the files and folders on the server: Open your favorite web
browser and navigate to the localhost address (or to 127.0.0.1, which gets
you to the same place). If you have the XAMPP Application Manager running,
click the Welcome tab and then click Go To Application.

By default, your local website is configured to automatically redirect localhost to
localhost/dashboard/, shown in Figure 2-8, which gives you access to several
XAMPP tools.

In the page header, you can use the following links:

 » Apache Friends: Returns you to the main Dashboard page.

 » Applications: Provides information about installing Bitnami applications on
the server.

 » FAQs: Displays a list of XAMPP frequently asked questions.

 » How-To Guides: Displays a list of links to step-by-step guides for a number of
XAMPP for OS X tasks.

FIGURE 2-8:
The localhost/

dashboard/
address gives you

access to a few
XAMPP for OS X

features.

Se
tt

in
g

U
p

Yo
ur

 W
eb

D

ev
el

op
m

en
t

H
om

e

CHAPTER 2 Setting Up Your Web Development Home 33

 » PHPInfo: Displays a for-geeks-only page of information about the version of
PHP that you have installed.

 » phpMyAdmin: Opens the phpMyAdmin tool, which lets you create and
manipulate MariaDB/MySQL databases. You can also open phpMyAdmin by
navigating directly to localhost/phpmyadmin/. Either way, make sure you
have the MySQL Database server running before you open phpMyAdmin.

Choosing Your Text Editor
I mention at the beginning of this chapter that all you need to develop web pages
is a text editor. However, saying that all you need to code is a text editor is like
saying that all you need to live is food: It’s certainly true, but more than a little
short on specifics. After all, to a large extent the quality of your life depends on the
food you eat. If you survive on nothing but bread and water, well “surviving” is all
you’re doing. What you really need is a balanced diet that supplies all the nutrients
your body needs. And pie.

The bread-and-water version of a text editor is the barebones program that came
with your computer: Notepad if you run Windows, or TextEdit if you have a Mac.
You can survive as a web developer using these programs, but that’s not living, if
you ask me. You need the editing equivalent of vitamins and minerals (and, yes,
pie) if you want to flourish as a web coder. These nutrients are the features and
tools that are crucial to being an efficient and organized developer:

 » Syntax highlighting: Syntax refers to the arrangement of characters and
symbols that create correct programming code, and syntax highlighting is an
editing feature that color-codes certain syntax elements for easier reading.
For example, while regular text might appear black, all the HTML tags might
be shown in blue and the CSS properties might appear red. The best text
editors let you choose the syntax colors, either by offering prefab themes, or
by letting you apply custom colors.

 » Line numbers: It might seem like a small thing, but having a text editor that
numbers each line, as shown in Figure 2-9, can be a major timesaver. When the
web browser alerts you to an error in your code (see Book 3, Chapter 9), it gives
you an error message and, crucially, the line number of the error. This enables
you to quickly locate the culprit and (fingers crossed) fix the problem pronto.

 » Code previews: A good text editor will let you see a preview of how your code
will look in a web browser. The preview might appear in the same window as
your code, or in a separate window, and it should update automatically as you
modify and save your code.

34 BOOK 1 Getting Ready to Code for the Web

 » Code completion: This is a handy feature that, when you start typing
something, displays a list of possible code items that complete your typing.
You can then select the one you want and press Tab or Enter to add it to your
code without having to type the whole thing.

 » Text processing: The best text editors offer a selection of text processing
features, such as automatic indentation of code blocks, converting tabs to
spaces and vice versa, shifting chunks of code right or left, removing
unneeded spaces at the end of lines, hiding blocks of code, and more.

The good news is that there’s no shortage of text editors that support all these
features and many more. That’s also the bad news, because it means you have a
huge range of programs to choose from. To help you get started, here, in alpha-
betical order, are a few editors to take for test drives:

 » Atom: Available for Windows and Mac. Free!  http://atom.io

 » Brackets: Available for Windows and Mac. Also free!  http://brackets.io/

 » Coda: Available for Mac only. $99, but a free trial is available. www.panic.
com/coda

 » Notepad++: Available for Windows only. Another freebie. https://notepad-
plus-plus.org/

 » Sublime Text: Available for both Windows and Mac. $80, but a free trial is
available. www.sublimetext.com

 » TextMate: Available for Mac only. $60, but a free trial is available. http://
macromates.com/

FIGURE 2-9:
Line numbers, as
seen here down

the left side of
the window, are a
crucial text editor

feature.

http://atom.io
http://brackets.io/
https://www.panic.com/coda/
https://www.panic.com/coda/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
http://www.sublimetext.com/
http://macromates.com/
http://macromates.com/

CHAPTER 3 Finding and Setting Up a Web Host 35

Finding and Setting
Up a Web Host

You will end up with better software by releasing as early as practically
possible, and then spending the rest of your time iterating rapidly based on
real-world feedback. So trust me on this one: Even if version 1 sucks, ship it
anyway.

— JEFF ATTWOOD

You build your web pages from the comfort of your Mac or PC, and if you’ve
chosen your text editor well (as I describe in Book 1, Chapter 2), then you
can even use your computer to preview how your web pages will look in a

browser.

That’s fine and dandy, but I think you’ll agree that the whole point of building a
web page is to, you know, put it on the web! First, you need to subject your code
to the wilds of the wider web to make sure it works out there. Even if it seems to
be running like a champ on your local server, you can’t give it the seal of approval
until you’ve proven that it runs champlike on a remote server. Second, once your
code is ready, then the only way the public can appreciate your handiwork is to get
it out where they can see it.

Chapter 3

IN THIS CHAPTER

 » Understanding web hosting providers

 » Examining the various choices for
hosting your site

 » Choosing the host that’s right for you

 » Looking around your new web home

 » Getting your site files to your
web host

36 BOOK 1 Getting Ready to Code for the Web

Whether you’re testing or shipping your code, you need somewhere to put it, and
that’s what this chapter is about. Here you explore the wide and sometimes wacky
world of web hosts. You delve into what they offer, investigate ways to choose a
good one, and then take a tour of your web home away from home.

Understanding Web Hosting Providers
A common question posed by web development newcomers is “Where the heck do
I put my web page when it’s done?” If you’ve asked that question, you’re doing
okay because it means you’re clued in to something crucial: Just because you’ve
created a web page and you have an Internet connection doesn’t mean your site is
automatically a part of the web.

After all, people on the web have no way of getting to your computer. Even if
you’re working with a local web development environment (which I discuss in
Book 1, Chapter 2), you’re working in splendid isolation because no one either on
your network or on the Internet can access that environment.

In other words, your computer isn’t set up to hand out documents (such as web
pages) to remote visitors who ask for them. Computers that can do this are called
servers (because they “serve” stuff out to the web), and computers that special-
ize in distributing web pages are called web servers. So your web page isn’t on the
web until you store it on a remote web server. Because this computer is, in effect,
playing “host” to your pages, such machines are also called web hosts. Companies
that run these web hosts are called web hosting providers.

Now, just how do you go about finding a web host? Well, the answer to that
depends on a bunch of factors, including the type of site you have, how you get
connected to the Internet in the first place, and how much money (if any) you’re
willing to fork out for the privilege. In the end, you have three choices:

 » Your existing Internet provider

 » A free hosting provider

 » A commercial hosting provider

Using your existing Internet provider
If you access the Internet via a corporate or educational network, your institu-
tion might have its own web server you can use. If you get online via an Inter-
net service provider (ISP), phone or email its customer service department to ask

Fi
nd

in
g

an
d

Se
tt

in
g

U
p

a
W

eb
 H

os
t

CHAPTER 3 Finding and Setting Up a Web Host 37

whether the company has a web server available. Almost all ISPs provide space so
their customers can put up personal pages free of charge.

Finding a free hosting provider
If cash is in short supply, a few hosting providers will bring your website in from
the cold out of the goodness of their hearts. In some cases, these services are open
only to specific groups such as students, artists, nonprofit organizations, and so
on. However, plenty of providers put up personal sites free of charge.

What’s the catch? Well, there are almost always restrictions both on how much
data you can store and on the type of data you can store (no ads, no dirty pictures,
and so on). You might also be required to display some kind of “banner” adver-
tisement for the hosting provider on your pages.

Signing up with a commercial
hosting provider
For personal and business-related websites, many web artisans end up renting
a chunk of a web server from a commercial hosting provider. You normally hand
over a setup fee to get your account going and then you’re looking at a monthly fee.

Why shell out all that dough when there are so many free sites lying around?
Because, as with most things in life, you get what you pay for. By paying for your
host, you generally get more features, better service, and fewer annoyances (such
as the ads that some free sites have to display).

A Buyer’s Guide to Web Hosting
Unfortunately, choosing a web host isn’t as straightforward as you might like it
to be. For one thing, hundreds of hosts are out there clamoring for your business;
for another, the pitches and come-ons your average web host employs are strewn
with jargon and technical terms. I can’t help reduce the number of web hosts, but
I can help you understand what those hosts are yammering on about. Here’s a list
of the terms you’re most likely to come across when researching web hosts:

 » Storage space: Refers to the amount of room allotted to you on the host’s
web server to store your files. The amount of acreage you get determines the
amount of data you can store. For example, if you get a 1MB (1 megabyte)
limit, you can’t store more than 1MB worth of files on the server. HTML files

38 BOOK 1 Getting Ready to Code for the Web

don’t take up much real estate, but large graphics sure do, so you need to
watch your limit. For example, you could probably store about 200 pages in
1MB of storage (assuming about 5KB per page), but only about 20 images
(assuming about 50KB per image). Generally speaking, the more you pay for a
host, the more storage space you get.

 » Bandwidth: A measure of how much of your data the server serves. For
example, suppose the HTML file for your page is 1KB (1 kilobyte) and the
graphics associated with the page consume 9KB. If someone accesses your
page, the server ships out a total of 10KB; if ten people access the page (either
at the same time or over a period of time), the total bandwidth is 100KB. Most
hosts give you a bandwidth limit (or “cap”), which is most often a certain
number of megabytes or gigabytes per month. (A gigabyte is equal to about
1,000 megabytes.) Again, the more you pay, the greater the bandwidth
you get.

If you exceed your bandwidth limit, users will usually still be able to get to
your pages (although some hosts shut down access to an offending site).
However, almost all web hosts charge you an extra fee for exceeding your
bandwidth, so check this out before signing up. The usual penalty is a set fee
per every megabyte or gigabyte over your cap.

 » Domain name: A general Internet address, such as wiley.com or whitehouse.gov.
They tend to be easier to remember than the long-winded addresses most web
hosts supply you by default, so they’re a popular feature. Two types of domain
names are available:

• A regular domain name (such as yourdomain.com or yourdomain.org)

• A subdomain name (such as yourdomain.webhostdomain.com)

To get a regular domain, you either need to use one of the many domain
registration services such as GoDaddy or Register.com. A more convenient
route is to choose a web hosting provider that will do this for you. Either way, it
will usually cost you $35 per year (although some hosts offer cheap domains as
a “loss leader” and recoup their costs with hosting fees; also, discount domain
registrars such as GoDaddy offer domains for as little as $9.99 per year). If you
go the direct route, almost all web hosts will host your domain, which means
that people who use your domain name will get directed to your website on the
host’s web server. For this to work, you must tweak the domain settings on the
registrar. This usually involves changing the DNS servers associated with the
domain so that they point at the web host’s domain name servers. Your web
host will give you instructions on how to do this.

With a subdomain name, “webhostdomain.com” is the domain name of the
web hosting company, and it simply tacks on whatever name you want to
the beginning. Many web hosts will provide you with this type of domain,
often for free.

http://www.godaddy.com/
http://www.register.com

Fi
nd

in
g

an
d

Se
tt

in
g

U
p

a
W

eb
 H

os
t

CHAPTER 3 Finding and Setting Up a Web Host 39

 » Email addresses: Most hosts offer you one or more email addresses along
with your web space. The more you pay, the more mailboxes you get. Some
hosts offer email forwarding, which enables you to have messages that are
sent to your web host address rerouted to some other email address.

 » Shared server: If the host offers a shared server (or virtual server), it means
that you’ll be sharing the server with other websites — dozens or even
hundreds of them. The web host takes care of all the highly technical server
management chores, so all you have to do is maintain your site. This is by far
the best (and cheapest) choice for individuals or small business types.

 » Dedicated server: You get your very own server computer on the host. That
may sound like a good thing, but it’s usually up to you to manage the server,
which can be a dauntingly technical task. Also, dedicated servers are much
more expensive than shared servers.

 » Operating system: The operating system on the web server. You usually
have two choices: Unix (or Linux) and Windows Server. Unix systems have the
reputation of being very reliable and fast, even under heavy traffic loads, so
they’re usually the best choice for a shared server. Windows systems are a
better choice for dedicated servers because they’re easier to administer than
their Unix brethren. Note, too, that Unix servers are case sensitive in terms of
file and directory names, while Windows servers are not.

 » Databases: The number of databases you get to create with your account.
Unix systems usually offer MySQL databases, whereas Windows servers offer
SQL Server databases.

 » Administration interface: This is the host app that you use to perform tasks
on the server, such as uploading files or creating users. Many hosts offer the
excellent cPanel interface, and most Unix-based systems offer the phpMyAd-
min app for managing your MySQL data.

 » Ad requirements: A few free web hosts require you to display some type of
advertising on your pages. This could be a banner ad across the top of the
page, a “pop-up” ad that appears each time a person accesses your pages, or
a “watermark” ad, usually a semitransparent logo that hovers over your page.
Fortunately, free hosts that insist on ads are rare these days.

 » Uptime: The percentage of time the host’s server is up and serving. There’s no
such thing as 100 percent uptime because all servers require maintenance
and upgrades at some point. However, the best hosts have uptime numbers
over 99 percent. (If a host doesn’t advertise its uptime, it’s probably because
it’s very low. Be sure to ask before committing yourself.)

 » Tech support: If you have problems setting up or accessing your site, you
want to know that help — in the form of tech support — is just around the
corner. The best hosts offer 24/7 tech support, which means you can contact
the company — either by phone or email — 24 hours a day, 7 days a week.

40 BOOK 1 Getting Ready to Code for the Web

 » FTP support: You usually use the Internet’s FTP service to transfer your files
from your computer to the web host. If a host offers FTP access (some hosts
have their own method for transferring files), be sure you can use it any time
you want and there are no restrictions on the amount of data you can transfer
at one time.

 » Website statistics: Tell you things such as how many people have visited
your site, which pages are the most popular, how much bandwidth you’re
consuming, which browsers and browser versions surfers are using, and
more. Most decent hosts offer a ready-made stats package, but the best ones
also give you access to the “raw” log files so you can play with the data
yourself.

 » Ecommerce: Some hosts offer a service that lets you set up a web “store” so
you can sell stuff on your site. That service usually includes a “shopping script,”
access to credit card authorization and other payment systems, and the ability
to set up a secure connection. You usually get this only in the more expensive
hosting packages, and you’ll most often have to pay a setup fee to get your
store built.

 » Scalability: The host is able to modify your site’s features as required. For
example, if your site becomes very popular, you might need to increase your
bandwidth limit. If the host is scalable, it can easily change your limit (or any
other feature of your site).

Finding a Web Host
Okay, you’re ready to start researching the hosts to find one that suits your web
style. As I mention earlier, there are hundreds, perhaps even thousands, of hosts,
so how is a body supposed to whittle them down to some kind of short list? Here
are some ideas:

 » Ask your friends and colleagues. The best way to find a good host is that old
standby, word of mouth. If someone you trust says a host is good, chances
are you won’t be disappointed. This is assuming you and your pal have similar
hosting needs. If you want a full-blown ecommerce site, don’t solicit recom-
mendations from someone who has only a humble home page.

 » Solicit host reviews from experts. Ask existing webmasters and other
people “in the know” about which hosts they recommend or have heard good
things about. A good place to find such experts is Web Hosting Talk (www.
webhostingtalk.com), a collection of forums related to web hosting.

http://www.webhostingtalk.com/
http://www.webhostingtalk.com/

Fi
nd

in
g

an
d

Se
tt

in
g

U
p

a
W

eb
 H

os
t

CHAPTER 3 Finding and Setting Up a Web Host 41

 » Contact web host customers. Visit sites that use a particular web host, and
send an email message to the webmaster asking what she thinks of the host’s
service.

 » Peruse the lists of web hosts. A number of sites track and compare web
hosts, so they’re an easy way to get in a lot of research. Careful, though,
because there are a lot of sketchy lists out there that are only trying to make a
buck by getting you to click ads. Here are some reputable places to start:

• CNET Web Hosting Solutions: www.cnet.com/web-hosting

• PC Magazine Web Site Hosting Services Reviews: www.pcmag.com/
reviews/web-hosting-services

• Review Hell: www.reviewhell.com

• Review Signal Web Hosting Reviews: http://reviewsignal.com/
webhosting

Finding Your Way around
Your New Web Home

After you sign up with a web hosting provider and your account is established, the
web administrator creates two things for you: a directory on the server you can
use to store your website files, and your very own web address. (This is also true if
you’re using a web server associated with your corporate or school network.) The
directory — which is known in the biz as your root directory — usually takes one
of the following forms:

/yourname/
/home/yourname/
/yourname/public_html/

In each case, yourname is the login name (or username) the provider assigns to
you, or it may be your domain name (with or without the .com part). Remember,
your root directory is a slice of the host’s web server, and this slice is yours to
monkey around with as you see fit. This usually means you can do all or most of
the following to the root:

 » Add files to the directory.

 » Add subdirectories to the directory.

 » Move or copy files from one directory to another.

https://www.cnet.com/web-hosting/
https://www.pcmag.com/reviews/web-hosting-services
https://www.pcmag.com/reviews/web-hosting-services
https://www.reviewhell.com/
http://reviewsignal.com/webhosting
http://reviewsignal.com/webhosting

42 BOOK 1 Getting Ready to Code for the Web

 » Rename files or directories.

 » Delete files from the directory.

Your web address normally takes one of the following shapes:

http://provider/yourname/
http://yourname.provider/
http://www.yourname.com/

Here, provider is the host name of your provider (for example, www.host
company.com or just hostcompany.com), and yourname is your login name or
domain name. Here are some examples:

http://www.hostcompany.com/mywebsite/
http://mywebsite.hostcompany.com/
http://www.mywebsite.com/

Your directory and your web address
There’s a direct and important relationship between your server directory and
your address. That is, your address actually “points to” your directory and enables
other people to view the files you store in that directory. For example, suppose
I decide to store a file named thingamajig.html in my directory and my main
address is http://mywebsite.hostcompany.com/. This means someone else can
view that page by typing the following URL into a web browser:

http://mywebsite.hostcompany.com/thingamajig.html

Similarly, suppose I create a subdirectory named stuff and use it to store a file
named index.html. A surfer can view that file by convincing a web browser to
head for the following URL:

http://mywebsite.hostcompany.com/stuff/index.html

In other words, folks can surf to your files and directories by strategically tacking
on the appropriate filenames and directory names after your main web address.

Making your hard disk mirror
your web home
As a web developer, one of the key ways to keep your projects organized is to set
up your directories on your computer, and then mirror those directories on your
web host. Believe me, this will make your uploading duties immeasurably easier.

Fi
nd

in
g

an
d

Se
tt

in
g

U
p

a
W

eb
 H

os
t

CHAPTER 3 Finding and Setting Up a Web Host 43

Moving a file from your computer to a remote location (such as your web host’s
server) is known in the file transfer trade as uploading.

This process begins at the root. On the web host, you already have a root directory
assigned to you by the hosting provider, so now you need to designate a folder
on your computer to be the root mirror. If you’re using the XAMPP web develop-
ment environment (see Book 1, Chapter 2), then the XAMPP installation’s htdocs
subfolder is perfect as your local root. Otherwise, choose or create a folder on your
computer to use as the local root.

What you do from here depends on the number of web development projects
you’re going to build, and the number of files in each project:

 » A single web development project consisting of just a few files: In this
case, just put all the files into the root directory.

 » A single web development project consisting of many files: The more
likely scenario for a typical web development project is to have multiple HTML,
CSS, JavaScript, and PHP files, plus lots of ancillary files such as images and
fonts. Although it’s okay to place all your HTML files in the root directory, do
yourself a favor and organize all your other files into subfolders by file type: a
css subfolder for CSS files, a js subfolder for JavaScript files, and so on.

 » Multiple web development projects: As a web developer, you’ll almost
certainly create tons of web projects, so it’s crucial to organize them. The ideal
way to do that is to create a separate root subdirectory for each project. Then
within each of these subdirectories, you can create sub-subdirectories for file
types such as CSS, JavaScript, images, and so on.

To help you see why mirroring your local and remote directory structures is so
useful, suppose you set up a subfolder on your computer named graphics that
you use to store your image files. To insert into your page a file named mydog.jpg
from that folder, you’d use the following reference:

graphics/mydog.jpg

When you send your HTML file to the server and you then display the file in a
browser, it looks for mydog.jpg in the graphics subdirectory. If you don’t have
such a subdirectory — either you didn’t create it or you used a different name,
such as images — the browser won’t find mydog.jpg and your image won’t show.
In other words, if you match the subdirectories on your web server with the sub-
folders on your computer, your page will work properly without modifications
both at home and on the web.

44 BOOK 1 Getting Ready to Code for the Web

One common faux pas beginning web developers make is to include the local drive
and all the folder names when referencing a file. Here’s an example:

C:\xampp\htdocs\graphics\mydog.jpg

This image will show up just fine when it’s viewed from your computer, but it
will fail miserably when you upload it to the server and view it on the web. That’s
because the C:\xampp\htdocs\ part exists only on your computer.

The Unix (or Linux) computers that play host to the vast majority of web servers
are downright finicky when it comes to the uppercase and lowercase letters used
in file and directory names. It’s crucial that you check the file references in your
code to be sure the file and directory names you use match the combination of
uppercase and lowercase letters used on your server. For example, suppose you
have a CSS file on your server that’s named styles.css. If your HTML references
that file as, say, STYLES.CSS, the server won’t find the file and your styles won’t
get applied.

Uploading your site files
Once your web page or site is ready for its debut, it’s time to get your files to your
host’s web server. If the server is on your company or school network, you send
the files over the network to the directory set up by your system administrator.
Otherwise, you upload the files to the root directory created for you on the hosting
provider’s web server.

How you go about uploading your site files depends on the web host, but here are
the four most common scenarios:

 » Use an FTP program. It’s a rare web host that doesn’t offer support for the
File Transfer Protocol (FTP, for short), which is the Internet’s most popular
method for transfer files from here to there. To use FTP, you usually need to
get a piece of software called an FTP client, which enables you to connect to
your web host’s FTP server (your host can provide you with instructions for
this) and offers an interface for standard file tasks, such as navigating and
creating folders, uploading the files, deleting and renaming files, and so on.
Popular Windows clients are CuteFTP (www.globalscape.com/cuteftp) and
Cyberduck (https://cyberduck.io). For the Mac, try Transmit (https://
panic.com/transmit) or FileZilla (https://filezilla-project.org).

 » Use your text editor’s file upload feature. Some text editors come with an
FTP client built-in, so you can edit a file and then immediately upload it with a
single command. The Coda text editor (https://panic.com/coda) supports
this too-handy-for-words feature.

https://www.globalscape.com/cuteftp
https://cyberduck.io/
https://panic.com/transmit/
https://panic.com/transmit/
https://filezilla-project.org/
https://panic.com/coda/

Fi
nd

in
g

an
d

Se
tt

in
g

U
p

a
W

eb
 H

os
t

CHAPTER 3 Finding and Setting Up a Web Host 45

 » Use the File Manager feature of cPanel. I mention earlier that lots of web
hosts offer an administration tool called cPanel that offers an interface for
hosting tasks such as email and domain management. cPanel also offers a File
Manager feature that you can use to upload files and perform other file
management chores.

 » Use the web host’s proprietary upload tool. For some reason, a few web
hosts only offer their own proprietary interface for uploading and messing
around with files and directories. See your host’s Help or Support page for
instructions.

Making changes to your web files
What happens if you send a web development file to your web host and then real-
ize you’ve made a typing gaffe or you spy a coding mistake? Or what if you have
more information to add to one of your web pages? How do you make changes to
the files you’ve already sent?

Well, here’s the short answer: You don’t. That’s right, after you’ve sent your
files, you never have to bother with them again. That doesn’t mean you can never
update your site, however. Instead, you make your changes to the files that reside
on your computer and then send these revised files to your web host. These files
replace the old files, and your site is updated just like that.

Be sure you send the updated file to the correct directory on the server. Other-
wise, you may overwrite a file that happens to have the same name in some other
directory.

2Coding the Front
End, Part 1:
HTML & CSS

Contents at a Glance
CHAPTER 1: Structuring the Page with HTML 49

CHAPTER 2: Styling the Page with CSS . 79

CHAPTER 3: Sizing and Positioning Page Elements 103

CHAPTER 4: Creating the Page Layout . 127

CHAPTER 1 Structuring the Page with HTML 49

Structuring the Page
with HTML

I am always fascinated by the structure of things; why do things work this way
and not that way.

— URSUS WEHRLI

When it comes to web development, it’s no exaggeration to say that the
one indispensable thing, the sine qua non for those of you who studied
Latin in school, is HTML. That’s because absolutely everything else you

make as a web developer — your CSS rules, your JavaScript code, even your PHP
scripts — can’t hang its hat anywhere but on some HTML. These other web devel-
opment technologies don’t even make sense outside of an HTML context.

So, in a sense, this chapter is the most important for you as a web coder because
all the rest of the book depends to a greater or lesser degree on the HTML know-
how found in the following pages. If that sounds intimidating, not to worry: One
of the great things about HTML is that it’s not a huge topic, so you can get up to
full HTML speed without a massive investment of time and effort.

Because HTML is so important, you’ll be happy to know that I don’t rush things.
You’ll get a thorough grounding in all things HTML, and when you’re done you’ll
be more than ready to tackle the rest of your web development education.

Chapter 1

IN THIS CHAPTER

 » Getting comfy with HTML

 » Figuring out HTML tags and attributes

 » Understanding the basic blueprint for
all web pages

 » Adding text, images, and links to
your page

 » Building bulleted and numbered lists

50 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Getting the Hang of HTML
Building a web page from scratch using your bare hands may seem like a daunt-
ing task. It doesn’t help that the codes you use to set up, configure, and format
a web page are called the Hypertext Markup Language (HTML for short), a name
that could only warm the cockles of a geek’s heart. I take a mercifully brief look
at each term:

 » Hypertext: In prehistoric times — that is, the 1980s — tall-forehead types
referred to any text that, when selected, takes you to a different document, as
hypertext. So this is just an oblique reference to the links that are the defining
characteristic of web pages.

 » Markup: Instructions that specify how the content of a web page should be
displayed in the web browser.

 » Language: The set of codes that comprise all the markup possibilities for a
page.

But even though the name HTML is intimidating, the codes used by HTML aren’t
even close to being hard to learn. There are only a few of them, and in many cases
they even make sense!

At its most basic, HTML is nothing more than a collection of markup codes —
called tags — that specify the structure of your web page. In HTML, “structure” is
a rubbery concept that can refer to anything from the overall layout of the page all
the way down to a single word or even just a character or two.

You can think of a tag as a kind of container. What types of things can it contain?
Mostly text, although lots of tags contain things like chunks of the web page and
even other tags.

Most tags use the following generic format:

<tag>content</tag>

What you have here are a couple codes that define a container. Most of these codes
are one- or two-letter abbreviations, but sometimes they’re entire words. You
always surround these codes with angle brackets <>; the brackets tell the web
browser that it’s dealing with a chunk of HTML and not just some random text.

The first of these codes — <tag> — is called the start tag and it marks the opening
of the container; the second of the codes — </tag> — is called the end tag and it
marks the closing of the container. (Note the extra slash (/) that appears in the
end tag.)

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 51

In between you have the content, which refers to whatever is contained in the
tag. For example, I start with a simple sentence that might appear in a web page:

Okay, listen up people because this is important!

Figure 1-1 shows how this might look in a web browser.

Ho hum, right? Suppose you want to punch this up a bit by emphasizing “impor-
tant.” In HTML, the tag for emphasis is , so you’d modify your sentence
like so:

Okay, listen up people because this is important!

See how I’ve surrounded the word important with and ? The first
is the start tag and it says to the browser, “Yo, Browser Boy! You know the text
that comes after this? Be a good fellow and treat it as emphasized text.” This con-
tinues until the browser reaches the end tag , which lets the browser know
it’s supposed to stop what it’s doing. So the tells the browser, “Okay, okay,
that’s enough with the emphasis already!”

All web browsers display emphasized text in italics, so that’s how the word now
appears, as you can eyeball in Figure 1-2.

There are tags for lots of other structures, including important text, paragraphs,
headings, page titles, links, and lists. HTML is just the sum total of all these tags.

One of the most common mistakes rookie web weavers make is to forget the slash
(/) that identifies an end tag. If your page looks wrong when you view it in a
browser, look for a missing slash. Also look for a backslash (\) instead of a slash,
which is another common error.

FIGURE 1-1:
The sample

sentence as it
appears in a

web browser.

FIGURE 1-2:
The sentence

revised to
 italicize the word

important.

52 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Understanding Tag Attributes
You’ll often use tags straight up, but all tags are capable of being modified in
various ways. This might be as simple as supplying a unique identifier to the tag
for use in a script or a style, or it might be a way to change how the tag operates.
Either way, you modify a tag by adding one or more attributes to the start tag. Most
attributes use the following generic syntax:

<tag attribute="value">

Here, you replace attribute with the name of the attribute you want to apply to
the tag, and you replace value with the value you want to assign the attribute.

For example, the <hr> tag adds a horizontal line across the web page (hr stands
for horizontal rule). You use only the start tag in this case (as a simple line, it can’t
“contain” anything, so no end tag is needed), as demonstrated in the following
example:

Okay, listen up people because this is important!
<hr>

As you can see in Figure 1-3, the web browser draws a line right across the page.

You can also add the width attribute to the <hr> tag and specify the width you
prefer. For example, if you only want the line to traverse half the page width, set
the width attribute to "50%", as shown here:

Okay, listen up people because this is important!
<hr width="50%">

As Figure 1-4 shows, the web browser obeys your command and draws a line that
takes up only half the width of the page.

FIGURE 1-3:
When you add
the <hr> tag, a
horizontal line

appears across
the page.

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 53

Learning the Fundamental Structure
of an HTML5 Web Page

In this section, I show you the tags that serve as the basic blueprint you’ll use for
all your web pages.

Your HTML files will always lead off with the following tag:

<!DOCTYPE html>

This tag (it has no end tag) is the so-called Doctype declaration, and it lets the web
browser know what type of document it’s about to process (an HTML document,
in this case).

Next up you add the <html lang="en"> tag. This tag doesn’t do a whole lot except
tell any web browser that tries to read the file that it’s dealing with a file that
contains HTML doodads. It also uses the lang attribute to specify the document’s
language, which in this case is English.

Similarly, the last line in your document will always be the corresponding end tag:
</html>. You can think of this tag as the HTML equivalent for “The End.” So, each
of your web pages will include this on the second line:

<html lang="en">

and this on the last line:

</html>

The next items serve to divide the page into two sections: the head and the body.
The head section is like an introduction to the page. Web browsers use the head to
glean various types of information about the page. A number of items can appear
in the head section, but the only one that makes any real sense at this early stage
is the title of the page, which I talk about in the next section.

FIGURE 1-4:
The <hr

width="50%">
tag creates

a horizontal
line across half

the page.

54 BOOK 2 Coding the Front End, Part 1: HTML & CSS

To define the head, add <head> and </head> tags immediately below the <html>
tag you typed in earlier. So your web page should now look like this:

<!DOCTYPE html>
<html lang="en">
<head>
</head>
</html>

Although technically it makes no difference if you enter your tag names in upper-
case or lowercase letters, the HTML powers-that-be prefer to see HTML tags in
lowercase letters, so that’s the style I use in this book, and I encourage you to do
the same.

While you’re in the head section, let’s add a head-scratcher:

<meta charset="utf-8">

You place this between the <head> and </head> tags (indented four spaces for
easier reading). It tells the web browser that your web page uses the UTF-8 char-
acter set, which you can mostly ignore except to know that UTF-8 contains almost
every character (domestic and foreign), punctuation mark, and symbol known to
humankind.

The body section is where you enter the text and other fun stuff that the browser
will actually display. To define the body, place <body> and </body> tags after the
head section (that is, below the </head> tag):

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
</head>
<body>
</body>
</html>

A common page error is to include two or more copies of these basic tags, par-
ticularly the <body> tag. For best results, be sure you use each of these seven basic
structural tags only one time on each page.

Giving your page a title
When you surf the web, you’ve probably noticed that your browser displays some
text in the current tab. That tab text is the web page title, which is a short (or

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 55

sometimes long) phrase that gives the page a name. You can give your own web
page a name by adding the <title> tag to the page’s head section.

To define a title, surround the title text with the <title> and </title> tags. For
example, if you want the title of your page to be “My Home Sweet Home Page,”
enter it as follows:

<title>My Home Sweet Home Page</title>

Note that you always place the title inside the head section, so your basic HTML
document now looks like this:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>My Home Sweet Home Page</title>
</head>
<body>
</body>
</html>

Figure 1-5 shows this HTML file loaded into a web browser. Notice how the title
appears in the browser’s tab bar.

Here are a few things to keep in mind when thinking of a title for your page:

 » Be sure your title describes what the page is all about.

 » Don’t make your title too long. If you do, the browser might chop it off
because there’s not enough room to display it in the tab. Fifty or 60 characters
are usually the max.

 » Use titles that make sense when someone views them out of context. For
example, if someone really likes your page, that person might add it to his or
her list of favorites or bookmarks. The browser displays the page title in the
favorites list, so it’s important that the title makes sense when she looks at the
bookmarks later on.

FIGURE 1-5:
The text you

insert into the
<title> tag

shows up in the
browser tab.

56 BOOK 2 Coding the Front End, Part 1: HTML & CSS

 » Don’t use cryptic or vague titles. Titling a page “Link #42” or “My Web Page”
might make sense to you, but your readers will almost certainly be scratching
their heads.

Adding some text
Now it’s time to put some flesh on your web page’s bones by entering the text you
want to appear in the body of the page. For the most part, you can type the text
between the <body> and </body> tags, like this:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>My Home Sweet Home Page</title>
</head>
<body>
Hello HTML World!
</body>
</html>

Figure 1-6 shows how a web browser displays this HTML.

Before you start typing willy-nilly, however, there are a few things you should
know:

 » You might think you can line things up and create some interesting effects by
stringing together two or more spaces. Ha! Web browsers chew up all those
extra spaces and spit them out into the nether regions of cyberspace. Why?
Well, the philosophy of the web is that you can use only HTML tags to lay out a
document. So a run of multiple spaces (or white space, as it’s called) is ignored.

 » Tabs also fall under the rubric of white space. You can enter tabs all day long,
but the browser ignores them completely.

FIGURE 1-6:
Text you add

to the page
body appears

in the browser’s
 content window.

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 57

 » Browsers also like to ignore the carriage return. It might sound reasonable to
the likes of you and me that pressing Enter (or Return on a Mac) starts a new
paragraph, but that’s not so in the HTML world.

 » If you want to separate two chunks of text, you have multiple ways to go, but
here are the two easiest:

• If you want no space between the texts: Place a
 (for line break) tag
between the two bits of text.

• If you want some breathing room between the texts: Surround each
chunk of text with the <p> and </p> (for paragraph) tags.

 » If HTML documents are just plain text, does that mean you’re out of luck if you
need to use characters such as © and €? Luckily, no. For the most part, you
can just add these characters to your file. However, HTML also has special
codes for these kinds of characters. I talk about them a bit later in this
chapter.

 » If, for some reason, you’re using a word processor instead of a text editor,
know that it won’t help to format your text using the program’s built-in
commands. The browser cheerfully ignores even the most elaborate format-
ting jobs because browsers understand only HTML (and CSS and JavaScript).
And besides, a document with formatting is, by definition, not a pure text file,
so a browser might bite the dust trying to load it.

Some Notes on Structure versus Style
One of the key points of front-end web development is to separate the structure
of the web page from its styling. This makes the page faster to build, easier to
maintain, and more predictable across a range of browsers and operating systems.
HTML provides the structure side, while CSS handles the styling.

That’s fine as far as it goes, but HTML performs its structural duties with a couple
of quirks you need to understand:

 » This isn’t your father’s idea of structure. That is, when you think of the
structure of a document, you probably think of larger chunks such as articles,
sections, and paragraphs. HTML does all that, but it also deals with structure
at the level of sentences, words, and even characters.

 » HTML’s structures often come with some styling attached. Or, I should
say, all web browsers come with predefined styling that they use when they
render some HTML tags. Yes, I know I just said that it’s best to separate

58 BOOK 2 Coding the Front End, Part 1: HTML & CSS

structure and style, so this can be a tad confusing. Think of it this way: When
you build a new deck using cedar, your completed deck has a natural “cedar”
look to it, but you’re free to apply a coat of varnish or paint. HTML is the cedar,
whereas CSS is the paint.

I mention these quirks because they can help to answer some questions that might
arise as you work with HTML tags.

Another key to understanding why HTML does what it does, is that much of
HTML — especially its most recent incarnation, HTML5 — has been set up so
that a web page is “understandable” to an extent by software that analyzes the
page. One important example is a screen reader used by some visually impaired
surfers. If a screen reader can easily figure out the entire structure of the page
from its HTML tags, then it can present the page properly to the user. Similarly,
software that seeks to index, read, or otherwise analyze the page will only be able
to do this successfully if the page’s HTML tags are a faithful representation of the
page’s intended structure.

Applying the Basic Text Tags
HTML has a few tags that enable you to add structure to text. Many web develop-
ers use these tags only for the built-in browser formatting that comes with them,
but you really should try and use the tags semantically, as the geeks say, which
means to use them based on the meaning you want the text to convey.

Emphasizing text
One of the most common meanings you can attach to text is emphasis. By putting
a little extra oomph on a word or phrase, you tell the reader to add stress to that
text, which can subtly alter the meaning of your words. For example, consider the
following sentence:

You'll never fit in there with that ridiculous thing on your
head!

Now consider the same sentence with emphasis added to one word:

You'll never fit in there with that ridiculous thing on your
head!

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 59

You emphasize text on a web page by surrounding that text with the and
 tags:

You'll never fit in there with that ridiculous thing on
your head!

All web browsers render the emphasized text in italics, as shown in Figure 1-7.

I should also mention that HTML has a closely related tag: <i>. The <i> tag’s job
is to mark up alternative text, which refers to any text that you want treated with
a different mood or role than regular text. Common examples include book titles,
technical terms, foreign words, or a person’s thoughts. All web browsers render
text between <i> and </i> in italics.

Marking important text
One common meaning that you’ll often want your text to convey is importance.
It might be some significant step in a procedure, a vital prerequisite or condition
for something, or a crucial passage within a longer text block. In each case, you’re
dealing with text that you don’t want your readers to miss, so it needs to stand out
from the regular prose that surrounds it.

In HTML, you mark text as important by surrounding it with the and
 tags, as in this example:

Dear reader: Do you see the red button in the upper-right
corner of this page? Never click the red
button! You have been warned.

All web browsers render text marked up with the tag in bold, as shown
in Figure 1-8.

FIGURE 1-7:
The web

browser renders
 emphasized

text using italics.

FIGURE 1-8:
The browser

 renders
 important text

using bold.

60 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Just to keep us all on our web development toes, HTML also offers a close cousin
of the tag: the tag. You use the tag to mark up keywords in the
text. A keyword is a term that you want to draw attention to because it plays a dif-
ferent role than the regular text. It could be a company name or a person’s name
(think of those famous “bold-faced names” that are the staple of celebrity gossip
columns). The browser renders text between the and tags in a bold font.

Nesting tags
It’s perfectly legal — and often necessary — to combine multiple tag types by
nesting one inside the other. For example, check out this code:

Dear reader: Do you see the red button in the upper-right
corner of this page? Never, I repeat never,
click the red button! You have been warned.

See what I did there? In the text between the and tags,
I marked up a word with the and tags. The result? You got it: bold,
italic text, as shown in Figure 1-9.

Adding headings
Earlier you saw that you can give your web page a title using the aptly named
<title> tag. However, that title only appears in the browser’s title bar and tab.
What if you want to add a title that appears in the body of the page? That’s almost
easier done than said because HTML comes with a few tags that enable you to
define headings, which are bits of text that appear in a separate paragraph and
usually stick out from the surrounding text by being bigger, appearing in a bold
typeface, and so on.

There are six heading tags in all, ranging from <h1>, which uses the largest type
size, down to <h6>, which uses the smallest size. Here’s some web page code that
demonstrates the six heading tags, and Figure 1-10 shows how they look in a web
browser:

<h1>This is Heading 1</h1>
<h2>This is Heading 2</h2>

FIGURE 1-9:
The browser

usually combines
nested tags, such
as the bold, italic
text shown here.

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 61

<h3>This is Heading 3</h3>
<h4>This is Heading 4</h4>
<h5>This is Heading 5</h5>
<h6>This is Heading 6</h6>

What’s up with all the different headings? The idea is that you use them to cre-
ate a kind of outline for your web page. How you do this depends on the page, but
here’s one possibility:

 » Use <h1> for the overall page title.

 » Use <h2> for the page subtitle.

 » Use <h3> for the titles of the main sections of your page.

 » Use <h4> for the titles of the subsections of your page.

Adding quotations
You might have noticed that each chapter of this book begins with a short, apt
quotation because, hey, who doesn’t love a good quote, right? The readers of your
web pages will be quote-appreciators, too, I’m sure, so why not sprinkle your text
with a few words from the wise?

In HTML, you designate a passage of text as a quotation by using the <blockquote>
tag. Here’s an example:

Here's what the great jurist Oliver Wendell Holmes, Sr. had to
say about puns:

FIGURE 1-10:
The six HTML
heading tags.

62 BOOK 2 Coding the Front End, Part 1: HTML & CSS

<blockquote>
A pun does not commonly justify a blow in return.
But if a blow were given for such cause, and death
ensued, the jury would be judges both of the facts
and of the pun, and might, if the latter were of an
aggravated character, return a verdict of justifiable
homicide.
</blockquote>
Clearly, the dude was not a pun fan.

The web browser renders the text between <blockquote> and </blockquote> in
its own paragraph that it also indents slightly from the left margin, as shown in
Figure 1-11.

Creating Links
When all is said and done (actually, long before that), your website will consist of
anywhere from 2 to 102 pages (or even more, if you’ve got lots to say). Here’s the
thing, though: If you manage to cajole someone onto your home page, how do you
get that person to your other pages? That really is what the web is all about, isn’t
it, getting folks from one page to another? And of course, you already know the
answer to the question. You get visitors from your home page to your other pages
by creating links that take people from here to there. In this section, you learn
how to build your own links and how to finally put the “hypertext” into HTML.

Linking basics
The HTML tags that do the link thing are <a> and . Here’s how the <a> tag
works:

FIGURE 1-11:
The web

browser renders
<blockquote>

text indented
slighted from

the left.

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 63

Here, href stands for hypertext reference, which is just a fancy-schmancy way of
saying “address” or “URL.” Your job is to replace address with the actual address
of the web page you want to use for the link. And yes, you have to enclose the
address in quotation marks. Here’s an example:

You’re not done yet, though, not by a long shot (insert groan of disappointment
here). What are you missing? Right: You have to give the reader some descriptive
link text to click. That’s pretty straightforward because all you do is insert the text
between the <a> and tags, like this:

Link text

Need an example? You got it:

For web coding fun, check out the

Web Coding Playground!

Figure 1-12 shows how it looks in a web browser. Notice how the browser colors
and underlines the link text, and when I point my mouse at the link, the address
I specified in the <a> tag (albeit without the http:// prefix) appears in the
 browser’s status area.

Anchors aweigh: Internal links
When a surfer clicks a standard link, the page loads and the browser displays the
top part of the page. However, it’s possible to set up a special kind of link that will
force the browser to initially display some other part of the page, such as a sec-
tion in the middle of the page. For these special links, I use the term internal links,
because they take the reader directly to some inner part of the page.

FIGURE 1-12:
How the link

appears in the
web browser.

http://webcodingplayground.io
http://webcodingplayground.io

64 BOOK 2 Coding the Front End, Part 1: HTML & CSS

When would you ever use an internal link? Most of your HTML pages will probably
be short and sweet, and the web surfers who drop by will have no trouble navigat-
ing their way around. But if, like me, you suffer from a bad case of terminal ver-
bosity combined with bouts of extreme long windedness, you’ll end up with web
pages that are lengthy, to say the least. Rather than force your readers to scroll
through your tomelike creations, you can set up links to various sections of the
document. You could then assemble these links at the top of the page to form a
sort of “hypertable of contents,” as an example.

Internal links actually link to a specially marked section — called an anchor —
that you’ve inserted somewhere in the same page. To understand how anchors
work, think of how you might mark a spot in a book you’re reading. You might
dog-ear the page, attach a note, or place something between the pages, such as a
bookmark or your cat’s tail.

An anchor performs the same function: It “marks” a particular spot in a web page,
and you can then use a regular <a> tag to link to that spot. Here’s the general for-
mat for an anchor tag:

<element id="name">

As you can see, an anchor tag looks a lot like a regular tag, except that it also
includes the id attribute, which is set to the name you want to give the anchor.
Here’s an example:

<section id="section1">

You can use whatever you want for the name, but it must begin with a letter and
it can include any combination of letters, numbers, underscores (_), and hyphens
(-). Also, id values are case-sensitive, so the browser treats the id value section1
differently than the id value Section1.

To set up the anchor link, you create a regular <a> tag, but the href value becomes
the name of the anchor, preceded by a hash symbol (#):

Here’s an example that links to the anchor I showed earlier:

Although you’ll mostly use anchors to link to sections of the same web page,
there’s no law against using them to link to specific sections of other pages. What

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 65

you do is add the appropriate anchor to the other page and then link to it by add-
ing the anchor’s name (preceded, as usual, by #) to the end of the page’s filename.
Here’s an example:

Building Bulleted and Numbered Lists
For some reason, people love lists: Best (and Worst) Dressed lists, Top Ten lists,
My All-Time Favorite X lists, where X is whatever you want it to be: movies, songs,
books, I Love Lucy episodes — you name it. People like lists, for whatever reasons.

Okay, so let’s make some lists. Easy, right? Well, sure, any website jockey can just
plop a Best Tootsie Roll Flavors Ever list on a page by typing each item, one after
the other. Perhaps our list maker even gets a bit clever and inserts the
 tag
between each item, which displays them on separate lines. Ooooh.

Yes, you can make a list that way, and it works well enough, I suppose, but there’s
a better way. HTML has a few tags that are specially designed to give you much
more control over your list-building chores. For example, you can create a bul-
leted list that actually has those little bullets out front of each item. Nice! Want a
Top Ten list, instead? HTML has your back by offering special tags for numbered
lists, too.

Making your point with bulleted lists
A no-frills,
-separated list isn’t very useful or readable because it doesn’t
come with any type of eye candy that helps differentiate one item from the next.
An official, HTML-approved bulleted list solves that problem by leading off each
item with a bullet — a cute little black dot.

Bulleted lists use two types of tags:

 » The entire list is surrounded by the and tags. Why “ul”? Well, what
the rest of the world calls a bulleted list, the HTML poohbahs call an unor-
dered list.

 » Each item in the list is preceded by the (list item) tag and is closed with
the end tag.

66 BOOK 2 Coding the Front End, Part 1: HTML & CSS

The general setup looks like this:

 Bullet text goes here
 And here
 And here
 You get the idea...

Notice that I’ve indented the list items by four spaces, which makes it easier to see
that they’re part of a container. Here’s an example to chew on:

<h3>My All-Time Favorite Oxymorons</h3>

 Pretty ugly
 Military intelligence
 Jumbo shrimp
 Original copy
 Random order
 Act naturally
 Tight slacks
 Freezer burn
 Sight unseen
 Microsoft Works

Figure 1-13 shows how the web browser renders this code, cute little bullets and all.

FIGURE 1-13:
A typical

 bulleted list.

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 67

Numbered lists: Easy as one, two, three
If you want to include a numbered list of items — it could be a Top Ten list, bowl-
ing league standings, steps to follow, or any kind of ranking — don’t bother add-
ing in the numbers yourself. Instead, you can use a numbered list to make the web
browser generate the numbers for you.

Like bulleted lists, numbered lists use two types of tags:

 » The entire list is surrounded by the and tags. The “ol” here is short
for ordered list, because those HTML nerds just have to be different, don’t they?

 » Each item in the list is surrounded by and .

Here’s the general structure to use:

 First item
 Second item
 Third item
 You got this...

I’ve indented the list items by four spaces to make it easier to see that they’re
inside an container. Here’s an example:

<h3>My Ten Favorite U.S. College Nicknames</h3>

 U.C. Santa Cruz Banana Slugs
 Delta State Fighting Okra
 Kent State Golden Flashes
 Evergreen State College Geoducks
 New Mexico Tech Pygmies
 South Carolina Fighting Gamecocks
 Southern Illinois Salukis
 Whittier Poets
 Western Illinois Leathernecks
 Delaware Fightin' Blue Hens

Notice that I didn’t include any numbers before each list item. However, when I
display this document in a browser (see Figure 1-14), the numbers are automati-
cally inserted. Pretty slick, huh?

68 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Inserting Special Characters
Earlier in this chapter, I talk briefly about a special <meta> tag that goes into the
head section:

<meta charset="utf-8">

It might not look like it, but that tag adds a bit of magic to your web page. The
voodoo is that now you can add special characters such as © and ™ directly to
your web page text and the web browser will display them without complaint.

The trick is how you add these characters directly to your text, and that depends
on your operating system. First, if you’re using Windows, you have two choices:

 » Hold down the Alt key and then press the character’s four-digit ASCII code
using your keyboard’s numeric keypad. For example, you type an em dash (—)
by pressing Alt+0151.

 » Paste the character from the Character Map application that comes with
Windows.

If you’re a Mac user, you also have two choices:

 » Type the character’s special keyboard shortcut. For example, you type an em
dash (—) by pressing Option+Shift+- (hyphen).

 » Paste the character from the Symbols Viewer that comes with macOS.

Having said all of that, I should point out that there’s another way to add special
characters to a page. The web wizards who created HTML came up with special
codes called character entities (which is surely a name only a true geek would love)
that represent these oddball symbols.

FIGURE 1-14:
When the web

browser renders
the ordered list,
it’s kind enough

to add the
 numbers for you

automatically.

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 69

These codes come in two flavors: a character reference and an entity name. Character
references are basically just numbers, and the entity names are friendlier symbols
that describe the character you’re trying to display. For example, you can display
the registered trademark symbol (™) by using either the ® character
reference or the ® entity name, as shown here:

Print-On-Non-Demand®

or

Print-On-Non-Demand®

Note that both character references and entity names begin with an ampersand
(&) and end with a semicolon (;). Don’t forget either character when using special
characters in your own pages.

One very common use of character references is for displaying HTML tags without
the web browser rendering them as tags. To do this, replace the tag’s less-than
sign (<) with < (or <) and the tag’s greater-than sign (>) with >
(or >).

Inserting Images
Whether you want to tell stories, give instructions, pontificate, or just plain rant
about something, you can do all of that and more by adding text to your page. But
to make it more interesting for your readers, add a bit of eye candy every now and
then. To that end, there’s an HTML tag you can use to add one or more images to
your page.

However, before we get too far into this picture business, I should tell you that,
unfortunately, you can’t use just any old image on a web page. Browsers are lim-
ited in the types of images they can display. There are, in fact, three main types of
image formats you can use:

 » GIF: The original web graphics format (it’s short for Graphics Interchange
Format). GIF (it’s pronounced “giff” or “jiff”) is limited to 256 colors, so it’s best
for simple images like line art, clip art, text, and so on. GIFs are also useful for
creating simple animations.

 » JPEG: Gets its name from the Joint Photographic Experts Group that invented
it. JPEG (it’s pronounced “jay-peg”) supports complex images that have many
millions of colors. The main advantage of JPEG files is that, given the same
image, they’re smaller than GIFs, so they take less time to download. Careful,

70 BOOK 2 Coding the Front End, Part 1: HTML & CSS

though: JPEG uses lossy compression, which means that it makes the image
smaller by discarding redundant pixels. The greater the compression, the
more pixels that are discarded, and the less sharp the image will appear. That
said, if you have a photo or similarly complex image, JPEG is almost always the
best choice because it gives the smallest file size.

 » PNG: The Portable Network Graphics format supports millions of colors. PNG
(and it’s pronounced “p-n-g” or “ping”) is a compressed format, but unlike
JPEGs, PNGs use lossless compression. This means images retain sharpness,
but the file sizes can get quite big. If you have an illustration or icon that uses
solid colors, or a photo that contains large areas of near-solid color, PNG is a
good choice. PNG also supports transparency.

Okay, enough of all that. Time to start squeezing some images onto your web
page. As I mention earlier, there’s an HTML code that tells a browser to display an
image. It’s the tag, and here’s how it works:

Here, src is short for source, filename is the name of the graphics file you want
to display, and description is a short description of the image (which is read by
screen readers and seen by browsers who aren’t displaying images). Note that
there’s no end tag to add here.

Look at an example. Suppose you have an image named logo.png. To add it to
your page, you use the following line:

In effect, this tag says to the browser, “Excuse me? Would you be so kind as to go out
and grab the image file named logo.png and insert it in the page right here where
the tag is?” Dutifully, the browser loads the image and displays it in the page.

For this simple example to work, bear in mind that your HTML file and your
graphics file need to be sitting in the same directory. Many webmasters create
a subdirectory just for images, which keeps things neat and tidy. If you plan on
doing this, be sure you study my instructions for using directories and subdirec-
tories in Book 1, Chapter 3.

Here’s an example and Figure 1-15 shows how things appear in a web browser:

To see a World in a Grain of Sand

And a Heaven in a Wild Flower
<img src="/images/macro-flower-and-ant.jpg" alt="Macro photo

showing an ant exploring a flower">

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 71

Carving Up the Page
Adding a bit of text, some links, and maybe a list or three to the body of the page
is a good start, but any web page worth posting will require much more than that.
For starters, all your web pages will require a high-level structure. Why? Well,
think about the high-level structure of this book, which includes the front and
back covers, the table of contents, an index, and eight mini-books, each of which
contains several chapters, which, in turn consist of many sections and paragraphs
within those sections. It’s all nice and neat and well-organized, if I do say so myself.

Now imagine, instead, that this entire book was just page after page of
undifferentiated text: no mini-books, no chapters, no sections, no paragraphs,
plus no table of contents or index. I’ve just described a book-reader’s worst
nightmare, and I’m sure I couldn’t even pay you to read such a thing.

Your web pages will suffer from the same fate unless you add some structure to the
body section, and for that you need to turn to HTML’s high-level structure tags.

The first thing to understand about these tags is that they’re designed to infuse
meaning — that is, semantics — into your page structures. You’ll see what this
means as I introduce each tag, but for now get a load of the abstract page shown
in Figure 1-16.

I next discuss each of the tags shown in Figure 1-16.

The <header> tag
You use the <header> tag to create a page header, which is usually a strip across
the top of the page that includes elements such as the site or page title and a logo.
(Don’t confuse this with the page’s head section that appears between the <head>
and </head> tags.)

FIGURE 1-15:
A web page

with an image
thrown in.

72 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Since the header almost always appears at the top of the page, the <header> tag
is usually seen right after the <body> tag, as shown in the following example (and
Figure 1-17):

<body>
 <header>
 <img src="iis-logo.png" alt="Isn't it Semantic? company

logo">
 <h1>Welcome to "Isn't it Semantic?"</h1>
 <hr>
 </header>
 ...
</body>

The <nav> tag
The <nav> tag defines a page section that includes a few elements that help visitors
navigate your site. These elements could be links to the main sections of the site,
links to recently posted content, or a search feature. The <nav> section typically
appears after the header, as shown here (and in Figure 1-18):

<body>
 <header>
 <img src="iis-logo.png" alt="Isn't it Semantic?

company logo">

FIGURE 1-16:
An abstract

view of HTML5’s
semantic page
structure tags.

FIGURE 1-17:
A page header

with a logo,
title, and

 horizontal rule.

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 73

 <h1>Welcome to "Isn't it Semantic?"</h1>
 <hr>
 </header>
 <nav>
 Home
 Semantics
 Contact
 About
 </nav>
 ...
</body>

The <main> tag
The <main> tag sets up a section to hold the content that is, in a sense, the point
of the page. For example, if you’re creating the page to tell everyone all that you
know about Siamese Fighting Fish, then your Siamese Fighting Fish text, images,
links, and so on would go into the <main> section.

The <main> section usually comes right after the <head> and <nav> sections:

<body>
 <header>
 ...
 </header>
 <nav>
 ...
 </nav>
 <main>
 Main content goes here
 </main>
 ...
</body>

FIGURE 1-18:
The <nav>

section usually
appears just after

the <header>
section.

74 BOOK 2 Coding the Front End, Part 1: HTML & CSS

The <article> tag
You use the <article> tag to create a page section that contains a complete com-
position of some sort: a blog post, an essay, a poem, a review, a diatribe, or a
jeremiad.

In most cases, you’ll have a single <article> tag nested inside your page’s <main>
section:

<body>
 <header>
 ...
 </header>
 <nav>
 ...
 </nav>
 <main>
 <article>
 Article content goes here
 </article>
 </main>
 ...
</body>

However, it isn’t a hard and fast rule that your page can have only one <article>
tag. In fact, it isn’t a rule at all. If you want to have two compositions in your
page — and thus two <article> sections within your <main> tag — be my guest.

The <section> tag
The <section> tag indicates a major part of page: usually a heading tag followed
by some text. How do you know whether a chunk of the page is “major” or not?
The easiest way is to imagine if your page had a table of contents. If you’d want a
particular part of your page to be included in that table of contents, then it’s major
enough to merit the <section> tag.

Most of the time, your <section> tags will appear within an <article> tag:

<main>
 <article>

 <section>
 Section 1 heading goes here
 Section 1 text goes here
 </section>

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 75

 <section>
 Section 2 heading goes here
 Section 2 text goes here
 </section>
 ...
 </article>
</main>

The <aside> tag
You use the <aside> tag to cordon off a bit of the page for content that, although
important or relevant for the site as a whole, is at best tangentially related to the
page’s <main> content. The <aside> is often a sidebar that includes site news or
links to recent content, but it might also include links to other site pages that are
related to current page.

The <aside> element most often appears within the <main> area, but after the
<article> content.

<body>
 <header>
 ...
 </header>
 <nav>
 ...
 </nav>
 <main>
 <article>
 ...
 </article>
 <aside>
 ...
 </aside>
 </main>
 ...
</body>

The <footer> tag
You use the <footer> tag to create a page footer, which is typically a strip across
the bottom of the page that includes elements such as a copyright notice, contact
info, and social media links.

76 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Since the footer almost always appears at the bottom of the page, the <footer>
tag is usually seen right before the </body> tag, as shown here:

<body>
 <header>
 ...
 </header>
 <nav>
 ...
 </nav>
 <main>
 <article>
 ...
 </article>
 <aside>
 ...
 </aside>
 </main>
 <footer>
 ...
 </footer>
</body>

Handling non-semantic content with <div>
The <header>, <nav>, <main>, <article>, <section>, <aside>, and <footer>
elements create meaningful structures within your page, which is why HTML
nerds call these semantic elements. Even the humble <p> tag that I introduced
earlier in this chapter is semantic in that it represents a single paragraph, usually
within a <section> element.

But what’s a would-be web weaver to do when she wants to add a chunk of content
that just doesn’t fit any of the standard semantic tags? That happens a lot, and the
solution is to slap that content inside a <div> (for “division”) element. The <div>
tag is a generic container that doesn’t represent anything meaningful, so it’s the
perfect place for any non-semantic stuff that needs a home:

<div>
 Non-semantic content goes right here
</div>

St
ru

ct
ur

in
g

th
e

Pa
ge

w

it
h

H
TM

L

CHAPTER 1 Structuring the Page with HTML 77

Here’s an example:

<div>
 Requisite social media links:
</div>
<div>
 Facebook
 Twitter
 Instagram
 Hooli
</div>

Notice in Figure 1-19 that the browser renders the two <div> elements on
separate lines.

Handling words and characters
with
If you might want to do something with a small chunk of a larger piece of text,
such as a phrase, a word, or even a character or three, then you need to turn to a
so-called inline element, which creates a container that exists within some larger
element and flows along with the rest of the content in that larger element.

The most common inline element to use is , which creates a container
around a bit of text:

<p>
Notice how an
inline element flows right along with the
rest of the text.
</p>

FIGURE 1-19:
The browser

 renders each
<div> section on

a new line.

78 BOOK 2 Coding the Front End, Part 1: HTML & CSS

What’s happening here is that the tag is applying a style called small caps
to the text between and (inline element). As you can see in
 Figure 1-20, the text flows along with the rest of the paragraph.

FIGURE 1-20:
Using

makes the
 container

flow with the
 surrounding text.

CHAPTER 2 Styling the Page with CSS 79

Styling the Page with CSS
HTML elements enable Web-page designers to mark up a document’s
structure, but beyond trust and hope, you don’t have any control over your
text’s appearance. CSS changes that. CSS puts the designer in the driver’s seat.

— HÅKON WIUM LIE, THE “FATHER” OF CSS

One of the things that makes web coding with HTML so addictive is that
you can slap up a page using a few basic tags and when you look at the
result in the browser, it usually works pretty good. A work of art it’s not,

but it won’t make your eyes sore. That basic functionality and appearance are
baked in courtesy of the default formatting that all web browsers apply to various
HTML elements. For example, text appears in a bold font, there’s a bit
of vertical space between <p> elements, and <h1> text shows up quite a bit larger
than regular text.

The browsers’ default formatting means that even a basic page looks reasonable,
but I’m betting you’re reading this book because you want to shoot for something
more than reasonable. In this chapter, you discover that the secret to creating
great-looking pages is to override the default browser formatting with your own.
You explore custom styling and dig into specific styles for essentials such as fonts,
alignment, and colors.

Chapter 2

IN THIS CHAPTER

 » Understanding cascading style sheets

 » Learning the three methods you can
use to add a style sheet

 » Applying styles to web page elements

 » Working with fonts and colors

 » Taking advantage of classes and
other style sheet timesavers

80 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Figuring Out Cascading Style Sheets
If you want to control the look of your web pages, then the royal road to that
goal is a web coding technology called cascading style sheets, or CSS. As I mention
in Book 2, Chapter 1, your design goal should always be to separate structure
and formatting when you build any web project. HTML’s job is to take care of
the structure part, but to handle the formatting of the page you must turn to
CSS. Before getting to the specifics, I answer three simple questions: What’s a
style? What’s a sheet? What’s a cascade?

Styles: Bundles of formatting options
If you’ve ever used a fancy-schmancy word processor such as Microsoft Word,
Google Docs, or Apple Pages, you’ve probably stumbled over a style or two in your
travels. In a nutshell, a style is a combination of two or more formatting options
rolled into one nice, neat package. For example, you might have a “Title” style
that combines four formatting options: bold, centered, 24-point type size, and
a Verdana typeface. You can then “apply” this style to any text and the program
dutifully formats the text with all four options. If you change your mind later and
decide your titles should use an 18-point font, all you have to do is redefine the
Title style. The program then automatically trudges through the entire document
and updates each bit of text that uses the Title style.

In a web page, a style performs a similar function. That is, it enables you to define
a series of formatting options for a given page element, such as a tag like <div>
or <h1>. Like word processor styles, web page styles offer two main advantages:

 » They save time because you create the definition of the style’s formatting
once, and the browser applies that formatting each time you use the corre-
sponding page element.

 » They make your pages easier to modify because all you need to do is edit the
style definition and all the places where the style is used within the page get
updated automatically.

For example, Figure 2-1 shows some <h1> text as it appears with the web browser’s
default formatting. Figure 2-2 shows the same <h1> text, but now I’ve souped
up the text with several styles, including a border, a font size of 72 pixels, the
Verdana typeface, and page centering.

Sheets: Collections of styles
So far so good, but what the heck is a sheet? The term style sheet harkens back
to the days of yore when old-timey publishing firms would keep track of their

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 81

preferences for things like typefaces, type sizes, margins, and so on. All these so-
called “house styles” were stored in a manual known as a style sheet. On the web,
a style sheet is similar: It’s a collection styles that you can apply to a web page.

Cascading: How styles propagate
The “cascading” part of the name cascading style sheets is a bit technical, but it refers
to a mechanism that’s built into CSS for propagating styles between elements. For
example, suppose you want all your page text to be blue instead of the default
black. Does that mean you have to create a “display as blue” CSS instruction for
every single text-related tag on your page? No, thank goodness! Instead, you apply
it just once, to, say, the <body> tag, and CSS makes sure that every text tag in the
<body> tag gets displayed as blue. This is called cascading a style.

Getting the Hang of CSS Rules
and Declarations

Before I show you how to actually use CSS in your web pages, let’s take a second
to get a grip on just what a style looks like.

The simplest case is where a single formatting option is applied to an element.
Here’s the general syntax for this:

element {
 property: value;
}

FIGURE 2-1:
An <h1> heading

that appears
with the web

browser’s default
formatting.

FIGURE 2-2:
The same text

from Figure 2-1,
except now with

added styles.

82 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Here, element is a reference to the web page doodad to which you want the style
applied. This reference is often a tag name (such as h1 or div), but CSS has a
powerful toolbox of ways you can reference things, which I discuss later in this
chapter.

The property part is the name of the CSS property you want to apply. CSS offers
a large collection of properties, each of which is a short, alphabetic keyword, such
as font-family for the typeface, color for the text color, and border-width for
the thickness of a border. The property name is followed by a colon (:), a space
for readability, the value you want to assign to the property, and then a semi-
colon (;). This is known in the trade as a CSS declaration (although the description
property-value pair is quite common, as well).

Always enter the property name using lowercase letters. If the value includes
any characters other than letters or a hyphen, then you need to surround the value
with quotation marks.

Notice, too, that the declaration is surrounded by braces ({ and }). All the previous
code — from the element name down to the closing brace (}) is called a style rule.

For example, the following rule applies a 72-pixel (indicated by the px unit) font
size to the <h1> tag:

h1 {
 font-size: 72px;
}

Your style rules aren’t restricted to just a single declaration: You’re free to add as
many as you need. The following example shows the rule I used to style the h1
element as shown earlier in Figure 2-2:

h1 {
 border-width: 1px;
 border-style: solid;
 border-color: black;
 font-size: 72px;
 font-family: Verdana;
 text-align: center;
}

Note that the declaration block — that is, the part of the rule within the braces
({ and }) — is most easily read if you indent the declarations with a tab or with
either two or four spaces. The order of the declarations isn’t crucial; some devel-
opers use alphabetical order, whereas others group related properties together.

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 83

Besides applying multiple styles to a single element, it’s also possible to apply a
single style to multiple elements. You set up the style in the usual way, but instead
of a single element at the beginning of the rule, you list all the elements that you
want to style, separated by commas. In the following example, a yellow back-
ground color is applied to the <header>, <aside>, and <footer> tags:

header,
aside,
footer {
 background-color: yellow;
}

Adding Styles to a Page
With HTML tags, you just plop the tag where you want it to appear on the page,
but styles aren’t quite so straightforward. In fact, there are three main ways to get
your web page styled: inline styles, internal style sheets, and external style sheets.

Inserting inline styles
An inline style is a style rule that you insert directly into whatever tag you want to
format. Here’s the general syntax to use:

<element style="property1: value1; property2: value2; ...">

That is, you add the style attribute to your tag, and then set it equal to one or
more declarations, separated by semicolons.

For example, to apply 72-pixel type to an <h1> heading, you’d add an inline style
that uses the font-size CSS property:

<h1 style="font-size: 72px;">

Note that an inline style gets applied only to the tag within which it appears.
Consider the following code:

<h1 style="font-size: 72px;">The Big Kahuna</h1>
<h1>Kahunas: Always Big?</h1>
<h1>Wait, What the Heck Is a Kahuna?</h1>

As you can see in Figure 2-3, the larger type size only gets applied to the first <h1>
tag, whereas the other two h1 elements appear in the browser’s default size.

84 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Embedding an internal style sheet
Inline styles are a useful tool, but because they get shoehorned inside tags, they
tend to be difficult to maintain because they end up scattered all over the page’s
HTML code. You’re also more likely to want a particular style rule applied to mul-
tiple page elements.

For easier maintenance of your styles, and to take advantage of the many ways
that CSS offers to apply a single style rule to multiple page elements, you need to
turn to style sheets, which can be either internal (as I discuss here) or external (as
I discuss in the next section).

An internal style sheet is a style sheet that resides within the same file as the page’s
HTML code. Specifically, the style sheet is embedded between the <style> and
</style> tags in the page’s head section, like so:

<!DOCTYPE html>
<html lang="en">
 <head>
 <style>
 Your style rules go here
 </style>
 </head>
 <body>
...

Here’s the general syntax to use:

<style>
 elementA {
 propertyA1: valueA1;
 propertyA2: valueA2;
 ...
 }

FIGURE 2-3:
Only the top

<h1> tag has the
inline style, so

only its text
is styled at

72 pixels.

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 85

 elementB {
 propertyB1: valueB1;
 propertyB2: valueB2;
 ...
 }
 ...
</style>

As you can see, an internal style sheet consists of one or more style rules embed-
ded within a <style> tag, which is why an internal style sheet is also sometimes
called an embedded style sheet.

In the following code, I apply border styles to the h1 and h2 elements: solid and
dotted, respectively. Figure 2-4 shows the result.

CSS:

<style>
 h1 {
 border-width: 2px;
 border-style: solid;
 border-color: black;
 }
 h2 {
 border-width: 2px;
 border-style: dotted;
 border-color: black;
 }
</style>

HTML:

<h1>Wither Solid Colors?</h1>
<h2>In Praise of Polka Dots</h2>

FIGURE 2-4:
An internal style

sheet that applies
different border
styles to the h1

(top) and h2
elements.

86 BOOK 2 Coding the Front End, Part 1: HTML & CSS

<h2>What's Dot and What's Not</h2>
<h2>What Dot to Wear</h2>

Note, in particular, that my single style rule for the h2 element gets applied to all
the <h2> tags in the web page. That’s the power of an internal style sheet: You
only need a single rule to apply one or more styles to every instance of a particular
element.

The internal style sheet method is best when you want to apply a particular set
of style rules to just a single web page. If you have rules that you want applied to
multiple pages, then you need to go the external style sheet route.

Linking to an external style sheet
Style sheets get insanely powerful when you use an external style sheet, which is
a separate file that contains your style rules. To use these rules within any web
page, you add a special <link> tag inside the page head. This tag specifies the
name of the external style sheet file, and the browser then uses that file to grab
the style rules.

Here are the steps you need to follow to set up an external style sheet:

1. Use your favorite text editor to create a shiny new text file.

2. Add your style rules to this file.

Note that you don’t need the <style> tag or any other HTML tags.

3. Save the file.

It’s traditional to save external style sheet files using a .css extension (for
example, styles.css), which helps you remember down the road that this is
a style sheet file. You can either save the file in the same folder as your HTML
file, or you can create a subfolder (named, say, css or styles).

4. For every page in which you want to use the styles, add a <link> tag
inside the page’s head section.

Here’s the general format to use (where filename.css is the name of your
external style sheet file):

<link rel="stylesheet" href="filename.css">

If you created a subfolder for your CSS files, be sure to add the subfolder to the
href value (for example, href="styles/filename.css").

For example, suppose you create a style sheet file named styles.css, and that file
includes the following style rules:

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 87

h1 {
 color: red;
}
p {
 font-size: 16px;
}

You then refer to that file by using the <link> tag, as shown here:

<!DOCTYPE html>
<html lang="en">
 <head>
 <link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <h1>This Heading Will Appear Red</h1>
 <p>This text will be displayed in a 16-pixel font</p>
 </body>
</html>

Why is this so powerful? You can add the same <link> tag to any number of web
pages and they’ll all use the same style rules. This makes it a breeze to create a
consistent look and feel for your site. And if you decide that your <h1> text should
be green instead, all you have to do is edit the style sheet file (styles.css). Auto-
matically, every single one of your pages that link to this file will be updated with
the new style!

Styling Page Text
You’ll spend the bulk of your CSS development time applying styles to your
web page text. CSS offers a huge number of text properties, but those I show in
Table 2-1 are the most common. I discuss each of these properties in more detail
in the sections that follow.

Setting the type size
When it comes to the size of your page text, the CSS tool to pull out of the box is
font-size:

font-size: value;

88 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Here, value is the size you want to apply to your element, which means a number
followed by the unit you want to use. I discuss the units you can use in the next
section, but for now we can stick with one of the most common units: pixels.
The pixels unit is represented by the letters px, and a single pixel is equivalent to
1/96 of an inch. All browsers set a default size for regular text, and that default is
 usually 16px. However, if you prefer that, say, all your paragraph (<p>) text get
displayed at the 20px size, then you’d include the following rule in your style
sheet:

p {
 font-size: 20px;
}

Getting comfy with CSS measurement units
CSS offers a few measurement units that you need to know. You use these not only
for setting type sizes, but also for setting the sizes of padding, borders, margins,
shadows, and many other CSS properties. Table 2-2 lists the most common CSS
measurement units.

Here are some notes about these units that I hope will decrease that furrow in
your brow:

 » An absolute measurement unit is one that has a fixed size: either 1/96 of an
inch in the case of a pixel, or 1/72 of an inch in the case of a point.

TABLE 2-1	 Some Common CSS Text Properties
Property Example Description

font-size font-size: 16px; Sets the size of the text

font-family font-family: serif; Sets the typeface of the text

font-weight font-weight: bold; Sets whether the text uses a bold font

font-style font-style: italic; Sets whether the text uses an italic font

text-decoration text-decoration:
underline;

Applies (or removes) underline or
strikethrough styles

text-align text-align: center; Aligns paragraph text horizontally

text-indent text-indent: 8px; Sets the size of the indent for the first line of
a paragraph

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 89

 » A relative unit is one that doesn’t have a fixed size. Instead, the size depends
on whatever size is supplied to the element. For example, suppose the
browser’s default text size is 16px, which is equivalent then to 1em. If your
page consists of a single <article> tag and you set the article element’s
font-size property to 1.5em, then the browser will display text within the
<article> tag at 24px (since 16 times 1.5 equals 24). If, however, the browser
user has configured her default text size to 20px, then she’ll see your article
text displayed at 30px (20 times 1.5 equals 30).

 » The em unit can sometimes be a head-scratcher because it takes its value from
whatever element it’s contained within. For example, if your page has an
<article> tag and you set the article element’s font-size property to
1.5em, then the browser will display text within the <article> tag at 24px
(assuming a 16px default size). However, if within the <article> tag you have
a <section> tag and you set the section element’s font-size property to
1.25em, then the browser will display text within the <section> tag at 30px
(since 24 times 1.25 equals 30).

 » If you want more consistency in your text sizes, use rem instead of em, since
rem is always based on the default font size defined by either the web
browser or the user. For example, if your page uses a 16px default size and it
has an <article> tag with the font-size property set to 1.5rem, then the
browser will display text within the <article> tag at 24px. If within the
<article> tag you have a <section> tag and you set the section element’s
font-size property to 1.25rem, then the browser will display text within the
<section> tag at 20px (since 16 times 1.25 equals 20).

Applying a font family
You can make a huge difference in the overall look and appeal of your web pages
by paying attention to the typefaces you apply to your headings and body text.

TABLE 2-2	 Some CSS Measurement Units
Unit Name Type Equals

px pixel Absolute 1/96 of an inch

pt point Absolute 1/72 of an inch

em em Relative The element’s default, inherited, or defined font size

rem root em Relative The font size of the root element of the web page

vw viewport width Relative 1/100 of the current width of the browser’s content area

vh viewport height Relative 1/100 of the current height of the browser’s content area

90 BOOK 2 Coding the Front End, Part 1: HTML & CSS

A typeface is a particular design applied to all letters, numbers, symbols, and other
characters. CSS types prefer the term font family, hence the property you use to set
text in a specific typeface is named font-family:

font-family: value;

Here, value is the name of the typeface, which needs to be surrounded by quota-
tion marks if the name contains spaces, numbers, or punctuation marks other
than a hyphen (-). Feel free to list multiple typefaces, as long as you separate each
with a comma. When you list two or more font families, the browser reads the
list from left to right, and uses the first font that’s available either on the user’s
system or in the browser itself.

When it comes to specifying font families, you have three choices:

 » Use a generic font. This is a font that’s implemented by the browser itself
and set by using one of the following five keywords: serif (offers small cross
strokes at the ends of each character), sans-serif (doesn’t use the cross
strokes), cursive (looks like handwriting), fantasy (a decorative font), or
monospace (gives equal space to each character). Figure 2-5 shows each of
these generic fonts in action.

 » Use a system font. This is a typeface that’s installed on the user’s computer.
How can you possibly know that? You don’t. Instead, you have two choices.
One possibility is to use a system font that’s installed universally. Examples
include Georgia and Times New Roman (serifs), Verdana and Tahoma (sans
serifs), and Courier New (monospace). The other way to go is to list several
system fonts, knowing that the browser will use the first one that’s imple-
mented on the user’s PC. Here’s a sans-serif example:

font-family: "Gill Sans", Calibri, Verdana, sans-serif;

FIGURE 2-5:
Generic fonts are
implemented by
all web browsers
and come in five

flavors: serif,
sans-serif,

cursive,
fantasy, and
monospace.

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 91

 » Use a Google font. Google Fonts offers access to hundreds of free and
well-crafted fonts that you can use on your site. Go to https://fonts.
google.com, find a font you like, then click the plus sign (+) beside it. Click “1
Family Selected” and then use the Customize tab to add styles such as bold
and italic. In the Embed tab, copy the <link> tag and then paste it in your
HTML file, somewhere in the <head> section (before your <style> tag, if you’re
using an internal style sheet, or before your CSS <link> tag, if you’re using an
external style sheet). Go back to the Embed tab, copy the font-family rule,
and then paste that rule into your CSS.

Making text bold
In Book 2, Chapter 1, I talk about how the and tags have semantic
definitions (important text and keywords, respectively), but you’ll often come
across situations where you want text to appear bold, but that text isn’t important
or a keyword. In that case, you can style the text the CSS way with the font-
weight property:

font-weight: value;

Here, value is either the word bold, or one of the numbers 100, 200, 300, 400, 500,
600, 700 (this is the same as using bold), 800, and 900, where the higher numbers
give bolder text and the lower numbers give lighter text; 400 is regular text, which
you can also specify using the word normal. Note, however, that depending on the
typeface you’re using, not all of these values will give you bolder or lighter text.

Styling text with italics
In Book 2, Chapter 1, I mention that the and <i> tags have semantic
 significance (emphasis and alternative text, respectively), but you might have text
that should get rendered in italics, but not with emphasis or as alternative text.
No problem: Get CSS on the job by adding the font-style property to your rule:

font-style: italic;

Styling links
When you add a link to the page, the web browser displays the link text in a dif-
ferent color (usually blue) and underlined. This might not fit at all with the rest of
your page design, so go ahead and adjust the link styling as needed.

https://fonts.google.com/
https://fonts.google.com/

92 BOOK 2 Coding the Front End, Part 1: HTML & CSS

You can apply any text style to a link, including changing the font size, the
 typeface, adding bold or italics, and changing the color (which I discuss later in
this chapter).

One common question web coders ask is “Links: underline or not?” Not everyone
is a fan of underlined text, and if you fall into that camp, then you can use the fol-
lowing rule to remove the underline from your links:

a {
 text-decoration: none;
}

Creating a custom style for links is standard operating procedure for web devel-
opers, but a bit of caution is in order because a mistake made by many new web
designers it to style links too much like regular text (particularly when they’ve
removed underlining from their links). Your site visitors should be able to recog-
nize a link from ten paces, so be sure to make your links stick out from the regular
text in some way.

Aligning paragraph text
By default, your web page paragraphs line up nice and neat along the left margin
of the page. Nothing wrong with that, but what if you want things to align along
the right margin, instead? Or perhaps you want to center something on the page.
Wouldn’t that be nice? You can do all that and more by pulling out the text-align
property:

text-align: left|right|center|justify;

In case you’re wondering, the justify value tells the web browser to align the
element’s text on both the left and right margin.

Indenting a paragraph’s first line
You can signal the reader that a new paragraph is being launched by indenting
the first line a bit from the left margin. This is easier done than said with CSS by
applying the text-indent property:

text-indent: value;

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 93

Here, value is a number followed by any of the CSS measurement units I mention
earlier in this chapter. For example, a common indent value is 1em, which here
I’ve applied to the p element:

p {
 text-indent: 1em;
}

Working with Colors
When rendering the page using their default styles, browsers don’t do much with
colors, other than showing link text a default and familiar blue. But CSS offers
some powerful color tools, so there’s no reason not to show the world your true
colors.

Specifying a color
I begin by showing you the three main ways that CSS provides for specifying the
color you want:

 » Use a color keyword. CSS defines a bit more than 140 color keywords. Some
of these are straightforward, such as red, yellow, and purple, while others
are, well, a bit whimsical (and hunger-inducing): lemonchiffon, papayawhip,
and peachpuff. The Web Coding Playground (wcpg.io/dummies/2-2-14)
lists them all, as shown in Figure 2-6.

FIGURE 2-6:
Go to the

Web Coding
 Playground to

see a full list of
the CSS color

keywords.

http://wcpg.io/dummies/2-2-14

94 BOOK 2 Coding the Front End, Part 1: HTML & CSS

 » Use the rgb() function. rgb() is a built-in CSS function that takes three
values: one for red, one for green, and one for blue (separated by commas).
Each of these can be a value between 0 and 255, and these combinations can
produce any of the 16 million or so colors on the spectrum. For example, the
following function produces a nice red:

rgb(255, 99, 71)

 » Use an RGB code. An RGB code is a six-digit value that takes the form #rrggbb,
where rr is a two-digit value that specifies the red component of the color, gg
is a two-digit value that specifies the green component, and bb is a two-digit
value that specifies the blue component. Alas, these two-digit values are
hexadecimal — base 16 — numbers, which run from 0 to 9 and then a to f.
As two-digit values, the decimal values 0 through 255 are represented
as 00 through ff in hexadecimal. For example, the following RGB code
produces the same red as in the previous example:

#ff6347

Coloring text
To apply a CSS color to some text, you use the color property:

color: value;

Here, value can be a color keyword, an rgb() function, or an RGB code. The
 following three rules produce the same color text:

color: tomato;
color: rgb(255, 99, 71);
color: #ff6347;

Coloring the background
For some extra page pizazz, try adding a color to the background of either the
entire page or a particular element. You do this in CSS by using the background-
color property:

background-color: value;

Here, value can be a color keyword, an rgb() function, or an RGB code. The
 following example displays the page with white text on a black background:

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 95

body {
 color: rgb(255,255,255);
 background-color: rgb(0,0,0);
}

When you’re messing around with text and background colors, make sure you
leave enough contrast between the text and background to ensure that your page
visitors can still read the text without shaking their fists at you. But I should
also warn you that too much contrast isn’t conducive to easy reading, either. For
example, using pure white for text and pure black for a background (as I did in the
preceding code, tsk, tsk) isn’t great because there’s too much contrast. Darkening
the text a shade and lightening the background a notch makes all the difference:

body {
 color: rgb(222,222,222);
 background-color: rgb(32,32,32);
}

Getting to Know the Web Page Family
One of the prerequisites for becoming a web developer is understanding both the
structure of a typical web page and the odd (at least at first) lingo associated with
that structure. As an example, I’m going to refer to the semantic HTML elements
that I demonstrate in Book 2, Chapter 1 (in Figure 1-16, in particular). Figure 2-7
shows that semantic structure as a tree diagram:

As you can see, the tree has the <html> tag at the top. The second level consists
of the <head> tag and the <body> tag, and the <head> tag leads to a third level
that consists of the <title> and <style> tags. For the <body> tag, the third level

FIGURE 2-7:
The structure of

a semantic HTML
web page.

96 BOOK 2 Coding the Front End, Part 1: HTML & CSS

contains four tags: <header>, <nav>, <main>, and <footer>. The <main> tag leads
to the <article> tag, which contains two <section> tags and an <aside> tag.

Okay, I can see the “So what?” thought bubble over your head, so I’ll get to the
heart of the matter. With this structure in mind, you can now identify and define
four useful members of the web page family tree:

 » Parent: An element that contains one or more other elements in the level
below it. For example, in Figure 2-7, the <html> tag is the parent of the
<head> and <body> tags, whereas the <head> tag is the parent of the
<title> and <style> tags.

 » Child: An element that is contained within another element that sits one level
above it in the tree. (Which is another way of saying that the element has a
parent.) In Figure 2-7, the <header>, <nav>, <main>, and <footer> tags are
children of the <body> tag, whereas the two <section> tags and the <aside>
tag are children of the <article> tag.

 » Ancestor: An element that contains one or more levels of elements. In
Figure 2-7, the <body> tag is an ancestor of the <aside> tag, whereas the
<html> tag is an ancestor of everything in the page.

 » Descendant: An element that is contained within another element that sits
one or more levels above it in the tree. In Figure 2-7, the <section> tags are
descendants of the <main> tag, whereas the <article> tag is a descendant
of the <body> tag.

This no doubt seems far removed from web development, but these ideas play
a crucial role not only in CSS, but also JavaScript (see Book 3) and jQuery (see
Book 4).

Using CSS Selectors
When you add a CSS rule to an internal or external style sheet, you assemble your
declarations into a declaration block (that is, you surround them with the { and }
thingies) and then assign that block to an element of the page. For example, the
following rule throws a few styles at the page’s <h1> tags:

h1 {
 font-size: 72px;
 font-family: Verdana;
 text-align: center;
}

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 97

But the element you assign to the declaration block doesn’t have to be an HTML
tag name. In fact, CSS has a huge number of ways to define what parts of the page
you want to style. These methods for defining what to style are called selectors
(because you use them to “select” those parts of the page you want styled). When
you use a tag name, you’re specifying a type selector. However, there are many
more — a few dozen, in fact — but lucky for you, only four should cover most of
your web development needs:

 » The class selector

 » The id selector

 » The descendant selector

 » The child selector

The class selector
If you master just one CSS selector, make it the class selector, because you’ll use
it time and again in your web projects. A class selector is one that targets its styles
at a particular web page class. So, what’s a class? I’m glad you asked. A class is an
attribute assigned to one or more page tags that enables you to create a kind of
grouping for those tags. Here’s the syntax for adding a class to an element:

<element class="class-name">

Replace element with the tag and replace class-name with the name you want to
assign. The name must begin with a letter and the rest can be any combination of
letters, numbers, hyphens (-), and underscores (_). Here’s an example:

<div class="caption">

With your classes assigned to your tags as needed, you’re ready to start selecting
those classes using CSS. You do that by preceding the class name with a dot (.) in
your style rule:

.class-name {
 property1: value1;
 property2: value2;
 ...
}

98 BOOK 2 Coding the Front End, Part 1: HTML & CSS

For example, here’s a rule for the caption class:

.caption {
 font-size: .75rem;
 font-style: italic;
}

The advantage here is that you can assign the caption class to any tag on the
page, and CSS will apply the same style rule to each of those elements.

The id selector
In Book 2, Chapter 1, I talk about creating an anchor by adding a unique id attrib-
ute to a tag, which enabled you to create a link that targeted the anchor:

<element id="id-name">

Here’s an example:

<h2 id="subtitle">

You can also use the id attribute as a CSS selector, which enables you to target
a particular element with extreme precision. You set this up by preceding the id
value with a hashtag symbol (#) in your CSS rule:

#id-name {
 property1: value1;
 property2: value2;
 ...
}

For example, here’s a rule for the subtitle id:

#subtitle {
 font-size: 2rem;
 font-style: italic;
 color: blue;
}

This isn’t as useful as the class selector because it can only target a single ele-
ment, which is why web developers use id selectors only rarely.

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 99

The descendant selector
Rather than targeting specific tags, classes, or ids, you might need to target every
instance of a particular element that is contained within another element. Those
contained elements are called descendants, and CSS offers the descendant selector
for applying styles to them. To set up a descendant selector, you include in your
rule the ancestor and the descendant type you want to style, separated by a space:

ancestor descendant {
 property1: value1;
 property2: value2;
 ...
}

For example, here’s a rule that applies a few styles to every <a> tag that’s con-
tained with an <aside> tag:

aside a {
 color: red;
 font-style: italic;
 text-decoration: none;
}

The child selector
The descendant selector that I discuss in the previous section is one of the most
powerful in the CSS kingdom because it targets all the descendants of a partic-
ular type that reside within an ancestor, no matter how many levels down the
page hierarchy those descendants live. However, it’s often more suitable and more
manageable to target only those descendants that reside one level down: in short,
the children of some parent element.

To aim some styles at the child elements of a parent, you use the CSS child selector,
where you separate the parent and child elements with a greater-than sign (>):

parent > child {
 property1: value1;
 property2: value2;
 ...
}

100 BOOK 2 Coding the Front End, Part 1: HTML & CSS

For example, here’s a rule that targets the links that are the immediate children
of an <aside> tag:

aside > a {
 color: green;
 font-style: bold;
 text-decoration: none;
}

Revisiting the Cascade
I close this first CSS chapter with a quick look at three important concepts that you
need to drill into your brain if you want to write good CSS and troubleshoot the
inevitable CSS problems that will crop up in your web development career:

 » Inheritance: If a parent element is styled with a property, in many cases its
child and descendant elements will also be styled with the same property.
This is known in the CSS game as inheritance: Parents “pass along” some of
their properties to their children and descendants. Notice, however, that I said
“some” properties are inherited. Lots of properties — such as the padding,
borders, and margins I cover in Book 2, Chapter 3 — don’t get inherited, so
you need to watch out for inheritance (or its lack) as you code your pages.

 » Weight: The different ways that you can specify styles for a page have a
built-in hierarchy of importance, or weight in CSS-speak. Here’s that style
source hierarchy in ascending order of weight:

1. Browser styles — The list of default styles that the web browser applies to
certain HTML tags. This is known officially as the user agent style sheet.

2. User-specified styles — The styles that the web browser user has
 configured, such as a new default type size. This is known to CSS pros
as a user style sheet.

3. External style sheets.

4. Internal style sheets.

5. Inline styles.

What this means is that if a web browser comes across the same style
property in two or more style sources, it uses the property value from the
source that has the greater weight. For example, if you set font-size:
1.5rem in an external style sheet and then set font-size: 2rem with an

St
yl

in
g

th
e

Pa
ge

w

it
h

CS
S

CHAPTER 2 Styling the Page with CSS 101

inline style, the inline style “wins” because it has a greater weight than the
external style sheet.

 » Specificity: What happens when two or more style rules from the same
source target the same element? You can’t go by weight since they all reside in
the same style source, so you have to turn to a concept called specificity,
instead. This is a score given to each style rule, where the browser implements
the rule that garners the highest specificity value. Here’s how the browser
determines the specificity for a rule:

1. Add one point for each element (such as div or span) in the rule’s selector.

2. Add 10 points for each class in the selector.

3. Add 100 points for each ID in the selector.

4. If the selector is part of an inline style, add 1,000 points.

In practice, you can use specificity to figure out why a particular element has
styles that don’t seem right. Quite often, the problem turns out to be that the
browser is applying some other style rule that has a higher specificity.

CHAPTER 3 Sizing and Positioning Page Elements 103

Sizing and Positioning
Page Elements

Every element in web design is a rectangular box. This was my ah-ha moment
that helped me really start to understand CSS-based web design and accomplish
the layouts I wanted to accomplish.

— CHRIS COYIER

I’m not going to lie to you: When you’re just getting started with CSS, the
 elements on the page will sometimes seem to defy your every command. Like
surly teenagers, they ignore your best advice and refuse to understand that you

are — or you are supposed to be — the boss of them. Okay, I did lie to you a little:
That can happen to even the most experienced web coders. Why the attitude?
Because although web browsers are fine pieces of software for getting around
the web, by default they’re not very adept at laying out a web page. Like overly
permissive grandparents, they just let the page elements do whatever they like.
Your job as a parent, er, I mean, a web developer, is to introduce some discipline
to the page.

Chapter 3

IN THIS CHAPTER

 » Wrapping your head around the CSS
box model

 » Setting the sizes of page elements

 » Encrusting elements with padding,
borders, and margins

 » Letting elements float where
they may

 » Positioning elements exactly where
you want them

104 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Fortunately, CSS comes with a huge number of tools and techniques that you can
wield to make stubborn page elements behave themselves. In this chapter, you
discover many of these tools and you explore how best to use them to gain mas-
tery of anything you care to add to a web page. You delve into styles that cover
properties such as dimensions (the height and width of things), padding and
margins (the amount of space around things), borders (lines around things), and
position (where things appear on the page).

Learning about the CSS Box Model
Everything in this chapter is based on something called the CSS box model. So I
begin by discussing what this box model thing is all about and why it’s important.

Every web page consists of a series of HTML tags, and each of those tags rep-
resents an element on the page. In the strange and geeky world known as Style
Sheet Land, each of these elements is considered to have an invisible box around
it (okay, it’s a very strange world). You might be tempted to think that this invis-
ible box only surrounds block-level elements, which are those elements that start
new sections of text: <p>, <blockquote>, <h1> through <h6>, <div>, all the page
layout semantic tags, such as <header>, <article>, and <section>, and so on.
That makes sense, but in fact every single tag, even inline elements such as <a>
and , have a box around them.

This box has the following components:

 » Content: The stuff inside the box (the text, the images, and so on)

 » Padding: The space around the content

 » Border: A line that surrounds the box padding

 » Margin: The space outside of the border separating the box from other boxes
to the left and right, as well as above and below

 » Dimensions: The height and width of the box

 » Position: The location of the box within the page

Of these, the first four — the content, padding, border, and margin — comprise
the box model, and they’re illustrated in Figure 3-1.

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 105

Styling Sizes
When the web browser renders a page, it examines each element and sets the
dimensions of that element. For block-level elements such as <header> and
<div>, the browser sets the dimensions as follows:

 » Width: Set to the width of the element’s parent. Because by default the width
of the <body> element is set to the width of the browser’s content area, in
practice all block-level elements have their widths set to the width of the
content area.

 » Height: Set just high enough to hold all the element’s content.

You can (and should) run roughshod over these defaults by styling the element’s
width and height properties:

width: value;
height: value;

In both cases, you replace value with a number and one of the CSS measurement
units I talk about in Book 2, Chapter 2: px, em, rem, vw, or vh. For example, if you
want your page to take up only half the width of the browser’s content area, you’d
use the following rule:

body {
 width: 50vw;
}

FIGURE 3-1:
The components

of the CSS box
model.

106 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Most of the time you’ll only mess with an element’s width, because getting the
height right is notoriously difficult because it depends on too many factors: the
content, the browser’s window size, the user’s default font size, and more.

Height and width apply only to block-level elements such as <article>, <div>,
and <p>, and not to inline elements such as and <a>. However, it’s possible
to convert inline elements into blocks. CSS offers two methods for this inline-to-
block makeover:

MAKING WIDTH AND HEIGHT MAKE SENSE
Width and height seem like such straightforward concepts, but you might as well learn
now that CSS has a knack for turning the straightforward into the crooked-sideways.
A block element’s dimensions are a case in point, because you’d think the “size” of a
block element would be the size of its box out to the border: that is, the content, plus
the padding, plus the border itself. Nope. By default, the size of a block element’s box
is just the content part of the box.

That may not sound like a cause for alarm, but it does mean that when you’re working
with an element’s dimensions, you have to take into account its padding widths and
border sizes if you want to get things right. Believe me, that is no picnic. Fortunately,
help is just around the corner. You can avoid all those extra calculations by forcing
the web browser to be sensible and define an element’s size to include not just the
content, but the padding and border, as well. A CSS property called box-sizing is the
 superhero here:

element {
 box-sizing: border-box;
}

The declaration box-sizing: border-box tells the browser to set the element’s
height and width to include the content, padding, and border. You could add this
 declaration to all your block-level element rules, but that’s way too much work. Instead,
you can use a trick where you use an asterisk (*) “element,” which is a shorthand way
of referencing every element on the page:

* {
 box-sizing: border-box;
}

Put this at the top of your style sheet, and then you never have to worry about it again.

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 107

 » Make it an inline block. If you want to set an inline element’s width, height,
or other block-related properties, but still allow the element to flow along with
the surrounding text, add the following to the element’s CSS rule:

display: inline-block;

 » Make it a true block. If you want to set an inline element’s block-related
properties and you no longer want the element to flow with the surrounding
text, turn it into an honest-to-goodness block-level element by adding the
following to the element’s CSS rule:

display: block;

Adding Padding
In the CSS box model, the padding is the space that surrounds the content out to the
border, if the box has one. Your web pages should always have lots of whitespace
(that is, blank, content-free chunks of the page), and one way to do that is to give
each element generous padding to ensure the element’s content isn’t crowded
either by its border or by surrounding elements.

There are four sections to the padding — above, to the right of, below, and to
the left of the content — so CSS offers four corresponding properties for adding
padding to an element:

element {
 padding-top: top-value;
 padding-right: right-value;
 padding-bottom: bottom-value;
 padding-left: left-value;
}

Each value is a number followed by a CSS measurement unit: px, em, rem, vw, or
vh. Here’s an example:

.margin-note {
 padding-top: 1rem;
 padding-right: 1.5rem;
 padding-bottom: .5rem;
 padding-left: 1.25rem;
}

108 BOOK 2 Coding the Front End, Part 1: HTML & CSS

CSS also offers a shorthand syntax that uses the padding property. There are four
different syntaxes you can use with the padding property, and they’re all listed
in Table 3-1.

Here’s how you’d rewrite the previous example using the padding shorthand:

.margin-note {
 padding: 1rem 1.5rem .5rem 1.25rem;
}

To illustrate what a difference padding can make in your page designs, take a peek
at Figure 3-2. Here you see two <aside> elements, where the one on top looks
cramped and uninviting, whereas the one on the bottom offers ample room for
reading. These two elements are styled identically, except the one on the bottom
has its padding set with the following declaration:

padding: 1rem;

TABLE 3-1	 The padding Shorthand Property
Syntax Description

padding: value1; Applies value1 to all four sides

padding: value1 value2; Applies value1 to the top and bottom and value2 to the
right and left

padding: value1 value2 value3; Applies value1 to the top, value2 to the right and left, and value3 to
the bottom

padding: value1 value2
value3 value4;

Applies value1 to the top, value2 to the right, value3 to the bottom,
and value4 to the left

FIGURE 3-2:
Without padding

(top), your
text can look

 uncomfortably
crowded by its

surroundings, but
when you add

padding (bottom),
the same text has
room to breathe.

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 109

Building Borders
Modern web design eschews vertical and horizontal lines as a means of separat-
ing content, preferring, instead, to let copious amounts of whitespace do the job.
However, that doesn’t mean you should never use lines in your designs, particu-
larly borders. An element’s border is the notional set of lines that enclose the ele-
ment’s content and padding. Borders are an often useful way to make it clear that
an element is separate from the surrounding elements in the page.

There are four lines associated with an element’s border — above, to the right of,
below, and to the left of the padding — so CSS offers four properties for adding
borders to an element:

element {
 border-top: top-width top-style top-color;
 border-right: right-width right-style right-color;
 border-bottom: bottom-width bottom-style bottom-color;
 border-left: left-width left-style left-color;
}

As you can see, each border requires three values:

 » Width: The thickness of the border line, which you specify using a number
followed by a CSS measurement unit: px, em, rem, vw, or vh. Note, however,
that most border widths are measured in pixels, usually 1px. You can also
specify one of the following keywords: thin, medium, or thick.

 » Style: The type of border line, which must be one of the following keywords:
dotted, dashed, solid, double, groove, ridge, inset, or outset.

 » Color: The color of the border line. You can use a color keyword, an rgb()
function, or an RGB code, as I describe in Book 2, Chapter 2.

Here’s an example that adds a 1-pixel, dashed, red bottom border to the header
element:

header {
 border-bottom: 1px dashed red;
}

If you want to add a full border around an element and you want all four sides to
use the same width, style, and color, CSS mercifully offers a shorthand version
that uses the border property:

border: width style color;

110 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Here’s the declaration I used to add the borders around the elements you see in
Figure 3-2:

border: 1px solid black;

Making Margins
The final component of the CSS box model is the margin, which is the space around
the border of the box. Margins are an important detail in web design because they
prevent elements from rubbing up against the edges of the browser content area,
ensure two elements don’t overlap each other, and create separation between
elements.

As with padding, there are four sections to the margin — above, to the right of,
below, and to the left of the border — so CSS offers four corresponding properties
for adding margins to an element:

element {
 margin-top: top-value;
 margin-right: right-value;
 margin-bottom: bottom-value;
 margin-left: left-value;
}

Each value is a number followed by one of the standard CSS measurement units:
px, em, rem, vw, or vh. Here’s an example:

aside {
 margin-top: 1rem;
 margin-right: .5rem;
 margin-bottom: 2rem;
 margin-left: 1.5rem;
}

Like padding, CSS also offers a shorthand syntax that uses the margin property.
Table 3-2 lists the four syntaxes you can use with the margin property.

Here’s the shorthand version of the previous example:

aside {
 margin: 1rem .5rem 2rem 1.5rem;
}

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 111

Resetting the padding and margin
If you see a web developer pulling her hair or gnashing her teeth, it’s a good
bet that she’s battling the web browser’s default styles for padding and margins.
These defaults are one of the biggest sources of frustration for web coders because
they force you to relinquish control over one of the most important aspects of web
design: the whitespace on the page.

Most modern web developers have learned not to fight against these defaults, but
to eliminate them entirely by resetting everything to zero by adding the following
rule to the top of every style sheet they build:

* {
 margin: 0;
 padding: 0;
}

The downside is that you must now specify the margins and padding for all your
page elements yourself, but that extra work is really a blessing in disguise because
now you have complete control over the whitespace in your page.

Collapsing margins ahead!
CSS has no shortage of eccentricities, and you’ll come across most of them in your
web development career. Here’s a look at one of the odder things that CSS does.
First, here’s some HTML and CSS code to chew over:

CSS:

nav {
 margin-top: .5rem;

TABLE 3-2	 The margin Shorthand Property
Syntax Description

margin: value1; Applies value1 to all four sides

margin: value1 value2; Applies value1 to the top and bottom and value2 to the right and left

margin: value1 value2 value3; Applies value1 to the top, value2 to the right and left, and value3 to
the bottom

margin: value1 value2
value3 value4;

Applies value1 to the top, value2 to the right, value3 to the bottom,
and value4 to the left

112 BOOK 2 Coding the Front End, Part 1: HTML & CSS

 padding: .75rem;
 border: 1px solid black;
}

HTML:

<header>

 <h1>News of the Word</h1>
 <h3>Language news you won’t find anywhere else (for good

reason!)</h3>
</header>
<nav>
 Home
 What's New
 What's Old
 What's What
</nav>

I’d like to draw your attention in particular to the margin-top: .5rem declaration
in the nav element’s CSS rule. In Figure 3-3, you can see that, sure enough, the
browser has rendered a small margin above the nav element.

Suppose now I decide that I want a bit more space between the header and the nav
elements, so I add a bottom margin to the header:

header {
 margin-bottom: .5rem;
}

Figure 3-4 shows the result.

No, you’re not hallucinating: The space between the header and nav elements
didn’t change one iota! Welcome to the wacky world of CSS! In this case, the
wackiness comes courtesy of a CSS “feature” called collapsing margins. When
one element’s bottom margin butts up against another element’s top margin,

FIGURE 3-3:
The nav element
(with the border)
has a .5rem top

border.

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 113

common sense would dictate that the web browser would add the two margin
values together. Hah, you wish! Instead, the browser uses the larger of the two
margin values and it throws out the smaller value. That is, it “collapses” the two
margin values into a single value.

So, does that mean you’re stuck? Not at all. To get some extra vertical space
between two elements, you have four choices:

 » Increase the margin-top value of the bottom element.

 » Increase the margin-bottom value of the top element.

 » If you already have margin-top defined on the bottom element, and the top
element doesn’t use a border, add a padding-bottom value to the top
element.

 » If you already have margin-bottom defined on the top element, and the
bottom element doesn’t use a border, add a padding-top value to the
bottom element.

In the last two bullets, combining a top or bottom margin on one element with a
bottom or top padding on the other element works because the browser doesn’t
collapse a margin/padding combo.

Getting a Grip on Page Flow
When a web browser renders a web page, one of the really boring things it does is
lay out the tags by applying the following rules to each element type:

 » Inline elements: Rendered from left to right within each element’s par-
ent container

 » Block-level elements: Stacked on top of each other, with the first element at
the top of the page, the second element below the first, and so on

FIGURE 3-4:
The header

element with a
bottom margin

added (with
the border) has

a .5rem top
border.

114 BOOK 2 Coding the Front End, Part 1: HTML & CSS

This is called the page flow. For example, consider the following HTML code:

<header>
 The page header goes here.
</header>
<nav>
 The navigation doodads go here.
</nav>
<section>
 This is the first section of the page.
</section>
<section>
 This is—you got it—the second section of the page.
</section>
<aside>
 This is the witty or oh-so-interesting aside.
</aside>
<footer>
 The page footer goes here.
</footer>

This code is a collection of six block-level elements — a header, a nav, two
section tags, an aside, and a footer — and Figure 3-5 shows how the web
browser renders them as a stack of boxes.

There’s nothing inherently wrong with the default page flow, but having your web
page render as a stack of boxes lacks a certain flair. Fortunately for your creative
spirit, you’re not married to the default, one-box-piled-on-another flow. CSS
gives you two useful methods for breaking out of the normal page flow and giving
your pages some pizzazz: floating and positioning.

FIGURE 3-5:
The web browser

renders the
block-level

elements as a
stack of boxes.

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 115

Floating Elements
When you float an element, the web browser takes the element out of the default
page flow. Where the element ends up on the page depends on whether you float
it to the left or to the right:

 » Float left: The browser places the element as far to the left and as high as
possible within the element’s parent container.

 » Float right: The browser places the element as far to the right and as high as
possible within the element’s parent container.

In both cases, the non-floated elements flow around the floated element.

You convince the web browser to float an element by adding the float property:

element {
 float: left|right|none;
}

For example, consider the following code and its rendering in Figure 3-6.

<header>

 <h1>News of the Word</h1>
 <h3>Language news you won't find anywhere else (for good

reason!)</h3>
</header>
<nav>
 Home
 What's New
 What's Old
 What's What
</nav>

In Figure 3-6, you can see that the web browser is up to its usual page flow tricks:
stacking all the block-level elements on top of each other. However, I think this
page would look better if the title (the <h1> tag) appeared to the right of the logo.
To do that, I can float the to the left:

header img {
 float: left;
 margin-right: 2em;
}

116 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Figure 3-7 shows the results. With the logo floated to the left, the rest of the
 content — the <h1> , <h3>, and <nav> tags — now flows around the tag.

Clearing your floats
The default behavior for non-floated stuff is to wrap around anything that’s
floated, which is often exactly what you want. However, there will be times when
you want to avoid having an element wrap around your floats. For example, con-
sider the following code and how it gets rendered, as shown in Figure 3-8.

<header>
 <h1>Can't You Read the Sign?</h1>
</header>
<nav>
 Home
 Signs
 Contact Us
 Suggest a Sign
</nav>
<article>

</article>
<footer>
 © Can't You Read?, Inc.
</footer>

With the tag floated to the left, the rest of the content flows around it,
including the content of the <footer> tag, which now appears by the top of the
image.

FIGURE 3-6:
As usual, the

browser displays
the block-level
elements as a

stack of boxes.

FIGURE 3-7:
When the logo

gets floated left,
the rest of the
content flows

around it.

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 117

You want your footer to appear at the bottom of the page, naturally, so how can
you fix this? By telling the web browser to position the footer element so that it
clears the floated image, which means that it appears after the image in the page
flow. You clear an element by adding the clear property:

element {
 clear: left|right|both|none;
}

Use clear: left to clear all left-floated elements, clear: right to clear all
right-floated elements, or clear: both to clear everything. When I add clear:
left to the footer element, you can see in Figure 3-9 that the footer content now
appears at the bottom of the page.

footer {
 clear: left;
}

Collapsing containers ahead!
The odd behavior of CSS is apparently limitless, and floats offer yet another
example. Consider the following HTML and its result in Figure 3-10:

<article>

 <section>
 An awfully long time ago...
 </section>

FIGURE 3-8:
When the image

is floated left,
the footer wraps

around it and
ends up in a
weird place.

118 BOOK 2 Coding the Front End, Part 1: HTML & CSS

 <aside>
 Note: Creating a new word by...
 </aside>
</article>

Note, in particular, that I’ve styled the article element with a border.

Rather than the stack of blocks shown in Figure 3-10, you might prefer to have the
section and the aside elements side-by-side. Great idea! So you add width prop-
erties to each, and float the section element to the left and the aside element to
the right. Here are the rules and Figure 3-11 shows the result.

FIGURE 3-9:
Adding clear:

left to the
footer element

causes the footer
to clear the

left-floated image
and appear at
the bottom of

the page.

FIGURE 3-10:
An <article>

tag containing a
<section> tag

and an <aside>
tag, rendered

using the default
page flow.

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 119

section {
 float: left;
 width: 25rem;
}
aside {
 float: right;
 width: 15rem;
}

Well, that’s weird! The line across the top is what’s left of the article element.
What happened? Because I floated both the section and the aside elements, the
browser removed them from the page flow, which made the article element
behave as though it had no content at all. The result? A CSS bugaboo known as
container collapse.

To fix this, you have to force the parent container to clear its own children.

CSS:

.self-clear::after {
 content: "";
 display: block;
 clear: both;
}

HTML:

<article class="self-clear">

First, ::after is a so called pseudo-element that, in this case, tells the browser
to create an element and add it to the page flow after whatever element gets the
class. What’s being added here is an empty string (since you don’t want to add

FIGURE 3-11:
With its content

floated, the
<article>

 element collapses
down to just its

border.

120 BOOK 2 Coding the Front End, Part 1: HTML & CSS

anything substantial to the page), and that empty string is displayed as a block
that uses clear: both to clear the container’s children. It’s weird, but it works,
as you can see in Figure 3-12.

Positioning Elements
The second major method for breaking out of the web browser’s default “stacked
boxes” page flow is to position an element yourself using CSS properties. For
example, you could tell the browser to place an image in the top left corner of the
window, no matter where that element’s tag appears in the page’s HTML
code. This is known as positioning in the CSS world, and it’s a very powerful tool,
so much so that most web developers use positioning only sparingly.

The first bit of positioning wizardry you need to know is, appropriately, the
position property:

element {
 position: static|relative|absolute|fixed;
}

 » static: Places the element in its default position in the page flow

 » relative: Offsets the element from its default position with respect to its
parent container while keeping the element in the page flow

 » absolute: Offsets the element from its default position with respect to its
parent (or sometimes an earlier ancestor) container while removing the
element from the page flow

 » fixed: Offsets the element from its default position with respect to the
browser window while removing the element from the page flow

FIGURE 3-12:
With the

self-clear
class added to

the <article>
tag, the article

 element now
clears its own

children and is no
longer collapsed.

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 121

Because static positioning is what the browser does by default, I won’t say
anything more about it. For the other three positioning values — relative,
absolute, and fixed — notice that each one offsets the element. Where do these
offsets come from? From the following CSS properties:

element {
 top: top-value;
 right: right-value;
 bottom: bottom-value;
 left: left-value;
}

 » top: Shifts the element down

 » right: Shifts the element from the right

 » bottom: Shifts the element up

 » left: Shifts the element from the left

In each case, the value you supply is either a number followed by one of the CSS
measurement units (px, em, rem, vw, or vh) or a percentage.

Using relative positioning
Relative positioning is a bit weird because not only does it offset an element rela-
tive to its parent container, but it still keeps the element’s default space in the
page flow intact.

Here’s an example:

CSS:

.offset-image {
 position: relative;
 left: 200px;
}

HTML:

<h1>
 holloway
</h1>

122 BOOK 2 Coding the Front End, Part 1: HTML & CSS

<div>
 <i>n.</i> A sunken footpath or road; a path that is enclosed

by high embankments on both sides.
</div>

The CSS defines a rule for a class named offset-image, which applies relative
positioning and offsets the element from the left by 200px. In the HTML, the
offset-image class is applied to the middle image. As you can see in Figure 3-13,
not only is the middle image shifted from the left, but the space in the page flow
where it would have appeared by default remains intact, so the third image’s place
in the page flow doesn’t change. As far as that third image is concerned, the middle
image is still right above it.

Giving absolute positioning a whirl
Absolute positioning not only offsets the element from its default position, but it
also removes the element from the page flow. Sounds useful, but if the element

FIGURE 3-13:
The middle image

uses relative
positioning to
shift from the

left, but its place
in the page flow

remains.

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 123

is no longer part of the page flow, from what element is it offset? Good question,
and here’s the short answer: the closest ancestor element that uses non-static
positioning.

If that has you furrowing your brow, I have a longer answer that should help. To
determine which ancestor element is used for the offset of the absolutely posi-
tioned element, the browser goes through a procedure similar to this:

1. Move one level up the page hierarchy to the previous ancestor.

2. Check the position property of that ancestor element.

3. If the position value of the ancestor is static, go back to Step 1 and
repeat the process for the next level up the hierarchy; otherwise (that is,
if the position value of the parent is anything other than static), then
offset the original element with respect to the ancestor.

4. If, after going through Steps 1 to 3 repeatedly, you end up at the top of the
page hierarchy — that is, at the <html> tag — then use that to offset the
element, which means in practice that the element is offset with respect to
the browser’s content area.

I mention in the previous section that relative positioning is weird because it
keeps the element’s default position in the page flow intact. However, now that
weirdness turns to goodness because if you want a child element to use absolute
positioning, then you add position: relative to the parent element’s style rule.
Because you don’t also supply an offset to the parent, it stays put in the page flow,
but now you have what CSS nerds called a positioning context for the child element.

I think an example would be welcome right about now.

CSS:

section {
 position: relative;
 border: 1px double black;
}
img {
 position: absolute;
 top: 0;
 right: 0;
}

124 BOOK 2 Coding the Front End, Part 1: HTML & CSS

HTML:

<section>

 <h1>
 holloway
 </h1>
 <div>
 <i>n.</i> A sunken footpath or road; a path that is

enclosed by high embankments on both sides.
 </div>
 <div>
 There are two main methods that create holloways: By

years (decades, centuries) of constant foot traffic that wears
down the path (a process usually accelerated somewhat by water
erosion); or by digging out a path between two properties and
piling up the dirt on either side.

 </div>
</section>

In the CSS, the section element is styled with the position: relative declaration,
and the img element is styled with position: absolute and top and right offsets
set to 0. In the HTML, you can see that the <section> tag is the parent of the
, so the latter’s absolute positioning will be with respect to the former. With
top and right offsets set to 0, the image will now appear in the top right corner of
the section element and, indeed, it does, as you can see in Figure 3-14.

FIGURE 3-14:
The img element

uses absolute
positioning to
send it to the

top right corner
of the section

element.

Si
zi

ng
 a

nd
 P

os
it

io
ni

ng

Pa
ge

 E
le

m
en

ts

CHAPTER 3 Sizing and Positioning Page Elements 125

Trying out fixed positioning
With fixed positioning, the element is taken out of the normal page flow and is
then offset with respect to the browser’s content area, which means the element
doesn’t move, not even a little, when you scroll the page (that is, the element is
“fixed” in its new position).

One of the most common uses of fixed positioning is to plop a header at the top
of the page and make it stay there while the user scrolls the rest of the content.
Here’s an example that shows you how to create such a header:

CSS:

header {
 position: fixed;
 top: 0;
 left: 0;
 width: 100%;
 height: 64px;
 border: 1px double black;
 background-color: rgb(147, 196, 125);
}
main {
 margin-top: 64px;
}

HTML:

<header>

 <h1>
 holloway
 </h1>
</header>
<main>
...
</main>

The HTML includes a header element with an image and a heading, followed by
a longish main section that I don’t include here for simplicity’s sake. In the CSS
code, the header element is styled with position: fixed, and the offsets top
and left set to 0. These offsets fix the header to the top left of the browser’s

126 BOOK 2 Coding the Front End, Part 1: HTML & CSS

content area. I also added width: 100% to give the header the entire width of
the window. Note, too, that I set the header height to 64px. To make sure the
main section begins below the header, I styled the main element with margin-top:
64px. Figure 3-15 shows the results.

FIGURE 3-15:
A page with the
header element

fixed to the top of
the screen. When
you scroll the rest

of the page, the
header remains

where it is.

CHAPTER 4 Creating the Page Layout 127

Creating the Page Layout
Flexbox is essentially for laying out items in a single dimension — in a row OR
a column. Grid is for layout of items in two dimensions — rows AND columns.

— RACHEL ANDREWS

Why are some web pages immediately appealing, while others put the
“Ugh” in “ugly”? There are lots of possible reasons: colors, typogra-
phy, image quality, the density of exclamation points. For my money,

however, the number one reason why some pages soar while others are eyesores,
is the overall look and feel of the page. We’ve all visited enough websites in our
lives to have developed a kind of sixth sense that tells us immediately whether a
page is worth checking out. Sure, colors and fonts play a part in that intuition, but
we all respond viscerally to the “big picture” that a page presents.

That big picture refers to the overall layout of the page, and that’s the subject you
explore in this chapter. Here you discover what page layout is all about, and you
investigate several CSS-based methods for making your web pages behave the
way you want them to. By the time you’re done mastering the nitty-gritty of page
layout, you’ll be in a position to design and build beautiful and functional pages
that’ll have them screaming for more.

Chapter 4

IN THIS CHAPTER

 » Understanding page layout basics

 » Using floated elements for page
layout

 » Using inline blocks for page layout

 » Learning the fundamentals of
Flexbox layouts

 » Getting a grip on Grid layouts

128 BOOK 2 Coding the Front End, Part 1: HTML & CSS

What Is Page Layout?
The page layout is the arrangement of the page elements within the browser’s
content area, including not only what you see when you first open the page, but
also the rest of the page that comes into view as you scroll down. The page layout
acts as a kind of blueprint for the page, and like any good blueprint, the page lay-
out details how a page looks at two levels:

 » The macro level: Refers to the overall layout of the page, which determines
how the major sections of the page — header, nav, main, footer, and so
on — fit together as a whole.

 » The micro level: Refers to the layout within a section or subsection of the
page. For example, the page’s header element might have one layout,
whereas the page’s article section might have another.

CSS offers four main layout techniques, each of which you can apply at either the
macro level or the micro level:

 » Floats: Arranges elements by floating them.

 » Inline blocks: Arranges elements by styling them as inline blocks.

 » CSS Flexible Box (flexbox): Arranges elements either vertically or horizontally
within flexible boxes.

 » CSS Grid: Arranges the elements in a row-and-column structure.

The rest of this chapter discusses each of these techniques, with a special empha-
sis on the newer technologies of flexbox and Grid.

Laying Out Page Elements with Floats
I discuss floating elements in detail in Book 2, Chapter 3, so I won’t repeat myself
here. From a page layout standpoint, you generally use floats as needed when you
want two or more items to appear side-by-side rather than stacked on top of each
other in the default page flow.

The general procedure you follow goes something like this:

1. Work your way down the page, allowing the page elements to lay out using the
default page flow.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 129

2. When you come to two or more elements that you want to appear side-by-
side, float them to the left (usually) or to the right.

3. When you come to the next element that should follow the default page flow,
clear the floats for that element.

4. Repeat Steps 1 to 3 until you reach the end of the page.

For example, say you’re following the above procedure and you come to the nav
element, which consists of several links. Because the <a> tag is an inline element,
you could just toss a bunch of <a> tags inside the nav element and they’d line up
alongside each other. That’s fine, but you don’t get to control the horizontal spac-
ing since an <a> tag isn’t a true block.

A common way to work around that problem is to add the links as an unordered
list, but with two special additions:

 » The ul element’s list-style-type property set to none to hide the bullets.

 » The li elements (that is, the list items) are styled with float: left so they
display side-by-side instead of vertically.

Here’s the code, and Figure 4-1 shows the result:

CSS:

nav {
 height: 2.5rem;
 padding-top: .6rem;
 background-color: #ccc;
}
nav ul {
 list-style-type: none;
 padding-left: 1.75rem;
}
nav li {
 float: left;
 padding-right: 1.75rem;
}
main {
 clear: left;
 margin-top: 1rem;
}

130 BOOK 2 Coding the Front End, Part 1: HTML & CSS

HTML:

<nav>

 Home
 Blog
 Store
 About
 Contact

</nav>
<main>
 Main content goes here...
</main>

You can also use floats to make larger page layout decisions. For example, one
common page layout is to have a header at the top of the page, a navigation area
below the header, and a footer at the bottom of the page, where all three span the
width of the page. Between the navigation area and the header, you have the main
content of the page, which is split horizontally between an article on one side and
a sidebar on the other.

Here’s some barebones code that creates such a page layout:

CSS:

body {
 margin: 2rem;
 width: 30rem;
}
header {
 height: 2.5rem;
 border: 1px solid black;
}

FIGURE 4-1:
These links are
unordered list

items and floated
left to appear
side-by-side.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 131

nav {
 height: 2.5rem;
 margin-top: 1rem;
 border: 1px solid black;
}
main {
 margin-top: 1rem;
 height: 10rem;
}
article {
 float: left;
 margin-right: 1rem;
 width: 20rem;
 height: 100%;
 border: 1px solid black;
}
aside {
 float: right;
 width: 9rem;
 height: 100%;
 border: 1px solid black;
}
footer {
 clear: both;
 height: 2.5rem;
 margin-top: 1rem;
 border: 1px solid black;
}

HTML:

<header>
 Header
</header>
<nav>
 Navigation
</nav>
<main>
 <article>
 Article
 </article>
 <aside>
 Aside
 </aside>

132 BOOK 2 Coding the Front End, Part 1: HTML & CSS

</main>
<footer>
 Footer
</footer>

The key elements to notice here are that the <article> and <aside> tags are both
children of the <main> tag, and in the CSS the article element is styled with
float: left, whereas the aside element is styled with float: right. Figure 4-2
shows the resulting page layout.

Laying Out Page Elements
with Inline Blocks

When you turn an element into an inline block (by adding display: inline-block
to the element’s style rule), one of two things happens:

 » If you’re working with an inline element, that element becomes a block, but it
still flows horizontally with the rest of the surrounding inline content.

 » If you’re working with a block-level element, that element is removed from the
default vertical page flow and now flows horizontally with the rest of the
surrounding inline content.

It’s the second of these — that is, the removal of a block-level element from the
default page flow so that it now flows inline — that interests us from a page lay-
out point of view. That is, you can use inline blocks as needed when you want two
or more items to appear side-by-side rather than stacked.

FIGURE 4-2:
A classic web
page layout,

 created by
 floating the

article
element to

the left and
the aside

 element to
the right.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 133

Here’s the general procedure to follow:

1. Work your way down the page, allowing the page elements to lay out using the
default page flow.

2. When you come to two or more elements that you want to appear side-by-
side, convert them to inline blocks.

3. Repeat Steps 1 and 2 until you reach the end of the page.

This procedure is very similar to the float steps I outline in the previous section,
with one notable exception: When you use inline blocks, you don’t need to clear
the following elements because the browser does that for you automatically.

