
ptg999

www.allitebooks.com

http://www.allitebooks.org

ptg999

 Windows® 8.1 Apps
with HTML5 and JavaScript

 UNLEASHED

 800 East 96th Street, Indianapolis, Indiana 46240 USA

 Stephen Walther

www.allitebooks.com

http://www.allitebooks.org

ptg999

 Windows® 8.1 Apps with HTML5 and JavaScript Unleashed

 Copyright © 2014 by Pearson Education

 All rights reserved. No part of this book shall be reproduced, 8.1d in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no respon-
sibility for errors or omissions. Nor is any liability assumed for damages resulting from
the use of the information contained herein.

 ISBN-13: 978-0-672-33711-6
 ISBN-10: 0-672-33711-8

 Library of Congress Control Number 2013951680

 Printed in the United States on America

 First Printing December 2013

Trademarks

 All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer

 Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author(s) and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

 Special Sales

 For information about buying this title in bulk quantities, or for special sales opportuni-
ties (which may include electronic versions; custom cover designs; and content particu-
lar to your business, training goals, marketing focus, or branding interests), please
contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

 Editor-in-Chief

Greg Wiegand

 Executive Editor

Neil Rowe

 Development Editor

Mark Renfrow

 Managing Editor

Kristy Hart

 Project Editor

Elaine Wiley

 Indexer

Tim Wright

 Proofreader

Charlotte HKughen

 Technical Editors

Jeff Burtoft
James Boddie

 Publishing Coordinator

Cindy Teeters

 Senior Compositor

Gloria Schurick

www.allitebooks.com

http://www.allitebooks.org

ptg999

Contents at a Glance

Introduction . 1

 1 Building Windows Store Apps . 5

 2 WinJS Fundamentals . 45

 3 Observables, Bindings, and Templates . 81

 4 Using WinJS Controls . 113

 5 Creating Forms . 149

 6 Menus and Flyouts . 169

 7 Using the ItemContainer, Repeater, and FlipView Controls 197

 8 Using the ListView Control . 223

 9 Creating Data Sources . 263

 10 Storing Data with Windows Azure . 295

 11 App Events and States . 311

 12 Page Fragments and Navigation . 333

 13 Creating Share and Search Contracts . 353

 14 Using the Live Connect API . 387

 15 Graphics and Games . 417

 16 Creating a Task List App . 431

Index . 449

www.allitebooks.com

http://www.allitebooks.org

ptg999

Table of Contents

 Introduction 1

Updated for Windows 8.1 . 2
Prerequisites for This Book . 3
Source Code . 3

 1 Building Windows Store Apps 5

What Is a Windows Store App? . 5
Microsoft Design Style Principles . 6
Common Features of Windows Store Apps . 7

Creating Your First Windows Store App . 13
Creating the Visual Studio Project . 14
Declaring App Capabilities . 15
Creating the HTML Page . 17
Creating the Style Sheet . 18
Creating the JavaScript File . 18
Running the App . 21

Elements of a Windows Store App . 21
JavaScript . 21
HTML5 . 22
Cascading Style Sheets 3 . 22
Windows Runtime . 23
Windows Library for JavaScript . 23
What About jQuery? . 24

Building Windows Store Apps with Visual Studio . 26
Windows Store App Project Templates . 27
Running a Windows Store App . 31

Debugging a Windows Store App . 33
Using the Visual Studio JavaScript Console Window . 33
Setting Breakpoints . 34
Using the DOM Explorer . 35

Publishing to the Windows Store . 36
Register as a Windows Developer . 36
Submitting Your App . 37
Passing App Certification . 39

Migrating from Windows 8 to Windows 8.1 . 41
Summary . 42

www.allitebooks.com

http://www.allitebooks.org

ptg999

Contents v

 2 WinJs Fundamentals 45

Namespaces, Modules, and Classes . 45
Using Namespaces . 46
Using the Module Pattern. 48
Using Classes . 51

Asynchronous Programming with Promises . 56
Using Promises . 57
Using then() Versus done() . 59
Creating Promises . 60
Creating a Timeout Promise . 61
Canceling Promises . 62
Composing Promises. 63

Retrieving DOM Elements with Query Selectors . 63
Performing Queries with the WinJS.Utilities.query() Method 64
Retrieving a Single Element with the WinJS.Utilities.id()

Method . 66
Using the WinJS.Utilities.children() method . 67
Working with the QueryCollection Class . 68

Performing Ajax Calls with the xhr Function . 69
Specifying Different Response Types . 72
Customizing the Properties of the XmlHttpRequest Object 73

Using the Scheduler to Prioritize Jobs . 75
Setting Job Priorities . 77
Yielding to a Higher Priority Job . 77

Summary . 80

3 Observables, Bindings, and Templates 81

Understanding Observables . 81
Creating an Observable . 82
Creating Observable Listeners . 83
Coalescing Notifications . 85
Bypassing Notifications . 87
Working with the WinJS.Binding.List object . 88
Creating an Observable Collection of Observables . 90

Understanding Declarative Data Binding . 91
Declarative Data Binding and Observables . 94
Capturing the Contents of an HTML Form . 96
Declarative Data Binding and WinJS Controls . 99
Declarative Data Binding and Binding Converters . 101

Understanding Templates . 105
Creating an Imperative Template . 105
Creating a Declarative Template . 108

www.allitebooks.com

http://www.allitebooks.org

ptg999

Windows 8.1 Apps with HTML5 and JavaScript Unleashedvi

Applying a Template with a Query Selector . 109
Creating External Templates . 111

Summary . 112

4 Using WinJs Controls 113

Introduction to WinJS Controls . 113
Creating a WinJS Control Declaratively . 115
Creating Controls Imperatively . 117
Setting Control Options . 118
Retrieving Controls from an HTML Document . 119

Using the Tooltip Control . 120
Using the contentElement Property . 121
Styling a Tooltip . 121

Using the ToggleSwitch Control . 122
Determining the State of a ToggleSwitch . 123

Using the Rating Control . 124
Customizing the Ratings . 125
Submitting a Rating . 125

Using the DatePicker Control . 127
Formatting the Year, Month, and Date . 128
Displaying Only Years, Months, or Days . 131
Capturing the Selected Date . 132

Using the TimePicker Control . 133
Getting and Setting the Current Time . 134
Formatting the Hour, Minute, and Period . 136

Using the Hub Control . 137
Creating Hubs and Hub Sections . 138
Handling Hub Section Navigation . 139

Using the WebView Control . 139
Hosting a Page from the Internet with the WebView Control 140
Handling Navigation and Navigation Events . 142
Capturing WebView Screenshots . 145

Summary . 147

 5 Creating Forms 149

Using HTML5 Form Validation . 149
Using the required Attribute . 150
Using the pattern Attribute. 150
Performing Custom Validation . 151
Customizing the Validation Error Style . 152
Resetting a Form . 154

www.allitebooks.com

http://www.allitebooks.org

ptg999

Contents vii

Using HTML5 Input Elements . 155
Labeling Form Fields . 157
Entering a Number . 158
Entering a Value from a Range of Values . 159
Entering Email Addresses, URLs, Telephone Numbers,

and Search Terms . 160
Entering a Value from a List of Values . 162
Selecting Files . 162

Creating a Rich Text Editor . 164
Displaying Progress . 165
Summary . 167

 6 Menus and Flyouts 169

Using the Flyout Control . 169
Using the Menu Control . 172
Using the AppBar Control . 176

Creating a Simple App Bar . 176
Using App Bar Commands . 178
Showing Contextual Commands . 181

Using the NavBar Control . 184
Creating a Simple Nav Bar . 184

Configuring App Settings . 186
Creating About Page Settings . 187
Creating Personal Settings . 189

Displaying Windows Dialogs . 192
Summary . 195

 7 Using the ItemContainer, Repeater, and FlipView Controls 197

Using the ItemContainer Control. 197
Styling an ItemContainer . 198
Interacting with an ItemContainer . 200
Selecting an ItemContainer . 202
Creating Drag-and-Drop Items . 204

Using the Repeater Control . 208
Using an External Template . 210
Using a Nested Template . 211
Using the Repeater with the ItemContainer . 214

Using the FlipView Control . 215
Displaying Page Numbers . 219
Creating Custom FlipView Buttons . 221

Summary . 222

www.allitebooks.com

http://www.allitebooks.org

ptg999

Windows 8.1 Apps with HTML5 and JavaScript Unleashedviii

 8 Using the ListView Control 223

 Introduction to the ListView Control . 224
Using Different ListView Layouts . 228

Using Grid Layout . 229
Using List Layout . 231
Using Cell Spanning Layout . 231

Invoking Items in a ListView Control . 236
Selecting Items in a ListView Control . 238
Sorting Items in a ListView Control . 241
Filtering Items in a ListView Control . 242
Grouping Items in a ListView Control . 245
Switching Views with Semantic Zoom . 248
Switching a ListView Template Dynamically . 253
Using Drag and Drop . 256

Reordering Items in a ListView . 256
Dragging Items from ListViews . 258

Summary . 262

 9 Creating Data Sources 263

 Creating Custom Data Sources . 263
Creating the Data Source Class . 264
Creating a Data Adapter . 264
Implementing the getCount() Method . 265
Implementing the itemsFromIndex() Method . 265
Implementing the insertAtEnd() Method . 267
Implementing the remove() Method . 267
Implementing the change() Method . 268
Handling Errors . 268
Implementing the setNotificationHandler() Method 269

Creating a File Data Source . 270
Using the File Data Source . 271

Creating a Web Service Data Source . 276
Creating the Data Source . 276
Creating the Web Service . 278
Using the Web Service Data Source . 280

Creating an IndexedDB Data Source . 281
Overview of IndexedDB . 282
Using the IndexedDB Data Source . 286

Summary . 293

www.allitebooks.com

http://www.allitebooks.org

ptg999

Contents ix

 10 Using Windows Azure Mobile Services 295

 Creating a Mobile Service . 295
Creating a Database Table . 297
Installing the Mobile Services for WinJS Library. 298
Performing Inserts, Updates, and Deletes . 299

Connecting to the Remote Database Table . 299
Inserting Database Data . 299
Updating Database Data . 300
Deleting Database Data . 301

Performing Database Queries . 301
Looking Up a Single Database Record . 301
Retrieving a Set of Database Records . 302

Performing Validation . 304
Performing Custom Actions . 306
Debugging Script Errors . 308
Summary . 309

 11 App Events and States 311

 App Events . 311
Handling the Activated Event . 312
Handling the Error Event . 313
Deferring Events with Promises . 314
Creating Custom Events . 315

Suspending, Terminating, and Resuming an App . 315
Detecting When an App Is Suspended and Terminated 316
Detecting the Previous Execution State . 316
Testing Application State with Visual Studio . 317
Storing State with Session State . 318

Designing for Different Window Sizes . 320
Setting the Minimum App Width. 320
Using CSS Media Queries. 321
Using the window resize Event . 324

Scaling Content to Fit Different Screen Resolutions . 326
Defining a Viewport . 326
Using the ViewBox Control . 329

Summary . 332

 12 Page Fragments and Navigation 333

 Using the HtmlControl Control . 333
Creating a Page Control . 336

www.allitebooks.com

http://www.allitebooks.org

ptg999

Windows 8.1 Apps with HTML5 and JavaScript Unleashedx

Creating Multi-Page Apps . 340
Creating a Navigation App . 340
Understanding the Navigation App default.html Page 341
Adding New Page Controls to a Navigation App . 343
Navigating to Another Page . 345
Understanding the Navigation API . 346
Understanding the PageControlNavigator Control . 347
Understanding Navigation State . 347

Summary . 351

 13 Creating Share and Search Contracts 353

 Supporting Sharing . 354
Creating a Share Source . 356
Creating a Share Target . 360

Using the Search Charm . 368
Declaring Your App as a Search Provider . 369
Providing Search Suggestions . 370
Handling Search Activation . 372
Adding a Search Results Page . 373

Using the SearchBox Control . 376
Adding the SearchBox Control to a Page . 377
Providing Search Suggestions . 378
Displaying Search Results . 379

Using the Windows Content Indexer . 380
Understanding the Windows Content Indexer API . 381
Creating an Indexer Helper . 381
Using the Indexer Helper . 382

Summary . 385

 14 Using the Live Connect API 387

Installing the Live SDK . 388
Adding a Reference to the Live SDK . 388
Registering Your App . 389
Initializing the Live Connect SDK . 391
Specifying Different Scopes . 391

Authenticating a User . 394
Logging a User into Live Connect . 394
Creating Account Settings . 396

Authentication and Windows Azure Mobile Services . 401
Configuring Your Mobile Service . 401
Setting Permissions for Your Mobile Service . 402
Updating the Mobile Server Scripts . 402
Logging Into Azure Mobile Services . 404

ptg999

Contents xi

Retrieving Basic User Information . 406
Uploading and Downloading Files from SkyDrive . 408

Listing SkyDrive Folders and Files . 409
Downloading Files from SkyDrive . 411
Uploading Files to SkyDrive . 413

Summary . 415

 15 Graphics and Games 417

 Overview of the Game . 418
Creating the Game Tiles . 419
Playing the Game Sounds . 420
Creating the Game Canvas . 421
Capturing User Interaction . 424
Creating the Update Loop . 425
Creating the Render Loop . 427
Summary . 429

 16 Creating a Task List App 431

 Overview of the App . 432
Setting Up the App . 433
Connecting to External Services . 435
Optimistic Inserts, Updates, and Deletes . 437
Adapting to Screen Changes . 440
Creating a Custom Control . 444
Using Text to Speech . 446
Summary . 448

Index 449

ptg999

About the Author

 Formerly a Senior Program Manager at Microsoft, Stephen Walther now runs his own
consulting and training company www.SuperexpertTraining.com . He flies to companies
and provides hands-on training on building Windows Store apps.

 Stephen was completing his Ph.D. at MIT and teaching classes on metaphysics at MIT and
Harvard when he abruptly realized that there is no money in metaphysics. He dropped
out to help found two successful Internet startups. He created the Collegescape website, a
website used by more than 200 colleges, including Stanford, Harvard, and MIT, for online
college applications (sold to ETS). He also was a founder of CityAuction, which was one of
the first and largest auction websites (sold to CitySearch).

http://www.SuperexpertTraining.com

ptg999

Dedication

 This book is dedicated to Jon Robert Walther, who is a Jedi ninja.

Acknowledgments

 Yikes, it takes too much work to write a technical book—don’t ever do it! I would like
to blame my editor Neil Rowe for talking me into writing another book. I also want to
blame my wife Ruth Walther for failing to talk me out of it. Finally, I want to blame my
technical editors Jeff Burtoft and James Boddie for doing such a careful job of coming up
with ways to improve the book and forcing me to spend even more time working on the
book.

ptg999

We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

 You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

 When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

 Email: feedback@samspublishing.com

 Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

 Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

ptg999

 Introduction

 If you want to build a software application and reach the largest possible market of
customers and make the most money then it makes sense for you to build a Windows
8.1 app.

 Microsoft Windows is the most popular operating system in the world. Windows accounts
for more than 90 percent of the operating system market. More than 100 million licenses
for Windows 8 were sold in its first six months of release. The size of the Windows market
dwarfs the size of every other marketplace for software applications (including the iPhone
and Android markets).

 I want to own a toilet made of solid gold, Nathan Myhrvold’s jet, and a Tesla Roadster
(orange). These are modest goals, and I know that many of you reading this book share
the same goals. The most likely way for you or me (hopefully me) to reach these goals is
to build Windows 8.1 apps.

 When you build a Windows 8.1 app, you can sell your app right within Windows 8.1
itself. Windows 8.1 includes the Windows Store (shown in Figure I.1) where you can list
your app for anywhere between free and $999.99. You can sell a variety of different types
of apps including productivity apps (think task lists and time trackers) and games (think
Angry Birds and Cut the Rope).

 FIGURE I.1 You can sell your app in the Windows Store.

ptg999

 Introduction2

 This book is all about building Windows apps that you can sell in the Windows Store. In
particular, you learn how to build Windows apps using JavaScript and HTML5.

 Why JavaScript and HTML5? You can build Windows apps using other technologies such
as C# and XAML or C++, but this book focuses exclusively on building Windows apps
with JavaScript and HTML5.

 The advantage of building Windows apps with JavaScript and HTML5 is that you can
leverage your existing skills building websites to build Windows applications. If you are
already comfortable programming with JavaScript, HTML, and Cascading Style Sheets then
you should find it easy to build Windows apps.

 This book covers everything you need to know to build Windows apps. You learn how
to use the Windows Library for JavaScript (WinJS) to create JavaScript applications. In
particular, you learn how to use WinJS controls such as the Rating, Menu, Repeater, and
ListView controls.

 You also learn how to work with the Windows Runtime. By taking advantage of the
Windows Runtime, you can access Windows 8.1 functionality to do things that you could
not normally do in a pure web app, such as capture video and sound and convert text to
speech.

 By the end of this book, you will understand how to create Windows apps, such as game
apps and productivity apps. In Chapter 15 , “Graphics and Games,” you learn how to
create a simple arcade game—the Brain Eaters game. And, in Chapter 16 , “Creating a Task
List App,” you learn how to build a productivity app—the MyTasks app.

 Read this book, build a Windows app, sell lots of copies, and buy a jet.

 Updated for Windows 8.1
 This book has been extensively updated for Windows 8.1. Changes have been made to
every chapter. All of the code associated with this book has been reviewed and updated to
be compatible with Windows 8.1.

 Windows 8.1 includes several important new controls, including the Hub, Repeater,
ItemContainer, SearchBox, WebView, and NavBar controls. This book covers all of these
new controls in depth.

 Windows 8.1 ships with a new version of the Windows Library for JavaScript (WinJS 2.0).
This new version has significant new features such as the WinJS Scheduler. I discuss the
new WinJS Scheduler in Chapter 2 , “WinJS Fundamentals.”

 Windows 8.1 includes important backwards breaking changes. Unlike Windows 8,
Windows 8.1 no longer supports discrete view states such as a snapped or filled state. I
discuss these changes in Chapter 11 , “App Events and States. ”

 Finally, I added four new chapters to this book. I added a chapter that covers the new
ItemContainer and Repeater controls (Chapter 7 , “Using the ItemContainer, Repeater,
and FlipView Controls”), a chapter devoted to using Windows Azure Mobile Services
(Chapter 10 , “Storing Data with Windows Azure”), a chapter on implementing share and

ptg999

Source Code 3

search (Chapter 13, “Creating Share and Search Contracts”), and a chapter on building a
productivity app (Chapter 16).

 Prerequisites for This Book
 If you can build a website using JavaScript, HTML, and Cascading Style Sheets then you
have the skills that you need to read and understand this book.

 There are two software requirements for building Windows apps and using the code from
this book.

 First, you must build a Windows 8.1 app on the Windows 8.1 operating system. Let me
repeat this: You must have Windows 8.1 installed on your computer to use the code from
this book.

 Second, in order to use the code from this book, you need Microsoft Visual Studio 2013.
There is a free version of Visual Studio 2013—Microsoft Visual Studio Express 2013 for
Windows—which you can download from the Microsoft.com website.

 Source Code
 You can download all of the source code associated with this book from GitHub:
 https://github.com/StephenWalther/Windows8.1AppsUnleashed

 Click the Downloads link to download the latest version of the code in a zip file.

https://github.com/StephenWalther/Windows8.1AppsUnleashed

ptg999

This page intentionally left blank

ptg999

 CHAPTER 1

 Building Windows
Store Apps

 In this chapter, I introduce you to the basics of build-
ing Windows Store apps. I start off by explaining how a
Windows Store app differs from a traditional Windows
desktop application. You learn what makes a Windows
Store app a Windows Store app.

 Feeling fearless and bold, and hoping that you too feel fear-
less and bold, I next guide you through building your first
Windows store app. You learn how to take advantage of
the features of Microsoft Visual Studio 2013 to build, run,
and debug a Windows Store app.

 Next, we dive into a discussion of the fundamental
elements of a Windows Store app. You learn how a
Windows Store app is forged out of HTML5, JavaScript,
the Windows Library for JavaScript, and the Windows
Runtime.

 Finally, we get to the money part. I explain how you can
publish your Windows Store app to the Windows Store and
start collecting those dollars.

 What Is a Windows Store App?
 I can still remember the first time that I used an iPhone.
When you scroll the screen on an iPhone, the screen actu-
ally bounces! And when you add an email to the trash, the
email gets sucked into the trashcan! It’s as if there is a little
universe inside an iPhone and it follows our physical laws.

 For some reason—that I have not explored and that I do
not completely understand—this illusion that there is a
second universe inside my iPhone makes me happy. It
makes interacting with an iPhone fun.

IN THIS CHAPTER

� What Is a Windows Store App?

� Creating Your First Windows
Store App

� Elements of a Windows Store
App

� Building Windows Store Apps
with Visual Studio

� Debugging a Windows Store
App

� Publishing to the Windows
Store

� Migrating from Windows 8 to
Windows 8.1

www.allitebooks.com

http://www.allitebooks.org

ptg999

CHAPTER 1 Building Windows Store Apps 6

 Now we come to Windows. Except for the dancing card thing in Windows Solitaire, I
can’t think of anything in Windows that has ever created this same sense of fun. I can’t
remember the last time that Windows made me laugh or brought me joy.

 With Windows Store apps, Microsoft has finally acknowledged that user experience
matters—in a big way. The heart of Windows Store apps is a set of user experience prin-
ciples named the Microsoft design style principles . By embracing the Microsoft design style
principles, you can create Windows Store apps that seem more alive and that are a plea-
sure to use.

 Microsoft Design Style Principles

 The Microsoft design style principles is a set of user experience design principles devel-
oped by Microsoft in the context of building the Windows Phone, Xbox Live, and the
(now defunct) Zune. You also can see the Microsoft design principles applied to Microsoft
websites such as Microsoft SkyDrive and the Windows Azure Portal. Get ready. Here
they are:

1. Show pride in craftsmanship

 ▶ Devote time and energy to small things that are seen often by many.

 ▶ Engineer the experience to be complete and polished at every stage.

2. Do more with less

 ▶ Solve for distractions, not discoverability. Let people be immersed in what they
love and they will explore the rest.

 ▶ Create a clean and purposeful experience by leaving only the most relevant
elements on screen so people can be immersed in the content.

3. Be fast and fluid

 ▶ Let people interact directly with content, and respond to actions quickly with
matching energy.

 ▶ Bring life to the experience, create a sense of continuity and tell a story
through meaningful use of motion.

4. Be authentically digital

 ▶ Take full advantage of the digital medium. Remove physical boundaries to
create experiences that are more efficient and effortless than reality.

 ▶ Embrace the fact that we are pixels on a screen. Design with bold, vibrant and
crisp colors and images that go beyond the limits of real-world material.

ptg999

What Is a Windows Store App? 7

1

5. Win as one

 ▶ Leverage the ecosystem and work together with other apps, devices and the
system to complete scenarios for people.

 ▶ Fit into the UI model to reduce redundancy. Take advantage of what people
already know to provide a sense of familiarity, control, and confidence.

 NOTE

 The Microsoft design style principles were originally known as Metro design principles . This
list of Microsoft design style principles was taken from http://msdn.microsoft.com/en-us/
library/windows/apps/hh464920 and http://msdn.microsoft.com/en-us/library/windows/
apps/hh465424.aspx .

 When I first read these principles, my initial reaction was that they seemed overly abstract
and squishy. Exactly the type of principles that would be created by beret-wearing user
experience guys.

 But then, when I saw how the principles were applied in practice—when building actual
Windows Store apps—I started to develop a better appreciation for these principles.

 Take the “Do more with less” design principle. One of the distinctive features of a
Windows Store app is the lack of chrome. Ironically, a Windows Store app is a Windows
app without the window. Windows Store apps are full-screen apps.

 This lack of chrome makes it easier to concentrate on the content of the application. For
example, Windows 8 includes two version of Internet Explorer: a desktop version and a
full-throated Windows 8 version that follows the Microsoft design style principles.

 I really prefer using the Windows 8 version of Internet Explorer over the desktop version.
When using the Windows 8 version, all you see is the web page, which is the point of the
application in the first place.

 Or consider the “Be fast and fluid” principle. The reason that I like interacting with my
iPhone so much is the illusion of motion, and this illusion is created by the judicious use
of animations: On an iPhone, objects bounce and wobble.

 When building a Windows Store app, you are encouraged to take advantage of anima-
tions. For example, if you use the standard ListView control—which we discuss in detail
later in this book—then you get animations when you add or remove items. When you
add an item to a ListView, it not only appears, it glides into place. When you remove an
item, it doesn’t just disappear, items above and below it collapse into place.

 Common Features of Windows Store Apps

 Windows Store apps are applications that follow the Microsoft design style principles.
Furthermore, Windows Store apps are designed to run on the Windows 8 or Windows RT
operating system.

http://msdn.microsoft.com/en-us/library/windows/apps/hh464920
http://msdn.microsoft.com/en-us/library/windows/apps/hh464920
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

ptg999

CHAPTER 1 Building Windows Store Apps 8

 All Windows Store apps have a common set of features. Let me explain these features by
pointing them out in the context of the Bing News app that’s included with Windows 8.

 NOTE

 It is worth pointing out that the standard Windows 8 Bing News app discussed in this
section was written using HTML5 and JavaScript (using the same techniques described
in this book). In case you are curious, you can view the HTML and JavaScript source for
the News app by opening the hidden folder where Windows apps are installed located at
 Program Files\WindowsApps .

 Support for Keyboard, Mouse, Touch, and Stylus

 One of the most distinctive characteristics of a Windows Store app is its oversized tiles and
buttons and generous use of whitespace. All of this user interface (UI) roominess makes
Windows Store apps friendly to fat fingers.

 Windows Store apps are designed to work equally well when used on a touch-only tablet
and when used on a desktop computer with a keyboard and mouse. Windows Store apps
are designed to be gropeable.

 The nice thing about how Windows 8 works is that you don’t need to put a lot of thought
into supporting touch as a developer. As long as you stick with the standard WinJS
controls, you get both keyboard and touch support for free.

 Using the App Bar and Nav Bar

 Figure 1.1 contains a screenshot of the Windows 8 Bing News app with the home page of
Fox News open. Notice that the only thing that you see is the content of Fox News. No
toolbars, no menus, no status bars.

 FIGURE 1.1 Windows 8 Bing News app

ptg999

What Is a Windows Store App? 9

1

 In a Windows Store app, you hide all of your commands in the app bar. The app bar
appears only when you swipe from the bottom or top of the screen or you right-click
the screen.

 The app bar for the Bing News app includes commands such as Pin to Start, Refresh, and
Help. You can see the app bar at the bottom of Figure 1.2 .

 FIGURE 1.2 Using the app bar and nav bar

 Notice in Figure 1.2 that there is another bar at the top of the screen. This bar is called the
nav bar and you use it to navigate. In the case of the Bing News app, the nav bar enables
you to navigate to different news sources such as the Wall Street Journal, Fox News, and
the New York Times.

 Using Charms

 If you swipe from the right edge of the screen or mouse to either of the right corners or
press the keyboard combination Win+C then the charms are revealed (see Figure 1.3).

ptg999

CHAPTER 1 Building Windows Store Apps 10

 FIGURE 1.3 Viewing charms

 Here’s a list of the standard charms:

▶ Search—Enables you to search content in the current app and other apps

▶ Share—Enables you to share content in the current app with other apps

▶ Start—Navigates you to the Start screen

▶ Devices—Enables you to connect to a device

▶ Settings—Enables you to configure both app settings and system settings

 These charms provide you with standard locations to place common application function-
ality. For example, all Windows Store app settings should appear in the Settings charm
(see Figure 1.4). This makes it much easier for users to find your settings.

ptg999

What Is a Windows Store App? 11

1

 FIGURE 1.4 The Settings charm

 When you are building a Windows Store app, you don’t build your own Settings menu.
Instead, you extend the Settings charm with your custom app settings. I discuss the details
of doing this in Chapter 6 , “Menus and Flyouts.”

 Different App Sizes and Orientations

 Every Windows 8.1 app supports a minimum width of either 500 pixels or 320 pixels. For
example, if a Windows 8.1 app has a minimum horizontal size of 500 pixels then the app
can be resized to any size between 500 pixels and the maximum screen size of the device
where the app is displayed.

 If you are lucky enough to have a sufficiently large screen, then you can display multiple
running apps side by side (up to four apps per monitor). For example, Figure 1.5 illustrates
three Windows 8.1 apps running side by side (the Calendar, Maps, and News apps).

 WARNING

 You cannot display more than two 500 pixel apps on a 1,024 pixel by 768 pixel screen
because that would violate the laws of mathematics.

ptg999

CHAPTER 1 Building Windows Store Apps 12

 FIGURE 1.5 Three Windows 8.1 apps side by side

 NOTE

 Windows 8, unlike Windows 8.1, supported running of no more than two apps at once.
Furthermore, when using Windows 8, one of the two running apps was required to be
snapped to a horizontal resolution of 320 pixels. Windows 8.1 is far more flexible.

 A Windows Store app also must work when used with different device orientations. For
example, when an app is viewed on a tablet computer, the user always has the option of
rotating your app from a landscape to a portrait orientation.

 When building Windows Store apps, you need to design the app so it works with different
screen resolutions and orientations. At any moment, the horizontal resolution of your app
could be dramatically changed. I discuss how to handle switching between different reso-
lutions in Chapter 11 , “App Events and States.”

 People, Not Machines, Use Windows Store Apps

 When you buy a Windows Store app, the app is licensed per user and not per machine.
When you buy an app, you can use the app on up to five machines—including both
tablets and desktops—associated with your user account. You can view and install all of
your purchased apps from the Windows Store by right-clicking within the Store app and
selecting Your Apps .

 Better yet, data from your apps can be shared across multiple machines (roaming applica-
tion data). So, if you are using an app to read an article on your tablet PC on the bus and
then you open the same app on your desktop PC at work, you won’t lose your place in
the article.

ptg999

Creating Your First Windows Store App 13

1

 Currently, every Windows Store app gets 100KB of roaming application data. Windows 8.1
handles synchronizing this data between different machines for you automatically.

 Closing a Windows Store App

 Now close a Windows Store app by moving your cursor over the x at the top-right of the
screen. Ha! Tricked you! There is no close button in a Windows Store app because there is
no chrome.

 NOTE

 Even though it is not obvious how to close a Windows Store app, it is possible. You can
close a Windows Store app by swiping down from the top of the screen to the very bottom
of the screen or pressing the keyboard combination Alt+F4.

 When interacting with Windows Store apps, there is no obvious way to close an app.
This is intentional. Instead of closing a Windows Store app, you are encouraged to simply
switch to another running app (by swiping from the left edge of the screen) or launch a
new app (by selecting a new app from the Start screen).

 When you design a Windows Store app, you must design the app with the knowledge that
a user might switch back and forth to your running app at any time. In Chapter 11
I discuss how you can gracefully resume an app after it has been suspended.

 Creating Your First Windows Store App
 Let’s be fearless. In this section, I guide you through building your first Windows Store
app. Doing a Hello World app would be predictable and boring. Therefore, I suggest that
we do something a little more advanced.

 I’ll show you how you can create an app which enables you to take pictures. When you
click the Take Picture command in the app bar, you can take a picture, and then the
picture is displayed in the app (see Figure 1.6 , which shows a picture of my dog Rover).

 NOTE

 The code for the completed app can be found in the Chapter 1 folder with the name App1.
All of the code for this book is located in a GitHub repository at https://github.com/
StephenWalther/Windows8.1AppsUnleashed.

https://github.com/StephenWalther/Windows8.1AppsUnleashed
https://github.com/StephenWalther/Windows8.1AppsUnleashed

ptg999

CHAPTER 1 Building Windows Store Apps 14

 FIGURE 1.6 Your first Windows Store app

 Creating the Visual Studio Project

 The first step is to create a Microsoft Visual Studio Project. I used Visual Studio 2013 to
create almost all of the code samples for this book. In most cases, I used the free version of
Visual Studio—Visual Studio Express 2013 for Windows—which you can download from
Microsoft.com.

 NOTE

 You can create Windows Store apps with either Microsoft Visual Studio 2013 or Microsoft
Blend. If you need to release to the Windows Store then I recommend using Microsoft
Visual Studio 2013.

 In order to build Windows Store apps, you must use Visual Studio on Windows 8.1. If you
don’t have a dedicated Windows 8.1 computer, you can use a virtual machine running
Windows 8.1 such as VMware Player.

 Go ahead and launch Visual Studio. Next, select the menu option File, New Project. On
the left-side of the New Project dialog, select JavaScript and select the Blank App project
template. Enter the name App1 for your project and click the OK button (see Figure 1.7).

ptg999

Creating Your First Windows Store App 15

1

 FIGURE 1.7 Using the Visual Studio New Project dialog

 After you create your project, you can see all of the files for your project in the Solution
Explorer window (Figure 1.8). When you create a new Windows Store app, you get a
default.html file (in the root of your project), a default.js file (in the js folder), and a
default.css file (in the css folder). These three files are the starting point for your app.

 FIGURE 1.8 Windows Store app default files

 Declaring App Capabilities

 Before we can jump into writing code, there is one other thing that we must do first.
We are building an app that takes pictures. That is scary. Potentially, an app could take
pictures of you without your knowledge and send the pictures back to an evil hacker
lurking on the Internet (or the CEO of Microsoft).

ptg999

CHAPTER 1 Building Windows Store Apps 16

 When your app does something scary, you must declare that your app will do this scary
thing up front so the user can consent. You declare the capabilities of your app in your
application manifest file. You can open the editor for your application manifest by
double-clicking the package.appxmanifest file in the Solution Explorer window.

 Click the Capabilities tab to view all of the declared capabilities of your application. For
example, if you want your app to be able to record from the computer microphone then
you need to select the Microphone capability, or if you want your app to be able to save
new photos in the user’s Pictures library then you need to select the Pictures Library capa-
bility. For our app, we need to enable the Webcam capability so we can take pictures (see
 Figure 1.9).

 FIGURE 1.9 Enabling the capability to take pictures

 When a user first runs our app, the user will need to consent to allowing the app to access
the webcam (see Figure 1.10). The user only needs to consent once.

 FIGURE 1.10 Asking for consent to access your webcam

ptg999

Creating Your First Windows Store App 17

1

 NOTE

 After a user consents, the user can deny an app permission to use a particular capability
by using the Permissions setting under the Settings charm.

 Creating the HTML Page

 When you create a Windows Store app, you get a default.html file in the root of your
application. This is the first page that is opened when you run your app. Let’s go ahead
and customize this page for our picture app (see Listing 1.1).

 LISTING 1.1 Modified default.html Page

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > App1 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- App1 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="/js/default.js"></ script >

 </ head >

 < body >

 < img id ="imgPhoto" src ="/images/placeholder.png" />

 <!-- AppBar Control -->

 < div id ="appBar1"

 data-win-control ="WinJS.UI.AppBar">

 < button data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 id:'cmdTakePicture',

 label:'Take Picture',

 icon:'camera',

 tooltip:'Take Picture'

 }">

 </ button >

 </ div >

 </ body >

 </ html >

ptg999

CHAPTER 1 Building Windows Store Apps 18

 The HTML page in Listing 1.1 has been modified so it contains new content in the body
of the page. First, notice that the page contains an IMG tag with the ID imgPhoto. We’ll
display the photo which we take from the camera here.

 Notice, furthermore, that the page contains a DIV tag with a data-win-control=“WinJS.
UI.AppBar” attribute. This is an example of a WinJS control. This control renders an app
bar that contains a command for taking a picture (see Figure 1.11).

 FIGURE 1.11 The Take Picture command in the app bar

 Creating the Style Sheet

 When you create a new Windows Store app, you also get a default style sheet named
default.css which is located in the css folder. You can modify this file to control the
appearance of your app.

 For our app, I’ve modified the default.css to format the appearance of the photo. It
appears in the IMG tag like this:

 #imgPhoto {

 display : block ;

 margin : 15px auto ;

 border : 10px solid white ;

 max-width : 90% ;

 max-height : 90% ;

 }

 Creating the JavaScript File

 The third file that we need to modify is the JavaScript file named default.js which
is located in the js folder. This file contains all of the code associated with the
default.html page.

 We are going to delete all of the default content of this file and start over. The complete
contents of the modified version of default.js are contained in Listing 1.2 .

ptg999

Creating Your First Windows Store App 19

1

 LISTING 1.2 The default.js JavaScript file

 (function () {

 "use strict" ;

 // Aliases

 var capture = Windows.Media.Capture;

 // Executed immediately after page content is loaded

 function init() {

 // Process all of the controls

WinJS.UI.processAll().done(function () {

 // References to DOM elements

 var cmdTakePicture = document.getElementById("cmdTakePicture");

 var imgPhoto = document.getElementById("imgPhoto");

 // Handle Take Picture command click

cmdTakePicture.addEventListener("click" , function () {

 var captureUI = new capture.CameraCaptureUI();

captureUI.photoSettings.format = capture.CameraCaptureUIPhotoFormat.

➥png;

captureUI.captureFileAsync(capture.CameraCaptureUIMode.photo).

➥done(function (photo) {

 if (photo) {

 // Use HTML5 File API to create object URL to refer to the

➥photo file

 var photoUrl = URL.createObjectURL(photo);

 // Show photo in IMG element

imgPhoto.src = photoUrl;

}

});

});

});

 }

 document.addEventListener("DOMContentLoaded" , init);

 })();

 NOTE

 The JavaScript code contained in the Default.js file, which we deleted, is used to handle
app lifecycle events such as app activation and suspension. I discuss these app events in
detail in Chapter 11 .

ptg999

CHAPTER 1 Building Windows Store Apps 20

 There is a lot of interesting stuff happening in the JavaScript code in Listing 1.2 . Let’s walk
through the code.

 First, I’ve created an init() function that is executed when the DOMContentLoaded event is
raised. The DOMContentLoaded event is a standard DOM event that is raised when a browser
finishes parsing an HTML document.

 I put all of my code into the init() function so the code won’t be executed until the DOM
is ready. Otherwise, if I attempted to access any of the HTML elements in the page then I
would get an exception because the elements would not yet exist.

 The first thing that I do within the init() method is call the WinJS.UI.processAll()
method. This method processes all of the controls in a page. In particular, it converts the
DIV tag with the data-win-control=“WinJS.UI.AppBar” attribute into an actual app bar.

 Next, I setup an event handler for the Take Picture command. When you click the
Take Picture command in the app bar, an instance of the Windows.Media.Capture.
CameraCaptureUI class is created. The CameraCaptureUI class is an example of a Windows
Runtime class.

 The CameraCaptureUI.captureFileAsync() method displays the screen for taking a picture
(see Figure 1.12). When you click the OK button, the done() method is called and the
picture is displayed in the page.

 FIGURE 1.12 The camera capture UI screen

 An object URL is created for the photo blob (the actual image data) returned by the
captureFileAsync() method by calling the URL.createObjectURL() method. This
createObjectURL() method is part of the HTML5 File API.

ptg999

Elements of a Windows Store App 21

1

 The photo is displayed in the HTML page with the following line of code:

 // Show photo in IMG element

 imgPhoto.src = photoUrl;

 And that is all there is to it! We built an app that enables us to take pictures from our
computer and display the pictures in an HTML page.

 Notice that our JavaScript file contains a combination of standard JavaScript methods,
HTML5 methods, Windows Library for JavaScript methods, and Windows Runtime
methods. This is normal for all of the JavaScript files that you create when creating a
Windows Store app.

 Running the App

 After you create the app, you can run it by pressing the green Run button in the Visual
Studio toolbar (see Figure 1.13) or just press the F5 key.

 FIGURE 1.13 Running a Windows Store app

 Assuming that your laptop or tablet has a camera, you can start taking pictures.

 WARNING

 Remember that the Take Picture command is contained in the app bar and the app bar
does not appear by default. You need to either right-click the app or swipe from the top or
bottom edge of your computer to display the app bar.

 Elements of a Windows Store App
 As we saw in the previous section, a Windows Store app is built using several technologies.
A Windows Store app is built out of a combination of open and familiar web technologies,
such as HTML5, JavaScript, and CSS3 and Microsoft technologies such as the Windows
Library for JavaScript and the Windows Runtime. Let me say a little more about each of
these elements of a Windows Store app.

 JavaScript

 This book is all about writing Windows Store apps using JavaScript. As an alternative to
JavaScript, you also could write Windows Store apps using C#, Visual Basic, or even C++.

 When writing Windows Store apps, you can take advantage of the features of ECMAScript
5 which is the latest version of JavaScript. This means that you can use the new JavaScript

ptg999

CHAPTER 1 Building Windows Store Apps 22

Array methods such as indexOf() and forEach(). You also can use property setters and
getters and the use strict statement.

 HTML5

 When writing Windows Store apps, you can take advantage of many of the new features
of HTML5 and related standards. Here is a list of some of the most important of these new
features:

▶ Form Validation Attributes—You can take advantage of the new validation attri-
butes in the HTML5 standard to perform form validation. I discuss these new vali-
dation attributes and how you can use them in a Windows Store app in Chapter 5 ,
“Creating Forms.”

▶ data-*—The data dash star standard enables you to add custom attributes to exist-
ing HTML5 elements. The WinJS library uses data-* for declarative data-binding and
declarative control instantiation.

▶ Indexed Database API (IndexedDB)—The Indexed Database API exposes a data-
base in the browser. If you need to store a list of products in a database within a
Windows Store app, then you can take advantage of IndexedDB. I explain how to
use IndexedDB in Chapter 9 , “Creating Data Sources.”

▶ File API—The HTML5 File API enables you work with files in the browser. We used
the HTML5 API in the previous section when building our first Windows Store app
(the URL.createObjectURL() method).

▶ Canvas—Enables you to draw graphics using JavaScript. I provide you with an intro-
duction to Canvas in Chapter 15 , “Graphics and Games. ”

▶ Web Workers—Enables you to execute background tasks without blocking the user
interface thread.

▶ WebGL—This is new with Windows 8.1. WebGL enables you to build 3D games
with JavaScript.

 Cascading Style Sheets 3

 When you build Windows Store apps, you can take advantage of several new features of
the Cascading Style Sheets 3 standard (and related standards) including the following:

▶ Media Queries—Enables you to apply different styles depending on the character-
istics of a device, such as the height, width, or orientation of the device. I discuss
Media Queries in Chapter 11 .

▶ CSS3 Grid Layout—Enables you to lay out HTML content in columns and rows
without using HTML tables.

▶ CSS3 Flexible Box Layout (FlexBox)—Enables you to preserve relative element
position and size when displaying HTML content in different devices.

ptg999

Elements of a Windows Store App 23

1

 Windows Runtime

 The Windows Runtime (WinRT) contains a class library that you can use in your Windows
Store apps. These classes are projected directly into JavaScript, so they appear to be built-in
JavaScript objects.

 For example, when we wrote our first Windows Store app, we took advantage of
the WinRT Windows.Media.Capture.CameraCaptureUI class. When we called the
CameraCaptureUI.captureFileAsync() method, we were able to take a picture.

 All of the WinRT classes are exposed in JavaScript from the root Windows namespace. For
example, you create an instance of the CameraCaptureUI class with the following code:

 var captureUI = new Windows.Media.Capture.CameraCaptureUI ();

 NOTE

 Notice that WinRT class names can get silly long. For this reason, it is a good idea to
alias the namespaces like this:

 var capture = Windows.Media.Capture;

 The WinRT classes extend JavaScript with all of the functionality that you need when
building a Windows application. These classes enable you to do fun and amazing things
such as:

▶ Geolocation—Use the WinRT Windows.Devices.Geolocation.Geolocator class to
get your current latitude and longitude.

▶ File Access—Read and write to the file system by taking advantage of the WinRT
classes in the Windows.Storage namespace.

▶ Compass—Always know the direction of True North with the Windows.Devices.
Sensors.Compass class.

▶ Print—Print from your Windows Store app by using the Windows.Printing.
PrintManager class.

▶ Compress Files—Compress and decompress files using the classes in the WinRT
Windows.Storage.Compression namespace.

 Windows Library for JavaScript

 The Windows Library for JavaScript (WinJS) is a pure JavaScript library created by
Microsoft specifically for building Windows Store apps. Understanding how to use this
library is the primary focus of this book .

ptg999

CHAPTER 1 Building Windows Store Apps 24

 The WinJS library contains all of the WinJS controls. These are the controls that you use
to build the user interface for your Windows Store app. For example, the WinJS library
includes a DatePicker control that displays a user interface widget for selecting a date.

 What About jQuery?

 jQuery is the most popular JavaScript library in the universe. An obvious question, there-
fore, is can you use jQuery when building Windows store apps?

 NOTE

 According to BuiltWith, more than 57% of the top 10,000 websites use jQuery. This is (by
a wide margin) the most common JavaScript framework used on websites. See http://
trends.BuiltWith.com/javascript .

 The answer is yes. You can use jQuery when building Windows Store apps. Let me
show you.

 The easiest way to add jQuery to a Windows Store app project is to use the Library
Package Manager in Visual Studio. Select the menu option Tools, Library Package
Manager, Package Manager Console. Enter the command install-package jQuery into
the Package Manager Console window (see Figure 1.14).

 FIGURE 1.14 Adding jQuery with the Library Package Manager Console

 Executing the install-package jQuery command adds a Scripts folder with four files: the
full version of jQuery, the minified version of jQuery, an IntelliSense file, and a source
map. The IntelliSense file enables Visual Studio to provide jQuery intellisense when you
use jQuery methods and the source map provides debugging support.

 Listing 1.3 contains a combined HTML and JavaScript file that uses jQuery.

http://trends.BuiltWith.com/javascript
http://trends.BuiltWith.com/javascript

ptg999

Elements of a Windows Store App 25

1

 LISTING 1.3 Using jQuery in a Windows Store App

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > jQueryWindows8 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- jQueryWindows8 references -->

 < script type ="text/javascript" src ="Scripts/jquery-2.0.2.js"></ script >

 < style type ="text/css">

 #divMessage {

 display : none ;

 padding : 10px ;

 border : solid 1px white ;

 background-color : #ff6a00 ;

}

 </ style >

 </ head >

 < body >

 < button id ="btnShow"> Click Here </ button >

 < div id ="divMessage">

Secret Message

 </ div >

 < script type ="text/javascript">

$("#btnShow").click(function () {

$("#divMessage").fadeToggle("slow");

});

 </ script >

 </ body >

 </ html >

 The page in Listing 1.3 contains a Button and a DIV element. The contents of the DIV
element are hidden by default (with display:none). When you click the button, the
contents of the DIV fade slowly into view (see Figure 1.15).

ptg999

CHAPTER 1 Building Windows Store Apps 26

 FIGURE 1.15 Using jQuery to animate a DIV element

 NOTE

 The code in Listing 1.3 is contained in the Chapter 1 folder in a folder named
jQueryWindows8.

 Microsoft worked directly with the jQuery team to ensure that jQuery 2.0 works correctly
with Windows Store apps. As long as you are using a version of jQuery more recent than
jQuery 2.0 then you should not encounter any issues.

 WARNING

 The fact that Windows Store apps are compatible with jQuery does not mean that
Windows Store apps are compatible with every jQuery plugin or popular JavaScript library.

 In a Windows Store app, JavaScript code executed in the local context has extra security
restrictions to prevent script injection attacks. In particular, you cannot assign HTML to
the innerHTML property, which contains potentially dangerous content such as scripts or
malformed HTML.

 If you are using a JavaScript library that was not written with these security restrictions
in mind then you will need to modify the library to work with a Windows Store app. If you
trust the content being assigned to the innerHTML property then instead of using the
innerHTML property, you can use the WinJS.Utilities.setInnerHTMLUnsafe() method.

 Building Windows Store Apps with Visual Studio
 This book focuses on building Windows Store apps with Visual Studio. In this section, I
want to devote a few pages to describing the features of Visual Studio that matter when
building Windows Store apps. You learn how to select a project template for a Windows
Store app, how to run a Windows Store app, and how to debug a Windows Store app.

ptg999

Building Windows Store Apps with Visual Studio 27

1

 Windows Store App Project Templates

 When you select the File, New Project menu option in Visual Studio, you can select from
five different project templates as your starting point for your Windows Store app:

1. Blank App—The simplest of the templates. Contains a single default.html,
default.css, and default.js file.

2. Navigation App—Use this template for apps that require multiple pages.

3. Grid App—Contains three pages for displaying groups of items.

4. Split App—Contains two pages for displaying groups of items.

5. Hub App—Contains three pages. One page displays a navigation hub and the
other two pages display section and item detail. This project template is new with
Windows 8.1.

 We already used the Blank App project template when creating our first Windows app. Let
me discuss the other project templates in more detail.

 Navigation App Project Template

 The Blank App template is a good template to use when building a simple, single-page
app. If you need to support multiple pages, on the other hand, then you should use the
Navigation App template.

 The Navigation App project template includes a single page named home. You can add
additional pages by adding new Page Controls to the pages subfolder (see Figure 1.16).
I describe how you can create multi-page applications in detail in Chapter 12 , “Page
Fragments and Navigation. ”

 FIGURE 1.16 Creating a multi-page app with the Navigation App project template

 The next three project templates—the Grid App, the Split App, and the Hub App project
templates—are built on top of the Navigation App template. In other words, these project
templates are multi-page apps with additional pages.

ptg999

CHAPTER 1 Building Windows Store Apps 28

 Grid App Project Template

 The Grid App project template contains three pages. The main page displays groups of
items in a horizontal scrolling grid. You can click a group to view group details or click an
item to view item details.

 Imagine, for example, that you are creating a product catalog. In that case, you might
create different product categories such as Beverages and Fruit. Each category is a group
and each category contains a set of product items.

 You can use the Grid App groupedItems page to display a horizontal scrolling grid of the
product categories and associated products (see Figure 1.17). If you click a product cate-
gory then you can view details for that category (see Figure 1.18). If you click a product
then you can view details for that product (see Figure 1.19).

 FIGURE 1.17 The Grid App groupedItems page

ptg999

Building Windows Store Apps with Visual Studio 29

1

 FIGURE 1.18 The Grid App groupDetail page

 FIGURE 1.19 The Grid App itemDetail page

 Split App Project Template

 The Split App project template also can be used to display groups of items such as prod-
ucts grouped into product categories. The Split App project template has two pages: items
and split.

 The items page displays the list of groups. For example, in Figure 1.20 , the items page
displays the product categories.

ptg999

CHAPTER 1 Building Windows Store Apps 30

 FIGURE 1.20 The Split App items page

 If you click a group then you navigate to the split page. This page displays a list of items
in the group—the products in the category—and enables you to select an item to see item
details (see Figure 1.21).

 FIGURE 1.21 The Split App split page

 Hub App Project Template

 The Hub App project template is new with Windows 8.1. The Hub App template consists
of three pages. The main page contains a Hub control and displays a horizontal list of
sections (see Figure 1.22). If you click a section title then you navigate to the section page.
If you click an item then you navigate to the item page.

 NOTE

 The Hub control is covered in Chapter 4 , “Using WinJS Controls. ”

ptg999

Building Windows Store Apps with Visual Studio 31

1

 The special thing about the Hub App template is that you can display anything you want
within the Hub sections. You can display a list of items, you can display a paragraph of
text, or you can display anything else which you heart desires.

 For example, in Figure 1.22 , Section 1 contains a paragraph of text and Section 2 contains
a list of items. Each Hub section can contain different types of content.

 FIGURE 1.22 The Hub App template

 Running a Windows Store App

 Visual Studio provides you with three different options for running a Windows Store app:

▶ Local Machine

▶ Simulator

▶ Remote Machine

 The Local Machine option runs a Windows Store app as if the app was installed on the
local machine. The Windows Store app will run using the screen resolution and capabili-
ties of your development machine (the machine running Visual Studio).

 The Simulator option runs your app in a separate window (see Figure 1.23). The advantage
of using the simulator is that you can simulate different types of devices. For example,
you can switch from mouse mode to basic touch mode to simulate a touch device such as a
tablet PC. You also can switch to different screen resolutions to test your app at different
resolutions.

 The final option is to deploy and run your Windows Store app on a remote machine.
Before you can run your app on a remote machine, you must first specify the remote
machine name in the Project Property Pages window (see Figure 1.24).

ptg999

CHAPTER 1 Building Windows Store Apps 32

 FIGURE 1.24 Specifying the remote machine name

 FIGURE 1.23 Using the Visual Studio simulator

ptg999

Debugging a Windows Store App 33

1

 After you specify the name of the remote machine, you can deploy and run your app on
the remote machine by picking this option from the Visual Studio toolbar.

 WARNING

 To deploy and run an app on a remote machine, you need to install the Remote Tools for
Visual Studio 2013 on the remote machine. You can download the Remote Tools from the
Microsoft.com website.

 Debugging a Windows Store App
 I’m always optimistic and believe that any code that I write will run without error the first
time that I run it. To date, that has never happened. I spend a significant amount of my
time debugging code that does not do what I want it to do.

 In this section, I discuss the tools in Visual Studio that you can use to debug your code.
I discuss how you can use the JavaScript Console window, use breakpoints, and use the
DOM Explorer.

 Using the Visual Studio JavaScript Console Window

 When I write JavaScript code for pages used in websites, I use the JavaScript console
window to view JavaScript errors. I also write custom messages to the console window
using console.log() so I can debug my code. (See Figure 1.25 .)

 FIGURE 1.25 Debugging with the Google Chrome JavaScript console

 When running a Windows Store app, you don’t have access to the browser JavaScript
console. Instead of using the browser JavaScript console, you need to use the Visual Studio
JavaScript Console (see Figure 1.26).

ptg999

CHAPTER 1 Building Windows Store Apps 34

 FIGURE 1.26 The Visual Studio JavaScript Console Window

 You can view JavaScript errors and write debug messages to the Visual Studio JavaScript
console window by using console.log() in exactly the same way as you would write to a
browser console window.

 If you hit an error and you want to display the value of a JavaScript variable then you can
enter the variable name in the bottom of the JavaScript Console (see Figure 1.27).

 FIGURE 1.27 Dumping a JavaScript variable to the JavaScript Console window

 NOTE

 The Visual Studio Console window only appears when an app is running. If you can’t find
the window, use the menu option Debug, Windows, JavaScript Console.

 Setting Breakpoints

 If you are building a Windows Store app, and the Windows Store app is behaving in ways
that you don’t understand, then it is useful to set breakpoints and step through your code.

 You set a breakpoint by clicking in the left gutter of the Visual Studio code editor next
to the line that you want to break on (see Figure 1.28). When you run your app in debug
mode, and the breakpoint is hit, you can examine the values of your variables by hovering
over them with a mouse.

ptg999

Debugging a Windows Store App 35

1

 FIGURE 1.28 Setting a breakpoint

 You can step through your code, line by line, by using the Step Into toolbar button or by
pressing F11.

 NOTE

 As an alternative to setting a breakpoint with Visual Studio, you can create a breakpoint in
code by using the JavaScript debugger statement.

 Using the DOM Explorer

 Another of my favorite browser developer tools is the HTML inspector (this is a feature, for
example, of Firebug). You can use this tool to view the live HTML and CSS in a document.

 Visual Studio supports a similar tool named the DOM Explorer. You can use the DOM
Explorer to inspect the property of any HTML element in a running Windows Store app.

 After running a Windows store app in Visual Studio, you can view the DOM Explorer
window by selecting the menu option Debug, Windows, DOM Explorer. Within the DOM
Explorer window, you can click any element and view all of the properties of the element
including information about all of the styles associated with the element (see Figure 1.29).

www.allitebooks.com

http://www.allitebooks.org

ptg999

CHAPTER 1 Building Windows Store Apps 36

 FIGURE 1.29 Using the DOM Explorer Window

 If you click an element associated with a WinJS control then you can see all of the HTML
attributes and elements rendered by the control. Adding a ListView control to a page, for
example, adds a lot of new DIV elements to the page.

 Publishing to the Windows Store
 One of the main motivations for building a Windows Store app is to sell your app in the
Windows Store for either fame or profit. In this section, I discuss the steps you need to
follow to publish your Windows Store app to the Windows Store.

 NOTE

 You can distribute your app without publishing to the Windows Store by taking advantage
of a feature called sideloading . In order to take advantage of sideloading, you must sign
your app and configure the right group policy settings on the target computers. You can
learn about sideloading by visiting http://technet.microsoft.com/en-us/library/hh852635.
aspx .

 Register as a Windows Developer

 Before you can publish an app to the Windows Store, you must first register as a Windows
Store developer. You can sign up at the Windows Store Dashboard on the Windows Dev
Center by selecting the menu option Project, Store, Open Developer Account within
Visual Studio (see Figure 1.30).

http://technet.microsoft.com/en-us/library/hh852635.aspx
http://technet.microsoft.com/en-us/library/hh852635.aspx

ptg999

Publishing to the Windows Store 37

1

 The sign-up procedure is painless. Currently, it costs either $49 (for an individual account)
or $99 (for a company account) a year to become a registered Windows Store developer, or
it is free with a MSDN subscription.

 FIGURE 1.30 Register as a Windows Store developer

 Submitting Your App

 After you register, you can access the Windows Store dashboard and submit a new app.
The process of submitting an app is broken down into 8 steps (see Figure 1.31).

 One of the most important steps is selecting the name for your app. You can reserve an
app name in the Windows Store even before you have finished creating the app. Picking
an app name is similar to picking a domain name—so I recommend that you acquire the
name that you want as soon as possible.

 You also need to decide on how much you want to charge for your app. Currently, you
can charge anywhere from $1.49 to $999.99. Or, you have the option of providing your
app for free. You also have the option of providing your app with a limited free trial or
making your app free with advertising.

ptg999

CHAPTER 1 Building Windows Store Apps 38

 NOTE

 There are iPhone apps that sell for $999.99 dollars. For example, the iVIP Black iPhone
app sells for $999.99. But to purchase it, you need to prove that you are a “High Net
Worth” individual with “assets and/or income in excess of £1 million.”

 FIGURE 1.31 Submitting an app to the Windows Store

 When you reach the sixth step, the Packages step, you can upload your finished Windows
Store app to the Windows Store. Within Visual Studio, use the menu option Project, Store,
Create App Package to package up your Windows Store app (see Figure 1.32). Next, you
can click the Packages step to upload the package.

ptg999

Publishing to the Windows Store 39

1

 FIGURE 1.32 Creating your app package

 Passing App Certification

 Microsoft must review your app before it gets published to the Windows Store. In other
words, your app must go through a certification process. Part of this certification process is
automated and part of the certification process must be done by a human.

 There are many requirements for certification. Some of these requirements are obvious.
For example, your app can’t contain programming errors that cause it to immediately
crash and your app cannot simply be a big ad for your business.

 Some of the certification requirements are not so obvious. For example, to be certified,
your app cannot unexpectedly transport large amounts of data over a metered network
connection, your app must start up quickly, and your app must be complete (no “coming
soon” features). Also, if your app links to the Internet, you must provide a privacy policy.

 NOTE

 The Windows Store certification requirements are detailed at http://msdn.microsoft.com/
en-us/library/windows/apps/hh694083.aspx .

 You can use the Windows App Certification Kit to run the automated certification tests on
your app before you upload your package to the Windows Store. The easiest way to run
the Windows Certification Kit is to package your app within Visual Studio by selecting the
menu option Package, Store, Create App Package. The last step in the Create App Package
Wizard enables you to launch the Windows App Certification Kit (Figure 1.33).

http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx

ptg999

CHAPTER 1 Building Windows Store Apps 40

 FIGURE 1.33 Launching the Windows App Certification Kit

 NOTE

 The Windows App Certification Kit is installed at the same time as you install Visual
Studio. You can run it independently of Visual Studio by launching the Windows App Cert
Kit from the Start screen.

 When you run the Windows App Certification Kit, the App Certification Kit launches and
runs your app and then, after your computer does crazy stuff for a while, a report is gener-
ated that details whether your app passes or fails (see Figure 1.34).

 NOTE

 If you are using Team Foundation Server, you can even integrate the Windows App
Certification Kit into your build process. Every time you do a new build of your app, you
can run the technical certification tests automatically.

ptg999

Migrating from Windows 8 to Windows 8.1 41

1

 FIGURE 1.34 A (successful) certification report generated by the Windows App Certification Kit

 After your app passes all the certification requirements—after it has been approved by
Microsoft—your app appears in the Windows Store and you can start collecting money.
When anyone buys your app, money is added to a payout account, which you set up on
the Windows Store dashboard.

 Migrating from Windows 8 to Windows 8.1
 Windows 8.1 is the second release of Windows 8. There are already tens of thousands of
apps written for Windows 8.

 If you already created a Windows Store app for Windows 8 and you want to migrate the
app to Windows 8.1 then the process is dead easy. When you open your Windows 8 app
in Visual Studio 2013, Visual Studio recommends retargeting your app to Windows 8.1
(see Figure 1.35).

ptg999

CHAPTER 1 Building Windows Store Apps 42

 FIGURE 1.35 Retargeting to Windows 8.1

 You can right-click your project in the Solution Explorer window and select the menu
option Retarget to Windows 8.1 to migrate your app to Windows 8.1.

 Retargeting your app updates all of your script references to point to the Windows Library
for JavaScript 2.0 instead of the Windows Library for JavaScript 1.0. If you prefer, you
could do this by hand by adding a reference to the Windows Library for JavaScript 2.0 to
your project and updating the <script> tags in all of your HTML pages.

 After you retarget your app, you might need to make code changes. For example, as I
mentioned earlier in this chapter, Windows 8.1, unlike Windows 8, no longer supports a
snapped view state. A list of all of the deprecated Windows 8 application programming
interface (APIs) is displayed after you retarget your app.

 NOTE

 You need Visual Studio 2013 Professional, Premium, or Ultimate to edit an existing
Windows 8 app. Visual Studio 2013 Express requires you to retarget a Windows 8 app to
Windows 8.1 before you can modify it.

 This might be obvious, but I am going to say it anyway. Apps written for Windows 8.1
won’t run on Windows 8. The Windows Runtime in Windows 8.1 has changed so you
won’t see Windows 8.1 apps in the Windows Store on a computer running Windows 8.
You still can use Windows 8 apps, on the other hand, with Windows 8.1—you can
install both Windows 8 and Windows 8.1 apps from the Windows Store on a computer
running Windows 8.1.

 Summary
 The goal of this chapter was to introduce you to Windows Store apps. I started this
chapter by providing you with an overview of the Microsoft design style principles. You
also learned about the standard features of Windows Store apps such as the app bar and
charms.

ptg999

Summary 43

1

 I then led you, step by step, through the process of building your first Windows Store
app. We created a really cool camera app that you could never create as a standard web
application.

 You also learned about the standard elements of a Windows Store app. You learned how
a Windows Store app is composed of standard HTML5, JavaScript, and CSS3. You also
learned how Windows Store apps take advantage of Microsoft technologies such as the
Windows Runtime and the Windows Library for JavaScript.

 I also explained how you can take advantage of the features of Visual Studio when build-
ing a Windows Store app. You learned how to run a Windows Store app using the simula-
tor. You also learned how to debug a Windows Store app by using breakpoints and the
Visual Studio JavaScript Console window.

 Finally, you learned how you can make money from your Windows Store app by publish-
ing your app to the Windows Store. You learned how to register your app, submit your
app, and pass certification.

ptg999

This page intentionally left blank

ptg999

 CHAPTER 2

 WinJS Fundamentals

 The goal of this chapter is to explain the features
included in the base WinJS library. These are the features
that you will use in just about any application that you
build.

 The first part of this chapter is devoted to the topic of
namespaces, modules, and classes. You learn the recom-
mended patterns for organizing your JavaScript code.

 Next, you learn how to take advantage of another feature
of the base WinJS library called promises . Promises provide
you with an elegant way to perform asynchronous
programming in your JavaScript code.

 In this chapter, you also learn how to use Query Selectors
when working with the WinJS library. Query Selectors
enable you to efficiently retrieve DOM elements from an
HTML document (think jQuery selectors).

 You also learn how to work with a function included in the
base WinJS library named the xhr() function. The xhr()
function enables you to perform Ajax calls—including
cross-domain calls.

 Finally, you are provided with an introduction to the
WinJS Scheduler. The Scheduler is a new feature of
Windows 8.1 that enables you to improve the performance
of your app by executing JavaScript code with different
priorities.

 Namespaces, Modules, and
Classes
 When you build Windows Store apps with the WinJS
library, Microsoft recommends that you follow particu-
lar patterns when organizing your JavaScript code. In

IN THIS CHAPTER

u Namespaces, Modules, and
Classes

u Asynchronous Programming
with Promises

u Retrieving DOM Elements with
Query Selectors

u Performing Ajax Calls with the
xhr Function

u Using the Scheduler to
Prioritize Jobs

ptg999

CHAPTER 2 WinJS Fundamentals46

particular, Microsoft recommends that you organize your code into namespaces, modules,
and classes.

 By following these patterns, you can build JavaScript code that is less buggy and easier to
maintain over time.

 Using Namespaces

 Let me start by explaining the methods in the WinJS library for defining namespaces.

 Before we do anything else, we should start by answering the question: Why do we need
namespaces? What function do they serve? Do they just add needless complexity to our
Windows Store apps?

 After all, plenty of JavaScript libraries do just fine without introducing support for
namespaces. For example, jQuery has no support for namespaces and jQuery is the most
popular JavaScript library in the universe. If jQuery can do without namespaces, why do
we need to worry about namespaces at all?

 Namespaces perform two functions in a programming language. First, namespaces prevent
naming collisions. In other words, namespaces enable you to create more than one object
with the same name without conflict.

 For example, imagine that two companies—company A and company B—both want to
make a JavaScript shopping cart control and both companies want to name the control
ShoppingCart. By creating a CompanyA namespace and CompanyB namespace, both
companies can create a ShoppingCart control: a CompanyA.ShoppingCart and a
CompanyB.ShoppingCart control.

 The second function of a namespace is organization. Namespaces are used to group
related functionality even when the functionality is defined in different physical files.
For example, I know that all of the methods in the WinJS library related to working with
classes can be found in the WinJS.Class namespace. Namespaces make it easier to under-
stand the functionality available in a library.

 If you are building a simple JavaScript application then you won’t have much reason to
care about namespaces. If you need to use multiple libraries written by different people
then namespaces become very important.

 Using WinJS.Namespace.define()
 In the WinJS library, the most basic method of creating a namespace is to use the
WinJS.Namespace.define() method. This method enables you to declare a namespace (of
arbitrary depth).

 The WinJS.Namespace.define() method has the following parameters:

▶ name—A string representing the name of the new namespace. You can add nested
namespace by using dot notation .

▶ members—An optional collection of objects to add to the new namespace .

ptg999

Namespaces, Modules, and Classes 47

2

 For example, the code sample in Listing 2.1 declares two new namespaces named
CompanyA and CompanyB.Controls. Both namespaces contain a ShoppingCart object
which has a checkout() method:

 LISTING 2.1 Creating Namespaces (namespaces\namespaces.html)

 // Create CompanyA namespace with ShoppingCart

 WinJS.Namespace.define(" CompanyA ");

 CompanyA.ShoppingCart = {

 checkout: function () { return "Checking out from A" ; }

 };

 // Create CompanyB.Controls namespace with ShoppingCart

 WinJS.Namespace.define(

 "CompanyB.Controls" ,

 {

ShoppingCart: {

checkout: function () { return "Checking out from B" ; }

}

 }

);

 // Call CompanyA ShoppingCart checkout method

 console.log(CompanyA.ShoppingCart.checkout()); // Writes "Checking out from A"

 // Call CompanyB.Controls checkout method

 console.log(CompanyB.Controls.ShoppingCart.checkout()); // Writes "Checking out

➥from B"

 In Listing 2.1, the CompanyA namespace is created by calling WinJS.Namespace.
define("CompanyA"). Next, the ShoppingCart is added to this namespace. The namespace
is defined and an object is added to the namespace in separate lines of code.

 A different approach is taken in the case of the CompanyB.Controls namespace. The
namespace is created and the ShoppingCart object is added to the namespace with the
following single statement:

 WinJS.Namespace.define(

 "CompanyB.Controls" ,

 {

ShoppingCart: {

checkout: function () { return "Checking out from B" ; }

}

 }

);

ptg999

CHAPTER 2 WinJS Fundamentals48

 Notice that CompanyB.Controls is a nested namespace. The top level namespace
CompanyB contains the namespace Controls. You can declare a nested namespace using
dot notation and the WinJS library handles the details of creating one namespace within
the other.

 After the namespaces have been defined, you can use either of the two shopping
cart controls in the same JavaScript file without conflict. You call CompanyA.ShoppingCart.
checkout() or you can call CompanyB.Controls.ShoppingCart.checkout().

 Using WinJS.Namespace.defineWithParent()

 The WinJS.Namespace.defineWithParent() method is similar to the WinJS.Namespace.
define() method. Both methods enable you to define a new namespace. The difference is
that the defineWithParent() method enables you to add a new namespace to an existing
namespace.

 The WinJS.Namespace.defineWithParent() method has the following parameters:

▶ parentNamespace—An object which represents a parent namespace

▶ name—A string representing the new namespace to add to the parent namespace

▶ members—An optional collection of objects to add to the new namespace

 The following code sample demonstrates how you can create a root namespace named
CompanyA and add a Controls child namespace to the CompanyA parent namespace:

 WinJS.Namespace.define("CompanyA");

 WinJS.Namespace.defineWithParent(CompanyA, "Controls" ,

 {

ShoppingCart: {

checkout: function () { return "Checking out" ; }

}

 }

);

 console.log(CompanyA.Controls.ShoppingCart.checkout()); // Writes "Checking out"

 One significant advantage of using the defineWithParent() method over the define()
method is the defineWithParent() method is strongly-typed. In other words, you use an
object to represent the base namespace instead of a string. If you misspell the name of the
object (CompnyA) then you get a runtime error.

 Using the Module Pattern

 When you are building a JavaScript library, you want to be able to create both public and
private methods. Some methods, the public methods, are intended to be used by consum-
ers of your JavaScript library. The public methods act as your library’s public API.

 Other methods, the private methods, are not intended for public consumption. Instead,
these methods are internal methods required to get the library to function. You don’t

ptg999

Namespaces, Modules, and Classes 49

2

want people calling these internal methods because you might need to change them in
the future.

 JavaScript does not support access modifiers. You can’t mark an object or method as
public or private. Anyone gets to call any method and anyone gets to interact with any
object.

 The only mechanism for encapsulating (hiding) methods and objects in JavaScript is
to take advantage of functions. In JavaScript, a function determines variable scope. A
JavaScript variable either has global scope—it is available everywhere—or it has function
scope—it is available only within a function. If you want to hide an object or method
then you need to place it within a function.

 For example, the following code contains a function named doSomething() that contains
a nested function named doSomethingElse():

 function doSomething() {

 console.log("doSomething");

 function doSomethingElse() {

console.log("doSomethingElse");

 }

 }

 doSomething(); // Writes "doSomething"

 doSomethingElse(); // Throws ReferenceError

 You can call doSomethingElse() only within the doSomething() function. The
doSomethingElse() function is encapsulated in the doSomething() function.

 The WinJS library takes advantage of function encapsulation to hide all of its internal
methods. All of the WinJS methods are defined within self-executing anonymous func-
tions. Everything is hidden by default. Public methods are exposed by explicitly adding
the public methods to namespaces defined in the global scope.

 Imagine, for example, that I want a small library of utility methods. I want to create a
method for calculating sales tax and a method for calculating the expected ship date of a
product. The library in Listing 2.2 encapsulates the implementation of my library in a self-
executing anonymous function.

 LISTING 2.2 Encapsulating Functions with a Module (modules\modules.html)

 (function (global) {

 // Public method which calculates tax

 function calculateTax(price) {

 return calculateFederalTax(price) + calculateStateTax(price);

 }

ptg999

CHAPTER 2 WinJS Fundamentals50

 // Private method for calculating state tax

 function calculateStateTax(price) {

 return price * 0.08;

 }

 // Private method for calculating federal tax

 function calculateFederalTax(price) {

 return price * 0.02;

 }

 // Public method which returns the expected ship date

 function calculateShipDate(currentDate) {

currentDate.setDate(currentDate.getDate() + 4);

 return currentDate;

 }

 // Export public methods

 WinJS.Namespace.define("CompanyA.Utilities" ,

{

calculateTax: calculateTax,

calculateShipDate: calculateShipDate

}

);

 })(this);

 // Show expected ship date

 var shipDate = CompanyA.Utilities.calculateShipDate(new Date());

 console.log(shipDate);

 // Show price + tax

 var price = 12.33;

 var tax = CompanyA.Utilities.calculateTax(price);

 console.log(price + tax);

 In Listing 2.2, the self-executing anonymous function contains four functions:
calculateTax(), calculateStateTax(), calculateFederalTax(), and
calculateShipDate(). The following statement is used to expose only the calcuateTax()
and the calculateShipDate() functions:

 // Export public methods

 WinJS.Namespace.define("CompanyA.Utilities" ,

 {

calculateTax: calculateTax,

calculateShipDate: calculateShipDate

 }

);

ptg999

Namespaces, Modules, and Classes 51

2

 Because the calculateTax() and calculateShipDate() functions are added to the
CompanyA.Utilities namespace, you can call these two methods outside of the self-
executing function. These are the public methods of your library that form the
public API.

 The calculateStateTax() and calculateFederalTax() methods, on the other hand, are
forever hidden within the black hole of the self-executing function. These methods are
encapsulated and can never be called outside of the scope of the self-executing function.
These are the internal methods of your library.

 Using Classes

 Unlike other popular computer languages—such as C# or Java—JavaScript does not have
any built-in support for classes. In JavaScript, you do not distinguish between a type (a
class) and an instance of that type (an object). Everything in JavaScript is an object.

