
M A N N I N G

Pete Brown

C# and XAML

www.allitebooks.com

http://www.allitebooks.org

Windows Store App Development
www.allitebooks.com

http://www.allitebooks.org

ii
www.allitebooks.com

http://www.allitebooks.org

Windows Store App
Development

C# AND XAML

PETE BROWN

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Development editor: Jeff Bleiel
Manning Publications Co. Copyeditor: Linda Recktenwald
20 Baldwin Road Technical proofreader: Thomas McKearney
PO Box 261 Proofreader: Elizabeth Martin
Shelter Island, NY 11964 Typesetter: Marija Tudor

Cover designer: Marija Tudor

ISBN: 9781617290947
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13
www.allitebooks.com

http://www.allitebooks.org

brief contents
1 ■ Hello, Modern Windows 1

2 ■ The Modern UI 19

3 ■ The Windows Runtime and .NET 35

4 ■ XAML 51

5 ■ Layout 69

6 ■ Panels 86

7 ■ Brushes, graphics, styles, and resources 112

8 ■ Displaying beautiful text 141

9 ■ Controls, binding, and MVVM 170

10 ■ View controls, Semantic Zoom, and navigation 211

11 ■ The app bar 241

12 ■ The splash screen, app tile, and notifications 265

13 ■ View states 300

14 ■ Contracts: playing nicely with others 319

15 ■ Working with files 342

16 ■ Asynchronous everywhere 369

17 ■ Networking with SOAP and RESTful services 388
v

BRIEF CONTENTSvi
18 ■ A chat app using sockets 423

19 ■ A little UI work: user controls and Blend 465

20 ■ Networking player location 482

21 ■ Keyboards, mice, touch, accelerometers, and
 gamepads 500

22 ■ App settings and suspend/resume 537

23 ■ Deploying and selling your app 559

contents
preface xvii
acknowledgments xx
about this book xxii
about the author xxviii
about the cover illustration xxix

1 Hello, Modern Windows 1
1.1 Setting up the development environment 3
1.2 Configuring the project 3

The device pane 5 ■ Template solution items 7

1.3 Create the first Hello World UI 8
1.4 Integrating with Twitter 9

The Tweet class 10 ■ Updated UI 10 ■ Code-behind 11

1.5 Testing on different devices and resolutions 13
Debugging on the Simulator 13 ■ Debugging on a remote
device 14

1.6 Summary 18

2 The Modern UI 19
2.1 Design inspiration 20

Direct influences 21 ■ Finding your way 22
vii

CONTENTSviii
2.2 Governing principles 23
2.3 Typography 25
2.4 The importance of the layout grid 27
2.5 Design for touch but not only for touch 28
2.6 Modern apps on Windows 8 28

Consumer and enterprise apps 29 ■ Key Windows 8 UI
elements and states 31

2.7 Device considerations 33
Desktop or laptop 33 ■ Tablet and smaller devices 33
Hybrid devices 34

2.8 Summary 34

3 The Windows Runtime and .NET 35
3.1 Windows Store app system architecture 36

The sandbox 38 ■ Deployment and the Windows Store 39
The driver model 40

3.2 COM + .NET metadata = WinRT 41
COM: back to the future 42 ■ Metadata 44
Projections 46

3.3 Client technologies and languages 47
3.4 A brief tour of WinRT and .NET 4.5 48
3.5 Summary 50

4 XAML 51
4.1 Elements and namespaces 52

Objects as elements 52 ■ Namespaces 54

4.2 Properties 56
Property syntax 56 ■ Dependency properties 58
Attached properties 61 ■ Property paths 62

4.3 Object trees and namescope 62
Object trees 63 ■ Namescope 66

4.4 Summary 68

5 Layout 69
5.1 Multipass layout—measuring and arranging 70

The measure pass 71 ■ The arrange pass 71
The LayoutInformation class 73

CONTENTS ix
5.2 UIElement layout properties 74
Width and Height, plus ActualWidth and ActualHeight 75
Horizontal and vertical alignment 77 ■ Padding 78
Margins 79

5.3 Layout rounding 80
5.4 Performance considerations 82

Keeping the tree shallow 82 ■ Caching 83
Virtualization 83 ■ Sizing and positioning 84

5.5 Summary 84

6 Panels 86
6.1 Canvas 87

Positioning in X,Y space 88 ■ Controlling the Z position using
ZIndex 89 ■ Sizing child elements 91

6.2 StackPanel and VirtualizingStackPanel 91
Setting the orientation 92 ■ Sizing children 93
Virtualizing for performance 93

6.3 Grid 94
Defining rows and columns 95 ■ Adding and positioning
elements in rows and columns 97 ■ Using alignment and
margins for sizing and positioning 99

6.4 Creating a custom panel 102
Project setup 102 ■ The OrbitPanel class 103 ■ Orbits
dependency property 103 ■ Orbit attached property 105
Custom layout 107

6.5 Summary 111

7 Brushes, graphics, styles, and resources 112
7.1 Brushes 113

Solid-color brushes 113 ■ Gradient brushes 116
Image brushes 118

7.2 Resources 120
Local and page resources 121 ■ Application resources 123
Resource dictionaries 123

7.3 Styles 127
Explicit or keyed styles 127 ■ Style inheritance 128
Implicit styles 130

CONTENTSx
7.4 Vector graphics 132
Line 132 ■ Polyline 134 ■ Paths 135 ■ Rectangles and
ellipses 137

7.5 Bitmap images 137
7.6 Summary 139

8 Displaying beautiful text 141
8.1 Text basics 143

TextBlock 144 ■ Inlines 146 ■ Wrapping, ellipsis,
and alignment 147 ■ Character spacing 150
Line spacing 151

8.2 Rich and multicolumn text 153
Rich text 154 ■ Multicolumn and linked text 157

8.3 OpenType text 160
Ligatures 160 ■ Stylistic sets 161 ■ Font capitals 163
Fractions and numbers 164 ■ Variants, superscript, and
subscript 166

8.4 Embedding fonts 167
8.5 Summary 168

9 Controls, binding, and MVVM 170
9.1 The Model-View-ViewModel pattern 172

Using an MVVM toolkit like MVVM Light 174 ■ The
model 175 ■ The chat data service 176 ■ The MainViewModel
and CameraViewModel classes 178 ■ The view 180

9.2 Binding primer 183
The source and target 184 ■ Binding mode 185
Change notification 186 ■ DataContext 189

9.3 Entering and displaying text 190
Working with the TextBox 191 ■ Experimenting with the
PasswordBox 192 ■ Spell checking and autocorrect 193

9.4 UI element binding using sliders 194
9.5 Working with lists 197

Observable collections 197 ■ Items controls 198
Data templates 199

9.6 Making things happen with buttons and commands 200
Button and commands 201 ■ HyperlinkButton 203
RadioButton and CheckBox 204

CONTENTS xi
9.7 Converting data with value converters 207
9.8 Summary 209

10 View controls, Semantic Zoom, and navigation 211
10.1 PhotoBrowser demonstration app setup 213

Creating the project 214 ■ Creating the Photo model
class 215 ■ Loading pictures using a service class 215
Creating the MainViewModel 217 ■ Skeleton UI XAML
and code-behind 218

10.2 ListView and GridView 220
Vertical lists 220 ■ Horizontal lists and grids 223

10.3 Grouping with the GridView 226
Grouping in the model and viewmodel 227 ■ Grouping at the
UI layer 228

10.4 FlipView and navigation 231
Viewmodel 232 ■ Category browser page 232 ■ Updated
MainPage 235

10.5 Semantic Zoom 236
10.6 Summary 239

11 The app bar 241
11.1 Project updates 243
11.2 Controls on the bottom app bar 246

Adding and styling buttons 246 ■ Wiring with
commands 250 ■ Visibility and pinning 258

11.3 Top app bar for navigation 259
11.4 App bar popups and menus 261
11.5 Summary 263

12 The splash screen, app tile, and notifications 265
12.1 Splash screens 267

The static splash screen 267 ■ Extended splash
screens 269

12.2 Default tiles on the start page 275
12.3 Secondary or pinned tiles 276

Creating the tile 277 ■ Activating the app with the
secondary tile 281

CONTENTSxii
12.4 Tile notifications or live tiles 284
Simple text notifications 285 ■ Images in notifications 288
Queuing multiple tile notifications 291

12.5 Toast notifications 294
Creating the notification service 295 ■ Enabling toast 298

12.6 Summary 299

13 View states 300
13.1 Full, filled, and snapped views 301
13.2 The LayoutAwarePage 303
13.3 The snapped view for the main page 305
13.4 Visual states for view management 307
13.5 Detail pages and app bars 309

Creating an appropriate presentation 310 ■ Fixing up the
app bar 314

13.6 Summary 317

14 Contracts: playing nicely with others 319
14.1 Sharing 320

Sharing your data 321 ■ Letting others share with you 325

14.2 Letting others search your data 332
Declaring your intentions 332 ■ The results page and
viewmodel 333 ■ Responding to in-app search requests 338
Responding to external search requests 339

14.3 Summary 340

15 Working with files 342
15.1 Loading files programmatically 343

New demonstration project 343 ■ File access permissions 347
Storage files and folders 348 ■ Using a data template
selector 351 ■ Using file queries 354 ■ Creating files and
folders 355

15.2 URI formats 359
15.3 Working with file pickers 361

Using the file open picker 361 ■ Implementing the file picker
source contract 363

15.4 Summary 368

CONTENTS xiii
16 Asynchronous everywhere 369
16.1 Why asynchronous is important 371
16.2 Working with IAsync* WinRT methods 373

async and await: the simplest approach 374 ■ Long-form
asynchronous operations 376 ■ Getting progress
updates 378 ■ Canceling the operation 380

16.3 Working with tasks 381
Basic task operations 382 ■ Canceling the task 384
Converting between WinRT IAsync* and Tasks 385

16.4 Summary 387

17 Networking with SOAP and RESTful services 388
17.1 Networking basics 389

Solution setup 390 ■ Downloading a file with
HttpClient 392

17.2 Sharing your model 393
Create the source class library 395 ■ Create the Modern
app–compatible class library 397

17.3 Consuming SOAP services 398
Creating the service 399 ■ Referencing and using the
service 400

17.4 Structuring your client code using MVVM 401
Creating the viewmodel 402 ■ Creating and wiring up the
user interface 404

17.5 Consuming data from RESTful services 406
Creating the RESTful service 407 ■ Getting data from the
service using the viewmodel 410 ■ Specifying the acceptable
data type 411

17.6 Deserializing JSON and XML data 412
XML deserialization using XmlSerializer 412 ■ JSON
deserialization 413

17.7 Updating data using PUT, POST, DELETE, and more 414
17.8 Summary 421

18 A chat app using sockets 423
18.1 Chat app viewmodel 425

The MainViewModel class 426 ■ ChatMessage model class 429

CONTENTSxiv
18.2 The user interface 429
XAML skeleton 430 ■ Styles and resources 431
App bar buttons 432 ■ Chat app content 433

18.3 Listening for connections 434
18.4 Connecting to the server and sending data 439

Connecting to an endpoint 440 ■ Sending data 440

18.5 Refactoring for better structure and flexibility 441
The updated ChatMessage class 442 ■ The IMessageService
interface 444 ■ The TcpStreamMessageService class 447
Updated MainViewModel 454

18.6 Trying out UDP sockets 458
Creating the UdpMessageService class 459 ■ Listening for
connections 460 ■ Connecting to another machine 461
Receiving and parsing messages 462

18.7 Summary 464

19 A little UI work: user controls and Blend 465
19.1 Updated game UI 466

Basic changes 466 ■ Play field area 468 ■ Orientation
and view states 469

19.2 Designing the ship UI 470
Creating the UserControl 471 ■ Creating the ship shape in
Blend 472 ■ Adding a label 475

19.3 Building out the ship user control properties 476
Enabling rotation 477 ■ Setting the color 479
Temporarily testing the Ship control 480

19.4 Summary 481

20 Networking player location 482
20.1 Updating the Player model 483

The PlayerLocation class 483 ■ The updated Player
class 484

20.2 The collection of players 485
Initializing the collection 486 ■ Displaying players with an
ItemsControl 488 ■ Testing the collection 489
Wiring up the collection to service events 490

CONTENTS xv
20.3 Updating the TCP stream message service 491
Updated message service interface 491 ■ Sending location
information 493 ■ Reading location information 495

20.4 Testing everything 497
20.5 Summary 498

21 Keyboards, mice, touch, accelerometers,
and gamepads 500

21.1 Making input generic 502
The IInputService interface 502 ■ A little math help 504
Wiring up the viewmodel 505

21.2 Keyboard input 507
The KeyboardInputService 508 ■ Virtual keys 510
Adding from the code-behind 512

21.3 Pointer input: mouse, touch, and pen 513
Some more math 513 ■ A minor modification to the ship
user control 517 ■ The PointerInputService class 517
Adding from the code-behind 519

21.4 Accelerometer input 522
Making sense of the input 523 ■ Implementing the
AccelerometerInputService 524 ■ Adding from the code-
behind 525 ■ Accelerometer events 526 ■ Dealing with
screen autorotation 526

21.5 Xbox 360 gamepad input and a little C++ 527
Creating the C++ project 527 ■ Implementing the Controller
class 529 ■ Creating the IInputService wrapper 532
Adding from the code-behind 534 ■ Compiling and
deploying 534

21.6 Summary 535

22 App settings and suspend/resume 537
22.1 App settings UI and architecture 538

Creating the settings infrastructure 538 ■ Creating a
settings UI 542

22.2 Persisting and using settings 550
Loading and saving settings values 550 ■ Acting on the
options 553

CONTENTSxvi
22.3 Suspend and resume 554
Suspending your app 554 ■ Resuming activity 555

22.4 Summary 557

23 Deploying and selling your app 559
23.1 Testing for certification 560
23.2 Sideloading for testing purposes 563

Packaging an app for sideloading 563 ■ Getting a developer
license without Visual Studio 565 ■ Installing the sideload
app package 566

23.3 Enabling trial mode 567
Creating the mock license data for testing 567 ■ Checking
the license state 569

23.4 Listing your app in the Windows Store 570
Getting a Windows Store account 570 ■ Reserving an app
name 570 ■ Submitting the app for review and approval 571

23.5 Summary 573

 index 575

preface
I’ve been programming for fun since seventh grade in 1984 and professionally since
around 1991/1992. During that time, I’ve see a lot of change. In the ’80s, as the per-
sonal computer industry was trying to settle, there were dozens of completely incom-
patible (both software- and hardware-wise) computers available to the public. In my
small group of friends, some owned Commodore 64s, some Commodore VIC-20s, a
couple of Apple II variants, a TRS-80 or two, and a couple of others I can’t recall. My
middle school (properly called a junior high school in Massachusetts) was equipped
with some DEC VT-102 Robins, a handful of Commodore VIC-20s (with their disk drive
on a serial A/B switch to share between different computers), and a number of Com-
modore 64 computers. My high school had an Apple IIgs, a couple of Apple IIe com-
puters, and several Apple II computers. Later, they got an Apple IIc and several knock-
off Apple clones as well as a lone black-and-white Macintosh. The few computer-liter-
ate teachers had access to a handful of IBM PCs to do the serious work of tracking stu-
dent grades and whatnot. The computer camp I attended in tenth grade used DEC
Rainbows and Commodore PETs. The computer competition I attended in tenth
grade required knowing Unix and C.

 Over the span of four years (seventh grade to tenth grade), I had to learn how to
program in multiple incompatible dialects of BASIC and become proficient in multi-
ple different operating systems just to be able to sit down at any given machine and do
something useful. (One very interesting trait of these computers, as has been pointed
out by others, is that you used to have to choose not to program. Programming was the
default. More on that some other time.) Later, as a professional just a couple of years
out of high school, at a single job I had for a bit under four years, I had to know how
xvii

PREFACExviii
to use dBase, FoxPro, Borland Delphi, Borland C++, PowerBuilder, Visual Basic 3,
QBasic, QuickBasic, and much more. Oh, and I had to be able to set up the Novel Net-
ware 4 network at the office and convert everyone from dumb terminals to DOS and
Windows 3.x PCs. The languages were different, the UI layers were different. There
was little to no compatibility between any of these packages.

 Change was the norm. It was expected.
 Fast-forward to today. As developers, we’ve never had more pressure on us to be

productive, but at the same time, we’ve never had the longevity of tools, platforms,
and languages that we have today. If you started with .NET 1.0 or the alphas/betas (as I
did), you’ve been able to use the same programming language and core runtime for
almost 13 years. If you’ve been a Java programmer, you can claim an even longer run.
The only people who had those kinds of runs in the past were FORTRAN and COBOL
programmers.

 Lately, things have begun to change a bit more. To keep up with the demands of
users and the heavy competition in the mobile space, we’re seeing programming lan-
guages and underlying platforms rev more frequently. A natural consequence of this is
deprecation or sunsetting of platforms that don’t fit the new interaction models and
the emergence of newer API sets, compilers, and more. The JavaScript space has argu-
ably had the most rapid innovation, with new tools and libraries emerging seemingly
daily. Many of those have, over the years, completely altered the language in ways that
would make modern JavaScript completely foreign to programmers who learned it 10
or even 5 years ago.

 On the Windows side, we’ve seen some amazing work in the .NET and XAML space.
Interestingly, despite the changes of underlying platforms and the names of the prod-
ucts, .NET and XAML have remained far more compatible than many other platforms
over the years. If you started learning XAML with WPF (or a year later with Silverlight),
modern Windows Store XAML will easily become familiar, much like learning BASIC
on the Commodore 64 and then learning to program the Apple II. Sure, the PEEK
and POKE locations may be different, and there are a few other syntax differences, but
there’s far more that’s compatible than incompatible.

 As someone who has made a career of .NET since the first time I gave the two-day
.NET 1.0 seminars in the .NET 1.0 alpha days, it’s heartening to see that my C# skills are
still just as valid today as they were 13 years ago. I’m also happy to see that my invest-
ment in XAML starting back in 2006 has served me well across every client platform
Microsoft has created. By combining XAML and C#, I can code for the Windows
Phone, Windows Store, and the desktop. If I stick to just C#, I can code for everything
from tiny ARM microcontrollers on Netduino and Gadgeteer all the way up to massive
servers. Through all of this, I’m staying within a tightly focused sphere of develop-
ment that centers on Visual Studio and C# (or VB, if you prefer).

 That’s a solid return on investment.
 As developers, we tend to focus on the differences in the Microsoft platforms. It’s

just natural, because it’s those differences that give us headaches and make us take up

PREFACE xix
hobbies that involve close encounters with our mortality. But the very fact that we can
focus on those differences shows how compatible these platforms are.

 For fun, I like to code on microcontrollers. To varying degrees, I’ve learned ARM
with C, AVR with C and C++, PIC with C, NETMF with C#, and a little Arduino. Each of
these used completely different IDEs; each uses completely different toolchains. Each
time I try to learn another microcontroller, there’s very little practical knowledge I
can port from one to the other. The registers are all different, the libraries are com-
pletely different, and, of course, the IDEs are completely different. This means I’ve
not been able to ramp up on any one platform (with the exception of NETMF because
of C#) in a short amount of time; each has been a huge investment in after-the-kids-go-
to-sleep time. Few of the IDEs have usable IntelliSense, and help files are almost never
in sync with the APIs. It’s a lot of trial and error—just getting LEDs to blink on a board
feels like a huge accomplishment.

 When it came time for me to learn how to write Windows Store apps, I found I had
far less to learn than I would have had I been a developer using another platform.
Despite WinRT replacing some of the features of .NET, it all felt very familiar. C#
worked just as it has all along. Visual Studio was instantly familiar. I can use most of
.NET, and the parts that have been replaced by WinRT feel just like .NET.

 I’m glad I made the decision, all those years ago, to invest in learning VB3-6 and
then C#. I’m also glad I moved from Windows Forms to XAML (WPF and then Silver-
light) back in the mid-2000s. Both of these decisions have served me well and will con-
tinue to serve me well as Microsoft advances the platforms to better meet the needs of
users and to better compete in the marketplace. As a developer, you too should feel
confident that although individual products fall out of favor from time to time, your
investment in core programming skills, and the higher-level .NET skills beyond that,
continues to be just as useful, relevant, and marketable today as it has been over the
past decade.

 Viva la C#!
 Viva la XAML!
 Viva el desarrollador!

acknowledgments
My name is on the cover, but technical books like this require a whole team to com-
plete and publish. I’d like to thank the following:

■ The various Windows and Developer Division product teams who helped with
clarifying just how things work under the covers and who were open to my
rather detailed questions.

■ Tom McKearney, who has managed to tech review another entire book, and
who has provided me with someone to blame if there are any problems with the
code listings.

■ My friends at Manning Publications: people like Mary Piergies, Linda Reckten-
wald, Elizabeth Martin, and Jeff Bleiel, who all helped ensure this book is as
good as possible and written in one grammatically correct voice.

■ The reviewers of the manuscript at various stages of its developent. Your feedback
was much appreciated: Brian T. Young, Daniel Martin, Dave Arkell, Dave Camp-
bell, Gordon Mackie (aka Joan Miró), Ian Randall, Krishna Chaitanya Anipindi,
Paschal Leloup, Patrick Hastings, Patrick Toohey, Richard Scott-Robinson,
Roland Civet, Rupert Wood, and Todd Miranda.

Unique in these thanks is my editor, Jeff Bleiel. This is the third book I’ve worked on
with Jeff. He is my editorial interface with Manning and my continued mentor as an
author. Jeff made a positive contribution to this book and to my writing in general.

 As with my other books, I’d like to thank my mum for making sure that I knew the
difference between “you’re” and “your” and that spelling always counts.
xx

ACKNOWLEDGMENTS xxi
 Most importantly, I’d like to acknowledge the contribution of my wife, Melissa, and
my children, Ben and Abby. Writing a book takes an enormous amount of time, dur-
ing which I’m not helping around the house, entertaining my children, or otherwise
being good company. Thank you to my family for continuing to support me through
another book when all my friends are telling me, “Dude, you should be writing apps.
You’ll make a lot more money.”

 Finally, thanks to you, my readers. I wrote this and continue to support you in the
hopes that I can help you succeed and create awesome apps.

about this book
The goal of this book is to take you, the developer who is at least a little familiar with
C# and .NET, and help you become an awesome Windows Store app developer, regard-
less of which version of Windows you use for building Windows Store apps. If you’re
already an awesome Windows developer familiar with Windows Store apps, WPF, or Sil-
verlight, I’ve included deep topics to help you learn more about the platform and how
things work under the covers.

 After you’ve read this book, you should be able to confidently design, develop, and
deliver Windows Store apps. To facilitate the learning process, I’ve structured the
book to get you developing as soon as possible, while providing quality, in-depth con-
tent and several functional apps you can learn from or build on.

 Within each chapter, I’ve included a collection of devices to help you build a firm
understanding of the XAML UI platform for Windows. The following list explains how
each device helps along the journey:

■ Figures—Visual depictions that summarize data and help with the connection of
complex concepts. Most of these are annotated to call out important details.

■ Code snippets—Small, concise pieces of code primarily used for showing syntacti-
cal formats. You’re usually not expected to type these in and compile, because
they’re incomplete.

■ Code listings—Code that you can type into your project in Visual Studio. In many
cases, it will take multiple code listings to build a working example.

■ Tables—Easy-to-read summaries.
xxii

ABOUT THIS BOOK xxiii
In addition to these learning devices, my personal site, http://10rem.net, comple-
ments the information in this book and often goes into deep detail in specific areas.

Audience

This book is intended for developers who want to create great apps for the Windows
Store or for sideloading within an enterprise.

 Though XAML provides numerous avenues for interactions with designers, this
book primarily targets people who live and breathe inside Visual Studio. With the
deeper integration of Blend with Visual Studio, I’ve included some developer-focused
material on working with Blend later in this book.

 In addition, and more important, this book assumes you have a background using
the .NET Framework and Microsoft Visual Studio. Although we’ll be using C# as the
primary development language, we won’t be reviewing the C# language or explaining
basic programming constructs such as classes, methods, and variables.

 Experience with Silverlight or WPF will help speed you through the XAML concepts
but isn’t a prerequisite for this book.

The bits: what you need

This book provides ample opportunity for hands-on learning. But it also provides a
great deal of flexibility by allowing you to learn the material without using the hands-
on content or optional tools. You’ll find it equally valuable to read this book at the
computer, on the train, or wherever else you happen to read.

 If you want to get the greatest value out of this book and sit down and code or
design, here’s what you’ll need:

■ A PC with Windows 8 or higher installed. The examples in this book were origi-
nally developed on Windows 8 but will also work with later versions of Windows.
You must develop for Windows on Windows. Although it can work, I don’t rec-
ommend doing this inside a virtual machine because you will run into issues
with the Simulator (which is a remote desktop connection to the same
machine), and on lower-end machines, performance will suffer.

■ You can use the latest recommended version of Visual Studio that will compile
for the version of Windows you are using. For Windows 8, here are the recom-
mended versions:
■ Microsoft Visual Studio 2012 Pro or better for both Windows Store and web

development, or the free Microsoft Visual Studio 2012 Express for Windows
Store apps and, for the networking examples, the free Microsoft Visual Stu-
dio 2012 Express for Web.

■ Blend for Visual Studio 2012 or higher. Use the version that’s shipped with
the version of Visual Studio you’re using.

http://10rem.net/

ABOUT THIS BOOKxxiv
You’ll find links to all of these tools, as well as any information on updates, at http://
dev.windows.com.

 Above and beyond your development PC, you may also find the following optional
items useful:

■ A Microsoft Surface with Windows Runtime (WinRT) or other ARM-based touch
tablet to test compiling and deploying to other architectures.

■ Any tablet or other PC with a Windows-recognized accelerometer for testing
accelerometer input. If you have a Microsoft Surface, it will serve you well here.

■ A wired Xbox controller for Windows for the C++ integration example.
■ A device with a Windows-recognized touch screen. This will help, of course,

with the touch screen examples. If you have a Microsoft Surface, it will also fill
this requirement.

■ A second PC for testing the peer-to-peer networking examples. If you have a
Microsoft Surface or other tablet running Windows 8+, you can use that.

Roadmap

WinRT XAML is a brand-new platform but with strong roots in the XAML + .NET plat-
forms that preceded it. I’ve endeavored to arrange the topics in this book in such a
way as to start with a simple example, cover all the basics and theory, and then build
out some apps while exploring the more complex topics.

 There are no formal sections in this book, but if you squint your eyes a little, you
can logically group the chapters as follows:

A note on versions

You’ll note a lot of “or the latest version” comments in the software requirements for
this book.

The days of waiting three years for an update to Windows and the related development
tools have passed. Microsoft recognizes that agility in delivery is as important as in-
dividual features. These days, Windows and Visual Studio often update too fast for
any publication (or developer, for that matter) to keep up.

For those reasons, the source code for this book will be kept as up to date as much
as possible with the latest versions of Windows and tools until the next major revision
of this book has been made available. As part of that, if there are any breaking
changes in the next version of Windows after Windows 8.1, these will be called out
with information made freely available to the purchasers of this book.

With the ongoing Windows commitment to backward compatibility, you can feel safe
that the code and techniques you learn for Windows 8 will be applicable to future ver-
sions of Windows as well.

http://dev.windows.com/

ABOUT THIS BOOK xxv
WINDOWS
It’s important to cover the basics up front. Not only are these the technical basics, but
they’re also the overall themes of the platform and the reasons we made certain deci-
sions. Starting with Windows 8, we have a brand-new set of APIs and design
approaches to become familiar with. Chapter 1 introduces Windows and the concepts
behind it. Chapter 2 discusses the modern UI, along with its standards and history.
Finally, chapter 3 covers the Windows Runtime, what it is, how it has been designed,
and why it’s so important for Windows Store apps.

XAML AND BASIC CONTROLS
Next, we dive right into XAML. Chapter 4 covers all the basics of XAML, plus a number
of topics of interest to advanced developers. Chapter 5 goes into detail on the layout
process. This is an important topic for both beginners and advanced developers
because so much performance and functionality are affected by the layout engine.
Building on that information, chapter 6 covers the commonly used panels, such as the
Grid and Canvas. Chapter 7 deals with graphics, images, and resource management.

 One thing you’ll learn early on is the importance of text in Windows Store apps.
Chapter 8 goes into depth on text, showing how to create beautiful content using text.

 Finally, this group wraps up with coverage of binding and controls in chapter 9. I
decided to go right into MVVM (Model-View-ViewModel) at this point as well, because
it’s a good pattern to get used to.

WINDOWS 8 UI SPECIFICS
Although XAML is common and highly compatible across many platforms, Windows
Store apps have access to some controls, layouts, and interaction patterns that are
unique to the platform. Chapter 10 covers the most important of these controls and
how they fit in with navigation. I also cover the Semantic Zoom pattern and control.
Chapter 11 covers the modern analog to the toolbar: the app bar. Chapter 12 covers
the app’s tile and the notification system built into Windows. Chapter 13 covers the
important view states all apps must support (snapped view, portrait, landscape, and
filled mode).

 Throughout all of these chapters, we’ll build a PhotoBrowser app that showcases
the features.

INTEGRATION WITH THE OS, SERVICES, AND OTHER APPS
Windows Store apps have a set of standardized, user-driven mechanisms for integrat-
ing with each other. Collectively, these are called contracts and are what are invoked
when you use charms such as Search and Share. Chapter 14 specifically covers how to
use searching and sharing in the context of the Photo Viewer app.

 Chapter 15 then shows how to work with files and file pickers. Files access is the
one area that’s perhaps the most different from all other XAML and .NET implementa-
tions. Throw out everything you’ve learned about file access in the past, and learn the
new (and arguably much better) approach introduced with Windows 8.

ABOUT THIS BOOKxxvi
NETWORKING AND THE CHAT/GAME PEER-TO-PEER APP
Connected apps are the norm, so several chapters in this book are dedicated to net-
working. Before jumping into networking, chapter 16 covers the important async pat-
terns used in Windows Store apps. Chapter 17 then starts the coverage of networking
by showing how to work with SOAP and RESTful services. This is the type of bread-and-
butter stuff any connected app will need. Chapter 18 gets into the more advanced
topic of socket communication. As part of the coverage of sockets, we’ll start the sec-
ond app of this book: a chat and peer-to-peer game app involving spaceships.

 Chapter 19 helps flesh out the socket app by showing how to create a player control
using Blend for Visual Studio. Chapter 20 helps glue the ship and sockets together by
showing how to send meaningful information across the socket connection.

 Then, because games with just one type of input are a bit boring, we’ll implement
all the major types of human and device input. In chapter 21, starting with the basics
of keyboard input, we’ll make the ship move around on the screen and across the net-
work. We’ll get into mice and touch-based interaction. Then, we’ll make the app
accelerometer-aware so you can tilt the device to move the ship around. Finally, we’ll
implement a C++ WinRT extension library to make use of an Xbox gamepad. Lots of
fun stuff here!

WRAPPING UP
To wrap up this book and put a nice bow on what you’ve learned, I cover the app life-
time, including suspend and resume, and the related app settings in chapter 22. At
this point, you’ll have a great foundation for building your own apps.

 Then, moving out of the source code and into the Store, in chapter 23 I cover how
to prepare your app for Windows Store submission and how to get it into the Windows
Store.

Code conventions and downloads

You can find the source code for all the examples in the book at www.manning.com/
WindowsStoreAppDevelopment.

 The following conventions are used throughout the book:

■ Italic typeface is used to introduce new terms.
■ Courier typeface is used to denote code samples, as well as elements and attri-

butes, method names, classes, interfaces, and other identifiers.
■ Code annotations accompany many segments of code.
■ Code line continuations use the ➥ symbol.

Author Online

The purchase of Windows Store App Development includes free access to a private web
forum run by Manning Publications, where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
WindowsStoreAppDevelopment. This page provides information on how to get on the

www.manning.com/WindowsStoreAppDevelopment
www.manning.com/WindowsStoreAppDevelopment
www.manning.com/WindowsStoreAppDevelopment
www.manning.com/WindowsStoreAppDevelopment

ABOUT THIS BOOK xxvii
forum once you are registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

 The author online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

about the author
Pete Brown works for Microsoft as a Technical Evangelist on the Client and Devices
team in John Shewchuk’s “deep tech” (http://bit.ly/DeepTech) Developer Platform
Evangelism group. His role is helping developers create high-quality apps for all
clients, using Microsoft tools and technologies.

 Prior to joining Microsoft in 2009, Pete was an architect, engagement manager,
and user experience designer at a consulting company in the Washington, DC, area,
where he focused on Silverlight and WPF development. During that time he was also
an INETA speaker, a Microsoft WPF MVP, and a Microsoft Silverlight MVP.

 As one of only a few remote workers in corporate Microsoft, Pete has a lot of Lync/
Skype webcam meetings and enjoys the stunned look he gets whenever people see his
home office in the background. If a nuclear submarine and a radio station had a child
near an anime convention staffed by modular synth addicts working on Commodore
64s, it would be only slightly less geeky.

 Pete enjoys playing with synthesizers, writing, woodworking, electronics, program-
ming (PC apps as well programs for ARM microcontrollers), making things with no
practical use, acquiring huge monitors, cooking processors, and of course, spending
time with his wife and two children at their home in Maryland.
xxviii

about the cover illustration
The figure on the cover of Windows Store App Development is captioned “A Traveler.”
The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-
volume compendium of regional dress customs published in France. Each illustration
is finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. On the
streets or in the countryside, it was easy to identify where they lived and what their
trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxix

ABOUT THE COVER ILLUSTRATIONxxx

Hello, Modern Windows
Welcome to the brave new world of Windows Store app development! Getting into
a new platform as it first emerges is always exciting. I love learning new things and
targeting new platforms. I like being an early adopter. Sure, not everything is quite
as fleshed out as you may want when you get in early, and it sometimes feels like the
Wild West, but the satisfaction you get from that head start almost always makes it
worth it.

 Plus, quite frankly, it’s much easier to learn something new while it’s still small
enough to be digestible. Looking back at Silverlight, I learned it at version 1.1a
when it was just a baby. Had I picked it up at version 4 or 5 when the API surface
area was 10 times as large, it would have taken me forever to learn all its ins and
outs. Platforms invariably grow in scope and capability. The earlier you learn them,
the less you have to take in all at once.

This chapter covers
■ Building your first Windows 8 app
■ Getting a developer license
■ Using the Simulator
■ Remotely debugging apps
1

2 CHAPTER 1 Hello, Modern Windows
 Because XAML and C# are one of the combinations of technologies you can use to
develop for the Windows Store, if you’ve developed applications for the Windows
Phone or desktop using Silverlight, you’ll find yourself well positioned to quickly learn
Windows app development. The Windows Runtime XAML stack and C#/.NET side of
things were both developed by many of the same people who worked on Silverlight
and Windows Presentation Foundation (WPF).

 Getting into Windows Store app development now will give you that same head
start. Using XAML and C# allows you to lean on past experience if you have it and tons
of preexisting XAML and C#/.NET content if you don’t.

 Microsoft is making a serious attempt at capturing the tablet market currently
dominated by the iPad and Android devices. If those platforms have taught app devel-
opers anything, it’s that getting in early with a good app can help spell success for an
individual or company.

 You picked up this book, so I’m going to assume you’re already interested in Win-
dows 8 and don’t need encouragement in your selection. Instead, I’d like to take this
first chapter and build something right away—just throw you right into the fire. By the
end of this chapter, you’ll know how to create a simple app and have a working devel-
opment environment you can use as we dive more deeply into the features in the
remainder of this book.

 In this chapter, you’ll build your very first Windows 8 app using C# and XAML. Nei-
ther the application nor the code will be complex. The point here is to acquaint you
with a new development and runtime environment and platform rather than produce
the mother of all samples.

 I’ll start by helping you set up your development environment. Once that’s com-
plete, you’ll create a new project and look at the various configuration settings, prop-
erty pages, and stock files that are important. Then, I’ll show you how to create a very
simple Hello World! application. All that application will do is display “Hello World!”
on the screen.

 From there, you’ll modify the application to pull data from Twitter and display it
onscreen. When run, the completed application will look like figure 1.1. Despite not

Figure 1.1
The completed
Hello World!
application.

3Configuring the project
being very pretty, this app follows the new design aesthetic, runs full screen, and sup-
ports touch. It uses the new WrapGrid layout control and, to many, familiar XAML con-
cepts. If you don’t know XAML yourself, don’t worry; you will by the end of this book.

1.1 Setting up the development environment
Windows 8 Modern apps can only be developed on Windows 8, so the first thing you’ll
need to do is install Windows 8. Hardware selection is too large a topic for this book,
but you’ll want to make sure the screen width is at least 1366 x 768 or larger so you can
use snapped views for apps. The machine will need to be based on an x86-compatible
processor because Windows RT (ARM) devices can’t run Visual Studio.

 The ideal situation is to install on the metal or set up a bootable VHD on a typical
developer-class machine. Running in a virtual machine is okay, but you’ll find the
experience frustrating at times, especially when it comes to swiping from the edges or
activating elements using the hot corners.

YOUR MICROSOFT ACCOUNT When installing Windows, unless you’re using a
domain account, make sure you set up a Microsoft account rather than a local
account. Microsoft accounts have much better integration with online ser-
vices, and you’ll need one to obtain a developer key. Microsoft account is a new
name for Windows Live ID (or Passport, if you can remember back that far)—
something almost every .NET developer already has.

To develop Windows apps, you’ll need to have a version of Visual Studio 2012. You can
use the free Visual Studio Express for Windows 8 apps, or you can install a higher level
and more feature-rich version such as Professional. You can find links to all the impor-
tant bits at http://dev.windows.com. All the required SDKs and templates are installed
automatically with Visual Studio 2012; even .NET 4.5 and the Windows Runtime are
already installed on the Windows 8 machine. No additional downloads are required.

 You don’t need a Windows Store account just yet, but you’ll eventually want one of
those as well (more on the Windows Store in chapter 23). You can obtain a free devel-
oper key automatically the first time you create a Modern Style app in Visual Studio, as
you’ll see in a moment.

1.2 Configuring the project
In keeping with the spirit of Hello World, your first Windows app will be a simple one
designed to let you see the construction and build process from front to back. Don’t
worry about understanding all the parts of the project just yet; that’ll come in the sub-
sequent chapters.

 In Visual Studio, select the Start page link (or File menu option) to create a new
project. This will be a Visual C# project, a Windows Store app, using the Blank App
(XAML) template. The .NET framework version used is 4.5—the only version cur-
rently supported for Windows app development. I named it HelloWorld, as shown in
figure 1.2.

http://dev.windows.com

4 CHAPTER 1 Hello, Modern Windows
Notice the other project templates: Grid App (XAML) and Split App (XAML) in partic-
ular. Those are feature-rich templates, much like the business application templates
and navigation templates in Silverlight. I’ll skip these templates for now, because we’ll
dive into them later in this book, and there’s a lot more to them than we want to get
into in chapter 1.

 Click OK to create the project. If this
is the first time you’ve created a Win-
dows 8 app on your machine, you’ll be
prompted to create a developer license,
as shown in figures 1.3 and 1.4.

 When you first run Visual Studio
and try to build a Windows 8 app, you’ll
have to register for a developer license.
This is free and is granted for 30 days
for non-store use and 90 days if you
have a Windows Store account (these
durations are subject to change).
Renewing is painless as long as you have
an internet connection. It may be a bit
annoying to renew every 30 days, but it’s
a necessary step to make sure that people creating malware or otherwise trying to
cause havoc can have their keys turned off.

 You can renew your developer license through the command prompt or through
Visual Studio at any time should you know you’re going to be disconnected from the

Figure 1.2 Creating the Windows XAML app using the Blank App template

Figure 1.3 Prompt to obtain a developer license

5Configuring the project
internet for a bit. You can find the instructions at http://bit.ly/Win8DevLicense. You
may consider automating the renewal to happen every 29 days or some other time
period by scheduling a job to do it for you.

TIP I speak at a lot of events. I assume many of you also give demos to poten-
tial clients, managers, and others. If it has been a few weeks since you
renewed your developer license, do so before you give that important demo.
Nothing will tank your presentation faster than being prompted to renew
your developer license when there’s no available internet connection. This
happened to me on one of the few plane trips I took that didn’t have working
Wi-Fi. I read a book instead.

If you want to keep things simple, use a single ID for your machine login and your
developer license. This isn’t always possible, especially in the case of domain-joined
machines, so consider it a recommendation and not a hard rule.

 Once you have the developer license, you’ll be tossed into the IDE with your proj-
ect loaded.

1.2.1 The device pane

Once the application template is loaded, you’ll be presented with the solution. Open
MainPage.xaml and you’ll see the design surface and the usual developer window

Figure 1.4 You’ll need to be online when you go to obtain the developer
license. If not, you’ll be unable to continue creating the Windows 8 app. Don’t
wait until you’re off the grid (in a taxi or one of those planes without Wi-Fi)
before obtaining or renewing your license.

http://bit.ly/Win8DevLicense

6 CHAPTER 1 Hello, Modern Windows
panes. One pane, the Device window panel, shown in figure 1.5, stands out as new,
however.

TIP Your design surface will likely be black. If not, compile the solution so
the design surface can update.

The Device pane (windows are generally referred to as panes when docked) to the left
of the design surface has a number of buttons to let you try out different views for
your application: Full, Filled, Snapped, and Portrait. Under the View buttons, there’s
the Display selector. This lets you select from common display resolutions. Finally,
there are options that control other aspects of the simulated tablet (or touch screen)
on the design surface.

TIP If the Device window/pane isn’t visible, go to the DESIGN menu and
select Device Window. It’s not on the VIEW menu, unlike most other dockable
windows. Yes, the menus are in all caps. Embrace the case.

All of these options are external to your application code and markup; they don’t
change anything. They simply let you test your UI layout under a number of different
configurations without actually deploying it to a machine of that resolution. Nice!

 Feel free to play with the options a bit, but then return them to their defaults when
finished. I’m using a test resolution of 1366 x 768 (at 148 dpi), the minimum full-fea-
tured Windows 8 resolution, and have the view configured to the full view.

Figure 1.5 Visual Studio 2012 with the blank project template loaded in the Hello World
project. The Device window on the left is new to Windows app development and is a real
convenience for screen layout.

http://bit.ly/VS2012RemoteDebugInstall
http://bit.ly/VS2012RemoteDebugInstall
http://bit.ly/Win8RemoteDebug

7Configuring the project
1.2.2 Template solution items

To the right of the design surface, you’ll see the Solution Explorer. As a .NET devel-
oper, you’re almost certainly familiar with this by now. Notice, however, that there are
a few more files and folders there than you may be used to.

 If you’re a Silverlight or WPF developer, App.xaml should be familiar to you. For
those new to the platform, this is where the startup code exists and where you can
keep styles, templates, and other resources that are shared throughout the entire
application.

 The Common folder contains the very important StandardStyles.xaml file. You’ll
use this file, or more correctly, the resources in it, when creating the UI for the
applications throughout this book. This file is where the Windows 8 Modern app
styles reside.

The Assets folder contains the application images. In it, you’ll find the app’s main and
small logo as used in the tiles, the splash screen logo, and the logo to be used in the
Windows Store.

 Right-click the Hello World project (not the solution) and choose Properties. Most
of the options here are familiar, but click the Debug tab on the left. In there you’ll see
a number of start options. By default, you’ll run on the local machine. But there’s also
an option to start the application on a remote machine. This is key if you want to
actively test and debug on a sub-developer-class machine or a machine that simply
can’t run Visual Studio, like a Windows on ARM tablet. Additionally, there’s the option
to start the app in the Simulator, which we’ll explore shortly.

 Next, double-click the Package.appxmanifest file. This is where you’ll specify the
runtime configuration for your application, including the logos, supported orienta-
tions, background color, capabilities (such as needing access to the pictures library),
and declarations (such as registering as a picture provider or as a file save picker).

Don’t mess with the standard styles…at first

I mentioned that the StandardStyles.xaml file is important. The note at the top of the
file says it all:

“This file contains XAML styles that simplify application development.”

These are not merely convenient but are required by most Visual Studio project and
item templates. Removing, renaming, or otherwise modifying the content of these files
may result in a project that doesn’t build or that won’t build once additional pages
are added. If variations on these styles are desired, it is recommended that you copy
the content under a new name and modify your private copy.

So treat this file like you would autogenerated files, and leave it alone until you have
more experience in app development. Experienced developers will want to pare down
this file before deployment, because the additional styles do add a small amount of
load time.

8 CHAPTER 1 Hello, Modern Windows
This is also where you can specify your start page’s tile background and foreground
colors and logos. In short, this is the place where many of the important packaging
and deployment details are kept.

1.3 Create the first Hello World UI
The next step is to create a very simple Hello World UI. Open up MainPage.xaml if it
isn’t already open. Before you do any real work, turn on Show Grid (this is the 20-
pixel grid we’ll cover in chapter 2) and turn on Snap to Grid. Both controls are at the
bottom of the design window, as shown in figure 1.6.

Next, you can either drag a TextBlock from the Toolbox (pane on the left—you may
need to click it or hover over it if it’s not already open) onto the design surface and
visually align its left and text baseline with one of the major grid lines, or you can sim-
ply paste inside the Grid element the following XAML:

<TextBlock Text="Hello World!"
 Height="42" Width="270"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 FontSize="42" Margin="80,40,0,0" />

If you run the application at this point, you should see a nice “Hello World!” message.
If you’re running the default themes, it will be white text on a black background. You
may be wondering how to get out of the application and back to Visual Studio. You
have a few options:

■ On a single-display system, use Alt-Tab to get back to Visual Studio and keep the
app running (you’ll use this often during debugging).

■ Press Alt-F4 to close the app and then hit the Windows key to get back to Visual
Studio.

■ Move the mouse to the top of the app until it turns into a hand, and then drag
down to close it. This gesture also works with touch, of course.

By design, Windows 8 apps don’t have dedicated close buttons; the user uses one of
the aforementioned approaches to get out of the app.

Figure 1.6 The Show Grid and Snap to Grid controls
(the six-box grids) on the XAML design surface. If you
plan to drag controls onto the design surface, turn on
both Show Grid and Snap to Grid by clicking the buttons
shown here. These buttons can be found at the bottom
of the design surface or between the design surface and
the XAML view if you’re using the default IDE layout.

9Integrating with Twitter
If all you want is a simple Hello World, you can stop here. But if you want to kick it up
just a tiny notch and add something meaningful to your Hello World app, read on.
It’ll still be simple, but rather than just the “Hello World!” text, we’ll add a little data
from our friends at Twitter. I just can’t help myself.

1.4 Integrating with Twitter
Networking is almost always part of a modern application. Windows 8 apps are usually
online and always connected (or often connected). Networking in Windows 8 is,
therefore, suitably feature rich and central to the platform.

 This code is going to call out to Twitter to get a list of Tweets that contain the
hashtag1 “#win8” or “#windows8.” It will then deserialize the results into a set of Tweet
objects, which will then be bound to a ListView in the UI. If you’ve read any of my
other books, you’ll know this is a consistent example I follow. It’ll also be interesting
for you to see the differences in how the networking code here compares with the
code in my Silverlight books. If you haven’t read my Silverlight books, no worries;
everything here will be explained.

 In this section, you’ll start by creating the Tweet class to hold the key information
about the Tweet. Next, you’ll update the UI using a ListView, a WrapGrid, and an item
template to display the Tweets. This is a common approach for displaying data in a
XAML app. Finally, you’ll throw some code in the code-behind to make the network-
ing calls and parse the data that’s returned.

Where did the background color come from?

You may have noticed that the root Grid has its background color bound to a static
resource named ApplicationPageBackgroundThemeBrush. If you go hunting
around, you won’t find that brush defined anywhere. Where is it, then?

This is one of the standard SDK resources, loaded as part of the platform. You don’t
have to use it, but if you want to have a well-behaved Modern Style Windows 8 app,
you probably will want to stick with the default resources. Why? They respond to themes
picked by the user, including high-contrast and standard themes.

If you create your own controls, you’ll definitely want to support these resources in
your default template.

Of course, if you know what you’re doing, by all means, just ignore it and don’t use it
or the other stock resources. There are a number of them, but they’re highly optimized
so you don’t take a performance hit from unused resources at runtime. If you want
to see them, a copy of the resources can be found in \Program Files (x86)\Windows
Kits\8.0\Include\winrt\xaml\design.

1 I wonder if the child named Hashtag will have a hard time doing an ego search on the internet? Will they sign
things #lastname? Yes, someone named their child “Hashtag.”

10 CHAPTER 1 Hello, Modern Windows
1.4.1 The Tweet class

First, you’ll need to create a class to hold the data that will be returned from your Twit-
ter search. Create a folder named Model, and in it create a new class named Tweet.
The first listing shows the Tweet class code.

using System;

namespace HelloWorld.Model
{
 class Tweet
 {
 public string Message { get; set; }
 public string Image { get; set; }
 }
}

A Twitter search returns much more information for each Tweet, but the Message and
Image are all you’ll use in this example. They are auto-properties (properties with
auto-generated get and set accessors) in order to make binding possible. You’ll learn
more about binding in chapter 9.

1.4.2 Updated UI

The next step is to update the UI to provide a nice way to list the Tweets. You’ll use a
WrapGrid as shown in the following listing. Silverlight and WPF developers may
remember this as the WrapPanel. They’re conceptually the same, but the WrapGrid
only works inside items controls.

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Twitter Search Results"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 FontSize="42" Margin="80,40,0,0" />

 <ListView x:Name="TweetList" Margin="80, 100, 80, 80">
 <ListView.ItemsPanel>
 <ItemsPanelTemplate>
 <WrapGrid />
 </ItemsPanelTemplate>
 </ListView.ItemsPanel>
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Width="360" Height="80" Background="LightBlue">
 <Image Margin="0" Width="80" Height="80"
 HorizontalAlignment="Left"
 Source="{Binding Image}"
 Stretch="Uniform"/>
 <TextBlock Text="{Binding Message}"
 HorizontalAlignment="Left"

Listing 1.1 Code for the Tweet class in the Model folder

Listing 1.2 Updated UI with the ListBox of Tweets

Heading

ListView control

WrapGrid for
items layout

Image

Message

11Integrating with Twitter
 VerticalAlignment="Top"
 FontSize="15"
 Foreground="White"
 TextWrapping="Wrap"
 Margin="100,5,5,5"/>
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</Grid>

In MainPage.xaml, replace everything inside and including the main Grid with what
you see in this listing, but leave the Page declarations and namespaces alone. This
listing sets up the UI so that it lays out all elements on a wrapped grid. Each element
is a simple rectangular grid with a blue background, a photo to the left, and text on
the right.

 The final step is to wire everything in the code-behind.

WHY A LISTVIEW INSTEAD OF A LISTBOX? WPF and Silverlight developers know
that you can do just about anything with a ListBox. In Windows 8 apps, due
to plumbing changes for animation and virtualization, the replacement for
the ListBox is the ListView. You can still use the ListBox for some scenarios,
but you’ll find it no longer works with all the layout grids. When in doubt,
reach for the new ListView control instead.

1.4.3 Code-behind

Later in this book you’ll learn best practices for separating code using ViewModels and
varying degrees of the MVVM pattern. For this first example, all the code will remain
in the code-behind as shown in the following listing. This code goes in the code-
behind of the main page (MainPage.xaml.cs).

using System;
using System.Collections.ObjectModel;
using System.Diagnostics;
using System.Linq;
using System.Net.Http;
using System.Xml.Linq;
using HelloWorld.Model;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

namespace HelloWorld
{
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();
 }

Listing 1.3 Code-behind for the application’s main page

12 CHAPTER 1 Hello, Modern Windows
 private ObservableCollection<Tweet> _tweets =
 new ObservableCollection<Tweet>() ;

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 TweetList.ItemsSource = _tweets;
 LoadTweets();
 }

 private async void LoadTweets()
 {
 Uri uri = new
 Uri("http://search.twitter.com/search.atom?q=win8+OR+windows8");

 var client = new HttpClient();
 var response = await client.GetAsync(uri);

 string content = await response.Content.ReadAsStringAsync();

 Debug.WriteLine(content);

 var doc = XDocument.Parse(content);
 XNamespace ns = "http://www.w3.org/2005/Atom";

 var items = from item in doc.Descendants(ns + "entry")
 select new Tweet()
 {
 Message = item.Element(ns + "title").Value,
 Image =
 (from XElement xe in item.Descendants(ns + "link")
 where xe.Attribute("type").Value == "image/png"
 select xe.Attribute("href").Value).First()
 };

 _tweets.Clear();

 foreach (Tweet t in items)
 _tweets.Add(t);
 }
 }
}

If you haven’t used .NET 4.5 yet (or Silverlight 5 with Visual Studio 2012 and the async
targeting pack), the async and await keywords will be new to you. These two key-
words help remove a lot of the asynchronous handler code you had to write in the
past. Because the Windows Runtime relies so heavily on asynchronous methods, this is
a huge boon to Windows 8 developers. What used to take a convoluted set of callbacks
can now be reduced to a single await statement. Nice!

 Other than that, everything there should look familiar to Silverlight developers.
The XML parsing works just as it would in any other .NET project. The navigation
page method OnNavigatedTo looks like those in the navigation templates in Silver-
light. The good-old ObservableCollection is there and more. Your knowledge and
skills port well.

Create collection
of Tweets

Bind ListView

Make
async calls

Display raw data

Parse data

Load into collection

13Testing on different devices and resolutions
 But don’t worry if you have no Silverlight experience. Although I’ll bring up differ-
ences from time to time to further inform readers coming from similar languages and
platforms, I don’t assume any XAML experience in this book.

 Run the application, and you should see a list of Tweets complete with text and
images similar to those shown in figure 1.1 at the start of this chapter.

1.5 Testing on different devices and resolutions
So far, we’ve run everything directly on the development PC. As you know, developer
machines aren’t representative of the typical end-user machine. In a world of touch
devices, hybrid laptops, and tablets, this is even truer.

 Because the devices can vary so much in capability, and because installing Visual
Studio on every device is both impractical and impossible, there has to be a good way
to deploy and debug remotely. One of my favorite things about .NET Micro Frame-
work development is the ability to deploy code to an external device and step through
breakpoints on my development PC. Windows Phone developers and developers
who remotely debugged apps on the Mac will also be familiar with this Visual Studio
capability.

 Sometimes all you need to do is try out different resolutions or simulate touch on
your non-touch Windows development machine. For those scenarios, the built-in Sim-
ulator is the way to go. The Simulator makes it simple to deploy and debug inside a
simulated machine, where you control resolution and other parameters.

 In this section we’ll look at a few different ways to debug the app. First, you’ll run it
on the Simulator and then move to debugging on a remote machine. If you don’t
have a second Windows 8 machine handy, that’s okay.

1.5.1 Debugging on the Simulator

Visual Studio 2012 comes with a Windows 8 Simulator. The Simulator is actually a
remote desktop into the same machine Visual Studio is running on, but it abstracts
this and provides another layer of UI interaction. This enables you to simulate touch,
gestures, rotation, different screen resolutions, orientations, and more.

 Continuing from where we left off, exit the app and change the Debug target to be
the Simulator rather than the local machine. You can do this from the project proper-
ties or, more easily, through the toolbar, as figure 1.7 shows.

Figure 1.7 The menu option to debug
from the Simulator rather than from the
local machine. This is great for testing
out different resolutions or simulating
touch on a non-touch device.

14 CHAPTER 1 Hello, Modern Windows
Now when you debug the app, it will open up in the Simulator. Figure 1.8 shows the
app running in the Simulator and explains the different Simulator controls.

 The Simulator is excellent when it comes to testing different resolutions or simu-
lating touch on a non-touch device. That will get you very far for the majority of the
apps out there. For the more performance- or feature-dependent apps, you’ll want to
debug on the actual target device.

1.5.2 Debugging on a remote device

Windows 8 supports both the x86/64 and ARM architectures. Visual Studio will run
only on x86/64. Because of that, and because even many x86 tablets simply aren’t
appropriate for running Visual Studio, Visual Studio 2012 supports remote debugging
on x86, 64-bit, and ARM devices.

 It may seem like an “in the weeds” topic for a first chapter, but many of you have
Windows 8 ARM devices and may want to remotely debug the examples in this book
using them. For that reason, I’ll point you to the right resources here and also tell you
what’s possible with the tools.

 Before you can remotely debug on a machine, you have to install the remote com-
ponents. Setting up remote debugging uses architecture-specific debugging compo-
nents for the target machine. The remote debugging products are included with the
DVDs for Visual Studio. But, because hardly anyone uses or keeps installation media,

Figure 1.8 The Twitter app running in the device Simulator. The controls on the right provide a
number of options for changing the shape of the device and for interacting with it.

15Testing on different devices and resolutions
you can also download them from the Microsoft Download Center here: http://
bit.ly/VS2012RemoteDebugInstall.

 The setup and configuration have several steps that are machine-dependent. The
ARM steps in particular are subject to change. Therefore, let me point you to the offi-
cial source of information regarding the setup: http://bit.ly/Win8RemoteDebug.

 You can debug only over a private network (home, work) or over a point-to-point
Ethernet connection in public hard-wired between two machines. Debugging over the
internet is not supported. Admittedly, it would be really cool to debug a machine half-
way around the world across the public internet, like hackers do in movies (“This is
Windows. I know Windows!”), but there may be one or two security concerns there.
The connection also needs to be wired or wireless Ethernet, not USB, Serial, or
another communications type.

 You don’t need to do this for the Simulator, or any other machine that already has
Visual Studio 2012 on it (just run msvsmon directly from the Start screen), but the
process for otherwise non-developer machines is as follows:

1 Install the remote components on the remote machine. You must do this as the
administrator. Figure 1.9 shows the installer download page and install dialog
running on the remote target machine.

2 Run the remote debugger on the remote machine. You must be an administra-
tor to run this for the first time. Also, you’ll need to obtain a developer license
for the machine, just as you did for the main developer machine. After that, any
regular user can start it as long as they’re configured in the security dialog. Fig-
ure 1.10 shows where the remote debugger may be found on the target
machine.

Figure 1.9 Installing the remote debugger on the remote target machine

16 CHAPTER 1 Hello, Modern Windows
3 Configure the remote debugging so that it works through the firewall on the
type of network you’re using (domain network, private network, ad hoc). Fig-
ure 1.11 shows the dialog where you make these settings. Be sure you’ve
checked all of the options or the correct ones for your specific network. Some-
times what you think of as a private network is actually configured in Windows
as a public network (turn on sharing to change this).

Figure 1.10 Here’s where you’ll find
the remote debugger. It’s on the Start
page. This machine happens to also
have Visual Studio, but you’ll find it on
the Start page of any regular device.

Figure 1.11 Make sure you correctly set the network settings on the target
device. If your network isn’t correctly recognized as private, but it is, click the
network icon in the taskbar and right-click the connection and enable sharing.

17Testing on different devices and resolutions
4 Once the debugger is running, set the security method. You can turn off
authentication if you’re in a safe spot, but normally you’d keep the authentica-
tion at regular Windows authentication. This is done through the Options
menu in the remote debugging monitor.

5 Set the Visual Studio debug target to be a remote machine. You’ll be prompted
for the machine to connect to. Make sure the debugger is running remotely
before you do this. Figure 1.12 shows the Visual Studio dialog on the develop-
ment machine.

6 Start debugging as you normally would. If you get deployment errors where the
device can’t be connected, check your network settings. Depending on the con-
figuration of the device, you may need to make the current connection a pri-
vate network, or you may have authentication problems.

You can see a few things in
figure 1.13 that were spe-
cific to my setup. One, I
had it set to Authentica-
tion, but the domain server
could not be contacted, so
that failed. Then I changed
it to No Authentication,
but I forgot to check Allow
Any User to Debug in the
options dialog. Finally, I

Figure 1.12 Configuring the remote debug target. If you need to reconfigure the
debug target, you can find the info in the Debug tab of the project properties.

Figure 1.13 The Remote Debugging Monitor showing my
debugging session

18 CHAPTER 1 Hello, Modern Windows
checked that option in the Tools > Options menu of the remote debugging monitor,
and it worked.

NOTE If you don’t already have one, you will be prompted to get a developer
license on the remote machine.

For ARM devices and other low-power tablets, remote debugging is essential; you can’t
run Visual Studio on everything. But even if you have two developer-class machines
with only one display each (two laptops, for example), you may find debugging
remotely to be more convenient than debugging on a lone single-display machine.
Doing it this way avoids the context switching you have when bouncing between Visual
Studio and the Windows app.

 For scenarios where you just need to check different resolutions or simulate touch,
using the Simulator is usually the best way to go. Be sure to try all three approaches—
local, Simulator, and remote—to see which one best fits your workflow.

1.6 Summary
Before getting into the details of design and APIs, I wanted to start the book off with
getting your hands dirty. In this very first app, you learned how to create a Windows 8
app from scratch using the Blank Application template.

 Perhaps without realizing it, you used the layout grid to conform to the Windows 8
Modern design guidelines covered in the next chapter. You then used the application
to connect to a service, download XML, and display it using a ListView with a Wrap-
Grid and custom items templates. Not bad for a Hello World application!

 For the majority of us, this was all run on the local machine. I prefer to debug on
the main machine whenever possible, but when working with my ARM device, I need
to use remote debugging, and when testing how the app will look at different resolu-
tions, I use the Simulator. All of these together make it possible to test a large number
of different configurations, all from your main development PC.

 One of my favorite things about developing for Windows 8 is how it is so similar to
other technologies I’ve written for in the past. Windows 8 XAML apps are written very
much like Silverlight apps. If you have experience in the latter, you’ll find yourself well
equipped to move forward. If you don’t, Silverlight was proven to be very easy to learn
by anyone with basic C# skills, and I expect Windows 8 XAML to be just as easy and just
as fun.

 Personally, I’m looking forward to putting some apps out there. I hope you are
too. In the next chapter, we’ll take a look at the new Windows 8 design aesthetic and
the UI conventions to give you a baseline to use when building your own apps.

The Modern UI
I’m not a designer. Like many, I can tell good design when I see it, but my promis-
ing art skills were tossed out the window and never really developed once I sat
down at my first computer and started programming. Had I known then how well
computers and art would coexist, I’d have kept pursuing them together.

 Regardless, like many of you, I find myself designing UIs for applications on a
fairly regular basis. In the days of rigid battleship-gray apps, this was relatively easy
to do. As those fell out of favor and we started getting more creative, it became
harder to keep up. Part of the reason it was hard to keep up was that there were few
working constraints. There was no commonality to design, no framework to work
within. Unlimited possibilities can be pretty daunting when you’re not sure where
to start.

This chapter covers
■ The Windows Modern Style
■ Design principles for Windows 8 apps
■ Typography and grid layout
■ Device considerations
19

20 CHAPTER 2 The Modern UI
 With Windows Phone and Windows 8, Microsoft has attempted to bring us all back
into the fold of a visual framework we can all understand. Those with design talent will
still be able to create applications that outshine what the rest of us do, but all of us can
now more effectively learn from each other and use the same tools and patterns to
create applications. That framework is the Windows Modern Style.

METRO? Metro was the code name for the design language. At Microsoft, we
don’t refer to apps as Metro-style apps but instead as Windows 8 apps or Mod-
ern apps. The aesthetic is simply referred to as the Windows design aesthetic,
Windows Modern Style, Windows Store app design, or, more succinctly, the
Windows style. In general, apps are referred to as Windows x and desktop
applications and features are referred to as Windows desktop x.

The Windows Modern Style has many parts. First, I’ll cover a bit of the inspiration for
the language and its roots in past products. Then, I’ll discuss the principles that gov-
ern the decisions about what makes something fit the aesthetic and whether or not to
go a particular route in the design of your own application. These guiding principles
will be a great help to designers everywhere. Next, I’ll get into some of the more con-
crete aspects of Windows 8 app design: specifically, the importance of typography and
its correct use and the idea of the layout grid. We’ll wrap up this section with one of
the main drivers for the new style: touch interaction. This entire chapter will be about
the visual design for Windows 8 apps, what drives them, and how to fit into it. We’re
not going to discuss how to put a UI element on the page but rather why that UI ele-
ment should even be there and how it should look.

2.1 Design inspiration
Although you can see elements of the Windows Modern Style in even earlier work
such as Encarta and MSN, the design language has its closest implementation roots in
the Zune client software for Windows. This client, written using the same pre-WPF pre-
sentation APIs as Media Center, introduced Windows users to the clean typography-
centric design and borderless, chromeless windows. Figure 2.1 shows the Zune client,
because I know it may be unfamiliar to many of you.

 Silverlight for the desktop even had downloadable Zune-inspired navigation tem-
plates that followed the principles of its design at an application-level. Later, key ele-
ments of this design aesthetic, such as the tile approach to application launching and
the use of text and case to distinguish purpose, were refined in Windows Phone 7.
Now, this design aesthetic is an important part of Windows 8, Xbox 360, Windows
Phone, and more.

 At first, the Windows Modern Style may seem to be a radical new design that just
popped out of the designers’ brains at Microsoft. It appears fresh and interesting, yes,
but like many great designs, it does it by borrowing very heavily from the excellent
real-world design work that preceded it.

21Design inspiration
2.1.1 Direct influences

The Windows Modern Style has three key design influences: modern (Bauhaus)
design, the International Typographic Style also known as Swiss Design, and motion
design as used in cinema. Each of those contributed key stylistic elements or concepts
to complete the Windows 8 Modern design language.

■ Modern design taught us to cut our designs down to the minimum required to
meet the purpose while still being beautiful. Much like the American Craftsman
movement in furniture was a reaction to the frilliness of Victorian design, mod-
ern design was about further removing excess adornment and simplifying
design to its bare essentials, removing even the construction details that Crafts-
man showcased. In a house, some may see modern design as cold or hard, but
in a computer interface, it’s entirely appropriate and welcoming.

■ Swiss Design taught us the importance of clean, crisp typography to convey infor-
mation quickly. It showcased grid layout and bold, flat color. It was about con-
veying information quickly without requiring the mental effort of deciphering
complex multicolor icons. It’s beautifully stark, modern, and direct. The best

Figure 2.1 I like my Zune client, and I’ve always liked its UI style; it implements an early version of what
evolved to be the Windows Modern Style. You can clearly see the elements that continued forward into
the design language used on Windows Phone and Windows 8.

22 CHAPTER 2 The Modern UI
examples of this approach in the real world include the typography-centric way-
finding signs commonly used for public transportation systems, such as air-
ports, bus terminals, and subways. The Seattle-Tacoma International Airport,
which services the Microsoft main campus, is full of examples of this design. In
those situations, simple, easily understood symbols and easily read text rule.
Next time you’re at an airport or in a subway, especially those in Europe or in
large metro areas, look at the official signs and the approach used in their
design. You’ll see a little bit of the Windows 8 design aesthetic right there.

■ Motion design taught us the importance of movement. It helps connect with our
emotions as users. Some of the best examples of motion design include some
movie opening credits, news story transitions and openers on TV, most video car
ads, and more.1 Certainly, however, motion design has been used in our world
as well, in 3D graphics and animation; in Flash, Silverlight, and WPF; and more.

So the Windows Modern Style is as much an evolution as it is a revolution. It provides
a new, modern UI approach but standardizes it so that everyone can once again be on
board with using the same elements and styles across their applications. It takes its
inspiration from real-world elements but makes them authentically digital.

2.1.2 Finding your way

Windows 8 ships with a number of apps, and many more are available in the app store.
One of the built-in apps is the Photos app. This very simple app, shown in figure 2.2

1 One of my favorite blogs is “The Art of the Title” (www.artofthetitle.com/). Once you wrap up this chapter,
pay them a visit and check out some of the introductory clips. Pretty much anything by Saul Bass is a great
example.

Figure 2.2
The Windows 8 Photos
Browser showing a
couple of my favorite
meme images. Notice
the navigation arrow at
the top left, the simple
iconography, and the
prominent use of
typography in the title.

23Governing principles
with the app bar open at the bottom after going into the pictures library and selecting
a picture, shows many of the elements common to Windows 8 Modern apps.

 On the top left, you can see the navigation arrow, and to its right, the application
title. Below those, occupying the majority of the screen space, is the content. At the
very bottom, you see the app bar. This isn’t always visible; on a non-touch device, you
right-click the space at the bottom to view it. On a touch screen, you swipe upward to
make it visible.

 The icons on the bottom are very simple with just two colors: the shape color and
the background color. This simplicity, the navigation arrows, and the use of large text
can be seen in airports and metro stations around the world. Figure 2.3 shows a photo
I took at Seattle-Tacoma International Airport—the airport most local to Microsoft’s
headquarters in Redmond, Washington.

 The similarities between the way-finding signs at the airport and the UI elements in
Windows apps are, as you’d expect, quite numerous. It’s all about quickly finding your
way without having to spend the mental effort deciphering cryptic navigation elements.

 Now that you know what the design looks like, you may be tempted to jump right
into creating apps. But before using the style in your own applications, you’ll need to
understand the principles behind it.

2.2 Governing principles
In technical work, understanding the “why” of something is at least as important as
understanding the “how.” Similarly, when considering a new approach to visual

Figure 2.3 One of the inspirations for the Windows 8 aesthetic: way-finding signs at the
Seattle-Tacoma International Airport. Notice the bold colors, simple icons, large type, and
clear arrows. It’s designed for quick scanning while you’re moving from one area to another.

24 CHAPTER 2 The Modern UI
design, it helps to understand the guiding or governing principles. These are the rea-
sons the design is the way it is. In the case of the Windows Modern Style, there are five
governing principles of design:

■ Take pride in craftsmanship.
Quality comes in at the beginning. Beautiful code, beautiful design. Sweat the
details and do it the best you can from the very start. Do it well and be awesome.
You want your apps to stand out in the store and bubble up as useful, well writ-
ten, and well designed.

■ Be fast and fluid.
Be intuitive with motion, and delight the user. Be immersive and, perhaps most
important, be responsive. You’ve heard “be fast and fluid” from Microsoft a mil-
lion times,2 but there’s good reason for that. A choppy or slow UI hurts not just
your application but the perception of the entire platform. I have a tablet that
runs another tablet OS and found the stuttering in the UI, lag when dragging,
and other lack of smoothness really get in the way of the experience. It’s very
obvious and viscerally disturbing when you drag something with your finger
and it doesn’t respond.

■ Be authentically digital.
Be connected to the rest of the world, to the cloud. Expect your user to be con-
nected. Be dynamic and alive in your interaction. Use bold, vibrant colors. Use
typography beautifully. Use motion to convey meaning. Don’t pretend to be
something you’re not. Don’t put a bookshelf in your app; don’t make some-
thing look like the real-world version. This is exactly the opposite of the iPad
design aesthetic, which goes for skeuomorphism,3 or simulating real-world ana-
logs. That simply doesn’t fit the Windows aesthetic and will look as out of place
as cheap veneer furniture in a gallery full of solid wood creations.

■ Do more with less.
Be focused and direct. Put content before chrome, information before extrane-
ous design. Inspire confidence in your users. This is why the app bar, charms,
and other chrome are normally hidden: You want to focus the user on the con-
tent of the app. They should be completely immersed in the goal they’re trying
to accomplish and not distracted by toolbars, icons, menus, and more.

■ Win as one.
Take advantage of the user’s knowledge of the Windows 8 platform and work
with the UI model, not against it. Work with other applications using contracts;
don’t feel that you need to invent everything yourself. Try not to invent new

2 It was a drinking game at //build 2011, even.
3 See “Skeuomorph,” http://en.wikipedia.org/wiki/Skeuomorph. No, it’s not that beast from Aliens—that was

a xenomorph.

http://en.wikipedia.org/wiki/Skeuomorph

25Typography
interaction patterns, but instead use those already present in the platform.
When in doubt, use the tools and templates built into the design and develop-
ment tools.

These principles should serve as guidelines when creating your Windows apps. When
in doubt about a UI element, go back and see if it meets these principles. If it violates
one or more of them, consider looking at another way to accomplish the same func-
tionality. The Build videos at http://buildwindows.com are great references here, as is
the design-focused http://design.windows.com site.

 Also, although I encourage you to use designers for every application you develop,
the simplicity of the Windows Modern Style design language makes it approachable
for design-aware developers to create great-looking and -performing, fast and fluid,
authentically digital applications for Windows 8. Typography is a big part of the design
and its simplicity.

2.3 Typography
The Windows Modern Style is typography-centric. That is, it uses text for emphasis
where we often used lines and other chrome elements in the past. In order for this to
work, your type must show a clear hierarchy with significant point size differences
between the different levels. For example, main headings should be in a very large
font, and subheadings should be in a font size roughly half the size of the main head-
ing. The next level down is roughly half of that size. The final text size is normal read-
ing size.

 For any given application, Windows apps generally use just four font sizes to estab-
lish the type hierarchy. The recommended font sizes are as shown in table 2.1.

For each level, I’ve shown one point size that may apply. This is not a hard-and-fast
rule; there’s room to innovate and be creative. The primary rule is that there should
be a very clear hierarchy so that the screen is easily parsed by the user and so that they
can focus on the task you want them to perform. When in doubt, sticking with the
established sizes will make your app look more natural, make it easier for you to work
with the included templates, and take the guesswork out of setting up your hierarchy.

Table 2.1 Recommended font sizes for Windows apps

Level Point size

Level 1: Page headers (do not wrap this text) 42

Level 2: Subheaders and content headers 20

Level 3: Navigation, body copy, links, and more 11

Level 4: Tertiary information, field labels, and more 9

http://buildwindows.com
http://design.windows.com

26 CHAPTER 2 The Modern UI
 Figure 2.4 shows the default type hier-
archy. Notice how there’s no ambiguity
between levels one through three; the
font sizes are significantly different.
 The font used is typically a Segoe vari-
ant such as Segoe UI. When in doubt, use
the fonts and font sizes provided in the
default templates. When you need to,
you can certainly vary from those fonts:
Windows supports beautiful OpenType

text, as you’ll see in chapter 8. But keep in mind that doing so should be reserved for
times when you want a domain-specific (such as in games or news) or brand-specific
look to your application. Figure 2.5 shows two cases. The first, Khan Academy, uses a
branded logo but sticks with the default font hierarchy otherwise. The second, Bing
News, uses a domain-specific font and layout, eschewing the defaults. It retains a clear
type hierarchy, however. Even looking at the image in this figure, you should be able
to see which lines are headlines versus body text and where the lead story and its title
are located.

Figure 2.4 The default font hierarchy for
Windows apps

Figure 2.5 Two examples of typography that doesn’t follow the letter of the law but certainly follows
the intent. Khan Academy is very close, except it uses a branded header (which is a good idea). The
Bing News app is very readable and maintains a strong hierarchy but uses domain-specific layout and
type styles. Both are perfectly valid approaches for Windows Store apps.

27The importance of the layout grid
When choosing the font sizes, the Windows design team worked with the concept of
a master layout grid. The sizes work well with the grid, aligning properly at different
levels.

2.4 The importance of the layout grid
Remember the old Windows style guide and how it specified exact pixel measure-
ments between elements in a dialog? Remember “twips” and “dialog units”? Back in
the ’90s these guidelines were considered the absolute last word on UI design in Win-
dows. Later, when UI design evolved, much of this was tossed out the window, and
many Windows UI Design Guideline books became doorstops and monitor stands or,
at best, collector’s items.

 Windows 8 brings us back to grid layout with well-defined spacing. All UI elements
in a Modern Style app are laid out on a 20-pixel grid. Each 20-pixel square is called a
unit. The grid is further subdivided into 5 x 5–pixel squares to assist with spacing of
elements.

 Looking back to typography, for a standard app the baseline of the first line of
typography, the heading, is on a unit line, five units from the top (5 * 20 pixels). The
content is at the top of the seventh unit from the top (7 * 20 pixels).

 Furthermore, the baseline of
text at the 11- or 15-point size
should sit on a 20-pixel unit line.
Figure 2.6 shows the grid in
action with an example heading
in place.

 The built-in Visual Studio
and Blend templates make
aligning to the grid simple by
default. Unlike the approach
with Silverlight (and WPF), the
project templates all follow the
same layout guidelines and grid pattern. Even the “blank” project template comes
with all the required assets and guides to make it easy for you to build a Windows-style
app that adheres to the standards. Figure 2.7 shows an example.

Figure 2.6 The layout grid, not to be confused with the
Grid layout control in XAML

Figure 2.7 The default templates make use
of the grid for layout and alignment. Note how
elements always start on grid lines and how
the text baseline and button center are all grid
aligned. The smallest grid division shown is
5 px, the next is 20 px, and the boldest grid
lines are 80 px.

28 CHAPTER 2 The Modern UI
I’ll cover the templates and the grid more as we create a number of different projects
throughout the remainder of this book.

 One final important aspect of the Windows Modern Style is the importance of
touch for manipulation.

2.5 Design for touch but not only for touch
The design aesthetic, whether it is on the phone or the tablet, is designed for touch-
first experiences. Keyboard and mouse are supported, of course, but touch is now a
first-class citizen of the UI manipulation world. What does it mean to design for touch
versus designing just for the mouse? A pointer is a pointer, right? Not exactly.

 First, there’s the physical issue of accuracy. Even on a high-DPI display, a mouse
pointer can easily be accurate down to a pixel or two on the screen. Your finger is a
much larger physical device. Not only is it less accurate, but the very act of using it
often obscures what’s displayed on the screen. This is driven home for me every time I
try to select text on my phone—it’s like performing brain surgery with garden tools.

 Second, a finger is direct manipulation rather than indirect manipulation. You don’t
need to move a surrogate pointer around the screen to get to where you want to go; you
simply pick up your finger and then put it down on the target spot. This tends to make
movement more accurate even when actual pixel-level targets are less so. This also
means that mouse-centric UI notions like “hover” aren’t appropriate in a touch world.

 Third, you likely have 10 fingers (or at least some number greater than two
depending on how careful you’ve been with that table saw), whereas it’s unlikely you
have more than one active mouse. Multiple touch points mean that the device can
start to use multipoint gestures in place of multistep mouse manipulations. Consider
the task of zooming in on an image. A common way to do this on the mouse is to
either use the mouse wheel or right-click. With touch, the accepted gesture is to
“pinch” to zoom out and move your fingers apart to zoom in. Your fingers have no
built-in buttons or scroll wheels, so gestures are very important.

 Design for touch, but remember that, at least on Windows 8, touch isn’t the only
way to navigate. You’ll also need to support the mouse and, if you’re thorough, key-
board navigation and manipulation as well.

 The principles of the Windows Modern Style design aesthetic apply to a number of
different platforms produced by Microsoft. On Windows 8, it’s more than just the style
or design language; it’s an entire class of application.

2.6 Modern apps on Windows 8
So far, we’ve covered the Windows Modern Style rather broadly but with an eye toward
Windows Store apps. The design language is broader than Windows 8 and the Win-
dows Store, but in Windows, an “app” implies more than just the design language. It
implies a type of application using a specific set of APIs. Technically, these applications
are Windows Runtime Modern Style apps, but they’re more commonly referred to
simply as Windows apps or Windows 8 apps.

29Modern apps on Windows 8
 Windows apps can be very broadly classified into consumer applications and enter-
prise line-of-business applications. There are lots of gray areas in between, but in this
case, the classification depends on whether you distribute your app through the Win-
dows Store or through enterprise sideloading or an enterprise app store.

 Regardless of how you classify the application, a number of important or key user
interface elements will be used. For example, apps will almost always have an app bar
(the fly-out toolbars at the top and bottom of the screen) and will certainly have access
to charms (the fly-out toolbar on the right), even if the app code doesn’t explicitly
integrate with any of them. Each of these key elements will be covered in this section
so that you can readily identify them in applications you try out.

 Finally, apps on Windows 8 can target a large variety of form factors, even more
now than we had available to us in the past. Your app may be intended for tablets, but
it will have to work on laptops and desktop machines, and vice versa. This can be a
pain for testing, but it’s one thing that makes the Windows platform so special: choice.

 Each of these areas includes important aspects that must be considered when
building Windows 8 Modern Style apps. Let’s start with the difference between con-
sumer and enterprise apps.

2.6.1 Consumer and enterprise apps

Apps are fundamentally different from their desktop application counterparts. You’ve
already learned about the importance of touch, typography, simplicity, and the grid.
They need to load faster. They need to be less feature dense. They need to be authen-
tic, and they should be beautiful.

 Beyond that, most apps, at least at first, will be consumer-oriented applications sold
through the Windows Store. But Windows 8 apps aren’t limited to just consumer apps.
Enterprise line-of-business applications are also supported. Except for the distribution
method, the dividing line between what makes a consumer app and what makes an
enterprise app can be very gray indeed.

CONSUMER APPS

Most of the interest around building Windows apps is in the consumer space. Con-
sumer-style applications share a number of common traits:

■ Small in size—These apps are often downloaded over relatively slow connec-
tions. They need to be small and easily (and quickly) acquired. Small download
times and fast startup times are almost always related.

■ Small in scope—Consumer applications often do a very small number of things
and do them well. Rather than have giant applications that do everything in a
particular domain, each app does a subset of the features. Consider the typical
calendar, email, and task-management functionality. These are often bundled
into large desktop applications. On Windows 8, you’ll almost certainly see them
as three different applications that can communicate with each other. This low-
ers the learning curve and keeps the UI simple.

30 CHAPTER 2 The Modern UI
■ Secure—Consumer apps need to be trusted. The consumer needs to believe that
if they download an app from a trusted source such as the Windows Store, the
app can’t do nasty things with their machine or compromise privacy.

■ Self-contained—Consumer apps typically provide value without relying on other
applications installed on the machine. In fact, your app won’t pass Windows
Store acceptance criteria if you require certain desktop apps or even other Win-
dows apps to be installed first. In other words, there’s no COM automation of
apps or trying to open a socket to speak to a desktop app running a service.

■ Installed from a trusted store—You don’t simply go to a random site and download
apps for your machine. Instead, these apps are purchased through the store
functionality in the OS itself. This makes it easy to find and purchase applica-
tions and, more importantly, provides a trusted location for app purchases.

One thing I didn’t mention is “inexpensive.” Why? Although the iPhone is commonly
credited for starting the trend of $0.99 apps, there’s no reason why your apps have to
be that inexpensive. Price points will be decided by the usual factors that come into
play in an open marketplace. That said, downloadable consumer apps are almost
always a fraction of the cost of big box store-packaged applications.

 When combined with the new design principles and the touch-centric design, you
can see that a Windows 8 app is definitely a different beast from what you’ve been
developing for the desktop. If you’ve been writing for Android or iOS, you have a bit
of a leg up in terms of deciding how to scope your applications. The modern equiva-
lent of big fat desktop suites just isn’t going to cut it in Windows 8; those are better
kept on the desktop.

ENTERPRISE AND LINE-OF-BUSINESS APPLICATIONS

Corporate developers, don’t feel left out! Windows 8, like the Windows Phone, cer-
tainly feels targeted toward consumer applications, but enterprise developers have a
way to get applications on machines without releasing them to the public Windows
Store. Domain-joined enterprise developers can use enterprise sideloading and code-
signing keys to get the applications deployed within the enterprise.

 One nice thing about enterprise sideloading is it enables you to access potentially
more functionality than sandboxed store applications do. The reason is the Windows
Store is the gatekeeper that checks to see if you’re using APIs outside of the accepted
surface area. Using additional functionality in this way is not currently a recom-
mended scenario, nor is it one that’s currently guaranteed to work in the future, but
it’s worth considering.

TIP Whenever possible, stick to Windows Store guidelines, even when devel-
oping internal apps. This will give you the most flexibility and greatest support
going forward. If you must step outside Store guidelines for an enterprise side-
loaded app, encapsulate the offending code as much as possible.

31Modern apps on Windows 8
Does this mean that Windows 8 app development is enterprise-ready? That’s still to be
determined by you. What it does mean is that if you can effectively work with the set of
APIs you have access to, you have a mechanism by which you can deploy these applica-
tions inside a company.

 In any case, you’ll still want to adhere to the principles of Windows Modern design
and also keep your applications relatively small. Don’t be tempted to create the
mother of all portals as an app.

 In Windows 8, apps share a common set of UI navigation and manipulation stan-
dards. Those are the key non-content interaction elements for the applications.

2.6.2 Key Windows 8 UI elements and states

UI standards that cover only pixel positioning and font sizes are nice for helping you
with the visuals. They’re just not helpful by themselves; you really need standards cov-
ering the experience and actual interaction in applications. Windows 8 has several
standard onscreen elements and application states.

■ The app bar—The app bar is the replacement for menus and toolbars in Windows
8 apps. It appears at the bottom and/or the top of the application in response to
a finger swipe or a mouse right-click. In keeping with the content-centric appli-
cation to application design, the app bar is normally hidden and out of your way.
Your application controls what shows up on the app bar. It can contain anything
from simple buttons to more complex filtering and sorting elements. We’ll cover
how to create your own app bar functionality in chapter 11.

■ Charms—The charms bar is conceptually similar to the app bar but isn’t con-
trollable by your application. The charms appear from the right of the screen in
response to a swipe from that side or a mouse click in the right corners. It is
here that you’ll find the entrance to your app’s settings panel, search and share
functionality, integration with devices, and the ability to navigate back to the
main Start screen.

■ Snapped states—This is not so much a UI element as it is a state your app can be
in. If the screen is at least 1366 pixels wide, you can snap, or dock, apps on
either the left or right of the screen. The main app will be at least 1024 x 768,
and the smaller snapped application will take up the remaining horizontal
space—320 pixels. A good application needs to provide an appropriate UI for
both the normal state and the snapped state. This is covered in more detail in
chapter 13.

■ The tile—The app’s tile on the Start screen is more than just a replacement for
the old icons we’ve become used to. In addition to being a simple launching
point, the tile can be used to convey ongoing information to the user. It’s what
all users will see whenever they start up Windows or go to open other apps, so
it’s a high-visibility area. The app tile is covered in chapter 12.

32 CHAPTER 2 The Modern UI
Inside your application, you can do just about anything you want. But you’ll want to
make use of the key elements and states. Figure 2.8 shows each of these elements.

ABOUT PIXELS Not everything is as it seems. I mentioned that the snapped
state is a fixed 320 pixels. But what about on super-high-resolution screens? If
the DPI is above a certain threshold (determined by Windows), your screen
will kick into a high DPI mode on install. In that mode, app pixels are not 1:1
with device pixels—you’re working with device-independent pixels. That
means that you code to a 320-pixel width, but the actual physical pixel width
may be something like 480 or more. The result is much crisper text and finer
lines with less aliasing. I’ll dive into this more deeply when I cover the states in
detail.

The snapped state is an interesting aspect of Windows design that is well suited to
XAML. The snapped Bing Weather app shows a different UI in this view versus when it
has the whole screen to itself. The remaining space on the screen is dedicated to the
Pirates Love Daisies application. The mode Pirates Love Daisies is in is called “filled”
because it “fills” the remaining space. When working with snapped views in XAML, you
can scale the contents, wrap them differently, or simply swap out a different display, all
using visual states. I’ll cover that in more detail in chapter 12.

 The snapped state brings out an interesting design consideration related to screen
resolution. It only works if you have a screen width of at least 1366 pixels. Below that,

Figure 2.8 The key elements of a Windows app, shown on the Start screen and two snapped
applications. Most apps aren’t as visually busy as the Start screen, so you’ll find that the
charms show up better in those.

33Device considerations
snapping is disabled in order to always provide at least 1024 x 768 for the main appli-
cation, the minimum required resolution for a Modern Windows app. Resolution is a
very important device consideration, but it isn’t the only one.

2.7 Device considerations
Prior to Windows 8, when you deployed an application to a Windows machine, you
could be fairly certain you were running on a desktop or a laptop. Windows 8 signifi-
cantly changes this by expanding the types of devices it actively targets. Sure, Windows
7 worked on tablets, and even Windows XP had a tablet edition, but those were niche
products and were really just pen-operated desktop systems. As the interface for
purely touch devices, they weren’t successful.

 With Windows 8, it’s expected that many, if not most, consumer apps will be run
from low-power ARM devices like tablets. As developers, we’ll generally gravitate
toward the beefier x86/64 machines, but consumers will buy primarily based on cost,
weight, and battery life: all strong points for ARM devices.

 So, in the Windows 8 world there are two primary form factors you’ll need to work
with: desktop or laptop and tablet or hybrid.

2.7.1 Desktop or laptop

Supporting desktops and laptops requires very little extra work on your part. For the
most part, you’ll use the same types of mouse and keyboard interaction as you do
today. Although you shouldn’t assume so, it is unlikely that any given desktop will have
a touch screen unless you’re targeting a specific type of kiosk, like a kitchen PC.

 With a desktop you can typically count on a keyboard and mouse or some sort of
indirect pointing device. You’re also likely to see much higher resolution than on a
tablet. I have two 30” displays each running 2560 x 1600. That’s quite a bit more than
the 1366 x 768 tablet spec, although they’re relatively low DPI in comparison.

 Desktop machines are also more likely than tablets or netbooks to have more than
one display. In those cases, Windows apps will display on one monitor and the desktop
on the others (or desktop on all, but we’ll limit ourselves to apps here).

 Finally, desktops and laptops are unlikely to have the rich set of sensors that many
tablets have.

2.7.2 Tablet and smaller devices

Tablets differ from laptops and desktops not only in the obvious matters of form
(screen resolution, touch screens, low power) but also in usage patterns. If not dedi-
cated to a specific business use like field reporting for an insurance adjuster, tablets
are typically casual-use devices. Your user is not likely to sit in front of the machine for
hours on end or leave it running all the time. Instead, it will be quickly turned on,
some activity performed, and then turned off. Often, they are used on the couch or
on the train or in the back of a school bus.

 For those reasons, you’ll need to make sure your apps are fast and intuitive. If the
user can’t quickly perform their task without help, your app won’t be used. Users

34 CHAPTER 2 The Modern UI
rarely use help on the desktop, and they just about never use help on a tablet. F1 is as
good as dead, ladies and gentlemen.

 You’ll also need to allow your application’s sounds (if any) to be easily muted or
any background music turned off.

 In the Windows Store app world, you’ll need to make sure your applications work
well with touch, mouse, and keyboard. You’ll need them to work on desktops without
touch screens, desktops and laptops with touch screens, and tablets. Your applications
will need to make use of the built-in Modern elements provided by Windows. All of
these things are appropriate considerations for Windows Modern Style apps in the
Windows Store, and most still apply to enterprise sideload applications.

2.7.3 Hybrid devices

Many of the devices for Windows 8 are hybrid devices. That is, they are part laptop or
Ultrabook and part tablet. Even the Microsoft Surface includes a keyboard cover with
a touch pad for pointer interaction. Some others are convertibles, and some like my
Lenovo X220 or my wife’s Acer S7 are simply laptops or Ultrabooks with a touch screen.

 The usage patterns for these devices is different from both laptops and tablets. For
example, on my Lenovo, I find that I often swipe with the screen to navigate and pull
up app bars and the charms, but I do a lot of other interaction using the touch pad
and keyboard.

 All these form factors may seem like a huge burden, but as you’ll see throughout
this book, the tools and templates available to us, plus the power of the Windows Run-
time (next chapter), make developing and designing these apps as easy as designing
any other Windows application.

2.8 Summary
The Windows Modern Style design aesthetic emphasizes beautiful design that’s
authentic to the platform. It focuses on content over chrome and text over adorn-
ments. The style provides a framework to use when designing your own apps: recom-
mended font faces, the grid layout, the type hierarchy, and more. Although you’ll
always benefit from including a designer on the team, the framework provides
enough guidance that a developer with some design talent has a good shot at creating
something beautiful and functional.

 If I had to sum up the Windows Modern Style, I’d say the aesthetic is about getting
things done while delighting the user. But it’s not artificial delight like that imitation
strawberry flavor in your milk; it’s about delighting the user because the app is simple
to use, easy to navigate, and easy on the eyes.

 This chapter was about the design side of the equation. In the next chapter, we’ll
look at the development side of the equation, including how the Windows Runtime
and .NET fit together to form the app development platform.

The Windows Runtime
and .NET
At the start of 2000, after everyone stopped panicking about the impending Y2K
doom, I got hold of some of the first alpha builds of what would eventually be .NET
1.0. I was part of a group that went around delivering two days of training on the
upcoming .NET. At first, there was no IDE, and the bits were for building ASP.NET
(or ASP Plus) pages. Nevertheless, to this VB6 programmer, it was clearly revolution-
ary, especially the brand-new C# language and the actual library of usable classes.
(Remember, VB6 had no base class library.)

 Six and a half years later, I got some of the first bits for Silverlight and went on
to develop the first deployed managed Silverlight app ever—a carbon calculator
written in Silverlight 1.1 alpha. Silverlight seemed as revolutionary to me as .NET
did more than half a decade earlier.

This chapter covers
■ Windows Store app system architecture
■ The Windows Runtime
■ .NET 4.5
35

36 CHAPTER 3 The Windows Runtime and .NET
 Now, six years after that, we have another revolutionary platform—the Windows
Runtime (WinRT). WinRT may look similar to .NET, but it’s unique in its own way, build-
ing on the successes of .NET and Silverlight, plus some secret sauce from the C++ and
JavaScript teams. As you’ll learn, WinRT isn’t a replacement for .NET, but it does take
care of much of the heavy lifting that used to be done in managed code.

 In this chapter, I’ll introduce you to WinRT and .NET 4.5. These are the underlying
APIs you’ll use for building all Windows Store (Modern Style) XAML apps. We’ll first
take a look at what WinRT is and how it relates to .NET and .NET metadata. As part of
that, you’ll learn about projections, the language-specific wrappers for WinRT. Then
you’ll learn a bit about the application model and sandbox that WinRT was built to
support. Finally, we’ll take a brief tour of the WinRT namespaces so you have a general
idea of where to look for specific types of APIs.

 In order to do all this, you need to understand what WinRT is and what it isn’t, so
let’s start with a look of the overall system architecture that supports Windows Modern
Style apps.

3.1 Windows Store app system architecture
In the past, the platform and the API we used were separate. VB3-6 programmers had
to wait for someone to wrap native Win32 (or COM) code to make the latest toolbar or
UI widget accessible and friendly to the programming language. Similarly, .NET devel-
opers often had to wait for the same type of wrapping to happen. This meant that
Windows would come out with great new features, but it would often be at least a ver-
sion or two before mainstream application developers were able to use it.

 This was frustrating for developers, for users, and for the Windows teams them-
selves. I mean, why create a new API when only a small percentage of your audience
will be able to use it?

 With Windows 8, the Windows team took ownership of the API and programming
model. Not only did they provide a modern and programmer-friendly API, but they
also provided a host of other components to make for a complete development plat-
form. Windows Store apps build on WinRT and all the other support provided by the
system. Just as a Win32 app builds on more than just the Win32 API, Windows Store
apps build on more than just WinRT.

 Figure 3.1 provides a high-level look at the overall system architecture. A fairly
large number of pieces come into play in Windows Modern-style apps. Here are a few
of the more important ones:

■ The Windows Store app is the app you’re building. Throughout this book, that will
be a C# .NET 4.5 Modern Style app.

■ The language projection provides a language-friendly interface to WinRT. More on
that in the next section.

■ The Windows metadata, namespace, all the sub-namespaces, and the core together
make up the Windows Runtime. This chapter, and much of this book, deals

37Windows Store app system architecture
specifically with WinRT. It’s interesting to note just how much is there, however.
All of the XAML stack is implemented as part of WinRT, in native code. So are
the sensor access code, many core UI concepts, all the built-in XAML controls,
network access, and much more. When browsing, you’ll find this all in the Win-
dows.* namespaces.

■ The language support provides all the extra stuff for specific languages and plat-
forms. On the .NET side, it’s the Common Language Runtime (CLR) and the
Base Class Library (BCL) for .NET 4.5. In .NET, you’ll find this all in System.*.

■ The web host provides a safe environment within which to run WinJS applications.
Similar to what we had with Silverlight out-of-browser apps, it’s the IE10 browser
without the chrome and with the unnecessary stuff removed.

■ The runtime broker handles access to things like device drivers and authentica-
tion. Unlike desktop apps, you don’t automatically have access to every device
and driver on the system; instead, the driver must be in a known class with a
WinRT API (like webcam/microphone), or if a custom device, the driver must
grant explicit permission to the specific device app in its manifest.

■ The Windows core includes the Windows kernel, native function calls, DirectX,
and more. It’s the low-level stuff that public APIs build on. Because WinRT
builds on this, it provides the shortest route from your code to the hardware,
regardless of processor architecture.

Figure 3.1 The architecture for Windows Store apps built on WinRT and one of the supported
languages

38 CHAPTER 3 The Windows Runtime and .NET
Just as with any other development platform, there are other bits that come into play,
such as Azure and other online services, third-party components and tools, and more.
But the core pieces are all owned by the people implementing the core functionality.
No more lag waiting for one team to wrap the features written by another! It also
means that these features can all work together because the teams have more intimate
knowledge of how they should work and perform. This may seem a no-brainer to folks
on the outside, but anyone who has watched Microsoft (or worked there) knows that
it wasn’t easy getting everyone on the same train.

 One key service not shown here is the Windows Store. That’s not part of the under-
lying platform but instead supports Modern Style apps and serves as the gatekeeper
for enforcing the sandbox.

 In this section, I’ll introduce the sandbox and briefly cover app packaging and the
Windows app store, and I’ll wrap up with a look at the driver model. More details for
each of these will be included in the remaining chapters in this book, but it helps to
have a taste of them up front.

3.1.1 The sandbox

For an application to be safe and to be trusted by users, it must run in some sort of a
sandbox. Much like its real-life preschool counterpart, the app sandbox is a safe place
for apps to play where they won’t get hurt by outside interference and where they
can’t reach out and cause trouble. Beyond that, the analogy breaks down quickly: For
example, you can’t kick sand at other apps or throw toys at the kids on the swing set.

 The main point of an app sandbox is to protect the user. This is enforced in four
ways:

■ WinRT exposes only safe APIs.
■ The .NET 4.5 subset for Windows Store apps exposes only safe APIs.
■ The code runs in a low-access, isolated space, sometimes referred to as the

LowBox.
■ The Windows app store verification tools perform a static analysis and make

sure your app isn’t accessing anything it shouldn’t.

The first two points are important and help keep you in the right place by only expos-
ing APIs you can use. The third helps with anything that runs wild and otherwise
would escape. But it’s the last point that really helps you figure out if your app is play-
ing nicely in the sandbox. For example, you can p-invoke (call Win32 DLLs) from a
Windows Store C# app all you want. But if you run that through the store verification
process, it will almost certainly fail unless you stick to a documented set of safe Win32
or COM APIs.

39Windows Store app system architecture
3.1.2 Deployment and the Windows Store

Any individual application destined for store distribution is packaged into an app
package with the .appx extension, commonly referred to as “an app ex.” App packages
follow the Open Packing Conventions (OPC) standard, which means they’re simply
zip files that contain all the application binaries, content, and manifest files required
to identify the application. If you have Silverlight experience, you’ll find them very
similar to a .xap file.

 One key difference from a Silverlight .xap, however, is that during development,
the .appx isn’t automatically created. Instead, the application is run directly from the
filesystem. You’ll create the .appx only when you’re ready to distribute it to others. It’s
also important to note that you can’t simply send someone else an .appx and expect
them to be able to install the app. The only options are these:

■ Compile/build the app and run it from the same machine. This is the develop/
debug scenario.

■ Send it to the store so anyone can install and run it. For most people, this is the
goal.

■ Use enterprise sideloading if you’re on a domain. Enterprise applications can
be loaded without going through the store.

■ Use an enterprise app store.

What is the sandbox, anyway?

Each app you create can request capabilities by declaring them in the manifest. You’ll
learn about those throughout this book, but understand that they control access to
resources such as the webcam and microphone, the documents library, intranet and
internet connections, and the like.

These capabilities and the rest of the sandbox are enforced at the OS level through
a new construct called an AppContainer.

The AppContainer is an integrity-level feature of the Windows 8 OS itself, not of WinRT,
.NET, or XAML apps. It comes into play not only for WinRT apps but also for Internet
Explorer 64-bit tabs. The Windows Store part of IE10 is 64-bit on 64-bit machines. In
IE10 on the Intel 64-bit desktop, all tabs are 32-bit by default for backward compatibility
with plug-ins. Enabling 64-bit tabs requires enabling Enhanced Protection Mode (EPM)
through the browser properties.

The AppContainer model is similar to sandboxing models used in mobile operating
systems, and it provides a much stronger app-centric approach to security. The intent,
of course, is to avoid viruses and malicious software and to put the end user in control
of what apps are allowed to do.

40 CHAPTER 3 The Windows Runtime and .NET
Almost all consumer applications will end up in the public Windows Stores. That’s
how you get broad reach—and maybe make a little money. Figure 3.2 shows the
store’s main page. One often-missed detail of the store interface is that you can click
the category heading to see all the entries in that category—this is typical grouped
GridView behavior, as you’ll see in later chapters.

 I mentioned earlier that the store verification tools are what enforce the sandbox.
We’ll cover those, .appx packages, and deploying to the Windows app store in chap-
ter 23.

 Finally, the new Windows Store app model provides a new device driver model.

3.1.3 The driver model

In desktop apps, you can access any installed driver you can figure out how to use.
Windows Store apps use a new driver access model that restricts device access. If the
device doesn’t fit one of the known types with an exposed WinRT API (like a webcam
or microphone or network adapter) or allowed class driver, then access is restricted to
the device app identified by the independent hardware vendor (IHV) or original
equipment manufacturer (OEM) as part of the driver manifest.

 Access to these devices is done through an API provided by the IHV or OEM, which
works with the broker to provide access to the device itself, but only to the identified
device app. This means that, currently, IHVs and OEMs can’t provide drivers or APIs
that can be used by any Windows Modern Style app. I expect this restriction to loosen
in the future or for Microsoft to provide a different way for IHVs and OEMs to create
devices with APIs that any app can use. I’m personally waiting for MIDI devices and will
have to stick with something like Open Sound Control (OSC) over Wi-Fi until then.

Figure 3.2 The Windows app store. This is the primary means of deployment for
Windows Modern Style apps.

41COM + .NET metadata = WinRT
 These restrictions are primarily for security and stability reasons. A malicious
device driver can be a pretty big attack vector. Not only that, but bad device drivers are
responsible for most Windows crashes today.

 The platform for Windows Store Modern Style apps in Windows 8 provides a lot of
what we’d expect a full OS to provide. In some ways, it reminds me of how Windows
3.1 ran over DOS. It’s quite conceivable that Windows Modern Style apps will be the
primary way to build apps in the future, just as WinAPI apps became the primary way
to build apps in Windows 3.1 and Windows 95.

 Now that you see the larger picture and have a basic understanding of the major
pieces in the platform, let’s dive into the boxes in the middle: WinRT.

3.2 COM + .NET metadata = WinRT
WinRT is not .NET. Full stop. It
looks like .NET. It seems to behave
like .NET. Heck, it shows up in the
object browser just like .NET. But
no, it’s not .NET. WinRT is a lan-
guage-independent set of deeply
integrated OS components that
use .NET metadata to make their
APIs available to a wide variety of
programming languages. Figure
3.3 shows the relationship
between the languages and the
metadata.

WinRT is to Windows Store
apps as Win32 is to the desktop.
Each is considered to be the low-
est level practical API for its plat-
form. Much like Win32, WinRT calls typically resolve down to native kernel calls, or for
visualization, to DirectX.

 But that’s not the full picture. Unlike Win32, WinRT was designed from the start to
be easily consumed by managed, native, scripting, and other types of languages all
while meeting a high performance bar. WinRT takes the best of COM1 (Component
Object Model) and adds three important concepts:

■ Metadata—WinRT components include a version of Common Language Infra-
structure (CLI)2 metadata. This metadata enables WinRT components to be self-
describing.

1 I know, as soon as I said “the best of COM,” a bunch of you burst out laughing. COM is not anywhere nearly
as bad an API model as many make it out to be. Most of its bad reputation comes from DCOM or from the
dependency on the registry for system-wide COM objects.

2 http://en.wikipedia.org/wiki/Common_Language_Infrastructure and http://en.wikipedia.org/wiki/.NET
_metadata

Figure 3.3 JavaScript and managed code both use their
language projections, which are based on the .NET-
compatible metadata for a given component or set of
components. You can even view the contents of a .winmd
file using ILDASM. You can also code against the WinRT
COM objects using C++ and the Windows Runtime
Template library, but the recommended approach is to use
C++ with the Component Extensions (C++/CX).

http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/.NET_metadata
http://en.wikipedia.org/wiki/.NET_metadata

42 CHAPTER 3 The Windows Runtime and .NET
■ Projections—Each language is responsible for having projections that make
WinRT work for the specific language.

■ Multiple languages—The reason why metadata and projections were included
was to easily enable support for multiple languages. More on that in a moment.

In this section, I’ll cover COM and then the basics of WinRT metadata, how projections
work, and how the different languages plug into the platform.

3.2.1 COM: back to the future

WinRT is native code. Not only that, it’s the newest flavor of native COM code. COM is
the interop model that started as OLE (Object Linking and Embedding) in early ver-
sions of Windows and eventually expanded to become DCOM (Distributed COM) and
COM+ (which itself started life conceptually in Microsoft Transaction Server). COM is
what enables you to put an ActiveX control on a web page or to automate Microsoft
Word from your desktop application. COM is also the force behind those fun HRESULT
error messages that crop up from time to time in various applications on your PC.

COM is a Windows technology. People have tried to implement it on different plat-
forms, but fundamentally it relies on Windows infrastructure, including interprocess
communication, the registry, and much more.

 Unlike the C-style flat APIs in Win32, COM is object/type and interface based. You
can implement flat APIs in COM, but you can also create object-oriented APIs that bet-
ter encapsulate the functionality you wish to offer.

 I tell you all this to point out that COM itself is not a new technology. It’s old and
stable. It’s proven, and when used without brokers or late-binding, it’s very fast com-
pared to managed code. C++ developers use it natively all the time, because many of
the newer Windows APIs are surfaced through COM.

WinRT components are essentially COM components without an IDispatch inter-
face. A friend (who wished not to be identified) showed a room full of people how to
create WinRT components using straight C++ COM APIs, skipping metadata, and skip-
ping anything else that might otherwise make it look obviously WinRT-ish. Rather than
using CoCreateInstance, (COM Object) functions like RoActivateInstance (Run-
time Object) were used.

AN EVOLUTION

That’s not to say that COM hasn’t evolved in all this time. When it was first under
development, the team called it by a number of names, one of which was Modern
COM, or MoCo. To support WinRT, COM added long-awaited support for .NET-style
generics. As you’ll see in the next section, it’s not the only .NET feature the team
decided was worth using. Within Microsoft, this is a big deal, because COM and .NET
were two competing technologies—WinRT really helps bring them together.

 Another capability that was added comes in the form of the IInspectable inter-
face. It’s this interface that provides the metadata to the code implementing the pro-
jection, primarily for JavaScript and other dynamic languages. C++ components must

43COM + .NET metadata = WinRT
implement this interface in order to be considered compatible with WinRT and be
available to other languages.

 There’s a lot more there interface-wise, but this book isn’t about COM develop-
ment or WinRT apps in C++, so I’ll skip the heavy details. There’s more information in
MSDN should you desire to really know what’s going on under the covers from a C++
perspective.

ERROR REPORTING

One thing COM doesn’t have, unfortunately, is a good .NET-style exception infrastruc-
ture. COM components still return HRESULTs (error handles), which often don’t pro-
vide much in the way of help when debugging. Windows itself has communication
mechanisms built in to provide error context to debuggers (not runtime). In addi-
tion, the WinRT and .NET teams have done a lot of work to help minimize our expo-
sure to raw HRESULTs, but we’ll still see them from time to time, especially in this first
version of WinRT. Knowing that, it’s useful to understand what an HRESULT actually is,
although most of us will simply Google/Bing the full number. Figure 3.4 shows the
breakdown of this 32-bit number.

PERFORMANCE IMPROVEMENTS

WinRT implements a number of performance improvements that weren’t there in pre-
vious versions of COM. For example, many of the APIs are now asynchronous. This
helps us maintain a fluid UI without the jitter and lag associated with tying up the UI
thread with long-running operations.

 Another improvement is to the infrastructure itself. WinRT has a new HSTRING
type to help manage string transfers across boundaries and mapping them to C++,
.NET, and JavaScript native string types. In COM in the past, passing strings across the
managed/native boundary was a source of performance issues. In fact, this new string
type is called a fast-pass string. An interesting implication of this is that the specific
performance characteristics of System.String in .NET that you’ve learned over the
years may simply no longer apply when communicating with WinRT components. Any
string that’s going to be passed to a WinRT API is allocated in Windows, as opposed to
in the .NET Framework. The compiler handles this for you transparently.

Figure 3.4 HRESULTs are back! It’s useful to know what they actually mean.

44 CHAPTER 3 The Windows Runtime and .NET
 One of the biggest additions to COM is the self-describing capability provided by
the infrastructure and by an unexpected ally: .NET metadata.

3.2.2 Metadata

Standard Win32-style flat DLLs aren’t self-describing. You have to know their entry
points, that is, the functions they define. The result of this is a proliferation of con-
structs used to access the functions and entire websites dedicated to defining the API
signatures.3 Seemingly half of MSDN is dedicated to just descriptions of the parame-
ters and types used to invoke native Win32 calls.

 That’s hardly programmer friendly
and, quite honestly, was a problem that
was solved with type libraries and with
.NET in general. IntelliSense and the
object browser are my primary sources
of documentation. What makes that
possible? If you guessed “metadata,”
then you’re correct. Metadata is so
cool, in fact, that I have a shirt with it
right on the front (figure 3.5).

CLI metadata enables a component to state all the types it makes available to out-
side components. That includes all the classes, structs, functions, methods, enums,
and so on that it includes. This metadata is what .NET reflection works from when pro-
viding information about a .NET assembly.

 But unlike a .NET assembly, a native code component can’t contain usable embed-
ded metadata. Because all of the built-in WinRT components are native COM compo-
nents, the metadata needs to be external in a .winmd file. This is similar in concept to
the external type libraries (.tlb) we used to run into so often when consuming compo-
nents in VB6 and the early days of .NET.

 One interesting aspect of the metadata is that because it’s .NET compatible, you
can use existing tools such as ILDASM (.NET Intermediate Language Disassembly tool)
to inspect it. To try this out yourself, first pull up a Visual Studio 2012 command
prompt. If you don’t already have this pinned to your start screen or taskbar, simply
type command from the Start screen and pick one of the four VS2012-specific entries
that come up. Figure 3.6 shows how.

 On my machine, ILDASM is located in C:\Program Files (x86)\Microsoft SDKs\Win-
dows\v8.0A\bin\NETFX 4.0 Tools\ildasm.exe. Of course, you can navigate directly to it
and run it from there, but knowing how to get to the VS2012 command prompt is use-
ful. Once ILDASM is open, select File > Open and browse to the Windows.winmd file.
On my Windows 8 64-bit machine, it’s located here: C:\Program Files (x86)\Windows
Kits\8.0\References\CommonConfiguration\Neutral.

3 “A wiki for .NET developers,” Do interop the wiki way, http://pinvoke.net.

Figure 3.5 Metadata is cool. Yes, that is my shirt.
Yes, my wife lets me dress like that in public. \m/

http://pinvoke.net

45COM + .NET metadata = WinRT
The Windows.winmd file contains the metadata for the entire WinRT API—everything
in the Windows.* namespaces when you look in the object browser. Figure 3.7 shows
ILDASM with the WinRT metadata library loaded.

 Despite using CLI metadata, WinRT isn’t a managed platform. You previously
learned that it’s built using native code. As much as I like .NET, imposing the overhead
of a JIT compiler, runtime startup, and periodic garbage collection to platforms such
as C++ and DirectX wouldn’t make anyone happy. Instead, WinRT, being built on COM,
is a reference-counted platform. That is, when you obtain a reference to a WinRT

Figure 3.6 On the Start screen, type command to pull up a list of command
prompts. On a full Visual Studio 2012 Premium or Ultimate install, you’ll see four
options plus the generic command prompt. Pick any of the four to get a command
prompt with the VS2012 tool locations added to the path.

Figure 3.7
ILDASM with the
Windows.winmd file
loaded and the
Windows.UI node
expanded to view the
XAML definitions. From
here, it looks like any
other .NET assembly,
but this is just
metadata.

46 CHAPTER 3 The Windows Runtime and .NET
object, an internal counter is incremented. When you release the reference, the coun-
ter is decremented. When the counter reaches zero, the object cleans itself up.

 Metadata alone doesn’t seem sufficient to explain how these objects look so much
like .NET. Something else must be going on here. What is it, you ask? The projection.

3.2.3 Projections

Projections build on metadata to provide language-specific versions of the WinRT
APIs. They’re purpose-built by the language implementation teams to provide a high-
performance version of the API.

 In the .NET world, projections are thin wrappers, much like the Runtime Callable
Wrappers (RCWs) we have when importing COM components into .NET. With the
exception of string processing and some other performance enhancements, they’re
almost identical to classic RCWs.

 One of the more interesting things about projections is that they take on the char-
acteristics of their target languages’ standards. For example, the JavaScript projections
use JavaScript camelCase form for methods. The same APIs in the .NET projections
use the familiar PascalCase form.

 There’s even more to it than that (especially around asynchronous function han-
dling, which we’ll discuss in chapter 16), but let it suffice to say that the projections,

Potential for circular references

One of the goals of .NET was to eliminate
the circular reference issue that can
show up in reference-counted systems
when two objects have references to
each other, but nothing else references
them, as illustrated at right.

In this example, Object A has a reference
to Object B. Therefore, Object B’s refer-
ence count is at least 1. Object B then
has a reference to Object A; therefore Ob-
ject A’s reference count is at least 1. These objects would never automatically clean
themselves up until at least one of the references is manually removed.

This is something COM developers have dealt with for ages in return for not having
the overhead of garbage collection. I point this out just to remind you that although
the objects look like .NET objects, and because of the projections, even seem to be-
have like .NET objects, they’re not .NET objects.

WinRT components are careful about avoiding circular references among themselves,
but if you create your own WinRT extension components (in chapter 21, when I show
how to integrate with Xbox controllers), you’ll need to pay attention to the possibility
of circular references.

47Client technologies and languages
which are maintained by Windows teams and which are updated in lock-step with the
platform, are your interface to WinRT from the managed and scripting languages sup-
ported by the platform.

 I’ve mentioned several times that WinRT was created to be consumed efficiently
from many different types of languages, including native, scripting, and managed. In
the next section, we’ll look at the current choices we have when deciding which to
pick.

3.3 Client technologies and languages
WinRT was designed from the start with multiple language support in mind, more so
than even straight COM was. In the previous section, you found out that the language
projection is the way that WinRT is exposed to the other languages. Therefore, the list
of languages supported by WinRT is defined by the availability of an appropriate lan-
guage projection.

 Out of the box, Microsoft provides the languages and presentation layers shown in
table 3.1.

The parity between the capabilities, with the exception of DirectX, is impressive. You
can’t do more with C#/XAML than you can with a JavaScript/HTML, or vice versa.
They’re equally powerful in terms of system access. A notable standout is C++ and
DirectX. The only way to use DirectX in Windows Store apps is to use C++ (or a C++
wrapper around DirectX); XNA isn’t supported for Windows Store apps. Other than
DirectX, C++ is still required to use the same whitelisted Win32 calls and Windows
Runtime API that C#, VB, and JavaScript applications use.