Here’s the inline-block version of the nav element layout that I went through in
the previous section, and Figure 4-3 shows the result:

CSS:

nav {
 height: 2.5rem;
 padding-top: .6rem;
 background-color: #ccc;
}
nav ul {
 list-style-type: none;
 padding-left: 1.75rem;
}
nav li {
 display: inline-block;
 padding-right: 1.75rem;
}
main {
 margin-top: 1rem;
}

HTML:

<nav>

 Home
 Blog
 Store
 About
 Contact

134 BOOK 2 Coding the Front End, Part 1: HTML & CSS

</nav>
<main>
 Main content goes here...
</main>

You can also use inline blocks for macro page layouts. For example, to re-create
the layout shown earlier in Figure 4-2 using inline blocks, you’d use the follow-
ing code:

CSS:

body {
 margin: 2rem;
 width: 30rem;
}
header {
 height: 2.5rem;
 border: 1px solid black;
}
nav {
 height: 2.5rem;
 margin-top: 1rem;
 border: 1px solid black;
}
main {
 margin-top: 1rem;
 height: 10rem;
}
article {
 display: inline-block;
 margin-right: 1rem;
 width: 20rem;
 height: 100%;
 border: 1px solid black;
}

FIGURE 4-3:
These links

are list items
styled as inline

blocks to appear
side-by-side.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 135

aside {
 display: inline-block;
 width: 9rem;
 height: 100%;
 border: 1px solid black;
}
footer {
 height: 2.5rem;
 margin-top: 1rem;
 border: 1px solid black;
}

HTML:

<header>
 Header
</header>
<nav>
 Navigation
</nav>
<main>
 <article>
 Article
 </article><aside>
 Aside
 </aside>
</main>
<footer>
 Footer
</footer>

Notice, first, that in the CSS both the article element and the aside element are
styled with display: inline-block. More mysteriously, in the HTML, notice that
I jammed together the </article> and <aside> tags. What’s up with that? It’s
an eccentric feature of using inline blocks in this way that there shouldn’t be any
whitespace between one inline block and another. It’s weird, I know, but it works,
as you can see in Figure 4-4.

136 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Making Flexible Layouts with Flexbox
When you use either floats or inline blocks for page layout, there are some banana
peels in the path that can trip you up, including forgetting to clear your floats and
forgetting to ensure there is no whitespace between two inline blocks.

However, beyond these mere annoyances, there are also a few things that float- or
inline-block-based layouts have trouble with:

 » It’s very hard to get an element’s content centered vertically within the
element’s container.

 » It’s very hard to get elements evenly spaced horizontally across the full width
(or vertically across the full height) of their parent container.

 » It’s very hard to get a footer element to appear at the bottom of the browser’s
content area.

Fortunately, these troubles vanish if you use a CSS technology called Flexible Box
Layout Module, or flexbox, for short. The key here is the “flex” part of the name.
As opposed to the default page flow and layouts that use floats and inline blocks,
all of which render content using rigid blocks, flexbox renders content using
 containers that can grow and shrink — I’m talking both width and height here —
in response to changing content or browser window size. But flexbox also offers
powerful properties that make it a breeze to lay out, align, distribute, and size the
child elements of a parent container.

FIGURE 4-4:
The classic web

page layout,
 created by

displaying the
article and

aside elements
as inline blocks.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 137

The first thing you need to know is that flexbox divides its world into two
categories:

 » Flex container: This is a block-level element that acts as a parent to the
flexible elements inside it.

 » Flex items: These are the elements that reside within the flex container.

Setting up the flex container
To designate an element as a flex container, you set its display property to flex:

container {
 display: flex;
}

With that done, the element’s children automatically become flex items.

Flexbox is a one-dimensional layout tool, which means the flex items are
arranged within their flex container either horizontally — that is, in a row — or
 vertically — that is, in a column. This direction is called the primary axis and you
specify it using the flex-direction property:

element {
 display: flex;
 flex-direction: row|row-reverse|column|column-reverse;
}

 » row: The primary axis is horizontal and the flex items are arranged from left to
right. This is the default value.

 » row-reverse: The primary axis is horizontal and the flex items are arranged
from right to left.

 » column: The primary axis is vertical and the flex items are arranged from top
to bottom.

 » column-reverse: The primary axis is vertical and the flex items are arranged
from bottom to top.

The axis that is perpendicular to the primary axis is called the secondary axis.

138 BOOK 2 Coding the Front End, Part 1: HTML & CSS

As an example, here’s some CSS and HTML code, and Figure 4-5 shows how it
looks if you let the browser lay it out:

CSS:

.container {
 border: 5px double black;
}
.item {
 border: 1px solid black;
 padding: .1rem;
 font-family: "Verdana", sans-serif;
 font-size: 5rem;
 text-align: center;
}
.item1 {
 background-color: rgb(240, 240, 240);
}
.item2 {
 background-color: rgb(224, 224, 224);
}
.item3 {
 background-color: rgb(208, 208, 208);
}
.item4 {
 background-color: rgb(192, 192, 192);
}
.item5 {
 background-color: rgb(176, 176, 176);
}

HTML:

<div class="container">
 <div class="item item1">1</div>
 <div class="item item2">2</div>
 <div class="item item3">3</div>
 <div class="item item4">4</div>
 <div class="item item5">5</div>
</div>

The browser does its default thing where it stacks the div blocks on top of each
other and makes each one take up the full width of its parent div (the one with the
container class), which, in Figure 4-5, has its boundaries marked by the double
border.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 139

Now configure the parent div — again, the one with the container class — as a
flex container with a horizontal primary axis:

.container {
 display: flex;
 flex-direction: row;
 border: 5px double black;
}

This automatically configures the child div elements — the ones with the item
class — as flex items. As you can see in Figure 4-6, the flex items are now aligned
horizontally and only take up as much horizontal space as their content requires.

Aligning flex items along the primary axis
Notice in Figure 4-6 that the flex items are bunched together on the left side of
the flex container (which has its boundaries shown by the double border). This is
the default alignment along the primary axis, but you can change that by modify-
ing the value of the justify-content property:

container {
 display: flex;
 justify-content: flex-start|flex-end|center|space-

between|space-around;
}

FIGURE 4-5:
If you let the

browser lay out
the elements, you

get the default
stack of blocks.

FIGURE 4-6:
With their

 parent as a flex
 container, the

child elements
become flex

items.

140 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Table 4-1 demonstrates each of the possible values of the justify-content prop-
erty when the primary axis is horizontal.

Here are a few notes about Table 4-1 to recite to yourself before going to bed:

 » The flex-start alignment is the default, so you can leave out the justify-
content property if flex-start is the alignment you want.

 » The space-between alignment works by placing the first flex item at the start
of the flex container, the last flex item at the end of the flex container, and
then distributing the rest of the flex items evenly in between.

 » The space-around alignment works by assigning equal amounts of space
before and after each flex item, where the amount of space is calculated to
get the flex items distributed evenly along the primary axis. Actually, the
distribution isn’t quite even, because the inner flex items (2, 3, and 4 in
Table 4-1) have two units of space between them, whereas the starting and
ending flex items (1 and 5, respectively, in Table 4-1) have only one unit of
space to the outside (that is, to the left of item 1 and to the right of item 5).

Aligning flex items along the secondary axis
Besides aligning the flex items along the primary axis, you can also align them
along the secondary axis. For example, if you’ve set flex-direction to row,
which gives you a horizontal primary axis, then the secondary axis is vertical,
which means you can also align the flex items vertically. By default, the flex items
always take up the entire height of the flex container, but you can get a different
secondary axis alignment by changing the value of the align-items property:

TABLE 4-1	 Aligning Flex Items along the Primary Axis
justify-content Example

flex-start

flex-end

center

space-between

space-around

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 141

container {
 display: flex;
 align-items: stretch|flex-start|flex-end|center|baseline;
}

Table 4-2 demonstrates each of the possible values of the align-items property
when the secondary axis is vertical.

Some notes about Table 4-2:

 » To make the examples useful, I added some height to the flex container (the
edges of which are designated by a double border) and I added random
amounts of top and bottom padding to each flex item.

 » The stretch alignment is the default, so you can leave out the align-items
property if stretch is the alignment you want.

 » The baseline value aligns the flex items along the bottom edges of the item
text. (Technically, given a line of text, the baseline is the invisible line upon
which lowercase characters such as o and x appear to sit.)

Centering an element horizontally
and vertically
In the olden days of CSS, centering an element both horizontally and vertically
within its parent was notoriously difficult. Style wizards stayed up until late at
night coming up with ways to achieve this feat. They succeeded, but their tech-
niques were obscure and convoluted. Then flexbox came along and changed

TABLE 4-2	 Aligning Flex Items along the Secondary Axis
align-items Example

stretch

flex-start

flex-end

center

baseline

142 BOOK 2 Coding the Front End, Part 1: HTML & CSS

everything by making it almost ridiculously easy to plop something smack dab in
the middle of the page:

container {
 display: flex;
 justify-content: center;
 align-items: center;
}

Yes, that’s all there is to it. Here’s an example:

CSS:

.container {
 display: flex;
 justify-content: center;
 align-items: center;
 height: 25vh;
 border: 5px double black;
}
.item {
 font-family: "Georgia", serif;
 font-size: 2rem;
}

HTML:

<div class="container">
 <div class="item">Look, ma, I’m centered!</div>
</div>

As you can see in Figure 4-7, the flex item sits right in the middle of its flex
container.

FIGURE 4-7:
To center an
item, set the

 container’s
justify-

content and
align-items
properties to

center.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 143

Laying out a navigation bar with flexbox
Earlier in this chapter, I show some HTML and CSS code for a horizontal layout of
a navigation bar. One example uses floats and the other uses inline blocks, but in
both cases I had to resort to finicky finagling of vertical and horizontal padding to
get the links nicely positioned within the nav element.

With flexbox, however, you don’t need to resort to such time-consuming tweak-
ing to gets things lined up nice and neat. Here’s the flexbox version of the naviga-
tion bar, and Figure 4-8 shows how it looks in the browser:

CSS:

nav {
 background-color: #ccc;
}
nav ul {
 display: flex;
 justify-content: space-around;
 align-items: center;
 height: 2.5rem;
 list-style-type: none;
}
main {
 margin-top: 1rem;
}

HTML:

<nav>

 Home
 Blog
 Store
 About
 Contact

</nav>
<main>
 Main content goes here...
</main>

144 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Notice that I made the ul element the flex container. By setting justify-content
to space-around and align-items to center, you get the flex items — that is, the
navigation links — perfectly spaced within the navigation bar.

Allowing flex items to grow
By default, when you set the justify-content property to flex-start,
flex-end, or center, the flex items take up only as much room along the primary
axis as they need for their content, as shown earlier in Figure 4-6 and Table 4-1.
This is admirably egalitarian, but it does often leave a bunch of empty space in the
flex container. Interestingly, one of the meanings behind the “flex” in flexbox is
that you can make one or more flex items grow to fill that empty space.

You configure a flex item to grow by setting the flex-grow property on the item:

item {
 flex-grow: value;
}

Here, value is a number greater than or equal to 0. The default value is 0, which
tells the browser not to grow the flex items. That usually results in empty space in
the flex container, as shown in Figure 4-9.

For positive values of flex-grow, there are three scenarios to consider:

FIGURE 4-8:
Using flexbox,

you can modify
flex container

properties
for nicely

spaced links.

FIGURE 4-9:
By default, all

flex items have a
flex-grow value
of 0, resulting in

empty space.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 145

 » You assign a positive flex-grow value to just one flex item. The flex item
grows until there is no more empty space in the flex container. For example,
here’s a rule that sets flex-grow to 1 for the element with class item1, and
Figure 4-10 shows that item 1 has grown until there is no more empty space
in the flex container:

.item1 {
 flex-grow: 1;

}

 » You assign the same positive flex-grow value to two or more flex items.
The flex items grow equally until there is no more empty space in the flex
container. For example, here’s a rule that sets flex-grow to 1 for the
elements with the classes item1, item2, and item3, and Figure 4-11 shows
that items 1, 2, and 3 have grown until there is no more empty space in the
flex container:

.item1,

.item2,

.item3 {
 flex-grow: 1;

}

FIGURE 4-10:
With flex-
grow: 1, an

item grows until
the container
has no more

empty space.

FIGURE 4-11:
When items 1,

2, and 3 are
styled with

flex-grow: 1,
the items grow

equally.

146 BOOK 2 Coding the Front End, Part 1: HTML & CSS

 » You assign a different positive flex-grow value to two or more flex
items. The flex items grow proportionally based on the flex-grow values
until there is no more empty space in the flex container. For example, if you
give one item a flex-grow value of 1, a second item a flex-grow value of 2,
and a third item a flex-grow value of 1, then the proportion of the empty
space given to each will be, respectively, 25 percent, 50 percent, and 25 per-
cent. Here’s some CSS that supplies these proportions to the elements with
the classes item1, item2, and item3, and Figure 4-12 shows the results:

.item1 {
 flex-grow: 1;
}
.item2 {
 flex-grow: 2;
}
.item3 {
 flex-grow: 1;

}

To calculate what proportion of the flex container’s empty space is assigned to
each flex item, add up the flex-grow values, then divide the individual flex-grow
values by that total. For example, values of 1, 2, and 1 add up to 4, so the percent-
ages are 25 percent (1/4), 50 percent (2/4), and 25 percent (1/4), respectively.

Allowing flex items to shrink
The flexibility of flexbox means not only that flex items can grow to fill a flex
container’s empty space, but also that they can shrink if the flex container doesn’t
have enough space to fit the items. Shrinking flex items to fit inside their con-
tainer is the default flexbox behavior, but you gain a measure of control over which
items shrink and by how much by using the flex-shrink property on a flex item:

item {
 flex-shrink: value;
}

FIGURE 4-12:
Items 1 and 3 get
25 percent of the

container’s empty
space, whereas

item 2 gets 50
percent.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 147

Here, value is a number greater than or equal to 0. The default value is 1, which
tells the browser to shrink all the flex items equally to get them to fit inside the
flex container.

For example, consider the following code:

CSS:

.container {
 display: flex;
 width: 500px;
 border: 5px double black;
}
.item {
 width: 200px;
}

HTML:

<div class="container">
 <div class="item item1">1</div>
 <div class="item item2">2</div>
 <div class="item item3">3</div>
 <div class="item item4">4</div>
 <div class="item item5">5</div>
</div>

The flex container (the container class) is 500px wide, but each flex item (the
item class) is 200px wide. To get everything the fit, the browser shrinks each item
equally, and the result is shown in Figure 4-13.

The browser only shrinks each flex item truly equally (that is, by the same amount)
when each item has the same size along the primary axis (for example, the same
width when the primary axis is horizontal). If the flex items have different sizes,
the browser shrinks each item roughly in proportion to its size: Larger items
shrink more, whereas smaller items shrink less. I use the word “roughly” here
because in fact the calculations the browser uses to determine the shrinkage factor

FIGURE 4-13:
By default, the

browser shrinks
the items equally

along the primary
axis until they fit.

148 BOOK 2 Coding the Front End, Part 1: HTML & CSS

are brain-numbingly complex. If you want to learn more (don’t say I didn’t warn
you!), see https://madebymike.com.au/writing/understanding-flexbox.

For positive values of flex-shrink, you have three ways to control the shrinkage
of a flex item:

 » Assign the item a flex-shrink value between 0 and 1. The browser
shrinks the item less than the other flex items. For example, here’s a rule that
sets flex-shrink to .5 for the element with class item1, and Figure 4-14
shows that item 1 has shrunk less than the other items in the container:

.item1 {
 flex-shrink: .5;

}

 » Assign the item a flex-shrink value greater than 1. The browser shrinks
the item more than the other flex items. For example, the following rule sets
flex-shrink to 2 for the element with class item1, and Figure 4-15 shows
that item 1 has shrunk more than the other items in the container:

.item1 {
 flex-shrink: 2;

}

FIGURE 4-14:
Styling item 1

with flex-
shrink: .5

shrinks it
less than the
other items.

FIGURE 4-15:
Styling item

1 with flex-
shrink: 2

shrinks the item
more than the

others.

https://madebymike.com.au/writing/understanding-flexbox/

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 149

 » Assign the item a flex-shrink value of 0. The browser doesn’t shrink the
item. The following rule sets flex-shrink to 0 for the element with class
item1, and Figure 4-16 shows that the browser doesn’t shrink item 1:

.item1 {
 flex-shrink: 0;

}

If a flex item is larger along the primary axis than its flex container, and you set
flex-shrink: 0 on that item, ugliness ensues. That is, the flex item breaks out
of the container and, depending on where it sits within the container, might take
one or more other items with it. If you don’t want a flex item to shrink, make sure
the flex container is large enough to hold it.

Laying out content columns with flexbox
Flexbox works best when you use it to lay out components along one dimension,
but that doesn’t mean you can’t use it to lay out an entire page. As long as the page
structure is relatively simple, then flexbox works great for laying out elements
both horizontally and vertically.

A good example is the classic page layout that I discuss earlier: a header and navi-
gation bar across the top of the page, a main section with an article and a sidebar
beside it, and a footer across the bottom of the page. Here’s some flexbox code
that creates this layout, which is shown in Figure 4-17:

CSS:

body {
 display: flex;
 flex-direction: column;
 width: 30rem;
 min-height: 100vh;
}

FIGURE 4-16:
Styling item 1

with flex-
shrink: 0

doesn’t shrink
the item.

150 BOOK 2 Coding the Front End, Part 1: HTML & CSS

header {
 height: 2.5rem;
 border: 1px solid black;
}
nav {
 height: 2.5rem;
 margin-top: 1rem;
 border: 1px solid black;
}
main {
 flex-grow: 1;
 display: flex;
 margin-top: 1rem;
}
article {
 flex-grow: 1;
 margin-right: 1rem;
 border: 1px solid black;
 overflow-y: auto;
}
aside {
 flex-grow: 0;
 flex-shrink: 0;
 flex-basis: 10rem;
 border: 1px solid black;
}
footer {
 height: 2.5rem;
 margin-top: 1rem;
 border: 1px solid black;
}

HTML:

<body>
 <header>
 Header
 </header>
 <nav>
 Navigation
 </nav>
 <main>
 <article>
 Article
 </article>

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 151

 <aside>
 Aside
 </aside>
 </main>
 <footer>
 Footer
 </footer>
</body>

Let’s take a closer look at what’s happening here:

 » The <body> tag is set up as a flex container, and that container is styled with
flex-direction: column to create a vertical primary axis for the page
as a whole.

 » The body element has its min-height property set to 100vh, which makes the
flex container always take up at least the entire height of the browser’s
content area.

 » All header, nav, and footer elements are given explicit height values.

 » The main element is styled with flex-grow: 1, which tells the browser to
grow the main element vertically until it uses up the empty space in the flex

FIGURE 4-17:
The classic

page layout,
flexbox-style.

152 BOOK 2 Coding the Front End, Part 1: HTML & CSS

container. This also ensures that the footer element appears at the bottom
of the content area even if there isn’t enough content to fill the main element.

 » The main element is also a flex container styled with flex-direction: row
to create a horizontal primary axis.

 » Inside the main flex container, the article element is given flex-grow: 1,
so it grows as needed to take up the remaining width of the main element
(that is, after the width of the aside element is taken into account).

 » To get a fixed-width sidebar, the aside element’s rule has both flex-grow
and flex-shrink set to 0, and it also includes the declaration flex-basis:
10rem. The flex-basis property provides the browser with a suggested
starting point for the size of the element. In this case, with both flex-grow
and flex-shrink set to 0, the flex-basis value acts like a fixed width.

There’s a shorthand property called flex that you can use to combine flex-grow,
flex-shrink, and flex-basis into a single declaration:

item {
 flex: grow-value shrink-value basis-value;
}

For example, I could rewrite the aside element’s rule in the above example as
follows:

aside {
 flex: 0 0 10rem;
 border: 1px solid black;
}

Flexbox browser support
The good news is that all major web browsers, both desktop and mobile, support
flexbox. The bad news is that they haven’t always supported flexbox, or, to be
accurate, they’ve supported it, but only with what are known as vendor prefixes.
A vendor prefix is a label specific to each browser — such as -webkit- for brows-
ers that use the WebKit page rendering engine (including Chrome and Safari),
-moz- for Firefox, and -ms- for Microsoft Edge and Internet Explorer — that
enabled the browser to implement a CSS feature before knowing the final
specification.

So while a declaration such as display: flex will work just fine in about 90 percent
of today’s browsers, to handle the rest you need to include prefixed versions of the
same declaration:

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 153

container {
 display: -webkit-box;
 display: -ms-flexbox;
 display: flex;
}

Yuck. Vendor prefixes are one of the great annoyances of modern web develop-
ment. However, rather than have you memorize the prefixed versions of every
flexbox property, I’m going to suggest, instead, that you wait until your CSS code
is complete (or nearly so), then run it through the online Autoprefixer tool, which
will add all the required prefixes for you lickety-split:

https://autoprefixer.github.io

Shaping the Overall Page Layout
with CSS Grid

One of the most exciting and anticipated developments in recent CSS history is
the advent of a technology called CSS Grid. The Grid specification gives you a
straightforward way to divide up a container into one or more rows and one or
more columns — that is, as a grid — and then optionally assign the container’s
elements to specific sections of the grid. With CSS Grid, you can give the web
browser instructions such as the following:

 » Set up the <body> tag as a grid with four rows and three columns.

 » Place the header element in the first row and make it span all three columns.

 » Place the nav element in the second row and make it span all three columns.

 » Place the article element in the third row, columns one and two.

 » Place the aside element in the third row, column three.

 » Place the footer element in the fourth row and make it span all three
columns.

Before you learn how to do all of this and more, you need to know that a Grid uses
two categories of elements:

 » Grid container: This is a block-level element that acts as a parent to the
elements inside it and that you configure with a set number of rows
and columns.

https://autoprefixer.github.io/

154 BOOK 2 Coding the Front End, Part 1: HTML & CSS

 » Grid items: These are the elements that reside within the grid container
and that you assign (or the browser assigns automatically) to specific parts
of the grid.

Setting up the grid container
To designate an element as a grid container, you set its display property to grid:

container {
 display: grid;
}

With that first step complete, the element’s children automatically become grid
items.

Specifying the grid rows and columns
Your grid container doesn’t do much on its own. To make it useful, you need to
create a grid template, which specifies the number of rows and columns you want
in your grid. You set up your template by adding the grid-template-columns and
grid-template-rows properties to your grid container:

container {
 display: grid;
 grid-template-columns: column-values;
 grid-template-rows: row-values
}

The column-values and row-values are space-separated lists of the sizes you
want to use for each column and row in your grid. The sizes can be numbers
expressed in any of the standard CSS measurement units (px, em, rem, vw, or vh), a
percentage, or the keyword auto, which tells the browser to automatically set the
size based on the other values you specify.

Here’s an example, and Figure 4-18 shows the result:

CSS:

.container {
 display: grid;
 grid-template-columns: 100px 300px 200px;
 grid-template-rows: 100px 200px;
}

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 155

HTML:

<div class="container">
 <div class="item item1">1</div>
 <div class="item item2">2</div>
 <div class="item item3">3</div>
 <div class="item item4">4</div>
 <div class="item item5">5</div>
 <div class="item item6">6</div>
</div>

You can also specify a column or row size using a new unit called fr, which is
specific to Grid and represents a fraction of the free space available in the grid
container, either horizontally (for columns) or vertically (for rows). For example,
if you assign one column 1fr of space and another column 2fr, the browser gives
one third of the horizontal free space to the first column and two thirds of the
horizontal free space to the second column.

If you leave out the grid-template-rows property, the browser automatically
configures the row heights based on the height of the tallest element in each row.

Creating grid gaps
By default, the browser doesn’t include any horizontal space between each col-
umn, or any vertical space between each row. If you’d prefer some daylight

FIGURE 4-18:
A basic grid
 created by

 setting just three
 properties:
display,

grid-template-
columns, and

grid-template-
rows.

156 BOOK 2 Coding the Front End, Part 1: HTML & CSS

between your grid items, you can add the grid-column-gap and grid-row-gap
properties to your grid container:

container {
 display: grid;
 grid-column-gap: column-gap-value;
 grid-row-gap: row-gap-value
}

In both properties, the value is a number expressed in any of the standard CSS
measurement units (px, em, rem, vw, or vh). Here’s an example:

.container {
 display: grid;
 grid-template-columns: 100px 300px 200px;
 grid-template-rows: 100px 200px;
 grid-column-gap: 10px;
 grid-row-gap: 15px;
}

There’s a shorthand property called grid-gap that you can use to combine
grid-column-gap and grid-row-gap into a single declaration:

container {
 display: grid;
 grid-gap: column-gap-value row-gap-value;
}

While I was writing this book, the CSS Grid overlords declared that the names of
the gap-related properties are going to change in the future:

Current Name Future Name

grid-column-gap column-gap

grid-row-gap row-gap

grid-gap gap

As I write these words, no browser supports the new names, so for now you
should include both the current name and the new name when you’re styling your
grid gaps.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 157

Assigning grid items to rows and columns
Rather than letting the web browser populate the grid automatically, you can take
control of the process and assign your grid items to specific rows and columns.
For each grid item, you specify four values:

item {
 grid-column-start: column-start-value;
 grid-column-end: column-end-value;
 grid-row-start: row-start-value;
 grid-row-end: row-end-value;
}

 » grid-column-start: A number that specifies the column where the
item begins.

 » grid-column-end: A number that specifies the column before which the item
ends. For example, if grid-column-end is set to 4, the grid item ends in
column 3. Some notes:

• If you omit this property, the item uses only the starting column.

• If you use the keyword end, then the item runs from its starting column
through to the last column in the grid.

• You can use the keyword span followed by a space and then a number
that specifies the number of columns you want the item to span across the
grid. For example, the following two sets of declarations are equivalent:

grid-column-start: 1;
grid-column-end: 4;
grid-column-start: 1;

grid-column-end: span 3;

 » grid-row-start: A number that specifies the row where the item begins.

 » grid-row-end: A number that specifies the row before which the item ends.
For example, if grid-row-end is set to 3, the grid item ends in row 2. Some
notes:

• If you omit this property, the item uses only the starting row.

• If you use the keyword end, then the item runs from its starting row
through to the last row in the grid.

158 BOOK 2 Coding the Front End, Part 1: HTML & CSS

• You can use the keyword span followed by a space and then a number
that specifies the number of rows you want the item to span down the
grid. For example, the following two sets of declarations are equivalent:

grid-row-start: 2;
grid-row-end: 4;
grid-row-start: 2;

grid-row-end: span 2;

Here’s an example, and the results are shown in Figure 4-19:

CSS:

.container {
 display: grid;
 grid-template-columns: repeat(5, 100px);
 grid-template-rows: repeat(3, 150px);
}
.item1 {
 grid-column-start: 1;
 grid-column-end: 3;
 grid-row-start: 1;
 grid-row-end: 1;
}
.item2 {
 grid-column-start: 3;
 grid-column-end: span 3;
 grid-row-start: 1;
 grid-row-end: 1;
}
.item3 {
 grid-column-start: 1;
 grid-column-end: 1;
 grid-row-start: 2;
 grid-row-end: end;
}
.item4 {
 grid-column-start: 2;
 grid-column-end: 4;
 grid-row-start: 2;
 grid-row-end: end;
}

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 159

.item5 {
 grid-column-start: 4;
 grid-column-end: span 2;
 grid-row-start: 2;
 grid-row-end: 2;
}
.item6 {
 grid-column-start: 4;
 grid-column-end: span 2;
 grid-row-start: 3;
 grid-row-end: 3;
}

HTML:

<div class="container">
 <div class="item item1">1</div>
 <div class="item item2">2</div>
 <div class="item item3">3</div>
 <div class="item item4">4</div>
 <div class="item item5">5</div>
 <div class="item item6">6</div>
</div>

In the example, notice that I used a function named repeat to specify multiple
columns and rows that are the same size. Here’s the syntax to use:

repeat(number, size)

FIGURE 4-19:
Some grid

items assigned
to different

 columns and
rows in the grid.

160 BOOK 2 Coding the Front End, Part 1: HTML & CSS

Replace number with the number of columns or rows you want to create, and
replace size with the size you want to use for each of those columns or rows. For
example, the following two declarations are equivalent:

grid-template-rows: 150px 150px 150px;
grid-template-rows: repeat(3, 150px);

CSS also offers two shorthand properties that you can use to make the process of
assigning items to columns and rows a bit more streamlined:

item {
 grid-column: column-start-value / column-end-value;
 grid-row: row-start-value / row-end-value;
}

Aligning grid items
CSS Grid offers several properties that you can use to align your grid items. For the
grid container, you have the justify-items and align-items properties:

container {
 justify-items: start|end|center|stretch;
 align-items: start|end|center|stretch;
}

 » justify-items: Aligns the content inside each grid item horizontally. You can
align items to the left (start), the right (end), in the middle (center), or across
the width of the item (stretch; this is the default value).

 » align-items: Aligns the content inside each grid item vertically. You can align
items to the top (start), the bottom (end), in the middle (center), or across
the height of the item (stretch; this is the default value).

For a grid item, you have the justify-self and align-self properties:

item {
 justify-self: start|end|center|stretch;
 align-self: start|end|center|stretch;
}

 » justify-self: Aligns the content inside the grid item horizontally. You can
align the item to the left (start), the right (end), in the middle (center), or
across the width of the item (stretch; this is the default value).

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 161

 » align-self: Aligns the content inside the grid item vertically. You
can align the item to the top (start), the bottom (end), in the middle
(center), or across the height of the item (stretch; this is the
default value).

Laying out content columns with Grid
As a two-dimensional layout system, Grid is perfect for laying out an entire page.
This includes the classic page layout that I talk about earlier: a header and naviga-
tion bar across the top of the page, an article with a sidebar beside it, and a footer
across the bottom of the page. Here’s some Grid code that creates this layout,
which is shown in Figure 4-20:

CSS:

body {
 display: grid;
 grid-template-columns: 1fr 10rem;
 grid-template-rows: 2.5rem 2.5rem 1fr 2.5rem;
 grid-gap: 1rem 1rem;
 min-height: 100vh;
}

header {
 grid-column: 1 / end;
 grid-row: 1;
 border: 1px solid black;
}

nav {
 grid-column: 1 / end;
 grid-row: 2;
 border: 1px solid black;
}

article {
 grid-column: 1;
 grid-row: 3;
 border: 1px solid black;
}

162 BOOK 2 Coding the Front End, Part 1: HTML & CSS

aside {
 grid-column: 2 / end;
 grid-row: 3;
 border: 1px solid black;
}

footer {
 grid-column: 1 / end;
 grid-row: 4;
 border: 1px solid black;
}

HTML:

<body>
 <header>
 Header
 </header>
 <nav>
 Navigation
 </nav>
 <article>
 Article
 </article>
 <aside>
 Aside
 </aside>
 <footer>
 Footer
 </footer>
</body>

Take a closer look at what the code does:

 » The <body> tag is set up as a grid container, and that container is styled with
two columns and four rows.

 » The body element has its min-height property set to 100vh, which makes the
grid container always take up at least the entire height of the browser’s
content area.

 » All header, nav, and footer elements span from the first column to the end
of the grid, and they’re assigned rows 1, 2, and 4, respectively.

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 163

 » This version of the classic layout doesn’t include a main element, because CSS
Grid doesn’t offer a mechanism for nesting grids.

 » The article element uses only column 1 and row 3, both of which were
defined with the size 1fr, which allows the article element to take up the
free space in the grid.

 » The aside element uses column 2, which was assigned a width of 10rem, so
its width is fixed.

Grid browser support
CSS Grid offers two pieces of very good news when it comes to browser support:

 » All major web browsers, both on the desktop and in mobile devices, sup-
port CSS Grid.

 » No oddball vendor prefixes are needed in your CSS code.

The fly in the Grid ointment is that, yes, all major browsers are now Grid-friendly,
but that support is relatively new, having been implemented in each browser at
 various points throughout 2017. This means that although Grid has strong browser
market share — nearly 80 percent, as I write this — it’s not enough for you to
write Grid-only layouts. I talk about how you work around this problem in the
next section.

FIGURE 4-20:
The classic page

layout, Grid-style.

164 BOOK 2 Coding the Front End, Part 1: HTML & CSS

You can take advantage of the handy CanIUse service to track the browser market
share for CSS Grid:

https://caniuse.com/#search=grid

Providing Fallbacks for Page Layouts
Here’s a summary of the current state of page layout in today’s world:

 » Nearly 80 percent of browsers support Grid. This is too small a number to
build a Grid-only layout.

 » About 85 percent of browsers fully support flexbox, although vendor prefixes
are required. This is great support, but if you do a flexbox-only layout, about
one in seven visitors will see your page in an ugly light.

 » All browsers support both the float property and display: inline-block.

Does this mean you should just use floats or inline blocks and ignore flexbox and
Grid until they have 100-percent browser support? No way! Through a technique
called progressive enhancement, you can build a layout that uses a newer technol-
ogy, but also includes an older page layout system that gets used with browsers
that don’t support the newer CSS. An older technology that a browser uses when
it doesn’t understand a newer technology is called a fallback.

The easiest way to implement fallbacks is to add feature queries, which use the @
supports rule to check whether the web browser supports a CSS feature:

@supports (property: value) {
 Code to run if the browser supports the property-value
}

Replace property and value with the name of the CSS property and its value you
want to check. For example, the following feature query-checks for Grid support:

@supports (display: grid) {
 Grid CSS goes here
}

https://caniuse.com/#search=grid

Cr
ea

ti
ng

 t
he

 P
ag

e
La

yo
ut

CHAPTER 4 Creating the Page Layout 165

To put this all together, here’s some pseudo-code that shows how you’d imple-
ment your progressive enhancement:

Float or inline-block CSS comes first

@supports (display: flexbox) {
 Flexbox CSS goes here
}

@supports (display: grid) {
 Grid CSS goes here
}

The browser first implements the float or inline-block layout. If the browser sup-
ports flexbox, then it will implement the flexbox CSS, which automatically over-
rides the floats and inline-blocks (although you might have to apply width: auto
to some elements to override explicit width settings from earlier in your code).
If the browser supports Grid, it implements the Grid CSS, which overrides the
flexbox code.

3Coding the Front
End, Part 2:
JavaScript

Contents at a Glance
CHAPTER 1: An Overview of JavaScript . 169

CHAPTER 2: Understanding Variables . 183

CHAPTER 3: Building Expressions . 197

CHAPTER 4:	 Controlling	the	Flow	of JavaScript 225

CHAPTER 5:	 Harnessing	the	Power	of Functions 249

CHAPTER 6: Working with Objects . 267

CHAPTER 7: Working with Arrays . 291

CHAPTER 8: Manipulating Strings, Dates, and Numbers 311

CHAPTER 9: Debugging Your Code . 341

CHAPTER 1 An Overview of JavaScript 169

An Overview of
JavaScript

What’s in your hands, I think and hope, is intelligence: the ability to see the
machine as more than when you were first led up to it, that you can make it
more.

— ALAN PERLIS

When we talk about web coding, what we’re really talking about is
JavaScript. Yep, you need HTML and CSS to create a web page, and you
need tools such as PHP and MySQL to convince a web server to give

your page some data, but the glue — and sometimes the duct tape — that binds all
these technologies together is JavaScript. The result is that JavaScript is now (and
has been for a while) the default programming language for web development.
If you want to control a page using code (and I know you do), then you must use
JavaScript to do it.

It also means that JavaScript is (and has been for a while) universal on the web.
Sure, there are plenty of barebones home pages out there that are nothing but
HTML and a sprinkling of CSS, but everything else — from humble personal blogs

Chapter 1

IN THIS CHAPTER

 » Understanding programming in
general, and JavaScript in particular

 » Getting a taste of what you can (and
can’t) do with JavaScript

 » Learning the tools you need to get
coding

 » Adding JavaScript code to a web page

 » Storing your code in a separate
JavaScript file

170 BOOK 3 Coding the Front End, Part 2: JavaScript

to fancy-pants designer portfolios to bigtime corporate ecommerce operations —
relies on JavaScript to make things look good and work the way they’re supposed
to (most of the time, anyway).

So, when it comes to the care and feeding of your web development education,
JavaScript is one of the most important — arguably the most important — of
all the topics you need to learn. Are you excited to start exploring JavaScript?
I knew it!

JavaScript: Controlling the Machine
When a web browser is confronted with an HTML file, it goes through a simple
but tedious process: It reads the file one line at a time, starting from (usually) the
<html> tag at the top and finishing with the </html> tag at the bottom. Along the
way, it might have to break out of this line-by-line monotony to perform some
action based on what it has read. For example, if it stumbles over the tag,
the browser will immediately ask the web server to ship out a copy of the graphics
file specified in the src attribute.

The point here is that, at its core, a web browser is really just a page-reading
machine that doesn’t know how to do much of anything else besides follow the
instructions (the markup) in an HTML file. (For my own convenience, I’m ignor-
ing the browser’s other capabilities, such as saving bookmarks.)

One of the reasons that many folks get hooked on creating web pages is that they
realize from the very beginning that they have control over this page-reading
machine. Slap some text between a tag and its corresponding end tag and
the browser dutifully displays the text as bold. Create a CSS grid structure and the
browser displays your formerly haphazard text in nice, neat rows and columns, no
questions asked. In other words, instead of just viewing pages from the outside,
you now have a key to get inside the machine and start working its controls. That is
the hook that grabs people and gets them seriously interested in web page design.

Imagine if you could take this idea of controlling the page-reading machine to the
next level. Imagine if, instead of ordering the machine to process mere tags and
text, you could issue much more sophisticated commands that could actually con-
trol the inner workings of the page-reading machine. Who wouldn’t want that?

Well, that’s the premise behind JavaScript. It’s essentially just a collection of
commands that you can wield to control the browser. Like HTML tags, JavaScript
commands are inserted directly into the web page file. When the browser does
its line-by-line reading of the file and it comes across a JavaScript command, it
executes that command, just like that.

A
n

O
ve

rv
ie

w
 o

f
Ja

va
Sc

ri
pt

CHAPTER 1 An Overview of JavaScript 171

However, the key here is that the amount of control JavaScript gives you over the
page-reading machine is much greater than what you get with HTML tags. The
reason is that JavaScript is a full-fledged programming language. The “L” in HTML
might stand for “language,” but there isn’t even the tiniest hint of a program-
ming language associated with HTML. JavaScript, though, is the real program-
ming deal.

What Is a Programming Language?
So what does it mean to call something a “programming language”? To under-
stand this term, you need look no further than the language you use to speak
and write. At its most fundamental level, human language is composed of two
things — words and rules:

 » The words are collections of letters that have a common meaning among all
the people who speak the same language. For example, the word “book”
denotes a type of object, the word “heavy” denotes a quality, and the word
“read” denotes an action.

 » The rules are the ways in which words can be combined to create coherent
and understandable concepts. If you want to be understood by other
speakers of the language, then you have only a limited number of ways to
throw two or more words together. “I read a heavy book” is an instantly
comprehensible sentence, but “book a I read heavy” is gibberish.

The key goal of human language is being understood by someone else who is lis-
tening to you or reading something you wrote. If you use the proper words to refer
to things and actions, and if you combine words according to the rules, then the
other person will understand you.

A programming language works in more or less the same way. That is, it, too, has
words and rules:

 » The words are a set of terms that refer to the specific things that your
program works with (such as the browser window) or the specific ways in
which those things can be manipulated (such as sending the browser to a
specified address). They’re known as reserved words or keywords.

 » The rules are the ways that the words can be combined so as to produce the
desired effect. In the programming world, these rules are known as the
language’s syntax.

172 BOOK 3 Coding the Front End, Part 2: JavaScript

In JavaScript, many of the words you work with are very straightforward. There
are some that refer to aspects of the browser, others that refer to parts of the web
page, and some that are used internally by JavaScript. For example, in JavaScript
the word document refers to a specific object (the web page as a whole), and the
word write() refers to a specific action (writing data to the page).

The crucial concept here is that just as the fundamental purpose of human lan-
guage is to be understood by another person, the fundamental purpose of a pro-
gramming language is to be understood by whatever machine is processing the
language. With JavaScript, that machine is the page-reading machine: the web
browser.

You can make yourself understood by the page-reading machine by using the
proper JavaScript words and by combining them using the proper JavaScript syn-
tax. For example, JavaScript’s syntax rules tell you that you can combine the words
document and write() like so: document.write(). If you use write().document
or document write() or any other combination, the page-reading machine won’t
understand you.

The key, however, is that being “understood” by the page-reading machine really
means being able to control the machine. That is, your JavaScript “sentences” are
actually commands that you want the machine to carry out. For example, if you
want to add the text “Hello World!” to a web page using JavaScript, you include
the following statement in your code:

document.write("Hello World!");

When the page-reading machine trudges through the HTML file and it comes
upon this statement, it will go right ahead and insert it into the page.

Is JavaScript Hard to Learn?
I think there’s a second reason why many folks get jazzed about creating web
pages: It’s not that hard. HTML sounds like it’s a hard thing, and certainly if you
look at the source code of a typical web page without knowing anything about
HTML, the code appears about as intimidating as anything you can imagine.

However, I’ve found that anyone can learn HTML as long as a person starts with
the basic tags, sees lots of examples of how they work, and slowly works one’s
way up to more complex pages. It’s just a matter of creating a solid foundation
and then building on it.

A
n

O
ve

rv
ie

w
 o

f
Ja

va
Sc

ri
pt

CHAPTER 1 An Overview of JavaScript 173

I’m convinced that JavaScript can be approached in much the same way. I’m cer-
tainly not going to tell you that JavaScript is as easy to learn as HTML. That would
be a bald-faced lie. However, I will tell you that there is nothing inherently diffi-
cult about JavaScript. Using our language analogy, it just has a few more words to
know and a few more rules to learn. But I believe that if you begin with the basic
words and rules, see lots of examples of how they work, and then slowly build up
to more complex scripts, you can learn JavaScript programming. By the time you
finish this book, I predict here and now that you’ll even be a little bit amazed at
yourself and at what you can do.

What Can You Do with JavaScript?
The people I’ve taught to create web pages are a friendly bunch who enjoy writing
to me to tell me how their pages are coming along. In many cases, they tell me
they’ve hit the web page equivalent of a roadblock. That is, there’s a certain thing
they want to do, but they don’t know how to do it in HTML. So I end up getting
lots of questions like these:

 » How do I display one of those pop-up boxes?

 » How do I add content to the page on-the-fly?

 » How can I make something happen when a user clicks a button?

 » How can I make an image change when the mouse hovers over it?

 » How can I calculate the total for my order form?

For each question, the start of the answer is always this: “Sorry, but you can’t do
that using HTML; you have to use JavaScript instead.” I then supply them with
a bit of code that they can “cut and paste” into their web pages and then get on
with their lives.

If you’re just getting started with JavaScript, then my goal in this book is to help
you to move from “cut-and-paste” to “code-and-load.” That is, you’ll end up
being able to create your own scripts to solve your own unique HTML and web
page problems. I hope to show you that learning JavaScript is worthwhile because
there are many other things you can do with it:

 » You can ask a web server for data and then display that data on your page.

 » You can add, modify, or remove page text, HTML tags, and even CSS
properties.

174 BOOK 3 Coding the Front End, Part 2: JavaScript

 » You can display messages to the user and ask the user for info.

 » You can “listen” for and then perform actions based on events such as
visitors clicking their mouse or pressing a key.

 » You can send the user’s browser to another page.

 » You can validate the values in a form before submitting it to the server. For
example, you can make sure that certain fields are filled in.

 » You can collect, save, and retrieve data for each of your users, such as site
customizations.

In this book, you learn how to do all these things and many more.

What Can’t You Do with JavaScript?
JavaScript is good, but it’s not that good. JavaScript can do many things, but
there’s a long list of things that it simply can’t do. Here’s a sampling:

 » It can’t write data permanently to an existing file. For example, you can’t take
the data from a guest book and add it to a page that displays the messages.

 » It can’t access files on the server.

 » It can’t glean any information about the user, including email or IP addresses.

 » It can’t submit credit card–based purchases for authorization and payment.

 » It can’t create multiplayer games.

 » It can’t get data directly from a server database.

 » It can’t handle file uploads.

The reason JavaScript can’t do most of these things is that it’s what’s known in
the trade as a client-side programming language, which means that it runs on the
user’s browser (which programming types like to call a client).

There are so-called server-side JavaScript tools that can do some of these things,
but they’re super-sophisticated and therefore beyond the scope here. The good
news is that many of the items in the above list are doable using PHP and MySQL,
which I discuss later on. For now, though, just know that there are so many things
that client-side JavaScript can do that you’ll have no trouble being as busy as you
want to be.

A
n

O
ve

rv
ie

w
 o

f
Ja

va
Sc

ri
pt

CHAPTER 1 An Overview of JavaScript 175

What Do You Need to Get Started?
One of the nicest things about HTML and CSS is that the hurdles you have to leap
to get started are not only short, but few in number. In fact, you really need only
two things, both of which are free: a text editor to enter the text, tags, and proper-
ties, and a browser to view the results. (You’ll also need a web server to host the
finished pages, but the server isn’t necessary when you’re creating the pages.)
Yes, there are high-end HTML editors and fancy graphics programs, but these fall
into the “Bells and Whistles” category and you can create perfectly respectable
web pages without them.

The basic requirements for JavaScript programming are exactly the same as for
HTML: a text editor and a browser. Again, there are programs available to help you
write and test your scripts, but you don’t need them.

To learn more, check out Book 1, Chapter 2.

Basic Script Construction
Okay, that’s more than enough theory. It’s time to roll up your sleeves, crack
your knuckles, and start coding. This section describes the standard procedure
for constructing and testing a script. You’ll see a working example that you can
try out, and later you’ll move on to other examples that illustrate some JavaScript
techniques that you’ll use throughout this book.

The <script> tag
The basic container for a script is, naturally enough, the HTML <script> tag and
its associated </script> end tag:

<script>
 JavaScript statements go here
</script>

In HTML5 you can use <script> without any attributes, but before HTML5 the tag
would look like this:

<script type="text/javascript">

The type attribute told the browser the programming language being used in the
script, but JavaScript is the default now, so you no longer need it. You still see the

176 BOOK 3 Coding the Front End, Part 2: JavaScript

<script> tag with the type attribute used on a ton of pages, so I thought I better
let you know what it means.

Handling browsers with JavaScript
turned off
You don’t have to worry about web browsers not being able to handle JavaScript,
because all modern browsers have supported JavaScript for a very long time.
However, you might want to worry about people who don’t support JavaScript.
Although rare, some folks have turned off their browser’s JavaScript functional-
ity. Why would someone do such a thing? Many people disable JavaScript because
they’re concerned about security, they don’t want cookies written to their hard
drives, and so on.

To handle these iconoclasts, place the <noscript> tag within the body of the page:

<noscript>
 <p>
 Hey, your browser has JavaScript turned off!
 </p>
 <p>
 Okay, cool, perhaps you'll prefer this <a href="no-js.

html">non-JavaScript version of the page.
 </p>
</noscript>

If the browser has JavaScript enabled, the user sees none of the text within the
<noscript> tag. However, if JavaScript is disabled, the text and tags within the
<noscript> tag are displayed to the user.

Where do you put the <script> tag?
With certain exceptions, it doesn’t matter a great deal where you put your <script>
tag. Some people place the tag between the page’s </head> and <body> tags. The
HTML standard recommends placing the <script> tag within the page header
(that is, between <head> and </head>), so that’s the style I use in this book:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Where do you put the script tag?</title>

A
n

O
ve

rv
ie

w
 o

f
Ja

va
Sc

ri
pt

CHAPTER 1 An Overview of JavaScript 177

 <script>
 JavaScript statements go here
 </script>
 </head>
 <body>
 </body>
</html>

Here are the exceptions to the put-your-script-anywhere technique:

 » If your script is designed to write data to the page, the <script> tag must be
positioned within the page body (that is, between the <body> and </body>
tags) in the exact position where you want the text to appear.

 » If your script refers to an item on the page (such as a form object), then the
script must be placed after that item.

 » With many HTML tags, you can add one or more JavaScript statements as
attributes directly within the tag.

It’s perfectly acceptable to insert multiple <script> tags within a single page, as
long as each one has a corresponding </script> end tag, and as long as you don’t
put one <script> block within another one.

Example #1: Displaying a
message to the user
You’re now ready to construct and try out your first script. This example shows
you the simplest of all JavaScript actions: displaying a simple message to the user.
The following code shows the script within an HTML file.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Displaying a Message to the User</title>
 <script>
 alert("Hello Web Coding World!");
 </script>
 </head>
 <body>
 </body>
</html>

178 BOOK 3 Coding the Front End, Part 2: JavaScript

As shown in here, place the script within the header of a page, save the file, and
then open the HTML file within your browser.

This script consists of just a single line:

alert("Hello Web Coding World");

This is called a statement, and each statement is designed to perform a single
JavaScript task. You might be wondering about the semicolon (;) that appears at
the end of the statement. Good eye. You use the semicolon to mark the end of each
of your JavaScript statements.

Your scripts will range from simple programs with just a few statements, to huge
projects consisting of hundreds of statements. In the example, the statement
runs the JavaScript alert() method, which displays to the user whatever mes-
sage is enclosed within the parentheses (which could be a welcome message, an
announcement of new features on your site, an advertisement for a promotion,
and so on). Figure 1-1 shows the message that appears when you open the file.

A method is a special kind of JavaScript feature. I discuss methods in detail in
Book 3, Chapter 8. For now, however, think of a method as a kind of action you
want your code to perform.

How did the browser know to run the JavaScript statement? When a browser
processes (parses, in the vernacular) a page, it basically starts at the beginning of
the HTML file and works its way down, one line at a time, as I mention earlier.
If it trips over a <script> tag, then it knows one or more JavaScript statements
are coming, and it automatically executes those statements, in order, as soon as
it reads them. The exception is when JavaScript statements are enclosed within a
function, which I explain in Book 3, Chapter 5.

One of the cardinal rules of JavaScript programming is “one statement, one line.”
That is, each statement must appear on only a single line, and there should be no
more than one statement on each line. I said “should” in the second part of the
previous sentence because it is possible to put multiple statements on a single

FIGURE 1-1:
This “alert”

 message appears
when you open

the HTML file
containing the

example script.

A
n

O
ve

rv
ie

w
 o

f
Ja

va
Sc

ri
pt

CHAPTER 1 An Overview of JavaScript 179

line, as long as you separate each statement with a semicolon (;). There are rare
times when it’s necessary to have two or more statements on one line, but you
should avoid it for the bulk of your programming because multiple-statement
lines are difficult to read and to troubleshoot.

Example #2: Writing text to the page
One of JavaScript’s most powerful features is the capability to write text and even
HTML tags and CSS properties to the web page on-the-fly. That is, the text (or
whatever) gets inserted into the page when a web browser loads the page. What
good is that? For one thing, it’s ideal for time-sensitive data. For example, you
might want to display the date and time that a web page was last modified so that
visitors know how old (or new) the page is. Here’s some code that shows just such
a script:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Writing Data to the Page</title>
 </head>
 <body>
 This is a regular line of text.

 <script>
 document.write("This page was last modified on " +

document.lastModified)
 </script>

This is another line of regular text.
 </body>
</html>

Notice how the script appears within the body of the HTML document, which
is necessary whenever you want to write data to the page. Figure 1-2 shows the
result.

FIGURE 1-2:
When you open
the file, the text

displays the date
and time the file

was last modified.

180 BOOK 3 Coding the Front End, Part 2: JavaScript

This script makes use of the Document object, which is a built-in JavaScript
 construct that refers to whatever HTML file (document) the script resides in
(see Book 3, Chapter 8 for more about this). The document.write() statement
tells the browser to insert whatever is within the parentheses to the web page.
The document.lastModified portion returns the date and time the file was last
changed and saved.

Adding Comments to Your Code
A script that consists of just a few lines is usually easy to read and understand.
However, your scripts won’t stay that simple for long, and these longer and more
complex creations will be correspondingly more difficult to read. (This difficulty
will be particularly acute if you’re looking at the code a few weeks or months after
you first programmed it.) To help you decipher your code, it’s good programming
practice to make liberal use of comments throughout the script. A comment is
text that describes or explains a statement or group of statements. Comments are
ignored by the browser, so you can add as many as you deem necessary.

For short, single-line comments, use the double-slash (//). Put the // at the
beginning of the line, and then type in your comment after it. Here’s an example:

// Display the date and time the page was last modified
document.write("This page was last modified on " + document.

lastModified)

You can also use // comments for two or three lines of text. If you have more than
that, however, then you’re better off using multiple-line comments that begin
with the /* symbol and end with the */ symbol. Here’s an example:

/*
This script demonstrates JavaScript's ability
to write text to the web page by using the
document.write() method to display the date and time
the web page file was last modified.

This script is Copyright 2018 Paul McFedries.
*/

Although it’s fine to add quite a few comments when you’re just starting out, you
don’t have to add a comment to everything. If a statement is trivial or if what a
statement does is glaringly obvious, forget the comment and move on.

A
n

O
ve

rv
ie

w
 o

f
Ja

va
Sc

ri
pt

CHAPTER 1 An Overview of JavaScript 181

Creating External JavaScript Files
Putting a script inside the page header isn’t a problem if the script is relatively
short. However, if your script (or scripts) take up dozens or hundreds of lines, it
can make your HTML code look cluttered. Another problem you might run into is
needing to use the same code on multiple pages. Sure, you can just copy the code
into each page that requires it, but if you make changes down the road, you need
to update every page that uses the code.

The solution to both problems is to move the code out of the HTML file and into
an external JavaScript file. Moving the code reduces the JavaScript presence in the
HTML file to a single line (as you’ll see shortly), and means that you can update
the code by editing only the external file.

Here are some things to note about using an external JavaScript file:

 » The file must use a plain text format.

 » Use the .js extension when you name the file.

 » Don’t use the <script> tag within the file. Just enter your statements exactly
as you would within an HTML file.

 » The rules for when the browser executes statements within an external file
are identical to those used for statements within an HTML file. That is,
statements outside of functions are executed automatically when the browser
sees your file reference, and statements within a function aren’t executed
until the function is called.

To let the browser know that an external JavaScript file exists, add the src attri-
bute to the <script> tag. For example, if the external file is named myscripts.js,
then your <script> tag is set up as follows:

<script src="myscripts.js">

This example assumes the myscripts.js file is in the same directory as the HTML
file. If the file resides in a different directory, adjust the src value accordingly.
For example, if the myscripts.js file is in a subdirectory named scripts, you’d
use this:

<script src="scripts/myscripts.js">

182 BOOK 3 Coding the Front End, Part 2: JavaScript

You can even specify a file from another site (presumably your own!) by specifying
a full URL as the src value:

<script src="http://www.host.com/myscripts.js">

As an example, the following code shows a one-line external JavaScript file named
footer.js:

document.write("Copyright " + new Date().getFullYear());

This statement writes the text “Copyright” followed by the current year. (I know:
This code looks like some real gobbledygook right now. Don’t sweat it, because
you learn exactly what’s going on here when I discuss the JavaScript Date object
in Book 3, Chapter 8.)

The following code shows an HTML file that includes a reference for the external
JavaScript file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Using an External JS File</title>
 </head>
 <body>
 <hr>
 <footer>
 <script src="footer.js">
 </script>
 </footer>
 </body>
</html>

When you load the page, the browser runs through the HTML line by line. When
it gets to the <footer> tag, it sees the external JavaScript file that’s referenced by
the <script> tag. The browser loads that file and then runs the code within the
file, which writes the Copyright message to the page, as you can see in Figure 1-3.

FIGURE 1-3:
This page uses

an external
JavaScript file to
display a footer

message.

CHAPTER 2 Understanding Variables 183

Understanding Variables
You should imagine variables as tentacles, rather than boxes. They do not
contain values; they grasp them.

— MARIJN HAVERBEKE

You might have heard about — or perhaps even know — people who, through
mishap or misfortune, have lost the ability to retain short-term memories.
If you introduce yourself to one of these poor souls, he’ll be asking you your

name again five minutes later. These unfortunates live in a perpetual present,
seeing the world anew every minute of every day.

What, I’m sure you’re asking yourself by now, can any of the above possibly have
to do with coding? Just that, by default, your JavaScript programs also live a life
without short-term memory. The web browser executes your code one statement
at a time, until there are no more statements left to process. It all happens in
the perpetual present. Ah, but notice that, above, I said this lack of short-term
memory was the “default” state of your scripts. It’s not the only state, so that
means things can be different. You have the power to give your scripts the gift of
short-term memory, and you do that by using handy little chunks of code called
variables. In this chapter, you delve into variables, which is a fundamental and
crucial programming topic. You investigate what variables are, what you can do
with them, and how to wield them in your JavaScript code.

Chapter 2

IN THIS CHAPTER

 » Getting your head around variables

 » Assigning names to variables

 » Introducing JavaScript data types

 » Figuring out numbers

 » Stringing strings together

184 BOOK 3 Coding the Front End, Part 2: JavaScript

What Is a Variable?
Why would a script need short-term memory? Because one of the most common
concepts that crops up when coding is the need to store a temporary value for use
later on. In most cases, you want to use that value a bit later in the same script.
However, you might also need to use it in some other script, to populate an HTML
form, or to get data from a server.

For example, your page might have a button that toggles the page text between a
larger font size and the regular font size, so you need some way to “remember”
that choice. Similarly, if your script performs calculations, you might need to set
aside one or more calculated values to use later. For example, if you’re construct-
ing a shopping cart script, you might need to calculate taxes on the order. To do
that, you must first calculate the total value of the order, store that value, and
then later take a percentage of it to work out the tax.

In programming, the way you save a value for later use is by storing it in a variable.
A variable is a small chunk of computer memory that’s set aside for holding
 program data. The good news is that the specifics of how the data is stored and
retrieved from memory happen well behind the scenes, so it isn’t something you
ever have to worry about. As a coder, working with variables involves just three
things:

1. Creating (or declaring) variables

2. Assigning values to those variables

3. Including the variables in other statements in your code

The next three sections fill in the details.

Declaring a variable
The process of creating a variable is called declaring in programming terms. All
declaring really means is that you’re supplying the variable with a name and tell-
ing the browser to set aside a bit of room in memory to hold whatever value you
end up storing in the variable. To declare a variable in JavaScript, you use the var
keyword, followed by a space, the name of the variable, and the usual line-ending
semicolon. For example, to declare a variable named interestRate, you’d use the
following statement:

var interestRate;

U
nd

er
st

an
di

ng

Va
ri

ab
le

s

CHAPTER 2 Understanding Variables 185

Although you’re free to use a variable as many times as you need to within a script,
only declare the variable once, and make sure that declaration occurs before any
other uses of the variable. Declaring a variable more than once won’t cause an
error, but doing so is bad programming practice.

Storing a value in a variable
After your variable is declared, your next task is to give it a value. You use the
assignment operator — the equal (=) sign — to store a value in a variable, as in
this general statement:

variableName = value;

Here’s an example that assigns the value 0.03 to a variable named interestRate:

interestRate = 0.03;

Note, too, that if you know the initial value of the variable in advance, you can
combine the declaration and initial assignment into a single statement, like this:

var interestRate = 0.03;

It’s important to remember that you’re free to change a variable’s value any time
you want. (That’s why it’s called a variable, because its value can vary.) For exam-
ple, if the value you assign to the interestRate variable is an annual rate, later
on your code might need to work with a monthly rate, which is the annual rate
divided by 12. Rather than calculate that by hand, just put it in your code using the
division operator (/):

interestRate = 0.03 / 12;

As a final note about using variable assignment, take a look at a variation that
often causes some confusion among new programmers. Specifically, you can set
up a statement that assigns a new value to a variable by changing its existing
value. Here’s an example:

interestRate = interestRate / 12;

If you’ve never seen this kind of statement before, it probably looks a bit illogical.
How can something equal itself divided by 12? The secret to understanding such
a statement is to remember that the browser always evaluates the right side of
the statement — that is, the expression to the right of the equal sign (=) — first.
In other words, it takes the current value of interestRate, which is 0.03, and
divides it by 12. The resulting value is what’s stored in interestRate when all is

186 BOOK 3 Coding the Front End, Part 2: JavaScript

said and done. For a more in-depth discussion of operators and expressions, see
Book 3, Chapter 3.

Because of this evaluate-the-expression-and-then-store-the-result behavior,
JavaScript assignment statements shouldn’t be read as “variable equals expres-
sion.” Instead, it makes more sense to think of them as “variable is set to expres-
sion” or “variable assumes the value given by expression.” Reading assignment
statements this way helps to reinforce the important concept that the expression
result is being stored in the variable.

Using variables in statements
With your variable declared and assigned a value, you can then use that variable
in other statements. When the browser sees the variable, it goes to the computer’s
memory, retrieves the current value of the variable, and then substitutes that
value into the statement. The following code presents an example:

var interestRate;
interestRate = 0.03;
alert(interestRate);

This code declares a variable named interestRate and assigns the value 0.03
to that variable. The alert() statement then displays the current value of the
 variable, as shown in Figure 2-1.

The following code shows a slightly different example:

var firstName;
firstName = prompt("Please tell me your first name:");
alert("Welcome to my website, " + firstName);

This script uses the prompt() method to ask the user to enter her first name, as
shown in Figure 2-2. (To learn more about the prompt() method, see Book 3,

FIGURE 2-1:
When you use
a variable in a

statement, such
as the alert()

statement in the
example code,

the browser
substitutes the

current value of
that variable.

U
nd

er
st

an
di

ng

Va
ri

ab
le

s

CHAPTER 2 Understanding Variables 187

Chapter 7.) When the user clicks OK, her name is stored in the firstName variable.
The script then uses an alert() statement to display a personalized welcome
message using the value of the firstName variable, as shown in Figure 2-3.

In these early chapters, I use the alert() method quite often because it gives you
an easy way to see the results of my example scripts. In practice, however, you’ll
use alert() only rarely because few users want to be pestered by dialog boxes
throughout a site.

Naming Variables: Rules and
Best Practices

If you want to write clear, easy-to-follow, and easy-to-debug scripts (and who
doesn’t?), you can go a long way toward that goal by giving careful thought to the
names you use for your variables. This section helps by running through the rules
you need to follow and by giving you some tips and guidelines for creating good
variable names.

Rules for naming variables
JavaScript has only a few rules for variable names:

 » The first character must be a letter or an underscore (_). You can’t use a
number as the first character.

FIGURE 2-2:
The script first

prompts the
user for her
first name.

FIGURE 2-3:
The script then
uses the name

to display a
 personalized

 welcome
message.

188 BOOK 3 Coding the Front End, Part 2: JavaScript

 » The rest of the variable name can include any letter, any number, or the
underscore. You can’t use any other characters, including spaces, symbols,
and punctuation marks.

 » As with the rest of JavaScript, variable names are case sensitive. That is, a
variable named InterestRate is treated as an entirely different variable than
one named interestRate.

 » There’s no limit to the length of the variable name.

 » You can’t use one of JavaScript’s reserved words as a variable name (such as
var, alert, or prompt). All programming languages have a supply of words
that are used internally by the language and that can’t be used for variable
names, because doing so would cause confusion (or worse).

Ideas for good variable names
The process of declaring a variable doesn’t take much thought, but that doesn’t
mean you should just type in any old variable name that comes to mind. Take a
few extra seconds to come up with a good name by following these guidelines:

 » Make your names descriptive. Sure, using names that are just a few charac-
ters long makes them easier to type, but I guarantee you that you won’t
remember what the variables represent when you look at the script down the
road. For example, if you want a variable to represent an account number,
use accountNumber or accountNum instead of, say, acnm or accnum.

 » Although it’s best to avoid single-letter variable names, such short names are
accepted in some places, such as when constructing loops as described in
Book 3, Chapter 4.

 » The best way to create a descriptive variable name is to use multiple words.
However, because JavaScript doesn’t take kindly to spaces in names, you need
some way of separating the words to keep the name readable. The two
standard conventions for using multi-word variable names are camelCase,
where you cram the words together and capitalize all but the first word (for
example, lastName), or to separate each word with a dash (for example,
last-name). I prefer the former style, so I use it throughout this book.

 » Use one naming convention for JavaScript variables and a different one for
HTML identifiers and CSS classes. For example, if you use camelCase for
JavaScript variables, use dashes for id values and class names.

 » Try to make your variable names look as different from JavaScript’s keywords
and other built-in terms (such as alert) as possible. Differentiating variable

U
nd

er
st

an
di

ng

Va
ri

ab
le

s

CHAPTER 2 Understanding Variables 189

names helps avoid the confusion that can arise when you look at a term and
you can’t remember if it’s a variable or a JavaScript word.

 » Although short, cryptic variable names are to be shunned in favor of longer,
descriptive names, that doesn’t mean you should be using entire sentences.
Extremely long names are inefficient because they take so long to type, and
they’re dangerous because the longer the name, the more likely you are to make
a typo. Names of 2 to 4 words and 8 to 20 characters should be all you need.

Understanding Literal Data Types
In programming, a variable’s data type specifies what kind of data is stored within
the variable. The data type is a crucial idea because it determines not only how two
or more variables are combined (for example, mathematically), but also whether
they can be combined at all. Literals are a special class of data type, and they cover
those values that are fixed (even if only temporarily). For example, consider the
following variable assignment statement:

todaysQuestion = "What color is your parachute?";

Here, the text "What color is your parachute?" is a literal string value. Java-
Script supports three kinds of literal data types: numeric, string, and Boolean. The
next three sections discuss each type.

Working with numeric literals
Unlike many other programming languages, JavaScript treats all numbers the
same, so you don’t have to do anything special when working with the two basic
numeric literals, which are integers and floating-point numbers:

 » Integers: These are numbers that don’t have a fractional or decimal part. So
you represent an integer using a sequence of one or more digits, as in
these examples:

0
42
2001

-20

190 BOOK 3 Coding the Front End, Part 2: JavaScript

 » Floating-point numbers: These are numbers that do have a fractional or
decimal part. Therefore, you represent a floating-point number by first writing
the integer part, followed by a decimal point, followed by the fractional or
decimal part, as in these examples:

0.07
3.14159
-16.6666667
7.6543e+21
1.234567E-89

Exponential notation
The last two floating-point examples require a bit more explanation. These two
use exponential notation, which is an efficient way to represent really large or really
small floating-point numbers. Exponential notation uses an e (or E) followed by
a plus sign (+) or a minus sign (-), followed by a number, which is called the
exponent.

If the notation contains a plus sign, then you multiply the first part of the number
(that is, the part before the e or E) by 10 to the power of the exponent. Here’s an
example:

9.87654e+5;

The exponent is 5, and 10 to the power of 5 is 100,000. So multiplying 9.87654 by
100,000 results in the value 987,654.

If the notation contains a minus sign, instead, then you divide the rest of the
number by 10 to the power of the exponent. Here’s an example:

3.4567e-4;

The exponent is 4, and 10 to the power of 4 is 10,000. So dividing 3.4567 by 10,000
results in the value .00034567.

JavaScript has a ton of built-in features for performing mathematical calcula-
tions. To get the scoop on these, head for Book 3, Chapter 8.

When I mentioned earlier that JavaScript treats all numeric literals the same, what
I really meant was that JavaScript treats the numeric literals as floating-point
values. This is fine (after all, there’s no practical difference between 2 and 2.0),
but it does put a limit on the maximum and minimum integer values that you
can work with safely. The maximum is 9007199254740992 and the minimum

U
nd

er
st

an
di

ng

Va
ri

ab
le

s

CHAPTER 2 Understanding Variables 191

is -9007199254740992. If you use numbers outside of this range (unlikely, but
you never know), JavaScript won’t be able to maintain accuracy.

Hexadecimal integer values
You’ll likely deal with the usual decimal (base-10) number system throughout
most of your JavaScript career. However, just in case you have cause to work with
hexadecimal (base-16) numbers, this section shows you how JavaScript deals with
them.

The hexadecimal number system uses the digits 0 through 9 and the letters A
through F (or a through f), where these letters represent the decimal numbers 10
through 15. So, what in the decimal system would be 16 is actually 10 in hexadeci-
mal. To specify a hexadecimal number in JavaScript, begin the number with a 0x
(or 0X), as shown in the following examples:

0x23;
0xff;
0X10ce;

Working with string literals
A string literal is a sequence of one or more letters, numbers, or punctuation marks,
enclosed either in double quotation marks (") or single quotation marks ('). Here
are some examples:

"Web Coding and Development";
'August 23, 1959';
"";
"What's the good word?";

The string "" (or '' — two consecutive single quotation marks) is called the null
string. It represents a string that doesn’t contain any characters.

Using quotation marks within strings
The last example in the previous section shows that it’s okay to insert one or more
instances of one of the quotation marks (such as ') inside a string that’s enclosed
by the other quotation mark (such as "). Being able to nest quotation marks comes
in handy when you need to embed one string inside another, which is very common
(particularly when using bits of JavaScript within HTML tags). Here’s an example:

onsubmit="processForm('testing')";

192 BOOK 3 Coding the Front End, Part 2: JavaScript

However, it’s illegal to insert in a string one or more instances of the same quota-
tion mark that encloses the string, as in this example:

"This is "illegal" in JavaScript.";

Understanding escape sequences
However, what if you must include, say, a double quotation mark within a string
that’s enclosed by double quotation marks? Having to nest the same type of quo-
tation mark is rare, but it is possible if you precede the double quotation mark
with a backslash (\), like this:

"The double quotation mark (\") encloses this string.";

The \" combination is called an escape sequence. You can combine the backslash
with a number of other characters to form other escape sequences, and each one
enables the browser to represent a character that, by itself, would be illegal or
not representable otherwise. Table 2-1 lists the most commonly used escape
sequences.

The following code shows an example script that uses the \n escape sequence to
display text on multiple lines with an alert box.

alert("This is line 1.\nSo what. This is line 2.");

TABLE 2-1	 Common JavaScript Escape Sequences
Escape Sequence Character It Represents

\' Single quotation mark

\" Double quotation mark

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\\ Backslash

U
nd

er
st

an
di

ng

Va
ri

ab
le

s

CHAPTER 2 Understanding Variables 193

Figure 2-4 shows the result.

To learn how to combine two or more string literals, check out Book 3, Chapter 3.
Also, JavaScript has a nice collection of string manipulation features, which I dis-
cuss in Book 3, Chapter 8.

Working with Boolean literals
Booleans are the simplest of all the literal data types because they can assume only
one of two values: true or false. That simplicity might make it seem as though
Booleans aren’t particularly useful, but the capability to test whether a particular
variable or condition is true or false is invaluable in JavaScript programming.

You can assign Boolean literals directly to a variable, like this:

taskCompleted = true;

Alternatively, you can work with Boolean values implicitly using expressions:

currentMonth === "August"

The comparison expression currentMonth === "August" asks the following:
Does the value of the currentMonth variable equal the string "August"? If it does,
the expression evaluates to the Boolean value true; if it doesn’t, the expression
evaluates to false. I discuss much more about comparison expressions in Book 3,
Chapter 3.

JavaScript Reserved Words
As I mention earlier, JavaScript has a bunch of reserved words that you need to
avoid when naming your variables. Table 2-2 presents a list of the JavaScript key-
words. It’s illegal to use any of these words as variable or function names.

FIGURE 2-4:
Using the \n

escape sequence
enables you to
format text so

that it displays on
different lines.

194 BOOK 3 Coding the Front End, Part 2: JavaScript

JavaScript Keywords
Table 2-3 presents the complete list of keywords used in JavaScript and HTML
that you should avoid using for variable and function names.

TABLE 2-2	 JavaScript’s Reserved Words
abstract boolean break byte

case catch char class

const continue debugger default

delete do double else

enum export extends false

final finally float for

function goto if import

in instanceof int long

native new null return

short super switch synchronized

this throw throws transient

true try typeof var

void volatile while with

yield

TABLE 2-3	 JavaScript and HTML Keywords
alert all anchor anchors

area Array assign blur

button checkbox clearInterval clearTimeout

clientInformation close closed confirm

constructor crypto Date decodeURI

decodeURIComponent defaultStatus document element

elements embed embeds encodeURI

U
nd

er
st

an
di

ng

Va
ri

ab
le

s

CHAPTER 2 Understanding Variables 195

encodeURIComponent escape eval event

fileUpload focus form forms

frame frameRate frames function

hasOwnProperty hidden history image

images Infinity innerHeight innerWidth

isFinite isNaN isPrototypeOf layer

layers length link location

Math mimeTypes name NaN

navigate navigator Number Object

offscreenBuffering onblur onclick onerror

onfocus onkeydown onkeypress onkeyup

onload onmousedown onmouseover onmouseup

onsubmit open opener option

outerHeight outerWidth packages pageXOffset

pageYOffset parent parseFloat parseInt

password pkcs11 plugin prompt

propertyIsEnum prototype radio reset

screenX screenY scroll secure

select self setInterval setTimeout

status String submit taint

text textarea top toString

undefined unescape untaint valueOf

CHAPTER 3 Building Expressions 197

Building Expressions
It’s not at all important to get it right the first time. It’s vitally important to
get it right the last time.

— DAVID THOMAS

The JavaScript variables described in the previous chapter can’t do all that
much by themselves. They don’t become useful members of your web code
community until you give them something productive to do. For example,

you can assign values to them, use them to assign values to other variables, use
them in calculations, and so on.

This productive side of variables in particular, and JavaScript-based web code in
general, is brought to you by a JavaScript feature known as the expression. This
chapter takes you through everything you need to know about expressions. You
discover some expression basics and then you explore a number of techniques for
building powerful expressions using numbers, strings, and Boolean values.

Understanding Expression Structure
To be as vague as I can be, an expression is a collection of symbols, words, and
numbers that performs a calculation and produces a result. That’s a nebulous def-
inition, I know, so I’ll make it more concrete.

Chapter 3

IN THIS CHAPTER

 » Understanding what expressions are

 » Figuring out numeric expressions

 » Tying up string expressions

 » Getting the hang of comparison
expressions

 » Learning about logical expressions

198 BOOK 3 Coding the Front End, Part 2: JavaScript

When your check arrives after a restaurant meal, one of the first things you prob-
ably do is take out your smartphone and use the calculator to figure out the tip
amount. The service and food were good, so you’re thinking 20 percent is appro-
priate. With phone in hand, you tap in the bill total, tap the multiplication button,
tap 20%, and then tap Equals. Voila! The tip amount appears on the screen and
you’re good to go.

A JavaScript expression is something like this kind of procedure because it takes
one or more inputs, such as a bill total and a tip percentage, and combines them
in some way — for example, by using multiplication. In expression lingo, the
inputs are called operands, and they’re combined by using special symbols called
operators.

 » Operand: An input value for an expression. It is, in other words, the raw data
that the expression manipulates to produce its result. It could be a number, a
string, a variable, a function result (see Book 3, Chapter 5), or an object
property (see Book 3, Chapter 8).

 » Operator: A symbol that represents a particular action performed on one or
more operands. For example, the * operator represents multiplication, and
the + operator represents addition. I discuss the various JavaScript operators
throughout this chapter.

For example, here’s an expression that calculates a tip amount and assigns the
result to a variable:

tipAmount = billTotal * tipPercentage;

The expression is everything to the right of the equals sign (=). Here, bill
Total and tipPercentage are the operands, and the multiplication sign (*) is the
operator.

Expression results always have a particular data type — numeric, string, or
Boolean. So when you’re working with expressions, always keep in mind what
type of result you need and then choose the appropriate operands and operators
accordingly.

Another analogy I like to use for operands and operators is a grammatical one —
that is, if you consider an expression to be a sentence, then the operands are the
nouns (the things) of the sentence, and the operators are the verbs (the actions)
of the sentence.

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 199

Building Numeric Expressions
Calculating a tip amount on a restaurant bill is a mathematical calculation, so you
may be thinking that JavaScript expressions are going to be mostly mathematical.
If I was standing in front of you and I happened to have a box of gold stars on me,
then I’d certainly give you one because, yes, math-based expressions are probably
the most common type you’ll come across.

This type of calculation is called a numeric expression, and it combines numeric
operands and arithmetic operators to produce a numeric result. This section dis-
cusses all the JavaScript arithmetic operators and shows you how best to use them
to build useful and handy numeric expressions.

A quick look at the arithmetic operators
JavaScript’s basic arithmetic operators are more or less the same as those found
in your smartphone’s calculator app or on the numeric keypad of your computer’s
keyboard, plus a couple of extra operators for more advanced work. Table 3-1 lists
the basic arithmetic operators you can use in your JavaScript expressions. (In
subsequent sections, I discuss each one in more detail.)

JavaScript also comes with a few extra operators that combine some of the
arithmetic operators and the assignment operator, which is the humble equal
sign (=) that assigns a value to a variable. Table 3-2 lists these so-called arithmetic
assignment operators.

TABLE 3-1	 The JavaScript Arithmetic Operators
Operator Name Example Result

+ Addition 10 + 4 14

++ Increment 10++ 11

- Subtraction 10 - 4 6

- Negation -10 -10

-- Decrement 10-- 9

* Multiplication 10 * 4 40

/ Division 10 / 4 2.5

% Modulus 10 % 4 2

200 BOOK 3 Coding the Front End, Part 2: JavaScript

Using the addition (+) operator
You use the addition operator (+) to calculate the sum of two operands. The oper-
ands are usually of the numeric data type, which means they can be numeric
literals, variables that store numeric values, or methods or functions that return
numeric values. Here’s an example:

widthMax = widthContent + widthSidebar + 100;

You could use such an expression in a web app when you need to know the max-
imum width to assign the app’s container. In this case, you take the width of
the app’s content (represented by the widthContent variable), add the width of
the app’s sidebar (the widthSidebar variable), and then add the literal value 100
(which may be a value in pixels).

Using the increment (++) operator
One of the most common programming operations involves adding 1 to an exist-
ing value, such as a variable. This operation is called incrementing the value, and
the standard way to write such a statement is as follows:

someVariable = someVariable + 1;

However, JavaScript offers a much more compact alternative that uses the incre-
ment operator (++):

++someVariable;

TABLE 3-2	 The JavaScript Arithmetic Assignment Operators
Operator Example Equivalent

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

^= x ^= y x = x ^ y

%= x %= y x = x % y

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 201

Using the subtraction and
negation (-) operators
The subtraction operator (-) subtracts the numeric value to the right of the opera-
tor from the numeric value to the left of the operator. For example, consider the
following statements:

var targetYear = 2020;
var birthYear = 1985;
var yearsDifference = targetYear – birthyear;

The third statement subtracts 1985 from 2020 and the result — 35 — is stored in
the yearsDifference variable.

THE PRE- AND POST-INCREMENT
OPERATORS
If you need to increment the variable and then assign this new value to another vari-
able, use the following form:

someVariable = ++anotherVariable;

This is exactly the same as the following two statements:

anotherVariable = anotherVariable + 1;
someVariable = anotherVariable;

Because the ++ appears before the variable, it is often called the pre-increment operator.
So far, so good. However, just to confuse you, JavaScript also supports a variation on
this theme called the post-increment operator:

someVariable = anotherVariable++;

In this case, the ++ operator appears after the variable. Big whoop, right? Actually, there
is a subtle but crucial difference. Take a look at the following two statements that do
exactly the same thing as the post-increment operator:

someVariable = anotherVariable;
anotherVariable = anotherVariable + 1;

As you can see, the first variable is set equal to the second variable and then the second
variable is incremented.

202 BOOK 3 Coding the Front End, Part 2: JavaScript

The negation operator (-) is the same symbol, but it works in a totally differ-
ent way. You use it as a kind of prefix by appending it to the front of an operand.
The result is a new value that has the opposite sign of the original value. In other
words, applying the negation operator to an operand is exactly the same as mul-
tiplying the operand by -1. This means the following two statements are identical:

negatedValue = -originalValue;
negatedValue = originalValue * -1;

Using the decrement (--) operator
Another common programming operation is subtracting 1 from an existing vari-
able or other operand. This operation is called decrementing the value, and the
usual way to go about this is with a statement like this one:

thisVariable = thisVariable - 1;

However (you just knew there was going to be a however), JavaScript offers a
much more svelte alternative that takes advantage of the decrement operator (--):

--thisVariable;

Using the multiplication (*) operator
The multiplication operator (*) multiplies two operands together. Here’s an
example:

var totalColumns = 8;
var columnWidth = 100;
var totalWidth = totalColumns * columnWidth;

You might use this code when you want to calculate the width taken up by a web
page layout that uses multiple columns. This code assigns literal numeric values to
the variables totalColumns and columnWidth. It then uses a numeric expression to
multiply these two values together and assign the result to the totalWidth variable.

Using the division (/) operator
The division operator (/) divides one numeric value by another. You can show off
at parties by remembering that the number to the left of the slash (/) is called the
dividend, and the number to the right of the / is called the divisor:

dividend / divisor

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 203

Here’s an example:

var contentWidth = 600;
var windowWidth = 1200;
var contentRatio = contentWidth / windowWidth;

You can use this code to calculate the portion of the browser’s window width that
the page content is currently using. In this code, the variables contentWidth and
windowWidth are assigned literal numeric values, and then a numeric expression
divides the first of the values by the second, the result of which is stored in the
contentRatio variable.

Whenever you use the division operator, you must guard against cases where the
divisor is 0. If that happens, your script will produce an Infinity result, which
is almost certain to wreak havoc on your calculations. Before performing any
division, your script should use an if() statement (see Book 3, Chapter 4) to

THE PRE- AND POST-DECREMENT
OPERATORS
If you need to decrement the variable and then assign this new value to another vari-
able, use the pre-decrement form:

thisVariable = --thatVariable;

This is the same as the following two statements:

thatVariable = thatVariable – 1;
thisVariable = thatVariable;

To assign the value of a variable to another variable and then decrement the first vari-
able, use the post-decrement form:

thisVariable = thatVariable--;

Again, the following two statements do exactly the same thing:

thisVariable = thatVariable;
thatVariable = thatVariable – 1;

As you can see, the first variable is set equal to the second variable and then the second
variable is decremented.

204 BOOK 3 Coding the Front End, Part 2: JavaScript

check whether the divisor is 0 and, if it is, to cancel the division or perform some
kind of work-around.

Using the modulus (%) operator
The modulus operator (%) divides one number by another and then returns the
remainder as the result:

dividend % divisor

For example, the following code stores the value 1 in the variable named my
Modulus because 5 (the myDivisor value) divides into 16 (the myDividend value)
three times and leaves a remainder of 1:

var myDividend = 16;
var myDivisor = 5;
var myModulus = myDividend % myDivisor;

On a more practical level, suppose that you’re trying to come up with a web
page color scheme, and you want to use two colors that are complements of
each other. Complementary means that the two hues are on the opposite side
of the color wheel, so one way to calculate the second color is by adding 180 to
the first color’s hue value. That approach works when the hue of the first color
is between 0 and 179, which give second color hue values between 180 and 359.
However, an initial hue of 180, 181, and so on produces a second hue of 360, 361,
and so on, which are illegal values. You can work around that issue by using a
modulus expression like this:

complementaryColor = (originalColor + 180) % 360;

This statement adds 180 to the original color, but then uses % 360 to return the
remainder when divided by 360 to avoid illegal values.

Using the arithmetic assignment operators
Your web coding scripts will often update the value of a variable by adding to it the
value of some other operand. Here’s an example:

totalInterestPaid = totalInterestPaid + monthlyInterestPaid

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 205

Coders are an efficiency-loving bunch, so the fact that the totalInterestPaid
variable appears twice in that statement is like chewing tin foil to your average
programmer. The JavaScript brain trust hate that kind of thing, too, so they came
up with the addition assignment operator (+=):

totalInterestPaid += monthlyInterestPaid

Yep, this statement does exactly the same thing as the first one, but it does it with
19 fewer characters. Sweet!

If you need to subtract one operand from another, again you can do it the old-
fashioned way:

housePrincipleOwing = housePrincipleOwing - monthlyPrincipalPaid

To avoid other coders laughing behind your back at your inefficiency, use the sub-
traction assignment operator (-=):

housePrincipleOwing -= monthlyPrincipalPaid

Like the increment and decrement operators, the arithmetic assignment operators
are designed to save wear-and-tear on your typing fingers and to reduce the size
of your scripts, particularly if you use long variable names.

Building String Expressions
A string expression is one where at least one of the operands is a string, and the
result of the expression is another string. String expressions are straightforward
in the sense that there is only one operator to deal with: concatenation (+). You
use this operator to combine (or concatenate) strings within an expression. For
example, the expression "Java" + "Script" returns the string "JavaScript".
Note, however, that you can also use strings with the comparison operators dis-
cussed in the next section.

It’s unfortunate that the concatenation operator is identical to the addition opera-
tor because this similarity can lead to some confusion. For example, the expression
2 + 2 returns the numeric value 4 because the operands are numeric. However,
the expression "2" + "2" returns the string value 22 because the two operands
are strings.

206 BOOK 3 Coding the Front End, Part 2: JavaScript

To further complicate matters, JavaScript will often convert numbers into strings
depending on the context:

 » If the first operand in an expression is a string, JavaScript converts any
number in the expression to a string. For example, the following expression
returns the string 222:

"2" + 2 + 2

 » If the first two or more operands in an expression are numbers and the rest
of the expression contains a string, JavaScript handles the numeric part of the
expression first and then converts the result into a string. For example, the
following expression returns the string 42 because the result of 2 + 2 is 4,
which is then concatenated as a string to "2":

2 + 2 + "2"

As an example of how this conversion can be a problem, consider the script in the
following code.

var preTipTotal = 10.00;
var tipAmount = preTipTotal * 0.15;
var message1 = "Your tip is ";
var message2 = "\nYour total bill is ";
alert(message1 + tipAmount + message2 + preTipTotal +

tipAmount);

The preTipTotal variable stores a total for a restaurant bill, and the tipAmount
variable stores 15 percent of the total. The variables message1 and message2 are

BREAKING UP LONG STATEMENTS
All your JavaScript statements should appear on a single line (see Book 3, Chapter 1).
An exception to that rule is any statement that contains a long expression, which you
can break into multiple lines as long as the break occurs immediately before or after
an operator. For example, you can display a string expression in multiple lines as long
as the break occurs immediately before or after the + operator, as in the following
examples:

var message1 = "How did the fool and his money " +
 "get together in the first place?";
var message2 = "Never put off until tomorrow that which you "
 + "can put off until the day after tomorrow.";

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 207

initialized with strings, and then an alert box is displayed with the results. In
particular, the expression preTipTotal + tipAmount is included in the alert()
method to display the total bill. However, as you can see in Figure 3-1, the “total”
displayed is actually 101.5 instead of 11.5 (10 plus 1.5 for the tip).

What happened here is that because the first part of the expression in the alert()
method was a string, JavaScript converted the preTipTotal and tipAmount values
to strings and concatenated them instead of adding them.

To fix this, you could perform the addition in a separate statement and then use
only this sum in the alert() expression. The following code demonstrates this
approach:

var preTipTotal = 10.00;
var tipAmount = preTipTotal * 0.15;
var totalBill = preTipTotal + tipAmount;
var message1 = "Your tip is ";
var message2 = "\nYour total bill is ";
alert(message1 + tipAmount + message2 + totalBill);

A new variable named totalBill is declared and is used to store the preTip
Total + tipAmount sum. totalBill is then used to display the sum in the alert()
expression, which, as you can see in Figure 3-2, now displays the correct answer.

FIGURE 3-1:
When the result
is displayed, the
preTipTotal

and tipAmount
values are

 concatenated
instead of added.

FIGURE 3-2:
Calculating

preTipTotal
and tipAmount
separately fixes

the problem.

208 BOOK 3 Coding the Front End, Part 2: JavaScript

Building Comparison Expressions
You use comparison expressions to compare the values of two or more numbers,
strings, variables, properties, or function results. If the expression is true, the
expression result is set to the Boolean value true; if the expression is false, the
expression result is set to the Boolean value false. You’ll use comparisons with
alarming frequency in your JavaScript code, so it’s important to understand what
they are and how you use them.

The comparison operators
Table 3-3 summarizes JavaScript’s comparison operators.

Using the equal (==) operator
You use the equal operator (==) to compare the values of two operands. If both
have the same value, then the comparison returns true; if the operands have
 different values, the comparison returns false.

For example, in the following statements the variables booksRead and weeks
Passed contain the same value, so the expression booksRead == weeksPassed
returns true:

TABLE 3-3	 The JavaScript Comparison Operators
Operator Name Example Result

== Equal 10 == 4 false

!= Not equal 10 != 4 true

> Greater than 10 > 4 true

< Less than 10 < 4 false

>= Greater than or equal 10 >= 4 true

<= Less than or equal 10 <= 4 false

=== Identity "10" === 10 false

!== Non-identity "10" !== 10 true

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 209

var booksRead = 48;
var weeksPassed = 48;
var bookAWeek = booksRead == weeksPassed;

One of the most common mistakes made by beginning and experienced JavaScript
programmers alike is to use = instead of == in a comparison expression. If your
script isn’t working properly or is generating errors, one of the first things you
should check is that your equal operator has two equal signs.

Using the not equal (!=) operator
You also use the not equal operator (!=) to compare the values of two operands,
but in the opposite way. That is, if the operands have different values, the com-
parison returns true; if both operands have the same value, the comparison
returns false.

In the following statements, for example, the variables currentFontSize and
defaultFontSize contain different values, so the expression currentFontSize!=
defaultFontSize returns true:

var currentFontSize = 19;
var defaultFontSize = 16;
var weirdoFontSize = currentFontSize != defaultFontSize;

Using the greater than (>) operator
You use the greater than operator (>) to compare two operands to see if the oper-
and to the left of > has a greater value than the operand to the right of >. If it does,
then the expression returns true; otherwise, it returns false.

In the statements below, the value of the contentWidth variable is more than that
of the windowWidth variable, so the expression contentWidth > windowWidth
returns true:

var contentWidth = 1000;
var windowWidth = 800;
var tooBig = contentWidth > windowWidth;

Using the less than (<) operator
You use the less than operator (<) to compare two operands to see if the operand
to the left of > has a lesser value than the operand to the right of >. If it does, then
the expression returns true; otherwise, it returns false.

210 BOOK 3 Coding the Front End, Part 2: JavaScript

For example, in the statements that follow, the values of the kumquatsInStock
and kumquatsSold variables are the same, so the expression kumquatsInStock <
kumquatsSold returns false:

var kumquatsInStock = 3;
var kumquatsSold = 3;
var backordered = kumquatsInStock < kumquatsSold;

Using the greater than or
equal (>=) operator
You use the greater than or equal operator (>=) to compare two operands to see
if the operand to the left of >= has a greater value than or an equal value to the
operand to the right of >=. If either or both of those comparisons get a thumbs up,
then the expression returns true; otherwise, it returns false.

In the following statements, for example, the value of the score variable is more
than that of the prize1Minimum variable and is equal to that of the prize2Minimum
variable. Therefore, both the expressions score >= prize1Minimum and score >=
prize2Minimum return true:

var score = 90;
var prize1Minimum = 80;
var prize2Minimum = 90;
var getsPrize1 = score >= prize1Minimum;
var getsPrize2 = score >= prize2Minimum;

Using the less than or equal (<=) operator
You use the less than or equal operator (<=) to compare two operands to see if the
operand to the left of <= has a lesser value than or an equal value to the operand to
the right of <=. If either or both of those comparisons get a nod of approval, then
the expression returns true; otherwise, it returns false.

For example, in the following statements, the value of the defects variable is less
than that of the defectsMaximumA variable and is equal to that of the defects
MaximumB variable. Therefore, both the expressions defects <= defectsMaximumA
and defects <= defectsMaximumB return true:

var defects = 5
var defectsMaximumA = 10
var defectsMaximumB = 5

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 211

var getsBonus = defects <= defectsMaximumA
var getsRaise = defects <= defectsMaximumB

The comparison operators
and data conversion
In the previous examples, I used only numbers to demonstrate the various
comparison operators. However, you can also use strings and Boolean values.
These comparisons are straightforward if your expressions include only operands
of the same data type; that is, if you compare two strings or two Booleans.
(Although see my discussion of using strings in comparison expressions a bit later
in this chapter.)

Things become less straightforward if you mix data types within a single com-
parison expression. In this case, you need to remember that JavaScript always
attempts to convert each operand into a number before running the comparison.
Here’s how it works:

 » If one operand is a string and the other is a number, JavaScript attempts to
convert the string into a number. For example, in the following statements
the string "5" gets converted to the number 5, so the comparison value1 ==
value2 returns true:

var value1 = "5"
var value2 = 5

var result = value1 == value2

If the string can’t be converted to a number, then the comparison always
returns false.

 » If one operand is a Boolean and the other is a number, JavaScript converts the
Boolean to a number as follows:

• true — This value is converted to 1.

• false — This value is converted to 0.

For example, in the following statements, the Boolean true gets converted to
the number 1, so the comparison value1 == value2 returns true:

var value1 = true
var value2 = 1

var result = value1 == value2

212 BOOK 3 Coding the Front End, Part 2: JavaScript

 » If one operand is a Boolean and the other is a string, JavaScript converts the
Boolean to a number as in the previous item, and it attempts to convert the
string into a number. For example, in the following statements, the Boolean
false is converted to the number 0 and the string "0" is converted to the
number 0, so the comparison value1 == value2 returns true:

var value1 = false
var value2 = "0"

var result = value1 == value2

If the string can’t be converted to a number, then the comparison always
returns false.

Using the identity (===) operator
The identity operator (===) checks whether two operands are identical, which
means it checks not only that the operands’ values are equal, but also that the
operands are of the same data type. (Which is why the identity operator is also
sometimes called the strict equality operator.)

For example, in the following statements, variable albumName contains a string
and variable albumReleaseDate contains a number. These values are of different
data types, so the expression albumName === albumReleaseDate returns false:

var albumName = "1984";
var albumReleaseDate = 1984;
var result = albumName === albumReleaseDate;

By comparison, if instead you used the equal operator (==), which doesn’t check
the operand data types, the expression albumName == albumReleaseDate would
return true.

So when should you use equal (==) and when should you use identity (===)? Many
pro JavaScript coders ignore this question entirely and just use the identity oper-
ator all the time. You should, too.

Using the non-identity (!==) operator
The non-identity operator (!==) performs the opposite function, sort of. That is, it
checks to see not only if the values of two operands are different, but it also checks
to see whether the operand are of different data types. (Which is why the non-
identity operator is also sometimes called the strict inequality operator.)

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 213

In the statements below, variable hasBugs contains the Boolean value true and
variable totalBugs contains a number. These values are of different data types, so
the expression hasBugs !== totalBugs returns true:

var hasBugs = true;
var totalBugs = 1;
var result = hasBugs !== totalBugs;

Using strings in comparison expressions
Comparison expressions involving only numbers hold few surprises, but compari-
sons involving only strings can sometimes raise an eyebrow or two. The compari-
son is based on alphabetical order, as you might expect, so “A” comes before “B”
and “a” comes before “b.” Ah, but this isn’t your father’s alphabetical order. In
JavaScript’s world, all the uppercase letters come before all the lowercase letters,
which means that, for example, “B” comes before “a,” so the following expres-
sion would return false:

"a" < "B"

Another thing to keep in mind is that most string comparisons involve multiple-
letter operands. In these situations, JavaScript compares each string letter-by-
letter. For example, consider the following expression:

"Smith" < "Smyth"

The first two letters in each string are the same, but the third letters are differ-
ent. The internal value of the i in Smith is less than the internal value of the y in
Smyth, so the comparison above would return true. (Notice, too, that after a point
of difference is found, JavaScript ignores the rest of the letters in each string.)

Also, a space is a legitimate character for comparison purposes, and its internal
value comes before all other letters and symbols. In particular, if you compare
two strings of different lengths, JavaScript will pad the shorter string with spaces
so that it’s the same length as the longer string. Therefore, the following two
expressions are equivalent:

"Marg" > "Margaret"
"Marg " > "Margaret"

The second statement returns false because the fifth “letter” of the left operand
is a space, whereas the fifth letter of "Margaret" is a.

214 BOOK 3 Coding the Front End, Part 2: JavaScript

Using the ternary (?:) operator
Knowing the comparison operators also enables you to use one of my favorite
expression tools, a complex but oh-so-handy item called the ternary operator (?:).
Here’s the basic syntax for using the ternary operator in an expression:

expression ? result_if_true : result_if_false

The expression is a comparison expression that results in a true or false value.
In fact, you can use any variable, function result, or property that has a true or
false Boolean value. The result_if_true is the value that the expression returns
if the expression evaluates to true; the result_if_false is the value that the
expression returns if the expression evaluates to false.

In JavaScript, by definition, the following values are the equivalent of false:

 » 0 (the number zero)

 » "" (the empty string)

 » null

 » undefined (which is, say, the “value” of an uninitialized variable)

Everything else is the equivalent of true.

Here’s a simple example:

var screenWidth = 768;
var maxPortableWidth = 1024;
var screenType = screenWidth > maxPortableWidth ? "Desktop" :

"Portable";

The variable screenWidth is initialized to 768, the variable maxPortableWidth
is initialized to 1024, and the variable screenType stores the value returned by
the conditional expression. For the latter, screenWidth > maxPortableWidth is
the comparison expression, "Desktop!" is the string that is returned given a true
result, and "Portable!" is the string that is returned given a false result. Since
screenWidth is less than maxPortableWidth, the comparison will be false, so
"Portable!" will be the result.

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 215

Building Logical Expressions
You use logical expressions to combine or manipulate Boolean values, particularly
comparison expressions. For example, if your code needs to test whether two dif-
ferent comparison expressions are both true before proceeding, you can do that
with a logical expression.

The logical operators
Table 3-4 lists JavaScript’s logical operators.

Using the AND (&&) operator
You use the AND operator (&&) when you want to test two Boolean operands to see
if they’re both true. For example, consider the following statements:

var finishedDinner = true;
var clearedTable = true;
var getsDessert = finishedDinner && clearedTable;

Since both finishedDinner and clearedTable are true, the logical expression
finishedDinner && clearedTable evaluates to true.

On the other hand, consider these statements:

var haveWallet = true;
var haveKeys = false;
var canGoOut = haveWallet && haveKeys;

TABLE 3-4	 The JavaScript Logical Operators
Operator Name General Syntax Returned Value

&& AND expr1 && expr2 true if both expr1 and expr2 are true; false otherwise.

|| OR expr1 || expr2 true if one or both of expr1 and expr2 are true; false
otherwise.

! NOT !expr true if expr is false; false if expr is true.

216 BOOK 3 Coding the Front End, Part 2: JavaScript

In this example, since haveKeys is false, the logical expression haveWallet &&
haveKeys evaluates to false. The logical expression would also return false if
just haveWallet was false or if both haveWallet and haveKeys were false.

Table 3-5 lists the various operands you can enter and the results they generate
(this is called a truth table).

Using the OR (||) operator
You use the OR (||) operator when you want to test two Boolean operands to see
if at least one of them is true. For example, consider the following statements:

var hasFever = true;
var hasCough = false;
var missSchool = hasFever || hasCough;

Since hasFever is true, the logical expression hasFever || hasCough evaluates
to true since only one of the operands needs to be true. You get the same result
if only hasCough is true or if both operands are true.

On the other hand, consider these statements:

var salesOverBudget = false;
var expensesUnderBudget = false;
var getsBonus = salesOverBudget || expensesUnderBudget;

In this example, since both salesOverBudget and expensesUnderBudget are
false, the logical expression salesOverBudget || expensesUnderBudget evalu-
ates to false.

Table 3-6 displays the truth table for the various operands you can enter.

TABLE 3-5	 Truth Table for the AND (&&) Operator
left_operand right_operand left_operand && right_operand

true true true

true false false

false true false

false false false

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 217

Using the NOT (!) Operator
The NOT (!) operator is the logical equivalent of the negation operator (-) I cover
earlier in this chapter. In this case, NOT returns the opposite Boolean value of an
operand. For example, consider the following statements:

var dataLoaded = false;
var waitingForData = !dataLoaded;

dataLoaded is false, so !dataLoaded evaluates to true.

Table 3-7 displays the truth table for the various operands you can enter.

Advanced notes on the &&
and || operators
I mention earlier that JavaScript defines various values that are the equivalent
of false — including 0 and "" — and that all other values are the equivalent
of true. These equivalences means that you can use both the AND operator
and the OR operator with non-Boolean values. However, if you plan on using
non-Booleans, then you need to be aware of exactly how JavaScript evaluates
these expressions.

TABLE 3-6	 Truth Table for the OR (||) Operator
left_operand right_operand left_operand || right_operand

true true true

true false true

false true true

false false false

TABLE 3-7	 Truth Table for the NOT (!) Operator
Operand !Operand

true false

false true

218 BOOK 3 Coding the Front End, Part 2: JavaScript

Let’s begin with an AND expression:

1. Evaluate the operand to the left of the AND operator.

2. If the left operand’s value is false or is equivalent to false, return that value
and stop; otherwise, continue with Step 3.

3. If the left operand’s value is true or is equivalent to true, evaluate the
operand to the right of the AND operator.

4. Return the value of the right operand.

This is quirky behavior, indeed, and there are two crucial concepts you need to
bear in mind:

 » If the left operand evaluates to false or its equivalent, the right operand is
never evaluated.

 » The logical expression returns the result of either the left or right operand,
which means the expression might not return true or false; instead, it might
return a value that’s equivalent to true or false.

To try these concepts out, use the following code:

var v1 = true;
var v2 = 10;
var v3 = "testing";
var v4 = false;
var v5 = 0;
var v6 = "";
var leftOperand =
 eval(prompt("Enter the left operand (a value or

expression):", true));
var rightOperand =
 eval(prompt("Enter the right operand (a value or

expression):", true));
var result = leftOperand && rightOperand;
alert(result);

The script begins by declaring and initializing six variables. The first three (v1, v2,
and v3) are given values equivalent to true and the last three (v4, v5, and v6) are
given values equivalent to false. The script then prompts for a left operand and
a right operand, which are then entered into an AND expression. The key here is
that you can enter any value for each operand, or you can use the v1 through v6
 variables to enter a comparison expression, such as v2 > v5. The use of eval()
on the prompt() result ensures that JavaScript uses the expressions as they’re
entered.

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 219

Table 3-8 lists some sample inputs and the results they generate.

Like the AND operator, the logic of how JavaScript evaluates an OR expression is
strange and needs to be understood, particularly if you’ll be using operands that
are true or false equivalents:

1. Evaluate the operand to the left of the OR operator.

2. If the left operand’s value is true or is equivalent to true, return that value and
stop; otherwise, continue with Step 3.

3. If the left operand’s value is false or is equivalent to false, evaluate the
operand to the right of the AND operator.

4. Return the value of the right operand.

Understanding Operator Precedence
Your JavaScript code will often use expressions that are blissfully simple: just
one or two operands and a single operator. But, alas, “often” here doesn’t mean
“mostly,” because many expressions you use will have a number of values and
operators. In these more complex expressions, the order in which the calculations
are performed becomes crucial. For example, consider the expression 3+5*2. If
you calculate from left to right, the answer you get is 16 (3+5 equals 8, and 8*2
equals 16). However, if you perform the multiplication first and then the addition,

TABLE 3-8	 Some Sample Results for the Previous Code
left_operand right_operand left_operand && right_operand

true true true

true false false

5 10 10

false "Yo" false

v2 v5 0

true v3 testing

v5 v4 0

v2 > v5 v5 == v4 true

220 BOOK 3 Coding the Front End, Part 2: JavaScript

the result is 13 (5*2 equals 10, and 3+10 equals 13). In other words, a single
expression can produce multiple answers depending on the order in which you
perform the calculations.

To control this ordering problem, JavaScript evaluates an expression according to
a predefined order of precedence. This order of precedence lets JavaScript calculate
an expression unambiguously by determining which part of the expression it cal-
culates first, which part second, and so on.

The order of precedence
The order of precedence that JavaScript uses is determined by the various
expression operators covered so far in this chapter. Table 3-9 summarizes the
complete order of precedence used by JavaScript.

TABLE 3-9	 The JavaScript Order of Precedence for Operators
Operator Operation Order of Precedence Order of Evaluation

++ Increment First R -> L

-- Decrement First R -> L

— Negation First R -> L

! NOT First R -> L

*, /, % Multiplication, division, modulus Second L -> R

+, — Addition, subtraction Third L -> R

+ Concatenation Third L -> R

<, <= Less than, less than, or equal Fourth L -> R

>, >= Greater than, greater than, or equal Fourth L -> R

== Equal Fifth L -> R

!= Not equal Fifth L -> R

=== Identity Fifth L -> R

!== Non-identity Fifth L -> R

&& AND Sixth L -> R

|| OR Sixth L -> R

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 221

For example, Table 3-9 tells you that JavaScript performs multiplication
before addition. Therefore, the correct answer for the expression =3+5*2 (just
discussed) is 13.

Notice, as well, that some operators in Table 3-9 have the same order of pre-
cedence (for example, multiplication and division). Having the same prece-
dence means that the order in which JavaScript evaluates these operators doesn’t
matter. For example, consider the expression 5*10/2. If you perform the multi-
plication first, the answer you get is 25 (5*10 equals 50, and 50/2 equals 25). If
you perform the division first, you also get an answer of 25 (10/2 equals 5, and
5*5 equals 25).

However, JavaScript does have a predefined order for these kinds of expressions,
which is what the Order of Evaluation column tells you. A value of L -> R means
that operations with the same order of precedence are evaluated from left-to-
right; R -> L means the operations are evaluated from right-to-left.

Controlling the order of precedence
Sometimes you want to take control of the situation and override the order of pre-
cedence. That might seem like a decidedly odd thing to do, so perhaps an example
is in order. As you probably know, you calculate the total cost of a retail item by
multiplying the retail price by the tax rate, and then adding that result to the retail
price:

Total Price = Retail Price + Retail Price * Tax Rate

However, what if you want to reverse this calculation? That is, suppose you know
the final price of an item and, given the tax rate, you want to know the original
(that is, pre-tax) price. Applying a bit of algebra to the preceding equation, it
turns out that you can calculate the original price by dividing the total price by 1
plus the tax rate. So if the total price is $11.00 and the tax rate is 10%, then you
divide 11 by 1.1 and get an answer of $10.00.

Operator Operation Order of Precedence Order of Evaluation

?: Ternary Seventh R -> L

= Assignment Eighth R -> L

+=, -=, and so on. Arithmetic assignment Eighth R -> L

222 BOOK 3 Coding the Front End, Part 2: JavaScript

Okay, now I’ll convert this calculation to JavaScript code. A first pass at the new
equation might look something like this:

retailPrice = totalPrice / 1 + taxRate;

The following code implements this formula and Figure 3-3 shows the result:

var totalPrice = 11.00;
var taxRate = .1;
var retailPrice = totalPrice / 1 + taxRate;
alert("The pre-tax price is " + retailPrice);

As you can see, the result is incorrect. What happened? Well, according to the rules
of precedence, JavaScript performs division before addition, so the totalPrice
value first is divided by 1 and then is added to the taxRate value, which isn’t the
correct order.

To get the correct answer, you have to override the order of precedence so that the
addition 1 + taxRate is performed first. You override precedence by surround-
ing that part of the expression with parentheses, as shown in the following code.
Using this revised script, you get the correct answer, as shown in Figure 3-4.

var totalPrice = 11.00;
var taxRate = .1;
var retailPrice = totalPrice / (1 + taxRate);
alert("The pre-tax price is " + retailPrice);

One of the most common mistakes when using parentheses in expressions is to
forget to close a parenthetic term with a right parenthesis. To make sure you’ve
closed each parenthetic term, count all the left parentheses and count all the right
parentheses. If these totals don’t match, you know you’ve left out a parenthesis.

FIGURE 3-3:
The result of

our first stab at
 calculating the

pre-tax cost
of an item.

Bu
ild

in
g

Ex
pr

es
si

on
s

CHAPTER 3 Building Expressions 223

In general, you can use parentheses to control the order that JavaScript uses to
calculate expressions. Terms inside parentheses are always calculated first; terms
outside parentheses are calculated sequentially (according to the order of prece-
dence). To gain even more control over your expressions, you can place parenthe-
ses inside one another; this is called nesting parentheses, and JavaScript always
evaluates the innermost set of parentheses first.

Using parentheses to determine the order of calculations allows you to gain full
control over JavaScript expressions. This way, you can make sure that the answer
given by an expression is the one you want.

FIGURE 3-4:
The revised

script calculates
the pre-tax cost

correctly.

CHAPTER 4 Controlling the Flow of JavaScript 225

Controlling the Flow
of JavaScript

In a minute there is time

For decisions and revisions which a minute will reverse.

— T. S. ELIOT

When the web browser comes across a <script> tag, it puts on its
JavaScript hat and starts processing the statements. Not surprisingly,
the browser doesn’t just leap randomly around the script, parsing the

statements willy-nilly. That would be silly. No, the browser puts its head down
and starts processing the statements one at a time: the first statement, the second
statement, and so on until there’s no more JavaScript left to parse.

That linear statement-by-statement progression through the code makes sense,
but it doesn’t fit every situation. Sometimes you want your code to test some
 condition and then run different chunks of code depending on the result of that
test. Sometimes you want your code to repeat a collection of statements over and
over again, with some subtle or significant change occurring with each repeti-
tion. Code that runs tests and code that repeats itself all fall under the rubric of
 controlling the flow of JavaScript. In this chapter, you dive into this fascinating
and powerful subject.

Chapter 4

IN THIS CHAPTER

 » Understanding how you control the
flow of JavaScript

 » Setting up your code to make
decisions

 » Understanding code looping

 » Setting up code loops

 » Avoiding the dreaded infinite loop

226 BOOK 3 Coding the Front End, Part 2: JavaScript

Understanding JavaScript’s
Control Structures

There are lots of sites on the web that offer widgets and doodads that you can
link to (or sometimes download) to add functionality to your web pages. Easy?
For sure. Fast? Absolutely. Recommended? Nope. That’s because those doohickeys
are black boxes where the code is hidden and unchangeable (at least by the likes
of you and me). That, in turn, means you lose out on one of the main advantages
of writing your own JavaScript code: that you end up with complete and exquisite
control over what your code does and how it performs its tasks.

There are many ways to exert such control over your code, but there are two that
you’ll find to be the most useful and powerful. The first of these are JavaScript
statements that make decisions based on certain conditions, and then depending
on the results of those decisions, send your code branching one way or another.
The second are JavaScript statements that perform loops, which means that they
run one or more statements over and over again, and you control the number of
times this happens. The JavaScript statements that handle this kind of processing
are known as control structures to those in the trade.

Making True/False Decisions with
if() Statements

A smart script performs tests on its environment and then decides what to do next
based on the results of each test. For example, suppose you’ve written a function
that uses one of its arguments as a divisor in an expression. You should test the
argument before using it in the expression to make sure that it isn’t 0.

The most basic test is the simple true/false decision (which could also be seen
as a yes/no or an on/off decision). In this case, your program looks at a certain
condition, determines whether it’s currently true or false, and acts accordingly.
Comparison and logical expressions (covered in Book 3, Chapter 3) play a big part
here because they always return a true or false result.

In JavaScript, simple true/false decisions are handled by the if() statement. You
can use either the single-line syntax:

if (expression) { statement };

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 227

or the block syntax:

if (expression) {
 statement1;
 statement2;
 ...
}

In both cases, expression is a comparison or logical expression that returns true
or false, and statement(s) represent the JavaScript statement or statements to
run if expression returns true. If expression returns false, JavaScript skips
over the statements.

This is a good place to note that JavaScript defines the following values as the
equivalent of false: 0, "" (that is, the empty string), null, and undefined. Every-
thing else is the equivalent of true.

This is the first time you’ve seen JavaScript’s braces ({ and }), so let’s take a sec-
ond to understand what they do because they come up a lot. The braces surround
one or more statements that you want JavaScript to treat as a single entity. This
entity is a kind of statement itself, so the whole caboodle — the braces and the
code they enclose — is called a block statement. Also, any JavaScript construction
that consists of a statement (such as if()) followed by a block statement is called
a compound statement. And, just to keep you on your toes, note that the lines that
include the braces don’t end with semicolons.

Whether you use the single-line or block syntax depends on the statements you
want to run if the expression returns a true result. If you have only one state-
ment, you can use either syntax. If you have multiple statements, use the block
syntax.

Consider the following example:

if (totalSales != 0) {
 var grossMargin = (totalSales - totalExpenses) / totalSales;
}

This code assumes that earlier the script has calculated the total sales and total
expenses, which are stored in the totalSales and totalExpenses variables,
respectively. The code now calculates the gross margin, which is defined as gross
profit (that is, sales minus expenses) divided by sales. The code uses if() to test
whether the value of the totalSales variable is not equal to zero. If the total
Sales != 0 expression returns true, then the grossMargin calculation is executed;
otherwise, nothing happens. The if() test in this example is righteous because it
ensures that the divisor in the calculation — totalSales — is never zero.

228 BOOK 3 Coding the Front End, Part 2: JavaScript

Branching with if(). . .else Statements
Using the if() statement to make decisions adds a powerful new weapon to your
JavaScript arsenal. However, the simple version of if() suffers from an impor-
tant drawback: A false result only bypasses one or more statements; it doesn’t
execute any of its own. This is fine in many cases, but there will be times when
you need to run one group of statements if the condition returns true and a dif-
ferent group if the result is false. To handle this, you need to use an if()...else
statement:

if (expression) {
 statements-if-true
} else {
 statements-if-false
}

The expression is a comparison or logical expression that returns true or false.
statements-if-true represents the block of statements you want JavaScript to
run if expression returns true, and statements-if-false represents the block
of statements you want executed if expression returns false.

As an example, consider the following code:

var discountRate;
if (currMonth === "December") {
 discountRate = 0.2;
} else {
 discountRate = 0.1;
}
var discountedPrice = regularPrice * (1 – discountRate);

This code calculates a discounted price of an item, where the discount depends
on whether the current month is December. The code assumes that earlier the
script set the value of the current month (currMonth) and the item’s regular price
(regularPrice). After declaring the discountRate variable, an if()...else
statement checks to see if currMonth equals December. If it does, discountRate
is set to 0.2; otherwise, discountRate is set to 0.1. Finally, the code uses the
discountRate value to calculate discountedPrice.

if()...else statements are much easier to read when you indent the statements
within each block, as I’ve done in my examples. This lets you easily identify which
block will run if there is a true result and which block will run if the result is
false. I find that an indent of four spaces does the job, but many programmers
prefer either two spaces or a tab.

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 229

The if()...else statements are very similar to the ternary operator (?:) that
I discuss in Book 3, Chapter 3. In fact, for a very specific subset of if()...else
statements, the two are identical.

The ?: operator evaluates a comparison expression and then returns one value
if the expression is true, or another value if it’s false. For example, if you have
a variable named currentHour that contains the hour part of the current time of
day, then consider the following statement:

var greeting = currentHour < 12 ? "Good morning!" : "Good day!";

If currentHour is less than 12, then the string "Good morning!" is stored in the
greeting variable; otherwise, the string "Good day!" is returned. This statement
does exactly the same thing as the following if()...else statements:

if (currentHour < 12) {
 greeting = "Good morning!";
} else {
 greeting = "Good day!";
}

The ternary operator version is clearly more efficient, both in terms of total char-
acters typed and total lines used. So any time you find yourself testing a condition
only to store something in a variable depending on the result, use a ternary oper-
ator statement instead of if()...else.

Making Multiple Decisions
The if()...else control structure makes only a single decision. The if() part
calculates a single logical result and performs one of two actions. However, plenty
of situations require multiple decisions before you can decide which action to take.

For example, to calculate the pre-tax price of an item given its total price and its
tax rate, you divide the total price by the tax rate plus 1. In real-world web coding,
one of your jobs as a developer is to make sure you’re dealing with numbers that
make sense. What makes sense for a tax rate? Probably that it’s greater than or
equal to 0 and less than 1 (that is, 100%). That’s two things to test about any tax
rate value in your code, and JavaScript offers multiple ways to handle this kind of
thing.

230 BOOK 3 Coding the Front End, Part 2: JavaScript

Using the AND (??) and OR (||) operators
One solution to a multiple-decision problem is to combine multiple comparison
expressions in a single if() statement. As I discuss in Book 3, Chapter 3, you
can combine comparison expressions by using JavaScript’s AND (??) and OR (||)
operators.

The following code shows an example if() statement that combines two com-
parison expressions using the && operator:

var retailPrice;
if (taxRate >= 0 && taxRate < 1) {
 retailPrice = totalPrice / (1 + taxRate);
 alert(retailPrice);
} else {
 alert("Please enter a tax rate between 0 and 1.");
}

The key here is the if() statement:

if (taxRate >= 0 && taxRate < 1);

This tells the browser that only if the taxRate value is greater than or equal to 0
and less than 1 should the statements in the true block be executed. If either one is
false (or if both are false), the user sees the message in the false block instead.

Nesting multiple if() statements
There is a third syntax for the if()...else statement that lets you string together
as many logical tests as you need:

if (expression1) {
 statements-if-expression1-true
} else if (expression2) {
 statements-if-expression2-true
}
etc.
else {
 statements-if-false
}

JavaScript first tests expression1. If expression1 returns true, JavaScript runs
the block represented by statements-if-expression1-true and skips over every-
thing else. If expression1 returns false, JavaScript then tests expression2. If

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 231

expression2 returns true, JavaScript runs the block represented by statements-
if-expression2-true and skips over everything else. Otherwise, JavaScript runs
the block represented by statements-if-false. The second if() statement is
said to be nested within the first if() statement.

The following code shows a script that uses a nested if() statement:

var greeting;
if (currentHour < 12) {
 greeting = "Good morning!";
} else if (currentHour < 18) {
 greeting = "Good afternoon!";
} else {
 greeting = "Good evening!";
}
alert(greeting);

The code assumes that earlier in the script the current hour value was stored in
the currentHour variable. The first if() checks to see if currentHour is less than
12. If so, then the string "Good morning!" is stored in the greeting variable; if
not, the next if() checks to see if currentHour less than 18 (that is, less than
6:00 PM). If so, then greeting is assigned the string "Good afternoon!"; if not,
greeting is assigned "Good evening" instead.

Using the switch() statement
Performing multiple tests with if()...else if is a handy technique — it’s a
JavaScript tool you’ll reach for quite often. However, it quickly becomes unwieldy
as the number of tests you need to make gets larger. It’s okay for two or three
tests, but any more than that makes the logic harder to follow.

For situations where you need to make a whole bunch of tests (say, four or more),
JavaScript’s switch() statement is a better choice. The idea is that you provide an
expression at the beginning and then list a series of possible values for that expres-
sion. For each possible result — called a case — you provide one or more JavaScript
statements to execute should the case prove to be true. Here’s the syntax:

switch(expression) {
 case Case1:
 Case1 statements
 break;
 case Case2:
 Case2 statements
 break;

232 BOOK 3 Coding the Front End, Part 2: JavaScript

 etc.
 default:
 Default statements
}

The expression is evaluated at the beginning of the structure. It must return a
value (numeric, string, or Boolean). Case1, Case2, and so on are possible values for
expression. JavaScript examines each case value to see whether one matches the
result of expression. If expression returns the Case1 value, the code represented
by Case1 statements is executed, and the break statement tells JavaScript to stop
processing the rest of the switch() statement. Similarly, if expression returns
the Case2 value, the code represented by Case2 statements is executed, Java-
Script stops processing the rest of the switch() statement. Finally, the optional
default statement is used to handle situations where none of the cases matches
expression, so JavaScript executes the code represented by Default statements.

If you do much work with dates in JavaScript, it’s likely that your code will even-
tually need to figure out how many days are in any month. There’s no built-in
JavaScript property or method that tells you this, so you need to construct your
own code, as shown here:

var daysInMonth;
switch(monthName) {
 case "January":
 daysInMonth = 31;
 break;
 case "February":
 if (yearValue % 4 === 0) {
 daysInMonth = 29;
 }
 else {
 daysInMonth = 28;
 }
 break;
 case "March":
 daysInMonth = 31;
 break;
 case "April":
 daysInMonth = 30;
 break;
 case "May":
 daysInMonth = 31;
 break;

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 233

 case "June":
 daysInMonth = 30;
 break;
 case "July":
 daysInMonth = 31;
 break;
 case "August":
 daysInMonth = 31;
 break;
 case "September":
 daysInMonth = 30;
 break;
 case "October":
 daysInMonth = 31;
 break;
 case "November":
 daysInMonth = 30;
 break;
 case "December":
 daysInMonth = 31;
}

This code assumes that the variable monthName is the name of the month you want
to work with, and yearValue is the year. (You need the latter to know when you’re
dealing with a leap year.) The switch() is based on the name of the month:

switch(monthName)

Then case statements are set up for each month. For example:

case "January":
 daysInMonth = 31;
 break;

If monthName is "January", this case is true and the daysInMonth variable is set
to 31. All the other months are set up the same, with the exception of February:

case "February":
 if (yearValue % 4 === 0) {
 daysInMonth = 29;
 }
 else {
 daysInMonth = 28;
 }
 break;

234 BOOK 3 Coding the Front End, Part 2: JavaScript

Here you need to know whether you’re dealing with a leap year, so the modulus
(%) operator checks to see if yearValue is divisible by four. If so, it’s a leap year,
so daysInMonth is set to 29; otherwise, it’s set to 28.

Time geeks will no doubt have their feathers ruffled by my assertion that a year
is a leap year if it’s divisible by four. In fact, that only works for the years 1901 to
2099, which should take care of most people’s needs. The formula doesn’t work
for 1900 and 2100 because, despite being divisible by 4, these years aren’t leap
years. The general rule is that a year is a leap year if it’s divisible by 4 and it’s not
divisible by 100, unless it’s also divisible by 400.

Understanding Code Looping
There are some who would say that the only real goal of the programmer should
be to get the job done. As long as the code produces the correct result or performs
the correct tasks in the correct order, everything else is superfluous. Perhaps, but
real programmers know that the true goal of programming is not only to get the
job done, but to get it done as efficiently as possible. Efficient scripts run faster,
take less time to code, and are usually (not always, but usually) easier to read and
troubleshoot.

One of the best ways to introduce efficiency into your coding is to avoid reinvent-
ing too many wheels. For example, consider the following code fragment:

var sum = 0;
var num = prompt("Type a number:", 1);
sum += Number(num);
num = prompt("Type a number:", 1);
sum += Number(num);
num = prompt("Type a number:", 1);
sum += Number(num);
alert("The total of your numbers is " + sum);

This code first declares a variable named sum. The code prompts the user for a
number (see Book 3, Chapter 7 for a discussion of prompt() method) that gets
stored in the num variable, adds that value to sum, and then repeats this prompt-
and-sum routine two more times. (Note my use of the Number() function, which
ensures that the value returned by prompt() is treated as a number rather than a
string.) Finally, the sum of the three numbers is displayed to the user.

Besides being a tad useless, this code just reeks of inefficiency because most of the
code consists of the following two lines appearing three times:

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 235

num = prompt("Type a number:", 1);
sum += Number(num);

Wouldn’t it be more efficient if you put these two statements just once in the code
and then somehow get JavaScript to repeat these statements as many times as
necessary?

Why, yes, it would, and the good news is that not only is it possible to do this, but
JavaScript also gives you a number of different methods to perform this so-called
looping. I spend the rest of this chapter investigating each of these methods.

Using while() Loops
The most straightforward of the JavaScript loop constructions is the while() loop,
which uses the following syntax:

while (expression) {
 statements
}

Here, expression is a comparison or logical expression (that is, an expression that
returns true or false) that determines how many times the loop gets executed,
and statements represents a block of statements to execute each time through
the loop.

Essentially, JavaScript interprets a while() loop as follows: “Okay, as long as
expression remains true, I’ll keep running through the loop statements, but as
soon as expression becomes false, I’m out of there.”

Take a closer look at this. Here’s how a while() loop works:

1. Evaluate the expression in the while() statement.

2. If expression is true, continue with Step 3; if expression is false, skip to
Step 5.

3. Execute each of the statements in the block.

4. Return to Step 1.

5. Exit the loop (that is, execute the next statement that occurs after the while()
block).

236 BOOK 3 Coding the Front End, Part 2: JavaScript

The following code demonstrates how to use while() to rewrite the inefficient
code I show in the previous section:

var sum = 0;
var counter = 1;
var num;
while (counter <= 3) {
 num = prompt("Type a number:", 1);
 sum += Number(num);
 counter++;
}
alert("The total of your numbers is " + sum);

To control the loop, the code declares a variable named counter and initializes it
to 1, which means the expression counter <= 3 is true, so the code enters the
block, does the prompt-and-sum thing, and then increments counter. This is
repeated until the third time through the loop when counter is incremented to 4,
at which point the expression counter <- 3 becomes false and the loop is done.

To make your loop code as readable as possible, always use a two- or four-space
indent for each statement in the while() block. This also applies to the for() and
do...while() loops that I talk about later in this chapter.