 The WinJS library includes extensions to JavaScript for creating classes. These methods are
used extensively within the WinJS library itself. For example, all of the WinJS JavaScript
controls are created using these methods. In this section, we discuss how you can define
new classes by taking advantage of the methods in the WinJS library.

 Using WinJS.Class.define()

 In the WinJS library, new JavaScript classes are created by calling the WinJS.Class.
define() method. This method accepts three arguments:

▶ constructor—The constructor function used to initialize the new object. If you pass
null then an empty constructor is created

▶ instanceMembers—A collection of instance properties and methods

▶ staticMembers—A collection of static properties and methods

 The code in Listing 2.3 demonstrates how to create a Robot class and then create a Roomba
robot object from the Robot class.

 LISTING 2.3 Creating a Class (classes\classes.html)

 var Robot = WinJS.Class.define(

 function (name, price) {

 this .name = name;

 this .price = price;

 },

 {

_name: undefined,

_price: 0,

price: {

set: function (value) {

 if (value < 0) {

 throw new Error("Invalid price!");

ptg999

CHAPTER 2 WinJS Fundamentals52

}

 this ._price = value;

},

get: function () { return this ._price; }

},

makeNoise: function () {

 return "Burp, Wow!, oops!" ;

}

 }

);

 // Create a robot

 var roomba = new Robot("Roomba" , 200.33);

 console.log(roomba.price); // Writes "200.33"

 console.log(roomba.makeNoise()); // Writes "Burp, Wow!, oops!"

 // Set invalid price

 roomba.price = -88; // Throws "Invalid price!"

 The Robot class is defined using the WinJS.Class.define() method. The first argument
passed to this method is the constructor function for the Robot class. This constructor
function initializes the Robot name and price properties.

 The next argument passed to the WinJS.Class.define() method is a collection of instance
members. This collection is used to define the _name and _price fields and the price
property. This collection also contains the definition of the makeNoise() method.

 NOTE

 There is a convention of naming all private members of a class—fields, properties, and
methods—with a leading underscore. For example, the private field backing the price prop-
erty in Listing 2.3 is named _price instead of price.

 Notice that the price property includes a getter and a setter. If you attempt to assign an
invalid price to the Robot then the setter throws an error as illustrated in Figure 2.1 .

 FIGURE 2.1 An Invalid price! exception

ptg999

Namespaces, Modules, and Classes 53

2

 Using WinJS.Class.derive()

 The WinJS.Class.derive() method enables you to use prototype inheritance to derive
one class from another class. The WinJS.Class.derive() method accepts the following
four arguments:

▶ baseClass—The class to inherit from.

▶ constructor—A constructor function that can be used to initialize the new class

▶ instanceMembers—New instance properties and methods

▶ staticMembers—New static properties and methods

 Here is a basic example. In the code in Listing 2.4 , three classes are defined: Robot, Roomba,
and AIBO. The Robot class is the base class and the Roomba and AIBO classes derive from the
Robot class.

 LISTING 2.4 Deriving a Class (derive\derive.html)

 var Robot = WinJS.Class.define(

 function () {

 this .type = "Robot"

 },

 {

sayHello: function () {

 return "My name is " + this .name

+ " and I am a " + this .type;

}

 }

);

 var Roomba = WinJS.Class.derive(

 Robot,

 function (name) {

 this .name = name;

 this .type = "Roomba" ;

 }

);

 var AIBO = WinJS.Class.derive(

 Robot,

 function (name) {

 this .name = name;

 this .type = "AIBO" ;

 }

);

 // Create a Roomba

ptg999

CHAPTER 2 WinJS Fundamentals54

 var myRoomba = new Roomba("rover");

 console.log(myRoomba.sayHello());

 // Create an AIBO

 var myAIBO = new AIBO("spot");

 console.log(myAIBO.sayHello());

 When you run the code in Listing 2.4, the messages in Figure 2.2 are written to the Visual
Studio JavaScript Console.

 FIGURE 2.2 Derived robots

 In Listing 2.4, the constructor function for the Robot class is never called. The Roomba and
the AIBO constructor functions are called instead. However, both the Roomba and AIBO
classes inherit the sayHello() method from the base Robot class.

 Using WinJS.Class.mix()

 As an alternative to using the WinJS.Class.derive() method, you can use the WinJS.
Class.mix() method. This method enables you to create mixins. A mixin enables you to
combine methods and properties from multiple JavaScript objects into a single object.

 Behind the scenes, the WinJS.Class.derive() method that we discussed in the previous
section uses prototype inheritance, and prototype inheritance has performance drawbacks.
Following a prototype chain requires processor time. Therefore, the suggestion is that you
avoid prototype inheritance by using mixins instead.

 When you use a mixin instead of prototype inheritance, the methods and properties are
combined into a single object. You don’t get a long prototype chain.

 The WinJS.Class.mix() method has the following parameters:

▶ constructor—A constructor function used to initialize the new class

▶ mixin—A parameter array that contains the mixin methods

 The code in Listing 2.5 demonstrates how you can use the WinJS.Class.mix() method to
simulate single inheritance.

 LISTING 2.5 Creating a Mixin (mixins\mixins.html)

 var Robot = {

 makeNoise: function () {

ptg999

Namespaces, Modules, and Classes 55

2

 return "beep" ;

 }

 };

 var Roomba = WinJS.Class.mix(

 function (name) {

 this .name = name;

 },

 Robot

);

 var myRoomba = new Roomba("rover");

 console.log(myRoomba.makeNoise()); // Writes "beep"

 In Listing 2.5, the Roomba class contains all of the methods of the Robot object.

 One of the advantages of mixins is that you can use mixins to support something like
multiple inheritance. You can use a mixin to combine as many sets of methods and prop-
erties as you need. For example, the code sample in Listing 2.6 demonstrates how you can
build a Roomba from Robot methods, Product methods, and Vacuum methods.

 LISTING 2.6 Combining Multiple Objects (mixinMultiple\mixinMultiple.html)

 "use strict" ;

 var Robot = {

 makeNoise: function () {

 return "beep" ;

 }

 };

 var Product = {

 price: {

set: function (value) {

 if (value < 0) {

 throw new Error("Invalid price!");

}

 this ._price = value;

},

get: function () { return this ._price; }

 },

 sayName: function () {

 return this .name;

 }

 }

ptg999

CHAPTER 2 WinJS Fundamentals56

 var Vacuum = {

 vacuum: function () { return "bzzzzzz" ; }

 }

 var Roomba = WinJS.Class.mix(

 function (name) {

 this .name = name;

 },

 Robot, Product, Vacuum

);

 var myRoomba = new Roomba("rover");

 console.log(myRoomba.makeNoise()); // Writes "beep"

 console.log(myRoomba.sayName()); // Writes "rover"

 console.log(myRoomba.vacuum()); // Writes "bzzzzz"

 myRoomba.price = -88 // Throws Error

 Notice that a mixin can contain both methods and properties. Furthermore, a mixin
property can contain a setter and getter. For example, the price property included in the
Product mixin includes a setter that performs validation.

 When you execute the code in Listing 2.5, the results shown in Figure 2.3 are displayed in
your Visual Studio JavaScript Console window.

 FIGURE 2.3 Robot noises

 NOTE

 The WinJS library includes several mixins that you can use in your code, including the
WinJS.Utilities.eventMixin, WinJS.UI.DOMEventMixin, and the WinJS.Binding.
dynamicObservableMixin.

 Asynchronous Programming with Promises
 Some code executes immediately, some code requires time to complete or might never
complete at all. For example, retrieving the value of a local variable is an immediate

ptg999

Asynchronous Programming with Promises 57

2

operation. Retrieving data from a remote website with an Ajax request takes longer or
might not complete at all.

 When an operation might take a long time to complete, you should write your code so
that it executes asynchronously. Instead of waiting for an operation to complete, you
should start the operation and then do something else until you receive a signal that the
operation is complete.

 An analogy: Some telephone customer service lines require you to wait on hold—listening
to really bad music—until a customer service representative is available. This is synchro-
nous programming and very wasteful of your time.

 Some newer customer service lines enable you to enter your telephone number so a
customer service representative can call you back when a customer representative becomes
available. This approach is much less wasteful of your time because you can do useful
things while waiting for the callback.

 There are several patterns that you can use to write code that executes asynchronously.
The most popular pattern in JavaScript is the callback pattern. When you call a func-
tion which might take a long time to return a result, you pass a callback function to the
function.

 Using callbacks is a natural way to perform asynchronous programming with JavaScript.
Instead of waiting for an operation to complete, sitting there and listening to really bad
music, you can get a callback when the operation is complete.

 Using Promises

 The CommonJS website defines a promise like this (http://wiki.commonjs.org/wiki/
Promises):

 “Promises provide a well-defined interface for interacting with an object that represents
the result of an action that is performed asynchronously, and may or may not be finished
at any given point in time. By utilizing a standard interface, different components can
return promises for asynchronous actions and consumers can utilize the promises in a
predictable manner.”

 A promise provides a standard pattern for specifying callbacks. In the WinJS library, when
you create a promise, you can specify three callbacks: a complete callback, a failure call-
back, and a progress callback (both the failure and progress callbacks are optional).

 Promises are used extensively in the WinJS library. The methods in the animation library,
the control library, and the binding library all use promises.

 For example, the xhr() method included in the WinJS base library returns a promise. The
xhr() method wraps calls to the standard XmlHttpRequest object in a promise. The code
in Listing 2.7 illustrates how you can use the xhr() method to perform an Ajax request
that retrieves the feed from my blog at StephenWalther.com.

http://wiki.commonjs.org/wiki/Promises
http://wiki.commonjs.org/wiki/Promises

ptg999

CHAPTER 2 WinJS Fundamentals58

 LISTING 2.7 Making a promise (promises\promises.html)

 var options = {

 url: "http://stephenwalther.com/feed" ,

 responseType: "document"

 };

 WinJS.xhr(options).done(

 function (xmlHttpRequest) {

console.log("success");

 // Display title of first blog entry

 var firstTitle = xmlHttpRequest.response.querySelector("item>title");

console.log(firstTitle.textContent);

 },

 function (xmlHttpRequest) {

console.log("fail");

 },

 function (xmlHttpRequest) {

console.log("progress");

 }

)

 The WinJS.xhr() method returns a promise. The Promise class includes a done() method
that accepts three callback functions: a complete callback, an error callback, and a progress
callback:

 Promise.done(completeCallback, errorCallback, progressCallback)

 In the code in Listing 2.7 , three anonymous functions are passed to the done() method.
Unless there is a network error, the error function is never called. The progress function
is called repeatedly during the Ajax request. Finally, the complete callback is done when
the Ajax call completes. The complete callback displays the title of the first blog entry
retrieved (see Figure 2.4).

 FIGURE 2.4 Using a promise

ptg999

Asynchronous Programming with Promises 59

2

 Using then() Versus done()

 In the previous section, we used the Promise object done() method to set up our
complete, error, and progress callbacks. The Promise object exposes another method that
is closely related to done(): the then() method.

 The then() method—just like the done() method—enables you to set up a complete, error,
and progress callback function. So why does the then() method exist? There are two
important differences between then() and done().

 The then() method, unlike the done() method, supports chaining. If you need to chain
multiple promises together then you are forced to use the then() method. For example,
the code in Listing 2.8 illustrates how you can make one Ajax call that downloads the
URL of the most recent blog entry from my blog and then make a second Ajax call that
downloads the contents of that blog entry. The second Ajax call is not made until the first
Ajax call completes.

 LISTING 2.8 Chaining Promises (promiseChain\promiseChain.html)

 var options = {

 url: "http://stephenwalther.com/feed" ,

 responseType: "document"

 };

 WinJS.xhr(options).then(

 function (xmlHttpRequest) {

 // Get link for first blog entry

 var firstLink = xmlHttpRequest.response.querySelector("item>link");

 // Make second Ajax request (returns a promise)

 return WinJS.xhr({

url: firstLink.textContent,

responseType: "document"

});

 }

).done(

 function (xmlHttpRequest) {

 // Get body of blog post

 var postBody = xmlHttpRequest.response.querySelector("div.entry");

 // Write first 200 characters of blog post

console.log(postBody.textContent.trim().substr(0, 200));

 }

);

ptg999

CHAPTER 2 WinJS Fundamentals60

 In Listing 2.8 , notice that the complete function passed to the then() method returns a
second promise. Calling WinJS.xhr() returns a new promise.

 If the second promise completes successfully then the complete function passed to the
done() method executes. This method displays the first 200 characters of the blog entry.

 You can chain together as many promises as you need by calling then().then().
then().... The last call in the chain should be a call to done().

 The second difference between then() and done() concerns error handling. You can pass
an error function to both the then() and done() methods as the second parameter to
handle errors and, as a best-practice, you should do this. But, if you don’t supply an error
function then the done() method throws an exception but the then() method does not.
Instead, the then() method returns a promise in the error state.

 For example, the code in Listing 2.9 performs an Ajax request with a bad URL. The request
made with the then() method does not raise an error. An error message is written to the
JavaScript Console, but execution of the app is not halted.

 LISTING 2.9 done() Versus then() (promiseErrors\promiseErrors.html)

 var options = {

 url: "http://BadURL"

 };

 WinJS.xhr(options).then(); // DOES NOT throw an exception

 WinJS.xhr(options).done(); // DOES throw an exception

 If you don’t want your code to fail silently, like the then() method in Listing 2.9 , then
you should use done() instead of then(). If you are chaining promises, always use done()
as the last link in the chain. In other words, errors raised in the chain of then() methods
are passed down the chain to the final done() where they may be exposed to the error
handling function.

 Creating Promises

 If your app has a function that takes more then a few milliseconds to complete then you
should return a promise so that your app can continue to work while the function is
completing. You can create your own promises by creating a new instance of the Promise
class. The constructor for the Promise class requires a function that accepts three param-
eters: a complete, error, and progress function parameter.

 For example, the code in Listing 2.10 illustrates how you can create a method named
wait10Seconds() which returns a promise. The progress function is called every second
and the complete function is not called until 10 seconds have passed.

ptg999

Asynchronous Programming with Promises 61

2

 LISTING 2.10 Creating a Promise (promiseCreate\promiseCreate.html)

 function wait10Seconds() {

 return new WinJS.Promise(function (complete, error, progress) {

 var seconds = 0;

 var intervalId = window.setInterval(function () {

seconds++;

progress(seconds);

 if (seconds > 9) {

window.clearInterval(intervalId);

complete();

}

}, 1000);

 });

 }

 wait10Seconds().done(

 function () { console.log("complete") },

 function () { console.log("error") },

 function (seconds) { console.log("progress:" + seconds) }

);

 All of the work happens in the constructor function for the promise. The window.
setInterval() method is used to execute code every second. Every second, the
progress() callback method is called. If more than 10 seconds have passed then
the complete() callback method is called and the clearInterval() method is called.

 When you execute the code in Listing 2.10, you can see the output in the Visual Studio
JavaScript Console in Figure 2.5 .

 FIGURE 2.5 Output of a custom promise

 Creating a Timeout Promise

 In the previous section, we created a custom promise that uses the window.setInterval()
method to complete the promise after 10 seconds. We really did not need to create a
custom promise because the Promise class already includes a static method for returning
promises that complete after a certain interval.

ptg999

CHAPTER 2 WinJS Fundamentals62

 The code in Listing 2.11 illustrates how you can use the timeout() method. The
timeout() method returns a promise that completes after a certain number of
milliseconds.

 LISTING 2.11 A timeout promise (promiseTimeout\promiseTimeout.html)

 WinJS.Promise.timeout(3000).then(

 function () { console.log("complete") },

 function () { console.log("error") },

 function () { console.log("progress") }

);

 In Listing 2.11, the promise completes after 3 seconds (3000 milliseconds). The promise
returned by the timeout() method does not support progress events. Therefore, the only
message written to the console is the message “complete” after 3 seconds.

 Canceling Promises

 It is useful to have the ability to stop long running functions. For this reason, some prom-
ises support cancellation. Some promises, but not all, support cancellation. When you
cancel a promise, the promise’s error callback is executed.

 For example, the code in Listing 2.12 uses the WinJS.xhr() method to perform an Ajax
request. However, immediately after the Ajax request is made, the request is canceled.

 LISTING 2.12 Canceling a Promise (promiseCancel\promiseCancel.html)

 // Specify Ajax request options

 var options = {

 url: "http://StephenWalther.com"

 };

 // Make the Ajax request

 var request = WinJS.xhr(options).then(

 function (xmlHttpRequest) {

console.log("success");

 },

 function (xmlHttpRequest) {

console.log("fail: " + xmlHttpRequest.message);

 },

 function (xmlHttpRequest) {

console.log("progress");

 }

);

 // Cancel the Ajax request

 request.cancel();

ptg999

Retrieving DOM Elements with Query Selectors 63

2

 When you run the code, the message fail: Canceled is written to the Visual Studio
JavaScript Console (see Figure 2.6). Because then() unlike done() returns a promise,
canceling is only supported when calling then() and not done().

 FIGURE 2.6 Canceling a promise (promiseCancel\promiseCancel.html)

 Composing Promises

 You can build promises out of other promises. In other words, you can compose promises.
Composing promises is useful when you need to perform multiple asynchronous opera-
tions and wait until all or any of the operations complete.

 There are two static methods of the Promise class that you can use to compose prom-
ises: the join() method and the any() method. When you join promises, a promise is
complete when all of the joined promises are complete. When you use the any() method,
a promise is complete when any of the promises complete.

 The following code illustrates how to use the join() method. A new promise is created
out of two timeout promises. The new promise does not complete until both of the
timeout promises complete:

 WinJS.Promise.join([WinJS.Promise.timeout(1000), WinJS.Promise.timeout(5000)])

 .done(function () { console.log("join complete"); });

 The message “complete” will not be written to the JavaScript Console until both promises
passed to the join() method complete. The message won’t be written for 5 seconds (5,000
milliseconds).

 The any() method completes when any promise passed to the any() method completes:

 WinJS.Promise.any([WinJS.Promise.timeout(1000), WinJS.Promise.timeout(5000)])

 .done(function () { console.log("any complete"); });

 The code writes the message “any complete” to the JavaScript Console after 1 second
(1,000 milliseconds). The message is written to the JavaScript console immediately after
the first promise completes and before the second promise completes.

 Retrieving DOM Elements with Query Selectors
 When you are building a Windows Store app with JavaScript, you need some way of easily
retrieving elements from an HTML document. For example, you might want to retrieve all

ptg999

CHAPTER 2 WinJS Fundamentals64

of the input elements that have a certain CSS class. Or, you might want to retrieve the one
and only element with an id of favoriteColor.

 The standard way of retrieving elements from an HTML document is by using a selector.
Anyone who has ever created a Cascading Style Sheet has already used selectors. You use
selectors in Cascading Style Sheets to apply formatting rules to elements in a document.

 For example, the following Cascading Style Sheet rule changes the background color of
every INPUT element with a class of .required in a document to the color red:

 input.required { background-color : red }

 The input.required part is the selector which matches all INPUT elements with a class of
required.

 The W3C standard for selectors (technically, their recommendation) is entitled
“Selectors Level 3” and the standard is located here:
http://www.w3.org/TR/css3-selectors/

 Selectors are not only useful for adding formatting to the elements of a document.
Selectors are also useful when you need to apply behavior. For example, you might want
to select a particular BUTTON element with a selector and add a click handler to the
element so that something happens whenever you click the button.

 jQuery is famous for its support for selectors. Using jQuery, you can use a selector to
retrieve matching elements from a document and modify the elements. The WinJS library
enables you to perform the same types of queries as jQuery using the W3C selector syntax.

 NOTE

 The W3C selector standard is supported for all modern browsers including recent versions
of Google Chrome, Apple Safari, and Mozilla Firefox.

 Performing Queries with the WinJS.Utilities.query() Method

 When using the WinJS library, you perform a query with a selector by using the
WinJS.Utilities.query() method.

 Listing 2.13 contains a BUTTON and a DIV element.

 LISTING 2.13 A Document with a Secret Message (selectorsQuery\selectorsQuery.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8">

 < title > Selectors Query </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.1.0/css/ui-dark.css" rel ="stylesheet" />

http://www.w3.org/TR/css3-selectors/

ptg999

Retrieving DOM Elements with Query Selectors 65

2

 < script src ="//Microsoft.WinJS.1.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.1.0/js/ui.js"></ script >

 <!-- Chapter02 references -->

 < link href ="/css/default.css" rel ="stylesheet">

 < script type ="text/javascript" src ="selectorsQuery.js"></ script >

 </ head >

 < body >

 < button > Click Me! </ button >

 < div style =" display : none">

 < h1 > Secret Message </ h1 >

 </ div >

 </ body >

 </ html >

 The document contains a reference to the JavaScript file in Listing 2.14 named
selectorsQuery.js.

 LISTING 2.14 Using a Selector (selectorsQuery\selectorsQuery.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.Utilities.query("button").listen("click" , function () {

WinJS.Utilities.query("div").clearStyle("display");

});

 };

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The selectorsQuery.js script uses the WinJS.Utilities.query() method to retrieve all of
the BUTTON elements in the page. The listen() method is used to wire an event handler
to the BUTTON click event. When you click the BUTTON, the secret message contained
in the hidden DIV element is displayed. The clearStyle() method is used to remove the
display:none style attribute from the DIV element (see Figure 2.7).

www.allitebooks.com

http://www.allitebooks.org

ptg999

CHAPTER 2 WinJS Fundamentals66

 FIGURE 2.7 Displaying the secret message

 WARNING

 Make sure that you don’t try to use the WinJS.Utilities.query() method until after the
document is loaded. In Listing 2.14 , the call to WinJS.Utilities.query() is contained
within the initialize() function, which is triggered by the DOMContentLoaded event.

 Under the covers, the WinJS.Utilities.query() method uses the standard
querySelectorAll() method. This means that you can use any selector which is
compatible with the querySelectorAll() method. The querySelectorAll() method is
defined in the W3C Selectors API Level 1 standard located here:
http://www.w3.org/TR/selectors-api/

 Unlike the querySelectorAll() method, the WinJS.Utilities.query() method returns
a QueryCollection. I talk about the methods of the QueryCollection class later in this
chapter.

 Retrieving a Single Element with the WinJS.Utilities.id() Method

 If you want to retrieve a single element from a document, instead of matching a set of
elements, then you can use the WinJS.Utilities.id() method. For example, the follow-
ing line of code changes the background color of an element to the color red:

 WinJS.Utilities.id("message").setStyle("background-color" , "red");

http://www.w3.org/TR/selectors-api/

ptg999

Retrieving DOM Elements with Query Selectors 67

2

 The statement matches the one and only element with an id of message. For example, the
statement matches the following DIV element:

 < div id ="message"> Hello! </ div >

 Notice that you do not use a hash when matching a single element with the
WinJS.Utilities.id() method. You would need to use a hash when using
the WinJS.Utilities.query() method to do the same thing like this:

 WinJS.Utilities.query("#message").setStyle("background-color" , "red");

 Under the covers, the WinJS.Utilities.id() method calls the standard
document.getElementById() method. The WinJS.Utilities.id() method returns the
result as a QueryCollection that contains zero or one matching element.

 If no element matches the identifier passed to WinJS.Utilities.id() then you do not get
an error. Instead, you get a QueryCollection with no elements (length=0).

 Using the WinJS.Utilities.children() method

 The WinJS.Utilities.children() method enables you to retrieve a QueryCollection
which contains all of the children of a DOM element. For example, imagine that you have
a DIV element which contains children DIV elements like this:

 < div id ="discussContainer">

 < div > Message 1 </ div >

 < div > Message 2 </ div >

 < div > Message 3 </ div >

 </ div >

 You can use the following code to add borders around all of the child DIV elements and
not the container DIV element (see Figure 2.8):

 var discussContainer = WinJS.Utilities.id("discussContainer").get(0);

 WinJS.Utilities.children(discussContainer).setStyle("border" , "2px dashed red");

ptg999

CHAPTER 2 WinJS Fundamentals68

 FIGURE 2.8 Retrieving children

 It is important to understand that the WinJS.Utilities.children() method only works
with a DOM element and not a QueryCollection. Notice that the get() method is used to
retrieve the DOM element that represents the discussContainer.

 Working with the QueryCollection Class

 Both the WinJS.Utilities.query() method and the WinJS.Utilities.id() method
return an instance of the QueryCollection class. The QueryCollection class derives from
the base JavaScript Array class and adds several useful methods for working with HTML
elements:

▶ addClass(name)—Adds a class to every element in the QueryCollection

▶ clearStyle(name)—Removes a style from every element in the QueryCollection

▶ control(ctr, options)—Enables you to transform the items in the query collection
into WinJS controls

▶ forEach(callbackFn, thisArg)—Enables you to perform an operation on each item
in the QueryCollection

▶ get(index)—Retrieves the element from the QueryCollection at the specified index

▶ getAttribute(name)—Retrieves the value of an attribute for the first element in the
QueryCollection

▶ hasClass(name)—Returns true if the first element in the QueryCollection has a
certain class

ptg999

Performing Ajax Calls with the xhr Function 69

2

▶ include(items)—Includes a collection of items in the QueryCollection

▶ listen(eventType, listener, capture)—Adds an event listener to every element
in the QueryCollection

▶ query(query)—Performs an additional query on the QueryCollection and returns a
new QueryCollection

▶ removeClass(name)—Removes a class from the every element in the
QueryCollection

▶ removeEventListener(eventType, listener, capture)—Removes an event listener
from every element in the QueryCollection

▶ setAttribute(name, value)—Adds an attribute to every element in the
QueryCollection

▶ setStyle(name, value)—Adds a style attribute to every element in the
QueryCollection

▶ template(templateElement, data, renderDonePromiseContract)—Renders a
template using the supplied data for each item in the QueryCollection

▶ toggleClass(name)—Toggles the specified class for every element in the
QueryCollection

 Because the QueryCollection class derives from the base Array class, it also contains all of
the standard Array methods like indexOf() and slice().

 Performing Ajax Calls with the xhr Function
 The WinJS xhr() function is a thin wrapper around the browser XMLHttpRequest object.
Unlike working with the XMLHttpRequest object, the xhr() function returns a promise.
You use the xhr() function whenever you want to make an Ajax request.

 Listings 2.15 and 2.16 contain the code for making a simple Ajax request. The home page
of the Microsoft site is retrieved and the list of all of the links extracted from this page is
displayed (see Figure 2.9).

 LISTING 2.15 Making a Simple Ajax Request (xhr\xhr.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8">

 < title > Simple XHR </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.1.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.1.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.1.0/js/ui.js"></ script >

ptg999

CHAPTER 2 WinJS Fundamentals70

 <!-- Chapter02 references -->

 < link href ="/css/default.css" rel ="stylesheet">

 < script type ="text/javascript" src ="xhr.js"></ script >

 </ head >

 < body >

 < h1 > Here are the Microsoft Site Links: </ h1 >

 < ul id ="ulResults"></ ul >

 </ body >

 </ html >

 LISTING 2.16 Making a Simple Ajax Request (xhr\xhr.js)

 (function () {

 "use strict" ;

 function initialize() {

 // Create the xhr options

 var options = {

url: "http://Microsoft.com" ,

responseType: "document"

};

 // Make the Ajax request

WinJS.xhr(options).done(

 function (xhr) {

 var li;

 var ulResults = document.getElementById("ulResults");

 var links = xhr.response.querySelectorAll("a");

 for (var i = 0; i < links.length; i++) {

li = document.createElement("LI");

li.innerText = links[i].href;

ulResults.appendChild(li);

}

},

 function () {

 var messageDialog = new Windows.UI.Popups.MessageDialog("Could not

➥download page!");

messageDialog.showAsync();

}

);

ptg999

Performing Ajax Calls with the xhr Function 71

2

 };

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 FIGURE 2.9 Requesting and displaying links from the Microsoft homepage

 The WinJS.xhr() function returns a promise. Two anonymous functions are passed to the
WinJS.xhr() method in Listing 2.16 : a promise complete function and a promise error
function. The complete function displays the list of links in an HTML UL element and the
error page shows a warning message to the user.

 Notice that the code in Listing 2.15 makes a request against a remote website. This should
be surprising. Normally, the XMLHttpRequest object is subject to the same origin policy
that prevents you from requesting content from another domain. However, in the context
of a Windows Store app, you don’t have this restriction.

 NOTE

 Internet Explorer 10, but not earlier versions, supports the W3C Cross-Origin Resource
Sharing (CORS) standard. If the remote server returns the right HTTP header then you can
make Ajax requests against the remote server. In the context of a Windows Store app, you
can ignore CORS and make cross-origin requests without doing anything special.

 Notice that you pass the URL used by the Ajax request to the WinJS.xhr() function in an
option object. You can pass any of the following options:

▶ type—Enables you specify the HTTP method used in the Ajax request. For example,
POST, GET, PUT, DELETE, HEAD.

ptg999

CHAPTER 2 WinJS Fundamentals72

▶ url—Enables you to specify the URL used when making the Ajax request.

▶ user—Enables you to specify credentials when making the Ajax request.

▶ Password—Enables you to specify credentials when making the Ajax request.

▶ headers—Enables you to customize the HTTP headers used in the Ajax request.

▶ data—Enables you to specify the data passed to the remote server in the Ajax
request. You can pass a string, array of unsigned bytes, or even a document. Use
JSON.stringify() to convert other types of JavaScript objects into a string.

▶ responseType—Enables you to specify the type of data returned from the server.
Possible values are arraybuffer, blob, document, ms-stream, or text.

▶ customRequestInitializer—Enables you to customize the properties of the underly-
ing XmlHttpRequest object.

 I’ll talk more about both the responseType and customRequestInitializer in the following
sections.

 Specifying Different Response Types

 The XmlHttpRequest object—and therefore, the WinJS.xhr() function—can be used to
return several different types of data including blobs, documents, and text. You can use
the responseType option to specify how you want the data returned.

 The default value of responseType is text. For example, the following request will return
the contents of the XML feed as a string:

 var options = {

 url: "http://stephenwalther.com/feed"

 };

 WinJS.xhr(options).done(

 function (xhr) {

 var result = xhr.response; // xhr.response is a string

 }

);

 Most likely, you don’t want to return an XML document as a string because then you
can’t use methods like querySelector() and querySelectorAll() to extract elements from
the document. Instead, you want to return an XML document as a document like this:

 var options = {

 url: "http://stephenwalther.com/blog/feed" ,

 responseType: "document"

 };

 WinJS.xhr(options).done(

 function (xhr) {

ptg999

Performing Ajax Calls with the xhr Function 73

2

 var result = xhr.response; // xhr.response is a document

 }

);

 Notice that the options object includes a responseType property with the value document.
When you call the WinJS.xhr() method, the data is returned as a document instead of
a string. That means that you can query the results using methods like querySelector()
and querySelectorAll().

 NOTE

 For backward compatibility, the XmlHttpRequest object also has responseText and
responseXML properties. You should favor the new XmlHttpRequest response property
over these legacy properties.

 Customizing the Properties of the XmlHttpRequest Object

 The WinJS.xhr() function is nothing more than a wrapper around the native browser
XmlHttpRequest object. There are some cases in which you might need to use features of
the underlying XmlHttpRequest object that are not exposed through the options of the
WinJS.xhr() function. In these cases, you can take advantage of the WinJS.xhr() func-
tion’s customRequestInitializer option to customize the XmlHttpRequest object.

 Imagine, for example, that you want to request and display the contents of a text file.
Furthermore, you want to display download progress during the Ajax request.

 The page in Listing 2.17 contains an HTML5 PROGRESS element (for displaying the down-
load progress) and a DIV element (for displaying the contents of the text file).

 LISTING 2.17 Customizing the XmlHttpRequest Object (xhrCustom\xhrCustom.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8">

 < title > XHR Custom </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.1.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.1.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.1.0/js/ui.js"></ script >

 <!-- Chapter02 references -->

 < link href ="/css/default.css" rel ="stylesheet">

 < script type ="text/javascript" src ="xhrCustom.js"></ script >

 </ head >

 < body >

ptg999

CHAPTER 2 WinJS Fundamentals74

 < progress id ="prgResults" max ="100"></ progress >

 < div id ="divResults"></ div >

 </ body >

 </ html >

 The code in Listing 2.18 illustrates how you can take advantage of the
customRequestInitializer option to hook up a progress event handler to the
XmlHttpRequest object used by the WinJS.xhr() function. The progress event handler
updates the PROGRESS element so you can watch while a long running Ajax request
completes (see Figure 2.10).

 LISTING 2.18 Customizing the XmlHttpRequest Object (xhrCustom\xhrCustom.js)

 (function () {

 "use strict" ;

 function initialize() {

 // Cache references to DOM elements

 var prgResults = document.getElementById("prgResults");

 var divResults = document.getElementById("divResults");

 // Create xhr options

 var options = {

url: "products.txt" ,

customRequestInitializer: function (xhr) {

xhr.onprogress = function (evt) {

 if (evt.lengthComputable) {

 var percentComplete = (evt.loaded / evt.total) * 100;

prgResults.value = percentComplete;

}

};

}

};

 // Perform Ajax request

WinJS.xhr(options).done(

 function (xhr) {

divResults.innerHTML = xhr.response;

}

);

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

ptg999

Using the Scheduler to Prioritize Jobs 75

2

 Notice that the options object has a customRequestInitializer property that represents
a function for initializing the XmlHttpRequest object. The function adds a onprogress
handler that displays the amount of progress completed using the HTML5 PROGRESS
element.

 FIGURE 2.10 Showing Ajax request progress

 Using the Scheduler to Prioritize Jobs
 You can take advantage of the WinJS Scheduler (introduced in Windows 8.1) to execute a
JavaScript function with a specific priority.

 Why would you want to do this? A Windows Store app written with JavaScript contains
only one user interface thread. That thread must be used to do everything. The thread is
used by both your application code and the controls in the WinJS library.

 If you want to create an app that responds quickly to user interaction then you need to
prioritize the work performed with this one and only user interface thread.

 NOTE

 A Windows Store app written with JavaScript contains a single user interface thread unless
you use Web Workers . You can use Web Workers to create additional execution threads.
The disadvantage of using Web Workers is that a Web Worker cannot access the DOM.
Jobs created with the Scheduler do not have this limitation.

 Imagine, for example, that you are creating a RSS Reader app and you are displaying the
currently selected blog entry. Quietly, in the background, you want to fetch the next blog
entry because you anticipate that the user will want to view the next entry soon.

 Using the Scheduler, you can wait to retrieve the next blog entry until the user interface
thread is idle. That way, if the user clicks quickly from one entry to another, you won’t
block the user from interacting with your app.

 Let me show you a simple sample of using the Scheduler. You schedule a new job by
calling the WinJS.Utilities.Scheduler.schedule() method and passing the method a
function that represents the job that you want to execute and (optionally) a job priority.

 In Listing 2.19 , the WinJS.Utilities.Scheduler.schedule() method is used to create two
jobs named job1 and job2. The first job is given a normal priority and the second job is
given a high priority.

ptg999

CHAPTER 2 WinJS Fundamentals76

 LISTING 2.19 Setting job priorities (scheduler\scheduler.js)

 (function () {

 "use strict" ;

 function initialize() {

 // Alias the Scheduler

 var Scheduler = WinJS.Utilities.Scheduler;

 // Create the jobs

 var job1 = Scheduler.schedule(

 function () {

console.log("Hello from job1");

},

Scheduler.Priority.normal

);

 var job2 = Scheduler.schedule(

 function () {

console.log("Hello from job2");

},

Scheduler.Priority.high

);

 };

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Calling WinJS.Utilities.schedule(func) to execute a function is similar to calling
window.setTimeout(0, func) or window.setImmediate(func). The function does
not execute immediately, but will execute just as soon as the current thread finishes
processing.

 In Listing 2.19 , the code that creates the two jobs executes first and then the Scheduler
executes the two jobs in order of priority. The messages Hello from job2 and Hello from
job1 are written to the JavaScript console window (see Figure 2.11).

 FIGURE 2.11 Jobs executed in order of priority

 If you need to debug what is happening when using the Scheduler then you can take
advantage of the WinJS.Utilities.Scheduler.retrieveState() method. This method

ptg999

Using the Scheduler to Prioritize Jobs 77

2

returns a string that displays the current list of jobs in order of priority. You can dump
the value of this string to the JavaScript console window by calling console.log() (see
 Figure 2.12).

 FIGURE 2.12 Displaying the state of the Scheduler

 Setting Job Priorities

 You can specify a job priority by using the WinJS.Utilities.Scheduler.Priority
enumeration, or you can specify a number value between -15 and 15. You can use any of
the following values:

▶ min (-15)

▶ idle (-13)

▶ belowNormal (-9)

▶ normal (0)

▶ aboveNormal (9)

▶ high (13)

▶ max (15)

 Keep in mind that priorities are all relative. Scheduling all of your jobs to run at the
highest priority won’t make your app perform any faster. Instead, you should use the
different priorities to schedule the order of execution of your code.

 The standard WinJS controls—such as the ListView and Flip—use the Scheduler with the
same priorities. So you can use the Scheduler to prioritize your app code relative to WinJS
control code.

 Yielding to a Higher Priority Job

 Imagine that your app performs a long-running but low-priority job. Imagine, for
example, that your app displays a constantly updated inspirational quotation.

 If a higher priority job comes along, you might want to yield the low-priority job to the
higher priority job. For example, if a user clicks a button then you want to respond to the
user interaction immediately. You don’t want to get blocked by the lower priority job.

ptg999

CHAPTER 2 WinJS Fundamentals78

 The code in Listing 2.20 illustrates how you can yield a low-priority job by taking advan-
tage of the shouldYield property.

 LISTING 2.20 Setting Job Priorities (scheduler\scheduler.js)

 (function () {

 "use strict" ;

 function initialize() {

 // Alias the Scheduler

 var Scheduler = WinJS.Utilities.Scheduler;

 // Create low priority job

Scheduler.schedule(showQuote, Scheduler.Priority.idle);

 // Handle click event

document.getElementById("btn").addEventListener("click" , function () {

writeMessage("Do Something");

});

 };

 function showQuote(jobInfo) {

 var allQuotes = [

 "Obstacles are those frightful things you see when you take your eyes

➥off your goal - Ford" ,

 "I have not failed. I've just found 10,000 ways that won't work -

➥Edison" ,

 "You can't build a reputation on what you are going to do - Ford"

];

 // Busy loop -- don't ever do this!

 while (true) {

 // Yield to higher priority job

 if (jobInfo.shouldYield) {

writeMessage("Yielding");

jobInfo.setWork(showQuote);

 break ;

}

 // Display random quote

 var quote = allQuotes[random(allQuotes.length)];

writeMessage(quote);

}

 }

 function writeMessage(message) {

ptg999

Using the Scheduler to Prioritize Jobs 79

2

 var messages = document.getElementById("messages");

messages.innerHTML = "" + message + "" + messages.innerHTML;

 }

 function random(upperBound) {

 return Math.floor(Math.random() * upperBound);

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The showQuote() method in Listing 2.20 displays an inspirational quote in a never-ending
busy loop. Normally, including a busy loop in your JavaScript code would block the
JavaScript user interface thread and prevent anything from happening. Normally, nothing
would even get rendered to the screen.

 However, the code in Listing 2.20 does not block the user interface thread. The inspi-
rational quotes appear on the screen and clicking the Do Something button displays a
message (see Figure 2.13).

 FIGURE 2.13 Displaying the state of the Scheduler

 The showQuote() method includes a jobInfo parameter. Within the showQuote() method,
the jobInfo.shouldYield property is checked to determine if the showQuote() method
should yield to a higher priority job.

 If shouldYield returns true then the showQuote() method uses the jobInfo.setWork()
method to indicate the method that should be called to resume the current job after the
higher priority job is completed. In this case, the showQuote() method is called again.

ptg999

CHAPTER 2 WinJS Fundamentals80

 A high-priority job yields only when a higher priority job is scheduled. So, if you schedule
a job with a high priority, and you call shouldYield, then the job will yield only when
there is a higher priority job in the queue.

 A job scheduled with a lower priority than high—for example, Priority.normal or
Priority.idle—will yield in two situations. First, a lower priority job will always yield to
a higher priority job. Also, a job scheduled with a lower priority will yield automatically
after a time slice.

 Because the showQuote() method was scheduled with Priority.idle, the showQuote()
method will yield after a time slice automatically. Even though the showQuote() method
creates a busy loop, it won’t completely block the user interface thread. Checking
shouldYield breaks the busy loop automatically after every so many milliseconds.

 WARNING

 Never ever, ever create busy loops in your JavaScript code. I only included a busy loop in
 Listing 2.20 to dramatize how yielding with the Scheduler works.

 Summary
 The goal of this chapter was to introduce you to the features of the base WinJS library.
In the first section, you learned how to organize your JavaScript code into modules,
namespaces, and classes. By taking advantage of modules and namespaces, you can avoid
polluting the global namespace and make your app easier to maintain over time.

 Next, I discussed how you can take advantage of promises whenever you need to write
asynchronous code. I discussed, for example, how you can use promises when performing
Ajax requests. You learned how to create promises, cancel promises, chain promises, and
compose new promises from existing promises.

 I also discussed how you can use WinJS query selectors to retrieve DOM elements.
You learned how to use WinJS.Utilities.query() to perform a query using a selector
and return a query set. You also learned how to retrieve individual elements with
WinJS.Utilities.id().

 I also explained how you can use the WinJS.xhr() function to perform Ajax queries in a
Windows Store app. You learned how to control the type of data returned by the
WinJS.xhr() function by setting the responseType option. For example, you learned how
to return the results of an Ajax query as a string or a document.

 Finally, I showed you how to take advantage of the Scheduler introduced in Windows 8.1
to execute JavaScript code with different priorities. I demonstrated how you can yield a
low priority job to a high priority job.

ptg999

 CHAPTER 3

 Observables, Bindings,
and Templates

 In this chapter, I explain how you can display JavaScript
objects, such as a single product or array of products, in the
pages of your Windows Store apps.

 I start by explaining observables. An observable enables
you to detect automatically when a JavaScript property has
been changed. I also explain how you can take advantage
of the WinJS.Binding.List object to detect when elements
of an array are changed.

 Next, I focus on the topic of declarative data binding. You
learn how to use both ordinary JavaScript objects and
observable JavaScript objects with declarative data binding.

 Finally, I discuss how you can display an array of objects
using a WinJS template. A template enables you to format
and display multiple JavaScript objects at a time.

 Understanding Observables
 An observable is an object that can notify one or more
listeners when the value of a property is changed.

 Observables enable you to keep your user interface and
your application data in sync. For example, by taking
advantage of observables, you can update your user inter-
face automatically whenever the properties of a product
change. Observables are the foundation of declarative
binding in the WinJS library.

 NOTE

 The WinJS library is not the first JavaScript library to
include support for observables. For example, Backbone,
Knockout, Ember, and the Microsoft Ajax Library (now
part of the Ajax Control Toolkit) all support observables.

IN THIS CHAPTER

▶ Understanding Observables

▶ Understanding Declarative Data
Binding

▶ Understanding Templates

ptg999

CHAPTER 3 Observables, Bindings, and Templates82

 Creating an Observable

 Imagine that I have created a product object like this:

 var product = {

 name: "Milk" ,

 description: "Something to drink" ,

 price: 12.33

 };

 There’s nothing very exciting about this product. It has three properties named name,
description, and price.

 Now, imagine that I want to be notified automatically whenever any of these properties
are changed. In that case, I can create an observable product from my product object
like this:

 var observableProduct = WinJS.Binding.as(product);

 This line of code creates a new JavaScript object named observableProduct from the exist-
ing JavaScript object named product. This new object also has a name, description, and
price property. However, unlike the properties of the original product object, the proper-
ties of the observable product object trigger notifications when the properties are changed.

 Each of the properties of the new observable product object has been changed into acces-
sor properties that have both a getter and a setter. For example, the observable product
price property looks something like this:

 price: {

get: function () { return this .getProperty("price"); }

set: function (value) { this .setProperty("price", value); }

 }

 When you read the price property then the getProperty() method is called and when
you set the price property then the setProperty() method is called. The getProperty()
and setProperty() methods are methods of the observable product object.

 The observable product object supports the following methods and properties:

▶ addProperty(name, value)—Adds a new property to an observable and notifies any
listeners

▶ backingData—An object that represents the value of each property

▶ bind(name, action)—Enables you to execute a function when a property changes

▶ getProperty(name)—Returns the value of a property using the string name of the
property

ptg999

Understanding Observables 83

3

▶ notify(name, newValue, oldValue)—A private method that executes each function
in the _listeners array

▶ removeProperty(name)—Removes a property and notifies any listeners

▶ setProperty(name, value)—Updates a property and notifies any listeners

▶ unbind(name, action)—Enables you to stop executing a function in response to a
property change

▶ updateProperty(name, value)—Updates a property and notifies any listeners

 So when you create an observable, you get a new object with the same properties as an
existing object. However, when you modify the properties of an observable object, then
you can notify any listeners of the observable that the value of a particular property has
changed automatically.

 Imagine that you change the value of the price property like this:

 observableProduct.price = 2.99;

 In that case, the following sequence of events is triggered:

1. The price setter calls the setProperty("price", 2.99) method .

2. The setProperty() method updates the value of the backingData.price property
and calls the notify() method .

3. The notify() method executes each function in the collection of listeners associated
with the price property .

 When an observable property is updated, you can execute one or more functions (listen-
ers) automatically.

 WARNING

 If you call the WinJS.Binding.as() method on a WinRT object then you will get an
exception. The problem is that WinRT objects are immutable and the WinJS.Binding.
as() method attempts to add a new method named _getObservable() to the immutable
object. You can make JavaScript objects observable, but not WinRT objects.

 Creating Observable Listeners

 If you want to be notified when a property of an observable object is changed, then you
need to register a listener. You register a listener by using the bind() method as in
 Listing 3.1.

ptg999

CHAPTER 3 Observables, Bindings, and Templates84

 LISTING 3.1 Binding an Object Property to a Listener (observables\observables.html)

 // Simple product object

 var product = {

 name: "Milk" ,

 description: "Something to drink" ,

 price: 12.33

 };

 // Create observable product

 var observableProduct = WinJS.Binding.as(product);

 // Execute a function when price is changed

 observableProduct.bind("price" , function (newValue, oldValue) {

 console.log(newValue + " was " + oldValue);

 });

 // Change the price

 observableProduct.price = 2.99;

 In Listing 3.1, the bind() method is used to associate the price property with a function.
When the price property is changed, the function logs the new value and old value of the
price property to the Visual Studio JavaScript console (see Figure 3.1).

 FIGURE 3.1 Binding to a property

 The price property is associated with the function using the following code:

 // Execute a function when price is changed

 observableProduct.bind("price" , function (newValue, oldValue) {

 console.log(newValue + " was " + oldValue);

 });

 Notice that the function bound to the price property is called twice. It is called for the
initial value of the property, and it is called when the property is changed.

ptg999

Understanding Observables 85

3

 NOTE

 You can bind a listener to a complex property by supplying an object to the second param-
eter of the WinJS.Binding.bind() method like this:

 // Create object with complex property

 var customer = {

 shippingAddress: {

street: "312 Main Street"

 }

 };

 // Create observable

 var observableCustomer = WinJS.Binding.as(customer);

 // Bind to complex property

 WinJS.Binding.bind(observableCustomer, {

 shippingAddress: {

street: function (newValue) {

console.log("Modified shipping address to "

+ newValue);

}

 }

 });

 // Change value of complex property

 observableCustomer.shippingAddress.street = "100 Grant Street" ;

 The second parameter passed to the WinJS.Binding.bind() method makes the street
property observable even though the street property is a nested property of the complex
customer object.

 Coalescing Notifications

 If you make multiple changes to a property—one change immediately following another—
then separate notifications won’t be sent. Instead, any listeners are notified only once. The
notifications are coalesced into a single notification (see Figure 3.2).

 For example, in the code in Listing 3.2 , the product price property is updated three times.
However, only two messages are written to the JavaScript console. Only the initial value
and the last value assigned to the price property are written to the JavaScript Console
window.

ptg999

CHAPTER 3 Observables, Bindings, and Templates86

 LISTING 3.2 Coalescing Notifications (observablesCoalesce\observablesCoalesce.html)

 // Simple product object

 var product = {

 name: "Milk" ,

 description: "Something to drink" ,

 price: 12.33

 };

 // Create observable product

 var observableProduct = WinJS.Binding.as(product);

 // Execute a function when price is changed

 observableProduct.bind("price" , function (newValue, oldValue) {

 console.log(newValue + " was " + oldValue);

 });

 // Change the price

 observableProduct.price = 3.99;

 observableProduct.price = 2.99;

 observableProduct.price = 1.99;

 FIGURE 3.2 Coalescing notifications

 If there is a time delay between changes to a property then the changes result in different
notifications.

 If you need to prevent multiple notifications from being coalesced into one—and you
don’t want to create an artificial time delay—then you can take advantage of promises.
Because the updateProperty() method returns a promise, you can create different notifi-
cations for each change in a property by using the following code:

 // Change the price

 observableProduct.updateProperty("price" , 3.99)

 .then(function () {

observableProduct.updateProperty("price" , 2.99)

.then(function () {

observableProduct.updateProperty("price" , 1.99);

});

 });

ptg999

Understanding Observables 87

3

 In this case, even though the price is immediately changed from 3.99 to 2.99 to 1.99,
separate notifications for each new value of the price property are sent (see Figure 3.3).

 FIGURE 3.3 Using promises with observables

 Bypassing Notifications

 Normally, if a property of an observable object has listeners and you change the property
then the listeners are notified. However, there are certain situations in which you might
want to bypass notification. In other words, you might need to change a property value
silently without triggering any functions registered for notification.

 If you want to change a property without triggering notifications then you should change
the property by using the backingData property. The code in Listing 3.3 illustrates how
you can change the price property silently.

 LISTING 3.3 Bypassing Notifications (observablesBypass\observablesBypass.html)

 // Simple product object

 var product = {

 name: "Milk" ,

 description: "Something to drink" ,

 price: 12.33

 };

 // Create observable product

 var observableProduct = WinJS.Binding.as(product);

 // Execute a function when price is changed

 observableProduct.bind("price" , function (newValue) {

 console.log(newValue);

 });

 // Change the price silently

 observableProduct.backingData.price = 5.99;

 console.log(observableProduct.price); // Writes 5.99

 The price is changed to the value 5.99 by changing the value of backingData.price.
Because the observableProduct.price property is not set directly, any listeners associated
with the price property are not notified.

ptg999

CHAPTER 3 Observables, Bindings, and Templates88

 When you change the value of a property by using the backingData property, the change
in the property happens synchronously. However, when you change the value of an
observable property directly, the change is always made asynchronously.

 Working with the WinJS.Binding.List Object

 If you want to be notified whenever a change is made to an array of items—in other
words, you want to work with an observable collection—then you should use the WinJS.
Binding.List object.

 The WinJS.Binding.List object wraps a standard JavaScript array in a new object and adds
additional methods and events to support change notifications. The WinJS.Binding.List
object supports the following events:

▶ iteminserted—Triggered when a new item is added to the list.

▶ itemchanged—Triggered when an item in the list is replaced with the setAt()
method.

▶ itemmoved—Triggered when an item in the list is moved with the move() method.

▶ itemmutated—Triggered by calling the notifyMutated() method.

▶ itemremoved—Triggered by removing an item from the list.

▶ reload—Triggered by reordering the items in a list by calling sort() or reverse().
Also triggered by calling the notifyReload() method.

 The code in Listing 3.4 demonstrates how you can trigger each of these events and the
information passed to each event handler.

 LISTING 3.4 Using a WinJS.Binding.List (observablesList\observablesList.html)

 var products = [

 { name: "Milk" , price: 2.99 },

 { name: "Oranges" , price: 2.50 },

 { name: "Apples" , price: 1.99 }

];

 // Create List

 var productsList = new WinJS.Binding.List(products);

 // Setup event handlers

 productsList.oniteminserted = function (evt) {

 var message = "Item Inserted: " + evt.detail.value.name

+ " at index " + evt.detail.index

+ " with key " + evt.detail.key;

 console.log(message);

 };

ptg999

Understanding Observables 89

3

 productsList.onitemchanged = function (evt) {

 var message = "Item Changed: " + evt.detail.oldValue.name

+ " to " + evt.detail.newValue.name

+ " at index " + evt.detail.index

+ " with key " + evt.detail.key;

 console.log(message);

 };

 productsList.onitemmutated = function (evt) {

 var message = "Item Mutated: " + evt.detail.value.name

+ " with key " + evt.detail.key;

 console.log(message);

 };

 productsList.onitemremoved = function (evt) {

 var message = "Item Removed: " + evt.detail.value.name

+ " at index " + evt.detail.index

+ " with key " + evt.detail.key;

 console.log(message);

 };

 productsList.onitemmoved = function (evt) {

 var message = "Item Moved: " + evt.detail.value.name

+ " from index " + evt.detail.oldIndex

+ " to index " + evt.detail.newIndex;

 console.log(message);

 };

 productsList.onreload = function (evt) {

 var message = "List Reloaded" ;

 console.log(message);

 };

 // Insert an item

 productsList.push({ name: "Carrots" , price: 2.33 }); // triggers iteminserted

 // Replace an entire item

 productsList.setAt(1, { name: "Navel Oranges" , price: 2.50 }); // triggers

➥itemchanged

 // Update an item property

 productsList.getAt(1).price = 500.00;

 productsList.notifyMutated(1); // triggers itemmutated

ptg999

CHAPTER 3 Observables, Bindings, and Templates90

 // Delete an item

 productsList.splice(0, 1); // triggers itemremoved

 // Move second item to top

 productsList.move(1, 0); // triggers itemmoved

 // Sort the list

 productsList.sort(); // triggers reload

 In Listing 3.4 , a JavaScript array named products is created that represents a list of prod-
ucts with name and price properties. Next, a WinJS.Binding.List is created with the
following line of code:

 var productsList = new WinJS.Binding.List(products);

 Event handlers for all of the WinJS.Binding.List events are created. Each event handler
writes a message to the Visual Studio JavaScript Console (see Figure 3.4).

 FIGURE 3.4 WinJS.Binding.List events

 Creating an Observable Collection of Observables

 By default, when you create a WinJS.Binding.List from a JavaScript array, the list is
observable but not the items in the list. The WinJS.Binding.List simply contains the
items from the array and the items are plain old JavaScript objects.

 If you want to convert each of the items from the JavaScript array into an observable item,
then you need to use the binding option when creating the WinJS.Binding.List like this:

 var products = [

 { name: "Milk" , price: 2.99 },

 { name: "Oranges" , price: 2.50 },

 { name: "Apples" , price: 1.99 }

];

ptg999

Understanding Declarative Data Binding 91

3

 // Create List

 var productsList = new WinJS.Binding.List(products, { binding: true });

 // Listen for changes in price

 productsList.getAt(1).bind("price" , function () {

 console.log("price changed");

 });

 The productsList in the code above contains a list of observable objects. Because each
object in the list is observable, you can hook up a listener function that gets triggered
when a change is made to a property. In the preceding code, a message is written to the
Visual Studio JavaScript console whenever the price property is modified.

 Understanding Declarative Data Binding
 Declarative data binding enables you to bind the attributes of an HTML element to the
properties of a JavaScript object. You can take advantage of declarative data binding when-
ever you want to display data in an HTML page.

 Let me start with a simple example. The page in Listing 3.5 displays product details (see
 Figure 3.5).

 LISTING 3.5 Simple Declarative Data Binding (dataBinding\dataBinding.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter03 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter03 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="/dataBinding/dataBinding.js"></ script >

 </ head >

 < body >

 < h1 > Product Details </ h1 >

ptg999

CHAPTER 3 Observables, Bindings, and Templates92

 < div >

Product Name:

 < span data-win-bind ="innerText:name"></ span >

 </ div >

 < div >

 Product Price:

 < span data-win-bind ="innerText:price"></ span >

 </ div >

 < div >

 Product Picture:

 < br />

 < img data-win-bind ="src:photo;alt:name" />

 </ div >

 </ body >

 </ html >

 The product name and price are displayed with HTML SPAN elements. Notice that each
SPAN element includes a data-win-bind attribute. For example, the product name is
displayed with the following SPAN element:

 < span data-win-bind ="innerText:name"></ span >

 This data-win-bind attribute binds the value of the name property to the innerText prop-
erty of the SPAN element.

 You can use the data-win-bind attribute to bind (almost) any attribute of an HTML
element to the value of a JavaScript property. For example, the picture of the Tesla is
displayed by binding values to the IMG element’s src and alt attributes:

 < img data-win-bind ="src:photo;alt:name" />

 Notice that the data-win-bind attribute accepts a semicolon-delimited list of HTML
element attribute names and JavaScript object property names.

 NOTE

 The one attribute which you cannot use with declarative binding is the ID attribute. By
default, the WinJS library generates a unique ID for each element automatically. You can
disable this behavior by setting the optimizeBindingReferences property to false.

ptg999

Understanding Declarative Data Binding 93

3

 FIGURE 3.5 Showing product details with declarative data binding

 The code in Listing 3.6 contains the product that is displayed by the HTML page in
Listing 3.5 .

 LISTING 3.6 Simple Declarative Data Binding (databinding\databinding.js)

 (function () {

 "use strict" ;

 function initialize() {

 var product = {

name: "Tesla Roadster" ,

price: 34,

photo: "tesla.jpg"

};

WinJS.Binding.processAll(null , product);

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

ptg999

CHAPTER 3 Observables, Bindings, and Templates94

 There is nothing special about the product object in Listing 3.6 —it is just a plain old
JavaScript object.

 Notice the call to WinJS.Binding.processAll() in Listing 3.6 . The declarative data
binding attributes in a page are not processed until you call this method. When you
call the WinJS.Binding.procesAll() method, you must specify two parameters: the root
element and the data context.

 The root element determines which elements in a page get processed. If you pass the value
null, then the entire document is parsed.

 The data context contains the data that you want to bind to the HTML attributes. In
 Listing 3.6 , the product object is passed to the WinJS.Binding.processAll() method as
the data context.

 WARNING

 Don’t call WinJS.Binding.processAll() until the document containing the HTML
elements has been loaded. Otherwise, there is nothing to process. In Listing 3.6 , the
WinJS.Binding.processAll() method is called within a function triggered by the
DOMContentLoaded event.

 Declarative Data Binding and Observables

 Declarative data binding and observables are a powerful combination. If you use observ-
ables with data binding then you can update the contents of an HTML document auto-
matically whenever you change the underlying JavaScript objects.

 For example, the HTML page in Listing 3.7 contains a SPAN and a BUTTON element. The
page displays the number of times the button has been clicked (see Figure 3.6).

 FIGURE 3.6 Displaying a click count

 LISTING 3.7 Using Data Binding with an Observable (dataBindingObservables\
dataBindingObservables.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter03 </ title >

ptg999

Understanding Declarative Data Binding 95

3

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter03 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="dataBindingObservables.js"></ script >

 </ head >

 < body >

 < div >

You have clicked the button

 < span data-win-bind ="innerText:timesClicked"></ span > times.

 < br />

 < button data-win-bind ="onclick:click"> Click Here! </ button >

 </ div >

 </ body >

 </ html >

 Notice that the page in Listing 3.7 includes two data-win-bind attributes. The first
data-win-bind attribute is used with a SPAN element to display the click count and the
second data-win-bind attribute is used with a BUTTON element to handle the click
event.

 The JavaScript code in Listing 3.8 contains an observable object, named viewModel, which
tracks the click count.

 LISTING 3.8 Using Data Binding with an Observable (dataBindingObservables\
dataBindingObservables.html)

 (function () {

 "use strict" ;

 function initialize() {

 // Create a view model

 var viewModel = {

timesClicked: 0,

click: WinJS.UI.eventHandler(function (evt) {

evt.preventDefault();

viewModel.timesClicked ++;

})

};

ptg999

CHAPTER 3 Observables, Bindings, and Templates96

 // Make the view model observable

viewModel = WinJS.Binding.as(viewModel);

 // Bind the view model to the document

WinJS.Binding.processAll(null , viewModel);

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The viewModel object in Listing 3.8 has a property, named timesClicked, which is used
to track the number of times the button has been clicked. The viewModel object also has a
method named click() that is used to update the timesClicked property.

 NOTE

 Notice that the click handler is wrapped in a call to WinJS.UI.eventHandler(). For secu-
rity reasons, the WinJS library requires you to call this method for any event handler which
can be invoked from a declarative context such as data-win-bind. If you neglect to call
this method then nothing happens when you click the button.

 The viewModel is converted into an observable with the help of the WinJS.Binding.as()
method. Finally, the viewModel is bound to the page and the data-win-bind attributes are
processed by calling WinJS.Binding.processAll().

 Capturing the Contents of an HTML Form

 The WinJS library does not support two-way data binding. Change notification is one-way.
If you want to capture the contents of an HTML form then you need to do the work of
retrieving the values of the form elements yourself.

 The page in Listing 3.9 contains an HTML form for creating a new product. It has two
INPUT elements for the product name and price (see Figure 3.7). The form uses a single
data-win-bind attribute. The FORM element has a data-win-bind attribute that wires up a
form submit handler.

 FIGURE 3.7 Creating a new product

ptg999

Understanding Declarative Data Binding 97

3

 LISTING 3.9 Two-Way Data Binding (dataBindingTwoWay\dataBindingTwoWay.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter03 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter03 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="dataBindingTwoWay.js"></ script >

 </ head >

 < body >

 < form data-win-bind ="onsubmit:submit">

 < div class ="field">

 < label > Name: </ label >

 < input id ="productName" required />

 </ div >

 < div class ="field">

 < label > Price: </ label >

 < input id ="productPrice" required />

 </ div >

 < div class ="field">

 < button > Add Product </ button >

 </ div >

 </ form >

 </ body >

 </ html >

 When you submit the HTML form, the viewData.submit() method in Listing 3.10 is
invoked. This method grabs the HTML form fields and creates a new product object
named productToAdd.

 LISTING 3.10 Two-Way Data Binding (dataBindingTwoWay\dataBindingTwoWay.js)

 (function () {

 "use strict" ;

ptg999

CHAPTER 3 Observables, Bindings, and Templates98

 function initialize() {

 var viewModel = {

submit: WinJS.UI.eventHandler(function (evt) {

 // Prevent page from being posted

evt.preventDefault();

 // Grab form field values

 var productToAdd = {

name: document.getElementById("productName").value,

price: document.getElementById("productPrice").value

};

 // TODO: Add new product to database

console.log("adding " + productToAdd.name + " to database.")

})

};

WinJS.Binding.processAll(null , viewModel);

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The page in Listing 3.9 uses a data-win-bind attribute to wire up the form submit event
handler. You might be wondering whether it would be easier to do without the data
binding and directly wire up an event handler like this:

 < form onsubmit ="submit">

 Why use declarative data binding at all? The advantage of using declarative data binding
to wire up the event handler is that you do not need to expose the handler through a
namespace. When using declarative data binding, a handler does not need to be a public
method—the only requirement is that it be part of the data context used with the WinJS.
Binding.processAll() method.

 NOTE

 The HTML form in Listing 3.9 uses the HTML5 required attribute to ensure that values are
entered in the name and price INPUT elements.

ptg999

Understanding Declarative Data Binding 99

3

 Declarative Data Binding and WinJS Controls

 We discuss WinJS controls in detail in the next chapter; however, I want to make sure that
you understand that you can use declarative data binding with WinJS controls properties
in the same way as you can use declarative data binding with element attributes.

 The trick is to use the winControl property, which is exposed by every HTML element that
is associated with a control. You can use the winControl property with the data-win-bind
attribute.

 For example, the page in Listing 3.11 contains a WinJS Rating control (see Figure 3.8).

 FIGURE 3.8 Displaying an average rating with declarative data binding

 LISTING 3.11 Using Declarative Data Binding with WinJS Controls (dataBindingControls\
dataBindingControls.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter03 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter03 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="dataBindingControls.js"></ script >

 </ head >

 < body >

 < div >

 data-win-control ="WinJS.UI.Rating"

 data-win-bind ="winControl.averageRating:averageRating">

 </ div >

 < div >

The average rating for this product is:

ptg999

CHAPTER 3 Observables, Bindings, and Templates100

 < span data-win-bind ="innerText:averageRating"></ span >

 </ div >

 </ body >

 </ html >

 Listing 3.11 contains a WinJS Rating control. The averageRating property of the WinJS
Rating control is set with the following data-win-bind attribute:

 data-win-bind ="winControl.averageRating:averageRating"

 The winControl property gets you from the HTML element to its associated control.

 The JavaScript file in Listing 3.12 illustrates how you can bind the average rating to the
Rating control.

 LISTING 3.12 Using Declarative Data Binding with WinJS Controls (dataBindingControls\
dataBindingControls.js)

 (function () {

 "use strict" ;

 function initialize() {

 // Create a view model

 var viewModel = {

averageRating: 3

};

 // Bind the view model to the document

WinJS.UI.processAll()

.done(function () {

WinJS.Binding.processAll(null , viewModel);

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The code in Listing 3.12 contains two calls to the processAll() method. First, the WinJS.
UI.processAll() method is called to process all of the WinJS controls in the page. Next,
the WinJS.Binding.processAll() method is called to process all of the data binding attri-
butes in the page. You must call the two processAll() methods in that order or there
won’t be controls with properties to bind to.

ptg999

Understanding Declarative Data Binding 101

3

 Declarative Data Binding and Binding Converters

 Binding converters enable you to transform the value of a property when using the prop-
erty in a data-win-bind attribute.

 There are all sorts of situations in which a binding converter is useful. For example,
formatting dates and times or hiding or displaying content depending on a property
value. Whenever you need to alter a JavaScript property value before displaying it, use a
binding converter.

 Imagine, for example, that you want to display the text On Sale! only when a product is
on sale. The page in Listing 3.13 displays two products (see Figure 3.9). It uses a binding
converter to hide or display the contents of a DIV element that contains the text On Sale!

 FIGURE 3.9 Using a binding converter

 LISTING 3.13 Using a Binding Converter (dataBindingConverters/dataBindingConverters.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter03 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter03 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="dataBindingConverters.js"></ script >

 < script type ="text/javascript" src ="myBindingConverters.js"></ script >

 </ head >

 < body >

ptg999

CHAPTER 3 Observables, Bindings, and Templates102

 < div >

 < h1 data-win-bind ="innerText:product1.name"></ h1 >

 < div >

Price: < span data-win-bind ="innerText:product1.price"></ span >

 </ div >

 < div data-win-bind ="style.display:product1.onSale MyBindingConverters.

➥onSaleToDisplay">

 < b > On Sale! </ b >

 </ div >

 </ div >

 < div >

 < h1 data-win-bind ="innerText:product2.name"></ h1 >

 < div >

Price: < span data-win-bind ="innerText:product2.price"></ span >

 </ div >

 < div data-win-bind ="style.display:product2.onSale MyBindingConverters.

➥onSaleToDisplay">

 < b > On Sale! </ b >

 </ div >

 </ div >

 </ body >

 </ html >

 The text On Sale! does not appear after the first product, but it does appear after the
second product. The text is displayed with the following DIV element:

 < div data-win-bind ="style.display:product2.onSale MyBindingConverters.

➥onSaleToDisplay">

 < b > On Sale! </ b >

 </ div >

 The binding converter is applied to the DIV element’s style attribute. When the binding
converter returns the value “none” then the contents of the DIV element are hidden
with display:none. Otherwise, the binding converter returns the value “block” and the
contents of the DIV element are displayed with display:block.

 The binding converter appears in the value of the data-win-bind expression after the
name of the JavaScript property being bound. In this case, the binding converter is a func-
tion named MyBindingConverters.onSaleToDisplay. This binding converter converts a
Boolean value into either the value “none” or “block”.

 The binding converter is contained in a separate file—referenced by the HTML page—
named myBindingConverters.js (see Listing 3.14). You don’t need to create the binding
converter in a separate file, but it makes it easier to reuse the binding converter with
multiple pages.

ptg999

Understanding Declarative Data Binding 103

3

 LISTING 3.14 A Binding Converter (dataBindingConverters\myBindingConverters.js)

 (function () {

 "use strict" ;

 var onSaleToDisplay = WinJS.Binding.converter(function (onSale) {

 return onSale ? "block" : "none" ;

 });

 WinJS.Namespace.define("MyBindingConverters" ,

{

onSaleToDisplay: onSaleToDisplay

});

 })();

 You create a binding converter by passing a function to the WinJS.Binding.converter()
method. The function converts the value passed to the function to some other value.
In Listing 3.14, the function converts the product onSale property (a Boolean property)
into either the value “block” or “none” (a value that can be used with the style display
property).

 The two products are created in Listing 3.15 . Listing 3.15 contains an object named
viewModel which has a product1 and product2 property.

 LISTING 3.15 Using a Binding Converter (dataBindingConverters/dataBindingConverters.js)

 (function () {

 "use strict" ;

 function initialize() {

 var viewModel = {

product1: {

name: "Tesla" ,

price: 300000.00,

onSale: false

},

product2: {

name: "BMW" ,

price: 80000.00,

onSale: true

}

};

ptg999

CHAPTER 3 Observables, Bindings, and Templates104

WinJS.Binding.processAll(null , viewModel);

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Creating Date and Price Binding Converters

 I can’t let you stop reading this section until I mention how to create two other types of
converters: date and price converters. I find that I need to use date and price converters in
most Windows Store apps which I build in order to format dates and prices.

 The JavaScript file in Listing 3.16 contains the two converters.

 LISTING 3.16 The Date and Price Converters

 (function () {

 "use strict" ;

 // Converts 77.8900 to $77.89

 var price = WinJS.Binding.converter(function (priceToConvert) {

 return "$" + priceToConvert.toFixed(2);

 });

 // Converts full date to 12/25/2013

 var shortDate = WinJS.Binding.converter(function (dateToConvert) {

 return dateToConvert.getMonth() + 1 +

 "/" + dateToConvert.getDate() +

 "/" + dateToConvert.getFullYear();

 });

 WinJS.Namespace.define("MyBindingConverters" ,

{

price: price,

shortDate: shortDate

});

 })();

 After you add a reference to the converters to an HTML page, you can use the date and
price converters in your binding expressions as demonstrated in Listing 3.17 .

ptg999

Understanding Templates 105

3

 LISTING 3.17 Using the Date and Price Converters

 < div >

 < h1 data-win-bind ="innerText:product1.name"></ h1 >

 < div >

Price:

 < span data-win-bind ="innerText:product1.price MyBindingConverters.

➥price"></ span >

 </ div >

 < div >

Date Available:

 < span data-win-bind ="innerText:product1.dateAvailable MyBindingConverters.

➥shortDate"></ span >

 </ div >

 </ div >

 The price converter causes the product price to be displayed as $100.00 instead of
99.999999. The shortDate converter causes the product dateAvailable property to be
displayed as 12/25/2012 instead of Tue Dec 25 00:00:00 PST 2012.

 NOTE

 Sadly, you cannot pass additional parameters when using a binding converter. It would
be nice if you could pass an additional parameter, for example, that represented the date
format. However, you can’t do this. Instead, you must create separate dateShort and
dateLong binding converters.

 Understanding Templates
 If you need to display the same fragment of HTML more than one time in a page then
you should create a template. A template is a fragment of HTML that can include declara-
tive data binding expressions. There are two ways to create a template: imperatively and
declaratively.

 Creating an Imperative Template

 Imagine that you want to display an array of products in an HTML page (see Figure 3.10).
In that case, you can use a template to format each of the products in the array.

ptg999

CHAPTER 3 Observables, Bindings, and Templates106

 FIGURE 3.10 Displaying a list of products with a template

 The HTML page in Listing 3.18 contains a DIV element named tmplProduct. This DIV
element is not displayed when the page is rendered. Instead, it contains the contents of
the template.

 The page also contains a second DIV element named conProducts. This DIV element
acts as the target of the template. When each product is rendered, it is rendered into the
conProducts DIV element.

 LISTING 3.18 Creating an Imperative Template (templatesImperative\templatesImperative.
html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter03 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter03 references -->

 < link href ="templatesImperative.css" rel ="stylesheet" />

 < script src ="templatesImperative.js"></ script >

 </ head >

 < body >

 <!-- Template -->

 < div id ="tmplProduct">

 < div class ="product">

Name: < span data-win-bind ="innerText:name"></ span >

 < br />

Price: < span data-win-bind ="innerText:price"></ span >

ptg999

Understanding Templates 107

3

 </ div >

 </ div >

 <!-- Place Where Template is Rendered -->

 < div id ="conProducts"></ div >

 </ body >

 </ html >

 The JavaScript code in Listing 3.19 illustrates how you can create a new template and
render the template for each item in an array.

 LISTING 3.19 Creating an Imperative Template (templatesImperative\templatesImperative.js)

 (function () {

 "use strict" ;

 function initialize() {

 var products = [

{ name: "Tesla" , price: 300000 },

{ name: "BMW" , price: 80000 },

{ name: "Pinto" , price: 10000 }

];

 // Get the template and template container

 var tmplProduct = document.getElementById("tmplProduct");

 var conProducts = document.getElementById("conProducts");

 // Create the template

 var template = new WinJS.Binding.Template(tmplProduct)

 // Render each array item using the template

products.forEach(function (product) {

template.render(product, conProducts);

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The template is created by creating a new instance of the WinJS Template control:

 var template = new WinJS.Binding.Template(tmplProduct)

ptg999

CHAPTER 3 Observables, Bindings, and Templates108

 Next, the template is rendered for each item in the array within a forEach() method:

 products.forEach(function (product) {

 template.render(product, conProducts);

 });

 When the template is rendered, only the inner contents of the template are rendered for
each data item. The containing DIV element—named tmplProduct in the code—is not
rendered.