Table 3.1 Languages and presentation technologies that can create Windows Store Modern Style apps

Language Presentation Description

C#/VB XAML C# and VB languages using the Windows Runtime and .NET 4.5, with the pre-
sentation layer created in XAML. The resulting application code looks very
similar to Silverlight. This is the approach most current .NET and Silverlight/
WPF developers will gravitate to, and it’s the one I’ll cover in this book.

C++/CX XAML C++/CX using the Windows Runtime and XAML. This approach enables you
to use existing C++ code or skills combined with the power of XAML for cre-
ating the interface. It’s possible to combine this approach with, DirectX for
the best of both worlds. Most code is standards-based C++, with only the
WinRT interface code (such as that using XAML) using CX.

C++/CX DirectX Primarily used for games or performance-sensitive visualizations, this
approach uses C++ along with the Windows Runtime and DirectX libraries
for frame-based graphics applications. If you’ve typically built XNA applica-
tions in the past, this is the route to take in Windows. As with XAML, most
code is standards-based C++, with only the WinRT interface code using CX.

JavaScript HTML/CSS A new and exciting way to create native client-side Windows applications
using HTML and CSS for the presentation layer, along with the Windows
Runtime and JavaScript for the code.

48 CHAPTER 3 The Windows Runtime and .NET
 Both C++ and C#/VB can create WinRT extension assemblies that may be used by
any other supporting language. For performance reasons, when creating an extension
assembly, you’ll probably want to do it in C++; otherwise you incur the overhead of the
CLR spinning up. It’s through extension assemblies that you can use features available
only in C++ (such as DirectX) from a .NET C# application.

 Which technology you choose then comes down to which language and presenta-
tion you’re most comfortable with. You no longer need to choose capability over
familiarity. Regardless of your comfort zone and preferences, as a developer you have
a solid set of equally capable languages and presentation styles from which to choose.

 Of course, I’m going to make the assumption that readers of this book have cho-
sen C# (or VB) .NET and XAML. With that understood, let’s take a look at some of the
interesting WinRT and .NET 4.5 APIs available to us.

3.4 A brief tour of WinRT and .NET 4.5
When you create a Windows Store app project, the Windows Store app profile for
.NET 4.5 and the entirety of WinRT are already referenced and available to you, as
shown in figure 3.8. They’re guaranteed to be on the machine you deploy to, and
because you don’t have to package them with your app, auto-referencing them carries
no real cost.

 The .NET 4.5 subset made available to Modern Style apps is commonly referred to
simply as .NET for Windows Store apps. It’s not a reimplementation of .NET as Silver-
light was but rather a set of shadow assemblies that point right back into the main
.NET 4.5 installation on the machine. That means you’re using real .NET, with the only
limitations made being for security, execution speed/smoothness, and appropriate-
ness (and, of course, eliminating things that duplicate WinRT functionality), not for
download size or cross-platform capability.

 I’m not going to duplicate all of MSDN here, but I did want to call out a few inter-
esting namespaces in both .NET 4.5 and WinRT. The rest of this book will show how to
use a large number of APIs in WinRT and in .NET 4.5 as well, but some deserve calling
out in advance. Table 3.2 shows some that I find good to know from the start. Remem-
ber, anything that starts with Windows.* is WinRT, everything else is .NET.

Figure 3.8 When you create a
project, the entirety of the
platform is already referenced
for you. Because these are
guaranteed to exist on the
target machine, there’s no
deployment penalty.

49A brief tour of WinRT and .NET 4.5

Table 3.2 A few interesting WinRT and .NET 4.5 APIs

Namespace Why it’s interesting

Windows.UI.Xaml.* This is where you’ll find almost the entire XAML
stack. Yes, it’s all in native code, and it’s built into
the core API of the platform.

Windows.Data.Json Includes basic JSON parsing functionality. I’ve
found that most people prefer to use another
library like JSON.NET instead.

Windows.Data.Xml.* The XML DOM parser and XSLT processor are both
found here.

Windows.Devices.* All the device access functionality is in here.

Windows.Foundation You’ll see more of this in the next chapter. This is
where the asynchronous support code lives.

Windows.Networking.* This is where much of the support for networking
lives. For most typical networking work you do,
however, you’ll use the .NET classes. If you’re look-
ing for sockets, websockets, background trans-
fers, push notifications, or basic connectivity
information, you’ll find it here.

System.Net.* HttpClient, Cookie, HttpWebRequest,
WebRequest, and all the usual .NET networking
classes are located here, with the exception of
sockets, which is in Windows.Networking.

Windows.Storage.* Windows.Storage has much of what you used
to rely on System.IO for in .NET.

Windows.Web.Syndication RSS processing. You can find AtomPub process-
ing in Windows.Web.AtomPub.

Windows.Security.* If you need to authenticate a user, identify a user,
or work with cryptography, this is the root
namespace you’ll need.

Windows.Media.* Many apps need to work with video or audio. As
you’d expect, this is built right into WinRT and
made available to any app.

System.Linq.* Linq remains in .NET, not in WinRT.

System.Runtime.Serialization.Json JSON serialization/deserialization.

System.Runtime.Serialization.Xml XML serialization/deserialization.

System.Runtime.WindowsRuntime To make working with WinRT easier for .NET devel-
opers, it made sense to include a number of exten-
sion methods that work on WinRT types. You’ll find
them here. Note that the namespaces inside this
assembly differ from the assembly name.

50 CHAPTER 3 The Windows Runtime and .NET
One thing you may immediately notice is just how much of .NET has been refactored
into WinRT and native code. It’s fast, it’s available to more than just .NET apps, and it’s
guaranteed to be there. There’s much more than I included in this table, of course—
even the .NET subset available to Windows Store apps is huge. We’ll touch on a good
bit of it throughout the rest of this book.

3.5 Summary
Windows 8 offers a brand-new platform for application development. For those of us
who like to code in .NET and design in XAML, that platform revolves primarily around
.NET and the Windows Runtime. WinRT is the newest flavor of COM with the addition
of .NET metadata. Metadata makes WinRT discoverable and usable by a number of lan-
guages, including JavaScript, C#/VB, and C++.

 Individual languages use projections to make the COM-oriented WinRT API
friendly to them. In the case of .NET, these projections are essentially Runtime Call-
able Wrappers, much like we’ve used to access COM components in the past. The
WinRT API takes over a large amount of what used to be .NET code in System.* and
moves it to native code in Windows.*.

 The developer improvements in Windows 8 are much larger than just a new API,
however. Windows 8 includes a new application deployment model, the .appx, and an
app store that knows how to sell them. The Windows app store verifies that the appli-
cation in the .appx is safe to use (and that it adheres to the sandbox) and makes it
available to consumers to use. Unlike desktop development, you can’t simply send
someone a zip file with your compiled application; you need to use known and trusted
deployment mechanisms.

 In addition to the deployment model, Windows 8 includes a new driver model.
The new model helps keep the environment safe and performing well by restricting
access to devices that haven’t been specifically produced with WinRT and Windows
Modern Style apps in mind.

 In the next chapter, we’ll look at one of the most important namespaces in WinRT:
Windows.UI.XAML.

System.Runtime.WindowsRuntime.UI.Xaml This includes a small amount of the XAML stack
that’s implemented in .NET rather than native code
in WinRT. These are generally structures and enu-
merations, not rendering, controls, or other core
XAML functionality.

System.Threading.Tasks.* This is the Task Parallel Library. It’s not only built
into .NET 4.5, but it’s also a core part of how you
interact with asynchronous code in WinRT.

Table 3.2 A few interesting WinRT and .NET 4.5 APIs (continued)

Namespace Why it’s interesting

XAML
XAML (Extensible Application Markup Language) is a declarative language that
enables you to create and initialize objects using XML. This approach to develop-
ment was popularized by the WPF and Silverlight, as well as by Silverlight on Win-
dows Phone.

 Everything you can do in XAML, you can do in code. But to make the most of
the platform and its tooling, you’ll want to embrace the code-plus-markup philoso-
phy rather than go with a 100% code solution. The road to this approach has been
well trodden by Silverlight, WPF, and Windows Phone, so I’m completely comfort-
able in saying code plus markup should be the default approach for almost every
application you write.

NOTE The markup language, the property system, and the things that
make those two work together are collectively referred to as WinRT XAML,
mostly because it’s easier than saying “C# or VB with .NET and the Windows
Runtime using XAML for presentation.” Trust me on that.

This chapter covers
■ XAML elements and namespaces
■ Properties, events, and commands
■ Object trees and namescope
51

52 CHAPTER 4 XAML
With Windows 8, for the first time XAML is built in at the OS level. Every Windows 8
machine will have WinRT XAML, a native implementation optimized for the Windows
platform. This is in contrast to WPF, which required a download of the .NET Frame-
work for a mostly managed implementation of XAML, and Silverlight, which had simi-
lar requirements. It’s nice to know that Microsoft both believes in the appropriateness
of XAML and is willing to put in the extra effort to make sure it has an excellent imple-
mentation in Windows.

 This chapter will cover all the XAML basics you need to know to make use of the
rest of the building blocks in this book. I’ll start with those things that give XAML its
structure: elements and namespaces.

 From there, a dive into the property system is required in order to understand
dependency and attached properties and how they enable binding and animation.
The types of properties you’ll use in XAML aren’t the same as you may be using; they
have a different underlying implementation. Along the way, we’ll also look at a few dif-
ferent ways to specify properties in markup.

 I’ll wrap up this chapter with a look into the object trees that result from parsing
XAML and the namescopes functionality required to prevent naming collisions.

 First, to understand the structure of a XAML file, it’s important to understand the
representation and use of objects, namespaces, properties, and events.

4.1 Elements and namespaces
Any XML file is made up of individual elements each enclosed in angle brackets. By
default, there are no known elements; for schema-validated XML, they all must be
defined in a schema somewhere, identified by a namespace. XAML, being imple-
mented in XML, follows these rules.

 In this section, I’ll first present the implementation of elements as used in XAML.
You’ll see how elements have a 1:1 correspondence with objects in the runtime. You’ll
also learn how they are instantiated and how they’re nested.

 After the discussion of elements, I’ll cover namespaces. Many people who have
used XML have never run across XML namespaces, because they didn’t work against a
schema. In XAML, anything you import must exist in a namespace, so understanding
how to use them is fundamental to making XAML work.

 I’ll start with looking at how elements and code relate.

4.1.1 Objects as elements

The XAML format enables you to easily visualize a hierarchy of elements while separat-
ing presentation from code. XAML represents types and properties, not logic. In
XAML, each element maps to a .NET or WinRT type. Similarly, each attribute within an
element corresponds to a property of that type. For example, these statements are
functionally equivalent:

<TextBlock x:Name="tb" Text="Hello World!" />

TextBlock tb = new TextBlock();
tb.Text = "Hello World!";

http://bit.ly/WinRTXamlNamescope
http://bit.ly/WinRTXamlNamescope

53Elements and namespaces
The TextBlock in XAML is a representation of the same class as the TextBlock in
code. Note also that the TextBlock element in the XAML implicitly calls the construc-
tor that you explicitly call in code. This initialization occurs because, each time an ele-
ment is created in XAML, the corresponding type’s default constructor is called
behind the scenes.

TIP In XML, and therefore in XAML, elements are surrounded by angle
brackets. Attributes are surrounded by quotes whether they are strings, num-
bers, dates, or anything else.

Objects (or instances of types) are represented in XAML using XML elements. The ele-
ments have the same name as the associated class and are instantiated by the XAML
parser at runtime.

NOTE Any type you use in XAML must have a default (parameterless) con-
structor. Windows Runtime XAML currently has no provision for passing argu-
ments into a constructor or an initialization function, so you’ll need to make
sure your types can be initialized using defaults and properties alone.

Certain types of objects may contain one or more of other
nested objects. For example, a button may contain a single con-
tent object, which itself may contain one or more other objects.
Figure 4.1 shows three lines of text in a button.

 In the following listing, the result of which is shown in figure
4.1, the Page contains the Grid, the Grid contains the Button,
and the Button contains a StackPanel, which is a panel that by
default lays its children out in a vertical list. The StackPanel
itself contains three TextBlock elements. (Grid and Stack-
Panel layout will be covered in detail in the next chapter.)

<Page
 x:Class="XamlExample.MainPage" IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:XamlExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Button Height="100" Width="150" Margin="10">
 <StackPanel>
 <TextBlock Text="First Line" />
 <TextBlock Text="Second Line" />
 <TextBlock Text="Third Line" />
 </StackPanel>
 </Button>
 </Grid>
</Page>

Listing 4.1 XAML showing a hierarchy of nested objects

Figure 4.1
The button from listing
4.1 showing three
TextBlocks nested
inside a StackPanel

Three TextBlocks
in StackPanel

http://bit.ly/WinRTXamlDP
http://bit.ly/WinRTXamlDP

54 CHAPTER 4 XAML

n

The Panel and Button are both content controls, which can contain a composition of
other elements. It’s important to understand that a content control can only have one
direct child element, typically a panel (StackPanel, Grid, Canvas, and so on) that
holds the other elements. In this case, the Button contains a StackPanel, which then
includes the real content.

 The Grid and StackPanel are both Panels, which is a type that has a Children col-
lection to allow multiple contained elements. The x:Name and x:Class properties are
part of the namespace specified by the xmlns:x statement, which I’ll cover in the next
section. We’ll discuss panels in detail in chapter 6.

NOTE In many of the examples in this book, I use black text on a white back-
ground, all hardcoded in the XAML. This is a concession to print, where a
black background makes things difficult to read. In your own work, you’ll usu-
ally want to go with the color settings as provided in the templates. By default,
that’s white text on a dark charcoal gray background. WinRT provides stan-
dard dark/light theme colors but currently doesn’t provide access to the
user’s color preferences as set in the control panel.

The ability to flexibly nest objects permits a composition approach to UI design.
Rather than having to purchase or custom-code a button control that allows, say, three
lines of text and an image, you can simply compose those into an appropriate layout
panel and make that panel the content of the button control.

 This nesting of objects is part of what gives you an object tree. We’ll cover that in
more detail later in this chapter.

 Now that we’ve covered the basic structure of a XAML file, let’s talk about how you
differentiate your AwesomeButton control from my AwesomeButton control, even
though we used the same control name: namespaces.

4.1.2 Namespaces

Namespaces in XAML, which are just XML namespaces, are similar to namespaces in
other languages such as C# and Java. To specify where to look for an element, you ref-
erence a namespace in XAML either on that element or more typically at the root ele-
ment of the XAML file. Namespaces can be used on the element they’re declared on
as well as in any nested element. The following listing illustrates the use of the several
different namespaces, all declared at the root Page.

<Page
 x:Class="NamespaceExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:NamespaceExample"
 >

 <Grid>
 <local:RadialLayoutPanel>

Listing 4.2 Namespaces in XAML

Standard XAML
namespace

Declare
amespaces

Use local
namespace

55Elements and namespaces
 <TextBlock Text="First Item" />
 <TextBlock Text="Second Item" />
 <TextBlock Text="Third Item" />
 <TextBox x:Name="UsernameField" />
 </local:RadialLayoutPanel>

 </Grid>
</Page>

Every XAML file has the default namespace declared using xmlns without any prefix
character. Most XAML files also have other namespaces such as d and mc, not shown
here. Those are used to provide design-time specific behavior in Visual Studio and
Expression Blend.

 The x namespace is used to provide the Name property for elements as well as the
Key property for items in a dictionary. There’s nothing special about the use of x,
that’s just the standard convention; you could name it foo if you wanted, although I
don’t recommend it. Technically you can even use just Name on elements, but for the
best compatibility with Silverlight and WPF XAML, you’ll want to use x:Name instead.

 In an application of any real complexity, there’ll come a time when you need to
reference classes declared either in your own project or in an external referenced
library. This is accomplished using the using statement followed by the code
namespace the class is declared in. In this example, the local namespace refers to the
root of this project. If I had another namespace named Controls in the project, I
could declare the namespace like this:

xmlns:localControls="using:NamespaceExample.Controls"

You can, of course, call the prefix anything you want. In keeping with past practices, I
named it localControls to help differentiate it from controls imported from other
assemblies. There are certain common conventions, such as the use of local and x,
but otherwise, how you name your prefixes is up to you.

TIP The using statement is new to WinRT XAML. If you’re coming from Sil-
verlight or WPF, you may be used to using the clr-namespace approach. This
approach is no longer appropriate in WinRT XAML because elements can
come from Windows Runtime libraries, not just from .NET assemblies.

Except for the default namespace, which lacks a prefix, all namespaces declared in
XAML are used by using the <prefix>:<element or attribute> syntax, several exam-
ples of which may be seen in listing 4.2.

 Elements and namespaces make up most of the structure of XAML. Elements pro-
vide a way to instantiate objects in the runtime or in your own code. Namespaces pro-
vide a way to import objects from different libraries. Both are essential elements of
XAML.

 You can accomplish a lot with just elements grouped by namespaces. But you’ll typ-
ically need a way to work with the individual properties of the objects/elements.

Use x
namespace

56 CHAPTER 4 XAML
4.2 Properties
Most classes we develop expose properties that can be manipulated by consuming
code. For example, a Person class might expose a LastName property. Similarly, the
TextBlock class exposes, among many others, a Text property. These properties pro-
vide a wrapped way to manipulate the data associated with a class.

 In WinRT XAML, properties are even more important because they can be the
source or target of data binding, or the target of an animation, or more. For those rea-
sons, a special property system had to be developed.

 In this section I’ll cover how to use properties in XAML. First, I’ll explain the differ-
ent ways of specifying properties using both property element syntax and XML attri-
butes. From there, I’ll go into the dependency property system and how it works with
the other WinRT XAML subsystems. At the same time, we’ll look at a specialized type of
dependency property called an attached property.

 Finally, we’ll take a brief look at property paths—something that will be essential
when you look at control templates or animation.

 Let’s start by figuring out how to specify property values in markup.

4.2.1 Property syntax

There are two ways to reference properties in XAML: inline with the element as you
would any XML attribute, or as a nested subelement. Which you should choose
depends on what you need to represent. Simple values are typically represented with
inline properties, whereas complex values are typically represented with element
properties.

 The use of an inline property requires a type converter that will convert the string
representation—for example, the "Black" in Background="Black"—into a correct
underlying type (in this case, a SolidColorBrush). The example in the following list-
ing shows a built-in type converter being used to convert the string "Black" for the
inline property Background. The type converter is built into the system and invoked
automatically.

<Page
 x:Class="PropertyExample.MainPage"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PropertyExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="Black"
 Width="600">

 </Grid>
</Page>

Listing 4.3 Specifying a property value inline using an XML attribute

Inline
properties

57Properties
This listing also shows a numeric property, Width, which gets converted to a double
from the string "600". Built-in converters can be extremely simple as in the numeric
case or more complex as in the case of the brush converter or, as you’ll see in later
chapters, the mini-language that specifies points in geometry.

 Another way to specify properties is to use the expanded property element syntax.
Although this can generally be used for any property, it’s typically required only when
you need to specify something more complex than the inline syntax will easily allow.
The syntax for element properties is <Type.PropertyName>value</Type.Property-
Name>, as shown here.

<Page
 x:Class="PropertyExample.MainPage"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PropertyExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Width="600">
 <Grid.Background>
 Black
 </Grid.Background>
 </Grid>
</Page>

The use of the string to invoke the type converter is, in its end result, identical to
using <SolidColorBrush Color="Black" /> in place of "Black". Though these exam-
ples are rarely seen in practice, the more complex example of setting the Background
property to a LinearGradientBrush is common, so we’ll cover that next.

 Rather than have the brush represented as a simple string such as "Black" as shown
in the previous listing, the value can be an element containing a complex set of ele-
ments and properties such as the <LinearGradientBrush> shown in the next listing.

<Page
 x:Class="PropertyExample.MainPage"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PropertyExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">
 <Grid Width="600">
 <Grid.Background>
 <LinearGradientBrush>

Listing 4.4 Specifying a property value using property element syntax

Listing 4.5 A more complex example of the property element syntax

Element
property

Background
property

58 CHAPTER 4 XAML
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.0" Color="Black" />
 <GradientStop Offset="0.5" Color="Blue" />
 <GradientStop Offset="0.5" Color="Orange" />
 <GradientStop Offset="1.0" Color="DarkGray" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Grid.Background>
 </Grid>
</Page>

In this example, you expand the Background property using property element syntax.
You then have the ability to nest a complex type, such as the LinearGradientBrush,
within it.

 Now that you know how to specify properties in markup, let’s dive deeper into how
those properties work.

4.2.2 Dependency properties

Dependency properties are part of the property system introduced with WPF and Silver-
light and used in WinRT XAML. In markup and in consuming code, they’re indistin-
guishable from .NET properties, except that they can be data bound, serve as the
target of an animation, or be set by a style.

TIP A property can’t be the target of an animation or obtain its value
through binding unless it’s a dependency property. We’ll cover binding in
detail in chapter 8.

To have dependency properties in a class, the class must derive from Dependency-
Object or one of its subclasses. Typically, you’ll do this only for visuals and other ele-
ments that you’ll use within XAML and not in classes defined outside of the user
interface.

 In regular code, when you create a property, you typically back it by a private field
in the containing class. Storing a dependency property differs in that the location of
its backing value depends on its current state, and the CLR property wrapper is just a
convenience, as shown in figure 4.2. The way that location is determined is called
value precedence.

Figure 4.2 Dependency
properties aren’t backed by
private fields like normal
CLR properties. Instead, the
CLR property wrapper is just
a convenience. Inside the
wrapper, it uses the
SetValue and GetValue
methods to access the
dependency property itself.

59Properties
Figure 4.3 Value precedence for dependency properties. Value
changes from animation take precedence over locally set values,

which have precedence over template values, and so on. This
precedence allows properties to have meaningful value changes in the
app and also respond correctly to setting values in markup and code.

VALUE PRECEDENCE

Dependency properties obtain their value from a variety of
inputs. What follows is the order the XAML property system
uses when assigning the runtime values of dependency
properties, with the highest precedence listed first, as
shown in figure 4.3.

 Here’s the precedence in more detail:

■ Active or hold animations—Animations will operate on the base value for the
dependency property, determined by evaluating the precedence for other
inputs. In order for an animation to have any effect, it must be highest in prece-
dence. Animations may operate on a single dependency property from multiple
levels of precedence (for example, an animation defined in the control tem-
plate and an animation defined locally). The value typically results from the
composite of all animations, depending on the type being animated. If you
think about animating the position of an element, you’ll want that animated
value to take precedence over one set in code or markup. The property system
helps ensure that it happens.

■ Local value—Local values are specified directly in the markup and are accessed
via the property wrappers for the dependency property. When you directly
assign a value to a property in XAML or in code, that’s a local value. Because
local values are higher in precedence than styles and templates, they’re capable
of overriding values such as the font style or foreground color defined in the
default style for a control.

■ Templated properties—Used specifically for elements created within a control or
data template, their value is taken from the template itself.

■ Style setters—These are values set in a style in your application via resources
defined in or merged into the UserControl or application resource dictionar-
ies. We’ll explore styles in chapter 9.

■ Default value—This is the value provided or assigned when the dependency
property was first created. If no default value was provided, normal runtime
defaults typically apply.

There are other subtleties to this. For example, controls typically have a default
implicit style, which itself sets property values and includes a control template. That
control template may contain visual states, which are themselves implemented as ani-
mations in a bit of an Inception-esque nesting. If you understand the basics of value
precedence, you can always figure out where a value is coming from. I still find it eas-
ier than trying to debug web pages with complicated CSS layouts and rules.

60 CHAPTER 4 XAML
 The strict precedence rules allow you to depend on behaviors within the runtime,
such as being able to override elements of a style by setting them as local values from
within the element itself. In the next listing, the foreground of the button will be Red
as set in the local value and not Black as set in the style. The local value has a higher
precedence than the applied style.

<Page
 x:Class="XamlExample.MainPage"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:XamlExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Page.Resources>
 <Style x:Key="ButtonStyle"
 TargetType="Button">
 <Setter Property="Foreground"
 Value="Black" />
 <Setter Property="FontSize"
 Value="24" />
 </Style>
 </Page.Resources>
 <Grid>
 <Button Content="Local Values at Work"
 Style="{StaticResource ButtonStyle}"
 Foreground="Red" />
 </Grid>
</Page>

The Style tag in Page.Resources
is a reusable asset that sets some key
properties for our button. Prece-
dence in this case works very much
like precedence in CSS: A locally
declared style property overrides
that defined at a higher level. The
end result, in this case, is the prece-
dence shown in figure 4.4.

Figure 4.4 The dependency property
precedence for the Foreground property

of the TextBox from listing 4.6. In this
example, the TextBox ends up

with a Red foreground.

Listing 4.6 Dependency property precedence rules in practice

Style definition

Style in use

Local Value

61Properties
For more information on dependency properties, please see the MSDN page here:
http://bit.ly/WinRTXamlDP. You’ll also implement your own dependency properties
later in this book when you create custom controls and panels.

 There’s one other type of dependency property you must understand before you
can truly grok the property system used in XAML. That type of property also has a
slightly odd appearance and is called an attached property.

4.2.3 Attached properties

Attached properties are a specialized type of dependency property that’s immediately
recognizable in markup because of the TypeName.AttachedPropertyName syntax. For
example, Canvas.Left is an attached property defined by the Canvas type. What
makes attached properties interesting is that they’re not defined by the type you use
them with; instead, they’re defined by another type in a potentially different class
hierarchy. The class using the property doesn’t need to have any knowledge of the
class that defines the property.

 Attached properties allow flexibility when defining classes because the classes
don’t need to take into account every possible scenario in which they’ll be used and
define properties for those scenarios. Layout is a great example of this. The flexibility
of the layout system allows you to create new panels that may never have been imple-
mented in other technologies—for example, a panel that lays out elements by degrees
and levels in a circular or radial fashion versus something like the built-in Canvas that
lays out elements by Left and Top positions.

 Rather than have all elements define Left, Top, Level, and Degrees properties (as
well as GridRow and GridColumn properties for grids) like you would in a technology
like Windows Forms, you can use attached properties. The buttons in listing 4.7, for
example, are contained in panels that have greatly differing layout algorithms, requir-
ing different positioning information. In this case, we’ll show a fictional RadialPanel
in use (the panel doesn’t exist, so the markup won’t compile as is).

<Page
 x:Class="XamlExample.MainPage"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:XamlExample"
 xmlns:panels="usingXamlExample.Panels"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <StackPanel>
 <Canvas Width="400" Height="200">
 <Button Canvas.Left="10"
 Canvas.Top="50"
 Width="200" Height="100"

Listing 4.7 Attached properties in use

Attached
properties

62 CHAPTER 4 XAML

Pa

p
Can
 Content="Button in Canvas" />
 </Canvas>

 <panels:RadialPanel Width="400" Height="400">
 <Button panels:RadialPanel.Degrees="25"
 panels:RadialPanel.Level="3"
 Width="200" Height="100"
 Content="Button in Radial Panel" />
 </panels:RadialPanel>
 </StackPanel>

</Page>

Attached properties aren’t limited to layout. You’ll find them in the animation engine
for things such as Storyboard.TargetProperty as well as in other places of the frame-
work. For more information on attached properties, please see the MSDN page at
http://bit.ly/WinRTXamlAttachedProps.

4.2.4 Property paths

Before we wrap up our discussion of properties, there’s one concept left to under-
stand: property paths. Property paths provide a way to reference properties of objects in
XAML both when you have a name for an element and when you need to indirectly
refer to an element by its position in the tree.

 Property paths can take several forms and may dot-down into properties of an
object. They can also use parentheticals for indirect property targeting as well as for
specifying attached properties. Here are some examples of property paths for the
Storyboard target property:

<DoubleAnimation Storyboard.TargetName="MyButton"
 Storyboard.TargetProperty="(Canvas.Left)" ... />
<DoubleAnimation Storyboard.TargetName="MyButton"
 Storyboard.TargetProperty="Width" ... />
...
<Button x:Name="MyButton"
 Canvas.Top="50" Canvas.Left="100" />

Properties are one of the pieces that define an object’s interface. When looking at
XAML, most of what you see will be objects and their properties. But how does WinRT
actually see all that? What’s constructed from this information? XAML is simply a rep-
resentation of objects and their properties, structured into an object tree.

4.3 Object trees and namescope
In the previous sections, I mentioned the concept of an object tree. In order to under-
stand the object tree, you need to understand the layout and contents of XAML files.
Once you do, it’s easier to conceptualize the object tree and its related concept, name-
scope.

Attached
properties

Path to a
normal
property:
MyButton

th to an
attached
roperty:
vas.Left

63Object trees and namescope
 A common misconception is that the runtime creates XAML for any objects you cre-
ate in code. In fact, the opposite is what happens: The runtime creates objects from
XAML. Objects you create in code go right into the trees as their native object form. Ele-
ments in XAML are processed and turned into objects that go into the same tree.

4.3.1 Object trees

Now that we’ve covered the structure of a XAML file, you can look at one and quickly
realize that it represents a hierarchical tree of objects starting from the root (typically
a Page) and going all the way down to the various shapes, panels, and other elements
that make up the control templates in use. That hierarchical structure is known as an
object tree.

 The following listing shows an example page’s XAML. In this example, I have a grid
with a couple of TextBlock elements and a ListBox element. For illustrative pur-
poses, the ListBox has several TextBlock elements as items (typically, you’ll bind the
ListBox to a collection, as you’ll learn in chapter 9).

<Page
 x:Class="XamlExample.MainPage"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:XamlExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid>
 <TextBlock Foreground="Black"
 Text="First TextBlock" />
 <ListBox Foreground="Black"
 Margin="40">
 <ListBox.Items>
 <TextBlock Text="Item 1" />
 <TextBlock Text="Item 2" />
 <TextBlock x:Name="Item3"
 Text="Item 3" />
 </ListBox.Items>
 </ListBox>
 <TextBlock Foreground="Black"
 Text="Second TextBlock"
 Margin="20"/>
 </Grid>
</Page>

Listing 4.8 XAML with nested elements

ListBox
items

64 CHAPTER 4 XAML
The third item in the ListBox was
named for use in an upcoming exam-
ple. Figure 4.5 shows the object tree
that corresponds to the XAML in listing
4.8. The ListBoxItems are automati-
cally created by the ListBox, one per
item.

 Each element has the concept of a
parent (the containing element) and
may have a child or children in panel-
type collection properties, content
properties, or other general-purpose
properties.

 The visual tree is a filtered view of
the object tree. Whereas the object tree
contains all types regardless of whether
they participate in rendering (collec-
tions, for example), the visual tree con-
tains only those objects with a visual
representation. Figure 4.6 shows the
visual tree corresponding to the object
tree in figure 4.5; note the lack of non-
visual objects such as collections.

 Both of these trees have been simplified for publication. ListBox, for example,
includes many other elements like Border and ScrollViewer. If I had created the

actual tree, you’d need a special fan-
fold insert to see everything. Sadly,
my publisher declined my request for
posters and popup inserts and
refused to answer me on the “scratch-
n-sniff” topic.

WALKING THE VISUAL TREE

WinRT includes the Visual-

TreeHelper static class to assist in
examining the visual tree. Using the
GetChild and GetChildrenCount

methods, you can recursively walk the
tree from any element down as
deeply as you want. The GetParent
method allows you to trace the tree
from a given element up to the visual
tree root.

Figure 4.5 A simplified object tree showing not only
the visual elements such as TextBlocks and
ListBoxes but also the internal collections used to
contain child elements

Figure 4.6 The simplified visual tree representation of
the object tree from figure 4.5. Note that only visual
elements, not collections, are represented.

65Object trees and namescope
Taking listing 4.8’s XAML as input, the code-behind to process it is shown in the fol-
lowing listing.

public MainPage()
{
 this.InitializeComponent();
 Loaded += MainPage_Loaded;
}
void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 DependencyObject o = Item3;
 while (o != null)
 {
 Debug.WriteLine(o.GetType().ToString());

 o = VisualTreeHelper.GetParent(o);
 }
}

You start the tree walk in the Loaded event handler because the tree isn’t valid until
the UserControl has been loaded. You know the walk is complete when you hit an ele-
ment with a null parent—the root of the tree.

 Here’s the list of elements the tree-walking exercise produced:

Windows.UI.Xaml.Controls.TextBlock
Windows.UI.Xaml.Controls.ContentPresenter
Windows.UI.Xaml.Controls.Grid
Windows.UI.Xaml.Controls.Border
Windows.UI.Xaml.Controls.ListBoxItem
Windows.UI.Xaml.Controls.VirtualizingStackPanel
Windows.UI.Xaml.Controls.ItemsPresenter
Windows.UI.Xaml.Controls.ScrollContentPresenter
Windows.UI.Xaml.Controls.Grid
Windows.UI.Xaml.Controls.Border
Windows.UI.Xaml.Controls.ScrollViewer
Windows.UI.Xaml.Controls.Border
Windows.UI.Xaml.Controls.ListBox
Windows.UI.Xaml.Controls.Grid
XamlExample.MainPage
Windows.UI.Xaml.Controls.ContentPresenter
Windows.UI.Xaml.Controls.Border
Windows.UI.Xaml.Controls.Frame
Windows.UI.Xaml.Controls.Border
Windows.UI.Xaml.Controls.ScrollContentPresenter
Windows.UI.Xaml.Controls.Grid
Windows.UI.Xaml.Controls.Border
Windows.UI.Xaml.Controls.ScrollViewer

You can see that’s a fair bit of stuff for such a small XAML listing. The reason behind
this is that many elements have templates (chapter 9), which themselves are made up
of many other elements. For example, the ListBoxItem contains a Border, which

Listing 4.9 The code-behind that does the actual processing

Stop when
at root

66 CHAPTER 4 XAML
contains a Grid, which contains a ContentPresenter, which contains the actual con-
tent: the TextBlock we started with.

 You may also notice that, when you look at an object tree for an entire application,
you’ll have multiple instances of controls, each of which contains elements with the
same name. For example, each button may theoretically contain a Border named
InnerBorder. Namescope, the next topic, is how WinRT XAML ensures that the names
remain uniquely addressable across the breadth of the object tree.

4.3.2 Namescope

Earlier in this chapter you saw that you can define an x:Name for elements in XAML.
This provides a way to find the control via code and perform operations on it or han-
dle its events.

 Consider the idea of having multiple controls on the same page, each of which
contains named elements, like that shown in figure 4.7. In the visual tree, you’d have
two instances each of StreetField, CityField, StateField, and ZipField. But every
item in the tree requires a unique name (or no name), so that can’t possibly
work…can it?

 To handle this situation, XAML introduces the concept of a namescope. A name-
scope simply ensures that the names across instances of controls don’t collide. This is
similar in concept to the approach taken by ASP.NET to mangle control names to
ensure they remain unique.

 Our next listing shows an example control that we’ll instantiate several times.

<UserControl
 x:Class="XamlExample.MyNestedControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Listing 4.10 Without namescope, the button’s name would be duplicated in the tree

Figure 4.7
Namescope allows you to have
multiple controls in the visual
tree, each with the same name.
This is similar to bracket-level
scoping in languages like C.

67Object trees and namescope
 xmlns:local="using:XamlExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300"
 d:DesignWidth="400">

 <Grid Background="White">
 <Button x:Name="ButtonInTheControl" />
 </Grid>
</UserControl>

Notice how the control includes a
button named ButtonInTheControl.
If it contained more than one
instance of that control, named the
same way, you’d get a compile time
error. What about using it three
times in another control, as shown in
figure 4.8?

Figure 4.8 Another illustration of
namescope in action. Each instance of
MyNestedControl includes a button

named ButtonInTheControl. (Note that
I left out the StackPanel for brevity.)

The following listing shows the use of this control. Namescope is required to prevent
duplicate control names.

<Page x:Class="XamlExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:XamlExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <StackPanel Background="White">
 <local:MyNestedControl x:Name="Control1" />
 <local:MyNestedControl x:Name="Control2" />
 <local:MyNestedControl x:Name="Control3" />
 </StackPanel>

</Page>

Listing 4.11 Code that uses multiple instances of the example control

Named button

Multiple
Instances

68 CHAPTER 4 XAML
With three instances of the user control in listing 4.11, how does the XAML parser pre-
vent naming collisions between all the ButtonInTheControl instances in the object
tree but still allow you to uniquely reference each one? Namescope.

 As you’d expect, using the same name twice within the same XAML namescope will
result in a parsing error. This is similar to the compile-time error you’d receive if you
gave two variables the same name within the same scope level in a C# application. If
the two names are in different namescopes (like different instances of user controls),
then there are no problems.

 This is one of those “Duh! Of course it works that way” implementation details. But
it shows you what the team had to implement to make the seemingly obvious things
behave as you’d expect. In practice, you typically don’t need to worry about name-
scopes unless you’re loading and parsing XAML at runtime using the Xaml-
Reader.Load API (in which case it can be very important). The namescopes are
created for you automatically at runtime when you instantiate your controls.

 For further reading on XAML namescope, see MSDN: http://bit.ly/WinRTXaml
Namescope.

 Understanding both object trees and namescope provides important insight into
what the XAML parser is doing on your behalf. For example, knowing the size of an
object tree can be useful when performance tuning your application, because the
more elements in your tree, the harder the runtime has to work.

4.4 Summary
The intent of this chapter was to familiarize you with XAML. That’s actually a difficult
task to fit into a single chapter because XAML is simply the markup manifestation of
WinRT and .NET objects. In truth, most of this book is about different aspects of XAML
and different types you can represent in it.

 For those reasons, this chapter covered the core XAML concepts you need to
understand before you can make sense of anything else. Elements and properties are
absolutely essential because they’re the meat and potatoes (or tofu and broccoli) of
markup.

 You also learned how the property system used in XAML is a bit different from the
one you may have used in C# in your own classes and in other presentation technolo-
gies. Dependency properties and attached properties are key to supporting the bind-
ing and animation systems and important in producing panels with flexible layout.

 Finally, an understanding of the object trees created by the XAML parser will pro-
vide you with important insight into how heavy a UI you’re making and how hard
you’re making WinRT work.

XAML is my favorite presentation technology. It has the strong structure of XML
with the flexibility of WinRT and .NET and none of the baggage of other presentation
markup languages like HTML. It was purpose-built for this use, and it shows. It’s cer-
tainly not perfect (no, okay, it’s perfect), but I’ve enjoyed working in it for the better
part of a decade now. I think you will too.

http://bit.ly/WinRTXamlNamescope
http://bit.ly/WinRTXamlNamescope

Layout
Layout systems across different technologies vary greatly in complexity. Take, for
example, the Windows Forms layout system. Fundamentally, that layout system
involves absolute X and Y coordinate pairs and an explicit or implicit Z order. Con-
trols can overlap, get clipped (cut off or cropped) on the edge of the window, or
even get obscured. The algorithm is pretty simple—sort by Z order (distance from
the viewer) and then transfer the pixels to the screen.

 For another example, look to HTML and CSS. HTML and CSS support elements
that must size to content and page constraints (tables, divs) as well as support abso-
lute positioning, overlapping, and so forth. It’s more of a fluid approach, where the
size and position of one element can affect the size and position of another. There-
fore, the layout system for HTML and CSS is significantly more complex than that
for something like Windows Forms.

This chapter covers
■ The layout system
■ Alignment, margins, and padding
■ Layout rounding
■ Performance considerations
69

70 CHAPTER 5 Layout
 Like HTML, XAML supports both types of layout: content that self-sizes based on
constraints, and content that’s simply positioned by way of an X and Y coordinate pair.
Depending on the container in use, it can even handle laying out elements on curves
or radially from a central point. The complexity that makes this flexible layout system
possible deserves a deeper look.

 We’ll first dive into the multipass layout system so you have a solid grounding for
what to expect out of the panels and other elements involved in layout. Next, we’ll move
on to those properties that govern layout in most situations: alignment, padding, and
margins. After that, we’ll take a brief look at layout rounding, something commonly
used to ensure crisp lines and corners in our UI—a must for Modern Style apps. The
chapter wraps up with a discussion of performance considerations for apps of all types.

5.1 Multipass layout—measuring and arranging
Like so many things, you can easily create your own first Windows Modern Style apps
without understanding the multipass layout system. Many developers have gotten far
into developing with XAML (WPF, Silverlight, and Windows) without ever hearing
about layout. The first time they see a “layout cycle detected” or similar error, however,
it stops them in their tracks.

 Details are important, and few details are as vital as the mechanism by which ele-
ments are positioned and sized onscreen. This system, the multipass layout system, is
the focus of this section.

 Just as with WPF and Silverlight, layout in WinRT XAML involves two primary passes:
measure and arrange. In the measure pass, the layout system asks each element to pro-
vide its ideal dimensions given a provided maximum size. In the arrange pass, the lay-
out system tells each element its final size and requests that it lay itself out and also lay
out its child elements. A full run of measuring and arranging is called a layout pass,
depicted (along with the render step) in figure 5.1.

 Layout information is retained from frame to frame and is recalculated only
when necessary. Typically this comes from animating a layout-related property (a

Figure 5.1 The layout and rendering process for XAML application. Measure and
layout happen for the visual tree, and rasterization for the frame (or cached layers
within the frame). Note that this diagram doesn’t get into caching (which breaks this
up into multiple layout/render pairs), 3D composition with C++, or other substeps.

71Multipass layout—measuring and arranging
general no-no) or by otherwise changing layout properties or introducing new ele-
ments to the tree.

 You can imagine that layout and render can be quite a bit of work to accomplish at
a reasonable frame rate, especially as your visual tree becomes more complex. Toward
the end of this chapter, I’ll offer up some pointers to help with performance in this area.

 In this section, we’ll look at the layout process. First, we’ll look at the measure pass,
followed logically by the arrange pass. With those covered, we’ll also look at the
LayoutInformation class, something that’s helpful for creating your own panels and
also good to understand to get insight into the layout system.

5.1.1 The measure pass

Whenever elements need to be rendered to screen, the layout system is invoked for an
asynchronous layout pass. The first step in layout is to measure the elements. On a
FrameworkElement, the measure pass is implemented inside the virtual MeasureOver-
ride function, called recursively on the visual tree (the tree of all visual elements):

protected virtual Size MeasureOverride(Size availableSize)

The availableSize parameter (a Windows.Foundation.Size type) contains the max-
imum amount of space available for this object to give to itself and its child objects. If
the FrameworkElement is to size to whatever content it has without any initial con-
straints, the availableSize will be double.PositiveInfinity.

 The function is responsible for returning the size the element requires based on
any constraints or sizes of child objects.

 Note that MeasureOverride isn’t called directly from the layout system; it’s a pro-
tected function. Instead, this function is called from the UIElement’s Measure func-
tion, which, in turn, is called by the layout system.

 At the end of the measure pass, each element will have a DesiredSize, which
represents the size it wants to be. This information is then used as input into the
arrange pass.

5.1.2 The arrange pass

The second pass of layout is to arrange the elements given their final sizes. On a
FrameworkElement, the arrange functionality is implemented inside the virtual
ArrangeOverride function, also called recursively:

protected virtual Size ArrangeOverride(Size finalSize)

The finalSize parameter contains the size (the area within the parent) this object
should use to arrange itself and child objects. The returned size must be the size actu-
ally used by the element and less than or equal to the finalSize passed in; larger sizes
typically result in clipping by the parent.

 Similar to the relationship between the measure pass and MeasureOverride,
ArrangeOverride isn’t called directly by the layout system. Instead, the Arrange method
on UIElement is called, which then calls the protected ArrangeOverride function.

72 CHAPTER 5 Layout
 At the end of the arrange pass, Windows has everything it needs to properly posi-
tion and size each element in the visual tree.

Measure and arrange together make up the layout process, but they aren’t something
you’re likely to interact with directly unless you’re building custom controls and panels.

Hooking into the rendering process

Once layout is completed, everything goes into the rendering pipeline. There, the sys-
tem goes through a number of steps to composite the different pieces, bring in cached
layers, and more.

In Silverlight, it was often important to have a deep understanding of the rendering
pipeline in order to optimize performance for frame-based games and other high-per-
formance media. In fact, I dedicated something like 10 pages to covering this topic
in Silverlight 5 in Action.

The availability of native code and access to DirectX has really changed the approach
you’ll want to use, making this detailed information less necessary than it once was.
In Windows Modern Style apps, the recommended approach for handling highly per-
formance-sensitive scenarios is to use C++ and DirectX. You can either do this for
the entire application or simply write critical rendering code in C++/DirectX and surface
it as a WinRT extension assembly you can then use from your C# (or HTML/JS) app.

Nevertheless, there are times when you may want to hook into the rendering process
to do something for each frame that’s rendering. That may be as simple as keeping
a count of frames rendered, swapping a back buffer to simulate an immediate-mode
rendering system (again, C++ is better here), or performing game loop-style opera-
tions. For those situations, you can use the CompositionTarget.Rendering event.

public MainPage()
{
 this.InitializeComponent();
 CompositionTarget.Rendering += OnRendering;
}
void OnRendering(object sender, object e)
{
 RenderingEventArgs args = e as RenderingEventArgs;
 Debug.WriteLine(args.RenderingTime.ToString());
}

Note the cast to RenderingEventArgs in this code. This is pretty unusual and not
something you’d figure out without knowing something about the underlying code. The
underlying code is actually sending an instance of RenderingEventArgs, but the event
signature is just a regular object.

There’s no guarantee that the callback will happen at the max frame rate. Although
it often does work out this way, many factors, including the amount of work being done
inside the callback and the overall speed of the system, contribute to how often this
runs. You can generally expect the callback to happen once per frame, assuming your
code is well behaved.

73Multipass layout—measuring and arranging
Nevertheless, there are times when you want to get some runtime insight into what’s
going on in the process. The LayoutInformation class can provide some of that.

5.1.3 The LayoutInformation class

The LayoutInfomation class in Windows.UI.Xaml.Controls.Primitives contains a
few methods that are useful to folks implementing their own MeasureOverride and
ArrangeOverride code. Specifically, GetLayoutSlot is helpful when hosting child ele-
ments in a custom panel, and GetExceptionElement can help provide details about
errors during the layout process.

GETLAYOUTSLOT

Regardless of its actual
shape, each visual element
in XAML must be placed
into a layout slot in a panel.
Figure 5.2 shows the rela-
tionship between a layout
slot and the child element
hosted in a panel.

 The layout slot is the
maximum size to be used
when displaying an ele-
ment. Portions of the ele-
ment that fall outside the
slot will be clipped, or cut off. In the case of a panel like the Grid (next chapter), the
element will typically be resized to fit inside the layout slot, taking into account the
element’s margins and alignment properties. For this reason, the layout slot may be a
different size than the element’s logical bounding box, although the two terms are
often used interchangeably.

 To get the coordinate values for the layout slot for an element, you can call the
static function GetLayoutSlot:

public static Rect GetLayoutSlot(FrameworkElement element)

The returned Windows.Foundation.Rect will contain the layout slot for that element.
This return value can be useful when creating a custom panel or when debugging lay-
out issues.

GETLAYOUTEXCEPTION

Speaking of debugging, sometimes we have bugs in our code—sometimes (Gasp!) so
does Microsoft.1 An exception during a layout pass can be really difficult to track
down, because it’s not always obvious where it came from or what exactly was being
processed at the time.

1 With that comment, my career plan just changed to “Sell Girl Scout cookies outside the supermarket.”

Figure 5.2 The relationship between the layout slot and the child
element in the slot

74 CHAPTER 5 Layout
 The GetLayoutException function, which can be used in an app-wide global error
handler if you’d like, returns the element that was in layout when the unhandled
exception occurred.

public static UIElement GetLayoutExceptionElement(object dispatcher)

You must provide this method with the dispatcher from your UI level. The Dispatcher
is the class that makes it possible for code running on a background thread to send
(or dispatch) calls to the UI thread. This is necessary because only code on the UI
thread can modify controls.

 In WinRT XAML, the type here is object, but it’s really expecting a Dispatcher.
Presumably it was written this way because of some oddness around circular depen-
dencies between different parts of WinRT, but your guess is as good as mine. In any
case, you can get the correct Dispatcher by using the Dispatcher property of any
object in your visual tree. The layout process is one of the most interesting things
about XAML and is helpful to learn, especially for debugging. It’s a recursive process
that makes two passes across the visual tree for your application. For that reason, the
depth and complexity of your visual tree have a direct impact on layout performance.
Toward the end of this chapter, we’ll look at ways to optimize performance. Before
that, however, it’s important to understand a few other key properties that directly fac-
tor into layout.

5.2 UIElement layout properties
If layout in XAML was as simple as providing X and Y coordinates for each element,
plus a height and width, this chapter would be a page long. Instead, as you’ve seen so
far, layout in XAML is a complex process involving panels and content controls and
their child elements. Each panel is responsible for laying out its children, in whatever
way that panel implements. Because of this, it’s relatively easy to create custom layout
panels that position elements in ways the product teams didn’t have time to imple-
ment—or perhaps never even considered.

 In order for layout to be at least a little sane, you need some common ways to pro-
vide information to the layout system. There are a number of element properties that
affect layout. Most of those properties are defined on the UIElement, whereas others
are widespread enough that they probably should be.

 As you’ll see in the next chapter when we discuss Grid, StackPanel, and others,
several of the common panels respect the margins and alignments of their children.

 In this section, we’ll start with the most basic properties: Width and Height. When-
ever you consider sizing an element, these are probably the first that come to mind.
You’ll learn, however, that they aren’t always necessary or desired. Next, we have the
HorizontalAlignment and VerticalAlignment properties. These, alongside the
Padding and Margin properties also covered here, will be the most common way of siz-
ing and positioning elements in XAML. Finally, sometimes we don’t want the layout

75UIElement layout properties
system to be so flexible, so we have a tweak property, UseLayoutRounding, which
enables us to snap elements to pixels.

5.2.1 Width and Height, plus ActualWidth and ActualHeight

The most basic properties are Width and Height. Width is the horizontal size, and
Height is the vertical size, both expressed in logical pixels (pixels defined by the Win-
dows current screen resolution and DPI [dots per inch] settings, not necessarily by
actual device pixels). Every element that you place on a panel has these properties, so
you can easily set the dimensions. Before you do that, however, consider that you’re
hardcoding dimensions in a system that was designed from the ground up to be flexi-
ble enough to easily support different resolutions with automatic resizing and, if you
use a ViewBox or similar, automatic rescaling.

ViewBox and render transforms

A ViewBox is a UI element that automatically scales its contents using a render trans-
form. For vector content, this gives really clean scaling to support showing the same
content at higher or lower resolutions. The child element of a ViewBox (typically a Grid)
must have a set Width and Height so the ViewBox has a size to start from.

<ViewBox>
 <Grid Width="1024" Height="768">
 ... content to scale.
 Size to initial 1024x768 height to start ...
 </Grid>
</ViewBox>

To scale the content, put the ViewBox in a Grid with alignment set to Stretch in
both directions, or manually set the size of the ViewBox using Width and Height prop-
erties.

A render transform is a way of manipulating an element’s size, location, rotation, or
orientation (including a 3D-like projection) after layout has been calculated.

<TextBlock FontSize="42" Text="This Text will Scale">
 <TextBlock.RenderTransform>
 <ScaleTransform ScaleX="3.0" ScaleY="1.5" />
 </TextBlock.RenderTransform>
</TextBlock>

Because render transforms happen after layout, using them doesn’t impact layout in
any way—a potentially huge performance boost for moving, rotating, and resizing el-
ements. The trade-off is that render transforms don’t impact layout: They can’t
cause the control to take up additional space in a Grid or move subsequent ele-
ments in a StackPanel. We’ll apply render transforms, specifically a rotate trans-
form, in chapter 21.

For more information on render transforms, please see MSDN: http://bit.ly/
WinRTRenderTransform.

http://bit.ly/WinRTRenderTransform
http://bit.ly/WinRTRenderTransform

76 CHAPTER 5 Layout
In fact, most of my UIs are made up primarily
of elements where there is no Height or Width
specified. That’s not to say those properties
are evil or anything, but if you have to set
them to get something to work correctly, you
may find that you actually have some other
layout sizing issue that needs to be solved. As

long as you realize that you sacrifice some resizing flexibility when setting Height and
Width, go ahead and use them.

 To use the properties, set them as shown here:

<TextBlock Text="Hello World"
 Height="100" Width="250" />

ACTUALHEIGHT AND ACTUALWIDTH

During layout, the panel that owns the element can modify the size of the element if
necessary. When there’s a Height and Width specified, this usually won’t happen, but
it can. In those cases, the element’s real size can be found in the ActualHeight and
ActualWidth properties.

 If you don’t explicitly set the Height and Width properties of a control, the Actual-
Height and ActualWidth properties may be zero or not a number (double.NaN). Why is
that? Because of the asynchronous nature of the layout pass, ActualHeight and Actual-
Width might not be set at any specific point in time from run to run or, more impor-
tantly, might actually change their values over time as the result of layout operations.

ActualHeight and ActualWidth are set once layout is complete and may also be
affected by layout rounding settings or content. In short, check them, and if they’re
zero or NaN, they haven’t been set.

LAYOUTUPDATED EVENT

If you want a single place where you can guarantee they’ll have a value, subscribe to
the LayoutUpdated event on the element and check them there.

 Despite the name, the FrameworkElement’s LayoutUpdated event isn’t technically
part of the layout pass. Instead, it’s fired as the last event before an element is ready to
accept input. LayoutUpdated is the safe location for inspecting the actual size and
position of the element or otherwise responding to changes in same.

 Don’t do anything in LayoutUpdated that would cause another layout pass. For
example, don’t change the size or position of an element, modify its contents, change
its layout rounding, or otherwise manipulate properties that could change the size of
the element’s bounding box. If you have multiple nested layout passes and they take
longer than the time allowed for that frame, the Windows XAML engine may skip
frames or throw a layout exception

 I’ve offered so many cautions against relying on Height and Width because I’m a
much bigger fan of using HorizontalAlignment and VerticalAlignment properties
along with Margin and Padding.

77UIElement layout properties
5.2.2 Horizontal and vertical alignment

Okay, so I spent the whole last section warning you away from using Height and Width
as though you might get some strange communicable disease just by thinking in terms
of hardcoded pixel values.

 Really, what I wanted is for you to keep an open mind, because the real stars of lay-
out are coming in this section and the next. First, I’d like to introduce you to my good
friends HorizontalAlignment and VerticalAlignment. Figure 5.3 shows them in all
their glory.

 In the top left, you can see that a HorizontalAlignment of Left aligns an element
to the left. Similarly, Center and Right align elements to the center and right, respec-
tively. In order to get them to align, you’ll need to give the element a width value.2

The same applies for VerticalAlignment with Top, Center, and Bottom values. In
those cases, you’ll need to provide the elements with a Height value in order for the
alignment to make sense.

 To get an element to align at the top left of the container, with 10 px of spacing
around it, you’d use the following markup inside a Grid:

<TextBlock Text="Hello World"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="10"/>

It just so happens that TextBlock is an element that works well with no Height or
Width specified. In fact, it’s rare for developers to provide an explicit size to Text-
Block elements, because their text usually comes from binding to some model object
or resource.

2 That is not backpedaling, I swear!

Figure 5.3 An illustration
of alignment values. In the
bottom, combined set,
you can see both horizontal
and vertical alignment
combined, including a
rectangle in the background
with Stretch for both of
the alignment values.

78 CHAPTER 5 Layout
Even more interesting to me are the Stretch values. When you place elements in a
Grid panel—the single-most-popular panel, and covered in the next chapter—
Stretch is the default for both HorizontalAlignment and VerticalAlignment.
Stretch simply says “take up all the available space.” When you combine Stretch with
the Margin property we’ll cover shortly, you can create a flexible UI that automatically
resizes to the available space provided.

Padding and Margin go hand-in-hand with the alignment properties, so let’s look
at them now.

5.2.3 Padding

Okay, I lied a little in titling
this section: Padding isn’t a
UIElement property. Padding
is defined on Control and sev-
eral other higher-level classes
like TextBlock. But it has such
a tight affinity with Margin,
and with the layout process
itself, that I find it appropriate
to cover here.

Padding is the open space an element (a panel or content control) provides around
its contained child(ren). In XAML, the Padding value is typically expressed as a space
or comma-delimited Thickness type like this:

<ContentPresenter x:Name="A" Padding="8,10,20,25"/>

The values are specified clockwise from the left side—Left, Top, Right, Bottom—and
may be whole integers or floating-point values. In this case, the left margin is 8, top
margin is 10, right is 20, and bottom is 25. If you prefer, you can delimit the values
using spaces, like this:

<ContentPresenter x:Name="A" Padding="8 10 20 25"/>

To share the same padding on all four sides, simply specify the single value, like this:

<ContentPresenter x:Name="A" Padding="10"/>

In this example, all four sides will have a padding value of 10. Finally, to set the value
from code, don’t manipulate the properties directly, but instead assign a new
Thickness to the Padding property, like this:

SomeElement.Padding = new Thickness(10);
SomeElement.Padding = new Thickness(8, 10, 20, 25);

The first line sets the padding to a uniform thickness of 10. The second sets the four
individual values just as seen in the markup. Because Thickness is a structure and
doesn’t handle any property change notifications, you must assign the entire structure,

79UIElement layout properties
not the individual Left, Top, Right, and Bottom properties. You’ll get an exception if
you manipulate the individual properties.

 The Margin property is very similar to Padding, but instead of controlling space on
the inside of certain controls, it controls the buffer space around the outside of just
about any element.

5.2.4 Margins

The Margin property of an ele-
ment represents the empty
space around the element. In
use, it’s far more common to set
the Margin property than the
Padding property. In XAML, the
Margin is typically expressed as a
space or comma-delimited
Thickness type like this:

<Rectangle x:Name="B" Margin="8,10,20,25"/>

Just as with Padding, the values are specified clockwise from the left: Left, Top, Right,
Bottom. They may be whole integers or floating-point values. In this case, the left mar-
gin is 8, top margin is 10, right is 20, and bottom is 25.

 To share the same margin on all four sides, simply specify the single value:

<Rectangle x:Name="B" Margin="8"/>

In this example, all four sides will have a consistent margin of 8. Just as with Padding,
you can set the value from code using either a single value or the individual Left, Top,
Right, and Bottom values in the Thickness constructor. You must also assign the
entire structure at once, just as with Padding.

XAML provides both Margin and Padding properties because sometimes you own
the container, and sometimes you own the contained element. Having both means
that regardless of which element you’re creating (or styling), you can control the
whitespace to provide a little breathing room around the controls.

 Margins and padding generally work in concert with HorizontalAlignment or
VerticalAlignment properties: Left margins only come into play when the control
has HorizontalAlignment equal to Left, Center, or Stretch. Similarly, right margins
only come into play for Right, Center, or Stretch HorizontalAlignment values. Pad-
ding works the same way depending upon the alignment values of the contained child
control (or in the case of a TextBlock, the contained text).

 It’s also possible to defeat margins by providing explicit values to the Width or
Height of different controls. A common layout trick is to provide just one of the
dimensions, for example, Height, and then provide a HorizontalAlignment value of
Stretch and a VerticalAlignment of Top. That will let you have a bar across the top

80 CHAPTER 5 Layout
of the screen, with a known height, but with a width that depends on the width of the
container (a page in this case)—think toolbar, banner, or top AppBar.

 This can all get a bit muddy if you start providing too much help to the layout sys-
tem. If you find that controls are not sizing as you’d expect, start by removing Width
and Height values, and pare back from there.

Width, Height, HorizontalAlignment, VerticalAlignment, Margin, and Padding
are all key inputs into element layout. Several of them affect size, several affect posi-
tion, and most of them can affect both in specific situations.

 In general, if you can get away with it, it’s better to use the two alignment properties
along with the margin in order to control size and positioning of an element. In panels
such as the Grid (which we’ll cover in the next chapter), this makes it simple to adjust
the interface for different display resolutions or container sizes. But if you really do
need to have an absolute size for an element, Width and Height will get you there.

 All of the numeric properties discussed so far (Width, Height, Margin, Padding)
support using floating-point values (double-precision decimals like the number
12.375) for the value. The result of that can be shapes that don’t start or stop on phys-
ical pixel boundaries. Sometimes, you want to have better control over that. At those
times, you can use layout rounding.

5.3 Layout rounding
Like Silverlight and WPF, WinRT XAML supports aligning elements on subpixel bound-
aries. This means that you can actually position something at a coordinate like X =
2.718 and Y = 3.1415. This is especially useful for smooth animation and smooth scal-
ing. An unfortunate side effect of this, however, is the loss of crisp lines when positions
fall outside integer pixel values. In the Modern Style aesthetic, this can be especially
disappointing: Sometimes, you really want that 1 px line to be just 1 px thick and not
antialiased to 2 px in thickness.

 One simple way to avoid this problem is to place your elements on whole pixel
locations. But when your element is nested inside a panel, which is inside a control,
which is in a stack panel located in another grid—all of which can have margins, pad-
ding, and other properties affecting layout—you can’t easily calculate exactly where
your element will appear.

 Figure 5.4 shows two rectangles aligned on subpixel boundaries, one with layout
rounding on and one with it off.

Figure 5.4 Two rectangles shown
actual size and enlarged. One rectangle
uses layout rounding and is snapped to
device pixels. The second does not and
has a wider and fuzzier appearance.

81Layout rounding
WinRT XAML supports a property of the UIElement called UseLayoutRounding. When
UseLayoutRounding is set to True (the default), the layout system will round the
points of your element to the nearest whole pixel. In this case, elements are said to be
“snapped” to pixels. When set to False, Windows will respect the subpixel location of
the points and won’t attempt to move them; this can be especially useful for anima-
tion. The following listing shows the impact of layout rounding on two rectangles. The
first rectangle has layout rounding turned on; the second has it turned off.

<Grid Background="White">
 <Rectangle Margin="10.5"
 UseLayoutRounding="True"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Fill="Transparent"
 Stroke="Black" StrokeThickness="1"
 Width="150" Height="30" />
 <Rectangle Margin="20.5"
 UseLayoutRounding="False"
 Fill="Transparent"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Stroke="Black" StrokeThickness="1"
 Width="150" Height="30" />
</Grid>

In this listing, you can see that the rectangle that isn’t rounded to the nearest pixel
has lines that are actually 2 pixels thick and colored 50% gray instead of black. There’s
also a little overlap in the corner that’s 75% gray. When viewed in its native 1:1 pixel
resolution, it looks fuzzy. When layout rounding is turned on, the result is a crisp line
with sharp corners and no fuzz. When verifying this yourself, make sure your design
isn’t zoomed in or out.

UseLayoutRounding is respected by almost every element in XAML. The Polygon
class exposes this property from its base class but ignores it. Polygons are expected to
be complex shapes where layout rounding wouldn’t really make sense, so layout
rounding is a no-op.

NOTE When sharing code and markup with WPF desktop applications, it’s
important to note that layout rounding is turned on by default in WinRT (as
in Silverlight). This is in contrast to WPF, where it’s turned off by default.

A flexible layout system needs a number of different ways to size and position ele-
ments. In the end, most of the responsibility comes down to the panel you place the
elements in. But there are a number of common properties that are used as inputs
into layout.

Height and Width are the simplest of the positioning properties. I tend not to use
them for many of the elements on a page because I want to take advantage of auto-
matic resizing based on available screen real estate.

Listing 5.1 Layout rounding in action with two rectangles

Rounding

No rounding

82 CHAPTER 5 Layout
HorizontalAlignment, VerticalAlignment, Margin, and Padding work together
to provide a better way to position elements while retaining the flexibility of the sys-
tem. If you want to align something to an edge, provide a margin if desired and align
it to the edge using one of the two alignment properties. If you want something to
take up all available space, set its alignment properties to Stretch and optionally pro-
vide a margin.

 Finally, all this flexibility can sometimes cause things to look a little fuzzy. Appar-
ently Fuzzy Wuzzy3 was actually an element aligned on fractional pixel boundaries. To
get around this, set UseLayoutRounding to True to round an element to the nearest
whole pixel value.

 So far, we’ve talked about flexibility and the power of the layout system. To use it
effectively, you’ll need to understand the performance implications of decisions and
simple changes you can make to help your app feel snappy.

5.4 Performance considerations
Layout is a recursive process; triggering layout on an element will trigger layout for all
the children of that element, and their children, and so on. For that reason, you
should try to avoid triggering layout for large visual trees as much as possible. In addi-
tion, when implementing your own MeasureOverride or ArrangeOverride code, com-
monly done in custom panels and highly customized controls, make sure it’s as
efficient as possible.

 There are a number of other performance considerations you should keep in
mind when designing your UI. In this section, we’ll cover a few of the most important
ones, including keeping the visual tree shallow, caching subtrees, UI virtualization,
and sizing and positioning elements.

5.4.1 Keeping the tree shallow

When Silverlight was first designed, the button controls had a very complex layout
made up of multiple rectangles overlaid, some with gradients, all with different mar-
gins, borders, opacity ramps, and more. The visual tree for a single button was actually
quite complex. Before Silverlight was released, the product team cleaned up the but-
ton template and greatly simplified it to just a handful of elements.

SIMPLIFY

WinRT XAML has even simpler buttons, with no gradients. This is no accident—a com-
plex UI with varying opacities, gradients, and just a deep tree will take longer to lay
out and render than a simpler UI. This very fact is part of the reason why Modern Style
UIs look the way they do—it’s about the performance and experience, not unneces-
sary performance-killing decoration.

 When designing your own UI, follow Modern UI principles not only for the aes-
thetic but also for the performance. Keep in mind how many elements you have in

3 Meaning, Fuzzy Wuzzy was a bear: http://en.wikipedia.org/wiki/Fuzzy_Wuzzy_(song).

http://en.wikipedia.org/wiki/Fuzzy_Wuzzy_(song)

83Performance considerations
any given layout pass, and try to keep that number as small as possible. If you have a
super-complex UI with tons of touch points, consider making it up from many very
simple elements. In fact, you may even consider making it up of many static images
rather than XAML subtrees.

USE PNGS AND NOT COMPLEX XAML

One way to keep the tree shallow is to use PNGs instead of complex XAML for things
like icons and similar elements. When to use an image instead of resizable vector con-
tent will depend greatly on what you plan to do with it: Resizable content is probably
not a good candidate to be a static image, but static content sure is.

 Consider using PNGs for all your custom AppBar and other icons, as well as for any
background imagery your application uses.

 In cases where static images won’t cut it, consider caching your prerendered subtrees.

5.4.2 Caching

In XAML, caching can be used to render an entire subtree to an image buffer. This is
handled by setting the CacheMode on an element in the tree. Everything in that ele-
ment’s subtree will then be cached according to the value set and then rendered as
though it were a static image. For example, to enable caching on a grid, you’d set
CacheMode to BitmapCache like this:

<Grid CacheMode="BitmapCache">

Like so many performance optimizations, caching is something best explored toward
the end, after you’ve gotten everything else working and optimized. Sometimes, cach-
ing can hurt performance. How? For any layer you cache, Windows must render every-
thing above it to one surface and everything below it to another. It can then
composite the three different surfaces (lower render, cached layer, upper render) to
create the final rendered output. This takes quite a bit more memory (typically GPU
memory) and incurs a performance hit from the process of creating the cached
images. In some cases, it can take longer to do this than to just let Windows optimize
the rendering as it normally would.

 It’s also worth noting that animations inside a cached subtree are, as you’d expect,
disabled. If you need animations to run, you’ll need to cache at a lower level or not at all.

 Caching renders elements to a backing bitmap, thereby reducing the number of
elements in any given layout pass. There’s another important type of performance
optimization that takes a different approach to reducing the number of elements in
the tree: virtualization.

5.4.3 Virtualization

Sometimes you can’t control the number of elements in the tree. Take the example of
a large list of all the photos on your machine. Paging is a really ugly solution, and
delayed loading can be a bit of a pain (although you may still opt to use it in this spe-
cific case). If the performance issue is in creating and rendering all the elements, you
can get around this by using UI virtualization.

84 CHAPTER 5 Layout
 Virtualization is the reuse of elements to display data and the caching of that ren-
dered output. A subset of the built-in controls and panels support UI virtualization;
you’ll see which ones when we cover panels and later when discussing the new Grid-
View and ListView controls. For those, precreated elements are reused with new data.
The result is a reduction in the number of in-memory elements, as well as a reduction
of MeasureOverride and ArrangeOverride calls.

 The actual approach to enabling virtualization, and the impact of doing so, depends
on the specific control you’re using, so I’ll defer coverage of the specifics for now.

5.4.4 Sizing and positioning

Another performance consideration has to do with sizing and positioning elements.
For example, if you change the margin of an element or modify its width or height,
you’ll trigger a layout pass. In fact, one of the nastiest things you can do is trigger
another layout pass during the current layout pass. You do want things to render at
some point, after all. But, if you instead create a render transform to either move or
resize that element, you won’t trigger a pass. We’ll cover render transforms in chapter
21 in the context of rotating a space ship.

 Understanding the layout system helps take some of the mystery out of what hap-
pens when you size elements in XAML and they don’t quite do what you might’ve
expected them to do. It’s also a key concept to understand if you plan to implement
your own panels/container controls.

WPF has the concept of a layout transform. This type of transform is parallel to a
render transform but triggers a layout pass. As you’ve seen here, triggering a layout
pass can be an expensive operation, especially if done inside an animation. For per-
formance considerations and because of their relatively low adoption, layout trans-
forms were omitted from both WinRT XAML and Silverlight. The render transforms
provided are almost always adequate—and often superior—to solve problems we used
to solve with layout transforms.

 Layout is one of the most visible things that affect how your application performs.
You can, of course, still write slow code, but nothing impacts the user experience like
a UI that’s laggy and otherwise isn’t keeping up with the user. Because of that, I
included a few performance ideas in this section. The most important was to keep the
tree as shallow as possible. When that’s not possible, you can use caching and virtual-
ization. Finally, it’s important to realize that triggering a layout pass by changing the
layout-related properties of an element obviously affects performance.

5.5 Summary
The layout system in XAML is about as sophisticated and cohesive a system as I’ve seen.
It offers great power and flexibility while not getting in your way or filling elements
with scenario-specific layout properties.

 The multipass layout process recursively traverses the tree measuring all the ele-
ments and then does the same to arrange the elements with their final size. This mul-
tipass approach allows panels to size their children across the entire visual tree.

85Summary
 Key inputs into the layout process are the height and width of elements. Some-
times those sizes are explicitly provided through the Height and Width properties,
and other times they come from values derived through the parent’s Padding prop-
erty, the element’s Margin property, and HorizontalAlignment and Vertical-
Alignment properties. Finally, the size of the element can be affected by the value of
UseLayoutRounding, a property that enables snapping the element to device pixels in
order to maintain crisp and clear lines.

 Finally, with all this flexibility comes the possibility of overdoing it and having less
than stellar performance. There are a number of ways to tweak the system to provide for
better performance, but by far the most effective is to simply give the system fewer ele-
ments to lay out. You can do this by simplifying the UI, breaking the UI into multiple
pages, caching layers of the tree to static images, or virtualizing large lists of data. Of
course, you’ll also want to avoid triggering unnecessary layout cycles by changing the
size or location of elements using layout properties rather than render transformations.

 In the next chapter, we’ll take this layout information and put it into practice using
the different panels in WinRT XAML.

Panels
In the previous chapter you learned about the WinRT XAML layout system. This sys-
tem is based on the UIElement class, the FrameworkElement class, and, most impor-
tantly, the Panel base class.

 This chapter is about the classes that derive from the Panel base class. Collec-
tively, these are referred to simply as panels. A panel in XAML contains any number
of child elements in the Children collection. How it arranges those children is up
to the panel itself. Some panels use simple X,Y positioning, some use a row and col-
umn approach, and some simply automatically arrange based on the order in
which elements are added.

 Panels are vital to working in XAML. Before you place your first Button, or
TextBlock, or other control, you’ll start with a panel. A solid understanding of how
each panel is intended to be used will save you a great deal of debugging later. I
can’t tell you how many times I’ve seen developers struggling with a layout in
nested panels where some element just won’t position itself properly. In just about

This chapter covers
■ The Panel, Canvas, and Grid
■ The StackPanel and VirtualizingStackPanel
■ Creating a panel from scratch
86

87Canvas
every case, it has been because the developer tried to force a panel to do something
another panel was better suited for. Luckily, because panels all have a common API for
adding children, swapping out one panel for another is relatively easy.

 The built-in panels, shown in figure 6.1, cover the vast majority of common layout
scenarios. But should you find a scenario that you can’t easily support with these panels,
you can derive your own. You’ll see an example of that toward the end of this chapter.

 In this chapter, we’ll start with the most straightforward panel, the Canvas. This
panel arranges elements based on X/Y coordinates, with no other factors rolled in.
This makes it not only very fast performance-wise but also very easy to learn. From
there, we’ll take a look at the StackPanel and VirtualizingStackPanel. These pan-
els provide a little more help layout-wise and are very popular in list controls. Next,
we’ll explore the most popular panel: the Grid. The Grid can easily simulate the func-
tions of a Canvas or a StackPanel plus its own row- and column-based layout function-
ality. In most applications, the vast majority of nonlist layout work is accomplished via
the Grid panel.

 We’ll end this chapter by creating our own Panel control. Not only is that useful
for advanced applications, but it also provides a lot of practical insight into the layout
process covered in chapter 5.

6.1 Canvas
Of all the available panels, the Canvas is the simplest and the most straightforward to
use. This panel, available since the earliest days of WPF and .NET 3.0,1 has the least

1 Canvas was the only panel available in Silverlight 1.0, the version of Silverlight that used JavaScript for all
code and layout logic.

Figure 6.1 The Panel class hierarchy. All panels must ultimately derive from the
Panel class (which itself derives from FrameworkElement). Although they are
panels, they can’t be used directly; they must be used only within ItemsControl
templates such as the GridView and ListView covered in chapter 10.

88 CHAPTER 6 Panels
amount of built-in layout logic. Elements on a canvas are positioned simply using left
(X) and top (Y) coordinate pairs.

 The Canvas is the right panel to use when you need total control over the layout of
elements, without the XAML layout engine attempting to do anything on your behalf.
For those reasons, it’s both flexible and extremely well performing.

 The XAML Canvas panel should be not be confused with the HTML5 canvas ele-
ment. The XAML Canvas has been around for quite some time and has always been a
panel for laying out other elements. The HTML5 canvas, in contrast, was designed for
pixel-level manipulation and creation of 2D images.

 In the coverage of the Canvas, I’ll start with the basics: how to position child ele-
ments using X/Y coordinates. From there, it’ll be time to look at the third dimension
and consider how controls overlay one another. If you’ve ever had to implement Power-
Point or CAD-like “Bring to Front” functionality, you’ll want to pay attention here. This
section wraps up with information on sizing the child elements in the panel.

6.1.1 Positioning in X,Y space

You may have noticed that individual elements in XAML don’t have X and Y or Top
and Left properties. Instead, positioning is handled with attached properties provided
by the Canvas type. The use of attached properties (covered in chapter 4) makes it
possible to easily support any required layout properties without burdening the con-
trol model with a bunch of panel-specific control properties.

Figure 6.2 shows the Canvas.Left and Canvas.Top properties in action. The first item
placed in the panel has a Canvas.Left of 2.5 and a Canvas.Top of 5. The second has a
Canvas.Left of 20 and a Canvas.Top of 15.
The positions are relative to the top left-
hand corner of the Canvas that contains
the elements.

Figure 6.2 Different values for the Canvas.Left
and Canvas.Top properties. Also note that the

values are double types and do not need
to be whole integers.

Table 6.1 The attached properties provided by the Canvas. Use these to position elements within
 the panel.

Property Use

Canvas.Left Position the element on the X (horizontal) axis.

Canvas.Top Position the element on the Y (vertical axis).

Canvas.ZIndex Defeat the natural order of elements and position the element in Z space.
Elements with a higher ZIndex appear layered on top of elements with a
lower ZIndex. This property is not commonly used. More on this shortly.

89Canvas
ATTACHED PROPERTIES An attached property is a dependency property that’s
provided by (and stored by) another type, typically a containing panel.
Attached properties can be easily identified because they’re XAML attributes
with dot notation—Canvas.Top, for example. For more information, refer to
chapter 4.

Of the three positioning properties available with the Canvas, the most commonly
used properties are Canvas.Left and Canvas.Top. The following listing shows how to
use both of these attached properties. Place this markup inside the default Grid tag
on the MainPage.xaml of a project created using the Blank App template.

<Canvas Width="300" Height="100" Background="White">
 <TextBlock Canvas.Left="10" Canvas.Top="50"
 Foreground="Black"
 FontSize="20"
 Text="Hello World!" />

 <Rectangle Canvas.Left="60" Canvas.Top="30"
 Width="100" Height="50"
 Fill="Gray" />
</Canvas>

This listing shows two elements, a TextBlock and a Rect-
angle, positioned inside a Canvas. If you run this sample,
you’ll see that the gray rectangle overlaps the TextBlock,
as shown in figure 6.3.

 This happens because the Rectangle is added to the
Canvas after the TextBlock; therefore it’s also rendered
after the TextBlock. To address this, you need to control
the element’s Z position.

6.1.2 Controlling the Z position using ZIndex

Imagine a messy stack of papers on your desk. Some papers overlap others, obscuring
the details underneath. If you were to recreate the pile by hand, one sheet at a time,
you’d first place the bottom-most sheet, then the one on top of that, and the one on
top of that, and so on. This is how panels work: The first one becomes the bottom-
most element, and each one after that is rendered on top. If they don’t overlap at all,
you can’t see this, but when they do overlap, the order becomes obvious.

 The preferred way to address Z ordering at design time is by changing the order in
which the elements are added to the panel: Elements are drawn in order so the one
lowest in the listing (last one added) is the one drawn on top. It’s not always possible
to position elements this way, especially if you need to manipulate which ones show up

Listing 6.1 Left and Top attached properties

Canvas.Top and
Canvas.Left

Figure 6.3 Two elements
in a white canvas. Note
how the rectangle
obscures the “World!” part
of the “Hello World!”
TextBlock text.

90 CHAPTER 6 Panels
on top at runtime (due to user selection or some other criteria.) In those cases, you
can use the Canvas.ZIndex property, as shown in the next listing.

<Canvas Width="300" Height="100" Background="White">
 <TextBlock Canvas.Left="10" Canvas.Top="50"
 Foreground="Black"
 FontSize="20"
 Text="Hello World!"
 Canvas.ZIndex="42"/>

 <Rectangle Canvas.Left="60" Canvas.Top="30"
 Width="100" Height="50"
 Fill="Gray" />
</Canvas>

As a result of the change in this listing, the full “Hello World!” text is now displayed on
top of the rectangle. In this simple example, you could have easily made this change
in the markup by moving the elements around. But sometimes elements are added
from code, or you need to move them to the top of the display order as a result of a
user action. Manipulating the Z index is a good way to accomplish that.

 The Canvas.ZIndex attached property isn’t an absolute coordinate value like the
Canvas.Top and Canvas.Left coordinate positions. Instead, it represents the relative
order of elements in the same parent panel. In the previous section, you saw that the
rectangle overlapped the text we wanted to show. Manipulating the Z index for either
of those two elements will help with arranging them properly.

 In the end, the Z index is equivalent to a drawing sort order. The runtime code
isn’t necessarily doing a physical rearrangement of elements but rather is providing
them to the rendering pipeline in the order of lowest Z index to highest Z index
within the scope of the parent panel. Figure 6.4 shows how Canvas.ZIndex can be
used to position elements.

 Items with the same index are rendered based on the order in which they’re added
to the panel. For that reason, if you’re going to use Z indexing, it’s generally a good
idea to provide each element with a unique number. The numbers don’t have to be
sequential, and they can be any int32 value including negative numbers. The default
is zero.

Listing 6.2 Positioning elements in Z space using Canvas.ZIndex

High ZIndex moves
element to top of stack

Default
ZIndex of 0

Figure 6.4 The Canvas.ZIndex property is
used to control which elements appear on top
of others. The higher the Z index, the higher
the element is on the layout stack.

91StackPanel and VirtualizingStackPanel
6.1.3 Sizing child elements

Earlier I covered the HorizontalAlignment, VerticalAlignment, and Margin proper-
ties. Because of the lack of layout logic beyond X and Y positioning, in the Canvas,
these have no effect. It’s important to note that each element added to a Canvas must
be given an explicit size or must be a type that provides its own default size during the
layout process (such as a TextBlock). You’ll see later in this chapter that elements in a
Grid and some other panels can be automatically sized during the layout cycle.

 Take the next listing, for example. The first Rectangle won’t be visible, because it
has a size of 0 and doesn’t request a default size during layout. If you replace Canvas
with Grid (covered later in this chapter), the Rectangle will be visible because the
Grid will provide a size based on the alignment and margin values.

<Canvas Background="White">
 <Rectangle HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Margin="100"
 Fill="Gray" />

 <Rectangle Width="50"
 Height="50"
 Fill="Red" />
</Canvas>

In this listing, the first element, the gray rectangle, will be invisible. To fix that, simply
assign it a Width and Height.

 The Canvas is great for straight X/Y layout. Where it really falls down is when you
want to use it to display items that must be positioned based on the position and size
of other elements. In that case, if you resize one element, you must go through and
manually reposition all the other elements. That’s just not what the Canvas has been
designed for. But there is a set of panels that were built with exactly that in mind.

6.2 StackPanel and VirtualizingStackPanel
Lists of items are very common in applications. Consider menus, list boxes, arrays of
photo thumbnails, toolbars, and more. It makes sense, then, that there’s a family of
panels specifically optimized for display lists. The StackPanel and Virtualizing-
StackPanel are that family.

 In contrast to the Canvas, which requires you to provide a Canvas.Top and
Canvas.Left property for each child, the StackPanel performs some intelligent lay-
out but doesn’t provide any attached properties for that purpose. Instead, each child
added to the StackPanel is positioned adjacent to the previous child. Whether the
element is positioned to the right of the previous elements or below them is controlla-
ble through the Orientation property of the panel.

 In this section, we’ll take a look at the StackPanel. First, we’ll cover the most basic
properties, such as how to set the orientation of the stacking. Then we’ll look at an

Listing 6.3 The gray rectangle won’t show up because it has no size

No effect in
a Canvas

Explicit size

92 CHAPTER 6 Panels
area that often trips up developers and designers new to XAML: sizing children. We’ll
wrap up this section with information on virtualization. The VirtualizingStack-
Panel is a version of the StackPanel control built for smooth performance with large
numbers of child elements. In all other ways, it’s identical to the StackPanel.

6.2.1 Setting the orientation

The primary mechanism for controlling the layout of the StackPanel is the Orienta-
tion property. Setting the property to Vertical (the default if no value is provided)
arranges children in a vertical column. As you’d expect, setting the property to
Horizontal arranges the elements in a row. Figure 6.5 shows how elements are laid
out when using this property.

 The following listing shows how to use the Orientation property to align elements
vertically as shown in figure 6.5. This approach is often used for traditional lists and
vertical menus.

<StackPanel Orientation="Vertical" Background="White">
 <Rectangle Width="75" Height="35"
 Margin="3" Fill="DimGray" />
 <Rectangle Width="135" Height="55"
 Margin="3" Fill="YellowGreen" />
 <Rectangle Width="95" Height="35"
 Margin="3" Fill="Orange" />
</StackPanel>

The default orientation is vertical, so it need not be specified. By changing the Orien-
tation property to Horizontal, you can cause the StackPanel to add items left-to-
right instead of top-to-bottom.

<StackPanel Orientation="Horizontal" ...>

The horizontal orientation is useful for left-to-right scrolling lists (think flicking
through photos), traditional menus, buttons arranged on an AppBar, and more.

 Elements are arranged in the StackPanel in the order in which they’re added.
Unlike the ZIndex property in Canvas, there’s no easy way to rearrange the order of
elements once they’re in the panel.

 Unlike the Canvas, the StackPanel does provide you with a little assistance in siz-
ing the children.

Listing 6.4 StackPanel with vertically arranged child elements

Figure 6.5 Three elements in a
StackPanel shown in both
Vertical and Horizontal
alignments. Notice how the
elements are centered by default.

Vertical
orientation

Taller child
element

93StackPanel and VirtualizingStackPanel
6.2.2 Sizing children

Unless given an explicit size, the StackPanel will be sized to the widest element when
in vertical orientation or the tallest element when in horizontal orientation. In con-
trast to the Grid, which we’ll cover in the next section, elements added to a Stack-
Panel aren’t sized in both axes by the panel.

 When using the StackPanel in vertical orientation, each child element must have
an implicit height (due to elements inside the control’s template), or you must pro-
vide an explicit height. But you can use a HorizontalAlignment set to Stretch to let
the element take up the full width.

 Similarly, when the StackPanel is in horizontal orientation, each child element
must have an implicit or explicit width. You can use the VerticalAlignment set to
Stretch to size the element to the full available height.

 Also, because elements are positioned next to each other (like in a ListBox), it’s
important to set margins for items placed in a StackPanel.

6.2.3 Virtualizing for performance

When you consider controls such as the ListBox, there’s the potential for a large
number of items to be loaded into the panel. XAML is a retained mode system, so
every element loaded incurs a rendering and layout cost. The trick is to reduce the
number of items in the visual tree using a technique called UI virtualization.

 In XAML we have the VirtualizingStackPanel—the virtualized counterpart to
the StackPanel. The VirtualizingStackPanel derives from Panel (through a few
other intermediate classes) just like every other panel covered in this chapter. It
doesn’t derive from StackPanel, however; it is a completely separate implementation
that offers an API compatible with StackPanel. This is only important if you plan to
offer polymorphic methods that are geared to work with a StackPanel—consider
making them work with the virtualized version as well.

 The VirtualizingStackPanel can only be used inside of an ItemsControl such as
a ListBox. The WrapGrid and VariableSizedWrapGrid are similarly restricted panels.
Because of this, I’ll only briefly cover the VirtualizingStackPanel in this chapter,
and I’ll cover the WrapGrid and related panels when I cover the new ListView and
GridView controls in chapter 10.

ENABLING VIRTUALIZATION
If you look at how I added items to the StackPanel earlier, you may wonder how on earth
you’d write code (or markup) to deal with the virtualization. An important difference
between the VirtualizingStackPanel and the regular StackPanel is that you don’t.

 This makes complete sense, because virtualization requires the concept of a view-
port or viewable subset of items, something that makes sense only if you’re in some
sort of scrolling container. That means you’ll rarely run into a control like this outside
of a control template. Nevertheless, to enable virtualization, you can simply use the
attached VirtualizationMode on the ItemsControl, like this:

<ListBox VirtualizingStackPanel.VirtualizationMode="Standard"/>

94 CHAPTER 6 Panels
The Standard mode creates and discards the item containers, so it’s potentially more
foolproof, but it isn’t the best-performing approach. If you can guarantee that all your
items are the same size, the best approach is to use the Recycling mode, as shown
here:

<ListBox VirtualizingStackPanel.VirtualizationMode="Recycling"/>

Recycling the containers avoids creating and destroying elements, which means the
costly extra work on the part of the layout engine and memory management are both
avoided. With these options, it can be hard to tell if a particular item is currently virtu-
alized, something you may need to concern yourself with if you’re doing any custom
event work.

CHECKING TO SEE IF AN ELEMENT IS CURRENTLY VIRTUALIZED
The VirtualizingStackPanel provides another attached property, IsVirtualizing,
which may be used on any child element of the panel. This is a bit of an oddball prop-
erty, though, in that it doesn’t behave like a regular attached property. That is, you
can’t use it from XAML, and you can’t set its value. Instead, you’d use it from code via
the GetIsVirtualizing method of the VirtualizingStackPanel, for example:

var isVirtual = thePanel.GetIsVirtualizing(childElement);

In this case, thePanel is the VirtualizingStackPanel and childElement is the item
in the panel that you want to check on.

 The two stack panels are appropriate for cases when you want the panel to be sized
to the content and to lay out elements in a single dimension. But often you need more
flexibility than that. You may want to have elements that take up all available remain-
ing space on a screen, or you may want to lay out elements in more than one dimen-
sion. For those tasks, you need the Grid.

6.3 Grid
The Grid is one of the most useful and flexible of all the panels. Because of that, I use
it more than any other panel. It’s the default root panel in every XAML template in
Visual Studio, and it should also be the first panel you look to when evaluating your
layout options.

 The Grid uses a row and column metaphor for layout. Elements are positioned in
a specific row and column and may span as many of each as they wish. In addition,
margins and alignment all play key roles in how items are positioned in a Grid. The
sizes of the rows and columns can be set in specific pixels, autosized to the contents,
set to take up the available space, or even set to take up a specific proportion of the
available space.

 Use the Grid when you want to have child elements automatically position and
resize based on the available screen real estate. You can have a combination of fixed
elements with fixed size and/or position and elements that change size and/or posi-
tion based on the available space. The Grid is key to making your UI work well with
different screen resolutions, orientations, and views.

95Grid
 In this section, we’ll dive into the Grid2 starting with defining rows and columns.
You’ll see the different ways the Grid supports sizing the boundaries that will hold ele-
ments. After that, we’ll look at the process for adding items to the grid and how to
specify which cell or cells they will occupy. Finally, we’ll use alignment and margin
properties to modify layout and element size.

6.3.1 Defining rows and columns

Unlike HTML tables, or even similarly named controls like the DataGrid we’ve all used
in other platforms, the Grid doesn’t have the concept of individual cells. Instead, you
define rows and columns, and the logical cells are a natural outcome.

 The next listing shows how to define rows and columns from XAML.

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="42" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="2*" />
 <RowDefinition Height="0.5*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="300" />
 </Grid.ColumnDefinitions>
</Grid>

This listing shows the different ways of sizing rows and columns. If you place this
markup onto a page and then run it, you’ll get a Grid with the dimensions shown in
figure 6.6. Actually, I take that back. You won’t get exactly the same result.

 The reason your results will differ is because the markup in listing 6.5 has no con-
tent in the Grid—there are no child elements. It’s important because the Grid doesn’t
have any visible representation of rows and columns; you need to add child elements

2 Just like Kevin Flynn, but without the cool light cycles.

Listing 6.5 Defining rows and columns from markup

Pixel sizing

Auto sizing

Star
sizing

Figure 6.6 The Grid created from the
markup in listing 6.5. I added rectangles
to display borders and TextBlock
elements to show the Row,Column
values for each logical cell. Note the
clipped content in the top row.

96 CHAPTER 6 Panels
to see anything. I added a bunch of rectangles with black borders, as well as some
TextBlock elements with row and column numbers as their text. Whether or not you
have elements is even more important with autosizing, such as in the second row
down. More on that shortly.

 Take a look at the first row in the depicted Grid; it was given a pixel size, but the
content is too large to be displayed. In the Grid, the content is clipped, a feature none
of the previous panels (Canvas and StackPanel) shared.

 Although I used more options with the row definitions, each of the approaches
shown in listing 6.5 and table 6.2 works equally with rows and columns.

Like most everything else in XAML, you can accomplish in code what you can in
markup. Our next listing shows the code equivalent of the listing 6.5 markup, assum-
ing you’ve given the root Grid the name LayoutRoot.

private void CreateGrid()
{
 Grid g = new Grid();

 for (int i = 0; i < 6; i++)
 g.RowDefinitions.Add(new RowDefinition());

 for (int i = 0; i < 2; i++)
 g.ColumnDefinitions.Add(new ColumnDefinition());

 g.RowDefinitions[0].Height = new GridLength(42);
 g.RowDefinitions[1].Height = new GridLength(1, GridUnitType.Auto);
 g.RowDefinitions[2].Height = new GridLength(1, GridUnitType.Star);
 g.RowDefinitions[3].Height = new GridLength(1, GridUnitType.Star);
 g.RowDefinitions[4].Height = new GridLength(2, GridUnitType.Star);
 g.RowDefinitions[5].Height = new GridLength(0.5, GridUnitType.Star);

 g.ColumnDefinitions[0].Width = new GridLength(1, GridUnitType.Star);
 g.ColumnDefinitions[1].Width = new GridLength(300);

 LayoutRoot.Children.Add(g);
}

Table 6.2 The different types of column and row sizing in the Grid

Size Description

Double value The row or column will be sized in logical pixels given the number provided. If you need
an exact size and want all children in the row/column sized to it, this is the approach to
use. Examples: “0.5”, “250”

Auto The row or column will be sized to the content. If there’s no content, the row or column
will have a size of zero. Example: “Auto”

Star sizing The row or column will be sized to the specified number of logical pixels. Add a multiplier
to the * to allocate remaining space in something other than even divisions. Examples
include “*”, “2*”, “0.5*”

Listing 6.6 Defining rows and columns from code

Create rows

Create columns

Pixel
sizing

Auto
sizing

Star
sizing

97Grid
Creating rows and columns in the Grid is easy both from markup and from code. I
mentioned that we don’t have the concept of cells. That’s important because all chil-
dren are children of the grid, not children of cells within the grid as they would be in
HTML. You position them by providing the row and column for the element to be
positioned in.

6.3.2 Adding and positioning elements in rows and columns

Whether automatic or explicit, one important service all panels provide is positioning
child elements. In support of this, the Grid provides four attached properties, shown
in table 6.3.

More on grid star sizing

Star sizing can be a little confusing. That’s because the sizes are based on all the
other sizes and not some fixed amount. Simply calculating the initial value is a complex
recursive calculation, for example:

■ * and 1.0* are equivalent and mean a single unit.
■ 3* means three times the amount that would have been allocated to 1.0*.
■ 0.5* means one-half the amount that would have been allocated to 1.0*.

But the space that would be allocated to * must be recalculated to take into account
everything else.

You can see from this figure that the amount of space allocated to the * sized column
changes based on how much space the other columns request. The only value that
stays the same is the fixed-pixel layout.

Calculating this recursive layout in your head or on paper has been shown to cause
brain-level stack overflow and a deep hatred for flexible and fluid layout. Given that,
I suggest experimenting on a blank page before applying a complex star-sizing layout
to your own project.

98 CHAPTER 6 Panels

The default Grid.Row and Grid.Column are both 0, so they don’t need to be specified.
I always do, however, because it makes the intent clear.

 Figure 6.7 shows a Grid, in the
Visual Studio designer, with seven
child rectangles. Two of the rectan-
gles span columns, three span rows,
and three simply take up their own
cell. All of the rectangles have mar-
gins, so you can see how the margins
come into play with layout, especially
with row and column spanning.
 The next listing shows how to use
these four properties to create a grid
with flexible positioning of elements.
The created grid is the one illustrated
in figure 6.7. Note how the order in
which elements are added doesn’t
matter as long as they don’t overlap.
Every element is added inside the
Grid tag, after the row and column
definitions.

<Grid Margin="20">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />

Table 6.3 The attached properties provided by the Grid. Use these to position elements within
 the panel.

Property Use

Grid.Row A zero-based index into the rows defined by the RowDefinitions collection.

Grid.Column A zero-based index into the columns defined by the ColumnDefinitions
collection.

Grid.ColumnSpan The number of columns this element takes up. Default value is 1.

Grid.RowSpan The number of rows this element takes up. Default value is 1.

Listing 6.7 Positioning child elements in the grid

Figure 6.7 A bunch of rectangles in a grid, viewed in
the Visual Studio XAML designer. Any elements with
row or column spanning have been called out so you
can see the properties.

Four even
rows

Four even
columns

99Grid
 </Grid.ColumnDefinitions>

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="Red" Margin="5"
 Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3" />

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="Gray" Margin="5"
 Grid.Row="1" Grid.Column="0" />
 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="DimGray" Margin="5"
 Grid.Row="1" Grid.Column="1" />
 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="White" Margin="5"
 Grid.Row="1" Grid.Column="2" Grid.RowSpan="2"/>

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="CornflowerBlue" Margin="5"
 Grid.Row="0" Grid.Column="3" Grid.RowSpan="4" />

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="Orange" Margin="5"
 Grid.Row="2" Grid.Column="0"
 Grid.RowSpan="2" Grid.ColumnSpan="2" />

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="Olive" Margin="5"
 Grid.Row="3" Grid.Column="2" />
</Grid>

A Grid with no rows or columns defined is treated as though it has a single row and
column. In addition, if you specify a row or column outside the range created by the
row and column definitions, the element will be positioned at the closest defined row
or column. So, if there are six columns (indexed 0–5) and you specify a Grid.Column
value of 10, it will be treated as an index of 5. If you don’t specify a row or column, the
default value is 0.

 Beyond simply positioning elements, the Grid provides a lot of help with sizing
elements.

6.3.3 Using alignment and margins for sizing and positioning

Look back at figure 6.7. Notice how the rectangles take up all available space allot-
ted to them. Now look at listing 6.7. Unlike the Canvas example, the rectangles here
have no defined Width or Height. Instead, when elements are placed in a Grid, they
are allowed, by default, to stretch to the full height and width available in the logi-
cal cell.

 In addition, if the elements have sizes, you can use the HorizontalAlignment and
VerticalAlignment properties to position them on the screen, for example, in a cor-
ner. This can be useful when you want to have an element overlay other elements on
the grid. You can use these alignment properties together with margins and row and

Span
three
columns

Span
two rows

Span
four rows

Span two rows
and two columns

100 CHAPTER 6 Panels
column spanning to be able to position any element in any spot in the grid, as shown
in figure 6.8.

 The following listing shows how to position elements in a grid to create the layout
shown in figure 6.8. This same technique works within single cells and in spanned
cells.

<Grid Margin="20">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="Yellow" Margin="25"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Height="500" Width="600"
 Grid.Row="0" Grid.Column="0"
 Grid.ColumnSpan="2" Grid.RowSpan="2"/>

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="Red" Margin="5,20,100,50"
 Grid.Row="0" Grid.Column="0" />

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="CornflowerBlue" Margin="5"
 HorizontalAlignment="Right"

Listing 6.8 Positioning and sizing elements using alignment and margins

Figure 6.8 Effective use of
alignment and margins to align
elements in different parts of the grid

Two even rows

Two even columns

Background
rectangle
spans all

Margins for size
and position

101Grid
 VerticalAlignment="Top"
 Height="100" Width="175"
 Grid.Row="0" Grid.Column="1" />

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="Orange"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Height="100" Width="100"
 Grid.Row="0" Grid.Column="1" />

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="Olive" Margin="10"
 HorizontalAlignment="Left"
 VerticalAlignment="Bottom"
 Height="150" Width="150"
 Grid.Row="0" Grid.Column="1" />

 <Rectangle Stroke="Black" StrokeThickness="2"
 Fill="DimGray" Margin="25"
 HorizontalAlignment="Right"
 VerticalAlignment="Center"
 Height="200" Width="800"
 Grid.Row="1" Grid.Column="0"
 Grid.ColumnSpan="2"/>
</Grid>

This listing shows a number of techniques for positioning elements in a Grid. You can
see the precedence of sizing: Explicit Height and Width have higher precedence than
margins or a Stretch alignment. If aligned to an edge, only the margin for that edge
comes into play. If that edge moves, the element will move with it to maintain its dis-
tance. This is similar to “docking” elements in Windows forms. If sized using only mar-
gins with Stretch for HorizontalAlignment and VerticalAlignment, the element
will take up all available space in the cell (or spanned cells).

 The Grid is easily my favorite panel in XAML. Unless you’re working with an Items-
Control like a ListBox, where elements must be arranged automatically without any
attached properties, you can accomplish just about any layout task you need by using it.

 Making effective use of margins and alignment instead of hardcoding sizes will let
you automatically adjust for different resolutions and layouts. This is one of the most
important skills to master to allow your apps to run on the multitude of formats and
orientations supported by Windows Modern Style apps.

 Explicitly sizing elements and aligning them to one or more edges enables you to
“dock” elements like status information, toast-like notifications, user sign-in informa-
tion, AppBars, and more. It really is that flexible.

 We’ve covered a number of panels so far, each with its own way of laying out the
elements provided. What happens, though, when these panels don’t do quite what
you want? Do you just hack something together using a Canvas and a bunch of ran-
dom code in code-behind? No! You create your own panel; it’s easy, as you’ll see.

Centered in
top right cell

Span bottom cells

102 CHAPTER 6 Panels
6.4 Creating a custom panel
As I mentioned, the primary responsibility for positioning and sizing elements falls to
the panel the elements are contained in. You’ve seen in this chapter that some panels,
such as the Canvas, position using simple Left and Top coordinates. Others, such as
the StackPanel, lay out children based on a series of measurements and a placement
algorithm.

 In this section, we’re going to build a
simplified version of a panel that doesn’t
currently exist in Windows: the Orbit-
Panel. This panel will lay out elements in
a circle rather than using the horizontal
and vertical options available with the
stock StackPanel or the row and column
layout of a Grid. The new panel in action
can be seen in figure 6.9.

 The OrbitPanel control supports an
arbitrary number of orbits, as long as that
number is greater than zero. Each orbit is
a concentric circle starting at the center
point of the panel. The amount of space
allocated to an orbit is a function of the
number of orbits and the size of the panel
itself. If there are many orbits, the space
will be narrower.

 For each orbit, the layout is done by starting at angle 0 and equally dividing the
remaining degrees by the number of items in the specific orbit. Items added to the
panel may specify an orbit via the use of an attached property. No rotation is per-
formed on the elements, just positioning.

 In this section, you’ll build this panel, starting with project creation, including the
addition of a library project specifically made for this panel. You’ll create a depen-
dency property as well as an attached property, both because they’re useful and
because creating them is a necessary skill for panel and control builders. From there,
you’ll spend most of the time looking at how to perform the measure and arrange
steps described in chapter 6 to lay out the child elements.

6.4.1 Project setup

For this example, create a new Windows Store XAML Blank App project named
CustomPanelExample. Once the solution is up, add a Class Library (Windows Store
App) project named ControlsLib (right-click the solution, select Add > New Project).
Though I could’ve put the custom panel into the same project as the app, that’s
almost never the way reusable controls are developed.

Figure 6.9 The OrbitPanel in action. The
inner orbit (level 1) has five ellipses. The outer
orbit (level 2) has 10 ellipses.

103Creating a custom panel
 From the app project, add a project reference to the ControlsLib project. Do this
by right-clicking the app project file, selecting Add Reference, navigating to the Proj-
ects tab, and selecting the project. While you’re in the ControlsLib project, remove
the default class1.cs file that came with the template.

 With the project structure in place, let’s work on the OrbitPanel class.

6.4.2 The OrbitPanel class

Inside the ControlsLib project, delete the default class1.cs file and add a new class
named OrbitPanel. This class will contain all the code for the custom panel. Derive
the class from the Panel base type, as shown in the next listing. Make sure you mark
the class as public, or it won’t be visible to the test project.

using System;
using System.Collections.Generic;
using System.Linq;
using Windows.Foundation;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
namespace ControlsLib
{
 public class OrbitPanel : Panel
 {
 }
}

In addition to the Children property covered at the start of this chapter, the Panel
base class provides a Background brush property and a Boolean IsItemsHost, which is
used in concert with the ItemsControl class. Deriving from Panel allows you to substi-
tute your panel for the StackPanel in a ListBox, for example. The Background prop-
erty allows you to provide a background color for the panel.

 The OrbitPanel class will need to have two properties. The first, Orbits, will con-
trol the number of concentric circles, or orbits, available for placing items. The sec-
ond is an attached property, Orbit, to be used on items placed into the panel; it
controls which circle, or orbit, the item is to be placed in.

6.4.3 Orbits dependency property

In general, controls and panels should expose properties as dependency properties. If
there’s any possibility that they’ll be used in binding or animation, a dependency
property is the way to go.

 Dependency properties are specified at the class level using a static property and
DependencyProperty.Register call. For use in code and XAML, they’re also wrapped
with a standard property wrapper that internally uses the dependency property as the
backing store. Optionally, the dependency property may specify a callback function to
be used when the property changes.

Listing 6.9 The empty OrbitPanel class

Panel namespace

Make sure
it’s public!

104 CHAPTER 6 Panels
 The following listing shows the complete definition for the Orbits property, with
all three of these items in place.

public int Orbits

{
 get { return (int)GetValue(OrbitsProperty); }
 set { SetValue(OrbitsProperty, value); }
}
public static readonly DependencyProperty OrbitsProperty =
 DependencyProperty.Register("Orbits",
 typeof(int),
 typeof(OrbitPanel),
 new PropertyMetadata(1, OnOrbitsChanged));
private static void OnOrbitsChanged(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
{
 if ((int)e.NewValue < 1)
 {
 throw new ArgumentException(
 "Orbits must be greater than or equal to 1.");
 }
}

The first thing you’ll notice in this code is the Orbits property. This is a standard
property wrapper, used for simple property access in code and required for property
access in XAML. The property code uses the GetValue and SetValue methods, pro-
vided by DependencyObject, to access the backing dependency property. Though not
required at a compiler or framework level (unless you want to use the property in
XAML), providing the wrapper is a standard practice when defining dependency
properties.

TIP Visual Studio 2012 includes a snippet for declaring dependency proper-
ties. An easy way to get to them is to right-click in the code editor and select
Insert Snippet. From there, look under the NETFX30 option, because this
snippet was first introduced with WPF. This snippet also works well for Silver-
light applications and saves you from remembering the exact syntax.

The next chunk of code in this listing defines and registers the dependency property.
The single line both defines the property and registers it with the property system.
The first parameter is the string name of the property. By convention, the name of the
dependency property variable is this string plus the word Property. The second parame-
ter is the type of the property itself—in this case, an int. The third parameter is the
type you’re registering the property on. The fourth and final parameter is a Proper-
tyMetadata object.

 The PropertyMetadata object can be used to specify a default value, a property
changed callback, or, as seen here, both. When providing the default property value,

Listing 6.10 The Orbits property

Wrapper property

105Creating a custom panel
be specific with the type. For example, a property value of 1 won’t work with a double
type; you must specify 1.0 or face the wrath of an obscure runtime error.

 The property changed callback function enables you to hook into the process to
perform actions when the dependency property changes. Note that you’d never want
to do this inside the property wrapper, because that would only catch a few of the sce-
narios under which the property could change. The callback function takes in an
instance of the object that owns the property, as well as an event args class that has
both the new and old values available for inspection.

 All three pieces—the property wrapper, the dependency property definition and
registration, and the callback function—make up the implementation of a single
dependency property in Windows. Though verbose, the benefits provided by depen-
dency properties are great, as shown throughout this book. When creating your own
properties for panels and controls, err on the side of implementing them as depen-
dency properties.

 A specialized type of DependencyProperty, the attached property is used when you
want to provide a way to enhance the properties of another object. That’s exactly what
you need to do with the Orbit property.

6.4.4 Orbit attached property

Each item added to the OrbitPanel

needs to be assigned to a specific circle or
orbit. This is similar in concept to how a
Grid needs items to specify rows and col-
umns or how the Canvas needs Left and
Top for each element. The association
between the orbit number and the item’s
position is shown in figure 6.10.

Figure 6.10 Orbits are numbered starting with
zero: the innermost orbit. Orbit zero isn’t used

in this example because that would be too
close to the center for good layout.

You’ll do the same with the Orbit property of the OrbitPanel. The next listing shows
the implementation of the Orbit attached property in the OrbitPanel class. Add this
into the class now.

public static int GetOrbit(DependencyObject obj)
{
 return (int)obj.GetValue(OrbitProperty);
}
public static void SetOrbit(DependencyObject obj, int value)

Listing 6.11 The Orbit attached property in the OrbitPanel class

106 CHAPTER 6 Panels
{
 obj.SetValue(OrbitProperty, value);
}
public static readonly DependencyProperty OrbitProperty =
 DependencyProperty.RegisterAttached("Orbit",
 typeof(int),
 typeof(OrbitPanel),
 new PropertyMetadata(0));

Note that attached properties don’t use a wrapper. Instead, following convention, you
provide Get and Set methods to allow the properties to be used in code and XAML.

 The RegisterAttached method is similar to the Register method shown in listing
6.10, with the parameters being identical. In this case, you don’t use a callback
method but instead provide a default value of zero.

 The public-facing API of the OrbitPanel is now complete. The next listing is the
MainPage.xaml markup to use and populate the OrbitPanel. Note the controls
namespace declaration at the top.

<Page
 x:Class="CustomPanelExample.MainPage"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:CustomPanelExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:controls="using:ControlsLib"
 mc:Ignorable="d">

 <Grid Background="White">
 <controls:OrbitPanel Orbits="3" Margin="75">
 <Ellipse controls:OrbitPanel.Orbit="1"
 Width="50" Height="50" Fill="DimGray"/>
 <Ellipse controls:OrbitPanel.Orbit="1"
 Width="50" Height="50" Fill="Orange"/>
 <Ellipse controls:OrbitPanel.Orbit="1"
 Width="50" Height="50" Fill="Brown"/>
 <Ellipse controls:OrbitPanel.Orbit="1"
 Width="50" Height="50" Fill="Green"/>
 <Ellipse controls:OrbitPanel.Orbit="1"
 Width="50" Height="50" Fill="CornflowerBlue"/>

 <Ellipse controls:OrbitPanel.Orbit="2"
 Width="50" Height="50" Fill="DimGray"/>
 <Ellipse controls:OrbitPanel.Orbit="2"
 Width="50" Height="50" Fill="DarkGray"/>
 <Ellipse controls:OrbitPanel.Orbit="2"
 Width="50" Height="50" Fill="LightGray"/>
 <Ellipse controls:OrbitPanel.Orbit="2"
 Width="50" Height="50" Fill="Gray"/>

Listing 6.12 Controls arranged inside the OrbitPanel

OrbitPanel
namespace

OrbitPanel

Orbit
attached
property

107Creating a custom panel
 <Ellipse controls:OrbitPanel.Orbit="2"
 Width="50" Height="50" Fill="Orange"/>
 <Ellipse controls:OrbitPanel.Orbit="2"
 Width="50" Height="50" Fill="Brown"/>
 <Ellipse controls:OrbitPanel.Orbit="2"
 Width="50" Height="50" Fill="Green"/>
 <Ellipse controls:OrbitPanel.Orbit="2"
 Width="50" Height="50" Fill="CornflowerBlue"/>
 <Ellipse controls:OrbitPanel.Orbit="2"
 Width="50" Height="50" Fill="Red"/>
 <Ellipse controls:OrbitPanel.Orbit="2"
 Width="50" Height="50" Fill="Purple"/>
 </controls:OrbitPanel>
 </Grid>
</Page>

This example shows how you can add elements to the OrbitPanel and also set the cus-
tom attached properties. You haven’t implemented any layout, so you won’t see any-
thing just yet.

 Dependency properties—and the special type of dependency property, the
attached property—are essential and often use parts of the property system in Win-
dows XAML. When creating your own panels and controls, you’ll almost certainly rely
on them as the primary means of providing “knobs” your users can use to control the
behavior of your custom classes.

 In the case of the OrbitPanel, both of these properties will come into play when
performing a custom layout.

6.4.5 Custom layout

The main responsibility of a panel is the
layout of its child controls. This is pri-
marily what makes an element a panel. A
panel that performed no custom layout
wouldn’t be particularly useful. In our
panel, each child element will be
arranged starting at the top center and
proceeding clockwise on an even angle
increment. Figure 6.11 shows the layout
for each orbit.

 As you learned in chapter 5, the lay-
out pass involves two steps: measure and
arrange. The measure step measures all
the children of the panel, as well as the
overall panel itself. The arrange step per-
forms final placement of the children
and sizing of the panel. As the authors of
a custom panel, it’s our responsibility to

Figure 6.11 Each orbit has its elements
positioned starting clockwise from 12:00
(zero degrees).

108 CHAPTER 6 Panels
provide this critical functionality. The following listing shows the measure step, imple-
mented in the MeasureOverride method of the OrbitPanel class.

protected override Size MeasureOverride(Size availableSize)
{
 var sortedItems = SortElements();
 double max = 0.0;
 foreach (List<UIElement> orbitItems in sortedItems)
 {
 if (orbitItems.Count > 0)
 {
 foreach (UIElement element in orbitItems)
 {
 element.Measure(availableSize);

 if (element.DesiredSize.Width > max)
 max = element.DesiredSize.Width;
 if (element.DesiredSize.Height > max)
 max = element.DesiredSize.Height;
 }
 }
 }
 Size desiredSize = new Size(max * Orbits * 2, max * Orbits * 2);
 if (double.IsInfinity(availableSize.Height) ||
 double.IsInfinity(availableSize.Width))
 return desiredSize;
 else
 return availableSize;

}

The measure pass starts by getting a list of all items, grouped by their orbit using the
SortElements function defined in the next listing. The code then loops through each
orbit, then through each item in the orbit, and measures that item. It then gets the
largest dimension (either width or height) from that element and compares it to the
current max. This is admittedly a bit of a hack, because the size allotted to each item
is, in theory, a pie slice, not a rectangle. In addition, because of the simplified nature
of the orbit sizing, you don’t need to group the children by orbit. Nevertheless, it’ll
work for this example.

 Once the code has looped through every child item, it then calculates the desired
size for this panel. That’s calculated by taking the number of orbits, multiplying by two
to account for the circular nature, then multiplying by the maximum item size. If the
original size passed in was unlimited, the code returns the desired size; otherwise, it
returns the size provided to the control.

 The next listing relies on the SortElements function. The code for both that func-
tion and the CalculateOrbitSpacing function (used in the arrange step) is included
in the next listing.

Listing 6.13 The measure step

Measure
each child

Return panel
measurements

109Creating a custom panel

private double CalculateOrbitSpacing(Size availableSize)
{
 double constrainingSize = Math.Min(
 availableSize.Width, availableSize.Height);
 double space = constrainingSize / 2;
 return space / Orbits;
}
private List<UIElement>[] SortElements()
{
 var list = new List<UIElement>[Orbits];
 for (int i = 0; i < Orbits; i++)
 {
 if (i == Orbits - 1)
 list[i] = (from UIElement child in Children
 where GetOrbit(child) >= i
 select child).ToList<UIElement>();
 else
 list[i] = (from UIElement child in Children
 where GetOrbit(child) == i
 select child).ToList<UIElement>();
 }
 return list;
}

CalculateOrbitSpacing uses the size of the panel to figure out the spacing of the
individual concentric circles. This is done by evenly dividing the total space. The
SortElements function takes each child and puts it into a list by orbit, just to make it
easier to process.

 Note that the SortElements function has special logic to group any elements in an
invalid orbit into the highest orbit, much like the Grid does with invalid row and col-
umn values. It doesn’t handle any error cases where a negative orbit number was spec-
ified, but that’s easy enough to add.