The while() statement isn’t the greatest loop choice when you know exactly how
many times you want to run through the loop. (For that, use the for() statement,
described in the next section.) The best use of the while() statement is when your
script has some naturally occurring condition that you can turn into a comparison
expression. A good example is when you’re prompting the user for input values.
You’ll often want to keep prompting the user until she clicks the Cancel button.
The easiest way to set that up is to include the prompt inside a while() loop, as
shown here:

var sum = 0;
var num = prompt("Type a number or click Cancel:", 1);
while (num != null) {
 sum += Number(num);
 num = prompt("Type a number or click Cancel:", 1);
}
alert("The total of your numbers is " + sum);

The first prompt() method displays a dialog box like the one shown in Figure 4-1
to get the initial value, and stores it in the num variable.

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 237

Then the while() statement checks the following expression:

while (num != null);

Two things can happen here:

 » If the user enters a number, this expression returns true and the loop
continues. In this case, the value of num is added to the sum variable, and the
user is prompted for the next number.

 » If the user clicks Cancel, the value returned by prompt() is null, so the
expression becomes false and the looping stops.

Using for() Loops
Although while() is the most straightforward of the JavaScript loops, the most
common type by far is the for() loop. This is slightly surprising when you con-
sider (as you will shortly) that the for() loop’s syntax is a bit more complex than
that of the while() loop. However, the for() loop excels at one thing: looping
when you know exactly how many times you want to repeat a group of statements.
This is extremely common in all types of programming, so it’s no wonder for()
is so often seen in scripts.

The structure of a for() loop looks like this:

for (var counter = start; counterExpression; counter++) {
 statements
}

FIGURE 4-1:
When prompting

the user
for multiple

values, set up
your while()

 expression
so that the

 prompting stops
when the user

clicks the Cancel
button.

238 BOOK 3 Coding the Front End, Part 2: JavaScript

There’s a lot going on here, so I take it one bit at a time:

 » counter: A numeric variable used as a loop counter. The loop counter is a
number that counts how many times the procedure has gone through the
loop. (Note that you only need to include var if this is the first time you’ve
used the variable in the script.)

 » start: The initial value of counter. This is usually 1, but you can use whatever
value makes sense for your script.

 » counterExpression: A comparison or logical expression that determines the
number of times through the loop. This expression usually compares the
current value of counter to some maximum value.

 » counter++: The increment operator applied to the counter variable. This can
be any expression that changes the value of counter, and this expression is
run after each turn through the loop.

 » statements: The statements you want JavaScript to execute each time
through the loop.

When JavaScript sees the for() statement, it changes into its for-loop outfit and
follows this seven-step process:

1. Set counter equal to start.

2. Evaluate the counterExpression in the for() statement.

3. If counterExpression is true, continue with Step 4; if counterExpression is
false, skip to Step 7.

4. Execute each of the statements in the block.

5. Increment (or whatever) counter.

6. Return to Step 2.

7. Exit the loop (that is, execute the next statement that occurs after the for()
block).

As an example, the following code shows how to use for() to rewrite the ineffi-
cient code shown earlier in this chapter:

var sum = 0;
var num;
for (var counter = 1; counter <= 3; counter++) {
 num = prompt("Type a number:", 1);
 sum += Number(num);
}
alert("The total of your numbers is " + sum);

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 239

This is the most efficient version yet because the declaring, initializing, and
incrementing of the counter variable all take place within the for() statement.

To keep the number of variables declared in a script to a minimum, always try to
use the same name in all your for() loop counters. The letters i through n tra-
ditionally are used for counters in programming. For greater clarity, you might
prefer full words such as count or counter.

Here’s a slightly more complex example:

var sum = 0;
var num, ordinal;
for (var counter = 1; counter < 4; counter++) {
 switch (counter) {
 case 1:
 ordinal = "first";
 break;
 case 2:
 ordinal = "second";
 break;
 case 3:
 ordinal = "third";
 }
 num = prompt("Enter the " + ordinal + " number:", 1);
 sum += Number(num);
}
alert("The average is " + sum / 3);

The purpose of this script is to ask the user for three numbers and then to display
the average of those values. The for() statement is set up to loop three times.
(Note that counter < 4 is the same as counter <= 3.) The first thing the loop
block does is use switch to determine the value of the ordinal variable: If counter
is 1, ordinal is set to "first", if counter is 2, ordinal becomes "second", and so
on. These values enable the script to customize the prompt() message with each
pass through the loop (see Figure 4-2). With each loop, the user enters a number
and that value is added to the sum variable. When the loop exits, the average is
displayed.

It’s also possible to use for() to count down. You do this by using the decrement
operator instead of the increment operator:

for (var counter = start; counterExpression; counter--) {
 statements
}

240 BOOK 3 Coding the Front End, Part 2: JavaScript

In this case, you must initialize the counter variable to the maximum value you
want to use for the loop counter, and use the counterExpression to compare the
value of counter to the minimum value you want to use to end the loop.

In the following example, I use a decrementing counter to ask the user to rank, in
reverse order, his top three CSS colors:

var ordinal, color;
for (var rank = 3; rank >= 1; rank--) {
 switch (rank) {
 case 1:
 ordinal = "first";
 break;
 case 2:
 ordinal = "second";
 break;
 case 3:
 ordinal = "third";
 }
 color = prompt("What is your " + ordinal + "-favorite

CSS color?", "");
 document.write(rank + ". " + color + "
");
}

The for() loop runs by decrementing the rank variable from 3 down to 1. Each
iteration of the loop prompts the user to type a favorite CSS color, and that color is
written to the page, with the current value of rank being used to create a reverse-
ordered list, as shown in Figure 4-3.

FIGURE 4-2:
This script uses

the current value
of the counter

variable to
customize the

prompt message.

FIGURE 4-3:
The

 decrementing
value of the rank

variable is used
to create a

 reverse-ordered
list.

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 241

There’s no reason why the for() loop counter has to be only incremented or dec-
remented. You’re actually free to use any expression to adjust the value of the loop
counter. For example, suppose you want the loop counter to run through only the
odd numbers 1, 3, 5, 7, and 9. Here’s a for() statement that will do that:

for (var counter = 1; counter <= 9; counter += 2)

The expression counter += 2 tells JavaScript to increment the counter variable
by 2 each time.

Using do. . .while() Loops
JavaScript also has a third and final type of loop that I’ve left until the last because
it isn’t one that you’ll use all that often. To understand when you might use it,
consider this code snippet:

var num = prompt("Type a number or click Cancel:", 1);
while (num != null) {
 sum += Number(num);
 num = prompt("Type a number or click Cancel:", 1);
}

The code needs the first prompt() statement so that the while() loop’s expres-
sion can be evaluated. The user may not feel like entering any numbers, and they
can avoid it by clicking Cancel in the first prompt box so that the loop will be
bypassed.

That seems reasonable enough, but what if your code requires that the user enter
at least one value? The following presents one way to change the code to ensure
that the loop is executed at least once:

var sum = 0;
var num = 0;
while (num !== null || sum === 0) {
 num = prompt("Type a number; when you're done, click

Cancel:", 1);
 sum += Number(num);
}
alert("The total of your numbers is " + sum);

The changes here are that the code initializes both sum and num as 0. This ensures
that the while() expression — num !== null || sum === 0 — returns true

242 BOOK 3 Coding the Front End, Part 2: JavaScript

the first time through the loop, so the loop will definitely execute at least once. If
the user clicks Cancel right away, sum will still be 0, so the while() expression —
num !== null || sum === 0 — still returns true and the loop repeats once again.

This works fine, but you can also turn to JavaScript’s third loop type, which
 specializes in just this kind of situation. It’s called a do...while() loop, and its
general syntax looks like this:

do {
 statements
}
while (expression);

Here, statements represents a block of statements to execute each time through
the loop, and expression is a comparison or logical expression that determines
how many times JavaScript runs through the loop.

This structure ensures that JavaScript executes the loop’s statement block at least
once. How? Take a closer look at how JavaScript processes a do...while() loop:

1. Execute each of the statements in the block.

2. Evaluate the expression in the while() statement.

3. If expression is true, return to Step 1; if expression is false, continue with
Step 4.

4. Exit the loop.

For example, the following shows you how to use do...while() to restructure the
prompt-and-sum code I show you earlier:

var sum = 0;
var num;
do {
 num = prompt("Type a number; when you're done, click

Cancel:", 1);
 sum += Number(num);
}
while (num !== null || sum === 0);
alert("The total of your numbers is " + sum);

This code is very similar to the while() code I show earlier in this section. All
that’s really changed is that the while() statement and its expression have been
moved after the statement block so that the loop must be executed once before the
expression is evaluated.

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 243

Controlling Loop Execution
Most loops run their natural course and then the procedure moves on. There might
be times, however, when you want to exit a loop prematurely or skip over some
statements and continue with the next pass through the loop. You can handle each
situation with, respectively, the break and continue statements.

Exiting a loop using the break statement
You use break when your loop comes across some value or condition that would
either prevent the rest of the statements from executing properly, or that satisfies
what the loop was trying to accomplish. The following code demonstrates break
with a simple example:

var sum = 0;
var num;
for (var counter = 1; counter <= 3; counter++) {
 num = prompt("Type a positive number:", 1);
 if (num < 0) {
 sum = 0;
 break;
 }
 sum += Number(num);
}
if (sum > 0) {
 alert("The average of your numbers is " + sum / 3);
}

This script sets up a for() loop to prompt the user for positive numbers. For the
purposes of this section, the key code is the if() test:

if (num < 0) {
 sum = 0;
 break;
}

If the user enters a negative number, the sum variable is reset to 0 (to prevent
the alert box from appearing later in the script). Also, a break statement tells
Java Script to bail out of the loop altogether.

Here’s a more complex example:

var numberToGuess = Math.ceil(Math.random() * 10);
var promptMessage = "Guess a number between 1 and 10:";

244 BOOK 3 Coding the Front End, Part 2: JavaScript

var totalGuesses = 1;
var guess;

do {
 guess = Number(prompt(promptMessage, ""));
 if (guess === null) {
 break;
 } else if (guess === numberToGuess) {
 alert("You guessed it in " + totalGuesses +
 (totalGuesses === 1 ? " try." : " tries."));
 break;
 } else if (guess < numberToGuess) {
 promptMessage = "Sorry, your guess was too low. Try

again:";
 } else {
 promptMessage = "Sorry, your guess was too high. Try

again:";
 }
 totalGuesses++;
}
while (true);

This script is a game in which a number between 1 and 10 is generated and the
user has to try and guess what it is. The first four lines set up some variables. The
head-scratcher here is the expression for the numberToGuess variable. This uses
a couple of methods of the Math object, which I discuss in Book 3, Chapter 8. For
now, suffice it to say that this expression generates a random integer between
(and including) 1 and 10.

Then a do...while() loop is set up with the following structure:

do {
 statements
}
while (true);

This tells JavaScript just to run the loop without bothering with a comparison
expression. As you’ll see, the loop itself will take care of exiting the loop by using
the break statement.

Next the user is prompted to enter a guess, which is stored in the guess variable.
The script then checks to see if guess equals null, which would mean the user
clicked Cancel. If so, then break is used to stop the game by exiting the loop:

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 245

guess = Number(prompt(promptMessage,""));
if (guess === null) {
 break;
}

Otherwise, a series of if() statements tests the guessed number against the
actual number. The first one checks to see if they’re the same. If so, a message is
displayed and then another break statement exits the loop because the game is
finished:

else if (guess === numberToGuess) {
 alert("You guessed it in " + totalGuesses +
 (totalGuesses === 1 ? " try." : " tries."));
 break;
}

Notice that the alert() statement contains a ternary operator expression:

totalGuesses === 1 ? " try." : " tries."

This illustrates an extremely common programming situation: You have to dis-
play a word to the user, but that word may be either singular or plural depending
on the value of some variable or expression. In this case, if totalGuesses equals 1,
you want to display the word try (as in 1 try); if totalGuesses is more than 1,
you want to display the word tries (as in 2 tries). This is what the conditional
expression does.

The other two tests check to see if the guess was lower or higher than the actual
number, and a message to that effect is displayed, as shown in Figure 4-4.

Bypassing loop statements using
the continue statement
The continue statement is similar to break, but instead of exiting a loop entirely,
continue tells JavaScript to bypass the rest of the statements in the loop block and
begin a new iteration of the loop.

FIGURE 4-4:
When the user

clicks Cancel
or guesses the

 correct number,
the break

 statement exits
the loop.

246 BOOK 3 Coding the Front End, Part 2: JavaScript

A good use for continue is when you want the user to enter one or more values no
matter what. If they click Cancel in the prompt box, you want the script to keep
on looping until the user enters the correct number of values. The following code
shows one way to do this:

var counter = 0;
var sum = 0;
var num;
while (counter < 3) {
 num = prompt("Type a number:", 1);
 if (num === null) {
 continue;
 }
 sum += Number(num);
 counter++;
}
alert("The average of your numbers is " + sum / 3);

Because you don’t know in advance how many times the code will have to run
through the loop, a while() loop is a better choice than a for() loop. You need
to count the number of values entered, however, so a variable named counter is
 initialized for that purpose. The script requires three numbers, so the while()
statement is set up to continue looping as long as counter is less than 3. The
prompt() result is stored in the num variable, which is then tested:

if (num === null) {
 continue;
}

If the user enters a number, the if() expression returns false and the rest of the
loop executes: sum is updated and counter is incremented.

However, if the user clicks Cancel, num equals null, so the if() expression returns
true. What you want here is to keep looping, but you don’t want the rest of the loop
statements to execute. That’s exactly what the continue statement accomplishes.

Avoiding Infinite Loops
Whenever you use a while(), for(), or do...while() loop, there’s always the
danger that the loop will never terminate. This is called an infinite loop, and it has
been the bugbear of programmers for as long as people have been programming.
Here are some notes to bear in mind to help you avoid infinite loops:

Co
nt

ro
lli

ng
 t

he
 F

lo
w

 o
f

Ja
va

Sc
ri

pt

CHAPTER 4 Controlling the Flow of JavaScript 247

 » The statements in the for() block should never change the value of the loop
counter variable. If they do, then your loop may either terminate prematurely
or it may end up in an infinite loop.

 » In while() and do...while() loops, make sure you have at least one
statement within the loop that changes the value of the comparison variable.
(That is, the variable you use in the loop’s comparison statement.) Otherwise,
the statement might always return true and the loop will never end.

 » In while() and do...while() loops, never rely on the user to enter a specific
value to end the loop. She might cancel the prompt box or do something else
that prevents the loop from terminating.

 » If you have an infinite loop and you’re not sure why, insert one or more
debugger and/or console.log() statements within the loop statement
block to display the current value of the counter or comparison variable.
(Wondering what the heck “debugger” and “console.log” might be? I cover
them in Book 3, Chapter 9.) This enables you to see what happens to the
variable with each pass through the loop.

CHAPTER 5 Harnessing the Power of Functions 249

Harnessing the Power
of Functions

To iterate is human, to recurse divine.

— L. PETER DEUTSCH

As I demonstrate throughout this book, JavaScript comes with a huge
 number of built-in features that perform specific tasks. For example,
something called the Math object has a built-in method for calculating the

square root of a number. Similarly, a feature called the String object has a ready-
made method for converting a string value to all lowercase letters.

There are, in fact, hundreds of these ready-to-roll features that perform tasks
that range from the indispensable to the obscure. But JavaScript can’t possibly do
everything that you’d like or need it to do. What happens if your web development
project requires a particular task or calculation that isn’t part of the JavaScript
language? Are you stuck? Not even close! The solution is to roll up your sleeves
and then roll your own code that accomplishes the task or runs the calculation.

This chapter shows you how to create such do-it-yourself code. In the pages that
follow, you explore the powerful and infinitely useful realm of custom functions,
where you craft reusable code that performs tasks that out-of-the-box JavaScript
can’t do.

Chapter 5

IN THIS CHAPTER

 » Getting to know JavaScript functions

 » Creating and using custom functions

 » Passing and returning function values

 » Understanding recursive functions

 » Introducing JavaScript’s built-in
functions

250 BOOK 3 Coding the Front End, Part 2: JavaScript

What Is a Function?
A function is a group of related JavaScript statements that are separate from the
rest of the script and that perform a designated task. (Technically, a function can
perform any number of chores, but as a general rule it’s best to have each function
focus on a specific task.) When your script needs to perform that task, you tell it
to run the function.

Functions are also useful for those times when you need to control exactly when
a particular task occurs (if ever). If you just enter some statements between your
web page’s <script> and </script> tags, the browser executes those statements
automatically when the page loads. However, the statements within a func-
tion aren’t executed by the browser automatically. Instead, the function doesn’t
 execute until either your code asks the function to run, or some event occurs —
such as the user clicking a button — and you’ve set up your page to run the
 function in response to that event.

The Structure of a Function
The basic structure of a function looks like this:

function functionName([arguments]) {
 JavaScript statements
}

Here’s a summary of the various parts of a function:

 » function: Identifies the block of code that follows it as a function.

 » functionName: A unique name for the function. The naming rules and
guidelines that I outline for variables in Book 3, Chapter 2 also apply to
function names.

 » arguments: One or more optional values that are passed to the function and
that act as variables within the function. Arguments (or parameters, as they’re
sometimes called) are typically one or more values that the function uses as
the raw materials for its tasks or calculations. You always enter arguments
between parentheses after the function name, and you separate multiple
arguments with commas. If you don’t use arguments, you must still include
the parentheses after the function name.

 » JavaScript statements: This is the code that performs the function’s tasks
or calculations.

H
ar

ne
ss

in
g

th
e

Po
w

er

of
 F

un
ct

io
ns

CHAPTER 5 Harnessing the Power of Functions 251

Notice how the JavaScript statements line in the example is indented slightly
from the left margin. This is a standard and highly recommended programming
practice because it makes your code easier to read. This example is indented four
spaces, which is enough to do the job, but isn’t excessive.

Note, too, the use of braces ({ and }). These are used to enclose the function’s
statements within a block, which tells you (and the browser) where the function’s
code begins and ends. There are only two rules for where these braces appear:

 » The opening brace must appear after the function’s parentheses and before
the first function statement.

 » The closing brace must appear after the last function statement.

There is no set-in-stone rule that specifies exactly where the braces appear. The
positions used in the previous function syntax are the traditional ones, but you’re
free to try other positions, if you want. For example:

function functionName([arguments])
{
 JavaScript statements
}

Where Do You Put a Function?
For most applications, it doesn’t matter where you put your functions, as long as
they reside within a <script> block. However, one of the most common uses of
functions is to handle events when they’re triggered. It’s possible that a particular
event might fire when the page is loading, and if that happens before the browser
has parsed the corresponding function, you could get strange results or an error.
To prevent that, it’s good practice to place the script containing all your functions
within the page’s header section (or within an external JavaScript file).

Note, as well, that you can add as many functions as you want within a single
<script> block, but there are two things to watch out for:

 » Each function must have a unique name. In fact, all the functions that exist in
or are referenced by a page must have unique names.

 » You can’t embed one function inside another function.

252 BOOK 3 Coding the Front End, Part 2: JavaScript

Calling a Function
After your function is defined, you’ll eventually need to tell the browser to execute
it, or call it. There are three main ways to do this:

 » When the browser parses the <script> tag.

 » After the page is loaded.

 » In response to an event, such as the user clicking a button.

The next three sections cover each of these scenarios.

Calling a function when the
<script> tag is parsed
The simplest way to call a function is to include in your script a statement consist-
ing of only the function name, followed by parentheses (assuming for the moment
that your function uses no arguments.) The following code provides an example.
(I’ve listed the entire page so you can see where the function and the statement
that calls it appear in the page code.)

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Calling a function when the <script> tag is

parsed</title>
 <script>
 function displayGreeting() {
 var currentHour = new Date().getHours();
 if (currentHour < 12) {
 console.log("Good morning!");
 } else {
 console.log("Good day!");
 }
 }
 displayGreeting();
 </script>
</head>
<body>
</body>
</html>

H
ar

ne
ss

in
g

th
e

Po
w

er

of
 F

un
ct

io
ns

CHAPTER 5 Harnessing the Power of Functions 253

The <script> tag includes a function named displayGreeting, which determines
the current hour of the day, and then writes a greeting to the console based on
whether it’s currently morning. The function is called by the displayGreeting()
statement that appears just after the function.

Calling a function after the page is loaded
If your function references a page element, then calling the function from within
the page’s head section won’t work because when the browser parses the script,
the rest of the page hasn’t loaded yet, so your element reference will fail.

To work around this problem, place another <script> tag at the end of the body
section, just before the closing </body> tag, as shown here:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Calling a function after the page is loaded</title>
 <script>
 function makeBackgroundRed() {
 document.body.style.backgroundColor = "red";
 console.log("The background is now red.");
 }
 </script>
</head>
<body>
 <!-- Other body elements go here -->

 <script>
 makeBackgroundRed();
 </script>
</body>
</html>

The makeBackgroundRed() function does two things: It uses document.body.
style.backgroundColor to change the background color of the body element to
red, and it uses console.log() to write a message to that effect on the console.

In the function, document.body is a reference to the body element, which doesn’t
“exist” until the page is fully loaded. That means if you try to call the function
with the initial script, you’ll get an error. To execute the function properly, a

254 BOOK 3 Coding the Front End, Part 2: JavaScript

second <script> tag appears at the bottom of the body element and that script
calls the function with the following statement:

makeBackgroundRed();

Since by the time the browser executes that statement the body element exists,
the function runs without an error.

Calling a function in response to an event
One of the most common ways that JavaScript functions are called is in response
to some event. This is such an important topic that I devote an entire chapter to
it later in the book (see Book 4, Chapter 2). For now, take a look at a relatively
straightforward application: executing the function when the user clicks a button.
The following code shows one way to do it.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Calling a function in response to an event</title>;
 <script>
 function makeBackgroundRed() {
 document.body.style.backgroundColor= "red";
 }

 function makeBackgroundWhite() {
 document.body.style.backgroundColor= "white";
 }
 </script>
</head>
<body>
 <button onclick="makeBackgroundRed()">
 Make Background Red
 </button>
 <button onclick="makeBackgroundWhite()">
 Make Background White
 </button>
</body>
</html>

H
ar

ne
ss

in
g

th
e

Po
w

er

of
 F

un
ct

io
ns

CHAPTER 5 Harnessing the Power of Functions 255

What I’ve done here is place two functions in the script: makeBackgroundRed()
changes the page background to red, as before, and makeBackgroundWhite()
changes the background color back to white.

The buttons are standard HTML button elements, each of which includes the
onclick attribute. This attribute defines a handler — that is the function to
 execute — for the event that occurs when the user clicks the button. For example,
consider the first button:

<button onclick="makeBackgroundRed()">

The onclick attribute here says, in effect, “When somebody clicks this button,
call the function named makeBackgroundRed().”

Passing Values to Functions
One of the main reasons to use functions is to gain control over when some chunk
of JavaScript code gets executed. The previous section, for example, discusses how
easy it is to use functions to set things up so that code doesn’t run until the user
clicks a button.

However, there’s another major reason to use functions: to avoid repeating code
unnecessarily. To see what I mean, consider the two functions from the previous
section:

function makeBackgroundRed() {
 document.body.style.backgroundColor= "red";
}
function makeBackgroundWhite() {
 document.body.style.backgroundColor= "white";
}

These functions perform the same task — changing the background color — and
the only difference between them is one changes the color to red and the other
changes it to white. Whenever you end up with two or more functions that do
essentially the same thing, then you know that your code is inefficient.

So how do you make the code more efficient? That’s where the arguments that I
mention earlier come into play. An argument is a value that is “sent” — or passed,
in programming terms — to the function. The argument acts just like a variable,
and it automatically stores whatever value is sent.

256 BOOK 3 Coding the Front End, Part 2: JavaScript

Passing a single value to a function
As an example, you can take the previous two functions, reduce them to a single
function, and set up the color value as an argument. Here’s a new function that
does just that:

function changeBackgroundColor(newColor) {
 document.body.style.backgroundColor = newColor;
}

The argument is named newColor and it’s added between the parentheses that
occur after the function name. JavaScript declares newColor as a variable auto-
matically, so there’s no need for a separate var statement. The function then uses
the newColor value to change the background color. So how do you pass a value to
the function? The following code presents a sample file that does this.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Passing a single value to a function</title>;
 <script>
 function changeBackgroundColor(newColor) {
 document.body.style.backgroundColor = newColor;
 }
 </script>
</head>
<body>
 <button onclick="changeBackgroundColor('red')">
 Make Background Red
 </button>
 <button onclick="changeBackgroundColor('white')">
 Make Background White
 </button>
</body>
</html>

The key here is the onclick attribute that appears in both <button> tags. For
example:

onclick="changeBackgroundColor('red')"

H
ar

ne
ss

in
g

th
e

Po
w

er

of
 F

un
ct

io
ns

CHAPTER 5 Harnessing the Power of Functions 257

The string 'red' is inserted into the parentheses after the function name, so that
value is passed to the function itself. The other button passes the value 'white',
and the function result changes accordingly.

In the two onclick attributes in the example code, notice that the values passed to
the function are enclosed in single quotation marks ('). This is necessary because
the onclick value as a whole is enclosed in double quotation marks (").

Passing multiple values to a function
For more complex functions, you might need to use multiple arguments so that
you can pass different kinds of values. If you use multiple arguments, separate
each one with a comma, like this:

function changeColors(newBackColor, newForeColor) {
 document.body.style.backgroundColor = newBackColor;
 document.body.style.color = newForeColor;
}

In this function, the document.body.style.color statement changes the fore-
ground color (that is, the color of the page text). The following code shows a
revised page where the buttons pass two values to the function.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Passing multiple values to a function</title>;
 <script>
 function changeColors(newBackColor, newForeColor) {
 document.body.style.backgroundColor = newBackColor;
 document.body.style.color = newForeColor;
 }
 </script>
</head>
<body>
 <h1>Passing Multiple Values to a Function</h1>
 <button onclick="changeColors('red', 'white')">
 Red Background, White Text
 </button>
 <button onclick="changeColors('white', 'red')">
 White Background, Red Text
 </button>
</body>
</html>

258 BOOK 3 Coding the Front End, Part 2: JavaScript

If you define a function to have multiple arguments, then you must always pass
values for each of those arguments to the function. If you don’t, then the “value”
undefined is passed, instead, which can cause problems.

If you use a variable to pass data to a function, only the current value of that vari-
able is sent, not the variable itself. Therefore, if you change the value of the argu-
ment within the function, the value of the original variable isn’t changed. Here’s
an example:

var passThis = 10;
function sendMe(acceptThis) {
 acceptThis = 5;
}
sendMe(passThis);
console.log(passThis);

The variable passThis starts off with a value of 10. The function sendMe() is then
defined to accept an attribute named acceptThis, and to then change the value of
that attribute to 5. sendMe() is then called and the value of the passThis variable
is passed to it. Then a console.log() statement displays the value of passThis. If
you run this code, the displayed value will be 10, the original value of passThis. In
other words, changing the value of acceptThis within the function had no effect
on the value of the passThis variable.

Returning a Value from a Function
So far I’ve outlined two major advantages of using functions:

 » You can use them to control when code is executed.

 » You can use them to consolidate repetitive code into a single routine.

The third major benefit that functions bring to the JavaScript table is that you can
use them to perform calculations and then return the result. As an example, I con-
struct a function that calculates the tip on a restaurant bill:

var preTipTotal = 100.00;
var tipPercentage = 0.15;
function calculateTip(preTip, tipPercent) {

H
ar

ne
ss

in
g

th
e

Po
w

er

of
 F

un
ct

io
ns

CHAPTER 5 Harnessing the Power of Functions 259

 var tipResult = preTip * tipPercent;
 return (tipResult);
}

var tipCost = calculateTip(preTipTotal, tipPercentage);
var totalBill = preTipTotal + tipCost;
console.log("Your total bill is $" + totalBill);

The function named calculateTip() takes two arguments: preTip is the total
of the bill before the tip, and tipPercent is the percentage used to calculate the
tip. The function then declares a variable named tipResult and uses it to store
the calculation — preTip multiplied by tipPercent. The key for this example
is the second line of the function:

return (tipResult);

The return statement is JavaScript’s way of sending a value back to the statement
that called the function. That statement comes after the function:

tipCost = calculateTip(preTipTotal, tipPercentage);

This statement first passes the value of preTipTotal (initialized as 100.00 earlier
in the script) and tipPercentage (initialized as 0.15 earlier) to the calculate
Tip() function. When that function returns its result, the entire expression
calculateTip(preTipTotal, tipPercentage) is replaced by that result, mean-
ing that it gets stored in the tipCost variable. Then preTipTotal and tipCost are
added together, the result is stored in totalBill, and a console.log statement
displays the final calculation.

Understanding Local versus
Global Variables

In the example I give in the previous section, notice that there are four vari-
ables declared outside the function (preTipTotal, tipPercentage, tipCost, and
totalBill) and one variable declared inside the function (tipPercent). That
might not seem like an important distinction, but there’s a big difference between
variables declared outside of functions and those declared inside of functions. This
section explains this crucial difference.

In programming, the scope of a variable defines where in the script a variable
can be used and where it can’t be used. To put it another way, a variable’s scope

260 BOOK 3 Coding the Front End, Part 2: JavaScript

determines which statements and functions can access and work with the vari-
able. There are two main reasons you need to be concerned with scope:

 » You might want to use the same variable name in multiple functions.
If these variables are otherwise unrelated, you’ll want to make sure that
there is no confusion about which variable you’re working with. In other
words, you’ll want to restrict the scope of each variable to the function in
which it is declared.

 » You might need to use the same variable in multiple functions. For
example, your function might use a variable to store the results of a calcula-
tion, and other functions might also need to use that result. In this case, you’ll
want to set up the scope of the variable so that it’s accessible to multiple
functions.

JavaScript lets you establish two types of scope for your variables:

 » Local (or function-level) scope

 » Global (or page-level) scope

The next two sections describe each type in detail.

Working with local scope
When a variable has local scope, it means the variable was declared inside a func-
tion and the only statements that can access the variable are the ones in that
same function. (That’s why local scope also is referred to as function-level scope.)
Statements outside the function and statements in other functions can’t access
the local variable.

To demonstrate this, consider the following code:

function A() {
 var myMessage;
 myMessage = "I'm in the scope!";
 console.log("Function A: " + myMessage);
}

function B() {
 console.log("Function B: " + myMessage);
}

H
ar

ne
ss

in
g

th
e

Po
w

er

of
 F

un
ct

io
ns

CHAPTER 5 Harnessing the Power of Functions 261

A();
B();

There are two functions here, named A() and B(). Function A() declares a variable
named myMessage, sets its value to a text string, and uses JavaScript’s console.
log() method to display the string in the console.

Function B() also uses console.log() to attempt to display the myMessage vari-
able. However, as you can see in Figure 5-1, JavaScript generates an error that says
myMessage is not defined. Why? Because the scope of the myMessage variable
extends only to function A(); function B() can’t “see” the myMessage variable,

so it has nothing to display. In fact, after function A() finishes executing, Java-
Script removes the myMessage variable from memory entirely, so that’s why the
 myMessage variable referred to in function B() is undefined.

The same result occurs if you attempt to use the myMessage variable outside of any
function, as in the following code:

function A() {
 var myMessage;
 myMessage = "I'm in the scope!";
 console.log("Function A: " + myMessage);
}
A();
// The following statement generates an error:
console.log(myMessage);

Working with global scope
What if you want to use the same variable in multiple functions or even in mul-
tiple script blocks within the same page? In that case, you need to use global scope,
which makes a variable accessible to any statement or function on a page. (That’s

FIGURE 5-1:
Attempting to

display the
myMessage
 variable in

function B()
results in an

error.

262 BOOK 3 Coding the Front End, Part 2: JavaScript

why global scope is also called page-level scope.) To set up a variable with global
scope, declare it outside any function. The following code gives this a whirl:

var myMessage = "I've got global scope!";

function C() {
 console.log("Function C: " + myMessage);
}
C();
console.log("Outside the function: " + myMessage);

The script begins by declaring the myMessage variable and setting it equal to a
string literal. Then a function named C() is created and it displays a console
 message that attempts to display the value of myMessage. After the function is
called, another console.log() statement attempts to display the myMessage
value outside of the function. Figure 5-2 shows the results. As you can see, both
console.log() statements display the value of myMessage without a problem.

Using Recursive Functions
One of the stranger things you can do with a function is have it execute itself. That
is, you place a statement within the function that calls the function. This is called
recursion, and such a function is called a recursive function.

Before trying out a practical example, I begin with a simple script that demon-
strates the basic procedure:

var counter = 0;
addOne();

function addOne() {
 counter++;
 if (confirm("counter is now " + counter + ". Add another

one?")) {

FIGURE 5-2:
When you declare

a global variable,
you can access its
value both inside
and outside of a

function.

H
ar

ne
ss

in
g

th
e

Po
w

er

of
 F

un
ct

io
ns

CHAPTER 5 Harnessing the Power of Functions 263

 addOne();
 }
}

console.log("Counter ended up at " + counter);

The script begins by declaring a variable named counter and initializing it to 0.
Then a function named addOne() is called. This function increments the value
of counter. It then displays the current value of counter and asks if you want
to add another. If you click OK, the addOne() function is called again, but this
time it’s called from within addOne() itself! This just means that the whole thing
repeats itself until you eventually click Cancel in the dialog box. After the func-
tion is exited for good, a console.log() statement shows the final counter total.

What possible use is recursion in the real world? That’s a good question. Consider
a common business problem: calculating a profit-sharing plan contribution as a
percentage of a company’s net profits. This isn’t a simple multiplication prob-
lem, because the net profit is determined, in part, by the profit-sharing figure.
For example, suppose that a company has sales of $1,000,000 and expenses of
$900,000, which leaves a gross profit of $100,000. The company also sets aside
10 percent of net profits for profit sharing. The net profit is calculated with the
following formula:

Net Profit = Gross Profit - Profit Sharing Contribution;

That looks straightforward enough, but it’s really not because the Profit
Sharing Contribution value is derived with the following formula:

Profit Sharing Contribution = Net Profit * 10%;

In other words, the Net Profit value appears on both sides of the equation, which
complicates things considerably.

One way to solve the Net Profit formula is to guess at an answer and see how
close you come. For example, because profit sharing should be 10 percent of net
profits, a good first guess might be 10 percent of gross profits, or $10,000. If you
plug this number into the Net Profit formula, you get a value of $90,000. This
isn’t right, however, because you’d end up with a profit sharing value — 10 per-
cent of $90,000 — of $9,000. Therefore, the original profit-sharing guess is off
by $1,000.

So you can try again. This time, use $9,000 as the profit-sharing number. Plug-
ging this new value into the Net Profit formula returns a value of $91,000. This
number translates into a profit-sharing contribution of $9,100. This time you’re
off by only $100, so you’re getting closer.

264 BOOK 3 Coding the Front End, Part 2: JavaScript

If you continue this process, your profit-sharing guesses will get closer to the
calculated value (this process is called convergence). When the guesses are close
enough (for example, within a dollar), you can stop and pat yourself on the back
for finding the solution.

This process of calculating a formula and then continually recalculating it using
different values is what recursion is all about, so let’s see how you’d go about
writing a script to do this for you. Take a look at the following code.

var grossProfit = 100000;
var netProfit;
var profitSharingPercent = 0.1;

// Here's the initial guess
var profitSharing = grossProfit * profitSharingPercent;

calculateProfitSharing (profitSharing);

function calculateProfitSharing(guess) {

 // First, calculate the new net profit
 netProfit = grossProfit - guess;

 // Now use that to guess the profit sharing value again
 profitSharing = Math.ceil(netProfit * profitSharingPercent);

 // Do we have a solution?
 if ((netProfit + profitSharing) != grossProfit) {
 // If not, plug it in again
 calculateProfitSharing (profitSharing);
 }
}

console.log("Gross Profit:\t" + grossProfit + "\nNet Profit:

\t" + netProfit + "\nProfit Sharing:\t" + profitSharing);

The grossProfit variable is initialized at 100000, the netProfit variable is
declared, the profitSharingPercent variable is set to 0.1 (10 percent), and the
profitSharing variable is set to the initial guess of 10 percent of gross profits.
Then the calculateProfitSharing() function is called, and the profitSharing
guess is passed as the initial value of the guess argument.

H
ar

ne
ss

in
g

th
e

Po
w

er

of
 F

un
ct

io
ns

CHAPTER 5 Harnessing the Power of Functions 265

AVOIDING INFINITE RECURSION
If you’re trying to call a function recursively, you might see error messages such as
Stack overflow or Too much recursion. These error messages indicate that you
have no “brakes” on your recursive function so, if not for the errors, it would call itself
forever. This is called infinite recursion, and the actual maximum number of recursive
calls depends on the browser and operating system, but the range is between about 75
and about 1,000.

In any case, it’s important to build in some kind of test that ensures the function will
stop calling itself after a certain number of calls:

• The addOne() function in the previous section avoided infinite recursion by asking
the user if she wanted to continue or stop.

• The calculateProfitSharing() function in the previous section avoided infinite
recursion by testing the sum of netProfit and profitSharing to see if this sum
was equal to grossProfit.

If you don’t have a convenient or obvious method for stopping the recursion, then you
can set up a counter that tracks the number of function calls. When that number hits a
predetermined maximum, the script should bail out of the recursion process. The fol-
lowing code presents such a script:

var currentCall = 1;
var maximumCalls = 3;

recursionTest();

function recursionTest() {
 if (currentCall <= maximumCalls) {
 console.log(currentCall);
 currentCall++;
 recursionTest();
 }
}

The currentCall variable is the counter, and the maximumCalls variable specifies the
maximum number of times the recursive function can be called. In the function, the fol-
lowing statement compares the value of currentCall and maximumCalls:

if (currentCall <= maximumCalls);

(continued)

266 BOOK 3 Coding the Front End, Part 2: JavaScript

The function first calculates the netProfit and then uses that value to calcu-
late the new profitSharing number. Remember your goal here is to end up with
the sum of netProfit and profitSharing being equal to grossProfit. The if
statement tests that, and if the sum is not equal to grossProfit, the calculate
ProfitSharing() function is called again (here’s the recursion), and this time the
new profitSharing value is passed. When the correct values are finally found, the
function exits and a console message displays the results, as shown in Figure 5-3.

Note that all the variables in previous example are declared as globals. That’s
because if you declared them within the calculateProfitSharing() function,
they would get wiped out and reset with each call, which is not what you want
when doing recursion.

FIGURE 5-3:
Using recursion

to calculate a
profit sharing

value.

If currentCall is less than or equal to maximumCalls, then all is well and the script
can continue. In this case, a console message displays the value of currentCall,
that value is incremented, and the recursionTest() function is called again. When
currentCall becomes greater than maximumCalls, the function exits and the
recursion is done.

(continued)

CHAPTER 6 Working with Objects 267

Working with Objects
The problem with object-oriented languages is they’ve got all this implicit
environment that they carry around with them. You wanted a banana but
what you got was a gorilla holding the banana and the entire jungle.

— JOE ARMSTRONG

JavaScript derives most of its power, flexibility, and utility from its exten-
sive collection of methods for reading, changing, adding, and deleting web
page doodads and bric-a-brac. It could be HTML elements, CSS properties,

form controls, or internal programming resources such as strings and numbers.
Whatever it is, JavaScript has an amazing and seemingly endless collection of
powerful tools — called objects — that enable you to monitor and control almost
every aspect of the web page. This chapter represents a major step forward in your
JavaScript education as you explore the wide and fascinating world of objects. You
discover what objects are and how to use them in your code. You also get your
object feet wet by taking an up close and personal look at one of the most impor-
tant webpage objects.

What Is an Object?
Only the simplest JavaScript programs will do nothing but assign values to vari-
ables and calculate expressions. To go beyond these basic script beginnings — that
is, to write truly useful scripts — you have to do what JavaScript was designed

Chapter 6

IN THIS CHAPTER

 » Understanding objects

 » Messing with object properties

 » Running object methods

 » Giving the Windows object a whirl

 » Interacting with your site visitors

268 BOOK 3 Coding the Front End, Part 2: JavaScript

to do from the start: Manipulate the web page that it’s displaying. That’s what
JavaScript is all about, and that manipulation can come in many different forms:

 » Add text and HTML tags to an element.

 » Modify a CSS property of a class or other selector.

 » Store some data in the browser’s internal storage.

 » Read JSON data returned by the server.

 » Validate a form’s data before submitting it.

The bold items in this list are examples of the “things” that you can work with,
and they’re special for no other reason than they’re programmable. In JavaScript
parlance, these “programmable things” are called objects.

You can manipulate objects in JavaScript in any of the following three ways:

 » You can make changes to the object’s properties.

 » You can make the object perform a task by activating a method associated
with the object.

 » You can define a procedure that runs whenever a particular event happens to
the object.

To help you understand objects and their properties, methods, and events, I put
things in real-world terms. Specifically, consider your computer as though it were
an object:

 » If you wanted to describe your computer as a whole, you’d mention things like
the name of the manufacturer, the price, and the amount of RAM. Each of
these items is a property of the computer.

 » You also can use your computer to perform tasks such as writing letters,
crunching numbers, and coding web pages. These are the methods associated
with your computer.

 » There are also a number of things that happen to the computer that cause it
to respond in predefined ways. For example, when the On button is pressed,
the computer runs through its Power On Self-Test, initializes its components,
and so on. The actions to which the computer responds automatically are its
events.

The sum total of all these properties, methods, and events gives you an overall
description of your computer.

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 269

But your computer is also a collection of objects, each with its own properties,
methods, and events. The hard drive, for example, has various properties, includ-
ing its speed and data transfer rate. The hard drive’s methods would be actions
such as storing and retrieving data. A hard drive event might be a scheduled
maintenance task, such as defragmenting the drive’s data or checking the drive
for errors.

In the end, you have a complete description of the computer: what it looks like
(its properties), how you interact with it (its methods), and to what actions it
responds (its events).

The JavaScript Object Hierarchy
Sticking with the computer metaphor for just a moment longer, when you think
about how the computer’s hardware is put together, you see there is a kind of
hierarchy to the organization. The computer itself is at the top, and then below
that are major components such as the system unit and the monitor. Drilling
down, you see that these also have their own subcomponents. For example, the
system unit has the motherboard, the hard drive, and the power supply, to name
just a few. Taking things down just one more level, the motherboard (for example)
also holds smaller components such as the microprocessor and the memory chips.

JavaScript’s objects are also organized in a hierarchical way. The top-level rep-
resents the main JavaScript objects, including the Array object (which I cover in
Book 3, Chapter 7), and the Date, Math, Number, and String objects (which I talk
about in Book 3, Chapter 8). These are shown in Figure 6-1, which represents only
a partial view of the JavaScript object hierarchy.

FIGURE 6-1:
A partial look at

the JavaScript
object hierarchy.

270 BOOK 3 Coding the Front End, Part 2: JavaScript

Also in the first level of Figure 6-1 is the window object, which represents the
browser window. Notice that the window object has four “subobjects”:

 » document: Refers to whatever document is currently loaded in the browser
window. Because you use this object to control such fundamental page items
as links, images, and forms, this is probably the object you’ll use most often in
your JavaScript career.

 » frame: Represents a frame (if any) that’s used to display multiple pages in the
browser window. For example, you can use this object to display a different
page inside a particular frame.

 » history: Represents an item in the list of pages that the user has visited in
the current browser session. One common use for this object is to send the
user back to the page she was on before coming to the current page.

 » location: Represents the address of the page that’s displayed in the browser.
You can use this object to determine the current address, send the user to a
different address, refresh the browser display, and more.

The document object has its own objects, which are displayed in the third level in
Figure 6-1. There are four in all:

 » anchor: Represents an anchor in the document, created using the <a id>
tag. For example, you can use this object to check if a document contains an
anchor that uses a particular name.

 » form: Represents a form in the document, created with the <form> tag. You
can use this object to work with all the various form controls, as well as to
submit a form.

 » image: Represents an image in the document, created using the tag.
You can use this object to change the image that’s displayed within a particu-
lar tag.

 » link: Represents a link in the document, created using the <a href> tag. You
can gather information about a link (such as its address) and you can handle
events such as the user clicking a link.

The form object has a number of its own objects, and these are displayed as the
fourth level in Figure 6-1. These objects represent all the fields you can insert
within a form, including buttons, text boxes, text areas, password boxes, check-
boxes, radio buttons, and selection lists. JavaScript can access the values in form
fields, insert new values in form fields, and even submit the form for the user.

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 271

Manipulating Object Properties
All these JavaScript objects have at least one property, and some of them have a
couple of dozen or more. What you do with these properties depends on the object,
but you generally use them for the following tasks:

 » Gathering information about an object’s current settings: With the text
object, for example, you can use the value property to get whatever string is
currently in the text box.

 » Changing an object’s current settings: For example, you can use the window
object’s location property to send the web browser to a different URL.

 » Changing an object’s appearance: With the document object, for example,
you can use the backgroundColor property to change the background color
of the page.

Referencing a property
Whatever the task, you refer to a property by using the syntax in the following
generic expression:

object.property

 » object: The object that has the property.

 » property: The name of the property you want to work with.

The dot (.) in between is called the property access operator.

For example, consider the following expression:

window.location

This refers to the window object’s location property, which holds the address of
the document currently displayed in the browser window. (In conversation, you’d
pronounce this expression as “window dot location.”) The following code shows
a simple one-line script that displays this property in the console, as shown in
Figure 6-2.

console.log(window.location);

Because the property always contains a value, you’re free to use property expres-
sions in just about any type of JavaScript statement and as an operand in a

272 BOOK 3 Coding the Front End, Part 2: JavaScript

JavaScript expression. For example, the following statement assigns the current
value of the window.location property to a variable named currentUrl:

var currentUrl = window.location;

Similarly, the following statement includes window.location as part of a string
expression:

var message = "The current address is " + window.location + ".";

Some objects are properties
You might be wondering if the window object’s location property is related to
the location object that I discuss earlier. Yep, it is. Good eye! In fact, they’re the
same thing! This is one of the most confusing aspects of the relationship between
objects and properties, but it’s also one of the most important, so I’ll dive into this
a bit deeper to make sure you understand what’s going on.

The basic idea is that in the JavaScript object hierarchy shown in Figure 6-1,
any object that is subordinate to another object is automatically a property of
that other object. So, for example, the location object is subordinate to the
window object; therefore, it’s a property of the window object. This means you can
reference the location object by using the object.property syntax.

Because location is an object, it also has its own properties. For example, it has
a hostname property that references just the host name part of the address (for
example, mcfedries.com). To work with this property, you extend the expression
syntax accordingly:

window.location.hostname

When you’re dealing with the four second-level objects — document, frame,
history, and location — it’s understood that these are properties of the window
object. Therefore, you don’t have to include window at the front of the property
expression. For example, the following two statements are equivalent:

FIGURE 6-2:
This script

 displays the
window.
location

 property in a
 console

message.

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 273

window.location.hostname
location.hostname

Changing the value of a property
Some properties are “read-only,” which means your code can only read the cur-
rent value and can’t change it. However, many properties are “read/write,” which
means you can also change their values. To change the value of a property, use the
following generic syntax:

object.property = value

 » object: The object that has the property

 » property: The name of the property you want to change

 » value: A literal value (such as a string or number) or an expression that
returns the value to which you want to set the property

Here’s an example:

var newAddress = prompt("Enter the address you want to surf
to:");

window.location = newAddress;

This script prompts the user for a web page address and stores the result in the
newAddress variable. This value is then used to change the window.location
property, which in this case tells the browser to open the specified address.

Working with Object Methods
Each one of the JavaScript objects I mention earlier has at least one or two methods
that you can wield to make the object do something. These actions generally fall
into the following categories:

 » Simulate a user’s action. For example, the form object’s submit() method
submits a form to the server just as though the user clicked the form’s submit
button.

 » Perform a calculation. For example, the Math object’s sqrt() method
calculates the square root of a number.

274 BOOK 3 Coding the Front End, Part 2: JavaScript

 » Manipulate an object. For example, the String object’s toLowercase()
method changes all of a string’s letters to lowercase.

To run a method, begin with the simplest case, which is a method that takes no
arguments:

object.method()

 » object: The object that has the method you want to work with

 » method: The name of the method you want to execute

For example, consider the following statement:

history.back();

This runs the history object’s back() method, which tells the browser to go back
to the previously visited page. The following code shows this method at work:

var goBack = confirm("Do you want to go back?");
if (goBack === true) {
 history.back();
}

The user is first asked if she wants to go back. If she clicks OK, the Boolean value
true is stored in the goBack variable, the comparison expression goBack ===
true becomes true, so the history.back() method runs.

I mention in Book 3, Chapter 5 that it’s possible to define a function so that it
accepts one or more arguments, and that these arguments are then used as input
values for whatever calculations or manipulations the function performs. Meth-
ods are similar in that they can take one or more arguments and use those values
as raw data.

If a method requires arguments, you use the following generic syntax:

object.method (argument1, argument2, ...)

For example, consider the confirm() method, used in the following statement,
which takes a single argument — a string that specifies the text to display to the
user:

confirm("Do you want to go back?")

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 275

Finally, as with properties, if the method returns a value, you can assign that
value to a variable (as I did with the confirm() method in the earlier example) or
you can incorporate the method into an expression.

Playing Around with the window Object
It’s time you get practical with all this object stuff by tackling some actual objects.
This section gets you started by examining one of the top-level objects in the
hierarchy of the JavaScript object model: the window object. This object refers
to the browser window viewport, which is the content area where the web page
appears (not the full window of the browser application). This makes the window
object the topmost object in the web page object hierarchy, so you’ll be using the
window object a great deal as you progress in web development.

Referencing the window object
When you need to reference the window object, the fact that it’s the topmost item
in the web page hierarchy gives you far greater flexibility than with the other
objects on the lower levels.

For starters, you can combine the window keyword with the standard notation for
properties and methods:

window.propertyName
window.methodName()

However, the window object is the default object in JavaScript. This means that if
JavaScript comes across a property or method that doesn’t have a specified object,
it automatically assumes the property or method is part of the window object.
Therefore, you can almost always get away with not using the window keyword.
In other words, the previous two statements are equivalent to the following two:

propertyName
methodName()

Some window object properties
you should know
The window object comes with a few dozen properties, most of which are too
obscure or arcane to worry about. However, several window object properties are
essential to all web developers, and those are listed in Table 6-1.

276 BOOK 3 Coding the Front End, Part 2: JavaScript

Rather than providing you with a similar table for the window object’s methods,
I use the rest of the chapter to discuss a few useful methods in detail.

Working with JavaScript timeouts
and intervals
In the scripts I’ve presented so far in this book, the code has executed in one of
three ways:

 » Automatically when the page loads

 » When your script calls a function

TABLE 6-1	 Useful Properties of the window Object
Property What It Does

console Returns a reference to the console object, which you use to log text to the console
with console.log().

document Returns a reference to the document object (that is, the web page) contained in
the window.

frames Returns a reference to the frames (if any) that are used to display multiple pages in the
browser window.

history Returns a reference to the list of pages that the user has visited in the current browser
session. Your code can navigate these pages — for example, by calling the back()
method to go back one page — but your code can’t access the URLs of these pages.

innerHeight Returns the height, in pixels, of the browser window viewport.

innerWidth Returns the width, in pixels, of the browser window viewport.

localStorage Returns a reference to the local Storage object, which you can use to store and
retrieve data in the browser indefinitely.

location Returns a reference to the location object, which contains info about the current
web page URL.

navigator Returns a reference to the navigator object, which provides data on the browser
application the visitor is using.

scrollX Returns the distance, in pixels, that the window’s document has been scrolled
horizontally.

scrollY Returns the distance, in pixels, that the window’s document has been scrolled vertically.

sessionStorage Returns a reference to the session Storage object, which you can use to store and
retrieve data in the browser temporarily (that is, the data gets deleted automatically
when the user shuts down the current browser session).

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 277

 » In response to some event, such as the user clicking a button

JavaScript also offers a fourth execution method that’s based on time. There are
two possibilities:

 » Have some code run once after a specified number of milliseconds. This is
called a timeout.

 » Have some code run after a specified number of milliseconds, and then
repeat each time that number of milliseconds expires. This is called an
interval.

The next couple of sections show you how to set up both procedures.

Using a timeout to perform a future action once
To set up a JavaScript timeout, use the window object’s setTimeout() method:

setTimeout(function, delay, arg1, arg2, ...)

 » function: The name of a function that you want JavaScript to run when the
timeout expires. Instead of a function, you can also use a JavaScript state-
ment, surrounded by quotation marks.

 » delay: The number of milliseconds that JavaScript waits before executing
function.

 » arg1, arg2, ...: Optional arguments to pass to function.

Note that setTimeout() returns a value that uniquely identifies the timeout. You
can store this value just in case you want to cancel the timeout (as described later
in this section).

Here’s some code that shows how setTimeout() works:

// Create a message
var str = "Hello World!";

// Set the timeout
var timeoutId = setTimeout(logIt, 2000, str);

// Run this function when the timeout occurs
function logIt(msg) {

278 BOOK 3 Coding the Front End, Part 2: JavaScript

 // Display the message
 console.log(msg);
}

The script begins by creating a message string and storing it in the str variable.
Then the setTimeout() method runs:

setTimeout(logIt, 2000, str);

This tells JavaScript to run the function named logIt() after two seconds (2,000
milliseconds) have elapsed, and to pass the str variable to that function. The
logIt() function takes the msg argument and displays it in the console.

If you’ve set up a timeout and then decide that you don’t want the code to
execute after all for some reason, you can cancel the timeout by running the
clearTimeout() method:

clearTimeout(id);

 » id: The name of the variable that was used to store the setTimeout()
method’s return value

For example, suppose you set a timeout with the following statement:

var timeoutId = setTimeout(logIt, 2000, str);

Then you’d cancel the timeout using the following statement:

clearTimeout(timeoutId);

Using an interval to perform a future
action repeatedly
Running code once after a specified number of seconds is only an occasionally useful
procedure. A much more practical skill is being able to repeat code at a specified inter-
val. This enables you to set up countdowns, timers, animations, image slide shows,
and more. To set up an interval, use the window object’s setInterval() method:

setInterval(function, delay, arg1, arg2, ...)

 » function: The name of a function that you want JavaScript to run at the end
of each interval. Instead of a function, you can also use a JavaScript statement,
surrounded by quotation marks.

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 279

 » delay: The number of milliseconds in each interval, after which JavaScript
executes function

 » arg1, arg2, ...: Optional arguments to pass to function

As with setTimeout(), the setInterval() method returns a value that
uniquely identifies the interval. You use that value to cancel the interval with the
clearInterval() method:

clearInterval(id);

 » id: The name of the variable that was used to store the setInterval()
method’s return value

For example, suppose you set an interval with the following statement:

var intervalId = setInterval(countdown, 5000);

Then you’d cancel the interval using the following statement:

clearInterval(intervalId);

Note that although the clearTimeout() method is optional with setTimeout(),
you should always use clearInterval() with setInterval(). Otherwise, the
interval will just keep executing.

The following code demonstrates both setInterval() and clearInterval().

var counter = 10;

// Set the interval
var intervalId = setInterval(countdown, 1000);

// Run this function at the end of each interval
function countdown() {

 // Display the countdown and then decrement the counter
 console.log(counter--);

 // Cancel the interval when we hit 0
 if (counter < 0) {
 clearInterval(intervalId);
 console.log("All done!");
 }
}

280 BOOK 3 Coding the Front End, Part 2: JavaScript

The purpose of this script is to display a countdown from 10 to 0 in the console. The
script begins by declaring a variable named counter and initializing it to 10.
Then the setInterval() method sets up a function named countdown() to run at
intervals of one second (1,000 milliseconds). The countdown() function displays
the current value of counter in the console and then decrements counter. Then
an if() test checks the value of counter. If it’s negative, it means that counter
was just 0, so it’s done. The clearInterval() method cancels the interval, and
then a final console message is logged.

Interacting with the user
Many of your scripts will do all of their work “behind the scenes,” and your page
visitors will probably never even know what programming wonders are happen-
ing beneath their noses. That’s a good thing because a well-crafted script should
neither be seen nor heard.

However, that’s not to say that all your scripts must remain mute servants
who blend into the background. There are plenty of good reasons to interact with
the user:

 » To display a message to the user: This message might include navigation
instructions, help information, or warnings about improperly entered data.

 » To ask the user a simple yes/no question: Such a question could be used to
confirm a pending action, ask permission to perform a task, or cancel a form
submission.

 » To get data from the user: This data could be used to populate form fields,
personalize the page, or gather information about the user.

For all these purposes and many more, JavaScript has three tools you can use: the
alert(), confirm(), and prompt() methods. I discuss each one in the sections
that follow.

Displaying messages using the alert() method
When you need to display a simple text message to the user, the alert() method
is your best choice:

alert(string);

 » string: A string literal or string expression containing the message you want
to display

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 281

The string argument must be plain text; you can’t format the text using HTML
tags. The only formatting control you have is to use the \n escape character to
start a new line, and the \t escape character to insert a tab character. The fol-
lowing code demonstrates the use of both characters, and Figure 6-3 shows the
result.

// Build the message
var msg = "Some location properties:\n";
msg += "Protocol:\t" + location.protocol + "\n";
msg += "Host:\t" + location.hostname + "\n";
msg += "Path:\t" + location.pathname + "\n";
msg += "Search:\t" + location.search + "\n";

// Display the message
alert(msg);

Asking questions using the confirm() method
When you need to ask the user a yes/no question or have the user accept or reject
an action, use the confirm() method:

confirm(string);

 » string: A string literal or string expression containing the question or action
you need the user to confirm

The string argument must be plain text, so don’t use HTML tags. However, as
with alert(), you can use the \n and \t escape characters to format the string.

The confirm() method displays a dialog box with OK and Cancel buttons:

 » If the user clicks OK, confirm() returns the value true.

 » If the user clicks Cancel, confirm() returns false.

FIGURE 6-3:
An alert box

 formatted
with the \n

and \t escape
 characters.

282 BOOK 3 Coding the Front End, Part 2: JavaScript

If you need the confirm() result later in your script, include it as part of a variable
assignment statement to save the result:

var goOrWhoa = confirm("Do you want to proceed?");

Alternatively, if you only need to use the confirm() result immediately after it’s
displayed, include it in a comparison or logical expression. The following code
provides a simple example, and Figure 6-4 shows the dialog box that appears.

if (confirm("Are you sure about this?") === true) {
 console.log("You clicked OK.");
} else {
 console.log("You clicked Cancel.");
}

Actually, since confirm() returns true or false, you don’t have to set up a full
comparison expression to test if the result equals one of those values. Instead, just
use confirm() by itself. For example, this if() test returns true if confirm()
returns true:

if (confirm("Are you sure about this?"))

Similarly, the following if() test returns true if confirm() returns false:

if (!confirm("Are you sure about this?"))

Getting input using the prompt() method
When you need to get data from the user, run the prompt() method:

prompt(string, default);

 » string: A string literal or string expression that instructs the user what to
enter into the prompt box

FIGURE 6-4:
Use the confirm

method to ask
the user for yes/

no input.

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 283

 » default: An optional string literal or string expression that represents the
initial value that appears in the prompt box

Both the string and default arguments must be plain text, so don’t use HTML
tags. For the string argument, you can include the \n and \t escape characters.

If you don’t include the default argument, the browser leaves the text box blank.
If your code requires a non-blank return value, then you should include a default
value.

The prompt() method always returns a value:

 » If the user clicks OK, prompt() returns the value entered into the prompt
text box.

 » If the user clicks Cancel, prompt() returns null.

As with confirm(), you can either store the prompt() method’s return value in a
variable or use it in an expression. In most cases, you’ll want to set up your script
to check the return value and make sure that it isn’t null, as shown in the fol-
lowing code:

var bgColor = prompt("Type a color to use for the background:
\nSome examples: azure, linen, gainsboro");

if (bgColor !== null) {;
 document.body.style.backgroundColor = bgColor;
} else {
 document.body.style.backgroundColor = "white";
}

Prompt boxes are fine if you just need a single bit of data from the user. If you
need multiple items from the user, don’t bother using multiple prompt boxes.
Instead, set up a form and use JavaScript to read and manipulate the form data.
My coverage of forms appears in Book 6, Chapter 2.

Don’t overdo it
There are few things in this world as annoying as an unnecessary dialog box, and
a page that includes a number of such annoyances will likely cause much dis-
gruntlement. So when designing your scripts, bear in mind the following points
concerning the alert(), confirm(), and prompt() methods:

 » Don’t set up an alert box or other dialog box to display automatically when
your page loads. If people realize that the dialog box is going to show up every

284 BOOK 3 Coding the Front End, Part 2: JavaScript

time they load your page, there’s a good chance they won’t load the
page again.

 » Similarly, don’t set up a message to display when the user leaves your site.
When they’re leaving, most people just want to leave and be done with it.

 » If you must display a message automatically when a page loads or unloads,
use the browser’s local storage to record that the user has seen it once. Then
check for that stored value as part of your script: If the value tells you that the
user has already seen the message, don’t display it again. I talk about local
storage in Book 8, Chapter 1.

 » Don’t use alert boxes to display welcome messages, "This site works
best with..." recommendations, or other unnecessary notes to the user.
If you have something to say, put it on your page.

 » Make your dialog box text as short and as clear as possible. Assume every
user is a busy person with a quick mouse trigger finger. If what you make
users read is too long or too convoluted, they’ll head for the next site.

Programming the document Object
One of JavaScript’s most fundamental features is the capability it offers you as a
web developer to read and change the elements of a web page, even after the page
is loaded. I show you how this works in detail in Book 4, Chapter 1, but that mate-
rial uses jQuery to manipulate the web page elements. jQuery is a fantastic tool,
but you should also know how to program page stuff using vanilla JavaScript. To
that end, this section presents you with a quick tour of some extremely useful and
powerful JavaScript techniques for dealing with the document object.

Specifying an element
Elements represent the tags in a document, so you’ll be using them constantly in
your code. This section shows you several methods for referencing an element.

Specifying an element by id
If it’s a specific element you want to work with in your script, you can reference
the element directly by assigning it an “id” using the id attribute:

<div id="my-div">

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 285

With that done, you can then refer to the element in your code by using the
document object’s getElementById() method:

document.getElementById(id)

 » id: A string representing the id attribute of the element you want to work
with

For example, the following statement returns a reference to the previous <div>
tag (the one that has id="my-div"):

document.getElementById("my-div")

When you’re coding the document object, don’t put your <script> tag in the web
page’s head section (that is, between the <head> and </head> tags). If you place
your code there, the web browser will run the code before it has had a chance to
create the document object, which means your code with fail, big-time. Instead,
place your <script> tag at the bottom of the web page, just before the </body> tag.

Specifying elements by tag name
Besides working with individual elements, it’s also possible to work with collec-
tions of elements. One such collection is the set of all elements in a page that use
the same tag name. For example, you could reference all the <a> tags or all the
<div> tags. This is a handy way to make large-scale changes to these tags (such
as changing all the target attributes in your links).

The mechanism for returning a collection of elements that have the same tag is
the getElementsByTagName() method:

document.getElementsByTagName(tag)

 » tag: A string representing the HTML name used by the tags you want to work
with

This method returns an arraylike collection that contains all the elements in the
document that use the specified tag. (See Book 3, Chapter 7 to learn how arrays
work.) The collection order is the same as the order in which the elements appear
in the document. For example, consider the following HTML pseudo-code:

<div id="div1">
Other elements go here

286 BOOK 3 Coding the Front End, Part 2: JavaScript

</div>
<div id="div2">
Other elements go here
</div>
<div id="div3">
Other elements go here
</div>

Now consider the following statement:

divs = document.getElementsByTagName("div");

In the resulting collection, the first item (divs[0]) will be the <div> element
with id equal to div1, the second item (divs[1]) will be the <div> element with
id equal to div2, and the third item (divs[2]) will be the <div> element with id
equal to div3.

Specifying elements by class name
Another collection you can work with is the set of all elements in a page that use
the same class. The JavaScript tool for returning all the elements that share a spe-
cific class name is the getElementsByClassName() method:

document.getElementsByClassName(class)

 » class: A string representing the class name used by the elements you want to
work with

This method returns an arraylike collection that contains all the elements in the
document that use the specified class name. The collection order is the same as
the order in which the elements appear in the document. Here’s an example:

var keywords = document.getElementsByClassName("keyword");

Specifying elements by selector
In Book 2, Chapter 2, I discuss CSS selectors, including the id, tag, class, descen-
dant, and child selectors. You can use those same selectors in your JavaScript code
to reference page elements by using the document object’s querySelector() and
querySelectorAll() methods:

document.querySelector(selector)
document.querySelectorAll(selector)

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 287

 » selector: A string representing the selector for the element or elements you
want to work with

The difference between these methods is that querySelectorAll() returns a col-
lection of all the elements that match your selector, whereas querySelector()
returns only the first element that matches your selector.

For example, the following statement returns the collection of all section ele-
ments that are direct children of an article element:

var articles = document.querySelectorAll("article > section");

Rather than using three distinct document object methods to reference page
elements by id, tag, and class — that is, getElementById(), getElementsBy
TagName(), and getElementsByClassName() — many web developers prefer the
more generic approach offered by querySelector() and querySelectorAll().

Working with elements
Once you’ve got a reference to one or more elements, you can then use code to
manipulate those elements in various ways, as shown in the next few sections.

Adding an element to the page
To add an element to the page, you follow three steps:

1. Create an object for the type of element you want to add.

2. Add the new object from Step 1 as a child element of an existing element.

3. Insert some text and tags into the new object from Step 1.

Step 1: Creating the element
For Step 1, you use the document object’s createElement() method:

document.createElement(elementName)

 » elementName: A string containing the HTML tag name for the type of the
element you want to create

This method creates the element and then returns it, which means you can store
the new element in a variable. Here’s an example:

newArticle = createElement("article");

288 BOOK 3 Coding the Front End, Part 2: JavaScript

Step 2: Appending the new element as a child
With your element created, Step 2 is to append it to an existing parent element
using the appendChild() method:

parent.appendChild(child)

 » parent: A reference to the parent element to which the new element will
be appended

 » child: A reference to the child element you’re adding

Here’s an example that creates a new article element and then appends it to the
main element:

newArticle = document.createElement("article");
document.querySelector("main").appendChild(newArticle);

Note that the child element is added to the end of the parent element’s collection
of child elements, so be sure to add the child elements in the appropriate order.

Step 3: Adding text and tags to the new element
With your element created and appended to a parent, the final step is to add some
text and tags using the innerHTML property:

element.innerHTML = text

 » element: A reference to the new element within which you want to add the
text and tags

 » text: A string containing the text and HTML tags you want to insert

In this example, the code creates a new article element, appends it to the main
element, and then adds some text and tags:

newArticle = document.createElement("article");
document.querySelector("main").appendChild(newArticle);
newArticle.innerHTML = "Hello <code>document</code> Object

World!";

Changing an element’s styles
Most HTML tags can have a style attribute that you use to set inline styles. Since
standard attributes all have corresponding element object properties, you won’t

W
or

ki
ng

 w
it

h
O

bj
ec

ts

CHAPTER 6 Working with Objects 289

be surprised to learn that most elements also have a style property that enables
you to get and modify a tag’s styles. The way it works is that the style property
actually returns a style object that has properties for every CSS property. When
referencing these style properties, you need to keep two things in mind:

 » For single-word CSS properties (such as color and visibility), use all-
lowercase letters.

 » For multiple-word CSS properties, drop the hyphen and use uppercase for the
first letter of the second word and for each subsequent word if the property
has more than two. For example, the font-size and border-left-width
CSS properties become the fontSize and borderLeftWidth style object
properties.

Here’s an example:

var pageTitle = document.querySelector("h1");
pageTitle.style.fontSize = "64px";
pageTitle.style.color = "maroon";
pageTitle.style.textAlign = "center";
pageTitle.style.border = "1px solid black";

This code gets a reference to the page’s first <h1> element. With that reference in
hand, the code then uses the style object to style four properties of the heading:
fontSize, color, text-align, and border.

Adding a class to an element
Besides changing an element’s styles, you can also assign a class to an element. First,
you can get a list of an element’s assigned classes by using the classList property:

element.classList

 » element: The element you’re working with

The returned list of classes is an arraylike object that includes an add method that
you can use to add a new class to the element’s existing classes:

element.classList.add(class)

 » element: The element you’re working with.

 » class: A string representing the name of the class you want to add to element.
You can add multiple classes by separating each class name with a comma.

290 BOOK 3 Coding the Front End, Part 2: JavaScript

Here’s an example:

var articleSections = document.querySelectorAll("article >
section");

for (var i = 0; i < articleSections.length; i++) {
 articleSections[i].classList.add("sectionText");
}

This code uses querySelectorAll to return all the section elements that are
direct children of an article element, and those section elements are stored in
the articleSections variable. articleSections is an arraylike object, so we can
iterate through it using a for loop. Inside the loop, the code uses classList.add
to add the class named sectionText to each section element.

CHAPTER 7 Working with Arrays 291

Working with Arrays
I choose a lazy person to do a hard job. Because a lazy person will find an easy
way to do it.

— BILL GATES

In this chapter, you discover one of JavaScript’s most important concepts: the
array. Arrays are important not only because they’re extremely powerful, but
because once you know how to use them, you’ll think of a thousand and one uses

for them. To make sure you’re ready for your new array-filled life, this chapter
explains what they are and why they’re so darn useful, and then explores all the
fantastic ways that arrays can make your coding life easier.

What Is an Array?
I talk quite a bit about efficient programming in this book because I believe (okay,
I know) that efficient scripts run faster and take less time to program and debug.
As I’ve said, efficiency in programming really means eliminating unnecessary
repetition, whether it’s consolidating statements into a loop that can be repeated
as often as required, or moving code into a function that can be called as often as
you need.

Chapter 7

IN THIS CHAPTER

 » Learning what arrays can do for you

 » Declaring an array variable

 » Populating an array with data

 » Trying out multidimensional arrays

 » Working with JavaScript’s Array
object

292 BOOK 3 Coding the Front End, Part 2: JavaScript

Another source of unnecessary repetition involves variables. For example, con-
sider the following declarations:

var dog1 = "dog-1";
var dog2 = "dog-2";
var dog3 = "dog-3";
var dog4 = "dog-4";
var dog5 = "dog-5";

These are string variables and they store the names of some dog photos. Now
suppose you want to write a script that asks the user for a dog number and then
displays the corresponding photo as the page background. The following code
shows such a script:

var dog1 = "dog-1";
var dog2 = "dog-2";
var dog3 = "dog-3";
var dog4 = "dog-4";
var dog5 = "dog-5";
var promptNum = prompt("Enter the dog you want to see

(1-5):", "");

if (promptNum !== "" && promptNum !== null) {
 var promptDog = "dog-" + promptNum;
 if (promptDog === dog1) {
 document.body.style.backgroundImage = "url('/images/" +

dog1 + ".png')";
 } else if (promptDog === dog2) {
 document.body.style.backgroundImage = "url('/images/" +

dog2 + ".png')";
 } else if (promptDog === dog3) {
 document.body.style.backgroundImage = "url('/images/" +

dog3 + ".png')";
 } else if (promptDog === dog4) {
 document.body.style.backgroundImage = "url('/images/" +

dog4 + ".png')";
 } else if (promptDog === dog5) {
 document.body.style.backgroundImage = "url('/images/" +

dog5 + ".png')";
 }
}

After declaring and initializing the variables, the script uses prompt() to get a
number between 1 and 5, which is stored in the promptNum variable. An if() test

W
or

ki
ng

 w
it

h
A

rr
ay

s

CHAPTER 7 Working with Arrays 293

ensures that promptNum isn’t the empty string (no value entered) or null (Cancel
was clicked). The code then adds the number to the string dog-, which is then
stored in the promptDog variable.

Now the code runs through five separate if() tests, each of which checks to see
if promptDog is equal to one of the variables. If a match is found, the document.
body.style.backgroundImage property is set to the URL of the image.

This might not seem outrageously inefficient, but what if instead of five images
you actually had to take 10 or 20 or even 100 images into account? I’m sure the
idea of typing 100 if() tests isn’t your idea of a good time.

To understand the solution to this problem, first understand that the variables
dog1 through dog5 all contain related values. That is, each variable holds part of
the filename of a dog photo, which in turn is part of the full URL for that image.
In JavaScript (or, indeed, in just about any programming language), whenever
you have a collection of variables with related data, it’s possible to group them
together into a single variable called an array. You can enter as many values as you
want into the array, and JavaScript tracks each value by the use of an index number.
For example, the first value you add is given the index 0. (For obscure reasons,
programmers since time immemorial have started numerical lists with 0 instead
of 1.) The second value you put into the array is given the index 1, the third value
gets 2, and so on. You can then access any value in the array by specifying the
index number you want.

The next couple of sections flesh out this theory with the specifics of creating and
populating an array, and then you’ll see how to rewrite a much more efficient ver-
sion of the above code using arrays.

Declaring an Array
Because an array is a type of variable, you need to declare it before using it. In
fact, unlike regular numeric, string, or Boolean variables that don’t really need to
be declared (but always should be), JavaScript insists that you declare an array in
advance. You use the var statement again, but this time with a slightly different
syntax. Actually, there are four syntaxes you can use. Let’s start with the simplest:

var arrayName = new Array();

Here, arrayName is the name you want to use for the array variable.

In JavaScript, an array is actually an object, so what the new keyword is doing
here is creating a new Array object. The Array() part of the statement is called

294 BOOK 3 Coding the Front End, Part 2: JavaScript

a constructor because its job is to construct the object in memory. For example, to
create a new array named dogPhotos, you’d use the following statement:

var dogPhotos = new Array();

The second syntax is useful if you know in advance the number of values (or
 elements) you’ll be putting into the array:

var arrayName = new Array(num);

 » arrayName: The name you want to use for the array variable

 » num: The number of values you’ll be placing into the array

For example, here’s a statement that declares a new dogPhotos array with
5 elements:

var dogPhotos = new Array(5);

If you’re not sure how many elements you need, don’t worry about it because
JavaScript is happy to let you add elements to and delete elements from the array
as needed, and it will grow or shrink the array to compensate. I talk about the
other two array declaration syntaxes in the next section.

Populating an Array with Data
Once your array is declared, you can start populating it with the data values you
want to store. Here’s the general syntax for doing this:

arrayName[index] = value;

 » arrayName: The name of the array variable

 » index: The array index number where you want the value stored

 » value: The value you’re storing in the array

JavaScript is willing to put just about any type of data inside an array, including
numbers, strings, Boolean values, and even other arrays! You can even mix mul-
tiple data types within a single array.

W
or

ki
ng

 w
it

h
A

rr
ay

s

CHAPTER 7 Working with Arrays 295

As an example, here are a few statements that declare a new array named dogPhotos
and then enter five string values into the array:

var dogPhotos = new Array(5);
dogPhotos[0] = "dog-1";
dogPhotos[1] = "dog-2";
dogPhotos[2] = "dog-3";
dogPhotos[3] = "dog-4";
dogPhotos[4] = "dog-5";

To reference an array value (say, to use it within an expression), you specify the
appropriate index:

strURL + dogPhotos[3]

The following code offers a complete example:

HTML:

<div id="output">
</div>

JavaScript:

// Declare the array
var dogPhotos = new Array(5);

// Initialize the array values
dogPhotos[0] = "dog-1";
dogPhotos[1] = "dog-2";
dogPhotos[2] = "dog-3";
dogPhotos[3] = "dog-4";
dogPhotos[4] = "dog-5";

// Display an example
document.getElementById('output').innerHTML = '/images/' +

dogPhotos[0] + '.png';

Declaring and populating an
array at the same time
Earlier I mention that JavaScript has two other syntaxes for declaring an array.
Both enable you to declare an array and populate it with values by using just a
single statement.

296 BOOK 3 Coding the Front End, Part 2: JavaScript

The first method uses the Array() constructor in the following general format:

var arrayName = new Array(value1, value2, ...);

 » arrayName: The name you want to use for the array variable

 » value1, value2, ...: The initial values with which you want to populate the
array

Here’s an example:

var dogPhotos = new Array("dog-1", "dog-2", "dog-3", "dog-4",
"dog-5");

JavaScript also supports the creation of array literals, which are similar to string,
numeric, and Boolean literals. In the same way that you create, say, a string literal
by enclosing a value in quotation marks, you create an array literal by enclosing
one or more values in square brackets. Here’s the general format:

var arrayName = [value1, value2, ...];

 » arrayName: The name you want to use for the array variable

 » value1, value2, ...: The initial values with which you want to populate the
array

An example:

var dogPhotos= ["dog-1", "dog-2", "dog-3", "dog-4", "dog-5"];

Using a loop to populate an array
So far, you probably don’t think arrays are all that much more efficient than using
separate variables. That’s because you haven’t yet learned about the single most
powerful aspect of working with arrays: using a loop and some kind of counter
variable to access an array’s index number programmatically.

For example, here’s a for() loop that replaces the six statements I used earlier to
declare and initialize the dogPhotos array:

var dogPhotos = new Array(5);
for (var counter = 0; counter < 5; counter++) {
 dogPhotos[counter] = "dog-" + (counter + 1);
}

W
or

ki
ng

 w
it

h
A

rr
ay

s

CHAPTER 7 Working with Arrays 297

The statement inside the for() loop uses the variable counter as the array’s
index. For example, when counter is 0, the statement looks like this:

dogPhotos[0] = "dog-" + (0 + 1);

In this case, the expression to the right of the equals sign evaluates to "dog-1",
which is the correct value. The following code shows this loop technique at work:

HTML:

<div id="output">
</div>

JavaScript:

// Declare the array
var dogPhotos = new Array(5);

// Initialize the array values using a loop
for (var counter = 0; counter < 5; counter++) {
 dogPhotos[counter] = "dog-" + (counter + 1);
}

// Display an example
document.getElementById('output').innerHTML = '/images/' +

dogPhotos[0] + '.png';

Using a loop to insert data into an array works best in two situations:

 » When the array values can be generated using an expression that changes
with each pass through the loop

 » When you need to assign the same value to each element of the array

If you declare your array with a specific number of elements, JavaScript doesn’t
mind at all if you end up populating the array with more than that number.

Using a loop to work with array data
The real problem with using a large number of similar variables isn’t so much
declaring them, but working with them in your code. In this chapter’s original
code example, the script had to use five separate if() tests to check the input
value against all five variables.

298 BOOK 3 Coding the Front End, Part 2: JavaScript

Arrays can really help make your code more efficient by enabling you to reduce
these kinds of long-winded checking procedures to a much shorter routine that
fits inside a loop. As with populating the array, you use the loop counter or some
other expression to generate new array values to work with.

For example, here’s a for() loop that replaces all those if() tests from the earlier
script:

for (var counter = 0; counter < 5; counter++) {
 if (promptDog === dogPhotos[counter]) {
 document.body.style.backgroundImage = "url('/images/" +

dogPhotos[counter] + ".png')";
 break;
 }
}

Each time through the loop, a new array value is generated by dogPhotos
[counter], and this value is compared with promptDog. If a match is found,
dogPhotos[counter] is used in an expression to generate the new background
Image property, and then break takes the code out of the loop.

Putting it all together, the following code presents the full and very efficient
replacement for the earlier script:

// Declare the array
var dogPhotos = new Array(5);

// Initialize the array values using a loop
for (var counter = 0; counter < 5; counter++) {
 dogPhotos[counter] = "dog-" + (counter + 1);
}

// Get the photo number
var promptNum = prompt("Enter the dog you want to see

(1-5):", "");

if (promptNum !== "" && promptNum !== null) {

 // Construct the primary part of the filename
 var promptDog = "dog-" + promptNum;

 // Work with the array values using a loop
 for (counter = 0; counter < 5; counter++) {

W
or

ki
ng

 w
it

h
A

rr
ay

s

CHAPTER 7 Working with Arrays 299

 if (promptDog === dogPhotos[counter] {
 document.body.style.backgroundImage =

"url('/images/" + dogPhotos[counter] + ".png')";
 break;
 }
 }
}

Creating Multidimensional Arrays
A multidimensional array is one where two or more values are stored within each
array element. For example, if you wanted to create an array to store user data,
you might need each element to store a first name, a last name, a user name, a
password, and more. The bad news is that JavaScript doesn’t support multidi-
mensional arrays. The good news is that it’s possible to use a trick to simulate a
multidimensional array.

The trick is to populate your array in such a way that each element is itself an
array. To see how such an odd idea might work, first recall the general syntax for
an array literal:

[value1, value2, ...]

Now recall the general syntax for assigning a value to an array element:

arrayName[index] = value;

In a one-dimensional array, the value is usually a string, number, or Boolean.
Now imagine, instead, that value is an array literal. For a two-dimensional array,
the general syntax for assigning an array literal to an array element looks like this:

arrayName[index] = [value1, value2];

As an example, say you want to store an array of background and foreground
colors. Here’s how you might declare and populate such an array:

var colorArray = new Array(3);
colorArray[0] = ['white', 'black'];
colorArray[1] = ['aliceblue', 'midnightblue'];
colorArray[2] = ['honeydew', 'darkgreen'];

300 BOOK 3 Coding the Front End, Part 2: JavaScript

Alternatively, you can declare and populate the array using only the array literal
notation:

var colorArray = [['white', 'black'], ['aliceblue',
'midnightblue'], ['honeydew', 'darkgreen']];

Either way, you can then refer to individual elements using double square brack-
ets, as in these examples:

colorArray[0][0]; // Returns 'white'
colorArray[0][1]; // Returns 'black'
colorArray[1][0]; // Returns 'aliceblue'
colorArray[1][1]; // Returns 'midnightblue'
colorArray[2][0]; // Returns 'honeydew'
colorArray[2][1]; // Returns 'darkgreen'

The number in the left set of square brackets is the index of the overall array, and
the number in the right set of square brackets is the index of the element array.

Using the Array Object
In JavaScript, an array is actually an object. That’s what the Array() constructor
does: It creates a new object based on the arguments (if any) that you supply
within the parentheses. So, like any good object, Array comes with a collection of
properties and methods that you can work with and manipulate. The rest of this
chapter takes a look at these properties and methods.

The length property
The Array object has just a couple of properties, but the only one of these that
you’ll use frequently is the length property:

array.length

The length property returns the number of elements that are currently in the
specified array. This is very useful when looping through an array because it
means you don’t have to specify a literal as the maximum value of the loop coun-
ter. For example, consider the following for() statement:

for (var counter = 0; counter < 5; counter++) {
 dogPhotos[counter] = "dog-" + (counter + 1);
}

W
or

ki
ng

 w
it

h
A

rr
ay

s

CHAPTER 7 Working with Arrays 301

This statement assumes the dogPhotos array has five elements, which might not
be the case. To enable the loop to work with any number of elements, replace 5
with dogPhotos.length:

for (var counter = 0; counter < dogPhotos.length; counter++)
 dogPhotos[counter] = "dog-" + (counter + 1);
}

Note, too, that the loop runs while the counter variable is less than dogPhotos.
length. That’s because array indexes run from 0 to the array’s length value minus 1.
In other words, the previous for() loop example is equivalent to the following:

for (var counter = 0; counter <= dogPhotos.length - 1;
counter++)

Concatenating to create
a new array: concat()
The concat() method takes the elements of an existing array and concatenates
one or more specified values onto the end to create a new array:

array.concat(value1, value2, ...)

 » array: The name of the array you want to work with.

 » value1, value2, ...: The values you want to concatenate to array. This
can also be another array.

Note that the original array remains unchanged. The following code demonstrates
using concat() to concatenate two arrays into a third array, each element of
which is printed to the page, as shown in Figure 7-1.

HTML:

<div id="output">
</div>

JavaScript:

var array1 = new Array("One", "Two", "Three");
var array2 = new Array("A", "B", "C");
var array3 = array1.concat(array2);
var str = "";

302 BOOK 3 Coding the Front End, Part 2: JavaScript

for (var counter = 0; counter < array3.length; counter++) {
 str += array3[counter] + "
";
}
document.getElementById("output").innerHTML = str;

Creating a string from an
array’s elements: join()
The join() method enables you to take the existing values in an array and con-
catenate them together to form a string. Check out the syntax:

array.join(separator)

 » array: The name of the array you want to work with.

 » separator: An optional character or string to insert between each array
element when forming the string. If you omit this argument, a comma is
inserted between each element.

In the following code, three arrays are created and then join() is applied to each
one using a space as a separator, then the null string (""), and then no separator.
Figure 7-2 shows the resulting page output.

HTML:

<div id="output">
</div>

JavaScript:

var array1 = new Array("Make", "this", "a", "sentence.");
var array2 = new Array("antid", "isest", "ablis", "hment",

"arian", "ism");
var array3 = new Array("John", "Paul", "George", "Ringo");
var string1 = array1.join(" ");

FIGURE 7-1:
Concatenating

array1 and
array2 produces
array3 with the

values shown
here.

W
or

ki
ng

 w
it

h
A

rr
ay

s

CHAPTER 7 Working with Arrays 303

var string2 = array2.join("");
var string3 = array3.join();

document.getElementById('output').innerHTML = string1 + '
' +

string2 + '
' + string3;

The Array object’s toString() method performs a similar function to the join()
method. Using array.toString() takes the values in array, converts them all to
strings, and then concatenates them into a single, comma-separated string. In other
words, array.toString() is identical to array.join(","), or just array.join().

Removing an array’s last element: pop()
The pop() method removes the last element from an array and returns the value
of that element. Here’s the syntax:

array.pop()

For example, consider the following statements:

var myArray = new Array("First", "Second", "Third");
var myString = myArray.pop();

The last element of myArray is "Third", so myArray.pop() removes that value
from the array and stores it in the myString variable.

After you run the pop() method, JavaScript reduces the value of the array’s length
property by one.

Adding elements to the end of
an array: push()
The push() method is the opposite of pop(): It adds one or more elements to the
end of an array. Here’s the syntax to use:

array.push(value1, value2, ...)

FIGURE 7-2:
Joining the arrays
with a space, null

string (""), and
default comma.

304 BOOK 3 Coding the Front End, Part 2: JavaScript

 » array: The name of the array you want to work with.

 » value1, value2, ...: The values you want to add to the end of array. This
can also be another array.

push() differs from the concat() method in that it doesn’t return a new array.
Instead, it changes the existing array by adding the new values to the end of the
array. For example, consider the following statements:

var myArray = new Array("First", "Second", "Third");
var pushArray = new Array("Fourth", "Fifth", "Sixth");
for (var i = 0; i < pushArray.length; i++) {
 myArray.push(pushArray[i]);
}

After these statements, myArray contains six values: "First", "Second", "Third",
"Fourth", "Fifth", and "Sixth". Why didn’t I just add the entire pushArray in
one fell swoop? That is, like so:

myArray.push(pushArray);

That’s perfectly legal, but it would mean myArray would contain the following
four elements: "First", "Second", "Third", and pushArray, which means you’ve
created a kind of hybrid multidimensional array, which is probably not what you
want in this situation.

After you run the push() method, JavaScript increases the value of the array’s
length property by the number of new elements added.

Reversing the order of an array’s elements:
reverse()
The reverse() method takes the existing elements in an array and reverses their
order: The first moves to the last, the last moves to the first, and so on. The syntax
takes just a second to show:

array.reverse()

The following code puts the reverse() method to work, and Figure 7-3 shows
what happens.

var myArray = new Array("Show", "Place", "Win");
myArray.reverse();

W
or

ki
ng

 w
it

h
A

rr
ay

s

CHAPTER 7 Working with Arrays 305

var str = "";
for (var counter = 0; counter < myArray.length; counter++) {
 str += myArray[counter] + "
";
}
document.getElementById("output").innerHTML = str;

Removing an array’s first element: shift()
The shift() method removes the first element from an array and returns the
value of that element:

array.shift()

For example, consider the following statements:

var myArray = new Array("First", "Second", "Third");
var myString = myArray.shift();

The first element of myArray is "First", so myArray.shift() removes that value
from the array and stores it in the myString variable.

After you run the shift() method, JavaScript reduces the value of the array’s
length property by one.

Returning a subset of an array: slice()
The slice() method returns a new array that contains a subset of the elements in
an existing array. Take a look at the syntax:

array.slice(start, end);

 » array: The name of the array you want to work with.

 » start: A number that specifies the index of the first element in array that
you want to include in the subset. If this number is negative, the subset

FIGURE 7-3:
Use the

reverse()
method to

reverse the
order of

 elements in
an array.

306 BOOK 3 Coding the Front End, Part 2: JavaScript

starting point is counted from the end of array (for example, -1 is the last
element of the array).

 » end: An optional number that specifies the index of the element in array
before which you want the subset to end. If you leave out this value, the subset
includes all the elements in array from start to the last element. This value
can be negative.

If you use a negative number for the start value, the end value must also be nega-
tive, but it must be larger than start. For example, if you use -4 for start, then
end can only be -1, -2, or -3.

The following code defines an array and then tries out various values for the
slice() arguments. The results are shown in Figure 7-4.

var myArray = new Array("A", "B", "C", "D", "E", "F");
var array1 = myArray.slice(0, 4);
var array2 = myArray.slice(3);
var array3 = myArray.slice(-3, -1);
var str = "array1: " + array1 + "
";
str += "array2: " + array2 + "
";
str += "array3: " + array3;
document.getElementById('output').innerHTML = str;

Ordering array elements: sort()
The sort() method is an easy way to handle a common programming problem:
rearranging an array’s elements to put them in alphabetical, numerical, or some
other order. Here’s the syntax:

array.sort(function)

 » array: The name of the array you want to work with.

 » function: An optional name of a function that specifies the sort order. If you
leave out this argument, the elements of array are sorted alphabetically.

FIGURE 7-4:
The slice()

method creates
a new array

from a subset of
another array.

W
or

ki
ng

 w
it

h
A

rr
ay

s

CHAPTER 7 Working with Arrays 307

Using sort() without an argument gives you a straightforward alphabetical sort:

myArray.sort();

If you want to sort the array based on some other criterion, then you need to cre-
ate a function to define the sort order. Your function must be set up as follows:

 » The function must accept two arguments. For the purposes of this list, I’ll call
these arguments a and b.

 » Using these arguments, the function must define an expression that returns
a numeric value.

 » For those cases where you want a sorted before b, the function must return
a negative value.

 » For those cases where you want a sorted after b, the function must return
a positive value.

 » For those cases where you want a and b to be treated equally, the function
must return zero.

The following code shows a function named numericSort that you can use if you
want a numeric sort from lowest to highest. Figure 7-5 displays the original array
and then the sorted array.

// This function sorts numbers from lowest to highest
function numericSort(a, b) {
 return (a - b);
}

var myArray = [3, 5, 1, 6, 2, 4];

// Write the array before sorting it
var str = "myArray (before sorting): " + myArray + "
";

// Sort the array
myArray.sort(numericSort);

// Write the array after sorting it
str+= "myArray (after sorting): " + myArray;

document.getElementById('output').innerHTML = str;

308 BOOK 3 Coding the Front End, Part 2: JavaScript

To get a numeric sort from highest to lowest, use the following return expres-
sion, instead:

return (b - a);

What if you want a reverse alphabetical sort? Here’s a function that will do it:

function reverseAlphaSort(a, b) {
 if (a > b) {
 return -1
 }
 else if (a < b) {
 return 1
 }
 else {
 return 0
 }
}

Removing, replacing, and
inserting elements: splice()
The splice() method is a complex function that comes in handy in all kinds of
situations. First, here’s the syntax:

array.splice(start, elementsToDelete, value1, value2, ...)

 » array: The name of the array you want to work with.

 » start: A number that specifies the index of the element where the splice
takes place.

 » elementsToDelete: An optional number that specifies how many elements
to delete from array beginning at the start position. If you don’t include this
argument, elements are deleted from start to the end of the array.

FIGURE 7-5:
Using sort()

and a function
to sort items

numerically from
lowest to highest.

W
or

ki
ng

 w
it

h
A

rr
ay

s

CHAPTER 7 Working with Arrays 309

 » value1, value2, ...: Optional values to insert into array beginning at the
start position.

With splice() at your side, you can perform one or more of the following tasks:

 » Deletion: If elementsToDelete is greater than zero or unspecified and no
insertion values are included, splice() deletes elements beginning at the
index start. The deleted elements are returned in a separate array.

 » Replacement: If elementsToDelete is greater than zero or unspecified and
one or more insertion values are included, splice() first deletes elements
beginning at the index start. It then inserts the specified values before the
element with index start.

 » Insertion: If elementsToDelete is 0, splice() inserts the specified values
before the element with index start.

The following code demonstrates all three tasks, and the results are shown in
Figure 7-6.

var array1 = new Array("A", "B", "C", "D", "E", "F");
var array2 = new Array("A", "B", "C", "D", "E", "F");
var array3 = new Array("A", "B", "C", "D", "E", "F");

// DELETION
// In array1, start at index 2 and delete to the end
// Return the deleted elements to the delete1 array
var delete1 = array1.splice(2);

// Write array1
var str = "array1: " + array1 + "
";

// Write delete1
str += "delete1: " + delete1 + "
";

// REPLACEMENT
// In array2, start at index 3 and delete 2 elements
// Insert 2 elements to replace them
// Return the deleted elements to the delete2 array
var delete2 = array2.splice(3, 2, "d", "e");

// Write array2
str += "array2: " + array2 + "
";

310 BOOK 3 Coding the Front End, Part 2: JavaScript

// Write delete2
str += "delete2: " + delete2 + "
";

// INSERTION
// In array3, start at index 1 and insert 3 elements
array3.splice(1, 0, "1", "2", "3")

// Write array3
str += "array3: " + array3;

document.getElementById('output').innerHTML = str;

Inserting elements at the beginning
of an array: unshift()
The unshift() method is the opposite of the shift() method: It inserts one or
more values at the beginning of an array. When it’s done, unshift() returns the
new length of the array. Here’s the syntax:

array.unshift(value1, value2, ...)

 » array: The name of the array you want to work with

 » value1, value2, ...: The values you want to add to the beginning of array

For example, consider the following statements:

var myArray = new Array("First", "Second", "Third");
var newLength = myArray.unshift("Fourth", "Fifth", "Sixth");

After these statements, myArray contains six values — "Fourth", "Fifth", and
"Sixth", "First", "Second", and "Third" — and the value of newLength is 6.

FIGURE 7-6:
The splice()

method can
delete, replace,

and insert array
elements.

CHAPTER 8 Manipulating Strings, Dates, and Numbers 311

Manipulating Strings,
Dates, and Numbers

First learn computer science and all the theory. Next develop a programming
style. Then forget all that and just hack.

— GEORGE CARRETTE

Although your JavaScript code will spend much of its time dealing with web
page knickknacks such as HTML tags and CSS properties, it will also per-
form lots of behind-the-scenes chores that require manipulating strings,

dealing with dates and times, and performing mathematical calculations. To help
you through these tasks, in this chapter you explore three of JavaScript’s built-in
objects: the String object, the Date object, and the Math object. You investigate the
most important properties of each object, master the most used methods, and see
lots of useful examples along the way.

Manipulating Text with the String Object
I’ve used dozens of examples of strings so far in this book. These have included
not only string literals (such as "Web Coding and Development for Dummies"),
but also methods that return strings (such as the prompt() method). So it should

Chapter 8

IN THIS CHAPTER

 » Manipulating strings

 » Working with dates and times

 » Performing math calculations

312 BOOK 3 Coding the Front End, Part 2: JavaScript

be clear by now that strings play a major role in all JavaScript programming, and
it will be a rare script that doesn’t have to deal with strings in some fashion.

For this reason, it pays to become proficient at manipulating strings, which
includes locating text within a string and extracting text from a string. You learn
all of that and more in this section.

Any string you work with — whether it’s a string literal or the result of a method
or function that returns a string — is a String object. So, for example, the follow-
ing two statements are equivalent:

var bookName = new String("Web Coding and Development for
Dummies");

var bookName = "Web Coding and Development for Dummies";

This means that you have quite a bit of flexibility when applying the proper-
ties and methods of String objects. For example, the String object has a length
property that I describe in the next section. The following are all legal JavaScript
expressions that use this property:

bookName.length;
"Web Coding and Development for Dummies".length;
prompt("Enter the book name:").length;
myFunction().length;

The last example assumes that myFunction() returns a string value.

Determining the length of a string
The most basic property of a String object is its length, which tells you how
many characters are in the string:

string.length

All characters within the string — including spaces and punctuation marks — are
counted toward the length. The only exceptions are escape sequences (such as \n),
which always count as one character. The following code grabs the length prop-
erty value for various String object types.

function myFunction() {
 return "filename.htm";
}

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 313

var bookName = "Web Coding and Development for Dummies";

length1 = myFunction().length; // Returns 12
length2 = bookName.length; // Returns 38
length3 = "123\n5678".length; // Returns 8

What the String object lacks in properties it more than makes up for in methods.
There are over two dozen, and they enable your code to perform many useful
tasks, from converting between uppercase and lowercase letters, to finding text
within a string, to extracting parts of a string.

Finding substrings
A substring is a portion of an existing string. For example, substrings of the string
"JavaScript" would be "Java", "Script", "vaSc", and "v". When working with
strings in your scripts, you’ll often have to determine whether a given string con-
tains a given substring. For example, if you’re validating a user’s email address,
you should check that it contains an @ symbol.

Table 8-1 lists the two String object methods that find substrings within a larger
string.

You’ll use both of these methods quite often in your scripts, so I take a closer look
at each one.

When you want to find the first instance of a substring, or if all you want to know
is whether a string contains a particular substring, use the indexOf() method; if
you need to find the last instance of a substring, use the lastIndexOf() method:

string.indexOf(substring, start)
string.lastIndexOf(substring, start)

 » string: The string in which you want to search.

 » substring: The substring that you want to search for in string.

TABLE 8-1	 String Object Methods for Finding Substrings
Method What It Does

string.indexOf(substring, start) Searches string for the first instance of substring

string.lastIndexOf(substring, start) Searches string for the last instance of substring

314 BOOK 3 Coding the Front End, Part 2: JavaScript

 » start: An optional character position from which the search begins. If you
omit this argument, JavaScript starts the search from the beginning of the
string.

Here are some notes you should keep in mind when using indexOf() or
lastIndexOf():

 » Each character in a string is given an index number, which is the same as the
character’s position within the string.

 » Strings, like arrays, are zero-based, which means that the first character has
index 0, the second character has index 1, and so on.

 » Both methods are case-sensitive. For example, if you search for B, neither
method will find any instances of b.

 » If either method finds substring, they return the index position of the first
character of substring.

 » If either method doesn’t find substring, they return -1.

The following code tries out these methods in a few different situations.

HTML:

<pre>
Web Coding and Development for Dummies
01234567890123456789012345678901234567
</pre>
<div id="output"></div>

JavaScript:

var bookName = "Web Coding and Development for Dummies";

var str = "\"C\" is at index " + bookName.indexOf("C") + "
";
str += "\"v\" is at index " + bookName.indexOf("v") + "
";
str += "The first space is at index " + bookName.indexOf(" ") +

"
";
str += "The first \"D\" is at index " + bookName.indexOf("D") +

"
";
str += "The last \"D\" is at index " + bookName.lastIndexOf("D")

+ "
";
str += "The first \"e\" after index 2 is at index " + bookName.

indexOf("e", 2) + "
";

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 315

str += "The substring \"Develop\" begins at index " + bookName.
indexOf("Develop");

document.getElementById("output").innerHTML = str;

As you can see in Figure 8-1, the numbers show you the index positions of each
character in the script.

On a more practical note, the following code presents a simple validation script
that uses indexOf().

var emailAddress = "";
do {
 emailAddress = prompt("Enter a valid email address:");
}
while (emailAddress.indexOf("@") === -1);

The script prompts the user for a valid email address, which is stored in the
emailAddress variable. Any valid address will contain the @ symbol, so
the while() portion of a do...while() loop checks to see if the entered string
contains @:

while (emailAddress.indexOf("@") === -1);

If not (that is, if emailAddress.indexOf("@") returns -1), the loop continues and
the user is prompted again.

Methods that extract substrings
Finding a substring is one thing, but you’ll often have to extract a substring, as
well. For example, if the user enters an email address, you might need to extract
just the username (the part to the left of the @ sign) or the domain name (the part
to the right of @). For these kinds of operations, JavaScript offers six methods,
listed in Table 8-2.

FIGURE 8-1:
The indexOf()

and last
IndexOf()

 methods search
for substrings

within a string.

316 BOOK 3 Coding the Front End, Part 2: JavaScript

The charAt() method
You use the charAt() method to return a single character that resides at a speci-
fied position within a string:

string.charAt(index)

 » string: The string that contains the character

 » index: The position within string of the character you want

Here are some notes about this method:

 » To return the first character in string, use the following:

string.charAt(0)

 » To return the last character in string, use this:

string.charAt(string.length - 1)

 » If the index value is negative or if it’s greater than or equal to string.length,
JavaScript returns the empty string ("").

The following code presents an example.

TABLE 8-2	 String Object Methods for Extracting Substrings
Method What It Does

string.charAt(index) Returns the character in string that’s at the index position
specified by index

string.charCodeAt(index) Returns the code of the character in string that’s at the index position
specified by index

string.slice(start, end) Returns the substring in string that starts at the index position
specified by start and ends immediately before the index position
specified by end

string.split(separator,
limit)

Returns an array where each item is a substring in string, where those
substrings are separated by the separator character

string.substr(start,
length)

Returns the substring in string that starts at the index position
specified by start and is length characters long

string.substring(start,
end)

Returns the substring in string that starts at the index position
specified by start and ends at the index position specified by end

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 317

HTML:

<div id="output"></div>

JavaScript:

// Set up an array of test strings
var stringArray = new Array(4);
stringArray[0] = "Not this one.";
stringArray[1] = "Not this one, either.";
stringArray[2] = "1. Step one.";
stringArray[3] = "Shouldn't get this far.";

var firstChar;

// Loop through the array
for (var i = 0; i < 4; i++) {

 // Get the first character of the string;
 firstChar = stringArray[i].charAt(0);

 // If it's a number, break because that's the one we want
 if (!isNaN(firstChar)) { break }
}
document.getElementById("output").innerHTML = "Here's the one:

\"" + stringArray[i] + "\"";

The idea here is to examine a collection of strings and find the one that starts
with a number. The collection is stored in the array named stringArray, and a
for() loop is set up to run through each item in the array. The charAt() method
is applied to each array item to return the first character, which is stored in the
firstChar variable. In the if() test, the logical expression !isNaN(firstChar)
returns true if the first character is a number, at which point the loop breaks and
the correct string is displayed in the web page.

FIGURE 8-2:
Some examples
of the slice()

method in action.

318 BOOK 3 Coding the Front End, Part 2: JavaScript

The slice() method
Use the slice() method to carve out a piece of a string:

string.slice(start, end)

 » string: The string you want to work with.

 » start: The position within string of the first character you want to extract.

 » end: An optional position within string immediately after the last character
you want to extract. If you leave out this argument, JavaScript extracts the
substring that runs from start to the end of the string. Also, this argument
can be negative, in which case it specifies an offset from the end of the string.

To be clear, slice() extracts a substring that runs from the character at start up
to, but not including, the character at end.

The following code runs through a few examples (see Figure 8-2).

HTML:

<pre>
Web Coding and Development for Dummies
01234567890123456789012345678901234567
</pre>
<div id="output"></div>

JavaScript:

var bookName = "Web Coding and Development for Dummies";

var str = "slice(0, 3) = " + bookName.slice(0, 3) + "
";
str += "slice(4, 10) = " + bookName.slice(4, 10) + "
";
str += "slice(15) = " + bookName.slice(15) + "
";
str += "slice(0, -12) = " + bookName.slice(0, -12);
document.getElementById("output").innerHTML = str;

The split() method
The split() method breaks up a string and stores the pieces inside an array:

string.split(separator, limit)

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 319

 » string: The string you want to work with.

 » separator: The character used to mark the positions at which string is split.
For example, if separator is a comma, the splits will occur at each comma in
string.

 » limit: An optional value that sets the maximum number of items to store in
the array. For example, if limit is 5, split() stores the first 5 pieces in the
array and then ignores the rest of the string.

If you want each character in the string stored as an individual array item, use the
empty string ("") as the separator value.

The split() method is useful for those times when you have a “well-structured”
string. This means that the string contains a character that acts as a delimiter
between each string piece that you want set up as an array item. For example, it’s
fairly common to have to deal with comma-delimited strings:

string1 = "Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,
Saturday";

As you can see, each day in the string is separated by a comma. This makes using
the split() method a no-brainer:

var string1Array = string1.split(",");

When you run this statement, string1Array[0] will contain "Sunday", string1
Array[1] will contain "Monday", and so on. Note, too, that JavaScript sets
up the array for you automatically. You don’t have to declare the array using
new Array().

The following code tries out split() with a couple of example strings.

HTML:

<div id="output"></div>

JavaScript:

var string1 = "Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,
Saturday";

var string2 = "ABCDEF";
var str = "";

320 BOOK 3 Coding the Front End, Part 2: JavaScript

var string1Array = string1.split(",");
for (var i = 0; i < string1Array.length; i++) {
 str += "string1Array[" + i + "] = " + string1Array[i] +

"
";
}

var string2Array = string2.split("", 4);
for (i = 0; i < string2Array.length; i++) {
 str += "string2Array[" + i + "] = " + string2Array[i] +

"
";
}

document.getElementById("output").innerHTML = str;

After string1 is split into string1Array, a for() loop runs through the array and
writes the items to the web page. For string2, the empty string is used as the
separator and a limit of 4 is placed on the size of the string2Array. Again, a for()
writes the array values to the page. Figure 8-3 shows what happens.

The substr() method
If you want to extract a substring and you know how long you want that substring
to be, then the substr() method is often the best approach:

string.substr(index, length)

 » string: The string you want to work with.

 » index: The position within string of the first character you want to extract.

 » length: An optional value that specifies the length of the substring. If you
omit this argument, JavaScript extracts all the way to the end of the string.

FIGURE 8-3:
Some examples
of the split()

method.

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 321

The following code runs substr() through some examples; the results appear in
Figure 8-4.

HTML:

<pre>
Web Coding and Development for Dummies
01234567890123456789012345678901234567
</pre>
<div id="output"></div>

JavaScript:

var bookName = "Web Coding and Development for Dummies";

var str = "substr(0, 10) = " + bookName.substr(0, 10)+"
";
str += "substr(15, 11) = " + bookName.substr(15, 11) + "
";
str += "substr(27) = " + bookName.substr(27);

document.getElementById("output").innerHTML = str;

The substring() method
Use the substring() method to extract a substring from a string:

string.substring(start, end)

 » string: The string you want to work with.

 » start: The position within string of the first character you want to extract.

 » end: An optional value that specifies the position within string immediately
after the last character you want to extract. If you leave out this argument,
JavaScript extracts the substring that runs from start to the end of the string.

The following code gives the substring() method a whirl, and the results are
shown in Figure 8-5.

FIGURE 8-4:
Some examples

of the substr()
method.

322 BOOK 3 Coding the Front End, Part 2: JavaScript

HTML:

<pre>
Web Coding and Development for Dummies
01234567890123456789012345678901234567
</pre>

<div id="output"></div>

JavaScript:

var bookName = "Web Coding and Development for Dummies";

var str = "substring(0, 10) = " + bookName.substring(0, 10) +

"
";
str += "substring(11, 14) = " + bookName.substring(11, 14) +

"
";
str += "substring(31) = " + bookName.substring(31);

document.getElementById("output").innerHTML = str;

Understanding the differences between splice(),
substr(), and substring()
The splice(), substr(), and substring() methods are very similar and are
often confused by even experienced JavaScript programmers. Here are some notes
to help you understand the differences between these three string extraction
methods:

 » The splice() and substring() methods perform the same task. The only
difference is that splice() enables you to use a negative value for the end
argument. This is handy if you want to leave out a certain number of charac-
ters from the end of the original string. For example, if you want to extract
everything but the last three characters, you’d use this:

string.splice(0, -3)

FIGURE 8-5:
Some

 examples of the
substring()

method.

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 323

 » Use either splice() or substring() when you’re not sure how long the
extracted string will be. This usually means that you’ll use the indexOf() and
lastIndexOf() methods to find particular characters that mark the starting
and ending points of the substring you want. You then use those values as the
start and end arguments of splice() or substring(). For example,
suppose you have a string of the form www.domain.com and you want to
extract just the domain part. Here’s a short routine that will do it:

var hostName = "www.domain.com";
var firstDot = hostName.indexOf(".");
var lastDot = hostName.lastIndexOf(".");

var domainName = hostName.substring(firstDot + 1, lastDot);

 » On the other hand, if you know in advance exactly how long the extracted
string must be, use the substr() method.

Dealing with Dates and Times
Dates and times seem like the kind of things that ought to be straightforward
programming propositions. After all, there are only 12 months in a year, 28 to 31
days in a month, seven days in a week, 24 hours in a day, 60 minutes in an hour,
and 60 seconds in a minute. Surely something so set in stone couldn’t get even
the least bit weird, could it?

You’d be surprised. Dates and times can get strange, but they get much easier to
deal with if you always keep three crucial points in mind:

 » JavaScript time is measured in milliseconds, or thousandths of a second. More
specifically, JavaScript measures time by counting the number of milliseconds
that elapsed between January 1, 1970 and the date and time in question. So,
for example, you might see the date January 1, 2001 and think, “Ah, yes, the
start the new millennium.” JavaScript, however, sees that date and thinks
“978307200000.”

 » In the JavaScript world, time began on January 1, 1970, at midnight Greenwich
Mean Time. Dates before that have negative values in milliseconds.

 » Since your JavaScript programs run inside a user’s browser, dates and times
are almost always the user’s local dates and times. That is, the dates and times
your scripts will manipulate will not be those of the server on which your page
resides. This means that you can never know what time the user is viewing
your page.

324 BOOK 3 Coding the Front End, Part 2: JavaScript

Arguments used with the Date object
Before getting to the nitty-gritty of the Date object and its associated methods,
I’ll take a second to run through the various arguments that JavaScript requires
for many date-related features. This will save me from repeating these arguments
tediously later on. Table 8-3 has the details.

Working with the Date object
Whenever you work with dates and times in JavaScript, you work with an instance
of the Date object. More to the point, when you deal with a Date object in Java-
Script, you deal with a specific moment in time, down to the millisecond. A Date
object can never be a block of time, and it’s not a kind of clock that ticks along
while your script runs. Instead, the Date object is a temporal snapshot that you
use to extract the specifics of the time it was taken: the year, month, date, hour,
and so on.

Specifying the current date and time
The most common use of the Date object is to store the current date and time.
You do that by invoking the Date() function, which is the constructor function for
creating a new Date object. Here’s the general format:

TABLE 8-3	 Arguments Associated with the Date Object
Argument What It Represents Possible Values

date A variable name A Date object

yyyy The year Four-digit integers

yy The year Two-digit integers

month The month The full month name from "January" to "December"

mth The month Integers from 0 (January) to 11 (December)

dd The day of the month Integers from 1 to 31

hh The hour of the day Integers from 0 (midnight) to 23 (11:00 PM)

mm The minute of the hour Integers from 0 to 59

ss The second of the minute Integers from 0 to 59

ms The milliseconds of the second Integers from 0 to 999

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 325

var dateToday = new Date();

Specifying any date and time
If you need to work with a specific date or time, you need to use the Date() func-
tion’s arguments. There are five versions of the Date() function syntax (see the
list of arguments near the beginning of this chapter):

var date = new Date("month dd, yyyy hh:mm:ss");
var date = new Date("month dd, yyyy");
var date = new Date(yyyy, mth, dd, hh, mm, ss);
var date = new Date(yyyy, mth, dd);
var date = new Date(ms);

The following statements give you an example for each syntax:

var myDate = new Date("August 23, 2018 3:02:01");
var myDate = new Date("August 23, 2018");
var myDate = new Date(2018, 8, 23, 3, 2, 1);
var myDate = new Date(2018, 8, 23);
var myDate = new Date(1408777321000);

Extracting information about a date
When your script just coughs up whatever Date object value you stored in the
variable, the results aren’t particularly appealing. If you want to display dates in a
more attractive format, or if you want to perform arithmetic operations on a date,
then you need to dig a little deeper into the Date object to extract specific infor-
mation such as the month, year, hour, and so on. You do that by using the Date
object methods listed in Table 8-4.

One of the ways you can take advantage of these methods is to display the time or
date to the user using any format you want. Here’s an example:

HTML:

<div id="output"></div>

326 BOOK 3 Coding the Front End, Part 2: JavaScript

JavaScript:

var timeNow = new Date();
var hoursNow = timeNow.getHours();
var minutesNow = timeNow.getMinutes();
var message = "It's ";
var hoursText;

if (minutesNow <= 30) {
 message += minutesNow + " minutes past ";
 hoursText = hoursNow;
} else {
 message += (60 - minutesNow) + " minutes before ";
 hoursText = hoursNow + 1;
}

if (hoursNow == 0 && minutesNow <= 30) {
 message += "midnight.";
} else if (hoursNow == 11 && minutesNow > 30) {
 message += "noon.";
} else if (hoursNow < 12) {
 message += hoursText + " in the morning.";
} else if (hoursNow == 12 && minutesNow <= 30) {
 message += "noon.";
} else if (hoursNow < 18) {
 message += parseInt(hoursText - 12) + " in the afternoon.";

TABLE 8-4	 Date Object Methods That Extract Date Values
Method Syntax What It Returns

date.getFullYear() The year as a four-digit number (1999, 2000, and so on)

date.getMonth() The month of the year; from 0 (January) to 11 (December)

date.getDate() The date in the month; from 1 to 31

date.getDay() The day of the week; from 0 (Sunday) to 6 (Saturday)

date.getHours() The hour of the day; from 0 (midnight) to 23 (11:00 PM)

date.getMinutes() The minute of the hour; from 0 to 59

date.getSeconds() The second of the minute; from 0 to 59

date.getMilliseconds() The milliseconds of the second; from 0 to 999

date.getTime() The milliseconds since January 1, 1970 GMT

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 327

} else if (hoursNow == 23 && minutesNow > 30) {
 message += "midnight.";
} else {
 message += parseInt(hoursText - 12) + " in the evening.";
}
document.getElementById("output").innerHTML = message;

This script begins by storing the user’s local time in the timeNow variable. Then
the current hour is extracted using getHours() and stored in the hoursNow vari-
able, and the current minute is extracted using getMinutes() and stored in the
minutesNow variable. A variable named message is initialized and will be used to
store the message that’s displayed in the web page. The variable hoursText will
hold the non-military hour (for example, 4 instead of 16).

Then the value of minutesNow is checked to see if it’s less than or equal to 30,
because this determines the first part of the message, as well as the value of
hoursText. Here are two examples of what the message will look like:

It's 20 minutes past 10 // minutesNow is less than or equal to
30 (10:20)

It's 20 minutes to 11 // minutesNow is greater than 30 (10:40)

Then the script checks the value of hoursNow:

 » If it equals 0 and minutesNow is less than or equal to 30, then the string
midnight is added to the message.

 » If it equals 11 and minutesNow is greater than 30, then the string noon is
added to the message.

 » If it’s less than 12, the value of hoursText and the string in the morning are
added to the message.

 » If it equals 12 and minutesNow is less than or equal to 30, then the string noon
is added to the message.

 » If it’s less than 18 (6:00 PM), the result of hoursText - 12 and the string in
the afternoon are added.

 » If it equals 23 and minutesNow is greater than 30, then the string midnight is
added to the message.

 » Otherwise, hoursText - 12 and the string in the evening are added.

Finally, the result is written to the page, as shown in Figure 8-6.

328 BOOK 3 Coding the Front End, Part 2: JavaScript

Converting getMonth() into a month name
If you want to use the month in a nicer format than the standard Date object
display, there’s one problem: The getMonth() method returns a number instead
of the actual name of the month: 0 for January, 1 for February, and so on. If you
prefer to use the name, you need some way to convert the number returned by
getMonth().

There are two ways you can go about this: an array or a function. The following
code shows the array route:

HTML:

<div id="output"></div>

JavaScript:

var monthNames =
["January","February","March","April","May","June","July",
"August","September","October","November","December"];

var dateNow = new Date();
var monthNow = dateNow.getMonth();
document.getElementById("output").innerHTML = "getMonth() is " +

monthNow + "; the name is " + monthNames[monthNow];

The script declares a 12-item array named monthNames that stores the names of
the months. The key here is that the array index matches the return value of
getMonth(). For example, getMonth() returns 0 for January, so the array index 0
is assigned the string "January". Then the current date is stored in dateNow, and
the month is stored in monthNow. Finally, in the getElementById() statement,
the month name is displayed by using the monthNow value as the array index:
monthNames[monthNow].

The following code shows how to do it using a function.

HTML:

<div id="output"></div>

FIGURE 8-6:
The results

of the script.

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 329

JavaScript:

function monthName(monthValue) {
 switch (monthValue) {
 case 0 : return "January";
 case 1 : return "February";
 case 2 : return "March";
 case 3 : return "April";
 case 4 : return "May";
 case 5 : return "June";
 case 6 : return "July";
 case 7 : return "August";
 case 8 : return "September";
 case 9 : return "October";
 case 10 : return "November";
 case 11 : return "December";
 }
}

var dateNow = new Date();
var monthNow = dateNow.getMonth();
document.getElementById("output").innerHTML = "getMonth() is " +

monthNow + "; the name is " + monthName(monthNow);

With this technique, you pass the getMonth() value as an argument to the
monthName() function, which then uses a switch() statement to test the value
and return the appropriate string.

So which method should you use? Neither one has any glaringly obvious benefits
over the other. The array method is a bit quicker to set up and it probably executes
a bit faster than the function, so it’s probably the (slightly) better choice.

Converting getDay() into a day name
You face a similar problem with getDay() as you do with getMonth(): converting
the returned number into a “friendly” name such as, in this case, Sunday for 0,
Monday for 1, and so on. The solution, as you can imagine, is also similar. The
following code shows how to return a day name from a getDay() value using an
array.

HTML:

<div id="output"></div>

330 BOOK 3 Coding the Front End, Part 2: JavaScript

JavaScript:

var dayNames = ["Sunday","Monday","Tuesday",
"Wednesday","Thursday","Friday","Saturday"];

var dateNow = new Date();
var dayNow = dateNow.getDay();
document.getElementById("output").innerHTML = "getDay() is " +

dayNow + "; the name is "+dayNames[dayNow];

This time, the script declares a seven-item array named dayNames and initializes
each item to a name of a day (again, making sure each array index corresponds
with the return value of getDay()).

A function to return the day name from a getDay() value would be almost identi-
cal to the one I listed earlier for month names, so I’ll leave that as an exercise.

Setting the date
When you perform date arithmetic, you often have to change the value of an exist-
ing Date object. For example, an ecommerce script might have to calculate a date
that is 90 days from the date that a sale occurs. It’s usually easiest to create a Date
object and then use an expression or literal value to change the year, month, or
some other component of the date. You do that by using the Date object methods
listed in Table 8-5.

TABLE 8-5	 Date Object Methods That Set Date Values
Method Syntax What It Sets

date.setFullYear(yyyy) The year as a four-digit number (1999, 2000, and so on)

date.setMonth(mth) The month of the year; from 0 (January) to 11 (December)

date.setDate(dd) The date in the month; from 1 to 31

date.setHours(hh) The hour of the day; from 0 (midnight) to 23 (11:00 PM)

date.setMinutes(mm) The minute of the hour; from 0 to 59

date.setSeconds(ss) The second of the minute; from 0 to 59

date.setMilliseconds(ms) The milliseconds of the second; from 0 to 999

date.setTime(ms) The milliseconds since January 1, 1970 GMT

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 331

To try out some of these methods, the following code presents a script that speci-
fies a date (year, month, and day in the month) and then displays what day of the
week it was, is, or will be.

HTML:

<div id="output"></div>

JavaScript:

var monthNames =
["January","February","March","April","May","June","July",
"August","September","October","November","December"];

var dayNames = ["Sunday","Monday","Tuesday",
"Wednesday","Thursday","Friday","Saturday"];

// Set the year, month, and day
var userYear = 2018;
var userMonth = 11;
var userDay = 31;

// Make a date object then use the data to change the date
var userDate = new Date();
userDate.setFullYear(userYear);
userDate.setMonth(userMonth);
userDate.setDate(userDay);

// Convert the numbers into names
var dayName = dayNames[userDate.getDay()];
var monthName = monthNames[userDate.getMonth()];

// Display the message
document.getElementById("output").innerHTML = "The date you

entered was: "
monthName + " " + userDay + ", " + userYear + "
The day of

the week is: " + dayName;

The script opens by declaring and initializing the arrays for converting the values
returned by getMonth() and getDate(). Then three variables are declared to store
the year, month (as a number), and day.

The next four statements are the keys to this example. A new Date object is
stored in the userDate variable. It begins with the current date, but, as you’ll see,

332 BOOK 3 Coding the Front End, Part 2: JavaScript

this doesn’t matter. Then the script runs the setFullYear(), setMonth(), and
setDate() methods.

At this point, the userDate variable contains a new date that corresponds to the
supplied date. This means you can apply any of the “get” methods to that date.
In particular, you can figure out which day of the week corresponds to the new
date by running the getDay() method — userDate.getDay(). So the next two
statements in the script use getDay() and getMonth to return the day and month
values, and the arrays are used to convert them into names. Once that’s done,
the script displays the date and the day of the week that it corresponds to (see
Figure 8-7).

All the “set” methods also return values. Specifically, they return the number of
milliseconds from January 1, 1970 GMT to whatever new date is the result of the
method. Therefore, you can use the return value of a “set” method to create a new
Date object:

newDate = new Date(userDate.SetFullYear(userYear));

Performing date calculations
Many of your date-related scripts will need to make arithmetic calculations. For
example, you might need to figure out the number of days between two dates, or
you might need to calculate the date that is six weeks from today. The methods
you’ve seen so far and the way JavaScript represents dates internally serve to
make most date calculations straightforward.

The simplest calculations are those that involve whole numbers of the basic
 JavaScript date and time units: years, months, days, hours, minutes, and seconds.
For example, suppose you need to calculate a date that’s five years from the
 current date. Here’s a code snippet that will do it:

var myDate = new Date();
var myYear = myDate.getFullYear() + 5;
myDate.setFullYear(myYear);

FIGURE 8-7:
The script

displays the day
of the week for

a given year,
month, and day.

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 333

You use getFullYear() to get the year, add 5 to it, and then use setFullYear()
to change the date.

Determining a person’s age
As a practical example, the following code presents a script that calculates a
 person’s age.

HTML:

<div id="output"></div>

JavaScript:

var userAge;

// Set the birth date: year, month, and day
var userYear = 1990;
var userMonth = 7;
var userDay = 23;

// Make a Date object and change it
// to the user's birthday this year
var birthdayDate = new Date();
birthdayDate.setMonth(userMonth);
birthdayDate.setDate(userDay);

// Store the current date
var currentDate = new Date();
var currentYear = currentDate.getFullYear();

// Check to see if the birthday has yet to occur this year
if (currentDate < birthdayDate) {
 userAge = currentYear - userYear - 1;
} else {
 userAge = currentYear - userYear;
}

document.getElementById("output").innerHTML = "You are " +

userAge + " years old.";

334 BOOK 3 Coding the Front End, Part 2: JavaScript

The script prompts the user for the year, month, and day of her birth date. Then it
creates a new Date object and stores it in birthdayDate. The date is changed using
setMonth() and setDate(), but not setFullYear(). This gives you the user’s
birthday for this year. Then the current date is stored in currentDate and the year
is stored in currentYear.

Now the script compares currentDate and birthdayDate: If currentDate is less,
it means the user’s birthday hasn’t happened, so her age is the difference between
currentYear and userYear (the year she was born), minus one. Otherwise, her
age is the difference between currentYear and userYear.

Performing complex date calculations
Other date calculations are more complex. For example, you might need to calcu-
late the number of days between two dates. For this kind of calculation, you need
to take advantage of the fact that JavaScript stores dates internally as millisecond
values. They’re stored, in other words, as numbers, and once you’re dealing with
numeric values, you can use numeric expressions to perform calculations on those
values.

The key here is converting the basic date units — seconds, minutes, hours, days,
and weeks — into milliseconds. Here’s some code that will do it:

var ONESECOND = 1000;
var ONEMINUTE = ONESECOND * 60;
var ONEHOUR = ONEMINUTE * 60;
var ONEDAY = ONEHOUR * 24;
var ONEWEEK = ONEDAY * 7;

In programming, whenever you have variables that are constants — that is, they
have values that will never change throughout the script — it’s traditional to
write them entirely in uppercase letters to help differentiate them from regular
variables.