 Creating a Declarative Template

 If you prefer, you can create the template declaratively instead of imperatively. The page
in Listing 3.20 contains a WinJS Template control associated with a DIV element named
tmplProduct.

 LISTING 3.20 Creating a Template Declaratively (templatesDeclare\templatesDeclare.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter03 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter03 references -->

 < link href ="templatesDeclare.css" rel ="stylesheet" />

 < script src ="templatesDeclare.js"></ script >

 </ head >

 < body >

 <!-- Template -->

 < div id ="tmplProduct" data-win-control ="WinJS.Binding.Template">

 < div class ="product">

Name: < span data-win-bind ="innerText:name"></ span >

 < br />

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 <!-- Place Where Template is Rendered -->

 < div id ="conProducts"></ div >

ptg999

Understanding Templates 109

3

 </ body >

 </ html >

 In Listing 3.20 , the Template control is declared with a data-win-control="WinJS.
Binding.Template" attribute.

 And Listing 3.21 contains the JavaScript code used to render the array of products using
the template.

 LISTING 3.21 Creating a Template Declaratively (templatesDeclare\templatesDeclare.js)

 (function () {

 "use strict" ;

 function initialize() {

 var products = [

{ name: "Tesla" , price: 300000 },

{ name: "BMW" , price: 80000 },

{ name: "Pinto" , price: 10000 }

];

 // Get the template and template container

 var tmplProduct = document.getElementById("tmplProduct");

 var conProducts = document.getElementById("conProducts");

 // Render each array item using the template

WinJS.UI.processAll().done(function () {

products.forEach(function (product) {

tmplProduct.winControl.render(product, conProducts);

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 When using a declarative Template control, you must call the WinJS.UI.processAll()
method. Otherwise, the DIV element won’t be converted into a template.

 Applying a Template with a Query Selector

 A query collection includes a template() method that you can use to quickly apply a
template to either a single DOM element or set of DOM elements. For example, the page
in Listing 3.22 displays a list of products.

ptg999

CHAPTER 3 Observables, Bindings, and Templates110

 LISTING 3.22 Using WinJS.Utilities.id() with a Template (templatesQuery\templatesQuery.
html).

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter03 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter03 references -->

 < link href ="templatesQuery.css" rel ="stylesheet" />

 < script src ="templatesQuery.js"></ script >

 </ head >

 < body >

 <!-- Template -->

 < div id ="tmplProduct" data-win-control ="WinJS.Binding.Template">

 < div class ="product">

Name: < span data-win-bind ="innerText:name"></ span >

 < br />

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 <!-- Place Where Template is Rendered -->

 < div id ="conProducts"></ div >

 </ body >

 </ html >

 The page in Listing 3.22 contains a declarative template named tmplProduct. The page
also contains a DIV element named conProducts, which is the place in the page where the
template is rendered.

 The JavaScript code in Listing 3.23 demonstrates how you can use the WinJS.Utilities.
id() method to apply a template to the conProducts DIV element.

 LISTING 3.23 Using WinJS.Utilities.id() with a Template (templatesQuery\templatesQuery.js).

 (function () {

 "use strict" ;

 function initialize() {

ptg999

Understanding Templates 111

3

 var products = [

{ name: "Tesla" , price: 300000 },

{ name: "BMW" , price: 80000 },

{ name: "Pinto" , price: 10000 }

];

WinJS.UI.processAll().done(function () {

 var tmplProduct = document.getElementById("tmplProduct");

WinJS.Utilities.id("conProducts").template(tmplProduct, products);

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Notice that you do not need to call forEach() when you use the query collection
template() method. This method performs the forEach() internally.

 Creating External Templates

 If you want to use the same template in multiple pages then it makes sense to create an
external template. In other words, you can place a template in a separate file than the
page that contains the template.

 Here’s how you can declare a Template control so that it references an external template
file. Notice that the following template includes a href option that points to a file named
productTemplate.html.

 <!-- Template -->

 < div id ="tmplProduct"

 data-win-control ="WinJS.Binding.Template"

 data-win-options ="{

 href: 'productTemplate.html'

 }">

 </ div >

 The productTemplate.html contains the product template and it looks like this:

 < div class ="product">

 Name: < span data-win-bind ="innerText:name"></ span >

 < br />

 Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 Finally, Listing 3.24 contains the JavaScript code for rendering the external template.

ptg999

CHAPTER 3 Observables, Bindings, and Templates112

 LISTING 3.24 Rendering an External Template

 (function () {

 "use strict" ;

 function initialize() {

 var products = [

{ name: "Tesla" , price: 300000 },

{ name: "BMW" , price: 80000 },

{ name: "Pinto" , price: 10000 }

];

 // Get the template and template container

 var tmplProduct = document.getElementById("tmplProduct");

 var conProducts = document.getElementById("conProducts");

 // Render each array item using the template

WinJS.UI.processAll().done(function () {

products.forEach(function (product) {

tmplProduct.winControl.render(product, conProducts);

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 You can refer to the very same productTemplate.html from several Template controls
located in different pages.

 Summary
 This chapter was all about displaying JavaScript objects in a page. In the first section, you
learned about observables. In particular, you learned how observables enable you to detect
automatically when a property of a JavaScript object changes. We also discussed how you
can use the WinJS.Binding.List object to detect different types of changes in an array of
items.

 Next, you learned how to take advantage of declarative data binding with both normal
JavaScript objects and observable JavaScript objects to display the values of JavaScript
properties in a page.

 Finally, I discussed how you can use WinJS templates to format and display an array of
objects. You learned how to create templates both imperatively and declaratively.

ptg999

 CHAPTER 4

 Using WinJS Controls

 My goal in this chapter is to provide you with an over-
view of the controls included in the WinJS library. I start
by explaining how you can add controls to your pages. You
learn how to create WinJS controls both declaratively and
imperatively and set control options.

 The bulk of this chapter is devoted to descriptions and
samples of how you can use the basic controls included
in the WinJS library. In this chapter, I focus on describing
how you can use the following controls:

▶ Tooltip—Used to display a pop-up tooltip

▶ ToggleSwitch—Used to display a toggle switch that can be
used in the same scenarios as a checkbox

▶ Rating—Used to display and enter a user rating

▶ DatePicker—Used to enter a date

▶ TimePicker—Used to enter a time

▶ Hub—Used to display multiple sections of content

▶ WebView—Used to display an external web page in your app

 Introduction to WinJS Controls
 You declare a WinJS control in a page by using the
data-win-control attribute. For example, you can declare
the WinJS DatePicker control by adding the following DIV
element to a page:

 < div id ="dateBirthday"

 data-win-control ="WinJS.UI.DatePicker"></ div >

IN THIS CHAPTER

▶ Introduction to WinJS Controls

▶ Using the Tooltip Control

▶ Using the ToggleSwitch
Control

▶ Using the Rating Control

▶ Using the DatePicker Control

▶ Using the TimePicker Control

▶ Using the Hub Control

▶ Using the WebView Control

ptg999

CHAPTER 4 Using WinJS Controls114

 The DIV element isn’t really doing anything. It is just acting as a placeholder for the
control. It is a “host” for the DatePicker control. The data-win-control attribute is used
to indicate the type of control that will be associated with the element.

 A WinJS control does not actually become a control until you call the WinJS.
UI.processAll() method. This method parses an HTML document, identifies any and
all elements that include a data-win-control attribute, and generates a control for those
elements.

 There is one other important requirement for using WinJS controls: You must include
references to the right JavaScript and Cascading Style Sheet files. In order to use any of the
controls, you must add the following three references to the top of your HTML page:

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 The first reference is a reference to a Cascading Style Sheet file named ui-dark.css. The
WinJS library includes two style sheets: ui-dark.css and ui-light.css. If you substitute the
ui-light.css reference for the ui-dark.css reference, then you can use a light theme for all of
your controls.

 Figure 4.1 illustrates the appearance of the DatePicker control when the dark theme is
used, and Figure 4.2 illustrates the appearance of the DatePicker control when the light
theme is used.

 FIGURE 4.1 Using the dark theme

ptg999

Introduction to WinJS Controls 115

4

 FIGURE 4.2 Using the light theme

 The next two references are for the base.js and ui.js JavaScript files. You need references to
both of these JavaScript libraries to use the WinJS controls.

 All of the JavaScript source code for the WinJS controls is included in the ui.js file. For
example, this file contains the source code for the DatePicker and Hub controls.

 You can view the source of all three of these files by expanding the References folder in
the Visual Studio Solution Explorer window (see Figure 4.3). If you double-click any of the
files then you can view the contents of the files.

 FIGURE 4.3 Viewing the WinJS files in the Solution Explorer window

 Creating a WinJS Control Declaratively

 There are two ways that you can create a WinJS control: declaratively and imperatively.
The HTML page in Listing 4.1 illustrates how you can create a WinJS control declaratively.

ptg999

CHAPTER 4 Using WinJS Controls116

 LISTING 4.1 Declaring a WinJS Control (declarative\declarative.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter04 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter04 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="declarative.js"></ script >

 </ head >

 < body >

 < div id ="dateBirthday"

 data-win-control ="WinJS.UI.DatePicker"></ div >

 </ body >

 </ html >

 In Listing 4.1 , a DatePicker control is declared in the body of the HTML page. Notice that
the page includes references to the ui-dark.css, base.js, and ui.js files: All of the file refer-
ences required to use WinJS control.

 The page also includes a reference to a file named declarative.js. This file contains the
custom JavaScript code associated with the page. The contents of the declarative.js file are
contained in Listing 4.2 .

 LISTING 4.2 Declaring a WinJS Control (declarative\declarative.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll();

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

ptg999

Introduction to WinJS Controls 117

4

 Listing 4.2 includes a call to the WinJS.UI.processAll() method. If you forget to call this
method (which is very easy to do) then the controls declared in the HTML page are never
converted into controls.

 Notice that the call to WinJS.UI.processAll() happens within an initialize() method,
which is not called until the DOMContentLoaded event is raised. The DOMContentLoaded
event happens after an HTML document is loaded. You must wait until after the docu-
ment is loaded before calling WinJS.UI.processAll() or there won’t be anything yet to
process.

 Creating Controls Imperatively

 In the previous section, I created an instance of the DatePicker control declaratively. I
declared the control in the HTML markup of the page.

 As an alternative to creating a WinJS control declaratively, you can also create a control
imperatively. In other words, you can create the control entirely in your JavaScript code.

 Consider the page in Listing 4.3 . It contains a DIV element with an id of dateBirthday.
This DIV element does not have a data-win-control attribute.

 LISTING 4.3 Creating a WinJS Control Imperatively (controlImperative\controlImperative.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter04 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter04 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="controlImperative.js"></ script >

 </ head >

 < body >

 < div id ="dateBirthday"></ div >

 </ body >

 </ html >

 The code in Listing 4.4 creates a DatePicker control and associates the new control with
the dateBirthday DIV element.

ptg999

CHAPTER 4 Using WinJS Controls118

 LISTING 4.4 Creating a WinJS Control Imperatively (controlImperative\controlImperative.js)

 (function () {

 "use strict" ;

 function initialize() {

 var dateBirthday = document.getElementById("dateBirthday");

 var ctlBirthday = new WinJS.UI.DatePicker(dateBirthday);

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The code in Listing 4.4 creates a new instance of the JavaScript WinJS.UI.DatePicker()
class. The DatePicker class is created by passing the dateBirthday DIV element
to the constructor for the DatePicker class. Notice that you do not need to call
WinJS.UI.processAll() because you do not need to parse the document when creating
WinJS controls imperatively.

 The code in Listing 4.4 articulates the fact that a WinJS control is really just a JavaScript
class. You can create this class declaratively with the data-win-control attribute or imper-
atively by instantiating the class in code. But, at the end of the day, it is a JavaScript class
either way.

 In this book, I take the declarative approach instead of the imperative approach to
creating controls. There is nothing wrong with either approach. However, because the
Microsoft samples favor the declarative approach, I will follow Microsoft’s lead and use
the declarative approach also.

 Setting Control Options

 Most controls support options. For example, when creating a TimePicker control, you
want to be able to set the default time or the clock format (24-hour or 12-hour).

 You can specify control options declaratively by taking advantage of the data-win-
options attribute. For example, the following HTML fragment demonstrates how you
can set the current time displayed by the TimePicker control to the time 3:04pm and the
clock format to a 24-hour clock:

 < div id ="timeLunch"

 data-win-control ="WinJS.UI.TimePicker"

 data-win-options ="{

 current: '3:04pm',

 clock: '24HourClock'

 }"></ div >

 The options object passed to a control is a JavaScript object—hence the curly braces
around the property names and value.

ptg999

Introduction to WinJS Controls 119

4

 If you prefer, you can set these options imperatively. Here’s how you can create an
instance of the TimePicker control in code and set its current and clock options:

 (function () {

 "use strict" ;

 function initialize() {

 var divLunch = document.getElementById("timeLunch");

 var ctrlLunch = new WinJS.UI.TimePicker(timeLunch, {

current: '3:04pm' ,

clock: '24HourClock'

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The options are passed to the TimePicker constructor as the second parameter. The
current time and clock options are set.

 NOTE

 You can also take advantage of the WinJS.UI.setOptions() method to set control
options imperatively. You can call the setOptions() method after the control is
constructed.

 Retrieving Controls from an HTML Document

 When a control gets created, it is always associated with a DOM element. The DOM
element is the “host” for the control.

 You can retrieve a control from its associated DOM element by using the winControl
property. Every DOM element that has an associated control has a winControl property
that represents the control.

 For example, if you declare a DatePicker control like this:

 < div id ="dateBirthday"

 data-win-control ="WinJS.UI.DatePicker"></ div >

 Then you can retrieve the DatePicker control in your JavaScript code like this:

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var ctlBirthday = document.getElementById("dateBirthday").winControl;

ptg999

CHAPTER 4 Using WinJS Controls120

ctlBirthday.current = "12/25/1966" ;

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 When you call document.getElementById(), you retrieve a DOM element and not a
control. However, after retrieving a DOM element with document.getElementById(), you
can use the winControl property to get the associated WinJS control.

 The WinJS.UI.processAll() method returns a promise. You should wait until all the
controls created declaratively in a document are parsed and created before attempting to
interact with the controls. In the preceding code, the DatePicker is retrieved when the
promise returned by the processAll() method is done.

 Using the Tooltip Control
 You can use the WinJS Tooltip control to display a customizable tooltip over any HTML
element (see Figure 4.4). When you hover over the element, the tooltip appears for a
certain number of seconds. When you move your cursor away from the element, the
tooltip disappears.

 FIGURE 4.4 Displaying a tooltip with the Tooltip control (tooltip\tooltip.html)

 You declare the Tooltip control in a page like this:

 < button id ="btnDelete"

 data-win-control ="WinJS.UI.Tooltip"

 data-win-options ="{

 innerHTML: 'Deletes the record from the database'

 }"> Delete </ button >

 WARNING

 Remember to call the WinJS.UI.processAll() method or the Tooltip control, just like
any other WinJS control, won’t appear.

 Notice that you use the innerHTML option to set the text of the tooltip and this text can
contain HTML such as B and IMG tags.

ptg999

Using the Tooltip Control 121

4

 Using the contentElement Property

 If you have a lot of HTML content to display (see Figure 4.5) then you can place the
tooltip HTML content in a separate element like this:

 < button id ="btnDelete"

 data-win-control ="WinJS.UI.Tooltip"

 data-win-options ="{

 contentElement: select('#btnDeleteTooltip')

 }"> Delete </ button >

 < div style =" display : none">

 < div id ="btnDeleteTooltip">

Deletes the < b > record </ b > from the database. Do you

 < i > really, really </ i > want to do this? The record will

be gone forever and you might weep.

 </ div >

 </ div >

 You use the contentElement option to specify a separate element that contains the HTML
content for the tooltip. In the code, the content for the tooltip is contained in a DIV
element with the ID btnDeleteTooltip.

 Notice that the btnDeleteTooltip is surrounded by a DIV element that has a
style="display:none" attribute. This outer DIV element is used to prevent the contents
of the btnDeleteTooltip from being displayed in the page. You want the contents of the
contentElement to appear only within the tooltip.

 FIGURE 4.5 Showing a long tooltip

 Styling a Tooltip

 Because HTML already includes a tooltip attribute, you might be wondering why Microsoft
introduced a WinJS Tooltip control. It is all about customization. Using the WinJS
Tooltip control, you can create tooltips that match the style of your Windows Store app.

 You can customize the appearance of the Tooltip control by modifying the win-tooltip
Cascading Style Sheet class. For example, Figure 4.6 illustrates the appearance of the
Tooltip control when you define the following win-tooltip style:

ptg999

CHAPTER 4 Using WinJS Controls122

 .win-tooltip {

 background-color : #ffd800 ;

 border : solid 2px red ;

 border-radius : 15px ;

 }

 FIGURE 4.6 Customizing the appearance of the tooltip

 Using the ToggleSwitch Control
 You can use the WinJS ToggleSwitch control in the same situations as you would use
a standard HTML checkbox (<input type="checkbox">). The difference between a
ToggleSwitch control and a checkbox control is a ToggleSwitch is more finger friendly:
You can swipe your finger across the ToggleSwitch to check or uncheck the ToggleSwitch
(see Figure 4.7 and Figure 4.8).

 FIGURE 4.7 A ToggleSwitch that is checked

 FIGURE 4.8 A ToggleSwitch that is unchecked

 Here’s how you can declare a ToggleSwitch control in a page:

 < div

 data-win-control ="WinJS.UI.ToggleSwitch"

 data-win-options ="{

 title: 'Flux Capacitor State',

 labelOff: 'Disabled',

 labelOn: 'Enabled',

 checked: true

 }"></ div >

ptg999

Using the ToggleSwitch Control 123

4

 Determining the State of a ToggleSwitch

 You can detect whether a ToggleSwitch control is in a checked or unchecked state by
reading the ToggleSwitch control’s checked property. For example, the page in Listing
 4.5 contains a ToggleSwitch control and a DIV element that displays different messages
depending on the state of the ToggleSwitch control (see Figure 4.9).

 FIGURE 4.9 Displaying a message depending on the state of a ToggleSwitch

 LISTING 4.5 Using a ToggleSwitch Control (toggleSwitchChecked\toggleSwitchChecked.html)

 < div id ="togFlux"

 data-win-control ="WinJS.UI.ToggleSwitch"

 data-win-options ="{

 title: 'Flux Capacitor State',

 labelOff: 'Disabled',

 labelOn: 'Enabled',

 checked: true

 }"></ div >

 < div id ="divMessage"></ div >

 The code in Listing 4.6 wires up a change event handler for the ToggleSwitch control.
When you change the state of the ToggleSwitch control, the change event handler is
invoked. This handler displays one of two messages in a DIV element.

 LISTING 4.6 Using a ToggleSwitch Control (toggleSwitchChecked\toggleSwitchChecked.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var togFlux = document.getElementById("togFlux").winControl;

 var divMessage = document.getElementById("divMessage");

togFlux.addEventListener("change" , function (evt) {

 if (togFlux.checked) {

divMessage.innerHTML = "Flux Capacitor activated!" ;

} else {

ptg999

CHAPTER 4 Using WinJS Controls124

divMessage.innerHTML = "Flux Capacitor de-activated." ;

};

})

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Remember to call processAll() before attempting to retrieve the ToggleSwitch control
and modifying its properties (including wiring up an event handler). The ToggleSwitch
control must exist before you can do anything with it.

 Using the Rating Control
 You can use the WinJS Rating control to collect and display user ratings. By default, the
Rating control enables you to select between 1 and 5 stars to rate something (see Figure
 4.10). You can change the rating by using your mouse, fingers, or by moving focus to the
control and using your up/down or left/right arrow buttons.

 FIGURE 4.10 Collecting a user rating

 Here’s how you declare a Rating control:

 < div id ="ratingProduct"

 data-win-control ="WinJS.UI.Rating"></ div >

 There are a couple of options that you can set when declaring a Rating control: you can
set the default rating (averageRating) and you can set whether a user is allowed to clear a
rating (the default value is true).

 < div id ="ratingProduct"

 data-win-control ="WinJS.UI.Rating"

 data-win-options ="{

 averageRating:3,

 enableClear:false

 }"></ div >

 You clear a rating by swiping from right to left across the rating control. This results in no
stars being selected.

ptg999

Using the Rating Control 125

4

 WARNING

 Remember to call WinJS.UI.processAll() or the Rating control will never become a
Rating control.

 Customizing the Ratings

 You can control the number of ratings that are displayed and the tooltip displayed for
each rating by setting the maxRating and tooltipStrings properties. For example, the
following Rating control only displays three stars and the stars have the tooltips bad,
okay, and great! (see Figure 4.11).

 < div id ="ratingProduct"

 data-win-control ="WinJS.UI.Rating"

 data-win-options ="{

 averageRating:2,

 maxRating:3,

 tooltipStrings: ['bad', 'okay', 'great!']

 }"></ div >

 FIGURE 4.11 Customizing Rating control ratings

 Notice that the tooltipStrings property accepts a JavaScript array. Each item in the array
corresponds to a star.

 Submitting a Rating

 The Rating control raises three events: preview, cancel, and change. The preview event is
raised when you hover over a star. The cancel event is raised when you don’t select a star
after hovering over it. Finally, if you click a star, the change event is raised.

 The page in Listing 4.7 contains a rating control and a DIV element. When you change
the product rating, or even when you are considering changing the rating for the product,
the message displayed in the DIV element is updated.

 LISTING 4.7 Handling Rating Control Events (ratingSubmit\ratingSubmit.html)

 < h1 > Rate our Store! </ h1 >

 < div id ="ratingStore"

 data-win-control ="WinJS.UI.Rating"

 data-win-options ="{

 maxRating: 3

ptg999

CHAPTER 4 Using WinJS Controls126

 }"></ div >

 < div id ="divMessage"></ div >

 The code in Listing 4.8 contains event handlers for the Rating control’s previewchange,
cancel, and change events.

 LISTING 4.8 Handling Rating Control Events (ratingSubmit\ratingSubmit.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var ratingStore = document.getElementById("ratingStore").winControl;

 var divMessage = document.getElementById("divMessage");

ratingStore.addEventListener("previewchange" , function (evt) {

 var tentativeRating = evt.detail.tentativeRating;

 switch (tentativeRating) {

 case 1: divMessage.innerHTML = "Don't do it! That's just mean!" ;

 break ;

 case 2: divMessage.innerHTML = "Okay, you sure? We'll try

➥harder!" ;

 break ;

 case 3: divMessage.innerHTML = "Thanks!" ;

 break ;

}

});

ratingStore.addEventListener("cancel" , function (evt) {

divMessage.innerHTML = "" ;

});

ratingStore.addEventListener("change" , function (evt) {

 var userRating = ratingStore.userRating;

 switch (userRating) {

 case 1: divMessage.innerHTML = "You gave us the worst rating." ;

 break ;

 case 2: divMessage.innerHTML = "You gave us an okay rating." ;

 break ;

 case 3: divMessage.innerHTML = "You gave us a good rating." ;

 break ;

ptg999

Using the DatePicker Control 127

4

}

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 As you hover your mouse over the rating stars, different messages are displayed by the
previewchange event handler. (See Figure 4.12.) When you click a star, the change event is
raised and the change handler displays a message.

 FIGURE 4.12 Handling the Rating control’s previewchange, cancel, and change events

 Using the DatePicker Control
 The WinJS DatePicker control—and, I hope you don’t find this shocking—enables you to
pick a date. It displays three select lists: month, day, and year (see Figure 4.13).

 FIGURE 4.13 Displaying a DatePicker control

ptg999

CHAPTER 4 Using WinJS Controls128

 You declare a DatePicker like this:

 < div id ="dateBirthday"

 data-win-control ="WinJS.UI.DatePicker"></ div >

 WARNING

 Don’t forget to call WinJS.UI.processAll() or your DatePicker will never become a
DatePicker.

 By default, the DatePicker control has today’s date selected. You can assign a particular
date to the DatePicker control by setting the control’s current property like this:

 < div id ="dateBirthday"

 data-win-control ="WinJS.UI.DatePicker"

 data-win-options ="{

 current: '12/25/1966'

 }"></ div >

 The code causes the date ‘12/25/1966’ to be selected as the default date in the DatePicker
control.

 Formatting the Year, Month, and Date

 You can assign format strings to the DatePicker yearPattern, monthPattern, and
datePattern properties to control the appearance of the year, month, and date. A format
string can contain any characters. Within the format string, you can use one or more date
format specifiers. A date format specifier is a magic string that displays part of a date using
a particular format.

 The yearPattern property accepts the following date format specifiers:

▶ {year.full}

▶ {year.full (n) }

▶ {year.abbreviated}

▶ {year.abbreviated (n) }

▶ {era.abbreviated}

▶ {era.abbreviated (n) }

 The monthPattern property accepts the following date format specifiers:

▶ {month.full}

▶ {month.abbreviated}

ptg999

Using the DatePicker Control 129

4

▶ {month.abbreviated (n) }

▶ {month.solo.full}

▶ {month.solo.abbreviated}

▶ {month.solo.abbreviated (n) }

▶ {month.integer}

▶ {month.integer (n) }

 Finally the datePattern property accepts the following date format specifiers:

▶ {day.integer}

▶ {day.integer (n) }

▶ {dayofweek.full}

▶ {dayofweek.abbeviated}

▶ {dayofweek.abbreviated (n) }

▶ {dayofweek.solo.full}

▶ {dayofweek.solo.abbeviated}

▶ {dayofweek.solo.abbreviated (n) }

 Above the (n) refers to a number. For example, if you always want to display the day of
the month using two digits (possibly including a leading zero) then you would use the
date format specifier {day.integer(2)}.

 Here’s how you can display an integer for the, month, day and year:

 < div id ="dateBirthday"

 data-win-control ="WinJS.UI.DatePicker"

 data-win-options ="{

 monthPattern: '{month.integer(2)}',

 datePattern: '{day.integer(2)}',

 yearPattern: '{year.abbreviated}'

 }"></ div >

 Because the datePattern is set to the value {day.integer(2)}, a leading zero is displayed
for single digit dates (see Figure 4.14).

ptg999

CHAPTER 4 Using WinJS Controls130

 FIGURE 4.14 Formatting the month, day, and year

 You can combine multiple format specifiers in a single format string. For example, if you
want to display not only the day of the month but the day of the month and the day
of the week, and not only the year but the year and the era, then you can declare the
DatePicker like this:

 < div id ="dateBirthday"

 data-win-control ="WinJS.UI.DatePicker"

 data-win-options ="{

 monthPattern: '{month.integer(2)}—{month.full}',

 datePattern: '{day.integer(2)} {dayofweek.abbreviated}',

 yearPattern: '{year.full} {era.abbreviated}'

 }"></ div >

 Notice that the format string for the monthPattern includes a dash (-). You can throw in
any extra characters that you need within a format string (see Figure 4.15).

 FIGURE 4.15 Combining date format strings

 NOTE

 Under the covers, the DatePicker leverages the WinRT
Windows.Globalization.DateTimeFormatter class to format dates. It uses the
template strings used by that class.

ptg999

Using the DatePicker Control 131

4

 Displaying Only Years, Months, or Days

 Sometimes, you only want to enable a user to pick a month and not pick a year or a date.
For example, you are creating a private jet reservation service and customers must reserve
a jet for an entire month.

 Listing 4.9 demonstrates how you can hide years and days and enable only months to be
selected when using the DatePicker control.

 LISTING 4.9 Displaying Only Months (datePickerMonthOnly\datePickerMonthOnly.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter04 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter04 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="datePickerMonthOnly.js"></ script >

 < style type ="text/css">

 #dateBirthday .win-datepicker-date {

 display : none ;

}

 #dateBirthday .win-datepicker-year {

 display : none ;

}

 </ style >

 </ head >

 < body >

 < div id ="dateBirthday"

 data-win-control ="WinJS.UI.DatePicker"

 data-win-options ="{

 monthPattern: '{month.solo.full}'

ptg999

CHAPTER 4 Using WinJS Controls132

 }"></ div >

 </ body >

 </ html >

 The page in Listing 4.9 includes two Cascading Style Sheet rules that hide the DatePicker
control’s date and year select lists (see Figure 4.16).

 FIGURE 4.16 Displaying only the month select list

 Capturing the Selected Date

 The DatePicker control raises the same event when you change the month, day, or year:
the change event. You can retrieve the currently selected date by handling this event.

 For example, the HTML page in Listing 4.10 contains a DatePicker control and a DIV
element that displays the selected date (see Figure 4.17).

 FIGURE 4.17 Displaying the DatePicker current date

 LISTING 4.10 Capturing the Selected Date (datePickerChange\datePickerChange.html)

 < label > Birthday: </ label >

 < div id ="dateBirthday"

 data-win-control ="WinJS.UI.DatePicker"></ div >

 < div id ="divMessage"></ div >

 The JavaScript file in Listing 4.11 illustrates how you can handle the change event so you
can retrieve the selected date.

 LISTING 4.11 Capturing the Selected Date (datePickerChange\datePickerChange.js)

 (function () {

 "use strict" ;

ptg999

Using the TimePicker Control 133

4

 function initialize() {

WinJS.UI.processAll().done(function () {

 var dateBirthday = document.getElementById("dateBirthday").winControl;

 var divMessage = document.getElementById("divMessage");

dateBirthday.addEventListener("change" , function (evt) {

divMessage.innerHTML = "Your birthday is on "

+ dateBirthday.current.toDateString();

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Using the TimePicker Control
 The WinJS TimePicker control enables you to select a time. (See Figure 4.18.) By default,
the TimePicker displays three select lists that enable you to select the hour, minute, and
period (AM/PM).

 FIGURE 4.18 Using the TimePicker control

 You declare a TimePicker control like this:

 < div id ="timeLunch"

 data-win-control ="WinJS.UI.TimePicker"></ div >

 WARNING

 Don’t forget to call WinJS.UI.processAll() or the declaration of the TimePicker control
will never get parsed and turned into a TimePicker control.

 If you prefer military time (a 24-hour clock) then you can modify the TimePicker’s clock
property like this:

 < div id ="timeLunch"

 data-win-control ="WinJS.UI.TimePicker"

 data-win-options ="{

ptg999

CHAPTER 4 Using WinJS Controls134

 clock: '24HourClock'

 }"></ div >

 Finally, if you want to display minutes in 15-minute increments (see Figure 4.19) instead
of the default 1-minute increment then you can set the minuteIncrement property
like this:

 < div id ="timeLunch"

 data-win-control ="WinJS.UI.TimePicker"

 data-win-options ="{

 minuteIncrement: 15

 }"></ div >

 FIGURE 4.19 Changing the TimePicker control’s minute increment

 NOTE

 If you have changed your computer’s regional settings to display a 24-hour clock instead
of a 12-hour clock then the TimePicker will default to displaying a 24-hour clock.

 Getting and Setting the Current Time

 By default, the TimePicker control displays the current time. You use the current prop-
erty to get or set the time displayed by the TimePicker control.

 For example, the page in Listing 4.12 contains a TimePicker control and a DIV element
that displays a message (see Figure 4.20). The TimePicker control is declared so that it
displays the time 12:00pm by default.

 FIGURE 4.20 Displaying lunch time with the TimePicker control

ptg999

Using the TimePicker Control 135

4

 LISTING 4.12 Setting the Current Time with the TimePicker Control
(timePickerSet\timePickerSet.html)

 < label > Select a Lunch Time: </ label >

 < div id ="timeLunch"

 data-win-control ="WinJS.UI.TimePicker"

 data-win-options ="{

 current: '12:00pm'

 }"></ div >

 < div id ="divMessage"></ div >

 The JavaScript code in Listing 4.13 illustrates how you can capture a new time selected
with the TimePicker control. When a new time is selected, the message displayed by the
DIV element is updated.

 LISTING 4.13 Setting the Current Time with the TimePicker Control
(timePickerSet\timePickerSet.html)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var timeLunch = document.getElementById("timeLunch").winControl;

 var divMessage = document.getElementById("divMessage");

timeLunch.addEventListener("change" , function (evt) {

divMessage.innerHTML = "Lunch time is "

+ timeLunch.current.toTimeString();

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Because the JavaScript language does not have a separate Time data type, the TimePicker
control’s current property returns both a date and a time. The current property represents
the current date and the selected time. In the code in Listing 4.13 , the time portion is
extracted with the help of the JavaScript toTimeString() method.

ptg999

CHAPTER 4 Using WinJS Controls136

 NOTE

 I looked this up on Wikipedia (http://en.wikipedia.org/wiki/Noon). Apparently, noon is
neither 12:00am nor 12:00pm, but just 12 noon. Weird.

 Formatting the Hour, Minute, and Period

 You can use template strings to format the appearance of the items which appear in the
hour, minute, and period select lists. The template string can contain any characters that
you want, but there are special format specifiers which you can use when displaying the
different portions of a time.

 You can use the following format specifiers with the TimePicker hourPattern property:

▶ {hour.integer}

▶ {hour.integer (n) }

 You can use the following format specifiers with the TimePicker minutePattern property:

▶ {minute.integer}

▶ {minute.integer (n) }

 You can use the following format specifiers with the TimePicker periodPattern property:

▶ {period.abbreviated}

▶ {period.abbreviated (n) }

 The n refers to a number. For example, if you use hour.integer(2) then a leading 0 will
appear for single digit hours.

 The following declaration of a TimePicker control illustrates how you can customize the
appearance of the hour, minute, and period select lists (see Figure 4.21).

 < div id ="timeLunch"

 data-win-control ="WinJS.UI.TimePicker"

 data-win-options ="{

 hourPattern: 'hour: {hour.integer(2)}',

 minutePattern: 'minute: {minute.integer(2)}',

 periodPattern: 'period: {period.abbreviated}'

 }"></ div >

http://en.wikipedia.org/wiki/Noon

ptg999

Using the Hub Control 137

4

 FIGURE 4.21 Formatting the hour, minute, and period

 Using the Hub Control
 The Hub control is new with WinJS 2.0. The control provides you with a way to organize
the content in your app into different sections. Each section can have a custom layout.

 For example, the Store app included in Windows 8.1 uses the Hub control (see Figure
 4.22). When you open the store and view the home-page, you can see all of the available
apps organized into different sections such as New Releases and Top Paid. These different
sections were created with the Hub control.

 NOTE

 The Visual Studio 2013 Hub App project template uses the Hub control.

 FIGURE 4.22 The Windows 8.1 Store uses the Hub control

ptg999

CHAPTER 4 Using WinJS Controls138

 Creating Hubs and Hub Sections

 There are actually two Hub controls: the Hub control and the HubSection control. The page
in Listing 4.14 illustrates how you can use these controls to organize a page into three
sections.

 LISTING 4.14 Using Hubs and Hub Sections (hub\hub.html)

 < section id ="hub" data-win-control ="WinJS.UI.Hub">

 < div data-win-control ="WinJS.UI.HubSection"

 data-win-options ="{header:'Section A'}">

Section A. Section A. Section A. < br />

Section A. Section A. Section A. < br />

Section A. Section A. Section A. < br />

 </ div >

 < div data-win-control ="WinJS.UI.HubSection"

 data-win-options ="{header:'Section B'}">

Section B. Section B. Section B. < br />

Section B. Section B. Section B. < br />

Section B. Section B. Section B. < br />

 </ div >

 < div data-win-control ="WinJS.UI.HubSection"

 data-win-options ="{header:'Section C', isHeaderStatic:false}">

Section C. Section C. Section C. < br />

Section C. Section C. Section C. < br />

Section C. Section C. Section C. < br />

 </ div >

 </ section >

 Listing 4.14 contains a Hub control with three child HubSection controls. The three
HubSection controls are assigned the header text Section A, Section B, and Section C.
You can see the header text at the top of each section in Figure 4.23 .

 FIGURE 4.23 A Hub with three sections

ptg999

Using the WebView Control 139

4

 Notice that Section A and Section B but not Section C include a symbol indicating that
the section headers are clickable. Section C is not clickable because it was declared with
isHeaderStatic set to the value false.

 Handling Hub Section Navigation

 If you want to do something when someone clicks on the header for Section A or
Section B then you can handle the Hub control’s headerinvoked event. For example, you
could handle this event and navigate the user to a new page with more detailed content
for the section.

 I discuss creating multipage apps and navigation in detail in Chapter 12 , “Page Fragments
and Navigation.” Here, I just want to show you how you can handle the headerinvoked
event and determine which section was clicked.

 In Listing 4.15 , the headerinvoked event is handled and the selected hub section index
and header name is written to the Visual Studio JavaScript Console window.

 LISTING 4.15 Using Hubs and Hub Sections (hub\hub.html)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var hub = document.getElementById("hub").winControl;

hub.addEventListener("headerinvoked" , function (e) {

 var section = e.detail.section;

 var sectionIndex = e.detail.index;

 // Display clicked section index and name

console.log("You clicked on section " + section.header

+ " with index " + sectionIndex);

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Using the WebView Control
 The WebView control (new in WinJS 2.0) enables you to embed a web page hosted on the
Internet in your Windows Store app. There are several different scenarios in which it
makes sense for you to use this control.

ptg999

CHAPTER 4 Using WinJS Controls140

 Imagine, for example, that you want to create a hybrid Windows Store app and website.
You might want to implement your actual app using WinJS controls but host all of the
help documentation for your app as web pages on a public website. In that case, you
could use the WebView control to display your help documentation from the Internet.

 Or, you might want to build an app that interacts with web pages hosted on the Internet.
For example, you might want to build a Research app that enables you to take clippings or
extract images from existing web pages hosted on the Internet. Again, the WebView control
enables you to do this.

 In this section, I explain how you can embed a WebView control in your Windows Store
app and handle navigation events. I also demonstrate how you can capture screenshots
from the pages hosted in the WebView.

 NOTE

 What about IFrames? There is already a standard technology to host one web page within
another web page, so why did Microsoft need to reinvent the wheel?

 Unfortunately, IFrames have several limitations. Many websites are designed to bust
out of IFrames using scripts or reject IFrames using the X-Frame-Options header (for
example, Google.com). Also, IFrames do not support the navigation and capture applica-
tion programming interfaces (APIs) that I discuss in the following sections. In general, you
should use the WebView control instead of IFrames.

 Hosting a Page from the Internet with the WebView Control

 You declare a WebView control in a page in a different way than the other standard WinJS
controls. Instead of using a data-win-control attribute, you declare a WebView control
like this:

 < x-ms-webview src ="http://superexpertTraining.com"

 width ="800" height ="500"></ x-ms-webview >

 This WebView control displays the home page from SuperexpertTraining.com in the
Windows Store app (see Figure 4.24). Furthermore, the control displays the external
content in an 800px by 500px area.

ptg999

Using the WebView Control 141

4

 FIGURE 4.24 Displaying a web page with the WebView control

 Be aware that if the page being loaded into the WebView control contains JavaScript then
the JavaScript might throw an error. Your app will display a dialog like the one in
 Figure 4.25 .

 FIGURE 4.25 WebView control JavaScript error

 Getting these errors is expected and your users won’t see these errors when your app is
deployed. If you don’t want to see these JavaScript errors when running your app from
Visual Studio then you can run your app outside the debugger by selecting the Visual
Studio menu option Debug, Start Without Debugging.

ptg999

CHAPTER 4 Using WinJS Controls142

 WARNING

 Clicking a link with a target attribute in the WebView control will cause the page to open
outside of your app and in your default browser. This can be surprising to a user.

 WARNING

 The WebView control uses the Internet Explorer SmartScreen Filter to prevent phishing
attacks. If you open a web page that SmartScreen finds suspicious then you get a pop-up
warning message. You can test this feature by using the WebView control to open the
page at malvertising.info (this page was created by Microsoft to test SmartScreen).

 Handling Navigation and Navigation Events

 You can use the methods exposed by the WebView control to handle navigation. For
example, you can use the following three methods to display a web page:

▶ navigate()—Displays a remote HTML page represented by a URL

▶ navigateToString()—Displays an HTML page from an HTML string

▶ NavigateToLocalStringUri—Displays a local HTML page represented by a URL

 The WebView control also exposes several useful events including

▶ MSWebViewNavigationStarting—Raised when a user starts navigating to a new URI

▶ MSWebViewContentLoading—Raised when new content is being loaded

▶ MSWebViewDOMContentLoaded—Raised when new content is finished loading

▶ MSWebViewNavigationCompleted—Raised when navigation is complete

 You can use the MSWebViewNavigationStarting event to prevent a user from navigating
somewhere where you don’t want the user to go. For example, you might want to prevent
a user from following links away from your website.

 The page in Listing 4.16 contains a WebView control that displays the Minecraft entry from
Wikipedia.org. You can click links in the page to navigate to other pages at Wikipedia.org
but you cannot navigate away from Wikipedia.org to another website (see Figure 4.26).

ptg999

Using the WebView Control 143

4

 FIGURE 4.26 Preventing WebView navigation

 LISTING 4.16 Controlling User Navigation (webViewNavigate\webViewNavigate.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter04 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter04 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="webViewNavigation.js"></ script >

 </ head >

 < body >

ptg999

CHAPTER 4 Using WinJS Controls144

 < x-ms-webview id ="webView1"

 width ="800" height ="500"></ x-ms-webview >

 </ body >

 </ html >

 The JavaScript code in Listing 4.17 prevents the user from navigating away from
Wikipedia.org. An MSNavigationStarting event handler is used to check whether the user
is navigating outside of the Wikipedia.org domain. Calling preventDefault() prevents the
user from navigating.

 LISTING 4.17 Controlling User Navigation (webViewNavigate\webViewNavigate.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get webview

 var webView1 = document.getElementById("webView1");

 // Navigate to wikipedia

webView1.navigate("http://wikipedia.org/wiki/minecraft");

 // Display only wikipedia ages

webView1.addEventListener("MSWebViewNavigationStarting" , function (e) {

 var uri = new Windows.Foundation.Uri(e.uri);

 if (uri.domain !== "wikipedia.org") {

 // prevent navigation

e.preventDefault();

 // show a popup message

 var md = new Windows.UI.Popups.MessageDialog("Cannot leave

➥Wikipedia!");

md.showAsync();

}

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

ptg999

Using the WebView Control 145

4

 Capturing WebView Screenshots

 You can use the WebView control to capture images of web pages. For example, Figure 4.27
contains a WebView control next to an image. After you navigate to an Internet address
and click the Capture! button, the web page displayed in the WebView control is captured
as an image and displayed.

 FIGURE 4.27 Capturing screenshots with the WebView control

 When you capture a web page, an actual screenshot of the web page is captured including
the scroll position of the page and any text entered into any of the form fields.

 WARNING

 Remember to run the app using Debug, Start Without Debugging or you will get several
JavaScript exceptions when loading the remote page into the WebView control.

 Here’s how I created the app depicted in Figure 4.27 . First, I created a page that contains a
WebView control (see Listing 4.18).

 LISTING 4.18 Capturing a Web Page (webViewCapture\webViewCapture.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter04 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter04 references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="webViewCapture.js"></ script >

ptg999

CHAPTER 4 Using WinJS Controls146

 < style >

 #inpAddress {

 width : 400px ;

}

 </ style >

 </ head >

 < body >

 < div >

 < input id ="inpAddress" type ="url" value ="http://" />

 < button id ="btnNavigate"> Go! </ button >

 < button id ="btnCapture"> Capture! </ button >

 </ div >

 < x-ms-webview id ="webView1"

 width ="800" height ="500"></ x-ms-webview >

 < img id ="imgCapture" src ="/images/placeholder.png" />

 </ body >

 </ html >

 Next, I called the WebView control’s capturePreviewToBlobAsync() method. This method
returns a captureOperation that you can use to handle the capture. Notice that you must
call the start() method on the captureOperation to actually perform the capture.

In Listing 4.19 , I am displaying the captured web page with an HTML IMG element.
Alternatively, I could save the captured image to the file system or do anything else that I
can imagine with the image.

 LISTING 4.19 Capturing a Web Page (webViewCapture\webViewCapture.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get elements

 var webView1 = document.getElementById("webView1");

 var imgCapture = document.getElementById("imgCapture");

 var inpAddress = document.getElementById("inpAddress");

 var btnNavigate = document.getElementById("btnNavigate");

 var btnCapture = document.getElementById("btnCapture");

ptg999

Using the WebView Control 147

4

 // Handle navigate

btnNavigate.addEventListener("click" , function () {

webView1.navigate(inpAddress.value);

});

 // Handle capture

btnCapture.addEventListener("click" , function () {

 var captureOperation = webView1.capturePreviewToBlobAsync();

captureOperation.oncomplete = function (e) {

 // Get the capture

 var image = e.target.result;

 // Use HTML5 File API to create object URL to refer to the photo

➥file

 var imageUrl = URL.createObjectURL(image);

 // Show photo in IMG element

imgCapture.src = imageUrl;

};

captureOperation.start();

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Summary

 This chapter focused on the core controls contained in the WinJS library. I discussed the
features of the Tooltip, ToggleSwitch, Rating, DatePicker, TimePicker, Hub, and WebView
controls.

 You learned how to create these controls both declaratively and imperatively. You also
were provided with sample code that demonstrated how you can use these controls in
different scenarios.

 But there are more controls to discuss! More fun to be had! In latter chapters, I introduce
you to additional WinJS controls such as the menu controls and the ListView control.
First, however, we need to talk about forms.

ptg999

This page intentionally left blank

ptg999

 CHAPTER 5

 Creating Forms

 I assume that anyone who is reading this book is already
familiar with the basics of HTML, but I don’t assume that
you are familiar with the latest features of HTML5. In
particular, I don’t assume that you are familiar with the
changes to HTML forms included in the HTML5 standard.

 In the first section of this chapter, I describe how you can
take advantage of HTML5 form validation in a Windows
Store app. You learn how to use validation attributes—such
as the required and pattern attribute—to enforce valida-
tion constraints.

 Next, I discuss the new features of input elements included
in HTML5. You learn how the new HTML5 input types
enable you to control the type of data entered into a form
field.

 Finally, I talk about two other important new features
of HTML5. I explain how you can take advantage of the
contenteditable attribute to create input elements that
accept rich text such as bold and italic text. I also discuss
the new HTML5 progress element.

 Using HTML5 Form Validation
 In a Windows Store app, the easiest way to validate HTML
form fields is to take advantage of the HTML5 validation
attributes. Imagine, for example, that you want to create an
HTML form that includes a form field for entering a Social
Security number. In that case, you can use the required
attribute to ensure that a value has been entered and you
can use the pattern attribute to ensure that the value
matches the pattern for a valid Social Security number.

IN THIS CHAPTER

� Using HTML5 Form Validation

� Using HTML5 Input Elements

� Creating a Rich Text Editor

� Displaying Progress

ptg999

CHAPTER 5 Creating Forms150

 Using the required Attribute

 The following HTML form illustrates how you can use the required attribute:

 < form >

 < div >

 < label >

Social Security Number:

 < input id ="ssn" required />

 </ label >

 </ div >

 < div >

 < input type ="submit" />

 </ div >

 </ form >

 If you submit the form, and you do not enter a value for the ssn field, then you get the
error message depicted in Figure 5.1 . The input field has a red border surrounding it and a
callout message is displayed.

 FIGURE 5.1 Using the required validation attribute

 Using the pattern Attribute

 You use the pattern attribute to validate the value entered into an input field against a
regular expression pattern. For example, the following HTML form validates the Social
Security number against a regular expression:

 < form >

 < div >

 < label >

Social Security Number:

 < input id ="ssn"

 required

 pattern ="^\d{3}-\d{2}-\d{4}$"

 title ="###-##-####" />

 </ label >

 </ div >

 < div >

ptg999

Using HTML5 Form Validation 151

5

 < input type ="submit" />

 </ div >

 </ form >

 Notice that the ssn field has both a required and pattern attribute. The pattern attribute
is not triggered unless you enter a value.

 Notice, furthermore, that the ssn field includes a title attribute. The title attribute
contains the format displayed by the pattern error message.

 If you enter an invalid Social Security number then you get the validation error message
displayed in Figure 5.2 .

 FIGURE 5.2 Using the pattern validation attribute

 NOTE

 My favorite site for finding regular expressions is located at http://regexlib.com .

 Performing Custom Validation

 If you need to add custom validation rules to a form element then you can take advantage
of the JavaScript setCustomValidity() method. You can use this method to associate a
custom validation error message with a form field.

 Imagine, for example, that you have a complex set of rules for validating a username in
a user registration form. For example, you want to ensure that the username is a certain
length, unique in the database, and does not contain special characters. This is a good
candidate for a custom validation.

 The following HTML form includes a userName field:

 < form >

 < div >

 < label >

User Name:

 < input id ="userName" required />

 </ label >

 </ div >

 < div >

http://regexlib.com

ptg999

CHAPTER 5 Creating Forms152

 < input type ="submit" />

 </ div >

 </ form >

 The following JavaScript code demonstrates how you can display a validation error
message when the user name is too short:

 var userName = document.getElementById("userName");

 userName.addEventListener("input" , function (evt) {

 // User name must be more than 3 characters

 if (userName.value.length < 4) {

userName.setCustomValidity("User name too short!");

 } else {

userName.setCustomValidity("");

 }

 });

 In the preceding code, an event listener for the input event is created. When the value
of the input element is changed then the length of the value is checked. If the username
is less than four characters then the setCustomValidity() method is used to invalidate
the input element. Otherwise, the setCustomValidity() method is called with an empty
string to clear any previous validation errors associated with the username element.

 NOTE

 The input event is raised as soon as the contents of an input element are changed. The
input event differs from the change event because the change event is not raised until
after the input element loses focus.

 You must submit the form to see the validation error message. After you submit the form,
you see the error in Figure 5.3 .

 FIGURE 5.3 Using custom validation

 Customizing the Validation Error Style

 By default, invalid HTML fields in a form appear with a red border. For example, if you
submit an HTML form without entering a value in a required field then the field is
displayed with a red border.

ptg999

Using HTML5 Form Validation 153

5

 You can customize the appearance of form fields in different states of validity by using the
following Cascading Style Sheet pseudo classes:

▶ :valid—Applies when an input element is valid

▶ :invalid—Applies when an input element is invalid

▶ :required—Applies when an input element is required (has the required attribute)

▶ :optional—Applies when an input element is not required (does not have the
required attribute)

 Imagine that you have created the following user registration form:

 < form >

 < div >

 < label >

First Name:

 < input id ="firstName" required />

 </ label >

 </ div >

 < div >

 < label >

Last Name:

 < input id ="lastName" required />

 </ label >

 </ div >

 < div >

 < label >

Company:

 < input id ="company" />

 </ label >

 </ div >

 < div >

 < input type ="submit" />

 </ div >

 </ form >

 The form contains required fields for the user first and last names. It also contains an
optional field for the user company.

 You can use the following style rules to control how the input elements are styled:

 :valid {

 background-color : green ;

 }

 :invalid {

ptg999

CHAPTER 5 Creating Forms154

 background-color : yellow ;

 }

 :optional {

 border : 4px solid green ;

 }

 :required {

 border : 4px solid red ;

 }

 These rules cause valid fields to appear with a green background color and invalid fields
to appear with a yellow background color. Optional fields appear with a green border and
required fields appear with a red border.

 Resetting a Form

 After you successfully submit a form, it is a good idea to reset it so you can use the form
again. For example, your app might include a form for adding new movies. Each time you
add a new movie, you want the form to reset to its default state.

 If you are using the validation attributes then you cannot reset a form simply by assigning
empty strings to the form fields. If you assign an empty string to a required field then the
field will be in an invalid state.

 Instead, you should reset a form by calling the JavaScript reset() method. The reset()
method throws a form back into its default state.

 For example, here’s a simple form for entering a movie title:

 < form id ="frmAdd">

 < div >

 < label >

Title:

 < input id ="inpTitle" required />

 </ label >

 </ div >

 < div >

 < input type ="submit" />

 </ div >

 </ form >

 Here’s the JavaScript code that you can use for handling the form submit event:

 (function () {

 "use strict" ;

 function initialize() {

ptg999

Using HTML5 Input Elements 155

5

 var frmAdd = document.getElementById("frmAdd");

 var inpTitle = document.getElementById("inpTitle");

frmAdd.addEventListener("submit" , function (evt) {

evt.preventDefault();

 var newMovie = {

title: document.getElementById("inpTitle").value

};

addMovieToDb(newMovie).done(function () {

frmAdd.reset();

});

});

 function addMovieToDb(newMovie) {

 return new WinJS.Promise(function (complete) {

 // Add to database

complete();

});

}

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The preceding code adds the movie title to an IndexedDB database and then resets the
form so the form returns to its default state. The reset() method is used to return the
form to its default state.

 WARNING

 If you neglect to call evt.preventDefault() in your form submit handler then the page
will be submitted and reloaded. You don’t want to do this. In a Windows Store App, you
want to avoid ever submitting back to the server.

 Using HTML5 Input Elements
 If you have worked with HTML then you are most likely very familiar with the standard
input element types such as <input type=“text” /> and <input type=“checkbox” />.
Different input types have different appearances and accept different types of data.

 The HTML5 recommendation adds several new input types:

▶ search

▶ tel

▶ url

ptg999

CHAPTER 5 Creating Forms156

▶ email

▶ datetime

▶ date

▶ month

▶ week

▶ time

▶ datetime-local

▶ number

▶ range

▶ color

 You can take advantage of these new input types to enforce validation rules. For example,
an <input type="number" /> element will accept only numerals and not other types of
characters. And an <input type="url" /> will accept only valid (absolute) URLs.

 You also can take advantage of these new input types to control the user interface for
entering a value into a field. For example, when using the touch keyboard, an <input
type="email" /> field displays a specialized keyboard for entering email addresses, which
includes specialized keys such as @ and .com (see Figure 5.4).

 FIGURE 5.4 Specialized email touch keyboard

 In this section, you learn how to take advantage of the new features of HTML5 input
elements.

 NOTE

 As I write this, not all features of HTML5 forms are supported by Windows Store apps. In
particular, the date, time, and color types are not supported.

ptg999

Using HTML5 Input Elements 157

5

 Labeling Form Fields

 First off, you need to know the proper way to label HTML form fields. Providing proper
labels is important for making your app accessible to users with disabilities—so adding
labels is the right thing to do.

 There are two ways that you can use a label element to label a form element. If you want
the label to appear right next to the form element then you can include the form element
inside the label’s opening and closing tags like this:

 < label >

 Title:

 < input id ="inpTitle" required />

 </ label >

 If the label is separated from the element being labeled in the page then you can associate
the label and the form element explicitly by using the label’s for attribute like this.

 < label for ="inpTitle">

 Title:

 </ label >

 ... Other Content ...

 < input id ="inpTitle" required />

 You should always label all of your form elements to make your apps more accessible to
people with disabilities (screen readers need these labels). However, if you need to provide
additional hints about the appropriate input value for a form element then you can take
advantage of the new HTML5 placeholder attribute. When used in a Windows Store app,
the placeholder attribute creates a watermark.

 For example, the following HTML form contains a field for entering a product activation
code:

 < label >

 Activation Code:

 < input id ="activationCode"

 size ="10"

 placeholder ="##-####-##" />

 </ label >

 The form includes a placeholder attribute which displays the text ##-####-## (see Figure
 5.5). As soon as you start typing a value into the field, the placeholder text disappears.

ptg999

CHAPTER 5 Creating Forms158

 FIGURE 5.5 Using the placeholder attribute

 NOTE

 You can use the Cascading Style Sheet :-ms-input-placeholder pseudo class to style
the text displayed by a placeholder attribute.

 Entering a Number

 If you want to prevent a user from entering anything except a number into an input field
then you should use the type="number" attribute like this:

 < label >

 Favorite Number:

 < input id ="inpFavNumber"

 type ="number"

 placeholder ="###" />

 </ label >

 When the input type has the value number, and you enter anything that is not a number,
then the value disappears as soon as the field loses focus. This can be confusing to the
user. So it is a good idea to include a placeholder attribute or instruction text that indi-
cates that the field only accepts numbers (no dollar signs, just numbers).

 You can use the min and max attributes to specify a minimum and maximum value for the
input field like this:

 < label >

 Quantity:

 < input id ="inpQuantity"

 type ="number"

 placeholder ="###"

 min ="1"

 max ="10" />

 </ label >

 If you enter a number that does not fall into the specified range then a validation error
message is displayed (see Figure 5.6).

ptg999

Using HTML5 Input Elements 159

5

 FIGURE 5.6 A number out of range

 By default, you can only enter an integer value into an <input type="number" /> field. If
you want to enter a noninteger value, such as 1.5, then you need to modify the step attri-
bute like this:

 < input id ="inpFavNumber"

 type ="number"

 step ="0.5"

 placeholder ="###" />

 The step attribute determines the allowable increment between numbers.

 When you use a number field in a Windows Store app, and you are using the touch
keyboard, you get a special keyboard for entering numbers automatically (see Figure 5.7).

 FIGURE 5.7 Entering a number with the touch keyboard

 Entering a Value from a Range of Values

 If you want to display a slider, then you can create an <input type="range" /> element.
For example, the following HTML form displays a slider that enables you to select a quan-
tity of candy to buy:

 < label >

 Quantity of Candy:

 < input id ="quantity"

 type ="range"

 min ="10"

 max ="100"

 step ="5"

 value ="30"/>

 </ label >

ptg999

CHAPTER 5 Creating Forms160

 The slider displays a range of values between 10 and 100 with 5-unit increments. The
default value is set to 30 (see Figure 5.8).

 FIGURE 5.8 Displaying a slider

 Entering Email Addresses, URLs, Telephone Numbers, and

Search Terms

 You can use the input types email, url, tel, and search to enable users to enter email
addresses, URLs, telephone numbers, and search terms.

 If you use <input type="email" />, and you are using the touch keyboard, then you get
the specialized keyboard which includes @ and .com keys in Figure 5.9 .

 FIGURE 5.9 Touch keyboard for email

 Using <input type="email" /> also gives you automatic validation. You must enter a
valid email address or you get the validation error message in Figure 5.10 .

 FIGURE 5.10 Validation for email

 Using <input type="url" /> creates a special input field for entering URLs. You get the
touch keyboard in Figure 5.11 which includes special / and .com keys.

ptg999

Using HTML5 Input Elements 161

5

 NOTE

 The touch keyboard only appears when you don’t have a keyboard attached to your
machine or you explicitly open the touch keyboard.

 FIGURE 5.11 Touch keyboard for URL

 An <input type="url" /> field requires you to enter a valid absolute URL. For example,
the URL http://Superexpert.com and the URL ftp://Superexpert.com are valid, but the URL
superexpert.com and the URL www.superexpert.com are not because they are not absolute
URLs (see Figure 5.12).

 FIGURE 5.12 Validating a URL

 You use the <input type="tel" /> element to enter telephone numbers. Because there
are so many different formats for telephone numbers, this input type does not perform
any validation. Instead, you can use <input type="tel" /> to display a specialized touch
keyboard for telephone numbers (see Figure 5.13).

 FIGURE 5.13 Entering a telephone number

 Finally, there is <input type="search" />. An <input type="search" /> element behaves
identically to an <input type="text" /> element. The only difference is that you get a
keyboard with a Search key instead of an Enter key.

http://www.superexpert.com
http://Superexpert.com

ptg999

CHAPTER 5 Creating Forms162

 Entering a Value from a List of Values

 You can use the new HTML5 list attribute to provide an auto-complete experience for
your users. For example, the following code provides a list of three suggestions for your
car make:

 < label >

 Car Make:

 < input id ="inpCarMake"

 list ="dlCarMakes" />

 < datalist id ="dlCarMakes">

 < option > BMW </ option >

 < option > Ford </ option >

 < option > Tesla </ option >

 </ datalist >

 </ label >

 The list attribute points at an HTML5 datalist element which contains the list of sugges-
tions. When you start entering text into the input element then you get the suggestions
displayed in Figure 5.14 .

 FIGURE 5.14 Getting a list of suggestions

 You are not forced to select from the list. Using the list attribute makes an input element
work more like a combo box than a select list.

 Selecting Files

 You can use <input type="file" /> to create a file picker. For example, you can use
<input type="file" /> to enable a user to select a picture file from their hard drive.

 The following HTML page includes an <input type="file" /> element and a DIV
element with the ID imgPicture. After you select a picture from your hard drive, the
picture appears in the img element (see Figure 5.15).

 < form id ="frmAdd">

 < div >

 < label >

Picture:

 < input id ="inpFile" type ="file" accept ="image/*" />

 </ label >

ptg999

Using HTML5 Input Elements 163

5

 < input type ="submit" />

 </ div >

 </ form >

 < img id ="imgPicture" />

 When you use the <input type="file" /> element, you can use the accept attribute to
restrict the type of files that can be uploaded. For example, in the preceding markup, the
accept element has the value "image/*", which prevents any file except image files from
being selected.

 FIGURE 5.15 Selecting a picture file

 The following JavaScript code is used to handle the form submit event. This code grabs
the selected picture file from the input elements files collection and displays the picture in
the IMG element:

 (function () {

 "use strict" ;

 function initialize() {

 var frmAdd = document.getElementById("frmAdd");

frmAdd.addEventListener("submit" , function (evt) {

evt.preventDefault();

 var imgPicture = document.getElementById("imgPicture");

 var inpFile = document.getElementById("inpFile");

 if (inpFile.files.length > 0) {

ptg999

CHAPTER 5 Creating Forms164

 // Use HTML5 File API to create object URL to refer to the photo

➥file

 var pictureUrl = URL.createObjectURL(inpFile.files[0]);

 // Show photo in IMG element

imgPicture.src = pictureUrl;

}

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Creating a Rich Text Editor
 If you want to create a form field that accepts rich text—such as bold, italic, or underlined
text—then you can use the contenteditable attribute. Imagine, for example, that you
want to enable a user to enter a college admissions essay. In that case, you can use the
following HTML form:

 < form >

 < label for ="inpEssay">

College Admissions Essay:

 </ label >

 < div id ="inpEssay" contenteditable ="true" class ="win-textarea richtext"></ div >

 < br />

 < input type ="submit" />

 </ form >

 In the form, the contenteditable attribute is applied to a DIV element with the ID
inpEssay. The contenteditable attribute makes the content of the DIV element editable
(see Figure 5.16).

 FIGURE 5.16 Creating a rich text editor

ptg999

Displaying Progress 165

5

 You can use Ctrl-B to make the text bold, Ctrl-I to make the text italic, and Ctrl-U to make
the text underlined.

 Notice that the DIV element with the contenteditable attribute has two CSS classes
applied to it named win-textarea and richtext. The win-textarea class is included as
part of the WinJS library and this class applies the standard Windows Store app styles to
the editor.

 The richtext class is defined like this:

 .richtext {

 width : 300px ;

 height : 100px ;

 white-space : pre-wrap ;

 }

 The HTML5 recommendation recommends that you should always use
white-space:pre-wrap with a contenteditable DIV element, and who am I to question
the wisdom of the editors of the HTML5 recommendation? For this reason, I always use
white-space:pre-wrap with a contenteditable DIV.

 Displaying Progress
 The HTML5 recommendation includes a new element—named the progress element—that
enables you to display a progress indicator. There are two basic types of progress indica-
tors: an indeterminate and a determinate progress indicator.

 You use an indeterminate progress indicator when you want to show a busy wait
indicator, and you do not know how much longer a task will take. Here’s how you declare
an indeterminate progress indicator:

 < progress id ="progress1"></ progress >

 In a Windows Store app, the default progress indicator displays a set of animated dots
moving horizontally (see Figure 5.17).

 FIGURE 5.17 Displaying indeterminate progress

 If you want to display a determinate progress indicator then you need to supply values for
the progress element’s max and value attributes. For example, here’s how you would create
a progress indicator that shows progress between the values 0 and 100:

ptg999

CHAPTER 5 Creating Forms166

 < progress id ="progress1"

 max ="20"

 value ="1">

 </ progress >

 And, here is JavaScript code which updates the progress every 1 second:

 (function () {

 "use strict" ;

 function initialize() {

 var progress1 = document.getElementById("progress1");

 var ivlProgress = window.setInterval(updateProgress, 1000);

 function updateProgress() {

progress1.value = ++progress1.value;

 if (progress1.value === 20) {

window.clearInterval(ivlProgress);

}

}

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Declaring a progress element in this way gives you a traditional progress bar (see
Figure 5.18).

 FIGURE 5.18 Displaying determinate progress

 There are some style options that you can use with a progress element in a Windows Store
app. When creating an indeterminate progress indicator, you can use the win-ring class
to display an animated ring of dots instead of the default animated horizontal dots (see
 Figure 5.19):

 < progress id ="progress2" class ="win-ring">

 </ progress >

 FIGURE 5.19 Displaying an animated ring of dots

ptg999

Summary 167

5

 If you want to control the size of an indeterminate progress indicator then you can use
the win-medium or win-large classes. For example, the following page contains three prog-
ress indicators of increasing size:

 < progress id ="progressRing1"

 class ="win-ring">

 </ progress >

 < br />< br />

 < progress id ="progressRing2"

 class ="win-ring win-medium">

 </ progress >

 < br />< br />

 < progress id ="progressRing3"

 class ="win-ring win-large">

 </ progress >

 Summary
 The focus of this chapter was on creating HTML5 forms for Windows Store apps. In the
first section, I explained how you can take advantage of the new form validation features
included in HTML5. You learned how to use the required and pattern attributes to
perform basic validation and the setCustomValidity() method to perform advanced
validation.

 Next, I described how you can take advantage of the new HTML5 input types. You learned
how to accept numbers by using the number and range types. You also learned how to
accept email addresses, URLs, telephone numbers, and search terms. I also demonstrated
how you can select files from your computer hard drive by using <input type=“file” />.

 Finally, I demonstrated how you can create a rich text editor with the contenteditable
attribute and a progress indicator with the new HTML5 progress element.

ptg999

This page intentionally left blank

ptg999

 CHAPTER 6

 Menus and Flyouts

 This chapter focuses on the topics of flyouts, menus, tool-
bars, settings, and dialogs. You learn how to throw options
at users and get their responses.

 I start by explaining how you can use the Flyout and Menu
controls to display options within the body of a page. You
learn how to display buttons, toggles, flyouts, and separa-
tors with a Menu control.

 Next, I discuss app bars and nav bars. The app bar is the
standard location for placing application commands and
the nav bar is the standard location for displaying naviga-
tion links in a Windows Store app.

 You also learn how to configure your app settings. You
learn how to take advantage of the SettingsFlyout control
to extend the standard settings displayed by the Settings
charm.

 Finally, I show you how you can create modal dialogs with
the MessageDialog class. You learn how to create warning
dialogs and Yes/No dialogs.

 Using the Flyout Control
 You use a Flyout control to display a popup in a page.
The popup disappears just as soon as you click outside of
the popup (or press the Esc key). You can use the Flyout
control to display information, display warnings, or gather
input.

 NOTE

 The Flyout control supports light dismiss . When you click
outside the Flyout control, the control disappears auto-
matically.

IN THIS CHAPTER

▶ Using the Flyout Control

▶ Using the Menu Control

▶ Using the AppBar Control

▶ Using the NavBar Control

▶ Configuring App Settings

▶ Displaying Windows Dialogs

ptg999

CHAPTER 6 Menus and Flyouts170

 A common use for flyouts is to display warnings. For example, if your app happens to
include a Delete All Data Forever button then it would be a good idea to use a flyout to
warn the user before all of the user data is deleted.

 Another common use for flyouts is for displaying forms that appear inline in a page. For
example, the page in Listing 6.1 contains a Flyout control that enables you to select a
typeface (see Figure 6.1).

 FIGURE 6.1 Displaying a flyout

 LISTING 6.1 Displaying a Flyout (flyout\flyout.html)

 <!-- Flyout Control -->

 < div id ="flyTypeface"

 data-win-control ="WinJS.UI.Flyout">

 < label > Select Typeface: </ label >

 < select id ="selectTypeface">

 < option > Arial </ option >

 < option > Impact </ option >

 < option > Comic Sans MS </ option >

 </ select >

 </ div >

 <!-- Button which opens FlyOut -->

 < button id ="btnTypeface"> Select Typeface </ button >

 <!-- The text to style -->

 < p id ="pText">

 Lorem ipsum dolor sit amet, consectetuer adipiscing elite

 Maecenas porttitor congue massa. Fusce posuere, magna sed

 pulvinar ultricies, purus lectus malesuada libero, sit amet

 commodo magna eros quis urna.

 </ p >

 The page in Listing 6.1 contains a button that opens a flyout. The flyout displays a select
list of typefaces. When you select a typeface, the lorem ipsum text is modified to appear
with the selected typeface.

ptg999

Using the Flyout Control 171

6

 The JavaScript code in Listing 6.2 demonstrates how you can wire-up a button so it opens
a flyout. The button click handler calls the Flyout control’s show() method to display the
flyout.

 When you call the show() method, you should pass an anchor element. The anchor
element determines where the flyout will appear in the page. In Listing 6.2 , the flyout is
anchored to the button.

 After you pick a typeface, the hide() method is used to hide (programmatically dismiss)
the flyout. If you don’t call hide(), the flyout remains open.

 LISTING 6.2 Displaying a Flyout (flyout\flyout.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var btnTypeface = document.getElementById("btnTypeface");

 var flyTypeface = document.getElementById("flyTypeface").winControl;

 var selectTypeface = document.getElementById("selectTypeface");

 var pText = document.getElementById("pText");

 // Wire-up handler to show FlyOut

btnTypeface.addEventListener("click" , function () {

flyTypeface.show(btnTypeface);

});

 // Wire-up handler for typeface select

selectTypeface.addEventListener("change" , function () {

pText.style.fontFamily = selectTypeface.value;

 // Hide the flyout

flyTypeface.hide();

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 WARNING

 Remember to call WinJS.UI.processAll() when using the Flyout control or the Flyout
control will never fly out.

ptg999

CHAPTER 6 Menus and Flyouts172

 Using the Menu Control
 The WinJS Menu control is derived from the Flyout control—so it has a lot of features in
common. Like the Flyout control, the Menu control appears in a popup and the menu
disappears automatically when you click outside of the menu area.

 However, unlike the Flyout control, the Menu control is specifically designed to display
menu commands. You can place only menu commands in a Menu control and not other
types of controls or HTML elements. The Menu control supports the following types of
menu commands:

▶ button—You click the menu item to do something.

▶ toggle—You toggle the menu item.

▶ flyout—Clicking the menu item displays a flyout.

▶ separator—A separator between different groups of menu commands.

 Listing 6.3 illustrates how you can declare the Menu control so it uses each of these menu
commands.

 LISTING 6.3 Displaying a Menu (menu\menu.html)

 <!-- Clicking this button shows the Menu -->

 < button id ="btnEdit"> Edit </ button >

 <!-- The Menu control -->

 < div id ="menuEdit"

 data-win-control ="WinJS.UI.Menu">

 < button

 data-win-control ="WinJS.UI.MenuCommand"

 data-win-options ="{

 id:'menuCommandDelete',

 label:'Delete',

 type: 'button'

 }"></ button >

 < hr

 data-win-control ="WinJS.UI.MenuCommand"

 data-win-options ="{

 type: 'separator'

 }" />

 < button

 data-win-control ="WinJS.UI.MenuCommand"

 data-win-options ="{

 id:'menuCommandBold',

 label:'Bold',

 type: 'toggle'

 }"></ button >

ptg999

Using the Menu Control 173

6

 < button

 data-win-control ="WinJS.UI.MenuCommand"

 data-win-options ="{

 id:'menuCommandItalic',

 label:'Italic',

 type: 'toggle'

 }"></ button >

 < button

 data-win-control ="WinJS.UI.MenuCommand"

 data-win-options ="{

 id:'menuCommandTypeface',

 label:'Typeface',

 type: 'flyout',

 flyout: select('#flyTypeface')

 }"></ button >

 </ div >

 <!-- Flyout Control -->

 < div id ="flyTypeface"

 data-win-control ="WinJS.UI.Flyout">

 < label > Select Typeface: </ label >

 < select id ="selectTypeface">

 < option > Arial </ option >

 < option > Impact </ option >

 < option > Comic Sans MS </ option >

 </ select >

 </ div >

 <!-- The text to style -->

 < p id ="pText">

 Lorem ipsum dolor sit amet, consectetuer adipiscing elite

 Maecenas porttitor congue massa. Fusce posuere, magna sed

 pulvinar ultricies, purus lectus malesuada libero, sit amet

 commodo magna eros quis urna.

 </ p >

 The page in Listing 6.3 contains a chunk of lorem ipsum text. You use the Menu control to
modify the appearance of the text (see Figure 6.2).

ptg999

CHAPTER 6 Menus and Flyouts174

 FIGURE 6.2 Using a Menu control

 This menu contains five menu commands (instances of the WinJS.UI.MenuCommand class).
It contains a button, separator, two toggle, and a flyout command.

 The button command deletes all of the text. This command is wired-up to a click event
handler in the JavaScript file in Listing 6.3 .

 The separator command does absolutely nothing at all. It just displays a separator between
different groups of commands on the menu (a horizontal line).

 The two toggle commands enable you to toggle the text between bold/normal and italic/
normal. Click handlers for these commands are included in Listing 6.4 .

 Finally, the flyout command displays a Flyout control. The Flyout control is included in
the HTML page in Listing 6.3 with the name flyTypeface. The flyout enables you to select
a typeface for the text (see Figure 6.3). When the flyout appears, the menu disappears.