 The most important step in the MeasureOverride code is the step that measures
each child. That’s what sets the desired size for each child in preparation for the
arrange step shown next, wrapping up the code for the OrbitPanel class.

protected override Size ArrangeOverride(Size finalSize)
{
 var sortedItems = SortElements();
 double orbitSpacing = CalculateOrbitSpacing(finalSize);

 int i = 0;
 foreach (List<UIElement> orbitItems in sortedItems)
 {
 int count = orbitItems.Count;
 if (count > 0)
 {

Listing 6.14 Supporting functions

Listing 6.15 The arrange step

110 CHAPTER 6 Panels
 double circumference = 2 * Math.PI * orbitSpacing * (i + 1);
 double slotSize = Math.Min(orbitSpacing, circumference / count);
 double maxSize = Math.Min(orbitSpacing, slotSize);
 double angleIncrement = 360 / count;
 double currentAngle = 0;
 Point centerPoint =
 new Point(finalSize.Width / 2, finalSize.Height / 2);
 foreach (UIElement element in orbitItems)
 {
 double angle = Math.PI / 180 * (currentAngle - 90);
 double left = orbitSpacing * (i + 1) * Math.Cos(angle);
 double top = orbitSpacing * (i + 1) * Math.Sin(angle);
 Rect finalRect = new Rect(
 centerPoint.X + left - element.DesiredSize.Width / 2,
 centerPoint.Y + top - element.DesiredSize.Height / 2,
 element.DesiredSize.Width,
 element.DesiredSize.Height);
 element.Arrange(finalRect);
 currentAngle += angleIncrement;
 }
 }
 i++;
 }
 return base.ArrangeOverride(finalSize);
}

The arrange step is where the real layout happens. It’s in this function that the indi-
vidual children are placed in their final locations. This is the function that requires
digging way back to 10th or 11th grade to remember that trigonometry.

 This function, like the previous one, starts by sorting the children into their
respective orbits. Again, this is performed by the SortElements function. It then runs
through each orbit, calculating the size of the circle and the angular offset of each
item. The angle chosen is based on the number of items in that orbit; it’s 360 degrees
evenly divided by the item count.

 Then, the function calculates the left and top position given the angle. This left
and top will actually be used for the center point of the element being placed. This
can lead to some elements being cut off, which is why I provided a margin in the
markup that uses this panel. With that all calculated, this function calls Arrange on
the element to move it to its final location.

 If you run the application now, you’ll see the image from the opening of this sec-
tion (figure 7.9), with two orbits of buttons. There’s a lot you could do to enhance a
panel like this, including enclosing each element in a host container that you rotate to
match the angle. You could even write a panel that lays out elements in a spiral fash-
ion, maybe call it TornadoPanel or DrainPanel; the latter of course would need to
take into account the hemisphere of the user to decide on a clockwise or counter-
clockwise rotation.3

3 Yes, I know that’s not true, but I never let facts get in the way of an amusing story. No, the Coriolis effect
doesn’t impact how sinks or tubs drain. http://en.wikipedia.org/wiki/Coriolis_effect.

Place child
in final

location

111Summary
 Panels are all about measuring and arranging their children. Measuring is used to
ask each child what size it wants to be and to provide the overall size for the panel.
Arranging is used to calculate the final location of each of the child elements.

6.5 Summary
Panels are one of the essential topics to learn when getting into WinRT XAML. If
you’re a Silverlight, Windows Phone, or WPF developer, you’ll have a huge head start
because the layout system and panel infrastructure are almost identical. The Canvas,
StackPanel, and Grid are virtually unchanged from all other versions of XAML.

 The Canvas is the best-performing panel because it imposes almost no layout over-
head. Instead, it positions elements based on provided Canvas.Left and Canvas.Top
(X and Y) coordinates. Use it when you need something lightweight and flexible.

 The StackPanel and VirtualizingStackPanel provide a little more layout smarts.
They will automatically arrange items in the direction specified by the Orientation
property. Use them when you need to display items in a horizontal or vertical list.

 The most popular panel is the Grid. This should be your go-to panel for most lay-
out tasks. You can arrange items in a grid/cell layout by rows and columns, you can
span rows or columns with elements, and you can position elements using margins
and alignment. It’s one of the heaviest grids, so it’s not necessarily the one to pick if
you are down to critical levels of performance, but it will save you a ton of time when
designing the UI.

 Finally, you have your own panel. Once you’ve exhausted everything the built-in
panels can do, you can create your own panel. In this case, it’s a panel that arranged
items using circular orbits around a central point.

 This chapter completes our discussion of layout. In the next chapter, we’ll look at
brushes and graphics and how to use resources and styles.

Brushes, graphics,
styles, and resources
The Windows 8 design aesthetic generally frowns on decoration and ornamentation
(also referred to as “chrome”). That doesn’t mean that graphics have no role to play.
In comparison to other versions of Windows, Windows 8 is far more graphically rich
with a stronger focus on colorful touch-friendly shapes and vibrant imagery. Just take
a look at the apps from the Windows Store or the apps that come preinstalled—you’ll
find that they make extensive use of both bitmap and vector graphics.

 When I first started working with Silverlight 1.0, we had the Canvas for the panel
and some basic vector and bitmapped shapes for graphics. We had to build everything
else on top of that. I remember I built buttons and combo boxes using only these most
primitive building blocks, while walking uphill, barefoot in the snow, both ways!

 Happily, we don’t need to re-create the wheel here; the controls have been cre-
ated for us. But when you look at the controls and their templates in the next chap-
ters, you’ll see they’re made up of panels, shapes, and other controls, which are

This chapter covers
■ Brushes and colors
■ Resources and styles
■ Vector graphics
■ Images
112

113Brushes
ultimately made up of other panels and shapes. You’ll use the brushes to paint those
controls as well as the text that’s so prevalent in Windows 8 apps.

 In this chapter, I’ll start with coverage of the brushes, focusing on how colors are
defined and used and how brushes make it possible to have solid colors as well as gra-
dients. I’ll even get into coverage of the ImageBrush, which enables you to paint
shapes and even text using a bitmapped image.

 Then, because brushes and colors are commonly stored as resources in the appli-
cation or in standard resource dictionary files, we’ll take a little detour into resource
management. This is an important topic for this chapter and is easy to grasp with the
simple resources I’ll introduce. Following right on the heels of the discussion of
resources, we’ll implement a very common type of resource: a style. Styles in XAML are
an important way to standardize not only visible properties (as in CSS) but even con-
tent and other properties. They also tend to make extensive use of resources, which
makes them a natural follow-on to that discussion.

 Next, it’ll be time to look into vector graphics. We’ll take a look at lines, polylines
(and polygons), ellipses, rectangles, and even the Path mini language for defining
complex shapes. From there, we’ll wrap up the chapter with a look at using bit-
mapped images outside the context of the ImageBrush covered earlier. Together,
brushes, bitmapped graphics, and vector graphics represent the heart of the 2D draw-
ing system in WinRT. Resources make working with them more pleasant.

7.1 Brushes
In some platforms there’s a distinction made between a pen and a brush: Pens are for
drawing lines and brushes are for filling in shapes. In XAML, there’s no such thing as a
pen: All painting, whether it be lines, gradients, fills, or backgrounds, is accomplished
using a brush.

 Just like in the real world, a brush is a device used to paint a color on something.
Unlike the real world, you don’t have to spend 20 minutes cleaning it in-between uses.
Also, in XAML, the colors can be sold colors, smooth transitions between colors, or
even an image. The idea of a brush is itself an abstract concept. It’s the concrete spe-
cializations that we’ll use in XAML.

 The Windows 8 design aesthetic encourages the use of a palette of solid colors, so
we’ll start with the SolidColorBrush. From there, we’ll look at the LinearGradient-
Brush. This brush is good for adding subtle color variation to your UI. We’ll wrap up
with the ImageBrush—a way to paint shapes and even text using bitmapped images. In
all cases, we’ll cover the XAML approach as well as the C# approach for working with
the brushes.

7.1.1 Solid-color brushes

The simplest brush is the SolidColorBrush. As the name implies, this is a brush that’s
made up of a single solid color, without any variation. Whenever you specify a color
code or named color into a property in XAML, you’re using a SolidColorBrush. A

114 CHAPTER 7 Brushes, graphics, styles, and resources
type converter (code invoked whenever converting, in this case, a string to a type)
converts the color’s string representation into the solid-color brush. In this listing all
four rectangles will be the same color.

<StackPanel>
 <Rectangle Fill="Red" Stroke="White"
 Width="100" Height="100" />
 <Rectangle Fill="#FFFF0000" Stroke="#FFFFFFFF"
 Width="100" Height="100" />
 <Rectangle Stroke="#FFFFFFFF"
 Width="100" Height="100">
 <Rectangle.Fill>
 <SolidColorBrush Color="Red" />
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle Stroke="#FFFFFFFF"
 Width="100" Height="100">
 <Rectangle.Fill>
 <SolidColorBrush>
 <SolidColorBrush.Color>
 Red
 </SolidColorBrush.Color>
 </SolidColorBrush>
 </Rectangle.Fill>
 </Rectangle>
</StackPanel>

In this listing, you can see four different variations on specifying the Fill brush for a
Rectangle. The first uses properties with named colors. The second uses the hex
color code for red. The third breaks out the brush using property element syntax (you
can actually leave out the SolidColorBrush and just use Red inline, as shown in chap-
ter 3 on XAML). The fourth is extra verbose, completely breaking out the full-brush
specification.

 I show all methods here because you’re going to use variations on these for other
brushes. It’s important to understand that these are all simply different ways of specify-
ing the same result: a solid Fill color of Red.

 When it comes to the colors themselves,
you can see that I specified them in two differ-
ent ways: color names and color codes. The
color codes are like those you’d use in HTML,
with an alpha component. The format is #AAR-
RGGBB, which, in addition to looking like an
expletive from a pirate with a swollen lip, trans-
lates to 1 byte each of alpha, red, green, and
blue. Full opaque alpha is 0xFF (255) for the
first byte; fully transparent is 0x00 (0). Figure
7.1 shows the breakdown of the color code.

Listing 7.1 Four ways of specifying a red SolidColorBrush

Color names

Color hex
codes

Red brush
explicit

Red brush
expanded

Figure 7.1 The components of a hex color
code

115Brushes
Unlike with Silverlight, the full set of color names is available in both code and XAML.
You’ve seen the color names in use in XAML already. In code, the Windows.UI.Colors
class provides the list of color names. But unlike the case with WPF, you don’t have
access to the system theme colors. Rather than attempt to match the system colors,
you should use your own colors and branding consistently within your app.

 The next listing shows several different ways to create a SolidColorBrush from
code.

public MainPage()
{
 this.InitializeComponent();
 SetColors();
}

private void SetColors()
{
 LayoutRoot.Background = new SolidColorBrush(Colors.Red);

 var color = Color.FromArgb(0xFF, 0xFF, 0x00, 0x00);
 LayoutRoot.Background = new SolidColorBrush(color);

 var color2 = ColorHelper.FromArgb(0xFF, 0xFF, 0x00, 0x00);
 LayoutRoot.Background = new SolidColorBrush(color2);

 var brush = new SolidColorBrush();
 brush.Color = color;
 LayoutRoot.Background = brush;

 string xmlns =
 "http://schemas.microsoft.com/winfx/2006/xaml/presentation";
 string xaml =
 "<SolidColorBrush xmlns=\""+ xmlns +"\" Color=\"#FFFF0000\" />";
 var brush2 = (Brush)XamlReader.Load(xaml);
 LayoutRoot.Background = brush2;
}

As with most of my examples, LayoutRoot is the name I gave to the root Grid on the
page. The first example uses the constructor of SolidColorBrush to specify the color
using a color name. The second uses the Color.FromArgb method with the individual
color components. The third does the same thing but with the ColorHelper class. As
you can see, the ColorHelper.FromArgb method works in C#, but it’s really meant just
for JavaScript apps. Instead, use the Color.FromArgb method.

 The fourth example uses the Color property of the SolidColorBrush class. The
last example in the listing is a bit offbeat. In that example, you use the Win-
dows.UI.Xaml.Markup.XamlReader class to load in a string of XAML. In this way, you
can parse a color hex string or any other chunk of XAML that resolves down to a
brush. This can be a great approach to use when storing resources in a database or
user-supplied configuration files.

Listing 7.2 SolidColorBrush in code

Use
constructor

Use Color

Use ColorHelper

Use color property

Parse
XAML

116 CHAPTER 7 Brushes, graphics, styles, and resources
 It may seem ridiculous to have so many ways of specifying a color in XAML and in
code, but there’s good reason for them, as you’ll see when we look at gradients.

7.1.2 Gradient brushes

A gradient is a smooth transition between one or more colors. This may be as simple
as the old blue-to-black diagonal transition on late ’90s PowerPoint presentations,

ranging to something that visually represents the
night sky, complete with a hard break at the hori-
zon line. In general, the subtle use of a gradient
can provide a sense of depth to an interface. In
contrast, figure 7.2 is a completely nonsubtle gra-
dient going from white to black and back to white.
 The Windows 8 design aesthetic may generally
favor solid colors, but that doesn’t mean a well-
placed gradient can’t be both useful and visually
appealing. Before going off and filling your UI
with gradients, however, consider that they do add

a very slight tax on the rendering system (more so when animated). Also consider that
the gradient should be very subtle and serve some useful purpose in order to stay
within the design guidelines.

 The following listing creates the gradient shown in figure 7.2.

<Grid x:Name="LayoutRoot" Background="White">
 <Rectangle Width="800" Height="500" Stroke="Black">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0" Color="White" />
 <GradientStop Offset="0.4" Color="Black" />
 <GradientStop Offset="0.6" Color="Black" />
 <GradientStop Offset="1" Color="White" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
</Grid>

The StartPoint and EndPoint properties, illustrated in figure 7.3, control the orien-
tation of the gradient. In this way, you can position the gradient on the horizontal, ver-
tical, or diagonal or through fractional/double values, any place in between.

 Figure 7.3 shows the gradient coordinate system, as well as an illustration of this
specific gradient and an approximation of its parameters. You can see that the grid is
based on floating-point values between 0 and 1, with 0.5 being the halfway point.
Using relative (U/V style for the 3D enthusiasts) coordinate mapping makes the gra-
dient agnostic of physical resolution.

Listing 7.3 The white/black/white gradient from the start of this section

Figure 7.2 A white-to-black-to-white
gradient on the diagonal. The gradient is
used to fill a black-bordered rectangle.

Brush with
start and
end points

 Gradient stops

117Brushes
Like everything else in XAML, you can also create the LinearGradientBrush com-
pletely from within code. The next listing shows how to do this, assuming the page’s
XAML includes a rectangle with the name “rect.”

public MainPage()
{
 this.InitializeComponent();
 FillRectangle(rect);
}

private void FillRectangle(Rectangle r)
{
 var brush = new LinearGradientBrush();

 brush.StartPoint = new Point(0,0);
 brush.EndPoint = new Point(1,1);

 for (int i = 0; i < 4; i++)
 brush.GradientStops.Add(new GradientStop());

 brush.GradientStops[0].Offset = 0;
 brush.GradientStops[0].Color = Colors.White;

 brush.GradientStops[1].Offset = 0.4;
 brush.GradientStops[1].Color = Colors.Black;

 brush.GradientStops[2].Offset = 0.6;
 brush.GradientStops[2].Color = Colors.Black;

 brush.GradientStops[3].Offset = 1.0;
 brush.GradientStops[3].Color = Colors.White;

 r.Fill = brush;
}

If you run this listing, you’ll see exactly the same result as from listing 7.3. I encour-
age you to do as much of your UI as possible using markup. But when you want to

Listing 7.4 LinearGradientBrush created in code

Figure 7.3 The linear gradient with
the stops explained. The stops are
0.0: white, 0.4: black, 0.6: black,
and 1.0: white. The gradient start
point is 0,0 and end point is 1,1.

Set start and
end points

Create stops

Assign colors
and offsets

Paint the rectangle

118 CHAPTER 7 Brushes, graphics, styles, and resources
dynamically create UI elements or need to share a UI design with other XAML plat-
forms, code is often the easiest approach.

 Although I didn’t show it here, you can dynamically load XAML from the code-
behind just as in the SolidColorBrush example.

WHERE IS THE RADIAL GRADIENT BRUSH? You won’t find the RadialGradient-
Brush in WinRT XAML. The reason is that a radial gradient generally goes
against the design aesthetic. (These brushes were almost always used for
spherical highlights.) The team wanted to discourage its use and make the
most use of their available development time by concentrating on the essen-
tials. If you really need a radial gradient, you’ll need to load in a PNG with one
prerendered or render it as part of a DirectX surface in C++.

You can do quite a bit with a gradient and enough stops. The more stops you have, the
more processing time will be consumed by calculating the steps, so there’s a point in
design when you’re better off using another approach. Sometimes you just need to
paint with something a little more complex than a gradient. For those occasions, con-
sider using the ImageBrush.

7.1.3 Image brushes

The final brush we’ll discuss in this chapter is the ImageBrush. Unlike the Solid-
ColorBrush and LinearGradientBrush, the ImageBrush paints not with individual
colors but with an entire image.

 Use an ImageBrush when you need to fill an arbitrary shape with an image. Also
consider using an ImageBrush instead of an Image element (covered later in this chap-
ter) in cases where you need to show the same image a number of times on the same
page, because the ImageBrush will generally perform better in that scenario.

 I used an interesting photo in figure 7.4, but you’re not likely to find that type of
ImageBrush use in top apps in the Windows Store. Yes, it was popular back in the day
to paint fonts with images, but that generally doesn’t fit well in the Windows design
aesthetic. Instead, you can use the ImageBrush to provide shaped clipping to images.
For example, you may want photos to show up in a circular or oval frame. You can
paint the image to an oval in that case.

Figure 7.4 ImageBrush being used to
paint the itteh bitteh Internet Kitteh’s
shocked face all over our UI

119Brushes
 The following listing shows how to create the image shown in figure 7.4. It assumes
there is an image in the project’s Assets folder, marked as content and named
shocked.jpg.

<StackPanel Margin="50">
 <Rectangle x:Name="rect" Width="400" Height="300" Stroke="Black">
 <Rectangle.Fill>
 <ImageBrush ImageSource="/Assets/shocked.jpg"
 Stretch="UniformToFill" />
 </Rectangle.Fill>
 </Rectangle>

 <TextBlock x:Name="HelloText" Text="Hello!" Width="400"
 FontSize="145" FontWeight="Bold">
 <TextBlock.Foreground>
 <ImageBrush ImageSource="/Assets/shocked.jpg"
 Stretch="UniformToFill"/>
 </TextBlock.Foreground>
 </TextBlock>
</StackPanel>

This example shows how to fill both a rectangle and text using the same source image.
The Stretch property will be covered later in this chapter when we cover the Image
element. For now, understand that it controls how the image is stretched and scaled to
fit the space to be painted.

 The next listing shows the equivalent to listing 7.5 but in code.

public MainPage()
{
 this.InitializeComponent();
 PaintElements();
}

private void PaintElements()
{
 ImageBrush br = new ImageBrush();
 br.ImageSource =
 new BitmapImage(new Uri("ms-appx:/Assets/shocked.jpg"));

 rect.Fill = br;
 HelloText.Foreground = br;
}

I wanted to show this example because it shows the URI format for appx-embedded
resources. Note the ms-appx: prefix for the resource. This means to look inside the
installation itself, not out on the web. This approach differs from the often confusing
approach used in Silverlight where a leading slash decides between local or remote
resources. It’s also easier to remember than the slash-heavy WPF pack URI syntax.

Listing 7.5 Painting shapes and text using an ImageBrush in XAML

Listing 7.6 Painting shapes and text using an ImageBrush in C#

Paint Rectangle
with image

Paint TextBlock
with image

BitmapImage
source using
ms-appx
protocol

Paint Rectangle

Paint TextBlock

120 CHAPTER 7 Brushes, graphics, styles, and resources
 Note also that you have to use a BitmapImage class in this case. When in XAML, the
translation into a BitmapImage is done for you automatically by a type converter.
When in code, it’s up to you to set this.

 You’ll use the SolidColorBrush more often than any of the other available brushes.
The LinearGradientBrush is also very nice, but be careful how you apply it—resist the
temptation to create gloss and shadows on your UI. With either brush, there are a num-
ber of different ways to specify the colors, both in code and in markup. For the most
part, you’ll find yourself using the hex color codes, just as you would in HTML and CSS.

 The ImageBrush is a great way to step outside the bounds of what solid colors and
gradients can provide. If there’s no clean way with the other brushes to achieve the
result you’re looking for, simply create what you want in Photoshop and load it in with
an ImageBrush.

 You may have noticed that the default Grid background color in the projects is
specified using a {StaticResource} markup extension. In those cases, the brush was
stored as a resource.

7.2 Resources
Cascading Style Sheets (CSS) make it possible to reuse styles, colors, and more in HTML.
In XAML, we’ve been defining all of our object properties at the object level. If you fol-
low that approach, and you decide to change the color scheme for your app, you’ll have
a lot of manual searching and replacing to do. The same is true in HTML: If you define
all your colors and styles locally, it makes reskinning the site much harder.

 In XAML, reuse of colors and styles is handled through resources. Resources are
reusable instances of types. Typically, resources are things like brushes or styles and
templates. They can also be class instances, viewmodels (covered in chapter 9), and
more. Almost any class can be a resource, but because the objects in a resource dic-
tionary must be sharable, most visual elements cannot. Sharing not only helps with
reuse, but it can be a memory saver as well, because you have more control over the
number of objects in use.

 You can declare resources from code, but the more common approach is to
declare them in markup. In this way, you can define reusable objects that exist within
an element’s scope, on a page, app-wide, or through the use of dictionaries, or any
combination of those scopes.

 All resources are added to a special type of lookup table called a resource dictionary.
In some cases, this is transparent to you. In others, you explicitly create separate
resource dictionary files. In all cases, when using resources from markup, you do so
using the StaticResource markup extension.

 In this introduction to resources, I’ll focus on simple resources: brushes. Starting
simple here makes it easy to understand this important concept when it is used in
many of the subsequent chapters—especially when we discuss styles and templates.
First, we’ll look at resources defined locally and on a single page. Then, we’ll look at
the common practice of defining app-wide resources. Finally, we’ll look at the concept
of a resource dictionary, something the built-in templates make extensive use of for
standard control styles and colors.

121Resources
7.2.1 Local and page resources

Resources may be used within the scope in which they’re defined. If you define a
resource at the Grid level, only elements inside the Grid will see it. If you define the
resource at a ListBox level, only the children of the ListBox will see it.

 Because of this, one common place to define a resource is at the Page or User-
Control level. That way, the resource works for every element inside that Page or
UserControl, including the Page or UserControl itself.

 The following listing shows how to define and use a page-level resource and a grid-
level (local) resource in XAML.

<Page
 x:Class="ResourceExample.MainPage"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:ResourceExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Page.Resources>
 <LinearGradientBrush x:Key="StandardGradient"
 StartPoint="0,0" EndPoint="1,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0" Color="White" />
 <GradientStop Offset="0.4" Color="Black" />
 <GradientStop Offset="0.6" Color="Black" />
 <GradientStop Offset="1" Color="White" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel x:Name="StackPanel1">
 <StackPanel.Resources>
 <SolidColorBrush x:Key="ItemBackground"
 Color="White" />
 </StackPanel.Resources>

 <Grid Height="300" Margin="20"
 Background="{StaticResource ItemBackground}">
 <Rectangle Fill="{StaticResource StandardGradient}"
 Margin="50"/>
 </Grid>

 <Grid Height="300" Margin="20"
 Background="{StaticResource ItemBackground}">
 <Rectangle Fill="Purple" Margin="50"/>
 </Grid>
 </StackPanel>
 </Grid>
</Page>

Listing 7.7 Page and local resources defined and used in markup

Page-level
resources

Resource
StandardGradient

Local
resources Resource

ItemBackground

Use page-level
resourceUse local

resource

122 CHAPTER 7 Brushes, graphics, styles, and resources

re
All resources must have a key. That key must be unique within any combined scope so
that no two resources visible to an item have the same key. That is, don’t define a page-
level resource and, say, an app-level resource with the same key.

 Of course, the terms local and page-level are simply conveniences. In reality,
resources simply have scope, and whether you consider something local really
depends on which element’s relationship you’re looking at.

 In this example, resources are defined both at the page level and at a level local to
the StackPanel named StackPanel1. Only elements on the page may use the page-
level resource StandardGradient. Similarly, only the StackPanel and child elements
of it may use the ItemBackground resource.

 When using a resource, always use the StaticResource markup extension. The
format for using this extension is illustrated in figure 7.5.

 Note that in figure 7.5 I specifically called out that the property must be a depen-
dency property. This is important: Only dependency properties (covered in chapter
3) can derive their value from a resource or from an animation. If you run into an
error using a resource with a property, double-check to make sure the property is a
DependencyProperty.

 When you want to access resources from code, the StaticResource markup exten-
sion doesn’t come into play. Instead, you simply refer to the resource by its key and get
back an appropriate type, as shown here.

public MainPage()
{
 this.InitializeComponent();

 var resource = this.Resources["StandardGradient"] as Brush;

 var localRes = StackPanel1.Resources["ItemBackground"] as Brush;
}

You can add resources from code, although that’s very rarely done. Just make sure you
add the resources before the visual tree with elements containing references to the
resources is loaded. Typically, this is going to be in the constructor, before the Ini-
tializeLayout function call. The Loaded event (which fires after completion of Ini-
tializeLayout and page loading) is too late to add resources.

Listing 7.8 Accessing page and local resources from code

Figure 7.5 A breakdown of the
components of the Static-
Resource markup extension as
used to assign a property value. The
extension is a helpful way of
specifying the longer-form
<object><object.Property>
<StaticResource
ResourceKey="key">… value.

Page
source

StackPanel-level
local resource

123Resources
 Putting resources on a page is a common approach to reusing styles, brushes, and
more at only the page level. Resources at levels below that (local resources) are usually
confined to data templates (covered in chapter 9) just because of a desire to generally
keep resources together and easily identified.

 Scoping of page and local resources is pretty easy to see. There’s one additional
scope beyond that, however, that may not be immediately obvious.

7.2.2 Application resources

By far, the most common resource management approach used by app developers is
to put the resources in app.xaml. By defining the resources there, they’re available to
the entire app and may be used in any Page or UserControl.

 Just by virtue of the fact that the resources are defined in app.xaml makes them
app-global in scope. Should you decide to promote a page-level resource to an app-
level resource, all you need to do is cut and paste the resource itself—everything else
stays the same. The next listing shows some resources defined at the application level.

<Application
 x:Class="ResourceExample.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:ResourceExample">

 <Application.Resources>
 <ResourceDictionary>
 <SolidColorBrush x:Key="AppTextColor" Color="White" />
 <SolidColorBrush x:Key="AppTextBackground" Color="Black" />

 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Common/StandardStyles.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

The ResourceDictionary tag is optional when you have only standard keyed
resources. But as you’ll see shortly, if you plan to merge in any other resource diction-
aries, it’s required.

 Resource dictionaries outside of app.xaml don’t start with the Application tag.
Instead, they start directly with the ResourceDictionary tag. Once inside that tag,
everything else is the same as it is in app.xaml.

7.2.3 Resource dictionaries

Just as you wouldn’t want a single code file with thousands of lines of code, you
don’t want enormous XAML files. Once the number of resources gets large (where
large is pretty subjective) you’ll want to put them into one or more separate resource

Listing 7.9 Application resources

Regular
resources

Standard
resource
dictionary

124 CHAPTER 7 Brushes, graphics, styles, and resources
dictionaries. Doing so enables you to break them up by groupings that are logical to
your application as well as to your team. You’ll get more manageable source control
and so on.

 More important, resource dictionaries enable you to be more thoughtful about
which pages merge in which resources. If, for example, you have a set of resources
that’s used in only 10% of the pages in the app, making those resources available app-
wide is a waste of memory. Not only that, but loading resources exacts a performance
penalty—the more resources you have defined in (or merged into) app.xaml, the lon-
ger your app will take to load.

 You can create a new resource dictionary by simply adding a new file using the
Resource Dictionary template. But every project already has several resource diction-
aries of interest. One resource file you may not immediately notice (because it’s in the
Windows SDK location, not the local project) is the ThemeResources.xaml file, a small
portion of which is shown here.

<ResourceDictionary
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
 <ResourceDictionary.ThemeDictionaries>
 <ResourceDictionary x:Key="Default">
 <FontFamily
 x:Key="ContentControlThemeFontFamily">Segoe UI</FontFamily>
 <FontFamily
 x:Key="SymbolThemeFontFamily">Segoe UI Symbol</FontFamily>
 <x:Double x:Key="AppBarThemeMinHeight">68</x:Double>
 <Thickness x:Key="TextControlThemePadding">10,3,10,5</Thickness>
 <Thickness x:Key="ToggleButtonBorderThemeThickness">2</Thickness>
 <Thickness x:Key="ToolTipBorderThemeThickness">2</Thickness>
 <SolidColorBrush x:Key="AppBarBackgroundThemeBrush"
 Color="#E5000000" />
 <SolidColorBrush x:Key="AppBarBorderThemeBrush"
 Color="#E5000000" />
 <SolidColorBrush x:Key="AppBarItemBackgroundThemeBrush"
 Color="Transparent" />
 <SolidColorBrush x:Key="AppBarItemDisabledForegroundThemeBrush"
 Color="#66FFFFFF" />
 <SolidColorBrush x:Key="AppBarItemForegroundThemeBrush"
 Color="#FFFFFFFF" />
 <SolidColorBrush x:Key="AppBarItemPointerOverBackgroundThemeBrush"
 Color="#21FFFFFF" />
 <SolidColorBrush x:Key="AppBarItemPointerOverForegroundThemeBrush"
 Color="#FFFFFFFF" />
 ...
 </ResourceDictionary>
 <ResourceDictionary x:Key="HighContrast">
 ...
 </ResourceDictionary>
 </ResourceDictionary.ThemeDictionaries>
</ResourceDictionary>

Listing 7.10 An example resource dictionary

Theme support
Default
theme

Key system
parameter

High-contrast theme

125Resources
There are three important things to notice in this listing:
■ Resource dictionaries can themselves have keys.
■ Resources aren’t limited to brushes.
■ Most critical system UI parameters exist as resources.

Resource dictionaries can have keys specifically to support theming. We’ll discuss
themes in more detail in the next chapter when I also cover styling. Note that cur-
rently the only system themes supported are standard and high contrast.

 The second thing to notice is that the resource files contain much more than just
brushes. You’ll see not only control styles but also simple types like Font, double, and
Thickness. Resources can be used to standardize these across the app.

 Finally, when designing your own custom controls and page layouts, it will help if
you know the contents of the theme resources file. Make use of the built-in sizing and
other constant resources whenever possible.

 One unique aspect of stand-alone resource dictionaries is that they can be merged
into other dictionaries, providing access to the resources defined therein.

THE STANDARD RESOURCES In addition to the StandardStyles.xaml in the
Common folder of every new project, there are two other important XAML
resource dictionaries. First is the ThemeResources.xaml shown in listing 7.10.
This handles dark and light theme color and style settings. The second is
generic.xaml, which includes the Windows 8-style UI templates for the built-in
controls. Both resource dictionaries can be found in your Program Files
(x86) folder, under \Windows Kits\8.0\Include\winrt\xaml\design. These
resources are for your education and to help designers; changing them will
not necessarily alter the built-in styles at runtime. These files are updated with
the Windows SDK.

MERGING RESOURCE DICTIONARIES

Resource dictionaries (whether stand-alone or the Resources property of any
FrameworkElement) can include, or “pull in,” other resource dictionaries. This is
called merging.

 Each resource dictionary must merge in any other resource dictionaries it relies
on. It’s not sufficient for the resource to simply be defined ahead of time; it must be
merged in. Think of it like include files in C (if you’re familiar with that). Look at
each resource dictionary file individually and ensure that it has merged into it all the
other resource dictionaries it requires. The XAML resource management system will
ensure the same resources aren’t physically stored or created multiple times.

 The following listing shows the StandardStyles.xaml resource file merged into
app.xaml. Every XAML project includes at least this set of merged-in styles to provide
common colors, app bar buttons, and more.

<Application
 x:Class="ResourceExample.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

Listing 7.11 The standard resource dictionary merged at the application level

126 CHAPTER 7 Brushes, graphics, styles, and resources

re
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:ResourceExample">

 <Application.Resources>
 <ResourceDictionary>
 <SolidColorBrush x:Key="AppTextColor" Color="White" />
 <SolidColorBrush x:Key="AppTextBackground" Color="Black" />

 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Common/StandardStyles.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

In this example, there are two standard resources and one merged-in resource dic-
tionary. The StandardStyles.xaml can’t see the AppTextColor or AppTextBackground
resource; if it needs them, they must be defined in that file, or they must be moved to
a separate resource dictionary and merged into the StandardStyles.xaml. All of these
resources here can be seen app-wide because they’re defined in or merged into the
resource dictionary in app.xaml.

 Earlier, I mentioned that every resource incurs a load time penalty. So, when you
create your final versions of your app, you should remove from StandardStyles.xaml
any resources your app isn’t using. To verify that you’re removing the correct ones,
comment them out and run through your tests. Once you’re certain, remove the
resources to cut down on file size. Should you need additional standard resources in
the future, you can copy them in from another project.

 Let’s say that you’re creating something highly custom, like a game. In that game,
only a couple of opening screens use the standard styles—everything else is custom
drawn on multiple other pages. In that case, you may want to merge the standard
styles into only the first couple pages. The next listing shows how to merge in a
resource dictionary at the page level.

<Page
 x:Class="ResourceExample.MainPage"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:ResourceExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Page.Resources>
 <ResourceDictionary>
 <LinearGradientBrush x:Key="StandardGradient"
 StartPoint="0,0" EndPoint="1,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0" Color="White" />

Listing 7.12 Merging a resource dictionary at the page level

Regular
resources

Standard
resource
dictionary

Page
sources Gradient brush

resource

127Styles
 <GradientStop Offset="0.4" Color="Black" />
 <GradientStop Offset="0.6" Color="Black" />
 <GradientStop Offset="1" Color="White" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>

 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Common/StandardStyles.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Page.Resources>
...
</Page>

As before, I’m showing both standard resources as well as resource dictionaries
together. The reason is, without seeing the syntax (that both must be in the Resource-
Dictionary tag), it can appear that you’re unable to mix and match. I want to assure
you that you can. You’ll notice that the approach here is the same as used in app.xaml.

 Regardless of where you define them, resources are a great way to centralize the
definitions of colors, fonts, brushes, sizes, and much more in XAML. In this chapter, I
focus specifically on brushes, but throughout the rest of the book, you’ll see resources
used primarily for styles and control templates. Let’s look at styles and how they are
expressed as resources.

7.3 Styles
When creating the UI for an app or a bit of content, you’re encouraged to be consis-
tent in the use of font faces, font sizes, colors, spacing, and more. Most modern UI
and document markup languages provide some way to establish and reuse visual prop-
erties of elements. In HTML, it’s a style defined using CSS. In Microsoft Word, it’s a
style, and in XAML it’s also called a style.

 When compared to other markup languages, XAML takes a slightly different
approach to styles. In XAML a style is simply a set of property values—any property, as
long as it’s a dependency property. This means that you can define styles that repre-
sent not only the typical properties like colors and margins but even values like Text,
Content, and the control templates.

 In this section, I’ll first introduce you to the concept of an explicit or keyed style.
This is a style that you must reference using the StaticResource markup extension.
Then, I’ll show how styles can be inherited, much like they can in CSS. Finally, I’ll
demonstrate implicit styles: styles that don’t require a StaticResource reference.
Styles are most easily understood when used naturally. Rather that show an example of
every possible use of styles, I’ll cover the important points here and then use styles,
and explain that use, throughout the rest of this chapter and the rest of the book.

7.3.1 Explicit or keyed styles

When designing the UI, you usually end up with elements that are based on the same
type but that must be styled differently. For example, you may have a TextBlock that’s
used for heading text and another TextBlock that’s used for body text. In CSS, you’d

Merged-in
resource
dictionary

128 CHAPTER 7 Brushes, graphics, styles, and resources
typically accomplish this by using a named CSS class and then referencing it in
markup. XAML is similar—if you think of the resource key as that class name, you’ll
get the main idea.

 As you learned in the previous section, resource dictionaries require a key for each
entry in the dictionary. An explicit style is a style that, in addition to the type specifica-
tion, has a key that may then be referenced by the type using the StaticResource
markup extension. The following listing shows an explicit style in action.

<Grid Background="White">
 <Grid.Resources>
 <Style TargetType="TextBlock" x:Key="HeaderStyle">
 <Setter Property="FontFamily" Value="Segoe UI" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="42" />
 <Setter Property="Margin" Value="10 30 10 20" />
 </Style>
 <Style TargetType="TextBlock" x:Key="BodyStyle">
 <Setter Property="FontFamily" Value="Segoe UI" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="14" />
 <Setter Property="Margin" Value="10 0 10 10" />
 </Style>
 </Grid.Resources>

 <StackPanel>
 <TextBlock Text="Heading"
 Style="{StaticResource HeaderStyle}"/>
 <TextBlock Text="I'm some body text"
 Style="{StaticResource BodyStyle}"/>
 <TextBlock Text="So am I"
 Style="{StaticResource BodyStyle}" />
 </StackPanel>
</Grid>

This listing defines two explicit styles and uses them in the TextBlock elements in the
main StackPanel. The styles are defined as resources at the Grid level. Because the
TextBlock elements can trace a path back up to the Grid in the tree of elements, they
can use the resources. The styles could also have been defined at the StackPanel level.

 The styles in use here not only make it easy to centralize the definition of proper-
ties, but they also avoid needless repetition of properties, making the main control
tree much easier to understand when looking at the XAML.

 Once you have an explicit style, you can also use it as the basis for style inheritance,
a great way to consolidate style properties in a large project.

7.3.2 Style inheritance

Consider the typical app: It has the same font family and foreground color used
throughout all the text, but it has several different sizes of text, margins values, and

Listing 7.13 Using an explicit style to set properties for several elements

Define
HeaderStyle

Define
BodyStyle

Use
HeaderStyle

Use BodyStyle

129Styles
more in use throughout the pages. Some of those may be headings, others may be
body text, and others may be field labels. Ideally, you don’t want to have to copy the
core properties to every style; you want to reference those core properties so you can
change them in the least number of places as possible. The next listing shows an inter-
esting example of using style inheritance.

<Grid Background="White">
 <Grid.Resources>
 <Style TargetType="TextBlock" x:Key="BaseTextStyle">
 <Setter Property="FontFamily" Value="Segoe UI" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="14" />
 <Setter Property="Margin" Value="10 0 10 10" />
 </Style>
 <Style TargetType="TextBlock" x:Key="HeaderStyle"
 BasedOn="{StaticResource BaseTextStyle}">
 <Setter Property="FontSize" Value="42" />
 <Setter Property="Margin" Value="10 30 10 20" />
 </Style>
 <Style TargetType="TextBlock" x:Key="BodyStyle"
 BasedOn="{StaticResource BaseTextStyle}" />
 </Grid.Resources>

 <StackPanel>
 <TextBlock Text="Heading"
 Style="{StaticResource HeaderStyle}"/>
 <TextBlock Text="I'm some body text"
 Style="{StaticResource BodyStyle}"/>
 <TextBlock Text="So am I"
 Style="{StaticResource BodyStyle}" />
 </StackPanel>
</Grid>

In this example, you accomplish the same styling as shown in listing 7.13 but use
inheritance. The result is that the core properties, like the font family and foreground
colors, are now defined in a single location.

 This example shows a pretty straight forward example of style inheritance—or
does it? Take a look at the HeaderStyle static resource. Notice how it overrides two of
the properties of the base style. That’s something that’s easy to do using style inheri-
tance. You can even take it to extremes, as in the BodyStyle resource. That resource
defines no setters of its own; it simply inherits everything from the base style. But
because it has been explicitly named, you’ll be able to add property setters to it in the
future and know the UI will light up with those changes.

 I generally recommend that you discourage the direct use of your base styles.
Instead, tell the designers and developers on your team to use the other named styles
instead, creating new ones if necessary. This way, you won’t have to walk through code
changing style resource references when you decide to standardize on a new style for a
semantic use.

Listing 7.14 Style inheritance

Define
BaseTextStyle

Define HeaderStyle
based on
BaseTextStyle

Define BodyStyle based
on BaseTextStyle

Use
HeaderStyle

Use BodyStyle

130 CHAPTER 7 Brushes, graphics, styles, and resources
 Unfortunately, there’s no effective way to enforce this except for manually check-
ing the markup (or using a tool to do this) and punishing those who stray from your
guidance. This may even be a great place for you to learn to use something like the
.NET Micro Framework to create a device that uses electricity or pointy things
to…encourage compliance.

 So far, the styles have had to be pulled in by referring to the resource by name.
That’s not always the most convenient way to accomplish styling an entire app. That’s
why we also have implicit styles.

7.3.3 Implicit styles

I don’t know about you, but I get tired of typing {StaticResource SomeStyleKey}
over and over again in the pages in my app. It’s not exactly a hardship, but I’d rather
just define the style in a central location and have it picked up by every instance of
that type throughout the page and the app as a whole.

 In CSS, this is handled by assigning a style to a specific type of markup element,
like a div element, an article element, or a p element. Semantic HTML makes exten-
sive use of this to avoid cluttering the body of the page with style information. This
same approach can work in XAML, although we don’t have as rich a differentiation
between text elements.

Control templates

Once you get XAML styling under your belt, you’ll want to learn how to modify the control
templates. If you look at the default style for a control (this can be easily done in Ex-
pression Blend), you’ll see that it includes a control template. This template contains
all the parts that make up the control’s appearance.

A control’s code is responsible just for behavior. It is the control template that com-
pletely defines the visual representation of a control.

Think of the style as a set of property values and the template as the set of UI elements
that make up a control. You create the control template but then, through the use of
{TemplateBinding} references, refer back to the properties provided by the control
and set in the default style. In this way, you can set the Background property of the
rectangle that makes up the background to the Background property of the control.

The control template is just XAML, but it’s long enough that reproducing it here isn’t
going to do anyone any favors. You can modify control templates by pasting in the
XAML from the generic.xaml for the control and manually tweaking what’s in there,
but I don’t recommend that. Instead, it’s time to finally crack open Expression Blend
and choose the menu option to modify the default template for the control.

Depending on how well the template is implemented, you may be able to do all the
customization you need just by using a style. For the other times, create a new control
template, put it in a named or (as you’ll see shortly) implicit style, and store it in a
resource dictionary or app.xaml.

131Styles
 Remember how I earlier said that every entry in a resource dictionary must have a
key? Well, sometimes that key is implicit, something you don’t enter manually. The
resource key in an implicit style is the target type itself. Consider the following listing.

<Grid Background="White">
 <Grid.Resources>
 <Style TargetType="TextBlock" x:Key="BaseTextStyle">
 <Setter Property="FontFamily" Value="Segoe UI" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="14" />
 <Setter Property="Margin" Value="10 0 10 10" />
 </Style>
 <Style TargetType="TextBlock" x:Key="HeaderStyle"
 BasedOn="{StaticResource BaseTextStyle}">
 <Setter Property="FontSize" Value="42" />
 <Setter Property="Margin" Value="10 30 10 20" />
 </Style>
 <Style TargetType="TextBlock"
 BasedOn="{StaticResource BaseTextStyle}" />
 </Grid.Resources>

 <StackPanel>
 <TextBlock Text="Heading"
 Style="{StaticResource HeaderStyle}"/>
 <TextBlock Text="I'm some body text" />
 <TextBlock Text="So am I" />
 </StackPanel>
</Grid>

In this example, the style formerly known as BodyStyle has been made into an
implicit style. Its definition no longer includes an explicit key. When you use this style,
the TextBlock doesn’t need any Style property value at all. This is really convenient
when you want to style all or most of the elements of a particular type using the same
set of property values.

 As you can also see in this example, implicit resources can participate in style
inheritance but only as the leaf in the style tree. That is, they can inherit from other
styles, but nothing can inherit from them. In this example, the implicit style is empty,
as it was in the previous example. That’s not a requirement, just a point of illustration.

 Now that you’ve learned how to paint using brushes, sometimes exposed via
resources, sometimes included in styles, let’s look at some shapes to paint. To quote
the now embarrassingly aged1 singer David Lee Roth, “I’ve got my pencil! Now give
me something to write on.”

Listing 7.15 Using an implicit style

1 I dare you to watch Mr. Roth in some modern Van Halen video. Some things are better remembered.

Define explicit
BaseTextStyle

Define
explicit

HeaderStyle

Define implicit
body style

Use header
style explicitly

Use body
style implicitly

132 CHAPTER 7 Brushes, graphics, styles, and resources
7.4 Vector graphics
Although it has great support for bitmapped images, XAML is generally a vector-based
system. That is, UI elements are usually defined using shapes with points and brushes.
Almost every stock UI element is defined this way: rectangles for buttons, for example.
The reason for this is that vector-based elements can be infinitely scaled to accommo-
date any display resolution without (except in the case of shrinking them to a thumb-
nail) reduction in quality. You can stretch them anamorphically and change their aspect
ratio, you can rotate them, and even distort the shape, all without a loss of quality.

 In XAML, all vector graphics types derive from the common Shape base class. This
class provides properties for handling the brushes and stroke, and through the under-
lying base classes, alignment and more.

 In this section, we’ll start at the beginning: lines. From there, we’ll create simple
shapes, then much more complex polygons. Finally, we’ll take a look at the Path type
and its associated mini language. Throughout, we’ll use the solid-color brushes you
learned about previously in this chapter.

7.4.1 Line

A line is a point-to-point vector with no fill. Okay, technically, I’m wrong. Because Line
derives from Shape, it has both stroke and fill brushes. The fill, however, is simply not
used. I’m not a fan of useless properties, and if designing it myself, I would have maybe
provided a FilledShape base class in addition to a stroke-only Shape base, but I’m sure
there’s a reason they went this way in the design. Object-oriented purism aside, the line
is easy to use and is surprisingly flexible. Figure 7.6 shows several types of lines.

 In this figure, I show four lines, each with the same thickness. The first is a plain
line with regular flat end caps. The second has one pointy end and one rounded end.
The third is back to plain end caps but is evenly dashed. The last line looks like a bit of
sequenced DNA, or perhaps a sloppy computer punch card, with its pattern of dashes
and spaces.

Figure 7.6 Four versions of a plain line,
demonstrating different line ends and
dash styles

133Vector graphics
To create these four lines, look to the following listing.

<Grid Background="White">
 <Grid.Resources>
 <Style TargetType="Line">
 <Setter Property="StrokeThickness" Value="20" />
 <Setter Property="Stroke" Value="Black" />
 <Setter Property="X1" Value="20" />
 <Setter Property="X2" Value="250" />
 <Setter Property="Y1" Value="10" />
 <Setter Property="Y2" Value="500" />
 </Style>
 </Grid.Resources>

 <StackPanel Orientation="Horizontal" Margin="20">
 <Line />
 <Line StrokeEndLineCap="Round"
 StrokeStartLineCap="Triangle" />
 <Line StrokeDashArray="1" />
 <Line StrokeDashArray="1,2,1,2,3,4,0.5,0.5,0.75,0.25" />
 </StackPanel>
</Grid>

For each line, you provide start X1,Y1, and end X2,Y2 positions, relative to the line’s
bounding box in a panel, accounting for margins or any Canvas.Left and
Canvas.Top values. Most of the rest of the code in the example is easy to understand,
with the notable exception of the StrokeDashArray. In XAML, the array is a set of
comma- or space-delimited floating-point numbers. Each number corresponds to a
dash or a space and is represented as a multiple of the line’s thickness. For example,
1.0 is exactly the line’s thickness, 0.5 is half, 2.0 is double, and so on.

 The array can be as sim-
ple as a single number repre-
senting both the dash and
space width, all the way
through to a very complex
list of numbers. In all cases,
when the pattern is
exhausted, it repeats. Figure
7.7 shows several complex
patterns, their visual repre-
sentation, and the relation-
ship between the spaces and
dashes. Note the special case
where an odd number of
numbers is in the array (3 in
this case) and how the pat-
tern alternates.

Listing 7.16 Creating lines in XAML

Style defining
stroke and
coordinates

Round end capPointed
end cap

Even dashes

Varying dashes

Figure 7.7 The StrokeDashArray patterns illustrated. Note
both the complex pattern (last line) and the pattern with an odd
number of items in the array (third line).

134 CHAPTER 7 Brushes, graphics, styles, and resources
In addition to the StrokeDashArray property, you can alter the layout of the line by
using the StrokeDashOffset. This value, which is expressed in multiples of the line
width, controls how far down the line the dash effect starts. Finally, there’s the
StrokeDashCap property, which controls the end caps of each of the dashes.

7.4.2 Polyline

Lines can be useful by themselves, but often they are used to create complex shapes
where the start of one line is connected to the end of another. In those cases, the
Polyline is the shape to use.

 Rather than provide discrete X,Y coordinate properties as used in Line, the
Polyline type exposes a Points collection. This collection also has a helpful string
format, or you can add instances of the Point type from code.

 The next listing shows how to use the Points collection from XAML. It also shows
several other properties that we’ll discuss after the listing.

<StackPanel Orientation="Horizontal" Margin="40">
 <StackPanel.Resources>
 <Style TargetType="Polyline">
 <Setter Property="StrokeThickness" Value="5" />
 <Setter Property="Stroke" Value="Black" />
 </Style>
 </StackPanel.Resources>
 <Polyline
 Points="10,10 150,200 200,10 250,300 100,20 75,200 250,135"
 />
 <Polyline
 Points="10,10 150,200 200,10 250,300 100,20 75,200 250,135"
 Fill="Red" FillRule="EvenOdd" />
 <Polyline
 Points="10,10 150,200 200,10 250,300 100,20 75,200 250,135"
 Fill="Blue" FillRule="Nonzero" />
</StackPanel>

The Points string can use commas or spaces as a delimiter. I prefer to use commas
between X and Y components, then spaces to separate the coordinate pairs. This
makes it easier to read.

 In addition to Points, I’ve also
used the FillRule property. Figure
7.8 shows the results of the different
FillRule values used in listing 7.17.
This property controls how the Poly-
line is filled with a color.

 Look at the first Polyline in the
figure, and then put your figure on
any random point in the whitespace
inside or outside the lines. Now, draw

Listing 7.17 Creating a polyline in XAML

Implicit style

PointsEvenOdd
fill rule

Nonzero
fill rule

Figure 7.8 Fill rules in a Polyline. Note the
difference between EvenOdd and NonZero as well
as the implied line between the start and end points.

135Vector graphics
an imaginary ray (a line with direction) from that point in any direction (just pick a
direction) and count how many other lines you cross while doing so. In the case of
EvenOdd, if the number of lines you cross is odd, the point is considered “inside” the
shape and will be filled.

 It starts with the same point and arbitrary direction approach, but NonZero is oth-
erwise a little more complex. For NonZero, you need to know the direction the line
segment is going based on its start and end points. Once you know that, you can tell if
the line crosses your imaginary ray from left to right or right to left. Each time a line
crosses from left to right, add one to your count. Each time it crosses from right to
left, subtract one. If the number ends up anything other than zero, the point is consid-
ered “inside.” MSDN has a ton of great info on this topic if you want to learn about it in
more depth.

POLYGONS The Polygon shape in XAML is identical to the Polyline, except
that it automatically closes the shape by connecting the end point to the start
point. To do the same with a Polyline would require duplicating the first
point as the end point. If you’re going to do any closing or filling of the
shape, I recommend using the Polygon.

The Polyline type shares all the same stroke- and dash-related properties as the Line
type and other shapes. Use it when you want to create an open shape made up of
many straight-line segments. In addition to the straight-line segments from the Line
and PolyLine types, WinRT XAML supports complex Paths made of straight and
curved segments.

7.4.3 Paths

A Path is a complex line made up of individual straight or curved (or both) segments.
Paths are primarily used when importing graphics from vector drawing applications
like Adobe Illustrator, using AI-to-XAML converters. But you can create Paths from
scratch in XAML or through native XAML tools like the Microsoft Expression series.

 As with everything else in this
section, the Path type inherits
from Shape. Because of that, you
have access to the same types of
brushes and line types as the other
shapes. For example, figure 7.9
shows a Path made up of several
different segments, using brushes
and line styles.

Figure 7.9 Path showing the resulting
segments from several different path

language commands. Not sure if this is a
baby carriage or PacMan preparing

 for dental work.

136 CHAPTER 7 Brushes, graphics, styles, and resources
The following listing includes the XAML used to create the Path shown in figure 7.9.
Note that I could have also specified a fill if I had desired a solid shape.

<Grid Background="White">
 <Path Stroke="Black"
 Margin="50"
 StrokeThickness="15" StrokeDashArray="5 0.5"
 Data="M 10,10 L 600,600 H 50 V 300 H 800 A 100,100 75 0 1 50,50" />
</Grid>

This listing shows how to create a Path using the Path mini language in XAML. At first,
the language may appear to be complex, but it’s actually quite simple. Table 7.1 shows
the list of commands available in the mini language.

MSDN has great detailed information on the Path language specifics as well. If you
plan to create Paths from scratch, I encourage you to read through the documents
there first.

Paths are interesting to learn about and are certainly a useful and powerful way to
design vector shapes. But you’ll typically run into them only in imported or converted

Listing 7.18 Creating a Path in XAML

Table 7.1 The commands in the XAML Path mini language. This brings back memories of
 programming LOGO Paths on the Commodore 64 in sixth grade.

Command Description

M <startPoint> Move. This starts a new figure. Points are specified x,y.

L <endPoint> Line between the current point and the specified end point.

H <x coordinate> Horizontal line between the current point and the specified X coordinate.

V <y coordinate> Vertical line between the current point and the specified Y coordinate.

C <cp1 cp2 endPoint> Cubic Bézier curve with control points cp1 and cp2, between the current
point and the specified end point.

Q <cp endPoint> Quadratic Bézier curve with control point cp, between the current point
and the specified end point.

S <cp endPoint> Smooth cubic Bézier curve between the current point and the end point
with control point cp.

T <cp endPoint> Smooth quadratic Bézier curve between the current point and the end
point, with control point cp.

A size rotationAngle
isLargeArc
sweepDirection endpoint

Elliptical arc. Draws an elliptical arc with the specified size (x and y
radius), rotation angle, current point, and end point. The isLargeArc
is set to 1 if the angle of the arc is 180 degrees or greater. The
sweepDirection flag is set to 1 if the arc is drawn in a positive angle
direction, 0 if negative.

Path mini
 language

137Bitmap images
graphics—most apps don’t include handwritten Path statements. Far more common
than the Path, or even the Line and Polyline types, are the Rectangle and Ellipse.

7.4.4 Rectangles and ellipses

Lines are somewhat common—Polylines less so. But
the simple Rectangle and Ellipse shapes show up in
UI design again and again. Especially with the Win-
dows design aesthetic, the Rectangle is king. Luckily,
these shapes are extremely easy to use.

 Listing 7.19 shows how to create the two shapes
shown in figure 7.10. In both cases, the shapes are
sized by using Width and Height relative to the top left of the shape, not by discrete
points, or in the case of an Ellipse or a circle, center point and radii.

<StackPanel Orientation="Horizontal" Margin="40">
 <Rectangle Width="150" Height="100" Margin="20"
 Stroke="Black"
 StrokeThickness="5"
 Fill="CornflowerBlue" />
 <Ellipse Width="150" Height="100" Margin="20"
 Stroke="Black"
 StrokeThickness="5"
 Fill="Gold" />
</StackPanel>

In Windows 8 apps, the Rectangle is most often used with a fill but without any stroke.
This provides the clean tile look so prevalent in the UI. If you decide to use a stroke,
all the same stroke and dash properties available with the line are available here.

 Perhaps more common than single-color rectangles in Windows 8 apps is the use
of images. We’ll wrap up this chapter with coverage of how to get your baby photos,
lolcats, memes, or that embarrassing photo of your hair from the ’80s (or your par-
ents’) on to the app UI.

7.5 Bitmap images
Windows 8 apps are encouraged to be visually rich when showing content. Often, this
means that they should make any images front and center. That doesn’t mean go and
decorate your apps with lots of extraneous imagery, but instead, if images are part of
the content, bring them to the forefront. Examples include photos with news stories,
video thumbnails, photos from browsing and sharing apps, album covers, and more.

 Earlier in this chapter, I introduced the ImageBrush. In XAML, the Image element
is the full element counterpart to that brush. When simply displaying an image, the
Image element is easier to use, because you don’t need to have a separate shape to paint.

Listing 7.19 A Rectangle and an Ellipse in a StackPanel

Figure 7.10 A Rectangle and
an Ellipse showing stroke
(border) and fill

Rectangle

Ellipse

138 CHAPTER 7 Brushes, graphics, styles, and resources
Images can come from the local machine, the project, or from the web. Figure 7.11,
for example, shows images both from the project as well as a website, in multiple
formats.

 The formats supported for image processing depend on the codecs available on
the machine. By default, these include .bmp, .jpg, .gif, .png, and .tif. Of those, .png is
the most commonly used because of its high-quality compression and support for
transparency.

 The next listing shows how to display images to create the UI shown in figure 7.11.
Note the different types of URIs. The ms-appx URI format was covered in the Image-
Brush section of this chapter.

<Grid Background="White">
 <Image Source="ms-appx:/Assets/pmb_youtube_background.tif"
 Opacity="0.25"
 Stretch="UniformToFill"/>
 <StackPanel Orientation="Horizontal" Margin="40">
 <StackPanel.Resources>
 <Style TargetType="Image">
 <Setter Property="Margin" Value="10" />
 <Setter Property="Width" Value="250" />
 </Style>
 </StackPanel.Resources>

 <Image
 Source="http://10rem.net/pub/pmb_fall_2011_color_800px.jpg" />
 <Image Source="ms-appx:/Assets/bar.jpg" />
 <Image Source="ms-appx:/Assets/dancingbaby.gif" />

Listing 7.20 Using bitmap images in markup

Figure 7.11 Image elements displaying images from multiple locations

Background
TIFF with
transparency

JPEG
from web

Local JPEG
Local GIF

139Summary

styl
 <Image Source="ms-appx:/Assets/oshw-logo-200-px.png"
 Width="150"/>
 <Image Source="ms-appx:/Assets/bikes.bmp" />
 </StackPanel>
</Grid>

This listing shows several different types of images loaded into a StackPanel. WinRT
takes more after the WPF side than the Silverlight side when it comes to the various
formats it supports. We even have GIF support, although I’m sorry to report that the
baby is not actually dancing—only the first frame is rendered.

Just as was the case with the ImageBrush, you can also create the Image element from
code, including using the same techniques for specifying the URL. The Image element
also supports the ImageFailed event. This event, which may be wired up from XAML
or code, enables you to handle instances where the image was unable to be loaded. In
most cases, you’ll want to use this to either hide the image or simply display a place-
holder graphic from the appx.

 Graphics are the building blocks of most visual elements in XAML. They’re funda-
mental, which is why the support is so rich. Not only do you get great support for vec-
tor graphics, but you get bitmapped images in a variety of formats as well.

7.6 Summary
This chapter covered brushes, vector graphics, and bitmapped (image) graphics.
Brushes can be used to paint the vector graphics and provide borders and shading to
most anything. One brush, the ImageBrush, crosses the line between vector and bit-
mapped images by making it possible to paint vector art using an image as the brush.

Multi-DPI and contrast images

Windows 8 has better support for high-DPI displays than any version before it. It’ll ac-
tually be quite common to see high-DPI displays on tablets. XAML will automatically
scale your images to the correct resolution but won’t give you the best results. Instead,
you’ll want to provide images at different DPI/resolutions.

Luckily, XAML and WinRT make it easy to use multiple image files. Create the image
files at 100%, 140%, and 180% scale. Then name them, respectively, yourimage-
name.scale-100.png, yourimagename.scale-140.png and yourimagename.scale-
180.png.

For high-contrast support, you can optionally add in _contrast-black and _contrast-
white, to get, for example, yourimagename.scale-100_contrast-black.png as the file-
name.

Make sure all the images are in the same folder in the project.

When referencing the image from markup or code, leave out the whole scale bit and
simply refer to yourimagename.png. WinRT will automatically pick the correct one.

For more information, see http://bit.ly/Win8MultiDPIImages.

Local PNG
Overridden
ed property Local bitmap

140 CHAPTER 7 Brushes, graphics, styles, and resources
 Because the Brush is one of the most commonly used resources, we also covered
resources in this chapter. Resources can be local, page-scoped, application-wide, or,
through the use of merged-in resource dictionaries, any combination of those scopes.
Once you end up with more than a few resources, consider moving them into separate
resource dictionaries rather than just keeping everything in app.xaml.

 Another very common type of resource is the style. XAML makes it possible for you
to define the value for any dependency property using a style setter and then apply
that to all elements of a specified type within the scope of that style. You can name
styles and use them explicitly, or you can leave the name (key) out and have them
implicitly apply to all elements of that type. You can even inherit from a named style to
make even better use of common properties.

 You won’t run into lines and polygons much in most typical WinRT XAML applica-
tions, at least not when compared to the more ubiquitous rectangle types. But they are
there, and they’re exactly the tool you need when you want to draw simple (or com-
plex, in the case of the Path) vector art on your UI.

 Vectors are great because they scale so well and, when compared to a large bit-
mapped graphic of the same dimensions, they’re typically much smaller in memory
footprint. Once you get to very small but complex graphics, a PNG is almost always a
more efficient approach. In fact, bitmapped images still have a huge role to play in an
otherwise vector-based framework. Use the Image element whenever you need to load
prerendered content, photos, and more. Even use it to add a little texture to your
apps, if you desire.

 In the next chapter, we’ll take a look at text, a very important part of the Windows
8 UI. You’ll use the brush knowledge you gained here to make the text look even more
beautiful.

Displaying beautiful text
Over the years, the use of text in UI design has gone in and out of fashion. Back
when I was learning how to program, text and ASCII (and PETSCII) graphics were
the mainstay of UIs. Other than the occasional boxed-in border or menu, interfaces
were heavily text based. Those poor unfortunate souls toiling away at 12” CRT main-
frame terminals at the time rarely had even that—just a sea of amber or green text
on a greenish-black glass background, with the only variation being some of it was
in reverse.

 It was depressing!
 Then came Xerox with its GUI (graphical user interface) research, and then the

Apple Lisa (which wasn’t successful because it cost more than most cars of the
time), the more successful Apple Macintosh, Geos on the Commodore computers
and eventually the 286, and, of course, Windows on the PC. These OSs (or shells in

This chapter covers
■ Text basics, like the TextBlock
■ Text wrapping, fonts, alignment, spacing, and

more
■ Displaying rich and multicolumn text
■ Using OpenType font features
141

142 CHAPTER 8 Displaying beautiful text
some cases) eschewed text and focused more on icons: pictorial representations of
elements in the system. Not long after, designers began experimenting with trying to
make the UI look more and more like a real-life metaphor. From that you got desktops
and the always-good-for-a-laugh Microsoft Bob.

 As OSs became more complex and offered more features, the number of icons
increased, and the cognitive load associated with remembering all those pictures
became a real burden. Most users used a very small percentage of features of their
applications because they simply couldn’t find everything they needed.

 Then Microsoft started experimenting with ways to lighten that load. The Office
ribbon was a large part of that. Microsoft had to break a lot of eggs to get the ribbon
out there, but after users got used to the change, most agreed it made them more pro-
ductive. One thing the ribbon did was combine images with a larger emphasis on text.
If the display had room, most icons had labels either under them or to the side. Icon
groups had labels indicating what you should expect to find in them. The ribbon tabs
were identified by their text headings.

 You could argue that because of the removal of all-text menus, this was actually a
removal of text from the interface. But what really happened was the user saw more
text more often, without having to take additional actions.

 With Windows 8, we have an even greater reliance on text, not just for commands
but for aesthetics and for content. The Windows design aesthetic emphasizes beauti-
ful text above many other elements. Except in the case of games, it’s extremely rare to
see a Windows app that doesn’t have prominent text right on the screen. Sometimes
it’s a header, sometimes it’s simply labels on app bar icons, and often it’s incorporated
as a key part of the content. In many cases, the typeface used is part of the brand of
the app and the corporation or individual who created it.

 So, text is important. No, text is really important in Windows 8. Learning how to
make the most of text, to make it readable, to make it usable, and to make it beautiful
can help you succeed in getting people to use your apps. In this chapter I’m going to
show you what text features the platform provides so you can put on your designer hat
(or invite your designer over to work with you) and put together an amazing UI for
your app.

 We’ll start the chapter with a look at the basics of text in XAML. First, we’ll dive into
the most commonly used element, the TextBlock. The TextBlock is not only popular
for displaying text, but it also serves as a great way to see the font and text layout prop-
erties in action. As part of our investigation, we’ll look at how to combine multiple
inline elements to support rich formatting of text. Then, we’ll look at how to wrap text
and how to align it to the edges or even use full justification. We’ll also look at a great
feature of the TextBlock, the TextTrimming property. This property makes it possible
to intelligently truncate text and display an ellipsis (…) at the end. This feature is
especially useful if you’re creating any sort of resizable heading or text layout or local-
izing text where word or phrase sizes differ significantly from language to language.

143Text basics
We’ll wrap up the discussion of the basics by talking about how to control character
and line spacing.

 The TextBlock supports different fonts and colors, but it’s more lightweight sup-
port than the intended use. To really mix and match fonts, colors, and even embed-
ded UI elements, you need to look to the RichTextBlock. This element is also the best
one to use to implement multicolumn or more fluid text layout.

 One of the most beautiful types of fonts is OpenType. Not only is the normal ren-
dering superior to many other types, but OpenType supports a lot of intelligence
about how to format and render alternate capabilities. If you want to automatically
convert to small caps, properly format fractions, line up numbers, format for super-
script and subscript, or even simulate the classic type styles of historical documents,
OpenType makes it possible. We’ll dive into some of the great XAML support for Open-
Type features with an eye toward creating beautiful, compelling, and readable text.

 Finally, beautiful text is useless without a guarantee that the right fonts are present.
One way to ensure that is to acquire embedding rights and embed the fonts in the
application. We’ll wrap up the chapter with a look at how to accomplish that.

8.1 Text basics
As you’ve learned, Windows can handle elements aligned on subpixel boundaries,
such as having a Left of 15.76 rather than just 16. This makes layout easier for design
professionals and is also essential for smooth animation. It makes the underlying ren-
dering engines, especially for text, more complex, however.

 Subpixel layout and rendering apply to text as well. WinRT apps use the ClearType
algorithm, provided by DirectWrite (DirectX text stack), to render text using the best
quality for a given resolution. ClearType is a specific type of subpixel rendering that
uses different colors for the subpixels. On a properly configured display, this results in
higher quality rendering than just gray antialiasing. On a poorly configured display,
however, ClearType can lead to something that looks like the old NTSC composite text
rainbow effects1 when looking at white text on a black background. Windows supports
subpixel rendering and layout of anything, so the text itself may already start on a par-
tial pixel boundary.

 Getting the text from the Unicode string and presenting it on displays of varying
resolutions using different fonts on different systems is actually fairly complex. It’s also
a task we only notice when done poorly. The text stack must do the following:

■ Read in the source text string.
■ Lay out an overall block of text.
■ Lay out individual lines within that block.

1 This effect was especially prevalent on the Apple II, or with the Commodore 64 connected to an old TV. If
the rainbow effect means nothing to you, ask a parent…or maybe a grandparent…about it.

144 CHAPTER 8 Displaying beautiful text
■ Obtain the font information for each character, including combining charac-
ters for certain languages.

■ Figure out how to display bold and italics (and other styles/weights). There may
be a font for it, or it may need to generate pseudo-italic and pseudo-bold text.

■ Deal with any text expansion for fonts that support it.
■ Lay out individual characters within that line, including subpixel font rendering.
■ Render it all out to a rendering surface in hardware.

Any one of those individual steps is a pretty serious programming effort. Luckily, this
is primarily handled by the tried and true DirectX text stack. Though all are interest-
ing, the internals of the text stack are pretty well abstracted away from the work you’ll
normally need to do.

 In this section, I’ll first introduce you to the TextBlock, the most basic text ele-
ment and the one you’ll turn to for most of your text display needs. It’s also a conve-
nient element to use to introduce the various font-related properties shared by all text
controls.

 From there, I’ll show you how to enhance the flexibility of the TextBlock using
inlines. Then, because paragraph formatting is so important, I’ll show you how to
wrap text and also to truncate text using an ellipsis when the text is too large for the
display area. Finally, I’ll show you how to control character spacing within a line of
text and line spacing within a paragraph of text.

8.1.1 TextBlock

In many apps, the TextBlock is the single most common on-page element. This was
true even before the Windows 8 emphasis on beautiful and functional text as a core
part of the app UI. The TextBlock element is so popular because it’s incredibly easy to
use: Simply set the Text property, optionally set the FontFamily, FontWeight, and
FontSize, and you have text onscreen as a label, heading, or more. For example, fig-
ure 8.1 shows two different fonts in separate TextBlock elements, with different font
families, weights, and sizes.

 Our first listing shows how to create the TextBlock elements that display the text
shown in figure 8.1. Note the use of different fonts, font sizes, font weights, and fore-
ground colors.

Figure 8.1 TextBlock elements
with different font sizes, weights,
colors, and font families

145Text basics

<Grid Background="Black">
 <StackPanel Margin="10">
 <TextBlock Text="WarGames Dialog"
 FontSize="50"
 Margin="20"
 FontWeight="ExtraLight"
 FontFamily="Segoe UI"
 Foreground="White" />

 <TextBlock Text="GREETINGS PROFESSOR FALKEN."
 FontSize="30"
 FontWeight="Normal"
 FontFamily="Lucida Console"
 Foreground="LightBlue" />

 <TextBlock Text="> HELLO JOSHUA"
 FontSize="30"
 FontWeight="Bold"
 FontFamily="Lucida Console"
 Foreground="LightBlue" />

 <TextBlock Text="WOULD YOU LIKE TO PLAY A GAME?"
 FontSize="30"
 FontWeight="Light"
 FontFamily="Lucida Console"
 Foreground="LightBlue" />
 </StackPanel>
</Grid>

This listing shows four TextBlock elements with different values for the font-related
properties. In WinRT apps, the three you’ll use the most are FontSize, FontFamily,
and Foreground. FontWeight is a runner-up here, because bold display isn’t as popu-
lar in the Windows design aesthetic.

 Not all fonts support all possible font weights. Most will support only a couple of
standard weights like Bold and Normal and will display the closest equivalent for the
others. Even the FontStyle property (which controls displaying italics) isn’t univer-
sally supported with different fonts, although in that case the text system will usually
approximate or substitute an oblique (slanted text) face if the font file doesn’t con-
tain a true italic typeface. If you really care about how your text looks, use fonts that
have proper weighted versions (bold, light, and so on) and if used, proper italic ver-
sions. The calculated and approximated versions are never as nice looking.

 Similarly, properties such as FontStretch are available to support stretching or
condensing the text, but few fonts support actual stretching. In those cases, 100% nor-
mal size version is used instead, with no stretching.

 The TextBlock is a regular framework element, participating in layout. You can
change its horizontal and vertical alignment, margins, padding, and much more, just
as you did with shapes. This provides you with significant flexibility when you use mul-
tiple TextBlock elements on the same page.

Listing 8.1 Displaying simple text using a TextBlock

Segoe UI, 50 px
ExtraLight, White

Lucida Console,
30 px, Normal,
LightBlue

Lucida Console,
30 px, Bold,
LightBlue

Lucida Console,
30 px, Light,
LightBlue

146 CHAPTER 8 Displaying beautiful text
 Shown in figure 8.1 is the simplest use of the TextBlock: Each block has a single
bit of text, the entirety of which will have a single font style applied to it via the Font-
Size, FontWeight, FontFamily, and Foreground properties. But if you thought a sin-
gle TextBlock was limited to displaying only a single font style, you’d be incorrect;
there are other elements that can work with the TextBlock to provide additional capa-
bilities. These elements are called inlines.

8.1.2 Inlines

An inline is an element that resides inside other text elements and provides most of
the functionality of a full TextBlock. Unlike the TextBlock, a type derived from the
Inline class can’t be used by itself in XAML; it must reside in another text element.
Typically, inlines are of the Run type but could also be of the Span or LineBreak type.
The TextBlock itself can even contain a collection of inlines to display text using a
variety of formatting options, simulating the functionality of rich text or HTML. For
example, by combining inlines, you can create the awesome text shown in figure 8.2
using a single TextBlock.

In XAML, a Run is approximately equivalent to an HTML span tag. The XAML Span,
somewhat confusingly, is an inline used to group other inlines; for example, a number
of Run inlines that should all share the same formatting. And, of course, the Line-
Break inline is equivalent to the HTML br tag. The next listing shows how to combine
these inlines to create the image shown in figure 8.2.

<Grid Background="White">
 <TextBlock FontSize="75"
 Foreground="Black"
 Margin="50">
 <Run Text="This "
 FontFamily="Segoe UI"
 FontWeight="Bold"/>

Listing 8.2 A TextBlock with multiple inlines

Figure 8.2 A single TextBlock
with multiple inlines. Behold the
awesome use of font faces and
styles. Millions of designer voices
cried out in terror and were suddenly
silenced by the effectiveness of my
Comic Sans placement.

Properties inherited
by inlines

Runs all on one line

147Text basics
 <Run Text="is "
 FontSize="150"
 FontFamily="Calibri"
 FontStyle="Oblique"
 Foreground="DarkBlue"/>
 <Run Text="all "
 FontFamily="Times New Roman"
 FontStyle="Italic"/>
 <Run Text="one "
 FontFamily="Comic Sans MS" />
 <Run Text="line."
 FontWeight="ExtraLight"/>
 <LineBreak />
 <Span FontSize="30"
 Foreground="Red">
 <Run Text="This is the first line of the run inside the span" />
 <LineBreak />
 <Run Text="This is the second line of the run inside the span" />

 </TextBlock>
</Grid>

This listing shows how to create very rich text using a single TextBlock. For truly rich
text, you’ll likely want to use the RichTextBlock covered later in this chapter. But for
a little emphasis here and there, this is just the thing. One thing to note is the inheri-
tance of styles. Every run in the TextBlock inherits the base TextBlock settings unless
they explicitly override them. Similarly, every inline in the Span inherits the Span’s
inline settings (which may also be inherited from the TextBlock). This makes it easier
to standardize the presentation while tweaking it in specific individual inlines.

NOTE Additional types of inlines, supported but not commonly used with the
TextBlock, are the Underline, Italic, and Bold inlines. These are specializa-
tions of Span that cause all included elements to be rendered with an under-
line, italic text, or bold text, respectively. More on those in the
RichTextBlock section.

All of the examples in this section have so far used single lines of text, which fit conve-
niently on the display, but which weren’t wrapped or otherwise aligned (or truncated)
to the space they’re displayed in. As you might expect, with the TextBlock, you have
complete control over wrapping, truncation, and text alignment.

8.1.3 Wrapping, ellipsis, and alignment

Every word processor I’ve used since GeoWorks’ GeoWrite on my Commodore 128
has included the capability to wrap text; to align text to the left, center, or right; and
sometimes even justify it so it had even text edges on both sides (real-time justification
was computationally expensive for those old 8-bit CPUs, so it was a luxury). XAML is no
different in this respect in that any inline or TextBlock may use the TextAlignment
property and TextWrapping properties to control alignment and word wrapping,
respectively. In addition, XAML supports the ability to trim text that’s too long for the

Runs all on one line

Line
break Properties inherited

inside span

148 CHAPTER 8 Displaying beautiful text
available space using the TextTrimming property, a very useful feature when display-
ing user-generated data of unknown length.

 Figure 8.3 shows text alignment, wrapping, and text trimming in action. The first
column shows a fully justified column of text. The text happens to be too long for the
size of the TextBlock so it’s trimmed with an ellipsis. In the second column, there are
three paragraphs showing left, center, and right justification. Every paragraph here
uses text wrapping.

 To create this example, use the markup in the following listing.

<Grid Background="White">
 <Grid Margin="30">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock FontSize="36"
 TextTrimming="WordEllipsis"
 Margin="30"
 TextAlignment="Justify"
 TextWrapping="Wrap"
 Foreground="Black"
 Grid.Column="0">
 First there was darkness. Then came the strangers.
 They were a race as old as time itself. They had
 mastered the ultimate technology. The ability to
 alter physical reality by will alone. They called
 this ability "Tuning". But they were dying. Their
 civilization was in decline, and so they abandoned
 their world seeking a cure for their own mortality.

Listing 8.3 Using the text alignment, wrapping, and trimming capabilities

Figure 8.3 Text alignment, wrapping, and trimming in action

Full justification

Text wrapping

149Text basics
 Their endless journey brought them to a small, blue
 world in the farthest corner of the galaxy. Our
 world. Here they thought they had finally found
 what they had been searching for.
 </TextBlock>

 <StackPanel Grid.Column="1">
 <TextBlock FontSize="25"
 Margin="30"
 TextAlignment="Left"
 TextWrapping="Wrap"
 Foreground="Black">
 I just mean during the day. Daylight. When was the
 last time you remember seeing it? And I'm not
 talking about some distant, half-forgotten
 childhood memory, I mean like yesterday. Last
 week.
 </TextBlock>

 <TextBlock FontSize="25"
 Margin="30"
 TextAlignment="Center"
 TextWrapping="Wrap"
 Foreground="Black">
 Can you come up with a single memory? You
 can't, can you? You know something, I don't
 think the sun even... exists... in this place.
 'Cause I've been up for hours, and hours, and
 hours, and the night never ends here.
 </TextBlock>

 <TextBlock FontSize="25"
 Margin="30"
 TextAlignment="Right"
 TextWrapping="Wrap"
 Foreground="Black">
 I know this is gonna sound crazy, but what
 if we never knew each other before now...
 and everything you remember, and everything
 that I'm supposed to remember, never really
 happened, someone just wants us to think it
 did?
 </TextBlock>
 </StackPanel>
 </Grid>
</Grid>

This listing creates the text shown in figure 8.3. Notice how the line breaks in the text
in XAML don’t correspond to the line breaks in the image. The XAML line break, just
as in HTML, is counted just as whitespace unless you use the xml:space="preserve"
attribute. I’ll show you how to use that in the section on rich text.

 Wrapping is straightforward, as is justification. I’m going to assume you’ve used a
word processor at some point in your life and can therefore figure those out. Text
trimming is a little different in that it depends on the full size of the TextBlock, both

Left justified

Text wrapping

Centered

Text wrapping

Right justified

Text wrapping

150 CHAPTER 8 Displaying beautiful text
width and height. The trimming occurs at the last word boundary, which leaves
enough room for the ellipsis within the allocated space.

 Full justification adds space between words in order to pad the text. There’s another
way you can increase the width of the same string of text: through character spacing.

8.1.4 Character spacing

Available on any TextElement (from which the elements Block and Inline are
derived), Control, or TextBlock, the CharacterSpacing property controls the
amount of space between individual characters.

 The value for the Character-
Spacing property is expressed in
thousandths of an em, or font size,
with zero being the default. For
example, if the CharacterSpacing
is set to 200, the spacing will be
200/1000 * 1 em. The size of 1 em
is itself defined by the font, but on
average, the typical capital letter
takes up about 0.7 em. Figure 8.4
shows the results of character spac-
ing varying from 1000 to -1000,
with the latter being squished and,
with this font, mostly illegible.

 If you went the full distance to -1000 as shown here, you would end up with every
character stacked in a single spot. Although a hack, this can be useful if you have to
overlay two characters to create a third.

 The markup required to create this example is shown in the next listing.

<Grid Background="White">
 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="42" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="Margin" Value="5" />
 </Style>
 </Grid.Resources>

 <StackPanel Margin="10">
 <TextBlock CharacterSpacing="1000"
 Text="Character spacing 1000" />
 <TextBlock CharacterSpacing="500"
 Text="Character spacing 500" />
 <TextBlock CharacterSpacing="300"
 Text="Character spacing 300" />
 <TextBlock CharacterSpacing="200"

Listing 8.4 Controlling character spacing

Figure 8.4 The effect of the CharacterSpacing
property with values ranging from 1000 to -1000. Normal
character spacing is 0. -1000 spacing is good to simulate
a squashed spider.

151Text basics
 Text="Character spacing 200" />
 <TextBlock CharacterSpacing="100"
 Text="Character spacing 100" />
 <TextBlock CharacterSpacing="0"
 Text="Character spacing 0" />
 <TextBlock CharacterSpacing="-100"
 Text="Character spacing -100" />
 <TextBlock CharacterSpacing="-200"
 Text="Character spacing -200" />
 <TextBlock CharacterSpacing="-300"
 Text="Character spacing -300" />
 <TextBlock CharacterSpacing="-1000"
 Text="Character spacing -1000" />
 </StackPanel>
</Grid>

In this listing, you have several TextBlock elements with the specified character spac-
ing. Although TextBlock itself doesn’t derive from TextElement (it derives directly
from FrameworkElement for efficiency), note that you could also have used Run, Para-
graph, Span, or any other element that derives from TextElement.

CharacterSpacing is all about horizontal space. While designers and typography
aficionados will certainly use this, a more commonly used text layout property is Line-
Height.

8.1.5 Line spacing

For readability (or for padding the length of your high school term paper), line spacing
is key. In most word processors, you set the line spacing to one of a few standard spacing
values. WinRT supports any arbitrary line height as well as three different line-stacking
strategies. Figure 8.5 shows the three strategies all with the same 65 px line height.

 You can control the spacing between lines of text in a single text element using the
LineHeight property. XAML supports three types of line-stacking strategies, which
come into play when there’s more than a single font size on the line:

■ Baseline to baseline—If specified, this adds the LineHeight value to the baseline of
the previous line to calculate the correct spacing. If no LineHeight is specified,

Figure 8.5 Three TextBlock
elements showing three different line-
stacking strategies. A line height of 65
px was used in each case. Concentrate
on the lines with more than one font
size to see how the strategies are
different. If you grew up watching Star
Blazers in the United States in the ’70s
and ’80s, the tune for this is surely
rattling around in your head now.

152 CHAPTER 8 Displaying beautiful text
it simply uses the default line height value. Characters on lines may overlap char-
acters on other lines.

■ Block line height—The stacking height is the height provided by LineHeight.
Characters on lines may overlap characters on other lines. If no LineHeight is
provided, each line is individually sized to hold its contents. In most cases, this
will result in the same effect as baseline-to-baseline.

■ Max height—The stacking height is the smallest height value that can contain
every inline element on that line. If there’s a LineHeight value provided, this is
added to the calculated stacking height. Characters on lines won’t overlap char-
acters on other lines. Use this strategy when you want to guarantee that every
line has the required amount of room.

The following listing shows how to create the image shown in figure 8.5 using the
LineHeight and LineStackingStrategy properties.

<Grid Background="White">
 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="42" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="Margin" Value="5" />
 </Style>
 </Grid.Resources>
 <Grid Margin="40">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Rectangle Stroke="Gray" Grid.Column="0" Margin="5"/>
 <TextBlock LineHeight="65" TextWrapping="Wrap"
 Grid.Column="0" Margin="5"
 LineStackingStrategy="BaselineToBaseline">
 <Run>We're off to outer space; we're leaving </Run>
 <Run FontSize="80">Mother Earth, </Run>
 <Run>to save the human race. Our </Run>
 <Run FontSize="80">Star Blazers!</Run>
 </TextBlock>

 <Rectangle Stroke="Gray" Grid.Column="1" Margin="5" />
 <TextBlock LineHeight="65" TextWrapping="Wrap"
 Grid.Column="1" Margin="5"
 LineStackingStrategy="BlockLineHeight">
 <Run>Searching for a distant star, heading off to </Run>
 <Run FontSize="80">Iscandar, </Run>
 <Run>leaving all we love behind. Who knows what </Run>
 <Run FontSize="80">danger </Run>
 <Run>we'll find?</Run>
 </TextBlock>

Listing 8.5 Controlling line spacing

BaselineToBaseline

BlockLineHeight

153Rich and multicolumn text
 <Rectangle Stroke="Gray" Grid.Column="2" Margin="5"/>
 <TextBlock LineHeight="65" TextWrapping="Wrap"
 Grid.Column="2" Margin="5"
 LineStackingStrategy="MaxHeight">
 <Run>We must be strong and brave. </Run>
 <Run FontSize="80">Our home</Run>
 <Run>we've got to save. </Run>
 <Run>If we don't in just one year, </Run>
 <Run FontSize="80">Mother Earth</Run>
 <Run>will disappear!</Run>
 </TextBlock>
 </Grid>
</Grid>

This listing shows the interaction between LineHeight and the three different line-
stacking strategies. The line height applies regardless of strategy, but the two proper-
ties, LineHeight and LineStackingStrategy, are typically used together.

 As you develop apps, you’re going to see and use a lot of TextBlock elements. Now
that I’ve introduced you to them, I hope you also use inlines to augment the capabili-
ties the TextBlock provides. In many cases, you’ll find that the TextBlock provides a
convenient way to group a number of related inlines to provide a level of cohesion
you wouldn’t otherwise get with a group of TextBlock elements.

 The TextBlock also supports a number of essential text layout features, features
shared by most TextElement-derived types. Wrapping of text is essential; it’s really
hard to create a fluid UI and support different screen resolutions, orientations, and
snapped states without it. Text trimming also helps in this regard by making it possible
to truncate text intelligently, ensuring it fits the available space. Having control over
character spacing and line spacing provides you with more knobs you can tweak to
help ensure that your text is both readable and beautiful.

 In many cases, you’ll need to display text that combines multiple fonts and styles
and even inline UI elements like hyperlinks. Consider, for example, displaying a block
of text from a social network. In such a case, you’ll want something a little more capa-
ble than just a regular TextBlock; you’ll want to use a RichTextBlock.

8.2 Rich and multicolumn text
I use the TextBlock more than anything else, but sometimes I need to do a little more
than would be reasonable with the TextBlock. Maybe I need to incorporate some sort
of UI element like a hyperlink in the middle of a run of text. This happens all the time
when displaying messages from Twitter, Facebook, and other sources. I could hack
something together with StackPanel elements, and maybe clever use of margins, but
in the end, it would be hacky and brittle.

 For times when the TextBlock just doesn’t have enough flexibility, there’s the
RichTextBlock. This is a somewhat heavier element, but it includes functionality that
you can’t get in anything else.

 The RichTextBlock is useful in two main ways:
■ It provides a way to load text and UI elements together into the same flow.
■ It supports multicolumn and linked text.

MaxHeight

154 CHAPTER 8 Displaying beautiful text
Notice that one thing left off that list is the ability to load actual rich text. The Rich-
TextBlock element doesn’t include support for loading actual RTF (Rich Text Format) text. If you
need that capability, don’t look at the RichTextBlock; you’ll need the RichEditBox.

TIP The RichEditBox, which provides editing capabilities and the ability to
work with the Rich Text Format, is very similar to the RichTextBlock but with
the notable addition of being able to work directly with RTF. The RichText-
Block itself can’t directly work with RTF.

These capabilities, inline UI elements and multicolumn/linked text, may seem an
incremental improvement over the TextBlock element, but they would add enough
CPU and memory weight to the element to make it a good idea to factor the function-
ality into the RichTextBlock element.

 In this section we’ll take a look at how to use the RichTextBlock to display text con-
taining multiple fonts, colors, and even XAML UI elements. Then, we’ll jump into one
of my favorite uses of the RichTextBlock: multicolumn and linked text.

8.2.1 Rich text

The RichTextBlock is the main way to display read-only rich text in XAML apps. It’s
similar to a TextBlock but adds support for paragraphs and inline UI elements within
the control. As mentioned earlier, the RichTextBlock can’t work directly with RTF;
you’ll need the RichEditBox for that.

 What the RichTextBlock can do well is support combining different types of con-
tent in the same element. Unlike the TextBlock, it doesn’t use inlines but instead uses
items that inherit from Block. Block is conceptually similar to Inline and related by
its common inheritance from TextElement but is optimized for use with rich text and
UI elements. A Block has support for the line-stacking and text-alignment properties

Figure 8.6 A RichTextBlock with paragraphs and UI elements. Notice the mixture of fonts and
colors, the inclusion of two vector graphics shapes, and a HyperlinkButton control. See the sidebar
"A RichTextBlock layout bug with xml:space" for why I have some of the text labeled as “somewhat
broken layout.” That section inside the bracket would normally appear as one continuous set of lines.

155Rich and multicolumn text

P

previously covered; so in some ways, it’s almost a mini TextBlock itself. In addition,
however, it adds the ability to include arbitrary UI elements like hyperlinks, buttons,
and more.

 Figure 8.6 shows a single RichTextBlock taking up the entire page. Inside that
Block, there are numerous examples of different fonts and colors, text formatting
and positioning, inline UI elements and more.

 The following listing shows how to create the RichTextBlock in figure 8.6, includ-
ing loading a StackPanel with two vector graphics shapes right into the RichText-
Block.

<Grid Background="White">
 <RichTextBlock Foreground="Black" FontSize="20" Margin="20">
 <Paragraph TextIndent="100" TextAlignment="Justify">
 <Run Foreground="Red">
 This is some red text, or for those of you reading in print, gray.
 </Run>
 <Run>
 Notice how this text butts right up against the
 previous sentence. That is addressed in later runs.
 Also, did you notice how the first line of this
 paragraph had an indent? That was provided by the
 </Run>
 <Run xml:space="preserve" FontFamily="Courier New"
 Text=" TextIndent " />
 <Run xml:space="preserve">
 property of the paragraph itself.
 notice how I used the xml:space attribute to
 preserve the space in the text after the first
 couple sentences. I used it here too and the
 text looks just as it does in XAML.
 </Run>
 </Paragraph>

 <Paragraph TextAlignment="Right" TextIndent="0">
 <Run>First line of this paragraph. </Run>
 <Italic xml:space="preserve"> Italic text to start. </Italic>
 <Underline xml:space="preserve">Underlined text.</Underline>
 <Bold xml:space="preserve"> Bold text. </Bold>
 <Run xml:space="preserve"
 FontWeight="Bold" FontStyle="Italic"
 Text="This is also bold and italic text. " />

 <Run>
 This entire paragraph is right justified, with
 no opening indent.
 </Run>
 <InlineUIContainer>
 <HyperlinkButton Content="10rem.net"
 NavigateUri="http://10rem.net" />
 </InlineUIContainer>
 <InlineUIContainer>

Listing 8.6 Creating the RichTextBlock

aragraph
with

indent

Red text

xml:space
instance

Second paragraph,
no indent

Span with
font size

HyperlinkButton
in UI container

156 CHAPTER 8 Displaying beautiful text
 <StackPanel Orientation="Horizontal">
 <Rectangle Width="50" Height="50" Fill="Red"
 Stroke="Black" StrokeThickness="5" />
 <Ellipse Width="60" Height="60" Fill="Orange"
 Stroke="Purple" StrokeThickness="5"
 Margin="5"/>
 </StackPanel>
 </InlineUIContainer>
 <Run>
 And just to round it out, this is the last line of
 text in the paragraph.
 </Run>

 </Paragraph>
 </RichTextBlock>
</Grid>

This listing shows all the major features of the RichTextBlock and the Block and Span
elements it can contain. The RichTextBlock itself can contain only Block-derived ele-
ments, typically Paragraphs. A Paragraph can, however, contain all the same inlines
that a TextBlock can contain. Therefore, everything you learned earlier in this chap-
ter can be applied here. In addition, the Paragraph can also hold a new element
called the InlineUIContainer.

 The InlineUIContainer enables you to put XAML controls and elements inside
the RichTextBlock text flow. Normally, this would be used to add in hyperlinks and
images, but it could be really anything. Each InlineUIContainer can contain only a
single element. If you have more than one element, and you want the elements to flow
with the rest of the text, put them in different containers. If you want to keep a set of
elements grouped in a specific visual layout, put them in a Grid, StackPanel, or other
panel, and make that panel the child of the InlineUIContainer.

A RichTextBlock layout bug with xml:space

I’ve been asked many times how to preserve carriage returns and, especially, spaces
in XAML. This is something that can frustrate designers looking to get a bunch of hard-
coded text into a UI.

Notice how the text had the in-XAML whitespace preserved in the output. You can see
that in figure 8.6 and, assuming editing this book for print hasn’t changed any of the
spacing, listing 8.6. This is handled through the use of the xml:space attribute. Use
this attribute sparingly, though.

When writing this chapter, I uncovered a bug in the runtime layout process: The design
surface looks correct, but the use of xml:space anywhere in the Paragraph causes
the layout of the remaining blocks, especially InlineUIContainer elements, to be
laid out incorrectly at runtime. Essentially what happens is that if the preserve appears
anywhere in the paragraph, it applies to everything in the paragraph.

The VS2012 designer, which is based on Expression Blend, shows the expected run-
time representation. For this release of WinRT, though, it doesn’t quite match reality.

StackPanel in
UI container

157Rich and multicolumn text
The RichTextBlock builds on the trail blazed by the TextBlock and adds essential fea-
tures that make it easier to work with mixed blocks of text. In addition, you can use
the RichTextBlock to hold other UI elements, making it almost like a whole new type
of panel.

 This element is useful for more than just rich text with inline UI elements. One
other great feature is the ability to link one or more RichTextBlockOverflow ele-
ments to a single RichTextBlock to allow the text to flow through the UI.

8.2.2 Multicolumn and linked text

One feature that has been requested in HTML and XAML since the beginning of time2

(WPF flow documents notwithstanding) is the ability to have linked and multicolumn
text. This enables magazine- and newspaper-style layouts and gives designers a lot
more flexibility with how to lay out the content in applications.

 In XAML, multicolumn and freeform linked text both build on the RichTextBlock
element. The easiest way to use linked text is to have multiple columns. Fortunately,
this is also one of the most commonly requested text scenarios for XAML and for web
apps.

(continued)

Here’s the designer view for the same RichTextBlock layout we’ve worked with in
this chapter.

You’ll notice that in the figure, the entire last paragraph sticks together properly and
flows left to right, including the UI elements.

Because you may run into this yourself, I thought it better to show you the version
with bug and not simply work around it. When you try this example, run it as shown,
and then remove every last instance of the xml:space attribute to see the difference
in layout. That’s the workaround as well: Simply avoid using that property when you
need to mix and match pre-laid-out text with fluid layout.

As the website error pages always say, “The appropriate people have been notified,”
except I actually did. :)

2 Yes, the beginning of time. The request for multicolumn text in HTML originally appeared on a cave wall in
southern France, apparently painted during the time the HTML2 spec was being drafted.

158 CHAPTER 8 Displaying beautiful text
The implementation in WinRT XAML doesn’t limit you to an arbitrary number of col-
umns. Instead, a RichTextBlock may be linked to a single RichTextBlockOverflow
element.

 In figure 8.7 you can see two columns of text displaying the famous and somewhat
over-the-top speech from the cult classic movie Independence Day. The text is too large
for the RichTextBlock so it freely flows from the first column to the second should
you resize the screen or otherwise change the size of the first column. You can even
select text starting in the first column and finishing in the second, as though it’s one
giant, selectable text element.

 The following listing shows the markup required to create the two-column layout
with text overflow.

<Grid Background="White">
 <Grid Margin="30">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <RichTextBlock Grid.Column="0" Margin="20"
 Foreground="Black" TextAlignment="Justify"
 FontSize="30"
 OverflowContentTarget="{Binding ElementName=SecondColumnText}">
 <Paragraph Margin="10,20,10,20">
 Good morning. In less than an hour, aircraft from here will
 join others from around the world. And you will be launching

Listing 8.7 Multicolumn text using a RichTextBlock

Figure 8.7 Two columns created using a single RichTextBlock and a single
RichTextBlockOverflow element

Two equal
columns

Justify text

Link to
overflow

159Rich and multicolumn text
 the largest aerial battle in the history of mankind
 </Paragraph>
 <Paragraph Margin="10,20,10,20">
 Mankind - that word should have new meaning for all of us today.
 </Paragraph>
 <Paragraph Margin="10,20,10,20">
 We can't be consumed by our petty differences anymore. We
 will be united in our common interests
 </Paragraph>
 <Paragraph Margin="10,20,10,20">
 Perhaps it's fate that today is the 4th of July, and you will
 once again be fighting for our freedom -- not from tyranny,
 oppression or persecution -- but from annihilation.
 </Paragraph>
 <Paragraph Margin="10,20,10,20">
 We're fighting for our right to live, to exist.
 </Paragraph>
 <Paragraph Margin="10,20,10,20">
 And should we win the day, the 4th of July will no longer be
 known as an American holiday, but as the day when the world
 declared in one voice:
 </Paragraph>
 <Paragraph Margin="10,20,10,20">
 "We will not go quietly into the night! We will not vanish
 without a fight! We're going to live on! We're going to survive!"
 </Paragraph>
 <Paragraph Margin="10,20,10,20">
 Today, we celebrate our Independence Day!
 </Paragraph>
 </RichTextBlock>

 <RichTextBlockOverflow x:Name="SecondColumnText"
 Grid.Column="1"
 Margin="20"/>
 </Grid>
</Grid>

The two things to focus on are the OverflowContentTarget property of the Rich-
TextBlock and the name assigned to the RichTextBlockOverflow. Notice how I use
element binding (covered in chapter 10) to link the RichTextBlock to the RichText-
BlockOverflow. I simply had to make sure that the overflow had an x:Name and then I
could use that in the binding statement in the RichTextBlock. This is the standard
way to link the two elements together in markup. You could also do this in code, but
it’s easier to do here.

 One final detail to call out: The overflow has no content or styling of its own, other
than the margin. Everything else—the font face and color and the actual text—comes
from the RichTextBlock element.

 I would be remiss if I talked about beautiful text and rich text but didn’t cover one
thing that makes it possible to go above and beyond the plain: OpenType. XAML has
awesome OpenType feature support, as you’ll see in the next section.

Overflow

160 CHAPTER 8 Displaying beautiful text
8.3 OpenType text
Text formatting and rendering options aside, typically what you see with a typeface is
what you get. There are no provisions for special relationships between characters or
embellishments around words. With the emphasis on beautiful and easily under-
stood text in Windows 8, it’s now more important than ever to go that extra step to
ensure your text is rendering as well as possible and is both beautiful and easily
understood.

 OpenType fonts have support for multiple ways to render characters or groups of
characters. They have context-aware glyphs that may be used when certain characters
are positioned next to each other or when numbers are positioned in specific ways rel-
ative to other characters. They also include stylistic sets that are based on the same
core font but that offer embellishments that you’d normally expect to find only in
another entirely new font file.

 All of these things combine to make it easier for you to take the extra step to pro-
vide truly beautiful and compelling text, better support for the brand you’re promot-
ing, and generally make sure the text is easier for the user to read and understand.

 In this section, we’ll take a look at some of the supported OpenType features
including ligatures, alternatives and stylistic sets, font capitals, fractions and number
formats, and variants including superscript and subscript.

8.3.1 Ligatures

A ligature is one or more characters joined together as a single glyph. Typically, this is
done with two characters linked together based on context. In traditional printing,
the ligature would be a single printing block. In computer typography, the font
defines how the ligature is handled. Not only does this look more refined, but it often
increases readability.

 The most common ligatures revolve around the letters following the letter f. Fig-
ure 8.8 shows both the no-ligature version and the version using OpenType ligatures
with the Gabriola font.

 The use of ligatures removes the awkward splicing of the crossbar on the lowercase
f and t characters (a combination I see often when typing out my employer’s name,
“Microsoft”). It also removes the dots on the lowercase i and j characters, because
those mash up against the f. Finally, you’ll notice that the top of the f is handled differ-
ently when followed by other tall characters such as f and l.

Figure 8.8 Standard ligatures in the
OpenType Gabriola font. Pay particular
attention to the dots on the i and j
characters, the crossbars in the t and f, and
the tops of the lowercase f characters and
how they connect to the next character.

161OpenType text
If the font supports it, Windows enables or disables the use of standard ligatures such
as those shown here through the Typography.StandardLigatures attached property.
The next listing shows the markup required to set this property.

<Grid Background="White">
 <StackPanel Margin="30">
 <TextBlock Text="ft fi fj fl ff ffi ffj ffl"
 Foreground="Black"
 HorizontalAlignment="Center"
 FontSize="200"
 FontFamily="Gabriola"
 Typography.StandardLigatures="False" />
 <TextBlock Text="ft fi fj fl ff ffi ffj ffl"
 Foreground="Black"
 HorizontalAlignment="Center"
 FontSize="200"
 FontFamily="Gabriola"
 Typography.StandardLigatures="True" />
 </StackPanel>
</Grid>

In addition, if the OpenType font supports them, WinRT XAML enables contextual lig-
atures, discretionary ligatures, and historical ligatures through the ContextualLiga-
tures, DiscretionaryLigatures, and HistoricalLigatures properties, respectively.
You use these the same way you use the StandardLigatures property.

 Historical ligatures are ones that were once standard but are no longer commonly
used. If you’re looking to make your app appear classical (or maybe steampunk or a
love letter from your favorite pirate), and the font supports them, historical ligatures
can add real character.

 Contextual ligatures are ones that the font designer believes are appropriate for
use with the font. Enabling both standard and contextual ligatures will give you the
complete set the font designer felt were appropriate for normal use.

 Discretionary ligatures are ones that the font designer included for specific situa-
tions and that may not apply to general use throughout the entire body of your text.

 Ligatures can help increase the readability and aesthetics of your text. Another way
to really fancy things up is to use contextual alternates and stylistic sets.

8.3.2 Stylistic sets

Stylistic sets are alternate representations of glyphs in a font. These can range from
very subtle variations of characters, suitable for more formal documents, all the way
up to very fancy and fantastic renderings of the loops, as well as decorative elements.
It’s up to the designer to create these in such a way as to stay consistent with the rest of
the font but provide interesting variation.

 A font designer may include up to 20 optional stylistic sets in a font, and each stylis-
tic set may include any subset of the characters of the font. The Gabriola font we’re
using here includes seven stylistic sets.

Listing 8.8 Using ligatures

Disabled

Enabled

162 CHAPTER 8 Displaying beautiful text
Figure 8.9 shows all seven Gabriola stylistic sets displayed in WinRT XAML.
 The sets get progressively fancier, with sets 6 and 7 showing real flare. Even sets 4

and 5 start to get going with the treatment of the lowercase l and the capital A. I par-
ticularly like the treatment given to the lowercase y character.

 The following listing shows how to enable the different stylistic sets from markup.

<Grid Background="White">
 <Grid Margin="30">
 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Text" Value="I really like XAML" />
 <Setter Property="FontFamily" Value="Gabriola" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="100" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 </Style>
 </Grid.Resources>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <TextBlock Grid.Row="0" Grid.Column="0" />

 <TextBlock Grid.Row="1" Grid.Column="0"
 Typography.StylisticSet1="True"/>
 <TextBlock Grid.Row="2" Grid.Column="0"
 Typography.StylisticSet2="True" />
 <TextBlock Grid.Row="3" Grid.Column="0"
 Typography.StylisticSet3="True" />

Listing 8.9 A number of stylistic sets for the Gabriola font

Figure 8.9 Stylistic sets for
the Gabriola font as rendered
by Windows. Note not only the
obvious changes in the second
column but also the subtle
treatment given to the a, y, l,
and k characters in the first
column (called out in the block
to the left).

Implicit style

Normal style

First column
stylistic sets

163OpenType text
 <TextBlock Grid.Row="0" Grid.Column="1"
 Typography.StylisticSet4="True" />
 <TextBlock Grid.Row="1" Grid.Column="1"
 Typography.StylisticSet5="True" />
 <TextBlock Grid.Row="2" Grid.Column="1"
 Typography.StylisticSet6="True" />
 <TextBlock Grid.Row="3" Grid.Column="1"
 Typography.StylisticSet7="True" />
 </Grid>
</Grid>

In this example, I used an implicit style to avoid repeating the same properties for
every TextBlock. In this example, I used an implicit style (chapter 7) to avoid repeat-
ing the same properties for every TextBlock. Think of it as simply repeating the
declared values for each and every TextBlock on the page, so they all have the same
Text, FontFamily, FontSize, and HorizontalAlignment properties.

 Selecting the stylistic set is as simple as setting its numbered StylisticSetN prop-
erty to true. If there’s no set in that spot, you’ll receive the default font. If you want to
check for support for alternates, you can open up Microsoft Word, right-click the text,
and select the advanced font properties. You’ll be able to easily browse many of the
OpenType features of the font, including stylistic sets. Set only one stylistic set prop-
erty to true at a time.

 While not required, the ContextualAlternates property is often used with stylistic
sets in order to fine-tune the relationships between the characters. The effects of set-
ting this property to true are typically more subtle than a stylistic set. Alternates are
glyphs that can be substituted for a standard glyph. Contextual alternates are ones
that are automatically substituted based on the context of the original glyph. For
example, picture the relationship between characters in a hand-written cursive type-
face—characters following a lowercase o often start differently than ones following,
say, a lowercase l.

8.3.3 Font capitals

Another way to modify the appearance of text is to convert it to all caps. You could do
this simply by using ALL CAPS when you type the text, but many fonts include alter-
nate representations for small caps, petite caps, titling case, and others. In WinRT
XAML, this is supported by the Typography.Capitals attached property.

XAML supports the following optional types of capitals via the Capitals property:
Normal, All Petite Caps, All Small Caps, Petite Caps, Small Caps, Titling, and Unicase.

Looking for other OpenType fonts?

Gabriola happens to be a personal favorite, but you can also find several other fonts
included with the Windows SDK and the Sample OpenType Font Pack. This pack includes
Kootenay, Lindsey, Miramonte, Miramonte Bold, Pericles, Pericles Light, Pescadero,
and Pescadero Bold. Each of these fonts implements various OpenType features.

Second column
stylistic sets

164 CHAPTER 8 Displaying beautiful text
The appearance of the type is dependent on how the font designer created it and
could vary significantly from one font to the next. Figure 8.10 shows how Normal,
AllSmallCaps, and SmallCaps appear in Gabriola.

 You can see that the word XAML is smaller in the AllSmallCaps version, as
expected. In addition, there are some slight differences in spacing, like between the
characters in XAML. It’s not necessarily the same as an algorithmic resizing of the let-
ters; the designer has control over how the smaller letters appear.

 The next listing shows how to use AllSmallCaps, SmallCaps, and Normal to create
the text shown in figure 8.10.

<Grid Background="White">
 <StackPanel Margin="30">
 <StackPanel.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Text" Value="I really like XAML" />
 <Setter Property="FontFamily" Value="Gabriola" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="150" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 </Style>
 </StackPanel.Resources>

 <TextBlock Typography.Capitals="Normal"/>
 <TextBlock Typography.Capitals="AllSmallCaps" />
 <TextBlock Typography.Capitals="SmallCaps" />
 </StackPanel>
</Grid>

As in the previous listing, I used the same resource block to eliminate repetition
throughout the listing. The key thing to notice here is the Typography.Capitals
attached property on the TextBlock.

8.3.4 Fractions and numbers

Numbers, and in particular fractions, present unique challenges when formatting text
for display. Numbers have different alignment needs than plain text, especially when
displaying a table of numbers to be added together. Numbers in fractions also need to
be displayed differently when they’re the numerator or denominator. Even that
changes if you consider side-by-side fractions versus the traditional top-over-bottom
fractions.

Listing 8.10 Display text as all caps using OpenType

Figure 8.10
A comparison among normal text with capital
letters and the AllSmallCaps and
SmallCaps OpenType settings

NormalAll small
caps

Small caps

165OpenType text
XAML supports the different number alignment values through the NumeralAlignment
and NumeralStyle attached properties of the Typography class. It even supports turn-
ing slashed zeros on or off using the SlashedZero attached property. Gabriola doesn’t
do anything special in those instances, so we’ll leave them alone for this example.

 If the OpenType font supports different fraction representations, so does XAML.
Fortunately, Gabriola also supports two of the three fractional representations, as
shown in figure 8.11.

 Unlike say, typing a lengthy document in Microsoft Word3 and having autosubstitu-
tion of fractions happen as you type, in XAML, you still have separate characters for
each part of the fraction and aren’t limited to the basic less-than-one fractions you
normally get with substitution.

 When formatting, XAML and OpenType automatically figure out the numerator
and denominator based on the position of the slash character. That really keeps your
markup clean. The following listing shows how to use this feature.

<Grid Background="White">
 <StackPanel Margin="30">
 <StackPanel.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Gabriola" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="175" />
 <Setter Property="HorizontalAlignment" Value="Left" />
 </Style>
 </StackPanel.Resources>

 <TextBlock Text="1/2, 2/3, 5/4, 6/8, 112/37"
 Typography.Fraction="Normal" />

 <TextBlock Text="1/2, 2/3, 5/4, 6/8, 112/37"
 Typography.Fraction="Slashed" />

 </StackPanel>
</Grid>

In this listing, I simplified the style and removed the Text property setter, because I
wanted slightly different text in each TextBlock. The markup here creates the text

3 I wouldn’t know anything about typing lengthy documents in Microsoft Word, especially not phonebook-sized
technical books.

Listing 8.11 Representing fractions using OpenType

Figure 8.11
Normal and side-by-side slashed
representations of fractions. I certainly
prefer the slashes over the normal, myself.

Normal

Slashes

166 CHAPTER 8 Displaying beautiful text
shown in figure 8.11. Note how I didn’t need to specify numerator, denominator, or
even superscript and subscript to make the numbers line up. That was all done auto-
matically.

8.3.5 Variants, superscript, and subscript

Sometimes fractions are approximated using superscript and subscript text. That’s not
particularly accurate and can actually be a real pain to do in some cases. It’s much bet-
ter to let WinRT handle that for you automatically.

 But there are certainly times when you want to have control over superscript and
subscript text. Footnotes and chemistry are two places where superscript and subscript
prevail.

 Superscript and subscript are
supported by the Typography

.Variants attached property.
Those aren’t the only two vari-
ants supported, however. Some
fonts, Eastern fonts in particular,
include support for several other
variants including Inferior, Ordi-
nal, and Ruby. Of course, we also
have Normal for plain-old text.

 Figure 8.12 shows both superscript and subscript as well as normal. Gabriola
doesn’t support any of the other variants.

 Unlike fractions where the sizing is automatic, when using variants, you need to
explicitly set the Typography.Variants property for each run of text you want
affected. The next listing shows the markup required for this example.

<Grid Background="White">
 <StackPanel Margin="30">
 <StackPanel.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Gabriola" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="100" />
 <Setter Property="HorizontalAlignment" Value="Left" />
 </Style>
 </StackPanel.Resources>

 <StackPanel Orientation="Horizontal">
 <TextBlock>
 <Run Text="H" Typography.Variants="Normal" />
 <Run Text="2" Typography.Variants="Subscript" />
 <Run Text="O" Typography.Variants="Normal" />
 </TextBlock>
 <TextBlock Margin="50 0 0 0">

Listing 8.12 Superscript and subscript variants

Figure 8.12 This shows the use of superscript and
subscript in text using the Typography.Variants
attached property.

Subscript

167Embedding fonts
 <Run Text="i" Typography.Variants="Normal" />
 <Run Text="2" Typography.Variants="Superscript" />
 </TextBlock>
 </StackPanel>

 <TextBlock>
 <Run Text="This is text with a pithy footnote"
 Typography.Variants="Normal" />
 <Run Text="27"
 Typography.Variants="Superscript" />
 </TextBlock>

 <TextBlock FontSize="40">
 <Run Text="27 "
 Typography.Variants="Superscript" />
 <Run Text="All the best stuff is in the footnotes."
 Typography.Variants="Normal" />
 </TextBlock>
 </StackPanel>
</Grid>

As in the other examples, I used a style to keep the listing short. I did override the font
size in the TextBlock that represents a footnote, however. Another cool feature of
styles.

 This example had a good bit more markup because, as mentioned, I had to set the
Normal, Superscript, or Subscript variant for each block of text. Also note how
these properties are available on the Run element inside a TextBlock as well. They’re
portable to just about anything using text.

 OpenType opens up a whole new world of typography options from the mundane
to the super-fancy. WinRT’s support for OpenType is excellent, supporting all the major
features that a developer or designer could ask for. While they won’t be used in every
application, you’ll find yourself able to use many of the features, especially variants and
fractions, in business applications and more design-oriented applications alike.

 The text system always renders text using the specified font, a specified fallback, or
a default fallback if unspecified or if the font is unavailable. If the font you’re using in
your TextBlock or other control isn’t a standard font, you may want to consider
embedding it with your application.

8.4 Embedding fonts
The majority of Windows applications, at least initially, will use the standard Microsoft
Segoe font family for displaying and editing text. Eventually, that will get as boring to
look at as the old MS Sans Serif in desktop apps. There will come a time when you’ll
want to use a special font in your application. Maybe it’s the typeface in use in your
company logo, and you want to match it for consistent branding. Sometimes it’s a slick
headline font. Or perhaps it’s just a sharp and readable font you want to use in your
news-reading application. You could just use a nonstandard font and pray that it’s
already installed on an end user’s machine, but trust me: That won’t end well.

Superscript

168 CHAPTER 8 Displaying beautiful text
 What do you do when you can’t guarantee that end users will have that font on their
machines? One way to tackle this problem is to embed the font into the application.

Although there’s no special tooling for it, WinRT apps support embedded fonts in
applications. Simply add the font to your project and mark it as content. You can then
refer to it by name using the format FileName#FontName:

<TextBlock FontFamily="/Assets/JosefinSansStd-Light.otf#Josefin Sans Std"
 FontSize="40"
 Text="This text uses an embedded font" />

The folder name /Assets is the location where the original OTF (Open Type Font) or
TTF (True Type Font) file is placed in the project. The name JosefinSansStd-Light is
the name of the font file, and Josefin Sans Std is the name of the actual font. You can
identify the font name by double-clicking the file and examining it in the font viewer.

 Once you have fonts embedded in your application, they can be used anywhere
you’d use a regular typeface. For example, they may be used in text boxes for gather-
ing text, something we’ll look at in the next chapter.

8.5 Summary
I don’t consider myself a typography nerd, but I do love beautiful text. I tend to notice
when ads on TV (especially now with HDTV available for just about every channel)
take the effort to provide beautiful typography as part of the layout. I’ve always
noticed the same in movies, and I’m starting to see some of the same things creep into
app development.

WinRT XAML has such great support for typography because typography is so
important to Windows 8. You only need look at the history of typography in Silverlight
and WPF to realize that the emphasis on beautiful type was not always top on the fea-
ture list for the platforms. With WinRT, this changes. Not only is the type rendered

I’m not a lawyer

But that’s not going to stop me from giving pseudo-legal advice (advice that you should
very clearly understand is not from a lawyer). Before you go and embed that font, check
its license. Most fonts don’t legally allow embedding in applications. In fact, most
fonts haven’t even caught up with the idea that fonts can be used outside of docu-
ments.

Once the font foundries get out of the ’80s and start allowing font embedding in ap-
plications, UIs will really start to shine.

In the meantime, I suggest you consult someone with a real legal background before
embedding that font in your application. Resist the urge to use a font just because
it’s on your developer machine, installed with some other app like Microsoft Word or
Adobe Photoshop. Instead, get explicit embedding rights or licenses. Seriously, I’m
not a lawyer, and I don’t even play one on TV.

169Summary
more cleanly and more beautifully, but feature support goes above and beyond that
required to stick a field label on a form.

 The TextBlock is the most basic and most commonly used text element. It has sup-
port for the usual font properties, plus alignment and more. It also supports the con-
cept of an inline, something that lets you combine many elements into a single
TextBlock, with each element having its own formatting. You can wrap text, align it,
and even truncate the text to fit the available display space.