Because one second equals 1,000 milliseconds, the ONESECOND variable is given
the value 1000; because one minute equals 60 seconds, the ONEMINUTE variable
is given the value ONESECOND * 60, or 60,000 milliseconds. The other values are
derived similarly.

Calculating the days between two dates
A common date calculation involves figuring out the number of days between any
two dates. The following code presents a function that performs this calculation.

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 335

function daysBetween(date1, date2) {

 // The number of milliseconds in one day
 var ONEDAY = 1000 * 60 * 60 * 24;

 // Convert both dates to milliseconds
 var date1Ms = date1.getTime();
 var date2Ms = date2.getTime();

 // Calculate the difference in milliseconds
 var differenceMs = Math.abs(date1Ms - date2Ms);

 // Convert to days and return
 return Math.round(differenceMs/ONEDAY);
}

This function accepts two Date object arguments — date1 and date2. Note that
it doesn’t matter which date is earlier or later because this function calculates
the absolute value of the difference between them. The constant ONEDAY stores
the number of milliseconds in a day, and then the two dates are converted into
milliseconds using the getTime() method. The results are stored in the variables
date1Ms and date2Ms.

Next, the following statement calculates the absolute value, in milliseconds, of the
difference between the two dates:

var differenceMs = Math.abs(date1Ms - date2Ms);

This difference is then converted into days by dividing it by the ONEDAY constant.
Math.round() (which I discuss in the next section) ensures an integer result.

Working with Numbers: The Math Object
It’s a rare JavaScript programmer who never has to deal with numbers. Most
of us have to cobble together scripts that process order totals, generate sales
taxes and shipping charges, calculate mortgage payments, and perform other
 number-crunching duties. To that end, it must be said that JavaScript’s numeric
tools aren’t the greatest in the programming world, but there are plenty of fea-
tures to keep most scripters happy. This section tells you about those features,
with special emphasis on the Math object.

336 BOOK 3 Coding the Front End, Part 2: JavaScript

The first thing you need to know is that JavaScript likes to keep things simple,
particularly when it comes to numbers. For example, JavaScript is limited to deal-
ing with just two numeric data types: integers — numbers without a fractional or
decimal part, such as 1, 759, and -50 — and floating-point numbers — values that
have a fractional or decimal part, such as 2.14, 0.01, and -25.3333.

Converting between strings and numbers
When you’re working with numeric expressions in JavaScript, it’s important to
make sure that all your operands are numeric values. For example, if you prompt
the user for a value, you need to check the result to make sure it’s not a letter or
undefined (the default prompt() value). If you try to use the latter, for example,
JavaScript will report that its value is NaN (not a number).

Similarly, if you have a value that you know is a string representation of a number,
then you need some way of converting that string into its numerical equivalent.

For these situations, JavaScript offers several techniques that ensure your oper-
ands are numeric.

The parseInt() function
I begin with the parseInt() function, which you use to convert a string into an
integer:

parseInt(string, base);

 » string: The string value you want to convert.

 » base: An optional base used by the number in string. If you omit this value,
JavaScript uses base 10.

Note that if the string argument contains a string representation of a floating-
point value, parseInt() returns only the integer portion. Also, if the string begins
with a number followed by some text, parseInt() returns the number (or, at
least, its integer portion). The following table shows you the parseInt() results
for various string values.

string parseInt(string)

"5" 5

"5.1" 5

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 337

string parseInt(string)

"5.9" 5

"5 feet" 5

"take 5" NaN

"five" NaN

The parseFloat() function
The parseFloat() function is similar to parseInt(), but you use it to convert a
string into a floating-point value:

parseFloat(string);

Note that if the string argument contains a string representation of a integer
value, parseInt() displays just an integer. Also, like parseInt(), if the string
begins with a number followed by some text, parseInt() returns the number.
The following table shows you the parseFloat() results for some string values.

string parseFloat(string)

"5" 5

"5.1" 5.1

"5.9" 5.9

"5.2 feet" 5.2

"take 5.0" NaN

"five-point-one" NaN

The + operator
For quick conversions from a string to a number, I most often use the + operator,
which tells JavaScript to treat a string that contains a number as a true numeric
value. For example, consider the following code:

var numOfShoes = '2';
var numOfSocks = 4;
var totalItems = +numOfShoes + numOfSocks;

338 BOOK 3 Coding the Front End, Part 2: JavaScript

By adding + in front of the numOfShoes variable, I force JavaScript to set that vari-
able’s value to the number 2, and the result of the addition will be 6.

The Math object’s properties and methods
The Math object is a bit different than most of the other objects you come across
in this book. That’s because you never create an instance of the Math object that
gets stored in a variable. Instead, the Math object is a built-in JavaScript object
that you use as-is. The rest of this chapter explores some properties and methods
associated with the Math object.

Properties of the Math object
The Math object’s properties are all constants that are commonly used in math-
ematical operations. Table 8-6 lists all the available Math object properties.

Methods of the Math object
The Math object’s methods enable you to perform mathematical operations such
as square roots, powers, rounding, trigonometry, and more. Many of the Math
object’s methods are summarized in Table 8-7.

TABLE 8-6	 Some Properties of the Math Object
Property Syntax What It Represents Approximate Value

Math.E Euler’s constant 2.718281828459045

Math.LN2 The natural logarithm of 2 0.6931471805599453

Math.LN10 The natural logarithm of 10 2.302585092994046

Math.LOG2E Base 2 logarithm of E 1.4426950408889633

Math.LOG10E Base 10 logarithm of E 0.4342944819032518

Math.PI The constant pi 3.141592653589793

Math.SQRT12 The square root of 1/2 0.7071067811865476

Math.SQRT2 The square root of 2 1.4142135623730951

M
an

ip
ul

at
in

g
St

ri
ng

s,

D
at

es
, a

nd
 N

um
be

rs

CHAPTER 8 Manipulating Strings, Dates, and Numbers 339

TABLE 8-7	 Some Methods of the Math Object
Method Syntax What It Returns

Math.abs(number) The absolute value of number (that is, the number without any sign)

Math.ceil(number) The smallest integer greater than or equal to number

Math.cos(number) The cosine of number; returned values range from -1 to 1 radians

Math.exp(number) E raised to the power of number

Math.floor(number) The largest integer that is less than or equal to number

Math.log(number) The natural logarithm (base E) of number

Math.max(number1, number2) The larger of number1 and number2

Math.min(number1, number2) The smaller of number1 and number2

Math.pow(number1, number2) number1 raised to the power of number2

Math.random() A random number between 0 and 1

Math.round(number) The integer closest to number

Math.sin(number) The sine of number; returned values range from -1 to 1 radians

Math.sqrt(number) The square root of number (which must be greater than or equal to 0)

Math.tan(number) The tangent of number, in radians

CHAPTER 9 Debugging Your Code 341

Debugging Your Code
Sometimes it pays to stay in bed on Monday, rather than spending the rest of
the week debugging Monday’s code.

— CHRISTOPHER THOMPSON

It usually doesn’t take too long to get short scripts and functions up and run-
ning. However, as your code grows larger and more complex, errors inevitably
creep in. In fact, it has been proven mathematically that any code beyond a

minimum level of complexity will contain at least one error, and probably quite a
bit more than that.

Many of the bugs that creep into your code will be simple syntax problems you
can fix easily, but others will be more subtle and harder to find. For the latter —
whether the errors are incorrect values being returned by functions or problems
with the overall logic of a script — you’ll need to be able to look “inside” your
code to scope out what’s wrong. The good news is that JavaScript and modern web
browsers offer a ton of top-notch debugging tools that can remove some of the
burden of program problem-solving. In this chapter, you delve into these tools to
explore how they can help you find and fix most programming errors. You also
investigate a number of tips and techniques that can go a long way to helping you
avoid coding errors in the first place.

Chapter 9

IN THIS CHAPTER

 » Learning JavaScript’s error types

 » Debugging errors using the Console

 » Setting breakpoints

 » Watching variable and expression
values

 » Learning JavaScript’s most common
errors and error messages

342 BOOK 3 Coding the Front End, Part 2: JavaScript

Understanding JavaScript’s Error Types
When a problem occurs, the first thing you need to determine is what kind of error
you’re dealing with. There are three basic types: syntax errors, runtime errors,
and logic errors.

Syntax errors
Syntax errors arise from misspelled or missing keywords or incorrect punctuation.
JavaScript almost always catches these errors when you load the page (which is
why syntax errors are also known as load-time errors). That is, as JavaScript reads
the script’s statements, it checks each one for syntax errors. If it finds an error,
it stops processing the script and displays an error message. Here’s an example
statement with a typical syntax error (can you spot it?) and Figure 9-1 shows how
the error gets flagged in the Firefox Console window.

pageFooter = document.querySelector("footer');

Runtime errors
Runtime errors occur during the execution of a script. They generally mean that
JavaScript has stumbled upon a statement that it can’t figure out. It might be
caused by trying to use an uninitialized variable in an expression or by using a
property or method with the wrong object.

If your script has statements that execute as the page loads, and there have been
no syntax errors, JavaScript will attempt to run those statements. If it comes
across a statement with a problem, it halts execution of the script and displays the
error. If your script has one or more functions, JavaScript doesn’t look for runtime
errors in those functions until you call them.

Here’s some code where I misspelled a variable name in the third line (page-
footer instead of pageFooter), and Figure 9-2 shows the Firefox Console window
displaying the runtime error that results.

FIGURE 9-1:
The Firefox

Console window
displaying data
about a typical

syntax error.

D
eb

ug
gi

ng
 Y

ou
r

Co
de

CHAPTER 9 Debugging Your Code 343

pageFooter = document.querySelector("footer");
currDate = new Date();
pagefooter.innerHTML = "Copyright " + currDate.getFullYear() +

" Logophilia Limited.";

Logic errors
If your code zigs instead of zags, the cause is usually a flaw in the logic of your script.
It might be a loop that never ends or a switch test that doesn’t switch to anything.

Logic errors are the toughest to pin down because you don’t get any error messages
to give you clues about what went wrong and where. What you usually need to do is
set up debugging code that helps you monitor values and trace the execution of your
program. I go through the most useful debugging techniques later in this chapter.

FIGURE 9-2:
The Firefox

 Console
 displaying data
about a typical
runtime error.

WHY ARE PROGRAM ERRORS
CALLED BUGS?
The computer scientist Edsger Dijkstra once quipped, “If debugging is the process of
removing bugs, then programming must be the process of putting them in.” But why on
Earth do we call programming errors “bugs”? There’s a popular and appealing tale that
claims to explain how the word “bug” came about. Apparently, the early computer pio-
neer Grace Hopper was working on a machine called the Mark II in 1947. While inves-
tigating a glitch, she found a moth among the vacuum tubes, so from then on glitches
were called bugs. Appealing, yes, but true? Not quite. In fact, engineers had already
been referring to mechanical defects as “bugs” for at least 60 years before Ms. Hopper’s
discovery. As proof, the Oxford English Dictionary offers the following quotation from an
1889 edition of the Pall Mall Gazette:

Mr. Edison, I was informed, had been up the two previous nights discovering ‘a
bug’ in his phonograph — an expression for solving a difficulty, and implying that
some imaginary insect has secreted itself inside and is causing all the trouble.

344 BOOK 3 Coding the Front End, Part 2: JavaScript

Getting to Know Your Debugging Tools
All the major web browsers come with a sophisticated set of debugging tools that
can make your life as a web developer much easier and much saner. Most web
developers debug their scripts using either Google Chrome or Mozilla Firefox, so
I focus on those two browsers in this chapter. But in this section, I give you an
overview of the tools that are available in all the major browsers and how to get
at them.

Here’s how you open the web development tools in Chrome, Firefox, Microsoft
Edge, and Safari:

 » Chrome for Windows: Click Customize and Control Google Chrome (the
three vertical dots to the right of the address bar), then choose More
Tools➪ Developer Tools. Shortcut: Ctrl+Shift+I.

 » Chrome for Mac: Choose View➪ Developer➪ Developer Tools. Shortcut:
Option+⌘ +I.

 » Firefox for Windows: Choose Menu➪ Developer➪ Toggle Tools. Shortcut:
Ctrl+Shift+I.

 » Firefox for Mac: Choose Tools➪ Web Developer➪ Toggle Tools. Shortcut:
Option+⌘ +I.

 » Microsoft Edge: Choose Settings and More➪ Developer Tools. Shortcut: F12.

 » Safari: Choose Develop➪ Show Web Inspector. Shortcut: Option+⌘ +I. If you
don’t see the Develop menu, choose Safari➪ Preferences, click the Advanced
tab, and then select the Show Develop Menu in Menu Bar checkbox.

These development tools vary in the features they offer, but each one offers the
same set of basic tools, which are the tools you’ll use most often. These basic web
development tools include the following:

 » HTML viewer: This tab (it’s called Inspector in Firefox and Elements in the
other browsers) shows the HTML tags used in the web page. When you hover
the mouse pointer over a tag, the browser highlights the element in the
displayed page and shows its width and height, as shown in Figure 9-3. When
you click a tag, the browser shows the CSS styles applied with the tag, as well
as the tag’s box dimensions (again, see Figure 9-3).

 » Console: This tab enables you to view error messages, log messages, test
expressions, and execute statements. I cover the Console in more detail in the
next section.

D
eb

ug
gi

ng
 Y

ou
r

Co
de

CHAPTER 9 Debugging Your Code 345

 » Debugging tool: This tab (it’s called Debugger in Firefox and Safari, and
Sources in Chrome and Edge) enables you to pause code execution, step
through your code, watch the values of variables and properties, and much
more. This is the most important JavaScript debugging tool, so I cover it in
detail later in this chapter.

 » Network: This tab tells you how long it takes to load each file referenced by
your web page. If you find that your page is slow to load, this tab can help you
find the bottleneck.

Debugging with the Console
If your web page is behaving strangely — for example, the page is blank or miss-
ing elements — you should first check your HTML code to make sure it’s correct.
(Common HTML errors are not finishing a tag with a greater than sign (>), not
including a closing tag, and missing a closing quotation mark for an attribute
value.) If your HTML checks out, then there’s a good chance that your JavaScript
code is wonky. How do you know? A trip to the Console window is your first step.

FIGURE 9-3:
The HTML viewer,
such as Chrome’s

Elements tab,
enables you to

inspect each
 element’s

styles and box
 dimensions.

346 BOOK 3 Coding the Front End, Part 2: JavaScript

The Console is an interactive browser window that shows warnings and errors,
displays the output of console.log() statements, and enables you to execute
expressions and statements without having to run your entire script. The Console
is one of the handiest web browser debugging tools, so you need to know your
way around it.

Displaying the console in various browsers
To display the Console, open your web browser’s development tools and then click
the Console tab. You can also use the following keyboard shortcuts:

 » Chrome for Windows: Press Ctrl+Shift+J.

 » Chrome for Mac: Press Option+⌘ +J.

 » Firefox for Windows: Press Ctrl+Shift+K.

 » Firefox for Mac: Press Option+⌘ +K.

 » Microsoft Edge: Press F12 and then Ctrl+2.

 » Safari: Press Option+⌘ +C.

Logging data to the Console
You can use the console.log() method of the special Console object to print text
and expression values in the Console:

console.log(output)

 » output: The expression you want to print in the Console, formatted as a string

The output expression can be a text string, a variable, an object property, a func-
tion result, or any combination of these, as long as the expression result is a
string.

You can also use the handy console.table() method to output the values of
arrays or objects in an easy-to-read tabular format:

console.table(output)

 » output: The array or object (as a variable or as a literal) you want to view in
the Console

D
eb

ug
gi

ng
 Y

ou
r

Co
de

CHAPTER 9 Debugging Your Code 347

For debugging purposes, you most often use the Console to keep an eye on the
values of variables, object properties, and expressions. That is, when your code
sets or changes the value of something, you insert a console.log() (or console.
table()) statement that outputs the new value. When the script execution is
complete, you can open the Console and then check out the logged value or values.

Executing code in the Console
One of the great features of the Console is that it’s interactive, which means not
only can you see messages generated by the browser or by your console.log()
statements, but you can also type code directly into the Console. That is, you can
use the Console to execute expressions and statements. There are many uses for
this feature:

 » You can try some experimental expressions or statements to see their effect
on the script.

 » When the script is paused, you can output the current value of a variable or
property.

 » When the script is paused, you can change the value of a variable or property.
For example, if you see that a variable with a value of zero is about to be used
as a divisor, you could change that variable to a nonzero value to avoid
crashing the script.

 » When the script is paused, you can run a function or method to see if it
operates as expected under the current conditions.

Each browser’s Console tab includes a text box (usually marked by a greater-than
> prompt) that you can use to enter your expressions or statements.

You can execute multiple statements in the Console by separating each statement
with a semicolon. For example, you can test a for... loop by entering a statement
similar to the following:

for (var i=1; i < 10; i++){console.log(i**2); console.log(i**3);}

If you want to repeat an earlier code execution in the Console, or if you want to run
some code that’s very similar to code you ran earlier, you can recall statements
and expressions that you used in the current browser session. Press the Up Arrow
key to scroll back through your previously executed code; press the Down Arrow
key to scroll forward through your code.

348 BOOK 3 Coding the Front End, Part 2: JavaScript

Pausing Your Code
Pausing your code midstream lets you see certain elements such as the current
values of variables and properties. It also lets you execute program code one state-
ment at a time so you can monitor the flow of the script.

When you pause your code, JavaScript enters break mode, which means the
browser displays its debugging tool and highlights the current statement (the
one that JavaScript will execute next). Figure 9-4 shows a script in break mode in
Chrome’s debugger (the Sources tab).

Entering break mode
JavaScript gives you two ways to enter break mode:

 » By setting breakpoints

 » By using a debugger statement

FIGURE 9-4:
When you invoke
break mode, the

web browser
displays its

debugging tool
and highlights the

statement that it
will execute next.

D
eb

ug
gi

ng
 Y

ou
r

Co
de

CHAPTER 9 Debugging Your Code 349

Setting a breakpoint
If you know approximately where an error or logic flaw is occurring, you can enter
break mode at a specific statement in the script by setting up a breakpoint. Here
are the steps to follow:

1. Display your web browser’s developer tools and switch to the debugging
tool.

2. Open the file that contains the JavaScript code you want to debug.

How you do this depends on the browser: In Chrome and Firefox, press Ctrl+P
(Windows) or ⌘ +P (Mac).

3. Locate the statement where you want to enter break mode.

JavaScript will run every line of code up to, but not including, this statement.

4. Click the line number to the left of the statement to set the breakpoint
(see Figure 9-5).

To remove a breakpoint, most browsers give you three choices:

 » To disable a breakpoint temporarily, deselect the breakpoint’s checkbox in
the Breakpoints list.

 » To disable all your breakpoints temporarily, deselect the Breakpoints
checkbox.

 » To remove a breakpoint completely, click the statement’s line number.

FIGURE 9-5:
In the browser’s

debugging
tool, click a line
number to set

a breakpoint on
that statement.

350 BOOK 3 Coding the Front End, Part 2: JavaScript

Entering break mode using a debugger statement
When developing your web pages, you’ll often test the robustness of a script by
sending it various test values or by trying it out under different conditions. In
many cases, you’ll want to enter break mode to make sure things look okay. You
could set breakpoints at specific statements, but you lose them if you close the file.
For something a little more permanent, you can include a debugger statement
in a script. JavaScript automatically enters break mode whenever it encounters a
debugger statement.

Here’s a bit of code that includes a debugger statement:

// Add the sentence to the <div>
document.querySelector('div').innerHTML = sentence;

// Generate random colors (use values < 128 to keep the text
dark)

var randomRed = parseInt(Math.random() * 128);
var randomGreen = parseInt(Math.random() * 128);
var randomBlue = parseInt(Math.random() * 128);
debugger;

Exiting break mode
To exit break mode, you can use either of the following methods in the browser’s
debugging tool:

 » Click the Resume button.

 » Press the browser’s Resume keyboard shortcut:

• Chrome: Press Ctrl+\ (Windows), or ⌘ +\ (Mac), or F8.

• Firefox: Press Ctrl+\ (Windows), or ⌘ +\ (Mac), or F8.

Stepping through Your Code
One of the most common (and most useful) debugging techniques is to step
through the code one statement at a time. This lets you get a feel for the program
flow to make sure that things such as loops and function calls are executing prop-
erly. You can use three techniques:

D
eb

ug
gi

ng
 Y

ou
r

Co
de

CHAPTER 9 Debugging Your Code 351

 » Stepping into some code

 » Stepping over some code

 » Stepping out of some code

Stepping into some code
In break mode, stepping into some code means two things:

 » You execute the code one line at a time.

 » If the next statement to run is a function call, stepping into it takes you into
the function and pauses at the function’s first statement. You can then
continue to step through the function until you execute the last statement, at
which point the browser returns you to the statement after the function call.

To step into your code, set a breakpoint and then after your code is in break mode,
do one of the following to step through a single statement:

 » Click the Step Into button.

 » Press the browser’s Step Into keyboard shortcut:

• Chrome: Press Ctrl+; or F11 (Windows) or ⌘ +; or F11 (Mac).

• Firefox: Press F11 (Windows) or ⌘ +; or F11 (Mac).

Keep stepping through until the script ends or until you’re ready to resume nor-
mal execution.

Stepping over some code
Some statements call other functions. If you’re not interested in stepping through
a called function, you can step over it. This means that JavaScript executes the
function normally and then resumes break mode at the next statement after the
function call.

To step over a function, first either step through your code until you come to the
function call you want to step over, or set a breakpoint on the function call and
refresh the web page. Once you’re in break mode, you can step over the function
using any of the following techniques:

 » Click the Step Over button.

352 BOOK 3 Coding the Front End, Part 2: JavaScript

 » Press the browser’s Step Over keyboard shortcut:

• Chrome: Press Ctrl+’ or F10 (Windows) or ⌘ +’ or F10 (Mac).

• Firefox: Press F10 (Windows) or ⌘ +’ or F10 (Mac).

Stepping out of some code
I’m always accidentally stepping into functions I’d rather step over. If the function
is short, I just step through it until I’m back in the original code. If the function
is long, however, I don’t want to waste time stepping through every statement.
Instead, I invoke the Step Out feature using any of these methods:

 » Click the Step Out button.

 » Press the browser’s Step Out keyboard shortcut:

• Chrome: Press Ctrl+Shift+; or Shift+F11 (Windows) or ⌘ +Shift+; or
Shift+F11 (Mac).

• Firefox: Press Shift+F11 (Windows) or ⌘ +Shift+; or Shift+F11 (Mac).

JavaScript executes the rest of the function and then reenters break mode at the
first line after the function call.

Monitoring Script Values
Many runtime and logic errors are the result of (or, in some cases, can result in)
variables or properties assuming unexpected values. If your script uses or changes
these elements in several places, you’ll need to enter break mode and monitor the
values of these elements to see where things go awry. The browser developer tools
offer three main ways to keep an eye on your script values:

 » View the current value of a single variable.

 » View the current values of all the variables in both the local and global scopes.

 » View the value of a custom expression or object property.

Viewing a single variable value
If you just want to eyeball the current value of a variable, the developer tools in
both Chrome and Firefox make this straightforward:

D
eb

ug
gi

ng
 Y

ou
r

Co
de

CHAPTER 9 Debugging Your Code 353

1. Enter break mode in the code that contains the variable you want to check.

2. If the script hasn’t yet set the value of the variable, step through the code
until you’re past the statement that supplies the variable with a value.

If you’re interested in how the variable’s value changes during the script, step
through the script until you’re past any statement that changes the value.

3. Hover the mouse over the variable name.

The browser pops up a tooltip that displays the variable’s current value.
Figure 9-6 shows an example.

Viewing all variable values
Most of the values you’ll want to monitor will be variables, which come in two
flavors (or scopes):

 » Local scope: These are variables declared in the current function and are
available only to that function.

 » Global scope: These are variables declared outside of any function, which
makes them available to any script or function on the page.

For a more detailed look at variable scope, see Book 3, Chapter 5.

When you’re in break mode, the debugging tool in both Chrome and Firefox dis-
plays a pane on the right that includes a section that shows the current values of
all your declared variables:

 » Chrome: The section is named Scope and it includes two lists: Local (for local
variables) and Global (for global variables). I pointed out Chrome’s Scope
section back in Figure 9-4.

FIGURE 9-6:
In break mode,

hover the mouse
pointer over a

variable name to
see the variable’s

current value.

354 BOOK 3 Coding the Front End, Part 2: JavaScript

 » Firefox: The section is named Scopes and it includes two lists: one named
after the current function that includes the function’s local variables, and one
named Window: Global that includes the script’s global variables. Figure 9-7
shows an example.

In Figure 9-7, notice that some of the local variables show the value undefined.
Those variables are undefined because the script hasn’t yet reached the point
where the variables are assigned a value.

Adding a watch expression
Besides monitoring variable values, JavaScript also lets you monitor the results
of any expression or the current value of an object property. To do this, you need
to set up a watch expression that defines what you want to monitor. These watch
expressions appear in a special section of the browser’s debugging tools. Here’s
how to add a watch expression in Chrome and Firefox:

 » Chrome: In break mode, open the Watch section in the right pane, then click
Add Expression (+). Type your expression in the text box that appears, and
then press Enter or Return.

 » Firefox: In break mode, open the Watch Expressions section in the right pane,
then click Add Watch Expression (+). Type your expression in the text box that
appears, and then press Enter or Return.

FIGURE 9-7:
In break mode,

Firefox’s Scopes
section shows the

current values
of the local and

global variables.

D
eb

ug
gi

ng
 Y

ou
r

Co
de

CHAPTER 9 Debugging Your Code 355

The browser adds the expression and then displays the current value of the
expression to the right. Figure 9-8 shows an example in Firefox.

You can use the following techniques to work with your watch expressions:

 » Edit a watch expression. Double-click the expression, edit it, and then press
Enter or Return.

 » Update the values of your watch expressions. Click the Refresh button
(located in the upper- right corner of Figure 9-8).

 » Delete a watch expression. Hover the mouse over the watch expression you
want to remove, then click the Delete icon that appears to the right of the
expression.

More Debugging Strategies
Debugging your scripts can be a frustrating job, even during the best of times.
Here are a few tips to keep in mind when tracking down programming problems:

 » Indent your code for readability. JavaScript code is immeasurably more
readable when you indent the code within each statement block. Readable
code is that much easier to trace and decipher, so your debugging efforts
have one less hurdle to negotiate. How far you indent is a matter of personal
style, but two or four spaces is typical:

function myFunction() {
 Each statement in this function
 block is indented four spaces.

}

FIGURE 9-8:
In Firefox, click

Add Watch
Expression to

define a watch
expression for

your code.

356 BOOK 3 Coding the Front End, Part 2: JavaScript

If you nest one block inside another, indent the nested block by another four
spaces:

function myFunction() {
 Each statement in this function
 block is indented four spaces.
 for (var counter = 1; counter < 5; counter++) {
 Each statement in this nested for()
 block is indented another four spaces.
 }

}

 » Break down complex tasks. Don’t try to solve all your problems at once. If
you have a large script or function that isn’t working right, test it in small
chunks to try to narrow down the problem.

 » Break up long statements. One of the most complicated aspects of script
debugging is making sense out of long statements (especially expressions).
The Console window can help (you can use it to print parts of the statement),
but it’s usually best to keep your statements as short as possible. Once you
get things working properly, you can often recombine statements for more
efficient code.

 » Comment out problem statements. If a particular statement is giving you
problems, you can temporarily deactivate it by placing two slashes (\\) at the
beginning of the line. This tells JavaScript to treat the line as a comment. If you
have a number of statements you want to skip, place * at the beginning of
the first statement and *\ at the end of the last statement.

 » Use comments to document your scripts. Speaking of comments, it’s a
programming truism that you can never add enough explanatory comments
to your code. The more comments you add, the easier your scripts will be to
debug.

Top Ten Most Common JavaScript Errors
When you encounter a script problem, the first thing you should do is examine
your code for the most common errors. To help you do that, here’s a list of the
ten most common errors made by both beginning and experienced programmers:

 » JavaScript keywords as variable names: JavaScript has many reserved
words and keywords that are built into the language, so it’s common to
accidentally use one of these words as a variable or function name.

D
eb

ug
gi

ng
 Y

ou
r

Co
de

CHAPTER 9 Debugging Your Code 357

Double-check your names to make sure you’re not using any reserved words,
or the names of any objects, properties, or methods.

 » Misspelled variables and other names: Check your variable and function
names to make sure you spell them consistently throughout the script. Also,
check the spelling of the objects, properties, and methods you use.

 » Misused uppercase and lowercase letters: JavaScript is a case-sensitive
language, which means that it treats each letter differently depending on
whether it’s uppercase or lowercase. For example, consider the following two
statements:

var firstName = "Millicent";

var message = "Welcome " + firstname;

The first statement declares a variable named firstName, but the second
statement uses firstname. This code would generate the error firstname
is not defined (or something similar, depending on the browser) because
JavaScript thinks that firstname is a different (and uninitialized) variable.

 » Mismatched quotation marks: In any statement where you began a string
literal with a quotation mark (" or '), always check to make sure that you
included the corresponding closing quotation mark at the end of the string.
Also, check to see if you used one or more instances of the same quotation
mark within the string. If so, edit the string to use the proper escape sequence
(\" or \'), instead:

// This is illegal
var myString1 = "There are no "bad" programs.";

// This is legal

var myString2 = "There are no \"bad\" programs.";

 » Mismatched parentheses: Look for statements that contain a left parenthesis —
(— and make sure there’s a corresponding right parenthesis —). This also
applies to square brackets — [and].

For complex expressions that include three or more sets of parentheses,
a quick match-up check is to count the number of left parenthesis in the
expression, and then count the number of right parentheses. If these
numbers don’t match, then you know you have a mismatch somewhere
in the expression.

358 BOOK 3 Coding the Front End, Part 2: JavaScript

 » Missed parentheses after function names: Speaking of parentheses, if your
script calls a function or method that doesn’t take any arguments, check that
you included the parentheses — () — after the name of the function or
method:

function tryThis() {
 alert("Parentheses travel in pairs!");
}

// This won't work
tryThis;

// This will

tryThis();

 » Improper use of braces: JavaScript uses braces to mark the start ({) and end
(}) of statement blocks associated with functions, tests involving if() and
switch(), and loops, including for(), while(), and do...while(). It’s very
easy to miss one or both braces in a block, and it’s even easier to get the
braces mixed up when nesting one test or loop inside another. Double-check
your braces to make sure each block has both an opening and a closing brace.

One way to ensure that you don’t miss any braces is to position them
consistently throughout your script. For example, many people prefer to use
the traditional style for brace positions:

keyword {
 statements

}

(Here, keyword means the statement — such as function or if() — that
defines the block.) If you prefer this style, use it all through your script so that
you know exactly where to look for each brace.

An easy way to ensure that you never forget a closing brace is to enter it
immediately after entering the opening brace. That is, you type {, press Enter
twice, and then type }.

Also, use indentation consistently for the statements within the block. This
makes it much easier to see the braces, particularly when you have one block
nested within another.

 » Using = or == instead of ===: The identity operator (===) is one of the least
intuitive JavaScript features, because the assignment operator (=) feels so
much more natural. The equality operator (==) can cause problems because
it often converts the data types before making the comparison. Therefore,

D
eb

ug
gi

ng
 Y

ou
r

Co
de

CHAPTER 9 Debugging Your Code 359

check all your comparison expressions to make sure you always use ===
instead of = or ==.

 » Conflicts between local and global variables: A global variable is available
throughout the entire page, even within functions. So, within a function, make
sure that you don’t declare and use a variable that has the same name as a
global variable.

 » The use of an page element before it’s loaded: JavaScript runs through a
page’s HTML one line at a time and checks the syntax of each JavaScript
statement as it comes to it. If your code refers to an element (such as a form
field) that JavaScript hasn’t come to yet, it will generate an error. Therefore, if
your code deals with an element, always place the script after the element in
the HTML file.

Top Ten Most Common JavaScript
Error Messages

To help you decipher the error messages that JavaScript throws your way, here’s
a list of the ten most common errors and what they mean:

 » Syntax error: This load-time error means that JavaScript has detected
improper syntax in a statement. The error message almost always tells you
the exact line and character where the error occurs (see Figure 9-1).

 » Expected (or Missing (: These messages mean that you forgot to include
a left parenthesis:

function changeBackgroundColor newColor) {

If you forget a right parenthesis, instead, you’ll see Expected) or Missing):

function changeBackgroundColor (newColor{

 » Expected { or Missing { before function body: These errors tell you
that your code is missing the opening brace for a function:

function changeBackgroundColor (newColor)
 statements

}

360 BOOK 3 Coding the Front End, Part 2: JavaScript

If you’re missing the closing brace, instead, you’ll see the errors Expected }
or Missing } after function body.

 » Unexpected end of input or Missing } in compound statement: These
messages indicate that you forgot the closing brace in an if() block or other
compound statement:

 if (currentHour < 12) {
 console.log("Good morning!");
 } else {

 console.log("Good day!");

If you forget the opening brace, instead, you’ll get a Syntax error message
that points, confusingly, to the block’s closing brace.

 » Missing ; or Missing ; after for-loop initializer|condition:
These errors mean that a for() loop definition is missing a semicolon (;),
either because you forgot the semicolon or because you used some other
character (such as a comma):

for (var counter = 1; counter < 5, counter++) {

 » Unexpected identifier or Missing ; before statement: These errors
tell you that the previous statement didn’t end properly for some reason, or
that you’ve begun a new statement with an invalid value. In JavaScript,
statements are supposed to end with a semicolon (;), but this is optional. So if
JavaScript thinks you haven’t finished a statement properly, it assumes it’s
because a semicolon is missing. For example, this can happen if you forget to
include the opening /* to begin a multiple-line comment:

Start the comment (oops!)

Close the comment */

 » X is not defined: This message most often refers to a variable named X
that has not been declared or initialized, and that you’re trying to use in an
expression. If that’s the case, declare and initialize the variable. Another
possible cause is a string literal that isn’t enclosed in quotation marks. Finally,
also check to see if you misspelled the variable name:

var grossProfit = 100000;

var profitSharing = grossPrifit * profitSharingPercent;

D
eb

ug
gi

ng
 Y

ou
r

Co
de

CHAPTER 9 Debugging Your Code 361

 » X is not an object or X has no properties: These messages mean that
your code refers to an object that doesn’t exist, or to a property that doesn’t
belong to the specified object. Check to see if you misspelled the object or
property or, for the second case, that you’re using the wrong object:

document.alert("Nope!")

 » Unterminated string constant or Unterminated string literal: Both
of these messages mean that you began a string literal with a quotation mark,
but forgot to include the closing quotation mark:

var greeting = "Welcome to my Web site!

 » A script on this page is causing [browser name] to run slowly.
Do you want to abort the script? or Lengthy JavaScript still
running. Continue?: These errors tell you that your code has probably
fallen into an infinite loop. You don’t get any specific information about what’s
causing the problem, so you’ll need to scour your code carefully for the
possible cause.

4Coding the Front
End, Part 3:
jQuery

Contents at a Glance
CHAPTER 1: Developing Pages Faster with jQuery. 365

CHAPTER 2:	 Livening	Up	Your	Page with	Events	
and Animation . 387

CHAPTER 3: Getting to Know jQuery UI . 411

CHAPTER 1 Developing Pages Faster with jQuery 365

Developing Pages Faster
with jQuery

jQuery is an amazing tool that’s made JavaScript accessible to developers and
designers of all levels of experience.

— SCOTT KOSMAN

An old programming adage tells us that you shouldn’t reinvent the wheel —
unless you really want to learn how to make a wheel. That is, there’s noth-
ing wrong with coding something that someone else has already made,

because the experience can help give you a deeper understanding of that aspect of
programming. That said, most web development projects don’t offer the luxury of
limitless hacking time. Quite the opposite, in fact: You almost always have a large
amount of code to write and what seems like an impossibly short amount of time
in which to write it.

So if someone else has already built a programming wheel, it’s a wise coder who
takes advantage of it. In this chapter, you explore one of the most powerful and
popular web development wheels: jQuery. You discover what jQuery is and how
it can make your web development life much easier and far more efficient. You
then take a satisfyingly deep dive into jQuery’s powerful and accessible tools for

Chapter 1

IN THIS CHAPTER

 » Understanding what jQuery can do
for you

 » Selecting page elements with jQuery

 » Adding, populating, and removing
page elements

 » Reading and setting HTML attributes

 » Manipulating CSS properties and
classes

366 BOOK 4 Coding the Front End, Part 3: jQuery

selecting and manipulating page elements, reading and setting tag attributes, and
messing with CSS classes and properties, all with very little code.

Getting Started with jQuery
In programming parlance, a library is a set of pre-fab code that you can add to
your project and then use as part of your own code — for example, by calling
the functions provided by the library. jQuery is a JavaScript library, which means
it’s a set of JavaScript functions that give you access to sophisticated and power-
ful techniques that would otherwise require hours of programming on your part.
jQuery’s slogan is “Write less, do more,” and that’s exactly what it delivers.

Surely having access to such power must cost a fortune, right? Nope. jQuery is
and always will be completely free. It’s an open-source project maintained by the
jQuery Foundation, and it’s by far the most popular JavaScript library out there.
How popular is it? Some estimates show jQuery in use on over 70 percent of all
websites. That’s popular!

Okay, but jQuery must be massive, right? Nope. The current version is only about
260KB, and you can get a compressed version that weighs in at a mere 86KB!

Cool, but this thing sounds complicated. jQuery must be hard to learn, right?
Again, nope. The syntax is designed to be straightforward and to not require a
steep (or even a moderate) learning curve. And if you know how to wield CSS
selectors (which I describe in Book 2, Chapter 2), then you’re practically a jQuery
master already since it takes advantage of those same selectors.

How to include jQuery in your web page
You might think that given jQuery’s power and sophistication that it must require
some time-consuming, multi-step procedure to install and configure. Fortu-
nately, that’s not the case. jQuery is nothing but a JavaScript (.js) file, so you can
add it to your page by using a <script> tag with a reference to the jQuery external
script file.

How do you get this file? You have two ways to go about it:

 » Download the file. In this case, surf to jquery.com/download and click the
link for the “compressed, production” version. The file you get will have a
name like jquery-3.x.y.min.js, where x and y denote the current version.

http://jquery.com/download

D
ev

el
op

in
g

Pa
ge

s
Fa

st
er

 w
it

h
jQ

ue
ry

CHAPTER 1 Developing Pages Faster with jQuery 367

Copy the downloaded file to your web app folder and then set up your
<script> tag to reference the file:

<script src="jquery-3.x.y.min.js"></script>

 » (Remember to replace x and y with the actual version numbers of your
downloaded file.) If you put the file in a subfolder, be sure to include the
folder path:

<script src="/js/jquery-3.x.y.min.js"></script>

 » Link to a remote version of the file. Several content delivery networks (CDNs,
for short) store the jQuery file and let you link to it. Since these CDNs have
multiple servers based around the world, they can deliver the file really fast.
Here’s the tag to use for Google’s CDN:

<script src="https://ajax.googleapis.com/ajax/libs/
jquery/3.x.y/jquery.min.js"></script>

Here’s the version to use from the jQuery site:

<script src="http://code.jquery.com/ajax/jquery-3.x.y.min.
js"></script>

Again, in both cases, be sure to replace x and y with the actual version
numbers of the latest version of jQuery (see https://code.jquery.com).

Which route should you take? The CDN path is better for most people because the
remote servers almost always deliver the file faster than your own web server will.

jQuery version 3 supports all the major web browsers, so it’s safe to use in your
code. Or, I should say, it’s safe to use in your code if you don’t need or want
to support Internet Explorer 8 and earlier. Support for versions 6 through 8 of
Internet Explorer was dropped way back in jQuery 2 (which was released in 2013).
Internet Explorer 8 currently has between 0.25 and 1 percent of browser market
share, so most web developers have moved on. If you need to support it, however,
use jQuery 1.12.4:

<script src="https://ajax.googleapis.com/ajax/libs/
jquery/1.12.4/jquery.min.js"></script>

https://code.jquery.com

368 BOOK 4 Coding the Front End, Part 3: jQuery

or:

<script src="http://code.jquery.com/ajax/jquery-1.12.4.min.
js"></script>

Understanding the $ function
When you first start learning about jQuery, one of the weirdest things to get your
head around is that everything you do in jQuery begins with a dollar sign ($). Here
are some examples:

$(document).ready();
$('header').html('<h1>Hello World!</h1>');
$('.warning').css('color','red');
$('#mainArticle').append('<section></section>');

That $ symbol you see at the beginning of each statement is actually the name of
a function! Technically, it’s an alias for the main jQuery function, which is named
jQuery. That is, the previous four statements could also be written like so:

jQuery(document).ready();
jQuery('header').html('<h1>Hello World!</h1>');
jQuery('.warning').css('color','red');
jQuery('#mainArticle').append('<section></section>');

However, almost no one uses the jQuery function name, preferring the shorter
and easier-to-type $ moniker.

Where to put jQuery code
The Document Object Model (DOM) looks at a page as a kind of tree where the doc-
ument object is the “trunk” and the page elements — body, header, main, div, p,
and so on — are branches or sub-branches. The HTML “family” elements that I
discuss in Book 2, Chapter 2 — that is, the parent, child, ancestor, and descendant
elements — define the structure of the DOM.

jQuery is, at heart, a DOM-manipulation library, meaning that all your jQuery
code will read or change some aspect of the DOM. However, that means you can’t
use any jQuery code until your page is fully ready — that is, until the web browser
has loaded the document object.

Therefore, when deciding where to put your jQuery code, you have two
considerations:

D
ev

el
op

in
g

Pa
ge

s
Fa

st
er

 w
it

h
jQ

ue
ry

CHAPTER 1 Developing Pages Faster with jQuery 369

 » Your jQuery code resides in a function that you don’t need to run right
away. For example, you might have a function that will be called only in
response to a button click or some other event. In this case, it’s best to put
your jQuery code in an external JavaScript file and then make sure your
<script> tag comes after the jQuery <script> tag. Here’s an example:

<script src="https://ajax.googleapis.com/ajax/libs/
jquery/3.1.2/jquery.min.js"></script>

<script src="/js/my-code.js"></script>

 » Your jQuery code needs to be executed immediately after the document
object is loaded. For example, you might have some code that adds tags or
text to the page. In this case, you have to put your jQuery code in a place
where the browser will read it only after the document object is loaded. With
vanilla JavaScript code, this means adding the <script> tag at the end of the
body element (that is, just before the </body> tag). That works with jQuery
code, too, but jQuery gives you a better way:

$(document).ready(function() {
 Your jQuery code goes here

});

This code listens for the document object to fire the ready event, which only
happens after the document object is fully loaded. (See Book 4, Chapter 2 to
get your head around jQuery events.) The code then defines an anonymous
(that is, unnamed) function that’s called automatically in response to the
ready event, which means that the function code executes only after the page
is loaded. You can put this code anywhere in the page, as long as it’s in a
<script> tag that comes after the <script> that loads jQuery. Here’s an
example:

<script src="https://ajax.googleapis.com/ajax/libs/
jquery/3.1.2/jquery.min.js"></script>

<script>
 $(document).ready(function() {
 Your jQuery code goes here
 });

</script>

Selecting Elements with jQuery
jQuery is a DOM-manipulation library, so that means almost all your
jQuery-related statements begin with an expression that selects the DOM

370 BOOK 4 Coding the Front End, Part 3: jQuery

element or elements you want to mess with. Here’s the basic syntax to use for
this expression:

$(selector)

 » selector: This is a CSS-style selector that specifies the page element or
elements. The selector is sent to jQuery’s $ function as an argument.

I talk about the basic CSS selectors in Book 2, Chapter 2, and one of the great
advantages of jQuery is that it uses the same selectors; so if you know your CSS
selectors, you’re well on your way with jQuery.

Using the basic selectors
Most of your jQuery work will involve the five basic selectors that I outline in
Book 2, Chapter 2:

 » The tag selector: $('tagName'): Selects all the elements in the page that use
the specified HTML tag name. This example selects all the <p> tags:

$('p')

 » The class selector: $('.class-name'): Selects all the elements in the page
that use the specified class attribute. This example selects all the elements
that use the caption class:

$('.caption')

 » The id selector: $('#id-name'): Selects the page element that uses the
specified id attribute. This example selects the tag with the subtitle id:

$('#subtitle')

 » The descendant selector: $('ancestor descendant'). Selects all the
elements in the page that are the descendants of a specified ancestor
element. The following example selects all the <a> tags that are contained
within an <aside> tag:

$('aside a')

D
ev

el
op

in
g

Pa
ge

s
Fa

st
er

 w
it

h
jQ

ue
ry

CHAPTER 1 Developing Pages Faster with jQuery 371

 » The child selector: $('parent > child'): Selects all the elements in the
page that are the direct children of a specified parent element. Here’s an
example that selects all the <a> tags that are direct children of an
<aside> tag:

$('aside > a')

jQuery also lets you make multiple selections in a single expression by
separating the selectors with commas. For example, the following selects all
the page elements that use the caption class, plus the element that has the
id subtitle:

$('.caption, #subtitle')

Working with jQuery sets
When you supply jQuery with a selector, what jQuery sends back is a set of page
elements that match the selector. With that set in hand, jQuery offers straightfor-
ward techniques for doing a large number of tasks:

 » Adding and removing elements

 » Inserting HTML tags and text into an element

 » Reading and setting CSS properties

 » Adding and removing classes

 » Reading, setting, and removing HTML attributes

I cover all these tasks and more in this chapter, but first you also need to know
about three other useful techniques that are available with jQuery sets: looping,
chaining, and filtering.

To get the number of elements in a jQuery set, use the length property:

$(selector).length

372 BOOK 4 Coding the Front End, Part 3: jQuery

Automatic looping through jQuery sets
In Book 3, Chapter 6, I talk about the document object’s querySelectorAll()
method, which returns an arraylike set of elements. Once you have that set, you
work with its elements by looping through the set. Here’s an example:

var captions = document.querySelectorAll('.caption');
for (var i = 0; i < captions.length; i++) {
 captions[i].style.fontSize = '.75rem';
}

This code selects all the elements with the class caption, then loops through the
elements, setting the font-size property for each element to .75rem.

This basic technique — returning a set of elements and then looping through the
set to manipulate the elements in some way — is such a common web develop-
ment task that jQuery decided to automate it for you. That is, when you apply a
jQuery method to a set, jQuery automatically applies that method to every element
in the set. No need to loop! Here’s the jQuery equivalent of the previous code:

$('.caption').css('font-size', '.75rem');

Chaining jQuery methods
jQuery lets you operate on a set by offering various methods that you can run on
the set. For example, the append method lets you add an element to each item in
the set, and the css method lets you apply a CSS property and value to each item
in the set.

What if you want to run both methods on the same set? No problem:

$('.menuitem a').append('(Click to expand)');
$('.menuitem a').css('color', 'tomato');

However, you don’t need to use multiple statements here because jQuery supports
method chaining, where you place each method in a single statement, like so:

$('.menuitem a').append('(Click to expand)').
css('color', 'tomato');

Filtering jQuery sets
jQuery offers a number of ways that you can filter the selected elements. You won’t
use filters all that often, but they can be very handy when you need them. Here’s
quick look at the more useful filters:

D
ev

el
op

in
g

Pa
ge

s
Fa

st
er

 w
it

h
jQ

ue
ry

CHAPTER 1 Developing Pages Faster with jQuery 373

 » The even filter: $('selector:even'): Returns every second element in
the set, beginning with the first element (that is, it returns elements with
the set indexes 0, 2, 4, and so on). Here’s an example that selects the even-
numbered <p> tags:

$('p:even')

 » The odd filter: $('selector:odd'): Selects every second element in the set,
beginning with the second element (that is, it returns elements with the set
indexes 1, 3, 5, and so on). Here’s an example that selects odd-numbered
elements that use the caption class:

$('.caption:odd')

 » The first filter: $('selector:first'): Selects the first element in the set.
Here’s an example that selects the first <p> tag from the set of <p> tags that
are children of a <section> tag:

$('section > p:first')

 » The last filter: $('selector:last'): Selects the last element in the set.
Here’s an example that selects the last <a> tag from the set of <a> tags that
are descendants of elements that use the class social:

$('.social a:last')

 » The not() filter: $('selector1:not(selector2)'): Selects all the ele-
ments that match selector1, except for those that also match selector2.
Here’s an example that selects all the <h2> tags, except for those <h2> tags
that have the class subtitle:

$('h2:not(.subtitle)')

Manipulating Page Elements with jQuery
Now it’s time to experience the true power and ease of the jQuery way of doing
things. jQuery’s mission is to make it easier and faster for you to work with page
elements, and that includes inserting elements into the DOM, adding HTML tags
and text to an element, and removing elements from the DOM. The next few sec-
tions provide the not-even-close-to-gritty details.

374 BOOK 4 Coding the Front End, Part 3: jQuery

Adding an element
One of the most common web development chores is to add elements to a web page
on-the-fly. For example, if your code asks the server for some data, you almost
certainly won’t want to just dump the raw data onto the page. Instead, it’s better
to use code to add HTML tags and then populate those tags with the server data.

When you add an element, you always specify the parent element to which it will
be added, then you decide whether you want the new element added to the end or
to the beginning of the parent.

To use jQuery to add an element to the end of a parent element’s DOM hierarchy,
use the append() method, and to add an element to the beginning of a parent ele-
ment’s DOM hierarchy, use the prepend() method:

$('parent').append(content);
$('parent').prepend(content);

 » parent: A selector that specifies the parent element to which the child
element will be added.

 » content: The content you want to add. This can be any of the following:

• A string containing the HTML tags for the type of the element you want to
add. For example:

$('article').append('<section></section>');

• A string containing text. For example:

$('.caption').prepend('Figure: ');

• A jQuery selector. (Note that jQuery moves the returned element or
elements into the parent container.) For example:

$('header').append($('h1'));

• An array containing any of the previous. For example:

$('#section1').prepend([$('h2'),'<p></p>']);

• A comma-separated list of any of the previous. For example:

var domArray = ['<header></header>','<main></main>'];

$('body').append(domArray, '<footer></footer>');

D
ev

el
op

in
g

Pa
ge

s
Fa

st
er

 w
it

h
jQ

ue
ry

CHAPTER 1 Developing Pages Faster with jQuery 375

Here’s a longer example that adds header, nav, main, and footer elements to the
<body> tag, and then appends tags and/or text to each of these elements:

var domArray = ['<header></header>', '<nav></nav>',
'<main></main>', '<footer></footer>'];

$('body').append(domArray);
$('header').append('<h1>This is the header.</h1>');
$('nav').append('Nav links will go here.');
$('main').append('<h2>This is the main part of the page.</h2>');
$('footer').append('This is the footer.');

Figure 1-1 shows the results.

Replacing an element’s HTML
You can use jQuery’s append() and prepend() methods to insert HTML tags into
one or more elements, as I describe in the previous section. However, it’s often the
case that you want to completely overwrite an element’s HTML tags and text, and
you do that using jQuery’s html() method:

$(selector).html(content);

 » selector: The element (or elements) you want to work with

 » content: The HTML tags and text that you want to use to replace the ele-
ment’s existing content

Here’s an example:

$('body').append('<header></header>');
$('header').append('<h2>This is the header.</h2>');

// Replace the header content
$('header').html('<h1>No, this is the header!</h1>');

FIGURE 1-1:
A complete web
page structure,

created using
nothing but

jQuery.

376 BOOK 4 Coding the Front End, Part 3: jQuery

This code adds a <header> tag to the body element, then sets the header’s tags
and text using append(). In the final statement, the header’s tags and text are
replaced using the html() method. Figure 1-2 shows that, indeed, the replace-
ment tags and text are what the user sees.

Replacing an element’s text
If you want to replace an element’s text content — that is, just plain text without
any HTML tags — use jQuery’s text() method:

$(selector).text(content);

 » selector: The element (or elements) you want to work with

 » content: The text that you want to replace the element’s existing content

If you include tags in content, jQuery doesn’t ignore them. Instead, it encodes
them by changing < to < and > to >. This is very handy if you want to dis-
play the angle brackets on your page, as shown in the following example:

HTML:

<h1>Placeholder Title</h1>

jQuery:

$('h1').text('Advanced Uses of the <div> Tag');

As you can see in Figure 1-3, jQuery encodes the angle brackets so they are dis-
played in the page.

FIGURE 1-2:
The html()

method
 completely

replaces any
existing tags and

text with new
content.

FIGURE 1-3:
The text()

method
 completely

replaces any
existing text with

new content.

D
ev

el
op

in
g

Pa
ge

s
Fa

st
er

 w
it

h
jQ

ue
ry

CHAPTER 1 Developing Pages Faster with jQuery 377

Removing an element
If you no longer require one or more elements on your page, you can use jQuery’s
remove() method to delete them from the DOM:

$(selector1).remove(selector2);

 » selector1: The element (or elements) you want to remove

 » selector2: The optional subset of selector1 elements that you want to
remove

For example, the following statement removes all the h3 elements from the page:

$('h3').remove();

By contrast, the following statement only removes those h3 elements that have
the class temp:

$('h3').remove('.temp');

Modifying CSS with jQuery
Although you specify your CSS rules in a static stylesheet (.css) file, that doesn’t
mean the rules themselves have to be static. With jQuery on the job, you can mod-
ify an element’s CSS in a number of ways. You can:

 » Read the current value of a CSS property.

 » Change the value of a CSS property.

 » Add or remove a class.

 » Toggle a class on or off.

Why would you want to make these changes to your CSS? You already know that a
big part of a well-designed web page is a strong CSS component that uses typog-
raphy, colors, and spacing to create a page that’s easily readable, sensibly navi-
gable, and pleasing to the eye. But all of that applies to the initial page the user
sees. In the sorts of dynamic web apps that you learn how to build in this book,
your page will change in response to data obtained from the server or the user
clicking a button or pressing a key. This dynamic behavior needs to be matched
with dynamic changes to the page, including changes to the CSS to highlight or
reflect what’s happening.

378 BOOK 4 Coding the Front End, Part 3: jQuery

Working with CSS properties
jQuery makes it straightforward to read or modify CSS properties by offering a
single method to use for most of your CSS chores: the css() method. The .css()
method replaces the vanilla JavaScript style property that I discuss in Book 3,
Chapter 6 and brings with it a significant advantage: You can use the CSS property
names as they are. That’s right: no need to convert, say, the background-color
property to backgroundColor. Nice!

Reading a CSS property value
If you want to read the current value of a CSS property for an element, use the fol-
lowing syntax for the css() method:

$(selector).css(property);

 » selector: The element you want to work with. If selector returns a set of
elements, jQuery uses only the first element in the set.

 » property: The name of the CSS property you want to read.

Here’s an example:

CSS:

h1 {
 font-family: Verdana, serif;
 font-size: 2.5rem;
}

HTML:

<h1>Welcome to the css() Method!</h1>
<div></div>

jQuery:

// Get the font-size value for the h1 element
var h1FontSize = $('h1').css('font-size');

// Display the size in the div
$('div').html('The <code>h1</code> element is using a

<code>font-size</code> value of ' + h1FontSize);

D
ev

el
op

in
g

Pa
ge

s
Fa

st
er

 w
it

h
jQ

ue
ry

CHAPTER 1 Developing Pages Faster with jQuery 379

In the CSS, you see that the h1 element has a font-size value of 2.5rem, which,
assuming the default font size is 16px, corresponds to 40px. The jQuery code uses
the css() method to return the font-size value of the h1 element, which it then
displays in the empty div element, as shown in Figure 1-4. Notice that the prop-
erty value returned by the css() method includes the unit of measurement (px,
in this case).

Setting a CSS property value
To set a CSS property value on an element or a set of elements, use the following
syntax for the css() method:

$(selector).css(property, value);

 » selector: The element or elements you want to work with.

 » property: The name of the CSS property you want to set.

 » value: The value you want to assign to property. The value can either be a
string that includes the unit of measurement, if any (such as '50vw') or a
number. If you use a number for value, jQuery automatically adds the px
measurement unit.

Here’s an example:

HTML:

<h1>Welcome to the css() Method!</h1>
<div></div>

jQuery:

// Set the font-size value for the h1 element
$('h1').css('font-size', '3rem');

// Display the new size in the div
$('div').html('The <code>h1</code> element is now using a

<code>font-size</code> value of ' + $('h1').css('font-size'));

FIGURE 1-4:
The css()

method returns
the current value

of the specified
property.

380 BOOK 4 Coding the Front End, Part 3: jQuery

The jQuery code uses the css() method to set the font-size value of the h1
element to 3rem, and then displays the new value in the empty div element, as
shown in Figure 1-5.

Setting multiple CSS property values
You can save a bit of wear-and-tear on your typing fingers by setting multiple
CSS properties on a single element or set. For example, the long-winded way to
change the text color, background color, and font size on an element would be to
use three separate statements:

$('#my-div').css('color', 'lemonchiffon');
$('#my-div').css('background-color', 'maroon');
$('#my-div').css('font-size', '2rem');

Instead, you can convert multiple property-value pairs into a single object literal
that uses the following syntax:

{
 property1: value1,
 property2: value2,
 etc.
 propertyn: valuen
}

Here’s an example:

{
 'color': 'lemonchiffon',
 'background-color': 'maroon',
 'font-size': '2rem'
}

You can use this object literal as the css() method argument in a single jQuery
statement:

FIGURE 1-5:
The css()

method can also
set the value of a

property.

D
ev

el
op

in
g

Pa
ge

s
Fa

st
er

 w
it

h
jQ

ue
ry

CHAPTER 1 Developing Pages Faster with jQuery 381

$('#my-div').css({
 'color': 'lemonchiffon',
 'background-color': 'maroon',
 'font-size': '2rem'
});

Working with width and height: A better method
Have a look at the following code and see if you can figure out what it does:

var currWidth = $('#my-div').css('width');
var newWidth = currWidth + 100;
$('#my-div').css('width', newWidth);

What the code is trying to do is take the current width of an element, add 100 pix-
els to that value, and then apply that new width value to the element. However,
if you run this code, the width of the element doesn’t budge one pixel. Why not?
The problem is that css('width') doesn’t return a number. Instead, it returns a
string that combines the element width and the px measurement unit. So if the
element is 250 pixels wide, the css() method returns the string 250px for the ele-
ment’s width value. Adding 100 to this value gives the nonsense string 250px100,
so trying to set the element’s width property with this value fails.

You could work around this problem by converting the string returned by
css('width') to a floating-point value by using JavaScript’s parseFloat function:

var currWidth = parseFloat($('#my-div').css('width'));
var newWidth = currWidth + 100;
$('#my-div').css('width', newWidth);

That works fine, but it’s not only a pain to have remember to add the parseFloat
function each time you need a number instead of a string, but it also makes your
code a teensy bit harder to decipher.

Fortunately, the jQuery programmers, no doubt having bumped up against this
same problem a few thousand times in their coding careers, implemented a solu-
tion: the width() method. width() returns just the numeric portion of the width
property, in pixels. You can also use width() to set the element’s width to a pixel
value. Here’s the syntax:

$(selector).width(value);

 » selector: The element you want to work with

382 BOOK 4 Coding the Front End, Part 3: jQuery

 » value: An optional numeric value used to set the width of the element in
pixels

Here’s the example code rewritten with the width() method:

var currWidth = $('#my-div').width();
var newWidth = currWidth + 100;
$('#my-div').width(newWidth);

jQuery also offers a height() method that performs a similar function:

$(selector).height(value);

 » selector: The element you want to work with

 » value: An optional numeric value used to set the height of the element in
pixels

Manipulating classes
Rather than fiddling with individual CSS properties, you might prefer to work with
entire classes. jQuery offers several methods that enable you to do just that.

Adding a class
If you have a class rule defined in your CSS, you can apply that rule to an element
by adding the class attribute to the element’s tag and setting the value of the
class attribute equal to the name of your class rule.

To add the class attribute using code, or, if the class attribute already exists, to
add another class name to its value, jQuery offers the addClass() method:

$(selector).addClass(class);

 » selector: The element you want to work with.

 » class: A string with the name of the class you want to add to the element. To
add two or more classes, separate each class name with a space.

Here’s an example, and Figure 1-6 shows the result.

D
ev

el
op

in
g

Pa
ge

s
Fa

st
er

 w
it

h
jQ

ue
ry

CHAPTER 1 Developing Pages Faster with jQuery 383

CSS:

.my-class {
 display: flex;
 justify-content: center;
 align-items: center;
 border: 6px dotted black;
 font-family: Verdana, serif;
 font-size: 2rem;
 background-color: lightgray;
}

HTML:

<div id="my-div">
Hello World!
</div>

jQuery:

$('#my-div').addClass('my-class');

If the class attribute doesn’t exist in the element, the addClass() method inserts
it into the tag. So in the previous example, after the code executes, the <div> tag
now looks like this:

<div id="my-div" class="my-class">

Removing a class
To remove a class from an element’s class attribute, jQuery offers the remove-
Class() method:

$(selector).removeClass(class);

FIGURE 1-6:
This code uses

the addClass()
method to add

the class named
my-class to the

<div> tag.

384 BOOK 4 Coding the Front End, Part 3: jQuery

 » selector: The element you want to work with.

 » class: A string specifying the name of the class you want to remove from the
element. To remove two or more classes, separate each class name with a
space.

Here’s an example:

$('#my-div').removeClass('my-class');

Toggling a class
One very common web development scenario is switching a web page element
between two different states. For example, you might want to change an ele-
ment’s styles depending on whether a check box is selected or deselected, or you
might want to alternate between showing and hiding an element’s text when the
user clicks the element’s heading.

One way to handle this would be to use addClass() to add a particular class when
the element is in one state (for example, the user clicks the element’s header for the
first time) and then use removeClass() to remove that class when the element is in
the other state (for example, the user clicks the element’s header for a second time).

That would work, but it would mean that your code would somehow have to check
the element’s current state, something like this pseudo-code:

if (the element has the class applied) {
 remove the class
} else {
 add the class
}

That’s a lot of extra work, but fortunately it isn’t work you have to worry about
because jQuery has got your back on this one. The toggleClass() method does
the testing for you. That is, it checks the element for the specified class; if the
class is there, jQuery removes it; if the class isn’t there, jQuery adds it. Sweet!
Here’s the syntax:

$(selector).toggleClass(class);

 » selector: The element you want to work with.

D
ev

el
op

in
g

Pa
ge

s
Fa

st
er

 w
it

h
jQ

ue
ry

CHAPTER 1 Developing Pages Faster with jQuery 385

 » class: A string specifying the name of the class you want to toggle for
the element. To toggle two or more classes, separate each class name with
a space.

Here’s an example:

$('#my-div').toggleClass('my-class');

Tweaking HTML Attributes with jQuery
In the previous section, I went on and on about jQuery’s addClass(), remove-
Class(), and toggleClass() methods, one of the characteristics of which is
that these methods add, modify, or remove the element’s class attribute. So you
won’t be even a tad surprised that jQuery offers a similar set of techniques for
manipulating any HTML attribute. These techniques mostly center around the
attr() method, and the next few sections tell all.

Reading an attribute value
If you want to read the current value of an attribute for an element, use the fol-
lowing syntax for the attr() method:

$(selector).attr(attribute);

 » selector: The element you want to work with. If selector returns a set of
elements, jQuery uses only the first element in the set.

 » attribute: The name of the attribute you want to read.

Here’s an example that reads the href attribute of the first a element that’s a
child of the footer element:

var firstLink = $('footer > a').attr('href');

Setting an attribute value
To set an attribute value on an element, use the following syntax for the attr()
method:

$(selector).attr(attribute, value);

386 BOOK 4 Coding the Front End, Part 3: jQuery

 » selector: The element you want to work with

 » attribute: The name of the attribute you want to set

 » value: The string value you want to assign to attribute

Here’s an example that sets the title attribute for the footer element’s first a
child element:

$('footer > a').attr('title', 'Like us on Facebook!');

Removing an attribute
To remove an attribute from an element, jQuery offers the removeAttr() method:

$(selector).removeAttr(attribute);

 » selector: The element you want to work with.

 » attribute: A string specifying the name of the attribute you want to remove
from the element. To remove two or more attributes, separate each class
name with a space.

Here’s an example:

$('footer > a').removeAttr('title');

CHAPTER 2 Livening Up Your Page with Events and Animation 387

Livening Up Your
Page with Events
and Animation

Today’s web animation can be built with the same tools we’ve always used to
design and build the web: CSS and JavaScript. That is a huge amount of power
and a vast arena in which to be creative.

— VAL HEAD

HTML, CSS, JavaScript, and jQuery are among the web development world’s
most powerful tools, enabling you to create pages and entire sites that look
great and work flawlessly (well, as close to flawlessly as the complexity

of the web allows). But there’s a problem with most of the web pages built using
these tools: The pages just kind of sit there. Once the page loads, its content and
its structure are fixed, immutable. You can’t click anything, you can’t change any-
thing, nothing moves or jiggles, spins or flips, fades in or fades out. Sure, the page
doesn’t distract, but neither does it delight, and that’s a no-no in the modern web.
Fortunately, you’ve come to the right place because this chapter shows you how
to liven up even the most moribund page. Here you delve into two techniques for
injecting some dynamism into dead pages: events and animation. These powerful

Chapter 2

IN THIS CHAPTER

 » Figuring out events

 » Handling mouse clicks, key presses,
and more

 » Showing, hiding, and fading elements

 » Moving elements around the page

 » Animating CSS properties

388 BOOK 4 Coding the Front End, Part 3: jQuery

tools not only give your page a dose of adrenaline, but they offer you endless pos-
sibilities for exploring and expressing your creativity.

Building Reactive Pages with Events
When you buy a car, no matter how much you paid for it or how technologically
advanced it is, the car just sits there unless you do something. (If you’re reading
this in a future where all the cars are autonomous, my apologies.) That might be
fine if it’s a good-looking car, but it’s much more likely you’ll want the car to do
something, anything. Here’s a short list of actions you can take to achieve that goal:

 » Start the car.

 » Put the transmission into gear.

 » Press the accelerator.

 » Turn on the radio.

The common denominator for all these actions is that they set up a situation to
which the car must respond in some way: turning on, engaging the gears, moving,
playing sounds. Looked at it from this angle, the car is a machine that responds to
external stimuli, or, in a word, to events.

Somewhat surprisingly, a web page is also a machine that responds to external
stimuli. I’ll describe what I mean.

What’s an event?
In web development, an event is an action that occurs when a user interacts with
a web page. Here are some examples:

 » Loading the page

 » Clicking a button

 » Pressing a key

 » Scrolling the page

How can your web page possibly know when any of these actions occur? The secret
is that JavaScript was built with events in mind. As the computer science profes-
sors would say, JavaScript is an event-driven language.

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 389

So why don’t web pages respond to events automatically? Why do they just sit
there? Because web pages are static by default, meaning that they ignore the
events that are firing all around them. Your job as a web developer is to change
that behavior by making your web pages “listen” for particular events to occur.
You do that by setting up special chunks of code called event handlers that say, in
effect, “Be a dear and watch out for event X to occur, will you? When it does, be
so kind as to execute the code that I’ve placed here for you. Thanks so much.” An
event handler consists of two parts:

 » Event listener: An instruction to the web browser to watch out for (“listen”
for) a particular event occurring on a particular element

 » Callback function: The code that the web browser executes when it detects
that the event has occurred

I said earlier that events are baked into JavaScript, but in this book I’m not going
to talk about vanilla JavaScript event handling. That’s because jQuery offers
straightforward event-handling methods that are easier to use and more flexible
that those offered by pure JavaScript, so it makes sense to learn about events the
jQuery way.

Understanding the event types
There are dozens of possible events your web page can respond to, but lucky for
you only a small subset of these events is needed in most day-to-day web devel-
opment. I break these down into the following five categories:

 » Document: Events that fire in relation to the loading of the document object.
The only event you need to worry about here is ready, which fires when the
document object has completed loading.

 » Mouse: Events that fire when the user does something with the mouse (or a
similar device, such as a trackpad or touchscreen). The most important events
in this category are click (the user clicks the mouse), dblclick (the user
double-clicks the mouse), and mouseover (the user moves the mouse pointer
over an element).

 » Keyboard: Events that fire when the user interacts with the keyboard. The
main event in this category is keypress, which is fired when the user presses
a key.

 » Form: Events associated with web page forms. The important ones are focus
(an element gains the focus, for example, when the user tabs to a form
control), blur (an element loses the focus), change (the user changes the
value of a form control), and submit (the user submits the form). See Book 6,
Chapters 2 and 3 to learn about forms and form events.

390 BOOK 4 Coding the Front End, Part 3: jQuery

 » Browser window: Events that fire when the user interacts with the browser
window. The two main events here are scroll, which fires when the user
scrolls the window vertically or horizontally, and resize, which fires when the
user changes the window width or height.

Setting up an event handler
You configure your code to listen for and react to an event by setting up an event
handler using jQuery’s on() method. Here’s the syntax:

$(selector).on(event, function() {
 This code runs when the event fires
});

 » selector: A jQuery selector that specifies the web page element or set to be
monitored for the event. The event is said to be bound to the element or set.

 » event: A string specifying the name of the event you want the browser to
listen for. For the main events I mention in the previous section, use one of
the following, enclosed in quotation marks: ready, click, dblclick,
mouseover, keypress, focus, blur, change, submit, scroll, or resize.

 » function(): The callback function that jQuery executes when the event
occurs.

Here’s an example:

HTML:

<div id="my-div"></div>
<button id="my-button">Click to add some text, above</button>

jQuery:

$('#my-button').on('click', function() {
 $('#my-div').html('<h1>Hello Click World!</h1>');
});

The HTML sets up an empty div element and a button element. The jQuery code
attaches a click event listener to the button, and the callback function adds the
HTML string <h1>Hello Click World!</h1> to the div. Figure 2-1 shows the
resulting page after the button has been clicked.

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 391

Using jQuery’s shortcut event handlers
jQuery also offers some shortcut methods for setting up event handlers. Here’s
the syntax:

$(selector).event(function() {
 This code runs when the event fires
});

 » selector: A jQuery selector that specifies the web page element to be
monitored for the event.

 » event: The name of event you want to handle. This defines a jQuery method
as the event listener.

 » function(): The callback function that jQuery executes when the event
occurs.

For example, the ready event fires when the document object has finished loading,
so here’s some code that handles that event:

$(document).ready(function() {
 $('body').prepend('<h1>Hello Event World!</h1>');
});

As another example, here’s a rewrite of the earlier code I used to demonstrate the
on() method:

HTML:

<div id="my-div"></div>
<button id="my-button">Click to add some text, above</button>

jQuery:

$('#my-button').click(function() {
 $('#my-div').html('<h1>Hello Click World!</h1>');
});

FIGURE 2-1:
The click event
callback function
adds some HTML

and text to the
div element.

392 BOOK 4 Coding the Front End, Part 3: jQuery

As a third example, the following code uses the dblclick() method to swap a div
element’s text and background colors when the div is double-clicked:

CSS:

div {
 color: lemonchiffon;
 background-color: darkgreen;
}

HTML:

<div id="my-div">
 Double-click to switch the text and background colors.
</div>

jQuery:

$('#my-div').dblclick(function() {
 if($('#my-div').css('color') === 'rgb(255, 250, 205)') {
 $('#my-div').css('color', 'darkgreen');
 $('#my-div').css('background-color', 'lemonchiffon');
 } else {
 $('#my-div').css('color', 'lemonchiffon');
 $('#my-div').css('background-color', 'darkgreen');
 }
});

In the dblclick callback function, an if() statement checks to see if the cur-
rent color value of the div element equals rgb(255, 250, 205), which corre-
sponds to the lemonchiffon color keyword. If so, the text and background colors
are swapped.

When the user clicks a button or other web page element, the browser sets the
focus on that element, which almost always means that, post-click, the element
ends up with an unsightly “Look ma, I’ve got the focus” border around it. To
remove this border, trigger the blur event by running the blur() method on the
clicked element:

$('#my-button').on('click', function() {
 $('#my-div').html('<h1>Hello Click World!</h1>');
 $('#my-button').blur();
});

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 393

For many events, you can use your code to trigger that event by running the cor-
responding jQuery shortcut event method without any arguments.

Getting data about the event
When an event fires, jQuery creates an Event object, the properties of which con-
tain info about the event, including the following:

 » target: The web page element to which the event occurred. For example, if
you set up a click handler for a div element, that div is the target of
the click.

 » which: A numeric code that specifies the key that was pressed during a
keypress event.

 » pageX: The distance (in pixels) that the mouse pointer was from the left edge
of the browser’s content area when the event fired.

 » pageY: The distance (in pixels) that the mouse pointer was from the top edge
of the browser’s content area when the event fired.

 » metaKey: A Boolean value that equals true if the user had the Windows key
(   ) or the Mac Command key (⌘) held down when the event fired.

 » shiftKey: A Boolean value that equals true if the user had the Shift key held
down when the event fired.

To access these properties, you insert a name for the Event object as an argument
in your event handler’s callback function:

$(selector).on(event, function(e) {
 This code runs when the event fires
});

 » e: A name for the Event object that jQuery generates when the event fires.
You can use whatever name you want, but most coders use e (although evt
and event are also common).

For example, when handling the keypress event, you need access to the which
property to find out the code for the key the user pressed. Here’s an example page
that can help you determine which code value to look for:

HTML:

<div>
 Type a key:
</div>

394 BOOK 4 Coding the Front End, Part 3: jQuery

<input id="key-input" type="text">
<div>
 Here's the code of the key you pressed:
</div>
<div id="key-output">
</div>

jQuery:

$('#key-input').keypress(function(e) {
 $('#key-output').text(e.which);
});

The HTML sets up an <input> tag to accept a keystroke, and a <div> tag with
id="key-output" to use for the output. The jQuery code adds a keypress event
listener to the input element, and when the event fires, the callback function
writes e.which to the output div. Figure 2-2 shows the page in action.

Preventing the default event action
Some events come with default actions that they perform when the event fires.
For example, a link’s click event opens the target URL, whereas a form’s submit
event sends the form data to a script on the server. Most of the time these default
actions are exactly what you want, but that’s not always the case. For example,
you might want to intercept a link click to perform some custom action, such as
displaying a menu. Similarly, rather than letting the browser submit a form, you
might prefer to massage the form data and then send the data via your script.

For these and many similar situations, you can tell the web browser not to per-
form an event’s default action by running the Event object’s preventDefault()
method:

event.preventDefault();

FIGURE 2-2:
Type a key in the

input box, and
the keypress
event callback
function uses

e.which to write
the numeric code

of the pressed
key to the div

element.

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 395

 » event: A reference to the Event object that jQuery creates when an event
fires

For example, take a peek at the following code:

HTML:

Wiley
Word Spy
Web Coding

Playground
<div id="output">
 Link URL:
<div>

jQuery:

$('a').click(function(e) {
 e.preventDefault();
 strURL = e.target.href
 $('#output').text('Link URL: ' + strURL);
});

The HTML defines three links (styled as inline blocks, which I haven’t shown
here) and a div element. The jQuery sets up a click event listener for all the a
elements, and the callback function does three things:

 » It uses the e.preventDefault() method to tell the browser not to navigate
to the link address.

 » It uses e.target.href to get the URL of the link.

 » It displays that URL in the div element. Figure 2-3 shows an example.

FIGURE 2-3:
You can use
e.prevent

Default() to
stop the browser

from navigating
to the link URL.

396 BOOK 4 Coding the Front End, Part 3: jQuery

Getting your head around event delegation
One of the brow-furrowing problems you run into when using jQuery is trying to
get an event handler to work on an element that you create with code. To see what
I mean, take a look at an example:

HTML:

<button id="add-div-button">
 Click to add the div
</button>

jQuery:

// Build the div element as a string and then prepend it
$('#add-div-button').click(function() {
 var strDiv = '<div id="my-div">';
 strDiv += 'Double-click to switch the text and background

colors.';
 strDiv += '</div>'
 $('body').prepend(strDiv);
});

// Set up the div with a double-click event handler
$('#my-div').on('dblclick', function() {
 if($('#my-div').css('color') === 'rgb(255, 250, 205)') {
 $('#my-div').css('color', 'darkgreen');
 $('#my-div').css('background-color', 'lemonchiffon');
 } else {
 $('#my-div').css('color', 'lemonchiffon');
 $('#my-div').css('background-color', 'darkgreen');
 }
});

When you click the button, the first jQuery event handler builds a div element as a
string and then uses prepend to add it to the body element. That div element uses
the id value my-div. However, the second jQuery event handler is for a dblclick
event on that same my-div element. Theoretically, the dblclick handler switches
the element’s text and background colors, but if you try this example, you can
double-click the div until your finger falls off and nothing will happen.

Why doesn’t the event handler handle anything? Because when the browser was
loading the page and came upon the code for the dblclick event handler, the
target — that is, the div with the id value my-div — didn’t yet exist, so the
browser ignored that event handler.

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 397

To fix this problem, you use a jQuery technique called event delegation, which
means you do two things:

 » You bind the event handler not to the element itself, but to an ancestor
element higher up in the web page hierarchy. This needs to be an element
that exists when the web browser parses the event handler.

 » Add an extra parameter to the on() method that specifies which element
your click handler actually applies to.

Here’s the new syntax for the on() method:

$(ancestor).on(event, descendant, function() {
 This code runs when the event fires
});

 » ancestor: A selector that specifies the ancestor element that is delegated to
be monitored for the event

 » event: A string specifying the name of event you want the browser to
listen for

 » descendant: A selector that specifies the descendant element of ancestor
that’s the actual target of the event

 » function(): The callback function that jQuery executes when the event
occurs

This version of the on() method delegates the event handler to the ancestor ele-
ment. When the event fires, the ancestor element looks through its descendants
until it finds the element or set given by descendant, and it then runs the handler
with that element or set as the event target.

To fix the previous example, you could use the document object as the ancestor
argument, and add #my-div as the descendant argument:

$(document).on('dblclick', '#my-div', function() {

When choosing which ancestor to use as the delegate, the best practice is to use
the closest ancestor that exists when the browser processes the event handler.
For example, if in our example we were appending the div to, say, an existing
article element, it would be better to use that article element as the delegate
than the document object. Why is it better, you ask? Because the further away the
ancestor, the more descendants the ancestor has to run through before it finds the
event target, which can be a real drag on performance.

398 BOOK 4 Coding the Front End, Part 3: jQuery

Turning off an event handler
Most of the time you’ll want to leave an event handler on the job full-time so it’s
always available for your page visitors. However, sometimes you only want an
event handler available part-time. For example, if clicking a button loads some
HTML and text that you want to leave on the page, then it’s best to remove both
the button and its event handler to avoid confusing the user.

To remove an event handler, run jQuery’s off() method:

$(selector).off(event);

 » selector: A jQuery selector that specifies the web page element or set from
which you want the event removed

 » event: A string specifying the name of the event you want to remove

Here’s an example that removes the click event from the element with the id
value my-button:

$('#my-button').off('click');

Building Lively Pages with Animation
When you attend a speech or talk, nothing will put you to sleep faster — or, if
you remain awake, make you want to head for the exit quicker — than listening
to someone speak in a flat, affectless, monotone. The best orators use intonation,
gestures, and the dramatic pause for effect to keep listeners not only in, but on
the edge of, their seats.

Web pages, too, can appear flat and lifeless. Even if you’ve applied lots of color and
top-notch typography, that’s like dressing up a deadly dull speaker in a flattering
dress or sharp suit: The deadly dullness remains. Web page liveliness comes not
only from an attractive appearance, but also from the judicious use of animation,
the digital equivalent of voice modulation and hand gestures.

That might sound like a lot of extra effort to put in for a bit of eye candy, but
interface animations aren’t just for show: When used properly they help the
reader navigate and use your site, keep the reader engaged, and provide delight.
But what about the work involved? Forget about it: jQuery offers a few ready-
made tools that enable you to add sophisticated animation effects with just a few
lines of code.

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 399

Hiding and showing elements
One of the most common web page effects is hiding something and then showing
it when the user clicks a heading, a button, or some other page element. These
effects are used for drop-down menus, navigation bars, image captions, question-
and-answer sections (where clicking the question shows and hides the answer),
and many other scenarios.

To hide an element, use jQuery’s hide() method:

$(selector).hide();

 » selector: A jQuery selector that specifies the web page element or set you
want to hide

For example, the following statement hides the web page’s header element:

$('header').hide();

To show a hidden element, use jQuery’s show() method:

$(selector).show();

 » selector: A jQuery selector that specifies the hidden web page element or
set you want to show

For example, the following statement shows the web page’s header element:

$('header').show();

Finally, you can toggle an element between shown and hidden by using jQuery’s
toggle() method:

$(selector).toggle();

 » selector: A jQuery selector that specifies the hidden web page element or
set you want to toggle between shown and hidden

For example, the following statement toggles the web page’s header element:

$('header').toggle();

400 BOOK 4 Coding the Front End, Part 3: jQuery

Fading elements out and in
The hide(), show(), and toggle() methods that I cover in the previous section
change the display of the element immediately. If the suddenness of these effects
seems a bit harsh to you, then you might prefer the jQuery animations that fade
an element out or in.

To fade an element out, use jQuery’s fadeOut() method:

$(selector).fadeOut();

 » selector: A jQuery selector that specifies the web page element or set you
want to fade out

For example, the following statement fades out the web page’s aside element:

$('aside').fadeOut();

To fade an element in, use jQuery’s fadeIn() method:

$(selector).fadeIn();

 » selector: A jQuery selector that specifies the web page element or set you
want to fade in

For example, the following statement fades in the web page’s aside element:

$('aside').fadeIn();

And, yes, you can toggle the fading by running jQuery’s fadeToggle() method:

$(selector).fadeToggle();

 » selector: A jQuery selector that specifies the web page element or set you
want to toggle between fading in and fading out

For example, the following statement toggles fading for the web page’s aside
element:

$('aside').fadeToggle();

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 401

Sliding elements
As an alternative to the fade animations that I cover in the previous section, you
can also make an element show or hide itself gradually by sliding into or out of its
position on the page.

To hide an element by sliding it up from its bottom edge until it disappears, use
jQuery’s slideUp() method:

$(selector).slideUp();

 » selector: A jQuery selector that specifies the web page element or set you
want to slide up

For example, the following statement slides up the web page’s nav element:

$('nav').slideUp();

To show an element by sliding it down from its top edge, use jQuery’s
slideDown() method:

$(selector).slideDown();

 » selector: A jQuery selector that specifies the web page element or set you
want to slide down

For example, the following statement slides down the web page’s nav element:

$('nav').slideDown();

I know, you’re way ahead of me: You can toggle the slide effect by running jQue-
ry’s slideToggle() method:

$(selector).slideToggle();

 » selector: A jQuery selector that specifies the web page element or set you
want to toggle between sliding up and sliding down

For example, the following statement toggles sliding for the web page’s nav
element:

$('nav').slideToggle();

402 BOOK 4 Coding the Front End, Part 3: jQuery

Controlling the animation
duration and pace
When you use any of jQuery’s animation methods — hide(), show(),
toggle(), fadeOut(), fadeIn(), fadeToggle(), slideUp(), slideDown(), or
slideToggle() — without parameters, jQuery runs the animation using its default
settings:

 » Duration: The animation take 400 milliseconds to complete.

 » Pace: The animation starts slow, speeds up in the middle, and then slows
down at the end. The pace is also called the animation’s easing function and
the default easing function is named swing.

You have quite a bit of control over the duration, and a bit of control over the pace,
by using jQuery’s animations with the addition of two parameters that set the
duration and the easing function:

$(selector).animation(duration, easing);

 » selector: A jQuery selector that specifies the web page element or set you
want to work with.

 » animation: The name of the animation method you want to run.

 » duration: The length of the animation, in milliseconds. You can also use the
keywords slow (equivalent to 600ms) or fast (equivalent to 200ms).

 » easing: A string that specifies the easing function you want to use for the
animation. The default is swing, but you can also specify linear to have the
animation run at a constant pace.

For example, the following statement toggles the nav element between hidden
and shown, where the animation takes one second and uses the linear easing
function.

$('nav').toggle(1000, 'linear');

Resist the temptation to extend the duration of an animation beyond a second or
two. Your web visitors are busy people, and no one wants to sit through a ten-
second fade or slide animation. As a general rule, your animations should be quick:
around half a second in most cases.

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 403

Example: Creating a web page accordion
A common web design pattern is the accordion, a menu or list of items, each of
which contains extra content that is hidden by default. When you click an item in
the accordion, that item’s hidden content is displayed. Click the item again, and
the content returns to being hidden. An accordion is useful when you have a long
series or list of items, and to display everything at once would be overwhelming
for the reader. Instead, you can display just the headings, menu commands, or
similar top-level items, and you can hide the rest of the content associated with
each item, thus making the list or menu easier to read and navigate.

Take a look at an example. First, here’s some CSS and HTML code to mull over:

CSS:

.sentence {
 display: none;
}

HTML:

<header>
 <h1>Some Food Words to Chew On</h1>
</header>
<main>
 <p>
 Click a word or its definition to see that term's sample

sentence.
</p>
<section id="alamode" class="word">
 à la mode (al·uh·MODE, adjective). Describes a

dish that's served with ice cream.
 <p class="sentence">
 Give her a big spoon and a piece of apple pie à

la mode the size of her head, and Moira had her own little
slice of heaven.

 </p>
 </section>
 <section id="appetizer" class="word">
 appetizer (AP·uh·tye·zur, noun). Food or drink

that's served before the main meal and is meant to stimulate
the appetite.

 <p class="sentence">
 A slow eater, Karen was only halfway through her

salad appetizer when the waiter showed up with the main
course.

404 BOOK 4 Coding the Front End, Part 3: jQuery

 </p>
 </section>
 <section id="comestible" class="word">
 comestible (kuh·MES·tuh·bul, noun). An item that

can be eaten as food.
 <p class="sentence">
 After picking up bread, meat, cheese, and a few

other comestibles, Deirdre was ready for the weekend-
long Three Stooges festival.

 </p>
 </section>
 <section id="cuisine" class="word">
 cuisine (kwi·ZEEN, noun). A style of cooking as

well as the food cooked in that style.
 <p class="sentence">
 His local restaurant was supposed to specialize in

French cuisine, so Sean wondered why they didn't serve
french fries.

 </p>
 </section>
 <section id="epicure" class="word">
 epicure (EP·uh·kyoor, noun). A person with

sophisticated tastes, especially when it comes to food and
wine.

 <p class="sentence">
 Being able to tell beef stroganoff from beef

Wellington and a Bordeaux from a Beaujolais convinced Dominic
that he was quite the epicure.

 </p>
 </section>
 <section id="ingest" class="word">
 ingest (in·JEST, verb). To take food into the

body.
 <p class="sentence">
 Not at all hungry, but also unwilling to displease

his wife, Mr. Tortellini ingested her spaghetti with
grim determination.

 </p>
 </section>
 <section id="nosh" class="word">
 nosh (nawsh, verb). To eat a light meal or a

snack.

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 405

 <p class="sentence">
 Wanda would guiltily nosh on a pepperoni

stick before going in to her vegetarian cooking class.
 </p>
 </section>
</main>

The HTML consists mostly of a series of <section> tags, each of which contains
a word, its pronunciation, its definition, and a <p> tag that contains a sample
sentence that uses the word. Each of these <p> tags is given the class named
sentence, and in the CSS code, you can see that the sentence class is hidden by
default by styling it with the declaration display: none. Figure 2-4 shows the
initial state of the page.

The goal here is to display a word’s sample sentence when the reader clicks the
word (or its pronunciation or definition). One way to do this would be to set up
a click event handler on each word and then have that handler’s callback func-
tion use a method such as slideToggle() or fadeToggle() to show and hide the
sample sentence. That would do the job, but it requires a lot of work. Sure, it’s
not bad with the seven items in my list, but what if there were 70 items, or 700?

Instead, I’m going to take advantage of three timesaving features of my HTML
code:

 » Each <section> tag uses the class named word, so I can set up a single click
event handler that is bound to that class name.

 » Each <section> tag also uses a unique id value that is based on its word.
I can use that id value to know which term was clicked.

 » Each <p> tag is a direct child of its parent <section> tag, which lets me target
the <p> tag using the child selector.

FIGURE 2-4:
When you first
load the page,

you see only
each word and

its pronunciation
and definition.

The sample
 sentences

are hidden by
default with the
display: none

declaration.

406 BOOK 4 Coding the Front End, Part 3: jQuery

Given all this, the jQuery code required to show and hide the sample sentences is
remarkably compact:

$('.word').click(function(e) {
 var wordID = e.target.id;
 $('#' + wordID + ' > p').slideToggle('slow');
});

Three things are going on here:

 » The click event method is bound to the class named word, so it fires any
time the reader clicks a <section> tag’s content.

 » To figure out which <section> tag was clicked, the code gets the value of
e.target.id, which returns the id value of the clicked section element.
That id value is stored in the wordID variable.

 » To build the jQuery selector for the sample sentence, the code appends # to
wordID, and then adds the child selector for the p element: > p. With the
section element’s sample sentence selected, the code runs the slideTog-
gle() animation to slide the sample sentence in and out of view.

Figure 2-5 shows the page with one of the sample sentences displayed.

Animating CSS properties
One of the most interesting and exciting jQuery methods is animate(), which
enables you to apply an animation to any CSS property that accepts a numeric
value: font-size, padding, border-width, opacity, and many more. Here’s the
syntax to use:

FIGURE 2-5:
Click any word (or
its pronunciation

or definition)
and our four-line

jQuery code
slides the sample

sentence in
or out.

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 407

$(selector).animate(properties, duration, easing);

 » selector: A jQuery selector that specifies the web page element or set you
want to work with.

 » properties: An object literal that specifies the CSS property-value pairs that
you want to animate.

 » duration: An optional length of the animation, in milliseconds. You can also
use the keywords slow (equivalent to 600ms) or fast (equivalent to 200ms).
The default is 400ms.

 » easing: An optional string that specifies the easing function you want to use
for the animation. The default is swing, but you can also specify linear to
have the animation run at a constant pace.

The properties parameter requires a bit more elaboration. It requires an object
literal, which is a collection of property-value pairs, separated by commas and
surrounded by braces. Here’s the general form:

{
 property1: value1,
 property2: value2,
 etc.
 propertyN: valueN
}

Each property is a CSS property name, which needs to be enclosed in quotation
marks if it contains a hyphen (-). Each value is a number, followed by a measure-
ment unit, if needed. (Some CSS properties, such as opacity and line-spacing,
take unitless numeric values.) If the value has a measurement unit, surround the
number and unit with quotation marks. For example, here’s the object literal to
use if you want your animation to change the left position to 425px, the font size
to 1rem, and the opacity to 1:

{
 left: '425px',
 'font-size': '1rem',
 opacity: 1
}

You then insert the object literal into the animate() method as the properties
parameter:

$('aside').animate(
 {

408 BOOK 4 Coding the Front End, Part 3: jQuery

 left: '425px',
 'font-size': '1rem',
 opacity: 1
 },
 1500,
 'linear'
);

This example animates the page’s aside element with a duration of 1.5 seconds
and linear easing. Notice that I arranged the animate() arguments vertically for
easier reading.

For an animation to actually animate something, the property values you specify
in the animate() method’s object literal must be different than the values the ele-
ment already has. For the example just described, the initial CSS rule for the aside
element might look like this:

aside {
 position: absolute;
 left: -20rem;
 font-size: .1rem;
 opacity: 0;
}

Given this initial rule, you can see that the animation does three things:

 » Moves the element from its initial position offscreen to 425px from the left
edge of the content area

 » Increases the font size from .1rem to 1rem

 » Increases the opacity from 0 (transparent) to 1 (fully visible)

Running code when an animation ends
Most of the time you’ll want your jQuery animations to run their course without
further ado. However, there might be times when some further ado is exactly
what you want. For example, at the completion of an animation, you might want
to adjust the text on a button (for example, from “Hide the nav bar” to “Show
the nav bar”) or you might want to run another animation (a technique known as
animation chaining).

Li
ve

ni
ng

 U
p

Yo
ur

 P
ag

e
w

it
h

Ev
en

ts
 a

nd
 A

ni
m

at
io

n

CHAPTER 2 Livening Up Your Page with Events and Animation 409

You can perform these and similar post-animation tasks by adding a callback
function to the animation method. First, here’s the syntax to use for one of jQue-
ry’s built-in animation effects:

$(selector).animation(function() {
 Code to run when the animation is done
});

 » selector: A jQuery selector that specifies the web page element or set you
want to work with.

 » animation: The name of the animation method you want to run.

 » function(): The callback function. jQuery executes the code inside this
function after the animation ends.

Here’s an example:

HTML:

<nav>
 Home
 What's New
 What's Old
 What's What
</nav>
<main>
 <button id="slide-nav">Hide the nav bar</button>
</main>

jQuery:

$('#slide-nav').click(function() {
 $('nav').slideToggle(function() {

 // Get the current button text
 var btnText = $('#slide-nav').text();

 // Check the first four letters of the button text
 // and then change the button text accordingly
 if (btnText.substr(0, 4) === 'Hide') {
 $('#slide-nav').text('Show the nav bar');
 } else {
 $('#slide-nav').text('Hide the nav bar');
 }

410 BOOK 4 Coding the Front End, Part 3: jQuery

 });
});

The HTML defines a button element that, when clicked, hides and shows the
nav element. The jQuery code sets up a click event handler for the button, and
that handler’s callback function runs the slideToggle() animation on the nav
element. The slideToggle() animation also includes a callback function that
gets the button text, checks to see if the first four characters are Hide, and then
changes the button text according to the result.

You can specify a duration and easing value along with the callback function.
Here’s the complete syntax:

$(selector).animation(duration, easing, function() {
 Code to run when the animation is done
});

For the animate() method, you can also include a callback function by using the
following syntax:

$(selector).animate(properties, duration, easing, function() {
 Code to run when the animation is done
});

Here’s an example that runs a second animate() method after the first one is
complete:

$('#animate-aside').click(function() {
 $('aside').animate(
 {
 left: '425px'
 },
 500,
 'linear',
 function() {
 $('aside > p').animate(
 {
 opacity: 1
 },
 2000
); // End of the second animate() method
 } // End of the first animate() method's callback

function
); // End of the first animate() method
}); // End of the click() method

CHAPTER 3 Getting to Know jQuery UI 411

Getting to Know
jQuery UI

Because jQuery UI runs on top of jQuery, the syntax used to initialize, configure,
and manipulate the different components is in the same comfortable, easy-to-
use, and short-hand style that we’ve all come to know and love through using
jQuery. Therefore, getting used to it is incredibly easy.

— DAN WELLMAN

In Chapters 1 and 2 of this minibook, I go through the basics of jQuery and showed
how easy jQuery makes it to select elements, manipulate tags, CSS properties,
and HTML attributes, and build interactive and fun pages with events and ani-

mations. jQuery’s ease and power make it an indispensable tool in the modern
web developer’s workshop, but as powerful as it is, jQuery can’t do everything. In
particular, jQuery doesn’t offer much — okay, anything — in the way of tools to
help ease the chore of building user interface components such as menus, dialog
boxes, and tabs. Sure, jQuery gives you the technology to build these things, but
the coding is still often time-consuming and laborious.

Chapter 3

IN THIS CHAPTER

 » Introducing jQuery UI

 » Creating a custom version of
jQuery UI

 » Including the jQuery UI code in
your page

 » Trying out a few jQuery UI widgets

 » Playing around with jQuery UI
interactions and effects

412 BOOK 4 Coding the Front End, Part 3: jQuery

But it doesn’t have to be. That’s because the jQuery Foundation — the same group
that brings you jQuery — is also behind a sister project called jQuery UI (jQuery
User Interface), which offers an impressive set of pre-fab user interface compo-
nents. In this chapter, you explore what jQuery UI has to offer and investigate a
number of the most useful and powerful jQuery UI components.

What’s the Deal with jQuery UI?
Have you ever seen one of those homemade Little Free Libraries that people put
up on their properties and allow anyone to take (and, ideally, add) books? The
jQuery library is a bit like that because it allows third-party developers to create
extensions to jQuery called plug-ins. These are small bits of code that piggyback on
jQuery’s syntax, making them intuitive to learn and use. For example, if a plug-in
extended jQuery with a method named doohickey(), you’d run the plug-in on an
element, like so:

$(element).doohickey();

There are hundreds of available plug-ins (check out http://plugins.jquery.com
to see the complete list). However, one plug-in in particular is the most popular:
jQuery UI, which offers a set of components related to building a web page user
interface. jQuery UI itself breaks down its components into ten categories, but for
purposes in this chapter, there are three main categories that you explore:

 » Widgets: Ready-to-use user interface components such as menus, dialog
boxes, tabs, and sliders

 » Effects: Animations that go well beyond built-in jQuery effects, such as
hide() and fadeIn()

 » Interactions: Mouse-centric tools that enable you to configure web page
elements to be resizable, draggable, sortable, and more

jQuery UI has a Download Builder tool that enables you to select just the compo-
nents you want, a ThemeRoller tool that lets you customize the look of the com-
ponents you download, and a consistent set of class names that you can access via
CSS rules or your jQuery code.

http://plugins.jquery.com/

G
et

ti
ng

 t
o

Kn
ow

jQ

ue
ry

 U
I

CHAPTER 3 Getting to Know jQuery UI 413

Getting Started with jQuery UI
Getting up and running with jQuery UI involves the following steps:

1. Surf to the jQuery UI’s Download Builder page, at https://jqueryui.com/
download.

Figure 3-1 shows the top part of the Download Builder page.

2. Leave the Version option with the most recent version selected.

3. Use the check boxes to choose which jQuery UI components you want
to use.

If you don’t yet know which components you want to use, leave them all
selected for now. The resulting file will be quite big (over 250KB), but you can
always come back and select just the components you want to use when
you’re more familiar with what jQuery UI has to offer.

4. Near the bottom of the page, use the Theme list to select a CSS theme for
your components.

If you want to roll your own theme, click Design a Custom Theme to open the
ThemeRoller, shown in Figure 3-2. Use the ThemeRoller widget on the left to
customize your fonts, colors, and more. Then click Download Theme to return
to the Download Builder with Custom Theme now showing in the Theme list.

FIGURE 3-1:
Use the jQuery

UI Download
Builder page

to create your
custom jQuery UI

download.

https://jqueryui.com/download/
https://jqueryui.com/download/

414 BOOK 4 Coding the Front End, Part 3: jQuery

5. Click Download.

jQuery UI gathers your files into a ZIP archive and downloads the file to your
computer.

6. Double-click the downloaded file to unzip it.

7. Copy the jQuery UI CSS file to the folder where you keep your web page
CSS files.

At a minimum, you need to copy the jquery-ui.css file and the images
subfolder. You might also want to copy the minified version of the CSS —
jquery-ui.min.css — to use with your production code.

8. Copy the jQuery UI JavaScript file to the folder where you keep your web
page JavaScript files.

You need to copy the jquery-ui.js file. You might also want to copy the
minified version — jquery-ui.min.js — to use with your production code.

9. Incorporate the jQuery UI code into your web page.

For the CSS file, set up a <link> tag (adjusting the path to the file as needed
for your own folder structure):

<link rel="stylesheet" href="/css/jquery-ui.css">

FIGURE 3-2:
Use the jQuery UI

ThemeRoller on
the left to create

a custom CSS
theme for your

components.
The sample

 components on
the right (such
as Accordion,

 Autocomplete,
and Button,

shown here) give
you a preview of

your theme.

G
et

ti
ng

 t
o

Kn
ow

jQ

ue
ry

 U
I

CHAPTER 3 Getting to Know jQuery UI 415

For the JavaScript file, set up a <script> tag and place it after the <script>
tag you use for jQuery (again, be sure to adjust the path to the file as needed):

<script src="https://ajax.googleapis.com/ajax/libs/
jquery/3.3.1/jquery.min.js"></script>

<script src="/js/jquery-ui.js">

Working with the jQuery UI Widgets
A jQuery UI widget is a ready-to-use web page user interface component. jQuery
UI offers 15 or so of these widgets, most of which are related to forms, so I won’t
cover them in this chapter. (See Book 6, Chapter 2 to get the details on forms and
form controls.) However, that still leaves you with a fistful of remarkably useful
widgets — tabs, menus, dialog boxes, and accordions — that you can put to good
use right away to make your web pages stand out from the herd.

Dividing content into tabs
In a web browser, the tabs that run across the window just above the content area
each contain a web page, and you switch between the pages by clicking the tabs.

You can offer that same convenience in your web pages by implementing jQuery
UI’s tabs widget, which displays a series of two or more tabs, each of which is
loaded with content. The user switches between the content by clicking the tabs.
When you have a lot of content to display, but not a lot of room to display it, tabs
are your best choice.

A good example of the tabs widget in action is on jQuery UI’s ThemeRoller page
(http://jqueryui.com/themeroller), where the ThemeRoller tool offers three
tabs: Roll Your Own, Gallery, and Help, as pointed out in Figure 3-3.

FIGURE 3-3:
jQuery UI’s

ThemeRoller tool
makes good use

of jQuery UI’s
tabs widget.

http://jqueryui.com/themeroller/

416 BOOK 4 Coding the Front End, Part 3: jQuery

To create tabs on your page, you need to set up your HTML using the following
steps:

1. Add a block-level element to use as the parent for the entire tab struc-
ture, and include an id value.

You can use a semantic element such as <article> or <aside>, if it fits your
content, or a generic <div> container:

<div id="my-tabs">

</div>

2. The tabs themselves are enclosed in a list (which can be unordered or
ordered), where the text for each list item is the text that appears on
each tab.

<div id="my-tabs">

 This
 That
 The Other

</div>

3. For each tab, add a block-level element to hold the tab’s content, and
include a unique id value.

Again, you can use a semantic element such as <section> or <p>, if that works
for you, or a generic <div>:

<div id="my-tabs">

 This
 That
 The Other

 <div id="my-tab-1">
 This is the first tab's content.
 </div>
 <div id="my-tab-2">
 This is the second tab's content.
 </div>
 <div id="my-tab-3">
 Yep, this is the third tab's content.
 </div>

</div>

G
et

ti
ng

 t
o

Kn
ow

jQ

ue
ry

 U
I

CHAPTER 3 Getting to Know jQuery UI 417

4. Return to your list of items and convert each item’s text into a link that
points to the id value of the tab’s content block.

Be sure to precede each id with a hash symbol (#). Here’s the final HTML code:

<div id="my-tabs">

 This
 That
 The Other

 <div id="my-tab-1">
 This is the first tab's content.
 </div>
 <div id="my-tab-2">
 This is the second tab's content.
 </div>
 <div id="my-tab-3">
 Yep, this is the third tab's content.
 </div>

</div>

With your HTML set up, you turn it into tabs by applying jQuery UI’s tabs()
method to the parent container:

$('#my-tabs').tabs();

Figure 3-4 shows the result.

You can style the tabs widget by overriding the rules that come with jQuery UI’s
CSS. There are four main classes you can use to style the tabs widget:

 » ui-tabs: The parent container. For example, I styled the tabs widget shown in
Figure 3-4 to have a width of 300px as follows:

.ui-tabs {
 width: 300px;

}

FIGURE 3-4:
Some tabs

 created using
jQuery UI’s

tabs widget.

418 BOOK 4 Coding the Front End, Part 3: jQuery

 » ui-tabs-nav: The list container (the or element).

 » ui-tabs-tab: Each item in the list (that is, each tab).

 » ui-tabs-panel: The content container for each tab.

Creating a navigation menu
If your page navigation includes quite a few links — especially if those links can
be divided into categories — you can tidy things up and make your navigation
easier and more comprehensible for page visitors by converting your links into a
drop-down menu with submenus.

Creating a menu normally requires quite a bit of coding, but jQuery UI’s menu
widget simplifies things considerably. Here are the steps to follow to build a menu
widget for your page:

1. Create a parent element to hold the menu widget structure, and include
an id value.

You can use any block-level element, but most developers use an unordered
list ():

<ul id="my-menu">

2. For each menu item, add a list item element (), where the item text is
your menu item text surrounded by a block-level element, such as <div>.

To add a menu separator (a horizontal line across the menu), use a dash as the
menu item text:

<ul id="my-menu">

 <div>Menu Item #1</div>

 <div>Menu Item #2</div>

 <div>-</div>

 <div>Menu Item #3</div>

G
et

ti
ng

 t
o

Kn
ow

jQ

ue
ry

 U
I

CHAPTER 3 Getting to Know jQuery UI 419

3. To create a submenu within an existing menu item, insert a new unor-
dered list between the menu item’s and tags, after the menu
item text element.

Note that the submenu’s tag doesn’t need an id value. Here’s the final
HTML code:

<ul id="my-menu">

 <div>Menu Item #1</div>

 <div>Menu Item #2</div>

 <div>Submenu Item #2-A</div>

 <div>Submenu Item #2-B</div>

 <div>-</div>

 <div>Menu Item #3</div>

Now you turn your HTML tags into a menu by applying jQuery UI’s menu() method
to the parent container:

$('#my-menu).menu();

Figure 3-5 shows the finished menu.

FIGURE 3-5:
A drop-down

menu with
a submenu,

 created using
jQuery UI’s

menu widget.

420 BOOK 4 Coding the Front End, Part 3: jQuery

You can style the menu widget by overriding the rules that come with jQuery UI’s
CSS. There are three main classes you can use to style the menu widget:

 » ui-menu: The parent container (the element). For example, I styled the
menu widget shown in Figure 3-5 to have a width of 200px, as follows:

.ui-menu {
 width: 200px;

}

 » ui-menu-item: Each item in the list (that is, each menu item).

 » ui-menu-wrapper: The content container for each menu item (the <div>
elements in my example).

Displaying a message in a dialog
In Book 3, Chapter 6, I talk about JavaScript’s alert() method, which you can
use to display a message to the user. As long as you don’t overdo it, displaying
messages is a handy trick to have up your web development sleeve. The problem,
however, is that JavaScript’s alert() boxes are plain to a fault and aren’t cus-
tomizable. If you’re going to subject your page visitors to the occasional message,
then why not make the message at least look nice?

You can get a better-looking message by foregoing JavaScript’s alert() method
in favor of jQuery UI’s dialog widget. The dialog widget creates a floating window
that offers a title bar, a content area for the message, and a button that closes the
window.

To set up the dialog widget, create a <div> element that uses the following format:

<div id="dialog-id" title="dialog-title">
 Dialog message
</div>

 » dialog-id: A unique id value for the dialog widget

 » dialog-title: The text you want to appear in the dialog widget’s title bar

 » Dialog message: The message you want to display in the dialog widget’s
content area

Once that’s done, you turn your HTML into a dialog widget by applying jQuery
UI’s dialog() method to the <div>:

G
et

ti
ng

 t
o

Kn
ow

jQ

ue
ry

 U
I

CHAPTER 3 Getting to Know jQuery UI 421

$('#dialog-id').dialog({
 autoOpen: false
});

Notice that I’ve included the object literal {autoOpen: false}, which tells jQuery
UI not to display the dialog automatically when you first run the dialog() method.
To open the dialog (say, in response to a button click), run the dialog() method
with the string open as the parameter:

$('#dialog-id').dialog('open');

Here’s an example, and Figure 3-6 shows the dialog that appears when the button
is clicked:

HTML:

<div id="my-dialog" title="Hello Dialog World!">
 Welcome to my dialog widget!
</div>

<button id="my-button">
 Display the dialog
</button>

jQuery:

// Initialize the dialog widget
$('#my-dialog').dialog({
 autoOpen: false}
);

// Display the dialog when the button is clicked
$('#my-button').click(function() {
 $('#my-dialog').dialog('open');
});

FIGURE 3-6:
The jQuery UI
dialog widget
that appears

when you click
the button.

422 BOOK 4 Coding the Front End, Part 3: jQuery

You can style the dialog widget by overriding the rules that come with jQuery UI’s
CSS. There are four main classes you can use to style the menu widget:

 » ui-dialog: The parent container (the <div> element)

 » ui-dialog-titlebar: The dialog widget’s title bar

 » ui-dialog-title: The dialog widget’s title text

 » ui-dialog-container: The dialog widget’s content area

Hiding and showing content
with an accordion
An accordion is a series of headings, each with an associated chunk of content,
where only one heading/content combo is shown at a time. Accordions are a great
way to display multiple items without overwhelming the reader with all the con-
tent at once.

I talk about how to use jQuery to build a simple accordion in Book 4, Chapter 2, but
jQuery UI offers a more sophisticated accordion widget. To create an accordion,
you first need to set up some HTML tags as follows:

1. Add a block-level element to use as the parent for the entire accordion
structure, and include an id value.

You can use a semantic element such as <main> or <article>, if it fits your
content, or a generic <div> container:

<div id="my-accordion">

</div>

2. Add a header.

You can use any element you want, but a heading tag makes sense
 semantically:

<div id="my-accordion">
 <h6>Header A</h6>

</div>

3. Add the content that goes with the header from Step 2.

Again, you can use a semantic element such as <section> or <p>, if that works
for you, or any element you want, such as a <div>:

G
et

ti
ng

 t
o

Kn
ow

jQ

ue
ry

 U
I

CHAPTER 3 Getting to Know jQuery UI 423

<div id="my-accordion">
 <h6>Header A</h6>
 <div>This is the content panel for Header A</div>

</div>

4. Repeat Steps 2 and 3 for each header/content pair you want to include in
your accordion.

Here’s the final HTML code for my example:

<div id="my-accordion">
 <h6>Header A</h6>
 <div>This is the content panel for Header A</div>
 <h6>Header B</h6>
 <div>This is the content panel for Header B</div>
 <h6>Header C</h6>
 <div>This is the content panel for Header C</div>

</div>

With your HTML ready to go, you turn that code into an accordion by applying
jQuery UI’s accordion() method to the parent container:

$('#my-accordion').accordion();

Figure 3-7 shows the result.

Note that with jQuery UI’s accordion, one content panel is always visible. If you’d
prefer that the accordion allow all the content panels to be hidden, initialize
the accordion() method with an object literal that sets the collapsible property
to true:

$('#my-accordion').accordion({
 collapsible: true
});

FIGURE 3-7:
An accordion
 created using

jQuery UI’s
 accordion widget.

424 BOOK 4 Coding the Front End, Part 3: jQuery

You can style the accordion widget by overriding the rules that come with jQuery
UI’s CSS. There are three main classes you can use to style the accordion widget:

 » ui-accordion: The parent container. For example, I styled the accordion
widget shown in Figure 3-7 to have a width of 400px, as follows:

.ui-accordion {
 width: 400px;

}

 » ui-accordion-header: The accordion headers.

 » ui-accordion-content: The accordion content panels.

Introducing jQuery UI Effects
As I go on and on about in Book 4, Chapter 2, jQuery offers half a dozen anima-
tion effects: hide(), show(), fadeOut(), fadeIn(), slideUp(), and slideDown(),
as well as their toggle versions: toggle(), fadeToggle(), and slideToggle().
That’s a decent palette to work with, but apparently it wasn’t good enough for the
jQuery UI team, who’ve stuffed no less than 14 extra animations into the Effects
category.

Do you need all those effects? No, you don’t. As with all things related to anima-
tion, too little is always better than too much, so let moderation be your watch-
word. That said, there are some fun and interesting effects in the jQuery UI library,
so perhaps there’s one (or, at most, two) that is just right for your project.

Applying an effect
Before I describe the available animations, let’s see how you apply them to an
element. The most straightforward way is to use jQuery UI’s effect() method.
Here’s the syntax:

$(selector).effect(effect, options, duration, function() {
 Code to run when the effect is done
});

G
et

ti
ng

 t
o

Kn
ow

jQ

ue
ry

 U
I

CHAPTER 3 Getting to Know jQuery UI 425

 » selector: A jQuery selector that specifies the web page element you want to
work with.

 » effect: A string that specifies the name of the jQuery UI effect you want to
apply to the element.

 » options: An object literal that includes one or more property-value pairs that
specify the effect options you want to use. These options vary with the effect,
but the most common property is easing, which sets the easing function.
jQuery UI offers more than 30 easings; see https://api.jqueryui.com/
easings for the complete list and to try out each one.

 » duration: The length of the effect, in milliseconds. You can also use the
keywords slow (equivalent to 600ms) or fast (equivalent to 200ms). The
default duration is 400ms.

 » function(): A callback function that jQuery UI executes after the effect ends.

For example, the following statement applies jQuery UI’s bounce effect with a
slow duration to the element that has an id value of my-div:

$('#my-div').effect('bounce', 'slow');

The effect() method works best with effects that perform some action on an
element, while leaving that element in place (such as bouncing the element). If
you want to hide or show an element, then you’re better off working with jQuery
UI’s extensions to jQuery’s hide(), show(), and toggle() methods. These use the
same syntax as the effect() method:

$(selector).hide(effect, options, duration, function() {
 Code to run when the effect is done
});

$(selector).show(effect, options, duration, function() {
 Code to run when the effect is done
});

$(selector).toggle(effect, options, duration, function() {
 Code to run when the effect is done
});

https://api.jqueryui.com/easings/
https://api.jqueryui.com/easings/

426 BOOK 4 Coding the Front End, Part 3: jQuery

Checking out the effects
Here’s a quick look at the available effects offered by jQuery UI:

 » blind: Hides or shows an element as though the element was a window blind
that you pull up or down. As an option, you can set the direction property to
up, down, left, right, vertical, or horizontal.

$('#my-div').toggle('blind',{direction: 'left'});

 » bounce: Bounces an element up and down. As options, you can use the
distance property to set the maximum bounce height (in pixels), and the
times property to set the number of bounces.

$('#my-div').effect('bounce',
 {
 distance: 200,
 times: 10
 },
 1500

);

 » clip: Hides or shows an element by shrinking the element vertically from the
top and bottom. Set the direction property to horizontal to clip the
element horizontally.

$('#my-div').toggle('clip');

 » drop: Hides or shows an element by fading the element out or in while
simultaneously sliding the element left or right. As an option, you can set the
direction property to up, down, left, or right.

$('#my-div').toggle('drop',{direction: 'up'});

 » explode: Hides an element by exploding it into pieces that fly off in all
directions; shows an element by restoring the exploded pieces to their original
configuration. You can set the pieces property to the number of pieces to
explode; the value should be a square, such as 16 or 25 (the default is 9).

$('#my-div').toggle('explode',{pieces: 16});

 » fade: Hides or shows an element by fading the element out or in.

$('#my-div').toggle('fade', 'slow');

G
et

ti
ng

 t
o

Kn
ow

jQ

ue
ry

 U
I

CHAPTER 3 Getting to Know jQuery UI 427

 » fold: Hides an element by first shrinking it vertically to a 15-pixel height (the
first “fold”), and then shrinking it horizontally until it disappears (the second
“fold”); shows an element by reversing the folding procedure. For options, you
can use the size property to set the height, in pixels, after the first fold (the
default is 15); you can set the horizFirst property to true to make the first
fold horizontal rather than vertical.

$('#my-div').toggle('fold',{size: 50});

 » highlight: Highlights the background of an element. Use the color property
to specify the highlight color as an RGB triplet (the default is #ffff99).

$('#my-div').effect('highlight',{color: 'ffd700'});

 » puff: Hides or shows an element by scaling the element larger or smaller
while simultaneously fading the element out or in. Add the percent property
to set the maximum scale percentage (the default is 150).

$('#my-div').toggle('puff',{percent: 200});

 » pulsate: Pulsates an element by quickly oscillating its opacity between 0 and 1.
Use the times property to set the number of oscillations (the default is 5).

$('#my-div').effect('pulsate',{times: 10});

 » scale: Grows or shrinks an element. For options, you can set the direction
property to horizontal, vertical, or both (the default); you can use the
origin property to set the vanishing point as an array of the form ['h','v'],
where h is top, middle, or bottom, and v is left, center, or right (the default
is ['middle','center']); you can use the percent property to set the scale
factor; and you can set the scale property to box, content, or both (the default).

$('#my-div').effect('scale',{percent: 25, origin:
['top','left']});

 » shake: Shakes an element horizontally or vertically. As options, you can set
the direction property to either left (the default) or right for a horizontal
shake, or to up or down for a vertical shake; you can use the distance
property to set the shake displacement, in pixels (the default is 20); and you
can set the times property to set the number of shakes (the default is 3).

$('#my-div').effect('shake',
 {
 distance: 10,
 times: 10
 },
 1000

);

428 BOOK 4 Coding the Front End, Part 3: jQuery

 » size: Changes the dimensions of an element to a specified width and height.
You set the new dimensions by adding the to property as an option and
setting it to an object literal that specifies the width and height, in pixels. You
can also use the origin property to set the resize fixed point as an array of
the form ['h','v'], where h is top, middle, or bottom, and v is left,
center, or right (the default is ['top','left']); and you can set the scale
property to box, content, or both (the default).

$('#my-div').effect('size',{to: {width: 200, height:
100}});

 » slide: Hides or shows an element by sliding it out of or into the viewport. For
options, you can use the direction property to set the direction of the slide
to left (the default), right, up, or down; you can use the distance property
to set the length of the slide, in pixels (the default is the width of the element if
direction is left or right, or the height of the element if direction is up
or down).

$('#my-div').toggle('slide',{direction: 'up'});

Taking a Look at jQuery UI Interactions
To round out this look at the main jQuery UI components, I spend the rest of this
chapter looking at the jQuery UI interactions category. An interaction is a widget
that enables page visitors to use a mouse (or trackpad or touchscreen) to control,
modify, or in some other way mess with a web page element. For example, on
my Web Design Playground site (see webdesignplayground.io), I use one of the
jQuery UI interactions to enable coders to use a mouse to resize the width and
height of the editors and other windows.

Applying an interaction
Before I describe the available interactions, take a look at the general syntax you
use to apply one to an element:

$(selector).interaction(options|events);

 » selector: A jQuery selector that specifies the web page element you want to
work with.

http://webdesignplayground.io/

G
et

ti
ng

 t
o

Kn
ow

jQ

ue
ry

 U
I

CHAPTER 3 Getting to Know jQuery UI 429

 » interaction: A string that specifies the name of the jQuery UI interaction you
want to apply to the element.

 » options|events: An object literal that includes one or more property-value pairs
that specify the interaction options you want to use, and one or more interaction
events you want to handle. Both the available options and the available events
vary depending on the interaction.

For example, the following statement applies jQuery UI’s resizable widget with
two options that specify the element’s minimum width and minimum height, as
well as a handler for the widget’s resize event, which fires when the element
gets resized:

$('#my-div').resizable(
 {
 minWidth: 40,
 minHeight: 50,
 resize: function(event, ui) {
 console.log(ui.size.width);
 }
 }
);

In the event handler, the event argument refers to the event itself, whereas the ui
argument refers to user interface object that the page visitor is interacting with.
Most of the interaction widgets offer both start and stop events, which fire when
the interaction begins and ends, respectively.

Trying out the interactions
Here’s a quick look at the available interactions offered by jQuery UI:

 » draggable: Enables the user to move an element using a mouse. You can
constrain the dragging to a particular direction by setting the axis property
to either x (horizontal dragging only) or y (vertical dragging only). You can
also set the transparency of the element while it’s being dragged by setting
the opacity property to a number between 0 (invisible) and 1 (fully visible).
To run code while the element is dragged, create a handler for the drag event.

$('#my-div').draggable(
 {
 axis: 'x',
 opacity: .5,

430 BOOK 4 Coding the Front End, Part 3: jQuery

 drag: function(event, ui) {
 console.log(ui.position.left);
 }
 }

);

 » droppable: Sets up an element as the target of a drag-and-drop operation.
That is, if you apply the draggable widget to element A and the droppable
widget to element B, the user can drag element A and drop it on element
B. You can specify how much of the draggable element must overlap the
droppable element before it is considered “dropped” by using the tolerance
property set to one of the following: fit (complete overlap is required; this is
the default); intersect (50 percent overlap required); pointer (the mouse
pointer must be inside the droppable; or touch (any overlap will do). To run
code when the element is dropped, create a handler for the drop event.

$('#my-div').droppable(
 {
 tolerance: 'intersect',
 drop: function(event, ui) {
 console.log('Dropped it!');
 }
 }

);

 » resizable: Enables the user to resize an element using a mouse. You can
specify which directions the user can resize the element by adding the
handles property, which is a comma-separated string consisting of one or
more of the following directions: n, e, s, w, ne, se, sw, nw, and all. You can set
limits on the element’s dimensions (in pixels) by using the maxHeight,
minHeight, maxWidth, and minWidth properties. To run code while the
element is resized, create a handler for the resize event.

$('#my-div').resizable(
 {
 handles: 'e, se, s',
 minWidth: 50,
 minHeight: 25,
 resize: function(event, ui) {
 console.log(ui.size.width + ' ' ui.size.

height);
 }
 }

);

G
et

ti
ng

 t
o

Kn
ow

jQ

ue
ry

 U
I

CHAPTER 3 Getting to Know jQuery UI 431

 » selectable: Enables the user to select elements using a mouse. The user can
either “lasso” the elements by using the mouse to drag a box around them, or
the user can hold down either Ctrl (Windows) or ⌘ (Mac) and then click each
element. You can specify how much of the lasso must overlap an element
before it is considered “selected” by using the tolerance property set to
either of the following: fit (complete overlap is required; this is the default),
or touch (any overlap will do). To run code after each element is selected,
create a handler for the selecting event.

$('#my-div').selectable(
 {
 tolerance: 'touch',
 selecting: function(event, ui) {
 console.log(ui.selecting.innerText);
 }
 }

);

 » sortable: Enables the user to change the order of elements using a mouse.
You can constrain the sort movement to a particular direction by setting the
axis property to either x (horizontal sorting only) or y (vertical sorting only).
You can also set the transparency of the element while it’s being sorted by
setting the opacity property to a number between 0 (invisible) and 1 (fully
visible). To run code while an element is being sorted, create a handler for the
sort event.

$('#my-div').sortable(
 {
 axis: 'y',
 opacity: .5,
 sort: function(event, ui) {
 console.log(ui.item[0].innerText);
 }
 }

);

5Coding the Back
End: PHP and
MySQL

Contents at a Glance
CHAPTER 1: Learning PHP Coding Basics . 435

CHAPTER 2: Building and Querying MySQL Databases 467

CHAPTER 3: Using PHP to Access MySQL Data 493

CHAPTER 1 Learning PHP Coding Basics 435

Learning PHP
Coding Basics

In the end, what I think set PHP apart in the early days, and still does today, is
that it always tries to find the shortest path to solving the Web problem . . . When
you need something up and working by Friday so you don’t have to spend all
weekend leafing through 800-page manuals, PHP starts to look pretty good.

— RASMUS LERDORF, CREATOR OF PHP

You code the front end of a web project using tools such as HTML and CSS
(see Book 2), JavaScript (see Book 3), and jQuery (see Book 4). You can
build really awesome web pages using just those front-end tools, but if

you want to build pages that are dynamic and applike, then you need to bring in
the back end and use it to harness the power of the web server. For web projects,
the back end most often means storing data in a MySQL database and accessing
that data using the PHP programming language. I cover all that in Chapters 2
and 3 of this minibook. For now, you need some background in PHP coding. In
this chapter, you explore PHP from a web developer’s perspective, and by the
time you’re done you’ll know everything you need to know about PHP variables,
expressions, arrays, loops, functions, and objects. In short, you’ll be ready to join
the web coding big leagues by bringing together the front end and the back end to
create truly spectacular and useful web pages and apps.

Chapter 1

IN THIS CHAPTER

 » Getting comfy with PHP

 » Building PHP expressions

 » Controlling PHP code

 » Figuring out functions and objects

 » Debugging PHP

436 BOOK 5 Coding the Back End: PHP and MySQL

Understanding How PHP Scripts Work
PHP is a server-side programming language, which means that PHP code executes
only on the web server, not in the web browser. Most web servers today come with
a piece of software called a PHP processor, and it’s the job of the PHP processor to
run any PHP code that’s sent its way. That PHP code can come in two different
packages:

 » A pure PHP file: This is a file on the web server, usually one with a filename
that uses the .php extension. When I call this a “pure” PHP file, I mean that the
file contains nothing but PHP code. Such files are rarely loaded directly into
the web browser. Instead, pure PHP files are usually called by JavaScript or
jQuery code, most often either to process form input or to ask for data from a
MySQL database.