 LISTING 6.4 Displaying a Menu (menu\menu.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var btnEdit = document.getElementById("btnEdit");

 var menuEdit = document.getElementById("menuEdit").winControl;

 var selectTypeface = document.getElementById("selectTypeface");

 var flyTypeface = document.getElementById("flyTypeface").winControl;

 var pText = document.getElementById("pText");

 // When you click Edit then show the Menu

btnEdit.addEventListener("click" , function () {

menuEdit.show(btnEdit);

});

 // Wire-up menu commands

document.getElementById("menuCommandDelete").addEventListener("click" ,

 ➥function (evt) {

ptg999

Using the Menu Control 175

6

pText.innerHTML = "[deleted]" ;

});

document.getElementById("menuCommandBold").addEventListener("click" ,

 ➥function (evt) {

 var toggleState = document.getElementById("menuCommandBold").

➥winControl.selected;

 if (toggleState) {

pText.style.fontWeight = 'bold'

} else {

pText.style.fontWeight = 'normal'

}

});

document.getElementById("menuCommandItalic").addEventListener("click" ,

 ➥function (evt) {

 var toggleState = document.getElementById("menuCommandItalic").

➥winControl.selected;

 if (toggleState) {

pText.style.fontStyle = 'italic'

} else {

pText.style.fontStyle = 'normal'

}

});

selectTypeface.addEventListener("change" , function () {

pText.style.fontFamily = selectTypeface.value;

flyTypeface.hide();

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 FIGURE 6.3 Using a Menu control to display a flyout

ptg999

CHAPTER 6 Menus and Flyouts176

 Using the AppBar Control
 Windows Store apps have a standard location for application commands: the app bar. The
app bar typically appears at the bottom of an app, and it does not appear until you swipe
from either the bottom or top of the page or right-click when using a mouse.

 For example, Figure 6.4 illustrates the appearance of the app bar when using the standard
Windows 8.1 Photos app. The app bar is highlighted in a red box. If you click on the page,
this app bar disappears and you get a full screen experience.

 FIGURE 6.4 Internet Explorer app bar

 Creating a Simple App Bar

 You use the WinJS AppBar control to add an app bar to your Windows Store app. For
example, here is how you would declare an app bar which appears on the bottom of your
app:

 < div id ="appBar1"

 data-win-control ="WinJS.UI.AppBar">

 < button data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 id:'cmdPlay',

 label:'Play',

ptg999

Using the AppBar Control 177

6

 icon:'play',

 tooltip:'Play Song'

 }">

 </ button >

 < button data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 id:'cmdPause',

 label:'Pause',

 icon:'pause',

 tooltip:'Pause Song'

 }">

 </ button >

 </ div >

 NOTE

 For every project template except the Blank App template, the app bar control is included
in the default.html page by default—but it’s commented out.

 This app bar contains two buttons: Play Song and Pause Song. Each button has both a
label and an icon (see Figure 6.5).

 FIGURE 6.5 A simple app bar

 If you want to create an app bar that appears on the top of your app then you need to set
the AppBar placement property like this:

 < div id ="appBar1"

 data-win-control ="WinJS.UI.AppBar"

 data-win-options ="{

 placement:'top'

 }">

ptg999

CHAPTER 6 Menus and Flyouts178

 < button data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 id:'cmdSave',

 label:'Save',

 icon:'save',

 tooltip:'Save Song List'

 }">

 </ button >

 </ div >

 The placement property defaults to the value "bottom". In the preceding code, I set the
property to the value "top" so the app bar appears at the top of the app (see Figure 6.6).

 FIGURE 6.6 Creating both bottom and top app bars

 Using App Bar Commands

 There are four types of app bar commands:

▶ button—Creates a button which performs some action

▶ toggle—Creates a toggle button which switches between two states

ptg999

Using the AppBar Control 179

6

▶ flyout—Creates a flyout that you can use to display a form

▶ separator—Creates a separator (vertical line) between other commands

▶ Content—Enables you to add any custom content to the app bar

 Listing 6.5 contains a sample of an app bar that contains all five of these commands.

 LISTING 6.5 Using Different Types of App Bar Commands

 < div id ="appBar1"

 data-win-control ="WinJS.UI.AppBar">

 <!-- AppBar Commands -->

 < button data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 id:'cmdPlay',

 label:'Play',

 icon:'play',

 tooltip:'Play Song'

 }">

 </ button >

 < button data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 id:'cmdMute',

 type: 'toggle',

 label:'Mute',

 icon:'mute',

 tooltip:'Mute Song'

 }">

 </ button >

 < hr data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 type: 'separator'

 }" />

 < button data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 id:'cmdAddSong',

 type: 'flyout',

 label:'Add',

 icon:'add',

 tooltip:'Add Song',

 flyout: select('#flyAddSong')

 }">

 </ button >

 < div data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

ptg999

CHAPTER 6 Menus and Flyouts180

 id:'cmdSearchSongs',

 type: 'content',

 label:'Search',

 icon:'search',

 tooltip:'Search Songs'

 }">

 < input id ="inpSearch" />

 </ div >

 </ div >

 <!-- Add Song Flyout -->

 < div id ="flyAddSong"

 data-win-control ="WinJS.UI.Flyout">

 < form >

 < input id ="inpNewSong" required />

 < input type ="submit" value ="Add" />

 </ form >

 </ div >

 When you swipe or right-click then you get the app bar depicted in Figure 6.7 .

 FIGURE 6.7 An app bar with different types of commands

 The most common app bar command is the button command. You can create a click
handler for a button command and do some action in response to clicking the button. For
example, here is how you would create a click handler for the cmdPlay button:

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var cmdPlay = document.getElementById("cmdPlay");

cmdPlay.addEventListener("click" , function () {

console.log("Play song");

});

ptg999

Using the AppBar Control 181

6

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The button command includes both a label and icon property that you can use to
control the appearance of the button in the app bar. You can either point the icon prop-
erty to a custom PNG image or you can use one of the dozens of built-in icons represented
by the WinJS.UI.AppBarIcon enumeration.

 The toggle command displays a button that looks just like a button command. However,
when you click the button, the button toggles between a highlighted and not highlighted
state.

 Here’s how you can use the selected property to determine whether a toggle button is
selected:

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var cmdMute = document.getElementById("cmdMute");

cmdMute.addEventListener("click" , function () {

console.log(cmdMute.winControl.selected);

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The separator command creates a vertical bar between commands so you can group them.
Use an HR element instead of a BUTTON element when creating a separator command.

 The flyout command displays a Flyout control. In Listing 6.5 , the cmdAdd command
displays a flyout that contains a form for entering the title of a new song.

 Finally, the content command displays an input box. You can use a content command to
display anything you want within an app bar.

 Showing Contextual Commands

 Some app bar commands apply to the entire app. Other app bar commands apply only
when an item is selected. For example, it might make sense to always display an Add

ptg999

CHAPTER 6 Menus and Flyouts182

button in the app bar. Displaying a Delete or Edit button, on the other hand, makes sense
only when an item is selected.

 The app bar has two built-in sections named "global" and "selection". By default, when
you add commands to the app bar, the commands appear in the global section. These
commands appear on the right-hand side of the app bar.

 You also have the option of adding commands to the selection section. These commands
appear on the left-hand side of the app bar. Commands in the selection section should
appear only when something is selected.

 Imagine that you want to display a list of tasks by using a ListView control. You want
users to be able to add new tasks and delete existing tasks. In that case, it makes sense to
place the Add button in the app bar global section and the Delete button in the app bar
selection section (see Figure 6.8).

 FIGURE 6.8 Global versus selection app bar sections

 Here’s how you can declare your app bar so it contains Add and Delete commands:

 < div id ="appBar1"

 data-win-control ="WinJS.UI.AppBar" data-win-options ="{sticky:true}">

 < button data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 id:'cmdAdd',

 label:'Add',

 icon:'add',

 tooltip:'Add Task',

ptg999

Using the AppBar Control 183

6

 type: 'flyout',

 flyout: select('#flyAdd'),

 section: 'global'

 }">

 </ button >

 < button data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 id:'cmdDelete',

 label:'Delete',

 icon:'delete',

 tooltip:'Delete Task',

 section: 'selection',

 extraClass:'appBarSelection'

 }">

 </ button >

 </ div >

 Notice that the Add command is placed in the global section of the app bar. You don’t
really need to be explicit about this—global is the default value.

 The Delete command is placed in the selection section. Notice, furthermore, that an addi-
tional CSS class named appBarSelection is associated with the Delete command. I’ll take
advantage of that class in a moment to hide and display the Delete command.

 Here’s the JavaScript code for hiding and displaying the app bar commands:

 // Hide selection commands by default

 appBar1.hideCommands(document.querySelectorAll('.appBarSelection'));

 // When ListView item selected, display app bar

 lvTasks.addEventListener("selectionchanged" , function () {

 if (lvTasks.selection.count() == 1) {

appBar1.showCommands(document.querySelectorAll('.appBarSelection'));

appBar1.show();

 } else {

appBar1.hideCommands(document.querySelectorAll('.appBarSelection'));

 };

 });

 When the app first starts, you want to hide the Delete command because nothing
is selected. In the preceding code the hideCommands() method is used to hide every
command associated with the appBarSelection CSS class.

 Next, the code handles the selectonchanged event raised by the ListView control. When
you select an item in the ListView (by swiping or right-clicking the item) then the selec-
tion commands are displayed with the help of the showCommands() method.

ptg999

CHAPTER 6 Menus and Flyouts184

 Because the app bar is hidden by default, you might not notice the Delete command.
For that reason, the preceding code calls the show() method to force the app bar to be
displayed. That way, when you select an item in the ListView, the app bar is displayed
automatically and you know that you can delete an item.

 NOTE

 You can force the app bar to continue to appear after calling show() by using the app bar
control’s sticky property. When the sticky property has the value true then the app bar
does not disappear automatically.

 Using the NavBar Control
 The NavBar control—which is new in WinJS 2.0—is the standard place to display naviga-
tion links for your Windows Store app. Typically, the nav bar appears at the top of your
app and it only appears when you swipe from the top of your app or right-click your app.

 Figure 6.9 illustrates the appearance of the nav bar in the standard Windows 8.1 Bing
News app. The nav bar contains two levels of navigation links. It contains links to news
Topics, Sources, and Videos. It also contains links to different news sources such as ABC
News, The New York Times, and Fox News.

 FIGURE 6.9 The nav bar in the Windows 8.1 Bing News app

 Creating a Simple Nav Bar

 You need to work with three WinJS controls to create a nav bar: the NavBar control, the
NavBarContainer control, and the NavBarCommand control. Here is how you can create a
simple nav bar that contains a single row of navigation links:

ptg999

Using the NavBar Control 185

6

 <!-- Nav Bar Control -->

 < div id ="navBar1"

 data-win-control ="WinJS.UI.NavBar"

 data-win-options ="{

 placement:'top'

 }">

 <!-- Nav Bar Container -->

 < div data-win-control ="WinJS.UI.NavBarContainer">

 <!-- Nav Bar Commands -->

 < div data-win-control ="WinJS.UI.NavBarCommand"

 data-win-options ="{

 label:'Home',

 icon:'home',

 location: '/pages/home/home.html'

 }">

 </ div >

 < div data-win-control ="WinJS.UI.NavBarCommand"

 data-win-options ="{

 label:'Videos',

 icon:'video',

 location: '/pages/videos/videos.html'

 }">

 </ div >

 < div data-win-control ="WinJS.UI.NavBarCommand"

 data-win-options ="{

 label:'Settings',

 icon:'settings',

 location: '/pages/settings/settings.html'

 }">

 </ div >

 </ div >

 </ div >

 WARNING

 When creating NavBarCommand controls, don’t use HTML BUTTON elements. Use DIV
elements instead or you won’t navigate.

ptg999

CHAPTER 6 Menus and Flyouts186

 Notice that each NavBarCommand has three options. The label and icon options are used for
displaying each navigation link (see Figure 6.10). The location option determines where
you navigate in a multi-page app.

 NOTE

 We discuss multi-page apps in detail in Chapter 12 , “Page Fragments and Navigation.”
If you drop a NavBar control into the default page of a multi-page app created from the
Navigation App template, the bar will appear on all content pages and will allow the user
to navigate between them without additional code.

 FIGURE 6.10 A simple nav bar

 Configuring App Settings
 Windows Store apps have a standard location for users to configure app settings. You
access app settings from the Settings charm in the charm bar which you can open by

▶ Moving your mouse to the bottom right of your screen

▶ Swiping with your finger from the right edge of the screen

▶ Pressing the Windows logo key + I

 The first two methods open the Charms panel from which you can select Settings. The
last method opens the Settings panel directly.

 By default, System settings—such as network and volume settings—appear at the bottom
of the Settings window (see Figure 6.11). Permission settings also appear automatically.
Finally, if you did in fact get your Windows Store app from the Windows Store then the
Settings window will also include Rate and Review settings.

ptg999

Configuring App Settings 187

6

 FIGURE 6.11 Default settings

 You can add custom settings to the Settings window for your app. These custom settings
can be configuration settings such as user preferences. The custom settings might also
include information about your app including Help, About, and Privacy Policy pages.

 You create custom app settings with the help of the SettingsFlyout control. For each app
settings section that you want to create, you create a separate HTML file that contains a
SettingsFlyout. I’ll demonstrate how this works by creating both About Page settings and
Personal settings.

 Creating About Page Settings

 Most apps include an About Page that provides information about the company that built
the application. The About Page is purely informational (see Figure 6.12).

ptg999

CHAPTER 6 Menus and Flyouts188

 FIGURE 6.12 Creating About settings

 If you want to create an About settings in your Settings window then you first need to
create a new HTML file that contains a SettingsFlyout control. The HTML page in Listing
 6.6 illustrates how you can create an About settings.

 LISTING 6.6 About Settings

 <! DOCTYPE html >

 < html >

 < head >

 < title > About </ title >

 </ head >

 < body >

 < div id ="divAbout"

 data-win-control ="WinJS.UI.SettingsFlyout"

 data-win-options ="{

 width:'narrow'

 }">

 < div class ="win-header"

 style =" background-color : #464646">

 < button

 onclick ="WinJS.UI.SettingsFlyout.show()"

 class ="win-backbutton"></ button >

 < div class ="win-label"> About </ div >

 </ div >

 < div class ="win-content">

This app was created by the skilled programmers of Acme

Incorporated.

 </ div >

ptg999

Configuring App Settings 189

6

 </ div >

 </ body >

 </ html >

 The page in Listing 6.6 contains a single WinJS SettingsFlyout control. Notice that the
SettingsFlyout control is declared with a “narrow” width. When you open settings with
a narrow width, the settings take up the same size as the Settings window. Alternatively,
you can set the width to the value “wide” to create a larger space for displaying settings.

 You can place whatever content that you please within the flyout and the content will
appear when you open the settings. However, there are some guidelines from Microsoft.
The SettingsFlyout control in Listing 6.6 contains a back button so you can get back to
the Settings window. The content also takes advantage of several standard WinJS style
classes such as win-label and win-content.

 Before you can use the About settings, you must register the settings by handling the
WinJS.Application settings event like this:

 (function () {

 "use strict" ;

 WinJS.Application.onsettings = function (e) {

 e.detail.applicationcommands = {

 "divAbout" : { href: "aboutSettings.html" , title: "About" }

};

WinJS.UI.SettingsFlyout.populateSettings(e);

 }

 WinJS.Application.start();

 })();

 You assign a collection of settings commands to the e.details.applicationcommands
object. In the code, the path and title of the About settings are assigned to the collection
of application commands.

 WARNING

 When creating settings, you must call WinJS.Application.start() or the settings event
will never be raised.

 Creating Personal Settings

 Imagine that you want to enable users to enter their first and last names in the app
settings for a Windows Store app (see Figure 6.13). You are building a friendly app and
you want to address the user by name.

ptg999

CHAPTER 6 Menus and Flyouts190

 FIGURE 6.13 Collecting Personal settings

 The HTML page in Listing 6.7 —named personalSettings.html—contains a SettingsFlyout
that contains an HTML form. The form has two form fields named inpFirstName and
inpLastName, and both form fields are required.

 LISTING 6.7 SettingsFlyout for Personal Settings

 <! DOCTYPE html >

 < html >

 < head >

 < title > Security </ title >

 < script type ="text/javascript" src ="personalSettings.js"></ script >

 </ head >

 < body >

 < div id ="divPersonal"

 data-win-control ="WinJS.UI.SettingsFlyout"

 data-win-options ="{

 width:'narrow'

 }">

 < div class ="win-header"

 style =" background-color : #464646">

 < button

 onclick ="WinJS.UI.SettingsFlyout.show()"

 class ="win-backbutton"></ button >

 < div class ="win-label"> Personal </ div >

 </ div >

 < div class ="win-content">

 < form id ="frmPersonal">

 < div >

ptg999

Configuring App Settings 191

6

 < label >

First Name: < br />

 < input id ="inpFirstName" required />

 </ label >

 </ div >

 < div >

 < label >

Last Name: < br />

 < input id ="inpLastName" required />

 </ label >

 </ div >

 < div >

 < input type ="submit" value ="Save" />

 </ div >

 </ form >

 </ div >

 </ div >

 </ body >

 </ html >

 Notice that the page in Listing 6.7 refers to a JavaScript file named personalSettings.js. The
personalSettings.js file is contained in Listing 6.8 . This JavaScript file is responsible for
both loading and saving the user first and last names.

 LISTING 6.8 Loading and Saving Personal Settings

 (function () {

 "use strict" ;

 WinJS.UI.Pages.define("personalSettings.html" ,

 {

processed: function (element, options) {

 var roamingSettings = Windows.Storage.ApplicationData.current.

➥roamingSettings;

 var divPersonal = document.getElementById("divPersonal").winControl;

 var frmSecurity = document.getElementById("frmPersonal");

 var inpFirstName = document.getElementById("inpFirstName");

 var inpLastName = document.getElementById("inpLastName");

 // Read the first and last name

divPersonal.addEventListener("beforeshow" , function () {

inpFirstName.value = roamingSettings.values["firstName"] || "" ;

inpLastName.value = roamingSettings.values["lastName"] || "" ;

});

 // Save first and last names

ptg999

CHAPTER 6 Menus and Flyouts192

frmSecurity.addEventListener("submit" , function () {

roamingSettings.values["firstName"] = inpFirstName.value;

roamingSettings.values["lastName"] = inpLastName.value;

});

}

 });

 }());

 The JavaScript code in Listing 6.8 includes an event handler for the SettingsFlyout
beforeshow event. This event is raised right before the SettingsFlyout is displayed. In
 Listing 6.8 , the user’s first and last name is loaded from roaming settings and assigned to
the two form fields.

 The code in Listing 6.8 also includes an event handler for the form submit event. This
handler saves the user’s first and last name to roaming settings. The first and last name is
saved permanently on the computer so the settings are available whenever the user runs
the app again in the future. Because the settings are stored in roaming storage, the settings
are also available across different computers associated with the same user account.

 NOTE

 Roaming settings are stored in the computer registry and synchronized across
devices. Currently, Microsoft limits you to storing 100KB in roaming storage (use the
ApplicationDate.RoamingStorageQuota property to view the limit).

 To use the Personal settings in a page, you must register the settings in the JavaScript file
associated with the page. The following code registers both the About Page settings (from
the previous section) and the Personal settings:

 (function () {

 "use strict" ;

 WinJS.Application.onsettings = function (e) {

 e.detail.applicationcommands = {

 "divPersonal" : { href: "personalSettings.html" , title: "Personal" },

 "divAbout" : { href: "aboutSettings.html" , title: "About" }

};

WinJS.UI.SettingsFlyout.populateSettings(e);

 }

 WinJS.Application.start();

 })();

 Displaying Windows Dialogs
 Sometimes, nothing beats a good old-fashioned modal dialog. A modal dialog blocks all
user interaction with your app until the modal dialog gets its answer.

ptg999

Displaying Windows Dialogs 193

6

 Modal dialogs are necessary when your app will not work without some crucial informa-
tion. For example, a Weather app cannot display the weather without knowing your loca-
tion. So it makes sense to use a modal dialog to ask for the user’s location when the app
first runs.

 You also can use modal dialogs in the same situations in which you would use JavaScript
alerts: when you really need to get in a user’s face to convey critical warnings or informa-
tion. You should use modal dialogs sparingly.

 NOTE

 JavaScript alerts do not work in Windows Store apps written with JavaScript. Because I
consider JavaScript alerts to be closely related to the (deprecated) HTML blink tag, this is
a good thing.

 You create modal dialogs by using the MessageDialog class. Here’s how you can open a
dialog with the message, “Did you know that your fly is unzipped?” (see Figure 6.14).

 var message = new Windows.UI.Popups.MessageDialog(

 "Did you know that your fly is unzipped?"

);

 message.showAsync();

 FIGURE 6.14 Using a message dialog

 You can customize the appearance of the dialog by supplying commands. For example,
here is how you would create a Yes/No dialog:

ptg999

CHAPTER 6 Menus and Flyouts194

 // Create dialog

 var message = new Windows.UI.Popups.MessageDialog(

 "Did you know that your fly is unzipped?" ,

 "Warning!!!"

);

 // Add commands

 message.commands.append(new Windows.UI.Popups.UICommand("&Yes"));

 message.commands.append(new Windows.UI.Popups.UICommand("&No"));

 // Show dialog

 message.showAsync().done(function (answer) {

 if (answer.label === "&Yes") {

console.log("You picked yes");

 } else {

console.log("You picked no");

 }

 });

 The code appends two UICommand objects to the message dialog that are labeled Yes and
No (see Figure 6.15). You can use the promise returned by the showAsync() method to
determine which of the two buttons was clicked.

 FIGURE 6.15 A yes/no dialog

 NOTE

 Notice that the buttons’ labels are “&Yes” and “&No”. The & is used to specify the
keyboard shortcut for invoking the button. You can press Alt-Y to invoke the Yes button
and Alt-No to invoke the No button. When you hold down the Alt key, the shortcuts appear
with underlines.

ptg999

Summary 195

6

 Summary
 The chapter was all about flyouts, menus, settings, toolbars, and dialogs. I started by
discussing how you can use the Flyout control to make simple ephemeral popups which
can contain any HTML content at all.

 Next, I explained how you can use the Menu control to display menu commands. You
learned how to include buttons, flyouts, toggles, and separators in a menu.

 I also discussed the app bar and nav bar. You learned how the app bar is the standard
location in a Windows Store app for placing commands, and the nav bar is the standard
location in a Windows Store app for placing navigation links.

 You also learned how to take advantage of the SettingsFlyout control to extend the
settings displayed in your Windows Store app’s Settings window. You learned how to store
and retrieve settings from roaming settings.

 Finally, I showed you how you can create modal dialogs by taking advantage of the
MessageDialog class. We created warning dialogs and Yes/No dialogs.

 Stay tuned. In the next chapter, we jump into a discussion of how you can display collec-
tions of data in your app.

ptg999

This page intentionally left blank

ptg999

 CHAPTER 7

 Using the
ItemContainer,

Repeater, and FlipView
Controls

 The focus of this chapter is on three controls related
to working with collections of data: the ItemContainer,
Repeater, and FlipView controls.

 The ItemContainer control enables you to create invokable,
selectable, and draggable content—things you can interact
with. Although the ItemContainer control can be used on
its own, the ItemContainer control is most often used with
the Repeater and ListView controls.

 The Repeater control is a very flexible control for display-
ing a collection of data. You can use a Repeater control to
display a collection of data using any format you want.

 Finally, the FlipView control is a useful control for display-
ing one item from a collection of items at a time. You can
use the FlipView control, for example, to display individual
news articles in a list of articles.

 Using the ItemContainer Control
 Let me start by discussing the ItemContainer control. After
you wrap content in an ItemContainer control, you can
invoke, select, or drag-and-drop the content.

 Here’s a simple example. The following markup includes
three ItemContainer controls, which represent three
options labeled Option 1, Option 2, and Option 3:

 < div id ="optionList">

 < div data-win-control ="WinJS.UI.ItemContainer">

Option 1

 </ div >

IN THIS CHAPTER

▶ Using the ItemContainer
Control

▶ Using the Repeater Control

▶ Using the FlipView Control

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls198

 < div data-win-control ="WinJS.UI.ItemContainer">

Option 2

 </ div >

 < div data-win-control ="WinJS.UI.ItemContainer">

Option 3

 </ div >

 </ div >

 When this markup is displayed, you can click an option to invoke it (the ItemContainer
control works like a button) or you can right-click an option to select it. For example, in
 Figure 7.1 , Option 2 and Option 3 are selected.

 FIGURE 7.1 Selecting from ItemContainer options

 Styling an ItemContainer

 The ItemContainer control does not impose any styling on its content. For example, if
you wrap a DIV element with an ItemContainer then the DIV element will continue to
render as a DIV element. The element will work as a block element and expand across the
entire page.

 If you want to style the content which appears in an ItemContainer then you have to
work with one or more of the standard Cascading Style Sheet classes built into the WinJS
library.

 The ItemContainers that appear in Figure 7.1 were styled with the following win-* CSS
classes:

 #optionList .win-itemcontainer

 {

 width : 100px ;

 height : 100px ;

 margin : 10px ;

 float : left ;

 }

 #optionList .win-itembox {

 background-color : gray ;

ptg999

Using the ItemContainer Control 199

7

 }

 #optionList .win-item

 {

 padding : 10px ;

 }

 NOTE

 Notice that each CSS rule is qualified with #optionList. In CSS, more specific rules over-
ride less specific rules. Without the #optionList qualifier, the earlier CSS rules would be
ignored because they would be overridden by the default ItemContainer styles defined in
the WinJS ui-dark.css or ui-light.css file.

 The win-itemcontainer class applies to the outermost DIV element rendered by the
ItemContainer. The win-itemcontainer class provides the DIV element with a fixed width
and height of 100 pixels. It also floats the DIV elements so the options appear next to one
another horizontally.

 The win-itembox applies to a DIV element that is nested inside the win-itemcontainer.
This is a good place to set the background color of the DIV.

 The win-item class applies to the innermost DIV element rendered by the ItemContainer.
The win-item class above adds some padding to each option element.

 When an ItemContainer is rendered, three nested DIV elements are rendered. For
example, the Option 1 ItemContainer renders the following three DIV elements:

 < div class ="win-disposable win-vertical win-swipeable win-itemcontainer

➥win-container" data-win-control ="WinJS.UI.ItemContainer">

 < div class ="win-itembox">

 < div class ="win-item">

Option 1

 </ div >

 </ div >

 < div ></ div >

 </ div >

 If you select an ItemContainer—by right-clicking the ItemContainer or swiping it—then
some additional DIV elements are rendered. These additional DIV elements are responsible
for displaying the check mark that appears at the top right of a selected ItemContainer:

 < div class ="win-disposable win-vertical win-swipeable win-itemcontainer

➥win-container win-selected" data-win-control ="WinJS.UI.ItemContainer">

 < div class ="win-itembox win-selected">

 < div class ="win-selectionbackground"></ div >

 < div class ="win-item">

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls200

Option 2

 </ div >

 < div class ="win-selectionborder"></ div >

 < div class ="win-selectioncheckmarkbackground"></ div >

 < div class ="win-selectioncheckmark"> </ div >

 </ div >

 < div ></ div >

 </ div >

 You can override any of these CSS classes to control the appearance of an ItemContainer.
For example, you can customize the win-selectionborder class to change the appearance
of a selected ItemContainer.

 Interacting with an ItemContainer

 The whole point of the ItemContainer is that it makes it content interactive; you can
invoke, select, and drag ItemContainers.

 By default, when you click an ItemContainer then the iteminvoked event is raised.
Imagine that you have created the three options in Listing 7.1 .

 LISTING 7.1 Invoking an ItemContainer (itemInvoke\itemInvoke.html)

 < div class ="option" data-option ="option 1" data-win-control ="WinJS.

➥UI.ItemContainer">

 Option 1

 </ div >

 < div class ="option" data-option ="option 2" data-win-control ="WinJS.

➥UI.ItemContainer">

 Option 2

 </ div >

 < div class ="option" data-option ="option 3" data-win-control ="WinJS.

➥UI.ItemContainer">

 Option 3

 </ div >

 Notice that I added a data-option attribute to each ItemContainer. That way, I have a
unique identifier for each option.

ptg999

Using the ItemContainer Control 201

7

 NOTE

 HTML5 enables you to add a data-* attribute to any element. You can use data-*
attributes to associate custom information with an HTML element.

 I can detect when an ItemContainer is clicked by handling the invoked event like I do in
 Listing 7.2 .

 LISTING 7.2 Invoking an ItemContainer (itemContainerInvoked\itemContainerInvoked.js)

 (function () {

 "use strict" ;

 function initialize() {

 var options = WinJS.Utilities.query(".option");

WinJS.UI.processAll().done(function () {

options.listen("invoked" , function (e) {

 var md = new Windows.UI.Popups.MessageDialog(e.target.

➥dataset["option"]);

md.showAsync();

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 When you click any of the ItemContainers then a dialog pops up that displays the iden-
tity of the selected option (see Figure 7.2). The identity of the clicked option is retrieved
from the ItemContainer data-option attribute. The value of the data-option attribute is
represented by the element’s dataset["option"] property. (If you added a data-something
attribute then you would get the value of this attribute with dataset["something"].)

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls202

 FIGURE 7.2 Invoking an ItemContainer

 By default, an ItemContainer can be both invoked and selected. You can change this
default behavior by modifying the tapBehavior and swipeBehavior properties.

 The tapBehavior property accepts the following values:

▶ directSelect—Tapping an item both invokes and selects it

▶ toggleSelect—Tapping an item selects/deselects it

▶ invokeOnly—Tapping an item invokes but does not select it

▶ None—Tapping an item neither invokes nor selects it

 The swipeBehavior property accepts the following two values:

▶ select—Swiping an item selects it

▶ None—Swiping an item does not select it

 Selecting an ItemContainer

 Selecting an ItemContainer raises both a selectionchanging and selectionchanged event.
You can handle these events to detect when an ItemContainer is selected.

 Imagine, for example, that you want to create a set of options that work like radio
buttons. When you select one option, all of the other options are unselected automatically
so that you can select only one option at a time.

 Listing 7.3 contains three ItemContainers that represent the three options.

ptg999

Using the ItemContainer Control 203

7

 LISTING 7.3 Selecting an ItemContainer (ItemContainerSelection\ItemContainerSelection.
html)

 < div class ="option" data-win-control ="WinJS.UI.ItemContainer">

 Option 1

 </ div >

 < div class ="option" data-win-control ="WinJS.UI.ItemContainer">

 Option 2

 </ div >

 < div class ="option" data-win-control ="WinJS.UI.ItemContainer">

 Option 3

 </ div >

 And, Listing 7.4 contains the JavaScript code that ensures that only one option is selected
at a time.

 LISTING 7.4 Selecting an ItemContainer (ItemContainerSelection\ItemContainerSelection.js)

 (function () {

 "use strict" ;

 function initialize() {

 var options = WinJS.Utilities.query(".option");

WinJS.UI.processAll().done(function () {

 // When an option state is changed

options.listen("selectionchanged" , function (e) {

 // If selected then unselect all of the other options

 var isSelected = e.target.winControl.selected;

 if (isSelected) {

options.forEach(function (option) {

 if (option != e.target) {

option.winControl.selected = false ;

}

})

}

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls204

 In Listing 7.4 , a selectionchanged event handler is added to all of the ItemContainers on
the page. When the selectionchanged event is raised, and a new option is selected, each
option (other than the option that raised the event) is unselected. This ensures that only
one option is selected at a time.

 WARNING

 Be careful about infinite recursion here. Setting the ItemContainer selected property
raises the selectionchanging and selectionchanged events. Therefore, if you are not
careful about when you set the selected property within either of these events then you
can crash your app.

 Creating Drag-and-Drop Items

 The ItemContainer is compatible with standard HTML5 drag and drop. You enable drag
and drop for an ItemContainer by setting the draggable option to the value true like this:

 < div data-win-control ="WinJS.UI.ItemContainer" data-win-options ="{draggable:true}">

 Item 1

 </ div >

 After you enable drag and drop for an ItemContainer, you can handle the standard
HTML5 drag and drop events:

▶ dragstart—Raised when you start dragging a draggable ItemContainer.

▶ dragover—Raised when you drag an ItemContainer over an element. Handle this
event to enable an ItemContainer to be dropped on a particular element.

▶ dragenter—Raised when you drag an ItemContainer over a new element. Handle
this event to create a visual indication of possible drop targets.

▶ dragleave—Raised when drag an ItemContainer out of a element. Handle this event
to create a visual indication of possible drop targets.

▶ dragend—Raised when a drag and drop operation completes. Handle this event to do
any clean up.

 Imagine, for example, that you want to be able to drag a list of items onto a drop target.
When you drag an item onto the drop target, you want the drop target to display the
identity of the item dropped (see Figure 7.3).

ptg999

Using the ItemContainer Control 205

7

 FIGURE 7.3 Dragging and dropping ItemContainers

 The page in Listing 7.5 contains three ItemContainer controls with drag and drop
enabled. The page also contains a DIV element which acts as the drop target.

 LISTING 7.5 Dragging an ItemContainer (itemContainerDrag\itemContainerDrag.html)

 < !DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter07 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="itemContainerDrag.js"></ script >

 < style >

 #draggables .win-itemcontainer {

 width : 100px ;

 height : 100px ;

 margin : 10px ;

 float : left ;

}

 #draggables .win-itembox {

 background-color : gray ;

}

 #draggables .win-item {

 padding : 10px ;

}

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls206

 #dropTarget {

 border : double white 2px ;

 padding : 10px ;

 min-width : 500px ;

 min-height : 300px ;

 background-color : gray ;

}

 #dropTarget.hiLite {

 background-color : lightgray ;

}

 </ style >

 </ head >

 < body >

 < div id ="draggables">

 < div data-item ="item 1" data-win-control ="WinJS.UI.ItemContainer" data-win-

options ="{draggable:true}">

Item 1

 </ div >

 < div data-item ="item 2" data-win-control ="WinJS.UI.ItemContainer" data-win-

options ="{draggable:true}">

Item 2

 </ div >

 < div data-item ="item 3" data-win-control ="WinJS.UI.ItemContainer" data-win-

options ="{draggable:true}">

Item 3

 </ div >

 </ div >

 < br style =" clear : both" />

 < div id ="dropTarget"></ div >

 </ body >

 </ html >

 The JavaScript in Listing 7.6 contains event handlers for the standard HTML5 drag and
drop events.

 LISTING 7.6 Dragging an ItemContainer (itemContainerDrag\itemContainerDrag.js)

 (function () {

 "use strict" ;

ptg999

Using the ItemContainer Control 207

7

 function initialize() {

 var dragMeItem = null ;

 var dropTarget = document.getElementById("dropTarget");

WinJS.UI.processAll().done(function () {

 // Handle drag start - called when you start dragging an ItemContainer

WinJS.Utilities.query("#draggables>div").listen("dragstart" , function

➥(e) {

dragMeItem = e.target;

});

 // Handle dragover to indicate valid drop targets

 // Call preventDefault() when over valid target

dropTarget.addEventListener("dragover" , function (e) {

 e.preventDefault();

});

 // Handle dragenter/dragleave to highlight drop target

dropTarget.addEventListener("dragenter" , function () {

dropTarget.classList.add("hiLite");

});

dropTarget.addEventListener("dragleave" , function () {

dropTarget.classList.remove("hiLite");

});

 // Handle drop to perform the drop

dropTarget.addEventListener("drop" , function (e) {

 // Get value of data-item and show it

dropTarget.innerHTML = "Dropped " + dragMeItem.parentElement.

➥ dataset["item"];

});

 // Handle dragend to clean up

document.addEventListener("dragend" , function (e) {

dropTarget.classList.remove("hiLite");

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls208

 When you start dragging an ItemContainer, the dragstart handler is called. This handler
assigns the ItemContainer being dragged to the dragMeItem variable.

 As you drag the ItemContainer around the page, the dragover, the dragenter, and
the dragleave events are raised. The dragover event is used to determine where the
ItemContainer can be dropped. The dragover event handler in Listing 7.6 enables
the ItemContainer to be dropped only when the ItemContainer is dragged over the
dropTarget DIV element.

 You can (optionally) handle the dragenter and dragleave events to make a change in the
user interface to indicate valid drop locations. In the code in Listing 7.6 , the dropTarget
DIV element is highlighted when you drag an ItemContainer over it.

 The drop handler is responsible for handling the actual drop. In Listing 7.6 , the drop
handler simply displays the identity of the dropped ItemContainer in the dropTarget.

 Finally, the dragend handler performs clean up. In Listing 7.6 , the dragend handler is used
to ensure that the dropTarget is no longer highlighted after the drag-and-drop operation
completes.

 NOTE

 The ListView control implements all of the HTML5 drag-and-drop event handlers for you.
In other words, if you want to implement drag and drop with very little work then just use a
ListView control. We discuss drag and drop using the ListView in the next chapter.

 Using the Repeater Control
 The Repeater control is the most flexible control included in the WinJS library for display-
ing a collection of data. You can use the Repeater control to render a variety of different
types of elements including bulleted lists, select lists, checkbox lists, and tables.

 Let me start with a simple example. Listing 7.7 contains a Repeater control that renders
an HTML table of products (see Figure 7.4).

 FIGURE 7.4 Rendering an HTML table with a Repeater control

ptg999

Using the Repeater Control 209

7

 LISTING 7.7 Using the Repeater Control (repeater\repeater.html)

 < table >

 < thead >

 < tr >

 < th > Product Id </ th >

 < th > Product Name </ th >

 < th > Product Price </ th >

 </ tr >

 </ thead >

 < tbody id ="repeater1" data-win-control ="WinJS.UI.Repeater">

 < tr >

 < td data-win-bind ="textContent:id"></ td >

 < td data-win-bind ="textContent:name"></ td >

 < td data-win-bind ="textContent:price"></ td >

 </ tr >

 </ tbody >

 </ table >

 In Listing 7.7 , the TBODY element is converted into a Repeater control with the help of
the data-win-control="WinJS.UI.Repeater" attribute. The inner content of the Repeater
is used as the Repeater template. Each item from the Repeater data source is displayed as a
row in the TBODY.

 NOTE

 I used a little bit of CSS to style the HTML table so you can see the table borders.

 table {

 border-collapse : collapse ;

 }

 th , td {

 border : solid 1px gray ;

 padding : 10px ;

 }

 Listing 7.8 contains the JavaScript code for associating a data source with the Repeater.

 LISTING 7.8 Using a Repeater control (repeater\repeater.js)

 (function () {

 "use strict" ;

 function initialize() {

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls210

WinJS.UI.processAll().done(function () {

 var repeater1 = document.getElementById("repeater1").winControl;

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

{ id: 1, name: "Milk" , price: 2.20 },

{ id: 2, name: "Eggs" , price: 1.19 },

{ id: 3, name: "Fish" , price: 2.33 },

{ id: 4, name: "Peanut Butter" , price: 5.20 }

]);

 // Bind the list of products to the ListView

repeater1.data = listProducts;

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 You can bind a Repeater control to a WinJS.Binding.List. In Listing 7.8 , the Repeater is
bound to a list named listProducts which represents a list of products. The Repeater is
bound to the list with the help of the Repeater control’s data property.

 NOTE

 I talked about the WinJS.Binding.List object in Chapter 3 , “Observables, Bindings, and
Templates.”

 Using an External Template

 Most of the time, the easiest option is to define a Repeater template as the inner content
of the Repeater as I did in the previous section. However, you also have the option of
creating an external Repeater template.

 Here’s an example. Listing 7.9 contains two controls: a Repeater control and a separate
Template control. The Repeater is associated with the template through its template
property.

ptg999

Using the Repeater Control 211

7

 LISTING 7.9 Repeater with an External Template (repeaterExternal\repeaterExternal.html)

 < table style =" display :none">

 < tbody id ="productRowTemplate" data-win-control ="WinJS.Binding.Template">

 < tr >

 < td data-win-bind ="textContent:id"></ td >

 < td data-win-bind ="textContent:name"></ td >

 < td data-win-bind ="textContent:price"></ td >

 </ tr >

 </ tbody >

 </ table >

 < table >

 < thead >

 < tr >

 < th > Product Id </ th >

 < th > Product Name </ th >

 < th > Product Price </ th >

 </ tr >

 </ thead >

 < tbody id ="repeater1" data-win-control ="WinJS.UI.Repeater" data-win-

➥options ="{template: select('#productRowTemplate')}">

 </ tbody >

 </ table >

 The Repeater in Listing 7.9 renders an HTML table. Each row is rendered with the
productRowTemplate template.

 Notice that the external template is wrapped in an HTML table element hidden with
display:none. A template exists in the page and because it exists in the page, it must be
valid markup.

 WARNING

 Make sure that you declare the Template control before the Repeater control on the
page. Otherwise, the Repeater control won’t find it.

 Using a Nested Template

 One reason to create an external template is so that you can create nested Repeaters.
Imagine, for example, that you want to create an evil organization chart used by a
company that specializes in producing evil (see Figure 7.5).

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls212

 FIGURE 7.5 An evil org chart

 The JavaScript file in Listing 7.10 contains the data for the org chart. Notice that the data
follows a pattern. The data is a list of employees. Each employee can have a minions prop-
erty that represents another list of employees. An org chart can be arbitrarily deep.

 LISTING 7.10 Using Nested Repeaters (repeaterNested\repeaterNested.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var repeater1 = document.getElementById("repeater1").winControl;

 // Create a List of evil employees

 var listEmployees = new WinJS.Binding.List([

{

name: "Dr Evil" , salary: "billions" , minions: new WinJS.Binding.

➥List([

{ name: "Bad Guy 1" , salary: "4 dollars" },

{ name: "Bad Guy 2" , salary: "zero dollars" },

{ name: "Bad Guy 3" , salary: "100 dollars" , minions: new

➥WinJS.Binding.List([

ptg999

Using the Repeater Control 213

7

{ name: "Henchman 1" , salary: "14 dollars" },

{ name: "Henchman 2" , salary: "1 dollar" }

])}

])

}

]);

 // Bind the list of products to the ListView

repeater1.data = listEmployees;

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 So now that we have nested data, we can show it with the help of nested Repeaters. The
page in Listing 7.11 contains a Repeater control named repeater1 that refers to a separate
Template control named employeeTemplate. The employeeTemplate displays the name and
salary of the current employee. However, the employeeTemplate also contains a second
Repeater control that displays the employee’s minions.

 The minions are bound to the nested Repeater control with the help of the data-win-
bind="winControl.data: minions" attribute. Because the nested Repeater refers to the
employeesTemplate, the org chart can nest as deeply as required by the data source.

 LISTING 7.11 Using Nested Repeaters (repeaterNested\repeaterNested.html)

 < h1 > Evil Org Chart </ h1 >

 < ul id ="employeeTemplate" data-win-control ="WinJS.Binding.Template">

 < li >

Name: < span data-win-bind ="textContent:name"></ span >

/Salary: < span data-win-bind ="textContent:salary"></ span >

 < ul data-win-control ="WinJS.UI.Repeater" data-win-options ="{template:

➥select('#employeeTemplate')}" data-win-bind ="winControl.data: minions">

 </ ul >

 </ li >

 </ ul >

 < ul id ="repeater1" data-win-control ="WinJS.UI.Repeater" data-win-options ="{template:

➥select('#employeeTemplate')}">

 </ ul >

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls214

 Using the Repeater with the ItemContainer

 If you want the items displayed by a Repeater control to be invokable, selectable, or drag-
gable then you can use the Repeater control with the ItemContainer control.

 Listing 7.12 contains a simple example. The Repeater in Listing 7.12 is bound to a list of
three items. The Repeater renders an ItemContainer for each of the items.

 LISTING 7.12 Using a Repeater with an ItemContainer (repeaterItemContainer\
repeaterItemContainer.html)

 < div id ="repeater1" data-win-control ="WinJS.UI.Repeater">

 < div data-win-control ="WinJS.UI.ItemContainer" data-win-bind ="dataset.

➥name:name">

 < span data-win-bind ="textContent:name"></ span >

 </ div >

 </ div >

 Notice that the ItemContainer includes a data-win-bind="dataset.name:name" attribute.
This attribute associates the name of each data item with the ItemContainer.

 The Repeater is bound to the list of items in the JavaScript file in Listing 7.13 .

 LISTING 7.13 Using a Repeater with an ItemContainer (repeaterItemContainer\
repeaterItemContainer.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var repeater1 = document.getElementById("repeater1").winControl;

 // Create a List of options

 var listOptions = new WinJS.Binding.List([

{ name: "Option 1" },

{ name: "Option 2" },

{ name: "Option 3" }

]);

 // Bind the list of products to the ListView

repeater1.data = listOptions;

 // Handle invoking a Repeater item

repeater1.addEventListener("invoked" , function (e) {

 var optionName = e.target.dataset.name;

ptg999

Using the FlipView Control 215

7

 var md = new Windows.UI.Popups.MessageDialog(optionName);

md.showAsync();

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 When you open the page, the list of three items is rendered by the Repeater. If you click
an item then a message box is displayed with the name of the invoked item (see
 Figure 7.6).

 FIGURE 7.6 Invoking an item in a Repeater control

 Using the FlipView Control
 The FlipView control can be used to display a collection of items. Unlike the Repeater or
ListView controls, the FlipView only displays a single item from a collection at a time.

 The FlipView control is ideal for displaying a photo gallery—one picture at a time. It can
also be used for swiping through a list of magazine or newspaper articles.

 When you use a FlipView, only a single item from a data source is displayed. However,
arrows are displayed so you can move to the next or previous item in the data source.

 For example, the JavaScript file in Listing 7.14 includes a collection of three articles. Each
article has a title, author, and articleText property.

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls216

 LISTING 7.14 A List of Articles

 (function () {

 "use strict" ;

 // Create List of articles

 var listArticles = new WinJS.Binding.List([

{

title: "Why Dogs are Better than Cats" ,

author: "Arnold Wiggles" ,

articleText: "Pellentesque habitant morbi tristique senectus et netus \

 et malesuada fames ac turpis egestas. Proin pharetra nonummy pede. Mauris et

➥orci."

},

{

title: "Why Dogs are Better than Fish" ,

author: "Jane Rubble" ,

articleText: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. \

 Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar \

 ultricies, purus lectus malesuada libero, sit amet commodo magna \

 eros quis urna."

},

{

title: "Why Dogs are Better than Mice" ,

author: "Eric Alexander" ,

articleText: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. \

 Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar \

 ultricies, purus lectus malesuada libero, sit amet commodo magna \

 eros quis urna."

}

]);

 WinJS.Namespace.define("MyData" ,

 {

listArticles: listArticles

 });

 })();

ptg999

Using the FlipView Control 217

7

 Now imagine that you want to display the articles, one article at a time, in your Windows
Store app. The page in Listing 7.15 illustrates how you can use a FlipView control to
display individual articles from a list of articles (see Figure 7.7).

 Notice that the page includes a reference to the articles.js file from Listing 7.10, which
contains the data for the FlipView.

 FIGURE 7.7 Displaying articles with a FlipView control

 LISTING 7.15 Displaying an Article with a FlipView (flipView\flipView.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Chapter04 </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter07 references -->

 < link rel ="stylesheet" type ="text/css" href ="flipView.css" />

 < script src ="articles.js"></ script >

 < script src ="flipView.js"></ script >

 </ head >

 < body >

 < div id ="tmplArticle"

 data-win-control ="WinJS.Binding.Template">

 < div class ="articleItem">

 < h2 data-win-bind ="innerText:title"></ h2 >

Author: < span data-win-bind ="innerText:author"></ span >

 < p data-win-bind ="innerText:articleText"></ p >

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls218

 </ div >

 </ div >

 < div id ="fvArticles"

 data-win-control ="WinJS.UI.FlipView"

 data-win-options ="{

 itemDataSource: MyData.listArticles.dataSource,

 itemTemplate: select('#tmplArticle')

 }"></ div >

 </ body >

 </ html >

 The FlipView control is declared with the following HTML:

 < div id ="fvArticles"

 data-win-control ="WinJS.UI.FlipView"

 data-win-options ="{

 itemDataSource: MyData.listArticles.dataSource,

 itemTemplate: select('#tmplArticle')

 }"></ div >

 The FlipView is bound to the list of articles with the help of the itemDataSource prop-
erty. You can bind a FlipView to any data source which implements the IListDataSource
interface. There are only two objects in the WinJS library which implement this interface:
the WinJS.Binding.List object and the WinJS.UI.StorageDataSource object.

 In the markup above, the FlipView is bound to the list of articles which is a WinJS.
Binding.List. In particular, the FlipView is bound to the dataSource property of the
listArticles List object. The dataSource property returns the object that implements
the IListDataSource.

 The FlipView control’s itemTemplate property points to a Template control with the
id tmplArticle that is declared earlier in the page. The Template control contains the
template used to format the article displayed by the FlipView.

 WARNING

 Make sure that you declare the Template control before the FlipView control and not
after in the page or you will get a mysterious error and spend hours trying to debug it.

ptg999

Using the FlipView Control 219

7

 WARNING

 As always, remember to call WinJS.UI.processAll() or the FlipView won’t become a
FlipView.

 Displaying Page Numbers

 When swiping through items displayed by a FlipView, it can be useful to know which
item you are viewing out of how many items. In other words, you might want to display a
page number (see Figure 7.8).

 FIGURE 7.8 Displaying a page number with a FlipView

 You can use the FlipView control’s currentPage property to retrieve the current page (the
index of the current item) displayed by the FlipView. You can use the count() method
to get the total number of pages (the total number of items) contained in the data source
associated with the FlipView.

 The page in Listing 7.16 contains a FlipView and a DIV element. The DIV element
displays both the current page and the total number of pages.

 LISTING 7.16 Displaying the Current Page Number with a FlipView (flipViewPageNumber\
flipViewPageNumber.html)

 < div id ="tmplArticle"

 data-win-control ="WinJS.Binding.Template">

 < div class ="articleItem">

 < h2 data-win-bind ="innerText:title"></ h2 >

Author: < span data-win-bind ="innerText:author"></ span >

 < p data-win-bind ="innerText:articleText"></ p >

 </ div >

 </ div >

 < div id ="fvArticles"

 data-win-control ="WinJS.UI.FlipView"

 data-win-options ="{

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls220

 itemDataSource: MyData.listArticles.dataSource,

 itemTemplate: select('#tmplArticle')

 }"></ div >

 < div id ="divPageNumber"></ div >

The page number and page count displayed in the HTML page is updated with the
updatePageNumber() function contained in Listing 7.17 . This function updates the
divPageNumber DIV element in the page.

 LISTING 7.17 Displaying the Current Page Number with a FlipView (flipViewPageNumber\
flipViewPageNumber.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var fvArticles = document.getElementById("fvArticles").winControl;

 var divPageNumber = document.getElementById("divPageNumber");

 // Show Page Number and Page Count

 function updatePageNumber() {

 var currentPage = fvArticles.currentPage + 1;

fvArticles.count().done(function (count) {

divPageNumber.innerHTML = "Page " + currentPage

+ " of " + count;

});

}

updatePageNumber();

 // Update Page Number when new page selected

fvArticles.addEventListener("pageselected" , updatePageNumber);

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Notice that the FlipView count() method does not directly return a page count. Instead,
it returns a promise that returns a page count when the promise completes. This makes
the updatePageNumber() function slightly more complicated.

ptg999

Using the FlipView Control 221

7

 Creating Custom FlipView Buttons

 You might want to create custom buttons for navigating back and forth through the items
in a FlipView. The default arrows which appear for navigating through a FlipView are
subtle; they don’t appear unless you hover your mouse over the control. You might want
to bang the user over the head with more explicit navigation buttons (see Figure 7.9).

 FIGURE 7.9 Custom FlipView buttons

 You can take advantage of two methods of the FlipView control to control navigation
programmatically: the previous() and next() methods.

 For example, the page in Listing 7.18 includes two buttons named btnPrevious and
btnNext.

 LISTING 7.18 A FlipView with Custom Buttons (flipViewButtons\flipViewButtons.html)

 < div id ="tmplArticle"

 data-win-control ="WinJS.Binding.Template">

 < div class ="articleItem">

 < h2 data-win-bind ="innerText:title"></ h2 >

Author: < span data-win-bind ="innerText:author"></ span >

 < p data-win-bind ="innerText:articleText"></ p >

 </ div >

 </ div >

 < div id ="fvArticles"

 data-win-control ="WinJS.UI.FlipView"

 data-win-options ="{

 itemDataSource: MyData.listArticles.dataSource,

 itemTemplate: select('#tmplArticle')

 }"></ div >

 < div id ="divNavigation">

 < button id ="btnPrevious"> Previous </ button >

 < button id ="btnNext"> Next </ button >

 </ div >

ptg999

CHAPTER 7 Using the ItemContainer, Repeater, and FlipView Controls222

 The JavaScript code in Listing 7.19 contains the code to wire up the btnPrevious and
btnNext buttons to event handlers. When you click the btnPrevious button, the
previous() method is called; when you click the btnNext button, the next() method is
called.

 LISTING 7.19 A FlipView with Custom Buttons (flipViewButtons\flipViewButtons.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 var fvArticles = document.getElementById("fvArticles").winControl;

 var btnPrevious = document.getElementById("btnPrevious");

 var btnNext = document.getElementById("btnNext");

 // Setup Buttons

btnPrevious.addEventListener("click" , function () {

fvArticles.previous();

});

btnNext.addEventListener("click" , function () {

fvArticles.next();

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Summary
 In this chapter, you were introduced to three controls related to working with collections.
First, I described how you can wrap content in an ItemContainer control to make the
content invokable, selectable, or draggable.

 I also discussed the Repeater control. You saw how you can use the Repeater control
to render a collection of data as an HTML table. I demonstrated how you can use the
Repeater and ItemContainer controls together.

 Finally, I talked about the FlipView control. You learned how to use the FlipView to
display one item from a collection. I showed you how you can page through news articles
from a collection of articles.

 In the next chapter, I tackle the most important and feature-rich control in the WinJS
library: the ListView control.

ptg999

 CHAPTER 8

 Using the ListView
Control

 This entire chapter is devoted to one control: the
ListView control. This is the single most important control
included in the WinJS library. If you need to efficiently
display an interactive list or grid of items—for example,
a list of products, a list of movies, a list of files, a list of
photos—then the ListView control is the control to use.

 The ListView control is used in many of the standard
Windows 8.1 apps. For example, the ListView is used in
the Windows 8.1 Mail app to display the list of messages in
your inbox (see Figure 8.1). The control has been designed
to perform well when displaying thousands of items.

 In this chapter, I explain how you can take advantage of
all of the most important features of the ListView control.
You learn the basics, including how to select, sort, filter,
and group items in a ListView.

 I also discuss more advanced features of the ListView
control. In particular, you learn how to use the ListView
control with semantic zoom to generate different represen-
tations of the same data. You also learn how to take advan-
tage of drag and drop with a ListView.

IN THIS CHAPTER

▶ Introduction to the ListView
Control

▶ Using Different ListView
Layouts

▶ Invoking Items in a ListView
Control

▶ Selecting Items in a ListView
Control

▶ Sorting Items in a ListView
Control

▶ Filtering Items in a ListView
Control

▶ Grouping Items in a ListView
Control

▶ Switching Views with Semantic
Zoom

▶ Switching a ListView Template
Dynamically

▶ Using Drag and Drop

ptg999

CHAPTER 8 Using the ListView Control224

 Introduction to the ListView Control
 Let’s start with the basics. You can bind a ListView control to any data source that imple-
ments the JavaScript IListDataSource interface. The WinJS library includes two objects
that implement this data source:

▶ WinJS.Binding.List—Enables you to represent a JavaScript array as a data source.

▶ WinJS.UI.StorageDataSource—Enables you to represent files from your
computer hard drive as a data source. For example, you can use the WinJS.
UI.StorageDataSource with the ListView control to display a list of pictures
retrieved from your computer’s Pictures library.

 In this chapter, we focus on using the WinJS.Binding.List data source because this is
the most flexible data source. You can create an instance of the WinJS.Binding.List data
source from any JavaScript array.

 For example, you can perform an Ajax request against a remote server and retrieve an
array of products. You can then display the array of products by using the List data
source with the ListView control.

 NOTE

 Instead of using either the WinJS.Binding.List or WinJS.UI.StorageDataSource data
sources, you can create a custom data source and use it with the ListView control.
You might want to create a custom data source, for example, if you need to display data
from an IndexedDB database with a ListView control. We create several custom data
sources—including an IndexedDB data source—in the next chapter.

 Let’s look at how you can use the ListView control with a WinJS.Binding.List data
source. The page in Listing 8.1 contains a ListView control that displays a set of products
(see Figure 8.2).

 FIGURE 8.1 ListView in the Mail app

ptg999

Introduction to the ListView Control 225

8

 LISTING 8.1 Binding to a List Data Source (simple\simple.html)

 < div id ="tmplProduct"

 data-win-control ="WinJS.Binding.Template">

 < div class ="productItem">

 < h2 data-win-bind ="innerText:name"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplProduct')

 }"></ div >

 FIGURE 8.2 Displaying a list of products

 The ListView control in Listing 8.1 uses a template to render each product. The template
is contained in a Template control with the id tmplProduct.

 WARNING

 Make sure that you declare the Template control in the page before the ListView control
or you will get a mysterious and hard-to-debug exception.

 The JavaScript file in Listing 8.2 contains the array of products. A WinJS.Binding.List
object is created from the array of products and the List object is bound to the ListView
control with the help of the itemDataSource property. When you view the page, you see
the list of products from the JavaScript array.

ptg999

CHAPTER 8 Using the ListView Control226

 LISTING 8.2 Binding to a List Data Source (simple\simple.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get reference to ListView control

 var lvProducts = document.getElementById("lvProducts").winControl;

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

{ name: "Bread" , price: 2.20 },

{ name: "Cheese" , price: 1.19 },

{ name: "Milk" , price: 2.33 },

{ name: "Apples" , price: 5.20 },

{ name: "Steak" , price: 12.99 }

]);

 // Bind the list of products to the ListView

lvProducts.itemDataSource = listProducts.dataSource;

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 NOTE

 I used a tiny bit of CSS with Listing 8.1 to create borders around each of the products:

 #lvProducts .productItem {

 border : solid 1px white ;

 padding : 10px ;

 width : 300px ;

 }

 You can stick just about anything in a JavaScript array: the results of a database query, the
results of an Ajax call, the Fibonacci series. For this reason, when you bind a ListView con-
trol to a List, you can bind to almost any type of data.

 For example, the ListView in Listing 8.3 displays a list of blog posts retrieved from a blog
feed, as shown in Figure 8.3.

ptg999

Introduction to the ListView Control 227

8

 LISTING 8.3 Binding to a Blog Feed (blog\blog.html)

 < div id ="tmplBlog"

 data-win-control ="WinJS.Binding.Template">

 < div >

 < span data-win-bind ="innerHTML: title.text WinJS.Binding.oneTime"></ span >

 </ div >

 </ div >

 < div id ="lvBlog"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplBlog')

 }"></ div >

 FIGURE 8.3 Displaying a list of blog posts

 The list of blog posts is retrieved from an RSS feed located at http://StephenWalther.com
(hey, that’s my blog) with the help of the WinRT SyndicationClient class. Listing 8.4
contains the code which grabs the feed and binds it to the ListView control.

 LISTING 8.4 Binding to a Blog Feed (blog\blog.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get reference to ListView control

 var lvBlog = document.getElementById("lvBlog").winControl;

http://StephenWalther.com

ptg999

CHAPTER 8 Using the ListView Control228

 // Use WinRT SyndicationClient to get blog feed

 var client = new Windows.Web.Syndication.SyndicationClient();

 var feedURI = new Windows.Foundation.Uri("http://stephenwalther.com/

➥feed");

client.retrieveFeedAsync(feedURI).done(function (feed) {

 // Convert feed items to a List

 var listItems = new WinJS.Binding.List(feed.items);

 // Bind list to ListView

lvBlog.itemDataSource = listItems.dataSource;

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The SyndicationClient returns an instance of the SyndicationFeed class. The
SyndicationFeed class has an items property that contains the blog entries.

 The blog entries are passed to the constructor for the WinJS.Binding.List class and the
List class is bound to the ListView control.

 WARNING

 By default, a ListView control will try to make each of its list items into an observable
by calling the WinJS.Binding.as() method. Unfortunately, this does not work on WinRT
objects such as the items returned by the SyndicationClient class. You’ll get an excep-
tion if you try to bind WinRT objects to a ListView control.

 There are two ways to get around this problem. If you look closely at the template in
 Listing 8.3 then you will notice that the blog title is bound using the WinJS.Binding.
oneTime() binding converter. When you use the WinJS.Binding.oneTime() converter,
the ListView control does not attempt to convert the items bound to it into observables.

 Another solution to this problem would be to copy the array of WinRT objects into a new
JavaScript array of JavaScript objects before binding to the ListView control. JavaScript
objects, unlike WinRT objects, are happy to be made into observables.

 Using Different ListView Layouts
 The overall appearance of a ListView is determined by its layout. The ListView control
supports three different layouts:

� Grid Layout—ListView items are displayed in a multiple column grid.

ptg999

Using Different ListView Layouts 229

8

� Cell Spanning Layout—Same as grid layout but supports multiple column cells.

� List Layout—ListView items are displayed in a single list.

 Each layout corresponds to a JavaScript object—the GridLayout, CellSpanningLayout,
ListLayout objects—that has its own properties and methods. Let me discuss each of
these layout options in detail.

 Using Grid Layout

 The default layout is grid layout. When a ListView displays items in grid layout, the items
are displayed in multiple columns. If there are too many items to fit in the ListView then
you scroll to the right to view the additional items (see Figure 8.4).

 NOTE

 Under the covers, grid layout uses the W3C CSS 3 Grid Layout recommendation. You can
read the details here at http://dev.w3.org/csswg/css3-grid-layout/.

 FIGURE 8.4 ListView in grid layout

 When the ListView uses grid layout, you can set the maximumRowsOrColumns property to
set the maximum number of grid rows that should be displayed. Here’s how you would
set the maximumRowsOrColumns property so a ListView displays only one row (see
Figure 8.5):

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplProduct'),

 layout: {type:WinJS.UI.GridLayout, maximumRowsOrColumns:1}

 }"></ div >

http://dev.w3.org/csswg/css3-grid-layout/

ptg999

CHAPTER 8 Using the ListView Control230

 FIGURE 8.5 Setting the GridLayout maximumRowsOrColumns property

 Finally, if you prefer to scroll your ListView vertically instead of horizontally then you
can set the grid layout orientation option to vertical like this:

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplProduct'),

 layout: {type: WinJS.UI.GridLayout, orientation: 'vertical'}

 }"></ div >

 When you switch orientations, the scrollbar appears on the right of the ListView instead
of across the bottom of the ListView (see Figure 8.6).

 FIGURE 8.6 Vertical scrolling ListView

ptg999

Using Different ListView Layouts 231

8

 Using List Layout

 The second layout mode that you can use with a ListView control is list layout. In list
layout mode, the items are displayed in a single vertical list. If all of the items do not fit in
the ListView then you can scroll the ListView (see Figure 8.7).

 FIGURE 8.7 A ListView control that uses list layout

 Here’s how you can declare a ListView so it uses list layout:

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplProduct'),

 layout: {type:WinJS.UI.ListLayout}

 }"></ div >

 When ListView items are rendered with list layout then the items are not actually
displayed using HTML UL and LI elements as the name of the layout might imply.
Instead, DIV elements are rendered for each item.

 Using Cell Spanning Layout

 The final layout mode is called cell spanning layout . Cell spanning layout is similar to grid
layout but, unlike grid layout, cell spanning layout enables you to create grid items with
different sizes. For example, you can make a tile screen that contains different size tiles
like the Windows 8.1 start screen.

 Unfortunately, great power also requires lots of math. So, if you want to create different
size grid items then you will need to get out your calculator to figure out the sizes of the
different items.

 Imagine that you want to create the page in Figure 8.8 . Notice that the figure includes
three sizes of tiles: normal, wide, and tall.

ptg999

CHAPTER 8 Using the ListView Control232

 FIGURE 8.8 Creating different size tiles

 Listing 8.5 contains a page with cell spanning layout enabled.

 LISTING 8.5 Using Cell Spanning Layout (layoutCellSpanning\layoutCellSpanning.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > ListView </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0.Preview/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0.Preview/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0.Preview/js/ui.js"></ script >

 <!-- Chapter references -->

 < script src ="layoutCellSpanning.js"></ script >

 < style >

 .win-listview {

 margin : 5px ;

 border : 2px solid gray ;

 height : 580px ;

 }

 .normal {

 width : 250px ;

 height : 250px ;

 padding : 10px ;

ptg999

Using Different ListView Layouts 233

8

 background-color : gray ;

 }

 .tall {

 width : 250px ;

 height : 530px ;

 padding : 10px ;

 background-color : orange ;

 }

 .wide {

 width : 530px ;

 height : 250px ;

 padding : 10px ;

 background-color : navy ;

 }

 </ style >

 </ head >

 < body >

 < div id ="tmplProduct" data-win-control ="WinJS.Binding.Template">

 < div data-win-bind ="className: tileSize" >

 < h2 data-win-bind ="innerText:name"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplProduct'),

 layout: {type: WinJS.UI.CellSpanningLayout}

 }"></ div >

 </ body >

 </ html >

 Notice that the layout property for the ListView control is set to the value WinJS.
UI.CellSpanningLayout.

 Notice, furthermore, that the page includes three CSS classes that set the width and
height for normal, tall, and wide ListView items. Each class also defines a different
background color.

ptg999

CHAPTER 8 Using the ListView Control234

 The different CSS classes are used by the Template control in the body of the page. This
template contains an inner DIV element with the attribute data-win-bind="className:
tileSize". The CSS class rendered for each ListView item is determined by each data
item’s tileSize property.

 Listing 8.6 contains the code for binding the ListView to a set of products.

 LISTING 8.6 Using Cell Spanning Layout (layoutCellSpanning\layoutCellSpanning.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get reference to ListView control

 var lvProducts = document.getElementById("lvProducts").winControl;

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

{ name: "Bread" , price: 2.20, tileSize: "wide" },

{ name: "Cheese" , price: 1.19, tileSize: "normal" },

{ name: "Milk" , price: 2.33, tileSize: "tall" },

{ name: "Apples" , price: 5.20, tileSize: "normal" },

{ name: "Steak" , price: 12.99, tileSize: "normal" },

{ name: "Oranges" , price: 2.20, tileSize: "wide" },

{ name: "Carrots" , price: 1.19, tileSize: "normal" },

{ name: "Yogurt" , price: 2.33, tileSize: "normal" },

{ name: "Eggs" , price: 5.20, tileSize: "normal" },

{ name: "Soda" , price: 12.99, tileSize: "normal" },

{ name: "Steak" , price: 12.99, tileSize: "normal" },

{ name: "Oranges" , price: 2.20, tileSize: "normal" },

{ name: "Carrots" , price: 1.19, tileSize: "normal" },

{ name: "Yogurt" , price: 2.33, tileSize: "normal" },

{ name: "Eggs" , price: 5.20, tileSize: "normal" },

{ name: "Soda" , price: 12.99, tileSize: "normal" }

]);

lvProducts.layout.groupInfo = function (groupInfo) {

 return {

enableCellSpanning: true ,

cellWidth: 270,

cellHeight: 270

};

};

ptg999

Using Different ListView Layouts 235

8

lvProducts.layout.itemInfo = function (itemIndex) {

 var item = listProducts.getItem(itemIndex);

 var size = null ;

 switch (item.data.tileSize) {

 case "normal" :

size = {

width: 270,

height: 270

};

 break ;

 case "wide" :

size = {

width: 550,

height: 270

};

 break ;

 case "tall" :

size = {

width: 270,

height: 550

};

 break ;

}

 return size;

};

 // Bind the list of products to the ListView

lvProducts.itemDataSource = listProducts.dataSource;

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 In Listing 8.6 , each product has a tileSize property of normal, wide, or tall. This property
determines how each product is rendered.

 Two functions are associated with the ListView control’s layout: a groupInfo and
itemInfo function. The groupInfo function enables variable size cells by setting
enableCellSpanning to the value true. The groupInfo function also defines the default
size of ListView items to be 270 pixels by 270 pixels.

ptg999

CHAPTER 8 Using the ListView Control236

 The itemInfo function is called for each data item displayed by the ListView. The
itemInfo function determines whether a normal, wide, or tall tile is displayed for each
data item.

 The only tricky thing about getting all of this to work is making sure that the size of the
ListView items specified by the CSS classes matches the size of the ListView items speci-
fied by both the GroupInfo() and itemInfo() functions. What makes this extra tricky is
that you must take into account the padding and margins between the ListView elements
when calculating the width and height of items in the GroupInfo() and itemInfo()
functions.

 Invoking Items in a ListView Control
 Under the covers, a ListView control renders ItemContainer controls for each ListView
item. This is the exact same ItemContainer control that we discussed in the previous
chapter. Therefore, ListView items support the same events and styling as ItemContainer
controls.

 You can handle the ListView control’s iteminvoked event to detect when a particular
ListView item is clicked. The page in Listing 8.7 contains a standard ListView control
(nothing special about it).

 LISTING 8.7 Invoking a ListView Item (itemInvoked\itemInvoked.html)

 < div id ="tmplProduct"

 data-win-control ="WinJS.Binding.Template">

 < div class ="productItem">

 < h2 data-win-bind ="innerText:name"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplProduct')

 }"></ div >

 When you click one of the items displayed by the ListView, a dialog appears that displays
the index and name of the item invoked (see Figure 8.9).

ptg999

Invoking Items in a ListView Control 237

8

 FIGURE 8.9 Invoking a ListView item

 The iteminvoked handler is contained in Listing 8.8 . Information about the item clicked is
retrieved from the event handler’s detail property.

 LISTING 8.8 Invoking a ListView Item (itemInvoked\itemInvoked.html)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get reference to ListView control

 var lvProducts = document.getElementById("lvProducts").winControl;

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

{ name: "Bread" , price: 2.20 },

{ name: "Cheese" , price: 1.19 },

{ name: "Milk" , price: 2.33 },

{ name: "Apples" , price: 5.20 }

]);

 // Wire up item invoked handler

lvProducts.addEventListener("iteminvoked" , function (e) {

 var itemIndex = e.detail.itemIndex;

e.detail.itemPromise.then(function (item) {

 var message = "Invoked item " + itemIndex

+ " with name " + item.data.name;

 var md = new Windows.UI.Popups.MessageDialog(message);

md.showAsync();

});

});

ptg999

CHAPTER 8 Using the ListView Control238

 // Bind the list of products to the ListView

lvProducts.itemDataSource = listProducts.dataSource;

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Selecting Items in a ListView Control
 You can use the ListView control’s selectionchanging and selectionchanged events to
detect when an item is selected in a ListView. Imagine, for example, that you want to
create a master/detail page: You want to display a list of product categories and, when a
user selects a product category, display a list of matching products (see Figure 8.10).

 FIGURE 8.10 Selecting ListView items

 The page in Listing 8.9 contains two ListView controls: a ListView that displays the cate-
gories and a ListView that displays the matching products.

 LISTING 8.9 Creating a Master/Detail Page (masterDetail\masterDetail.html)

 <!-- Templates -->

 < div id ="tmplCategory"

 data-win-control ="WinJS.Binding.Template">

 < div class ="categoryItem">

 < h2 data-win-bind ="innerText:categoryName"></ h2 >

 </ div >

 </ div >

 < div id ="tmplProduct"

 data-win-control ="WinJS.Binding.Template">

 < div class ="productItem">

 < h2 data-win-bind ="innerText:productName"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

ptg999

Selecting Items in a ListView Control 239

8

 </ div >

 </ div >

 < div id ="container">

 <!-- Master ListView for Categories -->

 < div id ="lvCategories"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplCategory'),

 selectionMode: 'single',

 tapBehavior: 'directSelect',

 swipBehavior: 'select',

 layout: {type: WinJS.UI.ListLayout}

 }"></ div >

 <!-- Details ListView for Products -->

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplProduct'),

 selectionMode: 'none',

 layout: {type: WinJS.UI.ListLayout}

 }"></ div >

 </ div >

 The logic for the master/detail page is contained in Listing 8.10 . The categories and prod-
ucts are represented with an array named products. This array is bound to the categories
ListView.

 When you select a category then the selectionchanged event is raised. In Listing 8.10 , the
selectionchanged event handler is used to retrieve the list of matching products from the
selected category and display the products in the second ListView control.

 LISTING 8.10 Creating a Master/Detail Page (masterDetail\masterDetail.html)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get references to ListView controls

 var lvProducts = document.getElementById("lvProducts").winControl;

 var lvCategories = document.getElementById("lvCategories").winControl;

ptg999

CHAPTER 8 Using the ListView Control240

 // Create array of categories and products

 var products = [

{

categoryName: "Beverages" ,

products: [

{ productName: "Pepsi" , price: 4.00 },

{ productName: "Milk" , price: 2.11 },

{ productName: "Moxie" , price: 1.33 }

]

},

{

categoryName: "Meat" ,

products: [

{ productName: "Steak" , price: 34.33 },

{ productName: "Chicken" , price: 2.01 }

]

},

{

categoryName: "Fruit" ,

products: [

{ productName: "Apples" , price: 2.88 },

{ productName: "Oranges" , price: 7.01 }

]

}

];

 // Create a List of categories and products

 var listProducts = new WinJS.Binding.List(products);

 // Bind the list to the Categories ListView

lvCategories.itemDataSource = listProducts.dataSource;

 // Handle the selectionchanged event

lvCategories.addEventListener("selectionchanged" , function () {

 if (lvCategories.selection.count() > 0) {

lvCategories.selection.getItems().done(function (items) {

 // Get products for first selected item

 var selectedProducts = items[0].data.products;

 // Convert to list

 var listSelectedProducts = new WinJS.Binding.