 The RichTextBlock builds on the TextBlock and can even use the same inlines. It
also adds in the ability to select text and to have multicolumn text. One really cool
thing about it is the support for embedding controls directly into the RichTextBlock
itself. If you’re an industrious XAML developer, I’ll bet you could even use a Rich-
TextBlock as a very flexible Panel substitute. Being somewhat lighter weight, the
TextBlock is still the go-to element when you have a ton of them to put on a single
page, but the RichTextBlock offers features that make it a compelling substitute.

 Both the RichTextBlock and the TextBlock make use of OpenType fonts. Of
course, you can set the font sizes, families, weight, and styles, but the Typography
namespace enables you to dig more deeply into the features exposed by the different
OpenType fonts. This helps ensure you’re displaying them at their very best in every
possible situation.

 Finally, all that effort you spent picking the right fonts and font sizes would be for
naught if you couldn’t guarantee the font existed on the end user’s PC. That’s where
font embedding comes in. It’s easy to take an appropriately licensed font file and
package it into your application for distribution to the target machines.

 This chapter was about text, but we did dive into some things you might have con-
sidered to be controls (rich text, for example). In the next chapter you’ll learn about
the control model and how to use it in your apps along with binding and the MVVM
pattern.

Controls, binding,
and MVVM
In previous chapters, you’ve learned how to display information on the screen, how
to position it, and how to make it pretty. Those are all important skills to master to
be an effective XAML developer or designer. What comes next is adding interaction
both with the user and with data.

 The first approach that most developers use when confronted with a new UI lan-
guage or markup is to assign property values from code using simple con-
trol.property = value assignments. This is certainly familiar territory, but it
doesn’t leverage the power of the platform. It also creates too tight a coupling
between the UI and the code behind it. The better approach is to use binding, but
that has its own learning curve.

 When learning binding, you can get into a lot of trouble by going about it in an
unstructured way. It’s relatively easy to bind to a property exposed in the code-
behind, for example, but later you start running into issues where the exact bind-

This chapter covers
■ Data and element binding
■ The Model-View-ViewModel pattern
■ Working with controls and lists
■ Creating and using value converters
170

171
ing path being used is next to impossible to figure out and debug. The code gets into
a twisted knot, and you find yourself having to do things like manually setting contexts
and bindings at different levels of the UI.

 Most of the stumbling blocks in learning binding come from not having an appro-
priate backing structure. That’s why MVVM was created. MVVM, or the Model-View-
ViewModel pattern, is the de facto standard for structuring the XAML apps. It helps
you set up a clean structure with separation between the UI and the data model and
between the UI and supporting functionality. It improves testing and mocking (the
ability to create dummy functionality or data), provides structure, and supports
advanced patterns such as Inversion of Control (IoC). In addition to all that, it makes
binding much easier to learn and much more pleasant to use.

 Rather than teach you every possible property of every control and every nuance of
the binding system, I’m going to show you how to set up something sustainable and
usable for real apps. Throughout this chapter, we’ll build out a contrived, albeit inter-
esting, little app that simulates the remote control panel for a Mars rover. Figure 9.1
shows the app, complete with the controls we’ll cover in this chapter.

 We’ll use MVVM to structure the app, of course. I’ll show you how to work with
several controls using binding and the MVVM pattern. We’ll populate a ListView with
data from an ObservableCollection and use data templates to format the display.

Figure 9.1 The app is a simulator of a rover remote control panel used by a large fictional space
agency. It uses several different types of binding as well as several common UI controls and elements.
It makes use of the brush and text information from the previous chapters, all tied together with
binding and a healthy dose of MVVM.

172 CHAPTER 9 Controls, binding, and MVVM
We’ll use two-way binding from text boxes, radio buttons, and check boxes and com-
mand binding from buttons. We’ll show or hide images based on binding the Visi-
bility property using a value converter to convert from a Boolean value. Along the
way, I’ll even show a little UI element-to-element binding.

9.1 The Model-View-ViewModel pattern
As with other platforms, there are many ways to accomplish the same things in XAML,
most of which will get you into trouble two-thirds of the way through development. XAML
apps scream out for some decent pattern for working with binding and UI controls.

 The .NET + XAML world has generally adopted the MVVM pattern for separating
the UI from the logic. MVVM was invented originally for WPF, as a variation of the Pre-
sentation Model pattern, so it has been road tested for the better part of a decade.

 Figure 9.2 shows the essential parts of
MVVM.

 If you’re following what’s shown in
figure 9.2, you’re “doing MVVM.” That
diagram doesn’t provide the whole pic-
ture, though. Does the view really only
talk to the viewmodel, or can it also talk
with the model? Where does the data come from? What exactly is the communication
between the layers? So, let’s further break this out in a more typical implementation of
the pattern. Figure 9.3 shows what that looks like, including the layers that can typi-
cally be tested using code-testing tools and approaches.

Figure 9.2 The essence of MVVM, or as shown
here, VVMM; so pure it’s the Everclear (the drink/
fuel/drain cleaner, not the band) of patterns.

Figure 9.3 The MVVM pattern and its component parts. Don’t get hung up on the details; just
understand where the separation is and why it exists.

173The Model-View-ViewModel pattern
 The view is the UI and the code that makes it hum. Any logic in the view is view-spe-
cific, handling animations, for example. Ideally, the code-behind is lean and mean,
because it’s extremely difficult to effectively test code that’s stuck in the view. The dot-
ted line between the code-behind and the viewmodel will be covered soon, but it rep-
resents the ability to interact with the viewmodel from code, event handlers, and
more.

 The next layer includes the viewmodel and a number of services. Services in this case
are not web services or other remote bits but are instead internal proxies to other
functionality. They’re service classes. Each service class may abstract calls to web ser-
vices, or they may call platform APIs or do more.

 Some of those services will use the external functionality shown in the third layer.
Although this isn’t technically a core part of MVVM, it always comes into play in any
nontrivial app. It’s also an important layer to include if you intend to multitarget—
Windows 8 and Windows Phone 8, for example, or Windows 8 and Silverlight or WPF.

 Finally, you have the model. The model is generally made up of the entities in your
app. There’s a lot of flexibility here. In many implementations, the database interface
is considered part of the model. In my own implementations over the years, I’ve
always made the decision that model objects are simple containers for data, not con-
tainers for functionality or interfaces into other parts of the system. This has helped
me create clean design each time.

 There’s a dotted line between the view and the model for good reason. There are
two main schools of thought on how a model should be surfaced to the view:

■ The underlying model should never be seen by the UI. Instead, you should cre-
ate separate viewmodel entities that provide view-specific versions of the model
entities.

■ The viewmodel surfaces model entities directly.

There are good arguments for both. In the first approach, you don’t have to worry
about carrying over any gunk injected by an ORM, and you don’t need to worry about
polluting ORM-visible objects with binding-specific functionality. There are other ways
around that, however, like the code-first Entity Framework. Because of that and
because of the additional effort that would be involved in implementing option 1 in
any nontrivial system, most implementations (including mine) use the second
approach, or they standardize on the second approach except in places where the app
developer sees a clear benefit to the first approach. You can mix and match.

 I’ll use the second approach throughout this book, where I surface model entities
directly. Just understand that’s not the only way, nor is it the best way in all situations.
Do what works for your app, not what is in someone else’s dogma.

 Regardless of how far you intend to go with MVVM (events versus commands, dif-
ferent methods for locating viewmodels, and so on), there’s a need for a pattern like
this to focus our discussion of binding. Rather than spend half a chapter telling you
the wrong way to do it, only to switch gears at the end, I figured we’d just create this
up front. That does mean a little more of a learning curve here, but it’s worth it,
because it really is one of the best ways to structure your WinRT XAML apps.

174 CHAPTER 9 Controls, binding, and MVVM
 Throughout the remainder of this section, we’ll create the component parts to the
solution to be used in this chapter. We’ll start with the simplest, the model. This will
contain classes that represent the data. Most binding statements will work with proper-
ties defined here.

 The second piece will be the data service, which creates instances of the model
classes. Technically part of the model, this will serve as a bit of a simplified data repos-
itory.

 Next, we’ll create the viewmodel. This will be the glue that, ahem, binds everything
together. I consider the viewmodel to be the most important piece of the pattern and
the one you should spend the most time internalizing. Luckily, viewmodels are simple
beasts, similar to the classic Façade pattern, but with an XAML-friendly twist.

 The final piece we’ll create is the view. This is the UI to be used. It won’t be wired
up until later in this chapter, but we’ll need some controls to use to interact with the
viewmodel and model.

 But before we do any of that, I want to introduce you to the MVVM toolkit we’ll use
throughout this chapter: MVVM Light.

9.1.1 Using an MVVM toolkit like MVVM Light

Most MVVM examples I’ve given at talks and in other books, I’ve done from scratch.
But there are some things, like commands, that are just inconvenient to write from
scratch. For those, I highly recommend using an MVVM toolkit. Each kit has its own
approach to solving MVVM, and they each do things a little differently. Some provide a
lot of infrastructure, some use conventions to wire up, and others simply cover the
basics well.

 I’m not endorsing any particular kit, but because I had to pick only one, I chose
MVVM Light by Laurent Bugnion. Laurent has been a fixture in the XAML community
going back to WPF and Silverlight and has had his toolkit around and supported for
all these platforms. I’m only going to use features that make it easier to learn the
underlying technology, however, rather than those that may obscure what’s really
going on. MVVM Light is available on CodePlex at http://mvvmlight.codeplex.com/
and also via NuGet Package Manager from within Visual Studio.

INSTALLING THE TOOLKIT

For this chapter, I’m using MVVM Light Toolkit release 4.0.23.4, installed via the MSI
on the MVVM Light download page on CodePlex. The toolkit is constantly updated,
so your version numbers may be slightly different when you run through the exam-
ples here.

 Run the MSI from the CodePlex page. Once the MSI has completed, you’ll need to
manually run the .vsix (Visual Studio Extension Installer) package as explained in the
directions, which are displayed during installation. The readme is an HTML page with
direct links to the .vsix packages, so this is easy to do.

 Once the installation is complete, you’ll have a new project type available to you, as
shown in figure 9.4.

http://bit.ly/Win8CustomProtocolHandler
http://mvvmlight.codeplex.com/

175The Model-View-ViewModel pattern
CREATING THE PROJECT

Create a project using this template. Name it ExampleApp to stay consistent with the
examples in this chapter. Once the project has been set up, run it to see what it
includes.

 There are a number of pieces that are included in the MVVM project. As mentioned
earlier, I won’t use all of them in this chapter, because it’s more important that we focus
on learning controls and binding, leaning on the toolkit only when it helps us get to
that goal more quickly. I won’t use interfaces and viewmodel locators in my examples.
Once you understand the base pattern, your understanding of those (and why you may
want those) will be highly dependent on which toolkit you pick.

9.1.2 The model

The model is a representation of the data in the app. Collectively, the data entities and
the way they’re created or populated is all considered part of the model. Technically,
some of those pieces may live in services or out of the app, but conceptually they’re
part of the model.

 I’m a big fan of dumb model objects, that is, model objects that are simply entities
or containers for data, without any real functionality. I don’t care for big object-ori-
ented model trees, but some folks do like them. I want the model as simple as possi-
ble: something for me to pass around, bind to, and maybe send back to the database.

Figure 9.4 The New Project dialog with the MvvmLight template shown

176 CHAPTER 9 Controls, binding, and MVVM
 In the Model folder, create a class named ChatMessage, and in that class, add the
following code.

namespace ExampleApp.Model
{
 public class ChatMessage
 {
 public int Id { get; set; }
 public string From { get; set; }
 public string Message { get; set; }
 }
}

This is the first version of the ChatMessage class. You’ll make a few changes to this
later in the chapter. Now you just need a way to create a bunch of model instances for
use in the app. For that, you’ll use a data service.

9.1.3 The chat data service

The only service you’ll use in this chapter is a data service. In your apps, this might go
out to a repository and pull in data, maybe call a web service or three, or pull from a
local SQLite database.1 The focus of this chapter isn’t on that, so the data is simply
dummy data in the class.

MVVM Light includes great support for IoC and for pulling in different data
classes. As I mentioned earlier in this chapter, that type of functionality gets in the way
of what I want to show, so I’m going with a straight data class, no interfaces, and, when
it comes time to instantiate it, hardcoded references. Just in case you were still plan-
ning on sitting quietly at home instead of marching on my home with torches and
pitchforks, I’ve also made the class a singleton. A singleton is a class that ensures that
only one instance (sometimes one per thread depending on the implementation) of
itself is alive at any point in time. For more on the singleton pattern, please see this
page: http://bit.ly/WikiSingleton.

Listing 9.1 The ChatMessage model class in its initial form

1 Yes, you can use local databases from WinRT XAML apps. Awesome! See http://www.sqlite.org/.

Inversion of Control

IoC is a way to couple and substitute classes at runtime rather than at compile time.
For example, you may want to have different data classes for your test app and your
production app, but you don’t want to change the code when switching between them.
Similarly, you might do the same to enable your designer to work on the UI without
having the entire infrastructure behind them.

IoC typically uses Dependency Injection (DI) to pull in the class instances at runtime.
Through this, the classes can be developed independently, without tight dependencies
between each other.

Properties
to bind to

177The Model-View-ViewModel pattern
The following listing has the ChatDataService class, created in the Model folder of
the project.

using System.Collections.Generic;

namespace ExampleApp.Model
{
 public class ChatDataService
 {
 private static ChatDataService _current = null;
 public static ChatDataService Current
 {
 get
 {
 if (_current == null)
 _current = new ChatDataService();

 return _current;
 }
 }

 public IList<ChatMessage> GetMessages()
 {
 var messages = new List<ChatMessage>();

 messages.Add(new ChatMessage()
 { Id = 1, From = "Ground Control",
 Message = "Hey"});

 messages.Add(new ChatMessage()
 { Id = 2, From = "Major Tom",
 Message = "Hey. Wazzup?" });

 messages.Add(new ChatMessage()
 { Id = 3, From = "Ground Control",
 Message = "Take ur protein pills and put ur helmet on." });

(continued)

As MVVM started to mature, many developers linked IoC with MVVM in such a way
as to imply that if you weren’t using IoC, you “weren’t doing MVVM right.”

IoC and DI aren’t requirements for working with the MVVM pattern. They do comple-
ment it nicely, though. Because of this, many MVVM toolkits have built-in IoC contain-
ers right in the codebase or in a state-recommended third-party container in the
documentation.

In small apps, these are often overkill. Used improperly or inconsistently, you can make
a complete mess of an app with IoC. But in larger apps, you can quickly see the benefits
of using these features. Just make sure you fully understand the principles and uses
of IoC and DI and don’t implement them simply because someone else told you to.

Listing 9.2 The ChatDataService class

Singleton support

Temporary list

Construct one
ChatMessage

178 CHAPTER 9 Controls, binding, and MVVM
 messages.Add(new ChatMessage()
 { Id = 4, From = "Ground Control",
 Message = "You've really made the grade, dude!" });

 messages.Add(new ChatMessage()
 { Id = 5, From = "Major Tom",
 Message = "I'm stepping through teh door. " +
 "I'm floating in a most peculiar way. So high." });

 messages.Add(new ChatMessage()
 { Id = 6, From = "Major Tom",
 Message = "Here am I sitting in a tin can far above the world. " +
 "Planet Earth is blue and there's nothing I can do."});

 messages.Add(new ChatMessage()
 { Id = 7, From = "Ground Control",
 Message = "yt??!?" });

 return messages;
 }
 }
}

I considered inflicting “Rocket Man” on you, knowing full well that in your head,
you’d hear it in the pretentious William Shatner rendition, but I wanted to minimize
book returns. Instead, you have here a chat version of Bowie’s 1969 classic “Space
Oddity.” I’ll just wait here while you go dig it up on YouTube or iTunes.

 The ChatDataService uses a singleton pattern and includes a single function that
returns the dummy data. It doesn’t include any functions for adding or deleting data,
although a real data service almost certainly would. This data service is called from the
viewmodel to populate the viewmodel’s copy of the data. No transformation is applied
to the data, but the viewmodel is where you could sort, filter, or otherwise make the
data fit the view’s requirements.

 The ChatDataService class will be called from only one place in your app: the
viewmodel.

9.1.4 The MainViewModel and CameraViewModel classes

This is where it all hangs together. This is where you call the data service; this is where
you’ll provide properties and collections for the UI to bind to. The UI will never speak
directly to the data service or to any other services. Instead, the viewmodel will offer
an interface to that, abstracting it away. It will also provide a place to safely call func-
tions from the UI or, as you’ll see later, execute commands.

 In the ViewModel folder, create a new class named CameraViewModel. This will rep-
resent the output from one of the fictional rover cameras, so it includes an output
image, as well as a few configuration properties. The next listing has the code for this
version of the class.

using GalaSoft.MvvmLight;
using Windows.UI.Xaml.Media;

Listing 9.3 The first iteration of the CameraViewModel class

Return list

179The Model-View-ViewModel pattern
namespace ExampleApp.ViewModel
{
 public class CameraViewModel : ViewModelBase
 {
 public string Name { get; set; }
 public int XPosition { get; set; }
 public int YPosition { get; set; }
 public bool IsEnabled { get; set; }
 public ImageSource Image { get; set; }
 }
}

The XPosition and YPosition properties will be used for simulating panning of the
camera. The IsEnabled property decides whether the camera’s output will be dis-
played, and the Image property has the actual image to display.

 The class inherits from ViewModelBase, provided by the MVVM Light Toolkit. As
you’ll see later, that provides functionality around change tracking. It also provides a
number of great features you won’t need in this app, such as design mode support,
messaging, and more.

 But wait, why is this class a viewmodel class and not simply a model class? In reality,
you could make a case either way. But if you consider that this class may in the future
include functionality for actually panning something or otherwise performing
actions, it doesn’t fit my definition of a model class. It’s also something that isn’t really
data; it’s an abstraction that allows you to have several instances of this available to the
form without cluttering up the main viewmodel. It does, or may, represent more than
the state of the camera, so it’s more than a model object.

 The following listing has the first iteration of the MainViewModel class. There’s
already one in the solution; replace its contents with this simplified version.

using ExampleApp.Model;
using GalaSoft.MvvmLight;
using GalaSoft.MvvmLight.Command;
using System;
using System.Collections.ObjectModel;
using System.ComponentModel;
using Windows.UI.Xaml.Media.Imaging;

namespace ExampleApp.ViewModel
{
 public class MainViewModel : ViewModelBase
 {
 public MainViewModel()
 {
 _cameras = new CameraViewModel[3];
 for (int i = 0; i < _cameras.Length; i++)
 {
 _cameras[i] = new CameraViewModel();
 }

Listing 9.4 The initial form of the MainViewModel class

Bindable
properties

ViewModelBase

Initialize cameras
and images

180 CHAPTER 9 Controls, binding, and MVVM
 _cameras[0].Name = "Front camera";
 _cameras[1].Name = "Rear camera";
 _cameras[2].Name = "Horizon camera";

 LoadImages();
 }

 private CameraViewModel[] _cameras;
 public CameraViewModel[] Cameras
 {
 get { return _cameras; }
 }

 private void LoadImages()
 {
 _cameras[0].Image = new BitmapImage(
 new Uri("ms-appx:/Assets/simulated_front_cam.jpg"));
 _cameras[1].Image = new BitmapImage(
 new Uri("ms-appx:/Assets/simulated_rear_cam.jpg"));
 _cameras[2].Image = new BitmapImage(
 new Uri("ms-appx:/Assets/simulated_horizon_cam.jpg"));
 }

 public void LoadMessages()
 {
 }
 }
}

We’ve previously covered the Image element, so the support for that is going to be
baked into the viewmodel (and the view) from the start. Support for the rest of the
controls will come in the remaining sections of this chapter.

 Contrary to many first-time implementations I’ve seen, the viewmodel should not
be considered just a replacement for the code-behind. Don’t make a big, fat view-
model full of all the code you yanked from a .xaml.cs file. Instead, treat the viewmodel
more like a light, page-specific façade into the model and the various service classes.
Remember, code stuck in a viewmodel can’t be reused across pages in a one-view-
model-one-page typical MVVM architecture, and fat viewmodels are difficult to test
and change.

 When designing apps, I often start with the view, because I’m a UI guy. That
doesn’t work super well when writing a book with code for you to type in, however, so
I’ve left the view as the last piece to add.

9.1.5 The view

The view is the UI; it’s where all the controls will live and where you put into practice
the layout, text, and other knowledge you’ve gained so far. The view includes not only
the XAML I’ll show in this section but any code-behind as well.

 It’s difficult to automate testing of the view. There are tools to do it, and people
you can recruit to bang on keys, but the effort involved is often much higher than

Initialize cameras
and images

CameraViewModel
instances

LoadMessages to
be provided later

181The Model-View-ViewModel pattern
API-level testing and not usually incorporated into any source control check-in gates.
For those reasons, most developers recommend that your view’s code-behind contain
as little code as possible. In reality, what they’re saying is, “The code-behind code isn’t
really going to be tested, so don’t stick anything important there.”

 Some will tell you that the code-behind must have absolutely no code, but I don’t
believe in absolutes and try not to be religious. Put code there, but keep it minimal
and trivial. Make it UI-specific code (for working with animations, for example, or set-
ting the data context), but don’t fill your code-behind with logic and other stuff that
you really want to test. Put that in the viewmodel and service classes instead.

 That all said, we’ll get to the code-behind later, when we have something to actu-
ally put in it. For now, create the start of the UI using the XAML in the listing that fol-
lows. You’ll need the downloadable images for this chapter (or some substitutes) for
the background and, later, for the camera images.

<Page x:Class="ExampleApp.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:ignore="http://www.ignore.com"
 mc:Ignorable="d ignore"
 d:DesignHeight="768"
 d:DesignWidth="1366">

 <Grid>
 <Grid.Background>
 <ImageBrush ImageSource="ms-appx:/Assets/rover_controller_bg.png" />
 </Grid.Background>

 <Grid Margin="20 20 20 20">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=".75*" />
 <ColumnDefinition Width=".6*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid Grid.Column="0" Margin="10">
 <Rectangle Fill="#000000" Opacity="0.5"/>
 <StackPanel Margin="20">
 <TextBlock Text="Feed Enable" FontSize="40"
 Margin="0 0 0 30"/>

 <!-- Camera Enable Checkboxes Go Here -->

 <StackPanel Margin="0 60 0 30">
 <TextBlock Text="Camera Control" FontSize="40"
 Margin="0 0 0 30"/>

 <!-- Radio Buttons Go Here -->
 </StackPanel>

Listing 9.5 The skeleton view XAML for MainPage.xaml

CheckBoxes

RadioButtons

182 CHAPTER 9 Controls, binding, and MVVM
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="75" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Text="X Pan"
 VerticalAlignment="Center"
 FontSize="18"
 Grid.Column="0"
 Grid.Row="0" />

 <!-- Slider UI goes here -->

 </Grid>
 </StackPanel>

 <HyperlinkButton x:Name="ViewOnlinePage"
 HorizontalAlignment="Left"
 VerticalAlignment="Bottom"
 Foreground="Orange"
 Margin="10"
 FontSize="18"
 NavigateUri="http://www.nasa.gov"
 Content="View NASA Homepage" />
 </Grid>

 <Grid Grid.Column="1" Margin="10">
 <Rectangle Fill="#000000" Opacity="0.5"/>
 <StackPanel Margin="20">
 <TextBlock Text="Camera Feed"
 Margin="0 0 0 20"
 FontSize="40"/>

 <!-- Images go here -->
 </StackPanel>
 </Grid>

 <Grid Grid.Column="2" Margin="10">
 <Rectangle Fill="#000000" Opacity="0.5"/>
 <Grid Grid.Margin="20">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

Sliders

Images

183Binding primer
 <TextBlock Text="Team Chat"
 Margin="0 0 0 20"
 Grid.Row="0"
 Grid.Column="0"
 Grid.ColumnSpan="2"
 FontSize="40"/>

 <!-- Message List Goes Here -->

 <TextBlock Text="Message Text"
 Margin="0 10 0 5"
 FontSize="15"
 Grid.Column="0" Grid.Row="2"/>

 <!-- Message TextBox Goes Here -->

 <Button x:Name="SendMessage"
 VerticalAlignment="Top"
 Margin="5 0 0 0"
 Content="Send"
 Grid.Column="1"
 Grid.Row="3" />
 </Grid>
 </Grid>
 </Grid>
 </Grid>
</Page>

Note the various placeholders in the XAML. Throughout the remainder of the chapter,
you’ll replace these with chunks of XAML that use specific controls to build up the UI.

 The view is just a bit of a skeleton at the moment. Not only are the controls not
there, but nothing connects the view to the viewmodel. Why is that? You need to
understand binding before that can happen, because binding is where all the magic
will happen.

9.2 Binding primer
It seems that every language and platform have their own way of getting values into
properties of UI components. Most of them support direct lvalue = rvalue type
assignment, and most also now support binding. XAML was built from the ground up
to make binding a core part of the infrastructure so that you almost never have to do
something like SomeTextBox.Text = SomeObject.Property. After the vector graph-
ics, binding was the thing that really excited me when I first learned XAML. I was com-
ing from a world where binding was a dirty word, and WPF and Silverlight were working
to turn that around.

 But binding is more than just getting data into UI components: It’s also about get-
ting data back out of them. Even more than that, it lets you do the same between UI
components so you can bind a property of one to a property of another.

 In a nutshell, binding is the mechanism for updating one property from another.
Most of the time you’ll have a UI element like a TextBlock or TextBox bound to

ListView

TextBox

184 CHAPTER 9 Controls, binding, and MVVM
some sort of data object, like a customer or a message, so that will be the major focus
of this section.

 Throughout this section we’ll look at what makes binding work and what you need
to understand to be able to use binding in the application. First, we’ll look at the bind-
ing source and target, to understand the relationship between these two objects. Error
messages and documentation will often refer to source and target explicitly, so it’s
important to know the distinction.

 Then, we’ll look at how to control the direction and frequency of the flow of
updates between the source and target. This is easily done using the Mode property of
the Binding object.

 Data that doesn’t change is not all that interesting. UI controls that don’t update
when the data updates are not just boring; they’re buggy. For those reasons, we’ll next
look at how to handle change notification, including some of the goodies built into
the MVVM Light Toolkit.

 Finally, when looking at a binding statement, you need to know what the paths are
relative to. You also need a way to set this globally for a page, or container, or even a
small group of elements. For that, we’ll look at the DataContext.

 Let’s start with understanding the objects in play and get a little terminology straight.

9.2.1 The source and target

Each binding relationship is made up of two sides: the source and the target. That’s
further broken down into object and property on each side. The target object is typi-
cally a UI element, such as a TextBlock or a TextBox. Except in the case of UI element
binding (or binding in code), the target is always the object with the binding state-
ment in markup. More correctly, the target is the first property that will be set,
whereas the source is the first property that will be read. What happens after the first
time depends on the binding mode.

The target property must be a dependency property; this is because binding relies on the
ability of a dependency property to source its value externally, as described in chapter
4. Figure 9.5 shows this relationship using the Binding markup extension.

Figure 9.5 The relationship between the binding source and the binding target. The
target object is usually a UI element, and its target property must be a dependency
property. The source object can be just about anything, as can the source property. Most
people leave out the Path= part of the statement, because that can be easily inferred.

185Binding primer
The source object may be just about anything, but typically, it’s going to be a data
object, a viewmodel, or sometimes even another control. In this chapter, the Chat-
Message class instance and MainViewModel instance are two examples of binding
sources.

 The source property may also be anything that’s compatible with the target prop-
erty. What defines compatibility? It’s decided by straight type casting, built-in .NET
type converters, and, if provided, value converters. We’ll look at an example value con-
verter later in this chapter.

TIP The binding source property must always be a property. A field, even a
public field, cannot be a binding source. That’s why even the initial version of
the ChatMessage class used properties. Your binding will fail silently if you use
a plain-old field like public int foo;. Autoproperties (properties followed
by { get; set; }) work for binding but don’t have change notification. For
that, you’ll need to break them out into complete properties, backed by field.

Importantly, the source object must provide some way of notifying when the source
property changes, if you want to update at all beyond the initial read, or a OneTime
binding mode.

9.2.2 Binding mode

As a developer, you may need to control the direction in which data flows between the
source and the target. In most cases, this is simply to enable functionality, but in oth-
ers it may be for performance reasons or to use a control in a nonstandard way. In the
binding statement, this behavior is specified by using the Mode property, as shown
here:

<TextBox Text="{Binding NewMessage.Message, Mode=TwoWay}" />

There are three possible values for the Mode property:

■ OneTime—The binding target is updated only once when the binding is created.
■ OneWay—The binding target is updated each time the source property changes,

assuming the source is properly notifying of the property change.
■ TwoWay—The binding target is updated each time the source property changes,

again assuming change notification is in place. Additionally, the binding source
is updated each time the target property changes. This is most commonly used
to get user-entered text back into binding sources, but it may also be used for
sliders and other types of controls.

It’s extremely rare to find anyone using the OneTime value, but in a performance-
sensitive system, this can cut down the load on the binding infrastructure. By far, the
most common approach is OneWay, which is the default in cases where no Mode is
specified.

 As I mentioned, updating beyond the initial read requires change notification;
let’s look at that.

186 CHAPTER 9 Controls, binding, and MVVM
9.2.3 Change notification

If you want the target property to always reflect the current value of the binding
source property, you need to somehow notify the binding system when the source
property changes. If the source property is a dependency property, when binding to
other controls, for example, this is handled automatically. In cases where the binding
source is a data object of some sort—a viewmodel or model object as it is in this case—
you need to manually notify the binding system of any value changes. This is accom-
plished through the INotifyPropertyChanged interface or, in the case of an MVVM
Toolkit like Laurent’s, via the ObservableObject base class. In either case, what’s hap-
pening is each time a property changes in the source, you raise an event with the
name of the property as part of one of the arguments. The binding system catches this
event and knows to requery the value when it receives it. Figure 9.6 shows the relation-
ship between the objects and the events.

 Listing 9.6 shows the updated ChatMessage class, which now implements INotify-
PropertyChanged (INPC) through the ObservableObject base class. I’m only going to
show a single property, because there’s another inline change notification approach
we’ll use in the final version. By the way, notifying properties like this is a good excuse
to dust off your code-snippet-creation skills, because the properties all follow a well-
defined pattern.

using GalaSoft.MvvmLight;

namespace ExampleApp.Model
{
 public class ChatMessage : ObservableObject
 {
 private int _id;
 public int Id
 {

Listing 9.6 The ChatMessage class with change notification

Figure 9.6 When the binding
source implements the
INotifyPropertyChanged
interface, this is how change
notification and target
updates work.

MVVM Toolkit
namespace

ObservableObject
implements INPC

187Binding primer
 get { return _id; }
 set
 {
 _id = value;
 RaisePropertyChanged("Id");
 }
 }

...
 }
}

Gained through the inheritance from ObservableObject, the RaisePropertyChanged
method call notifies any listeners, including the binding system and anything explic-
itly subscribed to the event, that the property value has changed. Underneath, this is
accomplished via the INotifyPropertyChanged.PropertyChanged event and its
PropertyChangedEventArgs class, but the base class thinly insulates you from that.
You call this method from the setter so you can guarantee that it fires every time a
value is assigned to the property.

 Note that, in the end, property change notifications always specify the property
name as a string; that’s how the binding system works. But there are several interesting
ways to avoid magic strings in your code, using lambda expressions. The MVVM Light
Toolkit has built-in support for using lambda expressions to get compile-time check-
ing in the change notification, something you can’t get when using strings.

 If your system’s usage pattern is such that properties may be set again and again
with the same value, you should check to see if the value actually changed before set-
ting the field and raising the event.

 Let’s do that and also clear out the use of strings from the code. The next listing
shows how to use another MVVM Light feature to handle everything in a single func-
tion call.

using GalaSoft.MvvmLight;

namespace ExampleApp.Model
{
 public class ChatMessage : ObservableObject
 {
 private int _id;
 public int Id
 {
 get { return _id; }
 set { Set<int>(() => Id, ref _id, value); }
 }

 private string _from;
 public string From
 {
 get { return _from; }

Listing 9.7 Using built-in support for value checking and change notification

Raise
PropertyChanged
event

ObservableObject

Set method call (the
<type> is optional)

Backing
fields

188 CHAPTER 9 Controls, binding, and MVVM
 set { Set<string>(() => From, ref _from, value); }
 }

 private string _message;
 public string Message
 {
 get { return _message; }
 set { Set<string>(() => Message, ref _message, value); }
 }
 }
}

The MVVM Light Toolkit’s ObservableObject base class includes a few versions of a
method named Set. This method takes in a lambda expression that points to the
property itself, a reference to the backing property (so it has something to set), and
the new value. By removing the use of strings, you now get compile-time verification
that you have the correct property names in use. Few things are worse than trying to
troubleshoot a binding problem only to find out the root cause was a typo in the
string passed to a RaisePropertyChanged call.

 Inside the Set method, it does the appropriate checking to see if the property
value is different from the old value. If so, it uses the lambda expression to figure out
the property name and then raises the property changed notification after setting the
backing field value.

 The lambda expression approach isn’t quite as fast as using strings, because it must
reflect on the model to convert the name to a string, but it sure makes for much more
airtight code.

 Let’s apply the same approach to the CameraViewModel class. The updated version
of this class is shown here.

using GalaSoft.MvvmLight;
using Windows.UI.Xaml.Media;

namespace ExampleApp.ViewModel
{
 public class CameraViewModel : ViewModelBase
 {
 private string _name;
 public string Name
 {
 get { return _name; }
 set { Set<string>(() => Name, ref _name, value); }
 }

 private int _xPosition = 0;
 public int XPosition
 {
 get { return _xPosition; }
 set { Set<int>(() => XPosition, ref _xPosition, value); }
 }

Listing 9.8 Updated version of the CameraViewModel class

Set method
call (the
<type> is
optional)

Backing
fields

Set and
notify

189Binding primer
 private int _yPosition = 0;
 public int YPosition
 {
 get { return _yPosition; }
 set { Set<int>(() => YPosition, ref _yPosition, value); }
 }

 private bool _isEnabled = true;
 public bool IsEnabled
 {
 get { return _isEnabled; }
 set { Set<bool>(() => IsEnabled, ref _isEnabled, value); }
 }

 private ImageSource _image;
 public ImageSource Image
 {
 get { return _image; }
 set { Set<ImageSource>(() => Image, ref _image, value); }
 }
 }
}

This listing does for the CameraViewModel what the previous listing did for the Chat-
Message. It augments the class to ensure change notification happens properly. With-
out this, any two elements bound to the same property would show different values
when one was changed, because the other would never be notified of the update.

 When working with a viewmodel, especially the page-wide viewmodel, the markup
typically doesn’t reference the viewmodel itself. Instead, it references properties on
the viewmodel. But how does the page know to start at the viewmodel when resolving
those property names? That’s where the DataContext comes into play.

9.2.4 DataContext

In a complex system, fully qualifying the path to the binding source can be cumber-
some if not impossible. Consider a situation where you have nested viewmodels that
expose model objects that, in turn, are composite objects. The path gets unwieldy. Now
consider throwing a collection into the middle of that or having to deal with creating
instances of objects, and it becomes a complete mess, if not impossible in some cases.

 The concept of a data context helps save you from that. Every element in XAML
has a DataContext property. This is a reference to a binding source object. Every bind-
ing statement made within the scope of that element (think of a Grid, for example)
will be relative to the DataContext.

 One really common way to use the DataContext is to set the entire page’s Data-
Context to the associated viewmodel instance. By doing this, as shown in the next list-
ing, every binding statement on the page will be relative to the viewmodel.

using ExampleApp.ViewModel;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

Listing 9.9 Setting the data context from the code-behind

Set and
notify

190 CHAPTER 9 Controls, binding, and MVVM
namespace ExampleApp
{
 public sealed partial class MainPage : Page
 {
 private MainViewModel _vm = new MainViewModel();

 public MainPage()
 {
 this.InitializeComponent();

 DataContext = _vm;
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 _vm.LoadMessages();
 }
 }
}

The listing shows how to set the DataContext from the code-behind. By default, the
MVVM Light Toolkit will use a viewmodel locator to dynamically associate the view-
model based on naming convention, but that obscures the importance of the data
context. By all means, however, use it in a real app, because it’s a great feature.

 Note that in this listing you’re also loading the message data. You do this from the
OnNavigatedTo event, which is fired when the page is navigated to by the user. The
viewmodel code handles dup checking in cases where this page is navigated to back
and forth. A further optimization would be to set a flag in the viewmodel (or data ser-
vice) and not perform any load if the data is already present. In a system where you’re
making a network or other high-latency call, this can be an important consideration.

 Binding is one of the most useful features of XAML-based apps. It cuts down on the
amount of code you need to write to get and set values, and it really helps decouple
the UI from the underlying model. With the assistance of the MVVM pattern, you can
create a UI that, with perhaps the exception of setting the data context from code-
behind, if you go that route, has no in-code references to other layers of the app. This
makes peeling off the UI for testing or porting purposes something that mere mortals
are able to accomplish.

 In the next section, you’ll use this new-found binding knowledge to get some data
to and from controls, starting with the most common: text.

9.3 Entering and displaying text
Most nontrivial apps require the user to type something at some point. Whether that’s
a comment on an entry, a message to someone, or some login information, you still
need the user to get in front of a physical or virtual keyboard and bang away at some
characters. Ever since I worked in Silverlight 1.1a, which didn’t include a TextBox of
any sort, I’ve made sure to never take built-in text entry for granted.

Create
viewmodel

Set data
context

191Entering and displaying text
 With all the binding and MVVM plumbing out of the way, it becomes quite easy to
work with controls. One of the most common controls is the TextBox, which lets you
enter single or multiline text using a single font style. A variation on the TextBox, the
PasswordBox enables you to capture sensitive information like, you guessed it, a pass-
word while masking the contents. It follows the Windows 8 conventions including the
“press to reveal” button to the right of the box. Every time you log into Windows using
a text password, you’re using a native password box.

 With the exception of the RichEditBox, which isn’t at all binding friendly without
outside additions,2 each of these text-editing controls works well in an MVVM-based
solution. In the context of our solution, let’s look at the first two: the TextBox and the
PasswordBox.

9.3.1 Working with the TextBox

When you want the user to enter text, whether through a physical keyboard or an on-
screen touch keyboard, the control you need to use is the TextBox. With the excep-
tion of multiline text wrapping and some pro-
ductivity features, this control hasn’t changed
much from what we’ve been using in any other
platform over the years. Figure 9.7 shows the
TextBox used in our app.

 The entered text in the TextBox is stored
in the Text property. This is a dependency
property with a property wrapper, so you can
use binding or straight code assignment to set and get the value. The next listing
shows the markup segment with the TextBox for entering a chat message. Place this
XAML in the spot you reserved for the chat text entry.

<TextBox Grid.Column="0" Grid.Row="3"
 Text="{Binding NewMessage.Message, Mode=TwoWay}"
 TextWrapping="Wrap"
 FontSize="18"
 Height="100"/>

Note the use of TwoWay binding here. That allows the TextBox to be updated from the
viewmodel and the viewmodel to be updated from the TextBox. With TextBox con-
trols, you almost always want to use TwoWay binding.

 The binding source is an instance of the ChatMessage class exposed through a
NewMessage property. This is the same class you’re returning instances of from the

2 The community is still working on best approaches for working with the RichEditBox. I’ve seen implemen-
tations using attached properties to enable binding, for example. All of the versions are messy, and none of
them get my endorsement just yet.

Listing 9.10 TextBox for chatting with other team members in faraway places

Figure 9.7 The humble TextBox with a
TextBlock label above it

TwoWay
binding

192 CHAPTER 9 Controls, binding, and MVVM

W
use

l

data service. The following listing has the NewMessage property for the MainViewModel
class.

private ChatMessage _newMessage;
public ChatMessage NewMessage
{
 get { return _newMessage; }
 set { Set<ChatMessage>(() => NewMessage, ref _newMessage, value); }
}

private void CreateNewMessage()
{
 if (NewMessage != null)
 NewMessage.PropertyChanged -= NewMessage_PropertyChanged;

 NewMessage = new ChatMessage();
 NewMessage.PropertyChanged += NewMessage_PropertyChanged;
}
void NewMessage_PropertyChanged(object sender, PropertyChangedEventArgs e)
{ }

This looks similar to other code you’ve added. It’s simply providing a place on the
viewmodel that you can use as a binding source for the TextBox. Now, the TextBox
can always be typed into, and you’ll always have a place where that data will end up.

 The CreateNewMessage function is included here, which performs some necessary
cleanup you’ll use later. It also creates the ChatMessage instance, so in the MainView-
Model constructor, be sure to add the following bit of initialization code. Otherwise, the
TextBox will be bound to a null instance, which isn’t going to work out well for you.

public MainViewModel()
{
 ...
 CreateNewMessage();
}

Once you have that call in the constructor, you should be able to fire up the UI and type
away in the TextBox. If you put a breakpoint into the Text setter in the ChatMessage
class, type in the TextBox and tab away; you’ll see the data make it into the class.

9.3.2 Experimenting with the PasswordBox

Now, for grins, let’s change the TextBox to a PasswordBox. Save the project, first,
because you won’t stick with the results of this little side trip. The markup won’t be
the same, because the PasswordBox doesn’t include a Text property. Instead, it has a
Password property. It also has an IsPasswordRevealButtonEnabled property, which

you can set to true to show the little
reveal button on the right, as shown in fig-
ure 9.8. This is especially useful in tablets
where your muscle memory isn’t quite as
reliable as on a physical keyboard.

Listing 9.11 ViewModel support for the new message binding

ChatMessage

Unwire old
event

Wire new
event

e’ll
 this
ater

Figure 9.8 The PasswordBox with password
reveal button visible

193Entering and displaying text
Although to remain consistent I don’t recommend changing it, the control also
includes a PasswordChar property, which allows you to change the character that’s dis-
played in place of the typed characters. The following listing shows the changes
required to support the PasswordBox in place of the TextBox.

<PasswordBox Grid.Column="0" Grid.Row="3"
 IsPasswordRevealButtonEnabled="True"
 Password="{Binding NewMessage.Message, Mode=TwoWay}"
 FontSize="18"/>

This short listing includes the markup for the PasswordBox. Note that although the
property was changed from Text in the TextBox to Password in the PasswordBox, the
binding statement itself remains the same.

 If you haven’t already, go ahead and revert to the TextBox markup now, so we can
look at productivity features of the control.

9.3.3 Spell checking and autocorrect

Every modern browser has built-in spell checking in its text-entry fields. It’s become
both necessary and expected. Users have been asking for this in their desktop apps for,
quite literally, decades. In most cases, we’ve had to use third-party solutions or cobble
together things that just weren’t system native and always felt like one-off solutions.

 One great thing about WinRT XAML is
that the platform supports system-driven
spell checking and both autocorrect and
autocomplete. This is something WPF
developers had (well, sort of) and Silver-
light developers wanted but were unable
to get. I’m really excited to see this fea-
ture baked into WinRT from day one.

 Figure 9.9 shows the spelling context
menu with a normal TextBox. Notice also
the standard underlining of the mis-
spelled word.

 To support spell checking and autocorrect, rather than using some one-off imple-
mentation for XAML, it uses system dictionaries and correction rules. All you have to
do as a developer is turn it on using two simple properties, as shown here.

<TextBox Grid.Column="0" Grid.Row="3"
 Text="{Binding NewMessage.Message, Mode=TwoWay}"
 IsSpellCheckEnabled="True"
 IsTextPredictionEnabled="True"
 TextWrapping="Wrap"
 FontSize="18"
 Height="100"/>

Listing 9.12 Playing around with the PasswordBox

Listing 9.13 Enabling spell checking and autocorrection in the TextBox

Figure 9.9 Even the plain-old TextBox control
supports spell checking and autocorrect.

Enable spell
checkingEnable

autocorrection

194 CHAPTER 9 Controls, binding, and MVVM
As you can see in this listing, supporting these seemingly advanced features takes
almost no work on your part. I encourage you to enable these in every free-form text-
entry field in apps you create—especially if you have comment forms or fields that are
used to send a message. Yes, this feature works with the RichEditBox as well.

 I’m happy to see the good-old TextBox here in WinRT. Not only does it work as
expected, but it has features like spell check and autocorrect, which have finally made
it into the core platform.

 This TextBox was bound to model properties surfaced through the viewmodel. Let’s
look at another example where the TextBox is bound to properties of another control.

9.4 UI element binding using sliders
Whenever possible, I try to ensure that my UI elements are bound to properties sur-
faced through the viewmodel. But as a UI designer, there may be times when you want
to do something purely for the UI’s sake, without involving the viewmodel. This isn’t
just for dummying up the interface but also for real production work.

 Figure 9.10 shows the part of the UI we’ll be working with in this section. It
includes two static TextBlock elements with labels, two Slider controls with ranges,
min and max values and step values set, and two TextBox controls that can be used to
display or set the values for the sliders.

Like twins, they’re different on the inside

The controls you use in XAML are based on the same specifications and same under-
lying animation libraries as those used in the OS and in HTML, but they’re not the
same physical controls. Each platform reimplements the controls to fit its own control
model. WinJS/HTML apps have CSS-friendly versions. VB/C# and C++ apps have
XAML-friendly versions.

This is important to note only in cases where there’s a bug or a slight difference in
functionality from one implementation or the other. In addition, when other develop-
ment tools target WinRT, they also implement their own native versions of the controls.

This may seem ill-advised, but it’s the best way to allow each UI platform to maintain
its own approach and strengths without having to design everything to the lowest com-
mon denominator.

Figure 9.10
The X Pan and Y Pan UI elements. The
tooltip shown is for the X Pan slider.

195UI element binding using sliders
When working with the slider, you have a lot of control over how the data is spread
across the control. First, you have the Minimum and Maximum properties, which set the
values at either end of the slider. Next, there’s the SnapsTo property, which lets you
control whether intermediate values are allowed (good for smooth transitions if you
need them) or values are snapped to the nearest interval. Finally, you have the Step-
Frequency, which lets you control the size of the steps across the control. It is unfortu-
nately named, because it’s more of a step value or interval than a frequency. Maybe
I’ve been spending too much time around my oscilloscope lately.

 When it comes to binding, you’ll use the Value property of the Slider. This is a float-
ing point value, so you can support some pretty fine-grained steps should you desire.

 The next listing shows how to use UI element binding to bind together a TextBox
and a Slider. Place this code in the area marked as reserved for the panning UI sliders.

<TextBlock Text="X Pan" VerticalAlignment="Center"
 FontSize="18" Grid.Column="0" Grid.Row="0" />
<Slider x:Name="XPosition
 Grid.Column="1" Grid.Row="0"
 Margin="10" Height="40"
 Minimum="-45" Maximum="45"
 SnapsTo="StepValues"
 StepFrequency="1"
 Value="0" />

<TextBox x:Name="XPositionEntry"
 Text="{Binding Value,ElementName=XPosition, Mode=TwoWay}"
 FontSize="18" Margin="10"
 Grid.Column="2" Grid.Row="0"/>

<TextBlock Text="Y Pan" VerticalAlignment="Center"
 FontSize="20" Grid.Column="0" Grid.Row="1" />
<Slider x:Name="YPosition"
 Grid.Column="1" Grid.Row="1"
 Margin="10" Height="40"
 Minimum="-45" Maximum="45"
 SnapsTo="StepValues"
 StepFrequency="1"
 Value="0" />
<TextBox x:Name="YPositionEntry"
 Text="{Binding Value,ElementName=YPosition, Mode=TwoWay}"
 FontSize="20" Margin="10"
 Grid.Column="2" Grid.Row="1"/>

This example uses element binding from within the TextBox. If you move the slider,
the TextBox is updated. Because the binding is TwoWay, you can also type into the
TextBox to set the value used by the slider.

 I do like element binding in some pure UI scenarios (like binding a TextBlock to
the number of characters entered in a TextBox), but you give up a bit of control by
using it. Now let’s look at the same binding, but this time it’s handled through the

Listing 9.14 UI Element binding in XAML linking a TextBox and Slider

Slider min
and max
values

Slider snapping
and steps

Slider
current

value

TextBox

Slider snapping
and steps

Slider
current
value

UI
element
 binding

196 CHAPTER 9 Controls, binding, and MVVM
viewmodel. This is the version we’ll stick with for this chapter. The following listing
delivers the XAML.

<Slider x:Name="XPosition"
 Value="{Binding SelectedCamera.XPosition, Mode=TwoWay}"
 ... />
<TextBox x:Name="XPositionEntry"
 Text="{Binding SelectedCamera.XPosition, Mode=TwoWay}"
 ... />

<Slider x:Name="YPosition"
 Value="{Binding SelectedCamera.YPosition, Mode=TwoWay}"
 ... />

<TextBox x:Name="YPositionEntry"
 Text="{Binding SelectedCamera.YPosition, Mode=TwoWay}"
 ... />

Most of the listing stays identical as before, so it shows only the changed lines and just
enough around them for context. You can see that in each case the values are now
bound to properties off of the viewmodel.

 This relies on a SelectedCamera property on the viewmodel. The code for this is
shown here.

private CameraViewModel _selectedCamera;
public CameraViewModel SelectedCamera
{
 get { return _selectedCamera; }
 set { Set<CameraViewModel>(
 () => SelectedCamera, ref _selectedCamera, value); }
}

You can see how this adds additional complexity to the viewmodel. But you may need
this to be able to set the selected property outside the UI or to trigger other actions
based on it changing.

UI element binding is, for the most part, a convenience. I don’t recommend being
dogmatic about whether you should allow this type of binding in your organization
but to instead make decisions scenario by scenario. If there is no downstream effect or
interest, binding UI elements together can be a time-saver and can simplify your UI
model.

 Let’s look at something I really do recommend, and that’s the approach for work-
ing with lists in the viewmodel and view.

Listing 9.15 Accomplishing the same effect using the viewmodel

Listing 9.16 MainViewModel SelectedCamera property

Bound to
viewmodel

197Working with lists
9.5 Working with lists
Most consumption and many creation apps work with lists of data. Maybe it’s a collec-
tion of photographs, a list of files, or, as we have here, a stream of messages from a
chat service. XAML and binding work well with lists. In addition to the great support
for the data side of lists already present in C#/XAML, Windows 8 adds in several new
controls designed specifically for working with large lists. In this section, we’ll briefly
look at one of them, the ListView.

 Figure 9.11 shows the list we’re working with in our app. The data is displayed in a
ListView using a data template.

 List management begins with the source of the data. The most commonly used col-
lection is the ObservableCollection because it has built-in support for binding and
notification. When it comes to displaying the data, you’ll use an ItemsControl, typi-
cally a ListView in Windows 8. Finally, to format all that data, you’ll use a really cool
feature called a data template. Let’s look at each of those in turn.

9.5.1 Observable collections

If you need to surface a list of data to the view, you can’t go wrong with an Observable-
Collection. The ObservableCollection implements the INotifyCollectionChanged
interface, which is for collections what INotifyPropertyChanged is for individual prop-
erties. As you add items to and remove items from the collection, the binding system is
alerted to the changes via the events defined in this interface.

Figure 9.11 The list of chat messages used in this app.

198 CHAPTER 9 Controls, binding, and MVVM
 Listing 9.17 shows how to load the data from the data service into an Observable-
Collection in the MainViewModel.

private ObservableCollection<ChatMessage> _chatMessages =
 new ObservableCollection<ChatMessage>();
public ObservableCollection<ChatMessage> ChatMessages
{
 get { return _chatMessages; }
}

public void LoadMessages()
{
 var messages = ChatDataService.Current.GetMessages();

 foreach (var message in messages)
 {
 if (!ChatMessages.Contains(message))
 ChatMessages.Add(message);
 }
}

As the messages are added to the collection, the collection change events will fire
(one per action; the actions aren’t bundled), and the UI controls will update them-
selves. This is all completely transparent to you when you use an ItemsControl.

TIP Sometimes the source data is in a list, array, or collection, but you want
to bind controls to the individual items, not to the list as a whole. To accom-
plish this, use the syntax { Binding PropertyName[indexOrKey] } where
indexOrKey is the string key for the dictionary (no quotes) or the numeric
index. If the item stored at that index supports change notification through
INotifyPropertyChanged, that will work as you expect.

9.5.2 Items controls

If you want to display more than one of something, you want an items control. Items
controls are so named because they inherit from a common ItemsControl base class.
This class provides the ItemsSource property, as well as support for templating of the
items and for replacing the main items layout panel. It’s these capabilities that make
the items controls so flexible: You could have them use a WrapGrid or even something
like the OrbitPanel I covered in chapter 7.

NOTE Not all items controls are equal, and not all items panels are swappa-
ble. For example, the new Windows 8 items controls all require the items
panel to support virtualization. Conversely, the ListBox doesn’t support virtu-
alizing the same way the new controls do, so it can’t use panels such as the
WrapGrid. It takes some getting used to, because the errors aren’t always obvi-
ous in their underlying cause.

Listing 9.17 MainViewModel updates for loading the list of chat messages

Binding source

Get messages

Add any new
messages

199Working with lists
For years, the canonical items control was the ListBox. Windows 8 XAML still supports
the ListBox, but the control has taken a backseat to those touch-oriented, animated,
and virtualized heavyweights: the ListView, FlipView, and GridView. The most direct
replacement for the ListBox is the new ListView control. The following listing shows
how we’re using that control in this UI. Place this code in MainPage.xaml in the space
reserved for the message list.

<ListView x:Name="MessageList"
 ItemsSource="{Binding ChatMessages}"
 Grid.Column="0"
 Grid.ColumnSpan="2"
 Grid.Row="1"
 Margin="10" />

If you run the app now, you’ll see data in the ListView, but the data will simply be a
bunch of class names, as shown in figure 9.12. Although this does show you that bind-
ing is working, this isn’t what you want to display. To get the data to display something
meaningful, you need to use a data template.

9.5.3 Data templates

A DataTemplate is a chunk of XAML that’s repeated for each item bound to an items
control. Technically, you can use a DataTemplate any place where you use a Content-
Control (through the ContentTemplate property), but it’s by far used most often with
ItemsControl-derived controls.

 Inside the DataTemplate, you include any elements you want, inside a single
parent. The elements can use data binding to display the data. The ItemsControl

Listing 9.18 Initial XAML for the chat list

Collection
binding

Figure 9.12 What happens
when you bind complex
objects to a ListView but
don’t use a data template.
The representation for each
item is whatever it returns
from ToString.

200 CHAPTER 9 Controls, binding, and MVVM
helpfully sets the data context for the template to the item being templated, so you
don’t have to worry about figuring out which position in the collection you’re in or
anything like that.

 The next listing has the template version of the ListView control. The binding
and layout have remained identical, but I added the ItemTemplate/DataTemplate
property and formatted the data using a TextBlock with some Run elements.

<ListView x:Name="MessageList"
 ItemsSource="{Binding ChatMessages}"
 Grid.Column="0"
 Grid.ColumnSpan="2"
 Grid.Row="1"
 Margin="10">
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid>
 <TextBlock TextWrapping="Wrap" Margin="5"
 Foreground="Aqua">
 <Run Text="{Binding From}"
 FontSize="18"
 FontWeight="Bold"/>
 <Run Text=": "
 FontSize="18"/>
 <Run Text="{Binding Message}"
 FontSize="18" />
 </TextBlock>
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

When you run the app now, you’ll see the nicely formatted list of chat messages, as
shown at the very start of this section. Feel free to play around with the presentation
within the template: You could add images, other controls, or anything you want.

 Items controls are an essential part of the XAML platform. If you want to display
any sort of list of repeating items, they’re just what you need. If you want to display the
data in a nicely formatted way, they support data templates. Data templates make great
use of binding and data context to make it simple for you to display the right thing at
the right position in the list.

 So far, everything you’ve done has been working with data. What about cases when
you want the user to actually do something, like click a button. What controls are avail-
able and how does that fit into our binding + MVVM story?

9.6 Making things happen with buttons and commands
When you want the user to be able to initiate an action, like sending a message, you
can’t beat a button. Buttons, including radio buttons and check boxes, all inherit from
the ButtonBase control, which itself inherits from ContentControl. By being a

Listing 9.19 Final XAML for the chat list

Collection
binding

Binding
in runs

in template
Data template

201Making things happen with buttons and commands

ed
)

ContentControl, buttons can display any XAML for their interface—it doesn’t have to
be text or a simple image; anything you can represent in XAML can be the interface. By
inheriting from ButtonBase, they all get the Click event, as well as command support.

 Commands are an MVVM-friendly alternative to events. Rather than set up an event
handler in the code-behind and execute code that way, you provide a command on
your viewmodel and bind the button’s Command property to that. This cuts the code-
behind out completely and makes the code cleaner.

 In this section, we’ll look at several important buttons. First is the basic Button
control, the one that you’d normally think of as a button. As part of that, you’ll wire
up a command with the viewmodel so that you can start adding chat messages to the
list. Next, we’ll look at the HyperlinkButton, which is useful for launching web pages.
Then, we’ll look at things you may never have thought of as buttons: CheckBox and
RadioButton controls. Those inherit from a special button called the ToggleButton.
Because we have to do a little something special to massage data, we’ll wrap up this
section with a hand-rolled value converter.

 Let’s start by providing some real interactivity with the UI. Let’s make the Send but-
ton work.

9.6.1 Button and commands

In a nutshell, a button is a control that, when you tap or click it, raises a discrete Click
event and calls an appropriate click command.

 Given that the general pattern has remained the same since I started with VB3 in
the early ’90s, I’m going to make the assumption that you can double-click a button
on the designer and figure out how the Click event works. So, instead, I’m going to
jump right into using Laurent’s RelayCommand to wire the button to the viewmodel
rather than put code in the code-behind.

 The RelayCommand and related functionality in the viewmodel are shown next.
Place this code inside the MainViewModel class.

public RelayCommand PostNewMessageCommand
{
 get; private set;
}

void NewMessage_PropertyChanged(object sender,
 PropertyChangedEventArgs e)
{
 if (e.PropertyName == "Message")
 {
 PostNewMessageCommand.RaiseCanExecuteChanged();
 }
}

public void PostNewMessage()
{

Listing 9.20 Surfacing a command from the viewmodel

Command
to bind to

Listen to PropertyChang
(replace existing method

Post new
message

202 CHAPTER 9 Controls, binding, and MVVM
 NewMessage.From = "Ground Control";

 ChatMessages.Add(NewMessage);

 CreateNewMessage();
}

public bool CanPostNewMessage()
{
 return NewMessage != null &&
 !string.IsNullOrEmpty(NewMessage.Message);
}

This listing includes the code to implement the RelayCommand PostNewMessage-
Command. This command is what’s used from the button on the UI.

 Also in the listing, you can see where you’re again calling CreateNewMessage and
why the cleanup code in that function is necessary. The actual ChatMessage instance
gets added to the collection; in order to make the text entry work with a new instance,
you need to remove the old event handlers (prevent leaks), create a new instance, and
rewire the event handler. Many people forget to unwire their event handlers—the
main cause of memory leaks in many .NET apps.

 I created a CanPostNewMessage function. In fact, that function is the reason I’m
capturing the PropertyChanged event from the NewMessage instance. How is that
used? Before we get to that, let’s add a little code that will help with the explanation.
After the CreateNewMessage call in the MainViewModel constructor, add the com-
mand setup code shown here.

public MainViewModel()
{
 ...

 PostNewMessageCommand = new RelayCommand(
 () => PostNewMessage(),
 () => CanPostNewMessage());
}

This code sends two lambda expressions to the RelayCommand constructor. The first is
the action the command will perform; the second is the code to use to check to see if
the command can be executed. This not only works as a gate to the function but
more importantly is what enables or disables the button that’s bound to the com-
mand. Yes, command-aware controls use this code to control their state, without any
additional UI logic on your part. That’s really helpful, but it did require the addi-
tional viewmodel code.

 Because the command doesn’t automatically know when to reevaluate CanPost-
NewMessage, you have to tell it when it should. This is done by calling the command’s
RaiseCanExecuteChanged method, called from the viewmodel. You call that when the

Listing 9.21 Initializing the PostNewMessageCommand

For enabling
the button

Action to
perform

Can action be
performed?

203Making things happen with buttons and commands
property change notification is received. In this way, you ensure the button is enabled
if the viewmodel contains text in the NewMessage instance.

 Finally, to wire this all up, it takes only a single binding statement in the Button’s
markup. The following listing has everything you need.

<Button x:Name="SendMessage"
 Command="{Binding PostNewMessageCommand}"
 VerticalAlignment="Top"
 Margin="5 0 0 0"
 Content="Send"
 Grid.Column="1"
 Grid.Row="3" />

Just as with data-binding statements, command-binding statements are enclosed in
curly braces with the Binding keyword. In this case, the property to be bound to must
implement ICommand, as the RelayCommand does. You may also add an optional param-
eter using the CommandParameter property; this can be useful, for example, when you
want several controls to share the same command but pass in distinguishing values.

 One thing I didn’t show you in this discussion of the button is the use of events and
code-behind. That’s because, if you decide to go with commands, you won’t need click
events for your buttons. Sure, if you want to whip something up quickly, events will get
you there. For anything that has the potential to be even slightly complex (or that may
have the UI turned over to a design team), definitely consider using commands.

 When you think of button controls, the first one to come to mind is the standard
button. But it’s also common to find the HyperlinkButton in modern apps.

9.6.2 HyperlinkButton

The HyperlinkButton is a special kind of button that’s allowed to launch a URL in the
browser (or other app that has registered for the specified protocol in the URL). If
you provide a NavigateUri value, clicking the button will launch the browser and nav-
igate to that page. This all happens as another app, not inside the running app. Your
app will suspend as appropriate, and control will be transferred to the browser.

 If you’d rather not launch a browser, you can also handle events and commands on
the button just as you would a regular button. But unless you have a specific reason for
doing so, I encourage you not to use the HyperlinkButton this way. The next listing
shows the typical use for a HyperlinkButton. (This markup already exists in our app.)

<HyperlinkButton x:Name="ViewOnlinePage"
 HorizontalAlignment="Left"
 VerticalAlignment="Bottom"
 Foreground="Orange"
 Margin="10"
 FontSize="18"
 NavigateUri="http://www.nasa.gov"
 Content="View NASA Homepage" />

Listing 9.22 The Button XAML bound to the viewmodel

Listing 9.23 The HyperlinkButton markup as used in this app

Command
binding

NavigateUri
Content

204 CHAPTER 9 Controls, binding, and MVVM
The Content property defines what shows up for the UI for this button. As with any
other content control, you can set this to anything you want: a grid with images and
text, plain text, shapes, and more.

 We’re setting it in XAML, but you can use code or binding to set the NavigateUri
property. In this case, when the button is clicked, it opens the browser and navigates
to the NASA site.

Both of the previous buttons, the HyperlinkButton and the Button itself, invoke an
action when clicked in normal user interaction. Neither maintains any state like a tog-
gle button would, but are instead click-and-release-type buttons. The next two types of
buttons are both inherited from ToggleButton, which lets them maintain a checked
state once clicked.

9.6.3 RadioButton and CheckBox

Further moving away from core button functionality, we have two controls that aren’t
usually used to perform an action but rather to set an option: the RadioButton and
CheckBox. You’re likely familiar with these controls: A RadioButton allows the user to
select only one instance of the control within a group, and a CheckBox allows you to
select any number of instances. RadioButton controls are typically round (or diamond-
shaped if you want to go all Motif on me), and CheckBox controls are typically square.

VIEWMODEL SUPPORT FOR RADIO BUTTONS

There are lots of ways to handle binding with RadioButton controls, but none of
them are good. A simple search on StackOverflow for RadioButton MVVM or similar
will show you the lengths people go to try to get binding to work correctly with radio
buttons.

 The reason binding with radio buttons is so difficult is that binding is inherently a
1:1 relationship, whereas radio buttons are a 1:many relationship with some data.
What you really need is something like the RadioButtonList from ASP.NET or a port
of one from the various WPF-compatible versions. If your UI is likely to have a lot of
radio button controls, I encourage you to use that.

Custom protocols

Windows 8 apps can register themselves as protocol handlers. The primary intent is
to support apps that serve as VOIP handlers and similar, but you can register any pro-
tocol you want and become the handler for that.

Once registered, HyperlinkButton controls that reference that protocol will launch
your app. Similarly, if the URL is entered into Internet Explorer or clicked in email or
other apps, your app will be activated. This can be extremely useful for sending deep
links to content in your app (like a specific customer number, for example).

You can find out more about creating and registering a custom protocol handler app
on MSDN: http://bit.ly/Win8CustomProtocolHandler.

205Making things happen with buttons and commands
 The WPF versions rely on a few things simply not supported in WinRT XAML. One
in particular, setting the radio button controls as not focusable, just isn’t there. I have
yet to see a good port of the RadioButtonList, and my own attempts haven’t yielded
anything I’d want to put my name on.

 What I’ve decided to show you here is how you can bind the IsChecked property of
the radio button to an IsSelected property in the CameraViewModel class. If this class
were a regular model class, adding a UI support property would give you more than a
little heartburn. As it is, this is a viewmodel class, so there are no issues. The next list-
ing shows the additional property.

private bool _isSelected = false;
public bool IsSelected
{
 get { return _isSelected; }
 set { Set<bool>(() => IsSelected, ref _isSelected, value); }
}

The downside of this approach is that it requires manually updating the linked
SelectedCamera property. This can be handled in the viewmodel by listening for the
PropertyChanged event on the CameraViewModel instances and then setting the
SelectedCamera as appropriate. Here’s how.

private CameraViewModel _selectedCamera;
public CameraViewModel SelectedCamera
{
 get { return _selectedCamera; }
 private set
 {
 Set<CameraViewModel>(() => SelectedCamera, ref _selectedCamera, value);
 }
}

void CameraViewModel_PropertyChanged(object sender,
 PropertyChangedEventArgs e)
{
 var cvm = sender as CameraViewModel;

 if (e.PropertyName == "IsSelected" && cvm.IsSelected)
 SelectedCamera = cvm;
}

I’m not a fan of this type of plumbing code. But because it’s encapsulated in the view-
model, it’s both transparent to the UI and is testable.

 Whenever the radio button is checked, the appropriate CameraViewModel instance’s
IsSelected property is set to true (the previous one is automatically set to false), and
the SelectedCamera property is updated. The CameraViewModel_PropertyChanged

Listing 9.24 Update to the CameraViewModel class

Listing 9.25 RadioButton support code in MainViewModel

Set selected
camera

206 CHAPTER 9 Controls, binding, and MVVM
event handler is responsible for synchronizing the SelectedCamera property with the
camera, which has IsSelected set to true.

 To make this work, you’ll need to hook up the event handler after the LoadImages
call in the constructor. You’ve added a lot to the constructor, so the following listing
shows the complete version, including this addition.

public MainViewModel()
{
 _cameras = new CameraViewModel[3];
 for (int i = 0; i < _cameras.Length; i++)
 {
 _cameras[i] = new CameraViewModel();
 }

 _cameras[0].Name = "Front camera";
 _cameras[1].Name = "Rear camera";
 _cameras[2].Name = "Horizon camera";

 LoadImages();

 _cameras[0].PropertyChanged += CameraViewModel_PropertyChanged;
 _cameras[0].IsSelected = true;

 CreateNewMessage();
 PostNewMessageCommand = new RelayCommand(
 () => PostNewMessage(),
 () => CanPostNewMessage());
}

The constructor code now creates the cameras, initializes them with names, loads in
the images, wires up the event handler for the radio buttons, and finally sets up the
command support for creating a new message.

RADIOBUTTON BINDING AND MARKUP

Finally, we have the markup that makes use of all of this. The next listing includes the
markup to add into the spot in the XAML reserved for the radio buttons.

<RadioButton Content="{Binding Cameras[0].Name}"
 GroupName="CameraControl"
 IsChecked="{Binding Cameras[0].IsSelected, Mode=TwoWay}"
 FontSize="18"/>
<RadioButton Content="{Binding Cameras[1].Name}"
 GroupName="CameraControl"
 IsChecked="{Binding Cameras[1].IsSelected, Mode=TwoWay}"
 FontSize="18"/>
<RadioButton Content="{Binding Cameras[2].Name}"
 GroupName="CameraControl"
 IsChecked="{Binding Cameras[2].IsSelected, Mode=TwoWay}"
 FontSize="18"/>

Listing 9.26 Complete MainViewModel constructor

Listing 9.27 RadioButton markup

Initialize
cameras

Load images Wire up
event
handler

Select
initial

camera Support
message
posting

Binding

207Converting data with value converters

x
Although you’re not doing anything with the selected camera, this approach is a com-
mon pattern you should know. It was important to show how to synchronize the radio
buttons with the rest of the system so you can use this when creating your own apps.

 Note also the use of indexed binding both for the radio button’s content as well as
for the IsChecked property.

WORKING WITH THE CHECKBOX

The CheckBox is almost identical to the RadioButton with one really important dis-
tinction: Button selection isn’t mutually exclusive. Because of this, there’s no need for
all the crazy workarounds you need with the RadioButton instances.

 The check boxes in this UI simply toggle the value of IsEnabled on the cameras.
You’ll use this to control the display of the image elements. The next listing shows the
CheckBox side of the equation; put this markup in the MainPage.xaml spot reserved
for the check boxes.

<CheckBox Content="Front Camera Enabled"
 IsChecked="{Binding FrontCamera.IsEnabled, Mode=TwoWay}"
 FontSize="18"/>
<CheckBox Content="Rear Camera Enabled"
 IsChecked="{Binding RearCamera.IsEnabled, Mode=TwoWay}"
 FontSize="18"/>
<CheckBox Content="Horizon Camera Enabled"
 IsChecked="{Binding HorizonCamera.IsEnabled, Mode=TwoWay}"
 FontSize="18"/>

You use TwoWay binding so changes in code will be reflected in the UI and vice versa.
Binding a Boolean property to a Boolean property is simple; nothing else is required.

 You can see that working with CheckBox controls is generally quite a bit easier than
working with RadioButton controls. If you’re looking at a UI with a number of radio
buttons, I encourage you to settle on a single pattern that works for you, even if it’s not
perfect, and use that in every place in the app.

 Back to the last example; for the CheckBox side of this equation, no additional sup-
port code is needed. You’ll need to add a little bit to the Image binding to properly
convert the IsEnabled property into something you can use. That’s the final topic for
this chapter.

9.7 Converting data with value converters
Sometimes, the data that’s the binding source simply isn’t compatible with the bind-
ing target. In many cases, WinRT will handle the conversion for you. There are many
cases, however, when this simply isn’t possible. One such case is converting a Boolean
value to a Visibility enumeration.

 Converting true to Visibility.Visible and false to Visibility.Collapsed is a
very common task. For that, you’ll use a special component called a value converter. A
value converter is code you can write yourself and then use from markup to intercept
the data being used in binding.

Listing 9.28 CheckBox markup

TwoWay
CheckBo
binding

208 CHAPTER 9 Controls, binding, and MVVM
 A value converter implements the IValueConverter interface, which has two func-
tions: Convert and ConvertBack. Each time the binding source is updated, your Con-
vert function will be called. Each time the binding target is updated, your
ConvertBack function will be called.

 Create a new folder named Converters. In that, create a new class named Boolean-
ToVisbilityConverter and paste in the following code.

using System;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Data;

namespace ExampleApp.Converters
{
 public sealed class BooleanToVisibilityConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, string language)
 {
 return (value is bool && (bool)value) ?
 Visibility.Visible : Visibility.Collapsed;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, string language)
 {
 return value is Visibility &&
 (Visibility)value == Visibility.Visible;
 }
 }
}

This converter actually comes in the project file for the richer XAML project tem-
plates, like the grid and split views. It’s not included in the blank template, nor is it
included in the MVVM Light templates. It’s really useful, though. Use this when you
want to toggle the visibility of something on the UI using a Boolean value in your view-
model.

 To use the converter, you must surface it as a resource. Typically, you’d put this in
App.xaml to make it available to the entire app. But you’re doing everything else on
the page, so you’ll put it there. The following listing shows two things you need to add:
the converters namespace and the resources themselves.

<Page x:Class="ExampleApp.MainPage"
 ...
 xmlns:converters="using:ExampleApp.Converters"
 ...>

 <Page.Resources>

Listing 9.29 The BooleanToVisibilityConverter

Listing 9.30 Surfacing the converter as a page resource

Convert source
(bool) to target
(Visibility)

Convert target
(Visibility)
back to source
(bool)

Namespace in
Page tag

209Summary
 <converters:BooleanToVisibilityConverter x:Key="BTVC" />
 </Page.Resources>
...

If you still have the resources group from the template, put the BTVC (named as such
just to make it easier to deal with in print) declaration inside the ResourceDictionary
block, or replace the entire block with this Page.Resources block.

 Finally, once the converter is there as a page resource, all you need to do is refer-
ence it from within the binding statement on the Image elements. Here’s the updated
Image markup.

<Image x:Name="FrontCameraOutput"
 Source="{Binding Cameras[0].Image}"
 Visibility=
 "{Binding Cameras[0].IsEnabled, Converter={StaticResource BTVC}}"
 Margin="10"
 Stretch="Uniform"/>

<Image x:Name="RearCameraOutput"
 Source="{Binding Cameras[1].Image}"
 Visibility=
 "{Binding Cameras[1].IsEnabled, Converter={StaticResource BTVC}}"
 Margin="10"
 Stretch="Uniform"/>

<Image x:Name="HorizonCameraOutput"
 Source="{Binding Cameras[2].Image}"
 Visibility=
 "{Binding Cameras[2].IsEnabled, Converter={StaticResource BTVC}}"
 Margin="10"
 Stretch="Uniform"/>

The value converter handles, as the name implies, the conversions of values going
between the binding source and the target. In this case, when the camera’s IsEnabled
property is changed, it will first pass through the converter’s method before the Image
elements see it.

 Value converters are useful for many different types of operations. Often, if the
binding model doesn’t support a particular binding type you need, you can create
something analogous using a value converter.

9.8 Summary
WinRT XAML supports most of the controls you’d normally expect to find in the UI
layer of a development platform. In addition to the static text and shapes covered in
other chapters, you also have multiline text entry with spell checking and autocorrect,
check boxes and radio buttons for selecting options, sliders for setting values, regular
buttons for invoking actions, and even hyperlink buttons for launching something
based on a URI.

Listing 9.31 Final Image binding markup

Resource
declaration in
Resources

Converter
in use

210 CHAPTER 9 Controls, binding, and MVVM
XAML also brings to the table something that’s not universally shared with UI plat-
forms: strong binding support. You can bind controls and elements to each other, like
the Slider and TextBox shown in this chapter. More commonly used, you can bind
controls to data elements and control actions to commands.

 When binding controls to data, the most commonly used pattern is the Model-
View-ViewModel pattern. This pattern encourages separation of the logic from the
presentation, while using binding to communicate between the layers. Data uses regu-
lar binding; commands use command binding. The end result is easily separated lay-
ers that can be cleanly developed and tested. If you need to massage the data, you can
do that in the viewmodel or through a special type of class called a value converter.

 I’ve found it easiest to use a third-party MVVM toolkit, like MVVM Light when
implementing the MVVM pattern. There are many MVVM toolkits out there; I encour-
age you to investigate several of them before settling on a single one.

 There are more controls beyond the basics covered here, but they’re easily covered
in the context of other topics. In the next chapter, we’ll expand on the knowledge
gained here, and you’ll learn about the newer items controls available in Windows 8:
the GridView, ListView, and FlipView.

View controls, Semantic
Zoom, and navigation
In previous chapters, you’ve learned how important grid layout is to the UI for Win-
dows 8 apps. This applies not only to things the designer places on screen at design
time, like buttons and captions, but also to dynamically loaded content.

 After you log into a Windows 8 machine, the first thing you see on screen is a
grid of tiles: the Start page. This page uses an implementation of the GridView con-
trol, as well as Semantic Zoom (pinch the display to see that in action) to assist in
organizing and grouping the tiles for apps installed on the PC. Look at other apps
on the system; with the exceptions of games and highly specialized UIs (like paint-
ing and music creation), chances are you’ll see items arranged in grids or lists in

This chapter covers
■ The ListView, GridView, and FlipView

controls
■ Grouping data for display
■ Page navigation
■ Semantic Zoom
211

212 CHAPTER 10 View controls, Semantic Zoom, and navigation
most of the apps. Figure 10.1 shows just a few examples of list and grid layouts within
the default apps and the start page.

 In the past, new UI controls were always introduced into the OS and key products
like Microsoft Office long before we had the ability to use them in our own apps. In
Windows 8, these controls are so central to the user experience that they’ve been
included in each UI stack from the very start. If you want to make an app that looks
like those in the Windows Store, complete with headers that may be used for naviga-
tion, you can do that; Microsoft used the same control libraries available to app devel-
opers.

 For those of you who have been programming for a while, the ListView, GridView,
and FlipView controls are brand-new controls introduced with Windows 8. Each of
these controls displays collections of data using templates to control layout and repre-
sentation. Each of these controls relies very heavily on binding to get the data items in
and to format each individual data item for display.

NOTE Although the ListView control is named the same, it bears no resem-
blance to the classic ListView control used in Windows desktop apps.

In the previous chapter, you created an app using MVVM Light. You’re going to do the
same in this chapter. If you skipped over the MVVM coverage, you may want to brush

Figure 10.1 Examples of lists and grid layouts in apps that come with the PC

213PhotoBrowser demonstration app setup
up on that now, because you’ll use it in the app you create here and expand through-
out this chapter and several following chapters.

 The demonstration app for this chapter will be a simple photo browser. It will,
using several different list controls, show you the images loaded from a dummy ser-
vice. This chapter concentrates on the view controls, Semantic Zoom, and navigation,
so the app will use each of those features. In future chapters, you’ll expand its capabil-
ities to show how to implement other Windows 8 features.

 Figure 10.2 shows the six different incarnations of the app. First, you’ll create a
ListView to show how to work with (typically) vertical lists of data. The ListView has
been shown in several other places in this book and is not as feature rich as the Grid-
View, so we won’t dwell too long on it here. Next, you’ll use two different item tem-
plates with the GridView. Then, you’ll move into grouping with the GridView. Once
you learn how to group, you’ll modify the group headers to be links to a page that
shows the details for the group. The details page will use a FlipView control to navi-
gate between each image in that group. Finally, you’ll implement Semantic Zoom
using the SemanticZoom control, allowing you to take a high-level look at the groups.

10.1 PhotoBrowser demonstration app setup
Some concepts are best shown with real demonstration apps. The UI subjects covered
in this chapter and the next two definitely fall into that category. In fact, they can all

Figure 10.2 The PhotoBrowser app showing the six areas we’ll concentrate on in this chapter

214 CHAPTER 10 View controls, Semantic Zoom, and navigation
use the same demonstration app, gradually built over the course of the chapters.
You’ll also build on the MVVM knowledge from the previous chapter.

 This section introduces the new sample app, so you have a little setup to do. Figure
10.3 shows the overall architecture of the app. By the end of this chapter, you’ll have
two different pages, each talking with its own viewmodel. The viewmodels will expose
instances of Photo and PhotoCategory objects. They’ll also use the ImageService
class to load image information into the viewmodel.

 In this section, you’ll create an MVVM Light Windows Store app. Next, because
we’re going to defer the file IO topics to an upcoming chapter, you’ll drag a few pho-
tos directly into the project and use them for the data to show. Then, you’ll create the
model, viewmodel, and service classes required to implement the MVVM pattern. We’ll
wrap up this section with the skeleton XAML and code-behind. The app built in this
section will then be ready for you to use to explore the different view controls, naviga-
tion, and Semantic Zoom.

10.1.1 Creating the project

The first step is to create the project. Create a new MVVM Light Windows Store proj-
ect. I named mine PhotoBrowser. To ensure the namespaces in the code listings in
this chapter work as written, you’ll want to name yours the same.

 As before, you’re not going to use much of what MVVM Light has in terms of view-
model locator services, data services, and more. For those reasons, if you wish to use
another MVVM toolkit, you should find the conversion pretty straightforward. What
we’ll use in this chapter is the ViewModelBase class. In subsequent chapters, you’ll also
make use of commanding. You may remove the design time data, locator classes, and

Figure 10.3 The overall architecture of the completed PhotoBrowser app. Some lines are simplified:
The CategoryBrowserPage technically uses the Photo model object, but really it’s using that only
through the PhotoCategory object’s Photos collection. Feel free to debate this distinction with
the architects in your organization (they aren’t busy anyway).

215PhotoBrowser demonstration app setup
resources as I have in the downloadable source code, but you’ll need to remove the
resource references from App.xaml and the pages if you do so.

 Next, off the root of the project, create a folder named Pictures and drag the sam-
ple pictures into it. These are pictures I’ve taken over the years and have posted on my
site as downloadable wallpaper. For simplicity, the photos you’re loading are included
in the project itself.

 At this point, you should have a base MVVM app with one new additional folder,
several pictures, and no real functionality. The app should compile without errors.

10.1.2 Creating the Photo model class

For this version of the app, you’ll have a class that represents a photo, or picture in the
system. The class includes an ImageUri property, which will be a ms-appx:/ URI point-
ing to the image in the project. We covered this URI protocol in chapter 7. The
DisplayName property is the image filename without the extension, just as the OS does
when you use native image loading APIs. Finally, to support the grouping work you’ll
do later, the photo needs a Category property. This is simply a string name with a cat-
egory we’ll assign in code.

 In the existing Model folder, create a new class named Photo. The code for this
class is in the following listing.

using System;

namespace PhotoBrowser.Model
{
 public class Photo
 {
 public Uri ImageUri { get; set; }
 public string DisplayName { get; set; }
 public string Category { get; set; }
 }
}

The properties of the Photo class won’t change once the class is created. For that rea-
son, the properties don’t need to raise the property changed event. Another, and
arguably more correct, object-oriented design approach here would have been to
make the properties read-only and have an initialization constructor that took the
three properties as parameters. I’m not a big fan of constructors that do nothing more
than initialize properties. But if you want to take that approach here, you’ll have only
one other place to change the code: the service class.

10.1.3 Loading pictures using a service class

MVVM apps often make use of service classes to handle integration with functionality
that’s external to the app. As I covered in the previous chapter, a service here doesn’t
mean a web service; it’s simply a class that provides an interface to functionality or
data. In the case of this app, the service will encapsulate the loading of the images.

Listing 10.1 The Photo model class

An ms-appx URI

Friendly
name Category name

216 CHAPTER 10 View controls, Semantic Zoom, and navigation
 Create a folder named Services, and in it create a new class named ImageService.
The source for this class is shown in the following listing.

using PhotoBrowser.Model;
using System;
using System.Collections.Generic;

namespace PhotoBrowser.Services
{
 public class ImageService
 {
 private static ImageService _current;
 public static ImageService Current
 {
 get
 {
 if (_current == null)
 _current = new ImageService();

 return _current;
 }
 }

 public IList<Photo> GetPhotos()
 {
 string[] fileNames = new string[]
 {
 "Autumn Trees 2007.jpg", "Nature",
 "Beetle on Azalea.jpg", "Nature",
 "Blue Marbles Render.jpg", "Computer Graphics",
 "Christmas Silver Blue Glitter Poinsettias.png", "Christmas",
 "Christmas Tree Butterfly Fruit.jpg", "Christmas",
 "Christmas Under the Sea Tree Purple.jpg", "Christmas",
 "Cucumber Beetle on Pumpkin.jpg", "Nature",
 "Fall Crisp Blue Lake.png", "Nature",
 "MFOS Synth Board 2.png", "Electronics",
 "MMID 302 Union Bridge Dec 15, 2004.png", "Trains",
 "Nebula.jpg", "Computer Graphics",
 "Plasma Chamber.jpg", "Computer Graphics",
 "Shadowed Pumpkin.jpg", "Nature",
 "Synth Background.jpg", "Electronics",
 "Synth Panel.jpg", "Electronics"
 };

 var photos = new List<Photo>();

 for (int i = 0; i < fileNames.Length; i +=2)
 {
 string name = fileNames[i];
 string category = fileNames[i + 1];

 photos.Add(
 new Photo()
 {

Listing 10.2 The ImageService class

Singleton
support

Image filenames
and categories

Array iteration
(notice stepping)

Photo
creation

217PhotoBrowser demonstration app setup
 ImageUri = new Uri("ms-appx:/Pictures/" + name),
 DisplayName = name.Substring(0, name.LastIndexOf('.')),
 Category = category
 });
 }

 return photos;
 }
 }
}

This class implements the singleton pattern, so that only one instance of it will be cre-
ated in the app. The single function, GetPhotos, returns a list of photos located in the
Pictures folder of the app.

 The array is a convenience to reduce the lines of code in the listing. If you use dif-
ferent filenames, you’ll need to update them in the array. Note also that you can have
any number of different files listed in the array, as long as you follow each filename
with its category.

 If you created a property initialization constructor, you’ll need to change the code
inside the for loop where the photo instance is created.

 Now that you have a way to get the photos from the project, you need to expose
them to the rest of the app through the viewmodel.

10.1.4 Creating the MainViewModel

To start, the app will have only a single view and viewmodel. The MainViewModel will
surface all of the data and functionality required by the MainPage. The viewmodel
class itself was already created as part of the project template, so you don’t need to add
anything. Simply wipe out the contents of the file and replace it with what you see in
the next listing.

using GalaSoft.MvvmLight;
using PhotoBrowser.Model;
using PhotoBrowser.Services;
using System.Collections.ObjectModel;
using System.Linq;

namespace PhotoBrowser.ViewModel
{
 public class MainViewModel : ViewModelBase
 {
 private ObservableCollection<Photo> _photos =
 new ObservableCollection<Photo>();
 public ObservableCollection<Photo> Photos
 {
 get { return _photos; }
 }

 public void LoadPhotos()

Listing 10.3 MainViewModel class

Collection
of photos

Function to
load photos

218 CHAPTER 10 View controls, Semantic Zoom, and navigation
 {
 var photos = ImageService.Current.GetPhotos();

 Photos.Clear();
 foreach (var photo in photos)
 Photos.Add(photo);
 }
 }
}

The MainViewModel class, like most viewmodel classes, is a place to hang data and
abstract away calls to service classes. The LoadPhotos function calls the GetPhotos
method of the ImageService class and iterates over the results, adding them to the
ObservableCollection, which is used for binding in the UI.

10.1.5 Skeleton UI XAML and code-behind

You’re getting closer to the UI now: You have the service to load the photos, the model
class to hold the photo information, and the viewmodel class to expose that informa-
tion to the view. All you need now is the view itself.

 The project template comes with a MainPage.xaml file created by default. Keep
the file, but replace its contents with those shown here.

<Page x:Class="PhotoBrowser.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006">

 <Page.Resources>
 <CollectionViewSource x:Key="PhotoSource"
 IsSourceGrouped="False"
 Source="{Binding Photos}"/>
 </Page.Resources>

 <Grid Background="#FF003060">
 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <Grid Grid.Row="0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="116"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <TextBlock x:Name="pageTitle"
 Text="Photo Browser"
 Grid.Column="1"
 IsHitTestVisible="false"
 Style="{StaticResource PageHeaderTextStyle}"/>

Listing 10.4 MainPage XAML skeleton

Call to
service class

Binding
source

App title

219PhotoBrowser demonstration app setup
 </Grid>

 <Grid Grid.Row="1">

 <!-- Grids and lists will go here -->

 </Grid>
 </Grid>
</Page>

A new element in this listing is the CollectionViewSource. This is a class we haven’t
previously discussed. The CollectionViewSource provides a way to surface data to
elements on the page. It has built-in support for grouped data, which is essential to
some of the things I’ll show later in this chapter. Figure 10.4 shows the relationship
between the on-page view controls (ListView and GridView), the CollectionView-
Source, and the MainViewModel class.

You can always use the CollectionViewSource as your data source when binding to
collections. In most cases, when using MVVM, it doesn’t provide anything worth the
additional abstraction. But it does provide a level of synchronization of the current
item between controls (important when using Semantic Zoom), as well as support for
grouped items (important primarily for the GridView).

 The code-behind for this app creates the connection with the viewmodel and then,
when the page is navigated to, calls the function to load the photos. As in the previous
chapter, you wire up the viewmodel and data context in the code-behind. You’re wel-
come to use a viewmodel locator class if you prefer. The next listing shows my version;
replace the code-behind in MainPage.xaml.cs with the listed source code.

using PhotoBrowser.ViewModel;
using System.Diagnostics;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

namespace PhotoBrowser
{
 public sealed partial class MainPage : Page
 {
 private MainViewModel _vm = new MainViewModel();

Listing 10.5 Code-behind to wire up the MainViewModel

Placeholder

Figure 10.4 The relationship between the ListView and GridView controls, the
CollectionViewSource, and the viewmodel

Create
viewmodel

220 CHAPTER 10 View controls, Semantic Zoom, and navigation
 public MainPage()
 {
 this.InitializeComponent();

 DataContext = _vm;
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 _vm.LoadPhotos();
 }
 }
}

The code-behind does two simple things: It wires up the viewmodel as the Data-
Context for the page, and it loads the photos when the page is navigated to.

 Everything so far has been plumbing to support viewing data in the ListView and
GridView controls (and the FlipView, but that will require an additional page and a
second viewmodel, as you’ll see).

 If you run the app at this point, you should see a dark-blue background with a
white title. Although the data is loaded, there’s nothing in the UI to display the data.
Through the remainder of the chapter, you’ll use different controls to display the lists
of photos returned from the service and exposed via the viewmodel.

10.2 ListView and GridView
In Silverlight and WPF, the ListBox was the primary control used for displaying lists of
data (also, sometimes the ItemsControl base class was used directly). In WinRT XAML,
there are two primary controls you can use when you need to display data in some sort
of list: the ListView and the GridView.

 Both of these controls are optimized for touch-based interaction and UI virtualiza-
tion. You’ll find that in Modern UI apps, you’ll rarely, if ever, use a regular ListBox
control—it wasn’t designed with the modern interaction and virtualization
approaches in mind.

 The new view controls themselves are common across all UI stacks in Windows.
You’ll find ListView and GridView equivalents in HTML, for example. But with the
exception of the use of OS-supplied animations and touch support, the underlying
implementations are completely different.

 In this section, we’ll first look at the ListView. And then, because it is such a versa-
tile control, we’ll spend the remainder of the section diving into the GridView, includ-
ing different ways of presenting the items, and working with groups.

10.2.1 Vertical lists

Many apps show data in a single column. Consider the Mail app. In that app, messages
are displayed in a list on the left. Similarly, Twitter clients like MetroTwit show several
different columns of Tweets. In those cases, the column of data is displayed in a
ListView.

Set data
context

Load photos

221ListView and GridView
Figure 10.5 shows a ListView used in this chapter’s app to display photos and their
names. Note the scrollbar on the right, as well as the way the images are formatted in
a single column.

 To create the layout shown in figure 10.5, use the XAML from the listing that fol-
lows. Paste this into the MainPage.xaml file in the placeholder spot. Leave all the sur-
rounding XAML as is.

<ListView ItemsSource="{Binding Source={StaticResource PhotoSource}}"
 Padding="116,0,40,0"
 SelectionMode="None">

 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Width="450" Height="150">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Image Grid.Column="0"
 Stretch="UniformToFill">
 <Image.Source>
 <BitmapImage UriSource="{Binding ImageUri}"
 DecodePixelHeight="150"/>
 </Image.Source>
 </Image>

Listing 10.6 XAML for the pictures list

Figure 10.5 A single ListView showing a column of items on the page

Bound to
CollectionViewSource

Data
template

Image with
BitmapImage source

222 CHAPTER 10 View controls, Semantic Zoom, and navigation
 <Rectangle Grid.Column="1"
 Fill="#FF0055AA"
 Opacity="0.85"/>

 <TextBlock Grid.Column="1"
 Foreground="White"
 Margin="10"
 VerticalAlignment="Center"
 TextAlignment="Left"
 TextWrapping="Wrap"
 FontSize="28"
 Text="{Binding DisplayName}" />
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

There are a number of interesting things in this bit of markup. First is the ListView
itself. You can see that it’s bound to the CollectionViewSource resource. Notice that
the binding statement includes an embedded StaticResource statement. This is how
you set up a binding relationship with a data source that’s expressed in XAML.

 Next is the DataTemplate statement inside the ItemTemplate property. The data
template is what’s used to format each list item for display; its DataContext is automat-
ically set to the item being displayed. In this example, you use an image, a colored
rectangle at 85% opacity, and some white text. The text is bound to the DisplayName
property.

 If you look at the Image element in the data template, you’ll see that you’re not
using the Source property with the URI directly. Instead, you break it out and have a
BitmapImage as the source. Why do you do this?

 There are two reasons for using a BitmapImage in the Source property:

■ If you want to bind to a URI type, you can’t use the Image element’s Source
property directly. Instead, you need to use a value converter, a string, or embed
an ImageSource, which can work with a URI type.

■ You want to control the amount of memory used to decode and cache the
images. It’s a best practice to set the DecodePixelHeight, DecodePixelWidth, or
both when decoding images. (If you set just one of them, the aspect ratio is pre-
served.) When working with large images, this results in far less memory being
used, and it makes it possible to generate thumbnails on the fly without creat-
ing completely separate image files.

This shows how, even without resorting to code, you have quite a bit of control over
the details of how images are loaded and displayed in XAML.

 By default, the ListView uses a type of StackPanel for its panel. This can be
changed by using the ItemsPanel property. But before you consider using something
like a WrapGrid, understand that the ListView doesn’t work as well as a GridView
when it comes to items that aren’t in a vertical list. In some cases, you’ll need to

Display
name

223ListView and GridView
wrestle with scrollbars; in others, the virtualization may not be as efficient. The List-
View is excellent for vertical lists, but don’t attempt to bend it to do something else.

 Before you use a ListView in your app, consider the interaction approach. If you
expect the user to flick through the items quickly, as they might when scanning for a
particular entry in a photo-browsing app, a vertical list is not usually appropriate.
Why? There are two main reasons: Vertical flicking can trigger the app bar display
(next chapter), and most device displays are better suited to horizontal scrolling.
Unlike a phone, they’re usually held in the hand in landscape orientation, and com-
pared to vertical real estate, they have more horizontal space to allow a greater range
of movement without triggering the edges. For horizontal scrolling, the GridView is
king. Let’s look at that next.

10.2.2 Horizontal lists and grids

The view control that really shines in Windows 8 is the GridView. The GridView
enables you to show as many rows and columns of items as the display will support. It
automatically handles wrapping (vertically or horizontally, as set through the panel
properties) and is built with horizontal scrolling in mind.

 Like the ListView, the GridView has excellent built-in system-level animation.
When you swipe or flick, you’ll see smooth scrolling as well as an appropriate bounce
when you hit the end of the list. You get all of this for free, just for using an OS
control.

 Figure 10.6 shows the GridView of photos for this app.
 The GridView automatically positions the elements to take up the space available

on the screen. If you were to run the app on a higher-resolution display (in the Simu-
lator or on a desktop, for instance), you would see more rows and columns of items.

Figure 10.6 The Photo Browser app using a GridView for display

224 CHAPTER 10 View controls, Semantic Zoom, and navigation
SQUARE ITEMS OVER MULTIPLE ROWS

The following listing contains the XAML required to implement the uniformly sized
grid layout shown in figure 10.6. Replace the previous ListView XAML with the con-
tents of this listing.

<GridView ItemsSource="{Binding Source={StaticResource PhotoSource}}"
 Padding="116,0,40,0">
 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid Width="250" Height="250">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="0.30*" />
 </Grid.RowDefinitions>

 <Image Grid.Row="0" Grid.RowSpan="2"
 Stretch="UniformToFill">
 <Image.Source>
 <BitmapImage UriSource="{Binding ImageUri}"
 DecodePixelHeight="250"/>
 </Image.Source>
 </Image>

 <Rectangle Grid.Row="1"
 Fill="#FF0055AA"
 Opacity="0.85"/>

 <TextBlock Grid.Row="1"
 Foreground="White"
 Margin="5"
 TextAlignment="Right"
 TextWrapping="Wrap"
 FontSize="15"
 Text="{Binding DisplayName}" />
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>
</GridView>

The markup here looks remarkably similar to the previous ListView example. The
API for the controls is almost identical, so it’s easy to swap one for the other. As before,
this control is bound to the CollectionViewSource in the page’s resources section.
Also as before, all the interesting stuff is going on in the ItemTemplate property.

 The DataTemplate in the ItemTemplate property of this control sets up a 250 px x
250 px square and fills it with the image (a more common size is 180 px, but I liked
how 250 px looked here). Because the image size has changed from the previous
example, you also change the DecodePixelHeight to 250 px. Over the image, you
have a semitransparent blue rectangle that serves as the backdrop for the Display-
Name property. The DisplayName property is shown in a regular TextBlock element
with right-aligned text.

Listing 10.7 XAML for the grid of square picture tiles

Bound to
CollectionViewSourceData

template

BitmapImage
source again

Semitransparent
overlay

Textblock
showing
DisplayName

225ListView and GridView
Everything is then arranged in a grid layout, with uniformly sized items.

TIP Although not shown here, the GridView also supports variable-sized ele-
ments using the VariableSizedWrappedGrid, similar to what you see in the
Start page in Windows 8 or the main page of the Windows Store. To support
that in your app, you’ll need to write code to set up data template selectors,
which will set different templates based on what they’re binding to; for exam-
ple, highlighted (large) items and regular (small) items.

RECTANGLE ITEMS WITH A SINGLE ROW

Another common way to lay out items is to use a rectangular layout and a single row.
This is a nice departure from the sometimes bland look you get with regular square
items. Figure 10.7 shows the same data and the same control, this time with a data
template that uses taller tiles.

 The next listing shows how to re-create what’s shown in figure 10.7. In addition to
turning off selection via SelectionMode="None", you change the data template, spe-
cifically the grid’s height and the decode height of the image.

<GridView ItemsSource="{Binding Source={StaticResource PhotoSource}}"
 Padding="116,0,40,0"
 SelectionMode="None">
 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid Width="250" Height="550">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="0.30*" />
 </Grid.RowDefinitions>

Listing 10.8 XAML for the grid of tall picture tiles

Figure 10.7 Tall rectangle tiles in the GridView control

New grid
height

226 CHAPTER 10 View controls, Semantic Zoom, and navigation
 <Image Grid.Row="0" Grid.RowSpan="2"
 Stretch="UniformToFill">
 <Image.Source>
 <BitmapImage UriSource="{Binding ImageUri}"
 DecodePixelHeight="550"/>
 </Image.Source>
 </Image>

 <Rectangle Grid.Row="1"
 Fill="#FF0055AA"
 Opacity="0.85"/>

 <TextBlock Grid.Row="1"
 Foreground="White"
 Margin="5"
 TextAlignment="Right"
 TextWrapping="Wrap"
 FontSize="28"
 Text="{Binding DisplayName}" />
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>
</GridView>

If you look closely, you’ll see that you’re relying on the screen resolution to decide
how many rows you show. On a high-resolution display, you’ll get more rows than
shown here. That’s okay, and a good use of screen space, but not quite the effect you
want. This shows the importance of testing on multiple resolutions. Near the end of
this chapter, when I show you Semantic Zoom, you’ll see how to swap in a different
panel to make sure there is only one row of data.

 Go ahead and return the code to the square tiles layout. You’ll use that throughout
the remainder of this chapter, because it’s especially well suited to things like grouping.

10.3 Grouping with the GridView
By far, one of the most interesting features of the GridView is its built-in support for
grouping. If you look at the start page in Windows, you’ll see that tiles are grouped.
Similarly, if you look in the Windows Store main screen, you’ll see that tiles are again
grouped but also have headers. If you click one of those headers, it brings you to the
full list of items for that category.

 Grouping of items provides natural advantages for making the content more scan-
nable: As humans (no angry letters from cats or dolphins reading my book, please),
we like to scan at a high level and then drill down into the details once we find the
high-level group we’re looking for. It also provides another UI point where you can
provide a dedicated UI for looking at a group of items.

 In this app, you’ll start by implementing basic grouping with straight-text headers
and then move on to grouping with active headers that lead to another page. This sec-
tion will cover the basic grouping; the next section, on the FlipView, will include the
navigation code.

New decode
height

227Grouping with the GridView
10.3.1 Grouping in the model and viewmodel

The data in this app is a bunch of photos and pictures. The model conveniently
includes a category for each photo, giving us something to group on. Another possi-
ble item to group on would have been the first letter of the filename. What you group
on is entirely up to you and the use cases for your app.

 Figure 10.8 shows the photos now grouped by category.
 Before you can update the UI to support grouping, there’s a little back-end work to

do. Yes, the photos themselves each have a category, but for the GridView to group the
items, you need to have a higher-level class that has the group caption information as
well as a list of items in that group. The next listing includes the new PhotoCategory
class. Create this in your model folder.

using System.Collections.Generic;

namespace PhotoBrowser.Model
{
 public class PhotoCategory
 {
 public string Category { get; set; }
 public IList<Photo> Photos { get; set; }
 }
}

Given that this class was created specifically to support something in the UI, equally
good arguments could be made to make that a viewmodel and not a model class. See?
I’m making sure you have plenty to talk about with your architects.

Listing 10.9 The PhotoCategory model class

Figure 10.8 Photos grouped by category, all displayed in a GridView

Category title

List of items in
that category

228 CHAPTER 10 View controls, Semantic Zoom, and navigation
 One interesting aspect of having a separate class like this is you can put just a subset
of items into the child collection. This is, for example, how the Windows Store operates:
Highlighted items show up in the category, but you need to navigate to the category
itself to see everything. This is also an important approach to consider when the items
will be virtualized, because virtualization and grouping make for a difficult pairing.

 Once you have the model object created, you need a way to populate it. The fol-
lowing listing shows the updates to the MainViewModel class. Replace the existing
Photos collection (and backing property) and LoadPhotos method with this code.

private ObservableCollection<PhotoCategory> _photos =
 new ObservableCollection<PhotoCategory>();

public ObservableCollection<PhotoCategory> Photos
{
 get { return _photos; }
}

public void LoadPhotos()
{
 var photos = ImageService.Current.GetPhotos();

 var groups = photos.GroupBy(p => p.Category)
 .Select(p => new PhotoCategory()
 {
 Category = p.Key,
 Photos = p.ToList()
 });

 Photos.Clear();

 foreach (var g in groups)
 Photos.Add(g);
}

Grouping is performed with a little LINQ code in the viewmodel. The query groups by
photo category, and for each category it creates a PhotoCategory instance with the
group key (the Category property of the Photo) as the Category property of the
PhotoCategory and the list of items in the group as the child collection for the Photo-
Category. Now you have something that represents the category itself and something
else that gives you everything you need to display for that category.

 The viewmodel now exposes a collection of PhotoCategory instances rather than a
collection of Photo instances. The GridView will bind to these categories rather than
to the photos themselves. But, to make that happen, you first need to update the
CollectionViewSource.

10.3.2 Grouping at the UI layer

The UI needs to be updated to support grouping. This is one reason I went with a
CollectionViewSource in this chapter rather than binding the GridView directly to
the Photos property in the model.

Listing 10.10 ViewModel updates for grouping

Collection of
PhotoCategory

LINQ grouping
by category

Collection
loading

229Grouping with the GridView
 The following is the updated CollectionViewSource with the key grouping
properties.

<Page.Resources>
 <CollectionViewSource x:Key="PhotoSource"
 IsSourceGrouped="True"
 ItemsPath="Photos"
 Source="{Binding Photos}">
 </CollectionViewSource>
</Page.Resources>

There are two changes to the CollectionViewSource. First is the IsSourceGrouped
property. If this property is set to true, the CollectionViewSource knows that there
will be a child collection of items. It looks for this child collection by inspecting the
ItemsPath property. Set this property to the name of your child collection property.

 If you run the app right now, the grouping still won’t be correctly represented. That’s
because you need to provide templates to handle the display of the groups. The next list-
ing shows the updated GridView with the new header and group properties in place.

<GridView ItemsSource="{Binding Source={StaticResource PhotoSource}}"
 Padding="116,0,40,0"
 SelectionMode="None">

 <GridView.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel Orientation="Horizontal"/>
 </ItemsPanelTemplate>
 </GridView.ItemsPanel>

 <GridView.GroupStyle>
 <GroupStyle>
 <GroupStyle.HeaderTemplate>
 <DataTemplate>
 <Grid Margin="5,0,0,15">
 <TextBlock Text="{Binding Category}"
 Style="{StaticResource GroupHeaderTextStyle}" />
 </Grid>
 </DataTemplate>
 </GroupStyle.HeaderTemplate>

 <GroupStyle.Panel>
 <ItemsPanelTemplate>
 <VariableSizedWrapGrid Orientation="Vertical"
 Margin="0,0,80,0"/>
 </ItemsPanelTemplate>
 </GroupStyle.Panel>

 </GroupStyle>
 </GridView.GroupStyle>

Listing 10.11 Grouped photos CollectionViewSource XAML

Listing 10.12 Grouped photos GridView XAML

Yes, the data
is grouped

Property name for
child collection

Panel to hold
groups

Header
template

Panel to
hold photos

230 CHAPTER 10 View controls, Semantic Zoom, and navigation
 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid Width="250" Height="250">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="0.30*" />
 </Grid.RowDefinitions>

 <Image Grid.Row="0" Grid.RowSpan="2"
 Stretch="UniformToFill">
 <Image.Source>
 <BitmapImage UriSource="{Binding ImageUri}"
 DecodePixelHeight="250"/>
 </Image.Source>
 </Image>

 <Rectangle Grid.Row="1"
 Fill="#FF0055AA"
 Opacity="0.85"/>

 <TextBlock Grid.Row="1"
 Foreground="White"
 Margin="5"
 TextAlignment="Right"
 TextWrapping="Wrap"
 FontSize="15"
 Text="{Binding DisplayName}" />
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>
</GridView>

One important thing to notice in this listing is that from the GridView control’s per-
spective, the items are now the groups themselves. That’s why the ItemsPanel prop-
erty, which normally would change the panel used to lay out individual items, is used
to lay out the groups. For convenience, the ItemTemplate is still the template that’s
used to lay out the individual photos (in fact, it’s identical to the one you’ve used pre-
viously). This mismatch between panels and templates can be a little confusing at first;
take a look at table 10.1 to get it all straight.

The GridView is my favorite list control in Windows 8. It has tons of flexibility, the ani-
mations are smooth and pleasing, and being able to group the data makes for a great

Table 10.1 The important template properties of the GridView used when grouping items

Template Role when grouping

ItemsPanel Panel that lays out all groups

GroupStyle.HeaderTemplate Template for the header to display above the group contents

GroupStyle.Panel Panel that lays out the individual items in the group

ItemTemplate The template for the individual items in the group

ItemTemplate
as before

231FlipView and navigation
display and great usability. I like that everything is in the template, so you can make
the control look any way you want. If you want tall elements, you can do that. If you
want squat rectangles or uniform squares, you can do that.

 The examples I’ve shown so far have only a single page. It’s time to liven up the app
just a little and add a second page. This is also a great way to show off the FlipView con-
trol and the basics of the navigation API combined with clickable group headers.

10.4 FlipView and navigation
Each of the view controls is designed to display a list of items. The ListView displays
them vertically; the GridView displays them (generally) in a horizontal grid layout.
The final view control, the FlipView, displays them one at a time, with the ability to
navigate forward and backward through the list.

 The FlipView works equally well with mouse or touch. On a touch screen, you
swipe left and right to scroll through the list. On a mouse-based system, you use the
Previous and Next buttons to do the same.

 In this section, you’ll use the FlipView to display the photos within a single group.
Figure 10.9 shows what the interface will look like.

 Throughout the chapters, you’ve seen a function called OnNavigatedTo. I haven’t
done much with it so far. This function is part of the navigation support built into
WinRT. As the name suggests, it fires off whenever a page has been navigated to. In
this chapter, we’ll also look at the API call used to initiate the navigation to a page and
the code required to navigate back to the previous page using a button at the top-left

Figure 10.9 The FlipView control on the new page. I used a mouse when taking this image, so the
previous and next buttons are visible.

232 CHAPTER 10 View controls, Semantic Zoom, and navigation
corner of the screen. In addition to the markup and code-behind required to support
this, you’ll need to add a new page and a new viewmodel.

10.4.1 Viewmodel

I generally subscribe to the approach of one-to-one relationships between viewmodels
and pages. I also think each page should have a viewmodel, rather than follow a differ-
ent pattern for even simple pages.

 The viewmodel for this page exists only to expose the PhotoCategory instance the
items on the page will be bound to. In the ViewModel folder, create a new class named
CategoryBrowserViewModel and paste into it the code that follows.

using GalaSoft.MvvmLight;
using PhotoBrowser.Model;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace PhotoBrowser.ViewModel
{
 public class CategoryBrowserViewModel : ViewModelBase
 {
 private PhotoCategory _category;
 public PhotoCategory Category
 {
 get { return _category; }
 set
 {
 Set<PhotoCategory>(() => Category, ref _category, value);
 }
 }
 }
}

The viewmodel for the category browser page has a single property: Category. The
Category will be bound to from the controls in the UI (no CollectionViewSource
this time) and will be assigned to by the code in the OnNavigatedTo event.

10.4.2 Category browser page

The category browser page follows the same general pattern we’ve had so far. The top
has a title and the body is a view control. Unlike the previous examples, the page title
will be pulled from a value in the viewmodel. There’s also now a Back button, and the
view control will be bound directly to a property of the viewmodel, not to a
CollectionViewSource.

 In the root of the project, add a new blank page named CategoryBrowserPage and
paste into it the XAML from the next listing.

Listing 10.13 New category browser page viewmodel

PhotoCategory
instance

233FlipView and navigation

<Page
 x:Name="pageRoot"
 x:Class="PhotoBrowser.CategoryBrowserPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PhotoBrowser"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="#FF003060">
 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <Grid Grid.Row="0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="116"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Button x:Name="backButton"
 IsEnabled="{Binding Frame.CanGoBack, ElementName=pageRoot}"
 Click="OnBackButtonClick"
 Style="{StaticResource BackButtonStyle}"/>

 <TextBlock x:Name="pageTitle"
 Text="{Binding Category.Category}"
 Grid.Column="1" IsHitTestVisible="false"
 Style="{StaticResource PageHeaderTextStyle}"/>
 </Grid>

 <Grid Grid.Row="1">
 <FlipView ItemsSource="{Binding Category.Photos}"
 Padding="116,0,40,0">
 <FlipView.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="50" />
 </Grid.RowDefinitions>

 <Image Grid.Row="0"
 Stretch="Uniform">
 <Image.Source>
 <BitmapImage UriSource="{Binding ImageUri}" />
 </Image.Source>
 </Image>

 <TextBlock Grid.Row="1"
 Foreground="White"
 Margin="5"

Listing 10.14 Category browser page XAML

Back
button for
navigation

Page title
bound to
category
name

FlipView bound
to Photos

ItemTemplate

BitmapImage
image source

234 CHAPTER 10 View controls, Semantic Zoom, and navigation
 TextAlignment="Center"
 TextWrapping="Wrap"
 FontSize="28"
 Text="{Binding DisplayName}" />
 </Grid>
 </DataTemplate>
 </FlipView.ItemTemplate>
 </FlipView>
 </Grid>
 </Grid>
</Page>

Unlike the main page in the app, this page sports a Back button. When using the
default templates, many developers leave the Back button on the main page of the
app. It really shouldn’t be there unless you can do something with it. For that reason,
I didn’t put one on the main page. But this secondary page can certainly use a way to
navigate back to the main page.

 Each page in the app is loaded into a frame. You can think of the frame as the host
for pages. The Frame property of the page is a pointer back to that hosting frame. The
Back button is enabled or disabled based on the CanGoBack property of that frame.

TIP To see how the frame gets loaded, look at the OnLaunched method in
App.xaml.cs. You’ll see the frame get created and the first page get loaded
into it.

Unlike the GridView used on the main page, the FlipView control on this page doesn’t
need to know anything about grouping or other advanced features. For that reason, it
can be bound directly to properties on the viewmodel—the data context for the page.

 But how does the viewmodel get populated? For that, you rely on a little code-
behind code related to the navigation API. The OnNavigatedTo event and the rest of
the CategoryBrowserPage.xaml.cs content are shown here.

using PhotoBrowser.Model;
using PhotoBrowser.ViewModel;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

namespace PhotoBrowser
{
 public sealed partial class CategoryBrowserPage : Page
 {
 private CategoryBrowserViewModel _vm =
 new CategoryBrowserViewModel();

 public CategoryBrowserPage()
 {
 this.InitializeComponent();

 DataContext = _vm;
 }

Listing 10.15 Category browser page code-behind

Create new
viewmodel

Set page data
context

235FlipView and navigation
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 var category = e.Parameter as PhotoCategory;

 _vm.Category = category;
 }

 private void OnBackButtonClick(object sender,
 Windows.UI.Xaml.RoutedEventArgs e)
 {
 Frame.GoBack();
 }
 }
}

The viewmodel and data context setup code looks like what you’ve already used with
the main page. Beyond that, there are two methods worth digging into.

 The first is the OnNavigatedTo function. This event is fired off when the page is
navigated to. You should do any nonstatic page setup in this event because page
instances may be reused and navigated to multiple times. So, if the data for each
instance of the page is different, you should ensure it’s set in the OnNavigatedTo over-
ride. In this case, you use the OnNavigatedTo event to populate the viewmodel with
the category, which is passed in from the main page.

 The second is the OnBackButtonClick event handler. This is wired to the Back but-
ton on the page. When you click the button, the code calls the GoBack method of the
Frame, navigating the whole frame back to the main page of the app.

10.4.3 Updated MainPage

The MainPage XAML also needs to be updated to provide navigation to the browser
page. You’ll do this by making it so when you click the header of a category, you can
go to the new page to view all the images in that category.

 The following listing has the updated header template to be pasted into the Main-
View.xaml markup for the GridView. Replace the old header template with this
version.

<GroupStyle.HeaderTemplate>
 <DataTemplate>
 <Grid Margin="5,0,0,15">
 <Button Click="OnCategoryHeaderClick"
 Style="{StaticResource TextPrimaryButtonStyle}">
 <TextBlock Text="{Binding Category}"
 Style="{StaticResource GroupHeaderTextStyle}" />
 </Button>
 </Grid>
 </DataTemplate>
</GroupStyle.HeaderTemplate>

Listing 10.16 Updated MainPage.xaml GridView header template

Get navigation
parameter

Pass category
to viewmodel

Navigation
button

236 CHAPTER 10 View controls, Semantic Zoom, and navigation
Now, instead of just a TextBlock displaying the category name, you have a button that
calls an event handler in the code-behind to navigate to the new page. The next listing
includes the event handler code.

private void OnCategoryHeaderClick(object sender, RoutedEventArgs e)
{
 var category = (sender as FrameworkElement).DataContext;

 this.Frame.Navigate(
 typeof(CategoryBrowserPage),
 category);
}

When the category header is clicked, you first get the DataContext of the header.
Because of the way data templates work, the context is the PhotoCategory instance
you’re interested in.

 You then take that instance and navigate to the CategoryBrowserPage, passing in
the PhotoCategory instance as a parameter. Notice how the Navigate API works: You
pass in the type representing the page to load and optionally pass in a parameter of
any type you want. In this way, you can pass a viewmodel instance or something as sim-
ple as the PhotoCategory model object used here.