 » As part of an HTML file: This is a regular HTML file, but with one or more
chunks of PHP code embedded in the file. On most web servers, this file
requires the .php extension to enable the server to execute the PHP
statements.

Whatever the package, the PHP code is processed as follows:

1. A web browser requests the PHP or HTML file.

2. When the web server sees that the file contains PHP code, it passes that code
along to the PHP processor.

3. The PHP processor parses and executes the PHP code.

4. If the PHP code contains any statements that output text and/or HTML tags,
the PHP processor returns that output to the web server.

5. The web server sends the output from Step 4 to the web browser.

It’s important to understand that in the end no PHP code is ever sent to the web
browser. All the browser gets is the output of the PHP code. Yes, it’s possible to
run PHP scripts that don’t output anything, but in web development the main job
of most of your PHP code will be to return some data to the browser.

Learning the Basic Syntax of PHP Scripts
You tell the web server that you want to run some PHP code by surrounding that
code with the PHP tags:

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 437

<?php
 Your PHP statements go here
?>

For example, PHP’s basic output mechanism is the echo output command, where
output is a string containing text and/or HTML tags:

<?php
 echo "<h1>Hello PHP World!</h1>";
?>

Notice that the echo statement ends with a semicolon. All PHP statements require
a semicolon at the end.

If you place just the above code in a .php file and load that file into a web browser,
you see the output shown in Figure 1-1.

Alternatively, you can embed the PHP code in an HTML file, as shown in the
 following example:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Book 5, Chapter 1, Example 2</title>
 </head>
 <body>
 <p>
 Here's the output of the PHP script:
 </p>
 <?php
 echo "<h1>Hello PHP World!</h1>";
 ?>
 </body>
</html>

Figure 1-2 shows the result.

FIGURE 1-1:
The output of

PHP’s echo
command.

438 BOOK 5 Coding the Back End: PHP and MySQL

Declaring PHP Variables
As with JavaScript (see Book 3, Chapter 2), PHP uses variables for storing data to
use in expressions and functions, and PHP supports the standard literal data types:
integers (such as 5 or -17), floating-point numbers (such as 2.4 or 3.14159),
strings (such as "Hello" or 'World'), and Booleans (TRUE or FALSE).

PHP variable names must begin with a dollar sign ($), followed by a letter or
underscore, then any combination of letters, numbers, or underscores. Note that
PHP variable names are case-sensitive, so $str isn’t the same variable as $STR.

You don’t need any special keyword (such as JavaScript’s var) to declare a vari-
able. Instead, you declare a variable in PHP by assigning the variable a value:

$str = "Hello World!";
$interest_rate = 0.03;
$app_loaded = FALSE;

Building PHP Expressions
When you build a PHP expression — that is, a collection of symbols, words, and
numbers that performs a calculation and produces a result — you can use mostly
the same operators as in JavaScript (see Book 3, Chapter 3):

 » Arithmetic: Addition (+), Subtraction (-), Multiplication (*), Division (/),
Modulus (%), and Exponentiation (**).

 » Incrementing and decrementing: Post-increment ($var++), Pre-increment
(++$var), Post-decrement ($var--), and Pre-decrement (--$var).

FIGURE 1-2:
You can also
embed PHP

output within
an HTML file.

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 439

 » Comparison: Equal (=), Not Equal (!=), Greater Than (>), Less Than (<), Greater
Than or Equal (>=), Less Than or Equal (<=), Identity (===), and Non-Identity
(!==). In PHP you can also use <> as the Not Equal operator.

 » Logical: And (&&), Or (||), and Not (!). In PHP you can also use and as the And
operator and or as the Or operator.

Where PHP differs from JavaScript is with the string concatenation operator,
which in PHP is the dot (.) symbol rather than JavaScript’s plus (+) symbol. Here’s
an example, and Figure 1-3 shows the result.

<?php
 $str1 = "<h2>Concatenate ";
 $str2 = "Me!</h2>";
 echo $str1 . $str2;
?>

Outputting Text and Tags
Your back-end PHP scripts pass data to your web app’s front end (HTML and
JavaScript) not by using some complex communications link, but simply by out-
putting the data. I talk about this in more detail in Book 5, Chapter 3, but for now
let’s look at the mechanisms PHP offers for outputting data.

PHP’s simplest output tool is the print command:

print output;

 » output: A string — which could be a string literal, string variable, string
property value, or the string result of a function — that you want to output.
You can include HTML tags in the output string.

<?php
 print "<h1>Hello World!</h1>";
?>

FIGURE 1-3:
In PHP, you

use the dot (.)
 operator to

concatenate
two strings.

440 BOOK 5 Coding the Back End: PHP and MySQL

To output more than one item, you need to use PHP’s echo command:

echo output;

 » output: One or more strings — which could be string literals, string variables,
string property values, or the string results of a function — that you want to
output. If you include two or more output items, separate each one with a
comma. You can include HTML tags in any of the output strings.

<?php
 $str1 = "<h2>Concatenate ";
 $str2 = "Me!</h2>";
 echo $str1, $str2;
?>

Adding line breaks
If you use PHP to generate quite a lot of HTML and text for your page, you need to
be a bit careful how you structure the output. To see what I mean, first check out
the following PHP code:

<?php
 $str1 = "<div>What does PHP stand for?</div>";
 $str2 = "<div>It's a <i>recursive acronym</i>:</div>";
 $str3 = "<div>PHP: Hypertext Preprocessor</div>";
 echo $str1, $str2, $str3;
?>

This code declares three strings — all div elements with text — and uses echo to
output them. Figure 1-4 shows two browser windows. In the upper window, you
can see that the output from the preceding code looks fine. However, the lower
window shows the source code for the page and, as you can see, all the output text
and tags appear on a single line.

FIGURE 1-4:
When you

 output tags and
text using PHP,
the strings run

together in a
single line in

the web page
source code.

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 441

To make the source code text easier to read, you should add line breaks to your
PHP output strings. You insert a line break using the newline character \n (which
doesn’t appear on the web page). Here’s the revised code (with \n added to the
end of the $str1 and $str2 variables), and Figure 1-5 shows that the source code
now appears on multiple lines:

<?php
 $str1 = "<div>What does PHP stand for?</div>\n";
 $str2 = "<div>It's a <i>recursive acronym</i>:</div>\n";
 $str3 = "<div>PHP: Hypertext Preprocessor</div>";
 echo $str1, $str2, $str3;
?>

The \n newline code only works in a string that uses double quotation marks. If
you use single quotation marks, PHP outputs the characters \n instead of creating
a newline. For example:

echo 'Ready\nSet\nGo!';

The output of this statement is

Ready\nSet\nGo!

Mixing and escaping quotation marks
You can enclose PHP string literals in either double quotation marks or single
quotation marks, but not both:

$order = "Double espresso"; // This is legal
$book = 'A Singular Man'; // So's this
$weather = 'Mixed precipitation"; // This is not legal

FIGURE 1-5:
With newlines

added to the
output strings,
the web page

source code
now appears on

 separate lines,
making it much
easier to read.

442 BOOK 5 Coding the Back End: PHP and MySQL

However, mixing quotation mark types is sometimes necessary. Consider this:

$tag = "";

That statement will cough up an error because PHP thinks the string ends after
the second double quotation mark, so it doesn’t know what to do with the rest
of the statement. To solve this problem, swap the outer double quotation marks
for singles:

$tag = '';

That works fine. However, what if you want to add some line breaks, as I describe
in the previous section:

$tag = '\nWord Spy\n';

Nice try, but newlines (\n) only work when they’re enclosed by double quotation
marks. The statement above will not include any line breaks and will show the link
text as \nWord Spy\n. Sigh.

All is not lost, however, because you can convince the PHP processor to treat
a quotation mark as a string literal (instead of a string delimiter), by preceding
the quotation mark with a backslash (\). This is known in the trade as escaping the
quotation mark. For example, you can fix the previous example by enclosing the
entire string in double quotation marks (to get the newlines to work) and escaping
the double quotation marks used for the <a> tag’s href value:

$tag = "\nWord Spy\n";

Outputting variables in strings
One very useful feature of PHP strings is that you can insert a variable name into a
string and the PHP processor will handily replace the variable name with its cur-
rent value. Here’s an example:

<?php
 $title = "Inflatable Dartboard Landing Page";
 $tag = "<title>$title</title>";
 echo $tag;
?>

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 443

The output of this code is

<title>Inflatable Dartboard Landing Page</title>

Some folks call this interpolating the variable, but we’ll have none of that here.

Alas, variable value substitution only works with strings enclosed by double quo-
tation marks. If you use single quotation marks, PHP outputs the variable name
instead of its value. For example, this

<?php
 $title = "Inflatable Dartboard Landing Page";
 $tag = '<title>$title</title>';
 echo $tag;
?>

outputs this:

<title>$title</title>

Outputting long strings
If you have a long string to output, one way to do it would be to break up the string
into multiple variables, add newlines at the end of each, if needed, and output
each variable.

That works, but PHP offers a shortcut method where you output everything as a
single string, but span the string across multiple lines. For example, I can take the
final code from the “Adding line breaks” section and achieve the same result by
rewriting it as follows:

<?php
$str1 = "<div>What does PHP stand for?</div>
<div>It's a <i>recursive acronym</i>:</div>
<div>PHP: Hypertext Preprocessor</div>";
echo $str1;
?>

The implied newlines at the end of the second and third lines are written to the
page, so the page source code will look exactly the same as it does in Figure 1-5.

444 BOOK 5 Coding the Back End: PHP and MySQL

Outputting really long strings
For a super-long string, you can use PHP’s here document (or heredoc) syntax:

<<<terminator
Super-long string goes here
terminator;

 » terminator: This is a label that marks the beginning and end of the string.
The label at the end must appear on a line by itself (except for the closing
semicolon), with no whitespace before or after the label.

This syntax also supports variable names, so if you include a variable in the string,
PHP will substitute the current value of that variable when it outputs the string.

Here’s an example:

<?php
 $author = "Rasmus Lerdorf";
 $str = <<<END_OF_STRING
 <blockquote>
 In the end, what I think set PHP apart in the early
 days, and still does today, is that it always tries
 to find the shortest path to solving the Web
 problem. It does not try to be a general-purpose
 scripting language and anybody who's looking to
 solve a Web problem will usually find a very direct
 solution through PHP. Many of the alternatives that
 claim to solve the Web problem are just too complex.
 When you need something up and working by Friday so
 you don't have to spend all weekend leafing through
 800-page manuals, PHP starts to look pretty good.
 —$author
 </blockquote>
END_OF_STRING;
 echo $str;
?>

Notice that I declared a variable named $author, and then I included that variable
name in the string (it’s on the second-last line of the string). PHP treats a heredoc
string as though it was enclosed by double quotation marks, so it substitutes the
variable value in the output. Figure 1-6 shows the result.

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 445

Working with PHP Arrays
Let’s take a quick look at arrays in PHP. I’m going to skip lightly over arrays here
because I already talk about them in detail in Book 3, Chapter 7.

Declaring arrays
PHP gives you a bunch of ways to declare and populate arrays. Probably the most
straightforward method is to assign values to explicit index numbers:

$array_name[index] = value;

 » $array_name: The name of the array variable

 » index: The optional array index number you want to work with

 » value: The value you want to assign to the array index number

For example, the following statements assign string values to the first three
elements (that is, the elements at array indexes 0, 1, and 2) of an array named
$team_nicknames:

$team_nicknames[0] = 'Banana Slugs';
$team_nicknames[1] = 'Fighting Okra';
$team_nicknames[2] = 'Golden Flashes';

Notice in the syntax that I said the index parameter was optional. If you leave
it out, PHP assigns the index numbers automatically. So, as long as the variable

FIGURE 1-6:
The really long

string output
to the web

browser. Note
that the value

of the $author
 variable —

Rasmus
 Lerdorf —

appears
instead of the

variable name.

446 BOOK 5 Coding the Back End: PHP and MySQL

$team_nicknames doesn’t already contain any elements, the following code is
equivalent to the preceding code:

$team_nicknames[] = 'Banana Slugs';
$team_nicknames[] = 'Fighting Okra';
$team_nicknames[] = 'Golden Flashes';

To add multiple array values in a single statement, you can use PHP’s array
keyword:

$array_name = array(value1, value1, etc.);

 » $array_name: The name of the array variable

 » value1, value2, etc.: The values you want to assign to the array

Here’s an example:

<?php
 $team_nicknames = array('Banana Slugs', 'Fighting Okra',

'Golden Flashes');
 echo $team_nicknames[0];
?>

The output of this code is

Banana Slugs

Giving associative arrays a look
Most PHP arrays use numeric index values, but in web development work it’s
often handy to work with string index values, which are called keys. An array that
uses keys instead of a numeric index is called an associative array, because you’re
associating each key with a value to create an array of key/value pairs.

Here’s an example:

<?php
 $team_nicknames['Santa Cruz'] = 'Banana Slugs';
 $team_nicknames['Delta State'] = 'Fighting Okra';
 $team_nicknames['Kent State'] = 'Golden Flashes';
 echo $team_nicknames['Delta State'];
?>

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 447

The output of this code is

Fighting Okra

To create an associative array using the array keyword, you assign each key/value
pair using the => operator, as in this example:

<?php
 $team_nicknames = array('Santa Cruz' => 'Banana Slugs',

'Delta State' => 'Fighting Okra', 'Kent State' => 'Golden
Flashes');

 echo $team_nicknames['Kent State'];
?>

The output of this code is

Golden Flashes

Outputting array values
You can use the echo or print keyword to output individual array values. How-
ever, what if you want to see all the values stored in an array? Rather than, say,
looping through the array, PHP offers the print_r() function, which outputs the
current value of a variable:

print_r($variable);

 » $variable: The name of the variable you want to output

If you use an array as the print_r() parameter, PHP outputs the contents of the
array as key/value pairs. For example, the following code

<pre>
<?php
 $team_nicknames = array('Banana Slugs', 'Fighting Okra',

'Golden Flashes');
 print_r($team_nicknames);
?>
</pre>

448 BOOK 5 Coding the Back End: PHP and MySQL

outputs the following:

Array
(
 [0] => Banana Slugs
 [1] => Fighting Okra
 [2] => Golden Flashes
)

Note that I surrounded the PHP code with the <pre> tag to get the output on mul-
tiple lines rather than a single hard-to-read line.

Sorting arrays
If you need your array values sorted alphanumerically, PHP offers a handful of
functions that will get the job done. The function you use depends on the type of
sort you want (ascending or descending) and whether your array uses numeric
indexes or string keys (that is, an associative array).

For numeric indexes, you can use the sort() function to sort the values in ascend-
ing order (0 to 9, then A to Z, then a to z), or the rsort() function to sort the
values in descending order (z to a, then Z to A, then 9 to 0):

sort($array);
rsort($array);

 » $array: The name of the array you want to sort

Here’s an example:

<pre>
<?php
 $oxymorons = array('Pretty ugly', 'Jumbo shrimp', 'Act

naturally', 'Original copy');
 sort($oxymorons);
 print_r($oxymorons);
?>
</pre>

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 449

Here’s the output:

Array
(
 [0] => Act naturally
 [1] => Jumbo shrimp
 [2] => Original copy
 [3] => Pretty ugly
)

For associative arrays, you can use the asort() function to sort the values in
ascending order (0 to 9, then A to Z, then a to z), or the arsort() function to sort
the values in descending order (z to a, then Z to A, then 9 to 0):

asort($array);
arsort($array);

 » $array: The name of the associative array you want to sort

Here’s an example:

<pre>
<?php
 $team_nicknames = array('Santa Cruz' => 'Banana Slugs',

'Delta State' => 'Fighting Okra', 'Kent State' => 'Golden
Flashes');

 arsort($team_nicknames);
 print_r($team_nicknames);
?>
</pre>

Here’s the output:

Array
(
 [Kent State] => Golden Flashes
 [Delta State] => Fighting Okra
 [Santa Cruz] => Banana Slugs
)

450 BOOK 5 Coding the Back End: PHP and MySQL

Looping through array values
PHP offers a special loop called foreach() that you can use to loop through an
array’s values. Here’s the syntax:

foreach($array as $key => $value) {
 Loop statements go here
}

 » $array: The name of the array you want to loop through

 » $key: An optional variable name that PHP uses to store the key of the current
array item

 » $value: A variable name that PHP uses to store the value of the current
array item

Here’s an example:

<?php
 $team_nicknames = array('Santa Cruz' => 'Banana Slugs',

'Delta State' => 'Fighting Okra', 'Kent State' => 'Golden
Flashes');

 foreach($team_nicknames as $school => $nickname) {
 echo "The team nickname for $school is $nickname.
";
 }
?>

Here’s the output:

The team nickname for Santa Cruz is Banana Slugs.
The team nickname for Delta State is Fighting Okra.
The team nickname for Kent State is Golden Flashes.

Creating multidimensional arrays
A multidimensional array is one where two or more values are stored within
each array element. In a one-dimensional array, the value is usually a string,
number, or Boolean. Now imagine, instead, that value is an array literal. For a
two-dimensional array, the general syntax for assigning an array to an array
 element looks like this:

arrayName[index] = Array(value1, value2);

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 451

As an example, say you want to store an array of background and foreground
 colors. Here’s how you might declare and populate such an array:

<?php
 $colorArray[0] = Array('white', 'black');
 $colorArray[1] = Array('aliceblue', 'midnightblue');
 $colorArray[2] = Array('honeydew', 'darkgreen');
 echo $colorArray[1][1];
?>

Here’s the output:

midnightblue

Alternatively, you can declare and populate an associative array:

<?php
 $colorArray['scheme1'] = Array('foreground' => 'white',

'background' => 'black');
 $colorArray['scheme2'] = Array('foreground' => 'aliceblue',

'background' => 'midnightblue');
 $colorArray['scheme3'] = Array('foreground' => 'honeydew',

'background' => 'darkgreen');
 echo $colorArray['scheme2']['foreground'];
?>

Here’s the output:

aliceblue

Controlling the Flow of Your PHP Code
I go through a detailed discussion of controlling code with decisions and loops in
Book 3, Chapter 4. That chapter focuses on JavaScript code, but the structures for
making decisions and looping are identical in both JavaScript and PHP. Therefore,
I just quickly summarize the available statements here, and refer you to Book 3,
Chapter 4 to fill in the details.

452 BOOK 5 Coding the Back End: PHP and MySQL

Making decisions with if()
You make simple true/false decisions in PHP using the if() statement:

if (expression) {
 statements-if-true
}

 » expression: A comparison or logical expression that returns true or false.

 » statements-if-true: The statement or statements to run if expression
returns true. If expression returns false, PHP skips over the statements.

Here’s an example:

if ($original_amount !== 0) {
 $percent_increase = 100 * (($new_amount - $original_amount) /

$original_amount);
}

To run one group of statements if the condition returns true and a different group
if the result is false, use an if()...else statement:

if (expression) {
 statements-if-true
} else {
 statements-if-false
}

 » expression: A comparison or logical expression that returns true or false

 » statements-if-true: The block of statements you want PHP to run if
expression returns true

 » statements-if-false: The block of statements you want executed if
expression returns false

Here’s an example:

<?php
 if ($currentHour < 12) {
 $greeting = "Good morning!";
 } else {

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 453

 $greeting = "Good day!";
 }
 echo $greeting;
?>

There is a third syntax for the if()...else statement that lets you string together
as many logical tests as you need:

if (expression1) {
 statements-if-expression1-true
} elseif (expression2) {
 statements-if-expression2-true
}
etc.
else {
 statements-if-false
}

This syntax represents a rare instance where PHP and JavaScript control struc-
tures are different (however slightly): You use the keywords else if in JavaScript,
but the single keyword elseif in PHP.

The following code shows a script that uses a nested if() statement.

<?php
 if ($currentHour < 12) {
 $greeting = "Good morning!";
 } elseif ($currentHour < 18) {
 $greeting = "Good afternoon!";
 } else {
 $greeting = "Good evening!";
 }
 echo $greeting;
?>

Making decisions with switch()
For situations where you need to make a whole bunch of tests (say, four or more),
PHP offers the switch() statement. Here’s the syntax:

switch(expression) {
 case case1:
 case1 statements
 break;

454 BOOK 5 Coding the Back End: PHP and MySQL

 case case2:
 case2 statements
 break;
 etc.
 default:
 default statements
}

The expression is evaluated at the beginning of the structure. It must return a
value (numeric, string, or Boolean). case1, case2, and so on are possible values for
expression. PHP examines each case value to see whether one matches the result
of expression and, if it does, executes the block associated with that case; the
break statement tells PHP to stop processing the rest of the switch() statement.

Here’s an example:

switch($season) {
 case 'winter':
 $footwear = 'snowshoes';
 break;
 case 'spring':
 $footwear = 'galoshes';
 break;
 case 'summer':
 $footwear = 'flip-flops';
 break;
 case 'fall':
 $footwear = 'hiking boots';
 break;
}

Looping with while()
PHP’s while() loop uses the following syntax:

while (expression) {
 statements
}

Here, expression is a comparison or logical expression that determines how
many times the loop gets executed, and statements represents a block of state-
ments to execute each time through the loop.

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 455

Here’s an example:

<?php
 $counter = 1;
 while ($counter <= 12) {
 // Generate a random number between 1 and 100
 $randoms[$counter - 1] = rand(1, 100);
 $counter++;
 }
 print_r($randoms);
?>

Looping with for()
The structure of a PHP for() loop looks like this:

for ($counter = start; expression; $counter++) {
 statements
}

 » $counter: A numeric variable used as a loop counter

 » start: The initial value of $counter

 » expression: A comparison or logical expression that determines the number
of times through the loop

 » $counter++: The increment operator applied to the $counter variable

 » statements: The statements to execute each time through the loop

Here’s an example:

<?php
 for ($counter = 0; $counter < 12; $counter++) {
 // Generate a random number between 1 and 100
 $randoms[$counter] = rand(1, 100);
 }
 print_r($randoms);
?>

456 BOOK 5 Coding the Back End: PHP and MySQL

Looping with do. . .while()
PHP’s do...while() loop uses the following syntax:

do {
 statements
}
while (expression);

Here, statements represents a block of statements to execute each time through
the loop, and expression is a comparison or logical expression that determines
how many times PHP runs through the loop.

Here’s an example:

<?php
 $counter = 0;
 do {
 // Generate a random number between 1 and 100
 $randoms[$counter] = rand(1, 100);
 $counter++;
 }
 while ($counter < 12);
 print_r($randoms);
?>

Working with PHP Functions
I talk about functions until I’m blue in the face in Book 3, Chapter 5. PHP and
JavaScript handle functions in the same way, so here I just give you a quick over-
view from the PHP side of things.

The basic structure of a function looks like this:

function function_name(arguments) {
 statements
}

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 457

Here’s a summary of the various parts of a function:

 » function: Identifies the block of code that follows it as a function

 » function_name: A unique name for the function

 » arguments: One or more optional values that are passed to the function and
that act as variables within the function

 » statements: The code that performs the function’s tasks or calculations

Here’s an example:

function display_header() {
 echo "<header>\n";
 echo "<img src=\"/images/notw.png\" alt=\"News of the Word

logo\">\n";
 echo "<h1>News of the Word</h1>\n";
 echo "<h3>Language news you won't find anywhere else (for

good reason!)</h3>\n";
 echo "</header>";
}

To call the function, include in your script a statement consisting of the function
name, followed by parentheses:

display_header();

Passing values to functions
An argument is a value that is “sent” — or passed, in programming terms — to the
function. The argument acts just like a variable, and it automatically stores what-
ever value is sent. Here’s an example:

display_header('notw.png');

function display_header($img_file) {
 echo "<header>\n";
 echo "<img src=\"/images/$img_file\" alt=\"News of the Word

logo\">\n";
 echo "<h1>News of the Word</h1>\n";
 echo "<h3>Language news you won't find anywhere else (for

good reason!)</h3>\n";
 echo "</header>";
}

458 BOOK 5 Coding the Back End: PHP and MySQL

Returning a value from a function
If your function calculates a result, you can send that result back to the statement
that called the function by using a return statement:

return result;

As an example, I’ll construct a function that calculates and then returns the tip on
a restaurant bill:

$preTipTotal = 100.00;
$tipPercentage = 0.15;

function calculate_tip($preTip, $tipPercent) {
 $tipResult = $preTip * $tipPercent;
 return $tipResult;
}
$tipCost = calculate_tip($preTipTotal, $tipPercentage);
$totalBill = $preTipTotal + $tipCost;
echo "Your total bill is \$$totalBill";

Working with PHP Objects
I discuss objects from a JavaScript point of view in Book 3, Chapter 6, so here I just
recall that an object is a programmable element that has two key characteristics:

 » You can make changes to the object’s properties.

 » You can make the object perform a task by activating a method associated
with the object.

I use objects extensively in Book 5, Chapter 3 when I talk about using PHP to access
a MySQL database, so the next few sections provide some necessary background.

Rolling your own objects
Let’s take a quick look at creating custom objects in PHP. In the object-oriented
world, a class acts as a sort of object “template.” A cookie cutter provides a good
analogy. The cookie cutter isn’t a cookie, but, when you use it, the cookie cutter
creates an actual cookie that has a predefined shape. A class is the same way.
It’s not an object, but using it (or instancing it, to use the vernacular) creates an

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 459

object that uses the class characteristics. These characteristics are governed by the
members of the class, which are its properties and methods.

Creating a custom class
You define a custom class by using the class keyword:

class Name {
 Class properties and methods go here
}

 » Name: The name you want to assign to your class. Class names traditionally
begin with an uppercase letter.

Here’s an example:

class Invoice {
}

I’ll use this class to create customer invoice objects.

Adding properties to the class
The next step is to define the class properties, which are PHP variables preceded
by the keyword public, which makes them available to code outside the class.
Let’s add a few properties to the Invoice class:

class Invoice {
 public $customer_id;
 public $subtotal;
 public $tax_rate;
}

A bit later I show you how to create an object from a class. In most cases you want
to initialize some or all of the properties when you create the object, and to do that
you must add a special __construct() function to the class definition. Here’s the
general syntax:

public function __construct($Arg1, $Arg2, ...) {
 $this->prop1 = $Arg1;
 $this->prop2 = $Arg2;
 etc.
}

460 BOOK 5 Coding the Back End: PHP and MySQL

 » $Arg1, $Arg2, etc.: The initial values of the object properties.

 » $this->: Refers to the object in which the code is running; the -> character
pair is called the object operator and you use it to access an object’s properties
and methods.

 » prop1, prop2, etc.: References to the class properties, minus the $.

To extend the example:

class Invoice {
 public $customer_id;
 public $subtotal;
 public $tax_rate;

 public function __construct($Customer_ID, $Subtotal,

$Tax_Rate) {
 $this->customer_id = $Customer_ID;
 $this->subtotal = $Subtotal;
 $this->tax_rate = $Tax_Rate;
 }
}

Adding methods to the class
The last step in creating your custom class is to add one or more functions that
will be used as the class methods. Here’s the general syntax:

public function method() {
 Method code goes here
}

 » method: The name of the method

To complete our example class, add a method that calculates the invoice total and
rounds it to two decimal places:

class Invoice {
 public $customer_id;
 public $subtotal;
 public $tax_rate;

 public function __construct($Customer_ID, $Subtotal,

$Tax_Rate) {

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 461

 $this->customer_id = $Customer_ID;
 $this->subtotal = $Subtotal;
 $this->tax_rate = $Tax_Rate;
 }

 public function calculate_total() {
 $total = $this->subtotal * (1 + $this->tax_rate);
 return round($total, 2);
 }
}

Creating an object
Given a class — whether it’s a built-in PHP class or a class that you’ve created
yourself — you can create an object from the class, which is known as an instance
of the class. Here’s the general format to use:

$object = new Class(value1, value2, ...);

 » $object: The variable name of the object

 » Class: The name of the class on which to base the object

 » value1, value2, etc.: The optional initial values you want to assign to the
object’s properties

Here’s a statement that creates an instance of the Invoice class from the previ-
ous section:

$inv = new Invoice('BONAP', 59.85, .07);

Working with object properties
You refer to an object property by using the object operator (->):

object->property

 » object: The object that has the property

 » property: The name of the property you want to work with

462 BOOK 5 Coding the Back End: PHP and MySQL

Here’s an example that creates an object instance and then references the object’s
customer_id property:

$inv = new Invoice('BONAP', 59.85, .07);
$current_customer = $inv->customer_id;

To change the value of a property, use the following generic syntax:

object->property = value;

 » object: The object that has the property

 » property: The name of the property you want to change

 » value: A literal value (such as a string or number) or an expression that
returns the value to which you want to set the property

Here’s an example:

$inv->subtotal = 99.95;

Working with object methods
To run a method, you use the following syntax:

object->method(arg1, arg2, ...)

 » object: The object that has the method you want to work with

 » method: The name of the method you want to execute

 » arg1, arg2, etc.: The arguments required by the method, if any

Here’s an example:

$inv = new Invoice('BONAP', 59.85, .07);
$invoice_total = $inv->calculate_total();

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 463

Debugging PHP
JavaScript code runs inside the browser, so debugging that code is straightfor-
ward because, in a sense, the code runs right before your eyes. This lets you set up
breakpoints, watches, and the other debugging tools that I talk about in Book 3,
Chapter 9. PHP code, however, runs on the server, which means that by the time it
gets to you (that is, to the browser), the code is done and all you see is the output.
That makes PHP code harder to debug, but, thankfully, not impossible to debug.
The next few sections take you through a few PHP debugging techniques.

Configuring php.ini for debugging
Your first step in setting up PHP for debugging is the php.ini file, which is the
PHP configuration file. In the XAMPP web development environment that I dis-
cuss in Book 1, Chapter 2, here are the default locations of php.ini:

 » Windows: C:\xampp\php\php.ini

 » Mac: /Applications/XAMPP/xamppfiles/etc/php.ini

If you can’t locate the file, make sure your Apache web server is running, open the
XAMPP Dashboard (http://localhost/dashboard), and click PHPInfo. Look for
the Loaded Configuration File setting, as shown in Figure 1-7.

Open php.ini in your favorite text editor, then modify the following settings
(php.ini is a long document, so you should search for each setting to save time):

 » display_errors: Determines whether PHP outputs its error messages to
the web browser. In a production environment, you want display_errors set
to Off because you don’t want site visitors seeing ugly PHP error messages.
However, in a development environment, you definitely want display_errors
set to On so you can see where your code went wrong:

display_errors=On

FIGURE 1-7:
Examine

the Loaded
 Configuration
File setting to

determine the
location of php.i.

464 BOOK 5 Coding the Back End: PHP and MySQL

 » error_reporting: Specifies which types of errors PHP flags. The constant
E_ALL flags all errors, and the constant E_STRICT flags code that doesn’t meet
recommended PHP standards. You don’t need E_STRICT in a production
environment, but it’s useful in a development environment:

error_reporting=E_ALL | E_STRICT

With display_errors set to On, you’ll now see error messages in the browser
window. For example, take a look at the following statement:

display_header('notw.png';

Can you spot the error? Yep: the display_header function call is missing its
 closing parenthesis. Figure 1-8 shows how PHP flags this error. Notice that the
message includes not only the error, but also the location of the file and, crucially,
the line number of the statement that generated the error.

Accessing the PHP error log
Setting display_errors to On is very useful in your development environment,
but the PHP default is to set display_errors to Off in a production environment.
This prevents your visitors from seeing error messages, and it also boosts security
because you don’t want those visitors seeing sensitive information such as the
location of your PHP script.

So what happens when PHP generates an error with display_errors set to Off?
It depends on the error, but in most cases you either see a blank web page, or a
server error message such as 500 - Internal server error. Neither is particu-
larly helpful, but all is not lost because PHP still records the error message to the
PHP error log.

That’s nice, but where is this error log stored on the server? That depends on the
server, but you can find out by running the following script:

FIGURE 1-8:
A typical PHP

error message,
showing the

error, file path
and name, and

line number.

Le
ar

ni
ng

 P
H

P
Co

di
ng

Ba

si
cs

CHAPTER 1 Learning PHP Coding Basics 465

<?php
 phpinfo();
?>

This displays the PHP configuration data, which includes an error_log setting
that tells you where the PHP error log is stored.

In some cases, you see just the name of a file — usually error_log — and that
means the server generates the error log in the same directory as the PHP file that
caused the error. So, if you store all your PHP scripts in a php subdirectory, your
error log will appear in that subdirectory.

Error messages appear in the error log with the oldest messages at the top, so to
see the most recent error, you need to scroll to the bottom of the file.

Debugging with echo statements
You can’t set up watch expressions on PHP code, but you can do the next best
thing by strategically adding echo (or print) statements that output the current
value of whatever variable or function result you want to watch.

For example, here’s a loop that generates a dozen random numbers between 1 and
100. To watch the random values as they’re generated, I included an echo state-
ment within the loop:

<?php
 for ($i = 0; $i < 12; $i++) {
 $randoms[$i] = rand(1, 100);
 echo $randoms[$i] . '
';
 }
?>

Alternatively, you could wait until the loop completes and then run
print_r($random) to output the entire array.

Another good use of echo statements for debugging is when your PHP code fails,
but you don’t get an error message. Now you have no idea where the problem
lies, so what’s a web developer to do? You can gradually narrow down where the
error occurs by adding an echo statement to your code that outputs a message like
Made it this far!. If you see that message, then you move the echo statement
a little farther down the code, repeating this procedure until you don’t see the
 message, meaning the code failed before getting to the echo statement.

466 BOOK 5 Coding the Back End: PHP and MySQL

Alternatively, you can sprinkle several echo statements throughout your code. You
can either give each one a different output message, or you can take advantage of
one of PHP’s so-called magic constants: __LINE__. This constant tells you the cur-
rent line of the code that’s being executed, so you could add the following echo
statement throughout your code:

echo 'Made it to line #' . __LINE__;

Debugging with var_dump() statements
PHP features such as echo and print_r make it easy to see values associated with
variables and arrays, but sometimes your debugging efforts require a bit more
information. For example, you might want to know the data type of a variable.
You can get both the data type and the current value of a variable or expression by
using PHP’s var_dump() function:

var_dump(expression(s));

 » expression(s): One or more variable names or expressions

Here’s an update to the random number generator that dumps the value of the
$randoms array after the loop:

<?php
 for ($i = 0; $i < 12; $i++) {
 $randoms[$i] = rand(1, 100);
 }
 var_dump($randoms);
?>

Here’s an example of the output:

array(12) { [0]=> int(44) [1]=> int(92) [2]=> int(61) [3]=>
int(61) [4]=> int(12) [5]=> int(60) [6]=> int(14) [7]=>
int(46) [8]=> int(73) [9]=> int(29) [10]=> int(8) [11]=>
int(71) }

CHAPTER 2 Building and Querying MySQL Databases 467

Building and Querying
MySQL Databases

MySQL is a fast and powerful, yet easy-to-use, database system that offers
just about anything a website would need in order to find and serve up data
to browsers.

— ROBIN NIXON

One of the central themes of this book is that today’s web is all about
dynamic content. Sure, if you have (or your client has) just one or two
web pages to show the world, then the standard front-end web develop-

ment tools — HTML, CSS, and JavaScript — are more than enough to get the job
done. However, it’s much more likely that a modern website will consist of doz-
ens, perhaps even hundreds of pages, with new content getting added regularly.
Believe me, as the developer and/or administrator of such a site, you don’t want to
hand-code all those pages as static HTML and CSS. Life’s too short! Fortunately,
you don’t have to hand-assemble all those pages if you get the back end of the web
development world doing the hard work for you. The key is the database software
that stores your site info on the server, and that’s what this chapter is all about.
Here you discover the MySQL database program and learn all that it can do to help
you build and maintain dynamic, robust, and fast websites of any size.

Chapter 2

IN THIS CHAPTER

 » Learning about MySQL and what it
can do

 » Building MySQL databases and tables

 » Getting your head around SQL

 » Selecting data with queries

 » Modifying data with queries

468 BOOK 5 Coding the Back End: PHP and MySQL

What Is MySQL?
In simplest terms, a database is a collection of information with some sort of
underlying structure and organization. MySQL (pronounced “my ess-kew-ell,” or
sometimes “my sequel”) is a database management system (DBMS) that runs on the
server. This means that MySQL will not only store the data you want to use as the
source for some (or perhaps even all) of the data you want to display on your web
page, but it will also supply you with the means to manage this data (by sorting,
searching, extracting, and so on).

The official description of MySQL is that it’s a relational database management
 system (RDBMS). The “relational” part means that you can set up relations
between various parts of a database. For example, most businesses assign some
sort of account number for each of their customers. So a database of customer
information would include a column for this account number (as well as the
name, address, credit limit, and so on). Similarly, you could also include the
account number column in a collection of accounts receivable invoices (along
with the invoice date, amount, and so on). This lets you relate each invoice to
the appropriate customer information. (So, for example, you could easily look up
phone numbers and call those deadbeat customers whose invoices are more than
90 days past due!)

MySQL is a massive piece of software that can do incredibly complicated things.
Fortunately, as web developers we only need to use a small subset of MySQL’s
features, and we don’t have to get into anything mind-blowingly complex. To get
started on developing dynamic web pages, in fact, you only need to know about
two pieces of the MySQL puzzle: tables and queries.

Tables: Containers for your data
In MySQL databases, you store your information in an object called a table. Tables
are essentially a grid, where each vertical segment represents a column (a specific
category of information) and each horizontal segment represents a row (a single
record in the table).

Figure 2-1 shows a table of customer data. Notice how the table includes separate
columns for each logical grouping of the data (company name, contact name, and
so on).

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 469

In web development, you use MySQL tables to store the data that will appear in
your pages. To get that data from the server to the web page requires five steps:

1. On the web page, some JavaScript code launches a PHP script on the server.

2. That PHP script asks a MySQL database for the data required by the web page.

3. The PHP script configures the data into a format that JavaScript can
understand.

4. PHP sends the data back to the web page.

5. The JavaScript code accepts the data and displays it on the page.

I go through these steps in glorious detail in Book 5, Chapter 3 and in Book 6,
Chapter 1.

Queries: Asking questions of your data
By far the most common concern expressed by new database users (and many
old-timers, as well) is how to extract the information they need from all that data.
What if, for example, you have a database of accounts receivable invoices and your
boss wants a web page that tells her how many invoices are more than 150 days
past due? You can’t hand-code such a page because, for a large database, your
page would be out of date before you were done. The better way would be to ask
MySQL to do the work for you by creating another type of database object: a query.
Queries are, literally, questions you ask of your data. In this case, you could ask
MySQL to display a list of all invoices more than 150 days past due.

Queries let you extract from one or more tables a subset of the data. For example,
in a table of customer names and addresses, what if I wanted to see a list of firms

FIGURE 2-1:
In MySQL

 databases,
tables store

the raw data.

470 BOOK 5 Coding the Back End: PHP and MySQL

that are located in France? No problem. I’d just set up a query that asks, in effect,
“Which rows have 'France' in the country column?” The answer to this question
is shown in Figure 2-2.

The actual querying process is performed using a technology called Structured
Query Language (or SQL, pronounced “ess-kew-ell”). In the five-step procedure
I mention in the previous section, the SQL portion takes place in Step 2.

Introducing phpMyAdmin
To work with MySQL — whether it’s creating a database, importing or exporting
data, adding a table, inserting and editing data, or testing SQL statements to use
in your PHP code — almost all web hosts offer a web application called phpMy-
Admin. (It’s an odd name, I know: It means, more or less, “PHP-based MySQL
Administration.”)

In the XAMPP web development environment that I discuss in Book 1, Chapter 2,
you have two ways to get phpMyAdmin on the job (make sure you have the Apache
web server running):

 » Dashboard: From the XAMPP Dashboard page (http://localhost/
dashboard), click the phpMyAdmin link in the header.

 » Direct: Use a web browser to surf to http://localhost/phpmyadmin.

Figure 2-3 shows the default phpMyAdmin page.

FIGURE 2-2:
You use MySQL

queries to extract
a subset of the

data from one or
more tables.

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 471

The navigation pane on the left shows the default databases that come with php-
MyAdmin (don’t mess with these!), while the tabs across the top — Databases,
SQL, and so on — take you to different parts of the application.

Importing data into MySQL
Before I talk about building a database from scratch, let me first go through the
procedure for getting some existing data into MySQL. phpMyAdmin supports
 several import formats, but you’ll most likely want to use a comma-separated
values (.csv) file, where the column data in each row is separated by commas.
Another possibility is a SQL (.sql) file, which is a backup file for a MySQL database.

1. In phpMyAdmin, click the Import tab.

If you don’t see the Import tab, click More, then click Import.

2. In the File to Import section, click Browse (Windows) or Choose File (Mac).

Your operating system’s file chooser dialog appears.

3. Click the file that contains the data you want to import and then click
Open (Windows) or Choose (Mac).

4. In the Format section, make sure the list shows the correct format for
the file you chose.

If you’re importing a CSV file, the list should have CSV selected; if you’re
importing a SQL backup file, the list should have SQL selected.

5. If you’re importing a CSV file, use the Format-Specific Options section to
tell phpMyAdmin the structure of the file.

FIGURE 2-3:
From the XAMPP

Dashboard,
click phpMy

Admin to open
the phpMyAdmin

web app.

472 BOOK 5 Coding the Back End: PHP and MySQL

In particular, if the first line of your CSV file contains the column names of your
data, then you need to select the check box labeled The First Line of the File
Contains the Table Column Names.

6. Click Go.

phpMyAdmin imports the data.

If you imported a CSV file, you should see the message Import has been
successfully finished and in the navigation pane you should see a new data-
base named CSV_DB, as shown in Figure 2-4.

Here are the steps to follow to rename the database and the table that contains
the imported data:

1. In the navigation pane, click CSV_DB.

phpMyAdmin opens the database. Notice that you now see a table named
TBL_NAME. That’s the table that contains the imported CSV data. I show you
how to rename it beginning with Step 6.

2. Click the Operations tab.

If you don’t see the Operations tab, click More, then click Operations.

3. In the Rename Database To section, type the new database name in the
text box provided.

4. Click Go.

phpMyAdmin asks you to confirm.

5. Click OK.

phpMyAdmin changes the database name.

6. In the navigation pane, click TBL_NAME.

7. Click the Operations tab.

If you don’t see the Operations tab, click More, then click Operations.

FIGURE 2-4:
Importing a CSV

file creates the
CSV_DB database.

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 473

8. In the Table Options section, use the Rename Table To text box to type
the new table.

9. Click Go.

phpMyAdmin changes the table name.

Backing up MySQL data
As you work with phpMyAdmin, you should run periodic backups to make sure
your data is safe. Here are the steps to follow:

1. In phpMyAdmin, click the Export tab.

If you don’t see the Export tab, click More, then click Export.

2. In the Format section, use the list to select SQL (although this is the
default format).

3. Click Go.

phpMyAdmin exports the data, which your web browser then downloads to
your computer.

Creating a MySQL Database and Its Tables
If you don’t import your data, then you need to create your own MySQL databases
and populate them with the tables that will hold the actual data.

Creating a MySQL database
The first question you need to ask yourself is: Do I need just a single database or
do I need multiple databases? As a web developer, you’ll almost always need mul-
tiple databases. Here’s why:

 » You need a separate database for each website you build.

 » You need a separate database for each web app you build.

 » You need a separate database for each client you have.

If you’re just building a single website or app, and you have no clients, then one
database is fine, but know that MySQL is ready and willing to accommodate almost
any number of databases you care to throw at it.

474 BOOK 5 Coding the Back End: PHP and MySQL

Here are the steps to follow to create a database using phpMyAdmin:

1. In the navigation pane, click New that appears at the top of the naviga-
tion tree.

2. In the Create Database section, use the Database Name text box to type
the name you want to use.

3. In the Collation list, select utf8_general_ci.

Collation refers to how MySQL compares characters (for example, when sorting
data). In this case, you’re telling MySQL to use a standard, case-insensitive (for
example, a equals A) collation on the UTF-8 character set.

4. Click Create.

phpMyAdmin creates the database for you.

Designing your table
You need to plan your table design before you create it. By asking yourself a few
questions in advance, you can save yourself the trouble of redesigning your table
later. For simple tables, you need to ask yourself three basic questions:

 » Does the table belong in the current database?

 » What type of data should I store in each table?

 » What columns should I use to store the data?

The next few sections examine these questions in more detail.

Does the table belong in the current database?
Each database you create should be set up for a specific purpose: a website, a web
app, a client, and so on. Once you know the purpose of the database, you can then
decide if the table you want to create fits in with the database theme.

For example, if the purpose of the database is to store a client’s data, it would be
inappropriate to include a table that stores your personal blog posts. Similarly, it
wouldn’t make sense to include a table of a web app’s user accounts in a database
that belongs to an entirely different website.

What type of data should I store in each table?
The most important step in creating a table is determining the information you
want it to contain. In theory, MySQL tables can be quite large: up to 4,096 columns

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 475

and many millions (even billions) of rows. In practice, however, you should strive
to keep your tables as small as possible. This saves memory and makes managing
the data easier. Ideally, you should aim to set up all your tables with only essential
information.

Suppose you want to store user information in a database. You have to decide
whether you want all your users in a single table, or whether it would be better
to create separate tables for each type of user. For example, a table of customers
would include detailed information such as each person’s first and last names,
postal address, phone number, payment preference, and more. By contrast, a table
of people who have opted-in to receive your newsletters might store each per-
son’s email address, the newsletters she wants to receive, the subscription type
(full or digest), and more. There’s not a lot of overlap between these two types of
customers, so it probably makes sense to create two separate tables.

When you’ve decided on the tables you want to use, you then need to think about
how much data you want to store in each table. In your customers table, for exam-
ple, would you also want to include information on each person’s site custom-
izations, account creation date, date of last visit, and product preferences? This
might all be crucial information for you, but you need to remember that the more
data you store, the longer it will take to query and sort the data.

What columns should I use to store the data?
Now you’re almost ready for action. The last thing you need to figure out is the
specific columns to include in the database. For the most part, the columns are
determined by the data itself. For example, a database of business contacts would
certainly include columns for name, address, and phone number. But should you
split the name into two columns — one for the first name and one for the last
name? If you think you’ll need to sort the table by last name, then, yes, you prob-
ably should. What about the address? You’ll probably need individual columns for
the city, state, and ZIP code.

Here are two general rules to follow when deciding how many columns to include
in your tables:

 » Ask yourself whether you really need the data for a particular column (or if
you might need it in the near future). For example, if you think your table of
contact names might someday be used to create form letters, a column to
record titles (Ms., Mr., Dr., and so on) would come in handy. When in doubt,
err on the side of too many columns rather than too few.

 » Always split your data into the smallest columns that make sense. Splitting
first and last names is common practice, but creating a separate column for,
say, the phone number area code would probably be overkill.

476 BOOK 5 Coding the Back End: PHP and MySQL

Don’t sweat the design process too much. It’s easy to make changes down the road
(by adding or deleting columns), so you’re never stuck with a bad design.

Deciding which column to use for a primary key
When you create a table, you need to decide which column to use as the primary
key. The primary key is a column that uses a unique number or character sequence
to identify each row in the table. Keys are used constantly in the real world. Your
Social Security number is a key that identifies you in government records. Most
machines and appliances have unique serial numbers. This book (like most books)
has a 13-digit ISBN — International Standard Book Number (which you can see
on the back cover).

Why are primary keys necessary? Well, for one thing, MySQL creates an index for
the primary key column. You can perform searches on indexed data much more
quickly than on regular data; therefore, many MySQL operations perform faster if
a primary key is present. Keys also make it easy to find rows in a table because the
key entries are unique (things such as last names and addresses can have multiple
spellings, which makes them hard to find). Finally, once a table has a primary key,
MySQL adds its data editing tools, which enable you to modify, copy, and delete
table data.

You can configure the table so that MySQL sets and maintains the primary key for
you, or you can do it yourself. Which one do you choose? Here are some guidelines:

 » If your data contains a number or character sequence that uniquely defines
each row, you can set the key yourself. For example, invoices usually have
unique numbers that are perfect for a primary key. Other columns that can
serve as primary keys are employee IDs, customer account numbers, and
purchase order numbers.

 » If your data has no such unique identifier, let MySQL create a key for you. This
means that MySQL will set up an AUTO_INCREMENT column that will auto-
matically assign a unique number to each row (the first row will be 1, the
second 2, and so on).

Relating tables
MySQL is a relational database system, which means that you can establish rela-
tionships between multiple tables. As an example, suppose you have a database
that contains (at least) two tables:

 » orders: This table holds data on orders placed by your customers, including
the customer name, the date of the order, and so on. It also includes an
order_id column as the primary key, as shown in Figure 2-5.

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 477

 » order_details: This table holds data on the specific products that comprise
each order: the product name, the unit price, the quantity ordered. It also
includes an order_id field, as shown in Figure 2-6.

Why not lump both tables into a single table? Well, that would mean that, for
each product ordered, you’d have to include the name of the customer, the order
date, and so on. If the customer purchased ten different products, this informa-
tion would be repeated ten times. To avoid such waste, the data is kept in separate
tables, and the two tables are related on the common column called order_id.

For example, notice in Figure 2-5 that the first row in the orders table has an
order_id value of 10248. Now check out Figure 2-6, where you see that the first
three rows of the order_details table also have an order_id value of 10248.
This means that when you join these tables on the related order_id field, MySQL
combines the data, as shown in Figure 2-7. For example, notice that the first
three rows still have an order_id value of 10248, but they now also include the
customer_id column from the orders table.

Creating a MySQL table
Here are the steps to follow to create a table in a MySQL database:

1. In the navigation pane, click the database in which you want to add
the table.

FIGURE 2-5:
The orders

table includes a
column named

order_id.

FIGURE 2-6:
The order_

details table
also includes a
column named

order_id.

478 BOOK 5 Coding the Back End: PHP and MySQL

2. In the Structure tab, use the Create Table section to type a name for the
table, select the number of columns you want, and then click Go.

If you’re not sure how many columns you need, just make your best guess for
now. You can always add more later on.

3. Type a name for the column.

4. In the Type list, select the data type you want to use for the data.

There’s a very long list of data types to wade through, but only a few make
sense in most web projects:

• INT: Stores an integer value between -2,147,483,648 and 2,147,483,648.
For really small integer values, consider using either TINYINT (-128 to 127
or 0 to 255) or SMALLINT (-32,768 to 32,767 or 0 to 65,535).

• VARCHAR: Stores a variable-length string between 0 and 65,535 characters
long. If you need to store super-long chunks of text, consider MEDIUMTEXT
(up to 16,777,215 characters) instead.

• DATE: Stores a date and time value.

5. If you selected VARCHAR in Step 4, you can use the Length/Values field to
enter a maximum size for the column.

6. Use the Default list to specify a default value that MySQL will enter
automatically into the column when you create a new row.

If you want the current date and time in a DATE column, select CURRENT_
TIMESTAMP. Otherwise, select As Defined, then enter a value in the text box
that appears.

7. In the Collation list, select utf8_general_ci.

8. To allow MySQL to enter no value into the column, select the Null
check box.

If you leave Null deselected, then be sure you always specify a value for the
column.

9. If you want MySQL to index the column, use the Index list to select the
type of index you want.

FIGURE 2-7:
The order_

details and
orders tables

joined on
the common

column named
order_id.

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 479

In most cases you should choose the all-purpose INDEX type; if the column
values are all different, select the UNIQUE type; for a text-heavy field, select the
FULLTEXT type.

Don’t index every column. Instead, you only need to index those columns that
you’ll be using for sorting and querying.

10. Repeat Steps 3 through 9 until you’ve defined all your columns.

11. Click Save.

Adding data to a table
Ideally, most of your table data will get inserted automatically, either by import-
ing data or by having your page users fill in an HTML form (see Book 6, Chapters 2
and 3). If you do need to enter table data by hand, here’s how it’s done:

1. In the navigation pane, click the table in which you want the data added.

2. Click the Insert tab.

phpMyAdmin displays empty text boxes for each column in the table. If you
see two sets of text boxes, scroll down to the bottom of the Insert tab and
change Continue Insertion with 2 Rows to Continue Insertion with 1 Row.

3. Use the Value fields to add a value for each column.

If a column accepts null values (that is, if the column’s Null check box is
selected), then it’s okay to leave that column’s Value field blank.

4. If you want to add multiple rows, use the two lists near the bottom of the
page to select Insert as New Row and then Insert Another New Row.

5. Click Go to insert the data.

Creating a primary key
When you import a table, MySQL doesn’t automatically create a primary key, so
you need to follow these steps to create the primary key yourself:

1. In the navigation pane, click the table you want to work with.

2. Click the Structure tab.

3. Click the check box that appears to the left of the column you want to
use as the primary key.

Make sure you select a column that contains only unique values.

480 BOOK 5 Coding the Back End: PHP and MySQL

4. Click Primary.

MySQL configures the column as the table’s primary key.

What happens if none of your table’s fields contain unique items? In that case, you
need to create a column to use as the primary key. Here’s how:

1. In the navigation pane, click the table you want to work with.

2. Click the Structure tab.

3. Leave the Add 1 Columns as is, but select At Beginning of Table in the list,
then click Go.

4. Type a name for the primary key field.

If you’re not sure what name to use, something like table_id would work,
where table is the name of the table.

5. Select the A_I (AUTO_INCREMENT) check box.

MySQL displays the Add Index dialog.

6. Leave the default settings as they are, and then click Go.

7. Click Save.

MySQL adds the field and automatically populates it with unique integer
values.

Querying MySQL Data
It’s all well and good having a bunch of data hunkered down in a MySQL database,
but as a web developer, your real concern is getting that data from the server to
the web page. That complete journey is the subject of both Book 5, Chapter 3 and
Book 6, Chapter 1, but I’m going to tackle the first leg of the trip here and show
you how to specify the data that will eventually get sent to the page. The technique
I’m going to show you is called querying the data, and the tool of choice is Struc-
tured Query Language, or SQL.

What is SQL?
SQL is a collection of commands that interrogate or modify — query, in the SQL
vernacular — MySQL data in some way. SQL is huge, but as a web developer you
really only need to know about four query types:

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 481

 » SELECT: Returns a subset of a table’s data

 » INSERT: Adds a new row to a table

 » UPDATE: Modifies a table’s existing data

 » DELETE: Removes one or more rows from a table

In the case of the SELECT, UPDATE, and DELETE query types, you target the spe-
cific rows you want to work with by specifying criteria, which are extra parameters
that define one or more conditions the rows must meet. For example, you might
want to run a SELECT query that returns only those customers where the country
column is equal to France. Similarly, you might want to run a DELETE query only
on those items in the products table where the discontinued column has the
value TRUE.

Creating a SELECT query
The most common type of query is the SELECT query that returns rows from
one or more tables based on the columns you choose and the criteria you apply
to those columns. It’s called a SELECT query not only because you use it to select
certain rows, but also because it’s based on the SQL language’s SELECT statement.
SELECT is the SQL “verb” that you’ll see and work with most often, and it’s used
to create a subset based on the table, columns, criteria, and other clauses specified
in the statement. Here’s a simplified syntax for the SELECT verb:

SELECT select_columns
 FROM table_name
 WHERE criteria
 ORDER BY sort_columns [DESC]

 » SELECT select_columns: Specifies the names of the columns you want in
your subset. If you want all the columns, use * instead.

 » FROM table_name: The name of table that contains the data.

 » WHERE criteria: Filters the data to give you only those rows that match the
specified criteria.

 » ORDER BY sort_columns: Sorts the results in ascending order based on the
data in the columns specified by sort_columns (separated by commas, if you
have more than one). Use the optional DESC keyword to sort the rows in
descending order.

482 BOOK 5 Coding the Back End: PHP and MySQL

The most basic SELECT query is one that returns all the rows from a table.
For example, the following SELECT statement returns all the rows from the
customers table:

SELECT *
 FROM customers

In the following example, only the company_name, city, and country columns are
returned in the results:

SELECT company_name, city, country
 FROM customers

Here’s another example that sorts the rows based on the values in the company_
name column:

SELECT *
 FROM customers
 ORDER BY company_name

Understanding query criteria
The heart of any query is its criteria. They are a set of expressions that determine
the rows that are included in the query results. All query expressions have the
same general structure. They contain one or more operands — which can be literal
values (such as 123 or "USA" or 2018-08-23), identifiers (names of MySQL objects,
such as tables), or functions — separated by one or more operators — the symbols
that combine the operands in some way, such as the plus sign (+) and the greater
than sign (>).

Most criteria expressions are logical formulas that, when applied to each row in
the table, return TRUE or FALSE. The subset contains only those rows for which the
expression returns TRUE.

Comparison operators
You use comparison operators to compare field values to a literal, a function result,
or to a value in another field. Table 2-1 lists MySQL’s comparison operators.

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 483

For example, suppose you have a products table with a units_in_stock column.
If you want a SELECT query to return just those products that are out of stock,
you’d use the following SQL statement:

SELECT *
 FROM products
 WHERE units_in_stock = 0

The LIKE operator
If you need to allow for multiple spellings in a text column, or if you’re not sure
how to spell a word you want to use, the wildcard characters can help. There are two
wildcards: the underscore (_) substitutes for a single character, and the percent
sign (%) substitutes for a group of characters. You use them in combination with
the LIKE operator, as shown in Table 2-3.

TABLE 2-1	 Comparison Operators for Criteria Expressions
Operator General Form Matches Rows Where . . .

= = Value The column value is equal to Value.

<> <> Value The column value is not equal to Value.

> > Value The column value is greater than Value.

>= >= Value The column value is greater than or equal to Value.

< < Value The column value is less than Value.

<= <= Value The column value is less than or equal to Value.

TABLE 2-3	 The LIKE Operator for Criteria Expressions
Example Matches Rows Where . . .

LIKE 'Re_d' The column value is Reid, Read, reed, and so on.

LIKE 'M_' The column value is MA, MD, ME, and so on.

LIKE 'R%' The column value begins with R.

LIKE '%office%' The column value contains the word office.

LIKE '2017-12-%' The column value is any date in December 2017.

484 BOOK 5 Coding the Back End: PHP and MySQL

The BETWEEN. . .AND operator
If you need to select rows where a column value lies between two other values, use
the BETWEEN...AND operator. For example, suppose you want to see all the rows in
the order_details table where the quantity value is between (and includes) 50
and 100. Here’s a SELECT statement that does the job:

SELECT *
 FROM order_details
 WHERE quantity BETWEEN 50 AND 100

You can use this operator for numbers, dates, and even text.

The IN operator
You use the IN operator to match rows where the specified column value is one of
a set of values. For example, suppose you want to return a subset of the customers
table that contains only those rows where the region column equals NY, CA, TX,
IN, or ME. Here’s the SELECT statement to use:

SELECT *
 FROM customers
 WHERE region IN('NY','CA','TX','IN','ME')

The IS NULL operator
What do you do if you want to select rows where a certain column is empty? For
example, a table of invoices might have a date_paid column where, if this column
is empty, it means the invoice hasn’t been paid yet. For these challenges, MySQL
provides the IS NULL operator. Applying this operator to a column selects only
those rows whereby the column is empty. Here’s an example:

SELECT *
 FROM invoices
 WHERE date_paid IS NULL

To select rows when a particular column is not empty, use the IS NOT NULL
operator.

Compound criteria and the logical operators
For many criteria, a single expression just doesn’t do the job. For more sophis-
ticated needs, you can set up compound criteria where you enter either multiple
expressions for the same column or multiple expressions for different columns.
You use the logical operators to combine or modify expressions. Table 2-4 sum-
marizes MySQL’s logical operators.

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 485

The AND and OR operators let you create compound criteria using a single expres-
sion. For example, suppose you want to match all the rows in your products table
where the units_in_stock column is either 0 or greater than or equal to 100. The
following SELECT statement does the job:

SELECT *
 FROM products
 WHERE units_in_stock = 0 OR units_in_stock >= 100

The NOT operator looks for rows that don’t match a particular logical expression. In
a table of customer data, for example, if you want to find all non-North American
customers, you filter out the customers using the country column, like so:

SELECT *
 FROM customers
 WHERE NOT country = 'USA' AND
 NOT country = 'Canada' AND
 NOT country 'Mexico'

Querying multiple tables
Although most of your MySQL queries will use just a single table, some of the
most useful and powerful queries involve two (or more) tables. The type of
 multiple-table query you’ll see and use most often is called an inner join because
it joins two tables based on a common column.

To create an inner join on two tables, use the following version of the FROM clause:

FROM table1
 INNER JOIN table2
 ON table1.column = table2.column

TABLE 2-4	 Logical Operators for Criteria Expressions
Operator General Form Matches Rows When . . .

AND Expr1 And Expr2 Both Expr1 and Expr2 are TRUE.

OR Expr1 Or Expr2 At least one of Expr1 and Expr2 is TRUE.

NOT Not Expr Expr is not TRUE.

XOR Expr1 Xor Expr2 Only one of Expr1 and Expr2 is TRUE (XOR is short for exclusive or).

486 BOOK 5 Coding the Back End: PHP and MySQL

Here, table1 and table2 are the names of the two tables you want to join, and
table1.column and table2.column are the common columns in each table. Note
that the column names don’t have to be the same.

For example, suppose you have two tables: orders and order_details, and they
each have a column named order_id that stores a value that is unique for each
order. The following SELECT statement sets up an inner join on these tables:

SELECT *
 FROM orders
 INNER JOIN order_details
 ON orders.order_id = order_details.order_id

If you only want certain columns from both tables in the results, specify the col-
umn names after the SELECT command using the table.column syntax, as in this
example:

SELECT orders.order_id, orders.customer_id,
order_details.quantity

 FROM orders
 INNER JOIN order_details
 ON orders.order_id = order_details.order_id

INNER JOINS? OUTER JOINS?
WHAT’S THE DIFFERENCE?
Besides inner joins, MySQL also supports a variation on the multiple-table query theme
called an outer join. To understand the difference between these two join types, let’s run
through some examples using the sample data in the following table.

The novelties table has two columns: name and supplier, and the suppliers table
has a single column: supplier. Here are three things to note about these tables:

• The two tables have the supplier column in common.

• The novelties table includes several rows that use Internal as the supplier
value, but Internal is not listed in the suppliers table.

• The suppliers table includes one row — Nov-L-T Industries — that is not
used anywhere in the novelties table.

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 487

(continued)

An inner join only returns the overlapping data between two tables. To visualize this,
consider the following Venn diagram.

Here’s a SELECT statement that runs an inner join on the novelties and suppliers
tables:

SELECT novelties.name, suppliers.supplier
 FROM novelties

The novelties Table The suppliers Table

name supplier supplier

Inflatable Dartboard Facepalm LLC Facepalm LLC

Banana Peel Welcome Mat Facepalm LLC RUSerious, Ltd.

Non-Reflective Mirror Facepalm LLC Silly Stuff, Inc.

Fireproof Firewood Internal Nov-L-T Industries

Donut Holes Internal

No-String Guitar Internal

Helium Paperweight RUSerious, Ltd.

Sandpaper Bathroom Tissue RUSerious, Ltd.

All-Stick Frying Pan Silly Stuff, Inc.

Water-Resistant Sponge Silly Stuff, Inc.

488 BOOK 5 Coding the Back End: PHP and MySQL

 INNER JOIN suppliers
 ON novelties.supplier = suppliers.supplier

Here are the results:

novelties.name suppliers.supplier

Inflatable Dartboard Facepalm LLC

Banana Peel Welcome Mat Facepalm LLC

Non-Reflective Mirror Facepalm LLC

Helium Paperweight RUSerious, Ltd.

Sandpaper Bathroom Tissue RUSerious, Ltd.

All-Stick Frying Pan Silly Stuff, Inc.

Water-Resistant Sponge Silly Stuff, Inc.

Notice that from the novelties table we don’t see any of the rows that had Internal
as the supplier value because that value doesn’t appear in the suppliers table.
Similarly, we don’t see the Nov-L-T Industries supplier because that value doesn’t
appear in the novelties table.

However, suppose we want all the novelties to appear in the results. That’s called
a left outer join, and to see why, take a look at the following Venn diagram. This join
includes all the novelties rows, plus the overlapping data from the suppliers table.

Here’s a SELECT statement that runs a left outer join on the novelties and
suppliers tables:

(continued)

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 489

SELECT novelties.name, suppliers.supplier
 FROM novelties
 LEFT OUTER JOIN suppliers
 ON novelties.supplier = suppliers.supplier

Here are the results:

name supplier

Inflatable Dartboard Facepalm LLC

Banana Peel Welcome Mat Facepalm LLC

Non-Reflective Mirror Facepalm LLC

Fireproof Firewood NULL

Donut Holes NULL

No-String Guitar NULL

Helium Paperweight RUSerious, Ltd.

Sandpaper Bathroom Tissue RUSerious, Ltd.

All-Stick Frying Pan Silly Stuff, Inc.

Water-Resistant Sponge Silly Stuff, Inc.

Notice that for those novelties that don’t have a corresponding supplier value in the
suppliers table, MySQL returns NULL.

Finally, you might want all the suppliers to appear in the results. That’s called a right
outer join, and you can see why by taking a peek at the following Venn diagram. This join
includes all the suppliers rows, plus the overlapping data from the novelties table.

(continued)

490 BOOK 5 Coding the Back End: PHP and MySQL

Adding table data with an INSERT query
An INSERT query adds a new row to an existing table. In MySQL, you build an
INSERT query using the INSERT verb:

INSERT
 INTO table (columns)
 VALUES (values)

 » table: The name of the table into which you want the row appended.

 » columns: A comma-separated list of column names from table. The values
you specify will be added to these columns.

Here’s a SELECT statement that runs a right outer join on the novelties and
suppliers tables:

SELECT novelties.name, suppliers.supplier
 FROM novelties
 RIGHT OUTER JOIN suppliers
 ON novelties.supplier = suppliers.supplier

Here are the results:

name supplier

Inflatable Dartboard Facepalm LLC

Banana Peel Welcome Mat Facepalm LLC

Non-Reflective Mirror Facepalm LLC

NULL Nov-L-T Industries

Helium Paperweight RUSerious, Ltd.

Sandpaper Bathroom Tissue RUSerious, Ltd.

All-Stick Frying Pan Silly Stuff, Inc.

Water-Resistant Sponge Silly Stuff, Inc.

Notice that for those suppliers that don’t have a corresponding supplier value in
the novelties table, MySQL returns NULL.

(continued)

Bu
ild

in
g

an
d

Q
ue

ry
in

g
M

yS
Q

L
D

at
ab

as
es

CHAPTER 2 Building and Querying MySQL Databases 491

 » values: A comma-separated list of values that you want to add. The order of
these values must correspond with the order of the column names in the
columns parameter.

For example, suppose we have a table named categories that includes three
fields: category_id, category_name, and description. First, assume that
category_id is the table’s primary key and its value is generated automatically
by an AUTO_INCREMENT function, which means you can ignore it when building
your INSERT query. Therefore, you can use the following SQL statement to add a
new row:

INSERT
 INTO categories (category_name, description)
 VALUES ('Breads', 'Multi-grain, rye, and other

deliciousness')

Modifying table data with an UPDATE query
An UPDATE query modifies the values in one or more columns and optionally
restricts the scope of the updating to those rows that satisfy some criteria. In
MySQL, you build an UPDATE query by using the UPDATE verb to construct a state-
ment with the following syntax:

UPDATE table
 SET column1=value1,column2=value2,...
 WHERE criteria

 » table: The table that contains the data you want to update

 » column1=value1,column2=value2, etc.: The new values you want to
assign to the specified columns

 » criteria: The criteria that define which rows will be updated

For example, suppose you have products table and want to increase the values in
the unit_price column by 5 percent for the Beverages category (category_id = 1).
This is the same as multiplying the current unit_price values by 1.05, so the UPDATE
statement looks like this:

UPDATE products
 SET unit_price = unit_price*1.05
 WHERE CategoryID = 1

492 BOOK 5 Coding the Back End: PHP and MySQL

Removing table data with a DELETE query
A DELETE query removes rows from a table and optionally restricts the scope of
the deletion to those rows that satisfy some criteria. If you don’t include criteria,
MySQL deletes every row in the specified table.

In MySQL, you build a delete query by using the DELETE verb to construct a state-
ment with the following syntax:

DELETE
 FROM table
 WHERE criteria

 » table: The table that contains the rows you want to delete

 » criteria: The criteria that defines which rows will be deleted

For example, if you want to delete those rows in the products table where the
supplier_id value is 1, you use the following SQL statement:

DELETE
 FROM products
 WHERE supplier_id = 1

CHAPTER 3 Using PHP to Access MySQL Data 493

Using PHP to Access
MySQL Data

PHP and MySQL work together to provide powerful, flexible components
that can keep up with the expanding database driven development needs
of virtually any organization, large or small.

— ISAAC DUNLAP

Run a Google search on the text PHP MySQL "Match made in heaven" and
you get more than a few results. I’m not surprised one bit because it seems
as though these two technologies were meant to be together; a case of love

at first byte, as it were. What’s the secret of their success as a couple? First, it
helps that they’re both free (not the usual prerequisite for marriage success, I
know), which ensures that they’re both widely available and widely supported.
Second, both PHP and MySQL reward a little bit of learning effort up front with a
lot of flexibility and power right off the bat. Although both are complex, sophis-
ticated pieces of technology, you need to learn only a few basics to take your web
development skills to a whole new level. I cover the first two parts of those basics
in Chapters 1 and 2 of this minibook. In this chapter, I bring everything together

Chapter 3

IN THIS CHAPTER

 » PHP and MySQL: Understanding web
development’s most enduring
marriage

 » Connecting to a MySQL database
with PHP

 » Using PHP to access MySQL data with
a SELECT query

 » Processing the SELECT query results

 » Using PHP to run INSERT, UPDATE,
and DELETE queries

494 BOOK 5 Coding the Back End: PHP and MySQL

by showing you how to combine PHP and MySQL to create the foundation you
need to build truly dynamic and powerful web applications.

Understanding the Role of PHP and
MySQL in Your Web App

Before getting to the trees of actual PHP code, I want to take a moment to look out
over the forest of the server back end, so you’re comfortable and familiar with the
process. Specifically, I want to look at how PHP and MySQL team up to deliver the
back-end portion of a web app. Rather than getting bogged down in an abstract
discussion of what happens when a user requests a page that requires some data
from the server, I’ll use a concrete example. The following steps take you through
the back-end process that happens when the web app I built to display this book’s
sample code gets a request for a specific example:

1. A reader (perhaps even you!) requests the web page of a specific book
sample page. Here’s a for instance:

http://mcfedries.com/webcodingfordummies/example.php?book=
4&chapter=1&example=2

The PHP script file is example.php and the request data — known to the
cognoscenti as a query string — is everything after the question mark (?):
book=4&chapter=1&example=2. This string is requesting the second example
from Book 4, Chapter 1.

2. The web server retrieves example.php and sends it to the PHP processor.

3. The PHP script parses the query string to determine which sample the
user is requesting.

For the query string shown in Step 1, the script would extract the book number
as 4, the chapter number as 1, and the example number as 2.

4. The script connects to the database that stores the code samples.

5. The script uses the query string data to create and run a SELECT query
that returns the sample code.

The SELECT statement looks something like this:

SELECT *
 FROM code_samples

 WHERE book_num=4 AND chapter_num=1 AND example_num=2

U
si

ng
 P

H
P

to
 A

cc
es

s
M

yS
Q

L
D

at
a

CHAPTER 3 Using PHP to Access MySQL Data 495

6. The script massages the SELECT results into a format readable by the
browser.

This format is usually just HTML, but another popular format is JSON (JavaScript
Object Notation), which you learn about in Book 6, Chapter 1.

7. The web server sends the formatted data to the web browser, which
displays the code sample.

The rest of this chapter expands on Steps 3 through 6.

Using PHP to Access MySQL Data
When used as the back end of a web app, PHP’s main job is to interact with MySQL
to retrieve the data requested by the app and then format that data so that it’s
usable by the app for display in the browser. To do all that, PHP runs through five
steps:

1. Get the request parameters from the URL query string.

2. Connect to the MySQL database.

3. Create and run a SELECT query to extract the requested data.

4. Get the data ready to be sent to the browser.

5. Output the data for the web browser.

I talk about INSERT, UPDATE, and DELETE queries later in this chapter, but the
next few sections take you through the details of this five-step procedure from the
point of view of a SELECT query.

In the sections that follow, I don’t discuss security techniques for blocking mali-
cious hacking attempts. That’s a crucial topic, however, so I devote a big chunk
of Book 7, Chapter 1 to the all-important details, which you should read before
deploying any dynamic web apps.

Parsing the query string
Many PHP scripts don’t require any information from the web app to get the data
that the app needs. For example, if the script’s job is to return every record from
a table, or to return a predetermined subset of a table, then your app just needs
to call the script.

496 BOOK 5 Coding the Back End: PHP and MySQL

However, it’s more common for a web app to decide on-the-fly (say, based on
user input or some other event) what data it requires, and in such cases it needs
to let the server know what to send. To get your web app to request data from
the web server, you send a query string to the server. You can send a query string
using two different methods:

 » GET: Specifies the data by adding the query string to the URL of the request.
This is the method I talk about in this chapter.

 » POST: Specifies the data by adding it to the HTTP header of the request. This
method is associated with HTML forms and some AJAX requests, which I cover
in Book 6.

In the GET case, the query string is a series of name-value pairs that use the
 following general form:

name1=value1&name2=value2&...

Here’s an example:

book=4&chapter=1&example=2

In the case of a GET request, you build the request by taking the URL of the PHP
script that will handle the request, adding a question mark (?) to designate the
boundary between the script address and the query string, and then adding the
query string itself. Here’s an example:

http://mcfedries.com/webcodingfordummies/example.php?book=
4&chapter=1&example=2

Now your PHP script has something to work with, and you access the query string
data by using PHP’s $_GET variable, which is an associative array created from
the query string’s name-value pairs. Specifically, the array’s keys are the query
string’s names, and the array’s values are the corresponding query string values.
For example, the preceding URL creates the following $_GET array:

$_GET['book'] => 4
$_GET['chapter'] => 1
$_GET['example'] => 2

Note, however, that it’s good programming practice to not assume that the $_GET
array is populated successfully every time. You should check each element of the
array by using PHP’s isset() function, which returns true if a variable exists and
has a value other than null. Here’s some PHP code that checks that each element
of the preceding $_GET array exists and isn’t null:

U
si

ng
 P

H
P

to
 A

cc
es

s
M

yS
Q

L
D

at
a

CHAPTER 3 Using PHP to Access MySQL Data 497

if (isset($_GET['book'])) {
 $book_num = $_GET['book'];
} else {
 echo 'The "book" parameter is missing!
';
 echo 'We are done here, sorry.';
 exit(0);
}
if (isset($_GET['chapter'])) {
 $chapter_num = $_GET['chapter'];
} else {
 echo 'The "chapter" parameter is missing!
';
 echo 'Sorry it didn\'t work out.';
 exit(0);
}
if (isset($_GET['example'])) {
 $example_num = $_GET['example'];
} else {
 echo 'The "example" parameter is missing!
';
 echo 'You had one job!';
 exit(0);
}

This code checks each element of the $_GET array:

 » If the element exists and isn’t null, the code assigns the array value to
a variable.

 » If the element either doesn’t exist or is null, the code outputs a message
specifying the missing parameter and then stops the code by running the
exit(0) function (the 0 just means that you’re terminating the script in the
standard way).

Connecting to the MySQL database
You give PHP access to MySQL through an object called MySQLi (short for MySQL
Improved). There are actually several ways to bring PHP and MySQL together, but
MySQLi is both modern and straightforward, so it’s the one I cover in this book.

You connect to a MySQL database by creating an instance of the MySQLi object.
Here’s the general format to use:

$var = new MySQLi(hostname, username, password, database);

498 BOOK 5 Coding the Back End: PHP and MySQL

 » $var: The variable that stores the new MySQLi object.

 » hostname: The name of the server that’s running MySQL. If the server is on
the same computer as your script (which is usually the case), then you can use
localhost as the hostname.

 » username: The account name of a user who has access to the MySQL
database.

 » password: The password associated with the username account.

 » database: The name of the MySQL database.

Here’s a script that sets up the connection parameters using four variables, and
then creates the new MySQLi object:

<?php
 $host = 'localhost';
 $user = 'logophil_reader';
 $password = 'webcodingfordummies';
 $database = 'logophil_webcodingfordummies';

 $mysqli = new MySQLi($host, $user, $password, $database);
?>

However, you shouldn’t connect to a database without also checking that the con-
nection was successful. Fortunately, the MySQLi object makes this easy by setting
two properties when an error occurs:

 » connect_errno: The error number

 » connect_error: The error message

These properties are null by default, so your code can use an if() test to check if
either connect_error or connect_errno has been set:

if($mysqli->connect_error) {
 echo 'Connection Failed!
 Error #' . $mysqli->connect_errno
 . ': ' . $mysqli->connect_error;
 exit(0);
}

If an error occurs, the code displays a message like the one shown in Figure 3-1
and then runs exit(0) to stop execution of the script.

U
si

ng
 P

H
P

to
 A

cc
es

s
M

yS
Q

L
D

at
a

CHAPTER 3 Using PHP to Access MySQL Data 499

Before moving on to querying the database, there are two quick housekeeping
chores you need to add to your code. First, tell your MySQLi object to use the UTF-8
character set:

$mysqli->set_charset('utf8');

Second, use the MySQLi object’s close() method to close the database connection
by adding the following statement at the end of your script (that is, just before the
?> closing tag):

$mysqli->close();

Creating and running the SELECT query
To run a SELECT query on the database, you need to create a string variable to hold
the SELECT statement and then use that string to run the MySQLi object’s query()
method. Here’s an example:

$sql = 'SELECT category_name, description
 FROM categories';
$result = $mysqli->query($sql);

// Check for a query error
if (!$result) {
 echo 'Query Failed!
 Error: ' . $mysqli->error;
 exit(0);
}

The result of the query is stored in the $result variable. You might think that
this variable now holds all the data, but that’s not the case. Instead, $result is
an object that contains information about the data, not the data itself. You make
use of that information in the next section, but for now notice that you can use
the result object to check for an error in the query. That is, if $result is null, the
query failed, so display the error message (using the MySQLi object’s error prop-
erty) and exit the script.

FIGURE 3-1:
An example of

an error number
and message

generated by the
MySQLi object.

500 BOOK 5 Coding the Back End: PHP and MySQL

If you want to know how many rows the SELECT query returned, you can refer-
ence the result object’s num_rows property:

$result->num_rows

Storing the query results in an array
The object returned by the query() method is really just a pointer to the actual
data, but you can use the object to retrieve the SELECT query’s rows. There are
various ways to do this, but I’ll go the associative array route, which uses the
result object’s fetch_all(MYSQLI_ASSOC) method to return all the rows as an
associative array. (If you prefer to work with a numeric array, replace the MYSQLI_
ASSOC constant with MYSQLI_NUM):

$array = $mysqli_result->fetch_all(MYSQLI_ASSOC);

 » $array: The name of the associative array you want to use to hold the
query rows

 » $mysqli_result: The result object returned by MySQLi’s query() method

Note that this is a two-dimensional array, which makes sense because table data is
two-dimensional (that is, it consists of one or more rows and one or more columns).

I’ll make this more concrete by extending the example:

$sql = 'SELECT category_name, description
 FROM categories';
$result = $mysqli->query($sql);

// Check for a query error
if (!$result) {
 echo 'Query Failed!
 Error: ' . $mysqli->error;
 exit(0);
}

// Get the query rows as an associative array
$rows = $result->fetch_all(MYSQLI_ASSOC);

// Get the total number of rows
$total_rows = count($rows);

echo "Returned $total_rows categories:
";

U
si

ng
 P

H
P

to
 A

cc
es

s
M

yS
Q

L
D

at
a

CHAPTER 3 Using PHP to Access MySQL Data 501

Here, fetch_all() stores the query result as an array named $rows. The code
then uses count() to get the total number of rows in the array.

Looping through the query results
By storing the query results in an array, you make it easy to process the data by
looping through the array using a foreach() loop:

// Get the query rows as an associative array
$rows = $result->fetch_all(MYSQLI_ASSOC);

// Loop through the rows
foreach($rows as $row) {
 echo $row['category_name'] . ': ' .
 $row['description'] . '
';
}

Here’s what’s happening in the foreach() loop:

 » Each item in the $rows array is referenced using the $row variable.

 » Each $row item is itself an associative array, where the key-value pairs are the
column names and their values.

 » Because the keys of the $row array are the column names, the code can refer
to the values using the $row['column'] syntax.

Incorporating query string
values in the query
I talk earlier in this chapter about how you can use $_GET to parse a URL’s query
string, so now I show you an example that uses a query string value in a SELECT
query. First, here’s the code:

<body>
<?php
 // Parse the query string
 if (isset($_GET['category'])) {
 $category_num = $_GET['category'];
 } else {

502 BOOK 5 Coding the Back End: PHP and MySQL

 echo 'The "category" parameter is missing!
';
 echo 'We are done here, sorry.';
 exit(0);
 }

 // Store the database connection parameters
 $host = 'localhost';
 $user = 'logophil_reader';
 $password = 'webcodingfordummies';
 $database = 'logophil_webcodingfordummies';

 // Create a new MySQLi object with the
 // database connection parameters
 $mysqli = new MySQLi($host, $user, $password, $database);

 // Create and run a SELECT query
 // This is an INNER JOIN of the products and
 // categories tables, based on the category_id
 // value that was in the query string
 $sql = "SELECT products.product_name,
 products.unit_price,
 products.units_in_stock,
 categories.category_name
 FROM products
 INNER JOIN categories
 ON products.category_id = categories.category_id
 WHERE products.category_id = $category_num";
 $result = $mysqli->query($sql);

 // Get the query rows as an associative array
 $rows = $result->fetch_all(MYSQLI_ASSOC);

 // Get the category name
 $category = $rows[0]['category_name'];

 echo "<h2>$category</h2>";
 echo '<table>';
 echo '<tr>';
 echo '<th>Product</th>';
 echo '<th>Price</th>';
 echo '<th>In Stock</th>';
 echo '</tr>';

 // Loop through the rows
 foreach($rows as $row) {

U
si

ng
 P

H
P

to
 A

cc
es

s
M

yS
Q

L
D

at
a

CHAPTER 3 Using PHP to Access MySQL Data 503

 echo '<tr>';
 echo '<td>' . $row['product_name']. '</td>
 <td>' . $row['unit_price'] . '</td>
 <td>' . $row['units_in_stock'] . '</td>';
 echo '</tr>';
 }
 echo '</table>>';

 // That's it for now
 $mysqli->close();
?>
</body>

First, note that to keep the code shorter, I removed the error checking code.
There’s quite a bit going on here, so I’ll go through it piece by piece:

 » The script resides within an HTML file, and you’d load the file using a URL that
looks something like this:

http://mcfedries.com/webcodingfordummies/5-3-4.
php?category=1

 » The first part of the script uses $_GET['category'] to get the category
number from the query string, and that value is stored in the $category_num
variable.

 » The script then builds a SQL SELECT statement, which is an inner join on the
products and categories tables. The WHERE clause restricts the results to
just those products that have the category value from the query string:

WHERE products.category_id = $category_num

 » The query() method runs the SELECT query and stores the result in the
$result object.

 » The fetch_all(MYSQLI_ASSOC) method stores the returned row in an
associative array named $rows.

 » Each element in the $rows array includes the category name in the cate-
gory_name column, so the script arbitrarily uses $rows[0]['category_
name'] to get the category name and store it in the $category variable.

 » The script then outputs an <h2> heading for the category name, as well as
some HTML table tags.

 » A foreach() loop runs through the query rows. During each pass, the code
outputs an HTML table row (<tr>) and a table cell (<td>) for each value.

504 BOOK 5 Coding the Back End: PHP and MySQL

 » Finally, the code outputs the closing </table> tag and closes the MySQLi
connection.

Figure 3-2 shows the result.

Creating and Running Insert, Update,
and Delete Queries

Performing INSERT, UPDATE, and DELETE queries in PHP is much simpler
than performing SELECT queries because once your code has checked whether
the query completed successfully, you’re done. Here’s an example that runs an
INSERT query:

<?php

 // Store the database connection parameters
 $host = 'localhost';
 $user = 'logophil_reader';
 $password = 'webcodingfordummies';
 $database = 'logophil_webcodingfordummies';

 // Create a new MySQLi object with the
 // database connection parameters
 $mysqli = new MySQLi($host, $user, $password, $database);

 // Check for a connection error
 if($mysqli->connect_error) {
 echo 'Connection Failed!

FIGURE 3-2:
The output of the
script, which lays

out the query
data in an HTML

table.

U
si

ng
 P

H
P

to
 A

cc
es

s
M

yS
Q

L
D

at
a

CHAPTER 3 Using PHP to Access MySQL Data 505

 Error #' . $mysqli->connect_errno
 . ': ' . $mysqli->connect_error;
 exit(0);
 }

 // Create and run an INSERT query
 $sql = "INSERT
 INTO categories (category_name, description)
 VALUES ('Breads', 'Multi-grain, rye, and other

deliciousness')";
 $result = $mysqli->query($sql);

 // Check for a query error
 if (!$result) {
 echo 'Query Failed!
 Error: ' . $mysqli->error;
 exit(0);
 }
?>

When given an INSERT, UPDATE, or DELETE statement, MySQLi’s query() method
returns true if the query executed successfully, or false if the query failed.

Separating Your MySQL Login Credentials
When you’re building a web app or some other medium-to-large web project that
requires a back end, you’ll soon notice that your PHP scripts that access the proj-
ect’s MySQL data begin to multiply in a rabbitlike fashion. Before you know it,
you’ve got 10 or 20 such scripts lying around. What do these scripts all have in
common? They all include the same code for connecting to the project’s MySQL
database. It’s not a big deal to just copy and paste that code into each new script,
but it can be a huge deal if one day you have to change your login credentials.
For example, for security reasons you might decide to change the password. That
means you now have to wade through every single one of your scripts and make
that change. Annoying!

A better way to go is to make use of PHP’s require statement, which enables you
to insert the contents of a specified PHP file into the current PHP file:

require php_file;

 » php_file: The path and filename of the PHP file you want to insert

506 BOOK 5 Coding the Back End: PHP and MySQL

So what you do is take your MySQL database credentials code and paste it into a
separate PHP file:

<?php
 $host = 'localhost';
 $user = 'logophil_reader';
 $password = 'webcodingfordummies';
 $database = 'logophil_webcodingfordummies';
?>

Say this file is named credentials.php. If it resides in the same directory as your
scripts, then you’d replace the credentials code in your PHP scripts with the fol-
lowing statement:

require 'credentials.php';

If the credentials file resides in a subdirectory, then you need to include the full
path to the file:

require '/includes/credentials.php';

Note that if PHP can’t find or load this file for some reason, the script will halt
with an error.

6Coding Dynamic
Web Pages

Contents at a Glance
CHAPTER 1: Melding PHP and JavaScript

with Ajax and JSON . 509

CHAPTER 2: Building and Processing Web Forms 533

CHAPTER 3: Validating Form Data . 565

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 509

Melding PHP and
JavaScript with
Ajax and JSON

Basically, what “Ajax” means is “JavaScript now works.” And that in turn
means that web-based applications can now be made to work much more
like desktop ones.

— PAUL GRAHAM

When coding web pages, it feels like there’s a great divide between the
browser front end and the server back end. When you’re working on
the front end, you can use HTML tags, CSS properties, and JavaScript

code to build, style, and animate your pages. When you’re working on the back
end, you can use MySQL and PHP code to define, access, and manipulate data.
That all works, but front-end code without back-end data produces a lifeless
page, whereas back-end data without front-end code produces useless informa-
tion. To create a truly dynamic web page, you need to cross this divide. You need to
give your web page a mechanism to interact with the server to ask for and receive

Chapter 1

IN THIS CHAPTER

 » Making sense of Ajax

 » Loading server data into a page
element

 » Sending data to and receiving data
from the server

 » Getting to know JSON

 » Using JSON to work with complex
data from the server

510 BOOK 6 Coding Dynamic Web Pages

server data, and you need to give the server a mechanism to return that data in a
format the page can understand and manipulate.

In this chapter, you investigate two such mechanisms: Ajax for sending data back
and forth between the web page and the server, and JSON for putting that data into
a format that’s easily read by your web page code.

What Is Ajax?
Back in the early days of the web, the only way to see new data in a web page was
to reload the entire page from the server. It didn’t matter if just a single word or a
single color had been changed, you still needed to grab everything from the server
and refresh the entire page. This was back in the days when broadband Internet
access wasn’t as widespread as it is now (at least in some places), so that page
reload could take quite a long time, depending on the size of your Internet tubes.

The sheer inefficiency of this process led some very smart people to wonder if
there was a better way. Would it be possible, they asked, to somehow get the web
browser to set up a communications channel with the web server that would ena-
ble the browser to request new data from the server without requiring a complete
page reload?

Thankfully for modern web developers such as you and I, the answer to that ques-
tion was a resounding “Yes!” The result was a new technology with the decidedly
unlovely name of Asynchronous JavaScript and XML, which nowadays we shorten,
with gratitude in our hearts, to Ajax.

Ajax is a mind-bogglingly complicated technology under the hood, but we won’t
be opening that hood even a tiny bit. Instead, I only go so far as to say that what
Ajax does is insert a layer — called the Ajax engine — between the web page and
the web server. With that idea in mind, let me give you a quickie explanation of
what the Ajax name means:

 » Asynchronous: The web page doesn’t have to wait for the server to resend the
entire page when the page changes. Instead, requests are handled by the Ajax
engine, which uses an object called XMLHttpRequest (XHR, for short) to ask
the server for the data while also keeping the page displayed so the user can
still interact with it.

 » JavaScript: The language used by the Ajax engine and also the language used
to send requests to the server and to handle the response. A pure JavaScript
approach is quite complicated, however, so in this book I use jQuery to greatly
simplify the interaction.

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 511

 » XML: The eXtensible Markup Language, which is the data format that the Ajax
engine uses to send data to the server and to receive data from the server.
Fortunately, you don’t have to worry about this because jQuery makes it easy
to send the data, and JSON (discussed later) makes it easy to process the
received data.

Making Ajax Calls with jQuery
In Book 4, I talk a lot about how jQuery makes many everyday JavaScript coding
tasks easier and faster. That’s certainly the case with Ajax, because the jQuery
programmers put a lot of effort into making Ajax calls as painless as possible. As I
hope to show in this section, I believe they succeeded admirably.

To begin, understand that jQuery’s Ajax support isn’t limited to a single tech-
nique; far from it. There are actually quite a few Ajax-related features in the
jQuery library, but for this book I’m going to focus on just the four easiest ones:

 » .load(): Enables you to load the data returned by the server into a specified
web page element

 » .get(): Sends a GET request to the server, which is suitable for sending a
relatively small amount of data

 » .post(): Sends a POST request to the server, which is suitable for sending a
relatively large amount of data

 » .getJSON(): Sends a GET request to the server, and accepts data from the
server in the JSON format

The rest of this section covers .load(), .get(), and .post() in more detail. I
tackle .getJSON() a bit later when I talk about JSON stuff.

Learning more about GET
and POST requests
When you’re working with Ajax calls to the server, one of the decisions you have
to make is what request method to use: GET or POST. How on Earth are you sup-
posed to do that? Fortunately, it really only comes down to one thing: the length of
the data. GET requests are meant to be used when the data you send to the server
is relatively short. The actual limit depends on the web server, but the most com-
mon ceiling is 2,048 characters. Anything longer than that and the server might

512 BOOK 6 Coding Dynamic Web Pages

cough up a 414 Request URI Too Long error. If you’re sending long data (such as
a blog entry), use a POST request.

Some folks will tell you that POST is more secure than GET, but is that true? From
an Ajax perspective, no, there’s not much difference. Normal GET requests oper-
ate by adding a query string to the end of the URL, which is easily seen by the
user. In an Ajax GET call, the page URL doesn’t change, but the URL used for the
Ajax request does change to include the query string. This URL is easily seen by
opening the browser’s web development tools. In Chrome, for example, select the
Network tab, as shown in Figure 1-1. If that query string contains sensitive data,
a savvy user can find it without too much trouble.

Alas, POST request data is also readily seen by a sophisticated user. In Chrome’s
dev tools, for example, click the Network tab, click the Ajax request (it’s the one
that shows xhr, short for the XMLHttpRequest object used by Ajax) in the Type
column, click the Headers tab, then scroll down to the Form Data section, as
shown in Figure 1-2.

If you only ever send relatively small amounts of data to the server, you can cer-
tainly stick with using just GET requests. However, some developers use both,
even when sending small amounts of data, as a way of making their code more
readable:

FIGURE 1-1:
The Ajax GET

request query
string is easily

 visible in the
browser’s

 development
tools.

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 513

 » Use a GET request when you want to retrieve data from the server without
modifying the server data in any way.

 » Use a POST request when you want to modify — that is, add, update, or
delete — server data.

Handling POST requests in PHP
I cover handling GET requests in PHP code in Book 5, Chapter 3. Handling POST
requests is very similar, so here I just take a quick look at how you handle them
in PHP.

POST requests can be sent in two ways. The first method is as a query string con-
sisting of a series of name-value pairs that use the following general form:

name1=value1&name2=value2&...

Here’s an example:

book=4&chapter=1&example=2

FIGURE 1-2:
The Ajax POST

request data
is only slightly
harder to find

in the browser’s
development

tools.

514 BOOK 6 Coding Dynamic Web Pages

The second method sends the POST data as an object literal consisting of a series
of key-value pairs with the following syntax:

{key1: value1,key2: value2,...}

Here’s an example:

{book: 4,chapter: 1,example: 2}

Either way, you access the data by using PHP’s $_POST variable, which is an
associative array created from either the query string’s name-value pairs or the
object’s key-value pairs. The preceding examples create the following $_POST
array:

$_POST['book'] => 4
$_POST['chapter'] => 1
$_POST['example'] => 2

As with the $_GET array, your code should check that each of the expected ele-
ments of the $_POST array exist by using PHP’s isset() function, which returns
true if a variable exists and has a value other than null. Here’s an example:

if (isset($_POST['book'])) {
 $book_num = $_POST['book'];
} else {
 echo 'The "book" parameter is missing!
';
 echo 'We are done here, sorry.';
 exit(0);
}

Using .load() to update an element
with server data
One of the most common and most useful Ajax techniques is to update just a
single element on the page with data from the server. All the other elements on
the page stay the same, so the user’s experience isn’t disrupted by a jarring and
annoying page reload.

jQuery makes this technique very straightforward by offering the .load() method.
How you use this method depends on what you want to load, whether you want to
send data to the server, and whether you want to run some code when the load is
done. The next few sections take you through the possibilities.

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 515

Loading an HTML file
The most common use of .load() is to populate a page element with the contents
of an HTML file. Here’s the general syntax to use:

$(element).load(HTMLFile);

 » element: A jQuery selector that specifies the element into which the HTML will
be loaded.

 » HTMLFile: The name of the file that contains the HTML code you want loaded
into element. If the file resides in a directory that’s different than the current
file’s directory, you need to include the path info, as well.

For example, here’s an <h1> tag that represents the entire contents of a file named
helloajaxworld.html:

<h1>Hello Ajax World!</h1>

Now consider the following HTML code:

<script>
 $(document).ready(function() {
 $('#target').load('helloajaxworld.html');
 });
</script>
<body>
 <div id="target">
 </div>
</body>

The <body> tag includes a div element that uses an id value of target. When the
page is loaded (that is, when the document object’s ready event fires), the script
runs the following statement:

$('#target').load('helloajaxworld.html');

This statement tells the browser to use an Ajax call to grab the contents of
helloajaxworld.html from the server and then insert that content into the ele-
ment that uses the id value of target (that is, the page’s <div> tag). Figure 1-3
shows the result.

516 BOOK 6 Coding Dynamic Web Pages

There’s a built-in browser security restriction called the same-origin policy, which
only allows a script to access data from another file if both files have the same
origin, meaning the following must be the same for both:

 » Protocol: This usually means both files must use http or both must use
https. If one file uses http and the other uses https, the Ajax call will fail.

 » Host name: The two files can’t be on different subdomains. If one file uses
mydomain.com and the other uses www.mydomain.com, the Ajax call will fail.

 » Port number: The two files must use the same port number. The standard
HTTP port is 80, but if you call the script with, say, port 88 (that is, http://
mydomain.com:88/), the Ajax call will fail.

Therefore, make sure that the HTML file you request has the same origin as the
file that contains the .load() statement.

Loading a common header and footer
Why not just put the HTML file’s content into the page by hand? You should def-
initely do that if you’ll only be using that content once. However, it’s very com-
mon in web development to have content that is repeated over multiple pages. For
example, a particular web project might use the same header and the same footer
on every page. Adding the header and footer code by hand is easy as pie if the proj-
ect consists of just one or two pages. But what if it contains a dozen pages, or two
dozen? Yep, you can copy and paste the code no problem, but if you have to change
anything in the header or footer, then have fun updating a couple of dozen files.

Forget all that. Instead, put your header code in a separate file (called, say, header.
html), your footer code in another file (called, you guessed it, footer.html), and
then store them in a separate directory (called, say, includes). Then use .load()
to insert that content. That is, all your pages would include code similar to the
following:

<script>
 $(document).ready(function() {
 $('header').load('includes/header.html');
 $('footer').load('includes/footer.html');
 });

FIGURE 1-3:
Using jQuery’s

.load() method
to load the

 contents of an
HTML file into a

page element.

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 517

</script>
<body>
 <header></header>
 The rest of the page stuff goes here
 <footer></footer>
</body>

Loading output from a PHP script
If you have a PHP script that uses echo or print to output HTML tags and text,
you can use .load() to insert that output into a page element. The general syntax
is nearly identical to the one for loading an HTML file:

$(element).load(PHPFile);

 » element: A jQuery selector that specifies the element into which the PHP
output will be loaded.

 » PHPFile: The name of the file that contains the PHP code. If the PHP file sits in
a directory other than the current file’s directory, include the path info.

For example, here’s a PHP file named get-server-time.php:

<?php
 $current_time = date('H:m:s');
 echo "The time on the server is $current_time.";
?>

The script gets the current time on the server and then outputs a message dis-
playing the time. Now consider the following HTML code:

<script>
 $(document).ready(function() {
 $('#target').load('get-server-time.php');
 });
</script>
<body>
 <h2 id="target">
 </h2>
</body>

When the page is ready, the .load() method calls get-server-time.php and
loads the output into the <h2> tag, as shown in Figure 1-4.

518 BOOK 6 Coding Dynamic Web Pages

The same-origin policy that I mention earlier for HTML files is also in effect for
PHP files. That is, the PHP script you request must have the same origin as the file
that contains the .load() statement.

Loading a page fragment
Most of the time you’ll use .load() to insert the entire contents of an HTML file
or PHP output into a page element. However, jQuery also offers a mechanism to
insert just a fragment of the page or output. Here’s the syntax:

$(element).load(file fragment);

 » element: A jQuery selector that specifies the element into which the HTML
tags and text will be loaded

 » file: The name of the file (plus its directory path, if needed) that contains
either the HTML code or PHP output you want loaded into element

 » fragment: A jQuery selector that specifies the portion of file that gets
loaded into element

For example, suppose you want to set up a summary page that lists the titles and
first paragraphs from a collection of longer posts. Here’s the partial code from one
of those posts:

<header>
 <h1>It's Official: Teen Instant Messages Nothing But

Gibberish</h1>
</header>
<main>
 <article>
 <section class="first-paragraph">
 In a scathing report released today, communications

experts have declared that the instant messages teenagers
exchange with each other are in reality nothing but gibberish.
U.S. Chatmaster General Todd Dood, with technical help from
the National Security Agency, examined thousands of instant
messages.

FIGURE 1-4:
Using jQuery’s

.load() method
to load the
output of a

PHP script into a
page element.

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 519

 </section>
 The rest of the post's sections go here
 </article>
</main>

Notice two things in this code:

 » The title of the post is inside an <h1> tag.

 » The first paragraph of the post is assigned the class first-paragraph.

Given these two tidbits, and assuming this page is located in posts/post1.html,
you can use a couple of .load() statements to add the title and first paragraph to
the summary page (see Figure 1-5 for the results):

<script>
 $(document).ready(function() {
 $('#title1').load('posts/post1.html h1');
 $('#intro1').load('posts/post1.html .first-paragraph');
 });
</script>
<body>
 <header id="title1">
 </header>
 <article id="intro1">
 </article>
 <div>
 Read the rest of the

post…
 </div>
</body>

Sending data to the server
If you want to load the output from a PHP script, sometimes you might want
to pass along to the script some parameters that specify or limit the data sent

FIGURE 1-5:
Using jQuery’s

.load() method
to load the

title and first
paragraph from

another page.

520 BOOK 6 Coding Dynamic Web Pages

back by the script. For example, you might ask for the data from a particular user
account, the customers from a specified region, or the ten most recent blog posts.

Here’s the variation of the .load() syntax that enables you to send data to the
server:

$(element).load(PHPfile, data);

 » element: A jQuery selector that specifies the element into which the PHP
output will be loaded.

 » PHPfile: The name of the PHP file (plus its directory path, if needed) that
creates the PHP output you want loaded into element.

 » data: The data to send to the server. This can be string or object literal:

• String: A query string that specifies a set of name-value pairs using the
following format:

'name1=value1&name2=value2,...'

jQuery sends the query string as a GET request.

• Object: An object literal that specifies a set of key-value pairs using the
following format:

{key1: value1, key2: value2,...}

jQuery sends the object as a POST request.

For example, suppose you have a PHP file named get-category.php that uses
$_POST to look for a category number in an object literal and then returns data
about that category. Here’s how you’d load the PHP script’s output into a page
element with id value of category-output:

$('#category-output').load('get-category.php', {category: 1});

Running a function after the load
Most of the time you’ll be content just to load some text and tags into an element
and then be done with it. Sometimes, however, it’s useful to run some code post-
load. You can do that by adding a callback function to the .load() method:

$(element).load(file, data, function() {
 Code to run after the load finishes goes here
});

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 521

For example, you might want to search the loaded data for a particular value.
Similarly, you might want to adjust the data’s CSS based on some criteria.

As an example of the latter, suppose you have a <nav> tag and you use .load() to
populate the element with your site’s main navigation links. In most cases, you’d
put that code in an external JavaScript file and then include the file in each page so
that all your pages load the same navigation links. That’s fine, but it’s useful for
site visitors if you mark up each of the main navigation links in some way when
a visitor is viewing one of those pages. For example, if you have a “What’s New”
page, your What’s New link should appear different from the other navigation
links when someone is viewing that page.

You can do that by adding a callback function that examines the filename of the
current page. If it matches the filename of a navigation link, it applies a class to
that link. Here’s some code that does this:

CSS:

.current-nav-link {
 background-color: black;
 color: white;
}

HTML (nav.html):

Home
What's New
What's Old
What's What

jQuery:

$('nav').load('nav.html', function() {
 var current_page = window.location.pathname.split('/').

pop();
 switch (current_page) {
 case 'whatsnew.html':
 $('#whatsnew').addClass('current-nav-link');
 break;

 case 'whatsold.html':
 $('#whatsold').addClass('current-nav-link');
 break;

522 BOOK 6 Coding Dynamic Web Pages

 case 'whatswhat.html':
 $('#whatswhat').addClass('current-nav-link');
 break;

 default:
 $('#home').addClass('current-nav-link');
 }
});

The CSS defines a class named current-nav-link that switches the background
to black and the text color to white. The HTML shows nav.html, the file that holds
the navigation links. The jQuery code uses .load() to load nav.html into the
<nav> tag (not shown in the code), and then a callback function does two things:

 » It determines the filename of the current page by taking the URL’s path (given
by window.location.pathname), splitting it into an array with the backslash
(/) as the separator, and then running the pop() method to get the last item
in the array (that is, the filename).

 » It uses a switch() statement to check whether the current filename is equal
to the filename used by one of the main navigation links. If so, then the code
uses jQuery’s addClass() method to add the current-nav-link class to the
link element.

Figure 1-6 shows an example of this code at work.

FIGURE 1-6:
The .load()

callback function
determines the
current page’s

filename. If that
filename is the

same as the
 filename of a

navigation link,
the code adds a

class to that link.

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 523

Using .get() or .post() to communicate
with the server
If you want to communicate with the server via Ajax without that communication
being tied to a specific page element, use the .get() or .post() functions, which
send GET and POST requests, respectively. These functions use the same general
syntax:

$.get(script, data-to-send, function(returned-data) {
 Code to run if the operation is successful
});
$.post(script, data-to-send, function(returned-data) {
 Code to run if the operation is successful
});

 » script: The name of the PHP file (plus its directory path, if needed) that you
want to run.

 » data-to-send: Specifies the data to send to the server. This can be string or
object literal:

• String: A query string that specifies a set of name-value pairs using the
following format:

'name1=value1&name2=value2,...'

• Object: An object literal that specifies a set of key-value pairs using the
following format:

{key1: value1, key2: value2,...}

 » function(returned-data): A function that jQuery runs if the GET or POST
operation was success. The data returned by the server is stored in the
returned-data parameter.

Note, first, that the syntax is slightly unusual in that you don’t specify an element
after the $() method.

These are extremely versatile functions that you can use in a number of different
ways:

 » Run a script: If all you want to do is execute a server script, run either method
with just the script parameter. For example:

$.get('php/update-rss-feeds.php');

524 BOOK 6 Coding Dynamic Web Pages

 » Run a script with data: If you want to run a server script and also supply that
script with some data, run either method with both the script and data-to-
send parameters. For example:

$.get('php/update-rss-feeds.php', 'feedID=2');

 » Retrieve data: If you want to run a server script and process the data that the
script sends back, run either method with the script parameter and the
function(returned-data) callback function. For example:

$.post('total-inventory.php', function(data) {
 console.log('Total inventory: ' + data);
});

 » Send and retrieve data: If you want to run a server script, supply that script
with some data, and process the data that the script sends back, run either
method with all the parameters. For example:

$.post('total-inventory.php', 'category=1', function(data) {
 console.log('Total Beverage inventory: ' + data);
});

For example, suppose you want to know the total value of the inventory (that is,
the units in stock multiplied by the price of each unit) for a particular category.
Here’s a partial PHP script named total-inventory.php that does the job:

// Parse the query string
$category_num = $_POST['category'];

// Create and run a SELECT query
$sql = "SELECT unit_price, units_in_stock
 FROM products
 WHERE category_id = $category_num";
$result = $mysqli->query($sql);

// Get the query rows as an associative array
$rows = $result->fetch_all(MYSQLI_ASSOC);
$inventory_total = 0;

// Loop through the rows
foreach($rows as $row) {
 $inventory_total += $row['unit_price'] * $row['units_in_

stock'];
}
echo $inventory_total;

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 525

This script (which has many parts not shown, such as the MySQL connection state-
ments), takes a category value via POST and runs a SELECT query that returns the
unit_price and units_in_stock for that category. The code then loops through
the returned rows, adding to the inventory_total variable each time by multi-
plying unit_price and units_in_stock. The script finishes by echoing the final
value of inventory_total.

Now consider the front-end code:

CSS:

div {
 color: green;
 font-size: 1.25rem;
}
.warning {
 color: red;
 font-weight: bold;
}

HTML:

<h1>Inventory Report</h1>
<div></div>

JavaScript/jQuery:

$(document).ready(function() {
 $.post('total-inventory.php', 'category=1', function(data) {
 var msg = 'The total inventory is $' + data;
 if (data >= 10000) {
 msg = 'WARNING! Total inventory is $' + data;
 $('div').addClass('warning');
 }
 $('div').html(msg);
 });
});

The jQuery .post() function calls total-inventory.php and sends
category=1 as the data. The callback function stores the PHP output (that is, the
$inventory_total value) in the data parameter, sets up a default message, and
checks to see if data is over 10000. If it is, the code changes the message and adds
the warning class to the div element. Finally, the code displays the message in the
div. Figure 1-7 shows an example result.

526 BOOK 6 Coding Dynamic Web Pages

Introducing JSON
As I show over and over in this chapter, when the PHP script is ready to send data
back to the front end, it uses one or more echo (or print) statements to output
the data. That process works fine if all your web page needs from the server is
some relatively simple output, such as HTML tags, text, or a single value (such as
a number or string).

However, with a web app, it’s common to require more sophisticated data, usually
some subset of a table or a join of two or more tables. You can’t send pure MySQL
data back to the web browser because there are no front-end tools that can work
with data in that format. Instead, what you need to do is convert the server data
into a special format called JavaScript Object Notation, or JSON (pronounced like the
name Jason), for short.

Learning the JSON syntax
I talk about JavaScript object literals in several places in this book, and if you know
about object literals, then JSON objects will look very familiar. Here’s the general
syntax:

{
 "property1": value1,
 "property2": value2,
 ...
 "propertyN": valueN
}

JSON data looks like an object, but it’s really just text that consists of one or more
property-value pairs with the following characteristics:

 » Each property name is surrounded by double quotation marks (").

 » Each value can be one of the following:

• A number

• A string (in which case the value must be surrounded by double quotation
marks)

FIGURE 1-7:
A warning

 message
 displayed by
the .post()

 callback function.

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 527

• A Boolean (true or false)

• null (that is, no value)

• A JavaScript array literal (comma-separated values surrounded by square
brackets — [and])

• A JavaScript object literal (comma-separated property: value pairs
 surrounded by braces — { and })

 » The property-value pairs are separated by commas.

 » The block of property-value pairs is surrounded by braces ({ and}).

Here’s an example:

{
 "account": 853,
 "name": "Alfreds Futterkiste",
 "supplier": false,
 "recentOrders": [28394,29539,30014],
 "contact": {
 "name": "Maria Anders",
 "phone": "030-0074321",
 "email": "m.anders@futterkiste.com"
 }
}

Declaring and using JSON variables
In the next section, I talk about how useful JSON is for getting complex data —
especially database records — from the server to your web page. However, you can
also use JSON data in your non-Ajax code. You begin by declaring a JSON variable:

var customer = {
 "account": 853,
 "name": "Alfreds Futterkiste",
 "supplier": false,
 "recentOrders": [28394,29539,30014],
 "contact": {
 "name": "Maria Anders",
 "phone": "030-0074321",
 "email": "anders@futterkiste.com"
 }
}

528 BOOK 6 Coding Dynamic Web Pages

You can then refer to any property in the JSON data by using the variable.property
syntax. Here are some examples:

customer.account // Returns 853
customer.name // Returns "Alfreds Futterkiste"
customer.recentOrders[1] // Returns 29539
customer.contact.email // Returns "anders@futterkiste.com"

The JSON syntax can be a bit tricky, so it’s a good idea to check that your data is
valid before using it in your code. The easiest way to do that is to use the JSONLint
(https://jsonlint.com) validation tool. Copy your JSON code, paste it into the
JSONLint text area, then click Validate JSON.

Returning Ajax Data as JSON Text
The real power of JSON becomes clear during Ajax calls when you want to return
a complex set of data to the web page. This usually means an array of database
records. Sure, you can use your PHP code to loop through the array and output the
data along with some HTML tags and text. However, most web apps don’t want
to merely display the data; they want to process the data in some way, and that
means handling the data using a callback function. That still leaves the rather
large problem of getting the server data to the web page, but that’s where JSON
comes in. Because JSON data is just text, it’s easy to transfer that data between the
server and the web page.

Converting server data to the JSON format
You might be shaking in your boots imagining the complexity of the code required
to convert an array of database records into the JSON format. Shake no more,
because, amazingly, it takes but a single line of PHP code to do the job! That’s
because PHP comes with a handy and powerful function called json_encode()
that can take any value and automagically turn it into a JSON object. Here’s the
syntax:

json_encode(value, options)

 » value: The value you want to convert to JSON. For most of your Ajax calls, this
will be an array of MySQL table rows returned by the fetch_all() method.

https://jsonlint.com/

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 529

 » options: An optional series of constants, separated by the OR operator (|).
These constants determine how the function encodes special characters such
as quotation marks. Here are four you’ll use most often:

• JSON_HEX_TAG: Encodes less than (<) and greater than (>) as \u003C and
\u003E, respectively

• JSON_HEX_AMP: Encodes ampersands (&) as \u0026

• JSON_HEX_APOS: Encodes single quotation marks (') as \u0027

• JSON_HEX_QUOT: Encodes double quotation marks (") as \u0022

The usual procedure is to store the output of json_encode() in a variable, then
echo or print that variable. Here’s an example (where it’s assumed that the vari-
able $rows contains an array of MySQL rows):

$JSON_data = json_encode($rows, JSON_HEX_APOS | JSON_HEX_QUOT);
echo $JSON_data;

Here’s a longer example that assumes you’ve already used PHP to connect to a
MySQL database, and the resulting MySQLi object is stored in the $mysqli variable:

// Create and run a SELECT query
$sql = "SELECT company_name, contact_name, contact_title,

contact_email
 FROM suppliers";
$result = $mysqli->query($sql);

// Get the query rows as an associative array
$rows = $result->fetch_all(MYSQLI_ASSOC);

// Convert the array to JSON, then output it
$JSON_data = json_encode($rows, JSON_HEX_APOS | JSON_HEX_QUOT);
echo $JSON_data;

Here’s a partial listing of what gets stored in $JSON_data:

[{
 "company_name": "Exotic Liquids",
 "contact_name": "Charlotte Cooper",
 "contact_title": "Purchasing Manager",
 "contact_email": "charlottec@exoticliquids.com"
}, {
 "company_name": "New Orleans Cajun Delights",
 "contact_name": "Shelley Burke",

530 BOOK 6 Coding Dynamic Web Pages

 "contact_title": "Order Administrator",
 "contact_email": "sburke@neworleanscajundelights.com"
}, {
 "company_name": "Grandma Kelly\u0027s Homestead",
 "contact_name": "Regina Murphy",
 "contact_title": "Sales Representative",
 "contact_email": "regina.murphy@grandmakellyshomestead.com"
},
etc.
]

Notice that this is an array of JSON strings, each of which represents a row from
the data returned by the MySQL SELECT query. Note, too, that I’ve formatted this
with newlines and spaces to make it easier to read. That actual data stored in the
variable contains no whitespace.

Handling JSON data returned by the server
By far the easiest way to process JSON data returned by a PHP script is to use
jQuery’s .getJSON() function to initiate the Ajax call. Here’s the syntax:

$.getJSON(script, data-to-send, function(JSON-array) {
 Code to run if the operation is successful
});

 » script: The name of the PHP file (plus its directory path, if needed) that you
want to run.

 » data-to-send: The data to send to the server, which can be a string or an
object literal.

 » function(JSON-array): A function that jQuery runs if the operation was
successful. The data returned by the server is stored in the JSON-array
parameter.

Because the PHP script returns an array of JSON strings, the .getJSON() callback
function will usually use a .each() loop to run through the array:

$.each(JSON-array, function(index, JSON-string) {
 Code to handle each JSON string goes here
});

M
el

di
ng

 P
H

P
an

d
Ja

va
Sc

ri
pt

w

it
h

Aj
ax

 a
nd

 JS
O

N

CHAPTER 1 Melding PHP and JavaScript with Ajax and JSON 531

 » JSON-array: The JSON array returned by the server

 » index: The current index value of the array

 » JSON-string: The current array item, which is a JSON string

Here’s some code that processes the PHP output from the previous section:

HTML:

<h1>Supplier Contacts</h1>
<main></main>

JavaScript/jQuery:

$.getJSON('php/get-supplier-contacts.php',function(data) {
 $.each(data, function(index, contact) {
 $('main').append('<section id="contact' + index +

'"/>');
 $('#contact' + index).append('<div>Company: ' + contact.

company_name + '</div>');
 $('#contact' + index).append('<div>Contact: ' + contact.

contact_name + '</div>');
 $('#contact' + index).append('<div>Title: ' + contact.

contact_title + '</div>');
 $('#contact' + index).append('<div>Email: ' + contact.

contact_email + '</div>');
 });
});

The code uses .each() to loop through the array of supplier contacts:

 » A new <section> with an id set to "contact"+index is appended to main.

 » A <div> tag for each of the four pieces of contact data (company_name,
contact_name, contact_title, and contact_email) is appended to the
new <section> tag.

Figure 1-8 shows part of the resulting page.

532 BOOK 6 Coding Dynamic Web Pages

The .getJSON() function sends the data to the server using a GET request. What
if you want to use a POST request, instead? Alas, jQuery doesn’t offer a function
such as .postJSON(). Instead, you use the .post() function, but when you get the
JSON data back from the server, you turn it into a JavaScript object by using the
JSON.parse() function:

JSON.parse(data)

 » data: The JSON data returned by the server

Here’s an example:

$.post('php/get-supplier-contacts.php',function(data) {

 // Convert the JSON text to a JavaScript object
 var obj = JSON.parse(data);

 $.each(obj, function(index, contact) {
 $('main').append('<section id="contact' + index +

'"/>');
 $('#contact' + index).append('<div>Company: ' + contact.

company_name + '</div>');
 $('#contact' + index).append('<div>Contact: ' + contact.

contact_name + '</div>');
 $('#contact' + index).append('<div>Title: ' + contact.

contact_title + '</div>');
 $('#contact' + index).append('<div>Email: ' + contact.

contact_email + '</div>');
 });
});

FIGURE 1-8:
The callback

loops through
the JSON array,

appending each
object to the
<main> tag.

CHAPTER 2 Building and Processing Web Forms 533

Building and Processing
Web Forms

From humble beginnings, forms in HTML5 are now tremendously flexible and
powerful, providing natively much of the functionality that we as developers
have been adding in with JavaScript over the years.

— PETER GASSTON

A dynamic web page is one that interacts with the user and responds in some
way to that interaction. However, when I use the word “interaction” here,
I don’t mean (or I don’t just mean) users scrolling through your content

and clicking a link here and there. A dynamic web page solicits feedback from the
user and then responds to that feedback in an appropriate way (whatever “appro-
priate” might mean in that context). Sure, you can pester your page visitors for
info by tossing them a confirm or prompt box or two, but these are mere toys in
the land of web interactivity. The real tools for soliciting feedback and then acting
on it — that is, for making your pages truly dynamic — are web forms.

In this chapter, you explore all that web forms have to offer. After mastering the
basics, you investigate the amazing new features offered by HTML5 web forms,
unearth the power of form events, and learn how to dress up your form data and
send it off to the web server. It’s a veritable forms smorgasbord, so belly up!

Chapter 2

IN THIS CHAPTER

 » Understanding web form basics

 » Coding text boxes, checkboxes, and
radio buttons

 » Programming lists, labels, and
buttons

 » Monitoring and triggering form
events

 » Getting the form data to the server

534 BOOK 6 Coding Dynamic Web Pages

What Is a Web Form?
Most modern programs toss a dialog box in your face if they need to extract some
information from you. For example, selecting a program’s Print command most
likely results in some kind of Print dialog box showing up. The purpose of this
dialog box is to ask for info such as the number of copies you want, the pages you
want to print, the printer you want to use, and so on.

A form is essentially the web page equivalent of a dialog box. It’s a page section
populated with text boxes, lists, checkboxes, command buttons, and other con-
trols to get information from the user. For example, Figure 2-1 shows a form from
my website. This is a form that people can use to send me a message. The form
includes a text box for the person’s name, another for her email address, a larger
text area for the message, and a command button to send the data to my server.

Contact forms are very common, but there are lots of other uses for forms:

 » If you put out a newsletter, you can use a form to sign up subscribers.

 » If your website includes pages with restricted access, you can use a form to
get a person’s username and password for verification.

 » If you have information in a database, you can use a form to have people
specify what information they want to access.

 » If your site has a search feature, you can use a form to get the search text and
offer options for filtering and sorting the search results.

FIGURE 2-1:
A typical

web form.

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 535

Understanding How Web Forms Work
A web form is a little data-gathering machine. What kinds of data can it gather?
You name it:

 » Text, from a single word up to a long post

 » Numbers, dates, and times

 » Which item is (or items are) selected in a list

 » Whether a checkbox is selected

 » Which one of a group of radio buttons is selected

What happens to that data after you’ve gathered it? There are two roads the data
can travel: Server Street and Local Lane.

The Server Street route means that your web server gets in on the action. Here are
the basic steps that occur:

1. The user clicks a button to submit the form.

2. Your JavaScript/jQuery code gathers and readies the form data for sending.

3. The code uses an Ajax call to send the form data to a PHP script on the server.

4. The PHP script extracts the form data.

5. PHP uses some or all of the form data to build and execute a MySQL query.

6. PHP outputs either the requested data or some kind of code that indicates the
result of the operation.

7. Your JavaScript/jQuery code processes the data returned by the server and
updates the web page accordingly.

The Local Lane route doesn’t get the web server involved at all:

1. The user changes the form data in some way.

2. Your JavaScript/jQuery code detects the changed data.

3. The event handler for the changed form field updates the web page based on
the changed data.

In this chapter, I show you how to build a form and then how to handle form
events, which will enable you to stroll down Local Lane as much as you want.
I also cover submitting data at the end of the chapter, which gives you everything
you need to know for getting to Server Street.

536 BOOK 6 Coding Dynamic Web Pages

Building an HTML5 Web Form
You build web forms with your bare hands using special HTML tags. The latest
version of HTML — HTML5 — includes many new form goodies, most of which
now have great browser support, so I show you both the oldie-but-goodie and the
latest-and-greatest in the form world over the next few sections.

Setting up the form
To get your form started, you wrap everything inside the <form> tag:

<form>
</form>

In this book, you create forms that either update the page locally or submit data to
the server via Ajax. All that front-end interaction is controlled by Java Script and
jQuery code, so you don’t need any special attributes in the <form> tag.

However, I’d be remiss if I didn’t mention the version of the <form> tag you need
to use if you want your form data submitted directly to a script on the server:

<form action="script" method="method">

 » script: The URL of the server script you want to use to process the
form data.

 » method: The method you want to use to send the data: get or post. (I talk
about the difference between these two methods in Book 6, Chapter 1.)

Here’s an example:

<form
action="http://mcfedries.com/webcodingfordummies/php/get-

supplier-contacts.php"
method="post">

If you’re just using the form to add local interaction to the web page and you won’t
be submitting any form data to the server, then technically you don’t need the
<form> tag at all. However, you should use one anyway most of the time because
including the <form> tag enables the user to submit the form by pressing Enter
or Return, and it also gets you a submit button (such as Go) in mobile browsers.

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 537

Adding a form button
Most forms include a button that the user clicks when he’s completed the form
and wants to initiate the form’s underlying action. This is known as submitting the
form, and that term has traditionally meant sending the form data to a server-
side script for processing. These days, however, and certainly in this book, “sub-
mitting” the form can also mean:

 » Updating something on the web page without sending anything to the server.
For example, clicking a button might set the page’s background color.

 » Running a function that gathers the form data and uses an Ajax call to send
the data to the server and process what the server sends back. For example, if
the form asks for the person’s username and password, clicking the form
button would launch the login process.

The old style of submitting a form is to use an <input> where the type attribute
is set to submit:

<input type="submit" value="buttonText">

 » buttonText: The text that appears on the button face

For example:

<input type="submit" value="Submit Me!">

This style is rarely used in modern web development because it’s a bit tricky to
style such a button. For that reason, most web developers use the <button> tag,
instead:

<button type="submit">buttonText</button>

 » buttonText: The text that appears on the button face

For example:

<button type="submit">Ship It</button>

538 BOOK 6 Coding Dynamic Web Pages

For better-looking buttons, use CSS to style the following:

 » Rounded corners: To control the roundness of the button corners, use the
border-radius property set to either a measurement (in, say, pixels) or a
percentage. For example:

button {
 border-radius: 15px;

}

 » Drop shadow: To add a drop shadow to a button, apply the box-shadow x y
blur color property, where x is the horizontal offset of the shadow, y is the
vertical offset of the shadow, blur is amount the shadow is blurred, and
color is the shadow color. For example:

button {
 box-shadow: 3px 3px 5px gray;

}

Working with text fields
Text-based fields are the most commonly used form elements, and most of them
use the <input> tag:

<input type="textType" name="textName" value="textValue" placeho
lder="textPrompt">

 » textType: The kind of text field you want to use in your form.

 » textName: The name you assign to the field. If you’ll be submitting the form
data via Ajax, you must include a name value for each field.

 » textValue: The initial value of the field, if any.

 » textPrompt: Text that appears temporarily in the field when the page first
loads and is used to prompt the user about the required input. The place-
holder text disappears as soon as the user starts typing in the field.