➥List(selectedProducts);

 // Bind to Products ListView

lvProducts.itemDataSource = listSelectedProducts.dataSource;

});

}

ptg999

Sorting Items in a ListView Control 241

8

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Sorting Items in a ListView Control
 You can sort the items displayed with a ListView control by sorting the items in the
ListView control’s data source. For example, you might want to sort a list of products in
order of the product name or price (see Figure 8.11).

 FIGURE 8.11 Sorting ListView items

 The WinJS.Binding.List object supports the createSorted() method. This method
accepts a sort function that returns a new WinJS.Binding.List sorted according to the
function.

 For example, the following code sorts a list of products in order of the product name:

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

 { name: "Bread" , price: 2.20 },

 { name: "Cheese" , price: 1.19 },

 { name: "Milk" , price: 2.33 },

 { name: "Apples" , price: 5.20 },

 { name: "Steak" , price: 12.99 }

]);

 // Sort the products

 var sortedListProducts = listProducts.createSorted(function (item1, item2) {

 return item1.name > item2.name ? 1 : -1;

 });

ptg999

CHAPTER 8 Using the ListView Control242

 // Bind the list of products to the ListView

 lvProducts.itemDataSource = sortedListProducts.dataSource;

 The preceding code uses the createSorted() method to create a new sorted data source
based on the original unsorted products data source. The ListView is bound to the new
data source instead of the original data source.

 In the preceding code, the products are sorted with the following sort function:

 function (item1, item2) {

 return item1.name > item2.name ? 1 : -1;

 }

 A sort function sorts items by returning one of three possible values:

▶ 0—When the two items should be sorted in the same order

▶ -1—When the first item should be sorted before the second item

▶ 1—When the first item should be sorted after the second item

 The sortedListProducts data source is a live data source. If you add a new item to the
listProducts data source then the new item will appear in the ListView in the right
order. Changes to the listProducts data source are picked up automatically.

 NOTE

 You can use the same types of sort functions with the WinJS createSorted() method as
you would use with the standard JavaScript array sort() method.

 Filtering Items in a ListView Control
 You can filter the items displayed in a ListView by filtering the items in the data source
associated with the ListView. For example, when browsing through a large set of prod-
ucts, you might want to enable a user to filter the products by only showing products that
match a filter string (see Figure 8.12).

 FIGURE 8.12 Filtering a list of products

ptg999

Filtering Items in a ListView Control 243

8

 You can take an existing WinJS.Binding.List and create a new filtered WinJS.Binding.
List by calling the createFiltered() method. This method accepts a filter function that
returns either the value true or false depending on whether an item from the original list
should be included in the new list.

 The code in Listings 8.11 and 8.12 illustrate how you can use the createFiltered()
method to create a keyup search form. The page in Listing 8.11 contains an input box and
a ListView control.

 LISTING 8.11 Filtering a List of Products (filtering\filtering.html)

 < div >

 < input id ="inputFilter" />

 </ div >

 < div id ="tmplProduct"

 data-win-control ="WinJS.Binding.Template">

 < div class ="productItem">

 < h2 data-win-bind ="innerText:name"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplProduct')

 }"></ div >

 The JavaScript code in Listing 8.12 includes a function named filterProducts(). This
function accepts a ListView and a filter string and filters the ListView so it only displays
products that match the filter string.

 LISTING 8.12 Filtering a List of Products (filtering\filtering.js)

 (function () {

 "use strict" ;

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

{ name: "Bread" , price: 2.20 },

{ name: "Broccoli" , price: 1.19 },

{ name: "Bananas" , price: 2.33 },

{ name: "Apples" , price: 5.20 },

{ name: "Apple Sauce" , price: 12.99 }

]);

ptg999

CHAPTER 8 Using the ListView Control244

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get references to DOM elements and Controls

 var lvProducts = document.getElementById("lvProducts").winControl;

 var inputFilter = document.getElementById("inputFilter");

 // Bind the unfiltered list of products to the ListView

lvProducts.itemDataSource = listProducts.dataSource;

inputFilter.addEventListener("keyup" , function () {

filterProducts(lvProducts, inputFilter.value);

});

});

 }

 function filterProducts(listViewToFilter, filter) {

 // Filter the data source

 var filteredListProducts = listProducts.createFiltered(function (item) {

 var result = item.name.toLowerCase().indexOf(filter);

 return item.name.toLowerCase().indexOf(filter) == 0;

});

 // Bind the list of products to the ListView

listViewToFilter.itemDataSource = filteredListProducts.dataSource;

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Here’s the filter function used by the createFiltered() method:

 function (item) {

 var result = item.name.toLowerCase().indexOf(filter);

 return item.name.toLowerCase().indexOf(filter) == 0;

 }

 This function returns an item when the item name does not start with the filter string.
Depending on what the user types into the input box, different results are displayed. This
is a live filter, so the results change as the user types.

ptg999

Grouping Items in a ListView Control 245

8

 Grouping Items in a ListView Control
 You can group the items that appear in a ListView control. For example, instead of
displaying a flat list of products, you can group products by product category (see
Figure 8.13).

 FIGURE 8.13 Grouping ListView items

 If you want to take advantage of groups, then you need to create a grouped data source.
You create a grouped data source by calling the WinJS.Binding.List createGrouped()
method.

 The code in Listing 8.13 and Listing 8.14 illustrates how you can use the createGrouped()
method to group products by categories.

 LISTING 8.13 Grouping ListView Items (grouped\grouped.html)

 <!-- Templates -->

 < div id ="tmplProductGroupHeader" data-win-control ="WinJS.Binding.Template">

 < div class ="productGroupHeader">

 < h1 data-win-bind ="innerText: title"></ h1 >

 </ div >

 </ div >

 < div id ="tmplProduct"

 data-win-control ="WinJS.Binding.Template">

 < div class ="productItem">

 < h2 data-win-bind ="innerText:name"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 <!-- Products ListView -->

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

ptg999

CHAPTER 8 Using the ListView Control246

 itemTemplate: select('#tmplProduct'),

 groupHeaderTemplate: select('#tmplProductGroupHeader')

 }"></ div >

 The HTML page in Listing 8.13 contains two templates: one template for the group
header and one template for the individual items shown in each group. The group header
template is associated with the ListView control declaratively with the ListView control’s
groupHeaderTemplate property.

 LISTING 8.14 Grouping ListView Items (grouped\grouped.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get reference to ListView control

 var lvProducts = document.getElementById("lvProducts").winControl;

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

{ name: "Milk" , price: 2.44, category: "Beverages" },

{ name: "Oranges" , price: 1.99, category: "Fruit" },

{ name: "Wine" , price: 8.55, category: "Beverages" },

{ name: "Apples" , price: 2.44, category: "Fruit" },

{ name: "Steak" , price: 1.99, category: "Other" },

{ name: "Eggs" , price: 2.44, category: "Other" },

{ name: "Mushrooms" , price: 1.99, category: "Other" },

{ name: "Yogurt" , price: 2.44, category: "Other" },

{ name: "Soup" , price: 1.99, category: "Other" },

{ name: "Cereal" , price: 2.44, category: "Other" },

{ name: "Pepsi" , price: 1.99, category: "Beverages" }

]);

 // Create grouped data source

 var groupListProducts = listProducts.createGrouped(

 function (dataItem) {

 return dataItem.category;

},

 function (dataItem) {

 return { title: dataItem.category };

},

 function (group1, group2) {

 return group1 > group2 ? 1 : -1;

ptg999

Grouping Items in a ListView Control 247

8

}

);

 // Bind the list of products to the ListView

lvProducts.groupDataSource = groupListProducts.groups.dataSource;

lvProducts.itemDataSource = groupListProducts.dataSource;

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The JavaScript code in Listing 8.14 is used to create both the grouped data source and
the item data source. The grouped data source is created by calling the createGrouped()
method.

 Notice that the createGrouped() method requires three functions as arguments:

▶ groupKey—This function associates each list item with a group. The function accepts
a data item and returns a key that represents a group. In the preceding code, we
return the value of the category property for each product.

▶ groupData—This function returns the data item displayed by the group header
template. For example, in the preceding code, the function returns a title for the
group that is displayed in the group header template.

▶ groupSorter—This function determines the order in which the groups are displayed.
The preceding code displays the groups in alphabetical order: Beverages, Fruit, Other.

 The two data sources—the grouped and the item data sources—are bound to the ListView
control with the following two lines of code:

 // Bind the list of products to the ListView

 lvProducts.groupDataSource = groupListProducts.groups.dataSource;

 lvProducts.itemDataSource = groupListProducts.dataSource;

 The grouped data source is a live data source—so the groups displayed by the ListView
change when you change the data source. Furthermore, you can use the grouped data
source with a filtered data source.

ptg999

CHAPTER 8 Using the ListView Control248

 Switching Views with Semantic Zoom
 Semantic Zoom is a feature of Windows 8 that enables you to view data at two different
zoom levels. For example, the Windows 8 Start screen takes advantage of Semantic Zoom.
By default, when you open the Start screen, you see a close-up view of your apps (see
 Figure 8.14). However, you can zoom out to see a more far away view of your apps (see
 Figure 8.15).

 FIGURE 8.14 Default Start screen

 When using the mouse, you can zoom out by clicking the – button, which appears at the
bottom right of the screen. When using touch, you can zoom in and out by using pinch
and stretch gestures.

 You can implement Semantic Zoom in your Windows app by taking advantage of the
WinJS SemanticZoom control. When used with the ListView control, the SemanticZoom
control enables you to provide two different views of the same data: the hundred-foot
view and the ten-foot view.

ptg999

Switching Views with Semantic Zoom 249

8

 Imagine that you are working with a lot of products and the products can be grouped
by category. To make it easier for a user to navigate to different categories, you can take
advantage of Semantic Zoom. By default, you see the products grouped into categories
(see Figure 8.16). However, if you zoom out, then you see only the list of categories
without the products (see Figure 8.17).

 FIGURE 8.16 Using semantic zoom (ten-foot view)

 FIGURE 8.15 Zoomed-out Start screen

ptg999

CHAPTER 8 Using the ListView Control250

 FIGURE 8.17 Using semantic zoom (hundred-foot view)

 The HTML page in Listing 8.15 illustrates how you can implement Semantic Zoom. The
page contains a SemanticZoom control that has two child ListView controls. The different
ListViews are displayed at different zoom levels.

 LISTING 8.15 Zooming with Semantic Zoom (semanticZoom\semanticZoom.html)

 <!-- Zoom In Template -->

 < div id ="tmplProductGroupHeader" data-win-control ="WinJS.Binding.Template">

 < div class ="productGroupHeader">

 < h1 data-win-bind ="innerText: title"></ h1 >

 </ div >

 </ div >

 < div id ="tmplProduct"

 data-win-control ="WinJS.Binding.Template">

 < div class ="productItem">

 < h2 data-win-bind ="innerText:name"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 <!-- Zoom Out Template -->

 < div id ="tmplCategory"

 data-win-control ="WinJS.Binding.Template">

 < div class ="categoryItem">

 < h2 data-win-bind ="innerText:title"></ h2 >

 </ div >

 </ div >

 <!-- SemanticZoom and ListViews -->

 < div id ="divSemanticZoom" data-win-control ="WinJS.UI.SemanticZoom">

 <!-- Zoom In ListView (Products) -->

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

ptg999

Switching Views with Semantic Zoom 251

8

 data-win-options ="{

 itemTemplate: select('#tmplProduct'),

 groupHeaderTemplate: select('#tmplProductGroupHeader')

 }"></ div >

 <!-- Zoom Out ListView (Categories) -->

 < div id ="lvCategories"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplCategory')

 }"></ div >

 </ div >

 Here are the lines of code from Listing 8.15 where the SemanticZoom control is used:

 < div id ="divSemanticZoom" data-win-control ="WinJS.UI.SemanticZoom">

 <!-- Zoom In ListView (Products) -->

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplProduct'),

 groupHeaderTemplate: select('#tmplProductGroupHeader')

 }"></ div >

 <!-- Zoom Out ListView (Categories) -->

 < div id ="lvCategories"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplCategory')

 }"></ div >

 </ div >

 The SemanticZoom control contains the two ListView controls with the different zoom
levels. The SemanticZoom control switches between these two ListView controls displaying
one zoom level or the other.

 The JavaScript file in Listing 8.16 contains the code for implementing Semantic Zoom. A
data source representing a list of products is bound to the zoomed-in ListView control.
Additionally, a grouped data source is bound to both the zoomed-in and zoomed-out
ListView controls.

ptg999

CHAPTER 8 Using the ListView Control252

 LISTING 8.16 Zooming with Semantic Zoom (semanticZoom\semanticZoom.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get reference to ListView control

 var lvProducts = document.getElementById("lvProducts").winControl;

 var lvCategories = document.getElementById("lvCategories").winControl;

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

{ name: "Milk" , price: 2.44, category: "Beverages" },

{ name: "Oranges" , price: 1.99, category: "Fruit" },

{ name: "Wine" , price: 8.55, category: "Beverages" },

{ name: "Apples" , price: 2.44, category: "Fruit" },

{ name: "Steak" , price: 1.99, category: "Other" },

{ name: "Eggs" , price: 2.44, category: "Other" },

{ name: "Mushrooms" , price: 1.99, category: "Other" },

{ name: "Yogurt" , price: 2.44, category: "Other" },

{ name: "Soup" , price: 1.99, category: "Other" },

{ name: "Cereal" , price: 2.44, category: "Other" },

{ name: "Pepsi" , price: 1.99, category: "Beverages" }

]);

 // Create grouped data source

 var groupListProducts = listProducts.createGrouped(

 function (dataItem) {

 return dataItem.category;

},

 function (dataItem) {

 return { title: dataItem.category };

},

 function (group1, group2) {

 return group1 > group2 ? 1 : -1;

}

);

 // Bind the list of products to the Zoom In ListView

lvProducts.itemDataSource = groupListProducts.dataSource;

lvProducts.groupDataSource = groupListProducts.groups.dataSource;

 // Bind the list of categories to the Zoom Out ListView

lvCategories.itemDataSource = groupListProducts.groups.dataSource;

ptg999

Switching a ListView Template Dynamically 253

8

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Switching a ListView Template Dynamically
 You can assign a function to the ListView control’s itemTemplate property. This is great,
because it means that you can switch the template used to render a ListView item at
runtime.

 Imagine, for example, that you want to display products using two templates: one
template for normal products and one template for on-sale products (see Figure 8.18). The
HTML page in Listing 8.17 includes the two templates.

 FIGURE 8.18 Switching templates dynamically

 LISTING 8.17 Switching Templates Dynamically (dynamicTemplate\dynamicTemplate.js)

 < div id ="tmplProduct"

 data-win-control ="WinJS.Binding.Template">

 < div class ="productItem">

 < h2 data-win-bind ="innerText:name"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 < div id ="tmplProductOnSale"

 data-win-control ="WinJS.Binding.Template">

 < div class ="productItem">

ptg999

CHAPTER 8 Using the ListView Control254

 < h2 data-win-bind ="innerText:name"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

 < b > (On Sale!) </ b >

 </ div >

 </ div >

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"></ div >

 The only difference between the normal product template and the on sale template is that
the on sale template includes the message On Sale!

 Notice that the item template used by the ListView control is not set declaratively.
Instead, we set the template imperatively in the JavaScript file in Listing 8.18 .

 LISTING 8.18 Switching Templates Dynamically (dynamicTemplate\dynamicTemplate.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get reference to ListView control

 var lvProducts = document.getElementById("lvProducts").winControl;

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

{ name: "Bread" , price: 2.20 },

{ name: "Cheese" , price: 1.19, onSale: true },

{ name: "Milk" , price: 2.33, onSale: true },

{ name: "Apples" , price: 5.20 },

{ name: "Steak" , price: 12.99 }

]);

 // Assign an item template function

lvProducts.itemTemplate = function (itemPromise) {

 return itemPromise.then(function (item) {

 // Select either normal product template or on sale template

 var itemTemplate = document.getElementById("tmplProduct");

 if (item.data.onSale) {

itemTemplate = document.getElementById("tmplProductOnSale");

};

 // Render selected template to DIV container

ptg999

Switching a ListView Template Dynamically 255

8

 var container = document.createElement("div");

itemTemplate.winControl.render(item.data, container);

 return container;

});

};

 // Bind the list of products to the ListView

lvProducts.itemDataSource = listProducts.dataSource;

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 The dynamic template switching happens in the following chunk of code, which requires
some explanation:

 lvProducts.itemTemplate = function (itemPromise) {

 return itemPromise.then(function (item) {

 // Select either normal product template or on sale template

 var itemTemplate = document.getElementById("tmplProduct");

 if (item.data.onSale) {

itemTemplate = document.getElementById("tmplProductOnSale");

};

 // Render selected template to DIV container

 var container = document.createElement("div");

itemTemplate.winControl.render(item.data, container);

 return container;

 });

 };

 When each ListView item is rendered, a promise is passed to the itemTemplate func-
tion. The data item associated with the ListView item is not available until the promise
completes. Notice that the item parameter passed to the function includes a data property
that represents the data item associated with the ListView item. You can use the
item.data.onSale property to determine whether a product is on sale.

 When the promise completes, you can return the HTML fragment that will be rendered
for the ListView item. In the preceding code, the HTML fragment is rendered with the
help of either the tmplProduct template (for a normal product) or the tmplProductOnSale
template (for an on-sale product). The template is rendered to a DOM element named
container that is returned from the function.

ptg999

CHAPTER 8 Using the ListView Control256

 Using Drag and Drop
 The ListView control natively supports HTML5 drag and drop. You can reorder the items
in a ListView by dragging the items in the ListView. You also can drag and drop items
into and out of a ListView.

 Reordering Items in a ListView

 Enabling users to re-order the items in a ListView is super simple. You just need to assign
the value true to the ListView control’s itemsReorderable property. The page in Listing
 8.19 has reordering enabled.

 LISTING 8.19 Reordering Items in a ListView (itemsReorderable\itemsReorderable.html)

 < div id ="tmplProduct"

 data-win-control ="WinJS.Binding.Template">

 < div class ="productItem">

 < h2 data-win-bind ="innerText:name"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemsReorderable:true,

 itemTemplate: select('#tmplProduct')

 }"></ div >

 < div id ="divMessage"></ div >

 When you enable item reordering for a ListView, the ListView handles updating its data
source when the order of its items changes. In other words, the ListView control moves
the items in its data source automatically.

 The JavaScript code in Listing 8.20 demonstrates how you can handle the WinJS.Binding.
List itemmoved event to detect when an item in a List has been moved. The event
handler writes a message to the page (see Figure 8.19).

 LISTING 8.20 Reordering Items in a ListView (itemsReorderable\itemsReorderable.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get references to elements and controls

ptg999

Using Drag and Drop 257

8

 var lvProducts = document.getElementById("lvProducts").winControl;

 var divMessage = document.getElementById("divMessage");

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

{ name: "Bread" , price: 2.20 },

{ name: "Cheese" , price: 1.19 },

{ name: "Milk" , price: 2.33 },

{ name: "Apples" , price: 5.20 }

]);

listProducts.addEventListener("itemmoved" , function (e) {

 var product = e.detail.value;

 var oldIndex = e.detail.oldIndex;

 var newIndex = e.detail.newIndex;

 var message = "item " + product.name

+ " moved from " + oldIndex

+ " to " + newIndex;

divMessage.innerHTML = message;

});

 // Bind the list of products to the ListView

lvProducts.itemDataSource = listProducts.dataSource;

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 FIGURE 8.19 Reordering items in a ListView

ptg999

CHAPTER 8 Using the ListView Control258

 Dragging Items from ListViews

 You also can drag and drop items in and out of a ListView control. Imagine, for example,
that you are using a ListView control to display a list of products and you want users to
be able to drag products from the ListView into a shopping cart (see Figure 8.20).

 FIGURE 8.20 Dragging items from a ListView to a shopping cart

 In that case, you can create the page in Listing 8.21 . This page contains a ListView that
represents the list of products and a DIV element that represents the shopping cart.

 LISTING 8.21 Dragging and Dropping with a ListView (dragDrop\dragDrop.html)

 < !DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > ListView </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- Chapter references -->

 < script src ="dragDrop.js"></ script >

 < style >

 #container {

 width : 800px ;

 position : relative ;

}

ptg999

Using Drag and Drop 259

8

 #lvProducts {

 width : 400px ;

}

 .productItem {

 background-color : navy ;

 border : solid 1px white ;

 padding : 10px ;

}

 #divCart {

 position : absolute ;

 top : 0px ;

 right : 0px ;

 width : 350px ;

 background-color : orange ;

 padding : 10px ;

}

 #divCart.hiLite {

 color : black ;

 background-color : yellow ;

}

 </ style >

 </ head >

 < body >

 < div id ="tmplProduct"

 data-win-control ="WinJS.Binding.Template">

 < div class ="productItem">

 < h2 data-win-bind ="innerText:name"></ h2 >

Price: < span data-win-bind ="innerText:price"></ span >

 </ div >

 </ div >

 < div id ="container">

 < h2 > Products </ h2 >

 < div id ="lvProducts"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemsDraggable:true,

 itemTemplate: select('#tmplProduct'),

 layout: {type:WinJS.UI.ListLayout}

 }"></ div >

ptg999

CHAPTER 8 Using the ListView Control260

 < div id ="divCart">

 < h2 > Shopping Cart </ h2 >

 < ul id ="ulCart"></ ul >

 </ div >

 </ div >

 </ body >

 </ html >

 Notice that the ListView control includes a itemsDraggable property that is set to the
value true. You need to enable this property to drag items out of the ListView.

 The logic for handling drag and drop is contained in Listing 8.22 .

 LISTING 8.22 Dragging and Dropping with a ListView (dragDrop\dragDrop.js)

 (function () {

 "use strict" ;

 function initialize() {

WinJS.UI.processAll().done(function () {

 // Get references to elements and controls

 var lvProducts = document.getElementById("lvProducts").winControl;

 var divCart = document.getElementById("divCart");

 var ulCart = document.getElementById("ulCart");

 // Create a List of products

 var listProducts = new WinJS.Binding.List([

{ name: "Bread" , price: 2.20 },

{ name: "Cheese" , price: 1.19 },

{ name: "Milk" , price: 2.33 },

{ name: "Apples" , price: 5.20 }

]);

 // Bind the list of products to the ListView

lvProducts.itemDataSource = listProducts.dataSource;

lvProducts.addEventListener("itemdragstart" , function (e) {

 var selectedIndex = e.detail.dragInfo.getIndices()[0];

e.detail.dataTransfer.setData("Text" , JSON.

➥stringify(selectedIndex));

});

 // Allow drop on cart

divCart.addEventListener("dragover" , function (e) {

ptg999

Using Drag and Drop 261

8

e.preventDefault();

});

 // highlight cart on hover

divCart.addEventListener("dragenter" , function (e) {

divCart.classList.add("hiLite");

});

 // unhighlight when leave hover

divCart.addEventListener("dragleave" , function (e) {

divCart.classList.remove("hiLite");

});

 // handle drop

divCart.addEventListener("drop" , function (e) {

 var selectedIndex = JSON.parse(e.dataTransfer.getData("Text"));

listProducts.dataSource.itemFromIndex(selectedIndex).then(function

➥(selectedItem) {

ulCart.innerHTML += "" + selectedItem.data.name + "" ;

});

});

 // cleanup

divCart.addEventListener("dragend" , function (e) {

divCart.classList.remove("hiLite");

});

});

 }

 document.addEventListener("DOMContentLoaded" , initialize);

 })();

 Listing 8.22 contains event handlers for the following events:

▶ itemdragstart—Handle this event to store the identity of the item being dragged.
The e.detail.dragInfo property contains methods that enable you to retrieve infor-
mation about the ListView item being dragged.

▶ dragover—Handle this event to specify valid drop targets. If you don’t call
preventDefault() when you hover over an element, then you cannot perform a
drop over the element.

▶ dragenter—Handle this event to show a visual indicator of a valid drop target. In
the preceding code, I add a CSS class to the shopping cart that changes the back-
ground color to yellow.

ptg999

CHAPTER 8 Using the ListView Control262

▶ dragleave—Handle this event to show a visual indicator of a valid drop target. In
the preceding code, I remove the CSS class which changes the background color of
the shopping cart.

▶ drop—Handle this event to perform the drop. In the preceding code, I retrieve the
name of the product dropped and display the name in the shopping cart.

▶ dragend—Handle this event to perform any cleanup associated with the drag-and-
drop operation.

 Notice that, with the exception of the itemdragstart event handler, all of the event
handlers are standard HTML5 drag-and-drop event handlers. The ListView control, and
the ItemContainer controls that it renders, follows the HTML5 standard.

 Summary
 This chapter was all about the ListView control. You learned how to take advantage of
this control to display a collection of items in either a list or a grid.

 First, I explained the basic features of this control. You learned how select, sort, filter,
and group items in a ListView. I also discussed several advanced features of the control
including how to switch ListView item templates dynamically and how to drag and drop
ListView items.

 In the next chapter, I show you how you can use a ListView control with different types
of custom data sources including an IndexedDB data source.

ptg999

 CHAPTER 9

 Creating Data Sources

 The WinJS library includes two objects that you can use
as data sources—the List and the StorageDataSource
objects. If you need to use a ListView or FlipView with
other types of data then you need to write a custom data
source.

 The goal of this chapter is to explain how you can write
custom data sources. In this chapter, I explain how you can
create three custom data sources:

▶ FileDataSource—The file data source stores data on
the local file system.

▶ WebServiceDataSource—The web service data source
enables you to use a remote web service to retrieve
and store data.

▶ IndexedDBData Source—The IndexedDB data source
enables you to retrieve and store data using an
IndexedDB database.

 The full source of these data sources are contained in
the GitHub project for this book (https://github.com/
StephenWalther/Windows8.1AppsUnleashed).

 Creating Custom Data Sources
 Let me start by giving you an overview of how you can
create a custom data source. In this section, I’ll explain
how you can implement the methods of a custom data
source that uses a JavaScript array to store data. I’ll walk
through creating the constructor for this data source as
well as the most important methods for this data source.
After discussing this (overly simple) data source in this
section, we’ll dive into building more practical data sources
in latter sections, such as the Web service data source and
IndexedDB data source.

IN THIS CHAPTER

▶ Creating Custom Data
Sources

▶ Creating a File Data Source

▶ Creating a Web Service
Data Source

▶ Creating an IndexedDB
Data Source

https://github.com/StephenWalther/Windows8.1AppsUnleashed
https://github.com/StephenWalther/Windows8.1AppsUnleashed

ptg999

CHAPTER 9 Creating Data Sources264

 NOTE

 You can find the entire source code for the custom data source discussed in this section
in the myData\myDataSource.js file.

 Creating the Data Source Class

 The easiest way to create a custom data source is to derive a new class from the base
VirtualizedDataSource class. For example, you can use the following code to create a new
data source named MyDataSource:

 var MyDataSource = WinJS.Class.derive(

 WinJS.UI.VirtualizedDataSource,

 // Constructor

 function () {

 this ._adapter = new MyDataAdapter();

 this ._baseDataSourceConstructor(this ._adapter);

 }

);

 In the preceding code, two arguments are passed to the WinJS.Class.derive() method to
create the new MyDataSource class: a base class (WinJS.UI.VirtualizedDataSource) and a
constructor for the new class.

 In the constructor for your derived VirtualizedDataSource class, you call the
_baseDataSourceContructor() method with a data adapter. The bulk of the work that
goes into building a custom data source goes into creating this data adapter class.

 Creating a Data Adapter

 You create a data adapter by implementing the IListDataAdapter interface. This interface
has the following methods:

▶ change()

▶ getCount()

▶ insertAfter()

▶ insertAtEnd()

▶ insertAtStart()

▶ insertBefore()

▶ itemsFromDescription()

▶ itemsFromEnd()

▶ itemsFromIndex()

▶ itemsFromKey()

ptg999

Creating Custom Data Sources 265

9

▶ itemsFromStart()

▶ itemSignature()

▶ moveAfter()

▶ moveBefore()

▶ moveToEnd()

▶ moveToStart()

▶ remove()

▶ setNotificationHandler()

 The interface also includes the following property:

▶ compareByIdentity

 Fortunately, you don’t need to actually implement all of these methods and properties.
You can implement only the methods that you actually need.

 For example, if you want to create a simple, read-only data source then you only need to
implement the getCount() and itemsFromIndex() methods. If you want to create a more
complicated, read-write data source then you need to also implement the change(),
insertAtEnd(), and remove() methods.

 In the following sections, I describe how you can implement several of these methods
such as the getCount() and itemsFromIndex() methods.

 Implementing the getCount() Method

 The getCount() method should return the total number of records represented by the data
source. For example, if you are storing items in a JavaScript array, then the getCount()
method should return the length of the array:

 getCount: function () {

 return WinJS.Promise.wrap(this ._arrayData.length);

 }

 The getCount() method must return a promise. Therefore, you either need to wrap
the return value in a promise using WinJS.Promise.wrap() or you need to create a new
promise object.

 Implementing the itemsFromIndex() Method

 The itemsFromIndex() method returns a set of items from the data source. Three argu-
ments are passed to this method:

▶ requestIndex—The index of the first item to retrieve from the data source

ptg999

CHAPTER 9 Creating Data Sources266

▶ countBefore—The number of items before the requested index to retrieve from the
data source

▶ countAfter—The number of items after the requested index to retrieve from the data
source

 The countBefore and countAfter parameters are intended to be interpreted as hints. You
can return more than the countBefore or countAfter number of items if you wish.

 Here’s a simple implementation of the itemsFromIndex() method. This method returns a
portion of JavaScript array.

 itemsFromIndex: function (requestIndex, countBefore, countAfter) {

 var startIndex = Math.max(0, requestIndex - countBefore);

 var subItems = this ._arrayData.slice(startIndex);

 return WinJS.Promise.wrap({

items: subItems,

offset: requestIndex - startIndex,

totalCount: this ._arrayData.length

 });

 }

 The itemsFromIndex() method should return an object that implements the IFetchResult
interface. In the preceding code, three properties of the IFetchResult interface are
returned: items, offset, and totalCount.

 The items property represents the array of items returned by the itemsFromIndex()
method. Each item in the items array must implement the IListItem interface. At the
very minimum, each item must have a key and a data property.

 The offset property represents the position of the item which corresponds to the
requestIndex in the items array. If you return items before the requested index then the
offset will be greater than 0.

 Finally, the totalCount property returns the total number of items represented by the data
source and not just the number of items being returned.

 Each item in the items array returned by itemsFromIndex must implement the IListItem
interface. Here’s a sample of the data returned from the itemsFromIndex() method:

 {

 items: [

 {key:"1", data: {name: "wake up"}},

 {key:"3", data: {name: "get out of bed"}},

 {key:"4", data: {name: "drag the comb across my head"}}

]

 offset: 0,

 totalCount: 3

 }

ptg999

Creating Custom Data Sources 267

9

 NOTE

 In addition to the itemsFromIndex() method, you also can implement the
itemsFromDescription(), itemsFromEnd(), itemsFromKey(), or itemsFromStart()
methods. Implementing these additional methods for fetching data is optional.

 Implementing the insertAtEnd() Method

 If you want to support creating new items then you should implement the insertAtEnd()
method. Two arguments are passed to this method, the key of the new item and the
actual new item.

 Here is a sample which illustrates how you can use the insertAtEnd() method to add a
new item to a JavaScript array.

 insertAtEnd: function (unused, data) {

 var newItem = {

key: (++ this ._maxKey).toString(),

data: data

 };

 this ._arrayData.push(newItem);

 return WinJS.Promise.wrap(newItem);

 },

 Typically, you don’t provide a key and you let the data source generate the key for you.
Therefore, typically, you ignore the key argument passed to the insertAtEnd() method
and you generate the key yourself. In the preceding code, the key is generated by adding
one to the previously generated key and converting the result into a string.

 WARNING

 Data source keys must be strings.

 Notice that the insertAtEnd() method returns the new item including its key. The object
that is returned conforms to the IItem interface wrapped in a promise.

 Implementing the remove() Method

 If you need the ability to delete an item from a data source then you need to implement
the remove() method. The key of the item being removed is passed to the method and the
method returns nothing if the item is removed.

 Here’s some sample code that removes an item from an array:

 remove: function (key) {

 var i = this ._getIndexFromKey(key);

 this ._arrayData.splice(i, 1);

 return WinJS.Promise.wrap(null);

ptg999

CHAPTER 9 Creating Data Sources268

 },

 _getIndexFromKey: function (key) {

 for (var i = 0; i < this ._arrayData.length; i++) {

 if (this ._arrayData[i].key == key) {

 return i;

}

 }

 }

 Implementing the change() Method

 If you need to support editing items in a data source then you need to implement the
change() method. Three arguments are passed to the change() method: the key of the
item being edited, the new value of the item being edited, and the index of the item being
edited.

 Here’s some sample code for implementing the change() method:

 change: function (key, data, indexHint) {

 var index = this ._getIndexFromKey(key);

 this ._arrayData[index] = data;

 var newItem = {

key: key,

index: index,

data: data

 };

 return new WinJS.Promise.wrap(null);

 }

 Notice that the change() method returns an empty promise. The method just completes
without returning anything special.

 Handling Errors

 If there is an error when inserting, removing, or changing an item then you can return an
EditError object. You can return one of the following four values:

▶ WinJS.UI.EditError.canceled—Return this error when the edit operation, for what-
ever reason, is canceled.

▶ WinJS.UI.EditError.noResponse—Return this error when the edit operation times
out.

▶ WinJS.UI.EditError.notPermitted—Return this error when writing to a read-only
data source.

▶ WinJS.UI.EditError.noLongerMeaningful—Return this error when the item has
already been changed.

ptg999

Creating Custom Data Sources 269

9

 For example, when creating a read-only data source, you can create the insertAtEnd()
method like this:

 insertAtEnd: function (unused, data) {

 return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.EditError.

➥notPermitted));

 }

 Implementing the setNotificationHandler() Method

 The setNotificationHandler() method enables you to raise notifications when the status
of a data source changes. You can call any of the following methods:

▶ beginNotifications()

▶ changed()

▶ endNotifications()

▶ inserted()

▶ invalidateAll()

▶ moved()

▶ reload()

▶ removed()

 You don’t need to raise these notifications when using the standard data adapter methods
such as the insertAtEnd(), remove(), and change() methods discussed earlier. However,
you will need to raise these notifications when you add a custom method to your data
source.

 Imagine, for example, that you want to add a nuke() method to your data source. When
you call the nuke() method, all of the data is removed from your data source.

 Here’s how you would implement the nuke() method in the data adapter class:

 setNotificationHandler: function (notificationHandler) {

 this ._notificationHandler = notificationHandler;

 },

 nuke: function () {

 this ._arrayData = [];

 this ._notificationHandler.reload();

 }

ptg999

CHAPTER 9 Creating Data Sources270

 In the preceding code, the setNotificationHandler() method assigns the predefined
notificationHandler method to a private variable named _notificationHandler. This
makes this predefined notificationHandler method available to all of the methods in the
data adapter.

 The nuke() method, our custom method, sets the data source array to an empty array
and calls the notificationHandler reload() method. If you don’t call reload() then a
ListView bound to the data source won’t clear away its items.

 Here’s how you can expose the custom nuke() method from a data source:

 var MyDataSource = WinJS.Class.derive(

 WinJS.UI.VirtualizedDataSource,

 // Constructor

 function (fileName) {

 this ._adapter = new MyDataAdapter();

 this ._baseDataSourceConstructor(this ._adapter);

 },

 // Instance methods

 {

nuke: function () {

 this ._adapter.nuke();

}

 }

);

 The MyDataSource class in the code includes a nuke() method. The nuke() method simply
delegates to the data adapter nuke() method.

 Creating a File Data Source
 In this section, I discuss how you can create a custom file data source. The file data source
stores and retrieves data from the file system.

 NOTE

 The complete source code for the FileDataSource is included in the GitHub source code
in a folder named file.

 The FileDataSource includes implementations of the getCount(), itemsFromIndex(),
insertAtEnd(), remove(), and change() methods.

 When you call either the getCount() or itemsFromIndex() methods, the FileDataSource
loads its data from the file system and calls JSON.parse() to parse the file data into a
JavaScript array. The FileDataSource loads data in its _ensureData() method:

ptg999

Creating a File Data Source 271

9

 _ensureData: function () {

 var that = this ;

 // Attempt to return cached data

 if (this ._cachedData) {

 return WinJS.Promise.wrap(that._cachedData);

 }

 // Otherwise, load from file

 return new WinJS.Promise(function (complete, error) {

 var local = WinJS.Application.local;

 var def = '{"maxKey":-1,"items":[]}' ;

local.readText(that._fileName, def).done(function (fileContents) {

that._cachedData = JSON.parse(fileContents);

complete(that._cachedData);

});

 });

 }

 The readText() method reads a text file from the file system. If the text file does not exist
then the readText() method returns the value of def instead. In either case, the results of
reading the text file is converted into a JavaScript array with the help of the JSON.parse()
method.

 When you call the insertAtEnd(), remove(), or change() methods, the FileDataSource
calls JSON.stringify() to convert the data into a string. The FileDatasource then saves
the data to the file system. The FileDataSource saves the data in its _saveData() method:

 _saveData: function (data) {

 this ._cachedData = data;

 var local = WinJS.Application.local;

 var str = JSON.stringify(data);

 return local.writeText(this ._fileName, str);

 }

 Using the File Data Source

 Imagine that you want to create a simple task list app with the file data source. You want
to be able to display a list of existing tasks and create new tasks (see Figure 9.1).

ptg999

CHAPTER 9 Creating Data Sources272

 FIGURE 9.1 Task list created with a file data source

 You also want to be able to delete individual tasks by right-clicking/swiping a task and
clicking the Delete button (see Figure 9.2) or delete all of the tasks by clicking the Nuke
button.

 FIGURE 9.2 Deleting tasks with the file data source

ptg999

Creating a File Data Source 273

9

 The user interface for the task list app is contained in the HTML page in Listing 9.1 . The
HTML page includes a ListView control that displays the list of tasks.

 LISTING 9.1 File Data Source (file\file.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > List Data Source </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- DataSources references -->

 < link href ="file.css" rel ="stylesheet" />

 < script type ="text/javascript" src ="fileDataSource.js"></ script >

 < script src ="file.js"></ script >

 </ head >

 < body >

 < div id ="tmplTask" data-win-control ="WinJS.Binding.Template">

 < div class ="taskItem">

 < span data-win-bind ="innerText:name"></ span >

 </ div >

 </ div >

 < div id ="lvTasks"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 layout: {type: WinJS.UI.ListLayout},

 itemTemplate: select('#tmplTask'),

 selectionMode: 'single'

 }"></ div >

 < form id ="frmAdd">

 < fieldset >

 < legend > Add Task </ legend >

 < label > New Task </ label >

 < input id ="inputTaskName" required />

 < button > Add </ button >

 </ fieldset >

 </ form >

 < button id ="btnNuke"> Nuke </ button >

 < button id ="btnDelete"> Delete </ button >

ptg999

CHAPTER 9 Creating Data Sources274

 < button id ="btnEdit"> Edit </ button >

 </ body >

 </ html >

 The JavaScript file associated with the HTML page is contained in Listing 9.2 . This
JavaScript code contains the code that binds the ListView control to the FileDataSource.

 LISTING 9.2 File Data Source (file\file.js)

 function init() {

 WinJS.UI.processAll().done(function () {

 var lvTasks = document.getElementById("lvTasks").winControl;

 // Create data source and bind to ListView

 var tasksDataSource = new DataSources.FileDataSource("tasks.json");

lvTasks.itemDataSource = tasksDataSource;

 // Wire-up frmAdd and Delete, Nuke buttons

document.getElementById("frmAdd").addEventListener("submit" , function (evt)

{

evt.preventDefault();

tasksDataSource.beginEdits();

tasksDataSource.insertAtEnd(null , {

name: document.getElementById("inputTaskName").value

}).done(function (newItem) {

tasksDataSource.endEdits();

document.getElementById("frmAdd").reset();

 // Show last item added

lvTasks.itemDataSource.getCount().done(function (count) {

lvTasks.ensureVisible(count);

})

});

});

document.getElementById("btnDelete").addEventListener("click" , function () {

 if (lvTasks.selection.count() == 1) {

lvTasks.selection.getItems().done(function (items) {

tasksDataSource.beginEdits();

tasksDataSource.remove(items[0].key).done(function () {

tasksDataSource.endEdits();

});

});

ptg999

Creating a File Data Source 275

9

}

});

document.getElementById("btnEdit").addEventListener("click" , function () {

 if (lvTasks.selection.count() == 1) {

lvTasks.selection.getItems().done(function (items) {

tasksDataSource.beginEdits();

tasksDataSource.change(items[0].key, { name: "Changed!"

➥}).done(function () {

tasksDataSource.endEdits();

});

});

}

});

document.getElementById("btnNuke").addEventListener("click" , function () {

tasksDataSource.nuke();

});

 });

 }

 document.addEventListener("DOMContentLoaded" , init);

 The file data source is created and bound to the ListView with the following two lines
of code:

 var tasksDataSource = new DataSources.FileDataSource("tasks.json");

 lvTasks.itemDataSource = tasksDataSource;

 The name of the file to create is passed to the constructor of the FileDataSource. In the
preceding code, a file named tasks.json is used to store the list of tasks.

 New tasks are created with the help of the following code:

 document.getElementById("frmAdd").addEventListener("submit" , function (evt) {

 evt.preventDefault();

 tasksDataSource.beginEdits();

 tasksDataSource.insertAtEnd(null , {

name: document.getElementById("inputTaskName").value

 }).done(function (newItem) {

tasksDataSource.endEdits();

document.getElementById("frmAdd").reset();

 // Show last item added

ptg999

CHAPTER 9 Creating Data Sources276

lvTasks.itemDataSource.getCount().done(function (count) {

lvTasks.ensureVisible(count);

})

 });

 });

 When you submit the HTML form for adding new tasks, the file data source
insertAtEnd() method is called to create the new task. If the new task is successfully
created then the ListView control’s ensureVisible() method is called to ensure that the
new task is scrolled into view.

 WARNING

 Always call beginEdits() and endEdits() when inserting, editing, or deleting data with
a data source. If you neglect to use beginEdits() and endEdits() then you can get null
reference exceptions when you edit items too fast.

 Creating a Web Service Data Source
 In this section, I discuss how you can build a web service data source. The web service
data source enables you to bind a ListView control to a remote web service. You can use
the data source to both retrieve and modify data.

 You can use the web service data source, for example, to retrieve a list of products from a
catalog of products stored in a database on a remote website. That way, when the catalog
of products is updated, your Windows Store app will display the latest products.

 NOTE

 When working with Ajax, I strongly recommend that you take advantage of the free
Fiddler2 tool to help debug failed Ajax requests. You can download Fiddler2—which works
great with Windows 8—from http://fiddler2.com .

 NOTE

 The complete source code for the WebServiceDataSource is included in the GitHub
source in a folder named webService.

 Creating the Data Source

 The web service data source uses the WinJS.xhr() method to make the Ajax calls to the
remote web service. For example, the getCount() method looks like this:

http://fiddler2.com

ptg999

Creating a Web Service Data Source 277

9

 getCount: function () {

 var that = this ;

 return new WinJS.Promise(function (complete, error) {

 var options = {

url: that._url + "/getCount"

};

 return WinJS.xhr(options).then(function (xhr) {

 var count = JSON.parse(xhr.response);

complete(count);

},

 function (xhr) {

console.log("Could not call getCount()");

});

 });

 }

 The getCount() method invokes a remote web service action named getCount() by
performing an HTTP GET request.

 Here’s another of the methods of the web service data source. The remove() method
invokes a remote web service action named remove() by performing an HTTP DELETE
request. The remove() method looks like this:

 remove: function (key) {

 var that = this ;

 return new WinJS.Promise(function (complete, error) {

 var options = {

url: that._url + "/remove/" + key,

type: "DELETE" ,

headers: {

authenticationToken: that._authenticationToken

}

};

WinJS.xhr(options).then(

 function (xhr) {

complete();

},

 function (xhr) {

console.log("Could not call remove()");

}

);

 });

 }

ptg999

CHAPTER 9 Creating Data Sources278

 In general, each method of the web service data source delegates to a remote web service
action with the same name.

 Creating the Web Service

 There are several ways that you can create a web service. Even if you restrict yourself to
Microsoft technologies, you have several options. You can create a WCF service, a WCF
Data Service, an ASMX Web service, a Windows Azure Mobile Services service, or an
ASP.NET Web API service.

 NOTE

 In the next chapter, you learn how to interact with web services created with Azure Mobile
Services.

 In this chapter, I create a web service by taking advantage of the ASP.NET Web API. You
can add a Web API controller to either an ASP.NET Web Forms or an ASP.NET MVC
project. I create an ASP.NET MVC 4 project. When creating the ASP.NET MVC 4 project, I
used the Web API project template (see Figure 9.3).

 FIGURE 9.3 Creating an ASP.NET MVC 4 project using the Web API project template

 To take advantage of an ASP.NET Web API service, you need to add the right routes to the
App_Start\RouteConfig.cs file. These routes map incoming browser requests to the correct
API controller and API controller action.

ptg999

Creating a Web Service Data Source 279

9

 I added the following routes to the App_Start\RouteConfig.cs file:

 routes.MapHttpRoute(

 name: "TasksGetCount" ,

 routeTemplate: "api/tasks/getCount" ,

 defaults: new { controller= "tasks" , action= "getCount" }

);

 routes.MapHttpRoute(

 name: "TasksItemsFromIndex" ,

 routeTemplate: "api/tasks/itemsFromIndex" ,

 defaults: new { controller = "tasks" , action = "itemsFromIndex" }

);

 routes.MapHttpRoute(

 name: "TasksInsertAtEnd" ,

 routeTemplate: "api/tasks/insertAtEnd" ,

 defaults: new { controller = "tasks" , action = "insertAtEnd" }

);

 routes.MapHttpRoute(

 name: "TasksRemove" ,

 routeTemplate: "api/tasks/remove/{key}" ,

 defaults: new { controller = "tasks" , action = "remove" }

);

 routes.MapHttpRoute(

 name: "TasksNuke" ,

 routeTemplate: "api/tasks/nuke" ,

 defaults: new { controller = "tasks" , action = "nuke" }

);

 For example, when you make an HTTP GET request for /api/tasks/getcount then the
TasksController.GetCount() Web API controller action is invoked.

 The Web API controller is named TasksController. It contains GetCount(),
ItemsFromIndex(), InsertAtEnd(), Remove(), and Nuke() controller actions. The controller
actions use the Microsoft Entity Framework to interact with a database table of tasks.

 Here’s what the GetCount() controller action looks like:

 [HttpGet]

 public int GetCount() {

 return _db.Tasks.Count();

 }

ptg999

CHAPTER 9 Creating Data Sources280

 The GetCount() method returns the total number of tasks stored in the Tasks database
table. Notice that the GetCount() method is decorated with an [HttpGet] attribute.
This attribute enables you to invoke the GetCount() method by performing an Ajax GET
request.

 The Remove() controller action looks like this:

 [HttpDelete]

 public bool Remove(string key)

 {

 var id = int .Parse(key);

 _db.Tasks.Remove(_db.Tasks.Find(id));

 _db.SaveChanges();

 return true ;

 }

 The Remove() controller action accepts a key argument that represents the item to be
deleted. The key argument must be a string argument because the WinJS ListView/data
source requires keys to be strings.

 Notice that the Remove() method is decorated with an [HttpDelete] attribute. The
Remove() action can be invoked only with an HTTP DELETE request.

 There is one wrinkle when using nonstandard HTTP methods such as the HTTP DELETE
or HTTP PUT methods. You must add the following section to the ASP.NET MVC applica-
tion’s root Web.config file:

 < system.webServer >

 < modules runAllManagedModulesForAllRequests = " true " >

 </ modules >

 </ system.webServer >

 If you don’t add the preceding section to the Web.config file then all HTTP DELETE
requests return 404 status codes.

 Using the Web Service Data Source

 After you create and configure the remote web service, using the web service data source is
straightforward. The following code illustrates how you can create an instance of the web
service data source and bind it to a ListView control named lvTasks:

 var lvTasks = document.getElementById("lvTasks").winControl;

 var tasksDataSource = new DataSources.WebServiceDataSource("http://localhost:51807/

➥api/tasks" , "id");

 lvTasks.itemDataSource = tasksDataSource;

ptg999

Creating an IndexedDB Data Source 281

9

 When you create an instance of the web service data source, you must supply two argu-
ments to the constructor: the URL of the web service and the name of the primary key
property of the data to retrieve.

 The URL http://localhost:51807/api/tasks is the address of a local web service using port
51807. This port is generated randomly. You can determine the port number used by a
Visual Studio project by opening the Project Properties dialog and selecting the Web tab
(see Figure 9.4).

 NOTE

 In the sample code, I use a web service located at localhost instead of providing a
domain name. Using localhost while developing a new Windows Store app is fine, but if
you attempt to release a Windows Store app that uses localhost then the app will fail
certification.

 FIGURE 9.4 Determining the port number used by a Visual Studio project

 Creating an IndexedDB Data Source
 The Indexed Database API (IndexedDB) is a W3C recommendation for exposing a database
in the browser. The IndexedDB recommendation is supported by Firefox 12+, Chrome 19+,
and IE 10+. And, of course, the IndexedDB recommendation is supported by Windows
Store apps.

 Behind the scenes, different browsers use different databases behind the IndexedDB API.
For example, Firefox uses SqlLite and IE uses SQLCE. The IndexedDB API provides a stan-
dard way to interact with these databases across browsers and across platforms.

 If you need to store lots of data in a Windows Store app, and query subsets of the data,
then IndexedDB is a good choice. Because IndexedDB supports indexes and cursors, you can
work efficiently with large sets of data.

 In this section, I discuss how you can create an IndexedDB data source. I discuss how
you can build a simple app which enables you to filter a list of movies by category (see
 Figure 9.5).

http://localhost:51807/api/tasks

ptg999

CHAPTER 9 Creating Data Sources282

 FIGURE 9.5 Using the IndexedDB data source

 Overview of IndexedDB

 An IndexedDB database might be different than the type of database that you normally
use. An IndexedDB database is an object-oriented database and not a relational database.
Instead of storing data in tables, you store data in object stores. An IndexedDB database
contains one or more object stores that contain a collection of JavaScript objects.

 The IndexedDB API includes both asynchronous and synchronous methods. Currently,
only the asynchronous methods are widely supported by browsers. If you want to open a
database connection, add an object to an object store, or get a count of items in an object
store, then you need to perform these operations asynchronously.

 Creating or Connecting to an IndexedDB Database

 You don’t create a new IndexedDB database upfront—instead, you create a new database
when a user first tries to make a connection to your database. You create new IndexedDB
databases by handling the upgradeneeded event when attempting to open a connection to
an IndexedDB database.

 For example, here’s how you would both open a connection to an existing database
named TasksDB and create the TasksDB database when it does not already exist:

 var reqOpen = window.indexedDB.open("TasksDB", 2);

 reqOpen.onupgradeneeded = function (evt) {

 var newDB = evt.target.result;

 newDB.createObjectStore("tasks" , { keyPath: "id" , autoIncrement: true });

 };

 reqOpen.onsuccess = function () {

 var db = reqOpen.result;

 // Do something with db

 };

ptg999

Creating an IndexedDB Data Source 283

9

 When you call window.indexedDB.open(), and the database does not already exist, then
the upgradeneeded event is raised. In the preceding code, the upgradeneeded handler
creates a new object store named tasks. The new object store has an auto-increment
column named id that acts as the primary key column.

 If the database already exists with the right version, and you call window.indexedDB.
open(), then the success event is raised. At that point, you have an open connection to
the existing database and you can start doing something useful with the database.

 Adding Objects to an Object Store

 You use asynchronous methods to interact with an IndexedDB database. For example, the
following code illustrates how you would add a new object to the tasks object store:

 var transaction = db.transaction("tasks" , "readwrite");

 var store = transaction.objectStore("tasks");

 var reqAdd = store.add({

 name: "Feed the dog"

 });

 reqAdd.onsuccess = function () {

 // Task added successfully

 };

 NOTE

 Notice that you use callbacks and not promises when interacting with IndexedDB. Realize
that IndexedDB is not a Microsoft technology so it works independently of the promise
pattern in WinJS.

 The preceding code creates a new read-write database transaction, adds a new task to the
tasks object store, and handles the success event. If the new task gets added successfully
then the success event is raised.

 Getting a Count of Objects in an Object Store

 You can get a count of the number of objects in a particular object store by taking advan-
tage of the count() method. For example, you can use the following code to determine
the number of items in the tasks objects store:

 var transaction = db.transaction("tasks");

 var store = transaction.objectStore("tasks");

 var reqCount = store.count();

 reqCount.onsuccess = function (evt) {

 var count = evt.target.result;

 console.log(count);

 };

ptg999

CHAPTER 9 Creating Data Sources284

 The preceding code creates a new read-only database transaction and gets a count of the
number of objects in the tasks object store by calling the count() method.

 Notice that the call to the count() method is asynchronous. You get the count by
handling the success event and reading the target.result property.

 Retrieving Objects from an Object Store

 You retrieve objects from an object store by opening a cursor and moving through the
cursor one object at a time. For example, the following code opens a cursor that returns
the objects from the tasks object store:

 var items = [];

 var transaction = db.transaction("tasks");

 var store = transaction.objectStore("tasks");

 var req = store.openCursor();

 req.onsuccess = function (evt) {

 var cursor = evt.target.result;

 if (cursor) {

items.push(cursor.value);

cursor.continue();

 } else {

 // All done!

 }

 }

 When you open a cursor and nothing goes wrong, then the success event is raised. You
can use cursor.value to get the current object. Calling cursor.continue() moves the
cursor forward and raises the success event again.

 When you reach the end of the cursor then cursor will have the value null. In that case,
you know that you have retrieved all of the objects from the object store.

 NOTE

 cursor.continue() advances by a single object. If you need to advance by more than
one object then you can use cursor.advance().

 Using Indexes and Key Ranges

 When you create a database, you can create indexes on object properties. An index
enables you to efficiently retrieve objects that match a value or range of values.

 Here’s how you would create a tasks object store that includes an index on its
dateCreated property:

 var reqOpen = window.indexedDB.open("TasksDB", 2);

 reqOpen.onupgradeneeded = function (evt) {

 var newDB = evt.target.result;

ptg999

Creating an IndexedDB Data Source 285

9

 var store=newDB.createObjectStore("tasks" , { keyPath: "id" , autoIncrement: true

➥});

 store.createIndex("dateCreatedIndex", "dateCreated");

 };

 After you create an index, you can retrieve objects from an object store by using the index
with a key range. A key range represents the criteria that an index uses to match objects in
a store.

 When creating a key range, you can specify the following properties:

▶ only—Enables you to retrieve only the objects that match the supplied value

▶ lowerBound—Enables you to retrieve all objects that have a value greater than the
supplied value

▶ upperBound—Enables you to retrieve all objects that have a value less than the
supplied value

▶ bound—Enables you to retrieve all objects that have a value greater than or less than
the supplied values

 For example, here is how you would retrieve all of the tasks from the tasks object store
that were created before 1999:

 var items = [];

 var transaction = db.transaction("tasks");

 var store = transaction.objectStore("tasks");

 var index = store.index("dateCreatedIndex");

 var keyRange = IDBKeyRange.upperBound(new Date("1/1/1999"));

 var req = index.openCursor(keyRange);

 req.onsuccess = function (evt) {

 var cursor = evt.target.result;

 if (cursor) {

items.push(cursor.value);

cursor.continue();

 } else {

 // All done!

 }

 }

 You also can use an index when getting a count of objects that match a particular key
range. For example, the following code gets a count of the number of tasks that were
created before 1999:

 var transaction = db.transaction("tasks");

 var store = transaction.objectStore("tasks");

 var index = store.index("dateCreatedIndex");

ptg999

CHAPTER 9 Creating Data Sources286

 var keyRange = IDBKeyRange.upperBound(new Date("1/1/1999"));

 var req = index.count(keyRange);

 req.onsuccess = function (evt) {

 var count = evt.target.result;

 }

 Using the IndexedDB Data Source

 The IndexedDB data source enables you to bind a ListView control to a collection of
JavaScript objects stored in an IndexedDB database. You create an IndexedDB data source
by providing three arguments:

▶ objectStoreName—The name of the object store to represent with the data source.

▶ creationOptions—The creationOptions determine how the IndexedDB database
and object store are created.

▶ cursorOptions—(optional) If you supply cursorOptions then you can filter the
objects in the object store using a key range.

 For example, here is how you would create an instance of the IndexedDB data source that
represents a collection of movies:

 // Create the data source options

 var createOptions = {

 databaseName: "MoviesDB" ,

 databaseVersion: 1,

 indexNames: ["category"]

 };

 // Create the IndexedDB data source

 var moviesDataSource = new DataSources.IndexedDbDataSource("movies" , createOptions);

 In the code, the creationOptions represent the properties of an IndexedDB database,
object store, and indexes. If the database does not already exist, then the IndexedDB data
source creates the database.

 Here are the properties of the creationOption object:

▶ databaseName—The name of the IndexedDB database

▶ databaseVersion—The version of the IndexedDB database

▶ indexNames—An index is created for each property name in this array.

ptg999

Creating an IndexedDB Data Source 287

9

 When you create an instance of the IndexedDB data source, you also have the option of
supplying a cursorOptions object. The cursorOptions object filters the object store. Here
are the properties of the cursorOptions object:

▶ indexName—Create a key range using this index

▶ only—Create a key range and only return objects that match this value

▶ lowerBound—Create a key range and only return objects that have a value greater
than this lower bound

▶ upperBound—Create a key range and only return objects that have a value less than
this upper bound

 For example, here is how you would filter tasks so that only tasks created before 1999 are
returned:

 WinJS.UI.processAll().done(function () {

 var lvTasks = document.getElementById("lvTasks").winControl;

 var createOptions = {

indexNames: ["dateCreated"],

databaseVersion: 3

 };

 var cursorOptions = {

indexName: "dateCreated" ,

upperBound: new Date("1/1/1999")

 };

 var tasksDataSource = new DataSources.IndexedDbDataSource("tasks" ,

➥createOptions, cursorOptions);

 lvTasks.itemDataSource = tasksDataSource;

 });

 In the code, the createOptions object causes the tasks object store to be created with an
index on its dateCreated property. The cursorOptions object uses that index to return
only those tasks that have a dateCreated below the upperBound 1/1/1999.

 I want to show you a more complete sample of using the IndexedDB data source. The
Movie app contained in Listing 9.3 and Listing 9.4 enables you to select different movie
categories and display only the movies in the selected category. The app also enables you
to create new movies and delete existing movies (see Figure 9.6).

ptg999

CHAPTER 9 Creating Data Sources288

 FIGURE 9.6 Using the IndexedDB data source

 LISTING 9.3 Creating a Movie App with the IndexedDB Data Source (indexedDb\
indexedDb.html)

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > DataSources </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- DataSources references -->

 < link href ="indexedDb.css" rel ="stylesheet" />

 < script type ="text/javascript" src ="indexedDbDataSource.js"></ script >

 < script src ="indexedDb.js"></ script >

 </ head >

 < body >

 < div id ="tmplMovie" data-win-control ="WinJS.Binding.Template">

 < div class ="movieItem">

ptg999

Creating an IndexedDB Data Source 289

9

Id: < span data-win-bind ="innerText:id"></ span >

 < br />< br />

Title: < span data-win-bind ="innerText:title"></ span >

 < br />< br />

Category: < span data-win-bind ="innerText:category"></ span >

 </ div >

 </ div >

 < div >

 < label > Category </ label >

 < select id ="selectCategory">

 < option > All </ option >

 < option > SciFi </ option >

 < option > Musical </ option >

 </ select >

 </ div >

 < div id ="lvMovies"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplMovie'),

 selectionMode: 'single'

 }"></ div >

 < form id ="frmAdd">

 < fieldset >

 < legend > Add Movie </ legend >

 < div >

 < label > Title </ label >

 < input id ="inputMovieTitle" required />

 < label > Category </ label >

 < select id ="selectMovieCategory">

 < option > SciFi </ option >

 < option > Musical </ option >

 </ select >

 < button > Add </ button >

 </ div >

 </ fieldset >

 </ form >

 < button id ="btnNuke"> Nuke </ button >

 < button id ="btnDelete"> Delete </ button >

ptg999

CHAPTER 9 Creating Data Sources290

 </ body >

 </ html >

 The HTML page in Listing 9.3 contains a select list that enables you to select a movie cate-
gory (All, SciFi, Musical). When you select a particular movie category, only those movies
in the category are displayed in a ListView control.

 LISTING 9.4 Creating a Movie App with the IndexedDB Data Source (indexedDb\indexedDb.js)

 function init() {

 WinJS.UI.processAll().done(function () {

 var lvMovies = document.getElementById("lvMovies").winControl;

 // Create the data source options

 var createOptions = {

databaseName: "MoviesDB" ,

databaseVersion: 1,

indexNames: ["category"]

};

 // Create the IndexedDB data source

 var moviesDataSource = new DataSources.IndexedDbDataSource("movies" ,

➥createOptions);

 // Add seed data

addSeedData().done(function () {

 // Bind data source to ListView

lvMovies.itemDataSource = moviesDataSource;

});

 function addSeedData() {

 return new WinJS.Promise(function (complete) {

moviesDataSource.getCount().then(function (count) {

 if (count > 0) {

complete();

} else {

 var seedData = [

{ title: "Star Wars" , category: "SciFi" },

{ title: "Forbidden Planet" , category: "SciFi" },

{ title: "Show Boat" , category: "Musical" }

];

 var promises = [];

ptg999

Creating an IndexedDB Data Source 291

9

seedData.forEach(function (data) {

promises.push(moviesDataSource.insertAtEnd(null , data));

});

WinJS.Promise.join(promises).done(function () {

complete();

});

}

});

});

}

 // Wire-up SelectCategory, Add, Delete, Nuke buttons

document.getElementById("selectCategory").addEventListener("change" ,

➥function (evt) {

 var category = document.getElementById("selectCategory").value;

 if (category === "All") {

moviesDataSource = new DataSources.IndexedDbDataSource("movies" ,

➥createOptions);

} else {

 var cursorOptions = {

indexName: "category" ,

only: document.getElementById("selectCategory").value

};

moviesDataSource = new DataSources.IndexedDbDataSource("movies" ,

➥createOptions, cursorOptions);

}

lvMovies.itemDataSource = moviesDataSource;

});

document.getElementById("frmAdd").addEventListener("submit" , function (evt)

{

evt.preventDefault();

moviesDataSource.beginEdits();

moviesDataSource.insertAtEnd(null , {

title: document.getElementById("inputMovieTitle").value,

category: document.getElementById("selectMovieCategory").value

}).done(function (newItem) {

moviesDataSource.endEdits();

document.getElementById("frmAdd").reset();

 // Show last item added

lvMovies.itemDataSource.getCount().done(function (count) {

lvMovies.ensureVisible(count);

})

ptg999

CHAPTER 9 Creating Data Sources292

});

});

document.getElementById("btnDelete").addEventListener("click" , function () {

 if (lvMovies.selection.count() == 1) {

moviesDataSource.beginEdits();

lvMovies.selection.getItems().done(function (items) {

moviesDataSource.remove(items[0].key);

moviesDataSource.endEdits();

});

}

});

document.getElementById("btnNuke").addEventListener("click" , function () {

moviesDataSource.nuke();

});

 });

 }

 document.addEventListener("DOMContentLoaded" , init);

 Listing 9.4 contains the JavaScript code for the Movie app. When you first open the app,
an IndexedDB data source is created without any cursorOption and all of the movies
stored in the movies object store are displayed:

 // Create the IndexedDB data source

 var moviesDataSource = new DataSources.IndexedDbDataSource("movies" , createOptions);

 // Add seed data

 addSeedData().done(function () {

 // Bind data source to ListView

 lvMovies.itemDataSource = moviesDataSource;

 });

 Notice that the preceding code also includes a call to a method named addSeedData().
This method adds initial seed data to the IndexedDB database so the database is not
empty when you first run the Movie app.

 If you select a particular movie category using the select list then the following code
executes:

 document.getElementById("selectCategory").addEventListener("change" , function (evt)

{

 var category = document.getElementById("selectCategory").value;

ptg999

Summary 293

9

 if (category === "All") {

moviesDataSource = new DataSources.IndexedDbDataSource("movies" ,

➥createOptions);

 } else {

 var cursorOptions = {

indexName: "category" ,

only: document.getElementById("selectCategory").value

};

moviesDataSource = new DataSources.IndexedDbDataSource("movies" ,

➥createOptions, cursorOptions);

 }

 lvMovies.itemDataSource = moviesDataSource;

 });

 This code uses a cursorOption object to create a new IndexedDB data source that only
represents a subset of objects from the movies store.

 Summary
 In this chapter, I focused on creating custom data sources that you can use with the
controls in the WinJS library. You learned how to derive a new data source from the base
VirtualizedDataSource class.

 I discussed three custom data sources. First, I created a file data source which enables you
to store and retrieve data from your computer’s file system. Next, I created a web service
data source that enables you to interact with a remote web service. Finally, I discussed
how you can create a data source that works with IndexedDB.

ptg999

This page intentionally left blank

ptg999

 CHAPTER 10

 Using Windows Azure
Mobile Services

 The easiest way to store data in a Windows Store app
is to take advantage of Windows Azure Mobile Services.
Windows Azure Mobile Services enables you to store your
data in a SQL Azure database hosted in the cloud.

 If you take advantage of Mobile Services then you don’t
need to build and host your own web service on your own
web server. You can let Microsoft worry all about that.

 Imagine, for example, that you want to create a Task List
app and be able to access the list of tasks from multiple
computers and tablets. In that case, you can store the list of
tasks in a database table hosted on Azure and retrieve the
list of tasks from anywhere. You can even access Mobile
Service from non-Microsoft clients running iOS or Android.

 In this chapter, I explain how you can set up and create
Azure Mobile Services. I demonstrate how you can insert,
update, and delete an Azure database table from your
Windows Store app. I also discuss how you can handle vali-
dating form data when you submit the data to the cloud.

 NOTE

 I discuss authorization and Windows Azure Mobile
Services in Chapter 14 , “Using the Live Connect API.”

 Creating a Mobile Service
 The first step required to use Azure Mobile Services is to log
in to the Windows Azure Management Portal and create a
new Mobile Service. You log in to the portal by navigating
to http://manage.WindowsAzure.com .

IN THIS CHAPTER

▶ Creating a Mobile Service

▶ Creating a Database Table

▶ Installing the Mobile Services
for WinJS Library

▶ Performing Inserts, Updates,
and Deletes

▶ Performing Database Queries

▶ Performing Validation

▶ Performing Custom Actions

▶ Debugging Script Errors

http://manage.WindowsAzure.com

ptg999

CHAPTER 10 Using Windows Azure Mobile Services296

 NOTE

 I am assuming that you have subscribed to Windows Azure. If you haven’t subscribed then
you need to visit http://WindowsAzure.com . They provide a free trial account if you just
want to play with Microsoft’s multibillion dollar data centers.

 After you log in to the portal, you can create a new Mobile Service by clicking the tab on
the left of the page (see Figure 10.1). You create a new Mobile Service by providing a URL
and creating a SQL Azure database. For example, I created a new service with the URL
 https://unleashed.azure-mobile.net/ .

 FIGURE 10.1 Creating a new Mobile Service in the Windows Azure Management Portal

 As an alternative to using the web portal, you can create a new Mobile Service from
directly inside Visual Studio. You first need to import your Windows Azure subscriptions
into Visual Studio. Open the Server Explorer window, right-click Windows Azure Mobile
Services, and select Import Subscriptions. Use the Import Subscriptions dialog to download
and import your Azure subscriptions.

 Next, you can create a new Mobile Service by right-clicking Windows Azure Mobile
Services and selecting Create Service (see Figure 10.2). Use the Create Mobile Service dialog
to select a URL and a database for your new Mobile Service.

 FIGURE 10.2 Creating a new Mobile Service inside Visual Studio

http://WindowsAzure.com
https://unleashed.azure-mobile.net/

ptg999

Creating a Database Table 297

1
0

 After you create a Mobile Service—by using the Windows Azure Management Portal or
by using Visual Studio—you need to retrieve your secret application key. Navigate to the
Management Portal at http://manage.WindowsAzure.com , navigate to the dashboard for
your Mobile Service, and click the Manage Keys button located at the bottom of the page.
Write down your key (see Figure 10.3). You will need this key to interact with your Mobile
Service.

 FIGURE 10.3 Retrieving your Mobile Service application key

 NOTE

 All of the code discussed in this chapter is in the Chapter10 folder. You need to change
the API key in the default.js file to run the code.

 NOTE

 The difference between a master key and an application key is that you use the master
key when performing operations restricted to “Scripts and Admins”. You don’t distribute
your master key with your Windows Store app.

 Creating a Database Table
 In this chapter, I am going to build a Task List app that stores tasks in a database table
exposed by Windows Azure Mobile Services. Therefore, the next step is to create this data-
base table.

 Again, you have a choice. You can either create the database table using the Windows
Azure Management Portal or you can create the database table directly inside of Visual
Studio. This is purely a matter of preference.

http://manage.WindowsAzure.com

ptg999

CHAPTER 10 Using Windows Azure Mobile Services298

 To create the table from within Visual Studio, right-click the Windows Azure Mobile
Services node within the Server Explorer window and select New Table (see Figure 10.4).
Enter the name Tasks for the new table name.

 FIGURE 10.4 Creating a new SQL Azure database table

 Notice that you do not specify the columns for the new table. The columns are created
dynamically based on the data you insert into the table. This feature is called Dynamic
Schema . Taking advantage of Dynamic Schema makes it easier to develop a new Mobile
Service. However, Microsoft recommends that you disable Dynamic Schema for a produc-
tion database. You can disable Dynamic Schema by selecting your Mobile Service and
opening the Visual Studio Properties Window.

 Installing the Mobile Services for WinJS Library
 Okay, so now we have our Mobile Service and our database table. In order to interact with
our Mobile Service from our Windows Store app, we need to install the Mobile Services for
WinJS client library.

 The fastest way to install this library is to take advantage of the NuGet Package Manager
Console. After opening or starting a new project in Visual Studio, select Tools, Library
Package Manager, Package Manager Console and enter the following command:

 Install-Package WindowsAzure.MobileServices.WinJS

ptg999

Performing Inserts, Updates, and Deletes 299

1
0

 Executing this command adds a new set of Mobile Services scripts to your project’s js
folder. To use the Mobile Services for WinJS client library, you need to add a script refer-
ence to the MobileServices.min.js file to a page such as your default.js page like this:

 < script src ="/js/MobileServices.min.js"></ script >

 After you add this reference, you will have the full power of the Mobile Services client
library at your disposal.

 Performing Inserts, Updates, and Deletes
 In the previous sections, I created a new Azure Mobile Service named unleashed, I created
a new database table named Tasks, and I installed the Mobile Services for WinJS client
library. Now it is time to write some code and actually interact with the Tasks database
table from a Windows Store app. In this section, I explain how to perform basic insert,
update, and delete operations against the Tasks database table.

 Connecting to the Remote Database Table

 Before you can perform any operation against a remote database table such as inserting
or updating data, you must first connect to a Mobile Service and get a reference to the
remote table.

 There are two main objects included in the Mobile Services library: the
MobileServiceClient object and the MobileServiceTable object. Here’s how you use
these two objects to get a reference to the Tasks table:

 // Get Tasks table from Azure Mobile Services

 var mobileServiceClient = new WindowsAzure.MobileServiceClient(

 "https://unleashed.azure-mobile.net/" ,

 "IwZcChdiEkqUvZBzPrHCNVifFpVgto72"

);

 var tasksTable = mobileServiceClient.getTable('Tasks');

 The constructor for the MobileServiceClient object accepts two parameters. You
need to pass the URL and application key for the Mobile Service. After you create a
MobileServiceClient, you use its getTable() method to retrieve a MobileServiceTable
object that represents an Azure database table.

 Inserting Database Data

 You insert database data into a Mobile Service table by calling the MobileServiceTable
insert() method. For example, the following code adds a new task to the Tasks database
table:

 var newTask = {

 name: "Finish writing book"

 };

ptg999

CHAPTER 10 Using Windows Azure Mobile Services300

 // Call insert on the mobile service

 tasksTable.insert(newTask).done(

 // Success

 function (result) {},

 // Failure

 function (err) {}

);

 The insert() method returns a promise. You can supply a success and an error function
to handle the result of performing the insert.

 Notice that the success function takes a result parameter. The result parameter repre-
sents the new task returned by the insert() operation. The task returned by the insert()
method includes an id property that represents the primary key value of the new database
record.

 The error function also accepts a parameter. You can use err.request.responseText to
get any error message returned while attempting to perform the insert. You might, for
example, want to display the error message in a modal popup dialog.

 Updating Database Data

 You edit an existing database record by calling the MobileServiceTable update() method.

 var taskToUpdate = {

 id: 3,

 name: "Finish writing chapter 10 "

 };

 tasksTable.update(taskToUpdate).done(

 // Success

 function (result) {},

 // Fail

 function (err) {}

);

 When you update a record, you must include the primary key of the record being updated
in the object passed to the update method. In this case, the taskToUpdate object must
include an id property that corresponds to the primary key of the record in the database
being updated.

 When you create a new table using Azure Mobile Services, the new table gets a primary
key column named id automatically. The id column is an auto-increment column.

ptg999

Performing Database Queries 301

1
0

 Deleting Database Data

 You delete data from a database table by calling the del() method. Here is how you
would delete a task from the Tasks table:

 var taskToDelete = {

 id: 3,

 name: "Finish writing chapter 10 "

 };

 tasksTable.del(taskToDelete).done(

 // Success

 function () {},

 // Fail

 function (err) {}

)

 You must pass the value of the primary key of the object being deleted to the del()
method. In the preceding code, the taskToDelete has both an id and name property and
the task with an id of 3 is deleted. (This code would work fine even if I left out the name
property.)