 Run the app now. You should be able to click a category header and see all the
items in the category. Once you’re on the category browser page, use your mouse or
touch to scroll through the items, left to right. When you’ve finished browsing, hit the
Back button to return to the main page.

 So now you have grouped lists of items, a scrollable list of items, and navigation
between them. For this chapter, there’s one last thing you need to add to the app, and
that’s Semantic Zoom.

10.5 Semantic Zoom
Stop what you’re doing (well, after you finish reading this paragraph), go to the desk-
top on your computer, and hit the Windows key and then the plus key. The screen will
zoom in. This is optical zoom: Everything gets bigger, and each pixel from the
zoomed-in view can be traced back to the original view. To get back, hit the Windows
key and then the minus key.

 Semantic Zoom differs from optical zoom in that the zoomed-in view is only logi-
cally related to the zoomed-out view. It shows a higher-level view of the data in order to
make it easier to navigate. To see this in action, pinch the screen on the Start page of
Windows. You’ll see a higher-level view of the app tiles (if you use a mouse, there’s also
a zoom-out button at the bottom right). Figure 10.10 shows the zoomed-in and
zoomed-out views for this chapter.

 The zoomed-out view for this app is implemented on MainPage.xaml as a single-
row GridView with a horizontal StackPanel of image thumbnails and category titles.
To make Semantic Zoom work, both the zoomed-out and zoomed-in views must be

Listing 10.17 Updated MainPage.xaml.cs code-behind for navigation

Get selected
category

Navigate to page,
passing category

237Semantic Zoom
enclosed in a single SemanticZoom control as shown here. This code goes in Main-
Page.xaml around the current GridView. (Don’t overwrite the GridView; paste it
inside the ZoomedInView template.)

<Grid Grid.Row="1">
 <SemanticZoom IsZoomOutButtonEnabled="True">
 <SemanticZoom.ZoomedInView>

 </SemanticZoom.ZoomedInView>

 <SemanticZoom.ZoomedOutView>

 </SemanticZoom.ZoomedOutView>
 </SemanticZoom>
</Grid>

The IsZoomOutButtonEnabled property controls whether or not the little minus but-
ton shows up on the bottom right of the control.

 The zoomed-out view is a GridView containing a high-level look at the data. It fol-
lows all the same patterns you’ve been doing with the GridView throughout the chap-

Listing 10.18 Semantic Zoom control XAML

Figure 10.10 Semantic Zoom in action. The zoomed-in view shows the details for each
category. The zoomed-out view shows just the category name and a representative image.
The mouse-friendly button is enabled through a property on the SemanticZoom control.

Paste existing
GridView here

New GridView
will go here

238 CHAPTER 10 View controls, Semantic Zoom, and navigation

R

ter with a few notable additions. The following listing includes the GridView markup
to be pasted into the zoomed-out view section of the SemanticZoom control.

<GridView x:Name="SemanticZoomedOutView"
 ScrollViewer.IsHorizontalScrollChainingEnabled="False"
 Padding="116,0,40,0"
 SelectionMode="None">
 <GridView.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center"
 Margin="0,0,10,0"/>
 </ItemsPanelTemplate>
 </GridView.ItemsPanel>

 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid Width="175">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="300" />
 <RowDefinition Height="100" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Image Grid.Row="1"
 Stretch="UniformToFill">
 <Image.Source>
 <BitmapImage UriSource="{Binding Group.Photos[0].ImageUri}"
 DecodePixelHeight="300"/>
 </Image.Source>
 </Image>

 <Rectangle Grid.Row="2"
 Fill="#FF0055AA"
 Opacity="1.0"/>

 <TextBlock Grid.Row="2"
 Foreground="White"
 Margin="5"
 TextAlignment="Right"
 TextWrapping="Wrap"
 FontSize="28"
 Text="{Binding Group.Category}" />
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>
</GridView>

The GridView has a ScrollViewer instance in its template. This is what provides hori-
zontal scrolling capabilities. In order to have Semantic Zoom work correctly, the
IsHorizontalScrollChainingEnabled attached property of the ScrollViewer must

Listing 10.19 Zoomed-out view XAML

equired for
Semantic

Zoom

Enforce
single row

ItemTemplate

First image
in category

Category name

239Summary
be set to false. This property controls whether or not the ScrollViewer chains the
scrolling from the parent to the child. In the case of Semantic Zoom, the zoomed-out
view is a different size and may have different proportions for the items between the
zoomed-out and zoomed-in views, so you don’t want the chaining to be in place.

 To show the first image from the category, the Image element’s source is set to the
first photo in the Photos collection of the PhotoCategory instance. Group is the
instance property name on the CollectionViewSource. In our case, it’s the Photo-
Category object.

 Note also that the GridView doesn’t have any ItemsSource property set. That’s
because for Semantic Zoom to work, the zoomed-out view must be bound to the same
CollectionViewSource as the zoomed-in view, but that doesn’t work well in markup.
So, instead, you set that in the code-behind, as shown in the following listing.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 _vm.LoadPhotos();

 var cvs = Resources["PhotoSource"] as CollectionViewSource;

 SemanticZoomedOutView.ItemsSource =
 cvs.View.CollectionGroups;
}

You could have avoided all of this and simply bound the zoomed-out view to a property
on the viewmodel. The problem is Semantic Zoom requires that the two views be
related by being bound to the same data source. Sure, it will work without that, but
you’ll notice that selecting an item in the zoomed-out view won’t have any effect on the
positioning of the elements in the zoomed-in view. When they are connected, selecting
an item in the zoomed-out view brings that group into view on the zoomed-in view.

 Semantic Zoom is a powerful pattern for navigating large amounts of data. You
wouldn’t want your users scrolling for 10 minutes just to find a piece of data, so
instead you logically group the items and expose that grouping as the zoomed-out
high-level view.

10.6 Summary
The view controls are some of the most interesting and most useful controls in Win-
dows 8. Unless you’re building something with a completely unique mode of interac-
tion (like a game), you’ll probably end up using one or more of these in your own
apps. The demo app in this chapter was designed specifically to show off these con-
trols, but at a high level, it resembles any number of data-consumption apps you may
find in the Windows Store.

 When you want to show items in a vertical list, the ListView is the control to use.
You can sometimes coerce it to show items in multiple columns or in a horizontal

Listing 10.20 MainPage.xaml.cs code-behind to set zoomed-out view’s ItemsSource

Get CollectionView-
Source resource

Link both GridView
data sources

240 CHAPTER 10 View controls, Semantic Zoom, and navigation
layout, but that’s really not the best use of this control. For those, you’ll want to use a
GridView.

 The GridView can do everything the ListView can do (although its virtualization
optimizations differ), as well as show items in regular grids, irregular grids, or groups.
The grouping capability is especially interesting, because it makes it possible to pro-
vide structure to the visualization above and beyond the flat grid.

 A common pattern with grouped GridView data is to use the header to navigate to
a group details page. For this demo app, the header navigated to a page containing a
FlipView—the third and final type of view control. The FlipView control is optimized
for showing a single element at a time, while enabling you to scroll horizontally
through the items.

 Another exciting pattern that builds on the GridView is the Semantic Zoom pat-
tern. Semantic Zoom differs from optical zoom in that the zoomed-in and zoomed-out
views may be quite different; they aren’t related to each other in an optical or pixel
way but rather in a logic data way. WinRT XAML even includes a dedicated Semantic-
Zoom control, which encapsulates the logic required for switching between the two log-
ical views. Semantic Zoom is an excellent pattern you’ll want to use if you have large
amounts of data to sift through in your apps.

 In the next chapter, you’ll build on the sample covered here to add in other essen-
tial Windows 8 UI components such as the app bar, tiles, and more.

The app bar
It may be hard to imagine applications without toolbars, but prior to the mid–
Windows 3.1 timeframe, they were uncommon in GUIs. The original Apple Macin-
tosh (and the Xerox technology it was based on) and clearly derivative GEOS, all
with their single menu bar at the top, plus the Amiga Workbench and Windows 1.x
with flat menus per window together established the menu navigation standard.
None of them made real use of toolbars.

 Eventually, applications got more complicated, and their menus became overly
complex, making it difficult to find common tasks. With the rise in screen resolu-
tion, more screen real estate became available, and toolbars became common-
place. Eventually this got out of control, especially in complex applications like
Microsoft Word where, if you displayed all the available toolbars, you’d end up with
a tiny sliver of real estate available for content. I remember visiting my parents one
year and their Word toolbars looked just like that, but they had no idea how they
got that way. Oh, and don’t get me started on all the installed Internet Explorer

This chapter covers
■ The app bar and buttons
■ Using the app bar for navigation
■ Popups and menus
241

http://jupitertoolkit.codeplex.com/
http://jupitertoolkit.codeplex.com/

242 CHAPTER 11 The app bar
toolbars they had. Even in a well-maintained toolbar, the number of options got to be
so many that the same problems we had with discovering items in complex menus
started to surface in toolbars. We simply pushed the problem around.

 Microsoft countered by introducing the Office Ribbon. This was, and continues to
be, an effective way to manage toolbar options in that it relies on context-sensitive dis-
play of whole tabs as well as individual items on tabs. It also makes use of labels, space
permitting, to ensure that icons can be identified. It does all this while using approxi-
mately the same amount of vertical space as was typically allocated to menus and two
rows of toolbars.

 Modern Style apps in Windows generally don’t have the complexity of these full
desktop apps and therefore don’t need the vast array of menu and toolbar options.
But the focus of content over chrome (buttons, toolbars, decorations) and the
requirement for a touch-friendly UI on small screens offer their own challenges.

 For Windows apps, the app bar is the answer to these challenges. It’s where you’d
put functionality normally thought of as menu and toolbar options in desktop apps.
Following the Windows design aesthetic, it uses simple iconography. Learning from
the work with the Ribbon, it supports easily readable text labels for buttons. Also tak-
ing a page (or, ahem, tab) from the Ribbon and earlier work with context-sensitive
toolbars, it’s expected to be used in a context-sensitive way, minimizing the amount of
clutter. Finally, following the Windows focus on content over chrome, the app bar is

Figure 11.1 Two very different approaches to app bar functionality. Fresh Paint uses the top
app bar for the tools. Internet Explorer uses the top app bar for navigation between tabs. Both
use the bottom app bar for contextual commands.

243Project updates
typically invisible until activated by a swipe on the screen, a right-click with the mouse,
the app key (the one on the right that looks like a typical context menu) or the Win-
dows + Z key combination. Figure 11.1 shows several app bars in use.

 Continuing with the PhotoBrowser demonstration app from the previous chapter,
in this chapter you’ll learn how to use the app bar. First, we’ll look at how to create an
app bar and add app bar-specific buttons that perform item and page tasks plus tech-
niques and properties for controlling when the app bar is visible and whether or not it
is “sticky.” Next, we’ll look at a common use of the top app bar: navigation. Finally,
we’ll look at expanding on the interactivity of the app bar by adding pop-up UI ele-
ments like menus. First, we have a few updates to the PhotoBrowser app to make it
work in this chapter.

11.1 Project updates
This chapter continues adding features and functionality to the PhotoBrowser app.
The focus in this chapter is, of course, the app bar. If you’re using the downloadable
source code, pick up the version from the previous chapter and start there.

 To support some of the concepts in this chapter, you’ll have to do a little refactor-
ing and make changes to the source code. The first change is to update the Category-
BrowserViewModel so that it can be passed whole during page navigation. This will
enable you to provide from the main page more information than just the single
category.

 Our first listing has the new version of the viewmodel.

using GalaSoft.MvvmLight;
using GalaSoft.MvvmLight.Command;
using PhotoBrowser.Model;
using PhotoBrowser.Services;
using System.Collections.ObjectModel;

namespace PhotoBrowser.ViewModel
{
 public class CategoryBrowserViewModel : ViewModelBase
 {
 private ObservableCollection<PhotoCategory> _allCategories =
 new ObservableCollection<PhotoCategory>();

 public ObservableCollection<PhotoCategory> AllCategories
 {
 get { return _allCategories; }
 set
 {
 Set<ObservableCollection<PhotoCategory>>(
 () => AllCategories, ref _allCategories, value);
 }
 }

 private PhotoCategory _category;

Listing 11.1 Updated CategoryBrowserViewModel for navigation

All categories

244 CHAPTER 11 The app bar
 public PhotoCategory Category
 {
 get { return _category; }
 set
 {
 Set<PhotoCategory>(() => Category, ref _category, value);

 //DeleteAllPhotosCommand.RaiseCanExecuteChanged();

 if (Category != null &&
 Category.Photos != null &&
 Category.Photos.Count > 0)
 SelectedPhoto = Category.Photos[0];
 }
 }

 private Photo _selectedPhoto;
 public Photo SelectedPhoto
 {
 get { return _selectedPhoto; }
 set
 {
 Set<Photo>(() => SelectedPhoto, ref _selectedPhoto, value);
 //RotateSelectedPhotoCommand.RaiseCanExecuteChanged();
 //LikeSelectedPhotoCommand.RaiseCanExecuteChanged();
 //DislikeSelectedPhotoCommand.RaiseCanExecuteChanged();
 }
 }

 }
}

Inside the Category setter is a single commented-out line. When you add that com-
mand object later in this chapter, you’ll uncomment that line.

 The category browser page in this chapter requires access to all the categories
from the main page. In order to provide that during navigation, as well as the selected
category, you have to pass the entire viewmodel to the page. The code to do this is
shown here.

private void OnCategoryHeaderClick(object sender, RoutedEventArgs e)
{
 var category =
 (sender as FrameworkElement).DataContext as PhotoCategory;

 var browserViewModel = new CategoryBrowserViewModel();

 browserViewModel.AllCategories = _vm.Photos;
 browserViewModel.Category = category;

 this.Frame.Navigate(
 typeof(CategoryBrowserPage),
 browserViewModel);
}

Listing 11.2 MainPage.xaml.cs updates to navigation code

Current category

You’ll uncomment
this line later

The currently
selected photo

You’ll
uncomment
these later

Create
viewmodel

Assign
categories

Navigate with
viewmode

245Project updates
The new navigation code takes ownership of creating the category browser page’s
viewmodel and providing it to that page during navigation. I’ve seen this pattern fol-
lowed in a number of MVVM apps where a master page provides the viewmodel for a
child page. This pattern works only if the child page can’t be navigated to without first
going through the master page.

 Note that you’ll also need to add a using statement for the Model namespace or
else the reference to PhotoCategory won’t compile.

 Because of these changes, you also need to modify the code-behind in the
CategoryBrowserPage.xaml.cs file. The following listing has the new version.

using PhotoBrowser.Model;
using PhotoBrowser.ViewModel;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

namespace PhotoBrowser
{
 public sealed partial class CategoryBrowserPage : Page
 {
 private CategoryBrowserViewModel _vm;

 public CategoryBrowserPage()
 {
 this.InitializeComponent();
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 var vm = e.Parameter as CategoryBrowserViewModel;

 _vm = vm;

 DataContext = _vm;
 }

 private void OnBackButtonClick(object sender,
 Windows.UI.Xaml.RoutedEventArgs e)
 {
 Frame.GoBack();
 }
 }
}

In this new version of the code, the CategoryBrowserPage no longer constructs its
own viewmodel. Instead, the viewmodel is assigned from the OnNavigatedTo method,
provided by the master page. Once the viewmodel is obtained, it’s set as the data con-
text for the entire page.

 The changes made to these pages and viewmodels now support the additional
detail required for you to use the app bar in this chapter. Changing the navigation

Listing 11.3 CategoryBrowserPage.xaml.cs updates to navigation code

Do not create
viewmodel
instance

Get assigned
instance

246 CHAPTER 11 The app bar
model to pass in the viewmodel from the main page is something you may find your-
self doing in your own apps as well.

 Now that everything is in place, you’ll build out the bottom app bar and give the UI
some much-needed interactivity.

11.2 Controls on the bottom app bar
The app bar control is surfaced through the TopAppBar and BottomAppBar properties
of the Page. Because it’s simply a ContentControl with a few additional properties and
behaviors, you may put any type of control in it. For example, I’ve seen everything
from specialized buttons to range-selection graphs to full ListView and GridView con-
trols filled with items. Figure 11.1 shows two very different approaches to app bar lay-
out, each appropriate to the type of app.

 Notice that although both apps use the app bars differently, they are both recog-
nizable as app bars. They both appear from the top and bottom in the same way and
dismiss in the same way. The behavior is consistent, as is the general approach to how
the buttons are displayed. You can see that you have a lot of creative freedom in how
the app bars work.

 This section covers most of what you need to know to work with the app bar. First,
you’ll create a bottom app bar and then add appropriately styled buttons to it. You’ll
also look at how to add separators and buttons for which there exists no built-in style.
Then, using what you learned in chapter 9, you’ll wire those buttons to the viewmodel
using commands.

 The commands will do a few interesting things. The easiest of the commands will
increment and decrement a rating, much like “likes” and “dislikes” on something like
YouTube. Another command will rotate the image by setting an angle in the model
object. As part of that, you’ll also implement a render transform on the photo. The
final command will delete from memory every photo in the category and then the cat-
egory itself. You’ll implement a new function in the ImageService to make that easier.

 Finally, we’ll wrap up this section with a look at how to make the app bar visible by
default and sticky, something you may want to do to have it behave more like the tool-
bars in desktop applications.

11.2.1 Adding and styling buttons

For many apps, the app bar will simply be a container for buttons, just as the toolbar
was. Where you place the buttons, and how you style them, is an important part of cre-
ating an effective app bar. When deciding where to put buttons, a good rule of thumb
is to have selection-based buttons on the left and page-based buttons on the right. For
styling, the StandardStyles.xaml in the Common folder has a number of built-in app
bar button styles to get you started.

 You’ll use three of the built-in button styles and then add a fourth one based on
your own glyph. Figure 11.2 shows what your completed app bar will look like.

 Listing 11.4 shows the app bar portion of the markup for the app. The XAML goes
anywhere in CategoryBrowserPage.xaml in the Page element, because BottomAppBar is

http://bit.ly/WinRTRenderTransform
http://bit.ly/WinRTRenderTransform
http://bit.ly/WinRTRenderTransform

247Controls on the bottom app bar
a property of the Page, broken out here using property element syntax. I tend to put the
definition either at the very top of the file, just under the opening Page tag, or at the
very bottom of the file, just before the closing Page tag.

<Page.BottomAppBar>
 <AppBar Background="#FF001040">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left"
 Grid.Column="0">
 <Button Style="{StaticResource RotateAppBarButtonStyle}"
 Command="{Binding RotateSelectedPhotoCommand}"/>

 <Rectangle Margin="5,15,5,15"
 Stroke="White" StrokeThickness="2"
 VerticalAlignment="Stretch"
 Width="1"
 Opacity="0.25"/>

 <Button Style="{StaticResource LikeAppBarButtonStyle}"
 Command="{Binding LikeSelectedPhotoCommand}" />

 <Button Style="{StaticResource DislikeAppBarButtonStyle}"
 Command="{Binding DislikeSelectedPhotoCommand}" />
 </StackPanel>

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right"
 Grid.Column="1">
 <Button Style="{StaticResource ExterminateAppBarButtonStyle}"
 Command="{Binding DeleteAllPhotosCommand}" />
 </StackPanel>
 </Grid>
 </AppBar>
</Page.BottomAppBar>

Listing 11.4 Bottom app bar with styled buttons

Figure 11.2
The bottom app bar. Selection-
based commands are on the left,
while the right side holds
commands that operate even
when nothing is selected. The
separator was created with a
semitransparent Rectangle; the
buttons all use Segoe UI glyphs.

App bar with
background color

Rotate

Separator

Like

Dislike

Right panel

Exterminate

248 CHAPTER 11 The app bar
As you can see, the app bar is just a content control that contains a single element, typ-
ically a panel. If you want to align buttons to the left or right, put them in StackPanel
panels and set their HorizontalAlignment properties appropriately.

 You set a color for the background of the app bar. By default, the color will be
black, but I encourage you to use a color that fits the theme of your own app. Remem-
ber, you’re not trying to match system colors; you just want your app to be internally
consistent. That’s one advantage of full-screen apps.

 If you understand how to use a button on a page, you understand how to use one
on the app bar. Everything you’ve learned about buttons so far applies here. Other
than the style of the button, and the fact it happens to sit on this thing called an app
bar, there’s nothing special about it.

 Most app bars don’t include a separator, but I’ve seen a few that do. I’ve included a
home-made one here so you can see one technique of how it’s done. By using a rect-
angle and not setting an explicit height, the rectangle will appropriately resize in rela-
tion to the actual height of the app bar.

 Each of the buttons uses a style with the suffix AppBarButtonStyle. These are pre-
defined and available as part of the project source code. You’ll need to copy the com-
mented-out named styles in the StandardStyles.xaml file into a location near the type
of the file (so they aren’t commented out) or preferably into App.xaml as I did. You
can also uncomment just those entries, but that becomes a bit harder to maintain.
Also, in general, I don’t recommend messing with the StandardStyles.xaml file
directly, because it’s one of those template-provided files that may change over time.
For those reasons, I just copied the styles I wanted into App.xaml. The next listing
shows the styles I added to the ResourceDictionary section of that file.

<Style x:Key="RotateAppBarButtonStyle"
 TargetType="ButtonBase"
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId"
 Value="RotateAppBarButton"/>
 <Setter Property="AutomationProperties.Name"
 Value="Rotate"/>
 <Setter Property="Content"
 Value=""/>
</Style>

<Style x:Key="DislikeAppBarButtonStyle"
 TargetType="ButtonBase"
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId"
 Value="DislikeAppBarButton"/>
 <Setter Property="AutomationProperties.Name"
 Value="Dislike"/>
 <Setter Property="Content"
 Value=""/>
</Style>

Listing 11.5 App bar button styles in the App.xaml resource dictionary

Rotate

Dislike

https://github.com/timheuer/Callisto

249Controls on the bottom app bar
<Style x:Key="LikeAppBarButtonStyle"
 TargetType="ButtonBase"
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId"
 Value="LikeAppBarButton"/>
 <Setter Property="AutomationProperties.Name"
 Value="Like"/>
 <Setter Property="Content"
 Value=""/>
</Style>

<Style x:Key="ExterminateAppBarButtonStyle"
 TargetType="ButtonBase"
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId"
 Value="ExterminateAppBarButton"/>
 <Setter Property="AutomationProperties.Name"
 Value="Exterminate"/>
 <Setter Property="Content"
 Value="☄"/>
</Style>

Each of the styles in this listing is used in the app bar. The first three—rotate, dislike,
and like—are all from the styles provided with the project template. The fourth,
ExterminateAppBarButtonStyle, is one I created. I used Character Map to find an
appropriate Segoe UI Symbol glyph and then copied its character code into the Con-
tent property.

NOTE The existing styles are commented out because you take a load-time hit
for each resource you have in your app, and the team wanted to make all the
common styles available to you. No app would use all the resources, but they
would take the startup load hit if the resources were all present in app.xaml.
Remember, Windows Store apps have strict guidelines for performance and
startup time.

I used the comet symbol as the glyph for my “exterminate” button, something mean-
ingful only if you’re a dinosaur. My first thought was to use a Dalek image as I did on
my site, but images are not easy to use in app bar buttons. Tom McKearney, my tech
editor, suggested I name at least one control AdmiralAppBar.

The existing app bar button styles use font glyphs for the images because that will give you
the crispest possible rendering regardless of DPI. Using PNGs is not something supported
out of the box because you need an entire grid of them to represent all the states in a
single button. Toolkits such as the WinRT XAML Toolkit (http://jupitertoolkit
.codeplex.com/) include specialized controls like the ImageButton, designed for
making it easy to use images. Check your rendering results before you go this route:
Unless you have the sizes and DPI spot on, the PNGs will appear fuzzy in comparison
to the glyphs.

 You can also find app bar button images and markup online from companies like
Syncfusion (syncfusion.com), which has well over a thousand icons in its studio

Like

Exterminate

250 CHAPTER 11 The app bar
product. You can find others at theNounProject.com and theXamlProject.com,
among many more. Some of those will even generate path language XAML, which is
easier to scale.

11.2.2 Wiring with commands

Each of the app bar buttons is bound to a command. You can use event handlers, of
course, but you’ve been using commands so far, so there’s no reason to stop now. In
addition to the uncluttered code-behind, one thing I really like about commands is
the built-in support for enabling and disabling the buttons.

 Each of the commands is exposed by the CategoryBrowserViewModel class. For
this to work, you’ll need to add those commands to the viewmodel. The next listing
has the additions for that class.

public CategoryBrowserViewModel()
{
 DeleteAllPhotosCommand = new RelayCommand(
 () => DeleteAllPhotos(),
 () => CanDeleteAllPhotos());

 RotateSelectedPhotoCommand = new RelayCommand(
 () => RotateSelectedPhoto(),
 () => CanRotateSelectedPhoto());

 LikeSelectedPhotoCommand = new RelayCommand(
 () => LikeSelectedPhoto(),
 () => CanLikeSelectedPhoto());

 DislikeSelectedPhotoCommand = new RelayCommand(
 () => DislikeSelectedPhoto(),
 () => CanDislikeSelectedPhoto());
}

private Photo _selectedPhoto;
public Photo SelectedPhoto
{
 get { return _selectedPhoto; }
 set
 {
 Set<Photo>(() => SelectedPhoto, ref _selectedPhoto, value);

 RotateSelectedPhotoCommand.RaiseCanExecuteChanged();
 LikeSelectedPhotoCommand.RaiseCanExecuteChanged();
 DislikeSelectedPhotoCommand.RaiseCanExecuteChanged();
 }
}

public RelayCommand DeleteAllPhotosCommand
{
 get; private set;

Listing 11.6 CategoryBrowserViewModel updates with commands

Command
creation

Change notification
(uncommented
existing code)

Delete
command

251Controls on the bottom app bar
}

private void DeleteAllPhotos()
{
 if (Category != null)
 {
 Category.Photos.Clear();

 AllCategories.Remove(Category);

 Category = null;
 SelectedPhoto = null;
 }
}

public bool CanDeleteAllPhotos()
{
 return Category != null && Category.Photos != null &&
 Category.Photos.Count > 0;
}

public RelayCommand RotateSelectedPhotoCommand
{
 get; private set;
}

private void RotateSelectedPhoto()
{
 if (SelectedPhoto != null)
 SelectedPhoto.RotationAngle =
 (SelectedPhoto.RotationAngle + 90) % 360;
}

public bool CanRotateSelectedPhoto()
{
 return SelectedPhoto != null;
}

public RelayCommand LikeSelectedPhotoCommand
{
 get; private set;
}

private void LikeSelectedPhoto()
{
 if (SelectedPhoto != null)
 SelectedPhoto.LikesCount += 1;
}

public bool CanLikeSelectedPhoto()
{
 return SelectedPhoto != null;
}

Delete
implementation

Rotate
command

Rotation
implementation

Like
command

Like
implementation

252 CHAPTER 11 The app bar
public RelayCommand DislikeSelectedPhotoCommand
{
 get; private set;
}

private void DislikeSelectedPhoto()
{
 if (SelectedPhoto != null)
 SelectedPhoto.DislikesCount += 1;
}

public bool CanDislikeSelectedPhoto()
{
 return SelectedPhoto != null;
}

Each of the commands follows a similar pattern: a property for the command so the
UI can bind to it, a method to perform the action, and a method that tells you if the
command can be executed. The result of this last method is what enables/disables the
buttons. The relationship among all of these is established in the constructor when
the property is created.

 If you plan to test the viewmodel outside of the commands, change the action
methods (such as LikeSelectedPhoto) to be public rather than private.

 Also, remember that commented-out line in the setter in the Category property of
the viewmodel? Now is the time to uncomment that because the command it refer-
ences now exists.

 Several of the new commands rely on nonexistent properties of the Photo model
class. The next listing includes those new properties.

using GalaSoft.MvvmLight;
using System;

namespace PhotoBrowser.Model
{
 public class Photo : ObservableObject
 {
 public Uri ImageUri { get; set; }
 public string DisplayName { get; set; }
 public string Category { get; set; }

 private int _likesCount = 0;
 public int LikesCount
 {
 get { return _likesCount; }
 set
 {
 Set<int>(() => LikesCount, ref _likesCount, value);
 }
 }

Listing 11.7 Rotate and ratings support in the Photo model class

Dislike
command

Dislike
implementation

New base
class

Existing
properties

LikesCount
property

253Controls on the bottom app bar
 private int _dislikesCount = 0;
 public int DislikesCount
 {
 get { return _dislikesCount; }
 set
 {
 Set<int>(() => DislikesCount, ref _dislikesCount, value);
 }
 }

 private double _rotationAngle = 0.0;
 public double RotationAngle
 {
 get { return _rotationAngle; }
 set
 {
 Set<double>(() => RotationAngle, ref _rotationAngle, value);
 }
 }
 }
}

The commands themselves simply modify these new properties, so there’s not much
to understand there. The UI manifestation of the results is the interesting part. Figure
11.3 shows the rating (it’s over 9000!) and the rotation of the image.

DislikesCount
property

RotationAngle
property

Figure 11.3 Ratings and rotation in use in the app. Note that the rotation uses a render transform, so
it doesn’t resize to fit the page. See the “Render transforms” sidebar for more information. I rendered
these blue marbles in TrueSpace years back; the radiosity calculations alone took most of the day.

254 CHAPTER 11 The app bar
The following listing includes the XAML to implement the new rotation, Likes, and
Dislikes UI features based on the new data in the Photo model class.

<FlipView ItemsSource="{Binding Category.Photos}"
 SelectedItem="{Binding SelectedPhoto, Mode=TwoWay}"
 Padding="116,0,40,0">

 <FlipView.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="50" />
 </Grid.RowDefinitions>

 <Image Grid.Row="0"
 RenderTransformOrigin="0.5,0.5"
 Stretch="Uniform">
 <Image.Source>
 <BitmapImage UriSource="{Binding ImageUri}" />
 </Image.Source>

 <Image.RenderTransform>
 <RotateTransform Angle="{Binding RotationAngle}" />
 </Image.RenderTransform>
 </Image>

 <TextBlock Grid.Row="1"
 Foreground="White"
 Margin="5"
 TextAlignment="Center"
 TextWrapping="Wrap"
 FontSize="28"
 Text="{Binding DisplayName}" />

 <StackPanel Grid.Row="0"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 Orientation="Vertical">
 <StackPanel.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontFamily"
 Value="Segoe UI Symbol" />
 <Setter Property="FontSize"
 Value="42" />
 </Style>
 </StackPanel.Resources>

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">
 <TextBlock Text="" />
 <TextBlock Text="{Binding LikesCount}" />
 </StackPanel>

Listing 11.8 CategoryBrowserPage XAML rotate and ratings support in the FlipView

SelectedItem
binding

Transform origin
at midpoint

RotateTransform

Like/Dislike
display style

Likes display

255Controls on the bottom app bar
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">
 <TextBlock Text=""/>
 <TextBlock Text="{Binding DislikesCount}"/>
 </StackPanel>
 </StackPanel>

 </Grid>
 </DataTemplate>
 </FlipView.ItemTemplate>
</FlipView>

The Likes and Dislikes displays here use simple binding to get to properties of the
Photo model class.

 The rotation is a UI-only feature; you’re not actually doing anything with the bits in
memory or on disk. In fact, because the main page doesn’t use a render transform for
displaying its images, the image will not appear rotated there. For more information
on render transforms, such as the one used here, please see the “Render transforms”
sidebar.

If you ran the app, you may have noticed that the rotation and Likes/Dislikes changes
made in the category browser page don’t carry over from page to page during naviga-
tion. Similarly, deleting images didn’t seem to do anything useful. That’s because the

Render transforms

Listing 11.8 uses a RenderTransform, a RotateTransform to be specific, to rotate
the image. A RenderTransform is a way to modify UI elements at render time, without
affecting their layout.

In chapter 5, you learned how the layout is calculated for a given element. Render
transforms happen after the layout is calculated, so a resize, move, or similar trans-
form neither causes an additional layout pass nor changes the layout slot allocated
to the element.

Because of this, render transforms perform really well, especially when animated. The
downside, as you’ll see when you rotate the image in this section, is you don’t get
any of the layout magic required to fit an element inside a specific space.

The currently supported render transforms are RotateTransform to rotate an element
(what we use here), ScaleTransform to change an element’s size, SkewTransform
to apply a skew to the element (top is offset from the bottom, creating a parallelogram
shape), TranslateTransform to move an element, MatrixTransform to use matrix
math to apply multiple transforms as a single calculation, and TransformGroup to
apply multiple transforms using discrete transforms.

For more information on render transforms, check out http://bit.ly/WinRTRender-
Transform. You can also look at any of the great Silverlight content on the web or my
Silverlight 5 book Silverlight 5 in Action (Manning, 2012), because WinRT XAML render
transforms are functionally identical to what we have in Silverlight.

Dislikes display

http://bit.ly/WinRTRenderTransform
http://bit.ly/WinRTRenderTransform

256 CHAPTER 11 The app bar
main page makes a call to the image service to reload the images each time, overwriting
the changes. There are a number of ways to solve this, but the one I prefer is to have the
image service cache the results of the call. The following listing includes the updated
ImageService class code.

using PhotoBrowser.Model;
using System;
using System.Collections.Generic;
using System.Linq;

namespace PhotoBrowser.Services
{
 public class ImageService
 {
 private static ImageService _current;
 public static ImageService Current
 {
 get
 {
 if (_current == null)
 _current = new ImageService();

 return _current;
 }
 }

 private List<Photo> _photos;
 public IList<Photo> GetPhotos()
 {
 if (_photos == null)
 {
 string[] fileNames = new string[]
 {
 "Autumn Trees 2007.jpg", "Nature",
 "Beetle on Azalea.jpg", "Nature",
 "Blue Marbles Render.jpg", "Computer Graphics",
 "Christmas Silver Blue Glitter Poinsettias.png", "Christmas",
 "Christmas Tree Butterfly Fruit.jpg", "Christmas",
 "Christmas Under the Sea Tree Purple.jpg", "Christmas",
 "Cucumber Beetle on Pumpkin.jpg", "Nature",
 "Fall Crisp Blue Lake.png", "Nature",
 "MFOS Synth Board 2.png", "Electronics",
 "MMID 302 Union Bridge Dec 15, 2004.png", "Trains",
 "Nebula.jpg", "Computer Graphics",
 "Plasma Chamber.jpg", "Computer Graphics",
 "Shadowed Pumpkin.jpg", "Nature",
 "Synth Background.jpg", "Electronics",
 "Synth Panel.jpg", "Electronics"
 };

 _photos = new List<Photo>();

Listing 11.9 ImageService improvements

LINQ for
RemoveAll
function

Cached list

Cache creation

257Controls on the bottom app bar
 for (int i = 0; i < fileNames.Length; i += 2)
 {
 string name = fileNames[i];
 string category = fileNames[i + 1];

 _photos.Add(
 new Photo()
 {
 ImageUri = new Uri("ms-appx:/Pictures/" + name),
 DisplayName = name.Substring(0, name.LastIndexOf('.')),
 Category = category
 });
 }
 }

 return _photos;
 }

 public void RemoveImagesWithCategory(string category)
 {
 if (_photos != null)
 _photos.RemoveAll(s => s.Category == category);
 }

 }
}

Now, the final change is to modify the CategoryBrowserViewModel one last time to
use the new ImageService method. Here’s the updated DeleteAllPhotos method.

private void DeleteAllPhotos()
{
 if (Category != null)
 {

 Category.Photos.Clear();

 ImageService.Current.RemoveImagesWithCategory(Category.Category);

 AllCategories.Remove(Category);

 Category = null;
 SelectedPhoto = null;
 }
}

Now when you run the app and exterminate an entire category, that change will be
reflected on the main page. Similarly, setting a rating or rotating an image will stick.
Because you’re not doing anything in any permanent storage, simply restart the app
to get the images back.

Listing 11.10 Updated DeleteAllPhotos in CategoryBrowserViewModel

New function to
remove images

Call to new
 ImageService

method

258 CHAPTER 11 The app bar
11.2.3 Visibility and pinning

The app bar is displayed when the user swipes up from the bottom, down from the
top, right-clicks with the mouse, hits the Windows key + Z, or hits the app key on the
keyboard (right-hand side of the keyboard, usually looks like a context menu). In
some apps, however, it makes sense for the app bar to be visible by default. Consider a
painting app where there’s no default brush, for example. In that case, you’ll want to
have the app bar open when the app starts up. In other cases, you want the app bar
not only to be open but also to be “sticky.”

 An app bar is sticky when it isn’t dismissed simply by selecting a command; the user
must actively swipe the app bar out of the way. The automatic dismissal behavior is
called a “light dismiss” because the user doesn’t need to click a specific element, such
as a close box, or perform a specific gesture to cause the behavior to happen.

 The next listing shows how to make the bottom app bar in your app be both open
and sticky. Note that you don’t need to use the two properties together, but it’s a com-
mon usage.

<Page.BottomAppBar>
 <AppBar Background="#FF001040"
 IsOpen="True"
 IsSticky="True">
 ...
 </AppBar>
</Page.BottomAppBar>

You can programmatically close the app bar by setting IsOpen to False. In addition,
you can wire up event handlers to tell when the app bar has been opened or closed, in
case you need to perform initialization, pause the game, or otherwise execute code
when the app bar state changes.

 The app bar is a simple control but a powerful UI concept. The built-in control has
all the animations and behaviors you need to integrate into the platform. Within that,

5-star ratings

To display ratings using the popular 5-star format, check out Tim Heuer’s Callisto proj-
ect on GitHub (https://github.com/timheuer/Callisto).

He includes a 5-star ratings control, which would work well for displaying the Likes/
Dislikes percentage for the photos in this example.

To make it work, you will need to provide an additional property, possibly in the Photo
class but probably on the viewmodel, which adds up the number of Likes and Dislikes
on the selected item and then scales that result on a 0–5 scale. For example, if you
had 10 Likes and 10 Dislikes, the result would be 2.5. If you had 30 Likes and 20
Dislikes, the result would be 3; 40 Likes and 0 Dislikes would be 5.

You’d then add the ratings control to the item template and bind it to the new property.

Listing 11.11 Open and sticky app bar

Open by default

Require active
dismissal

259Top app bar for navigation
you’re free to add anything you want to the app bar, although app bar-style buttons
tend to be the most common controls. Because of that, the Visual Studio project tem-
plates include standard styles for the basic app bar button, as well as specialized styles
for common buttons. Plus, because these are just buttons, you can use everything else
you’ve learned about working with them, including commands and event handlers, to
provide the link between the UI and code.

 Everything you’ve done so far has been on the bottom app bar. If you implement
only one, you’ll generally make that the bottom bar. The top app bar has some inter-
esting uses as well, which we’ll investigate next.

11.3 Top app bar for navigation
Anything you can do in the bottom app bar you can also do in the top app bar—
they’re the same control. When deciding what to put in the top or bottom app bar,
consider the logical grouping of your controls and whether something might be more
usable when sliding down from the top versus sliding up from the bottom.

 In general, the top app bar is used for larger items, tools, and navigation. The top
app bar is sometimes called the navigation bar, especially in earlier documentation. In
this context, I mean navigation between data items, not between actual pages in the
app, although you could use it that way if you wanted to. Consider the Internet
Explorer example. The top app bar is used to navigate between tabs within the app.
Each tab is an instance of the same hosting app page but with different data (the
HTML/JS/CSS).

 The current workflow requires you to go back to the main page in order to pick a
different category. It would be nice if you could do everything right from the category
browser page. To facilitate that, you’ll use the top app bar to navigate between catego-
ries without leaving the category browser page.

 Figure 11.4 shows how the app looks with the navigation bar in place.

Figure 11.4 The new top app
bar being used for navigation,
with the currently selected
category highlighted. The
control used is a GridView
with a template similar to
what was used on the main
page for the Semantic Zoom
zoomed-out view.

260 CHAPTER 11 The app bar
The top app bar will use a GridView, with selection enabled, with a StackPanel con-
taining image thumbnails. The overall pattern is similar to what was used in the
SemanticZoom control in MainPage.xaml, but with elements sized to fit the top app bar.

 The next listing shows the top app bar with a GridView used for navigation
between categories.

<Page.TopAppBar>
 <AppBar Background="#FF001040" Height="200">
 <GridView ItemsSource="{Binding AllCategories}"
 SelectedItem="{Binding Category, Mode=TwoWay}"
 SelectionMode="Single">
 <GridView.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel Orientation="Horizontal"
 HorizontalAlignment="Left"/>
 </ItemsPanelTemplate>
 </GridView.ItemsPanel>

 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="140" />
 <RowDefinition Height="35" />
 </Grid.RowDefinitions>
 <Image Grid.Row="0" Grid.RowSpan="2"
 Stretch="UniformToFill">
 <Image.Source>
 <BitmapImage UriSource="{Binding Photos[0].ImageUri}"
 DecodePixelHeight="175"/>
 </Image.Source>
 </Image>

 <Rectangle Grid.Row="1"
 Fill="#FF0055AA"
 Opacity="0.85"/>

 <TextBlock Grid.Row="1"
 Foreground="White"
 VerticalAlignment="Center"
 Margin="5"
 TextAlignment="Right"
 TextWrapping="NoWrap"
 TextTrimming="WordEllipsis"
 FontSize="15"
 Text="{Binding Category}" />
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>
 </GridView>

Listing 11.12 Top app bar with navigation elements

AllCategories
binding

 Two-way
SelectedItem

binding

Single selection
mode

Horizontal
stack panel

Image thumbnail

261App bar popups and menus
 </AppBar>
</Page.TopAppBar>

Because selection is enabled in the GridView, and the SelectedItem is bound to the
Category property of the viewmodel, the navigation works. All the plumbing you had
to do to support property change notification on the category in the original version
spills over to this version, making it very easy to implement.

 Sometimes you need more than an app bar can provide. For those times, you’ll
want to consider popups and app bar-delivered menus.

11.4 App bar popups and menus
Although simplicity is king for Modern UI apps, there’ll come a time when you need
to have more options than you can reasonably fit on the app bar without ruining the
experience. Some apps display palettes of controls. Others, like Internet Explorer, do
this by popping up menus and whole selection elements. Examples of both are shown
in figure 11.5.

 How you implement the popups is important, because you need to ensure they work
equally well with touch and the mouse. In this section, I’ll show you how to implement

Figure 11.5 Three examples of popups from app bar buttons. OneNote (beta) used a popup to enable
you to submit feedback, InspirARTion uses it for several selection tasks, and Internet Explorer uses
it for the Tools menu.

262 CHAPTER 11 The app bar
popups, taking into account the “light dismiss” behavior required to be touch friendly.
The end result will be a popup with a single button, as shown in figure 11.6.

 Place the XAML in the following listing inside the main Grid, just after the
Grid.RowDefinitions property.

<Popup x:Name="DislikePopup"
 Width="250" Height="150"
 Margin="165,0,0,95"
 HorizontalAlignment="Left"
 VerticalAlignment="Bottom"
 Grid.Row="0"
 Grid.RowSpan="2"
 IsLightDismissEnabled="True">
 <Grid Width="250" Height="150" >

 <Rectangle Fill="White"
 Stroke="#FF202020"
 StrokeThickness="3" />

 <Button Content="I do not approve of this"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Foreground="Black"
 BorderBrush="Black"
 Command="{Binding DislikeSelectedPhotoCommand}" />
 </Grid>
</Popup>

This markup creates a Popup with the Grid as its contents. Inside the Grid, you use a
white rectangle as the background and a regular button as the only interactive
element.

Listing 11.13 A popup element with a single button

Figure 11.6 The popup launched when the Dislike button is pressed

Light dismiss
enabled

Background

Standard
button

Command
binding

263Summary
 Once you have the Popup in XAML, you need to make a change to the Dislike but-
ton to show the popup rather than call the viewmodel method. In the Category-
BrowserPage.xaml file, modify the Dislike button in the app bar so that it no longer
uses a command but instead fires off an event. The next listing shows the change.

<Page.BottomAppBar>
 <AppBar Background="#FF001040">
...
 <Button Style="{StaticResource DislikeAppBarButtonStyle}"
 Click="OnDislikeClick" />
...
 </AppBar>
</Page.BottomAppBar>

I chose to change the interaction to an event handler because I considered this a UI
implementation detail, not something functional. The event handler for the Dislike
button is shown next. Its sole responsibility is to display the popup.

private void OnDislikeClick(object sender,
 Windows.UI.Xaml.RoutedEventArgs e)
{
 DislikePopup.IsOpen = true;
}

You display the popup by setting its IsOpen property to true. Once this code is in
place, you can run the app and click the Dislike button. The popup will display. You
can click the button as many times as you want, but as soon as you click outside the
popup, it will be dismissed. That is a result of the light dismiss behavior enabled with
IsLightDismissEnabled="true" in the XAML.

 Popups are very easy to create. But should you want to use a prebuilt menu control
that’s even easier to use, Tim Heuer has one in his Callisto Windows 8 toolkit on
GitHub.

11.5 Summary
The app bar is one of the most important controls for Windows 8 apps. With the
exception of apps with very specialized UIs (such as games and some creative apps),
you’ll find them in almost every app. They are the Modern UI equivalent of the menus
and toolbars you’ve used on the desktop.

 There are two app bars: the top app bar and the bottom app bar. In your own apps,
you can put anything you’d like in the app bars. Don’t let my buttons and navigation
examples limit you. Instead, look to see what other apps are doing, and see if the UX
works for you. You have a lot of freedom to be creative with how the features are used,

Listing 11.14 Updated bottom app bar button

Listing 11.15 Code to display the popup in MainPage.xaml.cs code-behind

Button with
event handler

Display popup

264 CHAPTER 11 The app bar
as long as you’re putting the user first, putting them in control, and providing a great
user experience.

 Buttons on the app bar work just like buttons do anywhere else in XAML. You can
use event handlers with them, and you can wire up commands and viewmodels. If you
want an app bar-specific look, you can use the built-in styles to provide the correct
look and feel.

 The app bar is definitely more space constrained than the toolbars of old. In some
cases, you’ll need to provide popups, flyouts, or other UI elements to extend the avail-
able surface area for controls. Before doing so, think hard about whether you’re try-
ing to accomplish too much on the same screen. Once you’re sure the complexity is
reasonable, go ahead and use the Popup control to create your own UI extensions.

 In the next chapter, we’ll further this example and tackle some of the other com-
mon UI elements that every app can use.

The splash screen, app
tile, and notifications
As I sit here writing this book on my main PC, my remote desktop session into one
of my Windows 8 tablets is showing me a colorful Start page, full of information. I
can see that I have unread email and that a friend’s birthday is tomorrow. I can see
that my wife commented on a photo of mine on Facebook, and I can see the rather
humorous label my son gave to a picture in his workbook. I can also see that my
next possible achievement in Minesweeper will be “Savior of the world.”

 All these apps are providing information to me, beckoning me to use them, to
crack them open and consume the bits. The description of the Start page sounds,
perhaps, a bit busy or even distracting, but it isn’t. The presentation of this informa-
tion is uniform. The animations aren’t too crazy, and most important, the informa-
tion is useful.

 Even the tiles that aren’t animating are providing useful info. I can see the tem-
perature is 52 degrees outside right now. This is important, because my current

This chapter covers
■ Splash screens
■ Extending the splash screen
■ Static and live tiles
■ Notification toast
265

266 CHAPTER 12 The splash screen, app tile, and notifications
home office is in the basement corner, in a room with no windows. It’s how I maintain
my authentic computer-geek, milky-white complexion.

 And just now, while typing this, I received a notification that I have a new message.
These notifications, and the static and live tiles that make up the Start page, are a core
part of the Windows experience. Learning how to use them effectively is as important
as figuring out the navigation, app bar, or any other part of your app’s user experience.

 When I clicked on that notification, I was presented with a quick splash screen
before the app came up and was ready to use. Although the splash screen is much
more transient than the tile, it’s another important part of the user experience.

 On the desktop, we’ve never had good enforced standards for notifications, for tile
information (desktop gadgets maybe, task bar icon overlays, possibly), and for splash
screens. Most applications implemented them any way they saw fit. Windows Store
apps have good standards and frameworks for all of these things; that’s what this chap-
ter is about. Figure 12.1 shows the things we’ll add to the PhotoBrowser app we’ve
been working with for the past few chapters.

 We’ll start with a look at the humble splash screen and quickly move on to its big
brother, the extended splash screen. If you’re looking for a way to load data or per-
form another long-running task on startup from managed code, the extended splash
screen is what you want.

 Once we wrap up the splash screen, we’ll take a small step backward user experi-
ence–wise and look at the Start page tiles. Much like the splash screen, we’ll start with
the simplest static versions. Then, we’ll pin secondary tiles that enable deep linking
into the app. Once we have all of the static tile work covered, we’ll kick it up a notch
and start working with live tiles. We’ll implement several different types of tile notifica-
tions, including queuing up several pending notifications so they cycle through an
animation on the Start page.

 The final thing we’ll cover in this chapter is notification toast. Tiles are great when
you’re staring at the Start page, but when you’re in another app, or a different page in
the same app, or even on the desktop, toast notifications are the best way to get the
user’s attention.

 Everything in this chapter will continue to build on the PhotoBrowser app from
the previous chapters. Let’s start by adding a proper splash screen.

Figure 12.1 The splash
screen, app tiles, and
notifications for the
PhotoBrowser app

267Splash screens
12.1 Splash screens
You never get a second chance to make a first impression, right? Well, for your app the
first impression of it running is the splash screen. This is what the user sees when they
click your app’s tile and launch the app.

 The purpose of the splash screen is to provide a transition from the Start page to
your app. It’s there to show the user that your app is, in fact, launching and not
crashed or stuck. By using colors that fit your app’s color scheme, the splash screen
also provides a visual transition from the multicolored Start page into your well-
designed app UI.

 The simplest splash screen is composed of an image and a background color. This
is displayed by Windows when loading your app. Once the app is loaded, your first
screen is activated and you’re ready to go. But sometimes you need to do more up-
front initialization. Maybe you need to calculate samples or load images. For those
times, you can extend the splash screen seamlessly so that the user never even realizes
a second splash screen was loaded.

 In this section, you’ll first create a good static image and color for your splash
screen. Then, because app initialization often must happen up front, you’ll extend the
splash screen to display a progress ring and to perform potentially time-consuming but
critical work.

12.1.1 The static splash screen

The splash screen is the entire full screen that’s shown when your app is loading. It
consists of an image and a background color.

 Size-wise, the static splash screen image needs to be 620 x 300 pixels, landscape
mode. When you think about the minimum tablet resolution of 1366 x 768, the splash
screen image takes up only about 18% of the pixels at the minimum resolution, as
shown in figure 12.2. Because the background is such a large part of what the user
sees, picking the right background color is important.

Figure 12.2
Three example splash screens,
each showing branding and color
consistency with their apps.
Notice how much of the specified
background color shows up
around the splash screen.
Picking the right background
color is just as important as
picking the right image. Also,
notice how the Music Maker Jam
app has a loading animation right
on the splash screen.

http://bit.ly/WinRTProtocolActivation
http://bit.ly/WinRTProtocolActivation
http://bit.ly/WinRTProtocolActivation
http://dev.windows.com
http://dev.windows.com

268 CHAPTER 12 The splash screen, app tile, and notifications
To create a basic splash screen for your app, you need to do two things:
■ Design an image and background color.
■ Configure the appx manifest with those values.

The design of the splash screen image should be simple and should include obvious
name or brand information. It can be multicolor but should have a background that’s
either transparent or blends in with the background color picked as part of the
design. In both cases, a PNG will serve you better than a JPG, which can be neither
transparent nor good for exact color matching.

TIP Be sure to create the splash screen in the three DPI scaling versions—
100%, 140%, and 180%—as discussed in chapter 7. This way, you’ll be pre-
pared for higher DPI displays without your app looking fuzzy. Don’t get
trapped in the position Android and iOS developers have been in where they
have to constantly redo their images to keep up with advances in resolution.
Microsoft has made it easy for you to get it right from the start, as long as you
use the capability.

Figure 12.3 shows the image I picked for
this app. I decided not to make it trans-
parent, although doing so would give
you more flexibility for picking the back-
ground color.

 The image simply shows two photos
and has the text PhotoBrowser done in
Segoe UI Light. Once the image is cre-
ated, all you need do is drop it into the
Assets folder, overwriting the existing SplashScreen.png or the SplashScreen.scale-
100.png, scale-140 and scale-180 files as appropriate. If you use a different name,
that’s fine; just change it in the manifest. The manifest is also where you’ll set the
color, as shown in figure 12.4.

Figure 12.3 The simple splash screen for this app

Figure 12.4 Setting the splash screen image and background color for the project is done through
the appx manifest. If you use the different scale images, you’ll still specify only the root filename here.

http://bit.ly/Win8TileDesign
http://bit.ly/Win8TileDesign
http://bit.ly/Win8TileDesign

269Splash screens
With both the image and color in place, you can then run the app to view the splash
screen. Now is a good time to check that the colors are an exact match (print-screen
the image and analyze it). What you don’t want to see is a 620 x 300 box (when at
100%) in the middle, with everything else around it a different color, unless your
design specifically calls for that.

 You’ll also want to check out the splash screen at a few common resolutions, to
make sure any text or detail you have is appropriately sized. Figure 12.5 shows the
final splash screen, both image and background, for this app at different resolutions.
Remember, you can easily try this out with the Simulator.

 With all three DPI settings supported, you’ll see a crisp splash screen regardless of
the user’s configuration. If you had supplied only the default size, the 180% version
would have been a somewhat blurry resize of your image—not a great first impression.

 The splash screen is kept onscreen only long enough to allow your app to load and
display the opening UI. Don’t display advertising, instructions, user agreements, or
anything complex or lengthy on the splash screen. It goes without saying that you
should also not put in any code to deliberately keep the splash screen displayed for a
minimum amount of time. The ideal scenario is a splash screen that displays for
almost no time at all.

 The initial display of the splash screen is handled by Windows, not your app. This
is why it is displayed immediately, without any real load-time hit. But once loaded,
your app can extend the splash-screen-loading process and do something useful like
display load-time animation.

TIP If you run the app in the Simulator and you don’t see the new splash
screen, manually uninstall the app from the Simulator, clean the solution,
and rerun. The splash screens are sometimes cached.

12.1.2 Extended splash screens

In many cases, when an app loads and the code starts executing, it still has a lot of
other work to do to restore state or otherwise prepare itself for the user. Some of these
tasks may be performed in the background, while the app is running. Others must be

Figure 12.5 The splash screen
and two different resolutions
and two different screen sizes. I
provided splash screens at all
possible DPIs (100%, 140%,
and 180%) and added a little
“Your screen rocks!” message
to the 180% one so you could
distinguish it in print.

http://bit.ly/Win8LockScreenNotifications
http://bit.ly/Win8LockScreenNotifications
http://bit.ly/Win8LockScreenNotifications
http://bit.ly/Win8TileTemplates
http://bit.ly/Win8TileTemplates
http://bit.ly/Win8TileTemplateCatalog

270 CHAPTER 12 The splash screen, app tile, and notifications
completed before the UI is useful. It is in support of this latter scenario that we have
the ability to create a second splash screen that trails the image-based version.

 The extended splash screen should
use the same background color as the
main splash screen and should position
the splash screen graphic in the same
location. This will prevent any jarring
transition. Beyond that, it may do any-
thing to show progress. Typical examples
are progress rings or status text. Figure
12.6 shows the progress ring used in the
PhotoBrowser app.

 To extend the splash screen, you use
the SplashScreen class in concert with a
dedicated splash screen page. The
SplashScreen class provides you with the coordinates to use to display the Splash-
Screen image, as well as an event that fires when the screen is dismissed.

 Before you do that, though, you need to have a reason to have an extended splash
screen. Normally, this would be some long-running data loading, so you’ll simulate that.
Modify the ImageService class in the Services folder and add the function shown here.

public Task<int> DoLongRunningInitializationAsync()
{
 return Task.Delay(5000).ContinueWith((t) => { return 42; });
}

You’ll need to add a using statement for System.Threading.Tasks for the function to
compile.

 This function simply wastes a little time using the delay function of the Task
method using a more modern and UI-friendly analog to Thread.Sleep(5000). By call-
ing this function from the splash screen code, you’ll get a delay without tying up the
UI thread itself. We’ll talk more about the await and async keywords and asynchro-
nous code in chapter 16.

 You’re about to add another page to the app, and that page must share the same
background color you’re using throughout. So far, you’ve simply hardcoded the back-
ground color onto each page. That’s just not a great approach, as you learned in chapter
7 when we covered colors and resources. Let’s take a moment to update App.xaml and
provide a static resource with the app background color. The next listing shows how.

<Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 ...

Listing 12.1 New time-wasting function in ImageService

Listing 12.2 Creating a background color resource in app.xaml

Figure 12.6 The center of the extended splash
screen with the progress ring

Wait five
seconds

271Splash screens
 </ResourceDictionary.MergedDictionaries>

 <SolidColorBrush x:Key="AppPageBackgroundBrush"
 Color="#FF003060" />

 <SolidColorBrush x:Key="AppPageAccentBrush"
 Color="#FF0662bf" />
 ...
 </ResourceDictionary>
</Application.Resources>

In each page in the app, update the main Grid background color to use this static
resource using the same static resource reference as shown here:

<Grid Background="{StaticResource AppPageBackgroundBrush}">

In your project, create a new blank page named ExtendedSplash.xaml and place it in
the root of the project with the other pages. The XAML contents for this screen are in
this listing.

<Page
 x:Class="PhotoBrowser.ExtendedSplash"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PhotoBrowser"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{StaticResource AppPageBackgroundBrush}">
 <Canvas HorizontalAlignment="Stretch" VerticalAlignment="Stretch">
 <Image x:Name="SplashScreenImage"
 Source="ms-appx:Assets/SplashScreen.png"
 Visibility="Collapsed" />
 </Canvas>

 <Grid x:Name="ProgressContainer"
 HorizontalAlignment="Center"
 VerticalAlignment="Top">
 <ProgressRing IsActive="True"
 Foreground="{StaticResource AppPageAccentBrush}"
 Margin="0,25,0,0"
 Width="75"
 Height="75"/>
 </Grid>
 </Grid>
</Page>

The splash screen introduces a new control called the ProgressRing. This control is a
Modern UI-style version of the indeterminate progress bar, without the usually errone-
ous progress value (the ProgressBar is also available should you need it). The ring
simply shows that something is going on but doesn’t indicate the percentage

Listing 12.3 The extended splash screen page markup

App-wide page
background color

Accent color for
ProgressRing and others

Container for
ProgressRing

ProgressRing

http://bit.ly/Win8TileSchema
http://bit.ly/Win8ToastTemplateCatalog
http://bit.ly/Win8ToastTemplateCatalog

272 CHAPTER 12 The splash screen, app tile, and notifications
complete. It handles all of the animations for you, so all you need to do is activate it
via the IsActive property.

 The code-behind needs to take in an instance of the SplashScreen class. You’ll
provide this from within App.xaml.cs. For now, modify ExtendedSplash.xaml.cs so it
contains the code in the following listing.

using PhotoBrowser.Services;
using System.Threading;
using Windows.ApplicationModel.Activation;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

namespace PhotoBrowser
{
 public sealed partial class ExtendedSplash : Page
 {
 private Frame rootFrame;
 private SynchronizationContext _uiContext;

 public ExtendedSplash(SplashScreen splashScreen)
 {
 this.InitializeComponent();

 _uiContext = SynchronizationContext.Current;

 if (splashScreen != null)
 {
 splashScreen.Dismissed += OnSplashScreenDismissed;

 Canvas.SetLeft(SplashScreenImage,
 splashScreen.ImageLocation.Left);

 Canvas.SetTop(SplashScreenImage,
 splashScreen.ImageLocation.Top);

 SplashScreenImage.Width = splashScreen.ImageLocation.Width;
 SplashScreenImage.Height = splashScreen.ImageLocation.Height;
 SplashScreenImage.Visibility = Visibility.Visible;

 ProgressContainer.Margin = new Thickness(
 0,
 splashScreen.ImageLocation.Top +
 splashScreen.ImageLocation.Height,
 0, 0);
 }
 rootFrame = new Frame();
 }

 async void OnSplashScreenDismissed(
 SplashScreen sender, object args)
 {
 await ImageService.Current.DoLongRunningInitializationAsync();

Listing 12.4 Extended splash screen code-behind

Frame for
navigation

Context for
UI thread

Key event
handler

Position, size,
and show

splash image

Position progress
ring container

Create navigation
frame

Run long
running

operation
async

http://bit.ly/Win8ToastTemplateCatalog
http://bit.ly/Win8ToastTemplateCatalog

273Splash screens
 _uiContext.Post((s) =>
 {
 Window.Current.Content = rootFrame;
 rootFrame.Navigate(typeof(MainPage));
 },
 null);
 }
 }
}

Setting up an extended splash screen involves moving a number of steps that are nor-
mally in App.xaml.cs over to a new splash screen code-behind file. In doing so, you’re
making the initialization process take a bit longer and deferring the navigation and
initial page display, which normally happens in App.xaml.cs, to code you’ve written.
The plus side here is you have complete control over when you display your main app
UI and what you do during initialization.

 The SplashScreen class provides a Dismissed event. This event is fired when the
initial app loading has completed and the static splash is about to be removed. It’s at
this point, in this handler, that control is turned over to you and your extended splash
screen. I handled all the UI initialization of the splash screen in the constructor of the
page, so I didn’t have to post any of that. All you do is call the extended initialization
(your data loading, for example) and navigate to the app’s main page.

 You use a SynchronizationContext here because the Dismissed event handler of
the SplashScreen is called on a different thread from the UI thread (see the sidebar).
There’s no explicit cross-thread exception; instead Window.Current is null. Note also
that the event handler is marked as async. That’s so you could use the await keyword
when calling the DoLongRunningInitializationAsync method of the ImageService.

Synchronization, dispatching, and the UI thread

XAML apps have the concept of a UI thread. That’s the thread where all UI controls
are created and all interaction happens.

An app may have any number of additional (background) threads performing additional
work. Sometimes those threads are created explicitly, using Task.Run or Task-
Factory.StartNew methods, for example. Sometimes those threads are created by
code external to your solution, as is the case with some of the networking code.

When a function runs on a thread other than the UI thread, the code in that function
isn’t allowed to manipulate UI elements. Doing so would cause any number of excep-
tions or odd behavior. In most cases, you’ll get a cross-thread exception error. In other
cases, key UI elements may be null. Any such manipulation must be dispatched to
the UI thread for execution there. The two common approaches for dispatching are
to use the Dispatcher object or the SynchronizationContext object.

I prefer SynchronizationContext because you can use it to dispatch calls to any
thread, not just the UI thread, but either approach works fine. Synchronization-
Context requires that you cache the context from the thread you wish to dispatch to.
Once you do that, you can then execute code on that thread using the Post method.

Navigate on
UI thread

http://bit.ly/Win8PushNotifications
http://bit.ly/Win8PushNotifications

274 CHAPTER 12 The splash screen, app tile, and notifications

A
ex
The SplashScreen instance used in the ExtendedSplash constructor is provided in
the OnLaunched handler code in App.xaml.cs. Modify that function so it looks like the
next listing.

protected override void OnLaunched(LaunchActivatedEventArgs args)
{
 if (args.PreviousExecutionState !=
 ApplicationExecutionState.Running)
 {
 var extendedSplash = new ExtendedSplash(args.SplashScreen);

 Window.Current.Content = extendedSplash;
 }
 Window.Current.Activate();
 DispatcherHelper.Initialize();
}

This code follows the model from the original App.xaml.cs OnLaunched override but
simplifies it a bit, by doing away with a lot of the other initialization goodies usually
found here. Some of those steps, such as creating the root frame, were moved to the
extended splash screen code-behind. Some of the others will be added back into the
appropriate places when we cover app startup state in chapter 15.

 At this point, you can run the app and see the switchover from the basic splash
screen to the splash screen with the progress ring on it. After the timeout period, the
app becomes visible as expected.

 Once you’ve seen the extended splash screen a few times, you’ll likely want to com-
ment-out the call to the long-running initialization function, because it will otherwise
make the rest of this chapter somewhat painful.

 In your own apps, you’ll need to make some hard decisions about what data to pre-
load on startup, what data to load as needed while the app is running, and what data
to load in the background while the user is using other functionality. The same
applies to any long-running calculations.

 Once you’ve made those decisions, you can see how easy it is to show progress and
a splash screen while doing any preload. Even if your app doesn’t have any preload

(continued)

Post is a classic asynchronous method that you fire and forget. Any code that you
want to have run serially on the thread must be contained within that function call.

If you’re unsure if an issue is related to threading, you can display the current thread
ID by calling Debug.WriteLine with the System.Environment.CurrentManaged-
ThreadId. That value is an integer value that identifies the thread that the line of code
is running on.

Listing 12.5 App.xaml.cs OnLaunched function with extended splash screen

Create extended
 splash screen

Set content to be
extended splash screen

ctivate
tended
splash
screen

275Default tiles on the start page
work to do, a well-designed static splash screen provides an excellent transition from
the Start page to the app itself.

12.2 Default tiles on the start page
A default (or static) tile is the closest analog to the classic desktop application icon.
It’s simply a way for the user to identify and then launch your app. Once installed, it’s
also the very first image of your app that the user will see. Unlike the old icons, the tile
can be larger and can contain a much higher-resolution image than those common 48
x 48 (and 32 x 32) icons commonly used in desktop apps. Even if you end up with live
tiles, you’ll always start with a base static tile.

 The basic square tile at 100% DPI is a 150 x 150-pixel image. The optional wide ver-
sion of that tile is 310 pixels wide by 150 pixels tall, exactly half the width and half the
height of the DPI splash screen image. Just as with splash screens and other images,
you should provide the square and, if used, wide tiles in the three DPI formats: 100%,
140%, and 180%. Also, consistent with everything else, you don’t specify the .scale-x
when referencing the image file from code, markup, or manifest.

TIP If you have a desktop app, Windows will automatically pick the highest
resolution icon that will fit the space allocated for the desktop icon in the tile.
If you’re building a desktop app, be sure to provide several different resolu-
tion icons in your resources. Windows apps can include a number of sizes up
to and including 256 x 256, but it’s rare to find a third-party application that
provides more than the lower-resolution 32 x 32 versions.

I often use the term tile to mean the image. But, more correctly, the tile is the combi-
nation of the logo image, the background color, and (optionally) the foreground text.
Figure 12.7 shows how to configure these options in the appx manifest designer.

Figure 12.7 The tile and logo-related settings in the project’s appx manifest. Only the 100%
resolution sizes are shown, but the additional 140% and 180% sizes are supported and recommended.
The small logo is used for certain notifications, the “all apps” view, and for uninstallation and other
utility functions.

276 CHAPTER 12 The splash screen, app tile, and notifications
Using the Show Name drop-down list, you can decide whether your app tile displays
the app’s name or just the image for both tile sizes (each may be different). For a
highly branded wide tile image, you’ll likely want to show the image only and incorpo-
rate the app name as part of that. For the smaller tile, or for a less highly branded
wide tile, you’ll want to show the app name. In figure 12.8 I have enabled the app
name in the normal tile but not in the more branded wide tile.

 When should you use a wide tile versus a square tile? In general, if your app is
going to have frequent updates that are more than just a counter or some other tiny
piece of data, you can use a wide tile. If the app does not have updates, or the updates
are something as simple as a new message count, use a square tile. Although some
apps do it, you shouldn’t use a wide tile for static information. You can find a number
of details on this design guidance on MSDN: http://bit.ly/Win8TileDesign.

 You can do quite a bit more with the tile and have really good control over how it
appears. We’ll look at that shortly. First, I’d like to show you how to create secondary
or pinned tiles for your app.

12.3 Secondary or pinned tiles
Secondary tiles are shortcuts, or deep links, into your app. Consider, for example, the
situation where you have a sales or CRM (Customer Relationship Management) app,
and your users typically work with a single customer for weeks or months at a time. In
those cases, you may want to provide the ability to pin that customer to the Start page
to avoid the navigation your app might otherwise require.

Figure 12.8 The wide and normal tiles for this app, in context. From looking at these, you may
think it’s better to have a bright tile background. But some Start page backgrounds are already
bright, so a bright tile might get lost. Focus instead on the brand and on what you want to show.

277Secondary or pinned tiles
On the Windows Desktop, any such pinning was typically a somewhat complex opera-
tion involving creating special shortcuts with command-line arguments; there wasn’t
much support in the UI platform for the shortcuts. Modern Windows Store apps have
built-in functionality for pinning secondary styles, but it does require some work on
your part; see figure 12.9.

 In this section, you’ll improve the app by providing the ability to pin a category to
the Start page. To do this, you’ll add a new button to the app bar, add a new function
and command to the viewmodel, and make adjustments to the startup code from ear-
lier in this chapter. In the end, you’ll have a shortcut tile that will deep link to a cate-
gory in the app.

12.3.1 Creating the tile

WinRT supplies the SecondaryTile class, which may be used to create the tile. You can
request the tile creation from code, but the user must confirm it through a dialog box.

 Each tile has a unique ID within the application. The ID of the tile is a max 64-char-
acter string beginning with a letter or number and containing alphanumeric charac-
ters. It can also contain the period or underscore, but it can’t start with either of those
two characters.

 In addition to the ID, a tile can have parameters. The parameters are simply a
string into which you can stuff name/value pairs to be retrieved when the tile is used
to activate the app.

 For the category pinning in this app, I created a service class to wrap most of the
functionality for creating the tile and for generating IDs and parameters. The next list-
ing shows the new CategoryPinningService class. Create this in the Services folder
alongside the existing ImageService class.

using PhotoBrowser.Model;
using System;
using Windows.UI.StartScreen;

Listing 12.6 Pinning functionality in the CategoryPinningService class

Figure 12.9 The pinned wide tile and
regular tile for the Computer Graphics
category. You can see that the title
overlaps the image. Avoid this in your
own design by providing images with
space for the text.

278 CHAPTER 12 The splash screen, app tile, and notifications

th
fr
c

namespace PhotoBrowser.Services
{
 public class CategoryPinningService
 {
 private static CategoryPinningService _current;
 public static CategoryPinningService Current
 {
 get
 {
 if (_current == null)
 _current = new CategoryPinningService();

 return _current;
 }
 }

 public bool CategoryTileExists(PhotoCategory category)
 {
 if (category == null)
 return false;

 return SecondaryTile.Exists(
 CategoryTileIDFromCategory(category));
 }

 public bool CategoryIsMatch(PhotoCategory category,
 string sanitizedCategory)
 {
 return (bool)(SanitizeCategory(category) == sanitizedCategory);
 }

 private string SanitizeCategory(PhotoCategory category)
 {
 return category.Category.Replace(" ", "");
 }

 private string CategoryTileIDFromCategory(PhotoCategory category)
 {
 string id = SanitizeCategory(category);

 id = "PhotoCategory." + id;
 id = id.Substring(0, Math.Min(id.Length, 64));

 return id;
 }

 public SecondaryTile BuildCategoryPinTile(PhotoCategory category)
 {
 if (category != null &&
 !SecondaryTile.Exists(CategoryTileIDFromCategory(category)))
 {
 var logoUri = new Uri("ms-appx:///Assets/Logo.png");
 var wideLogoUri = new Uri("ms-appx:/Assets///WideLogo.png");

 var tileID = CategoryTileIDFromCategory(category);

Does the
tile exist?

Does the category
match?

Clean up the
categoryCreate

e tile ID
om the
ategory

Build
a tile

Normal and
wide images

279Secondary or pinned tiles
 var displayName = "Photos for " + category.Category;
 var shortName = category.Category;
 var arguments = "category=" + SanitizeCategory(category);

 var secondaryTile = new SecondaryTile(
 tileID, shortName, displayName, arguments,
 TileOptions.ShowNameOnLogo | TileOptions.ShowNameOnWideLogo,
 logoUri, wideLogoUri);

 secondaryTile.ForegroundText = ForegroundText.Light;

 return secondaryTile;
 }
 else
 return null;
 }
 }
}

The most important function in this file is the BuildCategoryPinTile function. This
function sets up the wide and normal logos, using existing image assets. You could cer-
tainly use dedicated secondary image files if you want. The function also sets the dis-
play name for the tile (shown in the “all apps” view), the short name, and the
arguments. The arguments indicate that the app is being activated from a secondary
or shortcut tile.

 This function does everything up to the creation of the tile but stops short of actu-
ally handling the pinning. That’s because pinning causes a dialog to appear, and that
just felt wrong to have inside the service class.

 The pinning itself happens on the CategoryBrowser page. So, the service call is
wrapped into a command in the CategoryBrowserViewModel class. The following list-
ing has the additions to the viewmodel.

public RelayCommand PinCategoryCommand
{
 get;
 private set;
}

public async void PinCategory()
{
 var tile =
 CategoryPinningService.Current.BuildCategoryPinTile(Category);

 await tile.RequestCreateAsync();
}

public bool CanPinCategory()
{
 return !CategoryPinningService.Current.CategoryTileExists(Category);
}

Listing 12.7 Pinning functionality in the CategoryBrowserViewModel

Activation
arguments

Create
tile

Pin tile

280 CHAPTER 12 The splash screen, app tile, and notifications
In the same class, you’ll need to add a using statement for Windows.UI.StartScreen.
Also, be sure to add the command creation to the constructor of the viewmodel, like
this:

PinCategoryCommand = new RelayCommand(
 () => PinCategory(), () => CanPinCategory());

When run (once you put in the
app bar button to launch this),
the app will display the confir-
mation dialog shown in figure
12.10 when the user clicks the
app button.

 The back-end functionality is
in place. Now you need another
app bar button. Luckily, from
the work in the previous chapter,
you already have an app bar in
place on the CategoryBrowserPage. Because this function will work on the entire cat-
egory, the button is toward the right. But because you don’t want it to be confused
with the button that deletes all images, you add another separator. To keep things sim-
ple, the next listing shows the entire right-aligned stack panel for the bottom app bar.

<StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right"
 Grid.Column="1">
 <Button Style="{StaticResource PinCategoryAppBarButtonStyle}"
 Command="{Binding PinCategoryCommand}" />
 <Rectangle Margin="5,15,5,15"
 Stroke="White"
 StrokeThickness="2"
 VerticalAlignment="Stretch"
 Width="1"
 Opacity="0.25"/>
 <Button Style="{StaticResource ExterminateAppBarButtonStyle}"
 Command="{Binding DeleteAllPhotosCommand}" />
</StackPanel>

The app bar button relies on a style you haven’t yet defined. The style is one of the
stock styles, snagged from the StandardStyles.xaml resource dictionary, modified
slightly, and then copied into App.xaml where the rest of the in-use app bar button
styles reside. The following listing has the markup you need to add to that file.

<Style x:Key="PinCategoryAppBarButtonStyle"
 TargetType="ButtonBase"

Listing 12.8 New pinning button on the CategoryBrowserPage app bar

Listing 12.9 App.xaml style for the app bar button

Figure 12.10 Pinning confirmation dialog. This is a system-
generated dialog that uses the SecondaryTile
information you provide.

Pin style
Command

New separator

Existing
button

281Secondary or pinned tiles
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId"
 Value="PinAppBarButton"/>
 <Setter Property="AutomationProperties.Name"
 Value="Pin Category"/>
 <Setter Property="Content"
 Value=""/>
</Style>

Now you have in place the code to create a secondary tile. At this point, you should be
able to go into the app and create a tile that then appears on the Start page. Clicking
it won’t do anything special, however—it just brings you into the app. To make the tile
really work, you need to add activation code to handle the deep linking.

12.3.2 Activating the app with the secondary tile

Right now, the app knows how to create a tile but not what to do with the tile argu-
ments when the app is activated. You need to put in code that checks to see if any
arguments were passed and, if so, whether they indicate a category parameter. Before
you do that, you’ll need to add in just a little infrastructure to support the new naviga-
tion model.

 In previous code, the CategoryBrowserPage was always called from MainPage.
Therefore, MainPage took care of creating and populating the viewmodel for the cate-
gory page and passing it in as a navigation argument. That won’t do here, so you need
to add an ImageService function that returns the categories for you, and then you
need to use that from the splash screen. The next listing includes the new Image-
Service GetCategories method.

public IList<PhotoCategory> GetCategories()
{
 var photos = GetPhotos();

 return photos.GroupBy(p => p.Category)
 .Select(p => new PhotoCategory()
 {
 Category = p.Key,
 Photos = p.ToList()
 }).ToList();
}

The code simply replicates what was already being done in the MainViewModel but
specifically casts to a list using ToList. (It could have been left as is and the return
type changed to an IEnumerable, but I prefer returning lists.) If you want, you can
update the MainViewModel LoadPhotos code to use this method rather than doing the
categorization within the viewmodel.

 In an app that doesn’t use an extended splash screen, the activation code would go
solely in App.xaml.cs. But with the extended splash screen, most of that code in our

Listing 12.10 ImageService method to retrieve categories and to match categories

Pin glyph

Get all photos

Group and return

282 CHAPTER 12 The splash screen, app tile, and notifications
app is in the ExtendedSplash.xaml.cs file. The following listing contains the updates
you’ll need to support the pinned activation.

private string _activationTileId;
private string _tileArguments;

public ExtendedSplash(SplashScreen splashScreen,
 string activationTileID, string tileArguments)
{
 this.InitializeComponent();

 _uiContext = SynchronizationContext.Current;

 _activationTileId = activationTileID;
 _tileArguments = tileArguments;

 if (splashScreen != null)
 {
 ...
 }
...
}

async void OnSplashScreenDismissed(SplashScreen sender, object args)
{
 await ImageService.Current.DoLongRunningInitializationAsync();

 _uiContext.Post((s) =>
 {
 Window.Current.Content = rootFrame;

 if (_tileArguments.StartsWith("category="))
 {
 string categoryText = _tileArguments.Substring(
 _tileArguments.IndexOf('=') + 1);

 var vm = new CategoryBrowserViewModel();

 var categories = ImageService.Current.GetCategories();

 foreach (PhotoCategory category in categories)
 {
 vm.AllCategories.Add(category);

 if (CategoryPinningService.Current.CategoryIsMatch(
 category, categoryText))
 vm.Category = category;
 }

 rootFrame.Navigate(typeof(CategoryBrowserPage), vm);
 }
 else
 {
 rootFrame.Navigate(typeof(MainPage));

Listing 12.11 Updates to ExtendedSplash.xaml.cs to support pinned activation

Class-level tile
information

Parameter
assignment

Check for
category
activation

Get category
name

Create
viewmodel

Load all
categories

Find linked
category

Navigate to
category

browser page

283Secondary or pinned tiles
 }
 },
 null);
}

This code includes a new constructor that’s used just to accept the tile arguments and
ID and store them in a class variable. Most of the interesting code here is in the
OnSplashScreenDismissed method. The older version simply navigated to the
MainPage. This new version first checks to see if a category was provided in the argu-
ments. If so, it then goes through the process of constructing a viewmodel, loading
the categories, finding the specified category, and then navigating to the Category-
BrowserPage.

 That’s quite a bit of code in the splash screen code-behind, begging to be some
place testable. If the app were to get any more complex and support multiple types of
pinning, for example, I’d pull this out into a navigation-specific class. You may find
that depending on how your navigation works, the extended splash screen doesn’t
need to be loaded when the app is deep-linked using a secondary tile. In that case,
you’d create a separate navigation class that, when called from app.xaml, instantiates
the appropriate pages and handles all of the initialization. As all time-constrained
authors say at one point or another, I’ll leave that as an exercise for the reader.

 You still have a little work to do in App.xaml.cs, however. The ExtendedSplash
screen needs to get the information from the tile activation. In this example, all you
use is the arguments, but you’ll pass in the TileID as well. Here’s the updated
OnLaunched method.

protected override void OnLaunched(LaunchActivatedEventArgs args)
{
 if (args.PreviousExecutionState != ApplicationExecutionState.Running)
 {
 var extendedSplash = new ExtendedSplash(
 args.SplashScreen, args.TileId, args.Arguments);

 Window.Current.Content = extendedSplash;
 }
 Window.Current.Activate();

 DispatcherHelper.Initialize();
}

Once this code is in place, that’s it. You can now create the pinned tile (or use the one
you created earlier), click it, and navigate directly into a category in the app.

TIP Debugging pinned tiles takes a little extra work, because the tiles aren’t
pinned in the debugger, and there’s no real way to simulate the arguments.
There’s an easy fix: Go into the project properties, Debug tab, and select the
option “Do not launch, but debug my code when it starts.” Then launch your
app from a pinned tile, and you’ll be able to step into breakpoints.

Listing 12.12 Updates to the OnLaunched method of App.xaml.cs

Updated
constructor call

284 CHAPTER 12 The splash screen, app tile, and notifications
Secondary tiles are a great way to extend the experience for your app and provide
additional conveniences to your users. Not only are they a way to get the user into a
specific part of your app quickly, but they can also take advantages of the features pro-
vided to tiles in general, as you’ll see in the next section. This provides your app with
that much more surface area to get in front of the user, to encourage interaction.

 Even when deep-linking, tiles are more than just static images with text. What
makes tiles really special is the ability to display notification information, or to be what
we like to call a “live tile.”

12.4 Tile notifications or live tiles
Up until Windows 8, the only thing your app could show to the world when not run-
ning was a simple static icon. Sure, you could have a system tray icon, but your app (or
some subset of it, if you architected it nicely) was still running in order to power that
tray icon. Everything you’ve seen so far in this chapter has been a modern analog to
that. What makes the Start page in Windows 8 really shine is tile notifications and the
concept of live tiles.

Live tiles are tiles that show updates from the apps they represent. For example, a
news live tile might show the latest headlines or images from the top stories. An even
simpler example is a mail or social app that may simply show the number of unread
messages as a number in the corner. Both of those scenarios require a server-side com-
ponent, typically Windows Azure Mobile Services.1 A more basic type of notification or
tile is the queued live tile update and the in-app notification.

 Queued live tile updates are sent to the system while the app is running but then
handled entirely by the OS so that they can run while the app is closed. Notifications

URL-based deep links using protocol handlers

This chapter covers deep links on the Start page using pinned secondary tiles, but
how would you share these links?

You can’t share the secondary tiles, but you can create deep links into your app by
registering as a protocol handler. This provides the ability for you to create a custom
URL protocol and then handle any requests made to that protocol. The feature was
really intended for apps along the lines of Skype, but it can be easily bent to allow
you to provide links such as

pete://Customer/12345/invoice/57

and then mail them around. Once the link is clicked in email, your app will be launched
(or activated), the OnActivated method in App.xaml.cs will execute, and you can parse
the link and do with it what you need to do.

For more information on creating a protocol handler and activating the app, see this
link: http://bit.ly/WinRTProtocolActivation.

1 You can learn more about Windows Azure Mobile Services at http://bit.ly/AzureMobileServices.

285Tile notifications or live tiles
are a bit different in that they happen in real time, and the only way to update a noti-
fication while the app is closed is to use a server-side solution. Similarly, the only way
to push live tile updates for a closed app (think of an app with new messages, tweets,
or images) is to use a server-side component.

 In this section you’ll write code to send notifications that cause the tiles to update
with data from the app, all on the client. First, we’ll look at a simple text update to the
small square tile. Then we’ll look at sending combined image and text notifications.
Finally, you’ll learn how to queue up multiple local notifications to provide that nifty
tile-flipping animation on the Start page.

12.4.1 Simple text notifications

The simplest type of notification is a single tile value, displaying dynamically created
content in the form of a single notification. This type of notification can be updated
any time the app is running (or from a background process if the app supports that).

 Apps can send notifications to their wide tiles and to their standard square tiles.
The supported types of notifications are different, so if your app supports both types
of tiles, you’ll need to provide separate notification templates and data for each.

 Figure 12.11 shows a single tile
notification used to display the num-
ber of images in the app. This is simi-
lar to showing the number of new
email, unread photos, or items wait-
ing in a queue.

 To create this type of notification,
you’ll follow the same pattern you
have elsewhere and create a Tile-
NotificationService class in the
Services folder. This class will be used
from the MainViewModel to perform the notification. Create this class now using the
following code.

using System;
using System.Collections.Generic;
using System.Linq;
using Windows.UI.Notifications;
using Windows.Data.Xml.Dom;
using PhotoBrowser.Model;

namespace PhotoBrowser.Services
{
 public class TileNotificationService
 {
 private static TileNotificationService _current;
 public static TileNotificationService Current

Listing 12.13 The TileNotificationService class

Figure 12.11 A simple text notification using the
TileSquareBlock template with two text
elements showing actual data from the app. Notice
the small logo. Given its 30 x 30 size, a version
without rotated images would work better here.

286 CHAPTER 12 The splash screen, app tile, and notifications

n

 {
 get
 {
 if (_current == null)
 _current = new TileNotificationService();

 return _current;
 }
 }

 public void CreateSimpleSquareTileNotifications(
 IList<PhotoCategory> categories)
 {
 var tileXml = TileUpdateManager.GetTemplateContent(
 TileTemplateType.TileSquareBlock);

 int imageCount = ImageService.Current.GetPhotos().Count;

 var textElements = tileXml.GetElementsByTagName("text");

 var countElement = (XmlElement)textElements[0];
 var textElement = (XmlElement)textElements[1];

 countElement.AppendChild(
 tileXml.CreateTextNode(imageCount.ToString()));

 textElement.AppendChild(tileXml.CreateTextNode("Photos"));

 var notification = new TileNotification(tileXml);

 var updater = TileUpdateManager
 .CreateTileUpdaterForApplication();
 updater.Update(notification);
 }
 }
}

The format of the notification is specified using a template. The TileTemplateType
enumeration lists all the supported templates available to the app. There are quite a
few in that enumeration, each offering a different positioning of text and imagery. For
the full list, see http://bit.ly/Win8TileTemplates.

 Each template in the list has an associated XML template that you must fill with
data. Although the schema is common across all templates, the use of the individual
elements and attributes is specific to the individual templates. For the XML for each
template, please see http://bit.ly/Win8TileTemplateCatalog.

 In this case, there are two text nodes in the template. The first is used to display
the large number on the tile. The second displays the single line of text below the
large number.

 Once the template values have been set, the code creates a TileNotification
instance. This represents the actual notification to be sent to the tile. That notification
is then sent to the Start page via the TileUpdateManager class’s Update method.

Get template XML

Get text
nodes

Get count node

Get text
node

Set count text

Set text

Create
otification

Send notification

287Tile notifications or live tiles
 This service needs to be called from elsewhere in the app. I decided to call it from
the MainViewModel class’s LoadPhotos method, right after the image collections have
been populated.

 The following listing has the updated LoadPhotos method in the MainViewModel
class.

public void LoadPhotos()
{
 var groups = ImageService.Current.GetCategories();

 Photos.Clear();

 foreach (var g in groups)
 Photos.Add(g);

 TileNotificationService.Current
 .CreateSimpleSquareTileNotifications(Photos);
}

If you run the app at this point, you’ll be able to go back to the Start page and see the
tile update with the notification. Note that if you run the app multiple times, you’ll
sometimes need to right-click the tile, disable live notifications, and reenable them
to see the update. This happens
because you haven’t changed the
Tag for the notification to make
Windows see it as a new and unique
notification.

 One thing I don’t care for in the
notification is the use of the small
logo. I prefer, for this app, to use the
app name, as shown in figure 12.12.

 The XML for the notification
includes an attribute of the visual
node named branding. This optional value can be set to "logo", "name", or "none" to
control how the app’s branding is displayed on the live tile. Here’s the updated notifi-
cation method with this change in place.

public void CreateSimpleSquareTileNotifications(
 IList<PhotoCategory> categories)
{
 var tileXml = TileUpdateManager.GetTemplateContent(
 TileTemplateType.TileSquareBlock);

 int imageCount = ImageService.Current.GetPhotos().Count;

Listing 12.14 The MainViewModel LoadPhotos update to create notifications

Listing 12.15 Updates to tile notification to support app name branding

Use GetCategories
method

Create tile
notification

Figure 12.12 The updated notification, now using the
app name rather than the app’s small logo

288 CHAPTER 12 The splash screen, app tile, and notifications

“

 var visualElement = tileXml.GetElementsByTagName("visual")[0];

 var attribute = tileXml.CreateAttribute("branding");
 attribute.NodeValue = "name";
 visualElement.Attributes.SetNamedItem(attribute);

 var textElements = tileXml.GetElementsByTagName("text");
 var countElement = (XmlElement)textElements[0];
 var textElement = (XmlElement)textElements[1];

 countElement.AppendChild(
 tileXml.CreateTextNode(imageCount.ToString()));
 textElement.AppendChild(tileXml.CreateTextNode("Photos"));

 var notification = new TileNotification(tileXml);

 var updater = TileUpdateManager.CreateTileUpdaterForApplication();
 updater.Update(notification);
}

This listing does everything the prior version of this function did but with the addi-
tional logic to find the visual node and set its branding property to the value "name".
You’ll only know of this and other attributes if you learn the full tile schema, which
can be found at http://bit.ly/Win8TileSchema.

 If you run the app now, you’ll see that the tile has changed (you may need to force
a refresh of it) to match figure 12.12.

 Straight-text notifications are useful to keep the UI fresh with information. For
more visual apps, like this photo browser, you may want to instead include images in
the notifications.

12.4.2 Images in notifications

Although supported, the square tile is not often used to show images. Instead, this is
where the wide tile shines. Many of the notification templates support the use of
images. Some of them allow you to use several images at once to create a collage.
Images used in tile notifications must be 1024 x 1024 or smaller and less than 200 KB.
Most of the images supplied with this sample, and any you might substitute, will either
be larger resolution-wise or larger size-wise.

CREATING THE THUMBNAIL IMAGES
We haven’t covered file IO yet, so I’ve taken an easier approach and pregenerated the
thumbnails. I’ve added to the project a small thumbnail for each image in the app.
The URIs for the thumbnail for each image are then made available through the
ThumbnailUri property of the Photo class:

public Uri ThumbnailUri { get; set; }

Add this property to your copy of the Photo class in the Model folder. Once that has
been done, you need to update the GetPhotos method of the ImageService class so it

Get
visual”

node Set “branding”
property to “name”

289Tile notifications or live tiles
builds the ThumbnailUri as part of the image-loading process. The next listing shows
the updated function.

public IList<Photo> GetPhotos()
{
 if (_photos == null)
 {
...

 for (int i = 0; i < fileNames.Length; i += 2)
 {
 string name = fileNames[i];
 string category = fileNames[i + 1];

 string displayName =
 name.Substring(0, name.LastIndexOf('.'));

 string uriRoot = "ms-appx:/Pictures/";

 _photos.Add(
 new Photo()
 {
 ImageUri = new Uri(uriRoot + name),
 DisplayName = displayName,
 ThumbnailUri =
 new Uri(uriRoot + "thumbnail_" + displayName +".jpg"),
 Category = category,
 LikesCount=9001
 });
 }
 }
 return _photos;
}

To keep file sizes small, all of the thumbnails are JPEGs. The files are named like the
original image, but with the .jpg extension and a prefix of thumbnail_. The code in
this listing simply builds up the new ThumbnailUri property using this pattern. Note
that if you wanted to, you could now go back to the thumbnail-generation code for
the MainPage GridView as well as the navigation bar on the CategoryBrowserPage and
update them to use the thumbnail property rather than the full-scale image. For this
chapter, I didn’t do that, but if you’re dealing with really large image files, this can be
a great way to boost performance.

GENERATING THE NOTIFICATION
For this tile notification, I decided to use the wide tile. Rather than have the entire tile
taken up by a single image, I decided to use one of the collection-based templates, spe-
cifically TileWideImageCollection. This template lets you have one image on the left
that takes up half the wide tile and four additional images arranged in a 2 x 2 grid on

Listing 12.16 Updated ImageService GetPhotos method

File name
without
extension

Root of
files URL

ThumbnailUri

290 CHAPTER 12 The splash screen, app tile, and notifications
the right. The template itself is quite simple, having five image nodes each with an src
attribute and an optional alt attribute. Figure 12.13 shows this tile for our app.

 The code to generate this notification is implemented as a new method in the
TileNotificationService class. You’ll continue to keep the older notification
method in there, because you want to have something that will notify the square tile as
well. The new method is shown here.

public void CreateWideTileNotifications(IList<PhotoCategory> categories)
{
 var tileXml = TileUpdateManager.GetTemplateContent(
 TileTemplateType.TileWideImageCollection);

 var visualElement = tileXml.GetElementsByTagName("visual")[0];
 var attribute = tileXml.CreateAttribute("branding");
 attribute.NodeValue = "name";
 visualElement.Attributes.SetNamedItem(attribute);

 var imageElements = tileXml.GetElementsByTagName("image");

 var rnd = new Random();

 for (int i = 0; i < 5; i++)
 {
 var element = (XmlElement)imageElements[i];
 var srcAttribute = tileXml.CreateAttribute("src");

 int categoryIndex = i % categories.Count;
 int photoIndex =
 rnd.Next(0, categories[categoryIndex].Photos.Count-1);

 srcAttribute.NodeValue =
 categories[categoryIndex]
 .Photos[photoIndex].ThumbnailUri.ToString();

 element.Attributes.SetNamedItem(srcAttribute);
 }

 var notification = new TileNotification(tileXml);

 var updater = TileUpdateManager.CreateTileUpdaterForApplication();
 updater.Update(notification);
}

Listing 12.17 New notification method in TileNotificationService

Figure 12.13
The wide tile with five image
thumbnails and the app name

Use name
for branding

Get all
image nodes

Get safe
category

Get random
photo

Set thumbnail
source

Create
notification

291Tile notifications or live tiles
This code is very similar to the previous tile notification; the primary difference is
which template you use. Because the template supports five images, you loop through
the categories, setting the template values. You use a random image from each cate-
gory and also have a modulus function in place to ensure you don’t go past the num-
ber of categories in the collection.

 This method then needs to be called as part of the image-loading process. In the
MainViewModel class, in the LoadPhotos method, right under the previous notifica-
tions call, add the following line of code:

TileNotificationService.Current.CreateWideTileNotifications(Photos);

That’s it! Run the app again, and turn the tile back into a wide tile (right-click the tile
on the Start page and then select the option to turn on wide tiles). You should now see
the five images displayed.

TIP If you cast the IXmlNode for the image to an XmlElement, you can use
SetAttribute("src", value) instead of the slightly longer form with Attri-
butes.SetNamedItem that I used.

One thing your tile hasn’t done that many on the Start page do is flip through multi-
ple pages of data. My People app tells me about activity from my Facebook timeline,
the Photos app shows me a continuous slide show of photos, and the News app scrolls
through top headlines. How can you do that in your app?

12.4.3 Queuing multiple tile notifications

An app can queue multiple notifications using the aptly named notification queue.
The code to create notifications is almost identical; all you need to do is enable queu-
ing and then provide each notification with a unique tag so Windows knows each is
uniquely valid and not simply an overwritten notification.

 Windows will allow an app to have up to five active notifications; it ignores any
beyond that (even those will eventually stop updating if the app hasn’t been used for
several days). The app code can
overwrite existing notifications,
or it can set expiration dates on
notifications as they are created,
thereby ensuring freshness of
data over time.

 As shown in figure 12.14,
each of the notifications in the
queue can use completely differ-
ent templates. In support of that,
you’ll do a little refactoring of
the TileNotificationService

class and then add in support for
queuing.

Figure 12.14 Three separate notifications using different
images. Notice how the text + image template uses the
app’s small logo even though you explicitly set the branding
to be the name. Names don’t fit in that template so
Windows automatically reverts to the logo.

292 CHAPTER 12 The splash screen, app tile, and notifications

n

 The following listing shows the starting point for the changes.

private void SetBrandingToName(XmlDocument tileXml)
{
 var visualElement = tileXml.GetElementsByTagName("visual")[0];

 var attribute = tileXml.CreateAttribute("branding");
 attribute.NodeValue = "name";
 visualElement.Attributes.SetNamedItem(attribute);
}

public void CreateWideTileNotifications(IList<PhotoCategory> categories)
{
 var updater = TileUpdateManager.CreateTileUpdaterForApplication();
 updater.EnableNotificationQueue(true);

 for (int i = 0; i < 5; i++)
 {
 if (i % 2 > 0)
 {
 updater.Update(CreateTileWideImageTextNotification(
 categories, "tile.t." + i));
 }
 else
 {
 updater.Update(CreateTileWideImageCollectionNotification(
 categories, "tile.i." + i));
 }
 }
}

This listing provides a new function that factors out the reusable code to set the
branding to name rather than icon. The primary interface function is changed to one
that simply calls out to other functions to create the five notifications. Using a simple
modulus operator, you alternate between which template is used for the particular
notification.

TIP The tile notification SDK samples at http://dev.windows.com include a
helper class designed to help reduce some of this notification code in your
own apps.

There are two new tile notification methods required to support the updated queue
approach. The next listing shows the first, which is the same five image tiles you cre-
ated earlier.

private TileNotification CreateTileWideImageCollectionNotification(
 IList<PhotoCategory> categories, string tag)
{
 var tileXml = TileUpdateManager.GetTemplateContent(

Listing 12.18 Updated TileNotificationService class with queuing support

Listing 12.19 Five-image notification method

Set branding
to name

Enable
notification
queue

Alternate
notifications

Generate
otifications

293Tile notifications or live tiles
 TileTemplateType.TileWideImageCollection);

 SetBrandingToName(tileXml);

 var imageElements = tileXml.GetElementsByTagName("image");

 var rnd = new Random();

 for (int i = 0; i < 5; i++)
 {
 var element = (XmlElement)imageElements[i];
 var srcAttribute = tileXml.CreateAttribute("src");

 int categoryIndex = i % categories.Count;
 int photoIndex =
 rnd.Next(0, categories[categoryIndex].Photos.Count - 1);

 srcAttribute.NodeValue =
 categories[categoryIndex]
 .Photos[photoIndex].ThumbnailUri.ToString();

 element.Attributes.SetNamedItem(srcAttribute);
 }

 var notification = new TileNotification(tileXml);
 notification.Tag = tag;

 return notification;
}

There’s not much new here. The code has been factored out to set the name brand-
ing, and the method has been changed to return a TileNotification instance rather
than adding the notification to the manager itself. Before returning the notification,
you set the Tag property. This is what Windows uses to identify a notification and weed
out duplicates.

 The next listing shows a new kind of tile. This one has one wide image and two
lines of text below it. You’ll use that text to show the category name and then the
image name.

private TileNotification CreateTileWideImageTextNotification(
 IList<PhotoCategory> categories, string tag)
{
 var tileXml = TileUpdateManager.GetTemplateContent(
 TileTemplateType.TileWideImageAndText02);

 SetBrandingToName(tileXml);

 var imageElement = tileXml.GetElementsByTagName("image")[0];
 var categoryNameElement = tileXml.GetElementsByTagName("text")[0];
 var photoNameElement = tileXml.GetElementsByTagName("text")[1];

 var rnd = new Random();

Listing 12.20 Image and text notification method

Set branding
to name

Set unique tag

Use image and
text template

Get
nodes

294 CHAPTER 12 The splash screen, app tile, and notifications
 var category = categories[rnd.Next(0, categories.Count-1)];
 categoryNameElement.AppendChild(
 tileXml.CreateTextNode(category.Category));

 var photo = category.Photos[rnd.Next(0, category.Photos.Count-1)];
 photoNameElement.AppendChild(
 tileXml.CreateTextNode(photo.DisplayName));

 var srcAttribute = tileXml.CreateAttribute("src");
 srcAttribute.NodeValue = photo.ThumbnailUri.ToString();
 imageElement.Attributes.SetNamedItem(srcAttribute);

 var notification = new TileNotification(tileXml);
 notification.Tag = tag;

 return notification;
}

The template used for this notification requires an image and two text values. For this
app, the top text value is the category name; the bottom is the image name. The
image itself is randomly chosen from the randomly selected category.

 With this method in place, you can now run the app. Remember, you may need to
disable and then enable notifications on the Start page in order to see the change.
You should see up to five rotating tiles, each with random images. Now you really have
a Start page presence!

 Notification through live tiles is one of the best ways you can provide timely infor-
mation to your user. It’s a way for you to move beyond the static imagery and to
instead provide information that will entice the user to come into and use the app
again and again.

 Tile notifications get the user into your app when they’re looking at the Start page.
What about cases when you need to inform the user of something when they’re run-
ning another app or even another page in the same app? For those instances, you
need toast notifications.

12.5 Toast notifications
By now you’ve probably installed a few apps from the Windows Store. When doing so,
you receive a notification on the upper right of the screen, telling you the app has

Lock screen notifications

Apps can also support lock screen notifications. This is similar to tile notifications
but requires that you explicitly request the capability in the manifest, under the Noti-
fications section. In addition, you must set the badge logo in the same manifest.

Beyond that, the app must run in the background, or else the lock screen notification
won’t be very useful or timely.

Lock screen updates build on what you’ve learned for tile notifications. For more in-
formation on lock screen notifications see http://bit.ly/Win8LockScreenNotifications.

 Set top text

Set bottom
text

Set photo

Create
notificationSet tag

295Toast notifications
completed installation. This rectangular message, containing an image and text, is
called toast. The name is historical, from the days when Outlook would pop up new
message notifications at the bottom-right corner of the screen, sliding up from the
bottom like a piece of toast coming from the toaster. The name stuck.

 Toast notifications are useful when your app may not have focus or the part of the
app that generated the notification is no longer in focus. For example, email apps will
pop up toast when another app has focus. Apps that may have to perform a long-running
process server-side, like provision a site, can use toast whether or not they have focus.

 Whereas tile notifications are informative and enticing, toast notifications are
time-sensitive and potentially urgent, like an incoming phone call.

 Notification toasts can be scheduled and recurring, like reminders coming from
your favorite calendar app. They can, of course, be one-time discrete events that hap-
pen right when the app fires off the notification. The duration the notification stays
visible depends on whether you use a standard or a long-duration toast. For most
cases, the standard toast will be sufficient. But when you really need to grab the user’s
attention (phone call or appointment reminder, for example), the 25-second dura-
tion of the long-duration toast is a good choice.

 The use of toast in this app will be a
bit contrived but reasonable. When the
user deletes the images for the category,
they’ll see a notification toast telling
them what just happened. Figure 12.15
shows the toast notification.

 In this section you’ll create a toast
notification service class and use it to
send a toast notification on behalf of the
app. As a bonus, you’ll use the UserInformation class to get the first name of the cur-
rently logged-in user to display in the notification.

NOTE Desktop apps can also send toast notifications as long as they have a
shortcut in the All Apps view on the Start page.

12.5.1 Creating the notification service

Following the same pattern as in all of the other examples, you’ll create a service class
to handle the actual notification. The methods of this service class will then be called
from appropriate viewmodel methods in the app.

 In the Services folder create a new class named ToastNotificationService. It will
look very much like all of the other service classes. Here’s the code for this class.

using PhotoBrowser.Model;
using System;
using Windows.Data.Xml.Dom;
using Windows.UI.Notifications;

Listing 12.21 The ToastNotificationService class

Figure 12.15 The toast notification for this app.
Notice the use of the small logo on the bottom
right. As an aside, “Exterminated Nature” sounds
more impactful than it actually was.

296 CHAPTER 12 The splash screen, app tile, and notifications
namespace PhotoBrowser.Services
{
 public class ToastNotificationService
 {
 private static ToastNotificationService _current;
 public static ToastNotificationService Current
 {
 get
 {
 if (_current == null)
 _current = new ToastNotificationService();

 return _current;
 }
 }

 public async void NotifyCategoryDeleted(PhotoCategory category)
 {
 var toastXml = ToastNotificationManager.GetTemplateContent
 (ToastTemplateType.ToastImageAndText02);

 var imageElement =
 toastXml.GetElementsByTagName("image")[0];

 var headingTextElement =
 toastXml.GetElementsByTagName("text")[0];

 var bodyTextElement =
 toastXml.GetElementsByTagName("text")[1];

 string heading = "Exterminated " + category.Category;
 string bodyTemplate =
 "ZOMG! {0} deleted every image in the category!";

 string userFirstName =
 await Windows.System.UserProfile
 .UserInformation.GetFirstNameAsync();

 string bodyText = string.Format(bodyTemplate, userFirstName);

 headingTextElement.AppendChild(
 toastXml.CreateTextNode(heading));

 bodyTextElement.AppendChild(
 toastXml.CreateTextNode(bodyText));

 if (category.Photos.Count > 0)
 {
 var thumbnail = category.Photos[0].ThumbnailUri.ToString();
 ((XmlElement)imageElement).SetAttribute("src", thumbnail);
 }

 var toastElement = toastXml.SelectSingleNode("/toast");

Get
template

Build heading

Build body

Get user’s
first name

Set heading

Set body

Set photo

297Toast notifications

Use
dura
 var launchParams = "deletedCategory";
 ((XmlElement)toastElement).SetAttribute("duration", "long");

 ((XmlElement)toastElement).SetAttribute("launch", launchParams);

 var toast = new ToastNotification(toastXml);
 var notifier = ToastNotificationManager.CreateToastNotifier();
 notifier.Show(toast);
 }
 }
}

This example creates the toast notification using a long duration and displays a mes-
sage about the current user having deleted an entire category. To get the username,
you use the UserInformationClass in the UserProfile namespace.

 Like tile notifications, toast notifications are template-based. You can see the full
list of templates in the template catalog at http://bit.ly/Win8ToastTemplateCatalog.
Also, like tile notifications, toast notifications can’t have additional controls on them.

 Also, like tiles, toast notifications can have launch parameters associated with
them. The idea is that if you have scheduled notifications, or notifications generated
externally, you can provide information in the notifications that will be passed to the
app on launch, just as you did with the secondary tiles. You set a simple launch param-
eter here, just to show how, but don’t use it.

 The notification code will be called from the DeleteAllPhotos method of the
CategoryBrowserViewModel. That way, it will be kicked off when the user clicks the
app bar button. The following listing shows the updated method, adding only the sin-
gle line of code.

private void DeleteAllPhotos()
{
 if (Category != null)
 {
 ToastNotificationService.Current
 .NotifyCategoryDeleted(Category);

 AllCategories.Remove(Category);

 Category.Photos.Clear();

 ImageService.Current.RemoveImagesWithCategory(Category.Category);

 Category = null;
 SelectedPhoto = null;
 }
}

Before you can run this app and see the toast, you must enable it.

Listing 12.22 Updated CategoryBrowserViewModel DeleteAllPhotos method

long
tion

Set launch
parameters

Create
and show
toast

New call to
ToastNotificationService

298 CHAPTER 12 The splash screen, app tile, and notifications
12.5.2 Enabling toast

Toast is a feature that must be specifically enabled in the appx manifest. Requesting
this feature will enable toast and will also cause your app to be listed in the Notifica-
tions section of the PC settings, as shown in figure 12.16.

 The appx manifest setting to enable toast notifications (shown in figure 12.17) is
simply a drop-down list with Yes or No. If you don’t enable this, or if the user turns off
notifications, your notifications will silently fail.

 With the appx manifest setting in place, you can now run the app and click the
button to delete all photos in the category. While the toast notification is up, Alt-Tab
to the desktop or switch to another app—you’ll still see the toast notification, as long
as you’re within the timeout period. Click the X to close the toast, or click the toast
notification itself to bring you back to the PhotoBrowser app.

 Toast notification is a great way to show time-sensitive information to the user. In
your own apps, you can even use it in place of the old desktop MessageBox for strictly
informational presentation (such as “File X was saved to location Y” or “Print job
completed”).

Figure 12.16 The app for this chapter shows up under the Notifications section of PC settings
because it has been registered to send notifications.

Figure 12.17
Toast must be enabled in
the manifest before you
can use it in code.

299Summary
12.6 Summary
It could, perhaps, be easy to put this entire chapter under the “Things You Leave ’til
Last” heading on an app development project. I hope I have shown you that the
splash screen, tiles, and notifications are not simply the “design me an icon and splash
graphic” type tasks from desktop apps but are key parts of the overall experience.

 When you have no up-front loading or work to do, a simple splash screen will suf-
fice. But if you do want to perform something time-consuming up front, using an
extended splash screen is the way to go.

 Your app tile is more than an icon: It’s a living surface you can use to present infor-
mation to the user and to encourage them to use your app. It’s not the equivalent of the
“Yes, we’re open” sign in the store window but more like a personalized welcome ban-
ner hanging on the sidewalk, updating regularly with items of interest to you. The tile
is an extremely powerful part of the user experience; make the best use of it you can.

 When you want to grab the user’s attention when they’re in another app or on a
different page in the same app, notification toast is the way to go. Toast is a standard-
ized approach to alerting the user of events, like incoming phone calls, appointments,
or other high-priority information. Do not forget, the user is always in control and can
turn off the toast (or live tiles) anytime they want.

 In the next chapter, we’ll continue our exploration of the UI by discussing app-pin-
ning states and how to handle orientation changes.

Push notifications

All of the notifications you’ve seen in this chapter have been local notifications. That’s
great for the majority of uses, but there are times when locally generated notifications
are not sufficient. Consider a situation when you need to alert the user of an event
that happens on a web server (like new comments on a blog, or a completed deploy-
ment, or new items in a server-side work queue).

For those situations, notifications can also be generated from outside the PC, as push
notifications from a cloud service. This is accomplished through WNS (Windows push
Notification Services). For more information on push notifications and generating
events from outside the PC, see http://bit.ly/Win8PushNotifications.

View states
If you’re reading this near a desktop or laptop computer, take a look at your dis-
play. Do you have multiple overlapping windows? Do you have documents or other
work side by side? I have two 30” displays on my primary PC, and I keep a ton of
stuff open during the normal course of work, but rarely can I say I’m equally
focused on two things at once. The closest I get is when writing these chapters,
when I bounce back and forth between a remote desktop session to a Win8 tablet
on one display to the Word document (and Photoshop, MSPaint, and PowerPoint)
in the main display.

 The reason the desktop still exists in Windows 8 is as much for power users like
us to continue this type of workflow as it is for simple compatibility. Now call up the
display used by your parents or your nontechnical friend. Chances are they run
everything maximized and almost never run two things side by side because win-
dow management is a challenge. I remember the early days of teaching computers

This chapter covers
■ View states
■ The LayoutAwarePage
■ Supporting the Snapped state
■ Using Visual State Manager
300

301Full, filled, and snapped views
to folks when they would think the application “went away” when they Alt-Tabbed or
otherwise moved to another app. It took many of them a long time before they real-
ized they could simply click the icon on the taskbar and not have to relaunch the
application. One time, my father had so many instances of an app open, nothing
would paint; his system was completely out of GDI resources and just gave up on him.

 Windows 8 Modern apps have a more standardized approach to keeping multiple
apps open at the same time. You can have any number of apps waiting in the back-
ground (as long as there is sufficient memory and other resources), but you can also
have two apps running side by side, sharing screen real estate. This is accomplished
not using traditional windows with their inherent touch usability issues but instead by
using a docking metaphor. For an app developer, these different ways to dock the app
are called view states.

 Windows 8 XAML has built-in support to help you manage view states and screen
orientation. In this chapter, we’ll first look at the different states and then at the con-
siderations you have to make when supporting them in your app, especially with the
app bar. We’ll also adjust the UI to display different controls depending on the state.
One great thing about all this is that XAML was designed to natively support a very
fluid layout style, so you’ll see that your app doesn’t require a ton of changes, and
because you’ve used MVVM, the changes remain isolated.

13.1 Full, filled, and snapped views
If you’re an ASP.NET developer, the title of this chapter probably made you scream
“Nooooo!” View states in Windows 8 apps are not to be confused with that classic
ASP.NET page baggage: viewstate. Instead, view states in Windows 8 apps are the three
(well, four, if you consider portrait and landscape full views) main forms an app can
take when presented onscreen.

 In the Windows Store, all apps
must support the three views: full
screen (portrait and landscape),
snapped, and filled. Figure 13.1
shows the three different views,
plus orientation.

 In order to support snapped
views, the screen resolution must
be at least 1366 x 768. That allows
a snapped view of 320 x 768 and
the filled view of 1024 x 768, plus
22 pixels for the separator bar. For
those of us who speak at confer-
ences, this minimum resolution
limitation makes it difficult to

Figure 13.1 The three views for a Windows 8 Modern
UI app

302 CHAPTER 13 View states
demonstrate snapped states at most venues that have 1024 x 768 or 1280 x 720 projec-
tors. In those instances, the Simulator is your best friend. If the screen resolution is
below the minimum, the user cannot snap apps.

NOTE The user can snap the app on the left or the right. It is entirely under
their control.

Ideally, your app should remain completely functional in all views. But special consid-
eration has been given to apps like games, which sometimes can’t do anything other
than pause when in snapped view. Even in those cases, I encourage you to consider
doing something useful in the snapped view, such as showing the current score and
leader boards, offering to continue playing the game soundtrack, or otherwise con-
tinuing to engage the user.

 In pages that are based largely on a single view control, like a GridView or List-
View, you may find that you don’t need to do anything special to support the filled
view or portrait view versus the full landscape view. In those cases, the normal XAML
layout mechanisms work their magic for handling the layout changes. The work you
had to do to support various-resolution displays works here. In other cases, you’ll need
to manually resize or rescale items to fit the layout, but you’ll typically need to do that
to support small screens anyway. You may tweak some margins, but that’s usually about
it for many apps.

 The snapped view almost always requires significant layout changes. That’s because
it is so much smaller than the other views, smaller than the smallest supported screen
resolution of 1024 x 768, and also represents a secondary focus for the user.

 When an app is in snapped view, it’s because the user is still interested in interacting
with the app but not as their primary task at that time. A perfect example is a Twitter app

Figure 13.2 The main page of the PhotoBrowser app, shown in snapped view alongside
the desktop, which is in filled mode

303The LayoutAwarePage
that the user wants to keep going while they get real work done. In support of this, the
app must surface only the information and functionality that makes sense when it’s
peripheral to the main activity for the user.

 For our PhotoBrowser app’s snapped state, we’ll revisit the main page so that it
shows categories rather than individual images. Similarly, the category browser page
will show all images in a ListView rather than using the FlipView. Figure 13.2 shows
the snapped view of the main page.

 There are a number of different ways to do this. You could simply handle the state
changes in code, and rearrange or otherwise show and hide items directly from the
code-behind. The Visual Studio project templates have another approach, though,
using a class called the LayoutAwarePage.

13.2 The LayoutAwarePage
The stock templates for any of the richer layout models come with a class called Layout-
AwarePage. That class does a lot of great stuff for layout, as well as a lot of … interesting
things for a generic MVVM implementation. Instead of using the LayoutAwarePage ver-
sion of MVVM (of which I’m not a huge fan), you’ll use MVVM Light. That means you’ll
also throw out all the layout goodness that comes with the page.

 For this app, you’ll create your own LayoutAwarePage but pull in only those things
that will help you with view state management, and keep it simplified.