Here’s a list of the available text-based types you can use for the type attribute:

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 539

 » text: Displays a text box into which the user types a line of text. Add the size
attribute to specify the width of the field, in characters (the default is 20).
Here’s an example:

<input type="text" name="company" size="50">

 » number: Displays a text box into which the user types a numeric value. Most
browsers add a spin box that enables the user to increment or decrement the
number by clicking the up or down arrow, respectively. Check out this
example:

<input type="number" name="points" value="100">

I should also mention the range type, which displays a slider control that
enables the user to click and drag to choose a numeric value between a
specified minimum and maximum:

<input type="range" name="transparency" min="0" max="100"
value="100">

 » email: Displays a text box into which the user types an email address. Add
the multiple attribute to allow the user to type two or more addresses,
separated by commas. Add the size attribute to specify the width of the field,
in characters. An example for you:

<input type="email" name="user-email" placeholder="you@
yourdomain.com">

 » url: Displays a text box into which the user types a URL. Add the size
attribute to specify the width of the field, in characters. Here’s a for instance:

<input type="url" name="homepage" placeholder="e.g.,
http://domain.com/">

 » tel: Displays a text box into which the user types a telephone number. Use
the size attribute to specify the width of the field, in characters. Here’s an
example:

<input type="tel" name="mobile" placeholder="(xxx)xxx-
xxxx">

 » time: Displays a text box into which the user types a time, usually hours and
minutes. For example:

<input type="time" name="start-time">

540 BOOK 6 Coding Dynamic Web Pages

 » password: Displays a text box into which the user types a password. The
typed characters appear as dots (•). Add the autocomplete attribute to
specify whether the user’s browser or password management software can
automatically enter the password. Set the attribute to current-password to
allow password autocompletion, or to off to disallow autocompletion. Need
an example? Done:

<input type="password" name="userpassword"
autocomplete="current-password">

 » search: Displays a text box into which the user types a search term. Add the
size attribute to specify the width of the field, in characters. Why, yes, I do
have an example:

<input type="search" name="q" placeholder="Type a search
term">

 » hidden: Adds an input field to the form, but doesn’t display the field to the
user. That sounds weird, I know, but it’s a handy way to store a value that you
want to include in the submit, but you don’t want the user to see or modify.
Here’s an example:

<input id="userSession" name="user-session" type="hidden"
value="jwr274">

Some older browsers don’t get special text fields such as email and time, but you
can still use them in your pages because those clueless browsers will ignore the
type attribute and just display a standard text field.

That was a lot of text-related fields, but we’re not done yet! There are two others
you need to know about:

 » <textarea>: This tag displays a text box into which the user can type multiple
lines .of text. Add the rows attribute to specify how many lines of text are
displayed. If you want default text to appear in the text box, add the text
between the <textarea> and </textarea> tags. Here’s an example:

<textarea name="message" rows="5">
Default text goes here.

</textarea>

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 541

 » <label>: Associates a label with a form field. There are two ways to use a
label:

Method #1 — Surround the form field with <label> and </label> tags, and
insert the label text before or after the field, like so:

<label>
Email:
<input type="email" name="user-email" placeholder="you@

yourdomain.com">

</label>

Method #2 — Add an id value to the field tag, set the <label> tag’s for
attribute to the same value, and insert the label text between the <label>
and </label> tags, as I’ve done here:

<label for="useremail">Email:</label>

<input id="useremail" type="email" name="user-email"
placeholder="you@yourdomain.com">

Figure 2-2 demonstrates each of these text fields.

FIGURE 2-2:
The various

text input types
you can use in

your forms.

542 BOOK 6 Coding Dynamic Web Pages

Referencing text fields by field type
One common form-scripting technique is to run an operation on every field of
the same type. For example, you might want to apply a style to all the URL fields.
Here’s the jQuery selector to use to select all input elements of a given type:

$('input[type=fieldType]')

 » fieldType: The type attribute value you want to select, such as text or url

For example, the following selector returns the set of all input elements that use
the type url:

$('input[type=url]')

Getting a text field value
Your script can get the current value of any text field by using jQuery’s val()
method:

$(field).val()

 » field: A selector that specifies the form field you want to work with

Here’s an example:

HTML:

<label>
Search the site:
<input id="search-field" name="q" type="search">
</label>

jQuery:

var searchString = $('#search-field').val();

Setting a text field value
To set a text field value, use jQuery’s val() method, but with a value:

$(field).val(value)

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 543

 » field: A selector that specifies the form field you want to work with

 » value: The value you want to assign to the text field

Here’s an example:

HTML:

<label>
Type your homepage address:
<input id="homepage-field" name="homepage" type="url">
</label>

JavaScript/jQuery:

var homepageURL = $('#homepage-field').val();
$('#homepage-field').val(homepageURL.toLowerCase());

This code grabs a URL, converts it to all lowercase characters, then returns it to
the same url field.

Coding checkboxes
You use a checkbox in a web form to toggle a setting on (that is, the checkbox is
selected) and off (the checkbox is deselected). You create a checkbox by including
in your form the following version of the <input> tag:

<input type="checkbox" name="checkName" value="checkValue"
[checked]>

 » checkName: The name you want to assign to the checkbox. If you’ll be
submitting the form data via Ajax, you must include both a name and a value
for the checkbox.

 » checkValue: The value you want to assign to the checkbox. Note that this is a
hidden value sent to the server when the form is submitted; the user never
sees it.

 » checked: When this optional attribute is present, the checkbox is initially
selected.

544 BOOK 6 Coding Dynamic Web Pages

Here’s an example:

<fieldset>
 <legend>
 What's your phobia? (Please check all that apply):
 </legend>
 <div>
 <label>
 <input type="checkbox" name="phobia"

value="Ants">Myrmecophobia (Fear of ants)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia"

value="Bald">Peladophobia (Fear of becoming bald)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia" value="Beards"

checked>Pogonophobia (Fear of beards)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia"

value="Bed">Clinophobia (Fear of going to bed)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia" value="Chins"

checked>Geniophobia (Fear of chins)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia"

value="Flowers">Anthophobia (Fear of flowers)
 </label>
 </div>
 <div>

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 545

 <label>
 <input type="checkbox" name="phobia"

value="Flying">Aviatophobia (Fear of flying)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia"

value="Purple">Porphyrophobia (Fear of purple)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia" value="Teeth"

checked>Odontophobia (Fear of teeth)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia"

value="Thinking">Phronemophobia (Fear of thinking)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia" value="Vegetabl

es">Lachanophobia (Fear of vegetables)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia" value="Fear"

checked>Phobophobia (Fear of fear)
 </label>
 </div>
 <div>
 <label>
 <input type="checkbox" name="phobia"

value="Everything">Pantophobia (Fear of everything)
 </label>
 </div>
</fieldset>

546 BOOK 6 Coding Dynamic Web Pages

Some notes about this code:

 » You use the <fieldset> tag to group a collection of form fields together.

 » You use the <legend> tag to create a caption for the parent fieldset
element. Figure 2-3 shows how this looks in the browser.

 » Because the <input> tags are wrapped in their respective <label> tags, it
means the user can select or deselect each checkbox by clicking the checkbox
itself or by clicking its label.

One strange thing about a checkbox field is that it’s only included in the form sub-
mission if it’s selected. If the checkbox is deselected, it’s not sent to the server.

Referencing checkboxes
If your code needs to reference all the checkboxes in a page, use the following
jQuery selector:

$('input[type=checkbox]')

If you just want the checkboxes from a particular form, use a descendent or child
selector on the form’s id value:

$('#formid input[type=checkbox]')

Getting the checkbox state
You have to be a bit careful when discussing the “value” of a checkbox. If it’s
the value attribute you want to work with, then getting this is no different than
 getting the value property of a text field by using jQuery’s val() method.

FIGURE 2-3:
Some checkbox

form fields,
wrapped in a

fieldset group
with a legend

element.

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 547

However, what you’re more likely to be interested in is whether a checkbox is
selected or deselected. This is called the checkbox state. In that case, you need to
examine the checked attribute, instead:

$(checkbox).prop('checked')

 » checkbox: A selector that specifies the checkbox you want to work with

The checked attribute returns true if the checkbox is selected, or false if the
checkbox is deselected.

As an example, consider this code:

<label>
 <input id="autosave" type="checkbox" name="autosave">
 Autosave this project?
</label>

The following statement stores the checkbox state in a variable named
autosaveState:

var autosaveState = $('#autosave').prop('checked');

Setting the checkbox state
To set a checkbox field to either the selected or deselected state, assign a Boolean
expression to the checked attribute:

$(checkbox).prop('checked', Boolean)

 » checkbox: A selector that specifies the checkbox you want to modify.

 » Boolean: The Boolean value or expression you want to assign to the check-
box. Use true to select the checkbox; use false to deselect the checkbox.

For example, take a look back at the long list of phobia checkboxes (that is, the
code demonstrated in Figure 2-3). Suppose you want to set up that form so that
the user can select at most three checkboxes. Here’s some code that does the job:

$('form').click(function(e) {
 // Get the checkbox that was clicked
 var clickedCheckbox = e.target.value;

548 BOOK 6 Coding Dynamic Web Pages

 // Get the total number of selected checkboxes
 var totalSelected = $('input[type=checkbox]:checked').

length;

 // Do we now have more than three selected checkboxes?
 if (totalSelected > 3) {

 // If so, deselect the checkbox that was just clicked
 $('input[value=' + clickedCheckbox + ']').

prop('checked', false);
 }
});

This event handler runs when anything inside the form element is clicked. The
code first saves the value of the clicked checkbox. Then the code uses jQuery’s
:checked selector to return the set of all checkbox elements that have the checked
attribute, and the length property tells you how many are in the set. An if() test
checks to see if more than three are now selected. If that’s true, the code deselects
the checkbox that was just clicked.

Working with radio buttons
If you want to offer your users a collection of related options, only one of which
can be selected at a time, then radio buttons are the way to go. Form radio buttons
congregate in groups of two or more where only one button in the group can be
selected at any time. If the user clicks another button in that group, it becomes
selected and the previously selected button becomes deselected.

You create a radio button using the following variation of the <input> tag:

<input type="radio" name="radioGroup" value="radioValue"
[checked]>

 » radioGroup: The name you want to assign to the group of radio buttons. All
the radio buttons that use the same name value belong to that group.

 » radioValue: The value you want to assign to the radio button. If this radio
button is selected when the form is submitted, then this is the value sent to
the server.

 » checked: When this optional attribute is present, the radio button is initially
selected.

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 549

Here’s an example, and Figure 2-4 shows what happens:

<fieldset>
 <legend>
 Select a delivery method
 </legend>
 <div>
 <input type="radio" id="carrier-pigeon" name="delivery"

value="pigeon" checked>
 <label for="carrier-pigeon">Carrier pigeon</label>
 </div>
 <div>
 <input type="radio" id="pony-express" name="delivery"

value="pony">
 <label for="pony-express">Pony express</label>
 </div>
 <div>
 <input type="radio" id="snail-mail" name="delivery"

value="postal">
 <label for="snail-mail">Snail mail</label>
 </div>
 <div>
 <input type="radio" id="some-punk" name="delivery"

value="bikecourier">
 <label for="some-punk">Some punk on a bike</label>
 </div>
</fieldset>

Referencing radio buttons
If your code needs to work with all the radio buttons in a page, use this jQuery
selector:

$('input[type=radio]')

FIGURE 2-4:
Some radio

 button form
fields.

550 BOOK 6 Coding Dynamic Web Pages

If you want the radio buttons from a particular form, use a descendent or child
selector on the form’s id value:

$('#formid input[type=radio]')

If you require just the radio buttons from a particular group, use the following
jQuery selector, where radioGroup is the common name of the group:

$('input[name=radioGroup]')

Getting a radio button state
If your code needs to know whether a particular radio button is selected or dese-
lected, you need to determine the radio button state. You do that by examining the
radio button’s checked attribute, like so:

$(radio).prop('checked')

 » radio: A jQuery selector that specifies the radio button field you want to
work with

The checked attribute returns true if the radio button is selected, or false if the
button is deselected.

For example, given the radio buttons shown earlier, the following statement
stores the state of the radio button with the id value of pony-express:

var ponySelected = $('#pony-express').prop('checked');

However, it’s more likely that your code will want to know which radio button in
a group is selected. You can do that by applying jQuery’s :checked selector to the
group:

var deliveryMethod = $('input[name=delivery]:checked');

To get the text of the label associated with a radio button, you can take advantage
of a selector called the sibling selector, which uses the tilde (~) symbol. The sibling
selector returns elements that have the same parent element. In the radio button
code I show earlier, the <input> and <label> tags are siblings, so you can use the
following expression to return the selected radio button’s label text:

$('input[name=delivery]:checked ~ label').text();

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 551

Setting the radio button state
To set a radio button field to either the selected or deselected state, assign a Bool-
ean expression to the checked attribute:

$(radio).prop('checked', Boolean)

 » radio: A jQuery selector that specifies the radio button you want to change.

 » Boolean: The Boolean value or expression you want to assign to the radio
button. Use true to select the radio button; use false to deselect the radio
button.

For example, if the initial state of the form group had the first radio button
selected, you can reset the group by selecting that button. The easiest way to do
this is to use jQuery’s .first() method, which returns the first item in a set:

$('input[name=delivery]').first().prop('checked', true);

Adding selection lists
Selection lists are common sights in HTML forms because they enable the web
developer to display a relatively large number of choices in a compact control that
most users know how to operate. When deciding between a checkbox, radio button
group, or a selection list, here are some rough guidelines to follow:

 » If an option or setting has only two values that can be represented by on and
off, use a checkbox.

 » If the option or setting has three or four values, use a group of three or four
radio buttons.

 » If the option or setting has five or more values, use a selection list.

This section shows you how to create and program selection lists. As you work
through this part, it’ll help to remember that a selection list is really an amalgam
of two types of fields: the list container and the options within that container. The
former is a select element and the latter is a collection of option elements.

To create the list container, you use the <select> tag:

<select name="selectName" size="selectSize" [multiple]>

552 BOOK 6 Coding Dynamic Web Pages

 » selectName: The name you want to assign to the selection list.

 » selectSize: The optional number of rows in the selection list box that are
visible. If you omit this value, the browser displays the list as a drop-down box.

 » multiple: When this optional attribute is present, the user is allowed to select
multiple options in the list.

For each item in the list, you add an <option> tag between the <select> and </
select> tags:

<option value="optionValue" [selected]>

 » optionValue: The value you want to assign to the list option.

 » selected: When this optional attribute is present, the list option is initially
selected.

Here are some examples:

<form>
 <div>
 <label for="hair-color">Select your hair color:

</label>

 <select id="hair-color" name="hair-color">
 <option value="black">Black</option>
 <option value="blonde">Blonde</option>
 <option value="brunette" selected>Brunette</option>
 <option value="red">Red</option>
 <option value="neon">Something neon</option>
 <option value="none">None</option>
 </select>
 </div>
 <div>
 <label for="hair-style">Select your hair style:

</label>

 <select id="hair-style" name="hair-style" size="4">
 <option value="bouffant">Bouffant</option>
 <option value="mohawk">Mohawk</option>
 <option value="page-boy">Page Boy</option>
 <option value="permed">Permed</option>
 <option value="shag">Shag</option>

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 553

 <option value="straight" selected>Straight</option>
 <option value="none">Style? What style?</option>
 </select>
 </div>
 <div>
 <label for="hair-products">Hair products used in the

last year:</label>

 <select id="hair-products" name="hair-products" size="5"

multiple>
 <option value="gel">Gel</option>
 <option value="grecian-formula">Grecian Formula

</option>
 <option value="mousse">Mousse</option>
 <option value="peroxide">Peroxide</option>
 <option value="shoe-black">Shoe black</option>
 </select>
 </div>
</form>

There are three lists here (see Figure 2-5):

 » hair-color: This list doesn’t specify a size, so the browser displays it as a
drop-down list.

 » hair-style: This list uses a size value of 4, so there are four options visible
in the list.

 » hair-products: This list uses a size value of 5, so there are five options
visible in the list. Also, the multiple attribute is set, so you can select multiple
options in the list.

FIGURE 2-5:
Some examples

of selection lists.

554 BOOK 6 Coding Dynamic Web Pages

Referencing selection lists
If your code needs to work with all the options in a selection list, use this jQuery
selector, where listid is the id value of the select element:

$('#listid > option')

To work with a particular option within a list, use jQuery’s nth-child(n) selec-
tor, where n specifies the option’s position in the list (1 is the first option, 2 is the
second option, and so on):

$('#listid > option:nth-child(2)')

If you want a reference to the first option in the list, you can use :first-child
instead of :nth-child(1).

To get the option’s text (that is, the text that the user sees in the list), run the
text() method:

$('#listid > option:nth-child(2)').text();

Getting the selected list option
If your code needs to know whether a particular option in a selection list is selected
or deselected, examine the option’s selected attribute, like so:

$(option).prop('selected')

 » option: A jQuery selector that specifies the option element you want to
work with

The selected attribute returns true if the option is selected, or false if the
option is deselected.

For example, given the selection lists shown earlier, the following statement stores
the state of the first item in the selection list with the id value of hair-color:

var black = $('#hair-color > option:first-child').
prop('selected');

However, it’s more likely that your code will want to know which option in the
selection list is selected. You do that by applying jQuery’s :selected selector to
the list’s option elements:

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 555

var hairColor = $('#hair-color > option:selected').text();

If the list includes the multiple attribute, then :selected returns a set that con-
tains all the selected elements.

Changing the selected option
To set a selection list option to either the selected or deselected state, assign a
Boolean expression to the selected attribute:

$(option).prop('selected', Boolean)

 » option: A jQuery selector that specifies the option element you want
to modify.

 » Boolean: The Boolean value or expression you want to assign to the option.
Use true to select the option; use false to deselect the option.

For example, if the initial state of a multiple-selection list had no items selected,
you might want to reset the list by deselecting all the options. You can do that
by returning the set of all the selected options in the list, and then applying the
selected attribute as false:

$('#hair-products > option:selected').prop('selected', false);

Programming pickers
HTML also offers a number of other <input> tag types that fall under a category
I call “pickers,” meaning that in each case the field displays a button that, when
clicked, opens a control that enables the user to pick a value. Here’s a quick look
at the available pickers:

 » color: Opens a color picker dialog that enables the user to choose a color.
The color picker varies depending on the browser and operating system;
Figure 2-6 shows the Microsoft Edge version. Set the value attribute in the
#rrggbb format to specify an initial color (the default is black: #000000).
Here’s an example:

<input type="color" name="bg-color" value="#ff6347">

556 BOOK 6 Coding Dynamic Web Pages

 » date: Opens a date picker dialog so that the user can choose a date. Figure 2-7
shows the Chrome version. Set the value attribute in the yyyy-mm-dd format
to specify an initial date. Note that the date the user sees might use a different
format (such as mm/dd/yyyy, as seen in Figure 2-7), but the value returned by
the element is always in the yyyy-mm-dd format. Here’s an example:

<input type="date" name="appt-date" value="2018-08-23">

 » file: Opens the user’s operating system’s file picker dialog so that the user
can select a file. You can add the multiple attribute to enable the user to
select more than one file. Here’s an example:

<input type="file" name="user-photo">

FIGURE 2-6:
The color picker
that appears in
Microsoft Edge.

FIGURE 2-7:
The date picker
that appears in
Google Chrome

for Mac.

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 557

 » month: Opens a month picker dialog to enable the user to choose a month
and year. Set the value attribute in the yyyy-mm format to specify an initial
month and year. The value the user sees might be in a different format (such
as August 2018), but the value returned by the element is always in the
yyyy-mm format. Here’s an example:

<input type="month" name="birthday-month" value="2018-08">

 » week: Opens a week picker dialog for the user to select a week and year. To
specify an initial year and month, set the value attribute in the yyyy-Wnn
format, where nn is the two-digit week number. The value shown to the user
might be in another format (such as Week 34, 2018), but the value returned
by the element is always in the yyyy-Wnn format. Here’s an example:

<input type="week" name="vacation-week" value="2018-W34">

Handling and Triggering Form Events
With all the clicking, typing, tabbing, and dragging that goes on, web forms are
veritable event factories. Fortunately, you can let most of these events pass you
by, but there are a few that come in handy, both in running code when the event
occurs, and in triggering the events yourself.

Most form events are clicks, so you can handle them by setting click event han-
dlers using jQuery’s .click() method (which I cover in Book 4, Chapter 2). Here’s
an example:

HTML:

<form>
 <div>
 <label for="user">Username:</label>
 <input id="user" type="text" name="username">
 </div>
 <div>
 <label for="pwd">Password:</label>
 <input id="pwd" type="password" name="password">
 </div>
</form>

558 BOOK 6 Coding Dynamic Web Pages

jQuery:

$('form').click(function() {
 console.log('Thanks for clicking the form!');
});

This example listens for clicks on the entire form element, but you can also create
click event handlers for buttons, input elements, checkboxes, radio buttons, and
more.

Setting the focus
One simple feature that can improve the user experience on your form pages is to
set the focus on the first form field when your page loads. This saves the user from
having to make that annoying click inside the first field.

To get this done, run jQuery’s focus() method on the element you want to have
the focus at startup:

$(field).focus();

 » field: A selector that specifies the form field you want to have the focus

Here’s an example that sets the focus on the text field with id equal to user at
startup:

HTML:

<form>
 <div>
 <label for="user">Username:</label>
 <input id="user" type="text" name="username">
 </div>
 <div>
 <label for="pwd">Password:</label>
 <input id="pwd" type="password" name="password">
 </div>
</form>

jQuery:

$(document).ready(function() {
 $('#user').focus();
});

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 559

Monitoring the focus event
Rather than setting the focus, you might want to monitor when a particular field
gets the focus (for example, by the user clicking or tabbing into the field). You can
do that by setting up a focus() event handler on the field:

$(field).focus(function() {
 Focus code goes here
});

 » field: A selector that specifies the form field you want to monitor for the
focus event

Here’s an example:

$('#user').focus(function() {
 console.log('The username field has the focus!');
});

Blurring an element
One of the more annoying browser interface quirks is the focus ring that appears
around certain elements — especially buttons — when you click them. This focus
ring is not only ugly, but also slightly dangerous because it means the user can
“click” the button again just by pressing the spacebar. You can work around this
by applying jQuery’s blur() method on the element, which causes it to lose focus:

$(field).blur();

 » field: A selector that specifies the form field you no longer want to have the
focus

Here’s an example that uses a button element’s click event handler to blur the
button (in the handler, the expression $(this) refers to the element that was
clicked, in this case the button):

HTML:

<button id="reset-products" type="button">
 Reset Products
</button>

560 BOOK 6 Coding Dynamic Web Pages

jQuery:

$('#reset-products').click(function() {
 // Deselect everything
 $('#hair-products > option:selected').prop('selected',

false);

 // Blur the button
 $(this).blur();
});

Monitoring the blur event
Rather than blurring an element, you might want to run some code when a par-
ticular element is blurred (for example, by the user clicking or tabbing out of the
field). You can do that by setting up a blur() event handler:

$(field).blur(function() {
 Blur code goes here
});

 » field: A selector that specifies the form field you want to monitor for the
blur event.

Here’s an example:

$('#user').blur(function() {
 console.log('The username field no longer has the focus!');
});

Listening for element changes
One of the most useful form events is the change event, which fires when the
value or state of a field is modified in some way. When this event fires depends on
the element type:

 » For a textarea element and the various text-related input elements, the
change event fires when the element loses the focus.

 » For checkboxes, radio buttons, selection lists, and pickers, the change event
fires as soon as the user clicks the element to modify the selection or value.

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 561

You listen for a field’s change events by setting up a change() event handler:

$(field).change(function() {
 Change code goes here
});

 » field: A selector that specifies the form field you want to monitor for the
change event

Here’s an example:

HTML:

<div>
 <label for="bgcolor">Select a background color</label>
 <input id="bgcolor" type="color" name="bg-color"

value="#ffffff">
</div>

jQuery:

$('#bgcolor').change(function() {
 var bgColor = $(this).val();
 $('body').css('background-color', bgColor);
});

The HTML code sets up a color picker. The jQuery code applies the change event
handler to the color picker. When the change event fires on the picker, the code
stores the new color value in the bgColor variable, then applies that color to the
body element’s background-color property.

Submitting the Form
There’s one form event that I didn’t cover in the previous section, and it’s a big-
gie: the submit event, which fires when the form data is to be sent to the server.
Here’s the general syntax:

$(form).submit(function(e) {
 Submit code goes here
});

562 BOOK 6 Coding Dynamic Web Pages

 » form: A selector that specifies the form you want to monitor for the
submit event.

 » e: This argument represents the event object.

You’ll rarely, if ever, allow the submit event to occur directly. Instead, you’ll want
to intercept the submit so that you can gather the data and then send it to the
server yourself using an Ajax call. Handling the submit event yourself gives you
much more control over both what gets sent to the server and how what gets sent
back from the server gets processed.

Triggering the submit event
Here’s a list of the various ways that the submit event gets triggered:

 » When the user clicks a button or input element that resides within a <form>
tag and has its type attribute set to submit

 » When the user clicks a button element that resides within a <form> tag and
has no type attribute

 » When the user presses Enter or Return while a form element has the focus,
and either a button or input element resides within the <form> tag and has
its type attribute set to submit, or a button element resides within the
<form> tag and has no type attribute

 » When your code runs jQuery’s .submit() method:

$(form).submit();

• form: A selector that specifies the form you want to submit

Preventing the default form submission
You control the form submission yourself by sending the data to the server with
an Ajax call. The submit event doesn’t know that, however, and it will try to sub-
mit the form data anyway. That’s a no-no, so you need to prevent the default form
submission by using the event object’s preventDefault() method:

$('form').submit(function(e) {
 e.preventDefault();
});

Bu
ild

in
g

an
d

Pr
oc

es
si

ng

W
eb

 F
or

m
s

CHAPTER 2 Building and Processing Web Forms 563

Preparing the data for submission
Before you can submit your form data, you need to convert it to a format that
your server’s PHP script can work with. The format depends on the Ajax request
method you want to use:

 » GET: This format requires a string of name=value pairs, separated by
 ampersands (&). To convert your form data to this format, use jQuery’s
serialize() function:

$(form).serialize();

• form: A selector that specifies the form you want to work with

 » POST: This format requires an array of key: value pairs, separated by commas
(,). To convert your form data to this format, use jQuery’s serializeArray()
function:

$(form).serializeArray();

• form: A selector that specifies the form you want to work with

For example:

var formData = $('form').serialize();

Most commonly, your code stores the result of the serialize() or serialize
Array() function in a variable, and that variable gets submitted to the server.

Submitting the form data
Now you’re almost ready to submit the data. As an example, here’s some HTML
code for a form and div that I’ll use to output the form results:

<form>
 <div>
 <label for="first">First name:</label>
 <input id="first" type="text" name="first-name">
 </div>
 <div>
 <label for="last">Last name:</label>
 <input id="last" type="text" name="last-name">
 </div>
 <div>
 <label for="nick">Nickname:</label>
 <input id="nick" type="text" name="nickname">

564 BOOK 6 Coding Dynamic Web Pages

 </div>
 <button type="submit">Submit</button>
</form>

<div class="output">
</div>

Now here’s the JavaScript/jQuery code that submits the form (using .get() in this
case) and processes the result (which just echoes back the form data, as shown in
Figure 2-8):

$('form').submit(function(e) {
 // Prevent the default form submission
 e.preventDefault();

 // Convert the data to GET format
 var formData = $(this).serialize();

 // Submit the data using an Ajax GET request
 $.get('php/echo-form-fields-get.php', formData,

function(data) {
 // Show the data returned by the server
 $('.output').html(data);
 });
});

We’re missing one very important stop on our road to dynamic web pages: We
haven’t validated the form data! Form validation is so important, in fact, that
I devote an entire chapter to it: Book 6, Chapter 3. Don’t miss it!

FIGURE 2-8:
An example form

submission.

CHAPTER 3 Validating Form Data 565

Validating Form Data
Garbage in, garbage out. Or rather more felicitously: The tree of nonsense is
watered with error, and from its branches swing the pumpkins of disaster.

— NICK HARKAWAY

In the old computing axiom of garbage in, garbage out (GIGO), or if in your
genes or heart you’re British, rubbish in, rubbish out (yes, RIRO), lies a cautionary
tale. If the data that goes into a system is inaccurate, incomplete, incompatible,

or in some other way invalid, the information that comes out of that system will
be outdated, outlandish, outrageous, or just outright wrong. What does this have
to do with you as a web developer? Plenty, because it’s your job to make sure
that the data the user enters into a form is accurate, complete, and compatible
with your system. In a word, you have to make sure the data is valid. If that
sounds like a lot of work, then I’ve got some happy news for you: HTML5 has
data validation baked in, so you can just piggyback on the hard work of some real
nerds. In this chapter, you explore these HTML5 validation techniques. Ah, but
your work isn’t over yet, friend. You also have to validate the same data once again
on the server. Crazy? Like a fox. But there’s more good news on the server side of
things, because PHP has a few ready-to-run tools that take most of the pain out
of validation. In this chapter, you also dive deep into those tools. Sleeves rolled
up? Then let’s begin.

Chapter 3

IN THIS CHAPTER

 » Validating data in the browser and on
the server

 » Making a field mandatory

 » Setting restrictions on form fields

 » Practicing good data hygiene

566 BOOK 6 Coding Dynamic Web Pages

Validating Form Data in the Browser
Before JavaScript came along, web servers would spend inordinate amounts of
processing time checking the data submitted from a form and, all too often,
returning the data back to the user to fill in an empty field or fix some invalid
entry. Someone eventually realized that machines costing tens of thousands of
dollars (which was the cost of the average server machine when the web was in
swaddling clothes) ought to have better things to do with their time than chastis-
ing users for not entering their email address correctly (or whatever). Wouldn’t it
make infinitely more sense for the validation of a form’s data to first occur within
the browser before the form was even submitted?

The answer to that is an unqualified “Duh!” And once JavaScript took hold with
its browser-based scripting, using it to do form validation on the browser became
the new language’s most important and useful feature. Alas, data validation is a
complex business, so it didn’t take long for everyone’s JavaScript validation code
to run to hundreds or even thousands of lines. Plus there was no standardization,
meaning that every web project had to create its own validation code from scratch,
pretty much guaranteeing it wouldn’t work like any other web project’s validation
code. Isn’t there a better way?

Give me another “Duh!” Perhaps that’s why the big brains who were in charge
of making HTML5 a reality decided to do something about the situation. Several
types of form validation are part of HTML5, which means now you can get the web
browser to handle your validation chores.

HTML5 validation has huge browser support, so no major worries there. However,
there’s still a tiny minority of older browsers that will scoff at your browser
 validation efforts. Not to worry, though: You’ll get them on the server side!

Making a form field mandatory
It’s common for a form to contain at least one field that the user must fill in. For
example, if your form is for a login, then you certainly need both the username
and password fields to be mandatory, meaning you want to set up the form so that
the submission won’t go through unless both fields are filled in.

Here are a few things you can do to encourage users to fill in mandatory fields:

 » Make it clear which fields are mandatory. Many sites place an asterisk before
or after a field and include a note such as Fields marked with * are
required at the top of the form.

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 567

 » For a radio button group, always set up your form so that one of the <input>
tags includes the checked attribute. This ensures that one option will always
be selected.

 » For a selection list, make sure that one of the <option> tags includes the
selected attribute.

Outside of these techniques, you can make any field mandatory by adding the
required attribute to the form field tag. Here’s an example:

<form>
 <div>
 <label for="fave-beatle">Favorite Beatle:</label>
 <input id="fave-beatle" type="text" required>
 <button type="submit">Submit</button>
 </div>
</form>

The <input> tag has the required attribute. If you leave this field blank and try
to submit the form, the browser prevents the submission and displays a message
telling you to fill in the field. This message is slightly different, depending on the
web browser. Figure 3-1 shows the message that Chrome displays.

Restricting the length of a text field
Another useful built-in HTML5 validation technique is setting restrictions on the
length of the value entered into a text field. For example, you might want a pass-
word value to have a minimum length, and you might want a username to have a
maximum length. Easier done than said:

 » To add a minimum length restriction, set the minlength attribute to the least
number of characters the user must enter.

 » To add a maximum length restriction, set the maxlength attribute to the most
number of characters the user can enter.

FIGURE 3-1:
Add the

required
 attribute to a
form field to

ensure it gets
filled in.

568 BOOK 6 Coding Dynamic Web Pages

Take a look at an example:

<form>
 <div>
 <label for="acct-handle">Account handle (6-12

chars):</label>
 <input id="acct-handle"
 type="text"
 placeholder="Enter 6-12 characters"
 minlength="6"
 maxlength="12">
 <button type="submit">Submit</button>
 </div>
</form>

The <input> tag asks for a value no less than 6 and no more than 12 characters
long. If the user enters a value shorter or longer and tries to submit the form, the
browser prevents the submission and displays a message asking for more or fewer
characters. Figure 3-2 shows the version of the message that Firefox displays.

Setting maximum and minimum
values on a numeric field
HTML5 can also validate a numeric field based on a specified minimum or maxi-
mum value for the field. Here are the attributes to use:

 » min: To add a minimum value restriction, set the min attribute to the smallest
allowable value the user can enter.

 » max: To add a maximum value restriction, set the max attribute to the largest
allowable value the user can enter.

Here’s an example:

<form>
 <div>

FIGURE 3-2:
Use the

minlength
and/or

maxlength
attributes

to restrict a
field’s length.

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 569

 <label for="loan-term">Loan term (years):</label>
 <input id="loan-term"
 type="number"
 placeholder="3-25"
 min="3"
 max="25">
 <button type="submit">Submit</button>
 </div>
</form>

The number <input> tag asks for a value between 3 and 25. If the user enters a
value outside of this range and tries to submit the form, the browser prevents the
submission and displays a message to reenter a value that’s either less than or
equal to the maximum (as shown in Figure 3-3) or greater than or equal to the
minimum.

Validating email fields
Generic field validation attributes such as required, minlength, and max are
very useful, but some form fields need a more targeted validation technique.
In a field that accepts an email address, for example, any entered value should
look something like username@domain. If that sounds like a daunting challenge,
you’re right, it is. Fortunately, that challenge has already been taken up by some
of the best coders on the planet. The result? Built-in HTML5 validation for email
addresses. And when I say “built-in,” I mean built-in, because once you specify
type="email" in the <input> tag, modern web browsers will automatically vali-
date the field input to make sure it looks like an email address when the form is
submitted, as shown in Figure 3-4.

FIGURE 3-3:
Use the min
and/or max

 attributes to
accept values

within a
 specified range.

FIGURE 3-4:
Modern browsers

automatically
 validate email

fields.

570 BOOK 6 Coding Dynamic Web Pages

Making field values conform to a pattern
One of the most powerful and flexible HTML5 validation techniques is pattern
matching, where you specify a pattern of letters, numbers, and other symbols that
the field input must match. You add pattern matching validation to a text, email,
url, tel, search, or password field by adding the pattern attribute:

pattern="regular_expression"

 » regular_expression: A type of expression called a regular expression that
uses special symbols to define the pattern you want to apply to the field

For example, suppose you want to set up a pattern for a ten-digit North American
telephone number that includes dashes, such as 555-123-4567 or 888-987-6543.
In a regular expression, the symbol \d represents any digit from 0 to 9, so your
regular expression would look like this:

\d\d\d-\d\d\d-\d\d\d\d

Here’s the regular expression added to a telephone number field:

<input id="user-phone"
 type="tel"
 pattern="\d\d\d-\d\d\d-\d\d\d\d"
 placeholder="e.g., 123-456-7890"
 title="Enter a 10-digit number in the format 123-456-

7890">

It’s a good idea to add the title attribute and use it to describe the pattern you
want to user to enter. Also, you can find all kinds of useful, ready-made patterns
at the HTML5 Pattern site: http://html5pattern.com.

Table 3-1 summarizes the most useful regular expression symbols to use with the
pattern attribute. See “Regular Expressions Reference,” later in this chapter, for
a more detailed look at this powerful tool.

From this table, you can see that an alternative way to write the 10-digit telephone
regular expression would be the following:

[0-9]{3}-[0-9]{3}-[0-9]{4}

http://html5pattern.com/

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 571

Styling invalid fields
One useful thing you can do as a web developer is make it obvious for the user
when a form field contains invalid data. Sure, the browser will display its little
tooltip to alert the user when she submits the form, but that tooltip only stays
onscreen for a few seconds. It would be better to style the invalid field in some way
so the user always knows it needs fixing.

One straightforward way to do that is to take advantage of the CSS :invalid
pseudo-selector, which enables you to apply a CSS rule to any invalid field.

TABLE 3-1	 The Most Useful Regular Expression Symbols
Symbol Matches

\d Any digit from 0 through 9

\D Any character that is not a digit from 0 through 9

. Any character

\s Any whitespace character, such as the space, tab (\t), newline (\n), and carriage return (\r)

\S Any non-whitespace character

[] Whatever characters are listed between the square brackets

[c1-c2] Anything in the range of letters or digits from c1 to c2

[^] Everything except whatever characters are listed between the square brackets

[^c1-c2] Everything except the characters in the range of letters or digits from c1 to c2

? If the character preceding it appears just once or not at all

* If the character preceding it is missing or if it appears one or more times

+ If the character preceding it appears one or more times

{n} If the character preceding it appears exactly n times

{n,} If the character preceding it appears at least n times

{n,m} If the character preceding it appears at least n times and no more than m times

p1|p2 Pattern p1 or pattern p2

572 BOOK 6 Coding Dynamic Web Pages

For example, here’s a rule that adds a red highlight around any <input> tag that
is invalid:

input:invalid {
 border-color: rgba(255, 0, 0, .5);
 box-shadow: 0 0 10px 2px rgba(255, 0, 0, .8);
}

The problem, however, is that the web browser checks for invalid fields as soon as
it loads the page. So, for example, if you have fields with the required attribute
that are initially empty when the page loads, the browser will flag those as invalid
and apply the invalid styling. Your users will be saying, “Gimme a break, I just
got here!”

One way to work around this problem is to display an initial message (such as
required) beside each required field, then replace that message with something
positive (such as a check mark) when the field is filled in.

Here’s some code that does that:

CSS:

input:invalid+span::after {
 content:'(required)';
 color: red;
}
input:valid+span::after {
 content:'\2713';
 color: green;
}

HTML:

<form>
 <div>
 <label for="user-name">Name:</label>
 <input id="user-name"
 type="text"
 placeholder="Optional"
 required>

 </div>
 <div>
 <label for="user-email">Email:</label>
 <input id="user-email"

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 573

 type="email"
 placeholder="e.g., you@domain.com"
 required>

 </div>
 <button type="submit">Submit</button>
</form>

Notice in the HTML that both fields have the required attribute and both fields
also have an empty span element right after them. Those span elements are where
you’ll put your messages, and that’s what the CSS code is doing:

 » The first CSS rule looks for any invalid input field, then uses the adjacent sibling
select (+) to select the span that comes immediately after the field. The ::after
pseudo-element adds the content (required) to the span and colors it red.

 » The second CSS rule is very similar, except that it looks for any valid input field,
then adds a green check mark (given by Unicode character 2713) to the span.

Figure 3-5 shows these rules in action, where the Name field is valid and the Email
field is invalid.

Another approach is to use jQuery to listen for the invalid event firing on any
input element. The invalid event fires when the user tries to submit the form
and one or more fields contain invalid data. In your event handler, you could then
apply a predefined class to the invalid field. Here’s some code that does just that:

CSS:

.error {
 border-color: rgba(255, 0, 0, .5);
 box-shadow: 0 0 10px 2px rgba(255, 0, 0, .8);
}

FIGURE 3-5:
The CSS rules add

a green check
mark to valid

fields, and the red
text (required)

to invalid fields.

574 BOOK 6 Coding Dynamic Web Pages

input:valid {
 border-color: lightgray;
 box-shadow: none;
}

HTML:

<form>
 <div>
 <label for="user-name">Name:</label>
 <input id="user-name"
 type="text"
 placeholder="Your name"
 required>
 </div>
 <div>
 <label for="user-email">Email:</label>
 <input id="user-email"
 type="email"
 placeholder="e.g., you@domain.com"
 required>
 </div>
 <button type="submit">Submit</button>
</form>

jQuery:

$("input").on("invalid", function() {
 $(this).addClass('error');
});

The HTML is the same as in the previous example, minus the extra tags.
The CSS code defines a rule for the error class that uses border-color and box-
shadow to add a red-tinged highlight to an element. The input:valid selector
removes the border and box shadow when the field becomes valid. The jQuery
code listens for the invalid event on any input element. When it fires, the event
handler adds the error class to the element.

Validating Form Data on the Server
You might have looked at the title of this section and cried, “The server! But we
just went through validating form data in the browser! Surely we don’t have to
validate on the server, as well!?” First of all, calm down. Second, yep, it would be

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 575

nice if we lived in a world where validating form data in the web browser was good
enough. Alas, that Shangri-La doesn’t exist. The problem, you see, is that there
are still a few folks surfing with very old web browsers that wouldn’t know HTML5
from Maroon 5, and so don’t support either <input> tag types such as number,
email, and date, or browser-based validation. It’s also possible that someone
might, innocently or maliciously, bypass your form and send data directly to the
server (say, by using a URL query string).

Either way, you can’t be certain that the data that shows up on the server’s door-
step has been validated, so it’s up to your server script to ensure the data is legit
before processing it. Happily, as you see in the next few sections, PHP is loaded
with features that make validating data straightforward and painless.

Checking for required fields
If one or more fields in your form are mandatory, you can check those fields on the
server by using PHP’s empty() function:

empty(expression)

 » expression: The literal, variable, expression, or function result that you want
to test

The empty() function returns FALSE if the expression exists and has a non-empty,
non-zero value; it returns TRUE, otherwise.

I’ll go through a complete example that shows one way to handle validation errors
on the server. First, here’s some HTML:

<form>
 <div>
 <label for="user-name">Name</label>
 <input id="user-name"
 type="text"
 name="user-name">
 </div>
 <div>
 <label for="user-email">Email</label>
 <input id="user-email"
 type="email"
 name="user-email">
 </div>
 <button type="submit">Submit</button>

576 BOOK 6 Coding Dynamic Web Pages

</form>
<article class="output"></article>

The form has two text fields, and there’s also an <article> tag that you’ll use a
bit later to output the server results.

On the server, I created a PHP file named validate-required-fields.php:

<?php
 // Store the default status
 $server_results['status'] = 'success';

 // Check the user-name field
 if(isset($_GET['user-name'])) {
 $user_name = $_GET['user-name'];
 // Is it empty?
 if(empty($user_name)) {
 // If so, update the status and add an error

message for the field
 $server_results['status'] = 'error';
 $server_results['user-name'] = 'Missing user name';
 }
 }
 // Check the user-email field
 if(isset($_GET['user-email'])) {
 $user_email = $_GET['user-email'];
 // Is it empty?
 if(empty($user_email)) {
 // If so, update the status and add an error

message for the field
 $server_results['status'] = 'error';
 $server_results['user-email'] = 'Missing email

address';
 }
 }
 // If status is still "success", add the success message
 if($server_results['status'] === 'success') {
 $output = "Success! Thanks for submitting the form,

$user_name.";
 $server_results['output'] = $output;
 }
 // Create and then output the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 577

 echo $JSON_data;
?>

This script uses the $server_results associative array to store the data that gets
sent back to the browser. At first the array’s status key is set to success. Then
the script checks the user-name field from the $_GET array: If the field is empty,
the array’s status key is set to error and an array item is added that sets an error
message for the field. The same process is then used for the user-email field. If
after those checks the array’s status key is still set to success (meaning there
were no validation errors), then the array is updated with a success message.
Finally, the array is converted to JSON and outputted.

Back on the client, the form element’s submit event handler converts and submits
the form data, and then processes the result:

$('form').submit(function(e) {

 // Prevent the default form submission
 e.preventDefault();

 // Convert the data to a query string
 var formData = $(this).serialize();

 // Send the data to the server
 $.getJSON('php/validate-required-fields.php', formData,

function(data) {

 // Display the output element
 $('.output').css('display', 'block');

 // Check the validation status
 if(data.status === 'success') {
 // Output the success result
 $('.output').html(data.output);
 } else {
 // Output the validation error(s)
 $('.output').html('<section>Whoops! There were

errors:</section>');
 $.each(data, function(key, error) {
 if(key !== 'status') {
 // Get the label text
 var label = $('label[for=' + key +

']').text();
 $('.output').append('<section>Error in ' +

label + ' field: ' + error + '</section>');

578 BOOK 6 Coding Dynamic Web Pages

 }
 });
 }
 });
});

Note, in particular, the .getJSON() callback function checks the value of data.
status: If it equals success, the script’s success message is displayed. Otherwise,
the .each() loop adds each error message to the output element. Figure 3-6 shows
an example.

Validating text data
Besides validating that a text field exists, you might also want to perform two
other validation checks on a text field:

 » The field contains alphabetic characters only. To ensure the field contains
only lowercase or uppercase letters, use the ctype_alpha() function:

ctype_alpha(text)

• text: Your form field’s text data

The ctype_alpha() function returns TRUE if the field contains only letters,
FALSE otherwise.

 » The field length is greater than some minimum and/or less than some
maximum value. To check the length of the field, use the strlen() function:

strlen(text)

• text: Your form field’s text data

The strlen() function returns the number of characters in the field.

FIGURE 3-6:
Some example

validation error
messages

returned from
the server script.

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 579

Here’s some PHP code that performs these checks on a form field called user-name:

<?php
 // Store the default status
 $server_results['status'] = 'success';

 // Check the user-name field
 if(isset($_GET['user-name'])) {
 $user_name = $_GET['user-name'];
 // Is it empty?
 if(empty($user_name)) {
 // If so, update the status and add an error

message for the field
 $server_results['status'] = 'error';
 $server_results['user-name'] = 'Missing user name';
 } else {
 // Does it contain non-alphabetic characters?
 if(!ctype_alpha($user_name)){
 // If so, update the status and add an error

message for the field
 $server_results['status'] = 'error';
 $server_results['user-name'] = 'User name must

be text';
 } else {
 // Does the user name contains less than 3 or

more than 12 characters?
 if(strlen($user_name) < 3 || strlen($user_name)

> 12) {
 // If so, update the status and add an error

message for the field
 $server_results['status'] = 'error';
 $server_results['user-name'] = 'User name

must be 3 to 12 characters long';
 }
 }
 }
 }
 // If status is still "success", add the success message
 if($server_results['status'] === 'success') {
 $output = "Success! Thanks for submitting the form,

$user_name.";
 $server_results['output'] = $output;
 }

580 BOOK 6 Coding Dynamic Web Pages

 // Create and then output the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 echo $JSON_data;
?>

Validating a field based on the data type
If you want to ensure the value of a field is a particular data type, PHP offers a
powerful function called filter_var() that can help:

filter_var(var, filter, options)

 » var: The variable, expression, or function result you want to check.

 » filter: An optional constant value that determines the data type you want to
check. Here are some useful filters:

• FILTER_VALIDATE_BOOLEAN: Checks for a Boolean value.

• FILTER_VALIDATE_EMAIL: Checks for a valid email address.

• FILTER_VALIDATE_FLOAT: Checks for a floating point value.

• FILTER_VALIDATE_INT: Checks for an integer value.

• FILTER_VALIDATE_URL: Checks for a valid URL.

 » options: An optional array that sets one or more options for the filter. For
example, FILTER_VALIDATE_INT accepts the options min_range and
max_range, which set the minimum and maximum allowable integers. Here’s
the setup for a minimum of 0 and a maximum of 100:

array('options' => array('min_range' => 0, 'max_range' =>
100))

The filter_var() function returns the data if it’s valid according to the specified
filter; if the data isn’t valid, the function returns FALSE (or NULL, if you’re using
FILTER_VALIDATE_BOOLEAN).

Here’s an example script that checks for integer values within an allowable range:

<?php
 // Store the default status
 $server_results['status'] = 'success';

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 581

 // Check the user-age field
 if(isset($_GET['user-age'])) {
 $user_age = $_GET['user-age'];
 // Is it empty?
 if(empty($user_age)) {
 // Add an error message for the field
 $server_results['status'] = 'error';
 $server_results['user-age'] = 'Missing age value';
 } else {
 // Is the field not an integer?
 if(!filter_var($user_age, FILTER_VALIDATE_INT)){
 // Add an error message for the field
 $server_results['status'] = 'error';
 $server_results['user-age'] = 'Age must be an

integer';
 } else {
 // Is the age not between 14 and 114?
 $options = array('options' => array('min_range'

=> 14, 'max_range' => 114));
 if(!filter_var($user_age, FILTER_VALIDATE_INT,

$options)) {
 // Add an error message for the field
 $server_results['status'] = 'error';
 $server_results['user-age'] = 'Age must be

between 14 and 114';
 }
 }
 }
 }
 // If status is "success", add the success message
 if($server_results['status'] === 'success') {
 $output = "Success! You don't look a day over " .

intval($user_age - 1) . ".";
 $server_results['output'] = $output;
 }
 // Create and then output the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 echo $JSON_data;
?>

The script uses filter_var($user_age, FILTER_VALIDATE_INT) twice: first
without and then with the options parameter. The first instance just checks for
an integer value, whereas the second checks for an integer between 14 and 114.
The integer check is redundant here, but I added both so you could get a feel for
how filter_var() works.

582 BOOK 6 Coding Dynamic Web Pages

Validating against a pattern
If you want to use a regular expression to validate a field value, PHP says “No
problem!” by offering you the preg_match() function. Here’s the simplified syntax:

preg_match(pattern, string)

 » pattern: The regular expression, which you enter as a string. Note, too, that
the regular expression must be surrounded by slashes (/).

 » string: The string (such as a form field value) that you want to match against
the regular expression.

The preg_match() function returns TRUE if string matches pattern, and FALSE,
otherwise.

For example, suppose you want to check an account number to ensure that it
uses the pattern AA-12345 — that is, two uppercase letters, a hyphen, then five
numbers. Assuming the value is stored in a variable named $account_number,
here’s a preg_match() function that will validate the variable:

preg_match(‘/[A-Z]{2}-[0-9]{5}/’, $account_number)

Regular Expressions Reference
You can validate form data using regular expressions either in the web browser
by adding a pattern attribute to the field, or on the server by using PHP’s
preg_match() function. To help you get the most out of these powerful techniques,
the rest of this chapter takes you through some examples that show you how
to use the regular expression symbols. In the examples that follow, remember
to surround the regular expression with slashes (/) when you use it in the
preg_match() function; you don’t need the slashes when you use the regular
expression as a pattern attribute value.

Here are the symbols you can use in your regular expressions:

 » \d: Matches any digit from 0 through 9:

Regular Expression String Match?

\d\d\d "123" Yes

\d\d\d\d "123" No

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 583

Regular Expression String Match?

\d\d\d "12C" No

\d\d\d-\d\d\d-
\d\d\d\d

"123-555-6789" Yes

 » \D: Matches any character that’s not a digit from 0 through 9:

Regular Expression String Match?

/\D\D\D/ "AB!" Yes

/\D\D\D/ "A1B" No

/\D-\D\D\D\D/ "A-BCDE" Yes

 » \w: Matches any character that’s a letter, a digit, or an underscore (_):

Regular Expression String Match?

\w\w\w "F1" Yes

\w\w\w "F+1" No

A\w\ "A" Yes

A\w\ "A!" No

 » \W: Matches any character that’s not a letter, a digit, or an underscore (_):

Regular Expression String Match?

\W\W\W\W "<!--" Yes

\W\W\W "<a>" No

1\W\ "10" No

1\W\ "1!" Yes

584 BOOK 6 Coding Dynamic Web Pages

 » . (dot): Matches any character that’s not a newline:

Regular Expression String Match?

.... "ABCD" Yes

.... "123" No

A.. "A@B" Yes

 » \s: Matches any whitespace character, such as the space, tab (\t), newline (\n),
and carriage return (\r):

Regular Expression String Match?

\d\d\d\s\d\d\d\d "123 4567" Yes

\d\d\d\s\d\d\d\d "123-4567" No

\d\d\d\s\d\d\d\d "123 4567" No

 » \S: Matches any non-whitespace character:

Regular Expression String Match?

\d\d\d\S\d\d\d\d "123 4567" No

\d\d\d\S\d\d\d\d "123-4567" Yes

A\SB "A+B" Yes

 » []: Matches whatever characters are listed between the square brackets. The
[] symbol also accepts a range of letters and/or digits:

Regular Expression String Match?

[+-]\d\d\d "+123" Yes

[+-]\d\d\d "$123" No

[2468]-A "2-A" Yes

[2468]-A "1-A" No

[(]\d\d\d[)]\d\d\d-\d\d\d\d "(123)555-6789" Yes

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 585

Regular Expression String Match?

[A-Z]\d\d\d "A123" Yes

[A-Z]\d\d\d "a123" No

[A-Za-z]\d\d\d "a123" Yes

[0-5]A "3A" Yes

[0-5]A "6A" No

[0-59]A "9A" Yes

Remember that the range [0-59] matches the digits 0 to 5 or 9 and not the range
0 to 59.

 » [^]: Matches everything but whatever characters are listed between the
square brackets. As with the [] symbol, you can use letter or digit ranges.

Regular Expression String Match?

[^+-]\d\d\d "+123" No

[^+-]\d\d\d "123" Yes

[^2468]-A "2-A" No

[^2468]-A "1-A" Yes

[^A-Z]\d\d\d "A123" No

[^A-Z]\d\d\d "a123" Yes

[^A-Za-z]\d\d\d "#123" Yes

[^0-5]A "3A" No

[^0-5]A "6A" Yes

[^0-59]A "9A" No

 » \b: Matches one or more characters if they appear on a word boundary (that
is, at the beginning or the end of a word). If you place \b before the
characters, it matches if they appear at the beginning of a word; if you place
\b after the characters, it matches if they appear at the end of a word.

586 BOOK 6 Coding Dynamic Web Pages

Regular Expression String Match?

\bode "odeon" Yes

\bode "code" No

ode\b "code" Yes

ode\b "odeon" No

\bode\b "ode" Yes

 » \B: Matches one or more characters if they don’t appear on a word boundary
(the beginning or the end of a word). If you place \B before the characters, it
matches if they don’t appear at the beginning of a word; if you place \B after
the characters, it matches if they don’t appear at the end of a word.

Regular Expression String Match?

/\Bode/ "odeon" No

/\Bode/ "code" Yes

/ode\B/ "code" No

/ode\B/ "odeon" Yes

/\Bode\B/ "code" No

/\Bode\B/ "coder" Yes

 » ?: Matches if the character preceding it appears just once or not at all:

Regular Expression String Match?

e-?mail "email" Yes

e-?mail "e-mail" Yes

e-?mail "e--mail" No

e-?mail "e:mail" No

 » *: Matches if the character preceding it is missing or if it appears one or more
times:

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 587

Regular Expression String Match?

e-*mail "email" Yes

e-*mail "e-mail" Yes

e-*mail "e--mail" Yes

e-*mail "e:mail" No

 » +: Matches if the character preceding it appears one or more times:

Regular Expression String Match?

e-+mail "email" No

e-+mail "e-mail" Yes

e-+mail "e--mail" Yes

e-+mail "e:mail" No

 » {n}: Matches if the character preceding it appears exactly n times:

Regular Expression String Match?

lo{2}p "loop" Yes

lo{2}p "lop" No

\d{5} "12345" Yes

\d{5}-\d{4} "12345-6789" Yes

 » {n,}: Matches if the character preceding it appears at least n times:

Regular Expression String Match?

lo{2,}p "loop" Yes

lo{2,}p "lop" No

lo{2,}p "looop" Yes

\d{5,} "12345" Yes

588 BOOK 6 Coding Dynamic Web Pages

Regular Expression String Match?

\d{5,} "123456" Yes

\d{5,} "1234" No

 » {n,m}: Matches if the character preceding it appears at least n times and no
more than m times:

Regular Expression String Match?

lo{1,2}p "loop" Yes

lo{1,2}p "lop" Yes

lo{1,2}p "looop" No

\d{1,5} "12345" Yes

\d{1,5} "123456" No

\d{1,5} "1234" Yes

 » ^: Matches if the characters that come after it appear at the beginning of the
string:

Regular Expression String Match?

^Java "JavaScript" Yes

^Java "HotJava" No

^[^+-]?\d\d\d "123" Yes

^[^+-]?\d\d\d "+123" No

 » $: Matches if the characters that come after it appear at the end of the string:

Regular Expression String Match?

Java$ "JavaScript" No

Java$ "HotJava" Yes

Va
lid

at
in

g
Fo

rm
 D

at
a

CHAPTER 3 Validating Form Data 589

Regular Expression String Match?

\d\d\.\d%$ "12.3%" Yes

\d\d\.\d%$ "12.30%" No

If you need to include one of the characters from a regular expression symbol as
a literal in your expression, escape the character by preceding it with a backslash
(\). For example, suppose you want to see if a string ends with .com. The follow-
ing regular expression won’t work:

.com$

That’s because the dot (.) symbol represents any character except a newline. To
force the regular expression to match only a literal dot, escape the dot, like this:

\.com$

 » |: Place this symbol between two patterns, and the regular expression
matches if the string matches one pattern or the other. (Don’t confuse this
symbol with JavaScript’s OR operator: ||.)

Regular Expression String Match?

^(\d{5}|\d{5}-
\d{4})$

"12345" Yes

^(\d{5}|\d{5}-
\d{4})$

"12345-6789" Yes

^(\d{5}|\d{5}-
\d{4})$

"123456789" No

The preceding examples use parentheses to group the two patterns together. With
regular expressions, you can use parentheses to group items and set precedence,
just as you can with JavaScript expressions. A regular expression of the form
^(pattern)$ means that the pattern defines the entire string, not just some of
the characters in the string.

7Coding
Web Apps

Contents at a Glance
CHAPTER 1: Planning a Web App . 593

CHAPTER 2: Laying the Foundation . 619

CHAPTER 3: Managing Data . 637

CHAPTER 4: Managing App Users . 673

CHAPTER 1 Planning a Web App 593

Planning a Web App
What you can do, or dream you can, begin it,

Boldness has genius, power, and magic in it.

— JOHANN WOLFGANG VON GOETHE

There are many reasons to get and stay interested in web coding and
development. Here are a just a few: the challenge of learning something new;
the confidence that comes from figuring out hard or complex problems; the

satisfactions that inhere from getting code to work; the desire to get a job in web
development; the feeling that you’re operating right at the leading edge of the
modern world. These are all great and motivating reasons to code for the web, but
there’s another reason to dive deep into CSS and JavaScript and all the rest: as an
outlet for your creative side. Sure, anybody who learns a bit of HTML and a few
CSS properties can put up pages of information, but as a full-stack web developer
who also knows JavaScript, jQuery, MySQL, and PHP, you’ve got all the tools you
need to create bold and beautiful apps for the web. That’s where the real creativity
lies: having a vision of something cool, interesting, and fun and then using code
to realize that vision for other people to see and use. This minibook helps you
unleash the right side of your brain and make your creative vision a reality by
showing you how to use all your web coding and development skills and know-
how to build web apps. First up: the all-important planning process.

Chapter 1

IN THIS CHAPTER

 » Learning about web apps

 » Planning your app’s data, workflow,
and interface

 » Planning a responsive web app

 » Planning an accessible web app

 » Becoming familiar with web app
security issues

594 BOOK 7 Coding Web Apps

What Is a Web App?
If you go to the web home for a company called Alphabet (https://abc.xyz),
you get a general introduction to the company, plus some information for inves-
tors, news releases, links to corporate documents such as the company bylaws,
and so on. But Alphabet is also the parent company for some of the web’s most
iconic spots:

 » Google (www.google.com): Search the web.

 » Gmail (https://mail.google.com): Send and receive email messages.

 » Google Maps (https://maps.google.com): Locate and get directions to
places using maps.

 » YouTube (www.youtube.com): Play and upload videos.

What’s the difference between the parent Alphabet site and these other sites?
Lots, of course, but there are two differences that I think are most important:

 » Each of the other sites is focused on a single task or topic: searching, emailing,
maps, or videos.

 » Each of the other sites offers an interface that enables the user to “operate”
the site in some way. For example, Google has a simple search form, whereas
Gmail looks like an email Inbox and offers commands such as Compose and
Reply.

In other words, the Alphabet home is a basic website that’s really just a collection
of documents you can navigate, whereas the likes of Google, Gmail, Google Maps,
and YouTube are more like the applications you use on your computer. They are,
in short, web apps, because although they reside on the web and are built using
web technologies such as HTML, CSS, JavaScript, MySQL, and PHP, they enable
you to perform tasks and create things just like a computer application.

Fortunately, you don’t have to have an idea for the next YouTube or Gmail to get
started coding web apps. (Although, hey, if you do, I say go for it!) Web apps can
be anything you want, as long as they enable you or your users to do something. If
that something happens to be fun, creative, interesting, or useful, then congratu-
lations: You’ve made the world a better place.

https://abc.xyz/
https://www.google.com/
https://mail.google.com/
https://maps.google.com/
https://www.youtube.com/

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 595

Planning Your Web App: The Basics
If you’re like me, when you come up with an exciting idea for a web app, the first
thing you want to do is open your trusty text editor and start bashing out some
code. That’s a satisfying way to go, but, believe me, that satisfaction dissipates
awfully fast when you’re forced to go back and redo a bunch of code or completely
restructure your database because, in your haste, you took a wrong turn and ended
up at a dead end or too far from your goal.

I plea, then, for just a bit of restraint so that you can spend the first hour or two
of your project thinking about what you want to build and laying out the steps
required to get there. Think of it like planning a car trip. You know your desti-
nation, but it’s unlikely you’ll want to just get in the car and start driving in the
general direction of your goal. You need to plan your route, load up with supplies
such as gas, water, and food, gather tools such as a GPS, and so on. To figure
out the web-development equivalents of such things, it helps to ask yourself five
questions:

 » What is my app’s functionality?

 » What are my app’s data requirements?

 » How will my app work?

 » How many pages will my app require?

 » What will my app’s pages look like?

The next few sections go through these questions both in a general way and
more specifically with the app I’m going to build. It’s called FootPower! and it’s a
simple app for logging and viewing foot-propelled activities such as walking,
running, and cycling.

What is my app’s functionality?
The first stage in planning any web app is understanding what you want the app
to do. You can break this down into two categories:

 » User functions: These are the tasks that the user performs when she
operates whatever controls your app provides. The standard four tasks are
given by the unfortunately named CRUD acronym: creating, reading, updating,
and deleting.

 » App functions: These are tasks that your app performs outside of the
interface controls. Examples are creating user accounts, signing users in and
out, handling forgotten passwords, and backing up data.

596 BOOK 7 Coding Web Apps

For FootPower!, here’s a list of the user functions I want to implement:

 » Creating new activities, each of which records activity details such as the type
of activity, and the activity date, distance, and duration

 » Viewing previous activities, with the capability to filter the activities by date
and type

 » Editing an existing activity

 » Deleting an activity

Here are the app functions I want to implement:

 » Creating new users

 » Verifying new users by sending a verification email

 » Signing existing users in and out

 » Maintaining a user’s app settings

 » Handling forgotten passwords

 » Deleting a user account

What are my app’s data requirements?
Web apps don’t necessarily have to use a back end. If your web app is a calcula-
tor, for example, then you’d only need to present the front-end interface to the
user; no back-end database or Ajax calls are required. (I talk about how to build an
app that doesn’t require a back end in Book 8.) But if your app requires persistent
data — which might be data you supply or data that’s created by each user — then
you need to store that data in a MySQL database and use Ajax calls to transfer that
data between the browser and the server.

Before you load up phpMyAdmin, however, you need to sit down and figure out
what you want to store in your database. Web app data generally falls into three
categories:

 » User data: If your app has user accounts, then you need to store account
data such as the username or email address, password, profile settings, and
site preferences.

 » User-generated data: If your app enables users to create things, then you
need to save that data so that it can be restored to the user the next time he
signs in.

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 597

 » App data: If your app presents data to users, then you need to store that data
in MySQL. You might also want to store behind-the-app-scenes data such as
analytics and visitor statistics.

My FootPower! app’s data requirements fall into two segments:

 » The app will have user accounts, so I need a MySQL table to store each
account’s email address, password, verification status, and a few site
preferences.

 » Users will be recording their foot-propelled movements, so I need two tables
to store this data:

• Each user is creating a log of his activities, so I need a table to record the
data for each of these logs, basically just a unique log ID, the ID of the user
who owns the log, and the date the log was created.

• Within each user’s log will be the activities themselves, which I’ll store in a
separate table that includes a unique ID for each activity, the user’s log ID,
and fields for each chunk of activity data: type, date, distance, and duration.

How will my app work?
Once you know what you want your app to do and what data your app requires,
you’re ready to tackle how your app works. This is called the app’s workflow and
it covers at a high level what the app does and the order in which it does those
things. A simple flowchart is usually the way to go here: Just map out what hap-
pens from the time users type in your app URL to the time they leave the page.

Figure 1-1 shows the workflow I envision for my FootPower! app.

How many pages will my app require?
Your app’s workflow should tell you fairly specifically how many pages your app
needs. Most web apps are focused on a single set of related tasks, so your users
will spend most of their time on the page that provides the app’s main interface,
usually the home page. However, your app will need other pages to handle tasks
such as registering users, signing in users, and displaying account options. Record
every page you need, which will act as an overall to-do list for the front end.

598 BOOK 7 Coding Web Apps

Here’s my list for the FootPower! app:

 » The home page, which will require two versions:

• The unregistered or signed-out version of the home page, which will serve
as a kind of ad for the app

• The signed-in version, which will show the user’s activity log and enable
log-based tasks such as creating, filtering, editing, and deleting activities

 » A page that enables new users to register

 » A page letting new users know that a verification email has been sent

 » A sign-in page

 » A page that enables the user to edit and delete activities

 » A password reset page

 » An account options page

 » An account delete page

What will my app’s pages look like?
Before you start laying down your HTML and CSS code, you need to have a decent
sense of what you want your app’s pages to look like. Sure, all of that might be in
your head, but it really pays in the long run to get those images down on paper
with a sketch or two. These sketches don’t have to be fancy in the least. Just take

FIGURE 1-1:
The workflow

for my Foot-
Power! app.

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 599

a pen, pencil, or your favorite Crayola color and rough out the overall structure.
Simple forms (such as those for signing in or resetting a password) don’t require
much effort, but for more elaborate pages, such as your app’s home page, you
need to flesh out the design a bit: header, navigation, main content, sidebar,
footer, and so on.

Figure 1-2 shows my sketch for the home page that a signed-in user will see.

Planning Your Web App: Responsiveness
A web app is something like the online equivalent of a desktop program, but that
doesn’t mean you should build your web app to look good and work properly only
on desktop-sized screens. Why not? For the simple reason that your app’s visitors
will be using a wide range of device sizes, from PCs with gigantic displays several
feet wide, all the way down to smartphones with screens just a few inches wide.
On the modern web, one size definitely does not fit all, so you need to plan your
app so that its user experience (UX, to the cognoscenti) — that is, what visitors see
and interact with — is positive for everyone.

To make your web app look good and operate well on any size screen, you need
to plan your app with responsiveness in mind. A responsive web app is one that
changes its layout, styling, and often also its content to ensure that the app works
on whatever screen the reader is using.

FIGURE 1-2:
A sketch of

the signed-in
user’s home
page for the

 FootPower! app.

600 BOOK 7 Coding Web Apps

To see why you need to code responsively from the start of your web app, consider
the two main non-responsive layouts you could otherwise use:

 » Fixed-width: A layout where the width of the content is set to a fixed size. In
this case, if the fixed-width is greater than the width of the screen, most of the
time the user has to scroll horizontally to see all the content, as shown in
Figure 1-3.

 » No-width: A layout where the width of the content has no set width. You
might think having no width would enable the text and images to wrap nicely
on a small screen, and you’d be right. However, the problem is on larger
screens, where your text lines expand to fill the browser width and, as you can
see in Figure 1-4, those lines can become ridiculously long, to the point where
scanning the lines becomes just about impossible.

FIGURE 1-3:
When a page has

a fixed width,
users with small
screens have to

scroll horizontally
to see all the

content.

FIGURE 1-4:
When a page has

no maximum
width, the lines
of text become

too long for
 comfortable

reading.

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 601

To work around these problems and to ensure your web app looks good on any
screen size, you need to implement the following responsive techniques:

 » Set the viewport: To ensure that your layout works well in smaller screens,
use the following <meta> tag to tell the browser to set the viewport width to
the width of the current device’s screen, and to set the viewport’s zoom level
to 1 (that is, not zoomed in or zoomed out).

<meta name="viewport" content="width=device-width,
initial-scale=1.0">

 » Liquid layout: A layout in which the overall width is set to a maximum (so
that text lines never get too long to read), but the page elements have their
widths set in percentages (or a similar relative measure such as viewport
width: vw). Since even really old web browsers support percentages, this is a
good fallback layout to use. For example:

CSS:

body {
 max-width: 800px;
}
article {
 width: 67%;
}
aside {
 width: 33%;

}

HTML:

<body>
 <main>
 <article>
 </article>
 <aside>
 </aside>
 </main>

</body>

602 BOOK 7 Coding Web Apps

 » Flexible layout: A layout that uses flexbox to automatically wrap items when
the browser window is too narrow to contain them. You set the container’s
flex-wrap property to wrap, as shown in the following example:

CSS:

body {
 max-width: 800px;
}
main {
 display: flex;
 flex-wrap: wrap;
}
article {
 flex-grow: 2;
 flex-shrink: 0;
 flex-basis: 300px;
}
aside {
 flex-grow: 1;
 flex-shrink: 0;
 flex-basis: 150px;

}

HTML:

<body>
 <main>
 <article>
 </article>
 <aside>
 </aside>
 </main>

</body>

Note, too, that I’ve set flex-shrink to 0 and added flex-basis values,
which combine to create a minimum width for each element.

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 603

 » Adaptive layout: A layout that changes depending on the current value of
certain screen features, such as width. An adaptive layout uses a CSS feature
called a media query, which is an expression accompanied by a code block
consisting of one or more style rules. The expression interrogates some
feature of the screen, usually its width. If that expression is true for the current
device, then the browser applies the media query’s style rules; if the expres-
sion is false, the browser ignores the media query’s rules. Here’s the syntax:

@media (expression) {
 Style rules go here

}

Here’s an example that applies two style rules whenever the current screen
width is less than or equal to 767px:

@media (max-width: 767px) {
 header {
 height: 48px;
 }
 .site-title {
 font-size: 24px;
 }

}

Figures 1-5 through 1-7 demonstrate a more advanced example, where the
layout of the page changes, depending on the screen width.

FIGURE 1-5:
A typical page

with header,
 navigation, an

article, and two
sidebars. On a

desktop screen,
the article is

flanked by the
sidebars.

604 BOOK 7 Coding Web Apps

 » Responsive images: Renders an image fluidly so that its size adjusts to
different screen sizes. Ideally, you want the image to scale no larger than its
original size to avoid ugly pixilation and jagged edges, and you want the width
and height to maintain the original aspect ratio so that the image doesn’t look
skewed when its size changes. You can achieve both goals by styling the
image with the declarations max-height: 100%, which allows the image to
scale but to grow no larger than its original size, and height: auto, which
tells the browser to adjust the height automatically as the width changes.
(Alternatively, you can set width: auto to get the browser to adjust the width
automatically as the height changes). Here’s an example:

.aside-img {
 max-height: 100%;
 height: auto;

}

FIGURE 1-6:
On a narrower

tablet-sized
screen, the right

sidebar wraps
below the left

sidebar and the
article.

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 605

 » Responsive typography: Renders font sizes and vertical measures (such as
height and margin-top) with the relative units em or rem rather than
fixed-size pixels (px); renders horizontal measures (such as width and
padding-right) in percentages (%) instead of pixels (px). Using relative
measurement units enables the page typography to flow seamlessly as the
screen size changes.

Planning Your Web App: Accessibility
When planning a web app, the thoughtful developer remains aware at all times
that the people who visit and use the app come with different abilities. When
planning a web app, the ethical developer understands that, even though every

FIGURE 1-7:
On an even

 narrower
 smartphone-

sized screen, both
sidebars appear

below the article.

606 BOOK 7 Coding Web Apps

person is different, they all have an equal right to use the app. When you give
everyone equal access to your web app, you’re making your app accessible.

Planning for accessibility means taking the following impairments into account:

 » Visual: Includes full or partial blindness, color-blindness, and reduced vision.

 » Auditory: Includes full or partial deafness, difficulty hearing, the inability to
hear sounds at certain frequencies, and tinnitus.

 » Motor: Includes the inability to use a pointing device such as a mouse,
restricted movement, lack of fine motor control, excessive trembling or
shaking, and slow reflexes or response times.

 » Cognitive: Includes learning disabilities, focusing problems, impaired
memory, and extreme distractibility.

An accessible design is the right choice ethically, but it’s also the right choice
practically because a significant percentage (estimates range from 5 to 20 per-
cent) of the people who use your web app will exhibit one or more of the above
disabilities in varying degrees. Fortunately, as long as you build your app with
equal access in mind from the get-go, adding accessible features takes very little
effort on your part.

Before you get started, it’s a good idea to crank up a screen reading application so
that you can test out how your web app works when “heard.” If you use Windows,
start up the Narrator utility; if you’re on a Mac, fire up the VoiceOver utility.

Web app accessibility is a massive topic, but for our purposes you can boil it down
to implementing the following techniques:

 » Include alternative text for all images. For the visually impaired, a screen
reader reads aloud the value of every tag’s alt attribute, so important
or structural images should include a brief description as the alt value:

You don’t need to add an alt value for purely decorative images, but you
must include the alt tag (set to an empty string: alt="") or your HTML code
won’t validate.

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 607

 » Add an ARIA label to all form fields. ARIA stands for Accessible Rich Internet
Applications, and it’s a technology for adding accessibility to web apps. When
you add the aria-label attribute to an <input>, <select>, or <textarea>
tag, the screen reader reads that attribute’s text:

<input type="radio"
 id="pony-express"
 name="delivery"
 value="pony"

 aria-label="Pony express delivery option">

 » Add a label for all form fields. Adding the <label> tag — either by using the
for attribute to reference the id of the corresponding field, or by surrounding
the field with <label> and </label> tags — enables the user to select the
field by also clicking the label. This increases the target area for clicking, which
helps users with unsteady hands. Be sure to add a label for every <input>
tag, as well as each <select> and <textarea> tag:

<label for="user-email">Email address</label>

<input id="user-email" type="email">

 » Use headings hierarchically. All page headings should use <h1> through
<h6> tags, where that order reflects the hierarchy of the heading structure:
<h1> is the top-level heading in a section of the page, <h2> is the second-level
heading in that section, and so on. Don’t skip heading levels (say, by jumping
from <h2> to <h4>).

 » Use semantic HTML5 page tags. These include <header>, <nav>, <main>,
<article>, <section>, <aside>, and <footer>. These so-called landmarks
help assistive technologies make sense of your web app. You should also add
ARIA role attributes to these tags, as follows:

<header role="banner">
<nav role="navigation">
<main role="main">
<article role="contentinfo">
<section role="contentinfo">
<aside role="complementary">
<aside role="note">

<footer role="contentinfo">

Wait: two role possibilities for the <aside> tag? Yep: Choose the role value
that best fits the content of the sidebar.

608 BOOK 7 Coding Web Apps

 » Add ARIA roles to non-semantic elements. If your app uses non-semantic
elements, such as a jQuery UI or jQuery Mobile widget, you can alert assistive
technologies to what the widget does by adding the role attribute and setting
it equal to the widget’s function in the app. Some example role values are
dialog, menu, menubar, progressbar, scrollbar, slider, tab, tablist,
tabpanel, and toolbar. For example, here’s how you’d add the various
tab-related roles to jQuery UI’s Tabs widget:

<div id="my-tabs">
 <ul role="tablist">
 This
 That
 The Other

 <div id="my-tab-1" role="tabpanel">
 This is the first tab's content.
 </div>
 <div id="my-tab-2" role="tabpanel">
 This is the second tab's content.
 </div>
 <div id="my-tab-3" role="tabpanel">
 Yep, this is the third tab's content.
 </div>

</div>

See Mozilla Developer Network’s Using ARIA page at https://developer.
mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
to see a complete list of ARIA roles.

 » Ensure your app’s colors have sufficient contrast. If text colors too closely
match the background color, the text will be hard to decipher, particularly for
the visually impaired.

Once your app is on the web, you can check its accessibility by heading over to
the Web Accessibility Evaluation Tool (WAVE) at http://wave.webaim.org. Paste
your web app’s address into the text box and press Enter/Return to see a report.

Planning Your Web App: Security
Like it or not (and I suspect not), we live in a world populated by a small but
determined band of miscreants who spend all their time and energy trying to
deface, destroy, or exploit web apps just like the one you’re about to build. And

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
http://wave.webaim.org/

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 609

make no mistake: If you put an unprotected web app online, it will be found by one
(or more) of these rapscallions and bad things will ensue.

So you need to take a piece of paper, write the word “SECURITY” in bold letters,
and tape it to your cat’s forehead as a constant reminder that building a web app
really means building a secure web app. And I don’t mean building your app and
then bolting on some security features at the very end — no, you need to bake in
the security goodness right from the start.

As important as web app security is, you might be surprised to hear that I can
summarize it with just two axioms:

 » Never trust data sent to the server. For example, if you have a form with a
text field, an attacker can insert a specially constructed text string that forces
MySQL to perform unwanted actions, such as deleting data. Alternatively, it’s
possible for an attacker to submit data to the server without using your
form at all.

 » Always control data sent from the server. When you send data back to the
web page, you need to be sure that you’re not sending anything dangerous.
For example, if an attacker uses a form’s text field to submit a <script> tag
with malicious JavaScript code, and you then redisplay the form’s values
without checking them, that script will execute. Similarly, if you use the server
to store sensitive data such as sign-in passwords and private information, you
need to install safeguards so that this data doesn’t fall into the wrong hands.

Understanding the dangers
There are, it often seems, almost as many security exploits as there are low-
lifes trying to compromise our apps. However, the most common security dangers
fall into four main categories: SQL injection, cross-site scripting, insecure file
uploads, and unauthorized access.

SQL injection
Probably the most common exploit, SQL injection involves inserting some mali-
cious code into an ordinary SQL command, such as a SELECT or DELETE statement.
Consider the following sign-in form:

<form>
 <label for="username">User name:</label>
 <input id="username" type="text" name="user">

610 BOOK 7 Coding Web Apps

 <label for="password">Password:</label>
 <input id="password" type="password" name="pass">
</form>

When this form is submitted, a PHP script to sign in the user might look, in part,
like this:

<?php
 $user = $_POST['user'];
 $pass = $_POST['pass'];
 $sql = "SELECT *
 FROM users
 WHERE username='$user' AND password='$pass'";
?>

That works fine as long as the user types a legit username and password, but what
happens if some scoundrel types admin' # in the user field and nothing at all in
the password field? Here’s the resulting value of the $sql variable:

SELECT * FROM users WHERE username='admin' #' AND password=''

The key here is the hash symbol (#), which marks the beginning of a comment in
an SQL command, meaning that the rest of the line is ignored. (Just so you know,
MySQL also uses -- to mark the start of a comment.) That is, the actual SQL
command that gets processed is this:

SELECT * FROM users WHERE username='admin'

Congratulations, some criminal has just signed in as the administrator!

As another example, suppose your web app has a button that, when clicked,
deletes an item from the current user’s data. Your Ajax call might pass along a
user-id and an item-id, meaning that your PHP script would do something like
the following to remove the specified item:

<?php
 $user_id = $_POST['user-id'];
 $item_id = $_POST['item-id'];
 $sql = "DELETE
 FROM items
 WHERE userid='$user_id' AND itemid='$item_id'";
?>

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 611

Looks fine from here, but suppose some fiend passes the following as the
user-id value: whatever' OR 1=1 #. Assuming the item-id value is blank, here’s
the resulting $sql variable value:

DELETE FROM items WHERE userid='whatever' OR 1=1 #' AND
itemid=''

Taking the comment symbol (#) into account, the actual command looks like this:

DELETE FROM items WHERE userid='whatever' OR 1=1

The 1=1 part always returns TRUE, so the result is that the command deletes
everything from the items table!

Cross-site scripting (XSS)
Cross-site scripting (usually shortened to XSS) is a way of surreptitiously forcing an
innocent user to launch an attacker’s malicious script. This most often happens
when the malefactor uses a phishing email or similar ruse to trick the user into
visiting a page that spoofs a form used on a legitimate site.

For example, suppose the form asks the user to enter her credit card number and
password. If this was a normal form submission and the user entered either the
wrong credit card number of the wrong password, the PHP script on the server
might redisplay the form to ask the user to try again:

<?php
 $cc = $_POST['credit-card'];
 $pw = $_POST['password'];

 // Code that checks these inputs goes here

 // If one or both inputs are invalid:
 echo '<input type="text" name="credit-card" value="' .

$cc . '">';
 echo '<input type="password" name="password">';
?>

Notice, in particular, that this “helpful” script redisplays the credit card value
(stored in the $cc variable) in the text field. Imagine, then, that our attacker’s
spoofed form actually sends the following text instead of the credit card number:

"><script>alert('Ha ha!');</script><a href="

612 BOOK 7 Coding Web Apps

Here’s the resulting HTML (which I’ve tidied up a bit so you can see what’s
going on):

<input type="text" name="credit-card" value="">
<script>
 alert('Ha ha!');
</script>

<input type="password" name="password" value="">

What happens here? That’s right: The JavaScript code between the <script> and
</script> tags executes and, believe me, in the real world it’s unlikely to just
display an innocuous alert box.

Insecure file uploads
If your web app allows users to upload files — for example, you might want to
allow each user to upload a small image to use as a profile avatar — then you open
up a new can of security worms because a malicious user can:

 » Upload huge files, which tax the server’s resources.

 » Upload a nasty script instead of, say, an image.

 » Overwrite existing server files.

Unauthorized access
If your web app requires users to sign in with a username (or email address)
and password, then keeping those passwords secure is of paramount importance.
 Otherwise, an unauthorized interloper could sign in as a legitimate user and either
destroy or tamper with that user’s data, post messages or other content under
that user’s name, and even delete the user’s account.

Defending your web app
There’s an alarming number of potential exploits that a villainous user can use
to wreak havoc on your web app. Fortunately, if you implement multiple lines of
defense — a strategy sometimes called defense in depth — you can inoculate your
app against all but the most determined attacks.

Sanitizing incoming data
Defending your web app begins with sanitizing any data sent to the server. There
are four main ways to sanitize data:

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 613

 » Converting: Encoding an input’s characters to harmless equivalents. The
most useful PHP function for this is htmlentities(), which takes a string
input and converts any special characters to either an HTML entity code, if one
exists, or to an HTML character code. In particular, htmlentities() changes
< to <, > to >, " to ", and & to &. For example, htmlentities
('<script>alert("Take that!")</script>') returns the following (now
harmless) string:

<script>alert("Take that!")</script>

 » Filtering: Removing unwanted characters from an input. Use PHP’s filter_
var() function and specify one or more of the function’s sanitizing filters:

filter_var(input, filter)

• input: The input value you want to sanitize.

• filter: An constant value that determines the characters you want to
remove from input. Here are some useful filters:

• FILTER_SANITIZE_EMAIL: Removes all characters except letters,
numbers, and the following: !#$%&'*+-=?^_`{|}~@.[]

• FILTER_SANITIZE_NUMBER_FLOAT: Removes all characters except
numbers, plus (+), and minus (-). To allow decimals, add the FILTER_
FLAG_ALLOW_FRACTION flag:

 filter_var($val, FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_FLAG_ALLOW_FRACTION)

• FILTER_SANITIZE_STRING: Removes all HTML tags. For example:

 filter_var('<script>alert("Take that!")</script>',
FILTER_SANITIZE_STRING)

Returns:

 alert("Take that!");

• FILTER_SANITIZE_URL: Removes all characters except letters, numbers,
and the following: $-_.+!*'(),{}|\\^~[]`<>#%";/?:@&=

 » Data type checking: Testing the data type of an input to ensure that it
matches what’s expected. PHP calls this character type checking, and it offers
the following functions:

• ctype_alnum(input) — Returns TRUE if input contains only letters and/
or numbers

614 BOOK 7 Coding Web Apps

• ctype_alpha(input) — Returns TRUE if input contains only letters

• ctype_digit(input) — Returns TRUE if input contains only numbers

• ctype_lower(input) — Returns TRUE if input contains only lowercase
letters

• ctype_upper(input) — Returns TRUE if input contains only uppercase
letters

 » Whitelisting: Allowing only certain values in an input. For example, suppose
the input is an account number of the form 12-3456; that is, two numbers, a
dash (-), then four numbers. You can’t use ctype_digit() on this value
directly because of the dash, but you can temporarily remove the dash and
then check the resulting value:

$acct_num = $_POST['account-number'];
$allowed = '-';
$new_input = str_replace($allowed, '', $acct_num);
if(ctype_digit($new_input) === false) {
 exit(0);

}

This code uses the str_replace() function to replace dashes with the empty
string (which removes them) and then runs ctype_digit() on the result. If
your input has multiple acceptable characters, you can whitelist them all by
setting the $allowed variable to an array:

$allowed = array(',', '.', '$');

Using prepared statements
As I show earlier in this chapter, the nastiness that is SQL injection works by
tricking an innocent SQL statement into running malevolent code. You can (and
should) try to prevent that by sanitizing your form inputs, but MySQL also offers
a powerful technique that gives you exquisite control over the type of data that
gets included in an SQL statement. The technique is called prepared statements (or
sometimes parameterized statements or parameterized queries), and it means you no
longer send an SQL statement directly to the database server. Instead, the query
now proceeds in three separate stages:

1. The preparation stage.

This stage involves running an SQL-like statement through MySQLi’s prepare()
method. Most importantly, you replace each external value (that is, each value
received from a web form) with a question mark (?), which acts as a place-
holder for the value. The statement you’ve thus prepared acts as a kind of
template that MySQLi will use to run the query.

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 615

2. The binding stage.

This stage involves using MySQLi’s bind_param() method to define each
external value as a parameter, and then bind that parameter to the prepared
statement. Specifically, MySQLi replaces each ? placeholder with a parameter.
The binding specifies a data type (such as a string or integer) for each parameter.

3. The execution stage.

The final stage runs MySQLi’s execute() method on the prepared statement.
This hands off the actual running of the SQL command to the server, which
uses the combination of the prepared statement template and the bound
parameters to run the SQL operation.

Because the server knows what data types to except for the external values, it can’t
run injected SQL code as actual code. Instead, it treats the injection as text (or
whatever data type you specify), and the SQL operation runs in complete safety.

Here’s an example:

<?php
 // Assume these external values came from a
 // form submission and have been sanitized
 $customer = 'ALFKI';
 $employee = 1;

 // Declare a string for the query template
 // Use ? to add a placeholder for each external value
 $sql = "SELECT *
 FROM orders
 INNER JOIN customers
 ON orders.customer_id = customers.customer_id
 WHERE orders.customer_id = ?
 AND orders.employee_id = ?";

 // Prepare the statement template
 $stmt = $mysqli->prepare($sql);

 // Bind the parameters (one string, one integer)
 $stmt->bind_param("si", $customer, $employee);

 // Execute the prepared statement
 $stmt->execute();

 // Get the results
 $result = $stmt->get_result();
?>

616 BOOK 7 Coding Web Apps

To save space, the code declares two variables — $customer and $employee — that
are assumed to be external values that came from a form and have been sanitized.
The code then declares the string $sql to the SQL text, but with ? placehold-
ers used instead of the actual external values. The code runs the prepare($sql)
method to create the prepared statement, which is stored in the $stmt variable.
Now the code runs bind_param() to bind the external values:

bind_param(types, parameter(s))

 » types: A string that specifies, in order, the data type of each parameter. The
four possible values are s (string), i (integer), d (double; that is, a floating-point
value), and b (blob; that is, a binary object, such as an image).

 » parameter(s): The parameters you want to bind, separated by commas.

Finally, the code runs the execute() method to run the prepared statement, and
then uses get_result() to get the result of the SQL operation.

Escaping outgoing data
Before you send data back to the web page, you need to ensure that you’re not
sending back anything that could produce unexpected or even malicious results.
That means converting problematic characters such as ampersands (&), less than
(<), greater than (>), and double quotation marks (") to HTML entities or character
codes. This is called escaping the data.

How you do this depends on how you’re returning the data:

 » If you’re returning strings via echo (or print): Apply the htmlentities()
function to each string that might contain data that needs to be escaped:

echo htmlentities($user_bio);

 » If you’re returning JSON via echo (or print): Apply the json_encode()
function to the data and specify one or more flags (separated by |) that
specify which values you want encoded: JSON_HEX_AMP (ampersands),
JSON_HEX_APOS (single quotations), JSON_HEX_QUOT (double quotations), or
JSON_HEX_TAG (less than and greater than). Here’s an example:

$JSON_text = json_encode($rows, JSON_HEX_APOS |
JSON_HEX_QUOT | JSON_HEX_TAG);

echo $JSON_text;

Pl
an

ni
ng

 a
 W

eb
 A

pp

CHAPTER 1 Planning a Web App 617

Securing file uploads
Here are a few suggestions to beef up security when allowing users to upload files:

 » Restrict the maximum file upload size. If you have access to php.ini,
change the upload_max_filesize setting to some relatively small value,
depending on what types of uploads you’re allowing. For example, if users can
upload avatar images, you might set this value to 2MB.

 » Verify the file type. Run some checks on the uploaded file to make sure its
file type conforms to what your web app is expecting. For example, check the
file extension to make sure it matches the type (or types) of file you allow. If
you’re expecting a binary file such as an image, run PHP’s is_binary()
function on the uploaded file; if this function returns FALSE, then you can
reject the upload because it might be a script (which is text).

 » Use PHP’s FTP functions to handle the upload. If you have access to an FTP
server, then PHP’s built-in FTP functions are a secure way to handle the file
upload:

• ftp_connect(): Sets up a connection to the FTP server

• ftp_login(): Sends your login credentials to the FTP server

• ftp_put(): Transfers a file from the user’s PC to the server

• ftp_close(): Disconnects from the FTP server

Securing passwords
If your web app has registered users who must sign in with a password, it’s essen-
tial that you do everything you can to enable users to create strong passwords and
to store those passwords on the server is a secure way.

Letting users create strong passwords means following these guidelines:

 » Don’t place any restrictions on the character types (lowercase letters, upper-
case letters, numbers, and symbols) that can be used to build a password.

 » Do require that users form their passwords using at least one character from
three or, ideally, all four character types.

 » Don’t set a maximum length on the password. Longer passwords are always
more secure than shorter ones.

 » Do set a minimum length on the password. Eight characters is probably
reasonable.

618 BOOK 7 Coding Web Apps

Here are some suggestions for storing and handling passwords securely:

 » Don’t transfer passwords in a URL query string. Query strings are visible in
the browser window and get added to the server logs, so any passwords
are exposed.

 » Don’t store passwords in plain text. If you do, and your system gets
compromised, the attacker will have an easy time wreaking havoc on your
user’s accounts.

 » Do store passwords encrypted. You encrypt each password using a hash,
which is a function that scrambles the password by performing a mathemati-
cal function that’s easy to run, but extremely difficult to reverse. PHP makes it
easy to hash a password by offering the password_hash() function.

 » Do salt your passwords. A salt is random data added to the password before
it gets hashed, which makes it even harder to decrypt. Salting is handled
automatically by the password_hash() function.

 » Do allow users to change their passwords. It’s good (though seldom
followed) practice to change your password regularly, so you should offer this
capability to your users.

 » Don’t send a password over email. Email is sent as plain text, so it’s easy for
a malicious user to intercept the password.

I go through a detailed example of registering user accounts, storing passwords
securely, handling sign-ins, and offering password change and recovery features
in Chapter 4 of this minibook.

CHAPTER 2 Laying the Foundation 619

Laying the Foundation
Every great developer you know got there by solving problems they were
unqualified to solve until they actually did it.

— PATRICK MCKENZIE

A well-built web app begins with a solid foundation. Sure, when you’ve got a
great idea for a web app, it’s always tempting to work on the visible front
end first, even if it’s just cobbling together a quick proof-of-concept page.

However, party pooper that I am, I’m going to gently suggest that it’s a good idea
to nail down at least some of the more fundamental work off the top. Not only
does that give you some major items to check off your app to-do list, but having a
solid foundation under your feet will help you immeasurably when it comes time
to code the rest of your app.

This chapter is all about laying down that solid foundation. First I show you how
to figure out your app’s directory structure. I then talk about constructing the
database and tables. From there, I crank up the text editor and talk about some
useful PHP techniques such as defining constants, setting up and securing ses-
sions, and including code from one PHP file in another. Finally, I show you how to
code the startup files your app needs for both its back end and its front end. Along
the way, you see a practical example of every technique as I build out the founda-
tion code for my own FootPower! app.

Chapter 2

IN THIS CHAPTER

 » Getting your directory structure
set up

 » Creating the app database and
adding the required tables

 » Understanding PHP sessions

 » Creating your app’s startup files

 » Making your coding life easier by
taking a modular approach

620 BOOK 7 Coding Web Apps

Setting Up the Directory Structure
Start by opening the “Employees Only” door and heading into the back room
of the web app. Your back-end work begins by setting up some directories and
 subdirectories to store your app’s files. Doing this now offers two benefits:

 » Organization: Even a small app can end up with quite a few files, from PHP
scripts to HTML code to external CSS and JavaScript files. If you add your
directories on-the-fly as they’re needed, it’s a certainty they’ll end up a bit of a
mess, with files scattered hither and thither (as my old grandmother used to
say). It’s better to come up with a sensible directory structure now and stick
with it throughout the development cycle.

 » Security: A smart back-end developer divides her files between those files
that users need to view and operate the web app and those files that only do
work behind the scenes. The former should be accessible to the public, but it’s
best to configure things so that the latter aren’t accessible to anyone but you.

Okay, I hear you saying, “Organization I can get on board with, but what’s all this
about security?” Good question. Here’s the answer:

When your app is on the web, it’s stored in a directory that the web server makes
publicly available to anyone who comes along. This public accessibility means that
it’s at least technically possible for someone to gain direct access to the files stored
in that directory. That access isn’t a big thing for your HTML, CSS, and JavaScript
files, which anyone can easily view. However, it’s a huge deal for your PHP files,
which can contain sensitive information such as your database credentials.

To see how you prevent such unauthorized access, you need to understand that
every web app has a top-level directory, which is known as either the web root or
the document root. The web root is the directory that the server makes accessible
to the public, which means that anything outside of the web root is inaccessible to
remote users (while still being available to your web app).

So your directory structure begins by creating one directory and two subdirectories:

 » The directory is the overall storage location for your app. You can name this
whatever you want, but it’s probably best to use the name of the app.

 » One subdirectory will be the web root. I’m going to name my web root public
to reinforce that only files that should be publicly accessible go in this
subdirectory.

La
yi

ng
 t

he
 F

ou
nd

at
io

n

CHAPTER 2 Laying the Foundation 621

 » The other subdirectory will contain the PHP files that you don’t want remote
users to be able to access. I’m going to name this subdirectory private to
remind me that this is where I put files that should not have public access.

Setting up the public subdirectory
After you’ve created the public subdirectory, you need to tell the web server that
this location is the new web root. If you set up the XAMPP web development envi-
ronment as I describe in Book 1, Chapter 2, then you change the web root by
editing a document named httpd.conf, the location of which depends on your
operating system:

 » Windows: Look for httpd.conf in the following folder:

c:/xampp/apache/conf

 » Mac: Look for httpd.conf here:

/Applications/XAMPP/xamppfiles/etc

Open httpd.conf in a text editor and then scroll to or search for the line that
begins with DocumentRoot. For example, here’s the Mac version of the line:

DocumentRoot: "/Applications/XAMPP/xamppfiles/htdocs"

Edit this line to point to your app’s web root subdirectory. For example, if you
added your main app folder to htdocs, add a slash (/), the app folder name, and
then /public. Here’s the web root path that I’m using for my FootPower! app:

DocumentRoot:
"/Applications/XAMPP/xamppfiles/htdocs/footpower/public"

By default, the web server denies permission to the entire server filesystem, with
one exception: the web root. Therefore, you must now tell the server that it’s okay
for remote users to access the new web root. To do that, first look for the line in
httpd.conf that begins with <Directory, followed by the path to the old web
root. For example, here’s the Mac version of the line:

<Directory "/Applications/XAMPP/xamppfiles/htdocs">

Edit this line to point to your app’s web root, as in this example:

<Directory
"/Applications/XAMPP/xamppfiles/htdocs/footpower/public">

622 BOOK 7 Coding Web Apps

Save the file and restart the web server to put the new configuration into effect.

To make sure your web root is working properly, create a new PHP file in the
public directory, give it the name index.php, and then add an echo statement,
something like this:

<?php
 echo "Hello World from the web root!";
?>

Now surf to localhost and make sure you see the correct output, as shown in
Figure 2-1.

It’s unlikely you’ll have access to http.conf when you put your web app online.
However, your web host will offer some sort of mechanism for specifying a partic-
ular directory as the web root, so check the host’s Help or Support documentation.

Your final chore for setting up the public directory is to add the subdirectories
you’ll use to store various file types. Here are my suggestions:

Subdirectory What It Stores

/common Files that are used in all your web app’s pages, including the top part of
each page (the opening tags and the head section) and common page
elements such as a header, sidebar, and footer

/css Your web app’s CSS files

/handlers Files that handle Ajax requests from the front end

/images Image files used in your web app

/js Your web app’s JavaScript files

FIGURE 2-1:
The new web

root, ready
for action.

La
yi

ng
 t

he
 F

ou
nd

at
io

n

CHAPTER 2 Laying the Foundation 623

To give you a kind of road map to where we’re going, Figure 2-2 shows the final
file structure of my FootPower! app’s public directory.

Setting up the private subdirectory
Getting the private subdirectory configured is much easier because you only have
to create the subdirectories you need to organize your app’s back-end files. Here
are my suggestions:

Subdirectory What It Stores

/classes Files that contain the code for your web app’s classes

/common Files that are used in other back-end files

/logs Log files, such as the error log

Figure 2-3 shows the final file structure of my FootPower! app’s private directory.

FIGURE 2-2:
All the public

files and
 directories I

use in the final
version of my

FootPower! app.

624 BOOK 7 Coding Web Apps

Creating the Database and Tables
You already know your web app’s data requirements, so now it’s time to load
phpMyAdmin on your development server (http://localhost/phpMyAdmin), and
then use it to create your MySQL data stores. I go through this in detail in Book 5,
Chapter 2, so I only list the general steps here:

1. Create a database for your web app using the utf8_general_ci collation.

2. If your app needs to support user accounts, create a table to hold the
account data.

At a minimum, this table will have an ID field, a username field, and a password
field.

3. If your app needs to save user-generated data, create a table to hold the
data.

This table should have an ID field as well as user ID field that, for each user,
contains the same ID from the user table you created in Step 2.

4. If your app is configured so that the user creates one main item and then
many subitems, create a table to hold the subitems.

To be clear, the table you created in Step 3 holds each user’s main item, and
this new table holds the subitems. This table should have an ID field, a field
that points to the ID of the main item, and a field for each tidbit of data you
want to store.

An example might make this clearer, so I’ll go through the data structures for my
FootPower! app. First, here’s the users table:

Field Name Type Other Settings

user_id INT PRIMARY KEY, AUTO_INCREMENT

username VARCHAR(150) UNIQUE, NOT NULL

password VARCHAR(255) NOT NULL

FIGURE 2-3:
The private files

and directories
in the final

version of my
 FootPower! app.

La
yi

ng
 t

he
 F

ou
nd

at
io

n

CHAPTER 2 Laying the Foundation 625

Field Name Type Other Settings

distance_unit VARCHAR(10) DEFAULT 'miles'

verification_code VARCHAR(32) NOT NULL

verified TINYINT DEFAULT 0

creation_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP

Each registered user gets an activity log in which to record her activities, so next
up is the logs table:

Field Name Type Other Settings

log_id INT PRIMARY KEY,
AUTO_INCREMENT

user_id INT NOT NULL

creation_date TIMESTAMP DEFAULT
CURRENT_TIMESTAMP

Note that both the users and logs tables have a common user_id field. This
enables me to link each log to the user who owns it.

For now, go ahead and add one record to this table, where user_id equals 1 and
creation_date is today’s date (in YYYY-MM-DD format).

Finally, each log records the user’s foot-propelled activities, so I’ll store this data
in the activities table:

Field Name Type Other Settings

activity_id INT PRIMARY KEY, AUTO_INCREMENT

log_id INT NOT NULL

type VARCHAR(25) NOT NULL

date DATE NOT NULL

distance DECIMAL(10,6)

duration TIME

Note that both the logs and activities tables have a common log_id field. This
will enable me to link each activity to the log in which it belongs.

626 BOOK 7 Coding Web Apps

Getting Some Back-End Code Ready
The back end of a web app consists of both the MySQL data and the PHP code that
manipulates that data and returns information to the app’s front end. You can get
some of the PHP code written now, and you can add the rest as you build the app.

Defining PHP constants
It’s a rare web app that doesn’t have one or more variables that are used throughout
the back-end code, but where the value of those variables must never change.
For example, when you’re managing server data, your PHP files are constantly
logging into the MySQL database, which requires credentials such as a username
and password. That username and password are the same throughout your code,
but your code will fail if, somehow, these values get changed.

A variable that never changes value sounds almost like an oxymoron, so perhaps
that’s why programmers of yore came up with the idea of the constant, a special
kind of variable that, once defined with a value, can’t be changed. You set up a
constant in PHP by using the define() function:

define(name, value)

 » name: The name of the constant. By convention, constant names are all
uppercase and don’t begin with a dollar sign ($).

 » value: The value of the constant. The value must be an integer, floating point
number, string, or Boolean.

Here’s an example:

define("GREETING", "Hello Constant World!")

It’s good web app practice to gather all your constants and put them in a separate
file, which you can then include in any other PHP file that requires one or more of
the constants. (I talk about how you include a PHP file in another PHP file later in
this chapter.) For example, here’s a PHP file that defines the database credentials
for my FootPower! app:

<?php
 define('HOST', 'localhost');
 define('USER', 'root');
 define('PASSWORD', '');
 define('DATABASE', 'footpower');
?>

La
yi

ng
 t

he
 F

ou
nd

at
io

n

CHAPTER 2 Laying the Foundation 627

I’ve named this file constants.php and added it to the app’s private/common/
directory.

Understanding PHP sessions
One of the biggest web app challenges is keeping track of certain bits of infor-
mation as the user moves from page to page within the app. For example, when
someone first surfs to the app’s home page, your PHP code might store the current
date and time in a variable, with the goal of, say, tracking how long that person
spends using the app. A worthy goal, to be sure, but when the user moves on to
another page in the app, your saved date and time gets destroyed.

Similarly, suppose the user’s first name is stored in the database and you use the
first name to personalize each page. Does that mean every time the user accesses
a different page in your app, your code must query the database just to get the
name?

The first scenario is ineffective and the second is inefficient, so is there a better
way? You bet there is: PHP sessions. In the PHP world, a session is the period that
a user spends interacting with a web app, no matter how many different app pages
she navigates.

You start a session by invoking the session_start() function:

session_start();

Once you’ve done that, the session remains active until the user closes the browser
window. Your web server also specifies a maximum lifetime for a session, usually
1,440 seconds (24 minutes). You can check this by running echo phpinfo() and
looking for the session.gc_maxlifetime value. You can work around this time-
out in one of two ways:

 » By adding the session_start() function to each page, which refreshes
the session.

 » By running PHP’s session_status() function, which returns the constant
PHP_SESSION_NONE if the user doesn’t have a current session.

How does a session help you keep track of information about a user? By offering
an array called $_SESSION, which you can populate with whatever values you want
to track:

$_SESSION['start_time'] = time();
$_SESSION['user_first_name'] = 'Biff';
$_SESSION['logged_in'] = 1;

628 BOOK 7 Coding Web Apps

Securing a PHP session
A PHP session is a vital link between your users and your app because it enables
you to store data that make each user’s experience easier, more efficient, and
more seamless. However, because sessions are such a powerful tool, the world’s
dark-side hackers have come up with a number of ingenious ways to hijack user
sessions and thereby gain access to session data.

A full tutorial on protecting your users from would-be session-stealers would
require an entire book, but there’s a relatively simple technique you can use to
thwart all but the most tenacious villains. The technique involves a value called a
token, which is a random collection of numbers and letters, usually 32 characters
long. How does a token serve to keep a session secure? It’s a three-step process:

1. When the session begins, generate a new token and store it in the $_SESSION
array.

2. In each form used by your web app, include a hidden input field (that is, an
<input> tag where the type attribute is set to hidden) and set the value of
that field to the session’s token value.

3. In your PHP script that processes the form data, compare the value of the
form’s hidden field with the token value stored in the $_SESSION array. If
they’re identical, it means the form submission is secure (that is, the form was
submitted by the session user) and you can safely proceed; if they’re different,
however, it almost certainly means that an attacker was trying to pull a fast one
and your code should stop processing the form data.

There are a bunch of ways to create some random data in PHP, but a good one for
our purposes is openssl_random_pseudo_bytes():

openssl_random_pseudo_bytes(length)

 » length: An integer that specifies the number of random bytes you want
returned

The openssl_random_pseudo_bytes() function returns a string of random bytes,
but byte values aren’t much good to us. We need to convert the binary string to a
hexadecimal string, and that’s the job of PHP’s bin2hex() function:

bin2hex(str)

 » str: The binary string you want to convert

La
yi

ng
 t

he
 F

ou
nd

at
io

n

CHAPTER 2 Laying the Foundation 629

For example, 16 bytes will convert to 32 hex characters, so you can use something
like the following expression to generate a token:

bin2hex(openssl_random_pseudo_bytes(16));

This creates a value similar to the following:

387f90ce4b3d8f9bd7e4b38068c9fce3

For your session, you’d store the result in the $_SESSION array, like so:

$_SESSION['token'] = bin2hex(openssl_random_pseudo_bytes(16));

It’s also good practice to generate a fresh token after a certain period of time
has elapsed, say 15 minutes. To handle this, when the session starts you use the
$_SESSION array to store the current time plus the expiration time:

$_SESSION['token_expires'] = time() + 900;

PHP’s time() function returns the number of seconds since January 1, 1970, so
adding 900 sets the expiration time to 15 minutes in the future. Your web app
would then use each session refresh to check whether the token has expired:

if (time() > $_SESSION['token_expires']){
 $_SESSION['token'] = bin2hex(openssl_random_pseudo_bytes(16));
 $_SESSION['token_expires'] = time() + 900;
}

Including code from another PHP file
Most web apps are multi-page affairs, which means your app consists of multiple
PHP files, each of which performs a specific task, such as creating data, retrieving
data, or logging in a user. Depending on the structure of your app, each of these
PHP files will include some or all of the following:

 » Constants used throughout the project

 » Database login credentials

 » Database connection code

630 BOOK 7 Coding Web Apps

 » Classes, functions, and other code used on each page

 » Common interface elements such as the header, app navigation, sidebar, and
footer

You don’t want to copy and paste all this code into each PHP file because if the code
changes, then you have to update every instance of the code. Instead, place each
chunk of common code in its own PHP file and save those files in a subdirectory.
Earlier in this chapter, I explain that you should create two common subdirectories
for such files, one in the public directory and one in the private directory. To get
a common file’s code into another PHP file, use PHP’s include_once statement:

include_once file;

 » file: The path and name of the file with the code you want to include

For example, here’s a PHP file that defines some constants that hold the database
credentials for my FootPower! app:

<?php
 define('HOST', 'localhost');
 define('USER', 'root');
 define('PASSWORD', '');
 define('DATABASE', 'footpower');
?>

I’ve stored this code in a file named constants.php in the private/common/ sub-
directory, so I’d use the following statement to include it from the web root folder:

include_once '../private/common/constants.php';

The double dots (..) stand for “go up one directory,” so here they take the script
up to the app’s filesystem root, and from there the statement adds the path to
constants.php.

Creating the App Startup Files
All web apps perform a number of chores at the beginning of any task. On the
back end, these initialization chores include starting a user session and connect-
ing to the database, and on the front end the startup includes outputting the app’s

La
yi

ng
 t

he
 F

ou
nd

at
io

n

CHAPTER 2 Laying the Foundation 631

common HTML (especially the <head> section) and including the app’s common
components, such as a header and footer.

Rather than repeating the code for these startup chores in every file, you should
create two files — one for the back end initialization and one for the front end’s
common code — and then include the files as you begin each web app task. The
next two sections provide the details.

Creating the back-end initialization file
When performing any task, a typical web app must first run through a number of
back-end chores, including the following:

 » Setting the error reporting level

 » Starting a session for the current user, if one hasn’t been started already

 » Creating a token for the session

 » Including common files, such as a file of constants used throughout the app

 » Connecting to the database, if the app uses server data

You should store this file in your web app’s private/common/ directory. For
 FootPower!, I created an initialization file named /private/common/initializa
tion.php:

<?php
 // Make sure we see all the errors and warnings
 error_reporting(E_ALL | E_STRICT);

 // Start a session
 session_start();

 // Have we not created a token for this session,
 // or has the token expired?
 if (!isset($_SESSION['token']) || time() >

$_SESSION['token_expires']){
 $_SESSION['token'] =

bin2hex(openssl_random_pseudo_bytes(16));
 $_SESSION['token_expires'] = time() + 900;
 $_SESSION['log_id'] = 1;
 }

632 BOOK 7 Coding Web Apps

 // Include the app constants
 include_once 'constants.php';

 // Connect to the database
 $mysqli = new MySQLi(HOST, USER, PASSWORD, DATABASE);

 // Check for an error
 if($mysqli->connect_error) {
 echo 'Connection Failed!
 Error #' . $mysqli->connect_errno
 . ': ' . $mysqli->connect_error;
 exit(0);
 }
?>

This code cranks up the error reporting to 11 for the purposes of debugging, starts
a new session, creates a session token (if needed), includes the constants file
(which contains the database credentials), and then connects to the database and
creates a MySQLi object. Note, too, that I set $_SESSION['log_id'] to 1, but this is
temporary. In Book 7, Chapter 4, you see that this value gets set to the user’s log
ID value when the user signs in to the app.

You want to use error_reporting(E_ALL | E_STRICT) when you’re developing
your web app because you want the PHP processor to let you know when some-
thing’s amiss, either as an error (E_ALL) or as non-standard PHP code (E_STRICT).
However, you certainly don’t want your app’s users to see these errors or warn-
ings, so when you’re ready for your web app to go live, edit initialization.php
to follow this statement:

error_reporting(E_ALL | E_STRICT)

with these statements:

ini_set('display_errors', 0);
ini_set('log_errors', 1);
ini_set('error_log', '../private/logs/error_log');

These statements configure PHP to not display errors onscreen, but to log them to
a file, the name and path of which is specified in the final statement.

La
yi

ng
 t

he
 F

ou
nd

at
io

n

CHAPTER 2 Laying the Foundation 633

Creating the front-end common files
Each page of your web app has a common structure. For example, the top part of
each page includes the following elements:

 » The DOCTYPE and the <html> tag

 » The head element, including the <meta> tags, page title, CSS <link> tags, and
JavaScript <script> tags

 » An event handler for jQuery’s ready event

 » The <body> tag

 » Common page elements, such as the <header>, <nav>, and <main> tags

Here’s an example, which I’m going to name public/common/top.php:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-

scale=1.0">
 <title>FootPower! | <?php echo $page_title ?></title>
 <link href="css/styles.css" rel="stylesheet">
 <script src="https://ajax.googleapis.com/ajax/libs/

jquery/3.2.1/jquery.min.js"></script>
 <script>
 $(document).ready(function() {

 });
 </script>
</head>
<body>
 <header role="banner">
 </header>
 <main role="main">
 <article role="contentinfo">
 <header class="article-header" role="banner">
 <div class="header-title">
 <h1><?php echo $page_title ?></h1>
 </div>
 </header>

634 BOOK 7 Coding Web Apps

In this code, note that the page title is given by the following inline PHP:

<?php echo $page_title ?>

The idea here is that each page will set the $page_title variable just before
including top.php, which enables you to define a custom title for each page. For
example, the home page might do this:

<?php
 $page_title = 'Home';
 include_once 'common/top.php';
?>

Note that this same title also gets inserted in the page header element, within the
<h1> tag.

Most web apps also include a sidebar — defined by an <aside> tag — that includes
info common to all pages, such as a description of the app, instructions for using
the app, the latest app news, or a newsletter sign-up form. For this sidebar, create
a separate file called, say, public\common\sidebar.php and include your code:

<aside role="complementary">
 Your sidebar text and tags go here
</aside>

Finally, you need a file to handle the common elements that appear at the bottom
of each page, including the </main> closing tag, a footer, and the </body> and
</html> closing tags. For this code, create a separate file called, say, public\
common\bottom.php and add your code:

 </main>
 <footer role="contentinfo">
 Copyright <?php echo date('Y'); ?> Your Name
 </footer>
 <script src="js/data.js"></script>
 <script src="js/user.js"></script>
</body>
</html>

The footer uses the PHP statement echo date('Y') to output the current year
for the Copyright notice. This file also adds references to the app’s two external
JavaScript files: data.js and user.js. Adding these at the bottom of the page
(instead of the usual place in the page’s head section) ensures that your JavaScript
code can work with the elements added to the page on the fly.

La
yi

ng
 t

he
 F

ou
nd

at
io

n

CHAPTER 2 Laying the Foundation 635

Building the app home page
With the initialization files in place, it’s time to build the skeleton for the app’s
home page. At the moment, this page is nothing but PHP:

<?php
 include_once '../private/common/initialization.php';
 $page_title = 'Home';
 include_once 'common/top.php';
?>
Main app content goes here
<?php
 include_once 'common/sidebar.php';
 include_once 'common/bottom.php';
?>

Save this file as index.php in the web root directory.

CHAPTER 3 Managing Data 637

Managing Data
Talk is cheap. Show me the code.

— LINUS TORVALDS

Some web apps are relatively simple and don’t require a back-end database.
Such apps are all front end, with maybe a bit of data stored in the user’s
browser. Front-end-only apps are very common and can be amazingly

useful, a claim I hope to live up to when I talk about building just such an app in
Book 8.

The rest of the web app world is a sophisticated and powerful marriage of
both front-end interface and back-end infrastructure, and a big part of that
server scaffolding is the data stored in a database such as MySQL. One of hats
you must wear as a web developer is writing the code that enables data to pass
robustly and securely between the front and back ends, and that code is the main
topic of this chapter. First, I show you how to set up the PHP classes and func-
tions. With that done, it’s time to explore the unglamorous but necessary world
of creating, reading, updating, and deleting data. Along the way, you see a practi-
cal example of every technique as I build out the data-handling code for my own
FootPower! app.

Chapter 3

IN THIS CHAPTER

 » Setting up your app’s data class

 » Creating a script to handle the app’s
Ajax data requests

 » Creating new data items

 » Reading, updating, and deleting data

 » Handling data robustly and securely

638 BOOK 7 Coding Web Apps

Handling Data the CRUD Way
Most web apps that deal with back-end data need to implement at least four com-
mon tasks:

 » Create new data: Enables the user or the app itself (or both) to add new
data items

 » Read data: Retrieves some or all of the items in the database and displays
them in a web page

 » Update data: Enables the user or the app (or, again, both) to edit an existing
item and have those changes written back to the database

 » Delete data: Enables the user or the app (or, yep, both) to remove an item
from the database

As you can deduce from the first letters of each of these tasks, this data model is
known affectionately in the web development trade as CRUD. I devote the rest of
this chapter to showing you a method for building CRUD into your web app. Before
getting to all of that, here’s the big picture view of what I’ll be up to in the next
few pages:

1. Build a class for handling data interactions. That class includes one method for
each of the CRUD verbs: create, read, update, and delete.

2. Provide the user with an interface for initiating any of the CRUD actions. For
example, you might build a form to enable the user to create a new data item.

3. To start processing a CRUD verb, set up an event handler for each CRUD
interface element. If you’re using a form, for example, then you might set up a
submit event handler for that form.

4. Use each CRUD event handler to send the form data to a single PHP script via
Ajax. Importantly, that form data includes the value of a hidden field that
specifies the type of task being performed (create, update, and so on).

5. In the PHP script, create a new object from the class of Step 1, check the CRUD
type sent by the Ajax call, and then call the corresponding class method. For
example, if the event is creating a new data item, the script would call the class
method that handles creating new items.

The next couple of sections cover setting up the first part of the data class and
building the PHP script that handles the Ajax form submissions.

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 639

Starting the web app’s data class
In most cases, web app data forms a one-to-many relationship, where one item in
a table is related to many items in another table. Some examples:

 » One blog can contain many posts.

 » One shopping cart can contain many products.

 » For my FootPower! app, one activity log can contain many activities.

The idea is to create a class for the “one” side of the relationship, which is often
called the master table. The master class for your web app’s data needs to do the
following three things, at a minimum:

 » Accept a parameter that references the current MySQLi object.

 » Define a method for each of the four CRUD verbs.

 » Define any helper functions required by the CRUD verbs.

With these goals in mind, here’s the skeleton class file:

<?php
class Data {

 // Holds the app's current MySQLi object
 private $_mysqli;

 // Use the class constructor to store the passed MySQLi

object
 public function __construct($mysqli=NULL) {
 $this->_mysqli = $mysqli;
 }

 // Here comes the CRUD
 public function createData() {

 }
 public function readAllData() {

 }
 public function readDataItem() {

 }

640 BOOK 7 Coding Web Apps

 public function updateData() {

 }
 public function deleteData() {

 }
}
?>

The class declares the private property $_mysqli, which it uses to store the cur-
rent instance of the MySQLi object (created earlier in the initialization.php
script). The class then declares functions for each CRUD verb, including two for
the read task: one to read all the data and one to read a single data item. Store this
file in private/classes/data_class.php.

To create an instance of this class, you’d use a statement similar to the following:

$log = new Data($mysqli);

Creating a data handler script
All the CRUD verbs — create, read, update, and delete — will be initiated via Ajax
calls to a single PHP script. The Ajax call needs to specify the CRUD verb required,
and the PHP code routes the request to the corresponding method in the Data class.

Here’s the PHP script, saved as public/handlers/data_handler.php:

<?php

 // Initialize the app
 include_once '../../private/common/initialization.php';

 // Include the Data class
 include_once '../../private/classes/data_class.php';

 // Initialize the results
 $server_results['status'] = 'success';
 $server_results['message'] = '';

 // Make sure a log ID was passed
 if (!isset($_POST['log-id'])) {

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 641

 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: No log ID

specified!';
 }
 // Make sure a data verb was passed
 elseif (!isset($_POST['data-verb'])) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: No data verb

specified!';
 }
 // Make sure a token value was passed
 elseif (!isset($_POST['token'])) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: Invalid action!';
 }
 // Make sure the token is legit
 elseif ($_SESSION['token'] !== $_POST['token']) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Timeout Error!<p>Please

refresh the page and try again.';
 }
 // If we get this far, all is well, so go for it
 else {

 // Create a new Data object
 $data = new Data($mysqli);

 // Pass the data verb to the appropriate method
 switch ($_POST['data-verb']) {

 // Create a new data item
 case 'create':
 $server_results = json_decode($data-

>createData());
 break;

 // Read all the data items
 case 'read-all-data':
 $server_results = json_decode($data-

>readAllData());
 break;

 // Read one data item
 case 'read-data-item':

642 BOOK 7 Coding Web Apps

 $server_results = json_decode($data-
>readDataItem());

 break;
 // Update a data item
 case 'update':
 $server_results = json_decode($data-

>updateData());
 break;

 // Delete a new data item
 case 'delete':
 $server_results = json_decode($data-

>deleteData());
 break;

 default:
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: Unknown

data verb!';
 }
 }
 // Create and then output the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 echo $JSON_data;
?>

After initializing the app by including initialization.php, the code also includes
the Data class file. The code then sets up an array named $server_results, which
holds the results that the script sends back to the front end:

 » $server_results['status'] will be either success or error.

 » $server_results['message'] holds the success or error message to
display.

The code next runs through a series of checks: making sure there’s a reference
to the database item you want to work with (log-id, in the preceding example);
making sure a CRUD verb was passed; making sure a token value was passed; and
comparing that token value with the session token. If the code gets past those
tests, a switch() statement runs through the possible values for $_POST['data-
verb'] — create, read-all-data, read-data-item, update, or delete — and
calls the corresponding Data method.

In the rest of this chapter, I fill in the details for the various Data methods and the
front-end interfaces that support them.

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 643

Creating New Data
If your web app enables users to work with data items, then you won’t be able to
display anything to the user until she has created an item or three, which means
setting up the “create” portion of your CRUD system should be your first order of
business. To enable users to create data, you need to do three things:

1. Build a form to capture the data.

2. Create a submit event handler that uses an Ajax call to send the form data to
the server.

3. Validate and sanitize the form data, then insert the new info into the database.

Building the form
In most CRUD-based web apps, the forms used to create and edit items are
 identical. In such cases, rather than creating two separate forms that merely
repeat the same the HTML code, it’s best to use a single form. That is, go ahead
and create separate pages for the create and edit tasks, but place the form code in
a separate file and then include that file in each page. When you load each page,
you add JavaScript code that adjusts the form controls accordingly:

 » When the user wants to create a new data item, reset the form controls to
blank or default values.

 » When the user wants to edit an existing data item, populate the form controls
with the existing data.

I go through the specifics of building HTML forms in Book 6, Chapter 2, so I won’t
go into the details again here. Instead, I’ll just show you the form code I’m using
for my FootPower! app (which I’ve stored as public/common/data_form.php):

<form id="data-form">
 <div class="form-wrapper">
 <div class="form-row">
 <div class="control-wrapper">
 <label for="activity-type">Activity type</label>
 <select id="activity-type" name="activity-type"

size="1" aria-label="Select the type of activity">
 <option value="Walk">Walk</option>
 <option value="Run">Run</option>
 <option value="Cycle">Cycle</option>
 </select>
 </div>

644 BOOK 7 Coding Web Apps

 <div class="control-wrapper">
 <label for="activity-date">Activity date</label>
 <input id="activity-date" type="date"

name="activity-date" aria-label="The date of the activity"
required>

 </div>
 </div>
 <div class="form-row">
 <div class="control-wrapper">
 <label for="activity-distance">Distance</label>
 <input id="activity-distance" type="number"

name="activity-distance" min="0" max="999" step=".01" data-
distance="0" aria-label="The distance of the activity">

 <?php echo $_SESSION['distance_unit'] ?>
(change)

 </div>
 <div class="control-wrapper" id="activity-duration">
 <label for="activity-duration">Duration

(hh:mm:ss)</label>
 <input id="activity-duration-hours"

type="number" name="activity-duration-hours" min="0" max="999"
placeholder="hh" aria-label="The number of hours the activity
required"> :

 <input id="activity-duration-minutes"
type="number" name="activity-duration-minutes"
min="0" max="59" placeholder="mm" aria-label="The number of
minutes the activity required"> :

 <input id="activity-duration-seconds"
type="number" name="activity-duration-seconds"
min="0" max="59" placeholder="ss" aria-label="The number of
seconds the activity required">

 </div>
 </div>
 <div class="form-row">
 <div class="control-wrapper">
 <div>
 <button id="data-save-button" class="btn

data-save-button" type="submit" role="button">Save</button>
 </div>
 <div>
 <button id="data-cancel-button" class="btn

btn-plain data-cancel-button" role="button">Cancel</button>

 </div>
 </div>

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 645

 <div class="control-wrapper">
 <div>
 <button id="data-delete-button" class="btn

data-delete-button" type="button" role="button">Delete this
Activity</button>

 </div>
 </div>
 </div>
 </div>
 <span id="form-error" class="error error-message

form-error-message">

 <input type="hidden" id="log-id" name="log-id" value="<?php

echo $_SESSION['log_id']; ?>">
 <input type="hidden" id="activity-id" name="activity-id">
 <input type="hidden" id="data-verb" name="data-verb">
 <input type="hidden" id="token" name="token" value="<?php

echo $_SESSION['token']; ?>">
</form>

This form gathers four bits of info from the user: the activity type, the activ-
ity date, the distance (which can be expressed in either kilometers or miles; see
Book 7, Chapter 4), and the duration (given by separate fields for the hours,
 minutes, and seconds). Note, too, the four hidden fields:

 » log-id: The ID of the log to which the new item will be added, as given by
PHP’s $_SESSION['log_id'] variable. As I mention in Book 7, Chapter 2, this
is set to 1 now because I assume at this point that the app has only a single
user. However, when I add users in Book 7, Chapter 4, the value of the log-id
field will reflect the log ID value of the currently logged-in user.