 You don’t get anything back when a record is deleted successfully. Therefore, there is no
reason to include a parameter for the success function.

 NOTE

 Why is the method named del() instead of delete()? The problem is that delete is a
JavaScript reserved word.

 Performing Database Queries
 In this section, I talk about the different ways in which you can use the Mobile Services
for WinJS library to retrieve database records from a Mobile Service. I discuss methods for
retrieving a single record and a set of records.

 Looking Up a Single Database Record

 If you want to retrieve a single database record from a Mobile Service then you can call
the MobileServiceTable lookup() method like this:

 var id = 3;

 tasksTable.lookup(id).done(

 // Success

 function (result) {},

 // Fail

 function (err) {}

);

ptg999

CHAPTER 10 Using Windows Azure Mobile Services302

 You pass the id of the record that you want to retrieve to the lookup() method. The id
should be an integer and represent a primary key value.

 If there is no matching record then an error is returned and the promise error function is
executed.

 Retrieving a Set of Database Records

 The MobileServiceTable object supports the following methods for performing database
queries that retrieve a set of records:

▶ includeTotalCount()—Includes the total count of matching records in the results

▶ orderBy(col1, col2, ...)—Returns the matching records sorted in ascending order

▶ orderByDescending(col1, col2, ...)—Returns the matching records sorted in
descending order

▶ read(query)—Executes the database query

▶ select(function)—Returns a specific set of columns

▶ skip(count)—Skips a certain count of records

▶ take(count)—Returns a limited count of records

▶ where(function | object)—Filters the records returned

 These methods are chainable. You can call the methods in succession to build a complex
query.

 NOTE

 You can execute the queries discussed in this section by navigating to the queries\
queries.html page.

 For example, the following query returns the first three tasks from the Tasks table in order
of the Tasks name column:

 tasksTable.take(3).orderBy("name").read().done(

 // Success

 function (results) {},

 // Fail

 function (err) {}

);

ptg999

Performing Database Queries 303

1
0

 Executing this query returns results like the following:

 [

 {"id":4,"name":"Task A"},

 {"id":3,"name":"Task B"},

 {"id":1,"name":"Task C"}

]

 If you call the includeTotalCount() method then you get the total number of matching
results included in your results even when you limit the results:

 tasksTable.includeTotalCount().take(3).orderBy("name").read().done(

 // Success

 function (results) {

 var totalCount = results.totalCount;

 },

 // Fail

 function (err) {}

);

 Executing this query returns the same array of results as the previous query. However, the
results include a property named totalCount that contains the total count of records in
the Tasks database table (see Figure 10.5).

 FIGURE 10.5 Displaying a total count

 Finally, you can use an OData query when calling the read() method. For example, you
can retrieve all of the tasks that have a name that starts with the letter s with the follow-
ing query:

 var odataQuery = "$filter=startswith(name, 's')" ;

 tasksTable.read(odataQuery).done(

 // Success

 function (results) {},

 // Fail

 function (err) {}

);

ptg999

CHAPTER 10 Using Windows Azure Mobile Services304

 Executing this query returns only those tasks which start with the letter s or letter S—the
query is case-insensitive.

 NOTE

 OData has a powerful filtering vocabulary. For example, OData supports logical opera-
tors such as greater than and less than and string operators such as startswith and
substring. You can learn more about OData by visiting http://odata.org .

 Performing Validation
 In Chapter 5 , “Creating Forms,” I explained how you can use HTML5 validation attri-
butes to validate form data submitted in a Windows Store app. However, it is important
to realize that any validation performed in a Windows Store app can always be bypassed
when calling a remote Mobile Service. A user can interact directly with the remote service
and submit any data that you can imagine.

 If you want to validate the data submitted to a Mobile Service then you should create
delete.js, insert.js, read.js, or update.js scripts that execute on Azure when a Mobile Service
is invoked. It is worth emphasizing that these scripts execute on the Azure server (in one
of Microsoft’s data centers) and not within a Windows Store app. Because these scripts
execute on the server, the scripts cannot be bypassed.

 The easiest way to modify these server scripts is from within Visual Studio. Open the
Server Explorer window and expand the node that represents a particular Mobile Service
table. For example, in Figure 10.6 , I’ve revealed the server scripts for the Tasks table.

 FIGURE 10.6 Modifying the server scripts for the Tasks table

 You can open the delete.js, insert.js, read.js, or update.js files in the Visual Studio code
editor by double-clicking the file. When you save the file, the file is saved back on
Windows Azure automatically.

 Imagine, for example, that you want to prevent people from submitting tasks with empty
names. In that case, you can enter the following script in Listing 10.1 for the insert.js
script.

http://odata.org

ptg999

Performing Validation 305

1
0

 LISTING 10.1 Server insert.js Script

 function insert(item, user, request) {

 // Cleanup data

 item.name = item.name.trim();

 // Validate

 if (item.name.length === 0) {

request.respond(statusCodes.BAD_REQUEST, "You fool! Task name is

➥required!!!");

 return ;

 }

 // Otherwise, execute request

 request.execute();

 }

 The insert() function in Listing 10.1 accepts three parameters:

� item—The item being inserted

� user—The authenticated user doing the inserting

� request—The current request

 If there are no validation issues then the insert() function in Listing 10.1 calls the
request.execute() method to perform the insert of the new task into the Tasks database
table.

 Before calling request.execute(), the insert() function first verifies that the
item.name property is not empty by trimming the value of the name property and checking
the length. If the name property is empty, then a BAD_REQUEST response (HTTP status
code 400) is returned from the function.

 NOTE

 We discuss the user parameter passed to the insert() function when we discuss
authentication in Chapter 14 .

 You can capture a BAD_REQUEST response in your Windows Store app by including an
error handler when you call the insert() method like this:

 // Call insert on the mobile service

 tasksTable.insert(newTask).done(

 // Success

 function (result) {},

 // Failure

 function (err) {

ptg999

CHAPTER 10 Using Windows Azure Mobile Services306

 var errorText = err.request.responseText;

 var md = new Windows.UI.Popups.MessageDialog(errorText);

md.showAsync();

 }

);

 This error function displays whatever error message is returned from the Mobile Service in
a popup message dialog (see Figure 10.7).

 FIGURE 10.7 Attempting to insert an empty value

 NOTE

 You can use the delete.js, insert.js, read.js, and update.js scripts in scenarios beyond
those for validation. For example, you can use these scripts to clean up data before
inserting the data into the database. Or, you can use these scripts to add extra properties
to the data such as a time stamp. You can even use server scripts to interact with Azure
Table Storage or Azure Blob Storage in scenarios in which you want to store big chunks of
data such as pictures.

 Performing Custom Actions
 By default, there are four standard scripts that you can execute in an Azure Mobile Service:
delete.js, insert.js, read.js, and update.js scripts. However, you also have the option of
creating a custom Mobile Service script.

 Creating a custom script is useful when you need to do a more complicated database
operation. For example, you might want to include a Nuke button in your Tasks app that
enables you to delete all of your tasks. In that case, it would be great if you could create a
nuke.js script that performs a SQL Truncate to delete all of the tasks from the Tasks table.

 You can create a custom script from the Windows Azure Management Portal. Navigate
to your Mobile Service at http://manage.WindowsAzure.com and click the API tab. Next,
click the Create button to create a new custom API (see Figure 10.8).

http://manage.WindowsAzure.com

ptg999

Performing Custom Actions 307

1
0

 FIGURE 10.8 Creating a custom API

 Enter a name for your custom script. For example, I entered the name nuke. After you
submit the form, you can enter your script. I entered the script in Listing 10.2 for my
nuke.js script.

 LISTING 10.2 Custom API Script (nuke.js)

 exports.post = function (request, response) {

 var mssql = request.service.mssql;

 var sql = "TRUNCATE TABLE Tasks" ;

 mssql.query(sql, {

success: function () {

response.send(200);

}

 })

 };

 Because I want to invoke my custom script in response to an HTTP POST operation, I
define my function as the value of exports.post. I could also handle other HTTP opera-
tions by defining, for example, an exports.get, exports.put, exports.delete, or an exports.
patch function.

ptg999

CHAPTER 10 Using Windows Azure Mobile Services308

 NOTE

 Under the covers, custom API scripts are implemented on Windows Azure as NodeJS
modules. The exports represent module exports and the request and response objects are
NodeJS Express objects. Visit http://ExpressJS.com to learn more about Express.

 Within my script, I execute a SQL TRUNCATE TABLE command by calling the
mssql.query() method. Executing this command will delete all of the tasks in my Tasks
table and reset the identity counter to the value zero.

 You invoke a custom script by calling the MobileServiceClient invokeApi() method. For
example, here is how you would invoke the nuke script from a Windows Store app:

 mobileServiceClient.invokeApi("nuke" , { method: "post" }).done(

 // Success

 function () {},

 // Failure

 function (err) {}

)

 The invokeApi() method accepts two parameters. The first parameter represents the name
of the remote API to invoke. The second parameter represents a set of options. In this case,
the method property is used to specify the HTTP operation to perform (an HTTP POST).

 NOTE

 The complete sample code for invoking the remote nuke API method can be found in the
insert/insert.js file in the Chapter 10 project.

 Debugging Script Errors
 The last thing that I want to mention in this chapter is how to debug errors in remote
Azure Mobile Service scripts. If something goes wrong in your insert.js script, for example,
then it is hard to know this from your local computer.

 Fortunately, you can view a log of all error messages associated with your Mobile
Service scripts in the Windows Azure Management Portal. Navigate to http://manage.
WindowsAzure.com , select your Mobile Service, and click the Logs tab. All error messages
are logged here (see Figure 10.9).

http://ExpressJS.com
http://manage.WindowsAzure.com
http://manage.WindowsAzure.com

ptg999

Summary 309

1
0

 FIGURE 10.9 Viewing the Mobile Service Logs

 You can even log custom messages by calling console.log() in your scripts. Any string
that you pass to console.log() appears on the Logs page.

 NOTE

 A useful online tool for debugging Mobile Services is named Runscope (http://www.
Runscope.com). This tool enables you to capture all requests and responses against
a remote Mobile Service. For example, if nothing happens when you invoke a Mobile
Service, you might want to use Runscope to figure out why.

 Summary
 The goal of this chapter was to explain how you can store data using Windows Azure
Mobile Services. You learned how to create a Mobile Service and insert, update, delete, and
query database data.

 I also discussed two advanced features of Mobile Services. You learned how to validate
data passed to a remote service and how to create custom API methods.

 If you need to build a Windows Store app that enables you to share data across the
Internet then there is no easier approach than using Windows Azure Mobile Services.

 NOTE

 In Chapter 14 , I discuss how you can authenticate users—and prevent one user from
reading another user’s data—when using Mobile Services. In Chapter 16 , “Creating a
Task List App,” I demonstrate how you can build an entire Windows Store App using
Mobile Services.

http://www.Runscope.com
http://www.Runscope.com

ptg999

This page intentionally left blank

ptg999

 CHAPTER 11

 App Events and States

 The goal of this chapter is to explain Windows Store app
events, lifecycle, and view states. In the first part, I explain
the standard sequence of events which are raised whenever
you start a Windows Store app. You learn how to handle
the loaded, activated, and ready events.

 In the next part, I explain how you can handle application
suspension, termination, and resumption. You learn how
to store and retrieve the state of your application in session
state so you can maintain the illusion that your app is
always running.

 Finally, I discuss application view states. You learn how to
gracefully handle displaying your app with different screen
widths by taking advantage of the window resize event and
media queries.

 App Events
 Whenever you launch a Windows Store app, the following
WinJS application events are fired in the order shown here:

▶ WinJS.Application.loaded—Triggered by the stan-
dard browser DOMContentLoaded event, right after the
HTML document has finished loading

▶ WinJS.Application.activated—Triggered when your
application is activated

▶ WinJS.Application.ready—Triggered after the loaded
and activated events

▶ WinJS.Application.unload—Triggered by the stan-
dard browser beforeunload event, right before a page
is unloaded

IN THIS CHAPTER

▶ App Events

▶ Suspending, Terminating, and
Resuming an App

▶ Designing for Different Window
Sizes

▶ Scaling Content to Fit Different
Screen Resolutions

ptg999

CHAPTER 11 App Events and States312

 You also can handle these other application events that are triggered by particular events:

▶ WinJS.Application.error—Triggered by an unhandled error in your application

▶ WinJS.Application.checkpoint—Triggered when your application is being
suspended

▶ WinJS.Application.settings—Triggered when application settings are changed

 None of these events are raised unless you call WinJS.Application.start(). The events
are queued and the events are not raised until the WinJS.Application.start() method is
called.

 The following JavaScript code illustrates how you can create a handler for each of these
events and log when the event happens to the Visual Studio JavaScript console window
(shown in Figure 11.1):

 WinJS.Application.addEventListener("loaded" , function (evt) {

 console.log("loaded");

 });

 WinJS.Application.addEventListener("activated" , function (evt) {

 console.log("activated");

 });

 WinJS.Application.addEventListener("ready" , function (evt) {

 console.log("ready");

 });

 FIGURE 11.1 Logging WinJS application events

 Handling the Activated Event

 The activated event is raised when a Windows Store app is activated (started). A Windows
Store app can be activated in several different ways, and you can use the ActivationKind
property to determine exactly how the app was activated:

 WinJS.Application.addEventListener("activated" , function (evt) {

 var activationKind = Windows.ApplicationModel.Activation.ActivationKind;

 switch (evt.detail.kind) {

 case activationKind.launch:

console.log("Launched from a tile");

 break ;

 case activationKind.search:

ptg999

App Events 313

1
1

console.log("Activated from a search");

 break ;

 default :

console.log("Activated for some other reason");

 }

 });

 The most common way in which a Windows Store app is activated is when a user clicks
the tile for the app in the Start screen. In that case, the ActivationKind enumeration has
the value Launch.

 However, there are other ways that a Windows Store app can be activated. For example,
an app can be activated in response to a user performing a search from the Search charm,
in response to a user sharing something from the Share charm, or in response to a user
clicking on a file from another app, such as an email app. In these cases, you can use the
ActivationKind property to determine the exact reason that the app was activated.

 Handling the Error Event

 By default, when there is an unhandled error in a Windows Store app—an error that is not
handled within a try...catch block—the following three things happen:

1. The error is logged by calling the WinJS.log() method.

2. The debugger statement is called to break into the debugger when the app is
running in Visual Studio in Debug mode.

3. The app is terminated by calling the MSApp.terminateApp() method.

 After the terminateApp() method is called, the user is thrown back to the Windows Start
screen (violently, unexpectedly, and without explanation).

 You can handle the application error event to provide a better user experience. For
example, here’s how you can display a message to the user when an unhandled error
happens:

 WinJS.Application.addEventListener("error" , function (evt) {

 var message = new Windows.UI.Popups.MessageDialog(

 "There was an error."

);

 message.showAsync();

 return true ;

 });

 WinJS.Application.addEventListener("ready" , function () {

 throw new WinJS.ErrorFromName("MyError" , "Yikes! An Error!");

 });

 WinJS.Application.start();

ptg999

CHAPTER 11 App Events and States314

 The preceding code displays a modal dialog when there is an error with the message There
was an error. (see Figure 11.2).

 FIGURE 11.2 Displaying an error message

 Notice that the error handler returns the value true. When the error handler returns true,
the error is considered handled and the app is not terminated. If you want to terminate
the app after executing your custom error handler code then don’t return true.

 WARNING

 If the error happens before the WinJS.application.start() method is called, then your
custom error handler won’t be invoked.

 Deferring Events with Promises

 WinJS.Application events are different than normal DOM events because they support
promises. You can execute an asynchronous task during a WinJS.Application event and
delay the next event until a promise completes.

 For example, the default.js file created when you create a new Windows Store app project
delays the completion of the WinJS.Application.activated event until the asynchronous
call to WinJS.UI.processAll() completes. This ensures that all of the controls in the page
are processed before the splash screen is torn down.

 Here’s what the WinJS.Application.activated event handler looks like in the default.js
file with some code removed:

 app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

args.setPromise(WinJS.UI.processAll());

 }

 };

ptg999

Suspending, Terminating, and Resuming an App 315

1
1

 In the preceding code, the args.setPromise() method is used to execute a method that
returns a promise: the processAll() method. The processAll() method executes asyn-
chronously and the ready event is not raised until the processAll() method completes.

 Creating Custom Events

 You can create and listen to custom application events. You can make up any type of
event that you please.

 For example, if you are creating a game, you might want to create a heartbeat event that
is raised every second so that you can refresh the game board. The following code demon-
strates how you can raise and listen to a custom heartbeat event:

 window.setInterval(function () {

 WinJS.Application.queueEvent({ type: "heartbeat" });

 }, 1000);

 WinJS.Application.addEventListener("heartbeat" , function (evt) {

 console.log("heartbeat");

 });

 WinJS.Application.start();

 The preceding code uses the setInterval() method to execute code once every second.
The queueEvent() method is called to queue up a custom heartbeat event.

 The addEventListener() method is used to listen to the event. Every second, the message
“heartbeat” is written to the Visual Studio JavaScript Console window.

 You can supply additional event details by supplying a detail property when queuing an
event like this:

 WinJS.Application.queueEvent({

 type: "heartbeat" ,

 detail: { numberOfPlayers: 12 }

 });

 Suspending, Terminating, and Resuming an App
 When you are building a Windows Store app, you need to maintain the illusion that the
app is always running even when the user might be switching compulsively among multi-
ple open apps. Normally, you do not explicitly close a Windows Store app—instead, you
just switch to a new one.

 If you switch from one app to another, Windows will suspend the app but keep the app in
memory. If memory resources become low because of other running apps, Windows will
quietly terminate the app in the background.

ptg999

CHAPTER 11 App Events and States316

 From the perspective of a user, an app should behave in the same way regardless of
whether the app was suspended or terminated. You expect the app to be in the same state
when you switch back to it—even if you don’t switch back to the app for many hours. For
example, if the user was reading a particular news story, the same story should be selected
when the user switches back to the app.

 Detecting When an App Is Suspended and Terminated

 You can detect when an app is suspended by handling the WinJS.Application.
checkpoint event. You should use this event to save the state of your app so you can
reload the state when the app starts again.

 There is no method within a Windows Store app to detect when an app is terminated. In
particular, there is no app terminated event. For this reason, if you need to save the state
of your app so the state can be reloaded after termination, then you should save your app
state during the checkpoint event.

 Here’s some sample code for handling this event:

 WinJS.Application.addEventListener("checkpoint" , function () {

 // Save app state

 });

 NOTE

 Creating an app terminated event would not make sense because Windows would need to
wake your app from a suspended state to raise the terminated event. It would not make
sense for Windows to wake your app at the very moment that it detects that memory
resources have gotten low.

 Detecting the Previous Execution State

 When a Windows Store app is activated, you can use the previousExecutionState prop-
erty to determine whether the app is being newly launched, whether it was previously
closed by the user, or whether it is coming back after being suspended and terminated.

 Depending on the value of previousExecutionState, you might want to load default
values or load the previous app state. For example, if you are creating a news app, then
you probably want to load the previous article that the user was reading. If, on the other
hand, the user has never run the app, then you might want to load a default page such as
the home page.

 Here’s what the code looks like for checking the previous state:

 WinJS.Application.addEventListener("activated" , function (evt) {

 var appState = Windows.ApplicationModel.Activation.ApplicationExecutionState;

 if (evt.detail.previousExecutionState == appState.notRunning) {

 // The app has not been run in the current user session

ptg999

Suspending, Terminating, and Resuming an App 317

1
1

 // or it crashed.

 // Should load defaults.

 }

 if (evt.detail.previousExecutionState == appState.closedByUser) {

 // The app was closed by the user.

 // Should load defaults.

 }

 if (evt.detail.previousExecutionState == appState.terminated) {

 // The app was suspended and terminated.

 // Should restore previous state.

 }

 });

 The preceding code contains a handler for the WinJS.Application.activated event. The
event.previousExecutionState property represents the previous state of the application.
All of the previous states are represented by the ApplicationExecutionState enumeration.

 Here are all of the possible values of the ApplicationExecutionState enumeration:

▶ notRunning—The user activates the app after installing the app from the Windows
Store, rebooting the computer, logging in and out, ending the task, the app crash-
ing, or closing the app and restarting it within 10 seconds of closing it.

▶ running—The app is already running and the user activates it through a secondary
tile or through one of the activation contracts or extensions.

▶ suspended—The app is suspended and the app is activated through a secondary tile
or through one of the activation contracts or extensions.

▶ terminated—The app was terminated by Windows.

▶ closedByUser—The app was closed by the user and not restarted for more than 10
seconds.

 NOTE

 You cannot detect whether an app is being activated after suspension. You can detect
only when an application is activated after suspension and termination . The activated
event is not raised for apps that get suspended without termination.

 Testing Application State with Visual Studio

 You can use Visual Studio to test how your Windows Store app behaves when it is
suspended, terminated, or resumes. When you run an app from Visual Studio, the drop-
down in Figure 11.3 appears (it is part of the Debug Location toolbar).

ptg999

CHAPTER 11 App Events and States318

 FIGURE 11.3 Change app state options

 If you want to simulate app suspension and resumption then you can click the Suspend
option to suspend your application and then click the Resume option to resume your
application again. When you click the Suspend option, the checkpoint event is raised.
When you click the Resume option, the activated event is not raised (your app does not
know when it was resumed after suspension).

 If you want to simulate app suspension and termination then you can click the Suspend
and shutdown button. When you click the Suspend and shutdown button, the checkpoint
event is raised and your app stops. When you run the app again, by actually running your
app again in Visual Studio, the previous execution state property will have the value of
terminated.

 Storing State with Session State

 If an app is suspended then the app does not lose state. However, if an app is suspended
and terminated then the state of the app is lost. Any variables will lose their values and
the app will start from scratch.

 There is a special object, the WinJS.Application.sessionState object, which you can use
to store state across app suspension. Anything you add to session state survives until the
app is activated again.

 The code in Listing 11.1 illustrates how you can use session state to store the user’s
current game score.

 LISTING 11.1 Using Session State (sessionState/sessionState.js)

 (function () {

 "use strict" ;

 var _gameScore;

 WinJS.Application.addEventListener("activated" , function (evt) {

 var appState = Windows.ApplicationModel.

➥Activation.ApplicationExecutionState;

 if (evt.detail.previousExecutionState == appState.notRunning ||

evt.detail.previousExecutionState == appState.closedByUser) {

 // Set default game score

_gameScore = 0;

console.log("setting default gamescore");

ptg999

Suspending, Terminating, and Resuming an App 319

1
1

}

 if (evt.detail.previousExecutionState == appState.terminated) {

 // Load game score from session state

_gameScore = WinJS.Application.sessionState.gameScore;

console.log("setting gamescore from session state");

}

 });

 WinJS.Application.addEventListener("checkpoint" , function () {

 // Save game score to session state

WinJS.Application.sessionState.gameScore = _gameScore;

 });

 WinJS.Application.addEventListener("ready" , function (evt) {

 // Killed alien, +1 to game score

document.getElementById("btnKillAlien").addEventListener("click" ,

➥function () {

_gameScore++;

showGameScore();

});

showGameScore();

 });

 function showGameScore() {

document.getElementById("gameScore").innerText = _gameScore;

 }

 WinJS.Application.start();

 })();

 The code in Listing 11.1 includes three event handlers:

▶ click—When you click the btnKillAlien button, the current game score goes up
by 1.

▶ checkpoint—Called when the app is suspended. This event handler stores the
current game score in session state.

▶ activated—Called when the app is activated. If the app is activated after termina-
tion then the current game score is loaded from session state. Otherwise, a default
value for the game score is assigned.

 Session state is only loaded when an app is activated after termination. Session state is not
preserved, for example, when a user explicitly closes an app or reboots her machine.

ptg999

CHAPTER 11 App Events and States320

 NOTE

 Behind the scenes, session state is stored in local storage in a file named
_sessionState.json. After the checkpoint event, session state is written to this file auto-
matically. When an app is activated after termination, session state is loaded from this
file automatically.

 Designing for Different Window Sizes
 Windows 8.1 supports running up to four apps side-by-side on the same monitor. For
example, you can have your mail app open next to your music app next to your calen-
dar app next to your solitaire app. You can even go completely crazy and attach multiple
monitors to your computer and each monitor can display multiple side-by-side apps.

 NOTE

 The number of apps that you can display side by side on a single monitor depends on
your screen resolution. For example, you can’t display more than two apps side by side on
a 1,024 pixel by 768 pixel monitor.

 You can resize a running app at any time. For example, you can stretch out the width of
your mail app while you are reading your emails and then shrink your mail app when
shifting your focus to playing solitaire. A well-designed Windows Store app will intelli-
gently adapt to the available real estate. For example, if a fat app is forced to get skinny, it
will hide extra content automatically.

 If you are using a tablet computer—such as a Microsoft Surface—then you can switch
the orientation of your computer at any time from portrait to landscape. Again, a well-
designed Windows Store app will detect orientation changes and adapt automatically.

 In this section, you learn how to detect when the width or the orientation of your app
changes. You learn how to gracefully adapt to different display widths and orientations.

 NOTE

 Windows 8, unlike Windows 8.1, had discrete view states. In particular, Windows 8
supported snapped, filled, and full screen view states. Windows 8.1 no longer supports
discrete view states. Instead, you should build your app with the expectation that a user
might change the width of your app continuously to any size larger than the minimum.

 Setting the Minimum App Width

 By default, a Windows Store app has a minimum width of 500 pixels. You should design
your Windows Store app so that it looks nice at 500 pixels and any resolution greater than
500 pixels (within reason).

ptg999

Designing for Different Window Sizes 321

1
1

 NOTE

 According to Microsoft statistics, the most common screen resolution used with Windows
is 1,366 x 768. But you can use very high resolution monitors with Windows 8, including
2,560 x 1600 monitors.

 For certain apps, it might make sense to support a resolution lower than the default 500
pixels. You can change the default minimum width to a lower width of 320 pixels. Open
the package.appxmanifest file and pick the lower resolution from the drop-down list (see
 Figure 11.4).

 FIGURE 11.4 Setting the minimum width

 Using CSS Media Queries

 You can take advantage of media queries in conjunction with Cascading Style Sheets to
adapt to different app sizes automatically. You can use media queries to detect the charac-
teristics of a device and modify the presentation of content.

 NOTE

 Media queries is a W3C recommendation. You can use media queries not only with
Windows Store apps, but also with normal websites. Media queries are supported by
Google Chrome 4+, Mozilla Firefox 3.5+, Apple Safari 4+, and Microsoft Internet
Explorer 9+.

 Imagine, for example, that you want to display different content depending on the hori-
zontal resolution of a device. In that case, you can group styles by using the @media rule.

ptg999

CHAPTER 11 App Events and States322

 For example, the HTML page in Listing 11.2 contains three sets of style rules. One set
applies to all devices, one set applies to medium resolution devices, and one set applies to
high resolution devices.

 LISTING 11.2 Using CSS Media Queries (mediaQueries\mediaQueries.htm)

 <! DOCTYPE html >

 < html >

 < head >

 < title ></ title >

 < style type ="text/css">

 /* Default Styles */

 .displayInMedium , .displayInHigh {

 display : none ;

}

 /* Greater than or equal to 1,366px */

 @media screen and (min-width : 1366px) {

 .displayInMedium {

 display : block ;

}

}

 /* Greater than or equal to 1,920px */

 @media screen and (min-width : 1920px) {

 .displayInMedium , .displayInHigh {

 display : block ;

}

}

 </ style >

 </ head >

 < body >

 < div >

 < h1 > You can see me at all resolutions. </ h1 >

 </ div >

 < div class ="displayInMedium">

 < h1 > You can see me at medium resolutions. </ h1 >

 </ div >

 < div class ="displayInHigh">

 < h1 > You can see me at high resolutions. </ h1 >

 </ div >

 </ body >

 </ html >

ptg999

Designing for Different Window Sizes 323

1
1

 You can simulate different device sizes by running your Windows Store app using the
Visual Studio simulator and selecting different resolutions (see Figure 11.5). When you
switch to different resolutions, the content in different DIV elements is displayed.

 FIGURE 11.5 Changing screen resolution in the simulator

 You can also use media queries to detect whether an app is being displayed with a
portrait or landscape orientation. The page in Listing 11.3 defines two CSS classes named
displayInLandscape and displayInPortrait, which you can use to hide and display
content in the page.

 LISTING 11.3 Using Media Queries to Detect Orientation (mediaQueryOrientation\
mediaQueryOrientation.htm)

 <! DOCTYPE html >

 < html >

 < head >

 < title > Media Query Orientation </ title >

 < style >

 .displayInLandscape , .displayInPortrait {

 display : none ;

}

 @media screen and (orientation : landscape) {

 .displayInLandscape {

 display : block ;

}

}

 @media screen and (orientation : portrait) {

 .displayInPortrait {

 display : block ;

}

}

ptg999

CHAPTER 11 App Events and States324

 </ style >

 </ head >

 < body >

 < div class ="displayInLandscape">

 < h1 > You can see me in landscape orientation! </ h1 >

 </ div >

 < div class ="displayInPortrait">

 < h1 > You can see me in portrait orientation! </ h1 >

 </ div >

 </ body >

 </ html >

 You can use the simulator to switch your running app into different orientations by click-
ing the Rotate clockwise (90 degrees) and Rotate counterclockwise (90 degrees) buttons
(see Figure 11.6).

 FIGURE 11.6 Testing orientations with the simulator

 NOTE

 In your app manifest—the package.appxmanifest file—you are given the option to
specify your supported rotations. If you specify landscape then your app display won’t be
repainted when the orientation of your app changes to portrait. Rotating your device will
be ignored.

 Using the window resize Event

 As an alternative to using media queries to detect changes in app width or orientation,
you can use JavaScript to detect these changes. The window resize event is raised when-
ever the size or the orientation of your app changes.

ptg999

Designing for Different Window Sizes 325

1
1

 For example, the JavaScript file in Listing 11.4 displays a DIV element named sidebar
whenever the width of the app is greater than 600 pixels or the app is in landscape
orientation.

 LISTING 11.4 Handling the window resize Event (resize\resize.js)

 (function () {

 "use strict" ;

 function resize() {

 var width = document.documentElement.offsetWidth;

 var isLandscape = window.innerWidth > window.innerHeight;

 if (isLandscape && width > 600) {

 // Show sidebar

document.getElementById("sidebar").style.display = "" ;

} else {

 // Hide sidebar

document.getElementById("sidebar").style.display = "none" ;

}

 }

 window.addEventListener("resize" , resize);

 })();

 When the app is displayed with a width of greater than 600 pixels and an orientation of
landscape then the extra sidebar content is displayed (see Figure 11.7).

 FIGURE 11.7 Display sidebar content

 Notice that orientation is detected by comparing the window innerHeight and
innerWidth properties. If the window is more wide than tall then the orientation is
detected to be landscape.

ptg999

CHAPTER 11 App Events and States326

 Scaling Content to Fit Different Screen Resolutions
 In the previous section, you learned how to use media queries and JavaScript to hide
or display content depending on the width and orientation of an app. In this section, I
discuss how you can build your Windows Store app so it will adapt gracefully to different
screen resolutions.

 Defining a Viewport

 You can take advantage of the @-ms-viewport rule to scale content to fit different device
resolutions—devices with different widths and heights—automatically.

 The @-ms-viewport rule enables you to define a viewport . A viewport determines the width
and height of the available screen real estate used to display content independent of the
actual screen size.

 For example, the following page displays some text and a picture of a Tesla:

 <! DOCTYPE html >

 < html >

 < head >

 < title > viewport </ title >

 </ head >

 < body >

 < h1 > A fast, red Tesla </ h1 >

 < img src ="../images/tesla.jpg" />

 </ body >

 </ html >

 When the page is displayed full screen (see Figure 11.8) then everything looks fine. When
you share the screen with another app, and lose half the horizontal resolution, then the
picture is cut off (see Figure 11.9).

ptg999

Scaling Content to Fit Different Screen Resolutions 327

1
1

 FIGURE 11.8 Full screen Tesla

 FIGURE 11.9 Partial screen Tesla

ptg999

CHAPTER 11 App Events and States328

 Here’s how you can use the @-ms-viewport rule to scale the page automatically:

 <! DOCTYPE html >

 < html >

 < head >

 < title > viewport </ title >

 < style type ="text/css">

 @-ms-viewport {

 width : 1024px ;

}

 </ style >

 </ head >

 < body >

 < h1 > A fast, red Tesla </ h1 >

 < img src ="../images/tesla.jpg" />

 </ body >

 </ html >

 The viewport is set to 1,024px by 768px. If the page is displayed at a lower resolution than
1,204px by 768px then the content of the page is shrunk (see Figure 11.10).

 FIGURE 11.10 Partial screen and shrunk

ptg999

Scaling Content to Fit Different Screen Resolutions 329

1
1

 If the page is displayed at a resolution higher than 1,024px by 768px then the content of
the page (including the picture) is expanded (see Figure 11.11).

 FIGURE 11.11 Full screen and expanded

 NOTE

 The @-ms-viewport rule is a Microsoft extension to Cascading Style Sheets that is
based on the forthcoming @viewport rule from the W3C. The draft specification for the
@viewpoint rule is part of the CSS Device Adaptation specification that can be found at:
 http://dev.w3.org/csswg/css-device-adapt/.

 Using the ViewBox Control

 As an alternative to defining a viewport, you can use the ViewBox control. The ViewBox
control enables you to resize content to fit available screen real estate while retaining the
correct aspect ratio.

 Imagine, for example, that you happen to have a picture of a Tesla and the picture
measures 800px by 484px. You want the picture to fill the entire available space but not
get distorted.

http://dev.w3.org/csswg/css-device-adapt/

ptg999

CHAPTER 11 App Events and States330

 The page in Listing 11.5 demonstrates how you can wrap the picture in a ViewBox.

 LISTING 11.5 Using the ViewBox Control (viewBox\viewBox.html)

 < div data-win-control ="WinJS.UI.ViewBox">

 < img src ="/images/tesla.jpg" />

 </ div >

 Figure 11.12 illustrates the appearance of the picture on a device with a resolution of
1,024px by 768px. Notice that the picture has been scaled automatically to fit the avail-
able space.

 FIGURE 11.12 Picture shown with 1,024px by 768px resolution

 If you view the very same picture on a device with a different resolution then the picture
will be scaled automatically to fit the new resolution. For example, Figure 11.13 illustrates
what happens when you display the picture on a device with a resolution of 1,920px by
1,084px. Notice that you get pillars on either edge of the photo so that the photo will not
be distorted.

ptg999

Scaling Content to Fit Different Screen Resolutions 331

1
1

 FIGURE 11.13 Picture shown with 1,920px by 1,048px resolution

 The ViewBox even resizes its child element automatically when you shrink the width of an
app (see Figure 11.14).

 FIGURE 11.14 Resized picture when app size is shrunk

ptg999

CHAPTER 11 App Events and States332

 The ViewBox control has some significant limitations. You can add only one child element
to a ViewBox. If you want to apply the ViewBox to multiple elements then you must wrap
the elements in a DIV (with a particular width and height).

 Furthermore, the ViewBox does not work with text. You can use the ViewBox to resize a
picture or an HTML5 canvas.

 The main scenario in which it makes sense to use the ViewBox is when you want to create
a game, and you want the game to look good on computers and tablets with different
resolutions. You don’t want your angry bird to look fat on one computer and skinny on
another. We use the ViewBox control with the Brain Eaters game in Chapter 15 , “Graphics
and Games.”

 NOTE

 Behind the scenes, the ViewBox control uses the Cascading Style Sheet 3 translate
and scale functions.

 Summary
 This chapter was all about Windows Store app events and states. In the first part, I
explained the standard types of events that are raised whenever you run a Windows Store
app. You learned how to handle the application loaded, activated, and ready events.

 Next, I discussed how Windows Store apps get suspended and terminated automatically in
Windows 8. You learned how to take advantage of session state to store and retrieve app
data.

 Finally, you learned how to gracefully adapt to changes in the width, height, orientation,
and resolution of a Windows Store app. You learned how to use media queries to hide
and display content when the size of a Windows app changes. You also learned to scale a
Windows Store app using the @-ms-viewport rule and the ViewBox control.

ptg999

 CHAPTER 12

 Page Fragments and
Navigation

 The goal of this chapter is to explain three
controls: the HtmlControl, the Page control, and the
PageControlNavigator control. All three controls enable
you to display the contents of one HTML page in another
HTML page using Ajax.

 The HtmlControl enables you to add a chunk of HTML to
a page. You can use this control to reuse the same HTML
markup in multiple places in your app.

 Creating custom Page controls enables you to easily create
new WinJS controls out of an HTML page, JavaScript file,
and style sheet. Create a Page control when you want to
encapsulate both markup and behavior in a new control.

 Finally, the PageControlNavigator control enables you
to build single page apps that contain multiple virtual
pages. The PageControlNavigator enables you to load Page
controls to simulate the experience of navigating between
pages.

 Using the HtmlControl Control
 If you want to include the same chunk of HTML in multi-
ple pages in a Windows Store app, or you want to break up
an existing page into more manageable parts, then you can
use the WinJS HtmlControl control. This control requires
you to set one option: a URI. You set the URI to indicate
the content that you want to load.

 NOTE

 You can find the code discussed in this section in the
Chapter12\Fragments folder in the GitHub source.

IN THIS CHAPTER

▶ Using the HtmlControl Control

▶ Creating a Page Control

▶ Creating Multi-Page Apps

ptg999

CHAPTER 12 Page Fragments and Navigation334

 Imagine, for example, that you want to display a page with includes a form for entering
both a billing and shipping address. In other words, you want to display the same address
form twice (see Figure 12.1).

 FIGURE 12.1 Using the HtmlControl to display address forms

 In this case, you can create the Address form in a separate HTML file named address.html:

 < div >

 < div class ="label">

 < label for ="inpStreet"> Street: </ label >

 </ div >

 < div class ="field">

 < input class ="inpStreet" required />

 </ div >

 </ div >

 < div >

 < div class ="label">

 < label for ="inpCity"> City: </ label >

 </ div >

 < div class ="field">

 < input class ="inpCity" required />

 </ div >

 </ div >

ptg999

Using the HtmlControl Control 335

1
2

 NOTE

 Notice that I am using class names for the form fields instead of IDs because I want to
avoid creating conflicting IDs when the form is displayed twice.

 Next, you can load this form into the same page twice using the HtmlControl control
like this:

 < h1 > Order Form </ h1 >

 < form id ="frmOrder">

 < fieldset >

 < legend > Billing Address </ legend >

 < div id ="divBillingAddress"

 data-win-control ="WinJS.UI.HtmlControl"

 data-win-options ="{

 uri: 'address.html'

 }"></ div >

 </ fieldset >

 < fieldset >

 < legend > Shipping Address </ legend >

 < div id ="divShippingAddress"

 data-win-control ="WinJS.UI.HtmlControl"

 data-win-options ="{

 uri: 'address.html'

 }"></ div >

 </ fieldset >

 < input type ="submit" value ="Submit Order" />

 </ form >

 Finally, here is how you can handle the form submit event to grab the values of both the
billing and shipping address forms:

 WinJS.UI.processAll().done(function () {

 var frmOrder = document.getElementById("frmOrder");

 // Get the order

 frmOrder.addEventListener("submit" , function (e) {

 e.preventDefault();

 var order = {

billing_street: document.querySelector("#divBillingAddress .inpStreet").

➥value,

billing_city: document.querySelector("#divBillingAddress .inpCity").

➥value,

ptg999

CHAPTER 12 Page Fragments and Navigation336

shipping_street: document.querySelector("#divShippingAddress

➥.inpStreet").value,

shipping_city: document.querySelector("#divShippingAddress .inpCity").

➥value

};

 // Save to Database

 });

 });

 In the preceding code, the querySelector() method is used to retrieve the values of both
the billing and shipping address form fields. The values of all of the fields are assigned to
an object named orders.

 WARNING

 Don’t forget to call WinJS.UI.processAll() or the HtmlControl will never become a
control.

 NOTE

 In a Windows Store app, you can’t use a server-side #INCLUDE directive to include content
from other files. If you want to include content then you need to use an HtmlControl
control.

 Creating a Page Control
 A Page control, as its name suggests, enables you to create a control from a page. A Page
control provides you with an easy method of creating custom WinJS controls. When you
create a Page control, you create a new WinJS control out of an HTML page, JavaScript
file, and CSS file.

 Creating a new Page control makes sense when you need to do more than simply add a
chunk of HTML to a page. A Page control enables you to encapsulate both appearance and
behavior in a control.

 Furthermore, a Page control has its own event lifecycle. For example, a Page Control has
its own ready event which you can handle to initialize the control.

 Imagine, for example, that you want to create an Alert control. When someone clicks
the button rendered by the Alert control, a WinRT modal dialog appears that displays
a message (Figure 12.2). I’ll walk through each of the steps required to create the Alert
control as a Page control.

ptg999

Creating a Page Control 337

1
2

 FIGURE 12.2 Displaying an alert with a custom Page control

 First, we need to create the following three files:

▶ alert.html

▶ alert.js

▶ alert.css

 You can create these three files by adding an HTML page, a JavaScript file, and a style
sheet to your project. I added all three of these files to a new folder named myControls.

 The alert.html page contains all of the markup for our new control:

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > confirmButton </ title >

 < link href ="alert.css" rel ="stylesheet" />

 < script src ="alert.js"></ script >

 </ head >

 < body >

 < button class ="alert"></ button >

 </ body >

 </ html >

 Notice that the alert.html page looks like a normal HTML page with both a HEAD and
BODY section. The HEAD section contains all of the style sheets and JavaScript files
required by the page. The body section contains all of the markup required by the Alert
control.

ptg999

CHAPTER 12 Page Fragments and Navigation338

 NOTE

 All of the scripts and style sheets referred to in the head of a Page control HTML file
are removed from the HTML file and added to the parent page. In other words, all of the
scripts and styles are promoted up from the control to the containing page.

 The alert.css file looks like this (not super exciting):

 .alert {

 background-color : red

 }

 The CSS file changes the background color of the Alert button to the color red.

 Finally, the alert.js file looks like this:

 (function () {

 "use strict" ;

 var Alert = WinJS.UI.Pages.define("myControls/alert.html" , {

ready: function (element, options) {

 var btn = WinJS.Utilities.query("button" , element);

 // Set option defaults

options.buttonLabel = options.buttonLabel || "Show Alert" ;

options.message = options.message || "Alert!!!" ;

 // Update button label text

btn[0].innerText = options.buttonLabel;

 // Setup click handler

btn.listen("click" , function () {

 var md = new Windows.UI.Popups.MessageDialog(

options.message

);

md.showAsync();

});

}

 });

 WinJS.Namespace.define("MyControls" , {

Alert: Alert

 });

 })();

ptg999

Creating a Page Control 339

1
2

 The alert.js JavaScript file creates the Alert control. The Alert control is created by calling
the WinJS.Pages.define() method with the path to the alert.html file.

 When you create a Page control, you can create an event handler for the Page control
ready event. This event is raised after the control has been rendered so you can access any
elements in the alert.html file. The ready event has an options parameter that allows the
consuming script to pass options just like a standard control using the data-win-options
attributes.

 In the preceding code, the ready handler configures a click handler for the button. When
you click the button, a Windows.UI.Popups.MessageDialog is displayed.

 There is one other important section in the alert.js file. The following code exposes the
Alert control in the global namespace so that the control can be used declaratively in
other HTML pages:

 WinJS.Namespace.define("MyControls" , {

 Alert: Alert

 });

 Now that I have created the Alert control, I can use it in a page. The following page
displays a button with the label Click Here! When you click the button, the alert You
Clicked the Button! is displayed:

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > Fragments </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 < script type ="text/javascript" src ="pageControl.js"></ script >

 < script type ="text/javascript" src ="/pageControl/alert.js"></ script >

 </ head >

 < body >

 < div id ="btnDelete"

 data-win-control ="MyControls.Alert"

 data-win-options ="{

 buttonLabel: 'Click Here!',

 message: 'You clicked the button!'

 }"></ div >

 </ body >

 </ html >

ptg999

CHAPTER 12 Page Fragments and Navigation340

 Notice that the page includes a refererence to the alert.js JavaScript file. You must include
a reference to your custom Page control in any page that uses the control declaratively.

 The Alert Page control is created declaratively in the body of the page just like any other
standard WinJS control such as the ListView or DatePicker control.

 WARNING

 Remember to call WinJS.UI.processAll() or your Page controls, just like any other
WinJS control, won’t get processed and turned into a control.

 Creating Multi-Page Apps
 You can create a Windows Store app that contains multiple HTML pages and create links
between the pages. However, Microsoft strongly discourages you from doing this. Instead,
you are encouraged to create a single page app and dynamically load different Page
controls that represent individual pages.

 Why does Microsoft make this recommendation? When you are building a Windows Store
app, you are not building a website (even though you are using many of the same tech-
nologies). Instead, you are building a Windows application.

 Users have different expectations when using a Windows application than a web applica-
tion. In a web application, it is normal to click a link and wait (and wait, and wait) for
another page to load. While you are waiting, the application freezes. When the new page
loads, you start over in a completely new context—the context of the new page.

 In a Windows application, this experience would be unacceptable. Microsoft Word, for
example, never freezes when you click a button (well, hardly ever). You don’t navigate
between pages in a Windows application. Instead, you navigate content by opening
dialogs and switching between tabs.

 To create this same type of Windows application experience in a Windows Store app, you
are encouraged to create a single-page app.

 Creating a Navigation App

 The easiest way to create a single-page app that contains multiple pages is to take advan-
tage of the Visual Studio Navigation App project template (see Figure 12.3). There are
several differences between this template and the Blank App template.

ptg999

Creating Multi-Page Apps 341

1
2

 FIGURE 12.3 Creating a navigation app

 First, the Navigation App template contains a pages folder. The pages folder contains all
of the Page controls that represent the pages in your application. Each Page control is
contained in a separate subfolder of the pages folder.

 The Navigation App template includes a pages/home folder that contains a Page control
that represents the home page. This Page control is loaded by default when you start a
Navigation App template.

 The Navigation App template, like the Blank App template, does include a default.html
file. However, this file mainly acts as a shell for loading up different Page controls from
the pages folder. When you navigate from page to page, the content in the body of the
default.html file is loaded with new content.

 Finally, the Navigation App template includes a WinJS control that is not included in the
Blank App template named the PageControlNavigator control. This control is located in a
file named js/navigator.js. The PageControlNavigator control handles all of the details of
loading the Page controls into the default.html page.

 Let me dig into how all of this works a little deeper.

 Understanding the Navigation App default.html Page

 As I mentioned previously, the default.html page in a navigation app is mainly a shell for
the content contained in the Page controls. The entire contents of the default.html page is
contained in Listing 12.1 .

ptg999

CHAPTER 12 Page Fragments and Navigation342

 LISTING 12.1 The default.html Page

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > MultiPage </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 <!-- MultiPage references -->

 < link href ="/css/default.css" rel ="stylesheet" />

 < script src ="/js/default.js"></ script >

 < script src ="/js/navigator.js"></ script >

 </ head >

 < body >

 < div id ="contenthost" data-win-control ="Application.PageControlNavigator" data-

➥win-options ="{home: '/pages/home/home.html'}"></ div >

 <!-- <div id="appbar" data-win-control="WinJS.UI.AppBar">

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-

➥options="{id:'cmd', label:'Command', icon:'placeholder'}"></button>

 </div> -->

 </ body >

 </ html >

 The body of the page in Listing 12.1 contains two controls. The first control is the
PageControlNavigator control. This control has the ID contenthost and it acts as the host
for the content loaded up from the Page controls. I’ll discuss the PageControlNavigator
control in more depth shortly.

 The second control (which is commented out) is an AppBar control. Any content that you
place in the default.html page will be displayed for every page in the application. Because
an AppBar should be the same across all of the pages in a Windows Store app, the default.
html page is a good place to declare it.

 NOTE

 I discussed the AppBar control in Chapter 6 , “Menus and Flyouts.”

 Any other content that you add to the default.html page will also be displayed for all
pages in a navigation app. For example, if you want to create a standard header, footer, or
sidebar then it makes sense to add this standard content to the default.html page.

ptg999

Creating Multi-Page Apps 343

1
2

 Adding New Page Controls to a Navigation App

 A single page app that contained only a single Page control—the home page—would not
be worth the effort. So let me show you how to add a second page.

 The easiest way to add a new Page control to your project is to take advantage of the
Visual Studio Page Control item template. Create a new subfolder named anotherPage
located at pages\anotherPage. Select the menu item Project, Add New Item, and select
the Page Control template (see Figure 12.4). Name your new Page control with the name
anotherPage.html.

 FIGURE 12.4 Creating a new Page control with Visual Studio

 When you add a Page control named anotherPage.html to a project, you get the following
three files:

▶ anotherPage.html

▶ anotherPage.js

▶ anotherPage.cs

 Of course, you could create these exact same three files by hand, but using the Visual
Studio item template saves you a little time.

 The entire contents of anotherPage.html is contained in Listing 12.2 . Notice that the body
of the page contains an HTML5 HEADER tag (not to be confused with the HEAD tag). The
HEADER tag contains a WinJS BackButton control and the page title (see Figure 12.5).

ptg999

CHAPTER 12 Page Fragments and Navigation344

 FIGURE 12.5 The header of a Page control

 LISTING 12.2 The Contents of anotherPage.html

 <! DOCTYPE html >

 < html >

 < head >

 < meta charset ="utf-8" />

 < title > anotherPage </ title >

 <!-- WinJS references -->

 < link href ="//Microsoft.WinJS.2.0/css/ui-dark.css" rel ="stylesheet" />

 < script src ="//Microsoft.WinJS.2.0/js/base.js"></ script >

 < script src ="//Microsoft.WinJS.2.0/js/ui.js"></ script >

 < link href ="anotherPage.css" rel ="stylesheet" />

 < script src ="anotherPage.js"></ script >

 </ head >

 < body >

 < div class ="anotherPage fragment">

 < header aria-label ="Header content" role ="banner">

 < button data-win-control ="WinJS.UI.BackButton"></ button >

 < h1 class ="titlearea win-type-ellipsis">

 < span class ="pagetitle"> Welcome to anotherPage </ span >

 </ h1 >

 </ header >

 < section aria-label ="Main content" role ="main">

 < p > Content goes here. </ p >

 </ section >

 </ div >

 </ body >

 </ html >

 So that we can tell when we have navigated to anotherPage.html, I am going to modify
the body of the page by replacing the text Content goes here with the text Hello from
Another Page!.

ptg999

Creating Multi-Page Apps 345

1
2

 The contents of the anotherPage.js JavaScript are contained in Listing 12.3 .

 LISTING 12.3 The Contents of anotherPage.js

 (function () {

 "use strict" ;

 WinJS.UI.Pages.define("/pages/anotherPage/anotherPage.html" , {

 // This function is called whenever a user navigates to this page. It

 // populates the page elements with the app's data.

ready: function (element, options) {

 // TODO: Initialize the page here.

},

unload: function () {

 // TODO: Respond to navigations away from this page.

},

updateLayout: function (element) {

 /// <param name="element" domElement="true" />

 // TODO: Respond to changes in layout.

}

 });

 })();

 Notice that the JavaScript file in Listing 12.3 contains the code to define a new Page
control. The Page control has three event handlers: ready, updateLayout, and unload.
I modify the ready event handler to support page navigation in the next section.

 Navigating to Another Page

 I now have a page named home and a page named anotherPage in my app, how do I
navigate between these two pages? You navigate between pages by using the
WinJS.Navigate.navigate() method.

 Let me modify the home page so we can navigate from the home page to anotherPage.
Add a hyperlink to the main section of the home page that looks like this:

 < section aria-label ="Main content" role ="main">

 < p > Content goes here. </ p >

 < a id ="lnkAnotherPage"> Visit Another Page </ a >

 </ section >

 This hyperlink has an ID attribute but no HREF attribute.

ptg999

CHAPTER 12 Page Fragments and Navigation346

 NOTE

 You can find the code discussed in this section in the Chapter12\Multipage folder in the
GitHub source.

 Next, I’ll modify the code in the home.js file so it sets up a click handler for the hyper-
link in its ready handler:

 WinJS.UI.Pages.define("/pages/home/home.html" , {

 ready: function (element, options) {

 var lnkAnotherPage = document.getElementById("lnkAnotherPage");

lnkAnotherPage.addEventListener("click" , function (evt) {

evt.preventDefault();

WinJS.Navigation.navigate("/pages/anotherPage/anotherPage.html");

});

 }

 });

 The click event handler first calls preventDefault() to prevent normal link navigation
from happening. Remember that we are fake navigating here.

 Next, the WinJS.Navigation.navigate() method is called to navigate to the anotherPage.
html page.

 When you click the link in the home page then you navigate to the anotherPage page (see
 Figure 12.6). What’s even cooler, on the anotherPage page, the back button works. If you
click the back button, you return to the home page.

 FIGURE 12.6 Navigating between pages

 Understanding the Navigation API

 The WinJS.Navigatation.navigate() method is just one method of the WinJS Navigation
API. You can use all of the following methods to control user navigation:

▶ back()—Enables you to navigate back in history. If you supply an integer parameter
then you can go back in history a certain number of entries.

ptg999

Creating Multi-Page Apps 347

1
2

▶ forward()—Enables you to navigate forward in history. If you supply an integer
parameter then you can go forward in history a certain number of entries.

▶ navigate()—Enables you to navigate to a particular page (Page control). You can
also supply a custom object which represents the initial state of the page.

 And, you can use the following properties with navigation:

▶ canGoBack—Returns true when you can navigate back.

▶ canGoForward—Returns true when you can navigate forward.

▶ history—Returns an object that represents all of the history entries. The history
object has a current, backStack, and forwardState property.

▶ location—Return the URL associated with the current page.

▶ state—Returns the state associated with the current page.

 Finally, the Navigation API supports the following three navigation events:

▶ beforenavigate

▶ navigating

▶ navigated

 For each of these three events, you can use the event detail property to read the
location and state properties.

 Understanding the PageControlNavigator Control

 The PageControlNavigator control is included with the Navigation App, Grid App, Split
App, and Hub App Visual Studio project templates—but it is not included with the Blank
App template.

 The PageControlNavigator control handles the navigated event and takes care
of loading the right Page control in response to this event. For example, if you
call WinJS.Navigation.navigate("/pages/somePage/somePage.html") then the
PageControlNavigator control loads the somePage.html Page control into the default.
html page.

 Understanding Navigation State

 When building a multi-page app with the Navigation API, you can take advantage of
Navigation state to preserve state as you navigate back and forth between pages. Each
entry in history has a state property associated with it. You can assign whatever value
that you want to this state property.

ptg999

CHAPTER 12 Page Fragments and Navigation348

 Imagine, for example, that you are building a simple product catalog. The app consists of
only two pages: a home page, which displays a list of categories, and a details page, which
displays a list of matching products (see Figures 12.7 and 12.8). When you click a category
on the home page then you see a list of matching products on the details page.

 FIGURE 12.7 The store app home page

 FIGURE 12.8 The store app details page

 After you select a category on the home page, and you navigate to the details page and
back again, then you want the same category to be selected. That way, the customer
knows which category was just selected. The customer does not lose his place in the list of
categories (see Figure 12.9).

ptg999

Creating Multi-Page Apps 349

1
2

 FIGURE 12.9 Preserving state in the store app

 NOTE

 You can find the code discussed in this section in the Chapter12\NavigationState folder
in the GitHub source.

 Let me build this app, starting with the home page. The home page contains a ListView
that displays a list of product categories:

 < div id ="tmplCategory"

 data-win-control ="WinJS.Binding.Template">

 < div class ="categoryItem">

 < span data-win-bind ="textContent:categoryName"></ span >

 </ div >

 </ div >

 < div id ="lvCategories"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplCategory'),

 selectionMode: 'single',

 tapBehavior: 'directSelect',

 swipBehavior: 'select'

 }"></ div >

 The ListView is initialized in the home Page control’s ready event handler:

 (function () {

 "use strict" ;

ptg999

CHAPTER 12 Page Fragments and Navigation350

 WinJS.UI.Pages.define("/pages/home/home.html" , {

ready: function (element, options) {

 var lvCategories = document.getElementById("lvCategories").winControl;

 // Bind the categories to the ListView

 var dsCategories = new WinJS.Binding.List(MyApp.categoriesAndProducts);

lvCategories.itemDataSource = dsCategories.dataSource;

 // Retrieve selected category index from state

WinJS.Navigation.state = WinJS.Navigation.state || {};

 var selectedCategoryIndex = WinJS.Navigation.

➥state.selectedCategoryIndex;

 if (selectedCategoryIndex > -1) {

lvCategories.selection.set(selectedCategoryIndex);

}

 // Navigate when item invoked

lvCategories.addEventListener("iteminvoked" , function (e) {

 // Store index of invoked category in history

WinJS.Navigation.state = { selectedCategoryIndex: e.detail.itemIndex

};

 // Navigate with invoked category name

e.detail.itemPromise.done(function (item) {

WinJS.Navigation.navigate(

 "/pages/details/details.html" ,

{ selectedCategoryName: item.data.categoryName }

);

});

});

}

 });

 })();

 Actually, there are several things happening in the code. The first couple of lines in the
ready event handler are used to bind the ListView control to the categoriesAndProducts
data.

 NOTE

 Notice that you do not need to call WinJS.UI.processAll() to initialize the ListView
control when working with Page controls. The Page control handles calling this method
for you.

ptg999

Summary 351

1
2

 Next, if a selected category index has been stored in Navigation state, then the selected
category index is retrieved and assigned to the ListView control.

 The next section of code contains a listener for the ListView iteminvoked event. When
a new category is selected in the ListView, the index of the selected category is stored in
navigation state.

 The iteminvoked handler also handles navigating to the details page. When the WinJS.
Navigation.navigate() method is called, the selected category name is passed to the
details page.

 Let me switch to the details page. The details page also contains a ListView that is used
to display the list of products that match the selected category. The details ready event
handler takes care of binding the products to the ListView:

 WinJS.UI.Pages.define("/pages/details/details.html" , {

 ready: function (element, options) {

 var lvProducts = document.getElementById("lvProducts").winControl;

 // Get selected category

 var selectedCategoryName = options.selectedCategoryName;

 // Filter products by category

 var selectedCategory = MyApp.categoriesAndProducts.filter(function

➥(category) {

 return category.categoryName == selectedCategoryName;

});

 // Bind products to ListView

 var dsProducts = new WinJS.Binding.List(selectedCategory[0].products);

lvProducts.itemDataSource = dsProducts.dataSource;

 }

 });

 The selected category name is retrieved from the options passed to the ready event
handler. The matching category and products are retrieved and assigned to the ListView
control’s itemDataSource property.

 Summary
 This chapter focused on two topics: how to reuse the same fragment of HTML across
multiple pages and how to build apps with multiple pages. In the first part of this chapter,
I discussed the HtmlControl, which enables you to include one HTML page in another
HTML page.

ptg999

CHAPTER 12 Page Fragments and Navigation352

 Next, I discussed how you can create Page controls. Page controls provide you with an
easy way of creating new WinJS controls out of an HTML page, JavaScript file, and
style sheet.

 Finally, I explained how you can create a single-page app that contains multiple pages.
You learned how to use the PageControlNavigator control—in conjunction with the
Navigation API—to load Page controls dynamically and simulate the experience of navi-
gating to separate pages.

ptg999

 CHAPTER 13

 Creating Share and
Search Contracts

 The focus of this chapter is the two topics of share and
search. Enabling sharing for your app enables your app to
participate in the ecosystem of other apps living on your
machine. For example, you can share a winning score in a
game app, or pictures from a camera app, or appointments
from a calendar.

 Adding support for search enables users of your app to
quickly find content in your app. For example, users might
search for an appointment in a Calendar app, a picture in a
Photo Gallery app, or an article in a News app.

 In this chapter, I discuss two ways to implement search:
you learn how to implement search both using the Search
charm and using the new SearchBox control. I also explain
how you can index content using the new Windows 8.1
Content Indexer.

 Throughout this chapter, I demonstrate how to implement
share and search in the context of a single sample app.
I demonstrate how you can build a note gathering app,
named My Notes, which enables you to share and search
notes (see Figure 13.1).

 NOTE

 You can find the full source code for this chapter in the
 Chapter 13 folder in the repository that accompanies this
book on GitHub.

IN THIS CHAPTER

▶ Supporting Sharing

▶ Using the Search Charm

▶ Using the SearchBox Control

▶ Using the Windows Content
Indexer

ptg999

CHAPTER 13 Creating Share and Search Contracts354

 FIGURE 13.1 The My Notes app

 Supporting Sharing
 When you build a Windows Store app, you can decide whether you want your app to act
as a share source, a share target, or both. Let me explain the difference between being a
share source and a share target.

 When your app acts as a share source, you can share information from your app with
other Windows apps. Every app acts as a share source automatically. You share from an
app by opening the Windows Charm bar and clicking the Share charm.

 NOTE

 At a minimum, every Windows Store app enables you to share a screenshot of the app.

ptg999

Supporting Sharing 355

1
3

 If you click the Share charm in the Internet Explorer app, for example, then you can share
a web page with other apps installed on your machine such as the Mail app, the Reader
app, and the Twitter app (see Figure 13.2). If you share a web page with the Mail app then
a link with a summary of the web page is opened in a new mail message.

 NOTE

 You can open the Windows Charm bar by swiping from the right edge of the screen or
mousing to either of the right corners or pressing the keyboard combination Win+C.

 FIGURE 13.2 Using Internet Explorer and a share source

 If you want your app to act as a share source then you can decide on the information
that you want to share. For example, in the case of a game app, you might want players
of your game to be able to share a winning score on Twitter or Facebook. Or, if you are
building a Calendar app, you might want to be able to share appointments by email.

ptg999

CHAPTER 13 Creating Share and Search Contracts356

 Your app can act not only as a share source, your app can also act a share target. When
your app acts as a share target then it appears in the list of apps in the Share charm as a
target for sharing information.

 You can register your app as a share target for different types of content. In that case, your
app appears in the Share charm only when a particular type of content is being shared.

 For example, if you are building a photo gallery app, then it would make sense to make
your app a share target for pictures. Or, if you are building an app for taking notes then
you would want to make your app a share target for all sorts of content such as HTML and
plain text. Again, it is up to you to decide what types of content you want to accept for
your app.

 Let me show you how all of this works in the context of the My Notes app.

 Creating a Share Source

 The My Notes app acts a share source by enabling you to share notes with other apps.
For example, you might want to share notes by email or (don’t ask me why) Facebook or
Twitter.

 Here’s how it works. You select a note from the list of notes, click the Share charm, and
select the app that you want to share the note with (Figure 13.3). If you select the Mail
app then a new email message is created with the note (Figure 13.4).

 FIGURE 13.3 Sharing a note with the My Notes app

ptg999

Supporting Sharing 357

1
3

 FIGURE 13.4 Sharing a note with the Mail app

 To get this to work, you need to handle the DataTransferManager datarequested event
with an event handler that looks like this:

 var share = Windows.ApplicationModel.DataTransfer.DataTransferManager.

➥getForCurrentView();

 share.addEventListener("datarequested" , function (e) {

 });

 The datarequested event is raised whenever you open the Share charm. You handle this
event to select the information that you want to offer to share from your app.

 For the My Notes app, I added the code in Listing 13.1 to the default.js JavaScript file.

 LISTING 13.1 Acting as a Share Source (ShareSource\js\default.js)

 var share = Windows.ApplicationModel.DataTransfer.DataTransferManager.

➥getForCurrentView();

 share.addEventListener("datarequested" , function (e) {

 var lvNotes = document.getElementById("lvNotes").winControl;

 if (lvNotes.selection.count() == 1) {

lvNotes.selection.getItems().done(function (items) {

 var itemToShare = items[0].data;

e.request.data.properties.title = itemToShare.title;

e.request.data.properties.description = "Share a Note" ;

ptg999

CHAPTER 13 Creating Share and Search Contracts358

 // Share plain text version

e.request.data.setText(convertToText(itemToShare.contents));

 // Share HTML version

 var htmlFormatHelper = Windows.ApplicationModel.DataTransfer.

➥HtmlFormatHelper;

e.request.data.setHtmlFormat(htmlFormatHelper.

➥createHtmlFormat(itemToShare.contents));

});

 } else {

 e.request.failWithDisplayText("Please select a note to share.");

 }

 });

 The datarequested handler in Listing 13.1 first checks whether any notes are selected in
the ListView used to display the list of notes. If there are no notes selected then the
failWithDisplayText() method is called with the message "Please select a note to
share.". There is no sense in sharing when the user has not selected anything to share.

 Next, the selected ListView item is retrieved and a DataPackage is created. A DataPackage
represents all of the data that you want to share with other apps. This class supports the
following properties and methods (this is not a complete list):

▶ properties—A property that represents a DataPackagePropertySet

▶ setApplicationLink()—A method that enables you to share a link to an app

▶ setBitmap(value)—A method that enables you to share an image

▶ setData(formatId, value)—A method that enables you to share custom data

▶ setHtmlFormat(value)—A method that enables you to share HTML

▶ setRtf(value)—A method that enables you to share Rich Text Format (RTF) content

▶ setStorageItems([IIterable(IStorageItem)])—A method that enables you to
share one or more files or folders

▶ setText()—A method that enables you to share plain text

▶ setWebLink()—A method that enables you to share an HTTP or HTTPS link

 The DataPackage properties property represents a DataPackagePropertySet. Here is a
partial list of the properties that you can set:

▶ applicationListingUri—The URI of the app in the Windows Store

▶ applicationName—The name of the app which created the DataPackage

▶ contentSourceApplicationLink—The link to the content being shared in the app

ptg999

Supporting Sharing 359

1
3

▶ contentSourceWebLink—The link to the content being shared in the app (HTTP/
HTTPS version)

▶ description—The description of the content being shared

▶ logoBackgroundColor—The background color used with the square30x30Logo image

▶ square30x30Logo—The source app’s logo image

▶ thumbnail—The thumbnail image associated with the content being shared

▶ title—The title of the DataPackage being shared

 You also have the option of creating custom properties if you need to pass custom infor-
mation with your DataPackage.

 The basic idea is that you create a DataPackage by setting properties such as the title
and description. In Listing 13.1 , the title property is set to the title of the note and the
description property is set to the string value "Share a Note".

 Next, you call one of the set() methods such as setBitmap() or setHtmlFormat() to assign
the data that you want to share with the DataPackage. In Listing 13.1 , both the setText()
and the setHtmlFormat() methods are called to share both a text and HTML representa-
tion of a note.

 Notice that there is nothing wrong with sharing the same information using multiple
data formats such as text or HTML. Different share targets support different data formats.
Offering as many formats as possible opens up more possibilities for sharing.

 The setText() method assigns a plain text version of a note to the DataPackage. The note
is converted into plain text with the help of the following JavaScript utility method:

 // Converts HTML string to plain text string

 function convertToText(html) {

 var div = document.createElement("DIV");

div.innerHTML = html;

 return div.innerText;

 }

 This method creates a temporary DIV element and reads the innerText property to get a
plain text representation of an HTML fragment.

 The setHtmlFormat() method also takes advantage of a utility method. It calls the WinRT
createHtmlFormat() method to convert the HTML being shared into an appropriate
format for sharing.

ptg999

CHAPTER 13 Creating Share and Search Contracts360

 NOTE

 You can find all of the code discussed in this section in the Chapter13\ShareSource
project in the GitHub source.

 Creating a Share Target

 The other half of sharing is being a share target. A share target appears in the list of apps
when you open the Share charm. For example, if you are creating a photo gallery app
then you might want to make the app a share target for pictures.

 The My Notes app acts as a share target for text or HTML content. For example, if you are
in the standard Windows Mail app, you can click the Share charm to create a new note
that contains the email message. Or, if you are viewing a web page in Internet Explorer
then you can click the Share charm to create a note that contains a summary of the web
page (see Figure 13.5 and Figure 13.6).

 FIGURE 13.5 Sharing a selection from a web page with My Notes

ptg999

Supporting Sharing 361

1
3

 FIGURE 13.6 A note with HTML

 Making your app into a share target consists of two steps: You need to declare your app as
a share target, and you need to create a share page. Let me demonstrate both steps with
the My Notes app.

 Declaring Your App as a Share Target

 You declare your app as a share target in your app manifest file (package.appxmanifest).
Open your app manifest and select the Declarations tab (see Figure 13.7).

ptg999

CHAPTER 13 Creating Share and Search Contracts362

 FIGURE 13.7 Declaring an app as a share target

 Under Available Declarations, select Share Target. When you declare your app as a share
target, you must indicate the type of content that can be shared with your app. You can
provide one or more supported data formats or you can provide one or more supported
file types.

 In the case of the My Notes app, the app supports two data formats: You can pass either
Text or HTML to the app. In Figure 13.7 , notice that Text and HTML are listed under Data
formats.

 The last thing that you should set is the Start page. Enter the Start page path pages/share/
share.html under App settings. This is the page that will be opened in your app when it is
selected by the user as the target for sharing. In the next section, I’m going to show you
how to build this start page.

 Creating a Share Page

 Typically, when you share content with an app, you open a page other than the app’s
usual home page. In other words, when you make an app a share target, you typically
provide the app with a dedicated share page that opens when a user shares content with
your app.

 The My Notes app has a dedicated share page (see Figure 13.8). The page includes a form
for adding comments to a note. This page also contains the logic necessary for creating a
new note for the content being shared.

ptg999

Supporting Sharing 363

1
3

 FIGURE 13.8 The My Notes Share page

 NOTE

 Because we created our My Notes app using the Navigation App project template (see
Chapter 12, “Page Fragments and Navigation”), our pages are inside a /pages folder.

 The easiest way to create the share page is to take advantage of the Share Target Contract
item template included with Visual Studio. Create a new folder in your pages folder
named share and select the menu option Project, Add New Item, and pick the Share Target
Contract item template (see Figure 13.9).

 FIGURE 13.9 Adding a share page

ptg999

CHAPTER 13 Creating Share and Search Contracts364

 After you add the Share Target Contract item, you get an HTML page, a JavaScript file, and
a CSS file. You can customize these files to change the appearance of the share landing
page.

 The file in Listing 13.2 contains the default content of the Share Contract Target
JavaScript file.

 LISTING 13.2 The Share Target Contract JavaScript File

 (function () {

 "use strict" ;

 var app = WinJS.Application;

 var share;

 function onShareSubmit() {

document.querySelector(".progressindicators").style.visibility = "visible" ;

document.querySelector(".commentbox").disabled = true ;

document.querySelector(".submitbutton").disabled = true ;

 // TODO: Do something with the shared data stored in the 'share' var.

share.reportCompleted();

 }

 // This function responds to all application activations.

 app.onactivated = function (args) {

 var thumbnail;

 if (args.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.

➥shareTarget) {

document.querySelector(".submitbutton").onclick = onShareSubmit;

share = args.detail.shareOperation;

document.querySelector(".shared-title").textContent = share.data.

➥properties.title;

document.querySelector(".shared-description").textContent = share.data.

➥properties.description;

thumbnail = share.data.properties.thumbnail;

 if (thumbnail) {

 // If the share data includes a thumbnail, display it.

args.setPromise(thumbnail.openReadAsync().done(function

➥displayThumbnail(stream) {

document.querySelector(".shared-thumbnail").src = window.URL.

➥createObjectURL(stream);

}));

ptg999

Supporting Sharing 365

1
3

} else {

 // If no thumbnail is present, expand the description and

 // title elements to fill the unused space.

document.querySelector("section[role=main] header").style.

➥setProperty("-ms-grid-columns" , "0px 0px 1fr");

document.querySelector(".shared-thumbnail").style.visibility =

➥"hidden" ;

}

}

 };

 app.start();

 })();

 Notice that the code in Listing 13.2 includes an event handler for the WinJS application
activated event. The activated event is raised whenever a Windows Store app is first
activated. In this case, the handler checks whether the app has been activated in response
to a sharing operation (ActivationKind.shareTarget).

 The code in Listing 13.2 sets up a submit handler for the HTML form displayed by the
Share Target Contract HTML file. When you submit the form, the onShareSubmit()
method is invoked.

 You need to place your custom logic for doing something with the item being shared in
the OnShareSubmit() method. In the case of the My Notes app, I want to create a new
note from the text or HTML content being shared.

 Listing 13.3 contains an updated version of the onShareSubmit() method.

 LISTING 13.3 Updated onShareSubmit Method (pages\share\share.js)

 function onShareSubmit() {

 document.querySelector(".progressindicators").style.visibility = "visible" ;

 document.querySelector(".commentbox").disabled = true ;

 document.querySelector(".submitbutton").disabled = true ;

 // TODO: Do something with the shared data stored in the 'share' var.

 var StandardDataFormats = Windows.ApplicationModel.DataTransfer.

➥StandardDataFormats;

 // Process HTML

 if (share.data.contains(StandardDataFormats.html)) {

share.data.getHtmlFormatAsync().done(function (html) {

 // Retrieve sanitized HTML fragment

 var htmlFormatHelper = Windows.ApplicationModel.DataTransfer.