 In the Common folder of the project, create a new class named LayoutAwarePage
and add to it the following code.

using System;
using System.Linq;
using Windows.UI.Core;
using Windows.UI.ViewManagement;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

namespace PhotoBrowser.Common
{
 public class LayoutAwarePage : Page
 {
 public LayoutAwarePage()
 {
 Window.Current.SizeChanged += this.WindowSizeChanged;

 Loaded += LayoutAwarePage_Loaded;
 }

 void LayoutAwarePage_Loaded(object sender, RoutedEventArgs e)
 {
 InvalidateVisualState();
 }

 private void WindowSizeChanged(object sender,
 WindowSizeChangedEventArgs e)

Listing 13.1 A simplified LayoutAwarePage class

Catch size
changes

304 CHAPTER 13 View states

nam
 {
 InvalidateVisualState();
 }

 protected virtual string DetermineVisualState(
 ApplicationViewState viewState)
 {
 return viewState.ToString();
 }

 public void InvalidateVisualState()
 {
 string visualState = DetermineVisualState(ApplicationView.Value);

 VisualStateManager.GoToState(this, visualState, false);
 }
 }
}

I kept this class pretty simple. The stock LayoutAwarePage does much more, such as
keeping a list of layout-aware child controls that require notification. I encourage you
to look at that class in the stock templates and either use it as is or modify it to suit
your needs.

 It may seem like a lot of simple functions in this code, but that’s because I wanted
to use the same function names and scope from the stock LayoutAwarePage class.

 The VisualStateManager.GoToState method is responsible for setting the cur-
rent state of this page to the specified visual state. The false parameter tells the func-
tion to not use any transition animations but instead to make the change happen
immediately. You’ll learn more about visual states shortly.

 The first place you’ll use this class is in MainPage.xaml. Change the opening and
closing Page tags to common:LayoutAwarePage, and add the common namespace to
the top. Also, name the grid that contains the SemanticZoom so you can refer to that
from visual states later. The changes are all called out in the following listing.

<common:LayoutAwarePage
 x:Class="PhotoBrowser.MainPage"
 xmlns:common="using:PhotoBrowser.Common"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006">
 ...
 <Grid Background="{StaticResource AppPageBackgroundBrush}">
 ...
 <Grid Grid.Row="1" x:Name="FullView">
 <SemanticZoom IsZoomOutButtonEnabled="True">
 ...
 </SemanticZoom>
 </Grid>

Listing 13.2 MainPage.xaml page changes

Check state and
change if necessary

New base class

Base
class

espace

Newly named grid

Existing markup

305The snapped view for the main page
 <!-- snapped view -->

 <!-- visual states -->

 </Grid>
</common:LayoutAwarePage>

Before this will compile, you’ll need to add a using statement and also change the
base class for the MainPage class declaration in the MainPage.xaml.cs code-behind
file. The code-behind base class must always match the markup tag:

using PhotoBrowser.Common;
...
public sealed partial class MainPage : LayoutAwarePage

Finally, you want the UI elements in the snapped view to be synchronized with Seman-
tic Zoom and everything else, in case the user bounces around between views. In sup-
port of that, you’ll need to add a line of code to the OnNavigatedTo function in
MainPage.xaml.cs. Here’s the code.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 _vm.LoadPhotos();

 var cvs = Resources["PhotoSource"] as CollectionViewSource;

 SemanticZoomedOutView.ItemsSource =
 cvs.View.CollectionGroups;

 SnappedViewItems.ItemsSource =
 cvs.View.CollectionGroups;
}

Although the app as written won’t yet compile, the LayoutAwarePage will make it
really easy for you to implement visual states to handle the layout tasks.

 Now you have the infrastructure in place to support the tracking of page view
states. You also have placeholders in the XAML file to hold the snapped view and the
visual states that will glue it all together.

13.3 The snapped view for the main page
The snapped view is the primary view you’ll deal with throughout this chapter. You’ll
start simply, with the main page. You already started some of those changes when you
changed the page to inherit from LayoutAwarePage instead of plain old Page.

 In addition to the called-out changes in the MainPage.xaml markup, there are two
placeholders in this file. The first is for the XAML you’ll use for the snapped view.
When you enter snapped view, you’ll hide the full view grid and instead show the
snapped view grid that contains your ListView.

Listing 13.3 Setting the ItemsSource in the code-behind

Snapped view will go here,
inside the root grid

Visual states will go here,
inside the root grid

New code to set ItemsSource
for snapped view

306 CHAPTER 13 View states
 A proper implementation of a snapped view almost always involves a completely
separate control, or set of controls, from the full and filled views. The next listing has
the XAML for the snapped view.

<Grid Grid.Row="1" x:Name="SnappedView"
 Visibility="Collapsed">
 <ListView x:Name="SnappedViewItems"
 SelectionMode="None">
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Width="280" Height="150"
 Margin="10,0,0,0">
 <Button Click="OnCategoryHeaderClick"
 DataContext="{Binding Group}"
 Foreground="Transparent"
 BorderThickness="0"
 Padding="0">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="25" />
 </Grid.RowDefinitions>

 <Image Grid.Row="0"
 Grid.RowSpan="2"
 Stretch="UniformToFill">
 <Image.Source>
 <BitmapImage UriSource="{Binding Photos[0].ImageUri}"
 DecodePixelWidth="280"/>
 </Image.Source>
 </Image>

 <Rectangle Grid.Row="1"
 Fill="#FF0055AA"
 Opacity="0.85"/>

 <TextBlock Grid.Row="1"
 VerticalAlignment="Center"
 Foreground="White"
 Margin="5"
 TextAlignment="Right"
 TextWrapping="Wrap"
 FontSize="12"
 Text="{Binding Category}" />
 </Grid>
 </Button>
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</Grid>

Listing 13.4 Snapped view XAML

Named grid

Button for click
capabilityData context

for event
handler code

First image
 in group

Background
rectangle

Category display

307Visual states for view management
This markup has a grid with a ListView inside it instead of the GridView used for the
full and filled views. If you followed along in the view controls chapter (chapter 10),
this should be a pretty straightforward change. The GridView is optimized for hori-
zontal scrolling, whereas the ListView is optimized for vertical scrolling—perfect for
the snapped view.

 Notice that the template for each item is just a big button with all the content
inside it. This makes it easy to click an item and cause an action to happen. The List-
View and GridView controls have an ItemClick event, but I wanted to be able to easily
get the correct DataContext so you could reuse the click event handler from the
GridView. As it turns out, drilling down from the DataContext on a grouped item
from a CollectionView is somewhat tricky.

 The app should now compile without errors. If you run the app, you still won’t see
any changes. You have all the controls in place, but you haven’t put in anything to
actually trigger the change. Right now you have everything in place except for the
visual states that will show and hide the correct views.

13.4 Visual states for view management
Silverlight introduced (and WPF later adopted) the concept of visual states and the
Visual State Manager (VSM). Prior to the adoption of VSM, everything was based on
triggers. That is, if your mouse hovered over a button, a trigger would be fired to tell
you to switch to the “mouse over” state. When the mouse moved off the button,
another trigger would fire to tell you it was time to paint back in the normal state.
When you started dealing with simultaneous states, the trigger implementation could
be pretty hard to follow. It also wasn’t really easy for visual designers to work with in
tools like Expression Blend.

 A visual state is implemented as an animation storyboard, but it’s not really an ani-
mation. The storyboards have no real beginning or end; they’re all immediate. In fact,
the use of storyboards and animations here is just a convenient way to express a prop-
erty change inside XAML, without involving any code.

 Visual states are useful any place where you have a group of mutually exclusive
states put together into a group. Within a single group, only one state may be active. If
you have other states that can happen at the same time, such as focused and mouse
over, you ensure the two states are in separate groups.

 Initially, the Visual State Manager was used only for those small UI states like
mouse movements, press, disabled, and so on. The team (and community) quickly
realized that the concept was more useful than just that. In Windows 8, one place
where visual states are being used is to manage the application view states.

 To learn more about the Visual State Manager, you can visit: http://bit.ly/
Win8XamlVSM. In addition, Silverlight references and examples are very close to
what you’ll use in Windows 8, with the primary difference being that no outer Visual-
StateManager tag is required in Windows 8 XAML apps.

http://bit.ly/Win8XamlVSM
http://bit.ly/Win8XamlVSM

308 CHAPTER 13 View states
 The next listing shows the visual states in use on this page. I’ll explain exactly what
is happening right after the listing. Be sure to put this in the CategoryBrowserPage
XAML in the spot reserved, inside the root grid.

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ApplicationViewStates">
 <VisualState x:Name="FullScreenLandscape" />
 <VisualState x:Name="Filled" />
 <VisualState x:Name="FullScreenPortrait"/>
 <VisualState x:Name="Snapped">
 <Storyboard>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="pageTitle"
 Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame
 KeyTime="0"
 Value="{StaticResource SnappedPageHeaderTextStyle}"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FullView"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="SnappedView"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame
 KeyTime="0"
 Value="Visible"/>
 </ObjectAnimationUsingKeyFrames>

 </Storyboard>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

This VisualStateGroup contains four different states. Each state corresponds to one
of the view states for the app (snapped, filled, and so on). Three of the states have no
body. That means that for the objects referenced in the other states, the value for
these empty states is the XAML as it’s written at design time.

 The fourth state has a Storyboard with several animations. Each of these changes
happens simultaneously and instantly because you won’t use any transition anima-
tions. Animations, and therefore visual states, can alter the value of any dependency
property in any element on the page.

 Here’s what’s happening in this state. When the state is activated, the following
changes occur:

■ The Style property of the pageTitle element is set to a static resource named
SnappedPageHeaderTextStyle. This style makes the heading text smaller.

Listing 13.5 Visual states

State group
nameOther

states

Snapped
state

309Detail pages and app bars
■ The Visibility property of the element named FullView (this is the grid con-
taining the main GridView and SemanticZoom controls) is set to Collapsed.

■ The Visibility property of the element named SnappedView is set to Visible.

Remember that, for all intents and purposes, these changes are all simultaneous.
 Now, what happens if the app pops back into, say, the FullScreenLandscape state?

The Visual State Manager handles working with the dependency properties to set
them to their normal values automatically. You don’t need to do that yourself. That’s a
huge time and markup saver.

 Now, because you used the visual states here, and because you used the correct
magic names for the states and the state group, the Device pane in Visual Studio has
lit up with the ability to change the visual state right from the pane. Figure 13.3 shows
what it looks like.

 This is great for testing layouts under different states without running the app. In
this case, because the layout is all data driven and because you don’t have any design-
time data, it’s not going to show a whole lot. In a more complex app with more UI ele-
ments, or an app with design-time data, this pane becomes much more useful.

 Now, run the app and snap it to an edge. The new layout will kick in, and you’ll see
a vertical list of image categories rather than the horizontal grid of categories and
images. The Visual State Manager makes it really easy to wire up all the required
changes directly from code, instead of having to reference a bunch of elements from
code.

 You’ve completed the main page. The next step will be to apply what you’ve learned
here to the category browser page and then expand on that to handle the app bars.

13.5 Detail pages and app bars
The category browser page is somewhat more complex than the main page. This page
has two different app bars and a layout that lends itself only to horizontal scrolling.
The original version of this page (visible in chapter 12) has a number of commands
on the app bar, a specialized navigation app bar at the top, and a sideways-scrolling
FlipView for viewing the content. Clearly that’s not all going to fit in the tiny space

Figure 13.3 The device pane in
Visual Studio. Because you’re
using visual states to control the
view state, and because the
state group is named
ApplicationViewStates,
the designer can work with your
design and assist in previewing
the different layouts.

310 CHAPTER 13 View states
allotted to snapped views. What can you do to make this page useful and be sure it
looks good even in this constrained view? Figure 13.4 is the look you’re after (minus
the app bars).

 In this section you’ll first work to create an appropriate control and layout for the
display of the images. Once that’s working, you’ll tackle the app bar, all using visual
states and the LayoutAwarePage created earlier.

13.5.1 Creating an appropriate presentation

The first task is to update the CategoryBrowserPage to use the LayoutAwarePage base
class. You’ll also use the same Visual State Manager approach as the main page. The
next listing has the overall page changes, including the updated page tags.

<common:LayoutAwarePage
 x:Name="pageRoot"
 x:Class="PhotoBrowser.CategoryBrowserPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:common="using:PhotoBrowser.Common"
 xmlns:local="using:PhotoBrowser"

Listing 13.6 CategoryBrowserPage.xaml overall changes

Figure 13.4 The CategoryBrowserPage shown in snapped view. The control for this view is
a ListView, not a FlipView, but all the binding works as before.

New base
class

Common
namespace

311Detail pages and app bars

L

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">
 ...
 <Grid ...>
 ...
 <Grid Grid.Row="1" x:Name="FullView">
 <FlipView ItemsSource="{Binding Category.Photos}" ... >
 ...
 </FlipView>
 </Grid>

 <!-- snapped view -->

 <!-- visual states -->

 </Grid>
</common:LayoutAwarePage>

This listing has the same types of changes as you had in MainPage. There’s a new
namespace declaration and a new base class, the primary content grid has been
named FullView, and there are two placeholders to hold the snapped state control
and the visual states.

 In the code-behind, remember to set the base class of the CategoryBrowserPage to
LayoutAwarePage just as you did with the main page.

 The next listing has the XAML for the new snapped state visualization. This was a
bit more challenging than the main page because there were more elements to con-
sider, and the FlipView felt inappropriate in a snapped context. For those reasons,
you’ll go with another ListView.

<Grid Grid.Row="1" x:Name="SnappedView"
 Visibility="Collapsed">
 <ListView x:Name="SnappedViewItems"
 ItemsSource="{Binding Category.Photos}"
 SelectedItem="{Binding SelectedPhoto, Mode=TwoWay}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Width="280" Height="150"
 Margin="10,0,0,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="25" />
 </Grid.RowDefinitions>

 <Image Grid.Row="0"
 Grid.RowSpan="2"
 Stretch="UniformToFill">
 <Image.Source>
 <BitmapImage UriSource="{Binding ImageUri}"
 DecodePixelWidth="280"/>
 </Image.Source>
 </Image>

Listing 13.7 CategoryBrowserPage.xaml snapped state control

Existing popup
and row in here

New grid
name

Snapped view
placeholder

Visual states
placeholder

SnappedView
element

istView

TwoWay
binding

Image thumbnail

312 CHAPTER 13 View states
 <Grid Grid.Row="1">
 <Rectangle Fill="#FF0055AA"
 Opacity="0.85"/>

 <TextBlock VerticalAlignment="Center"
 Foreground="White"
 Margin="5"
 TextAlignment="Right"
 TextWrapping="Wrap"
 FontSize="12"
 Text="{Binding DisplayName}" />

 <StackPanel HorizontalAlignment="Left"
 VerticalAlignment="Center"
 Orientation="Horizontal">
 <StackPanel.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontFamily"
 Value="Segoe UI Symbol" />
 <Setter Property="Margin"
 Value="3,0,0,0" />
 <Setter Property="FontSize"
 Value="12" />
 </Style>
 </StackPanel.Resources>

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left"
 Margin="0,0,5,0">
 <TextBlock Text="" />
 <TextBlock Text="{Binding LikesCount}" />
 </StackPanel>

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">
 <TextBlock Text=""/>
 <TextBlock Text="{Binding DislikesCount}"/>
 </StackPanel>

 </StackPanel>
 </Grid>
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</Grid>

At first, this ListView appears very similar to the one on the main page. There are
some important differences, however. This ListView supports item selection so that
the SelectedItem property can be used to bind with the viewmodel. This ListView
also has the Likes and Dislikes ratings rolled up and put into the same overlay bar as
the image’s DisplayName.

 In this way, you’re able to tailor the experience for the available space by using a
completely different control. You don’t have to change a thing in the viewmodel, or

Rectangle
overlay

Display name

Ratings layout

Likes rating

Dislikes rating

313Detail pages and app bars
even in the code-behind, because this is completely a view-level change. It’s nice to see
MVVM working as promised.

 You have the view in place, but you don’t yet have it wired up with the appropriate
visual states. This is easy to do and almost identical to the ones you used on Main-
Page.xaml. Here’s the markup.

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ApplicationViewStates">
 <VisualState x:Name="FullScreenLandscape" />
 <VisualState x:Name="Filled" />
 <VisualState x:Name="FullScreenPortrait"/>
 <VisualState x:Name="Snapped">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="backButton"
 Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame
 KeyTime="0"
 Value="{StaticResource SnappedBackButtonStyle}"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="pageTitle"
 Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame
 KeyTime="0"
 Value="{StaticResource SnappedPageHeaderTextStyle}"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FullView"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame
 KeyTime="0"
 Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="SnappedView"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame
 KeyTime="0"
 Value="Visible"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Now you can run the app, snap it to a side, and easily use both the main page and the
category browser page.

Listing 13.8 CategoryBrowserPage.xaml view states

Smaller
back
button

Full view

Snapped view

314 CHAPTER 13 View states
 There’s one problem, however; the app bars aren’t correct anymore. The top nav
app bar is just about useless, and the bottom app bar no longer shows all the options.
Plus, it’s actually a bit hard to make the app bar appear. To make this view work, you’ll
need to adjust the app bars to fit the view.

TIP If you need to support more orientation logic than what’s available in the
view states, you can use the DisplayProperties.CurrentOrientation prop-
erty or even one of the sensors that returns detailed orientation information.

13.5.2 Fixing up the app bar

Regardless of how well you scale the rest of the UI, one thing
that almost always has to change is the app bar. A normal
app bar in snapped state can fit approximately five normal-
size buttons side by side, with labels hidden. That’s not to
say you want to just cram your current buttons in there,
however. Because of the change in UI and the focus on
things the casual user will want to do as opposed to the
focused user, you’ll need to rethink the options you supply
to them.

 You have choices when laying out the app bars. You can
show the five buttons and hide the text labels, or you can
show fewer buttons and keep the labels. Whenever possible,
I opt for keeping the labels. That’s what you’ll do here, but
that also means that you’ll need to cut down on what you
show on the app bar. I’ve also decided that the top app bar
should be completely hidden in this view. Figure 13.5 shows
the result you’re after.

 For the top app bar, the change is simple: It needs to be
named so you can refer to it in the visual state. The follow-
ing listing has this minor change.

<Page.TopAppBar>
 <AppBar Background="#FF001040"
 Height="200"
 x:Name="FullTopAppBar">
 ...
 </AppBar>
</Page.TopAppBar>

You’ll get to actually hiding it when you set up the visual states.
 The next step is to update the bottom app bar by naming the buttons and separa-

tors so they can be referred to in the visual state. You’ll also name the bottom app bar
so you can set some properties on it. The only functions you’ll want to enable in the
snapped view are Like and Dislike. Pinning, deleting all photos, and rotating images

Listing 13.9 CategoryBrowserPage.xaml top app bar for snapped view

Figure 13.5 The bottom
app bar with two
commands. Note that
there’s no top app
bar present.

New app
bar name

315Detail pages and app bars
will be available only in the wider views. The next listing shows the full bottom app bar
with these updates.

<Page.BottomAppBar>
 <AppBar Background="#FF001040"
 IsOpen="True" IsSticky="True"
 x:Name="FullBottomAppBar">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left"
 Grid.Column="0">
 <Button x:Name="RotateSelectedPhoto"
 Style="{StaticResource RotateAppBarButtonStyle}"
 Command="{Binding RotateSelectedPhotoCommand}"/>

 <Rectangle x:Name="BottomAppBarSeparator1"
 Margin="5,15,5,15"
 Stroke="White"
 StrokeThickness="2"
 VerticalAlignment="Stretch"
 Width="1"
 Opacity="0.25"/>

 <Button x:Name="LikeSelectedPhoto"
 Style="{StaticResource LikeAppBarButtonStyle}"
 Command="{Binding LikeSelectedPhotoCommand}" />
 <Button x:Name="DislikeSelectedPhoto"
 Style="{StaticResource DislikeAppBarButtonStyle}"
 Click="OnDislikeClick" />
 </StackPanel>

 <StackPanel x:Name="BottomAppBarPageCommands"
 Orientation="Horizontal"
 HorizontalAlignment="Right"
 Grid.Column="1">
 <Button Style="{StaticResource PinCategoryAppBarButtonStyle}"
 Command="{Binding PinCategoryCommand}" />
 <Rectangle Margin="5,15,5,15"
 Stroke="White"
 StrokeThickness="2"
 VerticalAlignment="Stretch"
 Width="1"
 Opacity="0.25"/>
 <Button Style="{StaticResource ExterminateAppBarButtonStyle}"
 Command="{Binding DeleteAllPhotosCommand}" />
 </StackPanel>
 </Grid>
 </AppBar>
</Page.BottomAppBar>

Listing 13.10 CategoryBrowserPage.xaml bottom app bar

App bar

Rotate button

Separator

Like button

Dislike
button

Page-level commands
on right

316 CHAPTER 13 View states
Other than naming a few elements, nothing has changed in the app bar markup since
you first created the app bars.

 The next listing has the additional animations required to be added into the story-
board in the snapped visual state. They can go anywhere inside there, as long as
they’re enclosed within the Storyboard tag in the snapped state.

<ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="RotateSelectedPhoto"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
</ObjectAnimationUsingKeyFrames>

<ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="BottomAppBarSeparator1"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
</ObjectAnimationUsingKeyFrames>

<ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="BottomAppBarPageCommands"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
</ObjectAnimationUsingKeyFrames>

<ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FullBottomAppBar"
 Storyboard.TargetProperty="IsSticky">
 <DiscreteObjectKeyFrame KeyTime="0" Value="True"/>
</ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FullBottomAppBar"
 Storyboard.TargetProperty="IsOpen">
 <DiscreteObjectKeyFrame KeyTime="0" Value="True"/>
</ObjectAnimationUsingKeyFrames>

<ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FullTopAppBar"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
</ObjectAnimationUsingKeyFrames>

These visual states hide the separator and rotate button on the left and then hide the
entire stack panel on the right side of the app bar. They also hide the top app bar by
setting its Visibility to Collapsed. Finally, they set the bottom app bar to be open
and sticky (not dismissed by clicking outside it) by default. The user can still dismiss
the app bar manually with a right click, swipe, or keyboard shortcut.

 You’ve made it so the app bar is always open. To make the app even more user
friendly, you may want to increase the margin on the grid so the scrollbars are fully
accessible even when the app bar is open.

Listing 13.11 CategoryBrowserPage.xaml visual states app bar entries

Hide Rotate-
SelectedPhoto

Hide
separator

Hide page-level
commands

Make app
bar sticky

Set app bar to
open by default

Hide top
app bar

317Summary
 Changing the app bar to work with the new layout awareness was actually quite sim-
ple. All you needed to do was make sure you could refer to the elements from within a
visual state and then set up the visual state to show or hide them as appropriate.
Because of the architecture of the app, you haven’t had to change the viewmodels to
support these new view states. Binding takes care of the magic for you.

13.6 Summary
Windows 8 Modern Style apps don’t support overlapped windows. Instead, they sup-
port view states to allow more than one app on the screen at a time. This greatly sim-
plifies touch-based interaction, while providing the flexibility to use two apps at once.
If you’ve ever tried to perform real window management and docking using Windows
7 on a touch-based device, without benefit of keyboard or mouse, you know it can be a
hassle. Windows 8 solves that by allowing apps to be full screen in portrait or land-
scape, snapped to the left or right, or filled to take up the remaining space when
another app is snapped. Collectively, these are referred to as view states.

 Supporting the different view states makes your app ready for the store. Support-
ing them in a meaningful way—providing useful functionality for each view—makes
your app ready for your users.

 Of the different states, the one that requires the most thought is the snapped state.
This state restricts you to such a limited amount of real estate that you have to rethink
your app’s UI and interaction model and tailor it to fit that space. In particular, the
app bar must be properly designed so that it both fits in the snapped state and makes

App bar buttons and the stock LayoutAwarePage

The version of the LayoutAwarePage included in the stock templates has some in-
teresting code that iterates through a collection of “layout-aware” controls when the
layout changes. The app bar buttons, if using the default styles, qualify as layout-aware
controls.

To get the buttons to tighten up and not use labels, wire up their Loaded event to the
StartLayoutUpdates handler and their Unloaded event to the StopLayoutUpdates
handler. This subscribes/unsubscribes them for layout updates, making it easy to let
the snapped state layout happen automatically. Here’s an example:

<Button Loaded="StartLayoutUpdates"
 Unloaded="StopLayoutUpdates"
 Style="{StaticResource PlayAppBarButtonStyle}" />

The trimmed-down version of the LayoutAwarePage in the examples here doesn’t in-
clude this additional functionality, but it can be easily added by copying over from the
stock LayoutAwarePage in a template project.

Regardless of whether you follow this approach, you’ll still need to do much of the
hard work described in this section, such as deciding which buttons should be dis-
played and ensuring they are appropriately shown or hidden.

318 CHAPTER 13 View states
sense in that state. Once you learn how to deal with the snapped state, you can make
any number of changes to tailor the UI for the remaining states.

 Your app must respond to this view state change by displaying not only an appro-
priately sized UI but also an appropriate experience. Apps that are snapped aren’t the
primary focus for the user and therefore should provide functionality that reflects this
secondary focus. WinRT XAML provides events you can use to track the state changes
and appropriately change the UI to fit.

 When switching between states, the Visual State Manager can be a great way to
organize all the changes for a specific state and to keep those changes in the markup.
By keeping the states completely within the markup, your UI designer has complete
freedom in how they design the states and the overall UI.

 By properly supporting the view states, you can ensure your app looks good no
matter how the user is using it or the device.

 In the next chapter, we’ll look at some of the contracts built into Windows 8, and
you’ll learn how to integrate the app with other apps in the system.

Contracts:
playing nicely with others
Over the years, desktop apps have used a variety of mechanisms to integrate with
each other. We’ve seen shared memory, shared memory mapped files, regular flat C-
style DLLs, ActiveX, classic COM (Component Object Model) and other forms of
COM automation like the much-hated DCOM (Distributed COM), DDE (Dynamic
Data Exchange—remember that one?), socket communication, named pipes, and
more. Each of these approaches had its good and bad points. Some, like DDE, were
really brittle. Others, like COM, were complex to do well. Some like DCOM, no one
ever really got working well. None of these mechanisms had any focus on the type of
interaction; they were simply alternative ways to handle the app-to-app plumbing.

 Windows 8 takes a different approach to app-to-app communication. Rather
than focus on just the plumbing, the architects of Windows 8 took a step back and
asked about the specific scenarios that should be supported. They then formalized
the support for those into things called contracts.

This chapter covers
■ Contracts
■ Sharing with other apps
■ Implementing search
319

320 CHAPTER 14 Contracts: playing nicely with others
 Several of the more interesting contracts—Search, Share,
and Settings, for example—are all exposed through the charms
bar on the right (on a left-to-right machine) of the screen. Fig-
ure 14.1 shows the Windows charms bar.

 I’ll save the Settings contract for chapter 22. In this chapter,
we’ll look at a few of the other important contracts. First, we’ll
look at sharing files, links, and more with other apps. Then, we’ll
dive into what it takes to respond to sharing requests from other
apps. From there, I’ll show you how to let other apps search
inside your application using the Search contract. This is a great
new way to make sure your app is not just an island and to help
increase the usefulness and number of uses of your app.

14.1 Sharing
Most apps have data they can share with other apps. In some
cases, it’s a file created with the app. In others, it’s a link to con-
tent online, a quote of the day, or a recommendation. With Win-
dows 8 we’re encouraged to think about the types of data that
our apps can share. Each app that shares data makes the whole platform better and
especially makes other apps more useful.

 Another great benefit to sharing is that you don’t need to know all the sharing end-
points at compile time. For a long time, on other platforms, each app had to build in
sharing to major social networks and other endpoints. As those networks changed their
APIs (Twitter and Facebook did regularly) or new networks were added, the apps had
to be recompiled and redeployed with the new sharing feature. By standardizing the

Figure 14.1 The
Search, Share, and
Settings charms

Figure 14.2
Sharing illustrated.
Diagram adapted from
MSDN version at
http://bit.ly/
Win8AddingShare.

http://bit.ly/Win8AddingShare
http://bit.ly/Win8AddingShare

321Sharing
Share contract, you now let the apps that are designed specifically for those networks or
endpoints handle keeping up to date with the APIs. This is a huge win for everyone.

 Sharing is a system-level feature in Windows 8. Figure 14.2 shows how sharing is
implemented using a broker between the source and target apps.

 In this section, you’ll learn how to be both a share source and a share target. You’ll
share photos data with other apps, and you’ll also learn how to enable your app to be
the recipient of data shared from other apps.

14.1.1 Sharing your data

Most of us learned to share around age five. For multiple reasons, however, we’ve for-
gotten that lesson when building apps. Sharing was never built into the platform or
really encouraged, so I think we can all be forgiven for avoiding it. Until now, that is.

 In Windows 8 it’s incredibly easy to share data from your app. When your app shares
data with other apps, it’s considered a sharing source. A sharing source can provide
data in a number of formats including plain text, URL, HTML, bitmap images, and files.
Figure 14.3 shows the PhotoBrowser app sharing an image with another app.

 Apps that create text can share that in its native format, for emailing or posting to
a social network, for example. Similarly, apps that enable users to create images, like
drawing apps, can provide those images to other apps to email, tweet, or post to a site.
Music-creation apps can share their resulting MP3 files with apps that can share them
on sites like SoundCloud. It’s instant value for the user, value that increases as they
add more apps to their system.

 Sharing isn’t added as a button in the app. Instead, it’s invoked through the
charm. Therefore, the app must listen to the charms bar to know when sharing is

Figure 14.3 The PhotoBrowser app sharing an image with MetroTwit. The data format is an image
stream and also includes a thumbnail version. Note that at the time of this writing, MetroTwit failed
to post the image itself, so if that happens to you, it may still have a bug or limitation.

322 CHAPTER 14 Contracts: playing nicely with others
requested. For this app, you’ll handle the sharing only on the CategoryBrowserPage.
On that page, the user will be able to share the currently viewed image.

 Rather than implement the functionality in the page code, it’s going to be broken
apart into two pieces. The first and most important part is the wire-up for the contract.
That’s added to the CategoryBrowserViewModel, as shown in the following listing.

...
using Windows.ApplicationModel.DataTransfer;
namespace PhotoBrowser.ViewModel
{
 public class CategoryBrowserViewModel : ViewModelBase
 {
 private DataTransferManager _dtm;

 public void RegisterForDataTransfer()
 {
 _dtm = DataTransferManager.GetForCurrentView();
 _dtm.DataRequested += OnShareDataRequested;
 }

 public void DeregisterForDataTransfer()
 {
 _dtm.DataRequested -= OnShareDataRequested;
 }

 ...

 private async void OnShareDataRequested(
 DataTransferManager sender,
 DataRequestedEventArgs args)
 {
 if (SelectedPhoto != null)
 {
 args.Request.Data.Properties.Title =
 SelectedPhoto.DisplayName;

 var deferral = args.Request.GetDeferral();

 try
 {
 args.Request.Data.Properties.Thumbnail =
 await ImageService.Current
 .GetThumbnailStreamFromPhotoAsync(SelectedPhoto);

 args.Request.Data.SetBitmap(
 await ImageService.Current
 .GetFileStreamFromPhotoAsync(SelectedPhoto));
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.ToString());
 }

Listing 14.1 CategoryBrowserViewModel share source code

Share
namespace

Data transfer
manager

Data transfer
wire-up

Called when
transfer initiated

Friendly title
for data

Deferral

Thumbnail

Photo

323Sharing
 finally
 {
 deferral.Complete();
 }
 }
 else
 {
 args.Request.FailWithDisplayText("No image selected.");
 }
 }
 }
}

The code for sharing uses the deferral pattern. This is a requirement if there’s asyn-
chronous code as part of the sharing operation. Simply, the pattern involves getting a
deferral and when the operation is done, marking the deferral as complete, much as
you would in a transaction.

 If, however, your sharing operation could take longer than 200 ms (you need to
transcode a huge file, for example), you need to use the SetDataProvider method
and a delegate to return the DataPackage to the target app. For more information on
this approach, see http://bit.ly/Win8ShareSetDataProvider.

 The heavy lifting of generating the data streams to share with the other app has all
been done inside the ImageService class. This class needs a few changes as well,
because all of your image manipulation so far has worked with URIs, not streams.
Sending a URI to a local resource isn’t going to work well with sharing, so you need to
convert the bitmap to a more generic format. In support of this, the ImageService
class needs to be updated to be able to supply the data from the image file. The next
listing has the code you’ll need.

public async Task<RandomAccessStreamReference>
 GetFileStreamFromPhotoAsync(Photo photo)
{
 var f = await StorageFile
 .GetFileFromApplicationUriAsync(photo.ImageUri);

 return RandomAccessStreamReference.CreateFromFile(f);
}

public async Task<RandomAccessStreamReference>
 GetThumbnailStreamFromPhotoAsync(Photo photo)
{
 var f = await StorageFile
 .GetFileFromApplicationUriAsync(photo.ThumbnailUri);

 return RandomAccessStreamReference.CreateFromFile(f);
}

To provide access to the RandomAccessStreamReference type, you’ll need to add a
using statement for the Windows.Storage.Streams namespace.

Listing 14.2 Updated ImageService methods

Complete
deferral

“No data”
message

Stream from
main image

Stream from
thumbnail image

http://bit.ly/Win8ShareSetDataProvider
http://bit.ly/Win8Contracts

324 CHAPTER 14 Contracts: playing nicely with others
 This code uses the helpful GetFileFromApplicationUriAsync method of the
StorageFile object. The StorageFile class is the modern equivalent of a file in other
APIs, but it now supports a greater variety of source locations and better security
awareness. The function you’re using understands app URIs and knows your app has
permission to read from them. It’s a safe API to use to quickly convert a URI into a
stream of data.

IMPORTANT It wasn’t until this sample that I ran across a bug in the Photo-
Browser image loading. When creating the image URIs, I used ms-appx:/
instead of ms-appx:///. Because of this, the code to load the images as a
StorageFile was failing with an argument exception. In the ImageService
class, add the additional slashes so the uriRoot variable is "ms-appx:///
Pictures/" with three leading slashes, not just one.

In cases where having the user invoke the Share charm manually isn’t the ideal solu-
tion—for example, a suggested share of a high score or an achievement—you can pro-
grammatically invoke the Share charm using this line of code:

Windows.ApplicationModel.DataTransfer.DataTransferManager.ShowShareUI();

Use this invocation method sparingly, and do avoid putting a share button in your app
unless you’re positive it makes sense for the user.

 Finally, you need to add registration code in the CategoryBrowserPage.xaml.cs file.
This is necessary because the data transfer manager can have only a single event han-
dler listening at a time. If you try to wire up a second handler, you’ll get an exception.
The next listing has the updated methods to handle registration and deregistration.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 var vm = e.Parameter as CategoryBrowserViewModel;

 _vm = vm;

 DataContext = _vm;

 _vm.RegisterForDataTransfer();
}

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 base.OnNavigatedFrom(e);

 _vm.DeregisterForDataTransfer();
}

With all of this in place, run the app. When you’re on the category browser page,
invoke the Share charm on the right. You’ll see a list of apps on your PC that can
accept the data that your app shares. This data is requested before the app list is

Listing 14.3 Updated CategoryBrowserPage.xaml.cs navigation code

Enable event
handler

Disable and
remove handler

http://bit.ly/Win8SearchGuidelines

325Sharing
shown, so that Windows knows how to filter the list so only appropriate ones are dis-
played. A successful share, for example to SkyDrive, is shown in figure 14.4.

TIP You can use Windows + C to pop out the charms bar if you find the
mouse interaction too fiddly. Or, more directly, you can use Windows + H to
invoke the share charm.

Sharing data from your app adds instant value for your users. Now the data and arti-
facts they create are free. Sharing isn’t just a one-way conversation. In many cases, it
makes sense for an app to share with your app as the target.

14.1.2 Letting others share with you

If your app catalogs data or connects to a service such as a social network, it’s a good
candidate for being a share target. For an app, being a share target means that other
apps can send data to it in a number of formats and that your app does something
meaningful with that data. In the previous examples, both MetroTwit and SkyDrive
were shown as share targets. I’ll leave it up to you to decide if posting to Twitter counts
as “meaningful.”

 Our app isn’t a great example of an app that could be a share target, because we
don’t write data to a service, store it locally, or otherwise do something useful. But, in
the interest of stretching a demo app, we’ll give it a try and at least receive data that we
can display.

DECLARING THE APP AS A SHARE TARGET

The first thing you must do as an app developer is decide what types of data you’ll sup-
port. Once you have that figured out, you must update the manifest to indicate that

Figure 14.4 A successful share to SkyDrive, verified by seeing the file listed in my otherwise
bare SkyDrive Pictures folder

326 CHAPTER 14 Contracts: playing nicely with others
the app is a share target for that type of data. Figure 14.5 shows this part of the mani-
fest with the share target added but no data formats yet specified.

 Once you add the Share Target declaration, you need to indicate how the data will
be provided. For this app, you’re going to use straight data, not file types. Addition-
ally, the data format you accept will be plain text.

 Under Data Formats in the manifest page, click Add New and enter Text into the
Data Format field. Once you do that, all the red error X indicators will go away, and
you’ll know you’ve provided enough information to continue. Figure 14.6 shows the
“Text” entry.

 Apps can accept multiple formats. In those cases, simply add the additional for-
mats as new entries. Apps can also accept files, filtered by file type, but you won’t do
that in this example.

CREATING THE SHARE TARGET PAGE

Each app that supports sharing must show a page to accept the data to be shared. The
page could be as simple as a single button that accepts the share or as complex as an
email message creation UI or more.

Figure 14.5 Adding the Share Target declaration to the appx manifest

Figure 14.6 Selecting the Text type of acceptable data. How did I know to enter the magic
string “Text”? It’s in the helpful caption right above the field.

327Sharing
For the Photo Browser app, the page will be more along the lines of a debug page:
You’ll display the data that was shared to the app and the metadata that accompanies
it. The UI is still a XAML page, but it will be displayed smaller than full screen.

 Create a new XAML blank page named ShareTargetPage.xaml. The following list-
ing has the markup for that file. Unlike the other pages, this page will have no title or
navigation controls.

<Page
 x:Class="PhotoBrowser.ShareTargetPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PhotoBrowser"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="White">
 <Grid Margin="10">
 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="20" />
 <Setter Property="Margin" Value="10" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="TextWrapping" Value="Wrap" />
 </Style>
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <TextBlock Text="Source app" Grid.Row="0" Grid.Column="0"/>
 <TextBlock Text="Source app URI" Grid.Row="1" Grid.Column="0" />
 <TextBlock Text="Title" Grid.Row="2" Grid.Column="0" />
 <TextBlock Text="Description" Grid.Row="3" Grid.Column="0" />
 <TextBlock Text="Shared Text" Grid.Row="4" Grid.Column="0" />

 <TextBlock Text="{Binding ApplicationName}"
 Grid.Row="0" Grid.Column="1" />
 <HyperlinkButton NavigateUri="{Binding ApplicationListingUri}"
 Grid.Row="1" Grid.Column="1" >

Listing 14.4 The ShareTargetPage.xaml markup

White
background

Text style

Field labels

Display
fields

328 CHAPTER 14 Contracts: playing nicely with others
 <TextBlock Text="{Binding ApplicationListingUri}" />
 </HyperlinkButton>
 <TextBlock Text="{Binding Title}"
 Grid.Row="2" Grid.Column="1" />
 <TextBlock Text="{Binding Description}"
 Grid.Row="3" Grid.Column="1" />
 <TextBlock Text="{Binding Text}"
 Grid.Row="4" Grid.Column="1" />

 </Grid>
 </Grid>
</Page>

The standard for flyouts such as settings and share is to use black text on a white back-
ground. Adhering to that will help your app fit in visually. Windows will provide the title
and navigation controls for the page, so I didn’t need to include them in the listing.

 You’re going to have a viewmodel for this page. The viewmodel is really simple, but
I want you to have an architecture you can build on for more complex sharing scenar-
ios. The next listing has the viewmodel code. Add it to a new class named Share-
TargetViewModel in the ViewModel folder.

using GalaSoft.MvvmLight;
using System;
using System.Linq;
using Windows.ApplicationModel.DataTransfer;
using Windows.ApplicationModel.DataTransfer.ShareTarget;

namespace PhotoBrowser.ViewModel
{
 public class ShareTargetViewModel : ViewModelBase
 {
 private ShareOperation _operation;
 public ShareTargetViewModel(ShareOperation operation)
 {
 _operation = operation;

 ProcessOperation();
 }

 private async void ProcessOperation()
 {
 if (_operation.Data.AvailableFormats
 .Contains(StandardDataFormats.Text))
 {
 Text = await _operation.Data.GetTextAsync();

 ApplicationName =
 _operation.Data.Properties.ApplicationName;
 ApplicationListingUri =
 _operation.Data.Properties.ApplicationListingUri;
 Description = _operation.Data.Properties.Description;
 Title = _operation.Data.Properties.Title;

Listing 14.5 The ShareTargetViewModel class

Display
fields

Check for
text data

Get text data

Get metadata

329Sharing
 }
 }

 private string _text;
 public string Text
 {
 get { return _text; }
 private set { Set<string>(() => Text, ref _text, value); }
 }

 private string _applicationName;
 public string ApplicationName
 {
 get { return _applicationName; }
 private set { Set<string>(() => ApplicationName,
 ref _applicationName, value); }
 }

 private Uri _applicationListingUri;
 public Uri ApplicationListingUri
 {
 get { return _applicationListingUri; }
 private set { Set<Uri>(() => ApplicationListingUri,
 ref _applicationListingUri, value); }
 }

 private string _description;
 public string Description
 {
 get { return _description; }
 private set { Set<string>(() => Description,
 ref _description, value); }
 }

 private string _title;
 public string Title
 {
 get { return _title; }
 private set { Set<string>(() => Title, ref _title, value); }
 }
 }
}

This viewmodel sets a bunch of bindable properties using information provided from
the share operation passed into the constructor. You cache the operation in case you
want to extend the class to perform more operations.

 As usual, you’ll have a little code-behind as well. There’s just enough in the next
listing to wire up with the viewmodel; you don’t need to do anything else.

using PhotoBrowser.ViewModel;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

Listing 14.6 The ShareTargetPage.xaml code-behind

330 CHAPTER 14 Contracts: playing nicely with others
namespace PhotoBrowser
{
 public sealed partial class ShareTargetPage : Page
 {
 private ShareTargetViewModel _vm;
 public ShareTargetPage(ShareTargetViewModel vm)
 {
 this.InitializeComponent();

 _vm = vm;
 DataContext = _vm;
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 }
 }
}

The page and viewmodel are both set up. But that’s not everything you need to do.
The bit that glues this all together is the special form of activation in app.xaml.cs.

MODIFYING APP.XAML TO SUPPORT SHARE ACTIVATION

When the app is selected by the user as the target of a sharing operation, the OnShare-
TargetActivated method of the application object is executed. You need to override
this method to provide the correct functionality to accept the share. For our app, the
code builds the viewmodel, provides it to the ShareTargetPage, then launches that
page. The following listing has everything you need to add to App.xaml.cs.

protected override void OnShareTargetActivated(
 ShareTargetActivatedEventArgs args)
{
 var vm = new ShareTargetViewModel(args.ShareOperation);

 var sharePage = new ShareTargetPage(vm);

 Window.Current.Content = sharePage;
 Window.Current.Activate();
 DispatcherHelper.Initialize();
}

The code here is similar to what’s in the OnLaunched method. This is simply another
entry point into your app, so that makes complete sense. All the interesting bits related
to the share operation are included in the args, specifically in the ShareOperation
property. The ShareOperation, which is passed to the viewmodel, contains the actual
data to be shared, as well as all the metadata about the share operation itself.

 The app is now ready to run. If you want to debug it while using another app, use
the same approach as you did for secondary tile activation: Set the app to debug without
launching. Then, open up your favorite text-sharing-capable app, share something, and
pick the PhotoBrowser as the target app. You’ll see the UI shown in figure 14.7.

Listing 14.7 App.xaml.cs modifications to support sharing

Require viewmodel
for construction

Set data context

Create
viewmodel

Create UI

Set window
content

331Sharing
Because your app registered itself as a share target during install (based on the mani-
fest settings), it now shows up in the Share settings in PC settings. This is the location
where the user can turn on or off sharing for any individual app. Figure 14.8 shows
the app in the list.

Long-running share processing

Your app accepts simple data and doesn’t do any processing of it. Let’s say your app
does something long-running with the data, like transcoding it or uploading the data
to a service. In those cases, you’ll want to use the ReportStarted, ReportData-
Retrieved, ReportError, and ReportSubmittedBackgroundTask methods of the
share operation. Those methods allow the app to continue processing the request
without requiring that the user babysit the sharing page.

Figure 14.7 The PhotoBrowser app’s Share Target UI shown with MetroTwit as the
share source. Windows built and animated the flyout as well as its header.

Figure 14.8
The PhotoBrowser
app is shown in the
Share targets list
in PC settings.

332 CHAPTER 14 Contracts: playing nicely with others
The Share contract and the manifest settings together make it possible for your app to
be a share target or a share source. You’ve not only created an interesting app, but
you’ve also added value to many of the existing apps in the system by either feeding
them data or serving as an endpoint for their app data.

 Another approach to sharing app data is to be a search provider.

14.2 Letting others search your data
A great way to integrate with the rest of the system is to allow searching of the data
within your app. The common search interface in Windows means that a user can
concentrate on what they’re searching for rather than what location to search in.

 Search has a two primary use cases:

■ The user searches for data while your app has focus. This frees you from adding
search boxes to the app interface.

■ The user searches for data from another app or the start page and selects your
app to search within.

The approach for handling search, at least from an activation point of view, is differ-
ent in each case.

 In your app, you’ll allow the user to search for images. This will require a search
page as well as integration with the Search contract. In this section you’ll build out a
search interface that supports both the internal and external searches.

14.2.1 Declaring your intentions

As with share target integration, an app that is to be searchable must declare this in the
appx manifest. As with the other declarations, there are a number of optional param-
eters for advanced scenarios. For your app, all you need to do is add the declaration and
then save. Figure 14.9 shows the appx manifest with the correct declarations.

 When adding search, you need to think about what you want to allow to be
searched and how you will handle the results. You don’t have multiple input fields;
rather Windows uses the now-standard approach of a single field that will search all
relevant data in the selected app. In this way, the user can easily switch between which
apps they search without worrying about having different search criteria UI for each.

Figure 14.9 Adding the Search declaration in the appx manifest

333Letting others search your data
Beyond the simple search string, what the app does for search is entirely up to the
app, because it owns the search results UI.

 Before you implement the search itself, let’s do the easy work and build out the
results page. But, before doing that, take a moment to try search from the charms bar.
Type in a simple bit of text, such as File. Now, switch between the search targets using
the provided Windows 8 UI. I recommend trying at least the built-in Apps/Settings/
Files but then also the Store app, Bing, and anything else you have that might be inter-
esting. Notice how the Search UI is different for each of them. Some have filters; some
have additional criteria. All declare the Search contract and provide a results page.

14.2.2 The results page and viewmodel

Your app doesn’t have much data, so you can get away with just about anything on the
results page. A well-designed results page should show the name of the app, as well as
a subheading that indicates what search query the results are for. For large data sets, it
should also support filtering of the results and should be sorted in a logical order—
typically with the most relevant results first. You can read about these and other search
design guidelines at http://bit.ly/Win8SearchGuidelines.

 For this app, you’ll create a simple search results page. Add a new blank XAML
page named SearchResultsPage.xaml. The following listing shows the markup for this
page.

<common:LayoutAwarePage
 x:Class="PhotoBrowser.SearchResultsPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PhotoBrowser"
 xmlns:common="using:PhotoBrowser.Common"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{StaticResource AppPageBackgroundBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <Grid Grid.Row="0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="116"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Button x:Name="backButton"
 IsEnabled="{Binding Frame.CanGoBack, ElementName=pageRoot}"
 Click="OnBackButtonClick"
 Style="{StaticResource BackButtonStyle}"/>

Listing 14.8 SearchResultsPage.xaml

334 CHAPTER 14 Contracts: playing nicely with others
 <TextBlock x:Name="pageTitle" Text="Photo Browser Search"
 Grid.Column="1" IsHitTestVisible="false"
 Style="{StaticResource PageHeaderTextStyle}"/>
 </Grid>

 <GridView x:Name="SearchResultsView"
 Grid.Row="1"
 SelectionMode="None"
 IsItemClickEnabled="True"
 ItemClick="SearchResultsView_ItemClick"
 ItemsSource="{Binding SearchResults}">
 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid Width="280" Height="150"
 Margin="10,0,0,0">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="25" />
 </Grid.RowDefinitions>
 <Image Grid.Row="0" Grid.RowSpan="2"
 Stretch="UniformToFill">
 <Image.Source>
 <BitmapImage UriSource="{Binding ImageUri}"
 DecodePixelWidth="280"/>
 </Image.Source>
 </Image>

 <Grid Grid.Row="1">
 <Rectangle Fill="#FF0055AA" Opacity="0.85"/>
 <TextBlock VerticalAlignment="Center"
 Foreground="White"
 Margin="5"
 TextAlignment="Right"
 TextWrapping="Wrap"
 FontSize="12"
 Text="{Binding DisplayName}" />

 <StackPanel HorizontalAlignment="Left"
 VerticalAlignment="Center"
 Orientation="Horizontal">
 <StackPanel.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontFamily"
 Value="Segoe UI Symbol" />
 <Setter Property="Margin"
 Value="3,0,0,0" />
 <Setter Property="FontSize"
 Value="12" />
 </Style>
 </StackPanel.Resources>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left"
 Margin="0,0,5,0">
 <TextBlock Text="" />
 <TextBlock Text="{Binding LikesCount}" />
 </StackPanel>

Search results
grid view

Item clicking
enabled Item click

event handler

Same template
as snapped view

335Letting others search your data
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">
 <TextBlock Text=""/>
 <TextBlock Text="{Binding DislikesCount}"/>
 </StackPanel>
 </StackPanel>
 </Grid>
 </Grid>
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>
 </GridView>
 </Grid>
</common:LayoutAwarePage>

The search results page uses the same items template that you used for the snapped
view of data in the previous chapter. But instead of a ListView, you use a GridView so
the data will naturally span the screen. Unlike the other grids and lists, this one has
item clicking enabled and wired up to an event handler in the code-behind. You could
have used a button as before, but I wanted you to see how the item click functionality
works in a GridView.

 When the user clicks an item, the code-behind will make calls to the SearchView-
Model and navigate to the category browser page with the item preselected and visible.

 The next listing includes the new SearchViewModel. Create this as a class in the
ViewModel folder alongside the others.

using GalaSoft.MvvmLight;
using PhotoBrowser.Model;
using PhotoBrowser.Services;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Windows.UI.Xaml.Data;

namespace PhotoBrowser.ViewModel
{
 public class SearchViewModel : ViewModelBase
 {
 private IEnumerable<Photo> _searchResults;
 public IEnumerable<Photo> SearchResults
 {
 get { return _searchResults; }
 private set
 {
 Set<IEnumerable<Photo>>(() => SearchResults,
 ref _searchResults, value);
 }
 }

Listing 14.9 SearchViewModel

Search results
IEnumerable

336 CHAPTER 14 Contracts: playing nicely with others

v

 private string _queryText;
 public string QueryText
 {
 get { return _queryText; }
 set
 {
 Set<string>(() => QueryText, ref _queryText, value);
 UpdateSearchResults();
 }
 }

 private void UpdateSearchResults()
 {
 var photos = ImageService.Current.GetPhotos();

 if (string.IsNullOrEmpty(QueryText))
 SearchResults = photos;
 else
 {
 var q = QueryText.ToLower();

 var results = from Photo p in photos
 where (p.DisplayName.ToLower().Contains(q) ||
 p.Category.ToLower().Contains(q))
 select p;
 SearchResults = results;
 }
 }

 public CategoryBrowserViewModel ConstructCategoryBrowserViewModel(
 Photo photo)
 {
 var vm = new CategoryBrowserViewModel();

 foreach (PhotoCategory c in ImageService.Current.GetCategories())
 vm.AllCategories.Add(c);

 vm.Category = vm.AllCategories
 .FirstOrDefault<PhotoCategory>(
 c => c.Category == photo.Category);

 vm.SelectedPhoto = photo;

 return vm;
 }
 }
}

The SearchViewModel is where most of the search action happens. Upon receiving a
query string (a search word) from the App object, this class builds an IEnumerable of
photos that match the result.

 Most of the time when I bind to a collection, I use an observable collection and
add/remove items individually. In the case of search, where the results will be differ-
ent for each search issue, it makes more sense to simply rebuild the collection. For

User-entered
search string

Return all photos on
empty search (first click)

Filter
results

Build
iewmodel

337Letting others search your data
those reasons, I exposed the property as an IEnumerable rather than an Observable-
Collection and provided a getter and setter for it. The collection is rebuilt in the
UpdateSearchResults method.

 The ConstructCategoryBrowserViewModel method is used when clicking an item
in the results list. If you recall, the category browser page requires a populated view-
model. This is the method that populates it, ensuring the correct photo and category
are both selected.

 The passing of the populated viewmodel happens in the SearchResultsPage code-
behind, as shown here.

using PhotoBrowser.Common;
using PhotoBrowser.Model;
using PhotoBrowser.ViewModel;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

namespace PhotoBrowser
{
 public sealed partial class SearchResultsPage : LayoutAwarePage
 {
 private SearchViewModel _vm;

 public SearchResultsPage()
 {
 this.InitializeComponent();

 _vm = new SearchViewModel();
 DataContext = _vm;
 }

 private void OnBackButtonClick(object sender,
 Windows.UI.Xaml.RoutedEventArgs e)
 {
 Frame.GoBack();
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 string queryText = e.Parameter as string;
 _vm.QueryText = queryText;
 }

 private void SearchResultsView_ItemClick(object sender,
 ItemClickEventArgs e)
 {
 var photo = e.ClickedItem as Photo;
 var vm = _vm.ConstructCategoryBrowserViewModel(photo);
 Frame.Navigate(typeof(CategoryBrowserPage), vm);
 }
 }
}

Listing 14.10 SearchResultsPage.xaml.cs code-behind

Page creates
viewmodel

Handle search
parameter

Show category
browser page
on item click

338 CHAPTER 14 Contracts: playing nicely with others

Ge
As is usual for my examples, the code-behind has a little bit of glue code in place but
not much logic. This code-behind handles creating the viewmodel and then dealing
with navigation. When the page is navigated to, you pull the search string out of the
parameters passed from the App object. When an item in the GridView is clicked, you
build the viewmodel and navigate away to the category browser page.

 If you run the app right now, you won’t see anything. That’s because I’ve left out
the key part: the launching and parameter passing in app.xaml.cs.

14.2.3 Responding to in-app search requests

The simplest example of search is the in-app search request. This happens when the
user already has your app open and focused and then chooses to search within it. In this
case, you know the app is already loaded and activated. All you need to do is get the
search string and navigate to the search results page, passing along the search string.

 Figure 14.10 shows how the search interface looks in this app.
 The code to glue together everything you’ve done so far is in the next listing, with

an explanation after the listing.

protected override void OnWindowCreated(WindowCreatedEventArgs args)
{
 base.OnWindowCreated(args);

 var pane = Windows.ApplicationModel.Search
 .SearchPane.GetForCurrentView();

 pane.QuerySubmitted += OnSearchQuerySubmitted;
}

void OnSearchQuerySubmitted(
 Windows.ApplicationModel.Search.SearchPane sender,
 Windows.ApplicationModel.Search.SearchPaneQuerySubmittedEventArgs args)
{

Listing 14.11 App.xaml.cs in-app searching support

Figure 14.10
The Search UI invoked
from within the app

Window
creation
override

t search
panel

339Letting others search your data

se

na
 var previousContent = Window.Current.Content;
 var frame = previousContent as Frame;

 frame.Navigate(typeof(SearchResultsPage), args.QueryText);

 Window.Current.Content = frame;
 Window.Current.Activate();
}

Upon the creation of the top-level app window, the app registers for search handling.
This wire-up happens once in the OnWindowCreated override. The event, Query-
Submitted, is the most important event for search. This is what gets fired whenever
the user clicks the little search icon beside the search entry field.

 The handler for this event takes the search text and passes it to the Search-
ResultsPage as part of an otherwise normal navigation action. As elsewhere in
app.xaml.cs, you ensure the page has been activated before exiting the method.

 To test, invoke the Search charm while the app is open and focused. The shortcut
key for search is Windows + Q. As with the other examples, if you want to debug the
app in use, you’ll need to start debugging without launching the app.

 Now that you have search working inside the app, it will take only a minor effort to
integrate with the larger search system as a whole.

14.2.4 Responding to external search requests

The actual searching from external sources is identical to the search run within the
app. But in addition to the OnSearchQuerySubmitted handler used for in-app search-
ing, there’s an activation step when search is external because this may be the first
time the app was launched. Windows will first fire off OnSearchActivated and then
the search query event and its event handler. For each subsequent search within the
session, only the event will be fired.

 The following listing has the activation method specific to search. There’s some
duplication of code here between the search query handler and this activated
method. You can consolidate the common code into a single method if you wish.

protected override void OnSearchActivated(
 Windows.ApplicationModel.Activation.SearchActivatedEventArgs args)
{
 var previousContent = Window.Current.Content;
 var frame = previousContent as Frame;

 if (frame == null)
 frame = new Frame();

 frame.Navigate(typeof(SearchResultsPage), args.QueryText);

 Window.Current.Content = frame;
 Window.Current.Activate();
}

Listing 14.12 App.xaml.cs support for external search

Get previous
content and frame

Navigate
to search
results pageActivate

arch page

Get window content
Get

vigation
frame Create frame

if new activation

Navigate to
search page

340 CHAPTER 14 Contracts: playing nicely with others
Much of the code in this method is similar to the normal launch code in app.xaml,
except this method is called on an external search activation. Use this to perform the
same types of startup tasks, even showing the extended splash screen if necessary. But
do the bare minimum amount of work required to quickly display the search results.

 As before, to test, invoke the Search charm, but do so from any other app or from
the desktop. As with the other external activation examples, if you want to debug the
app in use, you’ll need to start debugging without launching the app.

 Most apps have data that’s interesting to the user. By enabling search of that data,
the app integrates better with the rest of the system and is more likely to be used,
because the user has found it to be the source of the data they’re looking for. The
standard in-app and external search mechanisms provided in Windows 8 make it sim-
ple to implement search in your own app. For most apps, the addition of search will
be an incremental effort beyond everything else the app already supports.

14.3 Summary
Apps are not islands, isolated from other apps in the system. Neither is the opposite
true: Apps don’t use the free-for-all integration mechanisms we’ve used for desktop
applications over the years. Instead, Windows Store apps use standardized mecha-
nisms for sharing information with other apps. These mechanisms are collectively
referred to as contracts. Contracts are bigger than just app integration, but app inte-
gration is one of the largest use cases by far.

 Through contracts, third-party apps that you’ve never seen, that perhaps were writ-
ten long after your app was written, can share data and files with your app. Similarly,
your app can share with them. This is really important when you think about all the
new cloud services and social networking sites that spin up during an operating sys-
tem’s lifecycle. Now you can use all of them without needing to know about them in
advance.

 Another thing contracts enable is searching of data. When a user is looking for
something in Windows 8, they’ll use the Search charm. By integrating with the Search
charm, you open up your app to the world; you’re no longer an island of data, search-
able only with the app’s internal tools.

Project item templates for search and share

If you use the default template page styles (and their implementation of state and
MVVM) in your app, you may want to consider using the Search Contract and Share
Contract templates available in Visual Studio. To use them, use File > Add New Item,
and pick the contract you want to add.

If you’re not using the default templates (as is the case in my examples), using those
templates is far more trouble than it’s worth. The contracts are very easy to implement
if you’re following a solid MVVM pattern approach, so templates aren’t required, in
my opinion.

341Summary
 There are other contracts as well. Some, like the Print Task contract and the Set-
tings contract, are less about app-to-app integration and more about simply providing
standard ways to perform functions. Others, such as app-to-app picking, are very use-
ful and follow similar patterns to what was discussed here. For more information on
the full set of contracts, please see http://bit.ly/Win8Contracts. In the next chapter,
before we look at additional contracts in subsequent chapters, we’ll look at working
with files.

Working with files
Quick! Look at all the applications you currently have open on your computer.
How many of them have files open? Those files may be web pages from a remote
location, a custom database of email items, a document, a music file, maybe more.
Even games need to access data files both for saved games as well as for just general
game data.

 Most apps need to work with files either as native data for the app or as some-
thing they consume and provide value by working with, like music files. Unlike web
apps and plug-ins, native apps can be given more access to the filesystem, to load a
number of different types of data files. As you’d expect, WinRT XAML apps can use
a number of different approaches to working with these files.

 The first approach we’ll explore in this chapter is also the most involved: work-
ing with the StorageFile and StorageFolder classes. We’ll use these classes, as well
as a few other helper classes, to list files and to create new files. Along the way, we’ll

This chapter covers
■ Listing files and folders
■ Programmatically accessing files
■ URI standards for file access
■ Using and creating file pickers
342

343Loading files programmatically
take a look at how to use multiple data templates to show files and folders differently
in a single ListView.

 Once we’ve worked out how to programmatically access files, we’ll take a brief look
at the URI syntax for the different file locations. Windows 8 adds a number of differ-
ent URI schemes that you can use from markup as well as from code.

 Desktop developers are used to having generally unfettered access to files. But we
know that isn’t safe for casually downloaded and installed apps. Instead, we need to
have a mechanism by which we can specify what locations the app expects to access,
and then allow the user to make the decision as to whether they trust the app enough
to download and install it with those requested permissions granted. We’ll cover those
capabilities and declarations in this chapter.

 Finally, one of the safest, and richest, approaches for working with files is to use the
file picker. By using existing file pickers, you enable your app to use other apps as the
source of the file data. Those files could reside anywhere, as long as that app has
access to them. Your app can also be a file picker, so we’ll look at that as well.

 Let’s start our exploration of file management by looking at how to work with files
from code, without user intervention.

15.1 Loading files programmatically
In the past, if you wanted to open a file, you had to be able to resolve the name to a
path and filename that APIs could understand. Networking of any sort was a com-
pletely separate operation. The WinRT API was designed to provide equal access to
files located via filename and files located via URI. Even local files can often be refer-
enced via a specific URI scheme.

 In several of the previous chapters you performed basic file access using URIs and
files inside the same app. For most of those, you used the ms-appx URI scheme. But
there are lots of other ways to load data, programmatically as well as using other URI
formats.

 In this section, we’ll look at how to list files and create them programmatically.
First, you’ll set up a new project using a basic viewmodel to give you a place to bind to.
Then you’ll add in the code to list files in three different well-known locations on the
drive. But, to access those locations, you’ll need to set the appropriate capabilities and
declarations in the appx manifest, so you’ll do a little of that here as well.

 Once you have access, you’ll dive into the StorageFile and StorageFolder classes.
When working with files from code, these will be the two classes you use more than
any others. You’ll use the StorageFolder class to list all the files in a folder using a
couple of different approaches. Then, you’ll use it to create a new file, a StorageFile,
which you’ll then write to using the FileIO class.

15.1.1 New demonstration project

For this chapter, you’ll create a new demonstration project. This will be a simple,
from-scratch, lightweight MVVM implementation, without any third-party toolkits. It

344 CHAPTER 15 Working with files

nged
won’t use commanding, because that would only clutter the example. But it will use a
viewmodel and binding.

 Create a new app named DemoApp. The template to use is the Blank App (Windows
Store) template. Once it’s open, create a folder named ViewModel and in that place a
new class named MainViewModel. The code for this class is shown in the first listing.

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Windows.Storage;
using Windows.Storage.Search;

namespace DemoApp.ViewModel
{
 public class MainViewModel: INotifyPropertyChanged
 {
 private StorageFolder _currentFolder;
 public StorageFolder CurrentFolder
 {
 get { return _currentFolder; }
 set
 {
 _currentFolder = value;
 NotifyPropertyChanged("CurrentFolder");
 UpdateChildren();
 }
 }

 private ObservableCollection<IStorageItem> _childItems =
 new ObservableCollection<IStorageItem>();
 public ObservableCollection<IStorageItem> ChildItems
 {
 get { return _childItems; }
 }

 private async void UpdateChildren() { }
 public void LoadDocumentsLibrary() { }
 public void LoadMusicLibrary() { }
 public void LoadRemovableDevices() { }

 public event PropertyChangedEventHandler PropertyChanged;
 protected void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

Listing 15.1 MainViewModel code

Supports change
notification

Current parent
folder

Load child
items

Child items of
CurrentFolder

To be provided

INotifyPropertyCha
implementation

345Loading files programmatically
The viewmodel follows a typical pattern: a list of data items and a current or selected
item, plus methods for populating the data. In this case, the current item is a
StorageFolder instance, and the child items list is a collection of objects that imple-
ment IStorageItem. You’re going with the interface here to support both Storage-
Folder and StorageFile instances in the same collection.

 Several of the methods will be implemented later in this chapter. The Update-
Children method, because it is marked as async, will cause a compiler warning until
you provide the asynchronous code.

 Next, change the MainPage.xaml markup to match that in the following listing.

<Page
 x:Class="DemoApp.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:DemoApp"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Page.Resources>
 <Style TargetType="Button">
 <Setter Property="Width" Value="200" />
 <Setter Property="Height" Value="50" />
 <Setter Property="Margin" Value="10" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Grid Grid.Column="0" Margin="30">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <TextBlock Text="{Binding CurrentFolder.Name}"
 FontSize="42" Grid.Row="0" />

 <!-- ListView goes here -->

 </Grid>

 <Grid Grid.Column="1" Margin="30">
 <StackPanel>
 <Button Content="Get Documents Library"
 Click="GetDocumentLibraryClick"/>

Listing 15.2 MainPage.xaml markup

Displays current
folder name

ListView
to be provided

Buttons
to load data

346 CHAPTER 15 Working with files
 <Button Content="Get Music Library"
 Click="GetMusicLibraryClick"/>
 <Button Content="Get Removable Devices"
 Click="GetRemovableDevicesClick"/>

 <!-- Additional buttons will go here -->

 </StackPanel>
 </Grid>
 </Grid>
</Page>

The page markup includes a TextBlock that displays the name of the currently
selected folder, a placeholder for a ListView to display the items in the folder, and
then a set of onscreen buttons to load the data.

 Finally, update the MainPage.xaml.cs code-behind to wire everything together.
Here’s the new code.

using System;
using DemoApp.ViewModel;
using Windows.Storage;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

namespace DemoApp
{
 public sealed partial class MainPage : Page
 {
 private MainViewModel _vm = new MainViewModel();

 public MainPage()
 {
 this.InitializeComponent();

 DataContext = _vm;
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 { }

 private void GetDocumentLibraryClick(object sender, RoutedEventArgs e)
 {
 _vm.LoadDocumentsLibrary();
 }

 private void GetMusicLibraryClick(
 object sender, RoutedEventArgs e)
 {
 _vm.LoadMusicLibrary();
 }

Listing 15.3 MainPage.xaml.cs code-behind

Buttons
to load data

Additional buttons and
input will go here

Create
viewmodel

Set data
context

Load documents
library items

Load music
library items

http://bit.ly/Win8QueryOptions

347Loading files programmatically
 private void GetRemovableDevicesClick(
 object sender, RoutedEventArgs e)
 {
 _vm.LoadRemovableDevices();
 }
 }
}

The code-behind creates an instance of the viewmodel and sets it as the data context
for the entire page. There are also three event handlers on the page to handle the
button clicks. Each calls a method on the viewmodel to load the data.

 Each of these calls requires settings in the manifest so that the user can make
informed decisions about what capabilities the app requires.

15.1.2 File access permissions

Windows Store apps can’t access any random file on the local machine. Instead, they
can access files only in certain known locations. Furthermore, this access is restricted
based on the type of account under which the app was posted to the Windows Store.
For example, only business accounts can create apps that have programmatic access to
the documents library (individual accounts can still create apps that use the docu-
ments library via a file picker).

 Access to the Music, Pictures, and Videos libraries is easily set using the Capabili-
ties tab in the appx manifest, as shown in figure 15.1.

 Programmatic access to the Documents Library and Removable Storage capabili-
ties both require additional file association settings. As previously mentioned, apps
that request these settings can only be placed into the Windows Store through a busi-

Load removable
device items

Figure 15.1 Declaring capabilities for folder access. Documents Library and Removable Storage
capabilities require additional settings.

348 CHAPTER 15 Working with files
ness account; individuals can’t create apps that use these capabilities. We will use these
capabilities in this app, but for demonstration purposes, check the Documents Library, Music
Library, Pictures Library, and Removable Storage capabilities.

 When you request access to the two restricted capabilities, it’s typically because
your app will have a specific type of file associated with it. Even apps with Documents
Library access can’t open just any old file; they need to specify the supported exten-
sions in advance. This is done through the Declarations tab, as shown in figure 15.2.

 You’re filling out the capabilities information solely to enable access to the Docu-
ments Library and Removable Storage capabilities. Normally, you’d also make the
app respond to file activation for the specified file types. You can find more informa-
tion on file activation and working with associated files at http://bit.ly/
Win8FileActivation.

15.1.3 Storage files and folders

When working with files from code, there are a few classes you’ll need to understand.
The classes used for Windows Store apps differ from those you may be familiar with
on the desktop, because the definition of file, from an API standpoint, has been
expanded to include resources as well as remote files.

 The most important is the StorageFile class. This class, in the Windows.Storage
namespace, represents a file, either remote or local. Many of the file operations in the
Windows Runtime return or accept a StorageFile instance or a stream obtained from
the instance.

 Assuming the app has the correct permissions, the StorageFile class provides
methods to copy files, copy and replace, delete, rename, move, open, and more.
Above that, it also contains methods and properties to get metadata for the file, get

Figure 15.2 The additional settings required for Documents Library and Removable Storage capabilities

http://bit.ly/Win8FileActivation
http://bit.ly/Win8FileActivation

349Loading files programmatically
the system-generated thumbnail, display name, path, full filename, and so on. You can
even get a raw stream of data from a file or URI. This class will provide to you just
about everything you need to work with a file and in a secure way that respects the
Windows Store app permissions.

 One thing the StorageFile doesn’t represent is a folder. For that, you have the
StorageFolder class. The StorageFolder class shares many of the same capabilities as
the StorageFile, as well as functions to get lists of StorageFile instances from the
folder.

 Access to these folders, the actual locations of which may change from machine to
machine and user to user, is provided through the KnownFolders class. The following
listing shows how to use the KnownFolders class to gain access to three different file
locations. Place the code in the MainViewModel class, replacing the empty placeholder
methods that were already there.

private async void UpdateChildren()
{
 var items = await CurrentFolder.GetItemsAsync();

 ChildItems.Clear();

 foreach (var item in items)
 ChildItems.Add(item);
}

public void LoadDocumentsLibrary()
{
 CurrentFolder = KnownFolders.DocumentsLibrary;
}

public void LoadMusicLibrary()
{
 CurrentFolder = KnownFolders.MusicLibrary;
}

public void LoadRemovableDevices()
{
 CurrentFolder = KnownFolders.RemovableDevices;
}

When you look at this code, it hits you just how easy it is (once you have permissions)
to enumerate files and folders in a known location on the machine. Simply grab a ref-
erence to the folder using the KnownFolders class, then asynchronously call the Get-
ItemsAsync method to get everything in that folder.

 Figure 15.3 shows a shot of the app’s screen with the contents of the documents
library loaded up. My documents library on this test machine has only a single file but
a bunch of folders.

Listing 15.4 Viewmodel code to list all files in certain folders

Get all items
in folder

Clear old contents

Add items to
collection

Use KnownFolders
class

http://bit.ly/Win8Pickers
http://bit.ly/Win8Pickers
http://sqlite.org/

350 CHAPTER 15 Working with files
To create this UI, there’s one piece left: the ListView. The list of items will include the
name, the path to the item, and the date it was created. The following listing has the
markup to put in MainPage.xaml in the spot you earlier reserved for the ListView.

<ListView x:Name="ItemsList"
 Grid.Row="1"
 ItemsSource="{Binding ChildItems}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Margin="5">
 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="20" />
 </Style>
 </Grid.Resources>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="550" />
 <ColumnDefinition Width="300" />
 </Grid.ColumnDefinitions>

 <TextBlock Text="{Binding Name}"
 Grid.Column="0"
 Grid.Row="0"/>

 <TextBlock Text="{Binding DateCreated}"
 Grid.Column="1"
 Grid.Row="0"/>

 <TextBlock Text="{Binding Path}"
 FontSize="12"
 Grid.Column="0"

Listing 15.5 MainPage.xaml ListView markup to create the UI

Figure 15.3
The app shown using
the same item
template for each
storage item displayed
in the list. The contents
of the documents
library are shown.

Bind to
viewmodel
property

Bind to properties
of the item

http://bit.ly/Win8StorageFile

351Loading files programmatically
 Grid.ColumnSpan="2"
 Grid.Row="1"/>

 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

This code uses a plain item template that pulls the common fields provided by the
IStorageItem interface. The ListView itself is bound to the collection on the view-
model. If you run the app now and click one of the buttons, you’ll get back a list of
items. If you instead receive an exception, check to make sure you set up the capabili-
ties and declarations in the manifest.

 As you can see, it was really easy to list the files and folders and display their shared
properties (name, date, and full path).

15.1.4 Using a data template selector

You have all the files and folders loaded and displayed in a list, but what if you wanted
to display the storage items differently based on some criteria, for example, show fold-
ers differently from files? This seems like the perfect time to introduce to you the
DataTemplateSelector class.

 The DataTemplateSelector is a class you derive from to create logic that provides
a reference to a DataTemplate based on the item passed in. The code could inspect a
property of the item, or as you’ll do here, make the decision based on the type of the
item. The ListView and GridView (as well as all other ItemsControl-derived classes)
have built-in support for working with a data template selector, so you’ll use it to pro-
vide slightly different folder and file templates, as shown in figure 15.4.

Figure 15.4 The StorageFolder and StorageFile items in the collection are
rendered with different templates, selected through a custom
DataTemplateSelector class.

352 CHAPTER 15 Working with files
Create a new folder named Selectors. Then, in that folder, create a class named
StorageItemDataTemplateSelector. The following listing shows the source for this
class.

using System;
using Windows.Storage;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

namespace DemoApp.Selectors
{
 public class StorageItemDataTemplateSelector : DataTemplateSelector
 {
 public DataTemplate FileTemplate { get; set; }
 public DataTemplate FolderTemplate { get; set; }

 protected override DataTemplate SelectTemplateCore(
 object item, DependencyObject container)
 {
 if (item is StorageFile)
 return FileTemplate;

 if (item is StorageFolder)
 return FolderTemplate;

 return base.SelectTemplateCore(item, container);
 }
 }
}

The StorageItemDataTemplateSelector class overrides the important Select-
TemplateCore method. This is the method that the runtime calls to determine which
template to use. Inside that code, the method inspects the type. If it’s a StorageFile,
it returns whatever is in the FileTemplate property. Similarly, if it’s a StorageFolder,
it returns whatever is in the FolderTemplate property. If for some reason neither
applies, it returns the default by deferring to the base functionality.

TIP Data template selectors are generally useful throughout an app’s UI. This
is one use case. If you want to display a Windows Store-type UI in a GridView,
with different-size blocks showing different types of content, a data template
selector will help you get there.

The next listing has the new ListView markup, which includes the two different tem-
plates as well as the selector. Completely replace the previous ListView with this one.

<ListView x:Name="ItemsList"
 Grid.Row="1"
 ItemsSource="{Binding ChildItems}">

Listing 15.6 The StorageItemDataTemplateSelector class

Listing 15.7 Updated ListView markup to use the selector

Inherit from
DataTemplateSelector

Templates to
pick from

Use FileTemplate for
StorageFile instances

Use FolderTemplate for
StorageFolder instances

353Loading files programmatically
 <ListView.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="20" />
 </Style>

 <Style TargetType="TextBlock"
 x:Key="IconStyle">
 <Setter Property="FontSize" Value="40" />
 <Setter Property="FontFamily" Value="Segoe UI Symbol" />
 <Setter Property="Margin" Value="2" />
 <Setter Property="Foreground" Value="Aquamarine" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>

 <DataTemplate x:Key="FileTemplate">
 <Grid Margin="5">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="550" />
 <ColumnDefinition Width="300" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Text=""
 Style="{StaticResource IconStyle}"
 Grid.Row="0"
 Grid.RowSpan="2"
 Grid.Column="0"/>

 <TextBlock Text="{Binding DisplayName}"
 VerticalAlignment="Center"
 Grid.Row="0"
 Grid.RowSpan="2"
 Grid.Column="1"/>

 <TextBlock Text="{Binding DateCreated}"
 Grid.Row="0"
 Grid.Column="2"/>

 <TextBlock Text="{Binding FileType}"
 Grid.Row="1"
 Grid.Column="2"/>
 </Grid>
 </DataTemplate>

 <DataTemplate x:Key="FolderTemplate">
 <Grid Margin="5">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="550" />
 <ColumnDefinition Width="300" />
 </Grid.ColumnDefinitions>

FileTemplate

FolderTemplate

354 CHAPTER 15 Working with files

n
d

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Text=""
 Style="{StaticResource IconStyle}"
 Foreground="Yellow"
 Grid.Row="0"
 Grid.RowSpan="2"
 Grid.Column="0"/>

 <TextBlock Text="{Binding DisplayName}"
 VerticalAlignment="Center"
 Grid.Row="0"
 Grid.RowSpan="2"
 Grid.Column="1"/>

 <TextBlock Text="{Binding DateCreated}"
 Grid.Row="0"
 Grid.Column="2"/>

 <TextBlock Text="{Binding DisplayType}"
 Grid.Row="1"
 Grid.Column="2"/>
 </Grid>
 </DataTemplate>
 </ListView.Resources>

 <ListView.ItemTemplateSelector>
 <selectors:StorageItemDataTemplateSelector
 xmlns:selectors="using:DemoApp.Selectors"
 FileTemplate="{StaticResource FileTemplate}"
 FolderTemplate="{StaticResource FolderTemplate}" />
 </ListView.ItemTemplateSelector>
</ListView>

Now when you run the app, the ListView will use the custom item template selector
to choose the correct template for each item. Item template selectors can be as simple
or as complex as you need for your apps, allowing you to create layouts that best repre-
sent the individual items being displayed.

15.1.5 Using file queries

So far, you’ve used the StorageFolder class to list all the items within that folder.
Often, an app needs to filter that list of files. Sure, this could be done in code after the
fact, but wouldn’t it be great if you could make a single call, optimized by the OS, with
the filter already in place?

 You can, of course. The feature in WinRT that makes this possible is the query. The
following listing shows how. Update the MainViewModel code with the code from this
listing.

Template
selector

Inline
amespace
eclaration

q

355Loading files programmatically

private StorageFolder _currentFolder;
public StorageFolder CurrentFolder
{
 get { return _currentFolder; }
 set
 {
 _currentFolder = value;
 NotifyPropertyChanged("CurrentFolder");
 //UpdateChildren();
 UpdateChildrenWithQuery();
 }
}

private async void UpdateChildrenWithQuery()
{
 var options = new QueryOptions(CommonFileQuery.OrderByDate,
 new string[] { ".satxt", ".docx", ".txt" });

 var result = KnownFolders.DocumentsLibrary.CreateItemQueryWithOptions(
 options);

 var items = await result.GetItemsAsync();

 ChildItems.Clear();

 foreach (var item in items)
 ChildItems.Add(item);
}

The code in this listing adds a new UpdateChildren method, this time called Update-
ChildrenWithQuery. The query is built so that it sorts the data by date and filters the
results to any files with the listed extensions. Note that because this is an item query, it
will still return folders because the extension doesn’t apply to them. If you want only
files or only folders, you can use the appropriate methods to create a file query or a
folder query instead of an item query.

 Importantly, the query is also recursive; it will return all files and folders that meet
the criteria, regardless of their depth in the tree. To avoid this, use the FolderDepth
property of the query options object. For more information on this and other query
options, see http://bit.ly/Win8QueryOptions.

15.1.6 Creating files and folders

Maybe the main purpose of your app is to create a data file to be used by other apps.
Perhaps your app provides value by editing data created by other apps. Although list-
ing files tends to be more common than writing files and creating folders, many apps
do need to open or create individual files or even create subfolders.

 For this next example, you’ll create a folder and file using user-specified data. The
StorageFolder class provides methods for creating both files and folders. As part of
the creation process, you can specify naming collision options (error, overwrite,

Listing 15.8 Listing files using a query

Old update call

New update call

Sort by date, and
filter by extension

Get
items
from
uery

Create items
query

Add items to
collection

356 CHAPTER 15 Working with files
generate a name, and so on). The next listing has the required code for the Main-
ViewModel class.

public async Task<StorageFile> CreateFile(
 string subFolderName, string fileName)
{
 if (CurrentFolder != null)
 {
 var folder = await CurrentFolder.CreateFolderAsync(
 subFolderName,
 CreationCollisionOption.GenerateUniqueName);

 return await folder.CreateFileAsync(
 fileName,
 CreationCollisionOption.GenerateUniqueName)
 .AsTask();
 }
 else
 {
 return null;
 }
}

This listing creates a folder and then a file inside the folder. The file has no contents.
Instead, the file is returned as the result of this asynchronous method, to be filled by
the calling code.

Listing 15.9 MainViewModel code to create a subfolder and file

Create subfolder

Create file

Return null if
no parent folder
selected

Figure 15.5 The new file-creation UI displayed alongside the list of files and folders returned from
the query. Note that the file list is recursive; that’s why you see multiple MyFile instances in there.
Note also the MyFolder and MyFolder (2) entries. Those were folders created through this UI.

357Loading files programmatically
The collision options set for the two calls will result in numbered folders and files if
run multiple times. You’ve likely seen this in Windows before: A copied file gets a (2)
appended to the name. That’s exactly what the GenerateUniqueName option does
here. Of course, you could also have checked to see if the folder exists and, if so, sim-
ply used it rather than create it.

 You’ll need a simple UI to drive this. It will have entry fields for the folder and file-
name, a large TextBox for the contents, and then a button to create the folder and
file. Figure 15.5 shows what it will look like when run.

 The next listing shows the XAML for the UI. Place this markup right under the
other buttons inside the StackPanel on the right of the page. Be sure the Grid is
inside the StackPanel or the UI will get overlaid.

<Grid Margin="0,20,0,0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Margin" Value="5" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="FontSize" Value="15" />
 </Style>
 <Style TargetType="TextBox">
 <Setter Property="Margin" Value="5" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="FontSize" Value="15" />
 </Style>
 </Grid.Resources>

 <TextBlock Text="Folder Name"
 Grid.Column="0" Grid.Row="0"/>

 <TextBox x:Name="FolderName" Text="MyFolder"
 Grid.Column="1" Grid.Row="0"/>

 <TextBlock Text="File Name" Grid.Column="0" Grid.Row="1"/>

 <TextBox x:Name="FileName" Text="MyFile.satxt"
 Grid.Column="1" Grid.Row="1"/>

 <TextBlock Text="Contents"
 Grid.Column="0" Grid.Row="2"/>

Listing 15.10 MainPage.xaml additional UI for creating files

Folder name

File name

358 CHAPTER 15 Working with files
 <TextBox x:Name="Contents"
 Text="Enter the contents of the file here"
 Height="100" TextWrapping="Wrap"
 IsSpellCheckEnabled="True"
 IsTextPredictionEnabled="True"
 Grid.Column="1" Grid.Row="2"/>

 <Button Content="Create File"
 HorizontalAlignment="Right"
 Grid.Row="3" Grid.Column="1"
 Click="CreateFileClick" />
</Grid>

There’s nothing surprising about this UI, except for the fact that you’re not using any
data binding to hold the entered values. Why not? Mostly because it simplifies the
code in this example and because you won’t be using those entered values in any
other place. The following listing shows that code in the code-behind.

private async void CreateFileClick(object sender, RoutedEventArgs e)
{
 string folderName = FolderName.Text.Trim();
 string fileName = FileName.Text.Trim();
 string contents = Contents.Text.Trim();

 var file = await _vm.CreateFile(folderName, fileName);

 if (file != null)
 {
 await FileIO.AppendTextAsync(file, contents);
 }
 else
 {
 var dlg = new MessageDialog("Unable to create file.");
 await dlg.ShowAsync();
 }
}

This code first grabs the values from the text entry fields on the screen. Then, it calls
the viewmodel’s CreateFile method, passing in only the folder and filename. If file
creation succeeds, it then writes the supplied text to the file. If the creation fails (for
example, if you forget to select a parent folder first), the code displays a message to
the user.

 The FileIO class is a nice helper class that makes writing to StorageFiles easier. If
you don’t have a StorageFile instance but do have a path or URI, you can use the
PathIO class.

 The example here also uses the MessageDialog class to display a message. The
MessageDialog is the WinRT equivalent of the old MessageBox class. Use it only when

Listing 15.11 MainPage.xaml.cs code to handle the new UI elements

File contents

Button to
create file

Call viewmodel
to create file

Append the text
to the file

Display message
if creation failed

359URI formats
you need to display a message that requires attention. For other transient messaging
(like success), use toast or an onscreen element to display the update.

 Windows Store apps have a great amount of support for programmatically listing
and accessing files and folders in a secure way. If you want to gain easy access to the
commonly used folders on the PC, you can use the KnownFolders class. But to access
the individual folders, such as the music library or documents library, you’ll need to
first set up the appropriate declarations in the app manifest.

 The folders surfaced by the KnownFolders class are StorageFolder instances. The
StorageFolder class provides access to create, update, and delete files and subfolders.
The FileIO class will also help you with those tasks. The StorageFolder class also pro-
vides functions to list all the files, all the folders, or a combination of the two. Beyond
that, it provides the ability to create file queries that recursively, if desired, return
items from the folder based on criteria you specify.

 So far, you’ve used only the KnownFolders class to access files from code. In the
next section, we’ll look at URI formats that may be used from code or from markup.

15.2 URI formats
Windows 8 introduces a number of important URI formats that may be used to access
data throughout your app. The use of named URIs enables file access directly in XAML
(or HTML) without requiring any running code.

Other file access options

The FileIO and PathIO classes aren’t the only ways to read and write bytes. The
StorageFile class provides access to the raw stream for both reading and writing,
which, although slightly more complex, is generally more flexible.

Additionally, StorageFile has methods for loading a file from a path or URI and also
for generating thumbnails for the file. This last capability, exposed through the
GetThumbnailAsync method, is great for generating thumbnails for all file types, not
just images. Because it uses the OS, the thumbnails are cached and are generated
very quickly.

Thumbnail generation is a method and not a property; you’ll need to provide your own
model objects with the thumbnail rather than bind to instances of StorageFile di-
rectly. The MVVM pattern can certainly help you there.

You can find out more about the StorageFile class on MSDN at http://bit.ly/
Win8StorageFile. While there, look at the other classes in the Windows.Storage
namespace, because many are optimized for specific scenarios like bulk access of
file properties, creating files from streams, virtualization, and the like.

In particular, the FileInformationFactory is what you want to look at if you need
to pull a large list of thumbnails in a virtualized and high-performing way.

http://bit.ly/Win8StorageFile
http://bit.ly/Win8StorageFile

360 CHAPTER 15 Working with files
 So far, you’ve seen the ms-appx scheme used primarily to reference images in
other examples, but there are several other schemes, as shown in table 15.1.

When passing URIs to methods in the Windows Runtime, you need to use the full sche-
me, not a relative URI. To keep things simple, I always use the scheme, such as ms-appx.

 These URI formats will be especially useful in markup. When working from code,
you can use these URIs in functions designed to work with them, but by far the safest,
and most flexible, approach for opening files is to use the file picker.

Table 15.1 Known URI formats for Windows 8 apps

Example URI Description

http://<domain>/<file> Accesses a file from the web, just as you would
from the browser. There are no cross-domain or
cross-scheme restrictions as in some other tech-
nologies like Silverlight or Flash.

ms-appx://<folder>/<file>
or
<folder/file>

Loads a file in a path relative from the current
page or code. If used in a XAML page in a sub-
folder in the project, for example, the path is
expressed relative to that page.

ms-appx:///<folder>/<file>
or
/<folder>/<file>

References a file root-relative from the installation
folder or project root.

ms-appx:///<classlib>/<folder>/<file> Opens a resource embedded in a referenced class
library.

ms-appdata:///local/<folder>/<file> References a file stored in the app’s local data
store. This is typically used for state that’s spe-
cific to the machine. This is also a good place to
store app-specific data that’s not useful cross-
machine.

ms-appdata:///roaming/<folder>/<file> References a file stored in the app’s roaming data
store. This is synchronized between PCs and is
associated with the account of the user logged in
when accessed. This is the best place to store
app-specific data that the user may want to share
between machines.

ms-appdata:///temp/<folder>/<file> References the local machine’s temp folder for
this app. Use this when you need to write dispos-
able intermediate files.

Storing app settings

You may be tempted to store app settings in a file. But if the data is designed in such
a way that it can be represented by one or more name and value pairs, you can instead
use the ApplicationData class.

361Working with file pickers
15.3 Working with file pickers
All of the file access in this chapter has been completely controlled by code or markup.
What happens when you want to put the user in control of picking the files? Does WinRT
have an equivalent to the venerable FileOpenDialog we’ve grown to love?

WinRT not only has an equivalent, but it has also taken the concept of opening a
file and made it extensible so that any app can plug into it to serve as the source of a
file. That means you’re not limited to files on the local machine or in specific loca-
tions. You’re not even limited to files that actually exist! The logical file could have
come from the web, from a compilation of fields in a local database, from an app’s pri-
vate data store, or as the result of a computation. If another app can serve up the
request with a StorageFile, you can use it.

 There are three pickers, all of which work similarly: the FileOpenPicker, the
FileSavePicker, and the FolderPicker. In this section, we’ll first look at how to use
the FileOpenPicker to open files from other apps. Then, you’ll implement your own
FileOpenPicker source functionality so that you can serve files to other apps.

15.3.1 Using the file open picker

The FileOpenPicker builds on your knowledge of the StorageFile class. Once you
use the picker to obtain a StorageFile instance, you can work with it just as you have
in the previous sections in this chapter.

 For our example, you’ll put a button on the screen that will let you open the
picker. The following listing has the button markup to place under the other buttons
in the StackPanel on the right of the main page.

<StackPanel>
 <Button Content="Get Documents Library"
 Click="GetDocumentLibraryClick"/>
 <Button Content="Get Music Library"
 Click="GetMusicLibraryClick"/>
 <Button Content="Get Removable Devices"
 Click="GetRemovableDevicesClick"/>

 <Button Content="Open File Picker"
 Click="OpenFilePickerClick"/>
 ...
</StackPanel>

(continued)

Through this class, you can designate groups of settings as local, roaming, or tem-
porary, as well as version the settings data to make upgrades easier. We’ll cover more
on the ApplicationData class, and the Settings charm, in chapter 22.

Listing 15.12 MainPage.xaml UI for file open functionality

Existing buttons

New button

362 CHAPTER 15 Working with files

thumb
not

A f
The markup adds a single button and wires it up to the event handler. The event han-
dler itself is where all the magic happens. To implement it, put the code in the next
listing into the MainPage.xaml.cs code-behind.

private async void OpenFilePickerClick(object sender, RoutedEventArgs e)
{
 var picker = new FileOpenPicker();

 picker.ViewMode = PickerViewMode.Thumbnail;
 picker.SuggestedStartLocation = PickerLocationId.DocumentsLibrary;
 picker.FileTypeFilter.Add(".jpg");
 picker.FileTypeFilter.Add(".png");
 picker.FileTypeFilter.Add(".satxt");
 picker.FileTypeFilter.Add(".txt");
 picker.FileTypeFilter.Add(".docx");

 var file = await picker.PickSingleFileAsync();

 if (file != null)
 {
 var dlg = new MessageDialog(file.DisplayName + " was picked.");
 await dlg.ShowAsync();
 }
 else
 {
 var dlg = new MessageDialog("No file picked.");
 await dlg.ShowAsync();
 }
}

This code creates an instance of the file open picker, sets it to display thumbnail
images rather than a list, and sets a suggested start location. The start location is a sug-
gestion only, because the picker will remember the user’s last location and almost
always start from there. The suggestion only comes into play the first time the picker
is used.

 Then, once everything is set up, the PickSingleFileAsync method is called. This
method, as the name suggests, enables picking a single file. There’s also a Pick-
MultipleFilesAsync method, which allows more than one file to be picked.

 If a file was picked, you display a message with the display name of the file. If not,
you display a simple “No file picked” message. At the point those messages are dis-
played, you have access to the StorageFile returned from PickSingleFileAsync, so
you could write to it, read from it, and so on.

 You’ll need to add a using statement for the Windows.Storage.Pickers namespace
for the code in listing 15.13 to compile. That namespace is the one that contains the
FileOpenPicker and related classes. Once you do, run the app and click the button to
open the picker. You’ll see something similar to figure 15.6. In this case, I’ve hovered
(with the mouse) over a file with the .satxt extension, the extension registered to our
app. You can see that I didn’t provide an icon or any preview information for it.

Listing 15.13 Code-behind to open the file

Create picker

Show
nails,
 a list

Set file types you’re
interested in

Show picker

ile was
picked

363Working with file pickers
Additionally, if you click the little downward arrow or chevron to the right of Files in
the displayed picker, you’ll be presented with a list of file locations as well as apps that
are registered as file open pickers.

 You can also save files using the FileSavePicker. The approach is similar, so I
won’t duplicate it here. But let’s take a look at how to create your own file open picker.

15.3.2 Implementing the file picker source contract

When your app registers itself as a file open picker, it must provide a UI to allow the
user to pick a file. The app doesn’t own the entire UI, however, just the horizontal
band under the heading and above the Open and Cancel buttons. Everything else is
owned by Windows to provide a consistent experience.

 In the root of the project, add a new blank page named FileOpenPickerPage. The
markup for this page is shown here.

<Page
 x:Class="DemoApp.FileOpenPickerPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:DemoApp"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

Listing 15.14 The picker page

Figure 15.6 The file open picker in use by our app. The called-out list shows available pickers.

364 CHAPTER 15 Working with files
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <GridView x:Name="FileList">
 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid HorizontalAlignment="Left" Width="250" Height="100">
 <StackPanel VerticalAlignment="Bottom"
 Background="{StaticResource
 ➥ ListViewItemOverlayBackgroundThemeBrush}">

 <TextBlock Text="{Binding DisplayName}"
 Foreground="{StaticResource
 ➥ ListViewItemOverlayForegroundThemeBrush}"
 Style="{StaticResource TitleTextStyle}"
 Height="60"
 Margin="15,0,15,0"/>

 <TextBlock Text="{Binding FileType}"
 Foreground="{StaticResource
 ➥ ListViewItemOverlaySecondaryForegroundThemeBrush}"
 Style="{StaticResource CaptionTextStyle}"
 TextWrapping="NoWrap"
 Margin="15,0,15,10"/>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>
 </GridView>
 </Grid>
</Page>

This listing has a simplified GridView without any real extras. The item template is
based on the 250 px item template included in the StandardStyles.xaml file. I simpli-
fied it a bit to remove the image thumbnails (because the thumbnails for files must be
generated in code, and we’re not doing that) and to make it so more of the items
would fit on the screen at once.

 How is this screen invoked? It’s through a special override in app.xaml.cs, as shown
in the following listing.

protected override void OnFileOpenPickerActivated(
 FileOpenPickerActivatedEventArgs args)
{
 var page = new FileOpenPickerPage(args);

 Window.Current.Content = page;
 Window.Current.Activate();
}

This method is called when the app is loaded as a file open picker. All the code does is
instantiate the FileOpenPickerPage and activate it. When creating the page, it passes
in the args property.

 When creating an instance of this page, you must pass in the arguments provided
at app activation. It’s these arguments that you use to add individual files. The next

Listing 15.15 app.xaml activation code

Display name

File type
(extension)

Create page,
passing argsActivate

page

365Working with file pickers

Synch
e
c

listing shows the constructor with the arguments, as well as the code that synchronizes
the collections. More on that after the code.

using System;
using Windows.ApplicationModel.Activation;
using Windows.Storage;
using Windows.Storage.Pickers.Provider;
using Windows.Storage.Search;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

namespace DemoApp
{
 public sealed partial class FileOpenPickerPage : Page
 {
 FileOpenPickerActivatedEventArgs _args;

 public FileOpenPickerPage(FileOpenPickerActivatedEventArgs args)
 {
 this.InitializeComponent();

 _args = args;

 LoadFiles();

 if (_args.FileOpenPickerUI.SelectionMode ==
 FileSelectionMode.Multiple)
 FileList.SelectionMode = ListViewSelectionMode.Multiple;
 Else
 FileList.SelectionMode = ListViewSelectionMode.Single;

 _args.FileOpenPickerUI.Title = "Pete's cool files";

 FileList.SelectionChanged +=
 FileList_SelectionChanged;
 _args.FileOpenPickerUI.FileRemoved +=
 FileOpenPickerUI_FileRemoved;
 }

 void FileOpenPickerUI_FileRemoved(FileOpenPickerUI sender,
 FileRemovedEventArgs args)
 {
 if (FileList.SelectionMode == ListViewSelectionMode.Multiple)
 {
 foreach (StorageFile file in FileList.SelectedItems)
 {
 if (file.Path == args.Id)
 {
 FileList.SelectedItems.Remove(file);
 break;
 }
 }

Listing 15.16 File picker page code-behind

Reference
to args

Load files

Set selection
mode

Set page
subtitle

Wire
synchronization
events

ronize
xternal
hanges

366 CHAPTER 15 Working with files
 }
 else
 {
 if (FileList.SelectedItem != null)
 {
 if (((StorageFile)(FileList.SelectedItem)).Path ==
 args.Id)
 FileList.SelectedItem = null;
 }
 }
 }

 void FileList_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 foreach (StorageFile file in e.AddedItems)
 _args.FileOpenPickerUI.AddFile(file.Path, file);

 foreach (StorageFile file in e.RemovedItems)
 _args.FileOpenPickerUI.RemoveFile(file.Path);
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 { }

 private async void LoadFiles()
 {
 var options = new QueryOptions(
 CommonFileQuery.OrderByDate,
 new string[] { ".jpg", ".png" });

 var result = KnownFolders.PicturesLibrary
 .CreateFileQueryWithOptions(options);

 var files = await result.GetFilesAsync();

 FileList.ItemsSource = files;
 }
 }
}

This is one case where handling the interaction of code and UI without using binding
is much easier than with binding. In order to be a file picker, the app needs to
respond to changes in the dictionary of selected files, as well as add and remove files
from that dictionary based on user selection. You could find a way to do this using
MVVM, but sometimes the effort gets in the way of the end goal, as it would here.

 The final step in implementing FileOpenPicker functionality is to declare the
capability in the Declarations tab of the appx manifest. First, add the declaration, and
then decide which file types you will support. If you support any file type, select that
option in the properties. Otherwise, be sure to specify the exact types your app pro-
vides. Figure 15.7 shows the setting in place.

 To test the functionality, build and deploy the app. But instead of running it,
switch over to an app that uses the file picker. SkyDrive is a simple one to use. Then,

Synchronize
internal changes

Load files,
only

Bind list

367Working with file pickers
open the app bar and choose the option to upload a file. You’ll then be presented
with the file picker. Click the little down arrow to the right of the title and pick your
app as the source. You should see something that looks like figure 15.8 but with what-
ever files you have in your pictures library.

 The file picker system in Windows 8 is also a great way for apps to provide function-
ality to other apps. Now apps don’t need to know the source of the file; they simply get
the file object and work on it. This makes it possible for you to pick documents from
SkyDrive, photos from Flickr or Facebook, and much more.

Figure 15.7 The File Open Picker declaration showing that our app provides picker functionality for
any file type

Figure 15.8 Our app as a file open picker source. You can see that it’s working because the
list of files at the bottom of the screen properly reflects the selections made in our app UI.

368 CHAPTER 15 Working with files
For more information on consuming and creating file pickers, please see this MSDN
page at http://bit.ly/Win8Pickers.

15.4 Summary
File operations are some of the most fundamental services that any OS or platform can
provide for app developers. Windows 8 supports all the basic file IO you’d expect but
adds to that the ability to work natively with files from nontraditional sources. The
StorageFile class and its related IStorageFile interface are flexible enough that the
file could come from a website, a local folder, or another app on the system.

 When you do want to work with local files, the StorageFolder class provides easy
access to folders on the local machine. For a quick way to get a reference to the com-
mon folders such as the documents library, you can use the KnownFolders class, which
exposes each of those common locations as StorageFolder instances. Once you have
a storage folder, you can enumerate its items using either straight collections or the
more flexible approach of file queries. By using queries, you let the OS handle filter-
ing and sorting in the most efficient way possible.

 When you want to access these locations from markup, you can use the set of URIs
for known locations, websites, or even protocols provided by other apps.

 The extensibility story in Windows 8 includes even the loading of files. Apps can
register themselves as FileOpenPicker or FileSavePicker, thereby serving as the
source of StorageItem instances for other apps. The files could be located anywhere
or even be simply records in a database or something generated at runtime. This type
of flexibility makes it possible for third-party app developers to provide value not only
to their app users but to other apps in the system, making the whole platform better in
the process.

 As was also the case when I covered networking, there were a number of asynchro-
nous operations in the file examples in this chapter. The next chapter covers async in
detail so you can better understand how to use asynchronous methods as well as cre-
ate your own.

Using the SQLite database engine

Although I encourage you to use files whenever possible, because they make sharing
and other contracts easier to work with, many apps could make better use of a data-
base.

Windows 8 apps can use a local database engine, as long as that engine respects
Windows Store rules. One such database is SQLite, which can be downloaded from
http://sqlite.org/.

Because SQLite is implemented in C++, you’ll need to provide separate app packages
for each supported architecture. (The version included with ARM will be different for
64-bit Intel architecture, for example.)

At the time of this writing, the packaging and deployment for SQLite were still being
finalized. Check on their site for more information about using SQLite with Windows
Store apps.

Asynchronous everywhere
How many times have you used an application that became unresponsive, if only
for a few seconds? Starting in Windows Vista, those applications would frost over
and respond to clicks by shifting themselves a couple pixels on the screen. More
often than not, those applications were executing some long-running function or
were waiting for a resource to be freed. For example, my data drive is a low-power
spinning rust drive, and it tends to be aggressive about spinning down. Sometimes,
when I go to save a document in Microsoft Word, Word will frost over for a couple
of seconds as the drive spins up and the data can be saved.1

This chapter covers
■ Working with asynchronous operations
■ Using async and await
■ Using .NET Task and the WinRT IAsync*

approaches
■ Converting between WinRT IAsync* and Task

1 My apps and Windows drive is on a big SSD that’s always in use and always responsive. If it starts requiring
spin-up time, I’m in serious trouble.
369

370 CHAPTER 16 Asynchronous everywhere
 In most UI frameworks, Windows applications have the concept of a UI thread
which is where all interaction with the user happens. Windows Forms, WPF, and Silver-
light drove that concept home to many by throwing an exception if code on a back-
ground thread attempted to access objects on the UI thread. When that thread is
locked or busy for too long, you get an unresponsive application and the manifesta-
tions mentioned earlier.

 Over the past years, asynchronous operations have become a fact of life for devel-
opers. I blame Ajax2 and JavaScript. What’s really to blame here is the expectations of
the user. There was a time when it was perfectly acceptable to have your application lock
up and be unresponsive during a long calculation or other operation. From day one,
every GUI has had an hourglass, clock, or watch pointer to make this seem normal.
Many apps would hang when doing something as simple as printing.

 But then we started adding in animation, and not just the sparkly animated GIFs
made popular on GeoCities and Angelfire3 but animation that is useful and conveys
information such as context—for example, the expansion of an element when a
mouse hovers over it, or the sliding in of an element so that it doesn’t simply jump out
at you like a monster in a cheap haunted house carnival ride.

 Operations that caused the animation to stutter or skip suddenly became a real
problem. Around the same time, we started seeing the ubiquity of discrete graphics
cards (or graphics sections of modern CPUs) combined with main processors with
much better baked-in support for additional threads and processes. Together, these
were able to better carry out background operations without tying up the UI. The ani-
mation could be offloaded but so could the longer-running tasks that were tying up
the UI in the first place.

 One of the longest latency activities is networking, so browsers and Silverlight tack-
led those and ensured they were required to be asynchronous calls. For browser desk-
top technologies like WPF, the recommended approach was to use asynchronous
code. But, because WPF and Windows Forms didn’t require it, most desktop apps
weren’t written using asynchronous code. The result was clear: If it wasn’t required, it
didn’t happen, because it was hard.

 The straw that broke the camel’s back was touch interaction. Unlike mouse inter-
action, touching a UI is such an immediate and deep interaction that any sort of lag in
responsiveness becomes immediately noticeable. When you put apps that rely on
touch on a tablet designed for touch, using a relatively low-power ARM processor, any
and all lag becomes immediately noticeable. Importantly, users who see the lag don’t
just think “Wow, that app stinks” but also think “Wow, this tablet stinks” or “This oper-
ating system stinks.” So, Microsoft made the decision to make anything even remotely
slow into an asynchronous API.

2 And you too, jQuery! I know what game you’re playing.
3 If you’re too young to remember that colorful period in internet history, or you’ve simply blocked it out,

check out the Geocities-izer at http://wonder-tonic.com/geocitiesizer/ or Cornify at http://www.cornify
.com/.

http://wonder-tonic.com/geocitiesizer/
http://www.cornify.com/
http://www.cornify.com/

371Why asynchronous is important
 Throughout the book I’ve been using asynchronous operations but without any
detailed explanation. In this chapter, we’ll take a look at how WinRT, .NET, and C#
work together to make asynchronous calls work with a minimal amount of code. We’ll
first look at the reasons why asynchronous code is important. From there, we’ll start
with the Windows Runtime approach to asynchronous code and introduce the async
and await keywords, together a key feature for the simplification of asynchronous
calls. We’ll also look at how to handle progress reporting and cancellation of long-run-
ning operations. Once we finish up with the WinRT approach, we’ll look at how .NET
has expanded the use of Task in .NET 4.5. Taking a similar approach to what we did
with WinRT, you’ll see how to use Task and how to cancel operations. We’ll wrap up
with information on how to convert between the WinRT IAsync* approach and the
.NET Task approach.

 But first, you need to understand why we’re even worrying about asynchronous
operations and why it merits a chapter all its own.

16.1 Why asynchronous is important
Synchronous functions have been, for a very long time, the norm in programming. In
this type of function, the calling code must wait until every instruction is complete
before the function will return. It’s just naturally the way code is executed on a proces-
sor. In contrast, asynchronous functions are those that return immediately after kick-
ing off some internal process on another thread. Figure 16.1 shows the difference.
The benefit of asynchronous code is that the calling code regains control much more
quickly. This means, in the case of a UI thread, that it can process UI interaction and
other high-priority tasks without being blocked by a long-running process.

 Writing good asynchronous code can be a real hair-puller. Like dealing with thread
synchronization in a critical application or learning recursion for the first time, it’s

Figure 16.1
Synchronous and
asynchronous code
compared. Notice how
the calling thread
regains control
much earlier in the
asynchronous version.

372 CHAPTER 16 Asynchronous everywhere
not something many look back on fondly. Writing asynchronous code is also impor-
tant enough that it isn’t something you can foist onto the new kid on your team like
you do all those field validations and other boring code.

 All .NET languages and platforms have supported asynchronous calls for quite some
time, but for many of us, Silverlight was our first real exposure to asynchronous function
calls in .NET. Until Silverlight, asynchronous code was never a platform-imposed
requirement. Luckily, Silverlight kept this requirement to a single area: networking. But
that single area was enough to make our code complex and to make many turn to a num-
ber of helper approaches such as Reactive Extensions (RX) and Tasks from the Task
Parallel Library (TPL). Most developers fought it and very few embraced it because,
quite simply, it was a pain in the butt to deal with in all but the simplest of scenarios.

 For these reasons, the Windows Runtime greatly expands on the use of asynchro-
nous APIs. Instead of limiting asynchronous calls to only the most egregious offenders
(networking), they are used any time there may be even slight latency in the response.
You’ll find them in networking, of course, but also in file access, pickers, stream manip-
ulation, device enumeration, image encoding, and more. We’re “all in” on async, baby!

NOTE The bar for deciding when to make a method asynchronous was decided
by the team implementing the Windows Runtime. A very quick 50 millisec-
onds (1/20th of a second) is the quoted number on blogs such as http://
bit.ly/WinRTAsyncBackground, but that specific number is a design detail
that’s only a guideline, because performance will vary greatly between differ-
ent classes of machines. In addition, it’s erroneous to say that simply making
functions asynchronous will guarantee good performance, because develop-
ers are typically very adept at finding ways to tie up the CPU.

You’ll be forgiven for thinking this
expansion of the use of asynchro-
nous APIs will make your code look
like some horrible Rube Goldberg
contraption of calls and callbacks
(figure 16.2), synchronization
blocks, and state management. It
won’t look like that because of help
baked into C#.

Figure 16.2 A group of developers at a
convention dedicated to people writing
interdependent multistep asynchronous

code without the await keyword (Source:
Argonne National Laboratory, CC license)4

4 Aerial view of the “Argonne Rube Goldberg Machine Contest 2010,” www.flickr.com/photos/argonne/
4435710973/.

www.flickr.com/photos/argonne/4435710973/
www.flickr.com/photos/argonne/4435710973/

373Working with IAsync* WinRT methods
The latest version of C# introduced the await and async keywords (more on both
shortly) to make it as easy to work with asynchronous code (Task or the IAsync* inter-
faces in WinRT) as it is to work with normal functions. Any asynchronous function that
follows the patterns that enable the use of the await keyword is called an awaitable
function.

 Asynchronous functions in WinRT and .NET 4.5 have the suffix Async appended to
their name. (This is an easily broken naming convention that isn’t enforced by the
compiler unless you’re running code analysis/FXCop rules, so take care when writing
your own code.) In C# IntelliSense you’ll also see them marked as awaitable, as
shown in figure 16.3.

 It’s worth noting that you’ll run across two main types of awaitable functions.
First, the Windows Runtime defines functions that return the interfaces IAsync-
Action, IAscyncActionWithProgress, IAsyncInfo, IAsyncOperation, and IAsync-
OperationWithProgress instances, collectively referred to by the shortcut IAsync*.
Second, the .NET code you’ll run in addition to WinRT tends to define functions that
return instances of the Task class from the Task Parallel Library. Both are easy to work
with and support the await keyword. But the Task class was defined in .NET before
the creation of the Windows Runtime and is specific to .NET code. The interface-
based approach in WinRT was created to support multiple languages.

16.2 Working with IAsync* WinRT methods
The Windows Runtime was built with the concept of asynchronous operations. It was
also built with the idea that these asynchronous operations must work not only for C#
but also for JavaScript, C++, and any number of other, very different languages. For
those reasons, the team didn’t take a dependency on the TPL in .NET but instead cre-
ated an interface-based approach consistent with the rest of the Windows Runtime.

 The Windows.Foundation namespace contains the types and interfaces required to
support asynchronous functions in WinRT. Every asynchronous operation imple-
ments, at a minimum, the IAsyncInfo interface. Like most programming problems,
there’s an easy but limited way to do async and a more complex but capable way.

Figure 16.3 The GetRequestStreamAsync method is an awaitable method as shown in C#
IntelliSense. In this case, I’m using a networking class from the System.Net.Http namespace.

374 CHAPTER 16 Asynchronous everywhere
In this section, we’ll look at the different approaches for using the WinRT asynchro-
nous APIs—that is, the ones that return IAsync* interfaces. I’ll cover the easiest
approach and then look into what’s needed to check progress or cancel an asynchro-
nous operation.

16.2.1 async and await: the simplest approach

The biggest problem with working with asynchronous functions is how to deal with
getting the result from the call. In traditional callback-based code, you had to have a
callback function or event handler that would catch the return. This got pretty nasty
when you had nested calls. What you really want, in most cases, is a simple way to wait
for the result but without tying up the calling thread. Figure 16.4 shows the callback
approach versus the ideal approach.

 The simplest, and most commonly used, approach is to use the await keyword. A
function that works with this approach is called an awaitable function. To make a call
to an awaitable function, it must be used in a function marked as asynchronous, using
the async keyword. Then all you need to do is use this keyword and call it like any nor-
mal synchronous function, as shown here.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 LoadFeedUsingAwait();
}

Listing 16.1 Using the await keyword to perform a network operation

Figure 16.4 The callback approach compared to the await-based approach. The
primary difference is await-based code doesn’t use an explicit callback and
therefore looks almost identical to synchronous code. In the callback approach, it’s
up to the developer to synchronize the execution steps. In the await-based
approach, the compiler handles keeping execution steps in order.

Function calls
will go here

375Working with IAsync* WinRT methods
private async void LoadFeedUsingAwait()
{
 var client = new SyndicationClient();

 var uri = new Uri("http://feeds.feedburner.com/PeteBrown");
 var feed = await client.RetrieveFeedAsync(uri);

 Debug.WriteLine(feed.Title.Text);
}

The code in the listing goes in the code-behind for the main page on a new applica-
tion. Notice that you don’t name the function LoadFeedAsync. That’s because it’s a
void function, not a function that returns a Task or IAsync* interface. To be consis-
tent with the platform-naming conventions, only name the function with the Async
suffix if it is an awaitable function, returning an async type.

 Keep the application open, because you’ll try out a few other approaches before
this chapter is through. Run the application and (on a single-display system) switch
back to your IDE and look at the output window. You should see the title of my blog
displayed there. On a dual-display system, the Modern Style app will show up on one
display and the IDE on the other, so no switching is required.

Marking your methods with the async modifier causes the compiler to reconstruct
the method, inserting possible suspend and resume points every place where you use
the await operator. The compiler ensures all the state management is handled for
you, so you don’t need to really think about the fact that your method may have
stopped running.

 Using the await operator makes it very easy to support making asynchronous
calls—all the magic required to support asynchronous operations is wrapped up in
code you never see, much like compiler optimizations are. This approach works well
for the majority of situations. But when you want to check the progress of an opera-
tion or cancel an operation in progress, you must use a slightly more complex
approach.

TIP

Everyone knows that if it’s printed in a book, it immediately has capital-A Authority,
so here’s my little gift to you. Copy this paragraph and send it to your manager:

Dear developer bosses of the world: Modern Style development on x86/x64 hardware
needs developer machines with at least two displays to be effective. A second display
is incredibly inexpensive, even if you purchase one of those snazzy 3M multitouch
displays. Without the second display, your developers will waste precious hours just
in context switching between the Modern UI and the desktop during debugging ses-
sions. You’ll save time, money, and headaches by properly equipping your entire team.

Method marked
as async

Async call
using await

376 CHAPTER 16 Asynchronous everywhere
16.2.2 Long-form asynchronous operations

The async and await keywords are conveniences but aren’t required when working
with asynchronous operations. You can still use the long-form approach with event
handlers and callback functions.

 The options depend on which interfaces the return type of the asynchronous
function implements. Table 16.1 shows the different interfaces and describes their
capabilities.

Async and await under the covers

When you use async and await in your code, the compiler does a lot on your behalf.
Any function that’s marked using the async modifier is rewritten as a state machine.
All local function state is stored in a structure.