 » activity-id: During an update task, the ID of the activity the user is
currently editing.

 » data-verb: The type of CRUD verb the form is for (such as create or
update).

 » token: The current session token, as given by PHP’s $_SESSION['token']
variable.

To use this form, I include it in the create_data.php file, which is stored in the
web root:

<?php
 include_once '../private/common/initialization.php';
 $page_title = 'Add an Activity';

646 BOOK 7 Coding Web Apps

 include_once 'common/top.php';
 include_once 'common/data_form.php';
 include_once 'common/sidebar.php';
 include_once 'common/bottom.php';
?>

Figure 3-1 shows the resulting form. (To save space, I haven’t shown the
CSS behind the form, but you can see it online at https://mcfedries.com/
webcodingfordummies.)

How does the form get its default values? In the common page startup file — top.
php, which I talk about in Book 7, Chapter 2, I added the following code:

$(document).ready(function() {

 // Get the current filename and run code for that file
 var currentURL = window.location.pathname;
 var currentFile =

currentURL.substr(currentURL.lastIndexOf('/') + 1);
 switch (currentFile) {

 // Display the signed-in user's Activity Log
 case 'index.php':
 readActivities();
 break;

 // Set up the Create Data form
 case 'create_data.php':
 initializeCreateDataForm();
 break;

 // Set up the Edit Data form
 case 'update_data.php':

FIGURE 3-1:
The FootPower!

form that enables
a user to create a

new activity.

https://mcfedries.com/webcodingfordummies/
https://mcfedries.com/webcodingfordummies/

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 647

 initializeUpdateDataForm();
 break;
 }
});

The code extracts the filename for the current URL, and then uses a switch()
statement to call a function depending on the result. For the create_data.php
file, the code calls the initializeCreateDataForm() function:

function initializeCreateDataForm() {

 // Hide the Delete button
 $('#data-delete-button').hide();

 // Set the data verb to 'create'
 $('#data-verb').val('create');

 // Populate the form
 $('#activity-type').val('Walk');
 var d = new Date();
 var todaysDate = d.getFullYear() + '-' + Number(d.getMonth()

+ 1).padWithZeros(2, 'left') + '-' + d.getDate().
padWithZeros(2, 'left');

 $('#activity-date').val(todaysDate);
 $('#activity-distance').val(0);
 $('#activity-duration-hours').val(0);
 $('#activity-duration-minutes').val(0);
 $('#activity-duration-seconds').val(0);
}

This function does three things:

 » Hides the form’s Delete button.

 » Sets the value of the form’s data-verb field to create.

 » Resets the form fields. In particular, it sets the date field to today’s date and
the numeric fields to 0.

To store this code, the code for the other CRUD event handlers, as well as any
helper code required for data interactions, I created an external JavaScript file and
saved it to public/js/data.js.

648 BOOK 7 Coding Web Apps

Sending the form data to the server
To process the form, you need to set up a handler for the form’s submit event.
Here’s the one I’m using for the FootPower! app:

$('#data-form').submit(function(e) {

 // Prevent the default submission
 e.preventDefault();

 // Disable the Save button to prevent double submissions
 $('#data-save-button').prop('disabled', true);

 // Convert the data to POST format
 var formData = $(this).serializeArray();

 // Submit the data to the handler
 $.post('/handlers/data_handler.php', formData,

function(data) {

 // Convert the JSON string to a JavaScript object
 var result = JSON.parse(data);

 if(result.status === 'error') {

 // Display the error
 $('#form-error').html(result.message).css('display',

'inline-block');

 // Enable the Save button
 $('#data-save-button').prop('disabled', false);

 } else {

 // Display the success message
 $('#form-message').html(result.message).

css('display', 'inline-block');

 // Return to the home page after 3 seconds
 window.setTimeout("window.location='index.php'",

3000);
 }
 });
});

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 649

This code prevents the default form submission, disables the Save button, con-
verts the form data to the POST format, then uses jQuery’s .post() method to
send the data to the data_handler.php script on the server. The callback function
runs JavaScript’s JSON.parse() method on the returned JSON string to convert it
into a JavaScript object, and then outputs the result. If the data gets inserted suc-
cessfully, the user is sent back to the home page.

Adding the data item
When the server script receives the data via the Ajax call, it must validate and san-
itize the data; then, assuming everything checks out, run a prepared SQL INSERT
statement to add a new record to the table. All this happens in the Data class’s
createData() method. Here’s the code from my FootPower! app:

public function createData() {

 // Store the default status
 $server_results['status'] = 'success';
 $server_results['control'] = 'form';

 // Check the log-id field
 $log_id = $_POST['log-id'];
 if(empty($log_id)) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: Missing log ID';
 } else {
 // Sanitize it to an integer
 $log_id = filter_var($log_id,

FILTER_SANITIZE_NUMBER_FLOAT);
 if (!$log_id) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: Invalid

log ID';
 } else {
 // Check the activity-type field (required)
 if(isset($_POST['activity-type'])) {
 $activity_type = $_POST['activity-type'];
 if(empty($activity_type)) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error:

Missing activity type';
 } else {

650 BOOK 7 Coding Web Apps

 // Sanitize it by accepting only one of
three values: 'Walk', 'Run', or 'Cycle'

 if ($activity_type !== 'Walk' AND
$activity_type !== 'Run' AND $activity_type !== 'Cycle') {

 $server_results['status'] = 'error';
 $server_results['message'] = 'Error:

Invalid activity type';
 } else {
 // Check the activity-date field

(required)
 if(isset($_POST['activity-date'])) {
 $activity_date = $_POST[

'activity-date'];
 if(empty($activity_date)) {
 $server_results['status'] =

'error';
 $server_results['message'] =

'Error: Missing activity date';
 } else {
 // Check for a valid date (that

is, one that uses the pattern YYYY-MM-DD)
 if(!preg_match('/^[0-9]{4}-

(0[1-9]|1[0-2])-(0[1-9]|1[0-9]|2[0-9]|3[0-1])$/',
$activity_date)) {

 $server_results['status'] =
'error';

 $server_results['message'] =
'Error: Invalid activity date';

 }
 }
 }
 }
 }
 }
 }
 }
 // Check the activity-distance field
 $activity_distance = 0;
 if(isset($_POST['activity-distance'])) {
 $activity_distance = $_POST['activity-distance'];

 // Sanitize it to a floating-point value
 $activity_distance = filter_var($activity_distance,

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_FRACTION);

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 651

 }
 // Check the activity-duration-hours field
 $activity_hours = 0;
 if(isset($_POST['activity-duration-hours'])) {
 $activity_hours = $_POST['activity-duration-hours'];
 $activity_hours = filter_var($activity_hours,

FILTER_SANITIZE_NUMBER_FLOAT);
 }
 // Check the activity-duration-minutes field
 $activity_minutes = 0;
 if(isset($_POST['activity-duration-minutes'])) {
 $activity_minutes = $_POST['activity-duration-minutes'];
 $activity_minutes = filter_var($activity_minutes,

FILTER_SANITIZE_NUMBER_FLOAT);
 }
 // Check the activity-duration-seconds field
 $activity_seconds = 0;
 if(isset($_POST['activity-duration-seconds'])) {
 $activity_seconds = $_POST['activity-duration-seconds'];
 $activity_seconds = filter_var($activity_seconds,

FILTER_SANITIZE_NUMBER_FLOAT);
 }
 $activity_duration = $activity_hours . ':' .

$activity_minutes . ':' . $activity_seconds;

 if($server_results['status'] === 'success') {

 // Create the SQL template
 $sql = "INSERT INTO activities
 (log_id, type, date, distance, duration)
 VALUES (?, ?, ?, ?, ?)";

 // Prepare the statement template
 $stmt = $this->_mysqli->prepare($sql);

 // Bind the parameters
 $stmt->bind_param("issds", $log_id, $activity_type,

$activity_date, $activity_distance, $activity_duration);

 // Execute the prepared statement
 $stmt->execute();

 // Get the results
 $result = $stmt->get_result();

652 BOOK 7 Coding Web Apps

 if($this->_mysqli->errno === 0) {
 $server_results['message'] = 'Activity saved

successfully! Sending you back to the activity log...';
 } else {
 $server_results['status'] = 'error';
 $server_results['message'] = 'MySQLi error #: ' .

$this->_mysqli->errno . ': ' . $this->_mysqli->error;
 }
 }
 // Create and then output the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 return $JSON_data;
}

This code runs through each of the form fields, checking for valid values and sani-
tizing as needed. Along the way, the results are stored in the $server_results
array, where $server_results['status'] is either success or error, and
$server_results['message'] is the message that gets displayed to the user.

Reading and Displaying Data
Once your database has at least one item stored, then it’s time to handle the “R”
in CRUD: reading the data and displaying it to the user. I handle this in five stages:

 » Getting the home page’s HTML ready to receive data

 » Writing the code for the Ajax call that requests the data

 » Updating the Data class file to handle the read task

 » Displaying the returned data

 » Wiring up the controls that filter the data

Getting the home page ready for data
Right now the home page (index.php) file is a skeleton with an empty main
 element. Your job now is to fill that main element with the app’s data, as well as
some controls for operating the app. Here an example from my FootPower! app:

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 653

<div class="activity-log-toolbar" role="toolbar">
 <label for="activity-filter-date-from">From </label>
 <input id="activity-filter-date-from" class="activity-

filter" type="date" value="<?php echo date('Y-m-d',
strtotime('-30 days')) ?>">

 <label for="activity-filter-date-to"> to </label>
 <input id="activity-filter-date-to" class="activity-filter"

type="date" value="<?php echo date('Y-m-d') ?>">
 <label for="activity-filter-type">Type</label>
 <select id="activity-filter-type" class="activity-filter">
 <option id="activity-filter-type-all">All</option>
 <option id="activity-filter-type-walk">Walk</option>
 <option id="activity-filter-type-run">Run</option>
 <option id="activity-filter-type-cycle">Cycle</option>
 </select>
 <button id="data-create-button" class="btn"

role="button">Add New</button>
</div>

<!-- The Activity Log appears here -->
<section id="activity-log" class="activity-log">
</section>

<!-- This hidden form contains the values we need to read the

data: log-id, data-verb, and token -->
 <form id="data-read-form" class="hidden">
 <input type="hidden" id="log-id" name="log-id" value="<?php

echo $_SESSION['log_id']; ?>">
 <input type="hidden" id="data-verb" name="data-verb"

value="read-all-data">
 <input type="hidden" id="token" name="token" value="<?php

echo $_SESSION['token']; ?>">
</form>

<!-- If there's an error reading the data, the error message

appears inside this span -->

Here are the components you see in this code:

 » A div element, which is a toolbar that includes the controls for filtering the
data by date or by activity type. Note the bits of inline PHP that set the “to”
date to the current date and the “From” date to 30 days earlier.

 » An empty section element, which is where the data will appear.

654 BOOK 7 Coding Web Apps

 » A form element that includes three hidden fields: log-id, data-verb (set to
read-all-data), and token.

 » A span element that will be used to display an error messages that crop up.

Earlier in this chapter, I show that jQuery’s ready() method called different
 functions depending on the file being opened. For index.php, that function is
readActivities(), which initiates the read task and which I discuss shortly. For
now, if I comment out that function call, Figure 3-2 shows you what the home
page looks like before things go any further.

Making an Ajax request for the data
Once you’ve got your home page HTML set up, you’re ready to initiate the read
process, which gathers the hidden form data and then makes the Ajax request to
the data handler script on the server.

For my FootPower! app, I initiate the Ajax request by calling the readActivities()
function:

function readActivities() {

 // Get the form data and convert it to POST
 formData = $('#data-read-form').serializeArray();

 // Submit the data to the handler
 $.post('/handlers/data_handler.php', formData,

function(data) {
 Code to handle the data returned from the server will

go here
}

The function grabs the data from the hidden form, converts it to POST format, and
then sends it to the server’s data_handler.php script.

FIGURE 3-2:
The FootPower!

home page, ready
to receive the

activity log data.

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 655

Reading the data
As I discuss earlier, the main job of the data_handler.php script is to route the
Ajax request depending on the value of the CRUD verb. For the read-all-data
value, the handler calls the data class’s readAllData() method. This method
takes the ID of the Data object, validates and sanitizes it, then uses it to create a
SELECT statement that grabs the master object’s data items.

Here’s the code for the FootPower! version of the readAllData() method:

public function readAllData() {

 // Store the default status
 $server_results['status'] = 'success';

 // Check the log-id field
 $log_id = $_POST['log-id'];
 if(empty($log_id)) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: Missing log ID';
 } else {
 // Sanitize it to an integer
 $log_id = filter_var($log_id, FILTER_SANITIZE_NUMBER_

FLOAT);
 if (!$log_id) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: Invalid

log ID';
 }
 }
 if($server_results['status'] === 'success') {

 // Create the SQL template
 $sql = "SELECT * FROM activities
 WHERE log_id=?
 ORDER BY date DESC";

 // Prepare the statement template
 $stmt = $this->_mysqli->prepare($sql);

 // Bind the parameter
 $stmt->bind_param("i", $log_id);

 // Execute the prepared statement
 $stmt->execute();

656 BOOK 7 Coding Web Apps

 // Get the results
 $result = $stmt->get_result();

 if($this->_mysqli->errno === 0) {
 // Get the query rows as an associative array
 $rows = $result->fetch_all(MYSQLI_ASSOC);

 // Convert the array to JSON, then output it
 $JSON_data = json_encode($rows, JSON_HEX_APOS |

JSON_HEX_QUOT);
 return $JSON_data;
 } else {
 $server_results['status'] = 'error';
 $server_results['message'] = 'MySQLi error #: ' .

$this->_mysqli->errno . ': ' . $this->_mysqli->error;
 }

 }
 if($server_results['status'] === 'error') {
 // Create and then output the JSON string
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 return $JSON_data;
 }
}

The code validates and sanitizes the log ID, then sets up a prepared SELECT state-
ment to grab all the records from the activities table using the log_id value
(sanitized and stored in the $log_id variable) as the filter. The results are then
returned as a JSON string.

Displaying the data
The server sends back either an error message or the actual data for displaying, so
your front-end code needs to allow for both possibilities.

Here’s the updated version of the FootPower! app’s readActivities() function,
with the added code shown in bold:

function readActivities() {

 // Get the form data and convert it to POST
 formData = $('#data-read-form').serializeArray();
 // Submit the data to the handler

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 657

 $.post('/handlers/data_handler.php', formData,
function(data) {

 // Convert the JSON string to a JavaScript object
 var result = JSON.parse(data);

 // If there was an error, result.status will be defined
 if (typeof result.status !== 'undefined') {

 // If so, display the error
 $('#read-error').html(result.message).css('display',

'inline-block');

 } else {

 // Otherwise, go ahead and display the data
 activityLog = result;
 applyFilters();
 }
 });
}

The returned data is converted to a JavaScript object with JSON.parse(data), and
that object is stored in the results variable. To check for an error, the code tests
whether activityLog.status is undefined. If not, the code outputs the error
message; otherwise, the code stores the returned data in the activityLog vari-
able, which is declared as a global variable, and then calls applyFilters() (which
I discuss in the next section).

Filtering the data
If your app might end up presenting the user with a ton of data, you should
consider implementing controls to enable the user to filter the data to see only
a manageable subset of the records. For example, you could set up a couple of
<input type="date"> tags that enable the user to choose a date range. Similarly,
you could create a <select> list that includes the unique options for a field, and
when the user selects one of these options, the data is filtered to show only the
records that match the selected value.

My FootPower! app implements each of these filter options:

 » A date field that specifies the earliest activity data displayed

 » A second date field that specifies the latest activity data displayed

658 BOOK 7 Coding Web Apps

 » A select list that enables the user to choose a specific activity type: Walk,
Run, or Cycle (or All to see every type)

I displayed the HTML for these controls earlier. Here’s the JavaScript that handles
the change events for these controls:

/*
 * Click handler for the Activity Log's Date "From" filter
 */
$('#filter-activity-date-from').change(function() {
 applyFilters();
 });
/*
 * Click handler for the Activity Log's Date "To" filter
 */
$('#filter-activity-date-to').change(function() {
 applyFilters();
});
/*
 * Click handler for the Activity Log's Type filter
 */
$('#filter-activity-type').change(function() {
 applyFilters();
});
/*
 * Applies the current Activity Log filters
 */
function applyFilters() {

 // Get the current filter values
 var earliestDateFilter = $('#filter-activity-date-from').

val();
 var latestDateFilter = $('#filter-activity-date-to').val();
 var activityTypeFilter = $('#filter-activity-type >

option:selected').text();

 // Filter based on the "From" date
 filteredLog = activityLog.filter(function(activity) {
 return activity.date >= earliestDateFilter;
 });

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 659

 // Filter based on the "To" date
 filteredLog = filteredLog.filter(function(activity) {
 return activity.date <= latestDateFilter;
 });

 // Filter based on the "Type" value
 if(activityTypeFilter === 'All') {
 displayActivityLog(filteredLog);
 } else {
 filteredLog = filteredLog.filter(function(activity) {
 return activity.type === activityTypeFilter;
 });
 displayActivityLog(filteredLog);
 }
}

All three of the event handlers do nothing else but call the applyFilters() func-
tion. This function first gets the current filter values and then it applies each filter
in turn. In each case, the code uses JavaScript’s filter() method to return a sub-
set of the array. Note, however, that the first time filter() runs, it applies the
filter on the full activityLog array and returns the filtered array as filteredLog.
The second time filter() runs, it applies the filter to the filteredLog array,
which makes the filter cumulative. For the Type filter, if the value is All, the code
just outputs the filtered data by calling displayActivityLog() with the filtered
array as a parameter. Otherwise, it applies the filter and then displays the data.

Here’s the function that performs the actual displaying of the data:

function displayActivityLog(log) {
 $('.activity-log').html('<div id="activity-log-header"

class="activity activity-log-header">');
 $('#activity-log-header').append('<div class="activity-

item">Type</div>');
 $('#activity-log-header').append('<div class="activity-

item">Date</div>');
 $('#activity-log-header').append('<div class="activity-

item">Distance</div>');
 $('#activity-log-header').append('<div class="activity-

item">Duration</div>');

660 BOOK 7 Coding Web Apps

 $('.activity-log').append('</div>');
 $.each(log, function(index, activity) {
 $('.activity-log').append('<div id="activity' + index +

'" class="activity">');
 switch (activity.type) {
 case 'Walk':
 activityIcon = '<img src="images/walk.png"

alt="Walk activity icon">';
 break;
 case 'Run':
 activityIcon = '<img src="images/run.png"

alt="Run activity icon">';
 break;
 case 'Cycle':
 activityIcon = '<img src="images/cycle.png"

alt="Cycle activity icon">';
 break;
 }
 $('#activity' + index).append('<div class=

"activity-item">' + activityIcon + activity.type + '</div>');
 $('#activity' + index).append('<div class=

"activity-item">' + activity.date + '</div>');
 $('#activity' + activity.activity_id).append

('<div class="activity-item">' + Number(activity.distance).
toFixed(2) + '</div>');

 $('#activity' + index).append('<div class=
"activity-item">' + activity.duration + '</div>');

 $('#activity' + activity.activity_id).append
('<div class="activity-item"><input id="activity-' + activity.
activity_id + '" class="data-edit-button" type="image"
src="images/pencil.png" alt="Pencil icon; click to edit this
activity"></div>');

 $('.activity-log').append('</div>');
 });
}

This code mostly just appends HTML to the home page’s empty <section> tag
(which I’ve given the class name activity-log). A switch() statement checks
the activity type to output the corresponding icon image. The CSS, which I don’t
have room to show, configures the data with a flexbox layout that alternates the
data item background to make it easier to read, as you can see in Figure 3-3.

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 661

Updating and Editing Data
To enable the user to update existing data items, you need to add an Edit button
for each item. In most cases, clicking this button presents a form that’s identical
to the one used to create an item, although with the existing item’s data already
filled in. Submitting that form should then run an UPDATE query on the server to
preserve the user’s edits.

To handle this in my FootPower! app, I included an Edit column to the Activity
Log, and for each activity I displayed a pencil icon, as shown in Figure 3-3.

Here’s the jQuery code I used to add the pencil icons to each activity:

$('#activity' + activity.activity_id).append('<div
class="activity-item"><input id="activity-' + activity.
activity_id + '" class="activity-crud-update" type="image"
src="images/pencil.png" alt="Pencil icon; click to edit this
activity"></div>');

Note, in particular, that for each <input> tag, the id value is set to activity-id,
where id is the activity_id value of the current activity.

Here’s the click event handler that runs when the user clicks a pencil icon:

$('#activity-log').click(function(e) {
 e.preventDefault();

FIGURE 3-3:
The FootPower!

home page, now
with fresh data.

662 BOOK 7 Coding Web Apps

 // Make sure we're dealing with an edit link
 if(e.target.className === 'data-edit-button') {

 //Get the activity's ID
 var activityID = Number(e.target.id.split('-')[1]);

 // Load the Update form and send the activity ID in the

query string
 window.location = 'update_data.php?activity-id=' +

activityID;
 }
});

Here’s what happening in this code:

 » Since you created the edit links in code, you can’t use them as jQuery
 selectors, so you use the closest DOM ancestor, which is the <section
id="activity-log") tag.

 » The clicked activity’s ID value is extracted and stored in the activityID
variable.

 » The browser is sent to the update_data.php file, with the activity ID stored in
the URL’s query string.

First, here’s the code for the update_data.php page:

<?php
 include_once '../private/common/initialization.php';
 $page_title = 'Edit Activity';
 include_once 'common/top.php';
 include_once 'common/data_form.php';
?>
 <!-- The jQuery UI dialog markup for Delete This

Activity-->
 <div id="confirm-delete" class="activity-delete-

dialog" title="Delete This Activity?" role="dialog">
 <p>Are you sure you want to remove this

activity from your log?
 This action can't be undone!</p>
 </div>

<?php
 include_once 'common/sidebar.php';
 include_once 'common/bottom.php';
?>

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 663

Note the extra markup for a jQuery UI dialog. I talk about this in the next section.

The document’s ready() event (shown earlier) looks for this file and runs the
initializeUpdateDataForm() function:

function initializeUpdateDataForm() {

 // Get the activity ID from the URL query string and save it

to the form
 var activityID = Number(window.location.search.split('=')

[1]);
 $('#activity-id').val(activityID);

 // Get the data for this item
 var formData = [
 {"name": "log-id", "value": $('#log-id').val()},
 {"name": "activity-id", "value": $('#activity-id').

val()},
 {"name": "data-verb", "value": "read-data-item"},
 {"name": "token", "value": $('#token').val()}
];

 // Submit the data to the handler
 $.post('/handlers/data_handler.php', formData,

function(data) {

 // Convert the JSON string to a JavaScript object
 // We know that "data" is a single-item array, so just

take the first item
 var result = JSON.parse(data)[0];

 // If there was an error, result.status will be defined
 if (typeof result.status !== 'undefined') {

 // If so, display the error
 $('#form-error').html(result.message).css('display',

'inline-block');

 } else {
 // Show the Delete button
 $('#data-delete-button').show();

 // Set the data verb to "update"
 $('#data-verb').val('update');

664 BOOK 7 Coding Web Apps

 // Store the activity values
 // We know that "result" is a single-item array,

so just take the first item
 activity = result[0];
 var activityType = activity.type;
 var activityDate = activity.date
 var activityDistance = Number(activity.distance).

toFixed(2);
 var activityDuration = activity.duration.split(':');

 // Use the activity values to populate the edit form
 $('#activity-id').val(activityID);
 $('#activity-type').val(activityType);
 $('#activity-date').val(activityDate);
 $('#activity-distance').val(activityDistance);
 $('#activity-duration-hours').

val(activityDuration[0]);
 $('#activity-duration-minutes').

val(activityDuration[1]);
 $('#activity-duration-seconds').

val(activityDuration[2]);
 }
 });
}

The first part of this code grabs the activity to be updated from the server. The
ID of the activity is extracted from the URL’s query string and then stored in the
form’s hidden activity-id field. The form’s hidden field values are gathered
and then sent via the .post() method to the data_handler.php script on the
server. Note in particular then the data-verb value is set to read-data-item,
which means the server script will call the Data class’s readDataItem() method:

public function readDataItem() {

 // Store the default status
 $server_results['status'] = 'success';

 // Check the log-id field
 $log_id = $_POST['log-id'];
 if(empty($log_id)) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: Missing log ID';
 } else {

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 665

 // Sanitize it to an integer
 $log_id = filter_var($log_id, FILTER_SANITIZE_NUMBER_

FLOAT);
 if (!$log_id) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: Invalid

log ID';
 } else {
 // Check the activity-id field
 $activity_id = $_POST['activity-id'];
 if(empty($activity_id)) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: Missing

activity ID';
 } else {
 // Sanitize it to an integer
 $activity_id = filter_var($activity_id,

FILTER_SANITIZE_NUMBER_FLOAT);
 if (!$activity_id) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Error: Invalid

activity ID';
 }
 }
 }
 }
 // Are we good?
 if($server_results['status'] === 'success') {

 // Create the SQL template
 $sql = "SELECT * FROM activities
 WHERE log_id=?
 AND activity_id=?
 LIMIT 1";

 // Prepare the statement template
 $stmt = $this->_mysqli->prepare($sql);

 // Bind the parameters
 $stmt->bind_param("ii", $log_id, $activity_id);

 // Execute the prepared statement
 $stmt->execute();

666 BOOK 7 Coding Web Apps

 // Get the results
 $result = $stmt->get_result();

 if($this->_mysqli->errno === 0) {

 // Get the query row as an associative array
 $row = $result->fetch_all(MYSQLI_ASSOC);

 // Convert the array to JSON, then return it
 $JSON_data = json_encode($row, JSON_HEX_APOS |

JSON_HEX_QUOT);
 return $JSON_data;
 } else {
 $server_results['status'] = 'error';
 $server_results['message'] = 'MySQLi error #: ' .

$this->_mysqli->errno . ': ' . $this->_mysqli->error;
 }
 }
 if($server_results['status'] === 'error') {
 // Create and then return the JSON string
 $JSON_data = json_encode($server_results,

JSON_HEX_APOS | JSON_HEX_QUOT);
 return $JSON_data;
 }
}

Back in initializeUpdateDataForm(), the returned item is stored in result and
checked for an error. If there was no error, the form’s data-verb value is set to
update and the hidden Delete button is displayed. Finally, the activity’s values are
stored in variables, and then those variable values are used to populate the form
controls.

Figure 3-4 shows an example of an activity ready to be edited.

FIGURE 3-4:
Clicking an

activity’s Edit
icon displays the
form populated

with the activity’s
values.

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 667

Clicking Save runs the same event handler that I show earlier. The data_handler.
php code on the server routes the Ajax request to the Data object’s updateData()
method. This method runs the same validation and sanitization code as create
Data(), shown earlier, except that updateData() also checks the update verb’s
activity-id value (which holds the ID of the activity being updated) and stores
the sanitized version in the $activity_id variable:

// Check the activity-id field
$activity_id = $_POST['activity-id'];
if(empty($activity_id)) {
 $server_results['status'] = 'error';
 $server_results['activity-type'] = 'Missing activity ID';
} else {
 // Sanitize it to an integer
 $activity_id = filter_var($activity_id, FILTER_SANITIZE_

NUMBER_FLOAT);
 if (!$activity_id) {
 $server_results['status'] = 'error';
 $server_results['message'] = 'Invalid activity ID';
 }
}

If everything checks out, the code prepares an SQL UPDATE statement to save the
activity edit to the database:

if($server_results['status'] === 'success') {

 // Create the SQL template
 $sql = "UPDATE activities
 SET type=?, date=?, distance=?, duration=?
 WHERE log_id=? AND activity_id=?";

 // Prepare the statement template
 $stmt = $this->_mysqli->prepare($sql);

 // Bind the parameters
 $stmt->bind_param("ssdsii", $activity_type, $activity_date,

$activity_distance, $activity_duration, $log_id,
$activity_id);

 // Execute the prepared statement
 $stmt->execute();

668 BOOK 7 Coding Web Apps

 // Get the results
 $result = $stmt->get_result();

 if($this->_mysqli->errno === 0) {
 $server_results['message'] = 'Activity updated

successfully!';
 } else {
 $server_results['status'] = 'error';
 $server_results['message'] = 'MySQLi error #: ' .

$this->_mysqli->errno;
 }
}
// Create and then return the JSON data
$JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
return $JSON_data;

Deleting Data
As a final data-handling chore, your web app should provide an interface that
enables the user to delete data items from the server. Careful, though: You also
need some way to ask the user to confirm the deletion, to avoid accidental (and
non-reversible) data loss. The usual way to confirm an action in a web app is to
display a so-called modal dialog, which prevents the user from doing anything
else on the screen until the dialog is dismissed. You could code such a dialog by
hand, but why go to that trouble when our friends at jQuery UI have an awesome
dialog widget that you can use with just a few lines of code?

Before I get to that, take a look back at Figure 3-4, which includes a Delete This
Activity button. Clicking this button displays the confirmation dialog, so let’s see
how that works. Assuming you’ve downloaded a version of jQuery UI that contains
the dialog widget (see Book 4, Chapter 3), you first add the HTML markup for the
dialog:

<div id="confirm-delete" title="Delete This Activity?">
 <p>Are you sure you want to remove this activity from your

log? This action can't be undone.</p>
</div>

The title attribute of the div element becomes the dialog title, and the text
within the div element becomes the dialog’s body text.

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 669

To configure the dialog, you add the following code:

$("#confirm-delete").dialog({
 autoOpen: false,
 closeOnEscape: true,
 modal: true,
 width: 400,
 buttons: [
 {
 text: 'Cancel',
 click: function() {
 $(this).dialog('close');
 }
 },
 {
 text: 'Delete',
 click: function() {
 $(this).dialog('close');
 Code to initiate the Ajax call to the server will

go here
 }
 }
]
});

There are five options specified here (see http://api.jqueryui.com/dialog/ for
the complete list):

 » autoOpen: Determines whether the dialog opens automatically when the page
loads. The default is true, so use false to control when the dialog appears.

 » closeOnEscape: When true, enables the user to close the dialog by pressing
the Esc key.

 » modal: Set to true to make the dialog modal.

 » width: Specifies the width, in pixels, of the dialog.

 » buttons: This array specifies the command buttons that appear in the dialog.
Use the text value to set the button text and the click value to specify a
callback function that runs when the button is clicked.

http://api.jqueryui.com/dialog/

670 BOOK 7 Coding Web Apps

To open the modal dialog, set up a click event handler for the button that you
want to display the dialog:

$('#data-delete-button').click(function(e) {

 // Take the focus off the button
 $(this).blur();

 // Open the jQuery UI dialog
 $('#confirm-delete').dialog('open');

 // Prevent the default action
 e.preventDefault();
});

Figure 3-5 shows the confirmation dialog I’m using for my FootPower! web app.

Clicking the Cancel button just closes the dialog with no further action. Clicking
Delete, however, means the user is serious about the deletion, so you need to add
some code to this button’s click handler:

click: function() {

 // Close the dialog
 $(this).dialog('close');

 // Disable all the buttons
 $('#data-form button').prop('disabled', true);

 // Set the data verb to "delete"
 $('#data-verb').val('delete');

 // Get the form data and convert it to a POST-able format
 // We only need the log ID, activity ID, CRUD verb, and

token from the form,

FIGURE 3-5:
When the user

clicks Delete
This Activity,

this modal
 confirmation

dialog appears.

M
an

ag
in

g
D

at
a

CHAPTER 3 Managing Data 671

 // so we'll build the array by hand instead of using
serializeArray()

 formData = [
 {"name": "log-id", "value": $('#log-id').val()},
 {"name": "activity-id", "value": $('#activity-id').

val()},
 {"name": "data-verb", "value": $('#data-verb').val()},
 {"name": "token", "value": $('#token').val()}
];

 // Submit the data to the handler
 $.post('/handlers/data_handler.php', formData,

function(data) {

 // Convert the JSON string to a JavaScript object
 var result = JSON.parse(data);

 if(result.status === 'error') {

 // Display the error
 $('#form-error').html(result.message).css('display',

'inline-block');

 // Enable all the buttons
 $('#data-form button').prop('disabled', false);

 } else {

 // Display the success message
 $('#form-message').html(result.message).

css('display', 'inline-block');

 // Return to the home page after 1 second
 window.setTimeout("window.location='index.php'",

1000);
 }
 });
}

Here’s what happening in this code:

 » The form’s data-verb value is set to delete.

 » The form’s log-id, activity-id, crud-verb, and token values are added to
the POST array.

672 BOOK 7 Coding Web Apps

 » The POST data is passed along via Ajax to the data_handler.php script on
the server.

The data_handler.php script sees that the data-verb value is delete, so it
routes the Ajax request to the Data object’s deleteData() method. That method
validates and sanitizes the log-id and activity-id values, then uses them to
prepare and execute a SQL DELETE statement:

if($server_results['status'] === 'success') {

 // Create the SQL template
 $sql = "DELETE FROM activities WHERE log_id=? AND

activity_id=?";

 // Prepare the statement template
 $stmt = $this->_mysqli->prepare($sql);

 // Bind the parameters
 $stmt->bind_param("ii", $log_id, $activity_id);

 // Execute the prepared statement
 $stmt->execute();

 // Get the results
 $result = $stmt->get_result();

 if($this->_mysqli->errno === 0) {
 $server_results['message'] = 'Activity deleted

successfully! Sending you back to the activity log...';
 } else {
 $server_results['status'] = 'error';
 $server_results['message'] = 'MySQLi error #: ' .

$this->_mysqli->errno . ': ' . $this->_mysqli->error;
 }
}
// Create and then return the JSON data
$JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
return $JSON_data;
}

CHAPTER 4 Managing App Users 673

Managing App Users
The craft of programming begins with empathy, not formatting or languages
or tools or algorithms or data structures.

— KENT BECK

If your web app enables users to create data items, then those users will come
with the more than reasonable expectation that your web app will preserve
that data. The simplest web apps honor that expectation by saving user data

locally in the web browser, a topic that I talk about in Book 8, Chapter 1. However,
your users might also come with the further expectation that their data should
be available to them no matter which device or web browser they happen to be
using. This level of expectation is certainly still reasonable, but it’s considerably
more complex because now you’re in the realm of managing user accounts on the
server. This means creating user accounts, securely storing passwords, verifying
new accounts, managing both sign-ins and sign-outs, updating user credentials,
handling forgotten passwords, and more.

Yep, it’s a big job, but I have a feeling you’re more than up to the task. In this
chapter, you explore the fascinating world of user management and delve into all
the details required to set up a bulletproof and secure user account system.

Chapter 4

IN THIS CHAPTER

 » Setting up your app’s user class

 » Creating new user accounts

 » Signing users in and out of the
web app

 » Handling forgotten passwords

 » Managing user accounts flexibly and
securely

674 BOOK 7 Coding Web Apps

Configuring the Home Page
One of the main changes you need to make when you want to add support for user
accounts is configuring the web app’s home page to show a different set of tags
depending on whether the user is signed in or not:

 » If a user is signed in, show the user’s data and a Sign Out button.

 » If the visitor doesn’t have an account or isn’t signed in, show an introductory
screen and a Sign Up button that encourages those without an account to
create one, and show a Sign In button so that users with accounts can access
their data.

Fortunately, you don’t need to create two different home pages. Instead, you can
use some inline PHP to check whether a user is signed in and display the appro-
priate HTML tags and text depending on the result.

To make this sort of thing easier, PHP has an alternative if()...else syntax that
you can use to add HTML tags to a page based on one or more conditions. Here’s
the general structure:

<?php
 if(condition):
?>
 HTML tags to display if condition is TRUE
<?php
 else:
?>
 HTML tags to display if condition is FALSE
<?php
 endif;
?>

The condition in your web app will be something that returns TRUE if the user is
signed in, and FALSE otherwise. There are various ways to approach this, but the
easiest is to set a session variable when the user signs in. Because a username is
required to sign in, it makes sense to use the username as the session variable.
For example, assuming your web app has some sort of sign-in form (more on that
in a bit) that includes a username field, then the following PHP statement would
store a sanitized version of the username in a session variable named username:

$_SESSION['username'] = htmlentities($_POST['username'],
ENT_QUOTES);

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 675

You can then use isset($_SESSION['username']) as the condition to determine
what HTML tags the user sees. Here’s a partial modification of the FootPower!
index.php file:

<?php
 include_once '../private/common/initialization.php';
 if(isset($_SESSION['username'])) {
 $page_title = 'Your Activity Log';
 } else {
 $page_title = 'Welcome to FootPower!';
 }
 include_once 'common/top.php';

 if(isset($_SESSION['username'])):
?>
 The rest of the Activity Log code goes here (see Book 7,

Chapter 3)
<?php
 else:
?>
 <section class="footpower-intro" role="contentinfo">
 <p>
 Are you a walker, a runner, or a cyclist? Heck,

maybe you're all three! Either way, you know the joy and
satisfaction of propelling yourself across the face of the
Earth using nothing but the power of your own two feet.

 </p>
 <p>
 Have you walked, ran, or cycled recently? If so,

we salute you! But why relegate the details of that activity
to the dim mists of history and memory? Why not save your
effort for posterity? Just sign up for a free FootPower!
account and you'll never forget a walk, run, or ride again!

 </p>
 <div>
 <img src="images/walk-large.png" alt="Drawing of

a walker.">
 <img src="images/run-large.png" alt="Drawing of

a runner.">
 <img src="images/cycle-large.png" alt="Drawing

of a cyclist.">
 </div>
 </section>
 </article>

676 BOOK 7 Coding Web Apps

<?php
 endif;
 include_once 'common/sidebar.php';
 include_once 'common/bottom.php';
?>

If the username session variable is set, the user is logged in, so display the Activity
Log for that user. Otherwise, display an introductory message.

You also need conditional code that determines the buttons the user sees. Here’s
the modified version of the FootPower! top.php file:

<body>
 <header class="top-header" role="banner">
 <div class="top-header-logo">
 <img src="images/footpower-logo.png" alt="FootPower!

logo">
 </div>
 <div class="top-header-user">
<?php
 if(isset($_SESSION['username'])):
?>
 <button id="show-user-account-button" class="btn-

plain">Your Account</button>
 <button id="user-sign-out-button" class="btn">Sign

Out</button>
<?php
 else:
?>
 <button id="show-sign-in-page-button" class="btn-

plain">Sign In</button>
 <button id="show-sign-up-page-button"

class="btn">Sign Up</button>
<?php
 endif;
?>
 </div>
 </header>
 <main role="main">

When the user is signed in, she sees the Your Account and Sign Out buttons;
 otherwise, she sees both a Sign In and a Sign Up button. Figure 4-1 shows the
FootPower! home page when a user is not signed in.

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 677

Setting Up the Back End to Handle Users
Most web apps that manage users need to implement at least the following tasks:

 » Signing up new users: Includes not only capturing the user’s email address
(to use as a username) and password, but also sending out a verification email
to make sure the user isn’t a bot or spammer

 » Signing in users: Enables each user to access her own data

 » Signing out users: Prevents others from accessing a user’s account when his
computer is left unattended

 » Updating user data: Enables each user to change her password and to reset
a forgotten password

 » Deleting users: Enables a user to remove his account and data from the
server

The rest of this chapter shows you how to implement each of these functions.
Before I get to that, here’s the bird’s-eye view of what I’ll be doing:

1. Build a class for handling user interactions. That class includes one method for
each of the preceding tasks.

FIGURE 4-1:
The FootPower!

home page when
a user is not

signed in.

678 BOOK 7 Coding Web Apps

2. Provide the user with an interface for signing up, signing in, signing out,
modifying account data, and deleting the account.

3. To start processing a user task, set up an event handler for each account-
focused interface element. If you’re using a sign-in form, for example, then you
might set up a submit event handler for that form.

4. Use each event handler to send the form data to a single PHP script via Ajax.
Importantly, that form data includes the value of a hidden field that specifies
the type of “user verb” being performed (sign up, sign in, reset password,
and so on).

5. In the PHP script, create a new object from the class of Step 1, check the user
verb sent by the Ajax call, and then call the corresponding class method. For
example, if the event is signing up a new user, the script would call the class
method that handles creating new user accounts.

The next couple of sections cover setting up the first part of the user class and
building the PHP script that handles the Ajax requests.

Starting the web app’s user class
The class for your web app’s users needs to do at least the following three things:

 » Accept a parameter that references the current MySQLi object.

 » Define a method for each of the user verbs.

 » Define any helper functions required by the user verbs.

With these goals in mind, here’s the skeleton class file:

<?php
class User {

 // Holds the app's current MySQLi object
 private $_mysqli;

 // Use the class constructor to store the passed MySQLi

object
 public function __construct($mysqli) {
 $this->_mysqli = $mysqli;
 }

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 679

 // Here are the user chores we need to handle
 public function createUser() {

 }
 public function verifyUser() {

 }
 public function signInUser() {

 }
 public function sendPasswordReset() {

 }
 public function resetPassword() {

 }
 public function getDistanceUnit() {

 }
 public function updateDistanceUnit() {

 }
 public function deleteUser() {

 }
}
?>

The class declares the private property $_mysqli, which it uses to store the cur-
rent instance of the MySQLi object (created earlier in the initialization.php
script). Store this file in private/classes/user_class.php.

To create an instance of this class, you’d use a statement similar to the following:

$user = new User($mysqli);

Creating a user handler script
The various user verbs will be initiated via Ajax calls to a single PHP script. Each
Ajax call needs to specify the user verb required, and the PHP code routes the
request to the corresponding method in the User class.

680 BOOK 7 Coding Web Apps

Here’s the PHP script, which I’ll save as public/handlers/user_handler.php:

<?php

 // Initialize the app
 include_once '../../private/common/initialization.php';

 // Include the User class
 include_once '../../private/classes/user_class.php';

 // Initialize the results
 $server_results['status'] = 'success';
 $server_results['control'] = '';
 $server_results['message'] = '';

 // Make sure a user verb was passed
 if (!isset($_POST['user-verb'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Error: No user verb

specified!';
 }
 // Make sure a token value was passed
 elseif (!isset($_POST['token'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Error: Invalid user

session!';
 }
 // Make sure the token is legit
 elseif ($_SESSION['token'] !== $_POST['token']) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Timeout Error! Please

refresh the page and try again.';
 }
 // If we get this far, all is well, so go for it
 else {

 // Create a new User object
 $user = new User($mysqli);

 // Pass the user verb to the appropriate method
 switch ($_POST['user-verb']) {

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 681

 // Sign up a new user
 case 'sign-up-user':
 $server_results = json_decode($user-

>createUser());
 break;

 // Sign in an existing user
 case 'sign-in-user':
 $server_results = json_decode($user-

>signInUser());
 break;

 // Send a request to reset a user's password
 case 'send-password-reset':
 $server_results = json_decode($user-

>sendPasswordReset());
 break;

 // Reset a user's password
 case 'reset-password':
 $server_results = json_decode($user-

>resetPassword());
 break;

 // Get the user's distance unit
 case 'get-distance-unit':
 $server_results = json_decode($user-

>getDistanceUnit());
 break;

 // Update distance unit
 case 'update-unit':
 $server_results = json_decode($user-

>updateDistanceUnit());
 break;

 // Delete a user
 case 'delete-user':
 $server_results = json_decode($user-

>deleteUser());
 break;

 default:
 $server_results['status'] = 'error';

682 BOOK 7 Coding Web Apps

 $server_results['control'] = 'token';
 $server_results['message'] = 'Error: Unknown

user verb!';
 }
 }
 // Create and then output the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 echo $JSON_data;
?>

After initializing the app by including initialization.php, the code also includes
the User class file. The code then sets up an array named $server_results, which
holds the results that the script sends back to the front end:

 » $server_results['status'] will be either success or error.

 » $server_results['message'] holds the success or error message to
display.

The code next runs through a series of checks: making sure a verb was passed,
making sure a token value was passed, and then comparing that token value with
the session token. If the code gets past those tests, a switch() statement runs
through the possible values for $_POST['user-verb'] and calls the correspond-
ing User method.

In the rest of this chapter, I fill in the details for the various User methods and the
front-end interfaces that support them.

Signing Up a New User
The process of signing up a new user takes four general steps:

1. Present the user with a form that asks for the person’s username (usually just
her email address) and a password.

2. Send the data to the server and provisionally add the user to the users table.

3. Send to the user a verification email that includes a unique link that the user
must click to verify her account.

4. Verify the user.

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 683

Once the user is verified, and each subsequent time the user signs in to the app,
you need to set a session variable that the app can use to check whether the user
is signed in. I like to keep things simple here and just set $_SESSION['username']
to the current account’s username.

Building the form
When the user clicks the Sign Up button, he sees the sign_up.php page:

<?php
 include_once '../private/common/initialization.php';
 if(isset($_SESSION['username'])) {
 $page_title = 'You're Already Signed Up';
 } else {
 $page_title = 'Sign Up For a Free FootPower! Account';
 }
 include_once 'common/top.php';

 // Is the user already signed in?
 if(isset($_SESSION['username'])):
?>
 <section>
 <p>
 You already have an account, so nothing to

see here.
 </p>
 <p>
 Did you want to <a href="create_data.

php">log an activity, instead?
 </p>
 <p>
 Or perhaps you want to <a href="sign_out.

php">sign out?
 </p>
 </section>
<?php
 else:
?>
 <p>Your feet will thank you.</p>
 <form id="user-sign-up-form">
 <div class="form-wrapper">
 <div class="control-wrapper">

684 BOOK 7 Coding Web Apps

 <label for="username">Email</label>
 <input id="username" class="form-

control" name="username" type="email" aria-label="Type your
email address." required/>

 <span id="username-error" class="error
error-message">

 </div>
 <div class="control-wrapper">
 <label for="password">Password</label>
 <div>
 <input id="password" class="form-

control" name="password" type="password" minlength="8"
aria-label="Type your password." required>

 <input id="password-toggle"

type="checkbox"><label for="password-toggle" class="label-
horizontal">Show password</label>

 </div>
 <span id="password-error" class="error

error-message">
 </div>
 <button id="sign-me-up-button" class="btn

btn-form" type="submit">Sign Me Up</button>
 <span id="form-error" class="error error-

message form-error-message">
 <span id="form-message" class="form-

message">
 <input type="hidden" id="user-verb"

name="user-verb" value="sign-up-user">
 <input type="hidden" id="token" name="token"

value="<?php echo $_SESSION['token']; ?>">
 </div>
 </form>
<?php
 endif;
 include_once 'common/sidebar.php';
 include_once 'common/bottom.php';
?>

This page plays it safe and checks to see if the user is already logged in, in which
case it lets the user know and offers some links. Otherwise, the code displays the
Sign Up form, shown in Figure 4-2.

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 685

Sending the data to the server
Clicking Sign Me Up invokes the form’s submit event, so you need to add a han-
dler for this:

$('#user-sign-up-form').submit(function(e) {

 // Prevent the default submit
 e.preventDefault();

 // Disable the Sign Me Up button to prevent double

submissions
 $('#sign-me-up-button').prop('disabled', true);

 // Clear and hide all the message spans ($ = "ends with")
 $('span[id$="error"').html('').css('display', 'none');
 $('#form-message').html('').css('display', 'none');

 // Get the form data and convert it to a POST-able format
 formData = $(this).serializeArray();

 // Submit the data to the handler
 $.post('/handlers/user_handler.php', formData,

function(data) {

 // Convert the JSON string to a JavaScript object
 var result = JSON.parse(data);

 if(result.status === 'error') {

 // Display the error
 $('#' + result.control + '-error').html(result.

message).css('display', 'inline-block');

FIGURE 4-2:
The FootPower!
form for signing

up a new user.

686 BOOK 7 Coding Web Apps

 // Enable the Sign Me Up button
 $('#sign-me-up-button').prop('disabled', false);

 } else {
 $('#form-message').html(result.message).

css('display', 'inline-block');
 }
 });
});

This code prevents the default submission, disables the Sign Me Up button to
prevent the user from accidentally clicking it again, clears the messages, and
then sends the form data to the server. When the user_handler.php script sees
that the user-verb is set to sign-up-user, it routes the task to the User object’s
 createUser() method. The first part of this method validates and sanitizes the
username and password:

public function createUser() {

 // Store the default status
 $server_results['status'] = 'success';

 // Was the username sent?
 if(empty($_POST['username'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'username';
 $server_results['message'] = 'Um, you really do need to

enter your email address.';
 } else {

 // Sanitize it
 //$username = htmlentities($username);
 $username = $_POST['username'];
 $username = filter_var($username, FILTER_SANITIZE_

EMAIL);
 if (!$username) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'username';
 $server_results['message'] = 'Hmmm. It looks like

that email address isn\'t valid. Please try again.';
 } else {

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 687

 // Make sure the username doesn't already exist in
the database

 $sql = "SELECT *
 FROM users
 WHERE username=?";
 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("s", $username);
 $stmt->execute();
 $result = $stmt->get_result();

 // If the username already exists, num_rows will be

greater than 0
 if ($result->num_rows > 0) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'username';
 $server_results['message'] = 'Whoops! That email

address is already being used. Please try again.';
 }
 }
 }

 // If all is still well, check the password
 if($server_results['status'] === 'success') {

 // Was the password sent?
 if(empty($_POST['password'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'That\'s weird: the

password is missing. Please try again.';
 } else {

 // Sanitize it
 $password = $_POST['password'];
 $password = filter_var($password, FILTER_SANITIZE_

STRING);

 // Is the password still valid?
 if (!$password) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'Sorry, but the

password you used was invalid. Please try again.';
 }

688 BOOK 7 Coding Web Apps

 // Is the password long enough?
 elseif (strlen($password) < 8) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'Sorry, but the

password must be at least 8 characters long. Please try
again.';

 } else {

 // If all's well, hash the password
 $password = password_hash($password, PASSWORD_

DEFAULT);
 }
 }
 }

For the username, the code makes sure it was entered and that it’s a legit email
address. It also runs a prepared SQL SELECT statement to make sure the user isn’t
already signed up. The password is checked for validity, sanitized, and checked for
length (minimum eight characters). If those checks pass, the password is hashed
using PHP’s password_hash() function (see Book 7, Chapter 2).

Sending a verification email
If both the username and password check out, the next step is to send the user a
verification email. The createUser() method continues:

if($server_results['status'] === 'success') {

 // Create a random, 32-character verification code
 $ver_code = bin2hex(openssl_random_pseudo_bytes(16));

 // Send the verification email
 $send_to = $username;
 $subject = 'Please verify your FootPower! account';
 $header = 'From: FootPower! <mail@mcfedries.com>' . "\r\n" .
 'Content-Type: text/plain';
 $body = <<<BODY
You have a new account at FootPower!

Your username is the email address you provided: $username

Please activate your account by clicking the link below.

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 689

https://footpower.mcfedries.com/verify_user.php?vercode=$ver_
code&username=$username

If you did not create a FootPower! account, you can safely

delete this message.

Thanks!

Paul
footpower.mcfedries.com
BODY;

 $mail_sent = mail($send_to, $subject, $body, $header);

This code uses our old friends bin2hex() and openssl_random_pseudo_bytes()
to generate a random 32-character string that’s used as a unique verification code
for the user. The code sets up the email by specifying the recipient, subject, head-
ers, and message body. Note, in particular, that the body includes a link that the
user must click to verify her account. That link’s URL includes both the verifica-
tion code and the username:

https://footpower.mcfedries.com/verify_user.php?vercode=$ver_
code&username=$username

Finally, the code runs PHP’s mail() function to send the message.

For the mail() function to work, you need a mail server installed and configured.
If you’re coding the app in your local development environment, you almost cer-
tainly won’t have a mail server running, so the mail() function will fail. You can
comment out the function for now, then try it after you have your code on the web.

Adding the user to the database
Now it’s time to add the user to the users table. Here’s the rest of the createUser()
method:

if($mail_sent) {

 // Create and prepare the SQL template
 $sql = "INSERT INTO users
 (username, password, verification_code)
 VALUES (?, ?, ?)";
 $stmt = $this->_mysqli->prepare($sql);

690 BOOK 7 Coding Web Apps

 $stmt->bind_param("sss", $username, $password, $ver_code);
 $stmt->execute();
 $result = $stmt->get_result();

 if($this->_mysqli->errno === 0) {
 $server_results['control'] = 'form';
 $server_results['message'] = 'You\'re in! We\'ve sent

you a verification email.
Be sure to click the link in that
email to verify your account.';

 } else {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'MySQLi error #: ' .

$this->_mysqli->errno . ': ' . $this->_mysqli->error;
 }
} else {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Error! The verification email

could not be sent, for some reason. Please try again.';
 }
}

// Create and then return the JSON data
$JSON_data = json_encode($server_results, JSON_HEX_APOS | JSON_

HEX_QUOT);
return $JSON_data;

The code checks the return value of the mail() function: If it’s TRUE, the code
continues. (If you’re coding in a local development environment that doesn’t have
a mail server, add $mail_sent = TRUE before running the if() statement to
ensure your code adds the user successfully.) The code prepares an SQL INSERT
statement that adds the user’s username, password, and verification code. After
checking for errors, the code returns the JSON data to the front end.

Verifying the user
With the verification email sent, it’s now up to the user to click the link in the
sent message. That links calls up the verify_user.php page, which includes the
following code:

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 691

<?php

 // Initialize the results
 $server_results['status'] = 'success';
 $server_results['control'] = '';
 $server_results['message'] = '';

 // Make sure a verification code was passed
 if (!isset($_GET['vercode'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Error: Invalid URL. Sorry

it didn\'t work out.';
 }
 // Make sure the username was passed
 elseif (!isset($_GET['username'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Error: Invalid user.';
 }
 // If we get this far, all is well, so go for it
 else {

 // Include the User class
 include_once '../private/classes/user_class.php';

 // Create a new User object
 $user = new User($mysqli);

 // Verify the new account
 $server_results = json_decode($user->verifyUser(),

TRUE);
 }
 }
 include_once 'common/top.php';

 if(isset($_SESSION['username'])):
?>

The code initializes the usual $server_results array, then uses $_GET to check
that both the verification code and the username were sent in the URL’s query
string. If all’s well, a new User object is created and the verifyUser() method is
called.

692 BOOK 7 Coding Web Apps

The verifyUser() method does a ton of important work in the app, so take a
careful look at the code. Here’s the first part:

public function verifyUser() {

 // Store the default status
 $server_results['status'] = 'success';

 // Get the query string parameters
 $ver_code = $_GET['vercode'];
 $username = $_GET['username'];

 // Sanitize them
 $ver_code = filter_var($ver_code, FILTER_SANITIZE_STRING);
 $username = filter_var($username, FILTER_SANITIZE_EMAIL);

 // Prepare the SQL SELECT statement
 $sql = "SELECT *
 FROM users
 WHERE verification_code=?
 AND username=?
 AND verified=0
 LIMIT 1";

 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("ss", $ver_code, $username);
 $stmt->execute();
 $result = $stmt->get_result();

 // Was there an error?
 if ($this->_mysqli->errno !== 0) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'MySQLi error #: ' .

$this->_mysqli->errno . ': ' . $this->_mysqli->error;
 }

The first part of the method sets up the standard $server_results array, then
grabs and sanitizes the verification code and the username from the URL’s query
string using $_GET. Then the code prepares an SQL SELECT statement that queries
the users table for a record that matches both the verification code and the user-
name, and where the verified field equals 0. The code then checks for an error. If
no error occurred, execution continues with the following code:

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 693

 // Otherwise, if a row is returned, it means the user can be
verified

 elseif ($result->num_rows === 1) {

 // Set the success message
 $server_results['message'] = 'Your account is now

verified.<p>You\'re signed in, so go ahead and log a walk, run, or ride.';

 // Sign in the user
 $_SESSION['username'] = $username;

 // Get the user's ID and distance unit
 $row = $result->fetch_all(MYSQLI_ASSOC);
 $user_id = $row[0]['user_id'];
 $distance_unit = $row[0]['distance_unit'];
 $_SESSION['distance_unit'] = $distance_unit;

 // Set the user's verified flag in the database
 $sql = "UPDATE users
 SET verified=1
 WHERE username=?";

 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("s", $username);
 $stmt->execute();
 $result = $stmt->get_result();

 // Create a master data record (in this case, an

activity log) for the user
 $sql = "INSERT INTO logs
 (user_id)
 VALUES (?)";
 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("i", $user_id);
 $stmt->execute();
 $result = $stmt->get_result();

 // Get the user's log ID
 $sql = "SELECT *
 FROM logs
 WHERE user_id=?
 LIMIT 1";
 $stmt = $this->_mysqli->prepare($sql);

694 BOOK 7 Coding Web Apps

 $stmt->bind_param("i", $user_id);
 $stmt->execute();
 $result = $stmt->get_result();
 $row = $result->fetch_all(MYSQLI_ASSOC);
 $log_id = $row[0]['log_id'];
 $_SESSION['log_id'] = $log_id;

There is a ton of important app stuff going on here, so here’s a summary of what’s
happening:

 » The elseif statement checks to see if a row was returned — in which case,
$result->num_rows would be equal to 1. If that’s true, then the rest of the
code executes.

 » The success message is set.

 » The $_SESSION['username'] variable is set to $username, meaning the user
is signed in to her account.

 » The user’s record is fetched and stored in the $row variable, which enables the
code to then determine the user’s ID and preferred unit of distance (miles or
kilometers). The latter is used in other parts of the app, so it’s stored in the
$_SESSION['distance_unit'] variable.

 » A prepared SQL UPDATE statement changes the user’s verified field value to 1.

 » A prepared SQL INSERT statement creates a new master data record for the
user. Note that this data record is tied to the user by the common user_id
field value.

 » A prepared SQL SELECT statement returns the user’s master data record,
which enables the code to determine the ID of that record. The master data ID
is used throughout the app, so it gets stored in the $_SESSION['log_id']
variable.

Here’s the rest of the verifyUser() method:

 } else {
 // Handle the case where the user is already verified
 // Prepare the SQL SELECT statement
 $sql = "SELECT username
 FROM users
 WHERE verification_code=?
 AND username=?
 AND verified=1";

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 695

 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("ss", $ver_code, $username);
 $stmt->execute();
 $result = $stmt->get_result();

 // Was there an error?
 if($this->_mysqli->errno === 0) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'MySQLi error #: ' .

$this->_mysqli->errno . ': ' . $this->_mysqli->error;
 }
 // Otherwise, if a row is returned, it means the user is

already verified
 elseif ($result->num_rows > 0) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Yo, you\'re already

verified.<p>Perhaps you\'d like to <a href="create_data.
php">log a walk, run, or ride?';

 } else {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Yikes. A database

error occurred. These things happen.';
 }
 }

 // Create and then return the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 return $JSON_data;
}

This portion of the code handles the case where the user is already verified. For
example, the user might click the verification link a second time, or reload the
verify_user.php page.

The users table has a creation_date field that defaults to the date and time each
user is added. This enables you to purge users who never verify their accounts. For
example, you could run an SQL DELETE command that purges any records where
the creation _date value is more than a month old.

696 BOOK 7 Coding Web Apps

Signing a User In and Out
The user gets signed in automatically during the verification procedure, but the
user will also need to sign in manually if, say, the session token expires or the user
signs out manually (discussed later in the “Signing out a user” section). To handle
sign-ins, I created the sign_in.php page.

Checking for a signed-in user
All pages that deal with user interactions need a defensive strategy:

 » For a page that requires the user to be signed in, handle the case where the
user accesses the page while signed out.

 » For a page that requires the user to be signed out, handle the case where the
user accesses the page while signed in.

For your sign-in page, the assumption is that the user is signed out, but he just
might end up on the page while signed in. This means your code needs to check
whether the $_SESSION['username'] variable is set. Here’s how I do this in
sign_in.php:

<?php
 include_once '../private/common/initialization.php';

 // Set the page title depending on whether the user is

signed in
 if(isset($_SESSION['username'])) {
 $page_title = 'You're Signed In to Your Account';
 } else {
 $page_title = 'Sign In to Your Account';
 }
 include_once 'common/top.php';

 // Is the user already signed in?
 if(isset($_SESSION['username'])):
?>
 <section>
 <p>
 You're already signed in, so nothing to see

here.
 </p>

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 697

 <p>
 Did you want to <a href="create_data.

php">log an activity, instead?
 </p>
 <p>
 Or perhaps you want to <a href="sign_out.

php">sign out?
 </p>
 </section>
<?php
 else:
?>
 The sign-in form code will go here
<?php
 endif;
 include_once 'common/sidebar.php';
 include_once 'common/bottom.php';
?>

This code actually checks the $_SESSION['username'] variable twice:

 » At the top of the script, I use the result of isset($_SESSION['username'])
to set the $page_title variable accordingly.

 » The second time, if isset($_SESSION['username']) returns TRUE, then I
display a message to the user telling him he’s already signed in and offering a
couple of links to move on.

Adding the form
If the user isn’t signed in, then the code from the previous section displays the
sign-in form:

<form id="user-sign-in-form">
 <div class="form-wrapper">
 <div class="control-wrapper">
 <label for="username">Email</label>
 <input id="username" class="form-control"

name="username" type="email" aria-label="Type your email
address." required/>

 <span id="username-error" class="error error-
message">

 </div>

698 BOOK 7 Coding Web Apps

 <div class="control-wrapper">
 <label for="password">Password</label>
 <div>
 <input id="password" class="form-control"

name="password" type="password" minlength="8" aria-label="Type
your password." required>

 <input id="password-toggle"

type="checkbox"><label for="password-toggle" class="label-
horizontal">Show password</label>

 </div>
 <span id="password-error" class="error error-

message">
 </div>
 <button id="sign-me-in-button" class="btn btn-form"

type="submit">Sign Me In</button>
 <span id="form-error" class="error error-message form-

error-message">

 <input type="hidden" id="user-verb" name="user-verb"

value="sign-in-user">
 <input type="hidden" id="token" name="token"

value="<?php echo $_SESSION['token']; ?>">
 </div>
</form>
<div>
 Forgot your password?
</div>

Figure 4-3 shows the form.

FIGURE 4-3:
The FootPower!

sign-in form.

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 699

The form looks quite simple, but it has a few interesting features:

 » Both <input> tags are followed by tags that are used to display
field-specific error messages.

 » The Password field is accompanied by a Show Password checkbox that, when
checked, shows the password in plain text instead of dots. Enabling the user
to see the password means you don’t have to burden the user with having to
enter the password twice as a verification. To show the password, the code
changes the <input> tag’s type value to text. Here’s the click event handler
that controls this (this code is in public/js/user.js):

$('#password-toggle').click(function() {

 // Is the checkbox checked?
 if($(this).prop('checked') === true) {

 // If so, change the <input> type to 'text'
 $('#password').attr('type', 'text');
 $('label[for=password-toggle').text('Hide

password');
 } else {

 // If not, change the <input> type to 'password'
 $('#password').attr('type', 'password');
 $('label[for=password-toggle').text('Show

password');
 }

});

 » Below the <button> tag are two tags used to display the form-level
error and success messages.

 » A hidden field sets the user-verb value to sign-in-user.

 » Below the form is a Forgot your password? link, which I discuss later in this
chapter.

When the user fills in the form and then clicks Sign Me In, the form’s submit event
fires, and that event is handled by the following code in public/js/user.js:

$('#user-sign-in-form').submit(function(e) {

 // Prevent the default submit
 e.preventDefault();

700 BOOK 7 Coding Web Apps

 // Disable the Sign Me In button to prevent double
submissions

 $('#sign-me-in-button').prop('disabled', true);

 // Clear and hide all the message spans ($ = "ends with")
 $('span[id$="error"').html('').css('display', 'none');
 $('#form-message').html('').css('display', 'none');

 // Get the form data and convert it to a POST-able format
 formData = $(this).serializeArray();

 // Submit the data to the handler
 $.post('/handlers/user_handler.php', formData,

function(data) {

 // Convert the JSON string to a JavaScript object
 var result = JSON.parse(data);

 if(result.status === 'error') {

 // Display the error
 $('#' + result.control + '-error').html(result.

message).css('display', 'inline-block');

 // Enable the Sign Me In button
 $('#sign-me-in-button').prop('disabled', false);

 } else {

 // The user is now signed in, so display the

home page
 window.location = 'index.php';
 }
 });
});

This code is nearly identical to the sign-up code I talk about earlier.

Checking the user’s credentials
When the user_handler.php script gets the sign-in form data, it detects that the
user-verb value is sign-in-user and routes the Ajax request to the User object’s
signInUser() method:

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 701

public function signInUser() {

 // Store the default status
 $server_results['status'] = 'success';

 // Was the username sent?
 if(empty($_POST['username'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'username';
 $server_results['message'] = 'Doh! You need to enter

your email address.';
 } else {

 // Sanitize it
 $username = $_POST['username'];
 $username = filter_var($username, FILTER_SANITIZE_

EMAIL);
 if (!$username) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'username';
 $server_results['message'] = 'Well, it appears that

email address isn\'t valid. Please try again.';
 } else {

 // Make sure the username exists in the database
 $sql = "SELECT *
 FROM users
 WHERE username=?
 LIMIT 1";
 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("s", $username);
 $stmt->execute();
 $result = $stmt->get_result();

 // If the username doesn't exist, num_rows will be 0
 if ($result->num_rows === 0) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'username';
 $server_results['message'] = 'Sorry, but that

email address isn't associated with an account. Please try
again.';

 } else {

702 BOOK 7 Coding Web Apps

 // If all is still well, check the password
 // Was the password sent?
 if(empty($_POST['password'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'That\'s weird:

the password is missing. Please try again.';
 } else {

 // Sanitize it
 $password = $_POST['password'];
 $password = filter_var($password, FILTER_

SANITIZE_STRING);

 // Is the password still valid?
 if (!$password) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'Sorry, but

the password you used was invalid. Please try again.';
 } else {

 // Get the user data
 $row = $result->fetch_all(MYSQLI_ASSOC);

 // Confirm the password
 if(!password_verify($password, $row[0]

['password'])) {
 $server_results['status'] = 'error';
 $server_results['control'] =

'password';
 $server_results['message'] = 'Sorry,

but the password you used was incorrect. Please try again.';
 } else {

 // Sign in the user
 $_SESSION['username'] = $username;
 $user_id = $row[0]['user_id'];
 $distance_unit = $row[0]['distance_

unit'];
 $_SESSION['distance_unit'] =

$distance_unit;

 // Get the user's log ID
 $sql = "SELECT *

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 703

 FROM logs
 WHERE user_id=?";
 $stmt = $this->_mysqli-

>prepare($sql);
 $stmt->bind_param("i", $user_id);
 $stmt->execute();
 $result = $stmt->get_result();
 $row = $result->fetch_all(MYSQLI_

ASSOC);
 $log_id = $row[0]['log_id'];
 $_SESSION['log_id'] = $log_id;
 }
 }
 }
 }
 }
 }

 // Create and then return the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 return $JSON_data;
}

This code is a long series of validity checks and sanitization:

 » For the username, the code checks that it was sent, sanitizes it as an email
address, then uses a prepared SQL SELECT statement to check that the
username exists in the users table. If all that checks out, the code moves on
to the password.

 » For the password, the code checks that it was sent, sanitizes it as a string, then
fetches the user data from the SELECT result. The user’s password is stored in
the table as a hashed value, so to check the correctness of the received
password you must use PHP’s password_verify() function:

password_verify(password, hashed_password)

• password: The password entered by the user in the sign-in form

• hashed_password: The hashed password value from the database

If both the username and password check out, then the code signs in the user
by setting the $_SESSION['username'] variable, and then sets the other session
variables: $_SESSION['distance_unit'] and $_SESSION['log_id'].

704 BOOK 7 Coding Web Apps

Signing out a user
Signing out a user means ending the user’s session, so here’s the full code of the
sign_out.php page:

<?php
 session_start();

 // Free up all the session variables
 session_unset();
?>
<!-- Display the sign-in page -->
<meta http-equiv="refresh" content="0;sign_in.php">

PHP’s session_unset() function frees up all the session variables, then the user
is redirected to the sign-in page.

Resetting a Forgotten Password
The user can change her password in one of two ways:

 » If the user has forgotten her password, she can click the Forgot your
password? link in the sign-in form.

 » If the user wants to change her password, she can click the Change Your
Password link in the Your Account page (your_account.php).

Either way, the user winds up at the Request a New Password page (request_new_
password.php), shown in Figure 4-4.

FIGURE 4-4:
The FootPower!
Request a New

Password form.

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 705

Here’s the page code:

<?php
 include_once '../private/common/initialization.php';
 $page_title = 'Request a New Password';
 include_once 'common/top.php';
?>
 <p>
 Enter your account email address below, and

we'll send you a link with instructions for resetting your
password.

 </p>
 <form id="user-send-password-reset-form">
 <div class="form-wrapper">
 <div class="control-wrapper">
 <label for="email">Email</label>
 <input id="username" class="form-

control" name="username" type="email" aria-label="Type your
email address." required/>

 <span id="username-error" class="error
error-message">

 </div>
 <button id="send-reset-password-button"

class="btn btn-form" type="submit">Send It</button>
 <span id="form-error" class="error error-

message form-error-message">
 <span id="form-message" class="form-

message">
 <input type="hidden" id="user-verb"

name="user-verb" value="send-password-reset">
 <input type="hidden" id="token" name="token"

value="<?php echo $_SESSION['token']; ?>">
 </div>
 </form>
<?php
 include_once 'common/sidebar.php';
 include_once 'common/bottom.php';
?>

706 BOOK 7 Coding Web Apps

Note that the hidden user-verb value is send-password-request. The user_
handler.php script routes this verb to the User object’s sendPasswordReset()
method:

public function sendPasswordReset() {

 // Store the default status
 $server_results['status'] = 'success';

 // Was the email address entered?
 if(empty($_POST['username'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'username';
 $server_results['message'] = 'Um, you really do need to

enter your email address.';
 } else {

 // Sanitize it
 $username = $_POST['username'];
 $username = filter_var($username, FILTER_SANITIZE_

EMAIL);
 if (!$username) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'username';
 $server_results['message'] = 'Hmmm. It looks like

that email address isn\'t valid. Please try again.';
 } else {

 // Make sure the email address exists in the

database
 $sql = "SELECT *
 FROM users
 WHERE username=?
 LIMIT 1";
 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("s", $username);
 $stmt->execute();
 $result = $stmt->get_result();

 // If the email doesn't exist, num_rows will be 0
 if ($result->num_rows === 0) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'username';

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 707

 $server_results['message'] = 'Sorry, but that
email address isn't associated with an account. Please try
again.';

 } else {

 // Get the user's verification code
 $row = $result->fetch_all(MYSQLI_ASSOC);
 $ver_code = $row[0]['verification_code'];
 }
 }
 }

 // If we're still good, it's time to get the reset started
 if($server_results['status'] === 'success') {

 // Send the password reset email
 $send_to = $username;
 $subject = 'Reset your FootPower! password';
 $header = 'From: FootPower! <mail@mcfedries.com>' .

"\r\n" .
 'Content-Type: text/plain';
 $body = <<<BODY
You're receiving this message because you requested a password

reset for your FootPower! account.

Please click the link below to reset your password.

https://footpower.mcfedries.com/reset_password.php?vercode=$ver_

code&username=$username

If you do not have a FootPower! account, you can safely delete

this message.

Thanks!

Paul
footpower.mcfedries.com
BODY;
 if(mail($send_to, $subject, $body, $header)) {

 // Unset the user's verified flag in the database
 $sql = "UPDATE users
 SET verified=0
 WHERE username=?";

708 BOOK 7 Coding Web Apps

 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("s", $username);
 $stmt->execute();
 $result = $stmt->get_result();

 if($this->_mysqli->errno === 0) {
 $server_results['control'] = 'form';
 $server_results['message'] = 'Okay, we\'ve sent

you the reset email.
Be sure to click the link in that
email to reset your password.';

 } else {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'MySQLi error

#: ' . $this->_mysqli->errno . ': ' . $this->_mysqli->error;
 }
 } else {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Error! The reset email

could not be sent, for some reason. Please try again.';
 }
 }
 // Create and then return the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 return $JSON_data;
}

This method is very similar to the verifyUser() method I discuss earlier, but
there are two main differences to note:

 » sendPasswordReset() uses a prepared SQL UPDATE statement to set the
user’s verified field in the database to 0.

 » sendPasswordReset() sends an email message to the user with a link to the
reset_password.php page, with the user’s verification code and username in
the query string. When the user clicks that link, she’s sent to the page shown
in Figure 4-5.

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 709

Here’s the code for the reset_password.php page:

<?php
 include_once '../private/common/initialization.php';

 // Initialize the results
 $server_results['status'] = 'success';
 $server_results['control'] = '';
 $server_results['message'] = '';

 // Make sure a verification code was passed
 if (!isset($_GET['vercode'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Error: Invalid URL. Sorry

it didn\'t work out.';
 }
 // Make sure the email address was passed
 elseif (!isset($_GET['username'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Error: Invalid email

address.';
 }
 // If we get this far, all is well, so go for it
 else {

 // Get the query string parameters
 $ver_code = $_GET['vercode'];
 $username = $_GET['username'];

 // Sanitize them
 $ver_code = filter_var($ver_code, FILTER_SANITIZE_

STRING);

FIGURE 4-5:
The FootPower!

Reset Your
 Password form.

710 BOOK 7 Coding Web Apps

 $username = filter_var($username, FILTER_SANITIZE_
EMAIL);

 }
 $page_title = 'Reset Your Password';
 include_once 'common/top.php';

 if($server_results['status'] === 'error'):
?>
 <div class="result-message"><?php echo $server_

results['message'] ?></div>

<?php
 else:
?>
 <p>
 You're resetting the password for <?php echo

$username ?>.
 </p>
 <p>
 If this is not your FootPower! email

address, please send a new
password reset request.

 </p>
 <form id="user-reset-password-form">
 <div class="form-wrapper">
 <div class="control-wrapper">
 <label for="password">Password</label>
 <div>
 <input id="password" class="form-

control" name="password" type="password" minlength="8"
aria-label="Type your password." required>

 <input id="password-toggle"

type="checkbox"><label for="password-toggle" class="label-
horizontal">Show password</label>

 </div>
 <span id="password-error" class="error

error-message">
 </div>
 <button id="reset-password-button"

class="btn btn-form" type="submit">Reset Password</button>
 <span id="form-error" class="error error-

message form-error-message">

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 711

 <span id="form-message" class="form-
message">

 <input type="hidden" id="username"
name="username" value="<?php echo $username ?>">

 <input type="hidden" id="vercode"
name="vercode" value="<?php echo $ver_code ?>">

 <input type="hidden" id="user-verb"
name="user-verb" value="reset-password">

 <input type="hidden" id="token" name="token"
value="<?php echo $_SESSION['token']; ?>">

 </div>
 </form>
<?php
 endif;
 include_once 'common/sidebar.php';
 include_once 'common/bottom.php';
?>

The submit event handler sends the form data to user_handler.php, which uses
the hidden user-verb value of reset-password to route the Ajax request to the
User object’s resetPassword() method:

public function resetPassword() {

 // Store the default status
 $server_results['status'] = 'success';

 // Get the form data
 $username = $_POST['username'];
 $ver_code = $_POST['vercode'];
 $password = $_POST['password'];

 // Sanitize the username and verification code, just to

be safe
 $username = filter_var($username, FILTER_SANITIZE_EMAIL);
 $ver_code = filter_var($ver_code, FILTER_SANITIZE_STRING);

 // Verify the user:
 // First, prepare the SQL SELECT statement
 $sql = "SELECT *
 FROM users
 WHERE username=?
 AND verification_code=?
 AND verified=0";

712 BOOK 7 Coding Web Apps

 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("ss", $username, $ver_code);
 $stmt->execute();
 $result = $stmt->get_result();
 $row = $result->fetch_all(MYSQLI_ASSOC);

 // If a row is returned, it means the user is verified so

the password can be reset
 if ($result->num_rows > 0 AND $this->_mysqli->errno === 0) {

 // Was the password sent?
 if(empty($password)) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'That\'s weird: the

password is missing. Please try again.';
 } else {

 // Sanitize it
 $password = filter_var($password, FILTER_SANITIZE_

STRING);

 // Is the password still valid?
 if (!$password) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'Sorry, but the

password you used was invalid. Please try again.';
 }
 // Is the password long enough?
 elseif (strlen($password) < 8) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'Sorry, but the

password must be at least 8 characters long. Please try
again.';

 } else {

 // If all's well, hash the password
 $password = password_hash($password, PASSWORD_

DEFAULT);

 // Set the distance unit session variable
 $distance_unit = $row[0]['distance_unit'];

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 713

 $_SESSION['distance_unit'] = $distance_unit;
 }
 }
 } else {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Oh, man, a database error

occurred! Please try again.';
 }

 // If we're still good, it's time to reset the password and

reverify the user
 if($server_results['status'] === 'success') {

 // Get the user's ID
 $row = $result->fetch_all(MYSQLI_ASSOC);
 $user_id = $row[0]['user_id'];

 // Set the user's password and verified flag in the

database
 $sql = "UPDATE users
 SET password=?, verified=1
 WHERE username=?";

 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("ss", $password, $username);
 $stmt->execute();
 $result = $stmt->get_result();

 // Was there an error?
 if ($this->_mysqli->errno === 0) {

 // if not, sign in the user
 $_SESSION['username'] = $username;

 // Get the user's log ID
 $sql = "SELECT *
 FROM logs
 WHERE user_id=?";
 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("i", $user_id);
 $stmt->execute();
 $result = $stmt->get_result();

714 BOOK 7 Coding Web Apps

 // Set the log_id session variable
 $row = $result->fetch_all(MYSQLI_ASSOC);
 $log_id = $row[0]['log_id'];
 $_SESSION['log_id'] = $log_id;

 } else {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Yikes. A database

error occurred. Please try again.';
 }
 }
 // Create and then return the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 return $JSON_data;
}

This code is very similar to verifyUser(), which I discuss earlier.

Deleting a User
The final user task the app needs to handle is deleting a user’s account. This is
accomplished by clicking the Delete Your Account link in the Your Account page
(your_account.php). This displays the delete_account.php page, shown in
Figure 4-6.

FIGURE 4-6:
The FootPower!

Delete Your
Account form.

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 715

Here’s the delete_account.php page code:

<?php
 include_once '../private/common/initialization.php';
 $page_title = 'Delete Your FootPower! Account?';
 include_once 'common/top.php';

 // Is the user signed in?
 if(isset($_SESSION['username'])):
?>
 <p>
 Whoa, are you sure you want to do this? You'll

lose all your data!
 </p>
 <form id="user-delete-form">
 <div class="form-wrapper">
 <div class="control-wrapper">
 <label for="password">Password</label>
 <div>
 <input id="password" class="form-

control" name="password" type="password" minlength="8"
aria-label="Type your password." required>

 <input id="password-toggle"

type="checkbox"><label for="password-toggle" class="label-
horizontal">Show password</label>

 </div>
 <span id="password-error" class="error

error-message">
 </div>
 <button id="delete-user-button" class="btn

btn-form" type="submit">Yep, I'm Sure</button>
 <span id="form-error" class="error error-

message form-error-message">
 <span id="form-message" class="form-

message">
 <input type="hidden" id="username"

name="username" value="<?php echo $_SESSION['username'] ?>">
 <input type="hidden" id="user-verb"

name="user-verb" value="delete-user">
 <input type="hidden" id="token" name="token"

value="<?php echo $_SESSION['token']; ?>">
 </div>
 </form>

716 BOOK 7 Coding Web Apps

<?php
 else:
?>
 <!-- Display the sign-in page -->
 <meta http-equiv="refresh" content="0;sign_in.php">
<?php
 endif;
 include_once 'common/sidebar.php';
 include_once 'common/bottom.php';
?>

When the user clicks the Yep, I’m Sure button, the form’s submit event han-
dler sends the form data to the user_handler.php script, which uses the hidden
user-verb value of delete-user to route the Ajax request to the User object’s
deleteUser() method:

public function deleteUser() {

 // Store the default status
 $server_results['status'] = 'success';

 // Get the username and password
 $username = $_POST['username'];
 $password = $_POST['password'];

 // Sanitize the username, just to be safe
 $username = filter_var($username, FILTER_SANITIZE_EMAIL);

 // Make sure the username exists in the database
 $sql = "SELECT *
 FROM users
 WHERE username=?
 LIMIT 1";
 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("s", $username);
 $stmt->execute();
 $result = $stmt->get_result();
 // Get the user's ID
 $row = $result->fetch_all(MYSQLI_ASSOC);
 $user_id = $row[0]['user_id'];

 // If the username doesn't exist, num_rows will be 0
 if ($result->num_rows === 0) {

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 717

 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'Sorry, but we can\'t find

your account. Please try again.';
 } else {

 // Now check the password
 // Was the password sent?
 if(empty($_POST['password'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'That\'s weird: the

password is missing. Please try again.';
 } else {

 // Sanitize it
 $password = filter_var($password, FILTER_SANITIZE_

STRING);

 // Is the password still valid?
 if (!$password) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'Sorry, but the

password you used was invalid. Please try again.';
 } else {

 // Confirm the password
 if(!password_verify($password, $row[0]

['password'])) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'password';
 $server_results['message'] = 'Sorry, but the

password you used was incorrect. Please try again.';
 } else {

 // Delete the user
 $sql = "DELETE
 FROM users
 WHERE username=?
 LIMIT 1";
 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("s", $username);

718 BOOK 7 Coding Web Apps

 $stmt->execute();
 $result = $stmt->get_result();

 // Was there an error?
 if ($this->_mysqli->errno !== 0) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'MySQLi

error #: ' . $this->_mysqli->errno . ': ' . $this->_mysqli-
>error;

 } else {

 // Get the user's log ID
 $sql = "SELECT *
 FROM logs
 WHERE user_id=?
 LIMIT 1";
 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("i", $user_id);
 $stmt->execute();
 $result = $stmt->get_result();
 $row = $result->fetch_all(MYSQLI_ASSOC);
 $log_id = $row[0]['log_id'];

 // Delete the user's activities
 $sql = "DELETE
 FROM activities
 WHERE log_id=?";
 $stmt = $this->_mysqli->prepare($sql);
 $stmt->bind_param("i", $log_id);
 $stmt->execute();
 $result = $stmt->get_result();

 // Was there an error?
 if ($this->_mysqli->errno !== 0) {
 $server_results['status'] = 'error';
 $server_results['control'] = 'form';
 $server_results['message'] = 'MySQLi

error #: ' . $this->_mysqli->errno . ': ' . $this->_mysqli-
>error;

 } else {
 // Delete the user's master data

record (log)

M
an

ag
in

g
A

pp
 U

se
rs

CHAPTER 4 Managing App Users 719

 $sql = "DELETE
 FROM logs
 WHERE log_id=?
 LIMIT 1";
 $stmt = $this->_mysqli-

>prepare($sql);
 $stmt->bind_param("i", $log_id);
 $stmt->execute();
 $result = $stmt->get_result();

 // Was there an error?
 if ($this->_mysqli->errno !== 0) {
 $server_results['status'] =

'error';
 $server_results['control'] =

'form';
 $server_results['message'] =

'MySQLi error #: ' . $this->_mysqli->errno . ': ' . $this->_
mysqli->error;

 } else {
 // Free up all the session

variables
 session_unset();
 }
 }
 }
 }
 }
 }
 }
 // Create and then return the JSON data
 $JSON_data = json_encode($server_results, JSON_HEX_APOS |

JSON_HEX_QUOT);
 return $JSON_data;
}

After performing the usual data validation and sanitization, the code runs three
prepared SQL DELETE statements to delete the user from the users table, delete
the user’s data from the activities table, and delete the user’s log from the logs
table.

8Coding Mobile
Web Apps

Contents at a Glance
CHAPTER 1: Exploring Mobile-First Web Development 723

CHAPTER 2: Building a Mobile Web App . 739

CHAPTER 1 Exploring Mobile-First Web Development 723

Exploring Mobile-First
Web Development

Don’t be afraid to start small. Some of the biggest successes in mobile today
came from small experiments and teams of passionate web designers and
developers. You don’t need to know everything about mobile — just take what
you do know and go.

— LUKE WROBLEWSKI

If you’ve been hanging around the web for a while, you probably remember the
days when you’d surf to a site using a small screen such as a smartphone or
similar portable device, and instead of seeing the regular version of the site,

you’d see the “mobile” version. In rare cases, this alternate version would be
optimized for mobile viewing and navigation, but more likely it was just a poor
facsimile of the regular site with a few font changes and all the interesting and
useful features removed.

Seen from the web developer’s viewpoint, the poor quality of those mobile sites
isn’t all that surprising. After all, who wants to build and maintain two versions
of the same site? Fortunately, the days of requiring an entirely different site to

Chapter 1

IN THIS CHAPTER

 » Learning about mobile-first web
development

 » Understanding the main principles of
coding a mobile-first site

 » Getting started with jQuery Mobile

 » Delivering images responsively to
mobile users

 » Storing user data in the web browser
instead of on the server

724 BOOK 8 Coding Mobile Web Apps

support mobile users are long gone. Yes, using responsive web design enables
you to create a single site that looks and works great on everything from a wall-
mounted display to a handheld device. But in modern web development, there’s a
strong case to be made that all web pages should be built from the ground up as
though they were going to be displayed only on mobile devices. In this chapter,
you explore the principles and techniques behind this mobile-first approach to
web development.

What Is Mobile-First Web Development?
As I discuss in Book 7, Chapter 1, when you develop a web page to look good and
work well on a desktop-sized screen, there are a number of responsive tricks you
can employ to make that same code look good and work well on a mobile device
screen:

 » You can use percentages for horizontal measurements.

 » You can use relative units such as em and rem for vertical measurement and
font sizes.

 » You can use media queries to remove elements when the screen width falls
below a specified threshold.

That third technique — the one where you remove stuff that doesn’t fit on a
smaller screen — is known in the web coding trade as regressive enhancement (RE).
RE has ruled the web development world for many years, but lately there’s been a
backlash against it. Here’s why:

 » RE relegates mobile screens to second-class web citizens.

 » RE leads to undisciplined development because coders and designers
inevitably stuff a desktop-sized screen with content, widgets, and all the web
bells and whistles.

What’s the solution? You’ve probably guessed it by now: progressive enhancement,
which means starting with content that fits on a base screen width and then add-
ing components as the screen gets bigger. When that original content represents
what’s essential about your page, and when that base screen width is optimized
for mobile devices — especially today’s most popular smartphones — then you’ve
got yourself a mobile-first approach to web development.

Ex
pl

or
in

g
M

ob
ile

-F
ir

st

W
eb

 D
ev

el
op

m
en

t

CHAPTER 1 Exploring Mobile-First Web Development 725

Learning the Principles of Mobile-First
Development

Let me be honest right off the top: Mobile-first web development is daunting
because if you’re used to having the giant canvas of a desktop screen to play with,
starting instead with a screen that’s a mere 320- or 400-pixels across can feel a
tad claustrophobic. However, I can assure you that it only seems that way because
of the natural tendency to wonder how you’re possibly going to shoehorn your
massive page into such a tiny space. Mobile-first thinking takes the opposite
approach by ignoring (at least at the beginning) large screens and, instead, focus-
ing on what works best for mobile screens which, after all, represent the major-
ity of your page visitors. Thinking the mobile-first way isn’t hard: It just means
keeping a few key design principle in mind.

Mobile first means content first
One of the biggest advantages of taking a mobile-first approach to web develop-
ment is that it forces you to prioritize. That is, a mobile-first design means that
you include in the initial layout only those page elements that are essential to the
user’s experience of the page. This essential-stuff-only idea is partly a response
to having a smaller screen size in which to display that stuff, but it’s also a neces-
sity for many mobile users who are surfing with sluggish Internet connections
and limited data plans. It’s your job — no, scratch that, it’s your duty as a con-
scientious web developer — to make sure that those users aren’t served anything
superfluous, frivolous, or in any other way nonessential.

That’s all well and good, I hear you thinking, but define “superfluous” and “friv-
olous.” Good point. The problem, of course, is that one web developer’s trivial
appetizer is another’s essential meat and potatoes. Only you can decide between
what’s inconsequential and what’s vital, depending on your page goals and your
potential audience.

So the first step towards a mobile-first design is to decide what’s most important
in the following content categories:

 » Text: Decide what words are essential to get your page’s message across.
Usability expert Steve Krug tells web designers to “Get rid of half the words on
each page, then get rid of half of what’s left.” For a mobile-first page, you
might need to halve the words once again. Be ruthless. Does the user really
need to see that message from the CEO or your “About Us” text? Probably not.

726 BOOK 8 Coding Mobile Web Apps

 » Images: Decide what images are essential for the user, or whether any
images are needed at all. The problem with images is that, although everyone
likes a bit of eye candy, that sweetness comes at the cost of screen real estate
and bandwidth. If you really do need to include an image or two in your
mobile-first page, then at least serve up smaller images to your mobile
visitors. To learn how to do that, see “Delivering images responsively,” later in
this chapter.

 » Navigation: All users need to be able to navigate your site, but the recent
trend is to create gigantic menus that include links to every section and page
on the site. Decide which of those links are truly important for navigation and
just include those in your mobile-first layout.

 » Widgets: Modern web pages are festooned with widgets for social media,
content scrollers, photo lightboxes, automatic video playback, and, of course,
advertising. Mobile users want to see content first, so consider ditching the
widgets altogether. If there’s a widget you really want to include, and you’re
sure it won’t put an excessive burden on either the page’s load time or the
user’s bandwidth, push the widget to the bottom of the page.

Pick a testing width that makes
sense for your site
For most websites, testing a mobile-first layout should begin with the smallest
devices, which these days means smartphones with screens that are 320 pixels
wide. However, you don’t necessarily have to begin your testing with a width as
small as 320px. If you have access to your site analytics, they should tell you what
devices your visitors use. If you find that all or most of your mobile users are on
devices that are at least 400 pixels wide, then that’s the initial width you should
test for your mobile-first layout.

Get your content to scale with the device
For your mobile-first approach to be successful, it’s paramount that you configure
each page on your site to scale horizontally with the width of the device screen.
You do that by adding the following <meta> tag to the head section of each page:

<meta name="viewport" content="width=device-width, initial-
scale=1.0">

Ex
pl

or
in

g
M

ob
ile

-F
ir

st

W
eb

 D
ev

el
op

m
en

t

CHAPTER 1 Exploring Mobile-First Web Development 727

This instructs the web browser to do two things:

 » Set the initial width of the page content to the width of the device screen.

 » Set the initial zoom level of the page to 1.0, which means the page is neither
zoomed in nor zoomed out.

Build your CSS the mobile-first way
When you’re ready to start coding the CSS for your page, understand that the style
definitions and rules that you write will be your page defaults — that is, these
are the styles the browser will display on all devices, unless you’ve defined one
or more media queries to override these defaults. (I talk more about mobile-first
media queries shortly.) You shouldn’t have to write any special rules as long as
you follow a few basic tenets of responsive web design:

 » Use the relative units % or vw for horizontal measures such as width
and padding.

 » Use the relative units rem or em for vertical measures and font sizes.

 » Make all your images responsive.

 » Use flexbox for the page layout, and be sure to apply flex-wrap: wrap to
any flexbox container.

It’s also important to make sure that your mobile-first layout renders the con-
tent just as you want it to appear on the mobile screen. This means avoiding any
tricks such as using the flexbox order property to mess around with the order of
the page elements.

Finally, and perhaps most importantly, be sure to hide any unnecessary content
by styling that content with display: none.

In the end, your mobile-first CSS should be the very model of simplicity and
economy.

Pick a “non-mobile” breakpoint that
makes sense for your content
Your mobile-first CSS code probably includes several elements that you’ve
 hidden with display: none. I assume you want to show those elements eventu-
ally (otherwise, you’d have deleted them altogether), so you need to decide when

728 BOOK 8 Coding Mobile Web Apps

you want them shown. Specifically, you need to decide what the minimum screen
width is that will show your content successfully.

Notice I didn’t say that you should decide when to show your hidden content
based on the width of a target device. For example, many developers consider a
screen to be “wide enough” when it’s at least as wide as an iPad screen in portrait
mode, which is 768 pixels. Fair enough, but will future iPads use this width? In
fact, the current iPad Pro is 1,024 pixels wide in portrait mode.

Devices change constantly and it’s a fool’s game to try and keep up with them.
Forget all of that. Instead, decide what minimum width is best for your page when
the hidden content is made visible. How can you do that? Here’s one easy way:

1. Load your page into the Chrome web browser.

2. Display Chrome’s developer tools.

Press either Ctrl+Shift+I (Windows) or ⌘ +Shift+I (Mac).

3. Use your mouse to adjust the size of the browser window:

• If the developer tools are below or undocked from the browser viewport,
drag the right or left edge of the browser window.

• If the developer tools are docked to the right or left of the browser viewport,
drag the vertical bar that separates the developer tools from the viewport.

4. Read the current viewport dimensions, which Chrome displays in the
upper right corner of the viewport.

The dimensions appear as width x height, in pixels, as pointed out in Figure 1-1.

5. Narrow the window to your mobile-first testing width (such as 320px).

6. Increase the width and, as you do, watch how your layout changes.

In particular, watch for the width where the content first looks the way you
want it to appear in larger screens. Make a note of that width.

The width where your full content looks good is the basis for a CSS media query
breakpoint that you’ll use to display the elements that were hidden in the mobile-
first layout. For example, say that your mobile-first layout hides the aside element
and that you found that your full content looks right at a width of 742px. You then
can set up the following media query (using 750px for a round number):

@media (min-width: 750px) {
 aside {
 display: block;
 }
}

Ex
pl

or
in

g
M

ob
ile

-F
ir

st

W
eb

 D
ev

el
op

m
en

t

CHAPTER 1 Exploring Mobile-First Web Development 729

This media query tells the browser that when the screen width is 750px or more,
display the aside element.

Going Mobile Faster with jQuery Mobile
I talk quite a bit about jQuery in Book 4, and it’s safe to say that jQuery makes web
development faster, easier, and even more pleasurable. I also introduce jQuery UI
in Book 4, Chapter 3, and I show that it’s an easy way to incorporate sophisticated
components such as dialog boxes and tabs into your web projects. Now I’m going
to talk briefly about yet another jQuery library: jQuery Mobile, which offers wid-
gets optimized for mobile web apps.

What is jQuery Mobile?
Most folks nowadays have a mobile device of some description, which means that
most of us are used to doing our digital duties using mobile interfaces. These
interfaces include standard mobile elements such as fixed headers and footers,
navigation bars, list views, tabs, switches that turn on and off, and hidden menus
invoked by a “hamburger” icon.

FIGURE 1-1:
With Chrome’s

developer tools
displayed, as you
change the width

of the browser
window, Chrome

displays the
current viewport

width and height.

730 BOOK 8 Coding Mobile Web Apps

Coding elements such as these is possible, but it would be a ton of work. Fortu-
nately, you can skip all of that because the hardcore geeks at jQuery Mobile have
done it all for you. jQuery Mobile is a set of mobile-optimized widgets that make
it easy for you to design your mobile web app to have the look and feel of a native
mobile app.

Best of all, the jQuery Mobile components work just like the jQuery UI widgets I
talk about in Book 4, Chapter 3, so you already know how to use them. Now all you
have to do is incorporate jQuery Mobile into your app.

Adding jQuery Mobile to your web app
jQuery Mobile consists of two files:

 » A JavaScript (.js) file that you add to your page by using a <script> tag with
a reference to the external script file.

 » A CSS (.css) file that you add to your page by using a <link
rel="stylesheet"> tag with a reference to the external CSS file.

How do you get these files? You have three ways to go about it:

 » Download the files and use the default jQuery Mobile styles. In this case,
surf to jquerymobile.com/download and click the ZIP File link. The file you
get will have a name like jquery.mobile-1.x.y.zip, where x and y denote
the current version. Decompress the ZIP file and then copy the jquery.
mobile-1.x.y.min.js and jquery.mobile-1.x.y.min.css files to your
mobile web app’s JavaScript and CSS folders. Then set up your <link> and
<script> tags to reference the files:

<link rel="stylesheet" href="/css/jquery.mobile-1.x.y.min.
css">

<script src="/js/jquery.mobile-1.x.y.min.js"></script>

(Remember to replace x and y with the actual version numbers of your
downloaded file.)

 » Use custom jQuery Mobile styles. In this case, surf to themeroller.
jquerymobile.com and use the ThemeRoller app to set your custom colors,
fonts, and other styles. Click the Download Theme ZIP File button, type a
theme name, and then click Download ZIP. Decompress the downloaded ZIP
file, copy the CSS file from the Themes folder, and then add it to your mobile
web app’s CSS folder. Then set up your <link> tag to reference the file:

<link rel="stylesheet" href="/css/custom.min.css">

http://jquerymobile.com/download/
http://themeroller.jquerymobile.com
http://themeroller.jquerymobile.com

Ex
pl

or
in

g
M

ob
ile

-F
ir

st

W
eb

 D
ev

el
op

m
en

t

CHAPTER 1 Exploring Mobile-First Web Development 731

Replace custom with the custom theme name you provided. Note that this
only gives you the CSS for jQuery Mobile. You still need to download the
jQuery Mobile JavaScript file, as I describe previously.

 » Link to a remote version of the file. Several content delivery networks
(CDNs) store the jQuery Mobile files and let you link to them. Here are the tags
to use for Google’s CDN:

<link rel="stylesheet" href="https://ajax.googleapis.com/
ajax/libs/jquerymobile/1.x.y/jquery.mobile.css">

<script src="https://ajax.googleapis.com/ajax/libs/
jquerymobile/1.x.y/jquery.mobile.min.js"></script>

Again, in both cases, be sure to replace x and y with the actual version
numbers of the latest version of jQuery Mobile.

I hold off talking about specific jQuery Mobile widgets until Book 8, Chapter 2,
where I build a mobile web app using a number of jQuery Mobile components.

You also need to add jQuery to your page, as I describe in Book 4, Chapter 1. How-
ever, as I write this, jQuery Mobile is only compatible with version 2 of jQuery, so
be sure to link to that version, not version 3.

Working with Images in a Mobile App
When planning a mobile web app, you always need to consider the impact of
images, both on your design and on your users.

Making images responsive
On the design side, you need to ensure that your images scale responsively,
depending on the screen width or height. For example, if the user’s screen is 1,024
pixels wide, an image that’s 800 pixels wide will fit no problem, but that same
image will overflow a 400-pixel-wide screen. As I mention in Book 7, Chapter 1,
you create responsive images with the following CSS rule:

image {
 max-width: 100%;
 height: auto;
}

732 BOOK 8 Coding Mobile Web Apps

Here, image is a selector that references the image or images you want to be
responsive. Setting max-width: 100% enables the image width to scale smaller or
larger as the screen (or the image’s container) changes size, but also mandates
that the image can’t scale larger than its original width. Setting height: auto
cajoles the browser into maintaining the image’s original aspect ratio by calculat-
ing the height automatically based on the image’s current width.

Occasionally, you’ll want the image height to be responsive instead of its width.
To do that, you use the following variation on the preceding rule:

image {
 max-height: 100%;
 width: auto;
}

Delivering images responsively
On the user side, delivering images that are far larger than the screen size can be a
major problem. Sure, you can make the images responsive, but you’re still send-
ing a massive file down the tubes, which won’t be appreciated by those mobile
surfers using slow connections with limited data plans.

Instead, you need to deliver to the user a version of the image file that’s appro-
priately sized for the device screen. For example, you might deliver the full-size
image to desktop users, a medium-sized version to tablet folk, and a small-sized
version to smartphone users. That sounds like a complex bit of business, but
HTML5 lets you handle everything from the comfort of the tag. The secret?
The sizes and srcset attributes.

The sizes attribute is a collection of expression-width pairs:

 » The expression part specifies a screen feature, such as a minimum or maxi-
mum width, surrounded by parentheses.

 » The width part specifies how wide you want the image displayed on screens
that match the expression.

For example, to specify that on screens up to 600 pixels wide you want an image
displayed with a width of 90vw, you’d use the following expression-width pair:

(max-width: 600px) 90vw

A typical sizes attribute is a collection of expression-width pairs, separated by
commas. Here’s the general syntax to use:

Ex
pl

or
in

g
M

ob
ile

-F
ir

st

W
eb

 D
ev

el
op

m
en

t

CHAPTER 1 Exploring Mobile-First Web Development 733

sizes="(expression1) width1,
 (expression2) width2,
 etc.,
 widthN"

Notice that the last item doesn’t specify an expression. This tells the web browser
that the specified width applies to any screen that doesn’t match any of the
expressions.

Here’s an example:

sizes="(max-width: 600px) 90vw,
 (max-width: 1000px) 60vw,
 30vw"

The srcset attribute is a comma-separated list of image file locations, each fol-
lowed by the image width and letter w. Here’s the general syntax:

srcset="location1 width1w,
 location2 width2w,
 etc.">

This gives the browser a choice of image sizes, and it picks the best one based on
the current device screen dimensions and the preferred widths you specify in the
sizes attribute. Here’s a full example, and Figure 1-2 shows how the browser
serves up different images for different screen sizes:

<img src="/images/img-small.jpg"
 sizes="(max-width: 600px) 90vw,
 (max-width: 1000px) 60vw,
 30vw"
 srcset="/images/img-small.png 450w,
 /images/img-medium.png 900w,
 /images/img-large.png 1350w">

The sizes and srcset attributes don’t always work the way you might expect. For
example, if the browser finds that, say, the large version of the image is already
stored in its cache, then it will usually decide that it’s faster and easier on the
bandwidth to just grab the image from the cache and scale it, instead of going
back to the server to download a more appropriately sized file for the current
screen.

734 BOOK 8 Coding Mobile Web Apps

Storing User Data in the Browser
I spend big chunks of this book talking about using MySQL to store data on the
server, using PHP to access that data, and using JavaScript/jQuery Ajax calls to
transfer data between the browser and the server. It’s a robust and time-tested
technique, but no sane person would describe it as trivial.

What’s a web developer to do, then, when she wants to save just a few small or
temporary tidbits of data for the current user? For example, perhaps her mobile
web app enables each user to set custom background and text colors. That’s just
two pieces of data, so setting up the MySQL-PHP-Ajax edifice to store that data
would be like building the Taj Mahal to store a few towels.

FIGURE 1-2:
With the

tag’s sizes
and srcset

 attributes on
the job, the

browser serves
up different
versions of
the image

for different
screen sizes.

Ex
pl

or
in

g
M

ob
ile

-F
ir

st

W
eb

 D
ev

el
op

m
en

t

CHAPTER 1 Exploring Mobile-First Web Development 735

Fortunately, our developer doesn’t have to embark on a major construction job
to save small amounts of data for each user. Instead, she can take advantage of a
technology called web storage that enables her to store data for each user right in
that person’s web browser.

Understanding web storage
Web storage is possible via an HTML5 technology called the Web Storage API
(application programming interface), which defines two properties of the window
object:

 » localStorage: A storage space created within the web browser for your
domain (meaning that only your local code can access this storage). Data
within this storage can’t be larger than 5MB. This data resides permanently in
the browser until you delete it.

 » sessionStorage: The same as localStorage, except that the data persists
only for the current browser session. That is, the data is erased when the user
closes the browser window.

It’s also possible for users to delete web storage data by using their browser’s
command for removing website data. If your mobile web app really needs its user
data to be permanent (or, at least, completely under your control), then you need
to store it on the server.

Both localStorage and sessionStorage do double-duty as objects that imple-
ment several methods that your code can use to add, retrieve, and delete user data.
Each data item is stored as a key-value pair.

Adding data to storage
You add data to web storage using the setItem() method:

localStorage.setItem(key, value)
sessionStorage.setItem(key, value)

 » key: A string that specifies the key for the web storage item.

 » value: The value associated with the web storage key. The value can be a
string, number, Boolean, or object. Note, however, that web storage can only
store strings, so any value you specify will be converted to a string when it’s
stored.

736 BOOK 8 Coding Mobile Web Apps

Here’s an example:

localStorage.setItem('bgcolor', '#ba55d3');

It’s common to store a collection of related key-value pairs as a JSON string. For
example, suppose you collect your data into a JavaScript object:

var userData = {
 bgcolor: "#ba55d3'",
 fgcolor: "#f8f8f8",
 subscriber: true,
 level: 3
}

Before you can add such an object to web storage, you have to stringify it — that is,
turn it into a JSON string — using the JSON.stringify() method:

localStorage.setItem('user-settings', JSON.stringify(userData));

When you store user data using web storage, that data is only available to the user
in the same web browser running on the same device. For example, if you save
data for a user running, say, Safari on an iPhone, when he returns to your site
using, say, Chrome on a desktop computer, that data will not be available to him.
Therefore, a good reason for going to the trouble to store user data on the server
is that this makes the data available no matter what browser or device the user
brings to your site.

Getting data from web storage
To retrieve an item from web storage, use the getItem() method:

localStorage.getItem(key)
sessionStorage.getItem(key)

 » key: A string that specifies the key for the storage item

Here’s an example:

var userBG = localStorage.getItem('bgcolor');

Ex
pl

or
in

g
M

ob
ile

-F
ir

st

W
eb

 D
ev

el
op

m
en

t

CHAPTER 1 Exploring Mobile-First Web Development 737

If you stored a JavaScript object as a JSON string, use JSON.parse() to restore the
object:

var userData = JSON.parse(localStorage.getItem('user-
settings'));

Removing data from web storage
If you no longer require data in web storage, use the removeItem() method to
delete it:

localStorage.removeItem(key)
sessionStorage.removeItem(key)

 » key: A string that specifies the key for the storage item

Here’s an example:

localStorage.removeItem('bgcolor');

If you want to start fresh and delete everything from web storage, use the clear()
method:

localStorage.clear();
sessionStorage.clear();

CHAPTER 2 Building a Mobile Web App 739

Building a Mobile
Web App

Learning the art of programming, like most other disciplines, consists of first
learning the rules and then learning when to break them.

— JOSHUA BLOCH

In this chapter, I show you how to build an app that’s designed for the mobile
web. In particular, my goal here is to build an app that satisfies three of the
most common criteria in mobile web app development. For starters, the app

must work well first and foremost on a smartphone. That is, it must be a mobile-
first design, as I describe in Book 8, Chapter 1. Second, the app must look at least
a little like the so-called native apps that are available in the App Store for iOS and
Google Play for Android. Although the code will live on the web, this isn’t a web-
site we’re building, it’s a web app, so it should look applike. Our new friend jQuery
Mobile, which I introduce in Book 8, Chapter 1, will help with that. Finally, the app
should be self-contained, meaning that it doesn’t require a back end either to get
the data it requires or to save any data that the user creates.

All of this might sound limiting, but constraints are the essence of creativity and
can be liberating in the sense that they focus your attention on a smaller subset of

Chapter 2

IN THIS CHAPTER

 » Building a mobile web app from the
ground up

 » Putting a few jQuery Mobile widgets
through their paces

 » Setting up the app’s structure
with HTML

 » Defining the look of the app with CSS

 » Making the app do something useful
with JavaScript and jQuery

740 BOOK 8 Coding Mobile Web Apps

what’s possible. You’ll be amazed at the incredible things you can build on even
the smallest web development canvas. The screens you’re coding for might be
small, but that doesn’t mean your ambitions can’t be big.

Building the Button Builder App
The example I demonstrate in this chapter is called Button Builder, and it’s a
mobile web app that generates the CSS code for a button. That might strike you a
tad trivial at first blush, but creating beautiful and unique buttons isn’t easy. For
example, here’s some typical button code:

.btn {
 background-color: hsl(0, 68%, 30%);
 background-image: linear-gradient(to bottom, hsl(0, 68%,

50%) 0%, hsl(0, 68%, 30%) 100%);
 border-color: hsl(0, 0%, 0%);
 border-radius: 10px;
 border-style: solid;
 border-width: 3px;
 color: hsl(0, 0%, 100%);
 font-family: Verdana, sans-serif;
 font-size: 1.25rem;
 font-style: normal;
 font-variant: normal;
 font-weight: normal;
 letter-spacing: 1.5px;
 padding-bottom: 10px;
 padding-left: 20px;
 padding-right: 20px;
 padding-top: 7px;
}
.btn:hover {
 background-color: hsl(0, 68%, 30%);
 background-image: linear-gradient(to bottom, hsl(0, 68%,

30%) 0%, hsl(0, 68%, 50%) 100%);
}

There are no less than 19 CSS declarations here, and getting them to work in har-
mony to create a pleasing button is no easy task. The app I’m going to build makes
button production a snap by offering controls such as text boxes, sliders, and color
pickers to change a button’s properties and display the results — and the under-
lying CSS code — in real time.

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 741

Getting Some Help from the Web
The Button Builder app has two features that require some attention from the
start:

 » Color pickers: I need color pickers for the button’s text, background, and
border colors. Unfortunately, as I write this, the standard HTML5 color picker
(that is, an <input> tag with type="color") doesn’t work in iOS, so I need an
alternative. My favorite third-party color picker is Spectrum, written by Brian
Grinstead. It’s simple, small, and works perfectly in all browsers. You can
download it from http://bgrins.github.io/spectrum, and then include
the files spectrum.css and spectrum.js in your project.

 » Copy to clipboard: Button Builder will have a Copy the Button CSS command,
which copies the CSS code to the device clipboard, enabling you to then paste
the code into a text editor, an email message, or wherever you need it. One of
the most popular tools for enabling this copying feature is Clipboard.js. You
can either download it from https://clipboardjs.com and then include the
file clipboard.min.js in your project, or you can use one of the content
delivery networks (CDNs) that are linked from the Clipboard.js page.

Building the App: HTML
The Button Builder app, like most mobile web apps, consists of just a single page:
index.html. In the next few sections, I go through the process of building the
HTML for this page.

Setting up the home page skeleton
To get started, set up the skeleton for the page. Here’s the top part of the page:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,

initial-scale=1.0">
 <title>Button Builder</title>

http://bgrins.github.io/spectrum/
https://clipboardjs.com

742 BOOK 8 Coding Mobile Web Apps

 <!-- External CSS Files -->
 <link

href="https://fonts.googleapis.com/css?family=Source+
Sans+Pro:400,700|Source+Code+Pro|" rel="stylesheet">

 <link
href="https://ajax.googleapis.com/ajax/libs/
jquerymobile/1.4.5/jquery.mobile.css" rel="stylesheet">

 <link href="css/spectrum.css" rel="stylesheet">
 <link href="css/styles.css" rel="stylesheet">

 <!-- External JavaScript Files -->
 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/2.2.4/
jquery.min.js"></script>

 <script
src="https://ajax.googleapis.com/ajax/libs/jquerymobile/1.4.5/
jquery.mobile.min.js"></script>

 <script src="js/spectrum.js"></script>
 <script src="js/clipboard.min.js"></script>
 <script src="js/code.js"></script>

 <!-- Custom CSS for the button will appear here -->
 <style id="button-css" type="text/css">
 </style>

 <script>

 $(document).ready(function() {

 });
 </script>
</head>

There are four main sections to note here:

 » The external CSS files include a couple of Google fonts (Source Sans Pro and
Source Code Pro), the jQuery Mobile CSS, the Spectrum CSS, and the app’s CSS
(styles.css).

 » The external JavaScript files include the jQuery and jQuery Mobile libraries,
the code for Spectrum and Clipboard.js, and the app’s JavaScript (code.js).

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 743

 » The <style> tag is where the app writes the custom CSS for the button. Note
that this tag gets overwritten by the app, so if you want to store any CSS in a
<style> tag, you need to create a separate style element.

 » The <script> tag includes jQuery’s standard ready event handler, which is
where the app initialization and event handlers will reside.

Here’s the rest of index.html:

<body>
 <main role="main" data-role="page" class="ui-responsive-

panel">
 <header data-role="header" data-position="fixed">
 </header>
 <article role="contentinfo" class="ui-content">
 </article>
 <aside id="menu-panel" role="complementary" data-

role="panel" data-display="overlay" data-theme="a">
 </aside>
 </main>
</body>
</html>

Within the <body> tag, there are four elements you should note:

 » main: Holds all the HTML for the app. Note, in particular, that it has the
attribute value data-role="page". The data-role attribute is used by
jQuery Mobile to specify what type of widget to apply to an HTML element.
A Page widget is the main container for a jQuery Mobile app. The class
ui-responsive-panel sets up the page as a responsive panel, meaning it
accommodates any screen size and includes a “hamburger” button that, when
tapped or clicked, reveals a menu of options.

 » header: Defines a header at the top of the screen. In Button Builder, the
header will hold the app title, the menu button, and the button preview.
Adding data-position="fixed" configures the header to stay on screen
even when the user scrolls vertically.

 » article: Holds the app’s content. For Button Builder, this will be a series of
jQuery Mobile Collapsible widgets that hold the controls that enable the user
to build a custom button.

 » aside: Holds the app’s menu commands. It’s a jQuery Mobile Panel widget
that appears when the user taps or clicks the menu button in the header.
Setting data-display to overlay means the menu slides in on top of the
main panel. Other display modes you could try are push and reveal.

744 BOOK 8 Coding Mobile Web Apps

Configuring the header
Here’s the HTML for the app’s header element:

<header data-role="header" data-position="fixed">
 <h1>Button Builder</h1>
 <a href="#menu-panel" data-icon="bars" data-iconpos="left"

style="height: 3rem; background-color: #e8e8e8; border: none;
box-shadow: none;">

 <div id="button-preview" class="control-row button-preview-
wrapper">

 <label for="built-button">Preview:</label>
 <div id="built-button" class="btn">Button</div>
 </div>
</header>

There are three elements to note:

 » h1: Defines the app title.

 » a: Defines the button that the user clicks to display the menu. The href
attribute links to the ID (menu-panel) of the aside that contains the menu
commands. The data-icon attribute adds a built-in jQuery Mobile icon: In
this case, bars is the three horizontal lines that have come to be known as the
hamburger icon.

 » div: Holds the text Preview: and a nested div that the app uses to apply the
custom CSS, which is applied to the btn class.

Figure 2-1 shows the app header.

To eyeball the complete list of jQuery Mobile icons, see http://api.
jquerymobile.com/icons.

FIGURE 2-1:
The Button

Builder header
showing the app
title, menu icon,

and a preview
of the custom

button.

http://api.jquerymobile.com/icons/
http://api.jquerymobile.com/icons/

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 745

Creating the app menu
Here’s the HTML for the app’s menu:

<aside id="menu-panel" role="complementary" data-role="panel"
data-display="overlay" data-theme="a">

 <ul data-role="listview">
 <li data-icon="delete"><a href="#" data-

rel="close">Close menu
 <li data-icon="check"><a id="save-button"

href="#" data-rel="close">Save Your Button
 <li data-icon="action"><a id="copy-button"

href="#" data-rel="close">Copy the Button CSS
 <li data-icon="recycle"><a id="reset-button"

href="#" data-rel="close">Reset the Button CSS

</aside>

Note, in particular, the nested tag, which is configured as a jQuery Mobile
ListView widget. This displays each li element as an item in a vertical list, as
shown in Figure 2-2, which shows the menu that appears when the user clicks or
taps the menu icon.

Adding the app’s controls
Now it’s time to populate the app with the actual controls for manipulating the
button to get the look you want. The app divides the controls into four sections:

 » Text Styles: Customizes the button text, especially the typography

 » Box Styles: Customizes the button’s box model, especially the padding and
border

FIGURE 2-2:
The Button

Builder menu.

746 BOOK 8 Coding Mobile Web Apps

 » Color Styles: Customizes the button’s text, background, and border colors

 » CSS Code: Displays the custom CSS created by the preceding controls

Each of these sections is a jQuery Mobile Collapsible widget, which is a useful
mobile web app tool because it enables you to place a large amount of content
onto a page, but hides that content behind section headings. When the user taps
or clicks a heading, the content is revealed.

Here’s the skeleton code that creates these Collapsible widgets:

<div id="text-settings-collapsible" data-role="collapsible"
data-inset="false">

 <h2>Text Styles</h2>
 <section>
 </section>
</div>

<!-- Box Settings -->
<div id="box-settings-collapsible" data-role="collapsible"

data-inset="false">
 <h2>Box Styles</h2>
 <section>
 </section>
</div>

<!-- Color Settings -->
<div id="color-settings-collapsible" data-role="collapsible"

data-inset="false">
 <h2>Color Styles</h2>
 <section>
 </section>
</div>

<!-- CSS Code -->
<div id="css-code-collapsible" data-role="collapsible" data-

inset="false">
 <h2>CSS Code</h2>
 <section id="css-code" class="css-code">
 </section>
</div>

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 747

Some notes:

 » Each div element is given a data-role value of collapsible, which tells
jQuery Mobile to configure the div as a Collapsible widget. These widgets
normally have margins around them, but adding data-inset="false" tells
jQuery Mobile to do without those margins.

 » Each <h2> tag defines the text that appears in the header of each Collapsible
widget.

 » The section elements are where the app’s controls will appear. The excep-
tion here is the css-code section, which the app itself populates with the
generated CSS for the custom button.

Figure 2-3 shows the app with the Collapsible widgets added.

Adding the text controls
Here’s the HTML I used for the Text Styles section:

<h2>Text Styles</h2>
<section>
 <div class="control-row">
 <label for="button-text">Button text:</label>
 <input id="button-text" type="text" value="Button"

aria-label="Enter the button text">
 </div>
 <div class="control-row">
 <label for="font-family">Font family:</label>
 <select id="font-family" data-role="selectmenu" aria-

label="Select a font family">

FIGURE 2-3:
Button Builder

with the
 Collapsible

widget sections
added.

748 BOOK 8 Coding Mobile Web Apps

 <option value="Arial, sans-serif">Arial</option>
 <option value="Tahoma, sans-serif">Tahoma</option>
 <option value="'Trebuchet MS', sans-serif">Trebuchet

MS</option>
 <option value="Verdana, sans-serif">Verdana</option>
 <option value="Georgia, serif">Georgia</option>
 <option value="Palatino, serif">Palatino</option>
 <option value="'Times New Roman', serif">Times New

Roman</option>
 <option value="'Courier New', monospace">Courier

New</option>
 </select>
 </div>
 <div class="control-row">
 <label for="font-size">Font size (rem):</label>
 <input id="font-size" type="range" min="0.5" max="3"

step=".05" data-unit="rem" aria-label="Select a font size in
rems">

 </div>
 <div class="control-row">
 <label for="letter-spacing">Letter spacing (px):</label>
 <input id="letter-spacing" type="range" min="0" max="6"

step=".05" data-unit="px" aria-label="Select the letter
spacing in pixels">

 </div>
 <div class="control-row">
 <label for="font-weight">Bold:</label>
 <select id="font-weight" data-role="flipswitch" aria-

label="Toggle bold on and off">
 <option value="normal">Off</option>
 <option value="bold">On</option>
 </select>
 </div>
 <div class="control-row">
 <label for="font-style">Italic:</label>
 <select id="font-style" data-role="flipswitch" aria-

label="Toggle italics on and off">
 <option value="normal">Off</option>
 <option value="italic">On</option>
 </select>
 </div>
 <div class="control-row">

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 749

 <label for="font-variant">Small caps:</label>
 <select id="font-variant" data-role="flipswitch" aria-

label="Toggle small caps on and off">
 <option value="normal">Off</option>
 <option value="small-caps">On</option>
 </select>
 </div>
</section>

There are seven controls here:

 » Button text: The text that appears on the button face.

 » Font family: The typeface for the button text (CSS property: font-family).
This select element is given a data-role value of selectmenu, which turns
it into a jQuery Mobile SelectMenu widget.

 » Font size: The type size, measured in rems (CSS property: font-size). When
you give an input element a type value of range, jQuery Mobile automati-
cally enhances the input with a Slider widget, which enables the user to drag
the slider to set the input value.

 » Letter spacing: The space between the button text letters, measured in pixels
(CSS property: letter-spacing).

 » Bold: Toggles bold on and off (CSS property: font-weight). The data-role
value of flipswitch turns this select into a jQuery Mobile FlipSwitch widget,
which enables the user to choose between two values by tapping to “flip” the
switch. The standard values are On and Off, but you can use the option
elements’ value attributes to set custom values (normal and bold, in this case).

 » Italic: Toggles italics on and off (CSS property: font-style).

 » Small caps: Toggles small caps on and off (CSS property: font-variant).

Note here that most of the controls use id values that are the same as the associ-
ated CSS property. For example, the id value of the Font Size control is font-size.
As I describe a bit later, this makes it easy for the app’s code to know which CSS
property to generate for each control.

When the user taps Text Styles, the controls shown in Figure 2-4 appear.

750 BOOK 8 Coding Mobile Web Apps

Adding the box controls
Check out the HTML code for the Box Styles section:

<h2>Box Styles</h2>
<section>
 <div class="control-row">
 <label for="padding-top">Padding top (px):</label>
 <input id="padding-top" type="range" min="0" max="60"

step="1" data-unit="px"aria-label="Enter the top padding">
 </div>
 <div class="control-row">
 <label for="padding-right">Padding right (px):</label>
 <input id="padding-right" type="range" min="0" max="60"

step="1" data-unit="px"aria-label="Enter the right padding">
 </div>
 <div class="control-row">
 <label for="padding-bottom">Padding bottom (px):</label>
 <input id="padding-bottom" type="range" min="0" max="60"

step="1" data-unit="px"aria-label="Enter the bottom padding">
 </div>
 <div class="control-row">
 <label for="padding-left">Padding left (px):</label>
 <input id="padding-left" type="range" min="0" max="60"

step="1" data-unit="px"aria-label="Enter the left padding">
 </div>
 <div class="control-row">
 <label for="border-radius">Border radius (px):</label>
 <input id="border-radius" type="range" min="0" max="25"

step="1" data-unit="px"aria-label="Enter the border radius">
 </div>

FIGURE 2-4:
The controls in

Button Builder’s
Text Styles

section.

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 751

 <div class="control-row">
 <label for="border-width">Border width (px):</label>
 <input id="border-width" type="range" min="0" max="10"

step="1" data-unit="px" aria-label="Enter the border width">
 </div>
 <div class="control-row">
 <label for="border-style">Border style:</label>
 <select id="border-style" data-role="selectmenu" aria-

label="Select a border style">
 <option value="solid">solid</option>
 <option value="dashed">dashed</option>
 <option value="dotted">dotted</option>
 <option value="double">double</option>
 </select>
 </div>
</section>

The first four controls set the padding values, in pixels (CSS properties: padding-
top, padding-right, padding-bottom, and padding-left). The next two controls
set the border radius, in pixels (CSS property: border-radius), and the border
width, in pixels (CSS property: border-width). The Border Style select element
sets the border style (CSS property: border-style).

Figure 2-5 shows the Box Styles section.

FIGURE 2-5:
The controls in

Button Builder’s
Box Styles

section.

752 BOOK 8 Coding Mobile Web Apps

Adding the color controls
Here’s the HTML code that populates Button Builder’s Color Styles section:

<h2>Color Styles</h2>
<section>
 <div class="control-row">
 <label for="color">Text color:</label>
 <input id="color" type="text" aria-label="Select a text

color">
 </div>
 <div class="control-row">
 <label for="background-color">Background color:</label>
 <input id="background-color" type="text" aria-

label="Select a background color">
 </div>
 <div class="control-row">
 <label for="border-color">Border color:</label>
 <input id="border-color" type="text" aria-label="Select

a border color">
 </div>
 <div class="control-row">
 <label for="gradient">Gradient:</label>
 <input id="gradient" type="checkbox" data-

role="flipswitch" aria-label="Toggle the background gradient
on or off" checked>

 </div>
 <div class="control-row">
 <label for="hover">Hover effect:</label>
 <input id="hover" type="checkbox" data-role="flipswitch"

aria-label="Toggle the hover effect on or off" checked>
 </div>
</section>

This section uses three Spectrum color pickers: Text Color (CSS property: text-
color), Background Color (CSS property: background-color), and Border Color
(CSS property: border-color). There are also a couple of jQuery Mobile FlipSwitch
widgets that toggle two effects:

 » Gradient: When On, applies a gradient effect to the button’s background
color (CSS property: background-image)

 » Hover effect: When On, adds the .btn-hover class to the CSS, which swaps
the gradient colors when the user hovers the pointer over the button

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 753

USING HUE, SATURATION, AND
LUMINANCE TO SPECIFY CSS COLORS
In the Button Builder app, I define most of the colors using the HSL method, which uses
the following three components:

• Hue: Specifies a position, in degrees, on the color wheel. Acceptable values are
between 0 and 359, where lower numbers indicate a position near the red end of
the spectrum (with red equal to 0 degrees), and higher numbers move through the
yellow, green, blue, and violet parts of the spectrum. Hue is pretty much equivalent
to the term color.