➥HtmlFormatHelper;

 var htmlFragment = htmlFormatHelper.getStaticFragment(html);

ptg999

CHAPTER 13 Creating Share and Search Contracts366

 // Save shared note to data source

saveNote(share.data.properties.title, htmlFragment);

});

 } else {

 // Process Text

 if (share.data.contains(StandardDataFormats.text)) {

share.data.getTextAsync().done(function (text) {

saveNote(share.data.properties.title, text);

});

}

 }

 // Save note to database

 function saveNote(title, contents) {

 // Save shared note to data source

 var notesDataSource = new DataSources.FileDataSource("notes.json");

notesDataSource.insertAtEnd(null , {

title: title,

contents: contents,

comments: document.querySelector(".commentbox").value

}).done(function () {

 // Let everyone know that the notes have been updated

Windows.Storage.ApplicationData.current.signalDataChanged();

 // All done

share.reportCompleted();

});

 }

 }

 NOTE

 You can find all of the code discussed in this section in the Chapter13\ShareTarget
project in the GitHub repository that accompanies this book.

 The code in Listing 13.3 first checks whether there is an HTML version of the content
being shared. If there is an HTML version then a new note is created with the HTML
version and the note is saved to the file data source. Otherwise, if there is not an HTML
version of the content, a text version of the note is created instead.

 The shared content is retrieved by calling methods of the DataPackageView class. This class
has the following properties and methods (this is not a complete list):

▶ availableFormats—This property represents a list of all of the data formats being
shared with the DataPackage.

ptg999

Supporting Sharing 367

1
3

▶ properties—This property represents a DataPackagePropertySetView that is a read-
only representation of all of the properties associated with the DataPackage (like title
and description).

▶ contains(formatId)—This method returns true if the DataPackage includes the data
format.

▶ getApplicationLinkAsync()—This method returns a promise that contains the
application link shared in the DataPackage.

▶ getBitmapAsync()—This method returns a promise that contains the bitmap shared
in the DataPackage.

▶ getDataAsync(formatId)—This method returns a promise that contains the custom
data shared in the DataPackage.

▶ getHtmlFormatAsync()—This method returns a promise that contains the HTML
shared in the DataPackage.

▶ getRtfAsync()—This method returns a promise that contains the Rich Text Format
content shared in the DataPackage.

▶ getStorageItemsAsync()—This method returns a promise that contains the collec-
tion of files or folders shared in the DataPackage.

▶ getTextAsync()—This method returns a promise that contains the text shared in the
DataPackage.

▶ getWebLinkAsync()—This method returns a promise that contains the web link
shared in the DataPackage.

 So you share a DataPackage and receive a DataPackageView. The DataPackage class has all
of the properties and methods for including data and the DataPackageView class has all
of the properties and methods for retrieving the data. The code in Listing 13.3 uses the
methods of the DataPackageView class to retrieve the HTML or text content and call the
saveNote() method.

 When the saveNote() method finishes saving the new note, the method raises two
signals. First, it calls the signalDataChanged() method to signal to any open My Notes
apps that the underlying notes data has changed. Calling signalDataChanged() raises the
datachanged event. The My Notes app listens to the datachanged event in the home.js file
so it can reload the notes displayed by its ListView when a new note is added:

 // Listen for changes to notes

 Windows.Storage.ApplicationData.current.addEventListener("datachanged" , function ()

{

 lvNotes.itemDataSource.reload();

 });

 The SaveNote() method raises a second signal when the reportCompleted() method is
called. The reportCompleted() method signals that the share operation is complete. If you

ptg999

CHAPTER 13 Creating Share and Search Contracts368

neglect to call this method then the share page opened by clicking the Share charm never
closes, and the progress indicator continues to spin forever.

 Using the Search Charm
 There are two ways to implement search for a Windows Store app: You can implement
search using the Search charm or you can implement search with the new WinJS 2.0
SearchBox control. In this section, you learn how to implement search with the Search
charm.

 Users expect to be able to perform a search by using the Search charm. The Search charm
is one of the standard charms that appear when you open the Charms bar (see Figure
 13.10).

 FIGURE 13.10 The Search charm in the Windows Charm bar

 NOTE

 You can open the Windows Charm bar by swiping from the right edge of the screen or
mousing to either of the right corners or pressing the keyboard combination Win+C.

ptg999

Using the Search Charm 369

1
3

 When you perform a search using the Search charm, you pick the area in which you want
to search. For example, you can search Everywhere, Settings, Files, Web Images, or Web
Videos. If the current app is registered as a search provider then you can also search the
current app.

 Figure 13.11 illustrates the search areas displayed when you open the Search charm in
Internet Explorer. Notice that you can pick the Internet Explorer app as one of the search
areas. If you pick Internet Explorer and your search area then you get search results from
Internet Explorer.

 FIGURE 13.11 Using the Search charm in Internet Explorer

 In this section, I explain how you can set up your Windows Store app as a search provider
and wire up your app to work with the Search charm.

 NOTE

 Search in Windows 8.1 is very different than search in Windows 8. The user interface has
changed significantly. By default, search in Windows 8.1 is powered by Bing.

 Declaring Your App as a Search Provider

 Before you do anything else, you need to declare your app as a search provider.
You declare your app as a search provider in your app manifest file. Open the
package.appxmanifest file in Visual Studio and select the Declarations tab (see Figure
 13.12).

ptg999

CHAPTER 13 Creating Share and Search Contracts370

 FIGURE 13.12 Declaring your app as a search provider

 Under Available Declarations, pick Search. You can leave the properties with their default
empty values. You don’t need to set anything else.

 Providing Search Suggestions

 Now that you have registered your app as a search provider, you can provide search
suggestions as a user types in the Search pane. In the case of the My Notes app, I want to
display matching notes as the user types (see Figure 13.13).

 To open the Search pane and view the search suggestions, you need to run the app, select
My Notes from the drop-down list, and start typing. You should see suggestions that
match the titles of the notes.

 FIGURE 13.13 Providing search suggestions

ptg999

Using the Search Charm 371

1
3

 You provide search suggestions from your app by handling the suggestionsrequested
event. Listing 13.4 contains the suggestionsrequested handler located in default.js used
by the My Notes app.

 LISTING 13.4 Providing Search Suggestions (js\default.js)

 // Handle requests for search suggestions

 Windows.ApplicationModel.Search.SearchPane.getForCurrentView().

➥onsuggestionsrequested = function (e) {

 var queryText = e.queryText;

 var searchSuggestions = e.request.searchSuggestionCollection;

 // Needed because we are async

 var deferral = e.request.getDeferral();

 // Get all of the notes

 notesDataSource.getAll().then(function (notes) {

 // Get matching results

 var MAX_RESULTS = 3;

 for (var i = 0; i < notes.length; i++) {

 var note = notes[i].data;

 if (note.title.toLowerCase().indexOf(queryText.toLowerCase()) >= 0) {

searchSuggestions.appendQuerySuggestion(note.title);

}

 if (searchSuggestions.size >= MAX_RESULTS) {

 break ;

}

}

 // All done

deferral.complete();

 });

 };

 The basic idea is that you get the text that the user has typed into the search box by using
e.queryText. You populate a set of suggestions to display to the user while the user is
typing by adding items to e.request.searchSuggestionCollection collection.

 In Listing 13.4 , all of the notes are retrieved from the file system by calling the getAll()
method. Next, the notes are filtered to match the query text by checking whether the note
title matches the query text:

 if (note.title.toLowerCase().indexOf(queryText.toLowerCase()) >= 0) {

 }

 A maximum of five matching notes are added to the search suggestions. This is the
maximum number of suggestions that the Search pane will display.

ptg999

CHAPTER 13 Creating Share and Search Contracts372

 Retrieving the list of notes from the file system is an asynchronous operation. For that
reason, a deferral object is retrieved before the asynchronous operations start with this
line of code:

 var deferral = e.request.getDeferral();

 When the asynchronous operation completes, you call the complete() method like this:

 deferral.complete();

 NOTE

 You can find all of the code discussed in this section in the Chapter13\Search project in
the GitHub repository that accompanies this book.

 Handling Search Activation

 After a user enters query text in the Search pane and submits their query then you need
to display search results from your app. You can detect when your app is activated
in response to a search by listening for the activated event and checking whether the
ActivationKind property has the value search.

 The My Notes app uses the code in Listing 13.5 to detect search activation. This code is
contained in the default.js file.

 LISTING 13.5 Handling Search Activation (js\default.js)

 app.addEventListener("activated" , function (args) {

 // Navigate to search results on search

 if (args.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.

➥search) {

 return WinJS.Navigation.navigate(

 "/pages/searchResults/searchResults.html" ,

{ searchDetails: args.detail }

);

 }

 }

 If the My Notes app is activated by a search query then the user is navigated to a page
located at /pages/searchResults.searchResults.html. I discuss the searchResults.html page in
the next section.

ptg999

Using the Search Charm 373

1
3

 NOTE

 This is a matter of preference. As an alternative to listening to the activated event to
detect when a query has been submitted, you can handle the querysubmitted event
like this:

 Windows.ApplicationModel.Search.SearchPane.getForCurrentView().onquerysubmitted

= function (eventObject) {

 // Respond to query and perform search

 };

 The querysubmitted event handler takes precedence over activated.

 Adding a Search Results Page

 The final step in getting the Search charm to work is to add a search results page. The
purpose of this page is to display the matching results for the search query.

 One way to add the search results page is to use the built-in Visual Studio template. Select
Project, Add New Item, and choose Search Results Page (see Figure 13.14).

 FIGURE 13.14 Adding a Search Results Page

 I don’t recommend taking this approach. The problem is that search results are very
dependent on the data in your app. You need to customize both the appearance and the
logic of the search page to match the data in your app.

 For the My Notes app, I added a new subfolder named searchResults to the /pages folder.
Next, I added a standard Page control named searchResults.html to this folder. I ended up
with the HTML, JavaScript, and CSS file depicted in Figure 13.15 .

ptg999

CHAPTER 13 Creating Share and Search Contracts374

 FIGURE 13.15 Adding a Search Results Page with a Page control

 The searchResults.js contains all of the logic for displaying the search results. The
searchResults.js JavaScript file is included in Listing 13.6 .

 LISTING 13.6 The Search Results JavaScript File (\pages\searchResults\searchResults.js)

 (function () {

 "use strict" ;

 WinJS.UI.Pages.define("/pages/searchResults/searchResults.html" , {

_lastSearch: "" ,

 // This function is called whenever a user navigates to this page. It

 // populates the page elements with the app's data.

ready: function (element, options) {

 // highlight matched title text

WinJS.Namespace.define("searchResults" , {

markText: WinJS.Binding.converter(this ._markText.bind(this))

});

 // Get the ListView

 var lvSearchResults = document.getElementById("lvSearchResults")

➥.winControl;

 // Get the search query

 var queryText = options.searchDetails.queryText;

 this ._lastSearch = queryText;

 // Get all of the notes

MyApp.notesDataSource.getAll().then(function (notes) {

ptg999

Using the Search Charm 375

1
3

 // Filter the results

 var filteredResults = [];

 for (var i = 0; i < notes.length; i++) {

 var note = notes[i].data;

 if (note.title.toLowerCase().indexOf(queryText.toLowerCase()) >=

➥0) {

filteredResults.push(note);

}

}

 if (filteredResults.length) {

 // Show results

document.getElementById("divNoResults").style.display = "none" ;

 // Convert to List Data Source

 var listResults = new WinJS.Binding.List(filteredResults);

 // Bind to ListView

lvSearchResults.itemDataSource = listResults.dataSource;

} else {

 // Report no results

document.getElementById("divNoResults").style.display = "block" ;

 var emptyList = new WinJS.Binding.List();

lvSearchResults.itemDataSource = emptyList.dataSource;

}

});

},

 // This function colors the search term.

_markText: function (text) {

 var regex = new RegExp("(" + this ._lastSearch + ")" , "i");

 return text.replace(regex, "<mark>$1</mark>");

}

 });

 })();

 When the searchResults.html page is opened, the ready() event handler is invoked. This
options argument for this handler includes the search query text. The ready() handler
retrieves all of the notes from the file system and filters the notes to match the search
query text. Finally, the matching notes are displayed in a ListView control.

 The searchResults.js file includes a binding converter named markText that highlights
matching text in the search results. The markText binding converter uses a regular expres-
sion to wrap text that matches the search query text in a <mark></mark> element. A little
bit of CSS is used to display the highlighted text (see Figure 13.16).

ptg999

CHAPTER 13 Creating Share and Search Contracts376

 FIGURE 13.16 Displaying search results with highlighted text

 NOTE

 We discussed binding converters all the way back in Chapter 3 , “Observables, Bindings,
and Templates.”

 Using the SearchBox Control
 When building Windows 8 apps, you were encouraged to use the Search charm for imple-
menting search in your app. There was a problem, however. Users had difficulty finding
the Search charm. They had difficulty discovering that your app even supported search.

 Windows 8.1 introduces an alternative. Instead of implementing search with the Search
charm, you can implement search with the new WinJS SearchBox control. This control
appears right on your page (right in your face). Therefore, it is much more discoverable
than the Search charm.

 In this section, you learn how to add a SearchBox control to the My Notes app.

ptg999

Using the SearchBox Control 377

1
3

 NOTE

 You can find all of the code discussed in this section in the Chapter13\SearchBox project
in the GitHub repository that accompanies this book.

 Adding the SearchBox Control to a Page

 Adding a SearchBox control to a page is straightforward. You can declare a new SearchBox
with the following markup:

 < div id ="search"

 data-win-control ="WinJS.UI.SearchBox"

 data-win-options ="{focusOnKeyboardInput:true}"></ div >

 I added a SearchBox control to the home.html page in the My Notes app (see Figure
 13.17).

 FIGURE 13.17 Using the SearchBox control to search notes

ptg999

CHAPTER 13 Creating Share and Search Contracts378

 Notice that the SearchBox control includes a focusOnKeyboardInput property. When you
assign the value true to this property then the SearchBox gets focus whenever you start
typing anywhere on a page that contains the control.

 I’ve enabled the focusOnKeyboardInput property in the My Notes app so that you can start
searching from the home page simply by starting to type. There is no need for the user to
find and click on the SearchBox before the user starts to perform a search query.

 If you want to get extra fancy then you can hide the SearchBox until the user starts typing
with the following code:

 // Display SearchBox when a user starts typing

 search.element.style.display = "none" ;

 search.addEventListener("receivingfocusonkeyboardinput" , function (e) {

 search.element.style.display = "block" ;

 });

 The receivingfocusonkeyboardinput event is raised right before the SearchBox gets focus
when a user starts typing. The preceding code hides the SearchBox until this event is
raised.

 You should only handle the receivingfocusonkeyboardinput event when you have set
the focusOnKeyboardInput property to the value true.

 Providing Search Suggestions

 You can provide search suggestions as the user types by handling the SearchBox control’s
suggestionsrequested event. The My Notes app uses the event handler in Listing 13.7 .

 LISTING 13.7 Handling the suggestionsrequested Event (\pages\home\home.js)

 // Handle requests for search suggestions

 var search = document.getElementById("search").winControl;

 search.addEventListener("suggestionsrequested" , function (e) {

 var queryText = e.detail.queryText;

 var searchSuggestions = e.detail.searchSuggestionCollection;

 // Needed because we are async

e.detail.setPromise(

 // Get all of the notes

MyApp.notesDataSource.getAll().then(function (notes) {

 // Get matching results

 var MAX_RESULTS = 3;

 for (var i = 0; i < notes.length; i++) {

 var note = notes[i].data;

 if (note.title.toLowerCase().indexOf(queryText.toLowerCase()) >= 0){

searchSuggestions.appendQuerySuggestion(note.title);

}

ptg999

Using the SearchBox Control 379

1
3

 if (searchSuggestions.size >= MAX_RESULTS) {

 break ;

}

}

})

);

 });

 In Listing 13.7 , the search query text is retrieved from the e.detail.queryText property.
The list of suggestions is added to the e.detail.searchSuggestionCollection collection.
These are the search suggestions that are displayed to the user.

 The notes are retrieved from the file system asynchronously using the getAll() method.
The title of each note is matched against the query text. If the title includes the query text
then the note is added to the search suggestions.

 Because the notes are retrieved from the file system asynchronously, the e.detail.
setPromise() method is used to execute the code that matches the search query text.
The setPromise() method enables you to return the matching suggestions in a promise
instead of returning the matching suggestions immediately.

 Displaying Search Results

 The final step is to display the matching search results in the Search Results page. I already
created the Search Results Page in the previous section when I discussed using the Search
charm. I will use the very same Search Results page with the SearchBox control.

 When a user submits a search query from the SearchBox control then the
querysubmitted event is raised. The My Notes app handles the querysubmitted event
with the code in Listing 13.8 .

 LISTING 13.8 Handling the querysubmitted Event (\pages\home\home.js)

 // Listen for search queries

 var search = document.getElementById("search").winControl;

 search.addEventListener("querysubmitted" , function (e) {

 WinJS.Navigation.navigate("/pages/searchResults/searchResults.html" , {

➥searchDetails: e.detail })

 });

 When a search query is submitted, the user is redirected to the searchResults.html page
with a call to the navigate() method. The searchResults.html page displays the search
results in a ListView control (see Figure 13.18).

ptg999

CHAPTER 13 Creating Share and Search Contracts380

 FIGURE 13.18 Showing the results of a search query

 Using the Windows Content Indexer
 In previous sections, I used a very simple method to determine whether a note matches
a search query. If the title of the note contains the search query then that counts as a
match. I did not even try to match the contents of the notes because the contents of the
notes might contain HTML markup.

 In order to perform more sophisticated searches, you can take advantage of the Windows
Index. The Windows Index, for example, enables you to perform Boolean queries that
include OR and NOT operators. You can also perform exact phrase queries by wrapping
your search terms in quotation marks. Finally, the Windows Index supports different types
of content including HTML content.

 NOTE

 When performing OR or NOT Boolean queries, you must enter OR and NOT in uppercase.

 In this section, I show you how to take advantage of a new API that was introduced with
Windows 8.1 for interacting with the Windows Index. This new API enables you to index
content from an app without creating new files in the file system. Instead, you can add,
update, and delete content in the Windows Index directly from your app.

ptg999

Using the Windows Content Indexer 381

1
3

 Understanding the Windows Content Indexer API

 To use the Windows Index from a Windows Store app, you need to know how to work
with the following three WinRT classes:

▶ ContentIndexer—This class contains methods for adding, updating, and deleting
content in an index. It also enables you to create a new index query.

▶ IndexableContent—This class represents content that can be added to the index.

▶ ContentIndexerQuery—This class represents a particular query that you can perform
against the index.

 So you use the ContentIndexer class to interact with the Windows Index that corresponds
to your app. The ContentIndexer class enables you to add new content to the index by
creating an instance of the IndexableContent class. The ContentIndexer also enables you
to query the index by creating an instance of the ContentIndexerQuery class.

 Creating an Indexer Helper

 To make it easier to work with the Windows Index, I created a JavaScript Indexer helper
object. This helper has methods for inserting new content in the index, deleting content
from the index, and querying the index.

 NOTE

 You can find all of the code discussed in this section in the Chapter13\SearchIndex solu-
tion in the GitHub repository that accompanies this book.

 The complete code for this helper object is contained in Listing 13.9 .

 LISTING 13.9 The IndexerHelper Object (js\indexerHelper.js)

 (function () {

 "use strict" ;

 var props = Windows.Storage.SystemProperties;

 // Add new content to the index

 function add(id, value, itemNameDisplay, keywords, comment) {

 // Get the indexer

 var indexer = Windows.Storage.Search.ContentIndexer.getIndexer();

 // Create content for the indexer

 var content = new Windows.Storage.Search.IndexableContent();

 var contentStream = new Windows.Storage.Streams.

➥InMemoryRandomAccessStream();

 var contentWriter = new Windows.Storage.Streams.DataWriter(contentStream);

contentWriter.writeString(value);

 return contentWriter.storeAsync().then(function () {

ptg999

CHAPTER 13 Creating Share and Search Contracts382

content.id = id;

content.properties.insert(props.itemNameDisplay, itemNameDisplay);

content.properties.insert(props.keywords, keywords);

content.properties.insert(props.comment, comment);

contentStream.seek(0);

content.stream = contentStream;

content.streamContentType = "text/html" ;

 return indexer.addAsync(content);

}).then(function () {

contentStream.close();

contentWriter.close();

})

 }

 // Returns id of matching items from query

 function query(queryText) {

 var indexer = Windows.Storage.Search.ContentIndexer.getIndexer();

 var query = indexer.createQuery(queryText, []);

 return query.getAsync().then(function (queryResults) {

 var searchResults = [];

 for (var i = 0; i < queryResults.length; i++) {

searchResults.push(queryResults[i].id);

}

 return searchResults;

});

 }

 // Delete entire index

 function nuke() {

 var indexer = Windows.Storage.Search.ContentIndexer.getIndexer();

indexer.deleteAllAsync();

 }

 WinJS.Namespace.define("Indexer" , {

add: add,

query: query,

nuke: nuke

 });

 })();

 In the next section, I show you how to use the IndexerHelper object with the My
Notes app.

 Using the Indexer Helper

 When you add a new note to the My Notes app, you also must update the Windows Index
so that it can index the new note. I’ve modified the code used to handle adding a new
note so the note also gets added to the index (see Listing 13.10).

ptg999

Using the Windows Content Indexer 383

1
3

 LISTING 13.10 Adding a Note to the Index (\pages\add\add.js)

 document.getElementById("frmAdd").addEventListener("submit" , function (e) {

 e.preventDefault();

 // Save new note and navigate home

 MyApp.notesDataSource.insertAtEnd(null , {

title: document.getElementById("inpTitle").value,

contents: toStaticHTML(document.getElementById("inpContents").innerHTML),

comments: ""

 }).then(function (newItem) {

 return Indexer.add(newItem.key, newItem.data.contents, newItem.data.title);

 }).done(function () {

WinJS.Navigation.navigate("/pages/home/home.html");

 });

 });

 The form submit handler in Listing 13.10 calls the Indexer.add() method to add the new
note to the Windows Index before navigating to the home.html page.

 The Indexer Helper is also used to get the search results in the Search Results Page (see
 Listing 13.11). The Indexer query() method is called with the search query text to get
matching items from the index.

 LISTING 13.11 Querying the Windows Index (\pages\searchResults\searchResults.js)

 Indexer.query(queryText).done(function (queryResults) {

 if (queryResults.length) {

 // Show results

document.getElementById("divNoResults").style.display = "none" ;

 // Get all of the notes and filter against search results

 var filteredNotes = [];

MyApp.notesDataSource.getAll().done(function (notes) {

 for (var i = 0; i < notes.length; i++) {

 var note = notes[i];

 if (queryResults.indexOf(note.key) >= 0) {

filteredNotes.push(note.data);

}

}

 // Convert to List Data Source

 var listResults = new WinJS.Binding.List(filteredNotes);

 // Bind to ListView

lvSearchResults.itemDataSource = listResults.dataSource;

});

 } else {

ptg999

CHAPTER 13 Creating Share and Search Contracts384

 // Report no results

document.getElementById("divNoResults").style.display = "block" ;

 var emptyList = new WinJS.Binding.List();

lvSearchResults.itemDataSource = emptyList.dataSource;

 }

 });

 The Indexer query() method returns a set of query results. The query results are an array
of IDs that correspond to the unique keys of notes that match the search query.

 All of the notes are retrieved from the file system by calling the getAll() method. Any
note not included in the search query results is discarded. The remaining notes are
displayed in the ListView control.

 Let me show you how all of this works. Imagine that you have the three notes displayed
in Figure 13.19 . If you enter the search query note NOT second then you get the first and
third notes but not the second (see Figure 13.20). You do not get the second note because
of the NOT operator.

 FIGURE 13.19 Performing a Boolean query

ptg999

Summary 385

1
3

 FIGURE 13.20 Getting search results from the Windows Index

 Summary
 The goal of this chapter was to explain how to implement share and search in a Windows
Store app. I discussed share and search in the context of the My Notes sample app.

 In the first part of this chapter, I showed you how you can make your app a share source
or a share target. You learned how you can share notes from the My Notes app and how
you can accept HTML and text content shared from another app.

 Next, I demonstrated how you can support search in the My Notes app by using the
Search charm or by using the SearchBox control. Finally, I explained how you can support
advanced search queries, such as Boolean queries, by taking advantage of the Windows
Index.

ptg999

This page intentionally left blank

ptg999

 CHAPTER 14

 Using the
Live Connect API

 The Live Connect API enables you to connect to Live
Services from your Windows Store apps. Live Services
provides you with services for authenticating users, retriev-
ing user information (including a user’s calendars and
contacts), and interacting with a user’s SkyDrive.

 In the first part of this chapter, I explain the steps required
to install and set up the Live SDK. For example, you
learn how to register your Windows Store app at the Live
Connect website.

 Next, I discuss how you can take advantage of a feature
called zero-click single sign-on . This feature enables you to
authenticate the users of your Windows Store app without
requiring the users to enter their usernames and passwords.

 I also explain how you can take advantage of authen-
tication when your Windows Store app interacts with
Windows Azure Mobile Services. You learn how to restrict
access to Mobile Services to authenticated users.

 You also learn how you can retrieve user information
from Live Services. For example, I show you how you can
retrieve the current user’s first and last name, birthday, and
profile picture.

 Finally, I discuss SkyDrive. You learn how you can upload
and download files from your Windows Store app to the
hard drive in the sky which is SkyDrive.

IN THIS CHAPTER

▶ Installing the Live SDK

▶ Authenticating a User

▶ Authentication and Windows
Azure Mobile Services

▶ Retrieving Basic User
Information

▶ Uploading and Downloading
Files from SkyDrive

ptg999

CHAPTER 14 Using the Live Connect API 388

 Installing the Live SDK
 Before you can use the Live Connect API, you need to download the latest version of the
 Live SDK for Windows, Windows Phone, and .NET from the Microsoft website. You can
download the SDK from the Dev Center for Windows Store apps at http://msdn.microsoft.
com/en-us/windows/apps/ .

 Adding a Reference to the Live SDK

 After you download the Live SDK, you need to add a reference to the Live SDK JavaScript
library to your Visual Studio Windows Store app project. Select the menu option Project,
Add Reference. After picking Windows, Extensions, check the checkbox next to Live SDK
(see Figure 14.1).

 WARNING

 After downloading the Live SDK, you need to stop and start Visual Studio for the Live SDK
to appear in the Reference Manager.

 FIGURE 14.1 Adding a reference to the Live SDK JavaScript library

 Next, expand your References, Live SDK, JS folder and drag the wl.js file onto your default.
html page. This will add the following JavaScript reference:

 < script src ="/LiveSDKHTML/js/wl.js"></ script >

http://msdn.microsoft.com/en-us/windows/apps/
http://msdn.microsoft.com/en-us/windows/apps/

ptg999

Installing the Live SDK 389

1
4

 Registering Your App

 Before you can start using the Live Connect API, you must first associate your app with
the Windows Store and register your app with Live Connect.

 If you haven’t already then you need to associate your app with the Windows Store.
Follow these steps:

1. Within Visual Studio, select the menu option Project, Store, Associate App with the
Store . (In Visual Studio Express, use Store, Associate App with the Store.) This will
open the Associate Your App with the Windows Store Wizard (see Figure 14.2).

2. You need to select an app name that you want to associate with your Visual Studio
project. I entered the app name UnleashedLiveConnectSample.

3. Finally, when you click associate, your Visual Studio project app manifest file will be
updated with the information from the Windows Store.

 FIGURE 14.2 Associating your app with the Windows Store

ptg999

CHAPTER 14 Using the Live Connect API 390

 After you finish associating your app with the store then you next need to register your
app with Live Connect. Follow these steps.

1. In your web browser, navigate to the Windows Store Dashboard located at https://
appdev.microsoft.com/StorePortals .

2. Select your Windows Store app from the dashboard and click the Services tile (see
 Figure 14.3).

3. Click the link to the Live Services site .

 FIGURE 14.3 Editing Windows Store app services

 Navigating to the Live Services site will launch one last wizard. You must complete the
following three steps:

1. Identifying your app—You already completed this step when you associated your
Visual Studio project with the Windows Store.

2. Authenticating your service—You should record the client secret that you see in this
step (see Figure 14.4). Later in this chapter, when I discuss Azure Mobile Services,
you will need this client secret to connect to Live Services.

3. Representing your app to Live Connect users—You need to provide several pieces of
information in this step. In particular, you need to provide a URL where you host
your Terms of Service and a Privacy Policy. You also must enter a Redirect URI.

 The Redirect URI can be any valid URL that you like—the only requirement is that the
URI cannot be in use by anyone else. For the sample project discussed in this chapter, I
entered the Redirect URI http://liveSDKDemo.Superexpert.com .

https://appdev.microsoft.com/StorePortals
https://appdev.microsoft.com/StorePortals
http://liveSDKDemo.Superexpert.com

ptg999

Installing the Live SDK 391

1
4

 FIGURE 14.4 Getting the client secret

 NOTE

 I hope this goes without saying, but keep your client secret. I regenerated the one that
you see in the screenshot.

 Initializing the Live Connect SDK

 Before you can call any of the services available from the Live Connect API, you must
first initialize your connection. You initialize your connection by calling the WL.init()
method as illustrated in Listing 14.1.

 LISTING 14.1 Initializing Your Connection

 var REDIRECT_DOMAIN = "http://liveSDKDemo.Superexpert.com" ;

 var scopes = ["wl.signin"];

 WL.init({

 scope: scopes,

 redirect_uri: REDIRECT_DOMAIN

 });

 The WL.init() method in Listing 14.1 is called with two arguments: a redirect_uri and
an array of scopes. The redirect_uri must match (exactly) the Redirect Domain that you
configured in the previous section. I discuss the array of scopes in the next section.

 Specifying Different Scopes

 The array of scopes that you pass to the WL.init() method determines the information
that you have permission to access. There is all sorts of fun and scary information that
you can extract from a Windows Live user account including the user birthday, email
addresses, mailing address, photos, and contacts.

 Here’s a partial list of scopes:

▶ wl.signin—Single sign-in behavior

▶ wl.basic—Read access to basic profile information and contacts

ptg999

CHAPTER 14 Using the Live Connect API 392

▶ wl.offline_access—Ability to read and update user information even when a user
is not signed in and using your app

▶ wl.birthday—Read access to user birthday

▶ wl.calendars—Read access to user calendars and events

▶ wl.calendars_update—Read and write access to user calendars and events

▶ wl.contacts_birthday—Read access to user birthday and user contacts birthdays

▶ wl.contacts_create—Write access to user contacts

▶ wl.contacts_calendars—Read access to user calendars and events and contacts
calendars and events

▶ wl.contacts_photos—Read access to user media and media shared by other users

▶ wl.contacts_skydrive—Read access to user SkyDrive and files shared by other users

▶ wl.emails—Read access to user email addresses

▶ wl.events_create—Write access for creating events

▶ wl.messenger—Enables you to sign in to the user messenger service

▶ wl.phone_numbers—Read access to user phone numbers

▶ wl.photos—Read access to user media

▶ wl.postal_addresses—Read access to user mailing addresses

▶ wl.share—Enables you to update a user’s status message

▶ wl.skydrive—Read access to user files in SkyDrive

▶ wl.skydrive_update—Read and write access to user files in SkyDrive

▶ wl.work_profile—Read access to a user’s work and employment information

 NOTE

 For a complete listing of scopes, see http://msdn.microsoft.com/en-us/library/live/
hh243646.aspx.

 Obviously, not all users of a Windows Store app will want to share all information
about themselves. Your Windows Store app, therefore, must get consent to access the
information.

 When you first run a Windows Store app that requires a particular scope, a modal dialog
appears asking the user to provide permission. For example, the form in Figure 14.5 is
displayed when you call WL.init() with the wl.signin scope.

http://msdn.microsoft.com/en-us/library/live/hh243646.aspx
http://msdn.microsoft.com/en-us/library/live/hh243646.aspx

ptg999

Installing the Live SDK 393

1
4

 FIGURE 14.5 Windows Store app asking permission to sign you in

 Even if you give a Windows Store app permission to access your Windows Live user infor-
mation, you can revoke this information at a later date. To revoke a permission, log into
your account at the Live.com website, pick the app, and remove the permissions (see
 Figure 14.6).

 FIGURE 14.6 Revoking Windows Store app permissions

ptg999

CHAPTER 14 Using the Live Connect API 394

 Authenticating a User
 The most valuable service that Live Connect provides you is authentication. There are two
different authentication experiences depending on how you log in to your Windows 8.1
machine.

 If you have a connected Microsoft account—in other words, your Windows 8 account
is associated with a Windows Live account—then you can take advantage of something
called zero-click single sign-on . This feature enables you to avoid ever entering your user
name or password when running a Windows store app.

 When you log in to a Windows Store app then your connected Microsoft account is used
automatically. Furthermore, you never log out of an app in this scenario. Whenever you
run the app in the future, the app knows your identity automatically.

 You also have the option of using a local account with Windows 8.1. In that case, you
have not connected a Windows Live account with your Windows 8.1 local account. When
using a Windows local account, a user can sign in and sign out of your app using his
Windows Live account. They can even switch accounts.

 NOTE

 Microsoft strongly encourages you to use a connected account when using Windows 8.1.
They keep throwing dialogs at you requesting you to associate your Windows account with
a Windows Live account.

 Logging a User into Live Connect

 If you want to log in a user using Live Connect then you simply call the WL.login method
as demonstrated in Listing 14.2 .

 LISTING 14.2 Logging in a User (login\login.js)

 (function () {

 "use strict" ;

 function init() {

 var REDIRECT_DOMAIN = "http://liveSDKDemo.Superexpert.com" ;

 var spanResults = document.getElementById("spanResults");

 var scopes = ["wl.signin"];

WL.init({

scope: scopes,

redirect_uri: REDIRECT_DOMAIN

});

WL.login().then(

 function (loginResults) {

ptg999

Authenticating a User 395

1
4

spanResults.innerText = "Connected" ;

},

 function (loginResponse) {

spanResults.innerText = "Error when calling WL.login" ;

}

);

 }

 document.addEventListener("DOMContentLoaded" , init);

 })();

 Notice that the scope passed to the WL.init() method is the wl.signin scope. This scope
indicates that the user does not need to enter their email and password when they are
using a connected Windows account.

 If you are using a connected Windows account then when you first call the WL.login()
method then you get the warning dialog in Figure 14.7 . This dialog appears only once
when you run the app for the very first time. You are logged in automatically whenever
you run the app in the future.

 Notice that you do not enter your Windows Live email and password. If you have
a connected Windows Live account, you are logged into your connected account
automatically.

 NOTE

 The only way to log out of an app when using a connected account is to go to http://live.
com , Permissions, Apps and Services and revoke the app’s permissions.

 FIGURE 14.7 Logging in when using a connected Windows account

http://live.com
http://live.com

ptg999

CHAPTER 14 Using the Live Connect API 396

 If, on the other hand, you are not using a connected Windows account, and you are using
a local Windows account instead, then you get the dialog for entering your Windows Live
email and password in Figure 14.8 . After you enter your email and password once then
you do not need to enter your email and password ever again.

 FIGURE 14.8 Logging in when using a local Windows account

 Creating Account Settings

 Instead of logging in a user immediately when the user opens your app, you might want
to make authentication optional. If someone authenticates then the person gets a better
experience (for example, you can show her name).

 In this scenario, you might want to provide the user with the option of logging in to your
app from the Settings charm. Let me show you how you can extend the Settings charm
with Account settings that enable a user to sign in and out (see Figure 14.9).

 The JavaScript file in Listing 14.3 sets up two settings flyouts: one flyout for Account
Settings and one flyout for Privacy Settings. The JavaScript file also displays the user’s
current login status by subscribing to the auth.login and auth.logout events.

ptg999

Authenticating a User 397

1
4

 NOTE

 I talked about the SettingsFlyout control in Chapter 6 , “Menus and Flyouts.”

 NOTE

 Notice that the page in Listing 14.3 also displays a Privacy Settings flyout. Displaying a
Privacy Policy is a requirement because you are accessing a user’s private data when
signing in the user with the Account Settings flyout.

 FIGURE 14.9 Selecting account settings

ptg999

CHAPTER 14 Using the Live Connect API 398

 LISTING 14.3 Creating Account Settings (accountSettings\page.js)

 (function () {

 "use strict" ;

 // Update display when login status changes

 function init() {

 var spanResults = document.getElementById("spanResults");

WL.Event.subscribe("auth.login" , function () {

spanResults.innerText = "Signed In" ;

});

WL.Event.subscribe("auth.logout" , function () {

spanResults.innerText = "Signed Out" ;

});

 var REDIRECT_DOMAIN = "http://liveSDKDemo.Superexpert.com" ;

 var scopes = ["wl.basic"];

WL.init({

scope: scopes,

redirect_uri: REDIRECT_DOMAIN

});

 }

 // Create Account Settings and Privacy Settings Flyouts

 function settings(e) {

 e.detail.applicationcommands = {

 "divAccount" : { href: "accountSettings.html" , title: "Account" },

 "divPrivacy" : { href: "privacySettings.html" , title: "Privacy" },

};

WinJS.UI.SettingsFlyout.populateSettings(e);

 }

 document.addEventListener("DOMContentLoaded" , init);

 WinJS.Application.addEventListener("settings" , settings);

 WinJS.Application.start();

 })();

 The code for the Account Settings flyout is contained in the JavaScript file in Listing 14.4 .
This code hides or displays a Sign In and Sign Out button depending on the current user’s
login status.

ptg999

Authenticating a User 399

1
4

 LISTING 14.4 The Account Settings Flyout (\accountSettings\accountSettings.js)

 (function () {

 'use strict' ;

 WinJS.UI.Pages.define("accountSettings.html" ,

 {

ready: function (element, options) {

 var btnSignIn = document.getElementById("btnSignIn");

 var btnSignOut = document.getElementById("btnSignOut");

 var divMessage = document.getElementById("divMessage");

 // Show/Hide buttons

btnSignIn.style.display = "none" ;

btnSignOut.style.display = "none" ;

WL.api({

path: "me" ,

method: "GET"

}).then(

 // Already logged in

 function (results) {

 if (WL.canLogout()) {

btnSignOut.style.display = "" ;

} else {

divMessage.innerText = "Sign out of this app "

+ "from your Windows Live account."

}

},

 // Not logged in

 function (results) {

btnSignIn.style.display = "" ;

}

);

btnSignIn.addEventListener("click" , function (e) {

 e.preventDefault();

WL.login({

scope: ["wl.basic"]

}).then(function (response) {

WinJS.UI.SettingsFlyout.show();

});

});

btnSignOut.addEventListener("click" , function (e) {

ptg999

CHAPTER 14 Using the Live Connect API 400

e.preventDefault();

WL.logout().then(function (response) {

WinJS.UI.SettingsFlyout.show();

});

});

}

 });

 }());

 The call to WL.api() is used to detect whether the current user is already logged in or not.
If the user is already logged in then the first function is executed, which hides the Sign
In button. If the user is not logged in then the second function executes and the Sign In
button is displayed.

 Notice that the WL.canLogout() method is used to display the Sign Out button only when
a user can actually sign out. If the user is logged into Windows using a connected account
then the user cannot log out. In that case, a message is displayed to the user suggesting
that the user go to their Windows Live account to remove permissions for the app (see
 Figure 14.10).

 FIGURE 14.10 You cannot log out with a connected Windows account

ptg999

Authentication and Windows Azure Mobile Services 401

1
4

 If, on the other hand, the user is logged in with a local Windows account then the user
gets a Sign Out button. In this case, the user can actually log out. The user can even log
out and then log in with a different account.

 Authentication and Windows Azure Mobile Services
 In Chapter 10 , “Using Windows Azure Mobile Services,” I demonstrated how you can use
Windows Azure Mobile Services to store app data in the cloud. In particular, I showed you
how you can create a Tasks database table hosted on Azure and execute inserts, updates,
deletes, and queries from a Windows Store app using Mobile Services.

 However, in that chapter, I avoided the whole issue of authentication. Anyone could read
any data and make any changes to the Tasks table. Anyone could do anything, which is
very dangerous.

 In this section, I want to explain how you can use Live Connect authentication—which
we discussed in the previous section—to control access to Mobile Services. I demonstrate
how you can require users to authenticate before accessing the Tasks Mobile Service and
how you can prevent users from accessing each other’s tasks.

 Configuring Your Mobile Service

 Before you can use Live Connect with Azure Mobile Services, you must first provide
Mobile Services with your app’s client ID and client secret from Live Connect. Follow
these steps:

1. Navigate to the My Applications page at the Live Connect Developers Center located
at https://account.live.com/developers/applications . Select your application from the
list of applications.

2. Record the client ID and client secret for your app.

3. Navigate to the Windows Azure Management portal at http://manage.
WindowsAzure.com . Navigate to your Mobile Service and click the Identify tab (see
 Figure 14.11).

4. Enter your client ID and client secret under Microsoft Account Settings.

 FIGURE 14.11 Entering your Live Connect client ID and client secret at Azure

https://account.live.com/developers/applications
http://manage.WindowsAzure.com
http://manage.WindowsAzure.com

ptg999

CHAPTER 14 Using the Live Connect API 402

 Setting Permissions for Your Mobile Service

 Next, I want to restrict access to my Mobile Service for the Tasks table so that only
authenticated users can insert, update, delete, and read the tasks from the table. You can
set Mobile Service permissions from within Visual Studio or you can set the permissions
from the Windows Azure Management Portal (purely a matter of preference).

 Here are the steps for setting permissions for the Tasks table within Visual Studio:

1. Open the Server Explorer window by selecting the menu option View, Server
Explorer.

2. Expand Windows Azure Mobile Services, expand the Mobile Service, and right-click
the Tasks table and select the menu option Edit Permissions (see Figure 14.12).

3. Enable only Authenticated Users to insert, update, delete, and read.

 FIGURE 14.12 Setting mobile service permissions

 Updating the Mobile Server Scripts

 I don’t want anyone else in the world to read my tasks. If I need to change the water in
the goldfish bowl today then that is nobody’s business except mine.

 To stop people from being able to read each other’s tasks, I need to update the
insert.js and read.js scripts associated with the Tasks table. You can modify these scripts

ptg999

Authentication and Windows Azure Mobile Services 403

1
4

from within Visual Studio or from the Windows Azure Management portal (again, purely
a matter of preference).

 Within Visual Studio, you can view and modify the insert.js and read.js scripts by expand-
ing the node for the Tasks table in the Server Explorer window (see Figure 14.13).

 FIGURE 14.13 Modifying the insert.js and read.js scripts

 The updated insert.js script is contained in Listing 14.5 . Notice that I am getting the
authenticated user ID from the user parameter passed to the insert function. I store the
user ID in the database with the task (see Figure 14.14).

 FIGURE 14.14 User ID stored in SQL Azure Tasks table

ptg999

CHAPTER 14 Using the Live Connect API 404

 LISTING 14.5 Inserting with the User ID (insert.js)

 function insert(item, user, request) {

 // Cleanup data

 item.name = item.name.trim();

 // Validate

 if (item.name.length === 0) {

request.respond(statusCodes.BAD_REQUEST, "You fool! Task name is

➥required!!!");

 return ;

 }

 // Add user to task

 item.userId = user.userId;

 // Otherwise, execute request

 request.execute();

 }

 NOTE

 The user ID is a really ugly looking identity string that looks something like “Microsoft-
Account:e5a3d2b266fa2bc597a4bda73cddc25e”.

 When a user reads tasks from the Tasks table, I want to ensure that the user is reading
their own tasks and not some other person’s tasks. The updated read.js file in Listing 14.6
restricts the tasks returned to the tasks for the current authenticated user.

 LISTING 14.6 Reading with the User ID (read.js)

 function read(query, user, request) {

 query.where({ userId: user.userId });

 request.execute();

 }

 The read function in Listing 14.6 prevents anyone except me from reading my tasks.

 Logging Into Azure Mobile Services

 Now that I have done all of this tedious configuration and setup, I am finally in a posi-
tion to do something useful. I can log in to Azure Mobile Services using my Live Connect
account and insert and retrieve my tasks. I want to

ptg999

Authentication and Windows Azure Mobile Services 405

1
4

1. Log in to Live Connect

2. Log in to Windows Azure Mobile Services

3. Get my tasks

 The code for performing all three of these steps is contained in Listing 14.7 .

 LISTING 14.7 Authenticating with Mobile Services (mobileServices\mobileServices.js)

 // Login and Bind tasks to ListView

 var REDIRECT_DOMAIN = "http://liveSDKDemo.Superexpert.com" ;

 var mobileServicesClient, tasksTable;

 var scopes = ["wl.signin"];

 WL.init({

 scope: scopes,

 redirect_uri: REDIRECT_DOMAIN

 });

 WL.login().then(

 // Success

 function (wlLoginResults) {

 // Ready mobile service client

mobileServiceClient = new WindowsAzure.MobileServiceClient(

 "https://unleashed.azure-mobile.net/" ,

 "TzXsPHIiLhFwtBEUpoDPDZcvwVoold62"

);

 // Login to Windows Azure

mobileServiceClient.login(wlLoginResults.session.authentication_token).done(

 // Success

 function (azureLoginResults) {

 // Get tasks table

tasksTable = mobileServiceClient.getTable('Tasks');

 // Go grab the tasks

bindTasks();

},

 // Fail

 function (azureLoginResults) {

 var md = new Windows.UI.Popups.MessageDialog("Could not login to

➥Azure!");

md.showAsync();

}

);

 },

ptg999

CHAPTER 14 Using the Live Connect API 406

 // Fail

 function (loginResponse) {

 var md = new Windows.UI.Popups.MessageDialog("Could not login to Live

➥Connect!");

md.showAsync();

 }

);

 Let me walk through the code in Listing 14.7 . First, I log into Live Connect by calling
WL.login(). This method returns a promise. If you login successfully, you get an
authentication_token back from Live Connect.

 I use the authentication_token when logging into Mobile Services with the
MobileServiceClient login() method. This method also returns a promise. If you login
successfully then the bindTasks() method is called and the tasks are retrieved from the
Mobile Service and displayed in a ListView.

 Retrieving Basic User Information
 There is a wealth of user information that you can retrieve from Live Connect including
the user’s name, birthday, email addresses, and list of friends. In this section, I demon-
strate how you can retrieve this information by taking advantage of the WL.api() method.

 The WL.api() method enables you to interact with the Live Connect REST API. When you
call the WL.api() method, you can supply the following four options:

▶ path—A path to a REST object

▶ method—An HTTP method such as GET, POST, MOVE, COPY

▶ body—The body of the request (serialized to JSON)

▶ type—Used only when creating folders or albums

 The path object is the most important option because it determines the object that you
are interacting with. For example, if you want to get the user’s photo then you need to
supply the path “me/picture”. If you want to set a user’s status message then you would
use the path “me/share” (me refers to the current user).

 NOTE

 The documentation for all of the REST object supported by Live Connect is located at
 http://msdn.microsoft.com/en-us/library/live/hh243648.aspx .

 Let me show you how this works by creating a page that displays several bits of user infor-
mation (see Figure 14.15). The JavaScript source is contained in Listing 14.8 .

http://msdn.microsoft.com/en-us/library/live/hh243648.aspx

ptg999

Retrieving Basic User Information 407

1
4

 FIGURE 14.15 Displaying user info from Live Connect

 LISTING 14.8 Retrieving Basic User Information from Live Connect

 (function () {

 "use strict" ;

 var REDIRECT_DOMAIN = "http://liveSDKDemo.Superexpert.com" ;

 function init() {

 var spanFirstName = document.getElementById("spanFirstName");

 var spanLastName = document.getElementById("spanLastName");

 var spanBirthday = document.getElementById("spanBirthday");

 var spanStatus = document.getElementById("spanStatus");

 var imgPhoto = document.getElementById("imgPhoto");

 // Initialize Windows Live

 var scopes = ["wl.signin" , "wl.basic" , "wl.birthday"];

WL.init({

scope: scopes,

redirect_uri: REDIRECT_DOMAIN

});

 // Log in to Windows Live

WL.login().then(function (loginResults) {

 // Show basic info

callLiveConnect("me" , "GET").then(function (results) {

spanFirstName.innerText = results.first_name;

spanLastName.innerText = results.last_name;

spanBirthday.innerText = results.birth_month

+ "/" + results.birth_day;

});

 // Show profile picture

callLiveConnect("me/picture" , "GET").then(function (results) {

imgPhoto.src = results.location;

});

ptg999

CHAPTER 14 Using the Live Connect API 408

});

 // Call Live

 function callLiveConnect(path, method) {

 return new WinJS.Promise(function (complete, error) {

WL.api({

path: path,

method: method

}).then(

 function (results) {

complete(results);

},

 function (results) {

 // Error calling WL.api()

 debugger ;

}

);

});

}

 }

 document.addEventListener("DOMContentLoaded" , init);

 })();

 In Listing 14.8 , all of the heavy lifting is being performed by the callLiveConnect()
method. This method uses the WL.api() method to call a REST service.

 The callLiveConnect() method is called twice: the first time to get basic user information
and the second time to get the user photo.

 Uploading and Downloading Files from SkyDrive
 Microsoft SkyDrive enables you to store files in the cloud so the files can be easily shared
across devices. Everybody on earth gets 7 gigabytes of free SkyDrive storage to play with.
You can add photos, documents, or any other type of file that you please to SkyDrive.

 You can take advantage of the Live Connect API to interact with a user’s SkyDrive. For
example, you can use the API to upload, download, copy, move, and delete files on
SkyDrive.

 Imagine, for example, that you want to create a Windows Store app for displaying photos.
You want a user to be able to view their photo gallery anywhere from any computer. In
that case, it makes sense to store the photos on SkyDrive.

 In this section, I explain how you can list files and folders from a user’s SkyDrive, how
you can download files, and how you can upload new files.

ptg999

Uploading and Downloading Files from SkyDrive 409

1
4

 NOTE

 You can access your SkyDrive through a web browser by navigating to http://SkyDrive.
Live.com . You also can manage your SkyDrive account directly from within Windows 8.1
from PC Settings (you can even buy more storage space right inside Windows).

 NOTE

 SkyDrive is much more tightly integrated with Windows 8.1 than Windows 8. For example,
SkyDrive is now the default storage location for documents, pictures, and videos. The file
save picker, discussed in the next section, opens the SkyDrive Documents folder
by default.

 Listing SkyDrive Folders and Files

 Let me start with the basics; let me explain how you can get a list of the files and the
folders on a user’s SkyDrive (see Figure 14.16).

 FIGURE 14.16 Displaying a list of SkyDrive files and folders

 I’ll display the list of SkyDrive folders and files with a ListView control. The HTML page
in Listing 14.9 contains a Template and a ListView control. The template displays the
name and type of each item retrieved from SkyDrive.

 LISTING 14.9 HTML for Displaying Files from SkyDrive

 < div id ="tmplFile" data-win-control ="WinJS.Binding.Template">

 < div class ="fileItem">

Name: < span data-win-bind ="innerText:name"></ span >

 < br />

Type: < span data-win-bind ="innerText:type"></ span >

http://SkyDrive.Live.com
http://SkyDrive.Live.com

ptg999

CHAPTER 14 Using the Live Connect API 410

 </ div >

 </ div >

 < div id ="lvFiles"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplFile'),

 selectionMode: 'none'

 }"></ div >

 The JavaScript file in Listing 14.10 retrieves the list of files and folders from the current
user’s root SkyDrive folder.

 LISTING 14.10 JavaScript for Retrieving a List of Files from SkyDrive

 (function () {

 "use strict" ;

 var REDIRECT_DOMAIN = "http://liveSDKDemo.Superexpert.com" ;

 function init() {

WinJS.UI.processAll().done(function () {

 var lvFiles = document.getElementById("lvFiles").winControl;

 // Initialize Live Connect

 var scopes = ["wl.signin" , "wl.skydrive"];

WL.init({

scope: scopes,

redirect_uri: REDIRECT_DOMAIN

});

 // Log in to Live Connect

WL.login().then(function (loginResults) {

 // Get List of top-level SkyDrive files

callLiveConnect("me/skydrive/files" , "GET").then(function (results)

{

 var dsItems = new WinJS.Binding.List(results.data);

lvFiles.itemDataSource = dsItems.dataSource;

});

});

});

 // Call Live Connect

 function callLiveConnect(path, method) {

 return new WinJS.Promise(function (complete, error) {

ptg999

Uploading and Downloading Files from SkyDrive 411

1
4

WL.api({

path: path,

method: method

}).then(

 function (results) {

complete(results);

},

 function (results) {

 // Error calling WL.api()

 debugger ;

}

);

});

}

 }

 document.addEventListener("DOMContentLoaded" , init);

 })();

 The first section in the code initializes the connection to Live Connect by calling the
wl.init() method with the wl.skydrive scope. To read files and folders from SkyDrive,
the user must consent to the wl.skydrive permission. To update files and folders in
SkyDrive, the user must consent to the wl.skydrive_update permission.

 Next, the user is logged in by calling wl.login(). After the user is logged in, the list of
files and folders from the user’s SkyDrive is retrieved by invoking the callLiveConnect()
method with the path “me/skydrive/files”. This call retrieves the items (both files and
folders) from the user’s root SkyDrive folder.

 The list of files and folders is returned in the data property as a JavaScript array. This array
is converted into a List data source and bound to the ListView and the list of files and
folders is displayed.

 Downloading Files from SkyDrive

 You can use the WL.backgroundDownload() method to download files from a user’s
SkyDrive. When you call this method, you supply the path to the file on the user’s
SkyDrive and the StorageFile where the file is saved.

 Let me modify the ListView which we discussed in the previous section so it supports
downloading files. I’ll modify the ListView so that when you click a file in the ListView,
a save file screen will appear, which enables you to save the file from the SkyDrive to your
local hard drive (see Figure 14.17).

ptg999

CHAPTER 14 Using the Live Connect API 412

 FIGURE 14.17 Saving a file from SkyDrive

 First, I need to modify the options for the ListView so it supports raising the iteminvoked
event when you click/tap a ListView item:

 < div id ="lvFiles"

 data-win-control ="WinJS.UI.ListView"

 data-win-options ="{

 itemTemplate: select('#tmplFile'),

 tapBehavior: 'invokeOnly'

 }"></ div >

 Next, I need to implement a handler for the iteminvoked event that saves the clicked/
tapped item to the hard drive (see Listing 14.11).

 LISTING 14.11 The iteminvoked Event Handler

 // Set up invoke handler

 lvFiles.addEventListener("iteminvoked" , function (evt) {

 evt.detail.itemPromise.done(function (invokedItem) {

 var itemData = invokedItem.data;

 // Don't download folders and albums

 if (itemData.type == "folder" || itemData.type == "album") {

 return ;

}

 // Create save picker

 var savePicker = new Windows.Storage.Pickers.FileSavePicker();

ptg999

Uploading and Downloading Files from SkyDrive 413

1
4

savePicker.suggestedStartLocation = Windows.Storage.Pickers.

➥PickerLocationId.documentsLibrary;

savePicker.suggestedFileName = itemData.name;

savePicker.fileTypeChoices.insert("PNG file" , [".png"]);

savePicker.fileTypeChoices.insert("JPEG file" , [".jpg" , ".jpeg"]);

savePicker.fileTypeChoices.insert("Microsoft Word Document" , [".docx" ,

➥ ".doc"]);

 // Display picker

savePicker.pickSaveFileAsync().then(function (file) {

 if (file) {

WL.backgroundDownload({

path: itemData.id + "/content" ,

file_output: file

});

}

});

 })

 });

 When the iteminvoked event is raised, the code in Listing 14.11 retrieves the ListView
item that was clicked/tapped with the help of the itemPromise() method.

 Next, a FileSavePicker is created for saving the selected file. The FileSavePicker
is configured to handle PNG, JPEG, and Microsoft Word Documents. If you want to
handle downloading other types of files, then you need to add the new file types to the
FileSavePicker’s fileTypeChoices collection.

 The file save screen is displayed by calling the pickSaveFileAsync() method. When the
user clicks the Save button, the Live Connect WL.backgroundDownload() method is called.
This method downloads the file contents from SkyDrive and saves the file to the location
that the user selected with the save file picker.

 Notice the path used to save the file: itemData.id + "/content". You retrieve the
contents of a file (instead of a description of the file) by using the ID of the file followed
by "/content".

 Uploading Files to SkyDrive

 So how do you upload files to SkyDrive?

 Before you can upload files to SkyDrive, you must get the user’s consent to a stron-
ger permission request. You need to initialize your connection to the Live API with
wl.skydrive_update scope like this:

 // Initialize Live Connect

 var scopes = ["wl.signin" , "wl.skydrive_update"];

 WL.init({

ptg999

CHAPTER 14 Using the Live Connect API 414

 scope: scopes,

 redirect_uri: REDIRECT_DOMAIN

 });

 To enable users to upload files, I’ll modify the app from the previous section so that it
includes an app bar with an Upload command (see Figure 14.18). The app bar is declared
like this:

 < div data-win-control ="WinJS.UI.AppBar">

 < button data-win-control ="WinJS.UI.AppBarCommand"

 data-win-options ="{

 id:'cmdUpload',

 label:'Upload',

 icon:'upload',

 tooltip:'Upload File'

 }">

 </ button >

 </ div >

 FIGURE 14.18 The Upload app bar command

 Finally, I need to write the code that handles invoking the Upload command. The code
for handling the Upload command, and uploading a file to SkyDrive, is contained in
 Listing 14.12 .

ptg999

Summary 415

1
4

 LISTING 14.12 Handling the Upload Command

 // Set up upload handler

 var cmdUpload = document.getElementById("cmdUpload");

 cmdUpload.addEventListener("click" , function () {

 var openPicker = new Windows.Storage.Pickers.FileOpenPicker();

 openPicker.fileTypeFilter.replaceAll(["*"]);

 openPicker.pickSingleFileAsync().then(function (file) {

WL.backgroundUpload({

path: "me/skydrive" ,

file_name: file.name,

file_input: file

}).then(function () {

getFileList();

});

 });

 });

 The code in Listing 14.12 displays a file open picker that enables you to pick a file from
your hard drive. When you pick a file then the Live Connect WL.backgroundUpload()
method is called with three parameters:

▶ path—The path on SkyDrive where you want to upload the file

▶ file_name—The name of the new file to create on SkyDrive

▶ file_input—The storage file picked from the open file picker

 After the file is uploaded, the getFileList() method is called to refresh the list of
files displayed by the ListView control so the ListView control will display the newly
uploaded file.

 Summary
 This chapter focused on the subject of the Live Connect API. You learned how to use the
Live Connect API to support zero-click single sign-on to authenticate users without requir-
ing users to enter their usernames and passwords. You also learned how to pass an authen-
tication token from a Windows Store app to a Windows Azure Mobile Service.

 Next, you learned how you can extract a treasure trove of information about the current
user from Live Services. For example, I demonstrated how you can retrieve the current
user’s first and last name, birthday, and profile picture from Live Services.

 Finally, I explained how you can interact with SkyDrive from a Windows Store app. You
learned how to list, download, and upload files to a user’s SkyDrive account.

ptg999

This page intentionally left blank

ptg999

 CHAPTER 15

 Graphics and Games

 In this chapter, you learn how to create a simple game
using a Windows Store app. You learn how to create a
game named Brain Eaters.

 The goal of the Brain Eaters game is to avoid getting eaten
by zombies while eating food pellets. If you eat all five food
pellets then you win the game. If your character gets eaten
by a zombie then you lose (see Figure 15.1).

 The game works with keyboard, mouse, touch, and stylus.
You can move your character using the arrow keys on your
keyboard. Alternatively, if you are using a slate, then you
can touch the screen to indicate the direction that your
character should move.

 The game also works at different display resolutions. The
game board resizes automatically to fit the available screen
size so you can play the game on both low-resolution and
high-resolution screens.

IN THIS CHAPTER

▶ Overview of the Game

▶ Creating the Game Tiles

▶ Playing the Game Sounds

▶ Creating the Game Canvas

▶ Capturing User Interaction

▶ Creating the Update Loop

▶ Creating the Render Loop

ptg999

CHAPTER 15 Graphics and Games418

 NOTE

 All of the code for the Brain Eaters game is included in the source code for this book in
the Chapter15\Game folder.

 NOTE

 The Brain Eaters game is included in the Windows Store. You can install it and try it out
while reading this chapter.

 Overview of the Game
 I created the Brain Eaters game with the Visual Studio Navigation App template. The game
includes the following four pages:

▶ home—The home page contains an introduction screen that explains the rules for the
game. You click the Start Game button to navigate to the play page.

▶ play—The play page contains the actual game. Here is where you need to run away
from the zombies.

▶ lose—If the zombies catch you then you lose the game and end up on the lose page.
You can click the Play Again? button to return the play page.

 FIGURE 15.1 Brain Eaters game

ptg999

Creating the Game Tiles 419

1
5

▶ win—If you eat all of the food pellets then you win the game and you are navigated
to the win page.

 The home, lose, and win pages are boring—they are simple HTML pages that link to the
play page (see Figure 15.2). The play page is where the game is actually played.

 FIGURE 15.2 The Brain Eaters home page

 Almost all of the code for the game is included in a JavaScript file named game.js, which
contains the JavaScript Game class. This class contains the code for starting the game,
stopping the game, updating the positions of the zombies, and rendering the game.

 Creating the Game Tiles
 The Brain Eaters game is rendered out of a set of image tiles. An image tile is simply a
50px by 50px image. The game board is rendered from background and wall tiles. The
game also includes tiles for the zombies, player, and food.

 All of the game tiles are created in a JavaScript file named tiles.js (see Listing 15.1).

ptg999

CHAPTER 15 Graphics and Games420

 LISTING 15.1 The tiles.js File

 (function () {

 "use strict" ;

 function Tile(url) {

 this .image = new Image();

 this .image.src = url;

 }

 var tiles = {};

 tiles.background = new Tile("/images/background.jpg");

 tiles.wall = new Tile("/images/brick.jpg");

 tiles.player = new Tile("/images/hero.png");

 tiles.zombie = new Tile("/images/zombie.jpg");

 tiles.hamburger = new Tile("/images/hamburger.gif");

 WinJS.Namespace.define("Unleashed" , {

Tiles: tiles

 });

 })();

 Each tile represents an image loaded from the images folder. For example, the wall tile
represents an image named brick.jpg.

 Notice that the game includes PNG, GIF, and JPG images. You can create tiles using any
type of image supported by a modern browser.

 The set of tiles is exposed as properties from the Unleashed.Tiles object. For example,
you can refer to the wall tile with the Unleashed.Tiles.wall property.

 Playing the Game Sounds
 When you get eaten by a zombie, you get to die a noisy death. And, when you eat a food
pellet, your character says “Yum!”

 The game sounds are contained in a file named sounds.js (see Listing 15.2).

ptg999

Creating the Game Canvas 421

1
5

 LISTING 15.2 The sounds.js File

 (function () {

 "use strict" ;

 WinJS.Namespace.define("Unleashed" , {

Sounds: {

yum: new Audio("/sounds/yum.wav"),

eaten: new Audio("/sounds/eaten.wav"),

cheer: new Audio("/sounds/cheer.wav")

}

 });

 })();

 Notice that the game sounds are WAV sound files. I recorded the sound files using a
program named Audacity, which is a free, open-source sound recorder and editor.

 The sounds are exposed as properties of the Unleashed.Sounds object. For example, the
Yum sound is played with the following code:

 Unleashed.Sounds.yum.play();

 NOTE

 I created the sound files by recording my children Jon, Ada, and Athena making zombie
noises. This will most likely scar them all for life.

 Creating the Game Canvas
 The game graphics are rendered using an HTML5 Canvas element. The Canvas element is
created in the play.html page like this:

 < div

 data-win-control ="WinJS.UI.ViewBox">

 < canvas id ="canvas" width ="1000" height ="750"></ canvas >

 </ div >

 Notice that the Canvas element is contained in a WinJS ViewBox control. The ViewBox
control scales the Canvas to fit the resolution of the screen automatically. You can play
the game on a 1,024px by 768px screen in portrait mode (see Figure 15.3) and a 2,560px
by 1,440px screen in landscape mode (see Figure 15.4). The ViewBox scales the Canvas to
fit the available screen automatically.

ptg999

CHAPTER 15 Graphics and Games422

 FIGURE 15.3 Game scaled to 1,024px by 768px screen in portrait mode

 The Canvas element is declared with a width of 1,000 pixels and a height of 750 pixels. All
of the game tiles—such as the zombie and wall tiles—are painted on this Canvas element.

 When the Game class is initialized in the game.js file, a 2-D context is retrieved from the
Canvas element with the following code:

 // Setup Canvas

 this ._canvas = document.getElementById("canvas");

 this ._ctx = this ._canvas.getContext("2d");

ptg999

Creating the Game Canvas 423

1
5

 The 2-D context contains the graphics API for drawing on the Canvas. For example, the
graphics API includes methods such as lineTo(), rect(), and arc() for drawing lines,
rectangles, and arcs.

 The Brain Eaters game only takes advantage of a single method of the Canvas API: the
drawImage() method. The drawImage() method paints an image on the canvas at a partic-
ular location.

 For example, the player tile is rendered with the following code:

 renderPlayer: function () {

 this .drawImage(this ._player.tile.image, this ._player.x, this ._player.y);

 },

 drawImage: function (image, x, y) {

 this ._ctx.drawImage(image, x * TILE_WIDTH, y * TILE_HEIGHT);

 }

 The renderPlayer() method calls the drawImage() method passing an image and x and y
coordinates. The drawImage() method draws the image on the Canvas by calling the 2-D
context drawImage() method.

 NOTE

 Unfortunately, you cannot use animated GIFs with the Canvas drawImage() method.
According to the HTML5 spec, “When the drawImage() method is passed an animated
image as its image argument, the user agent must use the poster frame of the animation,
or, if there is no poster frame, the first frame of the animation.” Bummer.

 FIGURE 15.4 Game scaled to 2,560px by 1,440px screen in landscape mode

ptg999

CHAPTER 15 Graphics and Games424

 Capturing User Interaction
 The Brain Eaters game supports keyboard, mouse, touch, and stylus interaction. If you are
using the keyboard then you can move your character by using the arrow keys.

 The following code is used to capture keyboard interaction:

 document.addEventListener("keydown" , this .movePlayerKeyboard.bind(this));

 When you press a key down, the movePlayerKeyboard() method is called. This method
detects the arrow key that was pressed and changes the direction of the player:

 movePlayerKeyboard: function (e) {

 switch (e.keyCode) {

 case WinJS.Utilities.Key.upArrow:

 this ._player.direction = Unleashed.Direction.up;

 break ;

 case WinJS.Utilities.Key.downArrow:

 this ._player.direction = Unleashed.Direction.down;

 break ;

 case WinJS.Utilities.Key.leftArrow:

 this ._player.direction = Unleashed.Direction.left;

 break ;

 case WinJS.Utilities.Key.rightArrow:

 this ._player.direction = Unleashed.Direction.right;

 break ;

 case WinJS.Utilities.Key.space:

 this ._player.direction = Unleashed.Direction.none;

 break ;

 }

 },

 The movePlayerKeyboard() method takes advantage of the WinJS.Utilities.Key enumer-
ation to detect which keyboard key was pressed. This enumeration contains a list of
human-friendly names for the key codes so you can use WinJS.Utilities.Key.upArrow
instead of 38.

 If you are using a tablet device then you want to use touch instead of a keyboard. In that
case you can touch the screen to indicate the direction in which you want your character
to move.

 The following code is used to capture the MSPointerDown event. This event is raised
when you press down on your mouse button, touch the screen with your finger, or touch
the screen with a stylus:

 this ._canvas.addEventListener("MSPointerDown" , this .movePlayerTouch.bind(this));

ptg999

Creating the Update Loop 425

1
5

 When the MSPointerDown event is raised, the movePlayerTouch() method is called. This
method takes care of changing the direction in which your character moves:

 movePlayerTouch: function (e) {

 var playerX = this ._player.x * TILE_WIDTH;

 var playerY = this ._player.y * TILE_HEIGHT;

 var absX = Math.abs(e.offsetX - playerX);

 var absY = Math.abs(e.offsetY - playerY);

 if (absX > absY) {

 if (e.offsetX > playerX) {

 this ._player.direction = Unleashed.Direction.right;

} else {

 this ._player.direction = Unleashed.Direction.left;

}

 } else {

 if (e.offsetY > playerY) {

 this ._player.direction = Unleashed.Direction.down;

} else {

 this ._player.direction = Unleashed.Direction.up;

}

 }

 },

 Depending on where you touch the screen, your character moves in different directions.
For example, if you touch the screen below your character then your character changes
direction to move down. If you touch to the right of your character then your character
moves to the right (see Figure 15.5).

 FIGURE 15.5 Touching the screen to change direction

 Creating the Update Loop
 The Brain Eater game uses two loops during game play. The game executes an update loop
to update the positions of the player and the zombies. The game also executes a render loop
to render the game.

ptg999

CHAPTER 15 Graphics and Games426

 The update loop executes every 250 milliseconds. The executeUpdateLoop() method is
triggered with the following call to the window.setInterval() method when you start
a game:

 this ._updateLoopId = window.setInterval(this .executeUpdateLoop.bind(this),

UPDATE_LOOP_RATE);

 NOTE

 The bind() method called on the executeUpdateLoop() method is used to bind the
current instance of the Game object to the executeUpdateLoop() method when the
executeUpdateLoop() method is called. In other words, it ensures that the this vari-
able will refer to the current instance of the Game object within the executeUpdateLoop()
method.

 The UPDATE_LOOP_RATE constant has the value 250 milliseconds. If you want the zombies
to chase you faster then you can reduce this value (the game definitely gets harder the
lower that you make this number).

 The executeUpdateLoop() method looks like this:

 executeUpdateLoop: function () {

 this .updateMonsterPositions();

 this .updatePlayerPosition();

 },

 This method updates the positions of the zombies and the player. For example, the
updateMonsterPositions() method moves all of the zombies in the direction of the
player.

 While updating the positions of the zombies and the player, the update loop also checks
for collisions. The update loop must check whether there is a collision between the player
and a zombie or between the player and a food pellet.

 For example, the updatePlayerPosition() method calls the following collideWithFood()
method to detect whether the player has walked into a food pellet:

 collideWithFood: function () {

 for (var i = 0; i < this ._food.length; i++) {

 var food = this ._food[i];

 if (this ._player.x === food.x && this ._player.y === food.y) {

Unleashed.Sounds.yum.play();

 this ._food.splice(i, 1);

}

 }

 // If no more food then player wins!

ptg999

Creating the Render Loop 427

1
5

 if (this ._food.length === 0) {

 this .win();

 }

 },

 The collideWithFood() method loops through the JavaScript _food array and checks
whether the x and y position of any food pellet corresponds to the x and y position of the
player. If there is a match then a “Yum!” sound is played and the food pellet is removed
from the food array using _food.splice(). If all of the food is eaten then the player wins.

 The update loop does not render anything to the screen. The update loop is responsible
only for the state of the game. Rendering the game is the responsibility of the render loop.

 Creating the Render Loop
 The render loop is responsible for rendering the game board. Unlike the update loop,
which is triggered by the window.setInterval() method, the render loop is executed by
calling the requestAnimationFrame() method.

 The requestAnimationFrame() method is defined as part of the W3C Timing Control for
Script-Based Animation standard. This method was introduced specifically for the purpose
of creating animated games.

 When you use the requestAnimationFrame() method, you don’t specify how often the
screen should be rendered. Instead, you let the browser determine the best frame rate.

 The idea is that the browser can do a better job than you in determining the best frame
rate. The browser can take into account all of the animations being rendered and, there-
fore, render all of the animations more smoothly. If the page is not currently visible then
the browser can throttle the animations and conserve CPU power.

 In the Brain Eaters game, the render loop is started with the following code:

 this ._animationLoopId = window.requestAnimationFrame(this .executeRenderLoop.

➥bind(this));

 The executeRenderLoop() method is passed to the requestAnimationFrame() method. The
executeRenderLoop() method looks like this:

 executeRenderLoop: function () {

 this .render();

 this ._animationLoopId = window.requestAnimationFrame(this .executeRenderLoop.

➥bind(this));

 },

 The executeRenderLoop() method calls the render() method and then immediately
calls the window.requestAnimationFrame() method again. It is up to the window.
requestAnimationFrame() method to decide how quickly the executeRenderLoop()
method gets called again.

ptg999

CHAPTER 15 Graphics and Games428

 NOTE

 The window.requestAnimationFrame() method is similar to the window.setTimeout()
method with the crucial difference that you don’t specify a timeout value. The window.
requestAnimationFrame() method figures out its own timeout value.

 The render() method is responsible for drawing the screen and it looks like this:

 render: function () {

 this .renderBoard();

 this .renderFood();

 this .renderMonsters();

 this .renderPlayer();

 },

 The render() method draws the game board, the food pellets, the monsters, and the
player.

 The renderBoard() method draws the 20 by 15 tile game board by calling the
drawImage() method for each tile in the game board. Here’s what the renderBoard()
method looks like:

 renderBoard: function () {

 for (var y = 0; y < VERTICAL_TILES; y++) {

 for (var x = 0; x < HORIZONTAL_TILES; x++) {

 var tile = this .getTile(x, y);

 if (tile) {

 this .drawImage(tile.image, x, y);

} else {

 this .drawImage(Unleashed.Tiles.background.image, x, y);

}

}

 }

 },

 The renderFood() and renderMonsters() methods are very similar; both methods loop
through an array and render each element in the array to the screen. Here’s what the
renderMonsters() method looks like:

 renderMonsters: function () {

 for (var i = 0; i < this ._monsters.length; i++) {

 var monster = this ._monsters[i];

 this .drawImage(monster.tile.image, monster.x, monster.y);

 }

 },

ptg999

Summary 429

1
5

 In the code, the _monsters array contains an array of monster objects. The drawImage()
method is used to draw each monster to the Canvas element.