The code that implements the actual functionality you wrote is also located in a method
named MoveNext on that same structure. Local variables become fields in the struc-
ture. Your original function ends up being just a bit of a shell that initializes the state
machine and passes control to it.

The implementation code starts with a switch statement that uses the current state
as input. Depending on that state variable, the code branches to one of the asynchro-
nous calls, a check to see if the calls have completed and if so, code to get the results,
or the end of the function.

This state machine enables the function to be suspended and the state boxed onto
the heap for reactivation once the asynchronous call returns.

Each completed step modifies the state. Each time the function is called, the opening
switch statement branches the code so it picks up where it previously left off.

The end result is a lot of compiled code created on your behalf, too much to post in
a book. If you’re curious about the inner workings of the asynchronous state machine,
you can see the generated MSIL (Microsoft Intermediate Language) and more in my
blog post on this topic at http://bit.ly/asyncstatemachine.

Table 16.1 Async support interfaces in WinRT. All asynchronous operations must return a type
implementing at least one of these interfaces.

Interface Description

IAsyncAction The most basic async support interface beyond
IAsyncInfo. This defines an asynchronous
method that doesn’t have a return type.

IAsyncActionWithProgress<TProgress> An interface that supports progress reporting of a
supplied type.

IAsyncOperation<TResult> An interface that supports an asynchronous method
that has a return value.

IAsyncOperationWithProgress-
<TResult,TProgress>

An interface that supports an asynchronous method
with both a return value and progress reporting.

377Working with IAsync* WinRT methods
In addition, the IAsyncInfo interface supports the asynchronous operations by
providing Cancel and Close methods, as well as gets error and status information.
The four interfaces include this capability because they inherit from IAsyncInfo.

 Going back to our SyndicationClient example from the previous section, you
can also use the long-form approach to make the call. In this case, the return type
implements the most feature rich of the interfaces: IAsyncOperationWithProgress.
That means when working with the SyndicationClient, you can get back a result but
also get updates as the operation progresses. This is the signature:

public IAsyncOperationWithProgress<SyndicationFeed,RetrievalProgress>
 RetrieveFeedAsync(System.Uri uri)

SyndicationFeed is the real return type—it’s the data you want. If this function were
implemented without asynchronous operation in mind, it might look like this:

public SyndicationFeed RetrieveFeedAsync(System.Uri uri)

But it’s asynchronous, so the return type is a class implementing the interface. The
next listing shows how to call the function using the long-form asynchronous pattern.
Call this function from OnNavigatedTo just as you did in listing 16.1.

private void LoadFeedUsingLongForm()
{
 var client = new SyndicationClient();

 var uri = new Uri("http://feeds.feedburner.com/PeteBrown");
 var op = client.RetrieveFeedAsync(uri);

 op.Completed = (info, status) =>
 {
 switch (status)
 {
 case AsyncStatus.Canceled:
 Debug.WriteLine("Operation was cancelled");
 break;
 case AsyncStatus.Completed:
 Debug.WriteLine("Operation was completed");
 Debug.WriteLine(info.GetResults().Title.Text);
 break;
 case AsyncStatus.Error:
 Debug.WriteLine("Operation had an error:");
 Debug.WriteLine(info.ErrorCode.Message);
 break;
 }
 };
}

Notice how Completed is not an event handler. Instead, it’s simply a delegate property.
For that reason, you use = rather than += when adding your handler code. This subtle
difference could trip you up if you don’t recognize it right off the bat.

Listing 16.2 Downloading a syndication feed using the long-form approach

Completed delegate—
a callback

Operation
canceled

Operation
complete

Operation
error

378 CHAPTER 16 Asynchronous everywhere
 When you run this, the Completed delegate will be called, which will then write out
the title of my blog in the debug window in the IDE. As before, you’ll need to termi-
nate the application from the IDE.

Knowing when the task is complete is essential. For some long-running tasks, you may
want to get information about interim status.

16.2.3 Getting progress updates

Some especially long tasks, such as downloading a large file over a slow connection or
processing a large amount of data, should report back progress information to the
calling code. This becomes especially important in the tablet market where bandwidth
varies greatly from location to location.

 To support flexible progress reporting, the IAsyncActionWithProgress and
IAsyncOperationWithProgress interfaces provide a way for an asynchronous function
to provide status updates using whatever data format is appropriate for that function.

 In this case, the reporting type is a RetrievalProgress structure that exposes two
properties: bytesRetrieved and totalBytesToRetrieve. Using these two properties,
you can figure out the percentage complete and percentage left. The following listing
shows how.

What about race conditions?

When you look at the code in listing 16.2, you may wonder about a possible race con-
dition between executing the function and wiring up the Completed handler.

In regular .NET asynchronous code following the event approach, you need to wire up
the event handlers before executing the operation. This is to ensure that the event
handlers are available before the function needs them. For potentially fast async op-
erations, this is especially important.

In the Windows Runtime, however, the operation begins execution as soon as you
call the function. There’s no way for you to wire up a handler in between declaration
and execution. Could there be a race condition where the operation completes before
the handler is available?

Luckily, the Windows Runtime team thought of this very situation and ensured it won’t
happen. The returned operation contains everything that’s needed for asynchronous
function management. If the function call completes before you wire up the handler,
the operation is still around and is able to manage context and handlers. In that sce-
nario, as soon as you make the handler available, the operation will call it.

So, you don’t need to worry about race conditions when setting up your handlers. The
team already did.

This same thought was put into Task for functions such as ContinueWith.

379Working with IAsync* WinRT methods

private void LoadFeedUsingLongForm()
{
 var client = new SyndicationClient();

 var uri = new Uri("http://feeds.feedburner.com/PeteBrown");
 var op = client.RetrieveFeedAsync(uri);

 op.Completed = (info, status) =>
 {
 ...
 };

 op.Progress = (info, progress) =>
 {
 Debug.WriteLine(string.Format("{0}/{1} bytes {2:P}",
 progress.BytesRetrieved,
 progress.TotalBytesToRetrieve,
 (float)progress.BytesRetrieved /
 (float)progress.TotalBytesToRetrieve));
 };
}

This code is identical to listing 16.2, with the addition of a Progress handler. During
execution, at a frequency determined by the code you’re calling, you’ll receive prog-
ress updates through this handler.

 When I ran this code, however, I got some pretty interesting results. The total-
BytesToRetrieve was incorrect, reporting a meaningless number. If I changed the
URI to http://10rem.net/blog/rss.aspx5 instead, I got the correct results:

4096/205187 bytes 2.00 %
8192/205187 bytes 3.99 %
12288/205187 bytes 5.99 %
16384/205187 bytes 7.98 %
 [snip]
200704/205187 bytes 97.82 %
204800/205187 bytes 99.81 %
205187/205187 bytes 100.00 %
Operation was completed
Pete Brown's Blog (POKE 53280,0)

Not all services correctly report the total bytes. In this case, FeedBurner clearly does
not. When performing your own download, you’ll need to check that number and
adjust your progress reporting appropriately. One way would be to show an indetermi-
nate progress bar in the case of unreported total bytes.

 What about long-running operations that you need to abort? How would you deal
with that situation?

Listing 16.3 Obtaining progress reports from the RSS feed downloader

5 My source RSS feed that I use to feed the far more scalable and reliable FeedBurner feed.

Code in
previous listing

Progress report

380 CHAPTER 16 Asynchronous everywhere
16.2.4 Canceling the operation

For especially long-running operations, such as downloading a file, you’ll want to pro-
vide a way for the user to cancel. When I’ve had to do this in the past, I would provide
a Cancel button, which would then set a flag. The code doing the long-running opera-
tion, typically in a loop or timer, would check this flag during each iteration. If the
cancel flag was set, the operation would terminate and clean up after itself.

 When working with asynchronous code in the Windows Runtime, the process is
not all that different from the approach I described. But instead of setting a flag, you
call the Cancel function on the operation. The executing code uses this to determine
what steps to take.

 The next listing is an update to listing 16.3, which will cancel after a set number of
bytes have been downloaded.

bool alreadyCancelled = false;
op.Progress = (info, progress) =>
 {
 Debug.WriteLine(string.Format("{0}/{1} bytes {2:P}",
 progress.BytesRetrieved,
 progress.TotalBytesToRetrieve,
 (float)progress.BytesRetrieved /
 (float)progress.TotalBytesToRetrieve));

 if (!alreadyCancelled)
 {
 if (progress.BytesRetrieved > 5000)
 {
 info.Cancel();
 alreadyCancelled = true;
 }
 }
 };

This listing shows one approach to canceling. Typically, you’d use a button or other UI
device to call the Cancel method, as stated previously.

 One important thing to note from this listing is that when you run it, you may not
see it actually cancel until the operation is complete. Remember, this is an asynchro-
nous operation, and the function is responsible for deciding when it can cancel and
how quickly to do so. For grins, if you change the 5000 to 0, you’ll likely see it cancel
right away.

 Looking at these long-form approaches to asynchronous code may make you
double-check to see if you accidentally hit 88 mph in a DeLorean while you were nap-
ping. It certainly may feel like we’ve gone backward, but with the addition of async
and await now making this verbose approach optional, I can assure you that we’re
going in the right direction.

 If you want the flexibility and power, choose the long/verbose version. If you don’t
need all that flexibility (which will likely be the majority of the time—do you really

Listing 16.4 Canceling the operation after 5,000 bytes have been downloaded

Prevent redundant
Cancel calls

Prevent redundant
Cancel calls

 Cancel operation

381Working with tasks
need progress reporting or cancellation when opening a file?), use the async and
await keywords to make your life easier. Don’t force yourself or your team to pick just
one approach; use what works for the specific situation and keep it as simple as possi-
ble as often as possible.

 Speaking of keeping things simple, the same async and await keywords also work
with the .NET Task approach. The long-form version is a little different, however, so
we’ll cover that next.

16.3 Working with tasks
The Task Parallel Library was introduced with .NET 4.0. A small subset of it was added
to Silverlight in Silverlight 5. .NET 4.5 saw much deeper integration of TPL and a reli-
ance on it for asynchronous operations. The purpose of TPL was to provide a stan-
dardized way to write multithreaded and parallel code in .NET. As a part of that, it
made creating asynchronous operations easier.

 Once you venture outside the Windows Runtime and into the .NET libraries (Sys-
tem.* instead of Windows.*), you’re far more likely to run across tasks than with the
asynchronous interface-faced approach. The TPL approach to asynchronous func-
tions is a .NET-specific approach, following common .NET patterns, which is why it
wasn’t rolled into WinRT. So, while what you learn here may not be applicable to Java-
Script or even C++ (both of which have their own language-specific approaches), it’s
portable to .NET applications on the desktop and server.

 In this section, we’ll take a look at accomplishing asynchronous tasks using the
Task type from the TPL. This section is not a complete (or even mostly complete) dis-
course on TPL, because we could write entire chapters (or books) on parallel pro-
gramming. Instead, I’ll focus on the practicalities of working with asynchronous APIs.
As in the previous section, I’ll start with showing basic task operations and then show
how to get progress information. Next, we’ll look at how to cancel tasks once they are
in progress. This section will wrap up with a way to integrate WinRT and TPL to enable
you to use a single asynchronous model across your application.

 Using async and await is, from the consuming code’s point of view, identical to
that with WinRT. But as a baseline, let’s take a quick look at using the await operator
to download an HTML page from the web. The next listing shows the two places where
you need to await an asynchronous result when using the HttpClient.

private async void LoadHttpWithAwait()
{
 var client = new HttpClient();

 var uri = new Uri("http://10rem.net");
 var feed = await client.GetAsync(uri);

 var results = await feed.Content.ReadAsStringAsync();

 Debug.WriteLine(results);
}

Listing 16.5 Asynchronous operation to download a web page using Task and await

async keyword

await
first result

await stream
processing

382 CHAPTER 16 Asynchronous everywhere
This example uses the .NET HttpClient class to download content from the web. The
methods of that class use the Task type to manage asynchronous operations. But when
looking at this code, you’ll see that it’s almost identical to the WinRT version. What’s
different? The main difference is that you needed to await two different operations in
this method because of how stream processing is handled. That’s not specific to
.NET; it’s specific to the function you’re calling and the implementation of the Http-
Client class.

 One takeaway from this is that the await operator greatly simplifies your asynchro-
nous code. Other than the await operator, it looks just like normal synchronous code.
Compare that to the older event or callback-driven style approach you used in .NET
and Silverlight, and you can see how helpful this new keyword is. There are no nested
anonymous delegates nor anything else in the way.

With the baseline set, let’s look at the long-form version of this call.

16.3.1 Basic task operations

Just as was the case with IAsync* operations in WinRT, the Task-based approach has a
longer form that provides more functionality over the simpler await approach. Like
the WinRT approach, you’ll use this from time to time when you need additional
hooks into the task. Unlike the WinRT approach, you don’t have progress reporting.
But you can do cancellation, which we’ll look at in a moment.

Creating your own async methods

If I wanted to create my own async version of the first part of this method, it might
look something like this:

private Task<HttpResponseMessage> LoadSiteAsync()
{
 var client = new HttpClient();
 return client.GetAsync(new Uri("http://10rem.net"));
}

The code simply returns the Task provided from the GetAsync method. Of course,
this is a really simple implementation of an async method. If you want to create some-
thing more complex, using your own processing and logic, it might look something
like this:

private Task<string> DoSomethingAsync()
{
 return Task.Run<string>(()=>
 {
 return "I am an async string";
 });
}

You can do whatever you want inside the Run block, of course. The Task.StartNew
method provides additional parameters to help control the behavior of the task.
Task.Run is simply a convenience method covering the majority of common usages.

383Working with tasks
 First, you need to level set what a long-form Task implementation looks like. It’s
not complex, but it is different from what we had with WinRT. The following listing
shows the same functionality from listing 16.5 implemented using the verbose syntax.

private void LoadHttpUsingLongForm()
{
 var client = new HttpClient();

 var uri = new Uri("http://10rem.net");

 client.GetAsync(uri).ContinueWith((t) =>
 {
 t.Result.Content.ReadAsStringAsync().ContinueWith((t2) =>
 {
 Debug.WriteLine(t2.Result);
 });

 });
}

This listing shows the two asynchronous operations written out using the long-form
approach with delegates that are executed on completion of the Task. This looks
quite different from the WinRT version because the .NET version makes use of exten-
sion methods and lambda expressions—constructs not available in every other
language.

 In this code, GetAsync returns a value of type Task<HttpResponseMessage>. The
HttpResponseMessage class includes a number of properties like Headers, Status-
Code, and what we really want: Content that is of type HttpContent. That type, in turn,
includes several methods that can be used to get the content data. These methods are
all asynchronous using the Task type and pattern. Because those methods, including
ReadAsStringAsync, are asynchronous, I need to spin up another task as shown here
or use the await keyword.

 Listing 16.6 can be written in a more compact form should you desire. For clarity
of when things execute, I included the braces. The slightly shorter form of the asyn-
chronous operation part of the function could look like this:

client.GetAsync(uri).ContinueWith((t) =>
 t.Result.Content.ReadAsStringAsync().ContinueWith((t2) =>
 Debug.WriteLine(t2.Result)));

Even the long form for using tasks is surprisingly succinct, especially when you leave
out the braces. But unlike the WinRT IAsync*WithProgress interfaces, the Task class
doesn’t include any standardized built-in support for incremental updates or progress
reporting,6 so we’ll skip right to canceling the task.

Listing 16.6 Using the more verbose form without await

6 There’s System.IProgress<T> but that is really only used for converting from WinRT to TPL tasks.

First async
operation

Second
async
operation

384 CHAPTER 16 Asynchronous everywhere

c

16.3.2 Canceling the task

Like the Windows Runtime asynchronous approach, the Task approach provides a
way to cooperatively cancel an operation. I say cooperatively, because just as with WinRT,
both the asynchronous code and the calling code must agree to cancel the Task. On
the calling side, this is done using a CancellationTokenSource, which contains a
CancellationToken structure. That structure is passed in as a parameter to the asyn-
chronous function.

 The following listing shows how to create an instance of the CancellationToken-
Source and how to provide it to the GetAsync function.

private void LoadHttpUsingLongFormWithCancel()
{
 var client = new HttpClient();

 var uri = new Uri("http://10rem.net");

 var cancelTokenSource = new CancellationTokenSource();
 var cancelToken = cancelTokenSource.Token;

 client.GetAsync(uri, cancelToken).ContinueWith((t) =>
 {
 if (t.IsCanceled)
 Debug.WriteLine("Download was cancelled");
 else
 t.Result.Content.ReadAsStringAsync().ContinueWith((t2) =>
 Debug.WriteLine(t2.Result));
 });

 cancelTokenSource.CancelAfter(5);
}

As described, this code handles the creation of the CancellationTokenSource. Once
the token from that source is passed in to GetAsync, it’s the responsibility of the Get-
Async code to check if a cancel has been requested. In this case, you cancel after just 5
ms of running, as shown by the last line of code. The cancellation itself is performed
on the token source, which then notifies the asynchronous code via the token. The
same token can be passed into any number of asynchronous calls; you could have
passed it into ReadAsStringAsync as well.

 Inside the ContinueWith delegate, you first check to see if the task was canceled—
ContinueWith executes this code regardless of how the Task completed. If canceled,
you display a message indicating as much. Otherwise, you display the download results
just as in the previous listings.

 By now you’ve probably formed an opinion more in favor of IAsync* or Task. You
may think you’re stuck using both of them in your apps, doubling the things any
developer maintaining your code needs to know. Not to worry, the product teams
thought of you and came up with nifty ways to convert between the two.

Listing 16.7 Canceling an in-progress Task

Create listener

Provide token

Check for
ancellation

Force cancellation
after 5 ms

385Working with tasks
16.3.3 Converting between WinRT IAsync* and Tasks

I like both the IAsync* and Task approaches, but in any given application, it would be
ill-advised to mix and match them. There’s no technical reason why you should pick
one or the other, but you want to make the code easier for other developers to under-
stand. That means you likely want to use one or the other.

 “But wait—if I standardize on a single approach, does that limit the APIs I can
use?” you may ask. Happily, the answer is no. The WindowsRuntimeSystemExtensions
class in the System namespace in the System.Runtime.WindowsRuntime assembly
includes a number of extensions that help convert between the different approaches.
Because this is already referenced by your application, the extension methods auto-
matically appear on the correct types.

CONVERTING FROM TASKS TO IASYNC*

If you decide you like the Windows Runtime interface-based pattern for asynchronous
operations but want to use a .NET class that implements the Task-based pattern, you’ll
need to perform a simple conversion.

Tasks, because they have no built-in progress reporting, can be converted only to
IAsyncOperation or IAsyncAction. This is accomplished by using the AsAsync-
Operation and AsAsyncAction extension methods, respectively.

 The next listing shows how to use this conversion with the Task-based HttpClient
GetAsync method.

private void ConvertTaskToWinRT()
{
 var client = new HttpClient();

 var uri = new Uri("http://10rem.net");

 var op = client.GetAsync(uri)
 .AsAsyncOperation<HttpResponseMessage>();

 op.Completed = (info, status) =>
 {
 switch (status)
 {
 case AsyncStatus.Canceled:
 Debug.WriteLine("Operation was cancelled");
 break;
 case AsyncStatus.Completed:
 Debug.WriteLine("Operation was completed");
 break;
 case AsyncStatus.Error:
 Debug.WriteLine("Operation had an error:");
 Debug.WriteLine(info.ErrorCode.Message);
 break;
 }
 };
}

Listing 16.8 An example of converting a Task to IAsyncOperation

Conversion

386 CHAPTER 16 Asynchronous everywhere
This simple conversion enables you to convert from Task to IAsync*. The underlying
Task instance is still valid and usable, but I don’t recommend using it, because mixing
both in the same operation is a recipe for confusion.

 Of course, you can also convert in the opposite direction.

CONVERTING IASYNC* TO TASK

Many .NET developers will be, at least initially, more comfortable with Task-based
approaches. In addition, there’s already a lot of code out there that relies on the Task
object. You may even have some in your own apps. To make it easier to reuse that
code, you may want to convert IAsync* usage to Task.

 You can convert any of the four IAsync* interface approaches to an equivalent
Task-based approach. Significantly, you can even retain the progress reporting
through the purpose-built IProgress interface.

 The following listing shows how to use the feed downloader with a Task-based
asynchronous model.

private void ConvertWinRTToTask()
{
 var client = new SyndicationClient();

 var uri = new Uri("http://feeds.feedburner.com/PeteBrown");

 var task = client.RetrieveFeedAsync(uri)
 .AsTask<SyndicationFeed, RetrievalProgress>();

 task.ContinueWith((t) =>
 {
 if (t.IsCanceled)
 Debug.WriteLine("Feed retrieval was cancelled");
 else
 Debug.WriteLine(t.Result.Title);
 });
}

As was the case when converting from Task to IAsync*, you can continue to use the
original interfaces, but I caution against it purely for reasons of sanity.

 Being able to convert between the two asynchronous models gives you the choice
to use whatever you’re most comfortable with. It also helps make the marriage of .NET
and WinRT seem more like a single API as opposed to two different sets of libraries.

 The Task-based approach is appealing both for historical and syntactical reasons.
Some people will just naturally prefer the lambda-style syntax and the synergy with the
rest of the TPL. Others will prefer the tried-and-true interface-based approach favored
by WinRT. Either way, you get the UI responsiveness that asynchronous operations
help to ensure.

Listing 16.9 Converting IAsyncOperation to Task

Conversion

387Summary
16.4 Summary
The Windows Runtime includes asynchronous methods all over. Additionally, the
.NET libraries used for writing C# Modern Windows Store apps also include asynchro-
nous code. But those libraries use the Task class rather than the WinRT interface-
based asynchronous approach. This helps keep .NET consistent with the desktop ver-
sion and also with the previous version of .NET. Gladly, you can use async and await
just as easily with a .NET Task as you can with a WinRT IAsync* interface. Plus, if you
really want to keep your code consistent, you can easily convert between the two
approaches using included extension methods.

 Asynchronous code used to be something we dreaded in application development.
With both Task and IAsync*, and the new async and await keywords, combined with
the appropriate use of asynchronous operations throughout the libraries, I feel, for
the first time, as if we really have asynchronous patterns done right. Async every-
where? I’m cool with that.

 In the next chapter, we’ll look at a very practical use of asynchronous code: net-
working operations.

Networking with SOAP
and RESTful services
It’s rare to find an app that doesn’t use resources out on a network. We live in a
world of connected applications. Even apps as benign as games often phone home
with metrics and usage data, high scores, update checks, ad metrics, and much
more. For an application platform to be considered viable, it must have first-class
networking support.

 In this chapter, we’ll first take a quick look at the networking APIs available for use
in WinRT and .NET 4.5. From there, we’ll dive right into learning about integrating
with SOAP services. Even though SOAP services are on the decline, you’ll still run into
them, and for some types of procedural operations, they’re the best choice.

 Once we clean up with SOAP,1 we’ll move on to a network-friendly implementa-
tion of MVVM, this time without using any MVVM toolkit. We’ll then use that MVVM

This chapter covers
■ Networking basics
■ Working with SOAP services
■ Using REST services, shared models, and MVVM
■ Serializing JSON and XML

1 Oh yes I did!
388

389Networking basics
implementation to structure the code we’ll use when integrating with an ASP.NET Web
API RESTful service. That service may return XML or JSON, so we’ll also dive into how
to manage serialization and deserialization with those two formats. But, before we can
get going with services, let’s look at the basics, starting with downloading a file and set-
ting up the site you’ll use throughout the rest of the chapter.

17.1 Networking basics
Networking is core both to the Windows Runtime and to .NET 4.5. In the Windows
Runtime, you’ll find classes for background transfer, checking connectivity, working
with RSS and ATOM feeds, and much more. Many of those we’ll look at in this chapter
and the next. In .NET 4.5, you’ll find familiar yet updated versions of HttpClient and
(Http)WebRequest.

 The classes may look familiar, but they’re not identical to what you may have expe-
rience with. In particular, if you’re familiar with Silverlight, you may assume we have
the same client access policy limitations in Windows 8 apps. I’m happy to say we do
not—apps that have the Internet Client capability (which they all request by default)
are able to make HTTP calls out to any internet site without any special policy files.
(I’ll pause here for applause.)

 To start the project, create a new Windows Store C# XAML application using the
Blank App (XAML) template. I named mine NetworkingClient. You’ll use this app
throughout the remainder of this chapter.

 To check to see if you have requested the Internet Client capability, double-click
the Package.appxmanifest file and then click the Capabilities tab. Check to make sure
the Internet (Client) item is checked, as shown in figure 17.1.

Figure 17.1 The Internet Client capability shown in the designer for the Package.appxmanifest
file. Also note the other two networking capabilities: One is for servers (and clients) on public
networks, and the other is for servers and clients on private networks and domains.

390 CHAPTER 17 Networking with SOAP and RESTful services
Although there are many other higher-level HTTP networking classes and lower-level
raw networking classes as mentioned earlier, when it comes to basic HTTP networking,
there are two main classes you’ll run across:

■ HttpClient—Use the HttpClient class when you don’t need more than the
ability to specify one of the standard four (GET, PUT, POST, DELETE) HTTP
verbs, and you don’t need to do anything fancy with headers or security.

■ HttpWebRequest—Use this class when you need finer control over headers,
verbs, and more. If you want to use the relatively new PATCH verb, this is the
class you’ll need to use.

We’ll take a look at those two classes in this chapter, as well as the code that builds on
them, such as that generated when you add a service reference.

 To effectively test networking, you need an endpoint. In this section, you’ll set up
the solution and web project that will be used for the file download as well as the SOAP
and REST examples. We’ll also look at one of the easiest-to-use networking classes,
HttpClient, and download a file using its methods.

17.1.1 Solution setup

Before we get into how to use networking, you’ll need to create an endpoint (or sev-
eral) for your calls. In order to make these examples train-friendly2 and reduce out-
side dependencies, the endpoints for each of the examples in this chapter will be
created in an in-solution web project.

2 I can get Wi-Fi reliably at 35,000 feet in the air, but for some reason, I can never get it to work on the train.
First-world problem, I know.

Networking on the cheap with Visual Studio Express 2012

Those of you using the free edition of Visual Studio Express for Windows 8 for building
Metro-style applications may wonder how you can create web server projects. In the
networking section of this book, I generally assume you have Visual Studio Profes-
sional 2012 or better, as people writing SOAP services and home-grown RESTful ser-
vices usually do.

Most of the code here can be easily adapted to work with APIs for your favorite sites.
Twitter, Flickr, and many others offer web-friendly APIs. The concepts you learn here
will certainly apply to those sites.

Nevertheless, for developers without access to the higher-level Visual Studio SKUs,
but who want to use these examples, there are two good options:

■ Use existing Visual Studio 2010 installations.
If you already have Visual Studio 2010, you can run it side by side with Visual
Studio 2012. You won’t have access to anything .NET 4.5-specific in the
VS2010 project, but you’ll at least be able to set up web services or sites that
you can use.

391Networking basics
Add to the solution an ASP.NET MVC 4 web project. You could likely run the examples
in this chapter using a web forms application if you prefer, because there’s nothing
here that’s particularly MVC-specific, but I’m going to focus on MVC. The RESTful
work you’ll do in this chapter pairs well with MVC but doesn’t require it.

 I named the new MVC project quite simply Site and used the Empty MVC project
template with Razor support when prompted to pick a template and view engine. The

(continued)

■ Install Visual Studio 2012 Express for Web.
You can download and install the free web edition of Visual Studio 2012. This
will give you access to .NET 4.5 features, and you can run it side by side with
Visual Studio Express for Windows 8.

Either of these alternatives will require you to write the server-side code in a separate
IDE and start it running before you run your Windows app or try to add a service ref-
erence. You’ll not be able to use Discover to add a service reference for SOAP services
when running this way; instead, you’ll have to enter the URL directly in the Add Service
Reference dialog.

This is the way we used to debug applications before Visual Studio started supporting
running the web app automatically. It’s not the most convenient approach to debug-
ging, but if you want something free, sometimes you need to give up a small amount
of convenience.

That said, even if you have the full Ultimate edition of Visual Studio 2012, you can
use this same approach. If debugging fails with all the projects in the same solution,
or if keeping the site alive between debugging sessions (to retain cache, for example)
is important, having two separate IDE instances running can really be a life saver.

Figure 17.2 Settings on the web tab of the website project. Take note of the URL shown
on your own installation because you’ll need to know it, including the port number, in this
section. Your port number will likely be different from mine.

392 CHAPTER 17 Networking with SOAP and RESTful services
specifics aren’t that important, as long as you can identify the URL to the file and ser-
vices you’ll add.

 Once the project has been created, right-click the web project and select Proper-
ties to pull up the Property pages. Once the property pages are open, select the Web
tab and take note of the URL for the web server. If you don’t like that URL for some
reason, now is the time to change it, because you’ll rely on it for the various examples
in this chapter. Figure 17.2 shows the settings page on my machine. You don’t need to
match my URL and port; you just need to stay consistent with your own.

 Finally, create a new HTML file in the root of the MVC site project. Name it some-
thing you’ll remember. I used fan.html. The actual contents of the file aren’t impor-
tant; the following listing shows mine.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>The Greatest HTML File on Earth</title>
</head>
<body>
I work equally well in all browsers. How cool is that!
</body>
</html>

With the client project, web project, and HTML file in place, you’re now all set to try
out a little networking. Your first task will be to download a file.

17.1.2 Downloading a file with HttpClient

One of the easiest and most fundamental practical networking operations is down-
loading a file from a web server. When it comes down to it, most operations per-
formed across HTTP are really just downloading a file, whether it’s an actual file on
the filesystem or some results dynamically generated from a web service. In this exam-
ple, you’ll download the HTML file you created in the site project earlier and then dis-
play its contents in the debug window.

 Do you remember the URL for your web project? If not, you may find it in the proj-
ect Property pages, in the properties pane when you select the project file, and also in
the address bar if you run the web project or right-click and view the HTML file in the
browser. If you put the file in the root, the full URL will be the web server address plus
the filename. On my machine, that’s

http://localhost:4621/fan.html

Open the MainPage.xaml.cs file and find the OnNavigatedTo method. Mark that
method using the async modifier, as you learned in chapter 16. Next, you’ll use the
await operator to call the asynchronous GetAsync function to download the file. The
full code to download and display the file contents is shown in the next listing.

Listing 17.1 The fan.html file you’ll use for the file-downloading example

o

393Sharing your model

protected async override void OnNavigatedTo(NavigationEventArgs e)
{
 var uri = new Uri("http://localhost:4621/fan.html");
 var client = new HttpClient();

 var opContent = (await client.GetAsync(uri)).Content;

 string fileContents = await opContent.ReadAsStringAsync();

 Debug.WriteLine(fileContents);
}

This example shows two different asynchronous methods. The first performs the Get
operation. The second reads the stream of data and converts it to a string. Because
you use the await operator, covered in chapter 16, the code remains simple despite
the number of asynchronous operations it contains. Don’t forget to add the async
modifier to the event handler declaration—that’s an easy one to miss.

 You’ll need to add using statements for the System.Diagnostics and System
.Net.Http namespaces. Make sure the Windows Store app project is the startup proj-
ect. Once you do that, compile and run. Give the application a moment after the
default loading image disappears and then Alt-Tab (if you have only a single moni-
tor) to the IDE and check out the debug window. You should see the contents of the
HTML file.

 If the only network operation you ever learn is the one required to download a file,
you can still go quite far. It’s the most essential HTTP networking method and the eas-
iest to understand.

 For the remainder of this chapter, we’ll work with services. Although the code will,
at its heart, be similar to the simple file download, it will have the added complexity of
mapping that downloaded data to some sort of class or structure. Before we tackle
that, let’s look at a best practice: sharing your model between client and server.

17.2 Sharing your model
In the previous section, you downloaded just a flat file. Essentially, the model for that
result would be a string. But it’s far more common to download something that can be
represented as a class, such as a customer, or a message, or a Tweet. Because you’ll be
working with services for the remainder of this chapter, now is a good time to intro-
duce a best practice for sharing those classes (collectively called the model or entities)
between the client and server.

 There are two approaches to defining and sharing your model:

■ Define the classes directly in the service project.
Include those classes as part of the service definition when using services that
generate proxy classes. In this case, you’d allow the service reference code gen-
erator to automatically generate the client-side versions of the model classes.

Listing 17.2 Downloading a file and displaying its contents

async
modifier

HttpClient

Get
peration

Actual
results

394 CHAPTER 17 Networking with SOAP and RESTful services
■ Define the classes externally.
In this case, you’d create them in separate projects and share them between the
server project and the client project. This is more flexible and works better,
because you don’t get hung up by any type limitations in the code generator.
It’s also not magic-generated code—you have complete control over the defini-
tions.

I stopped using the first approach ages ago, even though it’s the one most easily done
with the existing tooling. The second approach is the one many people turn to when
they’ve exhausted the capabilities of the first approach. Rather than start one way and
end up refactoring to another, I prefer to start with the second approach on every
project.

 Why is the second approach better?

■ It facilitates conditional compilation.
In some instances, it makes sense to use conditional compilation to extend the
shared classes for a specific platform. For example, you may want to add
INotifyPropertyChanged support in one project but not the other.

■ It facilitates platform-specific extension.
If you define the classes as partial, you can extend them with platform-specific
code. For example, a client class (not a model class, specifically) may have code
that performs a lookup using a service, whereas server-side code may perform
that lookup using cached data or a local database.

■ You can use additional types.
Especially in older versions of Visual Studio, the code generator didn’t handle
all types correctly—you were limited to a subset of acceptable .NET types, even if
the serialization code understood them correctly.

■ It works when there’s no proxy generator.
Some types of services, particularly RESTful services at the moment, do not sup-
port generation of client-side proxies through an Add Service Reference fea-
ture. In those cases, you really do need to take an approach like this to share
entities between a client and server project, assuming you own both.

■ The approach works for more than just services.
This is exactly the same approach I use when sharing implementation code
between Silverlight and Windows Store apps, Silverlight and WPF, Windows
Store apps and Phone, and so on.

Hopefully I’ve convinced you of the benefits of this approach by now. If not, just
humor me for the rest of the chapter.

 In the rest of this section, you’ll set up the project structure required to share
strongly typed model projects between ASP.NET and the Windows Store app. You’ll
first create the source class library and then look into how to link files. Once you
understand file linking and the relationship between the projects, you’ll create the
linked class library.

395Sharing your model
17.2.1 Create the source class library

When sharing source code, a best practice is to designate one project as the master or
source and any others as the copies. You don’t *have* to do this, you could share files
directly between the client project and the web server project, but many have found
that approach to be messy and one which creates too large a project dependency.

 In our solution, the project NetworkingClient.Model.Web will contain the source
files. Another project, which targets Modern Style Windows Store apps, will be named
NetworkingClient.Model.Modern and will contain the links to the source files. Figure
17.3 illustrates the relationship.

 If you’re using the free edition of Visual Studio Express 2012 for Windows, you
won’t be able to create the MVC site or the class library in the same solution. The tech-
niques for using multiple instances of Visual Studio (see the sidebar earlier in this
chapter) work here as well.

 As mentioned, there are two different projects involved in this code sharing. You’ll
have only a single source class, the InstantMessage model class, but retain the multi-
project approach. Create a regular .NET 4.5 class library and name it Networking-
Client.Model.Web, as shown in figure 17.4.

Figure 17.3 Linked files in a
Visual Studio project. This is how
to handle dual-targeting in most
cases, especially when sharing
Model objects between services
and the client.

Figure 17.4
Creating the model project
as a full .NET 4.5 class
library (DLL) project

396 CHAPTER 17 Networking with SOAP and RESTful services
Once the project has been added to the solution, open its property pages and remove
.Web from the default namespace in the Application tab. This is necessary to help
ensure the namespaces are the same generic namespace in each project. Without that
change, because of the shared source files, you’d have a .Modern namespace in use in
the web project or a .Web namespace in use in the client project. The assembly names
are kept separate, however, to avoid deployment and reference confusion. Figure 17.5
shows the changes.

 Back in the newly created model project in the Solution Explorer, delete the
default Class1.cs file3 and add a new class file named InstantMessage.cs. The following
listing shows the code for that class. Note that the namespace is simply Networking-
Client.Model.

using System;

namespace NetworkingClient.Model
{
 public class InstantMessage
 {
 public int Id { get; set; }
 public string From { get; set; }
 public string To { get; set; }
 public DateTime Timestamp { get; set; }
 public string Text { get; set; }
 }
}

In this listing, all the properties are created with get/set autoproperty syntax. If you
defined these just as public fields, you would be unable to bind to them from the UI.
Both this detail and the namespace will facilitate sharing this code between the client
and the server.

3 I’ve never been given a satisfactory reason as to why we insist on keeping that file in the template. I know you
can use refactoring and have a file rename all references, but then the namespace could still be wrong.

Listing 17.3 The Message class in the model project

Figure 17.5
To facilitate code
sharing later, the
model project has
the .Web suffix
removed from the
namespace but not
from the project or
assembly name.

Correct
namespace

Properties

397Sharing your model
 Now that you have the model project in place, it’s time to add a reference to it
from the web project. Right-click the website project, select Add Reference, and pick
the NetworkingClient.Model.Web project. It’s easy to close that dialog without actually
adding a reference—make sure the reference is added by looking in the references
folder of the Site project.

17.2.2 Create the Modern app–compatible class library

The next step is to create the client, or Modern app, class library. I know this may
seem like a lot of work just to get a single class ready for use from a web service. But
remember, we’re working to follow best practices. On real applications, this little bit of
extra effort will really pay off.

 Referring to the .Web model project, follow the same steps to create the project,
but use the Class Library (Windows Store apps) project template. The project and
assembly filename should both be set to NetworkingClient.Model.Modern. As before,
the namespace needs to be NetworkingClient.Model. Finally, remove the Class1.cs
just as you did before, but don’t add a new class to replace it.

 Next, right-click the Windows Store class library and choose the option to add an
existing item, as shown in figure 17.6.

Portable Class Libraries

Portable Class Libraries (PCL) have come a long way over the past year or two. You’ll
find that they can do a lot of what linked files can do, without the overhead of creating
multiple projects. For most code-reuse scenarios, PCL will work just fine.

I still prefer the linked-file approach because it provides maximum flexibility in exchange
for simply remembering to add files as links. But I don’t have to share my source code
with a lot of teammates actively working on it, forgetting to add files as links.

Use the approach that works best for you and your team. Definitely investigate PCL,
especially now that it supports all the major Microsoft platforms. In many cases, start-
ing with PCL is the correct approach, because it’s easy to switch to separate projects
without rewriting code or otherwise changing much solution plumbing.

For more information on PCL, see http://bit.ly/NetPCL.

Figure 17.6
Adding an existing item to
the Modern Windows Store
app model project

398 CHAPTER 17 Networking with SOAP and RESTful services
When you are presented with the File dialog to pick the file you want to add, don’t be
too quick about clicking Add. Instead, find the InstantMessage.cs source file from the
NetworkingClient.Model.Web project, select that file, and then click the small drop-
down button on the Add button and select Add As Link, as shown in figure 17.7.

 Add As Link doesn’t copy your file to the new project. Instead, it creates a pointer
to that project. The same physical source file will be used in both projects, but it will be
compiled into the binaries using the project settings specific to each project. If you look
closely at the files in the Solution Explorer, you’ll even see a little shortcut symbol on
the file in the Windows Store project. If you don’t, remove the file and readd the link.

 As before, add a reference to the class library. This time, add it from the Windows
Store client app to the Windows Store class library.

 You now have code sharing between the full .NET framework (.Web project) and
the Modern Windows Store subset of the .NET framework (.Modern project). That
means you can share the same class definition between both projects. The next step is
to create the SOAP service and then consume it from the Windows Store project.

17.3 Consuming SOAP services
SOAP, which originally stood for Simple Object Access Protocol but is no longer con-
sidered an acronym,4 is an older, and somewhat heavier, standard for accessing data
and functions across HTTP. It’s incorrect to say “a” standard, because SOAP to most
people means a lot more than the base definition. There are any number of WS-* pro-
tocols that differ in implementation from server to server, just adding to developer
burden when using SOAP services.

4 Despite no longer being considered an acronym, it’s still written in all caps. Clearly this is the inspiration for
the menu system in Visual Studio.

Figure 17.7 Adding the
existing InstantMessage
class as a link

399Consuming SOAP services
 Because of the complexity of manually creating a SOAP envelope and the reliance
on well-formed and valid XML, SOAP services are rarely seen outside the enterprise in
modern code. Nevertheless, they’re used and remain important to many inside orga-
nizations, so I’ll cover the basics here.

 In this section you’ll create a WCF web service in the ASP.NET project. For simplicity,
the web service will use our old friend the Silverlight Enabled Web Service template,
which creates a really easy-to-understand SOAP service. Once you’ve created the service,
you’ll add a reference to it and then use the service from the Windows Store app.

17.3.1 Creating the service

First, create a Silverlight-enabled WCF service. This is a template you’ll find under the
Silverlight folder in the new project item dialog. No, I’m not sneaking some Silver-
light into this solution. Instead, that template is the simplest WCF service template you
can use with just about any client.

TIP You could also use a standard ASP.NET .asmx web service, but my code
examples will be for the WCF service implementation.

Create the service in the Services folder of the MVC project (if the folder isn’t there,
create it off of the root of the project), and name the service MessageService.svc. The
service has a single method named GetMessages, which returns a List<T> of
InstantMessage objects. The next listing shows the method implemented in a
Silverlight-enabled WCF service.

using System;
using System.Collections.Generic;
using System.ServiceModel;
using System.ServiceModel.Activation;
using NetworkingClient.Model;

namespace Site.Services
{
 [ServiceContract(Namespace = "")]
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class MessageService
 {
 [OperationContract]
 public List<InstantMessage> GetMessages()
 {
 var messages = new List<InstantMessage>()
 {
 new InstantMessage() { From="Nappa", To="Vegeta",
 Text="Vegeta, what does the scouter say about his power level?",
 Timestamp=DateTime.Parse("6/1/2012 2:57pm"), Id=1 },
 new InstantMessage() { From="Vegeta", To="Nappa",
 Text="It's over 9000!!",
 Timestamp=DateTime.Parse("6/1/2012 2:58pm"), Id=2 },

Listing 17.4 The GetMessages method of the MessageService web service

Model project

Service method

Hardcoded data

400 CHAPTER 17 Networking with SOAP and RESTful services
 new InstantMessage() { From="Nappa", To="Vegeta",
 Text="9000!?",
 Timestamp=DateTime.Parse("6/1/2012 2:59pm"), Id=3 },
 new InstantMessage() { From="Nappa", To="Vegeta",
 Text="There's no way that can be right! It can't!",
 Timestamp=DateTime.Parse("6/1/2012 3:00pm"), Id=4 },
 };

 return messages;
 }
 }
}

This service method uses the InstantMessage type defined in the model project. For
simplicity, you return a hardcoded set of four messages in a List of messages. Typical
services would pull from a database, cache, or other source, but it makes no material
difference for this example.

17.3.2 Referencing and using the service

Consuming a web service in .NET 4.5 and client apps couldn’t be simpler. All you need
to do is add a service reference and then call the service method using the async pat-
tern described in chapter 16.

 Double-check to make sure your client app has a reference to the model project. If
you forgot to add the reference to the model project before adding the service refer-
ence, the client-side proxy will include a copy of the definition for the Instant-
Message class; you don’t want that.

 Build the solution, or at least build the web project. You’ll probably get an error
in the dialog if you fail to do this. Then, right-click the NetworkingClient app project
and select Add Service Reference. You’ll be presented with the dialog shown in
figure 17.8.

Figure 17.8 The Add Service Reference dialog with the correct service selected and
namespace entered

401Structuring your client code using MVVM

m

Find the service (use the Discover button if it’s in the same solution; otherwise, just
enter the URL in the Address field), and then change the namespace to Services.
The namespace will be used in the generated code, so it’s important that it’s some-
thing you can live with. If your app is hitting a number of different services, you can
still use the same namespace as long as there are no naming collisions with the service
class names themselves.

 Once you have the service reference set up, the code to call it can be as simple as
that shown here.

protected async override void OnNavigatedTo(NavigationEventArgs e)
{
 var client = new Services.MessageServiceClient();

 var response = await client.GetMessagesAsync();

 foreach (var message in response)
 {
 Debug.WriteLine(message.Text);
 }
}

Note that I said “can be.” Calling the service from the code-behind is certainly an easy
way to get started, but it’s also not a best practice because it will quickly lead to a very
messy and difficult-to-test-and-maintain solution. In fact, you won’t even bother doing
any UI binding here because I’ve found binding to things in the code-behind to not
be worth the effort.

 Instead, you’re going to properly structure the code using a lightweight MVVM
implementation—one of my favorite approaches.

17.4 Structuring your client code using MVVM
It’s safe to say that most applications don’t use the debug window as their primary
form of output. Also, although many applications put all the code in the code-behind,
as I’ve mentioned, that’s not a great approach, especially when you start adding com-
plexities like networking. For those reasons, you’ll now modify the application to give
it a little proper structure and to display its contents using the Windows app UI itself.

 In previous chapters, you’ve used MVVM but through a toolkit. You can continue to
use a toolkit here, but this chapter is also a good place to show how, in the context of
networking, to do a little MVVM without using anything but the built-in types. That
said, I don’t want to fill up the chapter with a discussion of implementing ICommand
(something most people don’t do manually), so I’ll follow a lighter-weight route using
event handlers and function calls.

 For structure, you’ll add a very basic viewmodel that will expose the data, create
the user interface XAML, and then use data binding to update the values on display.

Listing 17.5 Calling the service from the MainPage.xaml.cs code-behind

Create
proxy client

Call
service
ethod Display results

402 CHAPTER 17 Networking with SOAP and RESTful services
Following best practices, you’ll also move the code that interfaces with the network to
a separate class. Although this may at first glance seem like overkill for downloading
the HTML file, you’ll follow this structure for all the remaining service code, where it
will really pay off. Figure 17.9 shows the structure you’ll implement.

17.4.1 Creating the viewmodel

The first step is to create the viewmodel. This is a class that will contain every function
the UI will use to interact with the rest of the system. It also will contain, quite impor-
tantly, all the data the UI will need to bind to, exposed in a binding-friendly form.
More complex systems may not want directly called functions but may instead use
commands for loading the data. We’ll keep it simple here, while still gaining most of
the benefits of the MVVM approach.

 In the client project, add a folder named ViewModels. In that folder, create a class
named MainViewModel.cs. This will be, as you probably suspected, the viewmodel
you’ll bind the UI to. The code for this class is shown here.

using System;
using System.Collections.ObjectModel;
using System.ComponentModel;
using NetworkingClient.Model;

namespace NetworkingClient.ViewModels
{
 class MainViewModel : INotifyPropertyChanged
 {
 private ObservableCollection<InstantMessage> _messages =
 new ObservableCollection<InstantMessage>();

 public ObservableCollection<InstantMessage> Messages
 {
 get { return _messages; }
 set
 {

Listing 17.6 MainViewModel code

Figure 17.9 A basic MVVM
implementation as used in this
example. The model is shared
between the client and server,
the view is the client-side XAML
and its code-behind, and the
viewmodel is the class we just
created on the client.

ViewModel class with
INotifyPropertyChanged

Collection of
messages

403Structuring your client code using MVVM

ged
 if (_messages != value)
 {
 _messages = value;
 NotifyPropertyChanged("Messages");
 }
 }
 }

 public async void LoadMessages()
 {
 var client = new Services.MessageServiceClient();
 var response = await client.GetMessagesAsync();

 Messages = response;
 }

 public event PropertyChangedEventHandler PropertyChanged;
 protected void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

The viewmodel has two main parts: the collection of messages and the call to load the
messages. If you’ve developed similar code using callbacks (for example, in Silverlight
5 without the async toolkit), you’ll see that the LoadMessages call is quite a bit less
complex, thanks to the await and async keywords.

Even if you don’t plan on working with SOAP services in this chapter, you may want to
build this viewmodel—you’ll use it for the RESTful services as well. Similarly, the UI
will be reused for both examples.

Refactoring service calls out of the viewmodel

An even better way to structure the client is to keep the viewmodel but have it call
into a client-side service layer. This class, which may be a singleton, a static class,
a class injected through Dependency Injection, or even a regular-old class, handles
all the network calls. In the MVVM examples in previous chapters, this was a Service
class.

Having the service proxy in a separate class abstracts it away from your viewmodel,
making it much easier for you to change the services implementation, especially when
testing and debugging.

Once my applications move beyond the most basic scenarios, I follow this approach.

Call to load
the messages

INotifyPropertyChan
implementation

404 CHAPTER 17 Networking with SOAP and RESTful services
17.4.2 Creating and wiring up the user interface

The UI for this example will be extremely simple. You’ll have a single app-bar button
that will load all the messages into a list. The list will be a ListView control as used in
most of the default templates. The function calls and event handlers will be written in
the code-behind. Figure 17.10 shows the result you’re aiming for.

 The UI consists of just three parts:

■ The app title—Displays the title for the application. We have no navigation this
time around.

■ The ListView—Shows the data from the service call.
■ The app bar—Where all functionality goes.

The following listing contains the XAML to implement the UI shown in figure 17.9.

<Page x:Class="NetworkingClient.MainPage"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:NetworkingClient"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Page.BottomAppBar>
 <AppBar IsSticky="True" IsOpen="True">
 <Grid>
 <StackPanel Orientation="Horizontal">

Listing 17.7 XAML UI for the MainPage.xaml view

Figure 17.10 The finished
networking example application.
Loading data is accomplished via
the button on the app bar. The
data in the middle of the page is
displayed in a ListView using a
DataTemplate.

AppBar
with button

405Structuring your client code using MVVM

D

 <Button Style="{StaticResource RefreshAppBarButtonStyle}"
 AutomationProperties.Name="Load Data"
 Click="OnLoadDataClick"/>
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <TextBlock x:Name="pageTitle" Text="Networking Examples"
 Margin="10,32,0,10" Grid.Row="0"
 Style="{StaticResource PageHeaderTextStyle}"/>
 <ListView x:Name="ResultsList" Margin="20, 100, 20, 20"
 Grid.Row="1"
 ItemsSource="{Binding Messages}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding From}"
 FontSize="40" Margin="10"
 Foreground="Yellow" />
 <TextBlock Text="{Binding Text}"
 FontSize="40" Margin="10"/>
 </StackPanel>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </Grid>
</Page>

The XAML in this listing defines an AppBar at the bottom of the page. By default, the
AppBar is both visible and sticky—you’ll need to manually dismiss it with a swipe, key-
board shortcut, or a right-click. The style for the AppBar button is defined in the Com-
mon\StandardStyles.xaml resource dictionary. If it is commented out, uncomment it now,
or copy and paste it to app.xaml. The markup also includes a standard page title and then
a ListView for displaying the message data.

 You won’t be able to compile the project until you add the missing OnLoadData-
Click event handler into the code-behind. You’ll also need to wire up the MainView-
Model to the DataContext, also in the code-behind. The next listing has everything
needed for MainPage.xaml.cs.

using System;
using NetworkingClient.ViewModels;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

Listing 17.8 Code-behind for MainPage.xaml.cs

App title

Messages from
viewmodel

Bound
ataTemplate

406 CHAPTER 17 Networking with SOAP and RESTful services
namespace NetworkingClient
{
 public sealed partial class MainPage : Page
 {
 private MainViewModel _vm = new MainViewModel();

 public MainPage()
 {
 this.InitializeComponent();
 DataContext = _vm;
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 { }

 private void OnLoadDataClick(object sender, RoutedEventArgs e)
 {
 _vm.LoadMessages();
 }
 }
}

Because the majority of the functionality is encapsulated in the MainViewModel class,
the code-behind is really lightweight. All it does (in addition to the usual page initial-
ization) is create an instance of the viewmodel, set it as the DataContext, and forward
the button click to the MainViewModel.

 Run the application now, and click the app-bar button. You should see the data
load into the ListView on the page. If you set a breakpoint in the LoadMessages
method of the viewmodel, you can step through the code as it executes.

SOAP services aren’t as common as they once were, but you have to admit that they
are really simple to use. That ease of use comes not from SOAP itself but from the tool-
ing built into Visual Studio and the Add Service Reference functionality.

 One great thing about SOAP is as an RPC (Remote Procedure Call)-style API, all the
operations follow the same pattern, whether you’re inserting data, retrieving data, or
doing something completely different. As you’ll see in the next section, not all APIs
work that way.

 The application structure offered by the MVVM pattern really helps with cleaning
up the binding and code-behind code. As you’ll see in a moment, you won’t have to
change a thing in your UI to perform a service call using RESTful services, even
though the networking code is quite different.

17.5 Consuming data from RESTful services
Representational State Transfer, or REST, means several things; in this case, it refers to
the approach of making services accessible through a set of simple URIs and HTTP

verbs. Before the days of web services and stateful web applications, most everything
on the web was RESTful, meaning that all traffic over HTTP used one of the HTTP

verbs to define its purpose, and calls were complete without requiring server-side

Create MainViewModel
instance

 Set Page DataContext

Forward button
click to viewmodel

407Consuming data from RESTful services
state. Over the years, the use of these verbs dwindled down, with nearly all traffic using
only the GET and POST verbs for requesting a page and submitting form data, respec-
tively. Over the past few years there’s been a trend toward moving from complex web
services to a much simpler framework.

 In the previous section we looked at SOAP services. SOAP is a nice way to handle
remote procedure calls, but it suffers from being a very different protocol imple-
mented on top of HTTP. Most caching and optimization infrastructures need to have
code specifically optimized for SOAP, rather than being able to reuse what they’re
already doing for pages and other resources on the web.

 Just as SOAP services were the thing in early 2000, RESTful services are becoming
the popular way for exposing data on the internet and intranet. They are insanely sim-
ple to use and friendly to all types of consumers. You may recall with SOAP that if your
platform of choice didn’t have a good SOAP toolkit, you had to write a lot of code to
create and parse SOAP envelopes. The overhead for RESTful services is so much lower
that all you really need is a way to call URLs.

 Many web service providers incorrectly use the term REST to mean any service that
isn’t SOAP. The main thing to realize is that the URI, and possibly the HTTP verb, may
change depending on the action being performed. Typically, a creator of RESTful ser-
vices will try to follow an intuitive structure where the URI first contains a type fol-
lowed by an instance. For example, a URI with the structure http://www
.arestfuldomain.com/Users might return an array of user records, whereas the URI

http://www.arestfuldomain.com/Users/JohnSmith might return a single user record
for John Smith.

 In this section you’ll create a RESTful service using the ASP.NET Web API. The Web
API (as it is commonly referred to) is a controller-based approach to building RESTful
services. It builds on the foundation of MVC and the MVC patterns and conventions.
The service will initially be used only for retrieving data—we’ll get to updating and
deleting data later. The last thing we’ll look at in this section is how to control the type
of data that’s sent to you. Sometimes you may prefer XML; other times you may want
JSON. With the client-side .NET objects and the WCF Web API on the server, you have
complete control over which format you get.

17.5.1 Creating the RESTful service

If you skipped over the SOAP section, go ahead and load up the REST starter project
from the supplied source code for this chapter. You’ll use the UI and MVVM code as
well as the MVC project from the SOAP example here.

 Before you can write any client-side code, you need to add the RESTful service to
the server-side project. The new MVC 4 templates make this extremely easy to do.

 In the Site MVC project, right-click the Controllers folder and select the option to
add a new controller. Name the controller MessagesController, and when prompted,

http://www.arestfuldomain.com/Users
http://www.arestfuldomain.com/Users

408 CHAPTER 17 Networking with SOAP and RESTful services
change the template to the “API controller with empty read/write actions” template.
Figure 17.11 shows the appropriate settings in the dialog.

 The controller will be prepopulated with a string-based shell of a template. You
won’t use strings here; instead you want to use the Message class you created earlier.
Ignoring the Post, Put, and Delete methods for the moment, change the two Get
methods so the controller class looks like the following listing.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using NetworkingClient.Model;

namespace Site.Controllers
{
 public class MessagesController : ApiController
 {
 private static List<InstantMessage> _data =
 new List<InstantMessage>()
 {
 new InstantMessage() { From="Pilot", To="CapAvatar",
 Text="A message from the Gamilon ship, sir:",
 Timestamp=DateTime.Parse("6/1/2012 2:57pm"), Id=1 },
 new InstantMessage() { From="Pilot", To="CapAvatar",
 Text="'Earth fleet, we advise you to surrender now'",
 Timestamp=DateTime.Parse("6/1/2012 2:58pm"), Id=2 },
 new InstantMessage() { From="Pilot", To="CapAvatar",
 Text="What shall I tell them?",
 Timestamp=DateTime.Parse("6/1/2012 2:59pm"), Id=3 },
 new InstantMessage() { From="CapAvatar", To="Pilot",
 Text="Tell them they're idiots!",

Listing 17.9 The MessagesController with Get methods in place

Figure 17.11 In the MVC project Controllers folder, create the new controller naming it
MessagesController and use the “API controller with empty read/write actions” template.

MessagesController

Hardcoded
data

409Consuming data from RESTful services
 Timestamp=DateTime.Parse("6/1/2012 3:00pm"), Id=4 },
 };

 public IEnumerable<InstantMessage> Get()
 {
 return _data;
 }

 public InstantMessage Get(int id)
 {
 return _data.Where(m => m.Id == id).FirstOrDefault();
 }

 public void Post(string value)
 { }

 public void Put(int id, string value)
 { }

 public void Delete(int id)
 { }
 }
}

Just as with the SOAP example, this service uses hardcoded data. But unlike the SOAP
example, you store the data in a static member variable. Why? Because you’ll need to
access it from several different methods before the chapter is through.

 I’ve removed the stock comments from the file, but the method names are very
intuitive. The two Get methods are automatically mapped to the GET HTTP verb. Sim-
ilarly, Post, Put, and Delete are mapped to the POST, PUT, and DELETE verbs.

 Testing RESTful services is easy to do. Right-click the fan.html file you created at
the beginning of this chapter, and select View in Browser.5 When the browser comes
up, change the URL to the right of the port number to be /api/messages. On my
installation, the full URL looks like this: http://localhost:4621/api/messages.

 If you’re using Internet Explorer, you won’t be able to view the resulting mes-
sages.json JSON (JavaScript Object Notation) file directly in the browser. You can, how-
ever, save it somewhere and open it in Notepad. You’ll end up with a file that looks
like this (without line breaks):

[{"Id":1,"From":"Pilot","To":"CapAvatar",
 "Timestamp":"2012-06-01T14:57:00",
 "Text":"A message from the Gamilon ship, sir:"},
 {"Id":2,"From":"Pilot","To":"CapAvatar",
 "Timestamp":"2012-06-01T14:58:00",
 "Text":"'Earth fleet, we advise you to surrender now'"},
 {"Id":3,"From":"Pilot","To":"CapAvatar",
 "Timestamp":"2012-06-01T14:59:00",
 "Text":"What shall I tell them?"},

5 You could also change the Site project to be the startup project and simply run the solution. If you do that,
remember to change the Windows Store app to the startup project when you’ve finished testing the RESTful
service.

Get all
messages

Get single
message

Post, Put, and
Delete methods

410 CHAPTER 17 Networking with SOAP and RESTful services
 {"Id":4,"From":"CapAvatar","To":"Pilot",
 "Timestamp":"2012-06-01T15:00:00",
 "Text":"Tell them they're idiots!"}]

This is the data that was returned from the first Get operation in the controller code.
JSON is the default return format. When you call the resource from the client, you’ll
be able to control that.

 Now modify the URL to add a Message ID to the end. For example, append /1 to
the URL you used to get all the messages. On my machine, the full URL ends up as
http://localhost:4621/api/messages/1. This calls the second API controller method,
because the conventions involved automatically map the /1 to the parameter id in the
method. The resulting JSON will include a single InstantMessage instance, in this
case, the one with id=1.

 Now that you’ve verified that the service works, it’s time to wire up the client code
and test it out from the client app.

17.5.2 Getting data from the service using the viewmodel

Unlike the Visual Studio support for SOAP services, RESTful services currently don’t
have any tooling support for creating client-side proxies. The reason for this is simple:
RESTful services aren’t self-describing, unlike SOAP services, which use WSDL (Web
Services Description Language).

 When you own both sides of the conversation, however, it’s easy to get around this.
You can use the same model-sharing approaches as you did with SOAP and simply do
the serialization using built-in classes.

 Crack open the MainViewModel.cs file and find the LoadMessages function.
Replace that code with the code shown here.

public async void LoadMessages()
{
 var client = new HttpClient();
 var uri = new Uri("http://localhost:4621/api/messages");

 var response = await client.GetAsync(uri);

 var data = await response.Content.ReadAsStringAsync();

 Debug.WriteLine(data);
}

This listing shows an easy way to call the service in your MVC project. Make sure you
resolve the appropriate namespaces: You’ll need System.Diagnostics, System, and
System.Net. Run the application and click the Load Data button, and you should see
the same JSON output you saw earlier but now in the debug window.

 You’re not loading data into the ListView just yet, though. To do that, you need to
deserialize the data into the appropriate InstantMessage instances. But to deserialize,

Listing 17.10 RESTful client implementation of LoadMessages

Set service URL

Call Get operation

Get response data

411Consuming data from RESTful services
you need to know exactly what type of data to expect, and so far, you’ve been relying
on the service’s implementation that returns JSON by default. It’s better to exert some
control, but to do that, you need to use a different client class.

17.5.3 Specifying the acceptable data type

The HttpClient class is useful for basic GET, POST, PUT, and DELETE actions, but it
doesn’t offer much control over the process. Specifically, there’s no access to the col-
lection of HTTP headers to be sent up with the call.

 Rather than use the HttpClient class, you’ll use the HttpWebRequest class via the
WebRequest.CreateHttp factory method. This class returned from this method pro-
vides access to the various headers to be sent up with the request. One of those head-
ers is Accept which the ASP.NET Web API uses to determine what type of data it should
send back. The next listing shows the code.

public async void LoadMessages()
{
 var uri = new Uri("http://localhost:4621/api/messages");

 var request = WebRequest.CreateHttp(uri);

 request.Method = "GET";
 request.Accept = "text/xml";

 var response = await request.GetResponseAsync();

 var stream = response.GetResponseStream();
 StreamReader reader = new StreamReader(stream);

 var data = await reader.ReadToEndAsync();

 Debug.WriteLine(data);
}

This version accomplishes the same thing the previous listing did, but instead of JSON,
it returns the data in XML format. This happens because of two things:

■ You set the Accept header to specify that you’ll only accept XML.
■ The ASP.NET Web API respects the HTTP Accept header when it decides which

format to send back the results.

Not all RESTful APIs properly respect the Accept header. In those cases, you’ll need to
work with just the data formats they return. Oh, and send them an email explaining
how they’re breaking the internet.

 Once you have a data format you understand, you can deserialize the data into
objects that can be used in binding. You already have those objects defined in your
model, so let’s get the data into them.

Listing 17.11 Loading data specifying the results should be in XML format

Create request

Specify verb and
return data type

Call
service

Get data
stream

Read data
string

412 CHAPTER 17 Networking with SOAP and RESTful services
17.6 Deserializing JSON and XML data
Deserialization is just the process of taking the raw data and creating objects based on
it. When you create a SOAP client proxy using Add Service Reference, the deserializa-
tion code is created for you automatically. When working with anything else, you need
to handle the deserialization yourself.

 You have several options, because the returned data is just a string of characters:
You can manually process the data using string manipulation or helpers like LINQ to
XML, or you can use built-in deserializers. Depending on the original structure and
how well formed the data is, you may find you have to do the manual deserialization
from time to time. Such is the nature of the web.

 In this section, we’ll look at the two automated forms of serialization: the Xml-
Serializer and the DataContractJsonSerializer. In both cases, you’ll use the
appropriate serializer to read the data from the ASP.NET Web API RESTful service you
created earlier.

17.6.1 XML deserialization using XmlSerializer

Deserializing XML in .NET is a well-worn area. Generally, the only area that continues
to trip people up is XML namespaces. Oftentimes, especially when dealing with auto-
matically serialized data from a service, you don’t know what namespace to specify.
That’s easily solved by inspecting the XML in the debug window or through a tool such
as Fiddler.

 Once you identify the necessary namespace(s), you can add them using the Xml-
Serializer constructor.

 The next listing shows how to use the XmlSerializer to deserialize data from the
Web API service. Notice that you’re able to specify XML as the required format via the
Accept header.

public async void LoadMessages()
{
 var uri = new Uri("http://localhost:4621/api/messages");
 var request = WebRequest.CreateHttp(uri);

 request.Method = "GET";
 request.Accept = "text/xml";

 var response = await request.GetResponseAsync();
 var stream = response.GetResponseStream();

 var deserializer = new XmlSerializer(typeof(InstantMessage[]),
 "http://schemas.datacontract.org/2004/07/NetworkingClient.Model");

 var messages = (InstantMessage[])
 deserializer.Deserialize(stream);

Listing 17.12 Deserializing with the XmlSerializer

Create HTTP
request

Specify GET operation
and XML format

Deserialize
the data

413Deserializing JSON and XML data
 _messages.Clear();
 foreach (InstantMessage msg in messages)
 _messages.Add(msg);
}

This listing shows how to specify an XML return format and then use the Xml-
Serializer to process the returned data. Note the full namespace passed into the
XmlSerializer constructor—you can figure out the correct namespace simply by
inspecting the returned data. Without this namespace declaration, the data won’t
deserialize.

 Now run the application. It should behave just as it did in the SOAP example,
except the results will look slightly different because the RESTful service data differs
from the SOAP example.

XML is a common data format, but as APIs move to better support JavaScript (or are
created initially just for JavaScript developers), you’ll find JSON becoming increasingly
the dominant data format. Luckily, you can process that just as well as XML.

17.6.2 JSON deserialization

With the exception of date processing,6 and the usual lack of namespace issues, JSON
deserialization is almost identical to XML deserialization. In general, JSON is a lighter-
weight format, so if you need to shave every last extra byte from the wire, JSON will
likely result in smaller payloads. In typical use, this doesn’t make much difference, but
for really large data sets on constrained or expensive communications pipes like 3g/
4g/..., it can be worth it.

Dynamic objects

Because you own both halves of the communication, it’s easy to reuse the model class-
es between the server and the client. In Silverlight, it was necessary to have strongly
typed classes to bind to. In WPF, and now also in WinRT XAML, that’s not necessary.

Should your service return data that’s more dynamic in nature, you don’t need to create
strongly typed classes on the client. Instead, WinRT XAML supports binding to dynam-
ically created objects.

Dynamic, anonymous objects are generally created via LINQ statements. In those cas-
es, you’ll manually parse the data and create the anonymous object on the fly.

This is something to consider when you look at how to structure your model, because
it could save you a fair bit of work, especially with highly dynamic APIs.

6 JSON dates—I hates it, my precious! Seriously, what kind of programming language doesn’t have a standard-
ized format for dates built in from the start?

Add objects to
the collection

414 CHAPTER 17 Networking with SOAP and RESTful services

Dese
 The next listing shows how to request JSON data from the service and then deseri-
alize it into the InstantMessage instances.

public async void LoadMessages()
{
 var uri = new Uri("http://localhost:4621/api/messages");
 var request = WebRequest.CreateHttp(uri);

 request.Method = "GET";
 request.Accept = "application/json";

 var response = await request.GetResponseAsync();
 var stream = response.GetResponseStream();

 var settings = new DataContractJsonSerializerSettings();
 string dateFormat = "yyyy-MM-ddTHH:mm:ss";
 settings.DateTimeFormat =
 new DateTimeFormat(dateFormat);

 var deserializer = new DataContractJsonSerializer(
 typeof(InstantMessage[]), settings);

 var messages = (InstantMessage[])deserializer.ReadObject(stream);

 _messages.Clear();
 foreach (InstantMessage msg in messages)
 _messages.Add(msg);
}

Run the application, and you should see exactly the same results you saw in the previ-
ous example. The wire data format itself isn’t important to the UI.

NOTE Many people prefer to use JSON.NET, especially because that’s what the
ASP.NET team uses. For one thing, it does a much cleaner job of dealing with
dates. You are certainly free to use that library in Windows Store apps. See
http://json.codeplex.com/.

When you work with APIs on the public web, you’ll almost certainly run into both XML
and JSON. It’s good to know that both are easily supported in Modern C# apps.

 So far, you’ve dealt only with retrieving data from a service. Anyone who has writ-
ten an application knows that consumption isn’t the only way to interact with services
on the web—you also need to add, update, and sometimes delete data.

17.7 Updating data using PUT, POST, DELETE, and more
With ASP.NET Web API RESTful services, and with the web in general, the HTTP verb
decides what you’re going to do. If you want to add an item, you usually use the PUT verb.
If you want to update an existing item, you use the POST verb, although POST sometimes
plays the role of PUT as well. If you want to delete a resource, you’ll use the DELETE verb.
As you’ve already seen, if you want to download data, you use the GET verb. Recently,
the PATCH verb was adopted on some platforms to support partial updates.

Listing 17.13 Deserializing JSON

GET JSON
formatted data

Specify date format.
JSON hates dates.

rialize

Add objects
to collection

415Updating data using PUT, POST, DELETE, and more
 Most of us only ever use GET and POST, because the web has adapted to work with
those and still function. As the web has moved from just pages (issuing a DELETE on a
page would be … bad) to APIs, these verbs have seen increased use. They were there
from the beginning, though. PUT and DELETE are not new by any stretch of the imag-
ination.

 In this section, you’ll implement PUT, POST, and DELETE in the web service and
use them from the client. You’ll build on the previous code when implementing these
features.

UPDATING THE MESSAGE SERVICE

The first thing to do is to add the new verb handlers to the MessagesController in
the Site MVC project. The methods were autogenerated with strings as parameters.
Please note that they now take InstantMessage instances rather than strings. The
updated code, just for these methods, is shown here.

public void Post(InstantMessage value)
{
 var item =
 _data.Where(im => im.Id == value.Id).FirstOrDefault();

 if (item != null)
 {
 item.Text = value.Text;
 item.Timestamp = value.Timestamp;
 item.To = value.To;
 item.From = value.From;
 }
}

public void Put(int id, InstantMessage value)
{
 bool exists =
 (_data.Where(im => im.Id == value.Id).FirstOrDefault() != null);

 if (!exists)
 {
 value.Id = id;

 _data.Add(value);
 }
}

public void Delete(int id)
{
 var item =
 _data.Where(im => im.Id == id).FirstOrDefault();

 if (item != null)
 _data.Remove(item);
}

Listing 17.14 Put, Post, and Delete methods in the MessagesController

Update
with Post

Add with Put

Remove with Delete

416 CHAPTER 17 Networking with SOAP and RESTful services
There are a few details in this listing that may have you scratching your head. The first
is that the Post method, as implemented, can’t handle updating the ID of an item.
That’s an implementation detail but a limitation that most people can live with. The
code could have been written to match on something else, or the item could have con-
tained the original and new values, much like ADO always did with change tracking in
the RecordSet class.

 The second is that the Put method takes an ID as a parameter when the ID is
already part of the value. This is just the nature of the PUT pattern—the resource you
Put doesn’t need to have an ID internal to its structure. Think of a file. A file itself
doesn’t need to contain a filename—that’s an external identifier.

 The third thing that may jump out at you is the complete lack of any error report-
ing. If any of the operations fails to proceed due to a bad ID or something else, you
don’t report that back to the client. That’s okay. I’m sure you’ve written code like that
a million times and don’t need it repeated here. Consider it my personal nod to your
awesome skills and experience, and not me trying to get out of writing error code.

 You’re not quite finished with the web project, however. By default, IIS doesn’t
allow PUT and DELETE verbs. If you’re running the full version of IIS, you can config-
ure this through the GUI. On IIS Express, which comes with Visual Studio, you’ll need
to add the entry in the next listing to the Web.config in the Site project. Be sure to
add it into the correct node—you’ll almost certainly already have system.webServer
and validation present in the file.

<system.webServer>
 <validation validateIntegratedModeConfiguration="false" />
 <modules runAllManagedModulesForAllRequests="true" />
 <handlers>
 <remove name="ExtensionlessUrlHandler-Integrated-4.0" />
 <add name="ExtensionlessUrlHandler-Integrated-4.0"
 path="*." verb="*"
 type="System.Web.Handlers.TransferRequestHandler"
 resourceType="Unspecified" requireAccess="Script"
 preCondition="integratedMode,runtimeVersionv4.5" />
 </handlers>
...
</system.webServer>

Now that PUT and DELETE won’t be filtered out by the web server, you’re ready to call
the service from the client.

CALLING THE NEW FUNCTIONS FROM THE CLIENT

With the functions all ready and waiting on the server, you need to call them. To have
this make even a little sense, you need to update the UI with some buttons that will let
you trigger the add, update, and delete code.

 The following listing has the updated XAML for just the app bar on Main-
Page.xaml. Replace the existing AppBar entry with this markup.

Listing 17.15 Web.config changes for PUT and DELETE

All paths,
all verbs

417Updating data using PUT, POST, DELETE, and more

<Page.BottomAppBar>
 <AppBar IsSticky="True"
 IsOpen="True">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal">
 <Button Style="{StaticResource RefreshAppBarButtonStyle}"
 AutomationProperties.Name="Refresh Data"
 Click="OnLoadDataClick"/>
 <Button Style="{StaticResource AddAppBarButtonStyle}"
 AutomationProperties.Name="Add Item"
 Click="OnAddItemClick"/>
 </StackPanel>
 <StackPanel Grid.Column="1" HorizontalAlignment="Right"
 Orientation="Horizontal">
 <Button Style="{StaticResource EditAppBarButtonStyle}"
 AutomationProperties.Name="Update Selected Item"
 Click="OnUpdateItemClick"/>
 <Button Style="{StaticResource DeleteAppBarButtonStyle}"
 AutomationProperties.Name="Delete Selected Item"
 Click="OnDeleteItemClick"/>
 </StackPanel>
 </Grid>
 </AppBar>
</Page.BottomAppBar>

This will result in an app bar
with buttons, as shown in figure
17.12. The commands that are
independent of any selected
item may be found to the left.
The commands that are item-
specific are on the right.

 The next step is to update
the MainViewModel with the
appropriate code. The code in
the viewmodel will serialize the
data, build the URLs, and then
call the service. The next listing has the code to handle the selected message, as well
as the function that’s used to send the requests to the server.

private InstantMessage _selectedMessage;
public InstantMessage SelectedMessage
{
 get { return _selectedMessage; }
 set { _selectedMessage = value;

Listing 17.16 Updated AppBar XAML for the new functions

Listing 17.17 SelectedMessage and SendRequest viewmodel code

Add item

Update item

Delete item

Figure 17.12 The app bar with the new Add, Update, and
Delete buttons. I also changed the Load Data button to read
Refresh Data. The item-specific commands are on the right; the
globals are on the left. This is the opposite of the recommended
approach as covered in chapter 11—an oversight I caught only
as I was sending this chapter to the printer.

Selected
message

418 CHAPTER 17 Networking with SOAP and RESTful services
 NotifyPropertyChanged("SelectedMessage"); }
}

private const string RootMessagesServiceUrl =
 "http://localhost:4621/api/messages/";

private async void SendRequest(string verb,
 InstantMessage message, string url)
{
 var uri = new Uri(url);
 var request = WebRequest.CreateHttp(uri);

 request.Method = verb;
 request.ContentType = "application/json";

 var requestStream = await request.GetRequestStreamAsync();

 var settings = new DataContractJsonSerializerSettings();
 string dateFormat = "yyyy-MM-ddTHH:mm:ss";
 settings.DateTimeFormat = new DateTimeFormat(dateFormat);

 var serializer = new DataContractJsonSerializer(
 typeof(InstantMessage), settings);
 serializer.WriteObject(requestStream, message);

 var response = await request.GetResponseAsync();
}

This listing includes the SelectedMessage property, which is bound to from the UI
(more on that in a moment) as well as the SendRequest method. Both the add and
update functions have almost identical code for serialization and networking, so that
code was factored out into the SendRequest method.

 To support the SelectedMessage property in the viewmodel, there’s one addi-
tional item to add to the XAML. In the ResultsList ListView in MainPage.xaml, add
the SelectedItem and SelectionMode attributes:

<ListView x:Name="ResultsList"
 SelectedItem="{Binding SelectedMessage, Mode=TwoWay}"
 SelectionMode="Single"
 ...

This binds the ListView’s SelectedItem property to the SelectedMessage on the
viewmodel. Because it’s two-way binding, any time either the viewmodel or the List-
View changes, the other will be updated. This is a very common MVVM approach.

 The following listing has the actual add, update, and delete methods that go in the
viewmodel class. Note that update and add use hardcoded changes, because we won’t
have a UI for entering data.

public void UpdateSelectedMessage()
{
 if (SelectedMessage != null)
 {
 SelectedMessage.Text += " upd";

Listing 17.18 Add, update, and delete methods in the MainViewModel

Root URL

 JSON format

Data serialization

Actual network call

Update

419Updating data using PUT, POST, DELETE, and more
 SendRequest("PUT", SelectedMessage,
 RootMessagesServiceUrl + SelectedMessage.Id);
 }
}

public async void AddMessage()
{
 var message = new InstantMessage();

 message.Id = (int)(DateTime.Now.Ticks & 0xFFFF);
 message.Timestamp = DateTime.Now;
 message.From = await UserInformation.GetDisplayNameAsync();
 message.To = "Pete";
 message.Text = "Some random text from viewmodel";

 SendRequest("POST", message, RootMessagesServiceUrl);
}

public async void DeleteSelectedMessage()
{
 if (SelectedMessage != null)
 {
 var uri = new Uri(RootMessagesServiceUrl + SelectedMessage.Id);
 var request = WebRequest.CreateHttp(uri);

 request.Method = "DELETE";

 var response = await request.GetResponseAsync();
 }
}

This listing includes the update, add, and delete code. Of them, both Update-
SelectedMessage and AddMessage make use of the SendRequest method from the
previous listing, because they both have to serialize data to be sent up to the server.

 I threw in something extra there. In the AddMessage method, you may have
noticed that I’ve wired up code to get the display name of the current user and use
that as the “From” user.

 Now, the workflow you’re using here is only illustrative. Some applications will ben-
efit from adding to the local collection and then batching changes to be sent to the
server. The approach is entirely up to you. In this sample, the workflow is this: Add,
update, or delete an item, and then refresh the data to view the changes.

 To see that workflow in action, wrap up the changes with the code in the next list-
ing. This code goes in MainPage.xaml.cs.

private void OnAddItemClick(object sender, RoutedEventArgs e)
{
 _vm.AddMessage();
}

private async void ShowSelectSomethingMessage()
{
 var dlg = new MessageDialog(
 "Please select a message before selecting this option.",

Listing 17.19 Wiring it together in the code-behind

Add

Delete

Add item

420 CHAPTER 17 Networking with SOAP and RESTful services
 "Messages");
 await dlg.ShowAsync();
}

private void OnUpdateItemClick(object sender, RoutedEventArgs e)
{
 if (_vm.SelectedMessage != null)
 _vm.UpdateSelectedMessage();
 else
 ShowSelectSomethingMessage();
}

private async void OnDeleteItemClick(object sender, RoutedEventArgs e)
{
 if (_vm.SelectedMessage != null)
 {
 var dlg = new MessageDialog(
 "As you sure you want to delete the selected message from '" +
 _vm.SelectedMessage.From + "'?",
 "Delete");

 var yesCommand = new UICommand("Yes");
 var noCommand = new UICommand("No");
 dlg.Commands.Add(yesCommand);
 dlg.Commands.Add(noCommand);

 var cmd = await dlg.ShowAsync();

 if (cmd == yesCommand)
 _vm.DeleteSelectedMessage();
 }
}

The code in this listing is the glue between the UI XAML and the viewmodel. Its
responsibility is user interaction such as confirming and forwarding button click
events to the viewmodel.

 At this point, you can run the application and add, update, and delete. Keep in
mind that the workflow requires manually refreshing the data after each operation. If
you run out of data, you can stop IIS in the taskbar and rerun the application—the
data will return to its original hardcoded state.

 By having this code in the viewmodel and deserializing the data into strongly typed
.NET objects, you’ve kept the implementation code away from the UI. But in an appli-
cation with multiple viewmodels, this can quickly get messy.

Refactoring networking code into a service proxy class

That URL building and serialization code in the viewmodel is annoying at best and brittle
at worst. I don’t like how it brings the service dependency so far down into the appli-
cation. A better solution is to pull out the service-dependent code and put it into a
separate class and call methods in that class from the viewmodel. I mentioned this
in the discussion about SOAP, but the benefits in that example were marginal. Here,
it’s far more concrete.

Update
selected item

Confirm deletion

Delete
selected item

421Summary
Working with RESTful services can be really exciting and rewarding. REST is turning
out to be the de facto API style on the internet, used by the major social networking
sites and many others. Its simple format, without the overhead and complexity of
SOAP, makes it very appealing both for clients with built-in support for serialization
like Modern Style C#, as well as those that are built from scratch.

 Quite frankly, with its reliance on the standard HTTP verbs like GET, POST, PUT,
and DELETE, it just works the way the web is supposed to. It’s so easy to understand
and so basic in implementation, it’s even popular on tiny .NET Micro Framework
boards like the Netduino and .NET Gadgeteer boards I use often when working with
robotics, sensors, and side projects.

17.8 Summary
This chapter introduced you to the basics of networking, as well as to creating and
consuming services. Regardless of the type of application you develop, you’ll probably
need to access a resource on the web or call some sort of service. You may create your
own website, as we did at the start of this chapter. You may even use it just to download
files. It’s also quite possible, and quite likely, that you’ll use existing public services as
either a part of or the entirety of your connectivity requirements. Whatever you need
to do, the code will remain the same.

SOAP services are the old standby. We’ve been using them for well over a decade
now. In fact, SOAP service support was one of the early driving factors behind .NET.
You’ll still find SOAP services, both new and old, especially in the enterprise. Visual
Studio tooling through Add Service Reference makes them incredibly easy to use.

RESTful services are quickly becoming the new hotness for service development.
They’re easy to consume from a variety of platforms, including manually in a browser
or through a tool like Fiddler. Sure, there’s no client-side proxy created for you like
the tooling does for SOAP, but that’s not a huge loss when you weigh it against the
increased reach and lower overhead.

(continued)

To do this, first, go ahead and remove the service reference you had for the SOAP
service—you won’t need it anymore, and I don’t want there to be any confusion as to
what code you’re calling. Simply right-click the Services entry under the Service Ref-
erences folder, and select Delete.

Next, create appropriate functions in the proxy. You’ll likely want to have awaitable
GetAllMessages, GetSingleMessage, UpdateMessage, AddMessage, and Delete-
Message methods. Keep the root service URL in a single, easily set location, perhaps
as a constant, perhaps as a constructor parameter.

Once you have the proxy class set up, change the viewmodel methods to simply call
into it. This will simplify the viewmodel code and facilitate better reuse of the network-
ing code in multipage applications where multiple viewmodels need access to the
same services.

422 CHAPTER 17 Networking with SOAP and RESTful services
 When it comes to consuming data from a REST service or storing data locally, the
two most popular formats are XML and JSON. Windows Store apps can use the Xml-
Serializer or manual methods when parsing XML. I tend to use LINQ to XML when
doing small tasks and the XmlSerializer when I have a serious set of objects to work
with or when sharing model objects between the client and server.

JSON is an even simpler format than XML. Although you could also use manual
methods for processing JSON, you can’t beat the DataContractJsonSerializer for its
ability to parse deep JSON objects quickly and with minimal code.

 In this chapter, we also looked at a couple of my favorite techniques for application
development: cross-compiling code between two platforms and organizing your code
using the MVVM pattern. Cross-compilation makes it easy for you to share your model,
in this case, between ASP.NET and your Windows Store client app. MVVM is a no-
brainer, even in the simple form I showed in this chapter. If you plan to use binding
(which you will), having your binding sources all wrapped up in a page-specific view-
model makes it so much easier to work with and understand your code.

 In the next chapter, the discussion of networking continues with a collection of
some of the other interesting networking capabilities offered by .NET 4.5 and the Win-
dows Runtime.

A chat app using sockets
Higher-level networking approaches such as SOAP and RESTful services are great
when you don’t need to count milliseconds or when communication is primarily
one way. But what about those times when you need to perform near real-time con-
trol of, say, a robot? How about synchronizing character or object movement for a
game? Those are all performance-critical, often bidirectional, and sometimes peer-
to-peer communications scenarios.

 When apps need to communicate across a network as quickly and efficiently as
possible, they use sockets. Socket communication is two-way communication
between, in most cases, two endpoints. (Multicast/broadcast socket is the one-to-
many or even many-to-many approach used in some other scenarios. I won’t cover
those approaches here because they aren’t as commonly used, but I do build on the
normal socket communication in this chapter.)

This chapter covers
■ Creating a socket server
■ Connecting to a socket server
■ Using TCP and UDP sockets
423

http://bit.ly/WinRTWebSockets
http://bit.ly/WinRTWebSockets
http://bit.ly/WinRTWebSockets

424 CHAPTER 18 A chat app using sockets
Sockets are what power the internet. Protocols such as HTTP are built on top of socket
communication. Whenever you specify a port, you’re specifying an endpoint for a
socket, with the additional protocol built on top of it. If you want to implement your
own protocol, you’ll almost certainly start with socket communication.

 In this chapter, you’ll start building a socket-based communications app. The func-
tionality introduced here will be simple peer-to-peer chat between two machines. Sub-
sequent chapters will add even more game-like features that will build on the same
communications and messaging infrastructure, but starting with chat makes it all eas-
ier to visualize and understand.

 Figure 18.1 shows the peer-to-peer chat functionality of the app you’ll build in this
chapter. The app will work on all flavors of Windows 8, including Windows RT and the
Microsoft Surface.

 The app is both the client and the server, something that many don’t realize can be
done inside a Windows Store app. To make this work, you’ll need to use two machines
as the endpoints of the communication.

 First, we’ll turn to the MVVM pattern to help you structure the app. The functional-
ity will be completely encapsulated within the viewmodel and will start with TCP
streaming sockets. The UI that binds to the viewmodel will be kept simple in order to
focus on learning the mechanics of socket communication. Once you get the basic
chat app working, you’ll refactor the code and add UDP socket support into the mix.
By the end of this chapter, you’ll have a simple chat app that can be used across two
machines on a network. In my case, my two machines are my Windows 8 desktop PC
and my Windows RT Surface.

Figure 18.1 The app for this chapter running on my main PC as well as my Surface. The PC version
has the same app bar as the Surface, but it’s out of frame in the photo. The two machines are
communicating over sockets. You’ll have to trust me that this very large blob of dark print is, in fact,
two separate screens running the app.

425Chat app viewmodel
18.1 Chat app viewmodel
When working with socket communication, a meaningful app can get complex quite
quickly. So rather than tackle the entire app all at once, we’ll start with the chat portion
and refactor after that before adding more functionality in the next chapters.

 A chat app is good for learning peer-to-peer connectivity. The message structure is
simple, and the UI interaction patterns have already been explored elsewhere in this
book. It’ll look a little sparse at first—a good portion of the UI will be blank other than
the chat column over on the left, as shown in the first figure in this chapter.

 As I mentioned, this app will follow the MVVM pattern introduced earlier in this
book. We’ll again use Laurent Bugnion’s MVVM Light toolkit in this app, because it’s a
huge time-saver when you want to use commanding and strongly typed property
change notifications.

 Figure 18.2 shows how the viewmodel fits into the picture. For this round, all the
functionality is inside the viewmodel itself, because you want to focus on learning
socket communication.

NOTE For those of you more experienced with MVVM, sitting on the edge of
your seats screaming at this book because the sockets code is implemented
directly in the viewmodel, I hear you. You know I wouldn’t do that to you and
just leave it out there. By the end of this chapter, you’ll have all that sockets
code factored out into its own service class. In the meantime, I recommend
getting one of those little desktop Zen gardens.

All of the UI interaction for the chat functionality uses binding to communicate with
the viewmodel. In fact, because of the naming convention for the viewmodel (it

Why two machines?

Two machines for a demo? This may seem like an attempt on my part to sell more
licenses on behalf of my employer, but trust me, it’s not. Really!

I was tempted to do my usual approach of using a .NET Micro Framework (NETMF)
device (Netduino or Gadgeteer) but figured that would overflow the geek-o-meter for
this book. You can definitely learn from the code even with a single Windows 8 ma-
chine, but sockets are point-to-point and you need two points for a conversation.

Why didn’t I set up a console app on the desktop or have communication between
two Windows Store apps on the same machine? You can make network calls to the
loopback (127.0.0.1) if enabled in Visual Studio in the properties page for the project,
but for actual deployed Windows Store apps, this is forbidden. To be very clear: Win-
dows Store apps aren’t allowed to open network connections to the same machine,
even if it happens to work in Visual Studio. For that reason, I won’t include examples
for that scenario here.

If you’d rather go the NETMF route to, you know, control robots and blow things up,
evict neighbors, and the like, I have some source code posted on my personal site
as well as on the official .NET team blog.

426 CHAPTER 18 A chat app using sockets
matches the page name “MainPage” with “MainViewModel”), you’re able to use the
MVVM Light viewmodel locator implementation to automatically wire up the UI. The
result is code-behind with no lines of code other than those from the stock template.
An empty code-behind file is generally not the ultimate or most important goal, but
when it comes about as the result of good app structure, you’ll find you can better
design the UI and better test the app functionality.

 To start, create a new project named SocketApp, using the MVVM Light XAML/C#
template for Windows Store apps. If you’re unfamiliar with this template, please refer
to chapter 9 on MVVM and controls.

 The main tasks we’ll look at in this section are building out the skeleton of the
MainViewModel class and creating the ChatMessage model. The MainViewModel will
have several placeholder methods, which you’ll complete later in this chapter.

18.1.1 The MainViewModel class

The MainViewModel class is what the UI uses to communicate with the rest of the app.
It’s where the command instances are located and where the bindable properties are
surfaced to the UI. Open up the MainViewModel class source file in the ViewModel
folder and replace its contents with what’s shown in this listing.

using GalaSoft.MvvmLight;
using GalaSoft.MvvmLight.Command;
using GalaSoft.MvvmLight.Threading;

Listing 18.1 The skeleton MainViewModel

Figure 18.2 The UI is bound to the ViewModel using commands for buttons and also using one-
way and two-way data binding for input and the messages list. Currently, all of the socket
communication is also inside the ViewModel, but that will change before the end of this chapter.

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol

427Chat app viewmodel
using SocketApp.Model;
using System;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Threading.Tasks;
using Windows.Networking;
using Windows.Networking.Connectivity;
using Windows.Networking.Sockets;
using Windows.Storage.Streams;

namespace SocketApp.ViewModel
{
 public class MainViewModel : ViewModelBase
 {
 private const string PortOrService = "5150";

 private StreamSocket _socket;
 private StreamSocketListener _listener;

 public MainViewModel()
 {
 ChatMessages = new ObservableCollection<ChatMessage>();
 ConnectionStatus = "Not connected.";
 ServerAddress = "pete-surface64";

 CreateNewMessage();

 PostNewMessageCommand = new RelayCommand(
 () => PostNewMessage(), () => CanPostNewMessage());

 ListenCommand = new RelayCommand(
 () => Listen(), () => CanListen());

 ConnectCommand = new RelayCommand(
 () => Connect(),() => CanConnect());
 }

 public ObservableCollection<ChatMessage> ChatMessages { get; set; }

 private ChatMessage _newMessage;
 public ChatMessage NewMessage
 {
 get { return _newMessage; }
 set { Set<ChatMessage>(() => NewMessage, ref _newMessage, value); }
 }

 public RelayCommand PostNewMessageCommand { get; private set; }

 private void CreateNewMessage()
 {
 if (NewMessage != null)
 NewMessage.PropertyChanged -= NewMessage_PropertyChanged;

Socket server
port number

Input/output
socketSocket

listener

Server name
(change this)

Chat
messages

Message entry

Create empty
message

428 CHAPTER 18 A chat app using sockets
 NewMessage = new ChatMessage();
 NewMessage.PropertyChanged += NewMessage_PropertyChanged;
 }

 void NewMessage_PropertyChanged(object sender,
 PropertyChangedEventArgs e)
 {
 if (e.PropertyName == "Message")
 PostNewMessageCommand.RaiseCanExecuteChanged();
 }

 public async void PostNewMessage() { }
 public bool CanPostNewMessage() { return true; }

 private string _serverAddress;
 public string ServerAddress
 {
 get { return _serverAddress; }
 set { Set<string>(() => ServerAddress, ref _serverAddress, value); }
 }

 private string _connectionStatus;
 public string ConnectionStatus
 {
 get { return _connectionStatus; }
 set { Set<string>(() => ConnectionStatus,
 ref _connectionStatus, value); }
 }

 public RelayCommand ConnectCommand { get; private set; }
 public async void Connect() { }
 public bool CanConnect() { return true; }

 public RelayCommand ListenCommand { get; private set; }
 public async void Listen() { }
 public bool CanListen() { return true; }
 }
}

This single viewmodel has all the endpoints required for wiring up the UI. Several of
the methods are placeholders (such as the code to be a server or connect to one) and
will be implemented throughout this section.

 The viewmodel has a hardcoded server name. In my case, the server is my Micro-
soft Surface. Replace that with the machine name or IP address of the machine you
intend to connect to. The port number is also up to you, as long as you pick some-
thing that’s out of the restricted range of well-known ports. If you have firewall issues
on your network, you’ll find that changing it to port 80 will work, as long as the server
machine isn’t running a web server of any sort.

 The message list and message entry functionality works just as you’ve seen in the
previous chat example in this book (chapter 9 on MVVM and controls), so I won’t go
into detail on that pattern here.

Post chat
message

Connect
to server

Be a server

429The user interface
18.1.2 ChatMessage model class

The viewmodel includes a couple references to the ChatMessage class, using the fol-
lowing listing as the body of a class named ChatMessage in the Model folder.

using GalaSoft.MvvmLight;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace SocketApp.Model
{
 public class ChatMessage : ObservableObject
 {
 private string _message;
 public string Message
 {
 get { return _message; }
 set { Set<string>(() => Message, ref _message, value); }
 }
 }
}

The ChatMessage class contains a single property in this initial version: the text of the
message. Using only this single property will help you keep the sockets messaging for-
mat simple and understandable for this first version.

 The viewmodel and model are two of the most importance pieces for this app. The
viewmodel, in particular, is where all the sockets action will happen. Now that you
have everything that the UI binds to, it’s time to create the UI itself.

18.2 The user interface
The app you create in this chapter will be the chat portion of a larger peer-to-peer
app. Because you want as much space as possible for app content, there will be no title
portion. In addition, because there’s only a single page in this app, there’s no need for
a navigation button at the top left.

 The UI will make use of data binding to the viewmodel both for the list of chat
messages as well as for the entry of the new chat message. It will also use data binding
to update the connection status in the app bar and command binding for the three
buttons.

 Figure 18.3 shows what the UI will look like once you’ve completed the app.
 In this section, you’ll build out the XAML user interface for this app. You’ll start

with a simple skeleton and then add in the styles and resources used for the buttons
and text. From there, you’ll create an app bar with two buttons and a couple of Text-
Block elements. The app bar will be sticky and visible, so you don’t have to manually

Listing 18.2 The ChatMessage model class

Message text

430 CHAPTER 18 A chat app using sockets
show it. Next, you’ll create the ListView for the chat messages and the controls that
allow for message entry. We’ll wrap up this section with a very sparse set of visual states
for the different page view states.

18.2.1 XAML skeleton

This app has only a single page: MainPage.xaml. You’re not going to do anything spe-
cific to support portrait and snapped views in this version, but snapped view will “just
work.” Crack open MainPage.xaml and replace its contents with what you see in the
next listing. This will serve as the starting structure for the interface.

<common:LayoutAwarePage x:Class="SocketApp.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:common="using:SocketApp.Common"
 xmlns:ignore="http://www.ignore.com"
 mc:Ignorable="d ignore"
 d:DesignHeight="768"
 d:DesignWidth="1366"
 DataContext="{Binding Main, Source={StaticResource Locator}}">

 <!-- Styles and resources go here -->

 <!-- App Bar goes here -->

Listing 18.3 MainPage.xaml skeleton

Figure 18.3 A cropped view of the UI, showing the main elements plus the app bar

ViewModelLocator

Styles and resources

App bar

431The user interface
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <!-- Content goes here -->

 <!-- Visual States Go Here -->
 </Grid>
</common:LayoutAwarePage>

For this chapter, I make use of the ViewModelLocator provided in MVVM Light. You
can see its reference as the data context for this page.

 The comments in this listing are placeholders for content you’ll add in the next
several listings.

18.2.2 Styles and resources

The page includes styles for the buttons as well as colors that will be used for text and
other elements. These are all included in the resources section of the page.

 The first of those is the styles and resources local to this page. The following listing
contains the XAML to place at that spot.

<Page.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Skins/MainSkin.xaml" />
 </ResourceDictionary.MergedDictionaries>

 <SolidColorBrush x:Key="AccentBrush" Color="#FF220088" />
 <SolidColorBrush x:Key="HighlightBrush" Color="#FF5500FF" />

 <Style x:Key="WorldAppBarButtonStyle" TargetType="ButtonBase"
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId"
 Value="WorldAppBarButton" />
 <Setter Property="AutomationProperties.Name"
 Value="World" />
 <Setter Property="Content"
 Value="" />
 </Style>

 <Style x:Key="RemoteAppBarButtonStyle" TargetType="ButtonBase"
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId"
 Value="RemoteAppBarButton" />
 <Setter Property="AutomationProperties.Name" Value="Remote" />
 <Setter Property="Content" Value="" />
 </Style>
 </ResourceDictionary>
</Page.Resources>

The styles used in the resources section of the page are for the buttons. The two app
bar button styles are copied directly from the commented-out, template-provided
styles in app.xaml. The colors will be used later in this chapter and in the next.

Listing 18.4 MainPage.xaml styles and resources

Content

Visual states

Server app
bar button

Connect app
bar button

432 CHAPTER 18 A chat app using sockets
18.2.3 App bar buttons

This app contains only two app bar buttons, shown in figure 18.4. The first is used when
you want to connect to the app running as a server on another machine. The second is
used when you want the machine itself to be the server. On any given machine, you’ll
choose only one of these options, not both. But you don’t do any validation of that or
enable/disable the buttons (via the commands). That’s something you could easily add
in if you’d like—it would be handled 100% in the viewmodel.

 The app bar also includes some TextBlock elements on the left, one of which
you’ll use to display the connection status.

 The app bar buttons, the status text, and the app bar that contains them are all
shown in the following listing. Place this markup in the page section reserved for the
app bar.

<Page.BottomAppBar>
 <AppBar IsSticky="True" IsOpen="True">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <StackPanel Orientation="Vertical" Grid.Column="0"
 HorizontalAlignment="Left"
 VerticalAlignment="Center">
 <TextBlock x:Name="ConnectionStatus" FontSize="20"
 TextWrapping="Wrap"
 Text="{Binding ConnectionStatus}" />
 <TextBlock x:Name="IPAddressDisplay" />
 </StackPanel>

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right"
 Grid.Column="1">
 <Button x:Name="ConnectToServer"
 Command="{Binding ConnectCommand}"
 Style="{StaticResource RemoteAppBarButtonStyle}"
 AutomationProperties.Name="Connect to server" />
 <Button x:Name="BeAServer"
 Command="{Binding ListenCommand}"
 Style="{StaticResource WorldAppBarButtonStyle}"
 AutomationProperties.Name="Be a server"/>

Listing 18.5 MainPage.xaml app bar

Figure 18.4 The app bar
buttons for the chat app

Connection
status

Buttons
on right

Connect app
bar button

Server app
bar button

433The user interface
 </StackPanel>
 </Grid>
 </AppBar>
</Page.BottomAppBar>

Each of the buttons uses command binding to communicate with the viewmodel.
Note also that the styles used are the ones you added to the resources section earlier.

18.2.4 Chat app content

Finally, we get to the action part of the app: the chat messages list and entry UI. For
the chat app, the content consists of the ListView containing the chat messages, a
TextBox to type the message, and a button to send the message. The markup to place
in the “content” placeholder on the page is shown here.

<Grid Margin="0,0,0,110">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="320" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Grid Grid.Column="0"
 Margin="10,10,10,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <ListView Grid.Row="0" Margin="0,0,0,10"
 ItemsSource="{Binding ChatMessages}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Margin="0,5,0,5">
 <TextBlock FontSize="20" TextWrapping="Wrap"
 Text="{Binding Message}" />
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>

 <Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <TextBox x:Name="ChatEntry" MaxLength="512"
 Text="{Binding NewMessage.Message, Mode=TwoWay}"
 TextWrapping="Wrap" FontSize="14"
 Grid.Column="0" Height="60"
 HorizontalAlignment="Stretch" />

Listing 18.6 MainPage.xaml content

List of chat
messages

Chat entry

434 CHAPTER 18 A chat app using sockets
 <Button Content="Send" Command="{Binding PostNewMessageCommand}"
 Margin="5,0,0,0" FontSize="12"
 VerticalAlignment="Stretch"
 Grid.Column="1" />

 </Grid>
 </Grid>
</Grid>

This listing shows how binding is used for the button commands. One interesting
note here: The MainViewModel code for the CanPostNewMessage function always
returns true. This is because there’s currently no easy way to update the command for
each letter typed in the TextBox. In other XAML-based UI, you’d set the Update-
SourceTrigger to PropertyChanged, but that’s not yet available in WinRT XAML. You
may have seen this in chapter 9 where you had to tab off the chat field in order to
enable the button (or click the button twice).

 The final bit of markup is for the visual states. As I mentioned earlier, you’re not
doing anything special to handle the different orientations and states, but the UI is
simple enough that it works as is. The following listing has the XAML to place in the
visual states section.

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ApplicationViewStates">
 <VisualState x:Name="FullScreenLandscape" />
 <VisualState x:Name="Filled" />
 <VisualState x:Name="FullScreenPortrait" />
 <VisualState x:Name="Snapped" />
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

The UI is in place, and most of the rest of the structure of the app is there. But the
MainViewModel is full of placeholders for things like connecting to a server and listen-
ing for new connections.

 Note that one thing you didn’t have to do is open up the code-behind. Everything
in this app (for at least the chat functionality) will be handled via binding to view-
model data items and commands.

 Nothing in the UI should be surprising to you, because it’s all stuff we’ve covered
in previous chapters, simply reapplied here. Binding of data and commands is an
especially important concept to learn. One of the commands will be to enable the app
as a socket server, so let’s cover that next.

18.3 Listening for connections
Sockets require that at least one endpoint be set up to listen for new connections
ahead of time. In a client/server-based solution, like the browser and a web server, the
server is what listens. Listening simply establishes the initial communication; after a

Listing 18.7 MainPage.xaml Visual States

Send
message

View states

435Listening for connections
connection is established between two endpoints, both sides participate equally in the
conversation. It’s this listening action that makes something a server.

 Figure 18.5 shows how sockets and the endpoints fit into the communications.
 Sockets are identified by a service name or, more commonly, a port number. Tak-

ing a web server, for example, the server-side socket is typically port 80 (or 443 for
secure sockets). The local socket is almost always dynamically allocated from the
higher range. So, to make your app a server, you need to listen on the specific socket
number, and clients need to know that’s the socket number to connect to.

 Because the communication between the two endpoints is simply the sockets with
whatever protocol or messaging you layer on top of it, the endpoints don’t need to be
built from the same source code. In fact, in the case of a web server, you have two com-
pletely different pieces of software with the browser on the client and the web server
on the server. I’ve also used sockets to control a .NET Micro Framework robot from a
Windows 8 app; again, completely different software. For this app, we’ll make the app
support both the client and server roles for a truly peer-to-peer experience. For any
given instance of the app on a machine, only one role is active at a time.

 Commercial chat apps typically involve a completely separate server to enable
tracking who are online or offline at any given time and what their addresses are. Cli-
ents connect to that server initially and may then have direct peer-to-peer connections
afterward or simply route everything through the server.

 In our app, the chat function will use TCP sockets to enable communication
between two Windows 8 PCs but in a purely peer-to-peer way: One PC will establish
itself as the server and the other will be able to connect to it. Figure 18.6 shows the
flow of the connection.

 For simplicity in this example, the IP address (or host name) for the server app will
be hardcoded. You’ll change that approach later in this chapter when you build out

Figure 18.5 Sockets are the inputs and outputs for each machine. Common protocols like HTTP
use sockets underneath. When using socket communication directly, you control the protocol.

436 CHAPTER 18 A chat app using sockets

L
on
the larger app. It’s also important to note that once the connection is established, the
peers are truly peers—the listener is no longer required because the communication
is handled by reading from and writing to streams. In fact, as you’ll see shortly, the IO
handling code on each machine is identical.

 The MainViewModel code to listen for a connection is shown here.

public async void Listen()
{
 _listener = new StreamSocketListener();
 _listener.ConnectionReceived += OnConnectionReceived;

 await _listener.BindServiceNameAsync(PortOrService);

 var hostNames = NetworkInformation.GetHostNames();

 ConnectionStatus = "Waiting for connection on: ";

 int i = 0;

Listing 18.8 MainViewModel additions for the socket server

Figure 18.6 Chat app connection flow. Step 5 happens logically simultaneously on each
machine. Once the connection is established, the peers are on equal footing. The remote port
on the server is a known port number. In most cases, you don’t control the local port number
from code. You can, but typically you’ll let the system dynamically allocate that. This is how
browser connections work, for example.

Create listener

Wire up
connection
handleristen

 port

437Listening for connections

c

C

re
 foreach (HostName name in hostNames)
 {
 if (i > 0)
 ConnectionStatus += " and ";

 ConnectionStatus += name.DisplayName;
 i++;
 }
}

void OnConnectionReceived(StreamSocketListener sender,
 StreamSocketListenerConnectionReceivedEventArgs args)
{
 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 ConnectionStatus = "Connection received from " +
 args.Socket.Information.RemoteHostName.DisplayName;

 _socket = args.Socket;

 SetUpInputHandling();
 });
}

This code establishes the running app as a socket server. It first creates a StreamSocket-
Listener instance. This class, through the BindServiceNameAsync function, is what
handles opening up a port and routing communication from that port to your app.
When a connection is received on that port, the ConnectionReceived event fires.

 The code in this method also uses the DispatcherHelper class, provided as part of
MVVM Light. The CheckBeginInvokeOnUI will dispatch the function to the UI if and
only if it isn’t already running on the UI thread (or, more correctly, has access to the
UI thread). If the code is running on the UI thread already, it’ll simply execute the
code. This method is helpful because the connection received event doesn’t fire on
the UI thread, but the code (setting the ConnectionStatus, for example) requires
access to that thread.

 Once inside the ConnectionReceived handler, all you really need is the socket.
The socket passed in is what provides your read/write communications pathway with
the remote machine. The code then calls SetUpInputHandling, the body of which is
shown next.

private DataWriter _writer;
private DataReader _reader;

private void SetUpInputHandling()
{
 _writer = new DataWriter(_socket.OutputStream);
 _reader = new DataReader(_socket.InputStream);

 var t = Task.Factory.StartNew(async () =>
 {

Listing 18.9 Handing incoming messages in the MainViewModel class

Display names
for this server

Execute on
UI thread

Display
onnection

source Cache open socket

Set up input
handling

Create output
writer

reate
input
ader

Start background
thread

438 CHAPTER 18 A chat app using sockets
 _reader.InputStreamOptions = InputStreamOptions.Partial;

 while (true)
 {
 var count = await _reader.LoadAsync(512);

 var message = _reader.ReadString(count);

 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 var chatMessage = new ChatMessage();
 chatMessage.Message = message;

 ChatMessages.Add(chatMessage);
 });
 }
 });
}

The SetUpInputHandling function first creates the reader and writer for the streams.
The OutputStream property is where you write data to send it to the other machine.
The InputStream is where messages received on this machine show up.

 The function is named the way it is because its primary responsibility is to spin up a
background thread that monitors in the incoming stream of data.

 The background thread, started using the StartNew method of the task factory, is
an endless loop that waits on the LoadAsync method of the DataReader class. The
DataReader (and DataWriter) class isn’t required for handling IO on the stream, but
it certainly makes the task a lot easier by providing high-level methods that under-
stand how to read fundamental types like int, string, double and more.

 Finally, in the appx manifest you’ll see the Internet Client capability set by default
(this was discussed in the previous chapter). For this solution to work, you’ll need to
also add the Internet (Client and Server) capability. For this app to work on a local
network, across machines, you’ll need to set the Private Networks (Client & Server)

Return with
partial read

Read up to 512
characters

Read
string

Add message
on UI thread

Figure 18.7 To use this app, you’ll need to request server permissions, not just client
permissions. Additionally, if this app is used on a private network (this is a domain
network or any network with sharing turned on), the Private Networks capability must
be selected. Removing the Internet (Client) capability is optional.

439Connecting to the server and sending data
capability. Although not necessary, I recommend unchecking the Internet Client
capability. Figure 18.7 shows the set of capabilities to request for this app.

 With these changes made to the manifest, the server peer is now set up and waiting
for connections from the client peer.

18.4 Connecting to the server and sending data
Connecting to an existing server is much simpler than waiting for a connection from a
client. Or, at least it’s quite a bit simpler in WinRT than it is in Silverlight. I recall the
client sockets code for connecting in Silverlight was pages long due primarily to the
callback-based async approach. I’m happy this model was greatly simplified for Win-
dows Store apps, because connecting via sockets is an essential task for so many games
and communications apps.

 Connecting to an existing server is an easy task, primarily handled with a single
line of code. Figure 18.8 shows the basics of the workflow, including the additional
steps to send data to the server peer.

 In this section we’ll look at how to open a socket connection to another machine.
Once the connection is established, you’ll learn how to use the DataWriter to write to
the socket’s input stream.

Figure 18.8 Data sending workflow. First the client connects to the server, and then (in the
case of TCP sockets) both sides create the read/write data streams. The client then writes
to the output stream, but the message isn’t sent until you call the StoreAsync method of
the DataWriter.

440 CHAPTER 18 A chat app using sockets

Co
to
18.4.1 Connecting to an endpoint

In socket communication, the two sides of the conversation are equals. Although it
may be convenient to refer to one as the client and the other as the server, they are
technically just endpoints. That said, someone has to be listening at first, and some-
one else has to connect to them. They aren’t equals until that connection is estab-
lished. Think of it like the telephone: Someone had to call, and someone had to be
listening for the phone to ring, but once the chatting starts, it doesn’t matter who
called whom (well, unless the call is an argument about how “you never call.” No, I’m
not bitter.)

 The next listing shows the connect code to place in the MainViewModel class.

public async void Connect()
{
 var hostName = new HostName(ServerAddress);

 _socket = new StreamSocket();

 await _socket.ConnectAsync(hostName, PortOrService);

 SetUpInputHandling();

 ConnectionStatus = "Connected to server at " + ServerAddress + ".";
}

This code first creates a HostName instance using the ServerAddress. HostName is a
flexible class that can use an IP address, local name, or any other DNS-recognized end-
point name.

 Once the HostName is created, the code creates a socket. This differs from the
server code in that the socket isn’t provided to the code in an event handler here;
instead you explicitly create the socket and then call ConnectAsync passing in the host
name and the port number.

 After creating the connection, the code calls the same SetUpInputHandling code
that the server peer code calls. At this point, the two machines are equals and will
communicate solely via the streams associated with the sockets.

18.4.2 Sending data

A chat app must be able to send new messages. This is accomplished by writing the
message data to the stream. How you structure your message at this point is critical,
because you need to know how to parse it on the receiving end, where the data is just
raw bytes.

 For our first example, we’ll keep it simple and post only the string message, as
shown in the following listing.

Listing 18.10 MainViewModel code to connect to an existing server

Create socket

nnect
server Set up input

handling

Se
m

441Refactoring for better structure and flexibility
 .

public async void PostNewMessage()
{
 ChatMessages.Add(NewMessage);

 _writer.WriteString(NewMessage.Message);

 await _writer.StoreAsync();

 CreateNewMessage();
}

This code first adds the message to the local collection. This is so you can see your
own messages on the message timeline. It then writes the message string to the socket
using the DataWriter created in the SetUpInputHandling method. Writing to the
stream isn’t enough to send the message, however. To do that, you need to call the
StoreAsync method of the DataWriter. That naming may seem a little odd, but the
DataWriter isn’t something specific to sockets—it could work with file streams where
the naming makes a bit more sense.

 Finally, the CreateNewMessage method creates a new message for the UI to bind to
by “newing” one up and assigning NewMessage to that new instance.

 Run the app on the two different machines. On the server machine, hit the “be a
server” button. On the client machine, hit the button to connect to the server. Now,
enter a message in either chat TextBox. You should see the message echoed locally
and (quite quickly) reflected on the screen on the other machine. You’ve just imple-
mented something that can be the basis for most any multiuser network app or multi-
player game. Sure, the networking graph gets more complex when you add additional
players, but the basics of communication are the same.

 The code does look a bit sloppy in the MainViewModel, though. It’s not my style to
shove everything in there, but it does make it simpler to learn. Now that you understand
how the code works, let’s clean it up. I simply couldn’t live with myself if we didn’t.

18.5 Refactoring for better structure and flexibility
So that you could focus on learning how to use sockets and not worry about architec-
ture, all of the socket communication in the app is currently inside the MainView-
Model. This made for the least amount of mental overhead when learning the
relatively complex topic of socket communications.

 As you know from previous chapters, I prefer to factor that type of “guts” code out
into separate services classes. This adds a little bit of complexity to the app architec-
ture but provides for a nice clean structure and the ability to expand our approach to
include other communications mechanisms. In our case, it’s going to provide the abil-
ity to support an additional type of communications transport layer, as well as addi-
tional messages we’ll use in this chapter and the next.

 In this new architecture, the viewmodel’s public interface will remain the same,
and so the UI will remain the same as well (with just one addition). The socket com-

Listing 18.11 MainViewModel code to post a new message

Add local
message

Add message
text to stream

nd the
essage

442 CHAPTER 18 A chat app using sockets
munication will be factored out into a separate service class. Figure 18.9 shows the
changed architecture.

 At this level, the architecture looks almost identical to our original. The real differ-
ence is the addition of a new class that contains all the sockets code originally in the
viewmodel.

 In order to support using other socket communications types, such as UDP, you’ll
also extract an interface that’s common across any communications mechanism.
Finally, you’ll add a few little details that weren’t in the initial version, such as provid-
ing the Windows username as part of the message information. This will require refac-
toring and updating the model objects and the viewmodel. To support displaying the
name, you’ll also make a small update to the main page XAML.

18.5.1 The updated ChatMessage class

The previous version of the ChatMessage class had only a single property: the message
text. You now want to support the name of the person who sent the message. The
name (and potentially other properties in the future) is encapsulated in the Player
class and surfaced through the Player property of the ChatMessage class, as shown in
the following listing.

using GalaSoft.MvvmLight;
using System;
using System.Collections.Generic;

Listing 18.12 The updated ChatMessage class with new Player property

Figure 18.9 The refactored app architecture. Except for the addition of player information we’ll cover
shortly, the public viewmodel interface remains the same, so no changes are required at the UI level.