• Saturation: Sets a given hue’s purity, expressed as a percentage. 100% means that
the hue is a pure color, whereas lower numbers indicate that more gray is mixed
with the hue until, at 0%, the color becomes part of the grayscale.

• Luminance: Sets the hue’s brightness, as a percentage. Lower percentages are
darker (with 0% producing black), and higher numbers are brighter (with 100% cre-
ating white).

To apply the HSL method in CSS, use the hsl() function as the value of a color property
(such as text-color or background-color):

hsl(hue, saturation, luminance)

• hue: Specifies the hue with a value between 0 and 359.

• saturation: Specifies the saturation with a value between 0% and 100%.

• luminance: Specifies the luminance with a value between 0% and 100%.

I used HSL in Button Builder because it helps to simplify both the gradient and hover
effects:

• For the gradient, I set the bottom color to be the same as the background color,
and then I defined the top color to be the background color with the luminance
reduced by 20 percentage points (from 50% to 30%):

background-color: hsl(0, 68%, 30%);
background-image: linear-gradient(to bottom, hsl(0, 68%, 50%)

0%, hsl(0, 68%, 30%) 100%);

• For the hover, I reversed the top and bottom colors in the gradient:

background-color: hsl(0, 68%, 30%);
background-image: linear-gradient(to bottom, hsl(0, 68%, 30%)

0%, hsl(0, 68%, 50%) 100%);

754 BOOK 8 Coding Mobile Web Apps

Figure 2-6 shows the controls in the Color Styles section.

Building the App: CSS
Most of the heavy lifting for the Button Builder CSS is handled by jQuery Mobile,
so the custom CSS mostly involves either app-specific rules or tweaks to the
jQuery Mobile styles.

I begin with a standard CSS reset:

* {
 box-sizing: border-box;
}
body{
 margin: 0 auto;
 padding: 0;
 font-weight: normal;
 font-style: normal;
 font-size: 100%;
}

From there, I set up a few rules for some of the page elements:

html,
body {
 font-family: 'Source Sans Pro', Verdana, sans-serif;
 overflow-x: hidden;
}

FIGURE 2-6:
The controls in

Button Builder’s
Color Styles

section.

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 755

main {
 padding-top: 0 !important;
}
h1, h2 {
 font-family: 'Source Sans Pro', Verdana, sans-serif;
 font-weight: bold;
}
label {
 font-family: 'Source Sans Pro', Verdana, sans-serif;
}
a {
 letter-spacing: 1.5px;
}

This is mostly typography, but I set overflow-x: hidden on the html and body
elements to prevent horizontal scrolling on narrow devices.

Next I style a few app classes:

.button-preview-wrapper {
 border-top: 2px solid #ddd;
 padding: 1rem 0;
 background-color: #fff;
}
.button-preview-wrapper label {
 font-size: 1.25rem;
 font-weight: bold;
}
.control-row {
 display: flex;
 align-items: center;
}
.control-row label {
 width: 40%;
 margin-right: 1rem;
 text-align: right;
}
.css-code {
 font-family: 'Source Code Pro', 'Courier New', monospace;
 white-space: pre;
 overflow-x: auto;
}

756 BOOK 8 Coding Mobile Web Apps

These classes style the button preview div, the rows used to display each control,
and the appearance of the CSS code.

From there I add a few tweaks to the jQuery Mobile classes:

.ui-header .ui-title {
 margin: 0;
 padding: .5rem 0;
 color: hsl(217, 66%, 32%);
 font-size: 2rem;
 font-style: italic;
 overflow: visible;
}
.ui-input, ui-input-text {
 width: 100%;
}
.ui-flipswitch .ui-btn.ui-flipswitch-on {
 text-indent: -3.6em;
}
.ui-flipswitch .ui-flipswitch-off {
 margin-top: -2rem;
 text-indent: 3em;
}
.ui-slider-track {
 width: 125%;
 touch-action: none
}

This is mostly just fiddling with properties to get things looking good. However,
note the text-indent and margin-top values applied to the ui-flipswitch class.
These are necessary to get the FlipSwitch widget to display the text values prop-
erly. You might have to fiddle with these in your own code.

Finally, because this is a mobile-first app, I added a media query to handle screens
with widths greater than or equal to 800px:

@media (min-width: 800px) {
 .ui-mobile-viewport,
 .ui-header,
 .ui-content
 {
 width: 800px !important;
 margin: 0 auto !important;
 }
}

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 757

All this code does is set the width of the app’s three main jQuery Mobile areas to
800px and center them within the viewport with margin: 0 auto.

Building the App: JavaScript and jQuery
With the app’s HTML structure in place and the CSS styles making everything
look respectable, it’s time to wire everything together with JavaScript and jQuery.

A mobile web app that uses internal data will often need to perform four tasks
using that data:

 » Initialize the data.

 » Use the data to set the value of each of the app’s controls.

 » Get the values from the app’s controls and store them in the app’s data
structure.

 » Generate the app’s output from the data.

The specifics of these tasks are covered in the next four sections.

Setting up the app data structures
Like many mobile web apps, Button Builder doesn’t require data from a server.
Instead, it uses its own internal data structures to store four chunks of button-
related data:

 » The button text

 » Whether the button has a gradient (true or false)

 » Whether the button uses a hover effect (true or false)

 » The button’s CSS property-value pairs

I use two JavaScript objects to store the data: one that holds the default button
data and one that holds the custom button data generated by the user. Here’s the
code that defines the default button data:

var defaultButton = {};
defaultButton.text = 'Button';
defaultButton.gradient = true;

758 BOOK 8 Coding Mobile Web Apps

defaultButton.hover = true;
defaultButton.styles = {};
defaultButton.styles['background-color'] = 'hsl(0, 68%, 30%)';
defaultButton.styles['background-image'] = 'linear-gradient(to

bottom, hsl(0, 68%, 50%) 0%, hsl(0, 68%, 30%) 100%)';
defaultButton.styles['border-color'] = 'hsl(0, 0%, 0%)';
defaultButton.styles['border-radius'] = '10px';
defaultButton.styles['border-style'] = 'solid';
defaultButton.styles['border-width'] = '0px';
defaultButton.styles['color'] = 'hsl(0, 0%, 100%)';
defaultButton.styles['font-family'] = 'Verdana, sans-serif';
defaultButton.styles['font-size'] = '1.25rem';
defaultButton.styles['font-style'] = 'normal';
defaultButton.styles['font-variant'] = 'normal';
defaultButton.styles['font-weight'] = 'normal';
defaultButton.styles['letter-spacing'] = '1.5px';
defaultButton.styles['padding-bottom'] = '10px';
defaultButton.styles['padding-left'] = '20px';
defaultButton.styles['padding-right'] = '20px';
defaultButton.styles['padding-top'] = '7px';

Notice that the object’s styles property is itself an object.

For the custom button, the app declares the following:

var customButton = {};
customButton.styles = {};

Setting the app’s control values
You could initialize the app’s controls by adding value attributes where appropriate,
but it’s almost always better to set up a default data object and then use that object
to populate the controls via code. That way, if you decide to change the defaults, you
need only edit the object’s values. Also, if your app offers a “reset” feature, as does
Button Builder, then you can also use the default data to perform the reset.

Here’s the function that sets the Button Builder’s control values:

function setButtonValues(button) {

 // Set the Button Text value
 $('input[id=button-text]').val(button.text);
 $('input[id=button-text]').textinput('refresh', true);

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 759

 // Set the Gradient value
 if (button.gradient) {
 $('input[id=gradient]').prop('checked', true);
 } else {
 $('input[id=gradient]').prop('checked', false);
 }
 $('input[id=gradient]').flipswitch('refresh', true);

 // Set the Hover value
 if (button.hover) {
 $('input[id=hover]').prop('checked', true);
 } else {
 $('input[id=hover]').prop('checked', false);
 }
 $('input[id=hover]').flipswitch('refresh', true);

 // Loop through the styles
 for (var propertyName in button.styles) {

 // Skip the background-image property, which doesn't

have a setting
 if (propertyName !== 'background-image') {

 // Set the control ID from the property name
 var propertyID = '#' + propertyName;

 // Get the current property value
 var propertyValue = button.styles[propertyName];

 // Is it a color property?
 if (propertyName.includes('color')) {

 // If so, apply the color to the color picker
 $(propertyID).spectrum('set', propertyValue);
 }
 // Otherwise, is the property associated with a

<select> tag?
 else if ($(propertyID)[0].tagName === 'SELECT') {

 // If so, is it a SelectMenu widget?
 if ($(propertyID).attr('data-role') ===

'selectmenu') {
 // If so, set the SelectMenu's selected

option

760 BOOK 8 Coding Mobile Web Apps

 $('select[id=' + propertyName + '] >
option[value="' + propertyValue + '"]').attr('selected', true);

 $('select[id=' + propertyName + ']').
selectmenu('refresh', true);

 } else {

 // Otherwise, set the FlipSwitch's selected

option
 $('select[id=' + propertyName + '] >

option[value="' + propertyValue + '"]').attr('selected', true);
 $('select[id=' + propertyName + ']').

flipswitch('refresh', true);
 }
 } else {

 // For all other inputs, first remove the unit

(rem or px)
 propertyValue = propertyValue.replace(/rem|

px/, '');

 // Set the control's value
 $('input[id=' + propertyName + ']').

val(propertyValue);
 $('input[id=' + propertyName + ']').

textinput('refresh', true);
 }
 }
 }
}

This function takes a button object — which will either be defaultButton or
customButton — as a parameter. The function begins by setting the values for the
Button Text box and the Gradient and Hover switches. Notice that jQuery Mobile
requires that I invoke a refresh event on a changed control. For example:

$('input[id=button-text]').textinput('refresh', true);

From there, the code loops through the object’s styles sub-object, setting and
then refreshing the controls depending on the control type.

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 761

Getting the app’s control values
Before a mobile web app can generate any output, it needs to gather all the current
values of the app’s controls and then store them in the app data structure. Here’s
the Button Builder code that does this:

function getButtonValues() {

 // Reference all the controls (that is, all the <input> and

<select> tags)
 var $controls = $('article').find('input, select');

 // Loop through all the controls
 $controls.each(function() {

 // In most cases, the ID of each setting is also the CSS

property name
 var cssProperty = $(this).attr('id');

 // Use a switch() to handle the exceptions
 switch (cssProperty) {

 // Write the button text
 case 'button-text':

 // Get the user's button text
 var newButtonText = $(this).val();

 // Apply the text to the button
 $('.btn').text(newButtonText);

 // Store the button text
 customButton.text = newButtonText;

 break;

 // Apply a gradient to the button background
 case 'gradient':

 // Is the Gradient Flipswitch widget set to On?
 if($('#gradient').prop('checked')) {

 // Turn on the button's gradient flag
 customButton.gradient = true;
 } else {

762 BOOK 8 Coding Mobile Web Apps

 // Turn off the button's gradient flag
 customButton.gradient = false;
 }

 // Build the gradient CSS
 buildGradient(customButton);

 break;

 // Apply a hover effect to the button background
 case 'hover':

 // Is the Hover Flipswitch widget set to On?
 if($('#hover').prop('checked')) {

 // Turn on the button's hover flag
 customButton.hover = true;
 } else {

 // Turn off the button's hover flag
 customButton.hover = false;
 }

 // Build the hover CSS
 buildHover(customButton);

 break;

 // For everything else, store the property-value
 // pair in the customButton.styles object
 default:

 // First, check for a unit associated with the

property
 var unit = $(this).attr('data-unit');

 // Does the unit exist?
 if(unit !== null) {

 // If so, add it to the property value
 if(cssProperty === 'box-shadow') {
 customButton.styles[cssProperty] =

$(this).val() + unit + ' 3px 3px #666';
 } else {

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 763

 customButton.styles[cssProperty] =
$(this).val() + unit;

 }
 } else {

 // Otherwise, just store the property value
 customButton.styles[cssProperty] = $(this).

val();
 }
 }
 });
}

This function first sets up a jQuery reference to all the controls — that is, all the
<input> and <select> tags. The code loops through these controls, getting the
associated CSS property name from the control’s id value, then using a switch()
statement to handle the exceptions: the button text and the gradient and hover
flags. The default case handles the actual CSS property-value pairs, and these are
stored in the customButton.styles object.

Writing the custom CSS code
Here’s the function that generates Button Builder’s custom CSS code:

function generateButtonCode(button) {

 // Set the button text
 $('.btn').text(button.text);

 // Build the gradient code
 buildGradient(button);

 // Build the hover code
 buildHover(button);

 // Sort the styles by property name
 var alphaStyles = {};
 Object.keys(button.styles).sort().forEach(function

(propertyName) {
 alphaStyles[propertyName] = button.styles[propertyName];
 });

 // Build the CSS string
 var strCSS = "\n.btn {\n";

764 BOOK 8 Coding Mobile Web Apps

 for (var propertyName in alphaStyles) {
 strCSS += TAB + propertyName + ": " +

alphaStyles[propertyName] + ";\n";
 }
 strCSS += "}\n";
 strCSS += hoverStyles;

 // Add the code to the CSS Code section
 $('#css-code').text(strCSS);

 // Build the <style> tag
 var strStyleTag = '<style id="button-css" type="text/css">'

+ strCSS + '</style>';

 // Replace the current <style> tag with the new one
 $('#button-css').replaceWith(strStyleTag);

 // Adjust the <article> padding so that it clears the new

header size
 $('article').css('padding-top', $('header').height() + 2);
}

This function takes a button object as a parameter, then generates the new button
and CSS, as follows:

 » The button text is updated.

 » The new gradient effect is generated by calling the buildGradient()
function (not shown), which creates and stores the background-image
property-value pair.

 » The new hover effect is generated by calling the buildHover() function (not
shown), which creates the .btn:hover CSS rule.

 » The button’s styles object is sorted alphabetically by property name.

 » The CSS rule for the .btn class is generated and then added to the CSS Code
section of the app.

 » The .btn and .btn:hover rules are embedded in a <style> tag, which is
then used to replace the existing <style id="button-css"> tag. Doing this
refreshes the preview button with the new CSS rules.

 » The <article> tag’s padding-top property is adjusted to the header
element’s height, plus 2px, to ensure that as the preview button grows or
shrinks (say, because of font size changes), the header and article remain in
the same relative position to each other.

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 765

Running the code
How does the code for setting the control values, getting the control values, and
generating the CSS code get called? This happens in index.html, as part of the
jQuery ready event handler. The first time you run the app (and each subsequent
time if no custom button has been saved), the initial button is generated by call-
ing the following two functions using the defaultButton object as a parameter:

setButtonValues(defaultButton);
generateButtonCode(defaultButton);

To handle control changes, the app uses the following event handler:

$('input, select').on('blur change input keyup contextmenu',
function(e) {

 // Prevent the default whatever
 e.preventDefault();

 // Get all the custom button values
 getButtonValues();

 // Write the CSS code
 generateButtonCode(customButton);
});

This handler listens for several event types on the input and select elements.
If invoked, the handler prevents the default action, then runs the getButton
Values() and generateButtonCode() functions.

Saving the custom CSS
When the user taps or clicks Button Builder’s Save Your Button command, the fol-
lowing event handler leaps into action:

$('#save-button').click(function() {

 // Get the button's control values
 getButtonValues();

 // Save them
 localStorage.setItem('button-builder-data', JSON.

stringify(customButton));
});

766 BOOK 8 Coding Mobile Web Apps

This handler calls getButtonValues() to populate the customButton object, and
it then uses the setItem() function to store a JSON stringified version of the
object in localStorage.

You now need to update the app’s ready event handler to check for a saved button:

var buttonData = localStorage.getItem('button-builder-data');

// Did we get anything back from localStorage?
if (buttonData) {

 // If so, objectify it and store it in our global

customButton object
 customButton = JSON.parse(buttonData);

 // Apply the button's styles
 setButtonValues(customButton);
 generateButtonCode(customButton);
} else {

 // If not, build the button using the default CSS values
 setButtonValues(defaultButton);
 generateButtonCode(defaultButton);
}

First, the app checks for a saved button. If a saved button exists, the app gets the
saved data, stores it as a JavaScript object in the customButton variable, and then
calls setButtonValues() and generateButtonCode() to apply the saved button
CSS. Otherwise, the default button code is used.

Copying the custom CSS
To handle Button Builder’s Copy the Button CSS command, the ready event’s call-
back function includes the following Clipboard.js code:

var buttonCSSClipboard = new Clipboard('#copy-button', {
 text: function(trigger) {
 var textToCopy = $('#css-code').text();
 return textToCopy;
 }
});

Bu
ild

in
g

a
M

ob
ile

W

eb
 A

pp

CHAPTER 2 Building a Mobile Web App 767

This binds a new Clipboard object to the Copy the Button CSS command (which
has an id value of copy-button). When this command is tapped or clicked, Clip-
board.js grabs the text from the CSS Code section and copies it to the device
clipboard.

Resetting the CSS to the default
To handle Button Builder’s Reset the Button CSS command, the ready event’s
callback function includes the following handler code:

$('#reset-button').click(function() {

 // Rebuild the button using the default CSS values
 setButtonValues(defaultButton);
 generateButtonCode(defaultButton);
});

This code resets the button’s default CSS by invoking both the setButton
Values() and generateButtonCode() functions using the defaultButton object
as the parameter.

Index 769

Index
Symbols
+ (addition) operator, 199, 200, 220, 337–338, 438,

439, 587
&& (AND) operator, 215–216, 217–219, 220, 230,

439, 485
@ sign, 315
\ (backslash), 51, 442
{} (braces), 82, 227, 251, 358
[] symbol, 584–585
[^] symbol, 585
^ symbol, 588
+ (concatenation), 205, 220
-- (decrement) operator, 199, 202, 220, 239, 438
/ (division) operator, 199, 202–204, 220, 438
$ (dollar sign), 368, 438, 588–589
. (dot) symbol, 439, 583–584, 589
.. (double dots), 630
““ (double quotation marks), 192
\\ (double-slash), 180
= (equal) operator, 439, 483
= (equal sign), 198, 358–359
== (equality operator), 208–209, 220,

358–359
** (exponentiation) operator, 438
> (greater than) operator, 208, 209, 220, 347,

439, 483
>= (greater than or equal) operator, 208, 210, 220,

439, 483
(hashtag symbol), 98, 610
- (hyphen), 407
=== (identity) operator, 208, 212, 220,

358–359, 439
++ (increment) operator, 199, 200–201, 220, 438
< (less than) operator, 208, 209–210, 220,

439, 483
<= (less than or equal) operator, 208, 210–211,

220, 439, 483
% (modulus) operator, 199, 204, 220, 438

* (multiplication) operator, 198, 199, 202, 220,
438, 586–587

!== (non-identity) operator, 208, 212–213,
220, 439

! (NOT) operator, 215, 217, 220, 439, 485
!= (not equal) operator, 208, 209, 220, 439
<> (not equal to) operator, 483
|| (OR) operator, 215, 216–217, 217–219, 220,

230, 439, 485
| symbol, 589
? symbol, 586
; (semicolon), 178, 347
- (subtraction/negation) operator, 199, 201–202,

220, 438
?: (ternary) operator, 214, 221
~ (tilde) symbol, 550

A
A script on this pager is causing

[browser name] to run slowly... error
message, 361

<a> tag, 62–63, 64, 106, 129
abs() method, 339
absolute, 120
absolute measurement unit, 88
absolute positioning, 122–124
accessibility, of web apps, 605–608
accessing

data on servers, 16
local web servers, 27–29, 31–33
PHP error log, 464–465

accordions
about, 403–406, 424
hiding content with, 422–424
showing content with, 422–424

ad requirements, as a web hosting
consideration, 39

adaptive layout, for web apps, 603–604

770 Web Coding & Development All-in-One For Dummies

addClass() method, 382–383, 384–385,
385–386, 522

adding
app controls, 745–754
box controls, 750–751
classes

about, 289–290, 382–383
to elements, 289–290

color controls, 752–754
comments to code, 180
data

to MySQL tables, 479
to storage, 735–736

data items, 649–652
elements

to arrays, 303–304
in jQuery, 374–375
to pages, 287–290

files to web servers, 28, 32
folders to web servers, 28, 32
form buttons, 537–538
headings, 60–61
JQuery Mobile to web apps,

730–731
line breaks, 440–441
menu separator, 418
methods to classes, 460–461
padding, 107–108
properties to classes, 459–460
quotations, 61–62
selection lists, 551–555
structure, 13–14
styles

about, 14–15, 83–87
to web pages, 83–87

table data with INSERT query,
490–491

tags to elements, 288
text, 56–57
text controls, 747–750
text to elements, 288
titles to web pages, 54–56
users to databases, 689–690

watch expressions, 354–355
web forms, 697–700

addition (+) operator, 199, 200, 220, 337–338, 438,
439, 587

administration interface, as a web hosting
consideration, 39

age, determining, 333–334
Ajax

about, 510–511
joining PHP and JavaScript with JSON and,

509–532
making calls with jQuery, 511–526
request for data, 654
returning Ajax data as JSON text, 528–532

Ajax engine, 510
alert() method, 178, 207, 245, 280–281, 283
aligning

flex items
along primary axis, 139–140
along secondary axis, 140–141

grid items, 160–161
paragraph text, 92

align-self property, 161
Alphabet (website), 594
alternative text, 59
ancestor element, 96
anchor, 64
anchor object, 270
AND (&&) operator, 215–216, 217–219, 220, 230,

439, 485
animate() method, 406–408, 410
animation

about, 387–388
building pages with, 398–410
controlling duration and pace, 402
CSS properties, 406–408
running code after ending of, 408–410

Apache, 23, 29
Apache Friends, 24, 28, 32
app data, 597
app functions, of web apps, 595
append() method, 374–375, 375–376
appending elements as children, 288

Index 771

Applications link, 28, 32
applyFilters() function, 658–661
applying

basic text tags, 58–62
effects, 424–425
font families, 89–91
interactions, 428–429

apps. See also mobile web apps
about, 19, 593–594, 619
accessibility of, 605–608
adding jQuery Mobile to, 730–731
appearance of pages, 598–599
Atom editor, 34
back-end code, 626–630
building home pages for, 635
Coda, 34
creating

back-end initialization files, 631–632
data, 643–652
databases, 624–625
front-end common files, 633–634
startup files for, 630–635
tables, 624–625

data requirements for, 596–597
defending, 612–618
deleting data, 668–672
displaying data, 652–661
editing data, 661–668
functionality of, 595–596
mobile, 19–20
Notepad++, 34
page requirements for, 597–598
planning, 595–599
reading data, 652–661
responsiveness of, 599–605
role of

MySQL in, 494–495
PHP in, 494–495

security for, 608–618
setting up directory structure, 620–624
starting Data class, 639–640
Sublime Text, 34

TextMate, 34
updating data, 661–668

arguments
with Date object, 324
defined, 250, 255, 457
end, 322

ARIA label, 607
arithmetic assignment operators, 199–200,

204–205
arithmetic operators, 199–200, 438
Array(), 293–294, 319–320
array literals, 296
array objects, 269, 300–310
arrays

about, 291–293
adding elements to, 303–304
array objects, 300–310
associative, 446–447
declaring, 293–294, 295–296, 445–446
inserting elements, 308–310
multidimensional, 299–300, 450–451
one-dimensional, 299
ordering elements, 306–308
outputting values, 447–448
PHP, 445–451
populating

about, 295–297
with data, 294–299
using loops, 296–297

removing elements, 303, 305, 308–310
replacing elements, 308–310
returning subsets of, 305–306
reversing order of elements, 304–305
sorting, 448–449
storing query results in, 500–501
two-dimensional, 299
values, 450
working with data using loops, 297–299

arsort() function, 449
<article> tag, 74, 104, 106, 764
<aside> tag, 75, 114, 634
asort() function, 449

772 Web Coding & Development All-in-One For Dummies

assigning grid items to rows/columns,
157–160

associative arrays, 446–447
asynchronous, 510
Asynchronous JavaScript and XML (Ajax)

about, 510–511
joining PHP and JavaScript with JSON and,

509–532
making calls with jQuery, 511–526
request for data, 654
returning Ajax data as JSON text, 528–532

@ sign, 315
Atom (website), 34
attr() method, 385–386
attributes
class attribute, 382–383, 385–386
id attribute, 64, 278, 279, 284–285
onclick attribute, 255, 256
srcset attribute, 733
style attribute, 83
for tags, 52–53
width attribute, 52

auditory impairments, 606
automatic looping, through jQuery sets, 372

B
b symbol, 585–586
B symbol, 586
 tag, 60
back end

defined, 12
MySQL, 15–16
PHP, 15–16
web apps, 677–682

back() method, 274
back-end code, for web apps, 626–630
back-end initialization files, 631–632
background-color property, 94–95
backgrounds, coloring, 94–95
backing up MySQL data, 473
backslash (\), 51, 442, 589

bandwidth, as a web hosting consideration, 38
baseline value, 141
Berners-Lee, Tim (inventor of the web), 20
BETWEEN...AND operator, 484
bin2hex() function, 628, 689
binary() function, 617
blind effect, 426
block statement, 227
block syntax, 227
block-level elements, 113
<blockquote> tag, 62, 104
blur() method, 392, 559–560
blurring elements, 559–560
body element, 253–254
body section, 54
<body> tag, 54, 56, 95–96, 151, 162, 743
bold control, 749
bolding text, 91
Boolean literals, 193
border property, 109–110
borders

as a box component, 104
building, 109–110
values of, 109

bottom property, 121
bounce effect, 426
box controls, adding, 750–751
box styles, 745
braces ({}), 82, 227, 251, 358
Brackets (website), 34
break mode

about, 348
entering, 348–350
exiting, 350
stepping into code, 351

break statement, exiting loops using, 243–245
breakpoint, setting, 349
browsers

displaying Console in, 346
handling, 176
storing user data in, 734–737

Index 773

validating web form data in, 566–574
window events, 390

bugs, 343
buildGradient() function, 764
buildHover() function, 764
building

app menus, 745
back-end initialization files, 631–632
borders, 109–110
bulleted lists, 65–68
Button Builder app, 740–767
comparison expressions, 208–214
custom classes, 459
data, 643–652
data handler scripts, 640–641
databases, 624–625
elements, 287
external JavaScript files, 181–182
forms, 643–647
front-end common files, 633–634
grid gaps, 155–156
home pages for web apps, 635
HTML5 web forms, 536–537
links, 62–65
logical expressions, 215–219
margins, 110–113
multidimensional arrays, 299–300, 450–451
MySQL databases, 473–480
MySQL tables, 477–479
navigation menus, 418–420
numbered lists, 65–68
numeric expressions, 199–205
objects, 461
PHP expressions, 438–439
primary keys, 479–480
queries, 504–505
scripts, 175–180
SELECT queries, 481–482, 499–500
startup files for web apps, 630–635
string expressions, 205–207
strings, 302–303

tables in MySQL databases, 473–480, 624–625
user handling script, 679–682
web forms, 683–685
web page accordions, 403–406
web pages with animation, 398–410

bulleted lists, building, 65–68
Button Builder app, 740–767
button text control, 749
<button> tag, 256, 537

C
calculateProfitSharing() function,

266
calculating days between dates, 334–335
callback function, 389
calling functions, 252–255
camelCase, 188
carriage return, 57
cascade (CSS), 100–101
Cascading Style Sheets (CSS)

about, 12–13, 14–15
absolute positioning, 123
adding styles to web pages, 83–87
animation of properties, 406–408
assigning grid items to rows/columns,

158–159
basics of, 80–81
Button Builder app, 754–757
cascade, 81, 100–101
case-sensitivity for properties, 289
centering elements, 142
collapsing

containers, 119
margins, 111–112

colors, 93–95
controlling horizontal space, 129
creating

for mobile-first web development, 727
web page accordions, 403

defined, 14
fixed positioning, 125

774 Web Coding & Development All-in-One For Dummies

Cascading Style Sheets (CSS) (continued)
inline blocks for macro page layouts, 134–135
laying out

content columns with flexbox, 149–150
content columns with Grid, 161–162
navigation bar with flexbox, 143

measurement units, 88–89
modifying with jQuery, 377–385
page elements with inline blocks, 133
properties, 378–382, 406–408
relative positioning, 121
rules and declarations, 81–83
setting up flex container, 138
sheets, 80–81
shrinking flex items, 147
specifying grid rows/columns, 154
styles, 80
styling

invalid fields, 572
page text, 87–93
web pages with, 79–101

text properties, 88
using jQuery’s shortcut event handlers, 392
using selectors, 96–100
web page family, 95–96

case, 231
case-sensitivity

in comparison expressions, 213
in CSS, 82
CSS properties, 289
of JavaScript, 357
for tags, 54

CDNs (content delivery networks), 367
cell() method, 339
centering elements, 141–142
chaining, 372, 408–410
changing

CSS with jQuery, 377–385
element styles, 288–289
selected options, 555
table data with UPDATE query, 491
values of properties, 273

web files, 45
character entities, 68
character reference, 69
characters, handling, 77–78
charAt() method, 316–317
charCodeAt() method, 316
checkboxes

coding, 543–548
getting state, 546–547
referencing, 546
setting state, 547–548

checking
data types, 613–614
for required fields, 575–578
for signed-in users, 696–697
user credentials, 700–703
users, 690–695

child element, 96
child selector, 97, 99–100
child selector (jQuery), 371
choosing

elements with jQuery, 369–373
“non-mobile” breakpoints, 727–729
text editors, 33–34

Chrome
adding watch expressions, 354
displaying Console in, 346
opening web development tools in, 344
stepping into code, 351
stepping out of code, 352
stepping over code, 352
viewing all variable values, 353

class attribute, 382–383, 385–386
class selector, 97–98, 370
classes

adding
about, 382–383
to elements, 289–290
methods to, 460–461
properties to, 459–460

creating custom, 459
defined, 97

Index 775

Invoice class, 459
manipulating, 382–385
members of, 459
offset-image class, 122
removing, 383–384
specifying elements by names, 286
toggling, 384–385
ui-accordion class, 424
ui-accordion-content class, 424
ui-accordion-header class, 424
ui-dialog class, 422
ui-dialog-container class, 422
ui-dialog-title class, 422
ui-dialog-titlebar class, 422
ui-menu class, 420
ui-menu-item class, 420
ui-menu-wrapper class, 420
User class, 678–679

clear property, 117
clearing floats, 116–117
clearInterval() method, 279, 280
clearTimeout() method, 278
.click() method, 557–561
client-side programming language, 174
clip effect, 426
close() method, 499
CNET Web Hosting Solutions (website), 41
Coda (website), 34, 44
code

adding comments to, 180
back-end, 626–630
for checkboxes, 543–548
completion in text editors, 34
debugging. See debugging
executing in Console, 347
including from other PHP files, 629–630
indenting, 355–356
jQuery, 368–369
looping, 234–235
pausing, 348–350
PHP, 451–456

previewing in text editors, 33
running, 408–410, 765
running after animation ends, 408–410
stepping through, 350–352

cognitive impairments, 606
collapsing

containers, 117–120
margins, 111–113

collation, 474
color controls, adding, 752–754
color keyword, 93, 109
color picker, 555–556
color property, 94
color styles, 746
colors

about, 93
backgrounds, 94–95
specifying, 93–94
text, 94

column (flex-direction property), 137
column-reverse (flex-direction property), 137
columns

assigning to, 157–160
MySQL, 468
MySQL data, 475–476

comma-delimited strings, 319
comments

adding to code, 180
debugging and, 356
defined, 180

communicating
with server with .get() method, 523–526
with server with .post() method, 523–526

comparison expressions
building, 208–214
using strings in, 213

comparison operators, 211–212, 439, 482–484
compound criteria, 484–485
compound statement, 227
concat() method, 301–302
concatenating, 205, 301–302

776 Web Coding & Development All-in-One For Dummies

concatenation (+), 205, 220
configuring

header, 744
home pages, 674–677
php.ini for debugging, 463–464

confirm() method, 274, 281–282, 283
connecting, to MySQL database, 497–499
Console

displaying in browsers, 346
executing code in, 347
logging data to, 346–347

console property, 276
Console tab, 344
Console window, debugging with, 345–347
console.log() method, 247, 261, 346–347
console.table() method, 346–347
constants, 334, 626–627
construct() function, 459
constructor, 293–294
contact forms. See web forms
containers, collapsing, 117–120
content

as a box component, 104
dividing into tabs, 415–418
hiding with accordions, 422–424
scaling, 726–727
showing with accordions, 422–424

content columns
laying out with flexbox, 149–152
laying out with Grid, 161–162

content delivery networks (CDNs), 367
content first approach, 725–726
continue statement, 245–246
control structures, JavaScript, 226
controlling

animation duration and pace, 402
browsers, 176
characters, 77–78
flow of PHP code, 451–456
JavaScript, 170–171
JSON data returned by server, 530–532

loop execution, 243–246
order of precedence, 221–223
POST requests in PHP, 513–514
shrinkage, 148–149
web form events, 557–561
words, 77–78

convergence, 264
converting

data, 613
getDay() method into day name, 329–330
getMonth() method into month names,

328–329
server data to JSON format, 528–530
between strings and numbers, 336–338

copying custom CSS, 766–767
cos() method, 339
countdown() function, 280
cPanel, 45
createData() method, 649–652
createUser() method, 686, 689–690
creating

app menus, 745
back-end initialization files, 631–632
borders, 109–110
bulleted lists, 65–68
Button Builder app, 740–767
comparison expressions, 208–214
custom classes, 459
data, 643–652
data handler scripts, 640–641
databases, 624–625
elements, 287
external JavaScript files, 181–182
forms, 643–647
front-end common files, 633–634
grid gaps, 155–156
home pages for web apps, 635
HTML5 web forms, 536–537
links, 62–65
logical expressions, 215–219
margins, 110–113

Index 777

multidimensional arrays, 299–300, 450–451
MySQL databases, 473–480
MySQL tables, 477–479
navigation menus, 418–420
numbered lists, 65–68
numeric expressions, 199–205
objects, 461
PHP expressions, 438–439
primary keys, 479–480
queries, 504–505
scripts, 175–180
SELECT queries, 481–482, 499–500
startup files for web apps, 630–635
string expressions, 205–207
strings, 302–303
tables in MySQL databases, 473–480, 624–625
user handling script, 679–682
web forms, 683–685
web page accordions, 403–406
web pages with animation, 398–410

cross-site scripting (XSS), 611–612
CRUD approach, to handling data, 638–642
CSS (Cascading Style Sheets)

about, 12–13, 14–15
absolute positioning, 123
adding styles to web pages, 83–87
animation of properties, 406–408
assigning grid items to rows/columns, 158–159
basics of, 80–81
Button Builder app, 754–757
cascade, 81, 100–101
case-sensitivity for properties, 289
centering elements, 142
collapsing

containers, 119
margins, 111–112

colors, 93–95
controlling horizontal space, 129
creating

for mobile-first web development, 727
web page accordions, 403

defined, 14
fixed positioning, 125
inline blocks for macro page layouts, 134–135
laying out

content columns with flexbox, 149–150
content columns with Grid, 161–162
navigation bar with flexbox, 143

measurement units, 88–89
modifying with jQuery, 377–385
page elements with inline blocks, 133
properties, 378–382, 406–408
relative positioning, 121
rules and declarations, 81–83
setting up flex container, 138
sheets, 80–81
shrinking flex items, 147
specifying grid rows/columns, 154
styles, 80
styling

invalid fields, 572
page text, 87–93
web pages with, 79–101

text properties, 88
using jQuery’s shortcut event handlers,

392
using selectors, 96–100
web page family, 95–96

CSS Box Model, 104–105
CSS code, 746, 763–764
CSS colors, 753
CSS declaration, 82
CSS Flexible Box (flexbox), 128
CSS Grid

about, 128
browser support, 163–164
shaping page layout with, 153–164

css() method, 372, 378–382
ctype_alpha() function, 578, 614
customer_id property, 462
CuteFTP (website), 44
Cyberduck (website), 44

778 Web Coding & Development All-in-One For Dummies

D
d symbol, 582–583
D symbol, 583
data

accessing on servers, 16
adding

to MySQL tables, 479
to storage, 735–736
to tables with INSERT query, 490–491

app, 597
columns of, 475–476
converting, 613
creating, 643–652
deleting, 668–672
displaying, 652–661
editing, 661–668
escaping the, 616
filtering, 613, 657–661
getting about events, 393–394
getting from web storage, 736–737
importing into MySQL, 471–473
logging to Console, 346–347
modifying in tables with UPDATE query, 491
moving to web pages, 469
outgoing, 616
populating arrays with, 294–299
preparing for submission, 563
reading, 652–661
removing

from tables with DELETE query, 492
from web storage, 737

requirements for web apps, 596–597
sanitizing incoming, 612–614
sending to servers, 519–520, 685–688
storing on servers, 16
types of, 474–475
updating, 661–668
user-generated, 596

data handler scripts, 640–641
data management

about, 637
CRUD approach, 638–642

data types
checking, 613–614
defined, 189
literal, 189–193
validating fields based on, 580–581

database management system (DBMS),
468

databases
adding users to, 689–690
creating, 624–625
as a web hosting consideration, 39

date argument, 324
Date() function, 325
Date object. See also dates

about, 269
arguments with, 324
extracting information about dates,

325–328
methods, 326, 330
setting dates, 330–332
working with, 324–325

date picker, 556
dates. See also Date object

about, 322–335
arguments with Date object, 324
calculating days between, 334–335
extracting information about, 325–328
performing calculations for, 332–335
performing complex calculations, 334
setting, 330–332
specifying any, 325
specifying current, 324–325
working with Date object, 324–325

dbclick() method, 392
DBMS (database management system),

468
dd argument, 324
debugger statement, 247, 350
debugging

about, 341
configuring php.ini for, 463–464
with the Console window, 345–347
with echo statements, 465–466

Index 779

JavaScript errors, 342–343, 356–359
monitoring script values, 352–355
pausing code, 348–350
PHP, 463–466
stepping through code, 350–352
strategies for, 355–356
tools for, 344–345
with var_dump() statements, 466

Debugging tool tab, 345
decision-making

with if() statement, 452–453
multiple, 229–234
with switch() statement, 453–454

declaration block, 82
declarations (CSS), 81–83
declaring

arrays, 293–296, 445–446
JSON variables, 527–528
PHP variables, 438
variables, 184–185

decrement (--) operator, 199, 202, 220, 239, 438
dedicated server, as a web hosting

consideration, 39
defense in depth, 612
delegating events, 396–398
DELETE query, 481, 492
deleteData() method, 672
deleteUser() method, 716–719
deleting

array elements, 303, 305, 308–310
attributes, 386
breakpoint, 349
classes, 383–384
data, 668–672
data from web storage, 737
elements in jQuery, 377
queries, 504–505
table data with DELETE query, 492
users, 714–719
watch expressions, 355

deletion task, 309
descendant element, 96

descendant selector, 97, 99, 370
designing MySQL database tables, 474–477
determining

age, 333–334
length of String object, 312–313

dialog widget, 420
dialogs, displaying messages in, 420–422
dimensions, as a box component, 104
directory

defined, 42
setting up structure of, 620–624

display_errors, 463
display_header function, 464
displaying

Console in browsers, 346
content with accordions, 422–424
data, 652–661
elements, 399
messages

in dialogs, 420–422
to users, 177–179
using alert() method, 280–281

<div> tag, 76–77, 104, 105, 106, 394
dividend, 202
dividing content into tabs, 415–418
division (/) operator, 199, 202–204, 220,

438
divisor, 202
DNS (domain name system)

defined, 9
as a web hosting consideration, 38

Doctype declaration, 53
document events, 389
Document object, 180, 284–290
Document Object Model (DOM), 368
document property, 276
document root, 620
document subobject, 270
document.body function, 253–254
document.write() statement, 180
dollar sign ($), 368, 438, 588–589
DOM (Document Object Model), 368

780 Web Coding & Development All-in-One For Dummies

domain name system (DNS)
defined, 9
as a web hosting consideration, 38

DOM-manipulation library, 368
dot (.) symbol, 439, 583–584, 589
double dots (..), 630
double quotation marks (““), 192
double-slash (\\), 180
do...while() loops, 241–242, 315, 456
draggable interaction, 429–430
drop effect, 426
drop shadow, for buttons, 538
droppable interaction, 430
duration, of animation, 402
dynamic web pages

defined, 15, 18, 533
how they work, 18–19

E
echo output command, 437
echo statement, 437, 440, 465–466
ecommerce, as a web hosting consideration, 40
editing

data, 661–668
watch expressions, 355

effect() method, 424–425
effects

applying, 424–425
jQuery UI, 424–428
as a jQuery UI category, 412

elements
adding

to arrays, 303–304
class to, 289–290
in jQuery, 374–375
to pages, 287–290
tags to, 288
text to, 288

appending as children, 288
blurring, 559–560
centering, 141–142
changing styles of, 288–289

creating, 287
defined, 294
fading, 400
floating, 115–120
hiding, 399
inline, 77–78
inserting in arrays, 308–310
listening for changes, 560–561
ordering for arrays, 306–308
removing

from arrays, 303, 305, 308–310
in jQuery, 377

replacing
in arrays, 308–310
HTML, 375–376

reversing order of in arrays, 304–305
selecting with jQuery, 369–373
semantic, 76
showing, 399
sliding, 401
specifying, 284–287
updating with server data using .load()

method, 514–522
working with, 287–290

em unit, 89
 tag, 51, 60
email addresses, as a web hosting

consideration, 39
email fields, validating, 569
email forwarding, 39
email type, 539
embedded style sheet, 85
embedding internal style sheets, 84–86
emphasizing text, 58–59
empty() function, 575–578
end argument, 322
end tag, 50
Enter key, 57
entering break mode, 348–350
entity name, 69
equal (=) operator, 439, 483
equality operator (==), 208–209, 220,

358–359

Index 781

equal sign (=), 198, 358–359
error log (PHP), 464–465
error messages (JavaScript), 359–361
error types (JavaScript), 342–343
error_reporting, 464
errors

JavaScript, 356–359
load-time, 342
logic, 343
runtime, 342–343
syntax, 342

escape sequences, 192–193
escaping

the data, 616
quotation marks, 441–442

even filter, 373
event handlers

about, 389
setting up, 390–391
shortcut jQuery, 391–393
turning off, 398

event listener, 389
Event object, 393–394
event-driven language, 388
events

about, 387–389
building reactive pages with, 388–398
calling functions in response to, 254–255
delegating, 396–398
getting data about, 393–394
objects and, 268
preventing default action, 394–395
types of, 389–390
web form, 557–561

examples, in this book, 4
executing code in Console, 347
exiting

break mode, 350
loops using break statement, 243–245

exp() method, 339
Expected (error message, 359
Expected { error message, 359–360

explode effect, 426
exponential notation, 190–191
exponentiation (**) operator, 438
expressions

about, 197
building

comparison expressions, 208–214
logical expressions, 215–219
string expressions, 205–207

comparison, 208–214
numeric, 199–205
operator precedence, 219–223
PHP, 438–439
regular, 570, 571, 582–589
structure of, 197–198
using parentheses in, 222–223
watch, 354–355

expression-width pairs, 732
external style sheets, linking to,

86–87
extracting

information about dates, 325–328
substrings with methods, 315–323

F
fade effect, 426
fadeIn() method, 400, 402
fadeOut() method, 400, 402
fadeToggle() method, 400, 402, 405
fading elements, 400
FAQs link, 28, 32
feature queries, 164
file picker, 556
File Transfer Protocol (FTP), 40, 44, 617
files. See also folders

adding to web servers, 28, 32
external JavaScript, 181–182
insecure uploads of, 612
securing uploads, 617
viewing on servers, 28, 32
website, 44–45

FileZilla (website), 44

782 Web Coding & Development All-in-One For Dummies

filter() method, 658–661
filtering

data, 613, 657–661
jQuery sets, 372–373

filter_var() function, 580–581
finding

free hosting providers, 37
substrings, 313–315
web hosts, 35–45, 40–41

Firefox
adding watch expressions, 354
displaying Console in, 346
opening web development tools in, 344
stepping into code, 351
stepping out of code, 352
stepping over code, 352
viewing all variable values, 354

first filter, 373
.first() method, 551
fixed, 120
fixed positioning, 125–126
fixed-width layout, for web apps, 600
flex container

defined, 137
setting up, 137–139

flex items, 137
flex property, 152
flexbox

browser support, 152–153
flexible layouts with, 136–153
laying out

content columns with, 149–152
navigation bar with, 143–144

flex-direction property, 137
flex-grow property, 144–146
Flexible Box Layout Module. See Flexbox
flexible layouts

with Flexbox, 136–153
for web apps, 602

flex-shrink property, 146–149
flex-start alignment, 140
float property, 115–120

floating elements, 115–120
floating-point numbers, 190, 336
floats

about, 128
page elements with, 128–132

floor() method, 339
focus, setting, 558
focus() method, 558–559
fold effect, 427
folders. See also files

adding to web servers, 28, 32
viewing on servers, 28, 32

font families
applying, 89–91
controls for, 749

font size control, 749
font-family property, 14, 88
font-size property, 14, 88
font-style property, 88
font-weight property, 88
<footer> tag, 75–76, 96, 114, 116–117
footers, loading common, 516–517
for() loops, 237–241, 296–297, 298, 317, 455
for() statement, 236, 300
foreach() loop, 450, 501
form events, 389
form object, 270
<form> tag, 536
formats, for images, 69
forms

about, 533–534, 565
adding

about, 697–700
buttons, 537–538
selection lists, 551–555

building, 643–647, 683–685
checking for required fields, 575–578
conforming field values, 570–571
handling events, 557–561
how they work, 535
HTML5, 536–537
making fields mandatory, 566–567

Index 783

preventing default form submission, 562
programming pickers, 555–557
radio buttons, 548–551
regular expressions, 582–589
restricting text field length, 567–568
setting maximum/minimum values on numeric

fields, 568–569
styling invalid fields, 571–574
submitting

about, 561–564
data, 563–564

text fields, 538–543
triggering events, 557–561
validating

data in browsers, 566–574
data on servers, 574–582
email fields, 569
fields based on data types, 580–581
against patterns, 582
text data, 578–580

fr unit, 155
frame subobject, 270
frames property, 276
front end

creating common files, 633–634
CSS, 12–13, 14–15
defined, 12
HTML, 12–13, 14–15

FTP (File Transfer Protocol), 40, 44, 617
FTP client, 44
function() function, 390–391, 397
function-level scope, 260
functions

about, 249–250
advantages of using, 258
applyFilters() function, 658–661
arsort() function, 449
asort() function, 449
bin2hex() function, 628, 689
binary() function, 617
buildGradient() function, 764
buildHover() function, 764

calculateProfitSharing() function, 266
calling, 252–255
construct() function, 459
countdown() function, 280
ctype_alpha() function, 578, 614
Date() function, 325
defined, 178
display_header function, 464
document.body function, 253–254
empty() function, 575–578
filter_var() function, 580–581
function() function, 390–391, 397
generateButtonCode() function, 765, 766,

767
getButtonValues() function, 766
get_JSON() function, 530–532
htmlentities() function, 613, 616
initializeCreateDataForm() function, 647
initializeUpdateDataForm() function,

663, 666
isset() function, 496, 514
json_encode() function, 528–530
linear function, 402
local vs. global variables, 259–262
location of, 251
logIt() function, 278
mail() function, 689, 690
monthName() function, 329
Number() function, 234
numericSort function, 307
openssl_random_pseudo_bytes() function,

628, 689
parseFloat() function, 337, 381–382
parseInt() function, 336–337
passing multiple values to, 257–258
passing single values to, 256–257
passing values to, 255–258, 457
password_hash() function, 688
password_verify() function, 703
PHP, 456–458
preg_match() function, 582
print_r() function, 447–448

784 Web Coding & Development All-in-One For Dummies

functions (continued)
readActivities() function, 654,

656–657
recursive, 262–266
returning values from, 258–259, 458
rgb() function, 94
rsoort() function, 448–449
running after loads, 520–522
session_start() function, 627
setButtonValues() function, 767
setting up, 307
sort() function, 306–308, 448–449
strlen() function, 578
str_replace() function, 614
structure of, 250–251
time() function, 629
var() function, 613

G
generateButtonCode() function, 765,

766, 767
generating

app menus, 745
back-end initialization files, 631–632
borders, 109–110
bulleted lists, 65–68
Button Builder app, 740–767
comparison expressions, 208–214
custom classes, 459
data, 643–652
data handler scripts, 640–641
databases, 624–625
elements, 287
external JavaScript files, 181–182
forms, 643–647
front-end common files, 633–634
grid gaps, 155–156
home pages for web apps, 635
HTML5 web forms, 536–537
links, 62–65
logical expressions, 215–219
margins, 110–113

multidimensional arrays, 299–300,
450–451

MySQL databases, 473–480
MySQL tables, 477–479
navigation menus, 418–420
numbered lists, 65–68
numeric expressions, 199–205
objects, 461
PHP expressions, 438–439
primary keys, 479–480
queries, 504–505
scripts, 175–180
SELECT queries, 481–482, 499–500
startup files for web apps, 630–635
string expressions, 205–207
strings, 302–303
tables in MySQL databases, 473–480,

624–625
user handling script, 679–682
web forms, 683–685
web page accordions, 403–406
web pages with animation,

398–410
generic font, 90
.get() method, 511, 523–526
GET method, 496
GET request

about, 511–513
preparing for data submission,

563
getButtonValues() function, 766
getDate() method, 326, 331
getDay() method, 326, 329–330, 332
getFullYear() method, 326, 333
getHours() method, 326
getItem() method, 736–737
.getJSON(), 511
get_JSON() function, 530–532
getMilliseconds() method, 326
getMinutes() method, 326
getMonth() method, 326, 328–329, 331
getSeconds() method, 326
getTime() method, 326, 335

Index 785

getting started, with jQuery, 366–369
GIF (Graphics Interchange Format), 69
global scope, 261–262
global variables, 259–262, 359
glocal scope, 353
Gmail (website), 594
GoDaddy (website), 38
Google (website), 594
Google Chrome

adding watch expressions, 354
displaying Console in, 346
opening web development tools in, 344
stepping into code, 351
stepping out of code, 352
stepping over code, 352
viewing all variable values, 353

Google font, 91
Google Maps (website), 594
gradient effect, 752
Graphics Interchange Format (GIF), 69
greater than (>) operator, 208, 209, 220, 347,

439, 483
greater than or equal (>=) operator, 208, 210, 220,

439, 483
grid

defined, 153
elements in, 153–154
laying out content columns with, 161–162
specifying columns, 154–155
specifying rows, 154–155

grid container, 153, 154
grid gaps, 155–156
grid items

about, 154
aligning, 160–161
assigning to rows/columns, 157–160

grid template, 154
grid-column-end, 157
grid-column-start, 157
grid-gap property, 156
grid-row-end, 157
grid-row-start, 157

Grinstead, Brian (programmer), 741
growing flex items, 144–146

H
<h1...h4> tags, 61, 104
handler, 255
handling

animation duration and pace, 402
browsers, 176
characters, 77–78
flow of PHP code, 451–456
JavaScript, 170–171
JSON data returned by server, 530–532
loop execution, 243–246
order of precedence, 221–223
POST requests in PHP, 513–514
shrinkage, 148–149
web form events, 557–561
words, 77–78

hard disk, mirroring, 42–44
hashtag symbol (#), 98, 610
head section, 53–54
<head> tag, 54, 95
<header> tag, 71–72, 96, 104, 105, 114, 376
headers

configuring, 744
loading common, 516–517

headings, adding, 60–61
height, 105–106
height() method, 381–382
here document (heredoc) syntax, 444
hexadecimal integer values, 191
hh argument, 324
hidden type, 540
hide() method, 399, 402, 425
hiding

content with accordions, 422–424
elements, 399

highlight effect, 427
history property, 276
history subobject, 270

786 Web Coding & Development All-in-One For Dummies

home pages
building for web apps, 635
configuring, 674–677
preparing for data, 652–654
setting up skeleton, 741–743

horizontal rule, 52
horizontal space, controlling, 129
host name, 516
hostname property, 272
hosts, web

defined, 36
finding, 35–45, 40–41
providers, 36–40
setting up, 35–45

hover effect, 752
How-To Guides link, 28, 32
<hr> tag, 52
HTML (HyperText Markup Language)

about, 12–13, 14–15, 49
absolute positioning, 124
applying basic text tags, 58–62
assigning grid items to rows/columns, 159
basics of, 50–51
building bulleted lists, 65–68
building numbered lists, 65–68
Button Builder app, 741–754
centering elements, 142
collapsing

containers, 119
margins, 112–113

controlling horizontal space, 130
converting

into day names getDay() method, 329
getMonth() method into month names, 328

creating
links, 62–65
web page accordions, 403–405

defined, 13
delegating events, 396
determining age, 333
displaying messages to users, 177
fixed positioning, 125–126

getting data about events, 393–394
inline blocks for macro page layouts, 135–136
inserting

images, 69–71
special characters, 68–69

keywords, 194–195
laying out

content columns with flexbox, 150–151
content columns with Grid, 162
navigation bar with flexbox, 143–144

listening for element changes, 561
manipulating attributes with jQuery, 385–386
page elements with inline blocks, 133–134
page structure, 71–78
preventing default event action, 395
relative positioning, 121–122
replacing in elements, 375–376
running code after animation ends, 409
setting

dates, 331
focus, 558

setting up
event handler, 390
flex container, 138–139

shrinking flex items, 147
specfiying grid rows/columns, 155
structure

of HTML5 web pages, 53–57
vs. style, 57–58
web pages with, 49–78

styling invalid fields, 572–573
using jQuery’s shortcut event handlers, 391, 392

HTML files, 436, 515–516
html() method, 375–376
HTML tags, 422
HTML viewer tab, 344, 345
<html> tag, 95
HTML5 web forms, 536–537
htmlentities() function, 613, 616
hue, 753
Hypertext, 50
HyperText Markup Language (HTML)

Index 787

about, 12–13, 14–15, 49
absolute positioning, 124
applying basic text tags, 58–62
assigning grid items to rows/columns, 159
basics of, 50–51
building

bulleted lists, 65–68
numbered lists, 65–68

Button Builder app, 741–754
centering elements, 142
collapsing

containers, 119
margins, 112–113

controlling horizontal space, 130
converting

into day names getDay() method, 329
getMonth() method into month names, 328

creating
links, 62–65
web page accordions, 403–405

defined, 13
delegating events, 396
determining age, 333
displaying messages to users, 177
fixed positioning, 125–126
getting data about events, 393–394
inline blocks for macro page layouts, 135–136
inserting

images, 69–71
special characters, 68–69

keywords, 194–195
laying out

content columns with flexbox, 150–151
content columns with Grid, 162
navigation bar with flexbox, 143–144

listening for element changes, 561
manipulating attributes with jQuery, 385–386
page elements with inline blocks, 133–134
page structure, 71–78
preventing default event action, 395
relative positioning, 121–122
replacing in elements, 375–376

running code after animation ends, 409
setting

dates, 331
focus, 558

setting up
event handler, 390
flex container, 138–139

shrinking flex items, 147
specfiying grid rows/columns, 155
structure

of HTML5 web pages, 53–57
vs. style, 57–58
web pages with, 49–78

styling invalid fields, 572–573
using jQuery’s shortcut event handlers, 391, 392

hypertext reference, 63
hyphen (-), 407

I
<i> tag, 59
icons, explained, 4
id attribute, 64, 278, 279, 284–285
id selector, 97, 98, 370
IDE (integrated development environment), 22
identifiers, 482
identity (===) operator, 208, 212, 220,

358–359, 439
if() statements

about, 392
decision-making with, 452–453
making true/false statements with, 226–227
nesting, 230–231

if()...else statements, 228–229
image object, 270
images

delivering responsively, 732–733
formats for, 69
inserting, 69–71
making responsive, 731–732
in mobile-first web development, 726,

731–733
 tag, 70, 116–117, 124

788 Web Coding & Development All-in-One For Dummies

importing data into MySQL, 471–473
IN operator, 484
including jQuery in web pages, 366–368
incorporating query string values in queries,

501–504
increment (++) operator, 199, 200–201, 220, 438
incrementing, 239
incrementing the value, 200–201
indenting

code, 355–356
paragraph’s first line, 92–93

index number, 293
indexOf() method, 313–314
infinite loops, avoiding, 246–247
infinite recursion, avoiding, 265–266
Infinity result, 203
inheritance, CSS and, 100
initializeCreateDataForm() function, 647
initializeUpdateDataForm() function,

663, 666
inline blocks, 107, 128, 132–136
inline elements, 77–78, 113
inline styles, 83–84
inner join, 485–490
innerHeight property, 276
innerWidth property, 276
<input> tag, 394, 537, 543–548, 548–551, 550,

567–568, 763
INSERT query, 481, 490–491
inserting

array elements, 308–310
elements in arrays, 310
images, 69–71
inline styles, 83–84
queries, 504–505
special characters, 68–69

insertion task, 309
installing

XAMPP, 24–26
XAMPP for OS X, 29–30

instancing, 458, 461
integers

defined, 189, 336
hexadecimal integer values, 191

integrated development environment (IDE), 22
interactions

applying, 428–429
jQuery UI, 428–431
as a jQuery UI category, 412
user, 280–284
using, 429–431

internal links, 63–65
internal style sheets, embedding, 84–86
Internet resources

Alphabet, 594
Apache Friends, 24
Brackets, 34
CNET Web Hosting Solutions, 41
Coda, 44
CuteFTP, 44
Cyberduck, 44
examples in this book, 4
FileZilla, 44
Gmail, 594
GoDaddy, 38
Google, 594
Google Maps, 594
jQuery Mobile icons, 744
JSONLint, 528
PC Magazine Web Site Hosting Services

Reviews, 41
phpMyAdmin, 470, 624
Register, 38
Review Hell, 41
Review Signal Web Hosting Reviews, 41
ThemeRoller page, 415
Transmit, 44
uploading files for, 44–45
Web Coding Playground, 4, 93
Web Hosting Talk, 40
XAMPP Dashboard, 470
YouTube, 594

Internet service provider (ISP), 36–37
interpolating, 443

Index 789

intervals, JavaScript, 276–280
Invoice class, 459
IS NULL operator, 484
ISP (Internet service provider), 36–37
isset() function, 496, 514
italic control, 749
italicizing text, 91

J
JavaScript

abilities of, 173–174
about, 16–17, 169–170, 225, 510
adding comments to code, 180
as an event-driven language, 388
arithmetic operators, 199
avoiding infinite loops, 246–247
braces ({}), 227
Button Builder app, 757–767
case-sensitivity of, 357
code looping, 234–235
comparison operators, 208
constructing scripts, 175–180
control structures, 226
controlling

about, 170–171
loop execution, 243–246

converting
into day names getDay() method, 330
getMonth() method into month names, 329

creating external files, 181–182
determining age, 333
do...while() loops, 241–242
errors, 342–343, 356–359, 359–361
escape sequences, 192
extracting information about dates, 326–327
for() loops, 237–241
getting started, 175
handling browser without, 176
if()...else statements, 228–229
inabilities of, 174
intervals, 276–280

joining with Ajax and JSON, 509–532
keywords, 194–195
learning difficulty of, 172–173
logical operators, 215
making multiple decisions, 229–234
making true/false decisions with if()

statements, 226–227
object hierarchy, 269–270
order of precedence, 220–221
reserved words, 188, 193–194
setting dates, 331
switch() statement, 231–234
time in, 322
timeouts, 276–280
while() loops, 235–237

JavaScript Object Notation (JSON)
about, 526–528
characteristics of, 526–527
converting server data to, 528–530
declaring variables, 527–528
handling data returned by server, 530–532
joining PHP and JavaScript with Ajax and, 509–532
returning Ajax data as text in, 528–532
syntax for, 526–527

join() method, 302–303
Joint Photographic Experts Group (JPEG), 69–70
jQuery

about, 17, 365
adding elements in, 374–375
basic selectors, 370–371
Button Builder app, 757–767
defined, 366
delegating events, 396
getting data about events, 394
getting started, 366–369
including in web pages, 366–368
listening for element changes, 561
location for code, 368–369
making Ajax calls with, 511–526
manipulating

HTML attributes with, 385–386
page elements with, 373–377

790 Web Coding & Development All-in-One For Dummies

jQuery (continued)
modifying CSS with, 377–385
preventing default event action, 395
removing elements, 377
running code after animation ends, 409–410
selecting elements with, 369–373
sets, 371–373
setting focus, 558
setting up event handler, 390
using jQuery’s shortcut event handlers, 391, 392
using shortcut event handlers, 391–393

jQuery Mobile, 729–731
jQuery Mobile Collapsible widget, 746
jQuery Mobile FlipSwitch widgets, 752
jQuery Mobile icons (website), 744
jQuery UI

about, 411–412
effects, 424–428
getting started, 413–415
interactions, 428–431
working with widgets, 415–424

JSON
about, 526–528
characteristics of, 526–527
converting server data to, 528–530
declaring variables, 527–528
handling data returned by server, 530–532
joining PHP and JavaScript with Ajax and,

509–532
returning Ajax data as text in, 528–532
syntax for, 526–527

json_encode() function, 528–530
JSONLint (website), 528
justify-content property, 139–140
justify-self property, 160

K
keyboard events, 389
keywords

about, 60
HTML, 194–195
JavaScript, 194–195

L
<label>, 541, 550
landmarks, 607
Language, 50
last filter, 373
lastIndexOf() method, 313–314
left property, 121
length property, 300–301, 312–313
less than (<) operator, 208, 209–210, 220, 439, 483
less than or equal (<=) operator, 208, 210–211,

220, 439, 483
letter spacing control, 749
 tag, 65
library, 17, 366
LIKE operator, 483
line breaks, adding, 440–441
line numbers, in text editors, 33, 34
linear function, 402
link object, 270
<link> tag, 86–87
links

creating, 62–65
to external style sheets, 86–87
internal, 63–65
styling, 91–92

Linux, 39
liquid layout, for web apps, 601
listening for element changes, 560–561
literals

array, 296
Boolean, 193
defined, 189
numeric, 189–191
string, 191–193

.load() method, 511
loading

common headers/footers, 516–517
HTML files, 515–516
output from PHP scripts, 517–518
page fragments, 518–519

running functions after loads, 520–522
sending data to servers, 519–520

Index 791

updating elements with server data using,
514–522

loading
common headers/footers, 516–517
HTML files, 515–516
output from PHP scripts, 517–518
page fragments, 518–519

load-time errors, 342
Local Lane route, 535
local scope, 260–261, 353
local variables, 259–262, 359
local web development environment

defined, 22
needs for, 22–23

local web servers, accessing, 27–29, 31–33
localStorage property, 276, 735
location property, 271, 272, 276
location subobject, 270
log() method, 339
logging data to Console, 346–347
logic errors, 343
logical expressions, building, 215–219
logical operators, 439, 484–485
logIt() function, 278
loop counter, 238
loop execution, controlling, 243–246
loop statements, bypassing using the continue

statement, 245–246
loops/looping

with do...while() loops, 456
with for() loops, 455
populating arrays using, 296–297
through query results, 501
with while() loops, 454–455
working with array data using, 297–299

lossy compression, 69–70
luminance, 753

M
macro level, 128
Macs

configuring php.ini for debugging, 463

displaying Console on, 346
inserting special characters, 68
opening web development tools in, 344
setting up public subdirectory, 621

magic constants, 466
mail() function, 689, 690
<main> tag, 73, 96
Manage Servers tab, 31
managing

animation duration and pace, 402
browsers, 176
characters, 77–78
flow of PHP code, 451–456
JavaScript, 170–171
JSON data returned by server, 530–532
loop execution, 243–246
order of precedence, 221–223
POST requests in PHP, 513–514
shrinkage, 148–149
web form events, 557–561
words, 77–78

manipulating
classes, 382–385
HTML attributes with jQuery, 385–386
page elements with jQuery, 373–377
properties, 271–273
text with String object, 311–323
web pages, 268

margin property, 110–111
margins

as a box component, 104
collapsing, 111–113
creating, 110–113
resetting, 111

MariaDB, 23, 29
marking text, 59–60
Markup, 50
master table, 639
Math object, about, 269

about, 335–336
converting between strings and numbers,

336–338

792 Web Coding & Development All-in-One For Dummies

Math object, about (continued)
methods, 338–339
properties, 338–339

max() method, 339
measurement units (CSS), 88–89
media query, 603
menu separator, 418
menu widget, 422
messages

displaying in dialogs, 420–422
displaying to users, 177–179
displaying using alert() method, 280–281

<meta> tag, 68
metaKey property, 393
methods
abs() method, 339
addClass() method, 382–383, 384–385,

385–386, 522
adding to classes, 460–461
alert() method, 178, 207, 245, 280–281, 283
animate() method, 406–408, 410
append() method, 374–375, 375–376
associated with objects, 268
attr() method, 385–386
back() method, 274
blur() method, 392, 559–560
cell() method, 339
charAt() method, 316–317
charCodeAt() method, 316
clearInterval() method, 279, 280
clearTimeout() method, 278
.click() method, 557–561
close() method, 499
concat() method, 301–302
confirm() method, 274, 281–282, 283
console.log() method, 247, 261, 346–347
console.table() method, 346–347
cos() method, 339
createData() method, 649–652
createUser() method, 686, 689–690
css() method, 372, 378–382
Date object, 326, 330

dbclick() method, 392
defined, 178
deleteData() method, 672
deleteUser() method, 716–719
effect() method, 424–425
exp() method, 339
extracting substrings with, 315–323
fadeIn() method, 400, 402
fadeOut() method, 400, 402
fadeToggle() method, 400, 402, 405
filter() method, 658–661
.first() method, 551
floor() method, 339
focus() method, 558–559
.get() method, 511, 523–526
GET method, 496
getDate() method, 326, 331
getDay() method, 326, 329–330, 332
getFullYear() method, 326, 333
getHours() method, 326
getItem() method, 736–737
getMilliseconds() method, 326
getMinutes() method, 326
getMonth() method, 326, 328–329, 331
getSeconds() method, 326
getTime() method, 326, 335
height() method, 381–382
hide() method, 399, 402, 425
html() method, 375–376
indexOf() method, 313–314
join() method, 302–303
jQuery, 372
lastIndexOf() method, 313–314
.load() method

about, 511
loading common headers/footers, 516–517
loading HTML files, 515–516
loading output from PHP scripts, 517–518
loading page fragments, 518–519
running functions after loads, 520–522
sending data to servers, 519–520

Index 793

updating elements with server data using,
514–522

log() method, 339
Math object, 338–339
max() method, 339
min() method, 339
object, 273–275, 462
off() method, 398
on() method, 390–391, 397
pop() method, 303, 522
.post() method, 511, 523–526
pow() method, 339
prepend() method, 374–375, 375–376
preventDefault() method, 394–395, 562
prompt() method, 234, 236, 282–283
push() method, 303–304
query() method, 499–500, 500–501
querySelectorAll() method, 286–287, 372
random() method, 339
readAllData() method, 655–656
readDataItem() method, 664
ready() method, 654
remove() method, 377
removeAttr() method, 386
removeClass() method, 383–384, 384–385,

385–386
removeItem() method, 737
reverse() method, 304–305
round() method, 339
sendPasswordReset() method, 706–713
setDate() method, 330, 332, 334
setFullYear() method, 330, 332, 333
setHours() method, 330
setInterval() method, 278, 279
setItem() method, 735–736, 766
setMilliseconds() method, 330
setMinutes() method, 330
setMonth() method, 330, 332, 334
setSeconds() method, 330
setTime() method, 330
shift() method, 305
show() method, 399, 402, 425

signInUser() method, 700–703
sin() method, 339
slice() method, 305–306, 316, 318
slideDown() method, 401, 402
slideToggle() method, 401, 402, 405,

406, 410
slideUp() method, 401, 402
splice() method, 308–310, 322–323
split() method, 316, 318–320
sqrt() method, 339
String object, 313, 316
substr() method, 316, 320–321, 322–323
substring() method, 316, 321–322,

322–323
tan() method, 339
text() method, 376, 554
toggle() method, 399, 402, 425
toggleClass() method, 384–385, 385–386
unshift() method, 310
updateData() method, 667
val() method, 542–543, 546–547
verifyUser() method, 691–695, 708
width() method, 381–382

micro level, 128
Microsoft Edge

displaying Console in, 346
opening web development tools in, 344

min() method, 339
min-height property, 151, 162
mirroring hard disk, 42–44
Missing (error message, 359
Missing ; error message, 360
Missing { error message, 359–360
Missing } error message, 360
mixing quotation marks, 441–442
mm argument, 324
mobile web apps

about, 19–20, 739–740
adding app controls, 745–754
building Button Builder app, 740–767
creating menus, 745
web help, 741

794 Web Coding & Development All-in-One For Dummies

mobile-first web development
about, 20, 723–724
images, 731–733
jQuery Mobile, 729–731
principles of, 725–729
storing user data in browsers,

734–737
modal dialog, 668
modifying

CSS with jQuery, 377–385
element styles, 288–289
selected options, 555
table data with UPDATE query, 491
values of properties, 273
web files, 45

modulus (%) operator, 199, 204, 220, 438
monitoring

blur events, 560
focus events, 559
script values, 352–355

month argument, 324
month picker, 557
monthName() function, 329
motor impairments, 606
mouse events, 389
moving data to web pages, 469
Mozilla Firefox

adding watch expressions, 354
displaying Console in, 346
opening web development tools in, 344
stepping into code, 351
stepping out of code, 352
stepping over code, 352
viewing all variable values, 354

ms argument, 324
mth argument, 324
multidimensional arrays, creating, 299–300,

450–451
multiple arguments, 257
multiplication (*) operator, 198, 199, 202, 220,

438, 586–587
MySQL. See also PHP

about, 15–16
backing up data, 473
importing data into, 471–473
role of in web apps, 494–495
separating login credentials, 505–506
using PHP to access data in, 493–505

MySQL databases
about, 468–469
connecting to, 497–499
creating, 473–480
creating tables, 473–480
phpMyAdmin, 470–473
queries, 469–470
querying data, 480–492
tables, 468–469

MySQL tables
adding data to, 479
creating, 477–479

MySQLi (MySQL Improved), 497–499

N
{n} symbol, 587
{n,} symbol, 587–588
naming variables, 187–189
<nav> tag, 72–73, 96, 114
navigating web home, 41–45
navigation bar

laying out with flexbox, 143–144
for mobile-first web development, 726

navigation menus, creating, 418–420
navigator property, 276
negation (-) operator, 199, 201–202, 220, 438
nesting
if() statements, 230–231
tags, 60

Network tab, 345
newline character, 441
 symbol, 588
non-identity (!==) operator, 208, 212–213, 220, 439
“non-mobile” breakpoints, choosing, 727–729
non-semantic content, 76–77

Index 795

<noscript> tag, 176
not equal (!=) operator, 208, 209, 220, 439
not equal (<>) operator, 483
not() filter, 373
NOT (!) operator, 215, 217, 220, 439, 485
Notepad++ (website), 34
no-width layout, for web apps, 600
null string, 191
Number() function, 234
Number object, 269
number type, 539
numbered lists, building, 65–68
numbers

converting between strings and, 336–338
floating-point, 336
working with. See Math object

numeric expressions, 199–205
numeric literals, 189–191
numericSort function, 307

O
object methods, 273–275, 462
object properties, 272–273, 461–462
objects

about, 267–269
actions, 273–274
anchor object, 270
array, 300–310
creating, 461
Date object. See also dates

about, 269
arguments with, 324
extracting information about dates,

325–328
methods, 326, 330
setting dates, 330–332
working with, 324–325

document subobject, 270
Event object, 393–394
form object, 270
frame subobject, 270
hierarchy of, 269–270

history subobject, 270
image object, 270
link object, 270
location subobject, 270
manipulating properties, 271–273
Math object

about, 269, 335–336
converting between strings and numbers,

336–338
methods, 338–339
properties, 338–339

object methods, 273–275, 462
PHP, 458–462
programming document objects, 284–290
as properties, 272–273, 461–462
rolling, 458–461
String object

about, 269
determining length of, 312–313
manipulating text with, 311–323
methods, 313, 316

window, 275–284
window object, 270, 735

objectsXMLHttpRequest object, 512
odd filter, 373
off() method, 398
offset-image class, 122
offsets, 121
 tag, 67
on() method, 390–391, 397
onclick attribute, 255, 256
one-dimensional arrays, 299
on/off decision, 226
openssl_random_pseudo_bytes() function,

628, 689
operands, 198, 211, 482
operating system, as a web hosting

consideration, 39
operator precedence, 219–223
operators

about, 198, 482
addition (+) operator, 199, 200, 220, 337–338,

438, 439, 587

796 Web Coding & Development All-in-One For Dummies

operators (continued)
AND (&&) operator, 215–216, 217–219, 220, 230,

439, 485
arithmetic assignment operators, 199–200,

204–205
arithmetic operators, 199–200, 438
BETWEEN...AND operator, 484
comparison operators, 211–212, 439, 482–484
decrement (--) operator, 199, 202, 220, 239, 438
division (/) operator, 199, 202–204, 220, 438
equal (=) operator, 439, 483
equality operator (==), 208–209, 220, 358–359
exponentiation (**) operator, 438
greater than (>) operator, 208, 209, 220, 347,

439, 483
greater than or equal (>=) operator, 208, 210,

220, 439, 483
identity (===) operator, 208, 212, 220,

358–359, 439
increment (++) operator, 199, 200–201, 220, 438
IS NULL operator, 484
less than (<) operator, 208, 209–210, 220, 439, 483
less than or equal (<=) operator, 208, 210–211,

220, 439, 483
LIKE operator, 483
logical operators, 439, 484–485
modulus (%) operator, 199, 204, 220, 438
multiplication (*) operator, 198, 199, 202, 220,

438, 586–587
negation (-) operator, 199, 201–202, 220, 438
non-identity (!==) operator, 208, 212–213,

220, 439
not equal (!=) operator, 208, 209, 220, 439
not equal (<>) operator, 483
NOT (!) operator, 215, 217, 220, 439, 485
IN operator, 484
OR (||) operator, 215, 216–217, 217–219, 220,

230, 439, 485
post-decrement operator, 203, 438
post-increment operators, 201, 438
pre-decrement operator, 203, 438
pre-increment operators, 201, 438
property access operator, 271
strict equality operator, 212

strict inequality operator, 212
subtraction (-) operator, 199, 201–202, 220, 438
ternary (?:) operator, 214, 221

<option> tag, 551–555
OR (||) operator, 215, 216–217, 217–219, 220,

230, 439, 485
order of precedence, 220–223
ordered list, 67
ordering array elements, 306–308
orders table, 476–477
orders_details table, 477
organization, of directory structure, 620
OS X

installing XAMPP for, 29–30
setting up XAMPP for, 29–33

outer join, 490
outgoing data, 616
outputting

array values, 447–448
long strings, 443–445
text/tags, 439–445
variables in strings, 442–443

P
p element, 14
<p> tag, 76, 104, 106, 405
pace, of animation, 402
padding

adding, 107–108
as a box component, 104
resetting, 111

padding property, 108
page elements

about, 103–104
adding padding, 107–108
creating

borders, 109–110
margins, 110–113

CSS Box Model, 104–105
floating elements, 115–120
with floats, 128–132

Index 797

with inline blocks, 132–136
page flow, 113–114
positioning, 120–126
styling sizes, 105–106

page flow, 113–114
page footer, 75–76
page header, 71–72
page layout

about, 127–128
fallbacks for, 164–165
flexible layouts with Flexbox, 136–153
levels of, 128
page elements

with floats, 128–132
with inline blocks, 132–136

shaping with CSS Grid, 153–164
page-level scope, 261–262
pages

adding
elements to, 287–290
styles to, 83–87
titles to, 54–56

appearance of in web apps, 598–599
building

accordions, 403–406
with animation, 398–410
reactive pages with events, 388–398

calling functions after loading, 253–254
family, 95–96
including jQuery in, 366–368
loading fragments, 518–519
manipulating, 268
moving data to, 469
requirements for web apps, 597–598
structure of, 71–78
structure of HTML5, 53–57
structuring with HTML, 49–78
styling text, 87–93
styling with CSS, 79–101
writing text to, 179–180

pageX property, 393

pageY property, 393
paragraph text, aligning, 92
parameterized statements/queries,

614–616
parameters, 250
parent element, 96
parentheses

mismatched, 357
missing, 358
using in expressions, 222–223

parseFloat() function, 337, 381–382
parseInt() function, 336–337
parsing

calling functions whtn <script> tag is,
252–253

query strings, 495–497
passing

defined, 255
values to functions, 255–258, 457

password type, 540
password_hash() function, 688
passwords

resetting, 704–713
securing, 617–618

password_verify() function, 703
patterns

matching, 570
validating against, 582

pausing code, 348–350
PC Magazine Web Site Hosting Services

Reviews (website), 41
performing

complex date calculations, 334
date calculations, 332–335

PHP. See also MySQL
about, 15–16, 24, 29, 435
accessing error log, 464–465
arrays, 445–451
building expressions, 438–439
constants, 626–627
controlling flow of code, 451–456
debugging, 463–466

798 Web Coding & Development All-in-One For Dummies

PHP (continued)
functions, 456–458
handling POST requests in, 513–514
how scripts work, 436
joining with Ajax and JSON, 509–532
loading output from scripts, 517–518
objects, 458–462
outputting text/tags, 439–445
role of in web app, 494–495
scripts syntax, 436–438
sessions, 627, 628–629
using to access MySQL data, 493–505
variables, 438

PHP files, 436
PHP processor, 436
PHPInfo link, 28, 33
php.ini, configuring for debugging, 463–464
phpMyAdmin, 24, 29, 33, 470–473, 624
pickers, programming, 555–557
pixel (px), 89
planning web apps, 595–599
plug-ins, 412
PNG (Portable Network Graphics), 70
point (pt), 89
pop() method, 303, 522
populating

arrays, 295–296
arrays using loops, 296–297
arrays with data, 294–299

port number, 516
Portable Network Graphics (PNG), 70
position property, 120–126
positioning

absolute, 122–124
as a box component, 104
context, 123
fixed, 125–126
page elements, 120–126
relative, 121–122

.post() method, 511, 523–526
POST request

about, 496, 511–513

handling in PHP, 513–514
preparing for data submission, 563

post-decrement operator, 203, 438
post-increment operators, 201, 438
pow() method, 339
<pre> tag, 448
precedence, operator, 219–223
pre-decrement operator, 203, 438
preg_match() function, 582
pre-increment operators, 201, 438
prepared statements, 614–616
preparing data for submission, 563
prepend() method, 374–375, 375–376
preventDefault() method, 394–395, 562
preventing default event action, 394–395
primary axis, 137, 139–140
primary keys, 476, 479–480
print command, 439
print_r() function, 447–448
private subdirectory, setting up, 623–624
programming

document objects, 284–290
pickers, 555–557

programming language
about, 171–172
client-side, 174
JavaScript as a, 171

progressive enhancement, 164, 724
prompt() method, 234, 236, 282–283
properties

adding to classes, 459–460
align-self property, 161
background-color property, 94–95
border property, 109–110
bottom property, 121
Cascading Style Sheet (CSS), 378–382, 406–408
changing values of, 273
clear property, 117
color property, 94
column (flex-direction property), 137
column-reverse (flex-direction

property), 137

Index 799

console property, 276
customer_id property, 462
defined, 14, 407
document property, 276
flex property, 152
flex-direction property, 137
flex-grow property, 144–146
flex-shrink property, 146–149
float property, 115–120
font-family property, 14, 88
font-size property, 14, 88
font-style property, 88
font-weight property, 88
frames property, 276
grid-gap property, 156
history property, 276
hostname property, 272
innerHeight property, 276
innerWidth property, 276
justify-content property, 139–140
justify-self property, 160
left property, 121
length property, 300–301, 312–313
localStorage property, 276, 735
location property, 271, 272, 276
manipulating, 271–273
margin property, 110–111
Math object, 338–339
metaKey property, 393
min-height property, 151, 162
navigator property, 276
of objects, 268
objects as, 272–273, 461–462
padding property, 108
pageX property, 393
pageY property, 393
position property, 120–126
referencing, 271–272
right property, 121
row (flex-direction property), 137
row-reverse (flex-direction property), 137
scrollX property, 276

scrollY property, 276
sessionStorage property, 276, 735
shiftKey property, 393
target property, 393
text-align property, 88, 92
text-declaration property, 88
text-indent property, 88, 92–93
top property, 121
which property, 393
width property, 14
window objects, 275–276
window property, 272

properties parameter, 407
property access operator, 271
property-value pair, 82
proprietary upload tools, 45
protocol, 516
providers, Internet, 36–37
pseudo-element, 119
pt (point), 89
public subdirectory, setting up, 621–623
puff effect, 427
pulsate effect, 427
push() method, 303–304
px (pixel), 89

Q
queries

creating, 504–505
criteria for, 482–485
defined, 480
deleting, 504–505
incorporating query string values in, 501–504
inserting, 504–505
multiple tables, 485–490
MySQL data, 480–492
MySQL databases, 469–470
running, 504–505
storing results in arrays, 500–501
types of, 480–481
updating, 504–505

800 Web Coding & Development All-in-One For Dummies

query() method, 499–500, 500–501
query strings

defined, 494
parsing, 495–497
sending, 496

querySelectorAll() method, 286–287,
372

quotation marks, 191–192, 357, 407, 441–442
quotations, adding, 61–62

R
radio buttons

about, 548–551
getting state, 550
as mandatory fields, 567
setting state, 551

random() method, 339
RDBMS (relational database management

system), 468, 476–477
RE (regressive enhancement), 724
reactive pages, building with events, 388–398
readActivities() function, 654, 656–657
readAllData() method, 655–656
readDataItem() method, 664
reading

attribute values, 385
CSS property value, 378–379
data, 652–661

“read-only” properties, 273
ready() method, 654
recursion

defined, 262
use of, 263

recursive functions, 262–266
referencing

checkboxes, 546
properties, 271–272
radio buttons, 549–550
selection lists, 554
text fields by field type, 542
window objects, 275

Register (website), 38

regressive enhancement (RE), 724
regular domain name, 38
regular expressions, 570, 571, 582–589
relating tables, 476–477
relational database management system

(RDBMS), 468, 476–477
relative, 120
relative positioning, 121–122
relative unit, 89
rem (root em), 89
Remember icon, 4
remove() method, 377
removeAttr() method, 386
removeClass() method, 383–384, 384–385,

385–386
removeItem() method, 737
removing

array elements, 303, 305, 308–310
attributes, 386
breakpoint, 349
classes, 383–384
data, 668–672
data from web storage, 737
elements in jQuery, 377
queries, 504–505
table data with DELETE query, 492
users, 714–719
watch expressions, 355

replacement task, 309
replacing

array elements, 308–310
element’s HTML, 375–376

require statement, 505
reserved words, 188, 193–194
“reset” feature, 758
resetting

CSS to default, 767
margins, 111
padding, 111
passwords, 704–713

resizable interaction, 430
resources, Internet

Index 801

Alphabet, 594
Apache Friends, 24
Brackets, 34
CNET Web Hosting Solutions, 41
Coda, 44
CuteFTP, 44
Cyberduck, 44
examples in this book, 4
FileZilla, 44
Gmail, 594
GoDaddy, 38
Google, 594
Google Maps, 594
jQuery Mobile icons, 744
JSONLint, 528
PC Magazine Web Site Hosting Services

Reviews, 41
phpMyAdmin, 470, 624
Register, 38
Review Hell, 41
Review Signal Web Hosting Reviews, 41
ThemeRoller page, 415
Transmit, 44
uploading files for, 44–45
Web Coding Playground, 4, 93
Web Hosting Talk, 40
XAMPP Dashboard, 470
YouTube, 594

responsive images, for web apps, 604–605
responsive typography, for web apps, 605
responsiveness, of web apps, 599–605
restricting text field length, 567–568
return statement, 259, 458
returning

Ajax data as JSON text, 528–532
subsets of arrays, 305–306
values from functions, 458

reverse() method, 304–305
reversing array elements order, 304–305
Review Hell (website), 41
Review Signal Web Hosting Reviews (website),

41

RGB code, 94
rgb() function, 94
right property, 121
rolling objects, 458–461
root directory, 41
root em (rem), 89
round() method, 339
rounded corners, for buttons, 538
row (flex-direction property), 137
row-reverse (flex-direction property), 137
rows, assigning assigning to, 157–160
rsoort() function, 448–449
rules

Cascading Style Sheets (CSS), 81–83
for naming variables, 187–188
in programming languages, 171

running
code, 408–410, 765
code after animaton ends, 408–410
functions after loads, 520–522
queries, 504–505
SELECT query, 499–500
XAMPP Application Manager, 30–31
XAMPP for Windows Control Panel, 26–27

runtime errors, 342–343

S
s symbol, 584
S symbol, 584
Safari

displaying Console in, 346
opening web development tools in, 344

same precedence, 221
same-origin policy, 516
sanitizing incoming data, 612–614
saturation, 753
saving custom CSS, 765–766
scalability, as a web hosting consideration,

40
scale effect, 427
scaling content, 726–727

802 Web Coding & Development All-in-One For Dummies

scope
defined, 259–260, 353
global, 261–262, 353
local, 260–261, 353

<script> tag, 175–176, 176–177, 250
calling functions when parsing, 252–253

scripts
constructing, 175–180
data handler, 640–641
monitoring values, 352–355
PHP, 436–438

scrollX property, 276
scrollY property, 276
search type, 540
secondary axis, 137, 140–141
<section> tag, 74–75, 104, 114, 405, 660
security

of directory structure, 620
PHP sessions, 628–629
for web apps, 608–618

SELECT query
about, 481
creating, 481–482, 499–500
running, 499–500

<select> tag, 551–555, 763
selectable interaction, 431
selecting

elements with jQuery, 369–373
“non-mobile” breakpoints, 727–729
text editors, 33–34

selection lists
adding, 551–555
getting options, 554–555
as mandatory fields, 567
referencing, 554

selectors
Cascading Style Sheet (CSS), 96–100
specifying elements by, 286–287

semantic elements, 76
semantically, 58

semicolon (;), 178, 347
sending

data to servers, 519–520, 685–688
form data to servers, 648–649
query strings, 496
verification emails, 688–689

sendPasswordReset() method, 706–713
separating MySQL login credentials, 505–506
server data, converting to JSON format, 528–530
Server Street route, 535
servers

accessing data on, 16
adding files/folders to, 28, 32
communicating

with .get() method, 523–526
with .post() method, 523–526

defined, 36
handling JSON data returned by, 530–532
sending

data to, 519–520, 685–688
form data to, 648–649

storing data on, 16
validating web form data on, 574–582
viewing files/folders on, 28, 32

server-side, 174
sessions (PHP), 627, 628–629
session_start() function, 627
sessionStorage property, 276, 735
setButtonValues() function, 767
setDate() method, 330, 332, 334
setFullYear() method, 330, 332, 333
setHours() method, 330
setInterval() method, 278, 279
setItem() method, 735–736, 766
setMilliseconds() method, 330
setMinutes() method, 330
setMonth() method, 330, 332, 334
sets (jQuery), 371–373
setSeconds() method, 330
setTime() method, 330

Index 803

setTimeout(), 277
setting

attribute values, 385–386
breakpoint, 349
checkbox state, 547–548
CSS property value, 379–380
dates, 330–332
focus, 558
maximum/minimum values on numeric fields,

568–569
multiple CSS property values, 380–381
radio button state, 551
text field values, 542–543
type size, 87–88
viewport, 601

setup
app control values, 758–760, 761–763
app data structure, 757–758
back end of web apps, 677–682
directory structure, 620–624
event handlers, 390–391
flex container, 137–139
functions, 307
grid container, 154
home page skeleton, 741–743
private subdirectory, 623–624
public subdirectory, 621–623
web forms, 536
web hosts, 35–45
XAMPP for OS X development environment,

29–33
XAMPP for Windows Development Environment,

23–29
shake effect, 427
shared server, as a web hosting consideration, 39
sheets (CSS), 80–81
shift() method, 305
shiftKey property, 393
shopping script, 40
show() method, 399, 402, 425
showing

Console in browsers, 346

content with accordions, 422–424
data, 652–661
elements, 399
messages

in dialogs, 420–422
to users, 177–179
using alert() method, 280–281

shrinking flex items, 146–149
sibling selector, 550
signing in/out, of web apps, 696–704
signing up

with commercial hosting providers, 37
web app users, 682–695

signInUser() method, 700–703
sin() method, 339
single-line syntax, 226
size effect, 428
sizes

styling, 105–106
type, 87–88

slice() method, 305–306, 316, 318
slide effect, 428
slideDown() method, 401, 402
slideToggle() method, 401, 402, 405, 406, 410
slideUp() method, 401, 402
sliding elements, 401
small caps control, 749
sort() function, 306–308, 448–449
sortable interaction, 431
sorting arrays, 448–449
space-around alignment, 140
space-between alignment, 140
 tag, 77–78, 104, 106
special characters, inserting, 68–69
specificity, CSS and, 101
specifying

any date/time, 325
colors, 93–94
current date/time, 324–325
elements, 284–287
grid rows/columns, 154–155

804 Web Coding & Development All-in-One For Dummies

Spectrum color picker, 741, 752
splice() method, 308–310, 322–323
split() method, 316, 318–320
SQL (Structured Query Language), 470, 480–481
SQL injection, 609–611
SQLSELECT statement, 503
sqrt() method, 339
srcset attribute, 733
ss argument, 324
start tag, 50
starting
User class, 678–679
web app Data class, 639–640

startup files, creating for web apps, 630–635
statements

block, 227
break statement, exiting loops using, 243–245
compound, 227
continue statement, 245–246
debugger statement, 247, 350
defined, 178, 250
document.write() statement, 180
echo statement, 437, 440, 465–466
for() statement, 236, 300
if() statements

about, 392
decision-making with, 452–453
making true/false statements with, 226–227
nesting, 230–231

if()...else statements, 228–229
long, 206
prepared, 614–616
require statement, 505
return statement, 259, 458
SQLSELECT statement, 503
switch() statement, 231–234, 329, 453–454,

522, 647, 660, 682, 763
using variables in, 186–187
var_dump() statements, 466

static, 120
static web pages, 15, 389
stepping through code, 350–352

storage space, as a web hosting consideration,
37–38

storing
data on servers, 16
query results in arrays, 500–501
user data in browsers, 734–737
values in variables, 185

strategies, for debugging, 355–356
stretch alignment, 141
strict equality operator, 212
strict inequality operator, 212
string expressions, building, 205–207
string literals, 191–193
String object

about, 269
determining length of, 312–313
manipulating text with, 311–323
methods, 313, 316

stringify, 736
strings

comma-delimited, 319
converting numbers and, 336–338
creating, 302–303
outputting long, 443–445
outputting variables in, 442–443
using in comparison expressions, 213
using quotation marks within, 191–192
zero-based, 314

strlen() function, 578
 tag, 59, 60
str_replace() function, 614
structure

adding, 13–14
expressions, 197–198
of functions, 250–251
style vs., 57–58
of web pages, 71–78
web pages with HTML, 49–78

Structured Query Language (SQL), 470, 480–481
style attribute, 83
style rule, 82
style sheet, 80–81

Index 805

<style> tag, 95, 764
styles

adding
about, 14–15, 83–87
to web pages, 83–87

as a border value, 109
Cascading Style Sheets (CSS), 80
elements, 288–289
structure vs., 57–58

styling
invalid fields, 571–574
links, 91–92
page text, 87–93
sizes, 105–106
text, 91
web pages with CSS, 79–101

subdomain name, 38
Sublime Text (website), 34
submenu, 419
submitting

form data, 563–564
web forms, 561–564

submitting forms, 537–538
subobjects, 270
subsets, returning of arrays, 305–306
substr() method, 316, 320–321, 322–323
substring() method, 316, 321–322,

322–323
substrings

extracting with methods, 315–323
finding, 313–315

subtraction (-) operator, 199, 201–202,
220, 438

switch() statement, 231–234, 329,
453–454, 522, 647, 660, 682, 763

syntax
defined, 33
errors in, 342
highlighting in text editors, 33
for JSON, 526–527

Syntax error error message, 359
system font, 90

T
tables

adding data to with INSERT query, 490–491
creating in MySQL databases, 624–625
modifying data with UPDATE query, 491
MySQL databases, 468–469
querying multiple, 485–490
relating, 476–477
removing data from with DELETE query, 492

tabs, dividing content into, 415–418
tag selector (jQuery), 370
tags
<a> tag, 62–63, 64, 106, 129
adding to elements, 288
applying basic text, 58–62
<article> tag, 74, 104, 106, 764
<aside> tag, 75, 114, 634
attributes for, 52–53
 tag, 60
<blockquote> tag, 62, 104
<body> tag, 54, 56, 95–96, 151, 162, 743
<button> tag, 256, 537
case sensitivity for, 54
defined, 13, 50
<div> tag, 76–77, 104, 105, 106, 394
 tag, 51, 60
end, 50
<footer> tag, 75–76, 96, 114, 116–117
<form> tag, 536
format of, 50
<h1...h4> tags, 61, 104
<head> tag, 54, 95
<header> tag, 71–72, 96, 104, 105, 114, 376
<hr> tag, 52
<html> tag, 95
<i> tag, 59
 tag, 70, 116–117, 124
<input> tag, 394, 537, 543–548, 548–551, 550,

567–568, 763
 tag, 65
<link> tag, 86–87

806 Web Coding & Development All-in-One For Dummies

tags (continued)
<main> tag, 73, 96
<meta> tag, 68
<nav> tag, 72–73, 96, 114
nesting, 60
<noscript> tag, 176
 tag, 67
<option> tag, 551–555
outputting, 439–445
<p> tag, 76, 104, 106, 405
<pre> tag, 448
<script> tag, 175–176, 176–177, 250,

252–253
<section> tag, 74–75, 104, 114, 405, 660
<select> tag, 551–555, 763
 tag, 77–78, 104, 106
specifying elements by name, 285–286
start, 50
 tag, 59, 60
<style> tag, 95, 764
<title> tag, 55, 60, 95
 tag, 65

tan() method, 339
target property, 393
tech support, as a web hosting consideration, 39
Technical Stuff icon, 4
techniques, layout, 128
tel type, 539
terminator, 444
ternary (?:) operator, 214, 221
testing width, 726
text

adding
about, 56–57
controls, 747–750
to elements, 288

bolding, 91
coloring, 94
emphasizing, 58–59
fields, 538–543
italicizing, 91
manipulating with String object, 311–323

marking, 59–60
for mobile-first web development, 725
outputting, 439–445
processing in text editors, 34
styling, 91, 745
validating data, 578–580
writing to pages, 179–180

text editors, 33–34
text() method, 376, 554
text type, 539
text-align property, 88, 92
<textarea>, 540
text-declaration property, 88
text-indent property, 88, 92–93
TextMate (website), 34
ThemeRoller page (website), 415
tilde (~) symbol, 550
time() function, 629
time type, 539
timeouts (JavaScript), 276–280
times

about, 322–335
specifying any, 325
specifying current, 324–325

Tip icon, 4
<title> tag, 55, 60, 95
titles

adding to web pages, 54–56
tips for, 55–56

toggle() method, 399, 402, 425
toggleClass() method, 384–385, 385–386
toggling classes, 384–385
token, 628
tools, for debugging, 344–345
top property, 121
Transmit (website), 44
triggering

submit events, 562
web form events, 557–561

true block, 107
true/false statements, making with if()

statements, 226–227

Index 807

truth table, 216, 217
turning off event handlers, 398
two-dimensional arrays, 299
type, setting size of, 87–88
type selector, 97
typeface, 90

U
ui-accordion class, 424
ui-accordion-content class, 424
ui-accordion-header class, 424
ui-dialog class, 422
ui-dialog-container class, 422
ui-dialog-title class, 422
ui-dialog-titlebar class, 422
ui-menu class, 420
ui-menu-item class, 420
ui-menu-wrapper class, 420
 tag, 65
unauthorized access, 612
Unexpected end of input error message, 360
Unexpected identifier error message, 360
uniform resource locator (URL), 8
Unix, 39
unordered list, 65
unshift() method, 310
Unterminated string constant error

message, 361
Unterminated string literal error

message, 361
UPDATE query, 481, 491
updateData() method, 667
updating

data, 661–668
elements with server data using .load()

method, 514–522
queries, 504–505
values of watch expressions, 355

uploading
defined, 43
website files, 44–45

uptime, as a web hosting consideration, 39
URL (uniform resource locator), 8
url type, 539
User class, 678–679
user data, 596, 734–737
user experience (UX), 599
user functions, of web apps, 595
user handling script, 679–682
user interactions, 280–284
user style sheet, 100
user-generated data, 596
users (web app)

about, 673
adding to databases, 689–690
checking credentials for, 700–703
configuring home page, 674–677
deleting, 714–719
displaying messages to, 177–179
resetting passwords, 704–713
setting up back end, 677–682
signing in/out, 696–704
signing up new, 682–695
verifying, 690–695

UX (user experience), 599

V
val() method, 542–543, 546–547
validating

email fields, 569
fields based on data type, 580–581
form data in browsers, 566–574
form data on servers, 574–582
against patterns, 582
text data, 578–580

values
arrays, 447–448, 450
attribute, 385–386
changing of properties, 273
defined, 407
incrementing the, 200–201

808 Web Coding & Development All-in-One For Dummies

values (continued)
passing to functions, 255–258, 457
returning

from functions, 258–259
values from, 458

storing in variables, 185
text field, 542–543

var() function, 613
var_dump() statements, 466
variables

about, 183–184
declaring, 184–185
JSON, 527–528
literal data types, 189–193
local vs. global, 259–262, 359
naming, 187–189
outputting in strings, 442–443
PHP, 438
rules for naming, 187–188
storing values in, 185
using in statements, 186–187
viewing

all variable values, 353–354
single variable values, 352–353

vendor prefixes, 152
verification emails, sending, 688–689
verifying

data types, 613–614
for required fields, 575–578
for signed-in users, 696–697
user credentials, 700–703
users, 690–695

verifyUser() method, 691–695, 708
vertical space, 113
vh (viewport height), 89
viewing

all variable values, 353–354
files on servers, 28, 32
folders on servers, 28, 32
single variable values, 352–353

viewport, 275, 601

viewport height (vh), 89
viewport width (vw), 89
virtual server, 39
visual impairments, 606
vw (viewport width), 89

W
w symbol, 583
W symbol, 583
Warning icon, 4
watch expressions, 354–355
web address, 42
web apps. See also mobile web apps

about, 19, 593–594, 619
accessibility of, 605–608
adding jQuery Mobile to, 730–731
appearance of pages, 598–599
Atom editor, 34
back-end code, 626–630
building home pages for, 635
Coda, 34
creating

back-end initialization files, 631–632
data, 643–652
databases, 624–625
front-end common files, 633–634
startup files for, 630–635
tables, 624–625

data requirements for, 596–597
defending, 612–618
deleting data, 668–672
displaying data, 652–661
editing data, 661–668
functionality of, 595–596
mobile, 19–20
Notepad++, 34
page requirements for, 597–598
planning, 595–599
reading data, 652–661
responsiveness of, 599–605

Index 809

role of
MySQL in, 494–495
PHP in, 494–495

security for, 608–618
setting up directory structure, 620–624
starting Data class, 639–640
Sublime Text, 34
TextMate, 34
updating data, 661–668

web coding and development. See also
specific topics

about, 7–8
basics of, 8–12
home, 21–34, 41–45
how it works, 8–12
web coding vs. web development, 20

Web Coding Playground (website), 4, 93
web development. See web coding and

development
web files, changing, 45
web forms

about, 533–534, 565
adding

about, 697–700
buttons, 537–538
selection lists, 551–555

building, 643–647, 683–685
checking for required fields, 575–578
conforming field values, 570–571
handling events, 557–561
how they work, 535
HTML5, 536–537
making fields mandatory, 566–567
preventing default form submission, 562
programming pickers, 555–557
radio buttons, 548–551
regular expressions, 582–589
restricting text field length, 567–568
setting maximum/minimum values on numeric

fields, 568–569
styling invalid fields, 571–574
submitting

about, 561–564
data, 563–564

text fields, 538–543
triggering events, 557–561
validating

data in browsers, 566–574
data on servers, 574–582
email fields, 569
fields based on data types, 580–581
against patterns, 582
text data, 578–580

Web Hosting Talk (website), 40
web hosts

defined, 36
finding, 35–45, 40–41
providers, 36–40
setting up, 35–45

web pages
adding

elements to, 287–290
styles to, 83–87
titles to, 54–56

appearance of in web apps, 598–599
building

accordions, 403–406
with animation, 398–410
reactive pages with events, 388–398

calling functions after loading, 253–254
family, 95–96
including jQuery in, 366–368
loading fragments, 518–519
manipulating, 268
moving data to, 469
requirements for web apps, 597–598
structure of, 71–78
structure of HTML5, 53–57
structuring with HTML, 49–78
styling

with CSS, 79–101
text, 87–93

writing text to, 179–180

810 Web Coding & Development All-in-One For Dummies

web root, 620
web servers

accessing data on, 16
adding files/folders to, 28, 32
communicating

with .get() method, 523–526
with .post() method, 523–526

defined, 36
handling JSON data returned by, 530–532
sending

data to, 519–520, 685–688
form data to, 648–649

storing data on, 16
validating web form data on, 574–582
viewing files/folders on, 28, 32

web storage, 735, 736–737
website statistics, as a web hosting

consideration, 40
websites

Alphabet, 594
Apache Friends, 24
Brackets, 34
CNET Web Hosting Solutions, 41
Coda, 44
CuteFTP, 44
Cyberduck, 44
examples in this book, 4
FileZilla, 44
Gmail, 594
GoDaddy, 38
Google, 594
Google Maps, 594
jQuery Mobile icons, 744
JSONLint, 528
PC Magazine Web Site Hosting Services

Reviews, 41
phpMyAdmin, 470, 624
Register, 38
Review Hell, 41
Review Signal Web Hosting Reviews, 41

ThemeRoller page, 415
Transmit, 44
uploading files for, 44–45
Web Coding Playground, 4, 93
Web Hosting Talk, 40
XAMPP Dashboard, 470
YouTube, 594

week picker, 557
weight, CSS and, 100–101
WHERE clause, 503
which property, 393
while() loops, 235–237, 454–455
white space, 56
whitelisting, 614
widgets

defined, 415
as a jQuery UI category, 412
for mobile-first web development, 726
working with, 415–424

width, 105–106, 109
width attribute, 52
width() method, 381–382
width property, 14
wildcard characters, 483
window object, 270, 735
window objects

about, 275
properties, 275–276
referencing, 275

window property, 272
Windows

configuring php.ini for debugging, 463
displaying Console on, 346
inserting special characters, 68
opening web development tools in, 344
setting up public subdirectory, 621

Windows Control Panel, running XAMPP for,
26–27

Windows Development Environment, setting up
XAMPP for, 23–29

Index 811

Windows Server, 39
words

handling, 77–78
in programming languages, 171

workflow, 597
writing

custom CSS code, 763–764
text to pages, 179–180

X
X has no properties error message,

361
X is not an object error message, 361
X is not defined error message, 360
XAMPP

installing, 24–26
installing for OS X, 29–30
running for Windows Control Panel, 26–27

setting up for OS X development environment,
29–33

setting up for Windows Development
Environment, 23–29

XAMPP Application Manager, running, 30–31
XAMPP Dashboard (website), 470
XML, 511
XMLHttpRequest object, 512
XSS (cross-site scripting), 611–612

Y
yes/no decision, 226
YouTube (website), 594
yy argument, 324
yyyy argument, 324

Z
zero-based strings, 314

About the Author
Paul McFedries is the president of Logophilia Limited, a technical writing company,
and has worked with computers large and small since 1975. While now primarily
a writer, Paul has worked as a programmer, consultant, database developer, and
website developer. Paul has written more than 90 books that have sold over four
million copies worldwide. Paul is also the proprietor of Word Spy (wordspy.com), a
website that has been tracking recently coined words and phrases since 1995. Paul
invites everyone to drop by his personal website at mcfedries.com, or to follow him
on Twitter (@paulmcf and @wordspy).

http://www.wordspy.com
http://www.mcfedries.com

Author’s Acknowledgments
If we’re ever at the same cocktail party and you overhear me saying something
like “I wrote a book,” I hereby give you permission to wag your finger at me and
say “Tsk, tsk.” Why the scolding? Because although I did write this book’s text
and take its screenshots, those represent only a part of what constitutes a “book.”
The rest of it is brought to you by the dedication and professionalism of Wiley’s
editing, graphics, and production teams, who toiled long and hard to turn my text
and images into an actual book.

I offer my heartfelt thanks to everyone at Wiley who made this book possible, but
I’d like to extend some special thank-yous to the folks I worked with directly:
Executive Editor Steve Hayes, Project Manager Maureen Tullis, Project/Copy
 Editor Scott Tullis, and Technical Editor Matthew Fecher. I’d also like to give a
big shout-out to my agent, Carole Jelen, for helping to make this project possible.

Dedication
Since this book will be published just before Mother’s Day, it seems only right to
dedicate it to my late mother, who spent nearly 90 years on this Earth bringing
love to her family and friends and a light-up-the-room smile to everyone she met.
She was more of a crossword solver than a web coder, but I know she’d appreciate
having this book dedicated to her memory because she was always proud of her
“wee son.” Mum, you are missed.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Development/Copy Editor: Scott Tullis

Technical Editor: Matthew Fecher

Editorial Assistant: Matthew Lowe

Production Editor: Tamilmani Varadharaj

Project Manager: Maureen Tullis

Cover Image: © DrHitch/Shutterstock

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	“I’ve never coded before!”
	“I have coded before!”

	Icons Used in This Book
	Beyond the Book

	Book 1 Getting Ready to Code for the Web
	Chapter 1 How Web Coding and Development Work
	The Nuts and Bolts of Web Coding and Development
	How the web works
	How the web works, take two

	Understanding the Front End: HTML and CSS
	Adding structure: HTML
	Adding style: CSS

	Understanding the Back End: PHP and MySQL
	Storing data on the server: MySQL
	Accessing data on the server: PHP

	How It All Fits Together: JavaScript and jQuery
	Front end, meet back end: JavaScript
	Making your web coding life easier: jQuery

	How Dynamic Web Pages Work
	What Is a Web App?
	What Is a Mobile Web App?
	What’s the Difference between Web Coding and Web Development?

	Chapter 2 Setting Up Your Web Development Home
	What Is a Local Web Development Environment?
	Do You Need a Local Web Development Environment?
	Setting Up the XAMPP for Windows Development Environment
	Installing XAMPP for Windows
	Running the XAMPP for Windows Control Panel
	Accessing your local web server

	Setting Up the XAMPP for OS X Development Environment
	Installing XAMPP for OS X
	Running the XAMPP Application Manager
	Accessing your local web server

	Choosing Your Text Editor

	Chapter 3 Finding and Setting Up a Web Host
	Understanding Web Hosting Providers
	Using your existing Internet provider
	Finding a free hosting provider
	Signing up with a commercial hosting provider

	A Buyer’s Guide to Web Hosting
	Finding a Web Host
	Finding Your Way around Your New Web Home
	Your directory and your web address
	Making your hard disk mirror your web home
	Uploading your site files
	Making changes to your web files

	Book 2 Coding the Front End, Part 1: HTML & CSS
	Chapter 1 Structuring the Page with HTML
	Getting the Hang of HTML
	Understanding Tag Attributes
	Learning the Fundamental Structure of an HTML5 Web Page
	Giving your page a title
	Adding some text

	Some Notes on Structure versus Style
	Applying the Basic Text Tags
	Emphasizing text
	Marking important text
	Nesting tags
	Adding headings
	Adding quotations

	Creating Links
	Linking basics
	Anchors aweigh: Internal links

	Building Bulleted and Numbered Lists
	Making your point with bulleted lists
	Numbered lists: Easy as one, two, three

	Inserting Special Characters
	Inserting Images
	Carving Up the Page
	The <header> tag
	The <nav> tag
	The <main> tag
	The <article> tag
	The <section> tag
	The <aside> tag
	The <footer> tag
	Handling non-semantic content with <div>
	Handling words and characters with

	Chapter 2 Styling the Page with CSS
	Figuring Out Cascading Style Sheets
	Styles: Bundles of formatting options
	Sheets: Collections of styles
	Cascading: How styles propagate

	Getting the Hang of CSS Rules and Declarations
	Adding Styles to a Page
	Inserting inline styles
	Embedding an internal style sheet
	Linking to an external style sheet

	Styling Page Text
	Setting the type size
	Getting comfy with CSS measurement units
	Applying a font family
	Making text bold
	Styling text with italics
	Styling links
	Aligning paragraph text
	Indenting a paragraph’s first line

	Working with Colors
	Specifying a color
	Coloring text
	Coloring the background

	Getting to Know the Web Page Family
	Using CSS Selectors
	The class selector
	The id selector
	The descendant selector
	The child selector

	Revisiting the Cascade

	Chapter 3 Sizing and Positioning Page Elements
	Learning about the CSS Box Model
	Styling Sizes
	Adding Padding
	Building Borders
	Making Margins
	Resetting the padding and margin
	Collapsing margins ahead!

	Getting a Grip on Page Flow
	Floating Elements
	Clearing your floats
	Collapsing containers ahead!

	Positioning Elements
	Using relative positioning
	Giving absolute positioning a whirl
	Trying out fixed positioning

	Chapter 4 Creating the Page Layout
	What Is Page Layout?
	Laying Out Page Elements with Floats
	Laying Out Page Elements with Inline Blocks
	Making Flexible Layouts with Flexbox
	Setting up the flex container
	Aligning flex items along the primary axis
	Aligning flex items along the secondary axis
	Centering an element horizontally and vertically
	Laying out a navigation bar with flexbox
	Allowing flex items to grow
	Allowing flex items to shrink
	Laying out content columns with flexbox
	Flexbox browser support

	Shaping the Overall Page Layout with CSS Grid
	Setting up the grid container
	Specifying the grid rows and columns
	Creating grid gaps
	Assigning grid items to rows and columns
	Aligning grid items
	Laying out content columns with Grid
	Grid browser support

	Providing Fallbacks for Page Layouts

	Book 3 Coding the Front End, Part 2: JavaScript
	Chapter 1 An Overview of JavaScript
	JavaScript: Controlling the Machine
	What Is a Programming Language?
	Is JavaScript Hard to Learn?
	What Can You Do with JavaScript?
	What Can’t You Do with JavaScript?
	What Do You Need to Get Started?
	Basic Script Construction
	The <script> tag
	Handling browsers with JavaScript turned off
	Where do you put the <script> tag?
	Example #1: Displaying a message to the user
	Example #2: Writing text to the page

	Adding Comments to Your Code
	Creating External JavaScript Files

	Chapter 2 Understanding Variables
	What Is a Variable?
	Declaring a variable
	Storing a value in a variable
	Using variables in statements

	Naming Variables: Rules and Best Practices
	Rules for naming variables
	Ideas for good variable names

	Understanding Literal Data Types
	Working with numeric literals
	Working with string literals
	Working with Boolean literals

	JavaScript Reserved Words
	JavaScript Keywords

	Chapter 3 Building Expressions
	Understanding Expression Structure
	Building Numeric Expressions
	A quick look at the arithmetic operators
	Using the addition (+) operator
	Using the increment (++) operator
	Using the subtraction and negation (-) operators
	Using the decrement (--) operator
	Using the multiplication (*) operator
	Using the division (/) operator
	Using the modulus (%) operator
	Using the arithmetic assignment operators

	Building String Expressions
	Building Comparison Expressions
	The comparison operators
	Using the equal (==) operator
	Using the not equal (!=) operator
	Using the greater than (>) operator
	Using the less than (<) operator
	Using the greater than or equal (>=) operator
	Using the less than or equal (<=) operator
	The comparison operators and data conversion
	Using the identity (===) operator
	Using the non-identity (!==) operator
	Using strings in comparison expressions
	Using the ternary (?:) operator

	Building Logical Expressions
	The logical operators
	Using the AND (&&) operator
	Using the OR (||) operator
	Using the NOT (!) Operator
	Advanced notes on the && and || operators

	Understanding Operator Precedence
	The order of precedence
	Controlling the order of precedence

	Chapter 4 Controlling the Flow of JavaScript
	Understanding JavaScript’s Control Structures
	Making True/False Decisions with if() Statements
	Branching with if(). . .else Statements
	Making Multiple Decisions
	Using the AND (??) and OR (||) operators
	Nesting multiple if() statements
	Using the switch() statement

	Understanding Code Looping
	Using while() Loops
	Using for() Loops
	Using do. . .while() Loops
	Controlling Loop Execution
	Exiting a loop using the break statement
	Bypassing loop statements using the continue statement

	Avoiding Infinite Loops

	Chapter 5 Harnessing the Power of Functions
	What Is a Function?
	The Structure of a Function
	Where Do You Put a Function?
	Calling a Function
	Calling a function when the <script> tag is parsed
	Calling a function after the page is loaded
	Calling a function in response to an event

	Passing Values to Functions
	Passing a single value to a function
	Passing multiple values to a function

	Returning a Value from a Function
	Understanding Local versus Global Variables
	Working with local scope
	Working with global scope

	Using Recursive Functions

	Chapter 6 Working with Objects
	What Is an Object?
	The JavaScript Object Hierarchy
	Manipulating Object Properties
	Referencing a property
	Some objects are properties
	Changing the value of a property

	Working with Object Methods
	Playing Around with the window Object
	Referencing the window object
	Some window object properties you should know
	Working with JavaScript timeouts and intervals
	Interacting with the user

	Programming the document Object
	Specifying an element
	Working with elements

	Chapter 7 Working with Arrays
	What Is an Array?
	Declaring an Array
	Populating an Array with Data
	Declaring and populating an array at the same time
	Using a loop to populate an array
	Using a loop to work with array data

	Creating Multidimensional Arrays
	Using the Array Object
	The length property
	Concatenating to create a new array: concat()
	Creating a string from an array’s elements: join()
	Removing an array’s last element: pop()
	Adding elements to the end of an array: push()
	Reversing the order of an array’s elements: reverse()
	Removing an array’s first element: shift()
	Returning a subset of an array: slice()
	Ordering array elements: sort()
	Removing, replacing, and inserting elements: splice()
	Inserting elements at the beginning of an array: unshift()

	Chapter 8 Manipulating Strings, Dates, and Numbers
	Manipulating Text with the String Object
	Determining the length of a string
	Finding substrings
	Methods that extract substrings

	Dealing with Dates and Times
	Arguments used with the Date object
	Working with the Date object
	Extracting information about a date
	Setting the date
	Performing date calculations

	Working with Numbers: The Math Object
	Converting between strings and numbers
	The Math object’s properties and methods

	Chapter 9 Debugging Your Code
	Understanding JavaScript’s Error Types
	Syntax errors
	Runtime errors
	Logic errors

	Getting to Know Your Debugging Tools
	Debugging with the Console
	Displaying the console in various browsers
	Logging data to the Console
	Executing code in the Console

	Pausing Your Code
	Entering break mode
	Exiting break mode

	Stepping through Your Code
	Stepping into some code
	Stepping over some code
	Stepping out of some code

	Monitoring Script Values
	Viewing a single variable value
	Viewing all variable values
	Adding a watch expression

	More Debugging Strategies
	Top Ten Most Common JavaScript Errors
	Top Ten Most Common JavaScript Error Messages

	Book 4 Coding the Front End, Part 3: jQuery
	Chapter 1 Developing Pages Faster with jQuery
	Getting Started with jQuery
	How to include jQuery in your web page
	Understanding the $ function
	Where to put jQuery code

	Selecting Elements with jQuery
	Using the basic selectors
	Working with jQuery sets

	Manipulating Page Elements with jQuery
	Adding an element
	Replacing an element’s HTML
	Replacing an element’s text
	Removing an element

	Modifying CSS with jQuery
	Working with CSS properties
	Manipulating classes

	Tweaking HTML Attributes with jQuery
	Reading an attribute value
	Setting an attribute value
	Removing an attribute

	Chapter 2 Livening Up Your Page with Events and Animation
	Building Reactive Pages with Events
	What’s an event?
	Understanding the event types
	Setting up an event handler
	Using jQuery’s shortcut event handlers
	Getting data about the event
	Preventing the default event action
	Getting your head around event delegation
	Turning off an event handler

	Building Lively Pages with Animation
	Hiding and showing elements
	Fading elements out and in
	Sliding elements
	Controlling the animation duration and pace
	Example: Creating a web page accordion
	Animating CSS properties
	Running code when an animation ends

	Chapter 3 Getting to Know jQuery UI
	What’s the Deal with jQuery UI?
	Getting Started with jQuery UI
	Working with the jQuery UI Widgets
	Dividing content into tabs
	Creating a navigation menu
	Displaying a message in a dialog
	Hiding and showing content with an accordion

	Introducing jQuery UI Effects
	Applying an effect
	Checking out the effects

	Taking a Look at jQuery UI Interactions
	Applying an interaction
	Trying out the interactions

	Book 5 Coding the Back End: PHP and MySQL
	Chapter 1 Learning PHP Coding Basics
	Understanding How PHP Scripts Work
	Learning the Basic Syntax of PHP Scripts
	Declaring PHP Variables
	Building PHP Expressions
	Outputting Text and Tags
	Adding line breaks
	Mixing and escaping quotation marks
	Outputting variables in strings
	Outputting long strings
	Outputting really long strings

	Working with PHP Arrays
	Declaring arrays
	Giving associative arrays a look
	Outputting array values
	Sorting arrays
	Looping through array values
	Creating multidimensional arrays

	Controlling the Flow of Your PHP Code
	Making decisions with if()
	Making decisions with switch()
	Looping with while()
	Looping with for()
	Looping with do. . .while()

	Working with PHP Functions
	Passing values to functions
	Returning a value from a function

	Working with PHP Objects
	Rolling your own objects
	Creating an object
	Working with object properties
	Working with object methods

	Debugging PHP
	Configuring php.ini for debugging
	Accessing the PHP error log
	Debugging with echo statements
	Debugging with var_dump() statements

	Chapter 2 Building and Querying MySQL Databases
	What Is MySQL?
	Tables: Containers for your data
	Queries: Asking questions of your data

	Introducing phpMyAdmin
	Importing data into MySQL
	Backing up MySQL data

	Creating a MySQL Database and Its Tables
	Creating a MySQL database
	Designing your table
	Creating a MySQL table
	Adding data to a table
	Creating a primary key

	Querying MySQL Data
	What is SQL?
	Creating a SELECT query
	Understanding query criteria
	Querying multiple tables
	Adding table data with an INSERT query
	Modifying table data with an UPDATE query
	Removing table data with a DELETE query

	Chapter 3 Using PHP to Access MySQL Data
	Understanding the Role of PHP and MySQL in Your Web App
	Using PHP to Access MySQL Data
	Parsing the query string
	Connecting to the MySQL database
	Creating and running the SELECT query
	Storing the query results in an array
	Looping through the query results
	Incorporating query string values in the query

	Creating and Running Insert, Update, and Delete Queries
	Separating Your MySQL Login Credentials

	Book 6 Coding Dynamic Web Pages
	Chapter 1 Melding PHP and JavaScript with Ajax and JSON
	What Is Ajax?
	Making Ajax Calls with jQuery
	Learning more about GET and POST requests
	Handling POST requests in PHP
	Using .load() to update an element with server data
	Using .get() or .post() to communicate with the server

	Introducing JSON
	Learning the JSON syntax
	Declaring and using JSON variables

	Returning Ajax Data as JSON Text
	Converting server data to the JSON format
	Handling JSON data returned by the server

	Chapter 2 Building and Processing Web Forms
	What Is a Web Form?
	Understanding How Web Forms Work
	Building an HTML5 Web Form
	Setting up the form
	Adding a form button
	Working with text fields
	Coding checkboxes
	Working with radio buttons
	Adding selection lists
	Programming pickers

	Handling and Triggering Form Events
	Setting the focus
	Monitoring the focus event
	Blurring an element
	Monitoring the blur event
	Listening for element changes

	Submitting the Form
	Triggering the submit event
	Preventing the default form submission
	Preparing the data for submission
	Submitting the form data

	Chapter 3 Validating Form Data
	Validating Form Data in the Browser
	Making a form field mandatory
	Restricting the length of a text field
	Setting maximum and minimum values on a numeric field
	Validating email fields
	Making field values conform to a pattern
	Styling invalid fields

	Validating Form Data on the Server
	Checking for required fields
	Validating text data
	Validating a field based on the data type
	Validating against a pattern

	Regular Expressions Reference

	Book 7 Coding Web Apps
	Chapter 1 Planning a Web App
	What Is a Web App?
	Planning Your Web App: The Basics
	What is my app’s functionality?
	What are my app’s data requirements?
	How will my app work?
	How many pages will my app require?
	What will my app’s pages look like?

	Planning Your Web App: Responsiveness
	Planning Your Web App: Accessibility
	Planning Your Web App: Security
	Understanding the dangers
	Defending your web app

	Chapter 2 Laying the Foundation
	Setting Up the Directory Structure
	Setting up the public subdirectory
	Setting up the private subdirectory

	Creating the Database and Tables
	Getting Some Back-End Code Ready
	Defining PHP constants
	Understanding PHP sessions
	Securing a PHP session
	Including code from another PHP file

	Creating the App Startup Files
	Creating the back-end initialization file
	Creating the front-end common files
	Building the app home page

	Chapter 3 Managing Data
	Handling Data the CRUD Way
	Starting the web app’s data class
	Creating a data handler script

	Creating New Data
	Building the form
	Sending the form data to the server
	Adding the data item

	Reading and Displaying Data
	Getting the home page ready for data
	Making an Ajax request for the data
	Reading the data
	Displaying the data
	Filtering the data

	Updating and Editing Data
	Deleting Data

	Chapter 4 Managing App Users
	Configuring the Home Page
	Setting Up the Back End to Handle Users
	Starting the web app’s user class
	Creating a user handler script

	Signing Up a New User
	Building the form
	Sending the data to the server
	Sending a verification email
	Adding the user to the database
	Verifying the user

	Signing a User In and Out
	Checking for a signed-in user
	Adding the form
	Checking the user’s credentials
	Signing out a user

	Resetting a Forgotten Password
	Deleting a User

	Book 8 Coding Mobile Web Apps
	Chapter 1 Exploring Mobile-First Web Development
	What Is Mobile-First Web Development?
	Learning the Principles of Mobile-First Development
	Mobile first means content first
	Pick a testing width that makes sense for your site
	Get your content to scale with the device
	Build your CSS the mobile-first way
	Pick a “non-mobile” breakpoint that makes sense for your content

	Going Mobile Faster with jQuery Mobile
	What is jQuery Mobile?
	Adding jQuery Mobile to your web app

	Working with Images in a Mobile App
	Making images responsive
	Delivering images responsively

	Storing User Data in the Browser
	Understanding web storage
	Adding data to storage
	Getting data from web storage
	Removing data from web storage

	Chapter 2 Building a Mobile Web App
	Building the Button Builder App
	Getting Some Help from the Web
	Building the App: HTML
	Setting up the home page skeleton
	Configuring the header
	Creating the app menu
	Adding the app’s controls

	Building the App: CSS
	Building the App: JavaScript and jQuery
	Setting up the app data structures
	Setting the app’s control values
	Getting the app’s control values
	Writing the custom CSS code
	Running the code
	Saving the custom CSS
	Copying the custom CSS
	Resetting the CSS to the default

	Index
	EULA

Web Coding &
lopment