 Finally, the renderPlayer() method renders the player (the hero of the game) to the
screen like this:

 renderPlayer: function () {

 this .drawImage(this ._player.tile.image, this ._player.x, this ._player.y);

 },

 NOTE

 The requestAnimationFrame() method is defined in the Timing Control for Script-
Based Animation standard located at http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/
RequestAnimationFrame/Overview.html.

 Summary
 The goal of this chapter was to create a simple game by creating a Windows Store app. I
showed you how to create image and sound files for the game and I showed you how to
render the images using the HTML5 Canvas element.

 You also learned how to create both an update loop and a render loop. The update loop
is used to update the positions of the monsters and player on the game board. The render
loop is used to render the game board by calling the requestAnimationFrame() method to
draw the image tiles.

 Good luck winning the game! If you win the game, you get to hear my children cheer.

http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/RequestAnimationFrame/Overview.html
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/RequestAnimationFrame/Overview.html

ptg999

This page intentionally left blank

ptg999

 CHAPTER 16

 Creating a Task List App

 In this final chapter, I walk through creating a productiv-
ity app. I demonstrate how you can create a basic tasks list
app named MyTasks.

 My goal in this chapter is to tackle building a more
complete app: An app that can be submitted to the
Windows Store, an app that includes robust error handling
and all of the features that are required by a real-world app.

 This app weaves together several of the technologies
discussed in earlier chapters of this book:

▶ The MyTasks app uses Live Connect zero-click
single sign-on to authenticate users. I discussed Live
Connect authentication in Chapter 14 , “Using the
Live Connect API.”

▶ The MyTasks app uses Windows Azure Mobile
Services to save tasks to the cloud so the tasks can
be accessed from multiple computers and devices.
I discussed Azure Mobile Services in Chapter 10 ,
“Using Windows Azure Mobile Services.”

▶ The MyTasks app adapts to different screen widths
automatically by using CSS Media Queries and
JavaScript. I discussed how you can build apps that
adapt to different view states in Chapter 11 , “App
Events and States.”

▶ The MyTasks app uses a ListView control to display
the lists of tasks. I discussed the ListView control in
detail in Chapter 8 , “Using the ListView Control.”

▶ The MyTasks app uses a Binding Converter to display
completed tasks with a line-through them. I discussed
Binding Converters in Chapter 3 , “Observables,
Bindings, and Templates.”

IN THIS CHAPTER

 ▶Overview of the App

 ▶Setting Up the App

 ▶Connecting to External Services

 ▶Optimistic Inserts, Updates,
and Deletes

 ▶Adapting to Screen Changes

 ▶Creating a Custom Control

 ▶Using Text to Speech

ptg999

CHAPTER 16 Creating a Task List App432

▶ The MyTasks app uses an AppBar to display application commands for deleting a
task, marking a task as complete, and creating a new task. I discussed the AppBar
control in Chapter 6 , “Menus and Flyouts.”

▶ The MyTasks app uses a NavBar to display a navigation menu that enables you to
navigate to different days of the week. I discussed the new NavBar control in
Chapter 6 .

▶ The MyTasks app includes a custom setting that displays a Privacy Policy. I discussed
creating custom settings in Chapter 6 .

 When building the MyTasks app, I also took advantage of a new API introduced with
Windows 8.1. The MyTasks app uses the Windows 8.1 Text-To-Speech SpeechSynthesizer
class to read tasks out loud. You know, like the computer voice in Star Trek.

 NOTE

 I submitted the MyTasks app to the Windows Store. If you would like to play with the
MyTasks app while reading this chapter then you can install the app from the Windows
Store.

 Overview of the App
 The MyTasks app is a basic task list application. It enables you to create new tasks, mark
tasks as complete, and delete existing tasks.

 When you first open the MyTasks app, you see a list of tasks for the current date. If you
right-click the screen then you can see both the app bar and the nav bar (see Figure 16.1).

 FIGURE 16.1 The MyTasks app

ptg999

Setting Up the App 433

1
6

 The app bar contains the commands for creating tasks, deleting tasks, and marking tasks
as complete. Notice that the first and second tasks in Figure 16.1 have been marked as
complete. Both tasks appear with a line through them.

 The nav bar enables you to navigate to another date and see the tasks for that date. In
 Figure 16.1 , Thursday is highlighted because it represents the selected date.

 The MyTasks app was created by using the Visual Studio Navigation App project template.
The app contains a single page named home that is located at the path \pages\home\
home.html. The home page displays the content that you see in Figure 16.1 .

 The MyTasks app uses three custom JavaScript libraries:

▶ live.js—Contains methods for interacting with Live Connect services

▶ services.js—Contains methods for interacting with Windows Azure Mobile
Services

▶ speech.js—Contains methods for using the Windows 8.1 Text-To-Speech speech
synthesizer

 All three of these libraries can be found in the Visual Studio project \js folder.

 Setting Up the App

 NOTE

 If you want to avoid performing the setup steps described in this section but you still want
to play with the MyTasks app then I recommend that you install the MyTasks app from the
Windows Store.

 All of the source code for the MyTasks app is included in the GitHub repository associated
with this book. Because the MyTasks app relies on external services—Live Connect and
Windows Azure Mobile Services—you must perform some setup before the app will run.

 Setup is tedious and painful—but I guarantee that you can get everything to work with a
strong cup of coffee and some patience in less than 15 minutes. You need to bounce back
and forth between three websites:

▶ Windows Store Dashboard— https://appdev.microsoft.com/StorePortals

▶ Windows Azure Management Portal— http://manage.WindowsAzure.com

▶ Live Connect Developers Center— https://account.live.com/developers/applications

 You can find detailed instructions for creating a Windows Azure Mobile Service in
Chapter 10 . Detailed instructions for getting an app to work with Live Connect and
Windows Azure Mobile Services are in Chapter 14 .

https://appdev.microsoft.com/StorePortals
http://manage.WindowsAzure.com
https://account.live.com/developers/applications

ptg999

CHAPTER 16 Creating a Task List App434

 To summarize, you need to complete the following steps:

1. Within Visual Studio—from the Project, Store menu—reserve an app name and asso-
ciate the MyTasks project with your app.

2. At the Windows Store Dashboard, click Services and register your app with Live
Connect. You need to enter a Redirect URL in this step.

3. At the Windows Azure Management Portal, you need to create a new Mobile Service.

4. Get your Live Connect client ID and client secret from the Live Connect Developers
center and associate the client ID and client secret with your Mobile Service at the
Windows Azure Management Portal. You need to enter your client ID and secret
under your Mobile Service’s Identity tab.

5. In your Visual Studio project, update the \js\live.js file with the Redirect URL that
you created in step 2.

6. In your Visual Studio project, update the \js\services.js file with your Mobile Service
application key that you can retrieve from the Windows Azure Management Portal.

 After you get Live Connect and Windows Azure configured, there is one more step that
you must complete before the MyTasks app will work. To use the MyTasks app, you also
need to create the insert.js, update.js, delete.js, and read.js server scripts hosted in your
Windows Azure Mobile Service. All four of these scripts are in the \serverScripts folder.

 You can add the server scripts to your Mobile Service in either of two ways. You can add
the scripts through the Windows Azure Management Portal (see Figure 16.2) or you can
add these scripts from within the Server Explorer window in Visual Studio. For detailed
instructions see Chapter 10 .

 FIGURE 16.2 Updating server scripts at the Windows Azure Management Portal

ptg999

Connecting to External Services 435

1
6

 Connecting to External Services
 The MyTasks app cannot even get off the ground unless it can connect to Live Connect
and Windows Azure Mobile Services. If the MyTasks app cannot authenticate you with
Live Connect and get your tasks from Azure Mobile Services then the app has nothing
useful to do. So the very first thing that the MyTasks app does is to connect to these
services.

 Listing 16.1 contains the startup code that is responsible for connecting to Live Connect
and Azure.

 LISTING 16.1 MyTasks Startup Code (/js/default.js)

 // The startup method ensures that you are

 // connected to Live and Azure before

 // doing anything else.

 function startup() {

 return new WinJS.Promise(function (complete) {

 function login() {

 // Login to Live

Live.login().done(

 // Success

 function () {

 // Login to Azure Mobile Services

Services.login(Live.getAuthenticationToken()).done(

 // Success

 function () {

complete();

},

 // Fail

 function (errorMessage) {

 // If first we don't succeed, try again ad nauseum

 var message = "Could not connect to Windows Azure. " +

➥errorMessage;

 var md = new Windows.UI.Popups.MessageDialog(message);

md.commands.append(new Windows.UI.Popups.

➥UICommand("&Retry"));

md.showAsync().done(login);

}

);

},

 // Fail

 function () {

 // If first we don't succeed, try again ad nauseum

 var md = new Windows.UI.Popups.MessageDialog("Could not connect

➥to the Internet.");

md.commands.append(new Windows.UI.Popups.UICommand("&Retry"));

ptg999

CHAPTER 16 Creating a Task List App436

md.showAsync().done(login);

}

);

}

 // Start recursing until complete

login();

 });

 }

 app.addEventListener("activated" , function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 // This might take a while

args.setPromise(WinJS.UI.processAll().then(function () {

 // Login to both Live and Azure

startup().done(function () {

 // After logging in, navigate to page

 if (app.sessionState.history) {

nav.history = app.sessionState.history;

}

 if (nav.location) {

nav.history.current.initialPlaceholder = true ;

 return nav.navigate(nav.location, nav.state);

} else {

 return nav.navigate(Application.navigator.home);

}

});

}));

 }

 });

 In Listing 16.1 , the handler for the activated event calls the startup() method immedi-
ately after the MyTasks app is activated. The startup() method returns a promise that
contains a recursive function named login(). The login() method recursively calls itself
until the user is logged into both Live Connect and Windows Azure.

 If the user successfully logs into both services then the startup() promise completes
and the navigate() method is called to send the user to the home page. The home page
displays the list of tasks for the user.

 NOTE

 The Live.login() method is implemented in the /js/live.js library and the Services.
login() method is implemented in the /js/services.js library.

ptg999

Optimistic Inserts, Updates, and Deletes 437

1
6

 Both the Live.login() method and the Services.login() method return promises.
If there is an error logging into either Live Connect or Windows Azure then the error
message is displayed in a Message Dialog (see Figure 16.3).

 FIGURE 16.3 Error caused by no Internet connection

 If you click the Retry button in the Message dialog, then the login() method calls itself.
In other words, the startup() method will keep attempting to connect to the services
over and over again every time you click Retry. Because the MyTasks app won’t work
unless you connect to these services, the app won’t let you do anything else.

 NOTE

 Instead of throwing a user into an infinite loop, wouldn’t it make more sense to just close
the app when there is no Internet connection? Nope, definitely not. It violates Windows 8
app certification requirements to programmatically close an app: “Your app must neither
programmatically close nor offer UI affordances to close it.”

 Optimistic Inserts, Updates, and Deletes
 Always be optimistic because users are impatient.

 The MyTasks app uses optimistic inserts, update, and deletes when calling Windows Azure
Mobile Services. For example, when a user creates a new task, the new task is added to the
WinJS.Binding.List displayed by the ListView immediately and the new task appears
immediately. Behind the scenes, the task is inserted in the Windows Azure database after
the task already appears in the ListView.

 Being optimistic is important for perceived performance. When users interact with your
Windows Store app, they don’t want to wait for things to happen. They don’t care that
their tasks need to be stored in a remote database. Everything should appear to happen
instantly.

ptg999

CHAPTER 16 Creating a Task List App438

 But what happens if things go wrong? What happens if your Internet connection goes
down and the task cannot be inserted into the remote Azure database?

 In the rare cases when things go wrong, you simply revert. If you have inserted a task in
the List then you remove it. If you have deleted a task then you add the task back again.
If you have updated a task then you revert it. And, you throw an error message at the user
so the user knows that something has gone wrong.

 Listing 16.2 contains the code, from the \js\services.js library, for creating a new task.

 LISTING 16.2 Optimistic Insert (/js/services.js)

 function addMyTask(newTask) {

 return new WinJS.Promise(function (complete, error) {

 // Be optimistic

_myTasksList.dataSource.insertAtStart(null , newTask).done(function

➥(newListItem) {

 // Actually do the insert

_myTasksTable.insert(newTask).done(

 // Success

 function (newDBItem) {

 // Update the list item with the DB item

_myTasksList.dataSource.change(newListItem.key, newDBItem).

➥done(function () {

complete();

});

},

 // fail

 function (err) {

 // Remove the item

_myTasksList.dataSource.remove(newListItem.key).done(function ()

{

error(err);

});

}

);

});

 });

 }

 Let me explain what is going on in the addMyTask() method in Listing 16.2 . First, let me
describe what happens when everything goes right:

1. The new task is added to the local WinJS.Binding.List with the insertAtStart()
method. Because the WinJS.Binding.List is bound to the ListView, the new task
appears immediately in the ListView.

ptg999

Optimistic Inserts, Updates, and Deletes 439

1
6

2. The new task is inserted in the remote MyTasks Azure database table by calling the
_myTasks.insert() method.

3. After the new task is successfully inserted into the remote database then the task
in the local WinJS.Binding.List is updated with the correct ID from the remote
database.

 So, if everything works right, when a user creates a new task then the user can see the task
immediately. The user does not need to wait for the remote database to be updated.

 If things don’t go right, then the following steps happen:

1. The new task is added to the local WinJS.Binding.List and the user sees the new
task in the ListView.

2. For whatever reason, the new task cannot be inserted into the remote Azure database
table (for example, the Internet is broken).

3. The new task is removed from the local WinJS.Binding.List and the user sees that
the task has been removed from the ListView.

 So, if things go wrong, the user sees the new task appear and then disappear. Because the
addMyTask() method calls the error() function, the user also sees the error message in
 Figure 16.4 .

 FIGURE 16.4 When things go wrong with an optimistic insert

ptg999

CHAPTER 16 Creating a Task List App440

 Adapting to Screen Changes
 Wide, thin, then wide again. The MyTasks app is designed to gracefully adapt to different
screen widths. As I discussed in Chapter 11 , multiple Windows 8.1 apps can be run side by
side. A user can change the size of a Windows 8.1 app at any moment.

 A standard Widows 8.1 app should be designed to work at any width between 500 pixels
and higher. By default, 500 pixels is the minimum horizontal width for a Windows 8.1
app.

 However, I wanted to be able to use the MyTasks app at widths lower than 500 pixels. In
particular, I wanted to be able to open the MyTasks app side by side with other applica-
tions such as Visual Studio. That way, I can quickly add a new task to the MyTasks app
while working within Visual Studio (see Figure 16.5).

 FIGURE 16.5 Using MyTasks at 320 pixels

 If you want your Windows Store app to support a minimum width less than 500 pixels
then you need to modify your app manifest (package.appxmanifest). I changed the
minimum width for MyTasks to be 320 pixels (see Figure 16.6).

ptg999

Adapting to Screen Changes 441

1
6

 FIGURE 16.6 Setting the minimum width to 320 pixels

 However, going below 500 pixels does not provide you with a lot of room. Therefore,
when the MyTasks app width gets below 500 pixels then I make some changes to the app.

 First, when the app is shrunk below 500 pixels, I change the margins around the page
content to remove any unnecessary whitespace. I change the margins with the CSS Media
Query in Listing 16.3 .

 LISTING 16.3 CSS Media Query (/pages/home.css)

 @media screen and (min-width : 500px) {

 .homepage #content {

 margin-left : 120px ;

 margin-right : 120px ;

 margin-top : 100px ;

 }

 }

 @media screen and (max-width : 500px) {

 .homepage #content {

 margin-left : 10px ;

 }

 }

ptg999

CHAPTER 16 Creating a Task List App442

 The CSS in Listing 16.3 changes the left margin to 10px when the app is shrunk below
500 pixels. The right and top margins are completely removed.

 Normally, the tasks are displayed by the ListView in a grid. When you shrink the MyTasks
app below 500 pixels then I use the code in Listing 16.4 to switch the ListView from Grid
layout to List layout.

 LISTING 16.4 Handling Window Resize (/pages/home.js)

 updateLayout: function (element) {

 this ._performLayout();

 },

 // We show the ListView in a list when

 // the screen gets too small

 _performLayout: function (element) {

 var width = document.documentElement.offsetWidth;

 var height = document.documentElement.offsetHeight;

 var lvMyTasks = document.getElementById("lvMyTasks").winControl;

 var spanMyTasks = document.getElementById("spanMyTasks");

 // The height of the ListView is 80% of the screen

 lvMyTasks.element.style.height = (height * 0.80) + "px" ;

 // When the width of the screen is less than 500px then show as List

 if (width < 500) {

lvMyTasks.layout = new WinJS.UI.ListLayout();

lvMyTasks.forceLayout();

spanMyTasks.style.display = "none" ;

 } else {

lvMyTasks.layout = new WinJS.UI.GridLayout();

lvMyTasks.forceLayout();

spanMyTasks.style.display = "" ;

 }

 }

ptg999

Adapting to Screen Changes 443

1
6

 The updateLayout() method in Listing 16.6 is called automatically when the size of the
app changes. The updateLayout() method changes the ListView to either Grid or List
layout depending on the current app width.

 The updateLayout() method also hides or displays the that displays the title text
“My Tasks For”. This extra text only appears in wide mode.

 Figure 16.7 and Figure 16.8 illustrate how the MyTasks app changes its appearance when
displayed with different widths.

 FIGURE 16.7 The wide version of the MyTasks app

ptg999

CHAPTER 16 Creating a Task List App444

 FIGURE 16.8 The narrow version of the MyTasks app

 Creating a Custom Control
 When an app starts getting too complex, it is a good idea to start encapsulating things.
For example, if you are building a complicated user interface then it helps to break the
user interface into separate WinJS controls.

 The nav bar used in the MyTasks app changes appearance when displayed at different
screen widths. Normally, the nav bar enables you to navigate to different days by clicking
the names of different days of the week (see Figure 16.9). However, when the app gets too
narrow, the days of the week no longer fit in the nav bar. When the width gets below 500
pixels then I display a date picker instead (see Figure 16.10).

ptg999

Creating a Custom Control 445

1
6

 FIGURE 16.9 The days of the week version of the nav bar

 FIGURE 16.10 The date picker version of the nav bar

ptg999

CHAPTER 16 Creating a Task List App446

 Instead of throwing all of the WinJS controls and JavaScript logic into the home page, I
encapsulated everything required by the nav bar into a separate custom WinJS control
named AppNavBar. That way, the home page can be kept simple.

 I created the AppNavBar control by creating a Page control—select the Visual Studio menu
option Project, Add New Item, Page control. Creating a new Page control results in three
new files named appNavBar.css, appNavBar.html, and appNavBar.js.

 NOTE

 The code for the AppNavBar control is located in the \controls\appNavBar folder.

 After you create a custom Page control then you can use it in your pages just like any
standard WinJS control. First, you need to add a reference to the JavaScript file for the
AppNavBar control to the home.html page like this:

 < script src ="/controls/appNavBar/appNavBar.js"></ script >

 Now, you can add the AppNavBar control to the home.html page just like any other stan-
dard WinJS control like this:

 < div id ="appNavBar" data-win-control ="MyControls.AppNavBar"></ div >

 Using Text to Speech
 I keep waiting for the day when computers get as smart and easy to use as the computers
in Star Trek. In particular, I can’t wait until the day when all of my computer apps talk to
me out loud.

 Fortunately, that day has arrived. Windows 8.1 includes a new Text-To-Speech API that
makes it easy to add speech to a Windows Store app. The Text-To-Speech API even
supports different voices with different genders.

 The MyTasks app includes a button, labeled Read Tasks, that reads all of the tasks on the
current page out loud. Here’s what the click handler for the button looks like:

 // Read tasks out loud

 btnRead.addEventListener("click" , function (e) {

 e.preventDefault();

 // Build soliloquy

 var soliliquy = "Hello " + Live.getFirstName();

 if (Services.myTasksList.length == 0) {

soliliquy += ", you do not have any tasks for this day."

 } else {

soliliquy += ", these are your tasks:" ;

Services.myTasksList.forEach(function (item) {

ptg999

Using Text to Speech 447

1
6

soliliquy += item.name;

 if (item.isDone) {

soliliquy += "(This task is already completed)." ;

}

});

 }

 Speech.say(soliliquy);

 });

 When you click the Read Tasks button, a variable named soliloquy is built up that
contains the text to be spoken. The click handler loops through all of the task names to
build the text. The Speech.say() method is called to speak the soliloquy text out loud.

 I encapsulated the Windows 8.1 Text-To-Speech API in the mini-library in Listing 16.5 .

 LISTING 16.5 Text-To-Speech Library (\js\speech.js)

 (function () {

 "use strict" ;

 function say(text) {

 var audio = new Audio();

 var synth = new Windows.Media.SpeechSynthesis.SpeechSynthesizer();

 // Use Hazel's voice

 var voices = Windows.Media.SpeechSynthesis.SpeechSynthesizer.allVoices;

 for (var i = 0; i < voices.length; i++) {

 if (voices[i].displayName == "Microsoft Hazel Desktop") {

synth.voice = voices[i];

}

}

synth.synthesizeTextToStreamAsync(text).then(function (markersStream) {

 var blob = MSApp.createBlobFromRandomAccessStream(markersStream.

➥ContentType, markersStream);

audio.src = URL.createObjectURL(blob, { oneTimeOnly: true });

audio.play();

});

 }

 WinJS.Namespace.define("Speech" , {

say: say

 });

 })();

ptg999

CHAPTER 16 Creating a Task List App448

 The JavaScript library in Listing 16.5 has one public method named say() that says any
text out loud. This method selects a voice and then calls the SpeechSynthesizer
synthesizeTextToStreamAsync() method to convert the text to a binary audio blob. The
audio blob is assigned to an HTML5 Audio element and played.

 Notice that a particular voice is selected before the audio is played. The Microsoft Hazel
Desktop voice is used with the text. This voice has a female English accent.

 The Windows.Media.SpeechSynthesis.SpeechSynthesizer.allVoices method returns a list
of all of the voices available on the machine. On my machine, I have the following voices:

▶ Microsoft David Desktop—American male voice

▶ Microsoft Hazel Desktop—English female voice

▶ Microsoft Zira Desktop—American female voice

 If you don’t specify a particular voice to use by assigning a voice to the voice property
then the Microsoft David Desktop voice is used by default.

 NOTE

 The Text-To-Speech API also supports Speech Synthesis Markup Language (SSML). SSML
is a markup language that provides you with greater control over how text is spoken. For
example, you can use the <break/> tag to add pauses to speech and the <prosody> tag
to control volume, pitch and rate. You can learn more about SSML by reading the W3C
recommendation at http://www.w3.org/TR/speech-synthesis/ .

 Summary
 This chapter focused on building a simple productivity app: the MyTasks app. I discussed
solutions to several of the challenges that you face when building a real-world Windows
Store app.

 First, I explained how you can ensure that a connection to external services is available
when you start a Windows Store app. The MyTasks app depends on communicating with
Live Connect and Windows Azure. If connections to these services are not available then
the MyTasks app repeatedly throws a Retry dialog in your face.

 Next, I discussed the importance of optimistic inserts, updates, and deletes for the
perceived performance of your Windows Store app. I recommend that you always
insert locally before inserting remotely to provide your users with the best perceived
performance.

 I also demonstrated how you can gracefully adapt the MyTasks app to different screen
widths. I showed you how you can use both CSS Media Queries and JavaScript to change
the appearance of the app when the app is stretched or shrunk.

 Finally, I talked about a new API introduced with Windows 8.1. I demonstrated how
you can convert text to speech and read tasks out loud by taking advantage of the new
Windows 8.1 SpeechSynthesizer class.

http://www.w3.org/TR/speech-synthesis/

ptg999

Index

 Symbols
 @-ms-viewport rules, 326 , 329

 A
 About Page settings, creating, 187 - 189
 account settings, creating, 396 - 401
 activated events, app events, 312 - 325
 adapting to screen changes (MyTasks app),

 440 - 443
 addEventListener(), 315
 adding

 Page Controls to Navigation App, 343 - 345
 search results pages, 373 - 376
 SearchBox control to pages, 377 - 378

 Ajax calls, performing with xhr() function, 69 - 74
 response types, specifying, 72 - 73

 alert.css file, 338
 alert.js file, 338
 any() method, 63
 app bar, 8 - 9
 app events, 311 - 312

 activated events, 312 - 325
 creating custom, 315
 deferring events, 314 - 315
 designing apps for different window sizes

 CSS media queries, 321 - 324
 error events, 313 - 314
 logging, 312

 AppBar control, 176 - 184
 commands, 178 - 181
 contextual commands, 181 - 184

 application keys, retrieving Mobile Services,
 297

 application state, testing with Visual Studio,
 317 - 318

 ApplicationExecutionState, 317
 applying templates with query selectors,

 109 - 111
 apps, 315 - 316

 declaring as share targets, 361 - 362
 designing for different window sizes,

 320 - 325

 detecting previous execution state, 316 - 317
 detecting suspended and terminated apps,

 316

 multi-page apps. See multi-page apps
 scaling to fit screen resolutions

 defining viewports, 326 - 329
 ViewBox control, 329 - 332

 storing state with session state, 318 - 320
 testing application state with Visual Studio,

 317 - 318
 articles, displaying with FlipView control,

 215 - 218
 assigning format strings to DatePicker control,

 128 - 130
 asynchronous programming, promises, 56 - 63

 canceling, 62 - 63
 composing, 63
 creating, 60 - 61
 timeout promises, 61 - 62

 audio (Brain Eaters game), playing, 420 - 421
 authentication, 394 - 401

 account settings, creating, 396 - 401
 logging in users to Live Connect, 394 - 396

 Azure Mobile Services . See also Mobile
Services

 configuring, 401
 logging into, 404 - 406
 mobile server scripts, updating, 402 - 404
 permissions, setting, 402

 B
 back(), 346
 beforenavigate, Navigation API, 347
 binding converters, 101 - 105

 creating, 103
 date and price converters, creating, 104 - 105

 bindings
 declarative data binding, 81 , 91 - 105

 binding converters, 101 - 105
 data context, 94
 data-win-bind attribute, 92
 HTML forms, capturing contents of,

 96 - 98

ptg999

450 bindings450

 observables, 94 - 96
 root element, 94
 and WinJS controls, 99 - 100

 object properties, binding to a listener,
 83 - 85

 WinJS.Binding.List object, 88 - 90 , 224 - 226
 blog feeds, binding ListView control to, 226 - 228
 Brain Eaters, 417 - 418

 Canvas, creating, 421 - 423
 overview, 418 - 419
 render loop, creating, 427 - 429
 sounds, playing, 420 - 421
 tiles, creating, 419 - 420
 update loop, creating, 425 - 427
 user interaction, capturing, 424 - 425

 breakpoints, setting, 34 - 35
 buttons, creating FlipView custom buttons,

 221 - 222
 bypassing notifications, 87 - 88

 C
 callbacks, 57

 promises, 57 - 58
 canceling, 62 - 63
 composing, 63
 WinJS.xhr() method, 58

 canceling promises, 62 - 63
 canGoBack, 347
 canGoForward, 347
 Canvas, 22

 Brain Eaters game, creating, 421 - 423
 capturing

 contents of HTML forms, 96 - 98
 selected date with DatePicker control,

 132 - 133
 user interaction (Brain Eaters game),

 424 - 425
 WebView screenshots, 145 - 146

 Cascading Style Sheets. See CSS (Cascading
Style Sheets)

 cell spanning layout (ListView control), 231 - 236
 certification, Windows Store, 39 - 40
 chaining, 59
 change() method, implementing, 268
 charms, 9 - 11

 Settings charm, 186 - 187

 classes, 51 - 56
 creating, 51 - 52
 QueryCollection class, 68 - 69
 Windows RT, 23
 win-item, 199
 win-itembox, 199
 win-itemcontainer, 199

 clearing user ratings, 124 - 125
 closing Windows Store apps, 13
 coalescing notifications, 85 - 87
 collections, observable collections, 90 - 91
 commands

 app bar commands, 178 - 181
 contextual commands, 181 - 184
 SQL TRUNCATE TABLE, 308

 common features of Windows Store apps, 7 - 13
 app bar, 8 - 9
 charms, 9 - 11
 nav bar, 9

 CommonJS website, 57
 composing promises, 63
 configuring Azure Mobile Services, 401
 connecting Mobile Services to remote database

tables, 299
 console.log(), 309

 containers. See ItemContainer
 contenteditable attribute, 164 - 165
 contentElement property (ToolTip control), 121
 ContentIndexer, 381
 ContentIndexerQuery, 381
 contextual commands, 181 - 184
 controls, 113 - 120

 AppBar control, 176 - 184
 commands, 178 - 181
 contextual commands, 181 - 184

 creating declaratively, 115 - 117
 creating imperatively, 117 - 118
 DatePicker control, 127 - 133

 declaring, 128
 format strings, assigning, 128 - 130
 selected date, capturing, 132 - 133

 declaring, 113 - 114
 FlipView

 custom buttons, 221 - 222
 displaying articles with, 215 - 218
 displaying page numbers with, 219 - 220
 explained, 197

ptg999

How can we make this index more useful? Email us at indexes@samspublishing.com

451creating

 Flyout control, 169 - 171
 Hub control, 137 - 139

 sections, navigating, 139
 ItemContainer

 combining with Repeater control,
 214 - 215

 dragging and dropping, 204 - 208
 explained, 197
 invoking, 200 - 202
 selecting, 202 - 204
 simple example, 197 - 198
 styling, 198 - 200
 swipeBehavior property, 202
 tabBehavior property, 202

 ListView control, 223
 binding to a blog feed, 226 - 228
 dragging and dropping, 256 - 262
 filtering items, 242 - 244
 grouping items, 245 - 247
 invoking items, 236 - 238
 selecting items, 238 - 241
 sorting items, 241 - 242
 templates, switching, 253 - 255
 views, switching with Semantic Zoom,

 248 - 253
 WinJS.Binding.List data source, 224 - 226

 Menu control, 172 - 174
 NavBar control, 184 - 186
 options, setting, 118 - 119
 Rating control, 124 - 127

 declaring, 124 - 125
 events, 125 - 127
 ratings, customizing, 125
 ratings, submitting, 125 - 127

 references, adding, 114 - 115
 Repeater

 explained, 197
 external templates, 210 - 211
 with ItemContainer, 214 - 215
 nested templates, 211 - 213
 simple example, 208 - 210

 retrieving from HTML documents, 119 - 120
 TimePicker control, 133 - 136

 current time, setting, 134 - 136

 declaring, 133 - 134
 time, formatting, 136

 ToggleSwitch control, 122 - 124
 declaring, 122
 state of, determining, 123 - 124

 ToolTip control, 120 - 121
 contentElement property, 121
 declaring, 120
 styling, 121

 WebView control, 139 - 146
 events, 142
 navigation, handling, 142 - 144
 screenshots, capturing, 145 - 146
 web pages, hosting, 140 - 142

 winControl property, 99 - 100
 CORS (W3C Cross-Origin Resource Sharing)

standard, 71
 createObjectURL() method, 20
 creating

 About Page settings, 187 - 189
 AppBar control, 176 - 178
 binding converters, 103
 Brain Eaters game tiles, 419 - 420
 classes, 51 - 52
 custom data sources, 263 - 270

 change() method, implementing, 268
 error handling, 268 - 269
 getCount() method, implementing, 265
 itemsFromIndex() method, implementing,

 265 - 267
 remove() method, implementing, 267 - 268
 setNotificationHandler() method,

implementing, 269 - 270
 data adapters, 264 - 265
 data sources

 file data sources, 270 - 276
 IndexedDB data sources, 281 - 293

 indexes, 284 - 286
 JavaScript file, 18 - 21
 MyTasks app, 431 - 432
 observable collection of observables, 90 - 91
 observables, 82 - 83
 personal settings, 189 - 192
 promises, 60 - 61

ptg999

452 creating

 rich text editor, 164 - 165
 style sheet, 18
 templates

 declarative templates, 108 - 109
 external templates, 111 - 112
 imperative templates, 105 - 108

 Visual Studio project, 14 - 15
 app capabilities, declaring, 15 - 17

 web service data sources, 276 - 281
 WinJS controls

 creating declaratively, 115 - 117
 creating imperatively, 117 - 118

 cross-origin requests, 71
 CSS (Cascading Style Sheets)

 ItemContainer
 styling, 198 - 200

 media queries, 321 - 324
 selectors, 64

 CSS3 (Cascading Style Sheets 3), 22
 current time, setting with TimePicker control,

 134 - 136
 custom actions, performing with Mobile

Services, 306 - 308
 custom app events, creating, 315
 custom buttons, creating in FlipView, 221 - 222
 custom data sources, creating, 263 - 270

 change() method, implementing, 268
 error handling, 268 - 269
 getCount() method, implementing, 265
 remove() method, implementing, 267 - 268
 setNotificationHandler() method,

implementing, 269 - 270
 customizing

 Rating control ratings, 125
 validation error style, 152 - 154

 D
 data adapters, creating, 264 - 265
 data context, 94
 data sources

 creating, 263 - 270
 change() method, implementing, 268
 getCount() method, implementing, 265
 itemsFromIndex() method, implementing,

 265 - 267
 setNotificationHandler() method,

implementing, 269 - 270

 file data sources, creating, 270 - 276
 IndexedDB data sources, creating, 281 - 293
 web service data sources, creating, 276 - 281

 data-*, 22
 database data

 deleting in Mobile Services, 301
 inserting in Mobile Services, 299 - 300
 updating with Mobile Services, 300

 database tables, creating in Mobile Services,
 297 - 298

 DataPackage, 358
 DataPackageView class, 366
 datarequested handler, 358
 data-win-bind attribute, 92

 binding converters, 101 - 105
 date and price converters, creating, 104 - 105
 DatePicker control, 127 - 133

 days, hiding from display, 131 - 132
 declaring, 128
 format strings, assigning, 128 - 130
 selected date, capturing, 132 - 133
 years, hiding from display, 131 - 132

 days, omitting from DatePicker control,
 131 - 132

 debugging
 script errors, Mobile Services, 308 - 309
 Windows Store apps in Visual Studio, 33 - 36

 breakpoints, setting, 34 - 35
 DOM Explorer, 35 - 36
 JavaScript Console window, 33 - 34

 declarative data binding, 81 , 91 - 105
 binding converters, 101 - 105

 creating, 103
 date and price converters, creating,

 104 - 105
 data context, 94
 data-win-bind attribute, 92
 HTML forms, capturing contents of, 96 - 98
 observables, 94 - 96
 root element, 94
 and WinJS controls, 99 - 100

 declarative templates, creating, 108 - 109
 declaring

 apps
 capabilities, 15 - 17
 as search providers, 369 - 370
 as share targets, 361 - 362

ptg999

How can we make this index more useful? Email us at indexes@samspublishing.com

453FlipView

 WinJS controls, 113 - 114
 DatePicker control, 128
 Rating control, 124 - 125
 TimePicker control, 133 - 134
 ToggleSwitch control, 122
 ToolTip control, 120

 default.html page, Navigation App, 341 - 342
 default.js file, creating, 18 - 21
 deferring app events, 314 - 315
 del() method, 301
 deleting database data (Mobile Services), 301
 designing apps for different window sizes, 320

 CSS media queries, 321 - 324
 setting minimum app width, 320 - 321
 window resize events, 324 - 325

 detecting
 previous execution state of apps, 316 - 317
 suspended and terminated apps, 316

 determinate progress indicator, displaying, 167
 dialogs, displaying, 192 - 194
 displaying

 articles with FlipView control, 215 - 218
 dialogs, 192 - 194
 Flyout controls, 169 - 171
 page numbers with FlipView control,

 219 - 220
 progress indicator, 165 - 167

 DOM element, retrieving WinJS controls from,
 119 - 120

 DOM Explorer, 35 - 36
 done() method, 59 - 60
 downloading files from SkyDrive, 411 - 413
 dragend event, 204
 dragenter event, 204
 dragging and dropping

 ItemContainer, 204 - 208
 ListView control items, 256 - 262

 dragleave event, 204
 dragover event, 204
 dragstart event, 204

 E
 elements of Windows Store apps, 21 - 26

 CSS3, 22
 HTML5, 22
 JavaScript, 21 - 22
 JQuery, 24 - 26
 Windows Library for JavaScript, 23 - 24
 Windows RT, 23

 email addresses, entering in forms, 160 - 161
 embedding web pages in Windows Store apps,

 139 - 146
 encapsulating methods, 49 - 51
 error handlers

 app events, 313 - 314
 custom data sources, 268 - 269
 insert() function, 305

 events
 app events, deferring, 314 - 315
 dragend, 204
 dragenter, 204
 dragleave, 204
 dragover, 204
 dragstart, 204
 iteminvoked, 200
 for Ratings control, 125 - 127
 selectionchanged, 202
 selectionchanging event, 202

 external templates
 creating, 111 - 112
 with Repeater control, 210 - 211

 F
 File API, 22
 file data sources, creating, 270 - 276
 files, SkyDrive

 downloading from, 411 - 413
 listing, 409 - 411
 uploading, 413 - 415

 filtering ListView control items, 242 - 244
 FlipView

 custom buttons, 221 - 222
 displaying articles with, 215 - 218

ptg999

FlipView454

 displaying page numbers with, 219 - 220
 explained, 197

 Flyout control, 169 - 171
 SettingsFlyout, 190 - 192

 folders (SkyDrive), listing, 409 - 411
 format strings, assigning to DatePicker control,

 128 - 130
 formatting time (TimePicker control), 136
 forms

 fields, labeling, 157 - 158
 HTML, capturing contents of, 96 - 98
 input elements, 155 - 164

 email addresses, entering, 160 - 161
 files, selecting, 162 - 164
 numbers, entering, 158 - 159
 search terms, entering, 160 - 161
 telephone numbers, entering, 160 - 161
 URLs, entering, 160 - 161
 values from a list of values, entering,

 162
 values from a range, entering, 159 - 160

 progress indicator, displaying, 165 - 167
 resetting, 154 - 155
 rich text editor, creating, 164 - 165
 validation attributes

 custom validation, performing, 151 - 152
 pattern attribute, 150 - 151
 required attribute, 150
 validation error style, customizing,

 152 - 154
 forward(), 347
 functions, 49 - 51

 init(), 20
 xhr(), performing Ajax calls with, 69 - 74

 G
 games, Brain Eaters, 417 - 418

 overview, 418 - 419
 tiles, creating, 419 - 420

 getBitmapAsync(), 367
 getCount() method, implementing, 265
 getDataAsync(formatId), 367
 getHtmlFormatAsync(), 367
 getRtfAsync(), 367
 getSTorageItemsAsync(), 367
 getTextAsync(), 367

 getWebLinkasync(), 367
 Grid App project template, 28
 grid layout (ListView control), 229 - 230
 grouping ListView control items, 245 - 247

 H
 handling navigation with WebView control,

 142 - 144
 hiding years and days from DatePicker control,

 131 - 132
 higher priority jobs, yielding to, 77 - 80
 history, 347
 hosting web pages with WebView control,

 140 - 142
 HTML page, creating, 17 - 18
 HTML5, 22

 Canvas, 22
 data-*, 22
 declarative data binding, 91 - 105

 binding converters, 101 - 105
 data context, 94
 data-win-bind attribute, 92
 HTML forms, capturing contents of,

 96 - 98
 observables, 94 - 96
 root element, 94

 File API, 22
 forms

 email addresses, entering, 160 - 161
 fields, labeling, 157 - 158
 files, selecting, 162 - 164
 numbers, entering, 158 - 159
 progress indicator, displaying, 165 - 167
 resetting, 154 - 155
 rich text editor, creating, 164 - 165
 search terms, entering, 160 - 161
 telephone numbers, entering, 160 - 161
 URLs, entering, 160 - 161
 values from a list of values, entering,

 162
 values from a range, entering, 159 - 160

 Indexed Database API, 22
 input elements, 155 - 164
 templates

 applying with query selector, 109 - 111
 declarative templates, 108 - 109

ptg999

How can we make this index more useful? Email us at indexes@samspublishing.com

455ListView control

 external templates, creating, 111 - 112
 imperative templates, 105 - 108

 validation attributes, 22
 custom validation, performing, 151 - 152
 pattern attribute, 150 - 151
 required attribute, 150
 validation error style, customizing,

 152 - 154
 Web Workers, 22
 WebGL, 22

 HtmlControl, 333 - 336
 Hub App project template, 28 - 30
 Hub control, 137 - 139

 sections, navigating, 139

 I
 imperative templates, creating, 105 - 108
 indeterminate progress indicator, displaying,

 165 - 166
 IndexableContent, 381
 Indexed Database API, 22
 IndexedDB data sources, creating, 281 - 293
 Indexer Helper, 382 - 383
 Indexer helper object, creating, 381 - 382
 Indexer query() method, 384
 indexes, creating, 284 - 286
 init() function, 20
 initializing Live Connect API connection, 391
 input elements, 155 - 164

 email addresses, entering, 160 - 161
 files, selecting, 162 - 164
 numbers, entering, 158 - 159
 search terms, entering, 160 - 161
 telephone numbers, entering, 160 - 161
 URLs, entering, 160 - 161
 values from a list of values, entering, 162
 values from a range, entering, 159 - 160

 insert() function, 305
 error handlers, 305

 insert() method, 300
 inserting database data, Mobile Services,

 299 - 300
 installing

 Live SDK, 388 - 393
 Mobile Services for WinJS library, 298 - 299

 invokeApi(), 308
 invoking

 ItemContainer, 200 - 202
 ListView control items, 236 - 238

 ItemContainer
 combining with Repeater control, 214 - 215
 dragging and dropping, 204 - 208
 explained, 197
 invoking, 200 - 202
 selecting, 202 - 204
 simple example, 197 - 198
 styling, 198 - 200
 swipeBehavior property, 202
 tabBehavior property, 202

 iteminvoked event, 200
 itemsFromIndex() method, implementing,

 265 - 267
 itemTemplate property, FlipView control, 218

 J-K
 JavaScript, 21 - 22
 JavaScript file, creating, 18 - 21
 jobs, prioritizing with Scheduler, 75 - 80
 join() method, 63
 JQuery, 24 - 26

 L
 labeling form fields, 157 - 158
 launching Windows App Certification kit, 40 - 41
 layouts for ListView control

 cell spanning layout, 231 - 236
 grid layout, 229 - 230
 list layout, 231

 light dismiss, 169
 list layout (ListView control), 231
 listeners

 binding object properties to, 83 - 85
 notifications, coalescing, 85 - 87
 observables, 81 - 91

 creating, 82 - 85
 registering, 83

 listing SkyDrive files and folders, 409 - 411
 ListView control, 223 , 349

ptg999

456 ListView control

 binding to a blog feed, 226 - 228
 dragging and dropping, 256 - 262
 filtering items, 242 - 244
 grouping items, 245 - 247
 invoking items, 236 - 238
 layouts

 cell spanning layout, 231 - 236
 grid layout, 229 - 230
 list layout, 231

 reordering items, 256
 selecting items, 238 - 241
 sorting items, 241 - 242
 templates, switching, 253 - 255
 views, switching with Semantic Zoom,

 248 - 253
 WinJS.Binding.List data source, 224 - 226

 Live Connect API, 387
 apps, registering, 389 - 391
 authentication, 394 - 401

 account settings, creating, 396 - 401
 logging in users, 394 - 396

 Azure Mobile Services
 configuring, 401
 logging into, 404 - 406
 mobile server scripts, updating, 402 - 404
 permissions, setting, 402

 connection, initializing, 391
 scopes, specifying, 391 - 393
 user information, retrieving, 406 - 408

 Live SDK
 installing, 388 - 393
 references, adding, 388

 Live Services, 387
 location, 347
 logging in users to Live Connect, 394 - 396
 logging into Azure Mobile Services, 404 - 406
 logging WinJS app events, 312
 looking up a single database record, 301 - 302

 M
 make.js, 307
 media queries, CSS media queries, 321 - 324
 Menu control, 172 - 174

 methods
 any(), 63
 chaining, 59
 createObjectURL(), 20
 done(), 59 - 60
 encapsulating, 49 - 51
 join(), 63
 private methods, 49
 processAll(), 219
 public methods, 48
 in QueryCollection class, 68 - 69
 then(), 59 - 60
 WinJS.Class.define(), 51 - 52
 WinJS.Class.derive(), 53 - 54
 WinJS.Class.mix(), 54 - 56
 WinJS.Namespace.define(), 46 - 48
 WinJS.Namespace.defineWithParent(), 48
 WinJS.UI.processAll(), 20
 WinJS.Utilities.children(), 67 - 68
 WinJS.Utilities.id(), 66 - 67
 WinJS.Utilities.query(), 64 - 66
 WinJS.xhr(), 58

 Metro design principles. See Microsoft design
style principles

 Microsoft design style principles, 6 - 7
 migrating from Windows 8 to Windows 8.1,

 40 - 42
 minimum app width, setting, 320 - 321
 mixins, 54 - 56
 Mobile Services, 295

 application keys, retrieving, 297
 configuring, 401
 connecting to remote database tables, 299
 creating, 295 - 297
 database tables, creating, 297 - 298
 debugging script errors, 308 - 309
 deleting database data, 301
 inserting database data, 299 - 300
 installing for WinJS library, 298 - 299
 performing

 custom actions, 306 - 308
 validation, 304 - 306

 permissions, setting, 402
 queries

 looking up a single database record,
 301 - 302

ptg999

How can we make this index more useful? Email us at indexes@samspublishing.com

457orientation

 retrieving a set of database records,
 302 - 304

 scripts, updating, 402 - 404
 updating database data, 300

 MobileServiceClient invokeApi() method, 308
 MobileServiceTable object, 302
 modal dialogs, displaying, 192 - 194
 modules, 48 - 51
 multi-page apps, 340

 navigating to another page, 345 - 346
 Navigation API, 346 - 347
 Navigation App

 adding Page Controls, 343 - 345
 creating, 340 - 341
 default.html page, 341 - 342

 Navigation state, 347 - 351
 PageControlNavigator control, 347

 My Notes app, 353
 MyTasks app, 432 - 433

 creating, 431 - 432
 custom control, creating, 444 - 446
 external services, connecting to, 435 - 437
 optimistic inserts, 437 - 439
 screen changes, adapting to, 440 - 443
 setting up, 433 - 434
 Text-to-Speech API, 446 - 448

 N
 namespaces, 46 - 48

 WinJS.Namespace.define() method, 46 - 48
 WinJS.Namespace.defineWithParent()

method, 48
 nav bar, 9
 NavBar control, 184 - 186
 navigate(), 347
 navigating

 hub sections, 139
 Navigation API, 347
 to other pages in multi-page apps, 345 - 346

 navigation, controlling with WebView control,
 142 - 144

 Navigation API, 346 - 347
 Navigation App

 adding Page Controls, 343 - 345

 creating, 340 - 341
 default.html page, 341 - 342

 Navigation App project template, 27
 Navigation state, multi-page apps, 347 - 351
 nested templates with Repeater control,

 211 - 213
 notifications

 bypassing, 87 - 88
 coalescing, 85 - 87

 numbers, entering in forms, 158 - 159

 O
 objects

 observable collections, creating, 90 - 91
 properties, binding to a listener, 83 - 85

 objects stores
 adding objects to, 283
 determining number of items in, 283 - 284

 observable collections, 90 - 91
 observables, 81 - 91

 and declarative data binding, 94 - 96
 listeners

 creating, 83 - 85
 notifications, bypassing, 87 - 88
 notifications, coalescing, 85 - 87

 observable collections, 90 - 91
 OData, 303 - 304
 omitting years and days from DatePicker

control, 131 - 132
 onShareSubmit() method, 365
 optimistic inserts (MyTasks app), 437 - 439
 options, setting for WinJS controls, 118 - 119
 organizing code

 classes, 51 - 56
 modules, 48 - 51
 namespaces, 46 - 48

 WinJS.Namespace.define() method,
 46 - 48

 WinJS.Namespace.defineWithParent()
method, 48

 orientation
 media queries, 18
 of Windows Store apps, 11 - 12

ptg999

458 Page Controls

 P
 Page Controls, 333

 adding to Navigation App, 343 - 345
 creating, 336 - 340

 page numbers, displaying with FlipView control,
 219 - 220

 PageControlNavigator, 333
 PageControlNavigator control, 347
 pages adding, SearchBox control, 377 - 378
 passing app certification, 39 - 40
 pattern attribute, 150 - 151
 performing

 custom actions (Mobile Services), 306 - 308
 validation (Mobile Services), 304 - 306

 permissions, revoking for Windows Store apps,
 393

 personal settings, creating, 189 - 192
 popups, Flyout control, 169 - 171
 price converter, creating, 104 - 105
 prioritizing jobs with Scheduler, 75 - 80
 private methods, 49
 processAll() method, 219
 progress indicator, displaying, 165 - 167
 promises, 56 - 63

 canceling, 62 - 63
 chaining, 59
 composing, 63
 creating, 60 - 61
 done() method, 59 - 60
 then() method, 59 - 60
 timeout promise, creating, 61 - 62
 WinJS.xhr() method, 58

 properties
 binding to a listener, 83 - 85
 declarative data binding, binding converters,

 101 - 105
 observables, 81 - 91

 creating, 82 - 83
 winControl property, 99 - 100

 public methods, 48
 publishing to the Windows Store, 36 - 40

 passing app certification, 39 - 40
 registering as Windows Developer, 36
 submitting your app, 37 - 38

 Q
 queries (Mobile Services)

 looking up a single database record,
 301 - 302

 retrieving a set of database records,
 302 - 304

 query selectors, 63 - 69
 QueryCollection class, 68 - 69
 templates, applying, 109 - 111
 WinJS.Utilities.children() method, 67 - 68
 WinJS.Utilities.id() method, 66 - 67
 WinJS.Utilities.query() method, 64 - 66

 QueryCollection class, 68 - 69
 querying Windows Index, 383 - 384

 R
 Rating control, 124 - 127

 declaring, 124 - 125
 events, 125 - 127
 ratings

 customizing, 125
 submitting, 125 - 127

 references
 adding to controls, 114 - 115
 adding to Live SDK, 388

 registering
 apps with Live Connect, 389 - 391
 listeners, 83
 as Windows Developer, 36

 remote database tables, connecting (Mobile
Services), 299

 remove() method, implementing, 267 - 268
 render loop (Brain Eaters game), creating,

 427 - 429
 reordering ListView items, 256
 Repeater

 explained, 197
 external templates, 210 - 211
 with ItemContainer, 214 - 215
 nested templates, 211 - 213
 simple example, 208 - 210

 required attribute, 150
 resetting forms, 154 - 155

ptg999

How can we make this index more useful? Email us at indexes@samspublishing.com

459sharing

 resolution, 323
 scaling apps to fit

 defining viewports, 326 - 329
 ViewBox control, 329 - 332

 retargeting to Windows 8.1, 40 - 42
 retrieving

 Mobile Service application keys, 297
 sets of database records, 302 - 304
 user information, 406 - 408
 WinJS controls from HTML documents,

 119 - 120
 revoking Windows Store app permissions, 393
 rich text editor, creating, 164 - 165
 root element, 94
 running apps, 21

 S
 SaveNote(), 368
 scaling apps to fit screen resolutions

 defining viewports, 326 - 329
 ViewBox control, 329 - 332

 Scheduler, 75 - 80
 scopes, specifying for Windows apps, 391 - 393
 screen changes, adapting to (MyTasks app),

 440 - 443
 screen resolution, 323

 of Windows Store apps, 11 - 12
 screenshots (WebView), capturing, 145 - 146
 script errors, debugging with Mobile Services,

 308 - 309
 search activation, Search charm, 372 - 373
 Search charm, 368 - 369

 declaring apps as search providers,
 369 - 370

 search activation, 372 - 373
 search results pages, adding, 373 - 376
 search suggestions, 370 - 372

 search results, displaying (SearchBox control),
 379

 search results pages, adding, 373 - 376
 search suggestions

 Search charm, 370 - 372
 SearchBox control, 378 - 379

 search terms, entering in forms, 160 - 161

 SearchBox control, 376 - 377
 adding to pages, 377 - 378
 search results, displaying, 379
 search suggestions, 378 - 379

 sections (hub), navigating, 139
 security, user authentication, 394 - 401

 account settings, creating, 396 - 401
 logging in users to Live Connect, 394 - 396

 selecting
 ItemContainer, 202 - 204
 ListView control items, 238 - 241

 selectionchanged event, 202
 selectionchanging event, 202
 selectors, 63 - 69

 QueryCollection class, 68 - 69
 templates, applying, 109 - 111
 WinJS.Utilities.children() method, 67 - 68
 WinJS.Utilities.id() method, 66 - 67
 WinJS.Utilities.query() method, 64 - 66

 Semantic Zoom, 248 - 253
 server insert.js script, 305
 session states, storing with states, 318 - 320
 sessionState/sessionState.js, 318 - 319
 setHtmlFormat(), 359
 setNotificationHandler() method, implementing,

 269 - 270
 sets of database records, retrieving with Mobile

Services, 302 - 304
 setText, 359
 setting breakpoints, 34 - 35
 settings

 About Page settings, creating, 187 - 189
 personal settings, creating, 189 - 192

 Settings charm, 186 - 187
 Settings flyout, 190 - 192
 Share charm, 355- 356
 Share Contract Target JavaScript file, 364 - 365
 share pages, creating, 362 - 368
 share sources, creating, 356 - 360
 share targets

 creating, 360 - 368
 declaring apps as, 361 - 362

 sharing, 354 - 356
 share pages, creating, 362 - 368
 share sources, creating, 356 - 360

ptg999

460 sharing

 share targets
 creating, 360 - 368
 declaring apps as, 361 - 362

 Windows Store apps across devices, 12 - 13
 SkyDrive

 files
 downloading, 411 - 413
 listing, 409 - 411
 uploading, 413 - 415

 folders, listing, 409 - 411
 sorting ListView control items, 241 - 242
 sounds (Brain Eaters game), playing, 420 - 421
 Split App project template, 29 - 30
 SQL Azure database tables, creating new,

 297 - 298
 SQL TRUNCATE TABLE, 308
 SSML (Speech Synthesis Markup Language),

 448
 state, 347

 storing with session state, 318 - 320
 state of ToggleSwitch control, determining,

 123 - 124
 storing state with session state, 318 - 320
 style sheets, creating, 18
 styling

 ItemContainer, 198 - 200
 ToolTip control, 121

 submitting
 apps to the Windows Store, 37 - 38
 user ratings, 125 - 127

 suspended apps, detecting, 316
 swipeBehavior property (ItemContainer), 202
 switching

 ListView templates, 253 - 255
 views with Semantic Zoom, 248 - 253

 synchronous programming, 57

 T
 tabBehavior property (ItemContainer), 202
 task list app

 creating, 431 - 432
 custom control, creating, 444 - 446
 external services, connecting to, 435 - 437
 optimistic inserts, 437 - 439
 screen changes, adapting to, 440 - 443
 setting up, 433 - 434
 Text-to-Speech API, 446 - 448

 telephone numbers, entering in forms, 160 - 161
 templates, 105 - 112

 applying with query selector, 109 - 111
 declarative templates, creating, 108 - 109
 external templates, creating, 111 - 112
 imperative templates, creating, 105 - 108
 ListView templates, switching, 253 - 255
 Repeater templates

 external templates, 210 - 211
 nested templates, 211 - 213

 Windows Store app project templates, 27 - 30
 Grid App project template, 28
 Hub App project template, 28 - 30
 Navigation App project template, 27
 Split App project template, 29 - 30

 WinJS, 81
 terminateApp(), 313
 terminated apps, detecting, 316
 testing application state with Visual Studio,

 317 - 318
 Text-to-Speech API, 446 - 448
 then() method, 59 - 60
 threads, prioritizing jobs with Scheduler, 75 - 80
 tiles (Brain Eaters game), creating, 419 - 420
 timeout promises, 61 - 62
 TimePicker control, 133 - 136

 current time, setting, 134 - 136
 declaring, 133 - 134
 time, formatting, 136

 Timing Control for Script-Based Animation stan-
dard, 429

 ToggleSwitch control, 122 - 124
 declaring, 122
 state of, determining, 123 - 124

 ToolTip control, 120 - 121
 contentElement property, 121
 declaring, 120
 styling, 121

 U
 update loop (Brain Eaters game), creating,

 425 - 427
 updating database data (Mobile Services), 300
 uploading files to SkyDrive, 413 - 415
 URLs, entering in forms, 160 - 161
 user experience, Microsoft design style

principles, 6 - 7

ptg999

How can we make this index more useful? Email us at indexes@samspublishing.com

461Windows Store apps

 user information, retrieving, 406 - 408
 user ratings

 clearing, 124 - 125
 submitting, 125 - 127

 V
 validation, performing with Mobile Services,

 304 - 306
 validation attributes, 22

 custom validation, performing, 151 - 152
 error style, customizing, 152 - 154
 pattern attribute, 150 - 151
 required attribute, 150
 validation error style, customizing, 152 - 154

 values from a range, entering in forms,
 159 - 160

 ViewBox control, scaling apps to fit different
resolutions, 329 - 332

 viewports, defining, 326 - 329
 views, FlipView

 custom buttons, 221 - 222
 displaying articles with, 215 - 218
 displaying page numbers with, 219 - 220
 explained, 197

 Visual Studio
 breakpoints, setting, 34 - 35
 DOM Explorer, 35 - 36
 JavaScript Console window, 33 - 34
 projects

 app capabilities, declaring, 15 - 17
 apps, running, 21
 creating, 14 - 15
 HTML page, creating, 17 - 18
 JavaScript file, creating, 18 - 21
 JQuery, adding, 24 - 26
 style sheet, creating, 18

 testing application states, 317 - 318
 Windows Store app project templates, 27 - 30

 Grid App project template, 28
 Hub App project template, 28 - 30
 Navigation App project template, 27
 Split App project template, 29 - 30

 Windows Store apps, running, 31 - 33

 W
 W3C selector standard, 64
 warnings, Flyout controls, 169 - 171
 web pages

 embedding in Windows Store app, 139 - 146
 hosting with WebView control, 140 - 142

 web service data sources, creating, 276 - 281
 Web Workers, 22
 WebGL, 22
 websites, CommonJS, 57
 WebView control, 139 - 146

 events, 142
 navigation, handling, 142 - 144
 screenshots, capturing, 145 - 146
 web pages

 hosting, 140 - 142
 winControl property, 99 - 100
 window resize events, 324 - 325
 windows, designing apps for different window

sizes, 320
 CSS media queries, 321 - 324
 setting minimum app width, 320 - 321
 window resize events, 324 - 325

 Windows 8, migrating to Windows 8.1, 40 - 42
 Windows 8.1, migrating from Windows 8, 40 - 42
 Windows App Certification kit, launching, 40 - 41
 Windows Azure Management Portal, creating

Mobile Services, 295 - 297
 Windows Content Indexer API, 381
 Windows Developer, registering as, 36
 Windows Index, 380

 Indexer Helper, 382 - 383
 Indexer helper object, creating, 381 - 382
 querying, 383 - 384

 Windows RT, 23
 Windows Store apps, 5 - 13

 app bar, 8 - 9
 app capabilities, declaring, 15 - 17
 charms, 9 - 11
 closing, 13
 common features of, 7 - 13
 debugging in Visual Studio, 33 - 36

 DOM Explorer, 35 - 36
 JavaScript Console window, 33 - 34

ptg999

462 Windows Store apps

 elements of, 21 - 26
 CSS3, 22
 HTML5, 22
 JavaScript, 21 - 22
 Windows RT, 23
 WinJS, 23 - 24

 elements of Windows Store apps
 JQuery, 24 - 26

 Microsoft design style principles, 6 - 7
 nav bar, 9
 orientations, 11 - 12
 running in Visual Studio, 31 - 33
 scopes, specifying, 391 - 393
 screen resolutions, 11 - 12
 sharing across multiple devices, 12 - 13
 Visual Studio project

 creating, 14 - 15
 web pages, embedding, 139 - 146

 Windows Store, publishing to, 36 - 40
 passing app certification, 39 - 40
 submitting your app, 37 - 38
 Windows Developer, registering as, 36

 win-item class, 199
 win-itembox class, 199
 win-itemcontainer class, 199
 WinJS (Windows Library for JavaScript),

23 - 24 , 45
 classes, 51 - 52
 controls, 113 - 120

 AppBar control, 176 - 184
 creating declaratively, 115 - 117
 creating imperatively, 117 - 118
 DatePicker control, 127 - 133
 and declarative data binding, 99 - 100
 declaring, 113 - 114
 Hub control, 137 - 139
 ListView control, 223
 Menu control, 172 - 174
 NavBar control, 184 - 186
 options, setting, 118 - 119
 Rating control, 124 - 127
 references, adding, 114 - 115
 retrieving from HTML documents,

 119 - 120

 TimePicker control, 133 - 136
 ToggleSwitch control, 122 - 124
 ToolTip control, 120 - 121
 WebView control, 139 - 146

 modules, 48 - 51
 namespaces, 46 - 48
 promises, 56 - 63

 canceling, 62 - 63
 composing, 63
 creating, 60 - 61
 timeout promises, 61 - 62

 query selectors, 63 - 69
 QueryCollection class, 68 - 69
 WinJS.Utilities.children() method, 67 - 68
 WinJS.Utilities.id() method, 66 - 67
 WinJS.Utilities.query() method, 64 - 66

 Scheduler, 75 - 80
 templates, 81

 WinJS library, installing Mobile Services for,
 298 - 299

 WinJS.Application.errors, 312
 WinJS.Application.settings, 312
 WinJS.Application.unload, 311
 WinJS.Binding.List object, 88 - 90
 WinJS.Class.define() method, 51 - 52
 WinJS.Class.derive() method, 53 - 54
 WinJS.Class.mix() method, 54 - 56
 WinJS.Namespace.define() method, 46 - 48
 WinJS.Namespace.defineWithParent()

method, 48
 WinJS.UI.processAll() method, 20
 WinJS.Utilities.children() method, 67 - 68
 WinJS.Utilities.id() method, 66 - 67
 WinJS.Utilities.query() method, 64 - 66
 WinJS.xhr() method, 58 , 69 - 74

 X-Y-Z
 xhr() function, performing Ajax calls with, 69 - 74

 response types, specifying, 72 - 73
 XmlHttpRequest object, 72 - 74
 years, omitting from DatePicker control,

 131 - 132
 yielding to higher priority jobs, 77 - 80

ptg999

OTHER UNLEASHED TITLES

Windows Phone 8

Unleashed

ISBN-13: 9780672336898

ASP.NET Dynamic Data

Unleashed

ISBN-13: 9780672335655

Microsoft System Center

2012 Unleashed

ISBN-13: 9780672336126

System Center 2012

Configuration Manager

(SCCM) Unleashed

ISBN-13: 9780672334375

Windows Server 2012

Unleashed

ISBN-13: 9780672336225

Microsoft Exchange

Server 2013 Unleashed

ISBN-13: 9780672336119

Microsoft Visual Studio

2012 Unleashed

ISBN-13: 9780672336256

System Center 2012

Operations Manager

Unleashed

ISBN-13: 9780672335914

Microsoft Dynamics

CRM 2011 Unleashed

ISBN-13: 9780672335389

Microsoft Lync Server

2013 Unleashed

ISBN-13: 9780672336157

Visual Basic 2012

Unleashed

ISBN-13: 9780672336317

Microsoft Visual Studio

LightSwitch Unleashed

ISBN-13: 9780672335532

Unleashed takes you beyond the basics, providing
an exhaustive, technically sophisticated reference
for professionals who need to exploit a technology
to its fullest potential. It’s the best resource for
practical advice from the experts, and the most
in-depth coverage of the latest technologies.

informit.com/unleashed

informit.com/sams

Windows 8.1 Apps with

XAML and C# Unleashed

ISBN-13: 9780672337086

HTML5 Unleashed

ISBN-13: 9780672336270

C# 5.0 Unleashed

ISBN-13: 9780672336904

UNLEASHED

ptg999

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

ptg999

12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*
informit.com/safariebooktrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

ptg999

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: MMZJWWA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

Your purchase of Windows® 8.1 Apps with HTML5 and JavaScript Unleashed includes access
to a free online edition for 45 days through the Safari Books Online subscription service.
Nearly every Sams book is available online through Safari Books Online, along with thousands
of books and videos from publishers such as Addison-Wesley Professional, Cisco Press, Exam
Cram, IBM Press, O’Reilly Media, Prentice Hall, Que, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands
of technology, digital media, and professional development books and videos from leading
publishers. With one monthly or yearly subscription price, you get unlimited access to learning
tools and information on topics including mobile app and software development, tips and tricks
on using your favorite gadgets, networking, project management, graphic design, and much more.

FREE
Online Edition

ptg999

You love our titles and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we’ll
take care of the rest.

Apply and get started!
It’s quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/
*Valid for all books, eBooks and video sales at www.informit.com

Join the

Informit
Affiliate Team!

	Table of Contents
	Introduction
	Updated for Windows 8.1
	Prerequisites for This Book
	Source Code
	1 Building Windows Store Apps
	What Is a Windows Store App?
	Microsoft Design Style Principles
	Common Features of Windows Store Apps

	Creating Your First Windows Store App
	Creating the Visual Studio Project
	Declaring App Capabilities
	Creating the HTML Page
	Creating the Style Sheet
	Creating the JavaScript File
	Running the App

	Elements of a Windows Store App
	JavaScript
	HTML5
	Cascading Style Sheets 3
	Windows Runtime
	Windows Library for JavaScript
	What About jQuery?

	Building Windows Store Apps with Visual Studio
	Windows Store App Project Templates
	Running a Windows Store App

	Debugging a Windows Store App
	Using the Visual Studio JavaScript Console Window
	Setting Breakpoints
	Using the DOM Explorer

	Publishing to the Windows Store
	Register as a Windows Developer
	Submitting Your App
	Passing App Certification

	Migrating from Windows 8 to Windows 8.1
	Summary

	2 WinJs Fundamentals
	Namespaces, Modules, and Classes
	Using Namespaces
	Using the Module Pattern
	Using Classes

	Asynchronous Programming with Promises
	Using Promises
	Using then() Versus done()
	Creating Promises
	Creating a Timeout Promise
	Canceling Promises
	Composing Promises

	Retrieving DOM Elements with Query Selectors
	Performing Queries with the WinJS.Utilities.query() Method
	Retrieving a Single Element with the WinJS.Utilities.id() Method
	Using the WinJS.Utilities.children() method
	Working with the QueryCollection Class

	Performing Ajax Calls with the xhr Function
	Specifying Different Response Types
	Customizing the Properties of the XmlHttpRequest Object

	Using the Scheduler to Prioritize Jobs
	Setting Job Priorities
	Yielding to a Higher Priority Job

	Summary

	3 Observables, Bindings, and Templates
	Understanding Observables
	Creating an Observable
	Creating Observable Listeners
	Coalescing Notifications
	Bypassing Notifications
	Working with the WinJS.Binding.List object
	Creating an Observable Collection of Observables

	Understanding Declarative Data Binding
	Declarative Data Binding and Observables
	Capturing the Contents of an HTML Form
	Declarative Data Binding and WinJS Controls
	Declarative Data Binding and Binding Converters

	Understanding Templates
	Creating an Imperative Template
	Creating a Declarative Template
	Applying a Template with a Query Selector
	Creating External Templates

	Summary

	4 Using WinJs Controls
	Introduction to WinJS Controls
	Creating a WinJS Control Declaratively
	Creating Controls Imperatively
	Setting Control Options
	Retrieving Controls from an HTML Document

	Using the Tooltip Control
	Using the contentElement Property
	Styling a Tooltip

	Using the ToggleSwitch Control
	Determining the State of a ToggleSwitch

	Using the Rating Control
	Customizing the Ratings
	Submitting a Rating

	Using the DatePicker Control
	Formatting the Year, Month, and Date
	Displaying Only Years, Months, or Days
	Capturing the Selected Date

	Using the TimePicker Control
	Getting and Setting the Current Time
	Formatting the Hour, Minute, and Period

	Using the Hub Control
	Creating Hubs and Hub Sections
	Handling Hub Section Navigation

	Using the WebView Control
	Hosting a Page from the Internet with the WebView Control
	Handling Navigation and Navigation Events
	Capturing WebView Screenshots

	Summary

	5 Creating Forms
	Using HTML5 Form Validation
	Using the required Attribute
	Using the pattern Attribute
	Performing Custom Validation
	Customizing the Validation Error Style
	Resetting a Form

	Using HTML5 Input Elements
	Labeling Form Fields
	Entering a Number
	Entering a Value from a Range of Values
	Entering Email Addresses, URLs, Telephone Numbers, and Search Terms
	Entering a Value from a List of Values
	Selecting Files

	Creating a Rich Text Editor
	Displaying Progress
	Summary

	6 Menus and Flyouts
	Using the Flyout Control
	Using the Menu Control
	Using the AppBar Control
	Creating a Simple App Bar
	Using App Bar Commands
	Showing Contextual Commands

	Using the NavBar Control
	Creating a Simple Nav Bar

	Configuring App Settings
	Creating About Page Settings
	Creating Personal Settings

	Displaying Windows Dialogs
	Summary

	7 Using the ItemContainer, Repeater, and FlipView Controls
	Using the ItemContainer Control
	Styling an ItemContainer
	Interacting with an ItemContainer
	Selecting an ItemContainer
	Creating Drag-and-Drop Items

	Using the Repeater Control
	Using an External Template
	Using a Nested Template
	Using the Repeater with the ItemContainer

	Using the FlipView Control
	Displaying Page Numbers
	Creating Custom FlipView Buttons

	Summary

	8 Using the ListView Control
	Introduction to the ListView Control
	Using Different ListView Layouts
	Using Grid Layout
	Using List Layout
	Using Cell Spanning Layout

	Invoking Items in a ListView Control
	Selecting Items in a ListView Control
	Sorting Items in a ListView Control
	Filtering Items in a ListView Control
	Grouping Items in a ListView Control
	Switching Views with Semantic Zoom
	Switching a ListView Template Dynamically
	Using Drag and Drop
	Reordering Items in a ListView
	Dragging Items from ListViews

	Summary

	9 Creating Data Sources
	Creating Custom Data Sources
	Creating the Data Source Class
	Creating a Data Adapter
	Implementing the getCount() Method
	Implementing the itemsFromIndex() Method
	Implementing the insertAtEnd() Method
	Implementing the remove() Method
	Implementing the change() Method
	Handling Errors
	Implementing the setNotificationHandler() Method

	Creating a File Data Source
	Using the File Data Source

	Creating a Web Service Data Source
	Creating the Data Source
	Creating the Web Service
	Using the Web Service Data Source

	Creating an IndexedDB Data Source
	Overview of IndexedDB
	Using the IndexedDB Data Source

	Summary

	10 Using Windows Azure Mobile Services
	Creating a Mobile Service
	Creating a Database Table
	Installing the Mobile Services for WinJS Library
	Performing Inserts, Updates, and Deletes
	Connecting to the Remote Database Table
	Inserting Database Data
	Updating Database Data
	Deleting Database Data

	Performing Database Queries
	Looking Up a Single Database Record
	Retrieving a Set of Database Records

	Performing Validation
	Performing Custom Actions
	Debugging Script Errors
	Summary

	11 App Events and States
	App Events
	Handling the Activated Event
	Handling the Error Event
	Deferring Events with Promises
	Creating Custom Events

	Suspending, Terminating, and Resuming an App
	Detecting When an App Is Suspended and Terminated
	Detecting the Previous Execution State
	Testing Application State with Visual Studio
	Storing State with Session State

	Designing for Different Window Sizes
	Setting the Minimum App Width
	Using CSS Media Queries
	Using the window resize Event

	Scaling Content to Fit Different Screen Resolutions
	Defining a Viewport
	Using the ViewBox Control

	Summary

	12 Page Fragments and Navigation
	Using the HtmlControl Control
	Creating a Page Control
	Creating Multi-Page Apps
	Creating a Navigation App
	Understanding the Navigation App default.html Page
	Adding New Page Controls to a Navigation App
	Navigating to Another Page
	Understanding the Navigation API
	Understanding the PageControlNavigator Control
	Understanding Navigation State

	Summary

	13 Creating Share and Search Contracts
	Supporting Sharing
	Creating a Share Source
	Creating a Share Target

	Using the Search Charm
	Declaring Your App as a Search Provider
	Providing Search Suggestions
	Handling Search Activation
	Adding a Search Results Page

	Using the SearchBox Control
	Adding the SearchBox Control to a Page
	Providing Search Suggestions
	Displaying Search Results

	Using the Windows Content Indexer
	Understanding the Windows Content Indexer API
	Creating an Indexer Helper
	Using the Indexer Helper

	Summary

	14 Using the Live Connect API
	Installing the Live SDK
	Adding a Reference to the Live SDK
	Registering Your App
	Initializing the Live Connect SDK
	Specifying Different Scopes

	Authenticating a User
	Logging a User into Live Connect
	Creating Account Settings

	Authentication and Windows Azure Mobile Services
	Configuring Your Mobile Service
	Setting Permissions for Your Mobile Service
	Updating the Mobile Server Scripts
	Logging Into Azure Mobile Services

	Retrieving Basic User Information
	Uploading and Downloading Files from SkyDrive
	Listing SkyDrive Folders and Files
	Downloading Files from SkyDrive
	Uploading Files to SkyDrive

	Summary

	15 Graphics and Games
	Overview of the Game
	Creating the Game Tiles
	Playing the Game Sounds
	Creating the Game Canvas
	Capturing User Interaction
	Creating the Update Loop
	Creating the Render Loop
	Summary

	16 Creating a Task List App
	Overview of the App
	Setting Up the App
	Connecting to External Services
	Optimistic Inserts, Updates, and Deletes
	Adapting to Screen Changes
	Creating a Custom Control
	Using Text to Speech
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