443Refactoring for better structure and flexibility
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace SocketApp.Model
{
 public class ChatMessage : ObservableObject
 {
 private Player _player;
 public Player Player
 {
 get { return _player; }
 set { Set<Player>(() => Player, ref _player, value); }
 }

 private string _message;
 public string Message
 {
 get { return _message; }
 set { Set<string>(() => Message, ref _message, value); }
 }
 }
}

The Player class is, like the ChatMessage class, a class in the Model folder. Unlike
ChatMessage, Player doesn’t inherit from ObservableObject because you don’t
expect to make changes to the object after it is created. The next listing has the new
class source.

using System;
using System.Linq;

namespace SocketApp.Model
{
 public class Player
 {
 public string Name { get; set; }
 }
}

The ChatMessage class now exposes a Player property, which itself is a Player
instance with a Name property. In order to make use of this new property, you’ll need
to make a small update to the DataTemplate in the ListView on MainPage.xaml.
Replace the entire ListView with the markup from this listing.

<ListView Grid.Row="0" Margin="0,0,0,10"
 ItemsSource="{Binding ChatMessages}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Margin="0,5,0,5">

Listing 18.13 The new Player class in the Model folder

Listing 18.14 The updated chat message ListView

New Player
property

Player name

444 CHAPTER 18 A chat app using sockets
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock FontSize="24" Grid.Row="0" Margin="2"
 Foreground="{StaticResource HighlightBrush}"
 Text="{Binding Player.Name}"
 TextWrapping="Wrap" />
 <TextBlock FontSize="20" Grid.Row="1" Margin="20,0,0,10"
 Text="{Binding Message}" TextWrapping="Wrap" />
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

With that, the UI and model object changes are complete. The next step is to create
the interface for the messaging service.

18.5.2 The IMessageService interface

One of the goals of this refactor is to make it easier to swap out different networking
implementations. A classic approach for this is to define a common interface and use
only that interface from the code. Although you won’t use it here, using an interface
also opens up the ability to use Dependency Injection (DI) and locator patterns to
automatically wire up concrete types. You’ll take a simpler approach and create the
concrete type in the constructor of the viewmodel.

 First, add a new folder named Services in the root of your project. This folder will
contain the interface as well as the concrete classes that implement it. As was the case
in previous chapters, Services in this context means a class that provides functionality
to other classes in the app.

 Next, add a new interface named IMessageService. You could simply create a
class and then replace the contents, or you can use the Interface project template
shown in figure 18.10.

 The IMessageService interface exposes the functions that will be used by the
viewmodel, specifically, connection and disconnection, listening for new connections,

Two rows
in the grid

Player name
in top row

Figure 18.10
Into the Services
folder, add a new
interface named
IMessageService.

445Refactoring for better structure and flexibility
and sending a message, and then events for the various communications from the ser-
vice back to the viewmodel. The following listing has the interface source.

using SocketApp.Model;
using System;
using System.Collections.Generic;
using System.Linq;
using Windows.Networking;

namespace SocketApp.Services
{

 // this space intentionally left blank

 public interface IMessageService
 {
 void Connect(Player me, string remoteHostName);
 void Disconnect();
 void Listen(Player me);

 void SendChatMessage(ChatMessage message);

 IReadOnlyList<HostName> GetHostNames();

 event EventHandler<ChatMessageReceivedEventArgs>
 ChatMessageReceived;
 event EventHandler<ConnectionReceivedEventArgs> ConnectionReceived;
 event EventHandler<PlayerJoinedEventArgs> PlayerJoined;
 event EventHandler<PlayerExitedEventArgs> PlayerExited;
 }
}

In addition to the expected connection management functions, there are several new
event handlers. Two of the event handlers are there to tell you when players join and
when they exit. For this chapter, you’ll only work with player joining, because player
exiting will also require handling things like the app going into suspension—a topic
for another chapter.

 The event handlers require a number of supporting types, as shown in the following
listing. Place this source code in the same file in the spot designated in listing 18.15.

public enum WireMessageType
{
 ChatMessage,
 PlayerJoin,
 PlayerLeave
}

public class ChatMessageReceivedEventArgs : EventArgs
{
 public ChatMessage Message { get; private set; }

Listing 18.15 The IMessageService interface

Listing 18.16 Supporting types for the IMessageService interface

Supporting types
will go here

Open or close
connection

Events

Message type

446 CHAPTER 18 A chat app using sockets
 public ChatMessageReceivedEventArgs(ChatMessage message)
 {
 Message = message;
 }
}

public class ConnectionReceivedEventArgs : EventArgs
{
 public Player Player { get; private set; }
 public HostName HostName { get; private set; }

 public ConnectionReceivedEventArgs(Player player, HostName hostName)
 {
 Player = player;
 HostName = hostName;
 }
}

public class PlayerJoinedEventArgs : EventArgs
{
 public Player Player { get; private set; }

 public PlayerJoinedEventArgs(Player player)
 {
 Player = player;
 }
}

public class PlayerExitedEventArgs : EventArgs
{
 public Player Player { get; private set; }

 public PlayerExitedEventArgs(Player player)
 {
 Player = player;
 }
}

The WireMessageType enum is the interesting part of this listing. It’s used as the first
element of the message going over the wire (or over the air) to tell the code how the
rest of the bytes are to be processed. In this app, you’ll support three types of mes-
sages, the formats of which are shown in table 18.1.

Table 18.1 The three message types supported in the chat app

Type Description Format and byte positions

ChatMessage A free-form chat message sent
user to user

0-3: Int32 : WireMessageType ChatMessage
4-7: Int32 : String (not byte) length of chat message
8-?: string : The chat message

PlayerJoin Notification that a player has
joined the conversation

0-3: Int32 : WireMessageType PlayerJoin
4-7: Int32 : String (not byte) length of player name
8-?: string : The player’s name

PlayerLeave Notification that a player has
left the conversation (not used
in this chapter)

0-3: Int32 : WireMessageType PlayerLeave

Player joined

Player exited

447Refactoring for better structure and flexibility
Establishing a solid and flexible messaging pattern for your apps is an important step
to implementing communications. In the earlier version in this chapter, I sent only a
single string, the chat message, because that was really easy to do. You can see from
this table that adding additional message types or additional fields for existing mes-
sage types requires some real thought.

 Now that you understand the message structure, let’s implement the class that
makes it all happen: the TcpStreamMessageService class.

18.5.3 The TcpStreamMessageService class

The TcpStreamMessageService class is the meat of communications infrastructure in
this app. It is to this class that you refactored most of the functionality that was previ-
ously in the MainViewModel. In addition, because of the new message types and the
tracking of player identity, this version is more complex than what was in the Main-
ViewModel previously.

 Start with creating a new class named TcpStreamMessageService in the Services
folder. Replace the contents of that file with the following code.

using GalaSoft.MvvmLight.Threading;
using SocketApp.Model;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Windows.Networking;
using Windows.Networking.Connectivity;
using Windows.Networking.Sockets;
using Windows.Storage.Streams;

namespace SocketApp.Services
{
 public class TcpStreamMessageService : IMessageService
 {
 private class PlayerConnection
 {
 public Player LocalPlayer { get; set; }
 public Player RemotePlayer { get; set; }
 public DataWriter Writer { get; set; }
 public DataReader Reader { get; set; }
 public StreamSocket Socket { get; set; }
 }

 public event EventHandler<ChatMessageReceivedEventArgs>
 ChatMessageReceived;
 public event EventHandler<ConnectionReceivedEventArgs>
 ConnectionReceived;
 public event EventHandler<PlayerJoinedEventArgs> PlayerJoined;
 public event EventHandler<PlayerExitedEventArgs> PlayerExited;

Listing 18.17 Overall skeleton of the TcpStreamMessageService class

Implement
interface

Connection
information class

Events

448 CHAPTER 18 A chat app using sockets

as

Co
 private const string PortOrService = "5150";
 private const int MaxMessageSize = 1024;

 private StreamSocketListener _listener;
 private PlayerConnection _connection;

 public async void Connect(Player me, string remoteHostName){}
 private void CloseConnection() {}
 public void Disconnect() {}

 public async void Listen(Player me) {}

 private void ProcessIncomingMessages() { }

 private async void SendPlayerJoinMessage() {}
 private async void SendPlayerLeaveMessage() {}
 public async void SendChatMessage(ChatMessage message) {}

 public IReadOnlyList<HostName> GetHostNames()
 {
 return NetworkInformation.GetHostNames();
 }
 }
}

This class has all the functions to implement the IMessageService interface, as well as
some private functions to provide better code structure.

 To make it easier for you to expand on this class to support more players, I’ve
encapsulated the connection information into a class-scoped private class named
PlayerConnection. You keep only an instance of that private class, but to support mul-
tiple players, you may want to keep a dictionary or collection of connections.

OPENING AND CLOSING THE CONNECTION

As you suspected, there’s more to this class than what’s in this first listing, starting with
the connection management code shown in the next listing. Add this to the same
TcpStreamMessageService class.

public async void Connect(Player me, string remoteHostName)
{
 var hostName = new HostName(remoteHostName);

 var pc = new PlayerConnection();
 pc.Socket = new StreamSocket();

 pc.LocalPlayer = me;
 pc.RemotePlayer = null;

 await pc.Socket.ConnectAsync(hostName, PortOrService);

 pc.Reader = new DataReader(pc.Socket.InputStream);
 pc.Writer = new DataWriter(pc.Socket.OutputStream);

Listing 18.18 Connection management

Connection
information

Connection
management

Listen
server

Parse and process
messages

Send
messages

Set Player
information

nnect

Create
readers/writers

449Refactoring for better structure and flexibility
 _connection = pc;

 ProcessIncomingMessages();

 SendPlayerJoinMessage();
}

private void CloseConnection()
{
 if (_connection != null)
 {
 if (_connection.Writer != null)
 _connection.Writer.Dispose();

 if (_connection.Reader != null)
 _connection.Reader.Dispose();

 if (_connection.Socket != null)
 _connection.Socket.Dispose();

 _connection.LocalPlayer = null;
 _connection.RemotePlayer = null;

 _connection = null;
 }
}

public void Disconnect()
{
 SendPlayerLeaveMessage();
 CloseConnection();
}

Note that this class doesn’t implement IDisposable. But because it’s keeping
instances of classes that do implement IDisposable, the containing class should as
well.

 The code to connect to an existing peer server is similar to what you had in the
original version. The main addition here is the sending of an introduction message to
the other machine.

LISTENING AS A SERVER

The server listening code is also very similar to the previous version, as shown in the
following listing.

public async void Listen(Player me)
{
 _listener = new StreamSocketListener();
 _listener.ConnectionReceived += (s, e) =>
 {

Listing 18.19 Listening as a server

Start read
thread

Send introduction
message

Close connection

Disconnect

Create listener

Wire up received
handler

450 CHAPTER 18 A chat app using sockets

intr
 var remoteHost = e.Socket.Information.RemoteHostName;

 var pc = new PlayerConnection();

 pc.Socket = e.Socket;
 pc.Reader = new DataReader(pc.Socket.InputStream);
 pc.Writer = new DataWriter(pc.Socket.OutputStream);
 pc.LocalPlayer = me;
 pc.RemotePlayer = null;

 _connection = pc;

 ProcessIncomingMessages();
 SendPlayerJoinMessage();
 };
 await _listener.BindServiceNameAsync(PortOrService);
}

Rather than have a separate ConnectionReceived event handler as you did in the first
version, you put the event handler into an inline lambda expression inside the Listen
method. Functionally it’s almost identical to the original version, with the same addi-
tion of sending an introduction message.

SENDING MESSAGES

So, what about that introduction message? This is where you start seeing some new
features in this implementation. The next listing includes the functions to send all the
supported message types.

private async void SendPlayerJoinMessage()
{
 if (_connection.Writer != null)
 {
 string playerName = "(unknown)";
 if (_connection.LocalPlayer != null)
 playerName = _connection.LocalPlayer.Name;

 _connection.Writer.WriteInt32((Int32)WireMessageType.PlayerJoin);
 _connection.Writer.WriteInt32((Int32)playerName.Length);
 _connection.Writer.WriteString(playerName);

 await _connection.Writer.StoreAsync();
 }
}

private async void SendPlayerLeaveMessage()
{
 if (_connection.Writer != null)
 {
 _connection.Writer.WriteInt32((Int32)WireMessageType.PlayerLeave);

 await _connection.Writer.StoreAsync();
 }
}

Listing 18.20 Sending messages

Create
reader/writer

Start read
thread

Send
oduction
message

Listen on port

Send introduction
message

Send goodbye
message

451Refactoring for better structure and flexibility
public async void SendChatMessage(ChatMessage message)
{
 if (_connection.Writer != null)
 {
 _connection.Writer.WriteInt32((Int32)WireMessageType.ChatMessage);
 _connection.Writer.WriteInt32(message.Message.Length);
 _connection.Writer.WriteString(message.Message);

 await _connection.Writer.StoreAsync();
 }
}

Any message that includes a string (or other variable-length data) must also send a
count along with the data. This is so the receiving code can properly parse the con-
tents of the message. You could also use C-style string terminators (\0 or 0x00), but I
prefer Pascal-style count prefixes (also used by COM and .NET binary serialization).
Figure 18.11 shows a comparison of the two string styles.

 I went with the Pascal-style approach. Neither is perfect, and each has its own secu-
rity concerns, especially when it comes to denial-of-service attacks. For example, a
missing terminator in a C-style string can be a mess, while an erroneous high length in
a Pascal-style string can cause your app to wait forever. The introduction message is
important because it’s what the endpoints use to share the name of the person con-
necting. This is done a single time instead of with each message in order to cut down
on the amount of data sent across the wire. You could easily extend this to send the
bytes of their profile image along with the name, something you definitely wouldn’t
want to send with every message.

 You can now see why the DataWriter can be such a huge help. Instead of having to
break types down into arrays of bytes, the writer can natively write strings as well as
integer types and many others. This makes the code quite a bit simpler to write and
understand.

TIP Whenever possible, using the DataWriter instead of working with the
streams directly will save you a lot of code and time. The DataWriter (and
related DataReader) include methods for writing and reading common types
of data without requiring you to worry about the individual bytes the data
breaks down into.

Send a chat
message

Figure 18.11
The two string styles you
may want to consider for
your communications.

452 CHAPTER 18 A chat app using sockets

m

Other than the additional fields for the length and message type, the process to write
and send a message is identical to what you had in the original version: write the data,
and then call StoreAsync.

PROCESSING MESSAGES

Because of the new message formats, however, reading the messages is more involved.
The next listing includes the code for ProcessIncomingMessages, which handles all
that ugliness.

private void ProcessIncomingMessages()
{
 var t = Task.Factory.StartNew(async () =>
 {
 _connection.Reader.InputStreamOptions =
 InputStreamOptions.Partial;

 while (true)
 {
 var count = await _connection.Reader.LoadAsync(MaxMessageSize);

 var messageType = (WireMessageType)_connection.Reader.ReadInt32();

 switch (messageType)
 {
 case WireMessageType.PlayerLeave:
 if (PlayerExited != null)
 PlayerExited(this, new
 PlayerExitedEventArgs(_connection.RemotePlayer));
 break;

 case WireMessageType.PlayerJoin:
 if (PlayerJoined != null)
 {
 var nameLength = _connection.Reader.ReadInt32();
 var name = _connection.Reader.ReadString((uint)nameLength);

 var remotePlayer = new Player();
 remotePlayer.Name = name;

 _connection.RemotePlayer = remotePlayer;

 PlayerJoined(this, new PlayerJoinedEventArgs(remotePlayer));
 }
 break;

 case WireMessageType.ChatMessage:
 var msgLength = _connection.Reader.ReadInt32();
 var text = _connection.Reader.ReadString((uint)msgLength);

 var msg = new ChatMessage();
 msg.Message = text;
 msg.Player = _connection.RemotePlayer;

Listing 18.21 Processing messages

Start background
thread

Return with
partial read

Read
data

Get
essage

type
Player left

Player joined

Chat message

453Refactoring for better structure and flexibility
 if (ChatMessageReceived != null)
 ChatMessageReceived(this, new
 ChatMessageReceivedEventArgs(msg));
 break;
 }
 }
 });
}

As in the previous version, this code spins up a background thread that reads from the
stream. The LoadAsync method is an async call but acts like a blocking call. The exe-
cution will halt at that line until there’s data to be read.

 The InputStreamOptions.Partial setting was used in the original version of this
code as well. Without this setting, the LoadAsync method will return only when it has
read MaxMessageSize bytes. You instead want it to return when it has read a complete
message, regardless of how small it is.

 The parsing is the reverse of the writing code. Note how the code reads the string
length (in the case of the “player joined” and “chat message” types) and then uses that
to tell the reader how many characters to read from the buffer and treat as the string
contents.

Because this class must communicate back with the MainViewModel, each of the blocks
of code raises an event. Note that because this is executing on a background thread,
the events will not be fired on the UI thread. This will be important to know when you
get to the MainViewModel code.

 Finally, you need to update the MainViewModel to use this new code. As you can
imagine, this will require quite a few changes, because you’ve essentially gutted it and
replaced all of its functionality with this new service.

Message framing

TCP streaming sockets operate on streams of data, not packets of data. Because
this is a chat app, where people have to type at a keyboard (or screen), the chances
of getting more than one message at once are minimal. The code I’ve provided here
treats it as though you’re working with packets of data, even though this isn’t tech-
nically correct.

But if you’re in a situation where you could potentially get a lot more than a single
message, you need to loop through all of the unconsumed buffer (using the Uncon-
sumedBufferLength property) and read as much as possible, potentially even waiting
on more bytes because of partial messages.

In short, with TCP streamed sockets, a single send does not necessarily result in a
single receive. TCP isn’t doing anything to preserve your message boundaries or
frames. You have to do that yourself.

How you go about doing this depends on the size and structure of your messages. I
had to do similar processing with MIDI serial communications in the .NET Micro Frame-
work, and trust me, it considerably complicates the parsing code.

454 CHAPTER 18 A chat app using sockets
18.5.4 Updated MainViewModel

The public interface (with the exception of the new Player information in the Chat-
Message) for the MainViewModel is the same as what you started with. But there are
enough small changes to the code to make me decide to simply provide you with the
full source code for the viewmodel, broken across several listings.

INITIAL STRUCTURE

The first of these listings contains the skeleton of the viewmodel as well as the con-
structor.

using GalaSoft.MvvmLight;
using GalaSoft.MvvmLight.Command;
using GalaSoft.MvvmLight.Threading;
using SocketApp.Model;
using SocketApp.Services;
using System;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Threading.Tasks;
using Windows.Networking;
using Windows.Networking.Connectivity;
using Windows.Networking.Sockets;
using Windows.Storage.Streams;
using Windows.System.UserProfile;

namespace SocketApp.ViewModel
{
 public class MainViewModel : ViewModelBase
 {
 private IMessageService _messageService;

 public MainViewModel()
 {
 _messageService = new TcpStreamMessageService();

 _messageService.ChatMessageReceived +=
 OnServiceChatMessageReceived;
 _messageService.ConnectionReceived += OnServiceConnectionReceived;
 _messageService.PlayerExited += OnServicePlayerExited;
 _messageService.PlayerJoined += OnServicePlayerJoined;

 ChatMessages = new ObservableCollection<ChatMessage>();
 ConnectionStatus = "Not connected.";
 ServerAddress = "pete-surface64";

 PostNewMessageCommand = new RelayCommand(
 () => PostNewMessage(),
 () => CanPostNewMessage());

 ListenCommand = new RelayCommand(
 () => Listen(),
 () => CanListen());

Listing 18.22 Overall MainViewModel structure

Service
variable

Create
service

New event
 handlers

455Refactoring for better structure and flexibility
 ConnectCommand = new RelayCommand(
 () => Connect(),
 () => CanConnect());

 InitializePlayer();
 CreateNewMessage();
 }

 private Player _player;
 public Player Player
 {
 get { return _player; }
 set { Set<Player>(() => Player, ref _player, value); }
 }

 private async void InitializePlayer()
 {
 _player = new Player();
 _player.Name = await UserInformation.GetDisplayNameAsync();
 }
 }
}

Notice how in the constructor you create a concrete instance of the TcpStream-
MessageService class but assign it to a variable of type IMessageService. By referring
only to the interface in code, you’ll need to change only this single line of code in the
constructor when it comes time to swap out socket implementations.

 The other interesting part of this listing is the code to get the username. The
UserInformation class has a number of async functions that you can use to get the
username, display name, the user’s image, and much more.

TIP The UserInformation class in the Windows.System.UserProfile
namespace contains information about the logged-in user. You can use this to
get the name, username, and Windows profile picture, among other things.

CONNECTING TO THE SERVER

The next listing has the new code to connect to an existing server. Because of the new
service class, the calls here are reduced to just a few lines of code.

private string _serverAddress;
public string ServerAddress
{
 get { return _serverAddress; }
 set { Set<string>(() => ServerAddress, ref _serverAddress, value); }
}

private string _connectionStatus;
public string ConnectionStatus
{
 get { return _connectionStatus; }
 set { Set<string>(() => ConnectionStatus, ref _connectionStatus, value);}
}

Listing 18.23 Connecting as a client

Initialize
player

Player

Get
Windows
username

456 CHAPTER 18 A chat app using sockets
public RelayCommand ConnectCommand { get; private set;}

public void Connect()
{
 _messageService.Connect(Player, ServerAddress);
 ConnectionStatus = "Connected to server at " + ServerAddress + ".";
}

public bool CanConnect()
{
 return true;
}

The Connect method no longer includes all the code to call out to the sockets func-
tions. Instead, it simply calls the Connect function of the message service.

LISTENING FOR CONNECTIONS

Listening for a new connection has been similarly pared down. Here’s the code.

public RelayCommand ListenCommand { get; private set; }

public void Listen()
{
 _messageService.Listen(Player);

 ConnectionStatus = "Waiting for connection on: ";

 int i = 0;

 foreach (HostName name in _messageService.GetHostNames())
 {
 if (i > 0)
 ConnectionStatus += " and ";

 ConnectionStatus += name.DisplayName;
 i++;
 }
}

public bool CanListen() { return true; }

SENDING CHAT MESSAGES

Next, you have the functionality to send chat messages, shown in the following listing.
Much of the viewmodel code around chat messages is there just to provide interaction
with the UI. The posting of the messages themselves happens in the message service.

public ObservableCollection<ChatMessage> ChatMessages { get; set; }

private ChatMessage _newMessage;
public ChatMessage NewMessage
{

Listing 18.24 Listening as a server

Listing 18.25 Sending chat messages

Connect
using
service

Listen using
service

457Refactoring for better structure and flexibility
 get { return _newMessage; }
 set { Set<ChatMessage>(() => NewMessage, ref _newMessage, value); }
}

public RelayCommand PostNewMessageCommand { get; private set; }

private void CreateNewMessage()
{
 if (NewMessage != null)
 NewMessage.PropertyChanged -= NewMessage_PropertyChanged;

 NewMessage = new ChatMessage();
 NewMessage.Player = Player;
 NewMessage.PropertyChanged += NewMessage_PropertyChanged;
}

void NewMessage_PropertyChanged(object sender, PropertyChangedEventArgs e)
{
 if (e.PropertyName == "Message")
 PostNewMessageCommand.RaiseCanExecuteChanged();
}

public async void PostNewMessage()
{
 ChatMessages.Add(NewMessage);
 _messageService.SendChatMessage(NewMessage);

 CreateNewMessage();
}

public bool CanPostNewMessage() { return true; }

EVENT HANDLERS

Finally, you have the event handlers. Because the message service exposes a number of
events for communicating back to the viewmodel, this is an essential part of the com-
munication. Also, recall how I mentioned that the events aren’t coming back on the
UI thread: This is handled using the DispatcherHelper in each of the event handlers
shown in the next listing.

void OnServicePlayerJoined(object sender, PlayerJoinedEventArgs e)
{
 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 ConnectionStatus = "Just joined: " +
 e.Player.Name;
 });
}

void OnServicePlayerExited(object sender, PlayerExitedEventArgs e)
{
 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {

Listing 18.26 Event handlers

Assign
player info

Send message
using service

Player
joined

Player
exited

458 CHAPTER 18 A chat app using sockets
 ConnectionStatus = "Just exited: " +
 e.Player.Name;
 });
}

void OnServiceConnectionReceived(object sender,
 ConnectionReceivedEventArgs e)
{
 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 ConnectionStatus = "Connection received from " +
 e.HostName.DisplayName;
 });
}

void OnServiceChatMessageReceived(object sender,
 ChatMessageReceivedEventArgs e)
{
 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 ChatMessages.Add(e.Message);
 });
}

Each of the event handlers uses the DispatcherHelper to ensure the code has access
to the UI thread. These handlers are the only communication back to the viewmodel
from the message service, so there are handlers for each type of message. If you
extend the number of messages your service supports, you’ll want to provide appro-
priate events for those messages as well.

 Run the app now, just as you did before. When you connect, you’ll see the acknowl-
edgment of the player joining. Once you send a message, you’ll notice the additional
field in the new data template in the ListView.

 Those were nice little enhancements thrown in to spice it up a little. The real rea-
son for going through the trouble to refactor and use interfaces is so you can try UDP
sockets with very little additional effort.

18.6 Trying out UDP sockets
So far, you’ve used TCP streaming sockets in this app. Streaming sockets are appropri-
ate for many tasks, but they aren’t the absolute lightest weight approach. TCP sockets
have additional overhead (both in time and in bytes transferred) for guaranteeing
delivery and ordering of messages. In some cases, especially a game sending many
real-time updates, it’s more critical to be light and fast than it is to worry about getting
every single message across the wire.

 For those times when you want something a little faster and a little lighter, you
have User Datagram Protocol (UDP). UDP is a transport layer protocol like TCP. But
unlike TCP, there’s no guarantee of delivery or message ordering. If you consider what
that means, you can see where something like an audio stream might be better trans-
ported over TCP, whereas something like a heartbeat signal or your location in a game
at that second might be better transported over UDP. Those aren’t hard-and-fast rules,

New connection

New chat
message

459Trying out UDP sockets
of course. Most audio- and video-streaming protocols build over UDP with all the
ordering and other tasks handled higher up in the application layer.

 If you want more information on the differences between the two protocols, Wiki-
pedia has two great pages full of details of the headers, reliability, and much more:

■ http://en.wikipedia.org/wiki/User_Datagram_Protocol
■ http://en.wikipedia.org/wiki/Transmission_Control_Protocol

Choosing a transport protocol isn’t something you should take lightly if performance
and reliability of communications are important to you. But, with appropriate abstrac-
tion in your app, you can avoid locking yourself into any single protocol early in app
development.

 In this section, you’ll build a UDP version of the messaging service for this app.
You’ll make sure it has the same interface as the TCP version so that either protocol
may be easily swapped in or out.

18.6.1 Creating the UdpMessageService class

The UDP implementation of the message service will be in its own class file, just like
the TCP version. In the Services folder, add a new class file named UdpMessageSer-
vice, and paste into it the following code.

using GalaSoft.MvvmLight.Threading;
using SocketApp.Model;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Windows.Networking;
using Windows.Networking.Connectivity;
using Windows.Networking.Sockets;
using Windows.Storage.Streams;

namespace SocketApp.Services
{
 public class UdpMessageService : IMessageService
 {
 private class PlayerConnection
 {
 public Player LocalPlayer { get; set; }
 public Player RemotePlayer { get; set; }
 public DataWriter Writer { get; set; }
 public DatagramSocket Socket { get; set; }
 }

 public event EventHandler<ChatMessageReceivedEventArgs>
 ChatMessageReceived;
 public event EventHandler<ConnectionReceivedEventArgs>
 ConnectionReceived;

Listing 18.27 The skeleton for the UdpMessageService class

Note no
DataReader

Identical to
TcpStreamMessage-
Service code

460 CHAPTER 18 A chat app using sockets
 public event EventHandler<PlayerJoinedEventArgs> PlayerJoined;
 public event EventHandler<PlayerExitedEventArgs> PlayerExited;

 private const string PortOrService = "5150";
 private const int MaxMessageSize = 1024;
 private PlayerConnection _connection;

 public async void Connect(Player me, string remoteHostName) {}
 private void CloseConnection() {}
 public void Disconnect() {}

 public async void Listen(Player me) {}

 private async void SendPlayerJoinMessage() {}
 private async void SendPlayerLeaveMessage() {}
 public async void SendChatMessage(ChatMessage message) {}
 public IReadOnlyList<HostName> GetHostNames() {}
 }
}

The SendPlayerJoinMessage, SendPlayerLeaveMessage, SendChatMessage, and
GetHostNames functions are all identical to those in the TcpStreamMessageService
class, so simply copy them over into this file.

 This version of the PlayerConnection private class also omits the DataReader
instance. You’ll see why shortly.

18.6.2 Listening for connections

Or, more correctly stated, “binding to a service.” The connectivity doesn’t work quite
the same way it did with TCP streaming sockets. For example, connections aren’t per-
sistent and aren’t two-way by default. Instead, each side must both connect and listen
if it wishes to communicate two-way.

public async void Listen(Player me)
{
 _connection = new PlayerConnection();

 BindLocalSocket();
}
private async void BindLocalSocket()
{
 _connection.Socket = new DatagramSocket();
 _connection.Socket.MessageReceived += OnSocketMessageReceived;
 await _connection.Socket.BindServiceNameAsync(PortOrService);
}

To listen for a connection, you need to create the DatagramSocket instance and then
wire up the MessageReceived event handler. There’s no polling loop as you had with
TCP, just a discrete message handler. Finally, you bind the socket using BindService-
NameAsync or one of the equivalent methods. Doing this establishes a socket you can
read from.

Listing 18.28 Listening for connections

Identical to
TcpStreamMessage-

Service code

Copy full from
TcpStreamMessage-
Service code

MessageReceived

Bind

461Trying out UDP sockets

Co
to r
18.6.3 Connecting to another machine

The biggest difference between UDP and the TCP code you built earlier is that UDP
doesn’t have the concept of a persistent connection established before sending data.
It just sends data to a specified endpoint. UDP is truly “fire and forget.” The Connect-
Async function is merely a convenience that handles binding behind the scenes. You
could simply bind the port and send messages or even get an output stream with the
specified endpoint and start writing.

 The following listing establishes the connection to the remote machine, mainly
by setting up the data writer and calling the ConnectAsync function to handle the
binding.

public async void Connect(Player me, string remoteHostName)
{
 _connection = new PlayerConnection();
 _connection.LocalPlayer = me;

 BindLocalSocket();

 ConnectToRemoteSocket(new HostName(remoteHostName), PortOrService);
}

private async void ConnectToRemoteSocket(HostName hostName,
 string portOrService)
{
 await _connection.Socket.ConnectAsync(hostName, portOrService);
 _connection.Writer = new DataWriter(_connection.Socket.OutputStream);

 SendPlayerJoinMessage();
}

private void CloseConnection()
{
 if (_connection != null)
 {
 if (_connection.Writer != null)
 _connection.Writer.Dispose();

 if (_connection.Socket != null)
 _connection.Socket.Dispose();

 _connection.LocalPlayer = null;
 _connection.RemotePlayer = null;

 _connection = null;
 }
}

public void Disconnect()
{
 SendPlayerLeaveMessage();

 CloseConnection();
}

Listing 18.29 Connecting to another machine

Required
to listen
for replies

nnect
emote

Set up
writer

Send introduction
message

Cleanup

Say “good-bye”
and clean up

462 CHAPTER 18 A chat app using sockets
This listing shows more of the two-way dance you need to do when using UDP sockets.
In order to be able to send messages, you need to connect. In order to be able to
receive messages, you need to bind.

18.6.4 Receiving and parsing messages

Receiving messages is done via an event handler. The event fires only when messages
are received. For that reason, there’s no need for a loop or the LoadAsync method you
used with TCP.

 The first part of listing 18.30 establishes a writeable connection to the remote
socket. This is required because you don’t know who is connecting to you up front,
and UDP sockets don’t offer the convenience of a negotiated connection and the
established read/write streams. Instead, if you want to talk to the person who con-
tacted you, you must connect to them.

async void OnSocketMessageReceived(DatagramSocket sender,
 DatagramSocketMessageReceivedEventArgs args)
{
 if (_connection.Writer == null)
 ConnectToRemoteSocket(args.RemoteAddress, args.RemotePort);

 var reader = args.GetDataReader();
 var messageType = (WireMessageType)reader.ReadInt32();

 switch (messageType)
 {
 case WireMessageType.PlayerLeave:
 if (PlayerExited != null)
 PlayerExited(this,
 new PlayerExitedEventArgs(_connection.RemotePlayer));
 break;

 case WireMessageType.PlayerJoin:
 if (PlayerJoined != null)
 {
 var nameLength = reader.ReadInt32();
 var name = reader.ReadString((uint)nameLength);

 var remotePlayer = new Player();
 remotePlayer.Name = name;

 _connection.RemotePlayer = remotePlayer;

 PlayerJoined(this, new PlayerJoinedEventArgs(remotePlayer));
 }
 break;

 case WireMessageType.ChatMessage:
 var msgLength = reader.ReadInt32();
 var text = reader.ReadString((uint)msgLength);

Listing 18.30 Receiving and parsing messages

Connect
back

463Trying out UDP sockets
 var msg = new ChatMessage();
 msg.Message = text;
 msg.Player = _connection.RemotePlayer;

 if (ChatMessageReceived != null)
 ChatMessageReceived(this, new ChatMessageReceivedEventArgs(msg));
 break; }
 }

The switch statement that parses the messages is almost identical to the TCP version,
except for having to use the args.GetDataReader method to get the data reader.
Other than that, the method is considerably cleaner because of the lack of looping
and data loading. When working with UDP sockets, there exists no persistent stream,
so the data reader is provided anew each time data is received.

 Finally, crack open the MainViewModel and change the constructor so it instanti-
ates the new class:

//_messageService = new TcpStreamMessageService();
_messageService = new UdpMessageService();

Everything else in the MainViewModel class stays the same. If you want to switch back
to TCP, simply change this one statement.

 If you run the app now, you should see approximately the same thing you saw with
the TCP version. My “introduction” message handling isn’t identical, but you should
be able to send messages back and forth without issue.

 For two-way communication, I personally find TCP sockets easier to work with. For
very quick one-way communication, however, it’s hard to beat UDP sockets. If you get
some good core patterns working with UDP, it can be quite efficient to work with. But
remember, if you want built-in reliability, you want TCP.

WebSockets

Windows Store apps can also use WebSockets. Despite the name, the protocol doesn’t
operate over HTTP; only the initial negotiation does. Communication with WebSockets
is done over commonly open ports, like port 80, so they are very firewall friendly.

There are two types of WebSockets available in WinRT: the MessageWebSocket and
the StreamWebSocket. The MessageWebSocket helps by handling message framing
for you but is otherwise conceptually similar to the UDP (Datagram) socket approach.
Similarly, the StreamWebSocket is conceptually similar to the TCP stream socket we
covered earlier.

You typically won’t use WebSockets for peer-to-peer communication, because the tech-
nology requires a web server for the initial handshake. Instead, you need to set up a
proper server (or find one) that’s running WebSocket services. For those reasons, I
don’t go into detail on them here.

For more information, see http://bit.ly/WinRTWebSockets.

464 CHAPTER 18 A chat app using sockets
18.7 Summary
Socket communication is something that many business developers never run across
in their own apps. But in the games, communications, and social network app worlds,
it’s extremely popular. Sockets provide low-level access without the overhead of a pro-
tocol such as HTTP. For that reason, sockets are lightweight and very fast, but for the
same reasons, they generally take more effort to use.

 In this chapter you built an MVVM app that used both TCP sockets and UDP sockets
to communicate between two Windows 8 machines. I was absolutely tickled the first
time I realized that a Windows 8 app can be a socket server. That’s unusual in a sand-
boxed environment but enables so many cool scenarios.

TCP sockets are good for reliable communication between two endpoints. I also
find them a bit easier to work with compared to UDP when you need to have bidirec-
tional communication. TCP will guarantee delivery and order of data, at the cost of
some additional frame overhead and potentially some speed loss.

UDP sockets are good when you want something extremely fast and don’t care if it
ever gets there. Where TCP is more like FedEx, UDP is more like throwing the package
in your cousin’s pickup truck and asking him to drop it off. Sure, it’ll probably work,
and yes, it was a lot cheaper (and maybe even faster), but reliability is definitely a
concern.

 In the next chapter, we’ll expand on the app developed here and update the UI so
it works more like a game. We’ll add in player graphics, and you’ll also learn a bit
about Blend and user controls.

A little UI work:
user controls and Blend
In the previous chapter, we created a chat app with the understanding that it would
be more game-like in subsequent chapters. The focus was on sockets networking in
that chapter, so it made sense not to include graphics and other game functionality.
But our app has a giant unused area to the right that’s just begging for us to fill it
with something cool.

 In this chapter, we’ll flesh out the game a bit more. Maybe “amusement” is a bet-
ter term, because this game has no actual gameplay, just movement of elements
onscreen in a multiplayer context. (Of course, that makes it better than half the
games I downloaded to my older Kindle Fire.)

This chapter covers
■ Creating a shape in Blend
■ Creating and using a UserControl
■ Creating dependency properties
■ Setting view states
465

466 CHAPTER 19 A little UI work: user controls and Blend
Figure 19.1 shows the app as it will appear at the end of this chapter, complete with
three copies of the little Asteroids-inspired ship.

 The player’s ship is a UserControl you’ll create. It won’t yet be wired up to the net-
work, but it will have the UI layer all figured out. First, you’ll modify the UI to add a
new play area to the right of the chat area. As part of that, you’ll also update the page
so it properly responds to orientation and view state changes. After that’s complete,
you’ll create a new space ship graphic and user control using Blend and Visual Studio
together. This will include information on techniques for binding the user control’s
UI properties to properties defined in the code-behind and also in the base control
class. Once you test the ship by manually placing an instance, or three, of it on the
play area, you’ll have wrapped up the major UI updates for this app.

19.1 Updated game UI
Our goal in the previous chapters was to get the UI in a state that worked well for the
chat demonstration. There was always a large empty area to the right, and the app
didn’t do anything with either area when it came to changing orientation and filled,
snapped, and full view states. We’ll address each of those items in this section.

 You’ll start by making a few important changes to the layout of MainPage.xaml.
These changes are required to support the page orientation and view states. Next,
you’ll create the play field area where the ships will go. You’ll wrap up this section with
the new visual states to handle the view states and orientation of the page.

19.1.1 Basic changes

In the spirit of refactoring code and markup as you progress through the chapters,
there are a few minor changes you need to make to the main page’s XAML UI. These
are to better support the different screen orientations and states, as well as to hold the
playing field. The first listing has the updated MainPage.xaml file, with only the

Figure 19.1
The app showing the
existing chat area, plus
the playing field
containing three ships.
The ships are hardcoded
in XAML for the moment
but are implemented as
user controls.

467Updated game UI
changes. Take note not only of what was added but, as you’ll see after the listing, what
was removed.

<common:LayoutAwarePage x:Class="SocketApp.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:common="using:SocketApp.Common"
 xmlns:ignore="http://www.ignore.com"
 mc:Ignorable="d ignore"
 DataContext="{Binding Main, Source={StaticResource Locator}}">

 <Page.Resources>
 ...
 </Page.Resources>

 <Page.BottomAppBar>
 ...
 </Page.BottomAppBar>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid Margin="0,0,0,110">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <!-- Chat Area -->
 <Grid Grid.Column="0"
 Width="300"
 x:Name="ChatArea"
 Margin="10,10,10,0">

 ...
 </Grid>

 <!-- Play Area -->

 </Grid>

 <!-- Visual States -->

 </Grid>
</common:LayoutAwarePage>

The leftmost column, which contains the chat area, has been changed from a fixed
size to Auto size. This will enable the column to be collapsed when the chat area is col-
lapsed from view. Note also that I removed the third column from the grid. Originally
I had intended to use this for navigation controls, but I’ve decided that direct manip-
ulation of items might be more interesting.

Listing 19.1 The updated MainPage.xaml

These stay
as they were

Now Auto
sized

Now fixed
sizedGrid now

named

468 CHAPTER 19 A little UI work: user controls and Blend
 With the column sized to Auto, the sizing had to be moved to the ChatArea Grid
(newly named but always present). This Grid has a width of 300 so that, with its mar-
gins, it fits within the space allowed a snapped view.

 One other very important difference between this listing and the version from the
previous chapter is the removal of the d:DesignWidth and d:DesignHeight proper-
ties from the page. These cause problems with the device pane and previewing of the
view states while in the designer. With them left in, changing to snapped or filled view
or changing orientation doesn’t update the rendering of the design surface in a use-
ful way.

19.1.2 Play field area

The play field area is a fixed-size canvas and grid pair contained within a Viewbox.
Why a Viewbox? A Viewbox performs pixel scaling of its contents (much like a Scale-
Transform) to fit the available space. This will enable you to keep the same logical
coordinate size for the game area across all machines. If the app enabled a panning
game UI with virtual game space, you’d want to eliminate the Viewbox to better take
advantage of screen real estate on larger displays.

 The next listing shows the play area markup to add to MainPage.xaml. Place this in
the area designated for the play area.

<Grid Grid.Column="1" x:Name="PlayArea"
 Margin="10,10,10,0">
 <Viewbox>
 <Grid Width="1024"
 Height="658">

 <Rectangle StrokeThickness="4"
 Stroke="{StaticResource AccentBrush}" />

 <Canvas x:Name="PlayField"
 Margin="2">
 </Canvas>
 </Grid>
 </Viewbox>
</Grid>

For the play field, you use a common technique of putting a Rectangle in the back-
ground of a Grid. You could also use a Border element and simply contain the Canvas
inside that. The Width and Height properties of the Grid are set to the natural size
that the Viewbox will use when calculating scaling. The size is set to fit within the full
view of a 1366 x 768 screen, with a 110 px margin at the bottom for the app bar.

 This version of the play area will work well for this chapter, but it’s not the final ver-
sion. When it comes time to add actual ship instances in the next chapter, the struc-
ture of this play area will need to change slightly.

Listing 19.2 Play area

Viewbox

Natural size

Border

Play field

469Updated game UI
19.1.3 Orientation and view states

Every app needs good support for different orientation and view states. So far, you’ve
lucked out in that the chat area just naturally fits well regardless of those settings.
Now, with the addition of new content, you need to provide proper visual states to
handle orientation and view state changes. Figure 19.2 shows what we’ll be aiming for
in this section.

 The next listing has the updated visual states for this app. Make the changes to the
existing visual states near the bottom of MainPage.xaml.

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ApplicationViewStates">

 <VisualState x:Name="FullScreenLandscape" />

 <VisualState x:Name="Filled">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="ChatArea"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Collapsed" />

Listing 19.3 Updated visual states

Figure 19.2 The app’s view states and orientations, showing the play field and the ship
shape you’ll eventually place into it.

Filled view

470 CHAPTER 19 A little UI work: user controls and Blend
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>

 <VisualState x:Name="FullScreenPortrait">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="ChatArea"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Collapsed" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Snapped">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="PlayArea"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Collapsed" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

As a result of these changes, the snapped view will show only the chat area, and both
the filled view and portrait orientation views will show only the playing field.

 With some more work, you could make it so the chat UI and other elements are all
nicely repositioned and resized while always being visible. This may require duplicates
of different controls (like using a GridView to display chat messages below the play
area when in portrait orientation), much as you’ve done in previous chapters. I’ll
leave making it that much more awesome to you.

 Now that you have a playing area, you need some players to place on it. Next, you’ll
design the space ship that represents the player.

19.2 Designing the ship UI
Each player in the game will be represented by a small space ship that looks a bit like
the classic Asteroids chevron-shaped ship. There are only two players in the game as
written (you and your opponent), but I’ve been designing the interface in such a way
as to allow multiple players should you decide to expand on what you’ve started in
this book.

 There are some tasks that Blend is simply better suited for when it comes to work-
ing with the UI. If you want to create complex animation storyboards, Blend is your
tool. If you want to edit control templates, again, Blend is the best choice. If you want
to work directly with shapes and paths as you do in this section, Blend is again an
excellent choice.

Portrait
orientation

Snapped
view

471Designing the ship UI
In this section, you’ll create a ship shape using Blend for Visual Studio. This ship will
be the visual component of the user control you’ll build alongside it. As part of this,
you’ll do a little work with binding to properties in code-behind, defining dependency
properties, and creating UserControl types. Because I haven’t previously spent any
meaningful time on Blend in this book, I’ll cover the visual design process in detail.

19.2.1 Creating the UserControl

You can create projects and project items in Blend, but I prefer to always start with
Visual Studio. That ensures the templates are what I expect them to be, and there
aren’t any surprises.

 First, create a new project folder named Controls. This will be the folder into
which the ship user control will be placed.

 Next, in the Controls folder, create a new UserControl named Ship.xaml, as
shown in figure 19.3.

 Once the Ship.xaml and Ship.xaml.cs files are in the project, right-click the Socket-
App project itself and select the Open in Blend menu option, as shown in figure

XAML text editor or design surface

I do almost all of my development work directly in Visual Studio, rarely using Blend. I
tend to like markup enough that I very rarely use even the built-in design surface in
Visual Studio.

That’s simply my personal coding style, not a comment on tooling. I got used to hand-
typing XAML during the Silverlight and WPF development lifecycles because I was al-
ways involved in programs where I got access to private bits early. Invariably, the run-
time bits and the designer/Blend bits weren’t in sync, so I had to enter the markup
as text. I’ve since carried that habit on to WinRT XAML.

Figure 19.3 Create the Ship user control using the User Control template in Visual Studio.

472 CHAPTER 19 A little UI work: user controls and Blend
19.4. Make sure all your files are saved before doing this because this will let you edit
everything from within Blend.

TIP Blend for Visual Studio is a free part of the Visual Studio 2012 tool suite.
If you don’t already have it installed, you can download it from http://
dev.windows.com.

If you’d rather not work in Blend, you can skip to the end of this section, where I show
the full XAML for the user control.

19.2.2 Creating the ship shape in Blend

With the project open in Blend, you’ll
start by creating a rectangle. Open
the Ship.xaml file in the designer and
then add a rectangle using the tool
shown in figure 19.5. If your shape
tool isn’t showing a rectangle (it may
show an ellipse or line), click and
hold the tool to show the flyout and
then select Rectangle from there.

 Draw the rectangle directly on the
design surface. Make it roughly half
the width and height. When you do
so, the Rectangle element will be
added to the main Grid of the User-
Control.

Figure 19.4 Open the project in Blend
to edit the ship’s shape.

Figure 19.5 The shape tool in Blend, showing the
Rectangle tool selected. If the Rectangle tool isn’t
already selected on your toolbar, expand the list of
shapes by left-clicking and holding down the shape
tool.

http://dev.windows.com
http://dev.windows.com

473Designing the ship UI
Next, convert the rectangle to a path. Do this by selecting the rectangle either on the
design surface or in the objects panel on the bottom left. Right-click it and then
choose Path > Convert to Path, as shown in figure 19.6.

 Converting the rectangle to a path does exactly what the name suggests: It elimi-
nates the Rectangle element and replaces it with a Path element made up of the same
four corner points.

 The reason for this conversion is that you want to change the shape into a triangle.
Starting with a rectangle just happens to be the easiest way to do this in Blend.

 To change it to a triangle, first select the path, and then choose the point selection
tool from the tool palette. This is the white pointer. Next, select the bottom-right cor-
ner point using this tool. Finally, with that point selected, hit the Delete key to remove
the point. The entire process is illustrated in in figure 19.7.

Figure 19.6
How to convert a
rectangle shape
into a path for
point editing

Figure 19.7 The steps required to easily turn a rectangle into a triangle. (If the rectangle
comes up with a white or otherwise nontransparent fill, you can change that using the
properties pane to the right. Either reset it or explicitly change to transparent.)

474 CHAPTER 19 A little UI work: user controls and Blend
Now, still using the point selection tool, move the points so they look more like an
isosceles triangle, as shown in figure 19.8.

 Next, select the pen tool from the toolbar and add a point in the center of the hor-
izontal line on the bottom of the triangle. Like the rectangle tool, the pen tool is
grouped with another tool: the pencil tool.

 Add the point by hovering over the line until the pen tool shows a small plus sign
(+). Figure 19.9 shows the new point added to the triangle.

Finally, go back to the point selection tool and drag up the
new bottom point so you end up with more of a chevron
shape. Figure 19.10 shows what you’re looking to create.

Figure 19.10 The final ship shape

Figure 19.8 Now it’s starting to look a little more like a space ship. Well, it does
if your judgment criteria are based on 1979 Asteroids.

Figure 19.9 Using the pen tool to add a new point to the bottom of the triangle

475Designing the ship UI
 Save the project in Blend. You’ve finished with Blend for
this chapter, so you can close the tool if you’d like. Go back to
the project in Visual Studio. If you left Visual Studio open
with the UserControl source loaded, you’ll likely be
prompted to reload changes to the Ship.xaml file. Choose
Yes at this prompt.

 At this point, you can hand-edit the XAML if you want. I’m
pretty uptight about fractional sizes and alignment and bet-
ter with text than a mouse, so I tweaked mine a bit, removed
the margin, and sized everything to fit. I also set the Design-
Width and DesignHeight for the UserControl, although
those only come into play in the editor. In the Visual Studio
editor, the ship now looks like figure 19.11.

 Finally, I resized it to make the overall shape much smaller and then changed the
stroke width to 2 pixels. The updated XAML for the UserControl is shown here.

<UserControl
 x:Class="SocketApp.Controls.Ship"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:SocketApp.Controls"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="30"
 d:DesignWidth="28">

 <Grid>
 <Path Data="M80,-13 L160,160 L80,104 L0,160 z"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Height="30" Width="28"
 Stretch="Fill"
 Stroke="Black"
 StrokeThickness="2"
 UseLayoutRounding="False"/>
 </Grid>
</UserControl>

That’s it for the main part of the player graphic. You’ll expand on this more in a bit by
setting colors and such, but first, I’ve always liked the look of the little IDs next to
shapes on systems like airport tower control systems. Let’s add a little of that here.

19.2.3 Adding a label

Another part of the player UI will be their name, attached to and floating along with
the ship. To do this, you’ll add a simple TextBlock to the control inside the main
Grid, under the Path. The next listing shows this snippet of markup.

Listing 19.4 The updated ship XAML with everything nicely aligned

Figure 19.11 The same
ship shape in Visual
Studio, after tweaking for
size and alignment

Path data

Scaled size
Stretch
to scale

476 CHAPTER 19 A little UI work: user controls and Blend

<TextBlock Text="Player Name"
 Foreground="Black"
 HorizontalAlignment="Left"
 VerticalAlignment="Bottom"
 Margin="-15,0,-15,-15"
 TextTrimming="WordEllipsis"
 FontSize="8" />

This label will now appear at the bottom left of the ship shape. If the font size is too
small for you, experiment with changing both the font size and the margins.

 I found Blend perfectly suited for the task of creating this shape, because few peo-
ple really want to edit paths in a text editor. This was a simple example, of course.
More complex graphics are better done in something like Adobe Illustrator and then
exported to XAML if you wish to retain their vectors.

 That wraps up the visuals for the player. The resulting shape is cool, it’s retro, and
it was really simple to make. Now you need to make it actually do something. For that,
you’ll build out properties on the user control.

19.3 Building out the ship user control properties
User controls are really easy to use in apps. They have the same overall structure and
model as a page but without the navigation overhead. Typically, one or more user con-
trols are placed on a page to encapsulate functionality that’s standalone on the page
or reusable across different pages.

 At some point, most every user control needs access to data of some sort. There
are two schools of thought when it comes to sharing data with UserControl-derived
controls:

■ Make the control aware of your model.
In this, the control may have a reference to a viewmodel or model objects and
do all of its work just like a page. In this way, a user control might natively know
how to work with a player or a person.

■ Make the control aware only of discrete properties.
This is the approach taken by control vendors and by the framework itself
(although they use a slightly different control model from a user control). In
this, the user control knows only about discrete properties such as a name or a
position.

There’s merit to each approach, depending on your app architecture and other con-
siderations. In this section, you’ll take the second approach and make the control
aware only of discrete properties. You’ll add support for rotation as well as for binding
the player name and color. Each of the properties you add to the user control will be a
dependency property defined in the code-behind and bound to from the user con-
trol’s markup.

Listing 19.5 The player name TextBlock to add after the Path in the markup

Extend beyond
bounds

Truncate
if too long

477Building out the ship user control properties
19.3.1 Enabling rotation

One thing the ship needs to be able to do is rotate. But you don’t want the text to
rotate with it. For that reason, the easiest thing to do is to make the rotation act only
on the Path, not on the UserControl as a whole. One excellent way to tackle this is to
define an Angle dependency property on the user control and allow it to be set by the
host of the control.

 A quick way to define the property is to use the built-in Visual Studio snippets for
dependency properties. These were introduced in order to define dependency prop-
erties for WPF 3.0 and above, so they’re contained in the NetFX30 folder, as shown in
figure 19.12. Following the instructions in this figure, create a dependency property
named Angle of type double in the code-behind of the Ship UserControl. Then cre-
ate a string dependency property named PlayerName.

 But if you don’t want to create the dependency properties manually, you can paste
in the code from the next listing.

public double Angle
{
 get { return (double)GetValue(AngleProperty); }
 set { SetValue(AngleProperty, value); }
}

Listing 19.6 Angle and PlayerName dependency properties in Ship UserControl

Figure 19.12 How to define a DependencyProperty using the Visual Studio tooling.
The first property is named Angle and is a double. The second is named PlayerName
and is a string. You can also type propdp into the code editor and hit the Tab key.

Angle property
wrapper

478 CHAPTER 19 A little UI work: user controls and Blend
public static readonly DependencyProperty AngleProperty =
 DependencyProperty.Register(
 "Angle", typeof(double),
 typeof(Ship), new PropertyMetadata(0.0));

public string PlayerName
{
 get { return (string)GetValue(PlayerNameProperty); }
 set { SetValue(PlayerNameProperty, value); }
}

public static readonly DependencyProperty PlayerNameProperty =
 DependencyProperty.Register(
 "PlayerName", typeof(string),
 typeof(Ship), new PropertyMetadata("(unknown)"));

Next, you need to add a RenderTransform to enable the Angle property to have an
impact on the UI. The following listing has the RotateTransform (a type of Render-
Transform) shown in the context of the full markup for the Ship UserControl.

<UserControl
 x:Class="SocketApp.Controls.Ship"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:SocketApp.Controls"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="30" d:DesignWidth="28">

 <Grid x:Name="LayoutRoot">
 <Path Data="M80,-13 L160,160 L80,104 L0,160 z"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Height="30" Width="28"
 RenderTransformOrigin="0.5,0.5"
 Stretch="Fill"
 Stroke="Black"
 StrokeThickness="2"
 UseLayoutRounding="False">
 <Path.RenderTransform>
 <RotateTransform Angle="{Binding Angle}" />
 </Path.RenderTransform>
 </Path>

 <TextBlock Text="{Binding PlayerName}"
 Foreground="Black"
 HorizontalAlignment="Left"
 VerticalAlignment="Bottom"
 Margin="-15,0,-15,-15"
 TextTrimming="WordEllipsis"
 FontSize="8" />
 </Grid>
</UserControl>

Listing 19.7 Binding to the Angle and PlayerName properties

Angle dependency
property

PlayerName
property wrapper

PlayerName
dependency
property

Transform origin
is center of shape

Angle binding

PlayerName
binding

479Building out the ship user control properties
This listing includes the render transform for rotation but also the binding statements
to wire the player name and angle to the code-behind dependency properties. To
make this binding work, you need to set the data context for the LayoutRoot to be the
control itself. Note that you can’t use RelativeSource Self binding because that
won’t allow the use of binding outside the control itself (for example, binding the
control’s PlayerName property to a property in the Player class). The next listing
shows the updated Ship control constructor.

public Ship()
{
 this.InitializeComponent();

 LayoutRoot.DataContext = this;
}

Note that the DataContext for the UserControl’s root element is set to the User-
Control itself. It’s important to note that this affects everything inside the root ele-
ment but allows the UserControl itself to have its own data context. Without this
distinction, data binding for a UserControl would never work correctly because the
UserControl couldn’t have an external data context.

 The data context here allows the binding system to find the Angle and PlayerName
properties in the code-behind.

19.3.2 Setting the color

Another thing I wanted to do is to allow each player to have their own color. Rather
than define a new dependency property to hold this value, you’ll use the Foreground
property already available for the UserControl type. In general, if there’s a standard
property that can be reasonably used for the property you need, you’re better off
using it rather than defining a new one.

 The next listing shows the changes to the markup to bind to the Foreground
property.

<Path Data="M80,-13 L160,160 L80,104 L0,160 z"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Height="30" Width="28"
 RenderTransformOrigin="0.5,0.5"
 Stretch="Fill"
 Stroke="{Binding Foreground}"
 StrokeThickness="2"
 UseLayoutRounding="False">
 <Path.RenderTransform>
 <RotateTransform Angle="{Binding Angle}" />
 </Path.RenderTransform>
</Path>

Listing 19.8 Updated constructor for the Ship control

Listing 19.9 Binding to the Foreground property of the UserControl

DataContext

Path stroke

480 CHAPTER 19 A little UI work: user controls and Blend
<TextBlock Text="{Binding PlayerName}"
 Foreground="{Binding Foreground}"
 HorizontalAlignment="Left"
 VerticalAlignment="Bottom"
 Margin="-15,0,-15,-15"
 TextTrimming="WordEllipsis"
 FontSize="8" />

The binding markup follows the same pattern as with the Angle and PlayerName, even
though you’re using a dependency property defined by the base class.

 This is the last bit of functionality you’ll add to the Ship UserControl. Other prop-
erties, such as its position, will be handled by using attached properties such as
Canvas.Left and Canvas.Top on the entire control.

19.3.3 Temporarily testing the Ship control

This chapter would be a bit of a downer if you didn’t get to have a ship visible on the
playing field at the end of it. Although you don’t yet have the code wired up to handle
real players, joined from the network, you can test the UI portion of the playing field
and ships by manually adding the Ship user control to the markup.

 The following listing shows the markup to place one ship control in the PlayField
canvas. Be sure to add the namespace to the MainPage opening tag at the top of the
page.

<common:LayoutAwarePage x:Class="SocketApp.MainPage"
...
 xmlns:controls="using:SocketApp.Controls"
...
>

...
 <controls:Ship Angle="120"
 PlayerName="Pete Brown"
 Canvas.Left="500"
 Canvas.Top="250"
 Foreground="Yellow" />
...

You can add as many Ship controls as you
want, each with different rotation angles,
positions, names, and foreground colors.
You can see in figure 19.13 that I added
three ships.

Figure 19.13 Three ships passing in the night
(zoomed-in view snagged from

the Visual Studio design surface)

Listing 19.10 Ship control to place inside the PlayField canvas

TextBlock
foreground

Define controls
namespace

Place ship inside
PlayField canvas

481Summary
 Because of the use of dependency properties and binding, the Angle and Player-
Name are easily used from XAML and can be updated from code, with the changes
immediately reflected in the presentation.

 Once you’ve completed testing by hardcoding the ships, remove them all so the
Canvas element contains no children. You’ll work on programmatically adding these
elements in the next chapter.

19.4 Summary
I’m a big fan of Asteroids and, luckily, their ship is super easy to draw using vector
graphics. The Asteroids game itself used vector graphics on a classic tube display—
there were no pixels in the game and no raster lines, so we’re following the lead from
the classic game.

 Designing this simple shape in Blend was really easy. You started with a square,
removed a corner to get a triangle, moved some points around and then added a final
point. If only all graphics design work were this easy! Blend made this easy because
Blend is geared toward exactly this type of work: lightweight graphics work, plus ani-
mation and design.

 By encapsulating the ship in a user control, you were able to keep its interface with
the outside world simple: just a few properties. The app’s main page and the Play-
Field container don’t need to know anything about how the Ship is implemented
internally. Having it in a user control also made it easy to add a few instances to the
page to test it all out.

 You’ve seen dependency properties before, but it’s always nice to both learn a dif-
ferent way to create them and to see a practical use of them in action. You defined
dependency properties for the PlayerName and the Angle. You also used an existing
dependency property for the foreground brush of the control.

 In the next chapter, you’ll update the model and services to support the UI work
you completed in this chapter.

Networking
player location
In the previous chapter you created the Ship user control and displayed it on the
screen. In this chapter you’ll expand on that work. The primary purpose of this
chapter is to show you how I filled out the glue code that makes the socket service
and player display from the previous chapters respond to the user input from the
next chapter. As part of this, you’ll learn some interesting techniques such as using
a bound ItemsControl to display the players on the playing field and spinning up
background threads to send test data across the wire.

 You’ll start by updating the Player model class. If you want to send meaningful
player information across the network, you’ll need more than just a name. Next,
you’ll create a collection of Players in the game and expose that via the viewmodel.
This collection will be maintained via network events and will be the source of data

This chapter covers
■ The updated Player model
■ Using an ItemsControl to display ships
■ Sending player updates across TCP
482

483Updating the Player model
for an ItemsControl in the UI. The ItemsControl is an interesting use of a UI ele-
ment because it won’t display a typical list of data but will instead render the ships
onscreen at the correct positions.

 Let’s start by expanding the Player model object.

20.1 Updating the Player model
The current Player class includes only the player’s name. To flesh out this game
demo, you’ll need to expand that to include location information as well as the color
assigned to the player’s ship.

 In this section, you’ll first create a new class that encapsulates the player’s location
and angle information. Then, you’ll expose an instance of that from the Player class,
alongside the property to control the ship’s color.

20.1.1 The PlayerLocation class

The Player class aggregates an instance of the
PlayerLocation class. This class describes the
position and orientation of the player’s ship.
The UI will bind to this information when posi-
tioning the ship. Of particular interest is the
Angle property. In the previous chapter, you saw
the Angle property in action in the Ship user
control. The Angle in the PlayerLocation class
is a double, which represents the full angle start-
ing at zero degrees, as shown in figure 20.1.

 Unlike the X and Y properties, which specify
the location of the top-left corner of the ship,
the render transform origin specifies that the
rotation will happen around the geometric cen-
ter of the shape. This is due to the render trans-
form origin setting in the Ship control.

 The PlayerLocation has three properties, as
shown here. Create a new class file in the Model
folder and replace the contents with this code.

using System;
using GalaSoft.MvvmLight;

namespace SocketApp.Model
{
 public class PlayerLocation : ObservableObject
 {

Listing 20.1 The PlayerLocation model class

Figure 20.1 The angle is the total angle
starting from zero. It can be greater than
360 degrees (370 is equivalent to 10), or
it can even be a negative number (-90 is
equivalent to +270). WinRT XAML will
figure out the correct render transform
angle regardless of the format.

484 CHAPTER 20 Networking player location
 private double _x;
 public double X
 {
 get { return _x; }
 set { Set<double>(() => X, ref _x, value); }
 }

 private double _y;
 public double Y
 {
 get { return _y; }
 set { Set<double>(() => Y, ref _y, value); }
 }

 private double _angle;
 public double Angle
 {
 get { return _angle; }
 set { Set<double>(() => Angle, ref _angle, value); }
 }
 }
}

These three properties will be bound to the Canvas.Left (X property), Canvas.Top (Y
property), and the Angle property of the Ship control.

20.1.2 The updated Player class

The changes to the Player class are small but important. First, you need to hold the
color for the ship assigned to this Player. To keep the binding simple, this property is
implemented as a SolidColorBrush. You could make this a straight Brush for more
flexibility or a simple platform-agnostic RGB value if you want slightly more complex
binding.

 The second change is the addition of the Location property. This property, of type
PlayerLocation, is how you’ll expose the player’s location. When looking at the list-
ing, note the property setter for the Location property. More details on that in a
moment.

 The next listing shows the updated Player model class, including the new Location
property.

using GalaSoft.MvvmLight;
using GalaSoft.MvvmLight.Threading;
using System;
using System.Linq;
using Windows.UI.Xaml.Media;

namespace SocketApp.Model
{

Listing 20.2 The updated Player model class

X (left)

Y (top)

Angle

485The collection of players
 public class Player : ObservableObject
 {
 private string _name;
 public string Name
 {
 get { return _name; }
 set { Set<string>(() => Name, ref _name, value); }
 }

 private SolidColorBrush _color;
 public SolidColorBrush Color
 {
 get { return _color; }
 set { Set<SolidColorBrush>(() => Color, ref _color, value); }
 }

 private PlayerLocation _location = new PlayerLocation();
 public PlayerLocation Location
 {
 get { return _location; }
 set
 {
 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 Set<PlayerLocation>(() => Location, ref _location, value);
 });
 }
 }
 }
}

When you expose the PlayerLocation instance from the Player class, you need to
take an extra step and check to see if you have access to the UI thread. Why? Because
this property is often set from a background thread, and this is the most convenient
place to make that check. Access to the UI thread is needed when setting properties
that raise property change notifications to UI elements. As in previous examples, you
use the DispatcherHelper from Laurent’s MVVM Light library.

 The changes to the Player class and the addition of the new PlayerLocation class
are all the changes you’ll make to the model objects. Together, these now have every-
thing you need to know about a player in the game.

20.2 The collection of players
The viewmodel is the interface between the UI and the model. In order to make the
players accessible to the UI, they must be exposed by the viewmodel in a collection.
You’ve learned previously that the most binder-friendly type of collection is the
ObservableCollection, so that’s what you’ll use here. The players in the viewmodel
will be 1:1 with the ships on the page.

Ship’s color

Location

486 CHAPTER 20 Networking player location
This relationship between the viewmodel players and the ships is shown in figure 20.2.
 You might think “ItemsControl for the UI…really?” (Bonus points if you made the

“really?” face when you thought that.) Yes, that’s exactly what I’ve done here. It just
goes to show the flexibility of the control model in XAML.

 In this section, you’ll first set up the Players collection and the code that initial-
izes the player instance. Then, you’ll update the UI to use an ItemsControl in an
unusual way: as the playing field. Before wiring up the viewmodel to the network ser-
vice, you’ll do a little testing to ensure the UI can properly reflect the contents of the
Players collection. We’ll wrap up this section with updated event handlers to add
players to and remove players from the collection.

20.2.1 Initializing the collection

The Players collection contains a list of all the players in the game. For you, this will
always be two players, but you could expand the game’s capabilities to support more
without requiring any changes to this collection or to the UI binding. The code to ini-
tialize the collection also creates the local Player instance for the person using this
instance of the app. This same code also provides the color for this player and later, all
other players.

Figure 20.2 The ItemsControl in the UI displays the ships by binding to the Players
collection in the viewmodel. Each ship in the UI has a corresponding player in the viewmodel.

487The collection of players
 The following listing contains the code to modify in MainViewModel.

private Random _random;

private Player _player;
public Player Player
{
 get { return _player; }
 set { Set<Player>(() => Player, ref _player, value); }
}

public ObservableCollection<Player> Players { get; set; }

private async void InitializePlayer()
{
 Players = new ObservableCollection<Player>();

 Player = new Player();
 Player.Name = await UserInformation.GetDisplayNameAsync();
 Player.Color = GetNextPlayerColor();

 Player.Location.X = _random.Next(300) + 150;
 Player.Location.Y = _random.Next(200) + 75;
 Player.Location.Angle = _random.Next(359);

 Players.Add(_player);
}

private List<Color> _colors = new List<Color>()
 { Colors.Red, Colors.Green, Colors.Blue,
 Colors.Yellow, Colors.White, Colors.Violet,
 Colors.Azure, Colors.CornflowerBlue,
 Colors.Cyan, Colors.DeepPink, Colors.LightGray};

private SolidColorBrush GetNextPlayerColor()
{
 Color c;

 if (_colors.Count > 0)
 {
 c = _colors[_random.Next(_colors.Count - 1)];
 _colors.Remove(c);
 }
 else
 {
 c = Colors.Wheat;
 }

 return new SolidColorBrush(c);
}

Listing 20.3 The player-related properties and functions in MainViewModel

Get player
name

Set
player
color Set random

location

Add player
to collection

Initialize
possible
colors

Pick random
color

Remove
that color

488 CHAPTER 20 Networking player location

I

This code creates the initial local player and assigns it both to the Player property
and to the first element in the Players collection. The Player property is for conve-
nience—you could simply use Players[0] in binding statements in your own app if
you prefer.

 The color management is another interesting part of this listing. I have a stock set
of colors from which the app can choose. I did this because random color generation,
without some decent algorithms, almost always generates muddy or pastel colors. To
ensure no two ships have the same color, the code removes “used” colors from the list.

 Note that this code won’t run without error because you haven’t yet initialized the
_random member variable. That will come shortly.

20.2.2 Displaying players with an ItemsControl

In the previous chapter, you manually added the Ship user control instances to the
Canvas on MainPage.xaml. You could perform the same action dynamically in the
code-behind, creating the user control instances and then adding them to the Canvas.
I decided to do something a little more interesting, however. In the next listing you
can see that I used an ItemsControl and bound it to the Players collection of the
MainViewModel. The DataTemplate for the ItemsControl displays the Ship instance,
binding its properties to those on the Player it’s bound to.

<!-- Play Area -->
<Grid Grid.Column="1"
 x:Name="PlayArea"
 Margin="10,10,10,0">
 <Viewbox>
 <Grid Width="1024" Height="658">
 <Rectangle StrokeThickness="4"
 Stroke="{StaticResource AccentBrush}" />

 <ItemsControl ItemsSource="{Binding Players}"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Margin="2">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <Canvas />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Canvas>
 <controls:Ship Angle="{Binding Location.Angle}"
 PlayerName="{Binding Name}"
 Canvas.Left="{Binding Location.X}"
 Canvas.Top="{Binding Location.Y}"
 Foreground="{Binding Color}"
 Width="28" Height="30" />

Listing 20.4 Updated playing field area in MainPage.xaml

ItemsControl

ItemsPanelTemplate

temTemplate

Ship

489The collection of players
 </Canvas>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
 </Grid>
 </Viewbox>
</Grid>

Back when I first started using Silverlight, I quickly discovered the versatility of the
ItemsControl. When I needed to display a number of items on the page but didn’t
necessarily want a list layout or selection capabilities, I would turn to it as my go-to
control. The ItemsControl in WinRT XAML is just as flexible and useful.

 The ItemsControl is the most basic list control, having no real display representa-
tion. It simply renders a number of items using the provided panel and item tem-
plates. By providing the Canvas as the ItemsPanelTemplate rather than a StackPanel,
you can use X/Y coordinates to position the items. This moves you out of the straight
stacked-list metaphor and into a free-form layout approach.

 Consider how you could use this technique in your own apps: Graphs and charts
come to mind as a quick example.

20.2.3 Testing the collection

Before you wire the Players collection to the network code, you’ll want to test to
ensure the user interface is properly displaying all of the players in the collection.
There are a number of ways to do this, but I find the easiest is to add a new method to
the MainViewModel.

 The following listing includes the new method that adds a number of random play-
ers to the collection.

public void TestAddingPlayers()
{
 for (int i = 0; i < 5; i++)
 {
 var p = new Player();
 p.Color = GetNextPlayerColor();

 p.Location.X = _random.Next(300) + 150;
 p.Location.Y = _random.Next(200) + 75;
 p.Location.Angle = _random.Next(359);
 p.Name = "Test Player " + i;

 Players.Add(p);
 }
}

When this code runs, you’ll have six players in the game: you and the five generated
players.

Listing 20.5 Testing adding players in MainViewModel

Generate
five players

Generate color

Set random
location

Add to
collection

490 CHAPTER 20 Networking player location
 The TestAddingPlayers method needs to be called from somewhere. One easy
location is as the last line of the MainViewModel constructor. The next listing has this
addition.

public MainViewModel()
{
 _random = new Random();

 _messageService = new TcpStreamMessageService();
 //_messageService = new UdpMessageService();

 ...

 InitializePlayer();
 CreateNewMessage();

 TestAddingPlayers();
}

At this point, you can run the app to test out the new functionality. You should see the
app with six ships in random locations, very similar to what you saw in the previous
chapter.

 Once you’ve verified that the collection is accurately represented in the UI, com-
ment out the TestAddingPlayers call in the constructor; you won’t need it beyond
this point, and it will be in the way. What you need to do now is wire up the collection
management to the events raised from the messaging service.

20.2.4 Wiring up the collection to service events

The Players collection works with the test data, so it now needs to be wired up to the
message service. Specifically, when a new player joins, they need to be added to the
collection. When a player exits, they need to be removed.

 The next listing includes the MainViewModel code for the OnServicePlayerJoined
and OnServicePlayerExited event handlers. These methods already exist in the class
but simply update the ConnectionStatus property.

void OnServicePlayerJoined(object sender, PlayerJoinedEventArgs e)
{
 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 var p = e.Player;
 p.Color = GetNextPlayerColor();
 Players.Add(e.Player);

 ConnectionStatus = "Just joined: " +
 e.Player.Name;
 });

Listing 20.6 Updated MainViewModel constructor

Listing 20.7 Adding and removing players based on network events

Initialize
_random

Make sure you’re using
the right service

Keep everything
else

Test adding
players

Add player

491Updating the TCP stream message service
 TestPositionUpdate();
}

void OnServicePlayerExited(object sender, PlayerExitedEventArgs e)
{
 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 Players.Remove(e.Player);

 ConnectionStatus = "Just exited: " +
 e.Player.Name;
 });
}

private void TestPositionUpdate() {}

That wraps up the Player-handling code in the UI. If you haven’t already, be sure to
comment out the call to TestAddingPlayers in the constructor.

 You have the event handlers set up to manage the viewmodel collection. Now you
need to update the TCP streaming message service to send and receive the player loca-
tion information.

20.3 Updating the TCP stream message service
The UI and viewmodel now know about player location. But the TCP streaming mes-
sage service is neither sending nor receiving this information as part of its data stream.
Without that, you’re dealing with only local changes, which makes for a pretty lame
network game.

 In this section, you’ll first define a new message type: PlayerLocation. As a part of
that, you’ll need to define a new event in the interface and the associated EventArgs
class to go with it. You’ll also need a method that sends updated player information to
the remote machine. All of this will require that you settle on a format for this data so
that you know how to read and write it. Finally, the function that processes all incoming
messages needs to be updated to be able to process this specific message type.

20.3.1 Updated message service interface

The IMessageService interface defines what functions and events are available on the
message services. To this interface, you need to add in the ability to report location. On
the sending side, this means a new method the viewmodel can call to update the loca-
tion. On the receiving side, it means a new event to report the remote player’s location.

 The next listing includes the updated interface, the WireMessageType it uses, and
the new EventArgs class required for the event.

public enum WireMessageType
{
 ChatMessage,
 PlayerJoin,

Listing 20.8 Updated IMessageService.cs entries

Remove player

Stub method

492 CHAPTER 20 Networking player location
 PlayerLeave,
 PlayerLocation
}

...

public class PlayerLocationUpdatedEventArgs : EventArgs
{
 public Player Player { get; private set; }

 public PlayerLocationUpdatedEventArgs(Player player)
 {
 Player = player;
 }
}

public interface IMessageService
{
 void Connect(Player me, string remoteHostName);
 void Disconnect();
 void Listen(Player me);

 void SendChatMessage(ChatMessage message);
 void SendLocationUpdate();

 IReadOnlyList<HostName> GetHostNames();

 event EventHandler<ChatMessageReceivedEventArgs> ChatMessageReceived;
 event EventHandler<ConnectionReceivedEventArgs> ConnectionReceived;
 event EventHandler<PlayerJoinedEventArgs> PlayerJoined;
 event EventHandler<PlayerExitedEventArgs> PlayerExited;

 event EventHandler<PlayerLocationUpdatedEventArgs>
 PlayerLocationUpdated;
}

The changes to the interface fol-
low the same patterns as the orig-
inal definition: Each message
requires an entry in the Wire-
MessageType enum and an event
to notify listeners when that mes-
sage is received. On the sending
side, the message requires a func-
tion to send the message.

 I’m not going to take the UDP
message service any further, so
rather than deal with the compile
errors that will come from this
updated service definition, I sim-
ply changed the UdpMessageService.cs
file’s properties so the build action is set
to None. You could also exclude it

PlayerLocation

New event args

New method

New event

Figure 20.3 Set the build action to None on the
UdpMessageService class because you’ll only
update the TcpMessageService class.

493Updating the TCP stream message service
from the project. Either way, this will keep the class from being included in the project’s
build. Figure 20.3 shows how to do this from the Solution Explorer.

20.3.2 Sending location information

The interface defines how the message services expose functionality to other classes.
In this case, you’re only using the TCP version, so the TcpStreamMessageService
needs to implement the new method and event defined in the interface.

 An easy way to synchronize the class with the interface is to right-click the interface
name in the class declaration, then choose Implement Interface > Implement Inter-
face. Figure 20.4 shows what this looks like.

This will generate the event declaration as well as a stub for the new SendLocation-
Update method. The event declaration is fine as is, but the SendLocationUpdate
method will need to be filled out. Similarly, you’ll need to make some changes to the
other send methods so they include the location information as part of their streams
of data. Following are the changes to the TcpStreamMessageService class.

private void WritePlayerLocation(DataWriter writer,
 PlayerLocation location)
{
 writer.WriteDouble(location.X);
 writer.WriteDouble(location.Y);
 writer.WriteDouble(location.Angle);
}

private void WritePascalStyleString(string s)
{
 if (s != null && s.Length > 0)
 {
 _connection.Writer.WriteInt32((Int32)s.Length);
 _connection.Writer.WriteString(s);
 }
 else
 {
 _connection.Writer.WriteInt32(0);
 }
}

Listing 20.9 Updated message-sending methods in the TCP service class

Figure 20.4
Implement the
interface to pull in
the missing event
and method
declarations.

Write location

Write a
Pascal-style string

494 CHAPTER 20 Networking player location
private async void SendPlayerJoinMessage()
{
 if (_connection.Writer != null)
 {
 string playerName = "(unknown)";
 if (_connection.LocalPlayer != null)
 playerName = _connection.LocalPlayer.Name;

 _connection.Writer.WriteInt32((Int32)WireMessageType.PlayerJoin);
 WritePascalStyleString(playerName);
 WritePlayerLocation(_connection.Writer,
 _connection.LocalPlayer.Location);

 await _connection.Writer.StoreAsync();
 }
}

private async void SendPlayerLeaveMessage()
{
 if (_connection.Writer != null)
 {
 _connection.Writer.WriteInt32((Int32)WireMessageType.PlayerLeave);

 await _connection.Writer.StoreAsync();
 }
}

public async void SendChatMessage(ChatMessage message)
{
 if (_connection.Writer != null)
 {
 _connection.Writer.WriteInt32((Int32)WireMessageType.ChatMessage);
 WritePascalStyleString(message.Message);
 WritePlayerLocation(_connection.Writer,
 _connection.LocalPlayer.Location);

 await _connection.Writer.StoreAsync();
 }
}

public async void SendLocationUpdate()
{
 if (_connection.Writer != null)
 {
 _connection.Writer.WriteInt32((Int32)WireMessageType.PlayerLocation);

 WritePlayerLocation(_connection.Writer,
 _connection.LocalPlayer.Location);
 await _connection.Writer.StoreAsync();
 }
}

All of the send methods are included in this listing. The only new method is Send-
LocationUpdate, but all except the SendPlayerLeaveMessage functions include
changes either to use the helper methods or to send location information as part of their
data stream.

Send player
join message

Send player leave
message (unchanged)

Send chat
message

New send
location message

495Updating the TCP stream message service
 This listing also includes two helper methods. The first WritePlayerLocation is a
reusable method that standardizes the format of play location data on the wire. It’s
used by most of the send methods. The second is the WritePascalStyleString
method. This method standardizes the format of strings on the wire by first writing
the length and then writing the message text.

20.3.3 Reading location information

Although you use only one of them for now, several messages contain the Player-
Location data. To make your code more robust, I moved into a separate function the
code to parse the player location information. The next listing includes the code to
add to the TcpStreamMessageService class.

private PlayerLocation ReadPlayerLocation(DataReader reader)
{
 var loc = new PlayerLocation();

 loc.X = reader.ReadDouble();
 loc.Y = reader.ReadDouble();
 loc.Angle = reader.ReadDouble();

 return loc;
}

This function is used by the ProcessIncomingMessages function. The Process-
IncomingMessages function is one of the most important functions in the TcpStream-
MessageService class. In the next listing, it’s been updated to handle the location
data and the new PlayerLocation message.

private void ProcessIncomingMessages()
{
 var t = Task.Factory.StartNew(async () =>
 {
 _connection.Reader.InputStreamOptions = InputStreamOptions.Partial;

 while (true)
 {
 var count = await _connection.Reader.LoadAsync(MaxMessageSize);

 var messageType = (WireMessageType)_connection.Reader.ReadInt32();

 switch (messageType)
 {
 case WireMessageType.PlayerLeave:
 if (PlayerExited != null)
 PlayerExited(this,
 new PlayerExitedEventArgs(_connection.RemotePlayer));
 break;

Listing 20.10 New function to read player location data

Listing 20.11 Updated ProcessIncomingMessages function

Read properties
from stream

496 CHAPTER 20 Networking player location
 case WireMessageType.PlayerJoin:
 if (PlayerJoined != null)
 {
 var nameLength = _connection.Reader.ReadInt32();
 var name = _connection.Reader.ReadString((uint)nameLength);
 var loc = ReadPlayerLocation(_connection.Reader);

 var remotePlayer = new Player();
 remotePlayer.Name = name;
 remotePlayer.Location = loc;

 _connection.RemotePlayer = remotePlayer;

 PlayerJoined(this, new PlayerJoinedEventArgs(remotePlayer));
 }
 break;

 case WireMessageType.ChatMessage:
 if (ChatMessageReceived != null)
 {
 var msgLength = _connection.Reader.ReadInt32();
 var text = _connection.Reader.ReadString((uint)msgLength);

 var msg = new ChatMessage();
 msg.Message = text;
 msg.Player = _connection.RemotePlayer;

 msg.Player.Location =
 ReadPlayerLocation(_connection.Reader);

 ChatMessageReceived(this,
 new ChatMessageReceivedEventArgs(msg));
 }
 break;

 case WireMessageType.PlayerLocation:
 var player = _connection.RemotePlayer;
 player.Location = ReadPlayerLocation(_connection.Reader);

 if (PlayerLocationUpdated != null)
 PlayerLocationUpdated(this,
 new PlayerLocationUpdatedEventArgs(player));
 break;
 }
 }
 });
}

As I mentioned earlier, all messages (except exit) now include the player location. In
the app for this book, you’re only interested in the one in PlayerLocation, although
the code does update it for each message. Updating with each message is a common
synchronization technique for apps that use sparse updating calls. That is, they update
only when major actions happen, such as when a shot is fired, a collision is detected,
or something similar.

New case

Read
player

location

497Testing everything
NOTE Just a reminder that the code in this section isn’t suitable for anything
with high volumes of data because it assumes one read equals one message.
Really robust message-processing code needs to account for incomplete mes-
sages and messages that come in more than one to a read.

The event raising is a convenience but isn’t actually required when it comes to updat-
ing the player’s location. Why is that? Because the Player instances in the TcpStream-
MessageService class happen to be the same instances used by the viewmodel and
bound to by the UI. Simply updating the properties from within the message service
propagates the changes all the way down to the UI.

 I’m not super happy about the coupling this imposes on the design, but it reduces
the amount of code required in these chapters and is a reasonable design for a small
game or sample app.

 With the changes in this section, the UI can now respond to the addition and
removal of players across the network. It will also respond to location changes sent
from the remote machine. This is a significant milestone for this app, because now
you’re sending more meaningful data than just the chat message. There’s real game
data going across the wire! Before we wrap up this chapter, you need an easy way to
test that everything is working.

20.4 Testing everything
In the next chapter, you’ll use keyboard, mouse, touch, and more to move the ships
around the screen. For now, you need another way to test. Rather than add buttons
on the screen or some other UI, you’ll do something a little more automated and
interesting.

 Going back to MainViewModel, you’ll test everything by adding a new function:
TestPositionUpdate. This was stubbed out earlier in this section, but now you’ll
finally make use of it. You may recall that this function is called once the app receives
notification that another player has joined.

 The next listing has the test code to add to the MainViewModel class.

public void TestPositionUpdate()
{
 var t = Task.Factory.StartNew(async () =>
 {
 for (int i = 0; i < 100; i++)
 {
 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 Player.Location.X += 3;
 Player.Location.Y += 3;
 Player.Location.Angle = i * 5;

 _messageService.SendLocationUpdate();
 });

Listing 20.12 Testing the position update over the network

Background
thread

Property changes
on UI thread

Property
changes

Send to other
machine

498 CHAPTER 20 Networking player location
 await Task.Delay(500);
 }
 });
}

If you run the app now, you’ll see that once you’ve connected to the other machine,
both players will begin to slowly move on the screen, rotating and moving at the same
time. If that’s what you see, congratulations! You’re ready to add humans into the game.

20.5 Summary
This chapter helped flesh out the code for the sample game app you’re building as
you near the end of this book. Although much of the content here was plumbing-
related work, you also learned a few new interesting techniques, like how to use an
ItemsControl to display arbitrary lists of data in a non-tabular format and how to use
background threads to interact with UI objects.

 You updated the Player class and introduced the new PlayerLocation class to
help build up the model for this app. These two classes are for the major bit of data
that you use both as a client and as a server, so getting them right was very important.

 By hanging certain properties off the PlayerLocation, such as X, Y, and Angle, you
were then able to use those in a data template in the ItemsControl in the UI. Other
properties, like the name and the color of the player’s ship, were exposed directly
from the Player class.

Smoothing out the movement animation

Although you can do a lot with it, XAML is not necessarily the best medium for frame-
based animation. For that game type, you’ll want to consider using C++ and DirectX—
you can still use XAML for much of the UI and even use C# combined with C++ for a
bit of both.

To get smoother animation in this app, you may want to consider starting Storyboard
instances when new location information is received. Set the duration to the location
reporting interval and the final values to those sent in the location information.

Of course, this will place your representation of the game behind by the amount of
network delay plus the location-reporting interval.

Another approach would be to send vector information rather than final coordinates.
For example, you could send location-reporting information that includes the current
location plus direction (angle) and velocity. The app could then interpolate to figure
out the location smoothly, again using Storyboards.

All of these are more than I’d want to tackle here, because I think you’ll get even more
mileage by incorporating a good physics library that understands things like acceler-
ation, deceleration, collision, and more. Those libraries often have their own way of
representing frame-based data, so you’d want to accommodate that when designing
your messages.

Delay
1/2 second

499Summary
 You then updated the TcpStreamMessageService to send and receive this new
player data so that both ends of the network conversation will stay in sync.

 The basic MVVM approach we’ve taken so far made it easy for you to test the UI at a
couple points throughout this work. You were able to test adding a number of players
to the screen and later were able to test updating the positions of two real players.

 As I mentioned in the chapter introduction, the main purpose for this chapter was
to provide all the in-between code necessary to bridge the gap between a simple TCP
sockets network implementation and a more complete game demo. In the next chap-
ter, you’ll add some interaction through touch, keyboard, mouse and more. It’ll really
feel like a game once you’re able to move things around.

Keyboards, mice, touch,
accelerometers, and gamepads
Prior to Windows 8, many tablets supported keyboard input only as an afterthought
and mouse or pen input as an anomaly. Similarly, most desktop computers weren’t
designed with touch input in mind. Each device had its preferred means of input
and essentially ignored the others. The apps on those platforms also reflected these
input choices.

 The WinRT and Windows Store side of Windows 8 has been built from the
ground up with the understanding that users will have multiple ways of interacting
with the system. We didn’t want to restrict tablets to touch or desktops to only
mouse. Instead, we understood that there’s a continuum of devices that span form
factors, and that the line between what is a tablet versus a notebook versus a desk-
top can sometimes be blurry. For example, when I set up the pre-keynote perfor-
mance at Build 2012, Jordan Rudess (keyboardist for Dream Theater and a

This chapter covers
■ Keyboard input
■ Touch, mouse, and pen input
■ Using the accelerometer
■ Integrating C++ to use an Xbox 360 controller
500

501
performance technology enthusiast) played his tablet app on a 27” touch screen all-in-
one computer.1 This was new territory for him and his developer and something he
found really opened up the possibilities of what he’d do with his apps. He also played
the same app on Microsoft Surface with Windows RT.

 While downstairs in building 92 on campus, Jordan played with a Sony VAIO Tap
20 all-in-one PC onto which I had side-loaded the development version of his perfor-
mance app Tachyon. This PC (figure 21.1) looks like a giant 20” tablet, is battery pow-
ered, but weighs more than most Ultrabooks. Sony intended it as a desktop that you
might use to watch movies or serve as a kitchen PC, but Jordan was interested in it for
its tablet-like performance qualities. For all you Harry Potter™ fans, I jokingly call it
Hagrid’s tablet.

 By making every device a PC, we’ve come down firmly on the side of choice of
input. In fact, every app developed for the Windows Store must support keyboard
input, touch input, and mouse input.

 In our app so far, we have a ship, and we have a means for transmitting its location
across the network, but we don’t yet have any way for a user to modify its location and
angle. It’s like we’ve built a car but left the steering wheel off until the end.

 In this chapter we’ll build the entire input mechanism for the app. First, we’ll gen-
eralize the input into a single interface. We’ll also build out the code in the viewmodel

1 You can see a video of his first impressions on my YouTube channel, www.youtube.com/user/Psychlist1972.

Figure 21.1 Jordan Rudess playing Wizdom
Music Tachyon on a Sony VAIO TAP 20 at
Build 2012. The TAP 20 is an all-in one PC
with a battery and a Bluetooth keyboard. Is
it a tablet? A PC? Both? Should it only
support one type of input? (Note: This is not
an endorsement of this specific PC.)

502 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
that polls this interface. From there, we’ll build our first input service: keyboard input.
As part of that, we’ll look at local versus global key handlers and the translation from
virtual keys from app commands.

 After the initial keyboard service, we’ll look at something that’s arguably the most
important input mechanism in Windows 8: pointers such as mice, touch, and stylus.
From there, we’ll move into another really cool type of input: the accelerometer sen-
sor. If you have a tablet or other device that supports tilt and rotation, this section will
finally give you an excuse to play with that new toy.

 We’ll wrap up this chapter with something really outside of the box: using an Xbox
360 controller for Windows. This will involve integrating C++ code and XInput from
DirectX but will result in a truly game-like control experience. That was one of my
favorite things to do when working on this chapter. I can’t tell you how gratifying it
was to set my Surface in front of me, plug in an Xbox controller, and move something
around the screen in an app I wrote.

21.1 Making input generic
Most games support multiple means of input. This was true going all the way back to
the old Commodore 64 games I used to play; those would almost always support both
keyboard and joystick input, because not everyone had access to a joystick. Even today,
games support multiple platforms, each with its own common input devices. Some
have touch screens; others have game pads with different layouts and numbers of but-
tons; some, like Kinect, even use gesture control. Of course, we also still have the
good-old keyboard on laptops, desktops, and sometimes on tablets and phones.

 When developing a game, most developers don’t special-case each and every input
device. Instead, they abstract the input devices away from the commands they repre-
sent. In that way, the app code doesn’t need to deal with the user pressing the A but-
ton on their controller or the spacebar on their keyboard—the app only knows the
user invoked the Jump command. We’ll do the same here, so that we can support key-
board, pointers, sensors, and more.

 In this section, you’ll put together the plumbing of the input “stack” for your
game. You won’t deal with specific input from any one device but will instead create
the generic handling that will enable you to acquire input from any device you decide
to incorporate. A core part of this is the IInputService interface, so let’s start there.

21.1.1 The IInputService interface

The IInputService defines the shape of an input service. The intent of the service is
to be used in a polling loop, not as a source of events, so it exposes properties for each
of the possible states of the input device. The expected use of this interface is shown
in figure 21.2.

http://bit.ly/TextAutomationPeerExample

503Making input generic

T

The code that defines the interface is shown in the first listing.

using SocketApp.Model;
using System;
using Windows.UI.Xaml.Controls;

namespace SocketApp.Services
{
 public interface IInputService
 {
 void Enable(Control hostControl);
 void Disable();

 void PrepareForReading(PlayerLocation currentLocation);

 bool IsMovingForward { get; set; }
 bool IsTurningClockwise { get; set; }
 bool IsTurningCounterClockwise { get; set; }
 }
}

The app will use the interface to find out what input devices are in what states and use
that information to reposition the ship. If you add more to the game, such as the

Listing 21.1 The IInputService interface

Figure 21.2 The IInputService flow when used from the viewmodel in our app

Setup

eardown
Poll or prepare

Properties

504 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
ability to shoot or move backward, for example, you’ll want to add properties like
IsFireButtonPressed or IsMovingBackward and then implement them for each
input device.

21.1.2 A little math help

The input devices tell you whether to
move the ship forward or turn it
(counter)clockwise. In order to realize
that movement, you need to write
code to calculate the new position of
the ship, given its current angle and
an arbitrary distance. If the ship only
supported horizontal and vertical
movement, the math to figure out the
next position would be very simple.
But because you can support moving
in any arbitrary direction, you need to
do a little trigonometry.

 Figure 21.3 shows what you’re given (the current location, angle, and distance off-
set) and what you need to calculate (the new location).

 I don’t know about you, but it has been many years since I learned SOH-CAH-TOA
in high school trigonometry class, so I had to rely on a little WIK-IPE-DIA (and even a
question I posted to math.stackexchange.com2) to remind me how to use these basic
trig functions.3 The next listing has the MathService class with a single Calculate-
NewLocation method that handles everything for you.

using SocketApp.Model;
using System;
using Windows.Foundation;

namespace SocketApp.Services
{
 static class MathService
 {
 public static PlayerLocation CalculateNewLocation(
 PlayerLocation currentLocation,
 double distance)
 {
 var loc = new PlayerLocation();

 loc.Angle = currentLocation.Angle % 360;

2 “Calculating an angle adjacent to hypotenuse given two points,” Mathematics Stack Exchange, Dec. 16, 2012,
http://bit.ly/PeteForgotMath.

3 The day Wikipedia blacked out its site to protest SOPA in the United States, the perceived IQ of people
answering questions on the internet dropped by a good 60 points.

Listing 21.2 The MathService class

Figure 21.3 Calculating the new location given the
angle and a distance

http://bit.ly/PeteForgotMath

505Making input generic

M
increm
 var theta = loc.Angle * Math.PI / 180.0;

 loc.X = currentLocation.X + distance * Math.Sin(theta);
 loc.Y = currentLocation.Y - distance * Math.Cos(theta);

 return loc;
 }
 }
}

The code in this method uses a little geometry and trigonometry to calculate the new
location. This method is sufficient for what you’ll need to support keyboard input.
You’ll expand on this method and this service later when we get into touch and the
calculation requirements become a bit more complex.

21.1.3 Wiring up the viewmodel

Because you’ve defined a common interface, you can write the viewmodel code with-
out yet having an actual input implementation.

 If you look back at figure 21.2, you’ll see that there’s a polling loop that will call the
input devices. This polling loop exists in the viewmodel. You don’t want a tight loop
running on the UI thread, so this loop runs on a background thread, with the updates
invoked on the UI thread using the DispatcherHelper. This invocation is a common
technique you’ve used in several other places in this app.

 To make the code easier to understand, I’ve separated out the single iteration
from the overall background loop and implemented it in a separate function. The fol-
lowing listing shows the code for a single iteration. Add this to the MainViewModel.

public List<IInputService> InputServices = new List<IInputService>();
private const double AngleIncrement = 3.0;
private const double MovementIncrement = 5.0;

private void PollAndHandleInputServices()
{
 bool locationChanged = false;

 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 foreach (IInputService input in InputServices)
 {
 input.PrepareForReading(Player.Location);

 if (input.IsMovingForward)
 {
 Player.Location = MathService.CalculateNewLocation(
 Player.Location, MovementIncrement);
 locationChanged = true;
 }

 if (input.IsTurningCounterClockwise)
 {

Listing 21.3 The IInputService in use in MainViewModel

Convert
to radians

Calc new
position

Angle increment
ove
ent

Invoke on UI

Prepare for polling

Forward

Use math
service

Counterclockwise
rotation

http://bit.ly/Win8XamlControlClass
http://bit.ly/Win8XamlControlClass

506 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
 Player.Location.Angle -= AngleIncrement;
 locationChanged = true;
 }

 if (input.IsTurningClockwise)
 {
 Player.Location.Angle += AngleIncrement;
 locationChanged = true;
 }
 }

 if (locationChanged)
 {
 _messageService.SendLocationUpdate();
 }
 });
}

The single iteration checks each input device in the collection named InputServices.
You’ll load up that collection later when you have concrete input device implementa-
tions.

 Once the polling has completed, the function checks to see if the location has
changed (via the locationChanged flag). If it has changed, the new location informa-
tion is sent across the wire to update the remote machine.

 As I mentioned, this all happens in a loop. That background loop code, also in
MainViewModel, is shown here.

private const int InputPollingDelayMilliseconds = 100;

private void StartBackgroundInputPolling()
{
 var t = Task.Factory.StartNew(async () =>
 {
 while (true)
 {
 PollAndHandleInputServices();

 await Task.Delay(InputPollingDelayMilliseconds);
 }
 });
}

Once started, the background input polling loops for the full lifetime of the view-
model, which in this case is the lifetime of the app. The Task.Delay call as used here
is the modern equivalent of the commonly used .NET Thread.Sleep function. Note
that Task.Delay is primarily intended to be used to delay the start of a task. To use it
as a sleep function, you must await it and provide no additional actions.

Listing 21.4 The viewmodel background loop to poll input

Clockwise
rotation

Send network
update

Spin up
background
thread

Poll

Sleep

507Keyboard input
 There are a number of places where this background loop could be started. I
decided to make it so that the UI didn’t respond to any movement input until there
were two players on the field. For this reason, the task spin-up happens in the On-
ServicePlayerJoined event handler—the handler that’s called when a second player
joins the game. The next listing shows the MainViewModel modification to support this.

void OnServicePlayerJoined(object sender, PlayerJoinedEventArgs e)
{
 DispatcherHelper.CheckBeginInvokeOnUI(() =>
 {
 var p = e.Player;
 p.Color = GetNextPlayerColor();

 Players.Add(e.Player);

 ConnectionStatus = "Just joined: " +
 e.Player.Name;
 });

 //TestPositionUpdate();
 StartBackgroundInputPolling();
}

Now, when a second player joins, the app will start polling for device input, updating
the local player’s position and also sending those changes across the wire. As written,
this code doesn’t scale beyond two players (the polling happens too often, for one
thing), but this is sufficient for your uses.

 By abstracting away the details and dealing with just an app-optimized interface,
you’ve made it easy to support any type of input device without changing the core app
code. The viewmodel deals only with the interface and its app-specific input state
properties. I know that interface-based development can be taken to painful
extremes—and often is—but this is one place where it makes complete sense and ben-
efits the architecture of the app.

 All you have in place at this point is plumbing. For this to work, you need a con-
crete implementation of IInputService. We’ll start with the easiest: keyboard input.

21.2 Keyboard input
The keyboard is one of the oldest human input devices for computers. About the only
things that predate it are punch cards and physical bit switches. Even in a world
increasingly dominated by touch and gesture control, the keyboard remains one of
the most important types of input.

 In our app, you’re going to use the keyboard to control movement and rotation, so
only a few keys will be needed, as shown in figure 21.4.

Listing 21.5 Starting background input polling when new player joins

Old test code,
commented out

New polling
task spin-up

http://bit.ly/XInputControllerGuide

508 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
You’ll start by creating the KeyboardInputService—a class that implements IInput-
Service. Next, you’ll write the key translation code, turning virtual keys into the infor-
mation required by the app. Finally, you’ll work to hook up keyboard events both on a
specific control and globally across the app.

21.2.1 The KeyboardInputService

The KeyboardInputService is the first test of our new IInputService interface. It
needs to take key input from the page and translate that into values that indicate the
turn direction (if any) and whether or not the ship should be moving forward.

 The following listing has the shell of the KeyboardInputService. Create this class
in the same Services folder as the IInputService interface.

using SocketApp.Model;
using System;
using System.Threading.Tasks;
using Windows.System;
using Windows.UI.Core;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Input;

namespace SocketApp.Services
{
 public class KeyboardInputService : IInputService
 {
 private Control _host;

Listing 21.6 Shell of the KeyboardInputService

Figure 21.4 The cursor
keys are the means of
keyboard control for this
app. Only three of the four
keys are used, because
we don’t support moving
backward. The up cursor
key moves forward, the
left cursor key turns
counterclockwise, and
the right cursor key turns
clockwise.

509Keyboard input
 public bool IsTurningCounterClockwise { get; set; }
 public bool IsTurningClockwise { get; set; }
 public bool IsMovingForward { get; set; }

 private bool _isGlobalKeyHook = false;

 private PlayerLocation _currentLocation;
 public void PrepareForReading(PlayerLocation currentLocation)
 {
 _currentLocation = currentLocation;
 }

 public void Enable(Control hostControl)
 {
 if (_host != null || _isGlobalKeyHook)
 Disable();

 if (hostControl != null)
 {
 _host = hostControl;

 _host.KeyDown += OnControlKeyDown;
 _host.KeyUp += OnControlKeyUp;
 }
 else
 {
 _isGlobalKeyHook = true;
 Window.Current.CoreWindow.KeyDown += OnCoreWindowKeyDown;
 Window.Current.CoreWindow.KeyUp += OnCoreWindowKeyUp;
 }
 }

 void OnCoreWindowKeyDown(CoreWindow sender, KeyEventArgs args) { }
 void OnCoreWindowKeyUp(CoreWindow sender, KeyEventArgs args) { }
 void OnControlKeyDown(object sender, KeyRoutedEventArgs e) { }
 void OnControlKeyUp(object sender, KeyRoutedEventArgs e) { }

 public void Disable()
 {
 if (_host != null)
 {
 _host.KeyDown -= OnControlKeyDown;
 _host.KeyUp -= OnControlKeyUp;
 _host = null;
 }
 else if (_isGlobalKeyHook)
 {
 Window.Current.CoreWindow.KeyDown -= OnCoreWindowKeyDown;
 Window.Current.CoreWindow.KeyUp -= OnCoreWindowKeyUp;
 _isGlobalKeyHook = false;
 }
 }
 }
}

Note the event wire-up. For our app, you’re going to use the core window event wire-
up so it doesn’t matter which control has focus; the core window is global to the app.

Hook local
key events

Hook global
key events

Unwire
event

handlers

510 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
But the Control class itself also supports keyboard events, so I’ve included support for
that as well.

NOTE Including global keyboard input as well as the chat text entry field on
the same screen is a recipe for problems. If you need global handling in your
own app, you may consider switching it on and off depending on whether the
text entry field has focus, especially if you’re using keys like the spacebar or
letter keys.

The event handlers are empty at the moment; you’ll complete those shortly. First, you
need to look at how to handle the keys that are given to you from those handlers. Both
events provide the key information in the form of a virtual key.

21.2.2 Virtual keys

A virtual key is a representation of a keyboard key that may exist on a physical keyboard
or an onscreen keyboard. It’s virtual because the key itself is mapped. Not only is the key
one that may not exist on a physical keyboard (like numeric keypad keys on most note-
books), but it may be a combination of keys. One such example is VirtualKeys.Shift,
which can represent either VirtualKeys.LeftShift or VirtualKeys.RightShift for
apps that don’t need to differentiate.

 For our app, you need to handle only the three cursor keys. The virtual keys for
these are Left, Right, and Up. You’ll use constants to represent these keys so that you
can easily change the key assignment. The next listing shows the key mapping.

private const VirtualKey KeyTurnCounterClockwise = VirtualKey.Left;
private const VirtualKey KeyTurnClockwise = VirtualKey.Right;
private const VirtualKey KeyMoveForward = VirtualKey.Up;

private void HandleVirtualKeyDown(VirtualKey key)
{
 switch (key)
 {
 case KeyTurnCounterClockwise:
 if (!IsTurningCounterClockwise)
 IsTurningCounterClockwise = true;
 break;

 case KeyTurnClockwise:
 if (!IsTurningClockwise)
 IsTurningClockwise = true;
 break;

 case KeyMoveForward:
 if (!IsMovingForward)
 IsMovingForward = true;
 break;
 }
}

Listing 21.7 Key processing

Recognized
keys

Handle
key down

511Keyboard input
private void HandleVirtualKeyUp(VirtualKey key)
{
 switch (key)
 {
 case KeyTurnCounterClockwise:
 if (IsTurningCounterClockwise)
 IsTurningCounterClockwise = false;
 break;

 case KeyTurnClockwise:
 if (IsTurningClockwise)
 IsTurningClockwise = false;
 break;

 case KeyMoveForward:
 if (IsMovingForward)
 IsMovingForward = false;
 break;
 }
}

This code checks the provided key value when the key is pressed (HandleVirtualKey-
Down) and when the key is released (HandleVirtualKeyUp). When the key is down, the
related movement property is set to true. When the key is up, the property is set to false.

 So now you know how the keys will be mapped, but you haven’t handled the imple-
mentation of the keyboard event handlers. In the first listing in this section, you wired
up the event handlers for either the control provided to the constructor or the global
key hook. The event signatures differ because one is a XAML app model event handler
(the control event) and the other is a core window event handler. The core window
event handler and the control event handler both supply virtual keys although the
property name is different.

 The following listing shows both the control and the core window event handler
implementations.

void OnCoreWindowKeyDown(CoreWindow sender, KeyEventArgs args)
{
 HandleVirtualKeyDown(args.VirtualKey);
}
void OnCoreWindowKeyUp(CoreWindow sender, KeyEventArgs args)
{
 HandleVirtualKeyUp(args.VirtualKey);
}

void OnControlKeyDown(object sender, KeyRoutedEventArgs e)
{
 HandleVirtualKeyDown(e.Key);
}

void OnControlKeyUp(object sender, KeyRoutedEventArgs e)
{
 HandleVirtualKeyUp(e.Key);
}

Listing 21.8 The keyboard event handlers in the KeyboardInputService class

Handle
key up

Global
key events

Local
key events

512 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads

Lo
ha

E

key
The event handlers for the local and global key hooks (remember, only one of them—
either local or global—is active at any given time) call the previously defined Handle-
VirtualKeyDown and HandleVirtualKeyUp methods to do the heavy lifting.

21.2.3 Adding from the code-behind

Finally, you need to create an instance of the KeyboardInputService and load it from
the code-behind of the MainPage.xaml.cs file. This isn’t the only place where this
could be done, but I felt this was a good location to handle input wire-up.

 The next listing shows the changes to the MainPage code-behind. Be sure to use
Alt-F10 or right-click and resolve (automatically add the correct using statements) for
the MainViewModel and KeyboardInputService types.

public MainPage()
{
 this.InitializeComponent();

 Loaded += MainPage_Loaded;
}

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 var vm = DataContext as MainViewModel;
 vm.InputServices.Clear();

 var keyInput = new KeyboardInputService();
 keyInput.Enable(null);

 vm.InputServices.Add(keyInput);
}

Invoking the onscreen keyboard

Text input controls automatically invoke the onscreen keyboard if no other keyboard
is available when the control is in focus.

Because you use keyboard input primarily as an alternative means of input versus
touch, it makes no sense to use the onscreen keyboard for this app, but it may make
sense in your own apps. For example, I’m working on yet another Commodore 64 em-
ulator, and I need to display the onscreen keyboard if no other keyboard is available. I
can’t use a TextBox to cleanly handle this, so I may need to display the onscreen key-
board (although a dedicated Commodore 64-style keyboard would be a better choice).

Code can’t arbitrarily display the onscreen keyboard. Instead, the keyboard is dis-
played because the currently focused control has an automation peer that supports
ITextProvider (and IValueProvider). The built-in text controls have automation
peers that implement these required interfaces.

An example of this may be seen in CustomControl2 in the Touch Keyboard Windows
SDK sample on MSDN at http://bit.ly/TextAutomationPeerExample.

Listing 21.9 MainPage.xaml.cs changes to load the KeyboardInputService

Wire up page
loaded handler

aded
ndler

Get viewmodel
instance

Create keyboard
input service

nable
global
board
hook

 Add to input
services

513Pointer input: mouse, touch, and pen
Play with the app a little and see how the keyboard responds. If you want the move-
ment to happen faster, you can adjust either the movement increments (make them
larger) or the polling interval (make it shorter). Keep in mind that the polling inter-
val controls how often network updates are sent, so that can overwhelm the network
stack if you have too tight of a loop, especially on Windows RT-based devices.

 Keyboard is the most basic of input types. For many games, however, we’d prefer to
use a mouse or touch.

21.3 Pointer input: mouse, touch, and pen
When you think of a tablet’s human interface mechanisms, probably the first one that
comes to mind is touch. Windows 8 offers a unified touch, mouse, and pen API known
as the Pointer API. You can expand on this with touch-specific gestures (we’re not
going to do that here), or you can treat all of these pointing devices as identical, as we
do in this section.

 Although touch, pen, and mouse all share the same pointer API, there are some
important differences. For example, touch gives you discrete touch points and doesn’t
otherwise track movement across the screen unless you’re using higher-order ges-
tures. The mouse, on the other hand, can track movement anywhere within the app.
Touch also doesn’t natively have a right-click feature. Because of these differences,
features such as displaying something on “hover” make sense for the mouse but not at
all for touch or pen input. For that reason, to fully support touch input, you need to
ensure that you’re not relying on hover states or right-click for critical functionality,
although there are equivalents for the latter (hold, touch and tap, and so on).

 In this section you’ll build out the pointer interface for the app. The interface will
allow the user to touch the screen or click the mouse to both turn the ship and move
it toward that point. This will require more complex math than what you’ve used pre-
viously, so we’ll start there.

21.3.1 Some more math

The most difficult part of this input
service will be the calculations
involved, because the APIs them-
selves are quite simple to use. Fig-
ure 21.5 shows what you’ll need to
calculate.

 If you click the mouse or touch
the pointer in a location counter-
clockwise from the current heading,
you’ll need to rotate left. You do the
opposite if you touch at a point
clockwise from the current heading.
You’ll also need to include move-
ment as part of that process.

Figure 21.5 An imaginary dividing line continues
through the ship both in front and in back. Touch points
clockwise from the front of this line produce positive
angles. Touch points counterclockwise from the front of
this line produce negative angles.

514 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
USING ATAN2

I struggled with a number of
ways of doing this, but in the
end a community member
came up with a dead-simple
solution. Here’s a tip: Never
ask what’s ultimately a pro-
gramming question on a math
board. Figure 21.6 shows why.

 Given the information
from the math.stackex-
change.com question, I did
some digging into the
System.Math.Atan2 func-
tion. I came up with a set of
sample points and then ran
the calculations. Figure 21.7
shows the sample data I
created.

Figure 21.7 Test data for trying out the Atan2 function. The
results aren’t perfect because of the way the angles are
measured (from the x-axis rather than the y-axis), but they can
be massaged to get what you want.

Figure 21.6 Often, knowing the right question to ask is the trick to getting the answer you
need. Either that or finding a helpful community member like @dotnetricardo who can read
your mind instead of your question.

515Pointer input: mouse, touch, and pen
 And here’s how I tested it out. I called System.Math.Atan2 directly from the com-
mand window in Visual Studio 2012 like this:

>? System.Math.Atan2(150-200, 250-200) * 180 / System.Math.PI + 90
45.0
>? System.Math.Atan2(100-200, 200-200) * 180 / System.Math.PI + 90
0.0
>? System.Math.Atan2(200-200, 300-200) * 180 / System.Math.PI + 90
90.0
>? System.Math.Atan2(300-200, 142-200) * 180 / System.Math.PI + 90
210.11373315098245
>? System.Math.Atan2(210-200, 100-200) * 180 / System.Math.PI + 90
264.28940686250036
>? System.Math.Atan2(174-200, 100-200) * 180 / System.Math.PI + 90
-75.425783801961273

The first entry is the ship heading, the subsequent entries are for touch points A, B, C,
D, and E. The form of the call is this:

Math.Atan2(touchY-shipY, touchX-shipX) * 180 / Math.PI + 90

The reason for the + 90 is because Atan2 calculates the angle based on the angle from
the x-axis with east being zero. For our transform, I need the angle from the y-axis
with north being zero. What I would think of as 80 degrees from the vertical is
returned by Atan2 as 10 degrees above the horizontal.

 Adding 90 degrees skews the results a little (notice the negative angle for the
upper-left quadrant), but you can work with that. Table 21.1 shows the results when
you subtract the ship’s angle from the touch point angle returned from Atan2.

If you assume that negative means counterclockwise and positive means clockwise,
there’s one result that doesn’t work out. Specifically, touch point D should be a coun-
terclockwise move. Similarly, if angle E were normalized to be 360 minus 75.4, or
284.6, rather than a negative value, you’d also get an incorrect result.

NORMALIZING THE RESULTS

The solution is to normalize the angles so that negative values are modified to their
positive 360-degree version. For example, a -45 degree angle turns into a positive 315

Table 21.1 The results of subtracting the ship’s 45-degree heading
 angle from the Atan2 touch angle result

Touch point angle Difference

A (0) -45

B (90) +45

C (210.1) +165.1

D (264.3) +219.3

E (-75.4) -120.4

516 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads

calcu

thr
degree angle. Then, anything over 180 degrees becomes a counterclockwise move,
and anything less than 180 degrees becomes a clockwise move (after taking into
account the threshold). Table 21.2 shows the final calculations for the test data.

Now that you understand the algorithm to make the choice between clockwise and
counterclockwise rotation, you can implement it in C#.

TRANSLATING INTO CODE

The hardest part of the algorithm was simply figuring it out. The code itself, once you
know the rules, is really simple. The next listing shows the implementation using a
new method added to the MathService class.

public static int GetAngleDirection(
 PlayerLocation shipLocation,
 Point touchPoint,
 double threshold)
{
 var deltaX = touchPoint.X - shipLocation.X;
 var deltaY = touchPoint.Y - shipLocation.Y;

 var shipAngle = shipLocation.Angle % 360;

 if (shipAngle < 0)
 shipAngle = 360 + shipAngle;

 var touchAngle = Math.Atan2(deltaY, deltaX) * 180 / Math.PI + 90;

 var difference = touchAngle - shipAngle;

 if (Math.Abs(difference) > threshold)
 {
 if (difference < 0)
 difference = 360 + difference;

 if (difference < 180)
 return 1;
 else

Table 21.2 The final shaping of the results

Touch point angle Difference Normalized difference > 180? Direction

A (0) -45 315 Yes -1

B (90) +45 45 No +1

C (210.1) +165.1 165.1 No +1

D (264.3) +219.3 219.3 Yes -1

E (-75.4) -120.4 239.6 Yes -1

Listing 21.10 New MathService method for calculating rotation direction

Normalize
ship angle

Atan2
lation

Difference

Check
eshold

Normalize
Atan2 result

Clockwise

517Pointer input: mouse, touch, and pen
 return -1;
 }
 else
 {
 return 0;
 }
}

This method implements the normalization and calculations described so far. Before
you use this method from the pointer service, you need to make one minor change
elsewhere in the project.

21.3.2 A minor modification to the ship user control

The location of the ship has, so far,
been measured from the top left of the
user control. That’s not perfect, but it
worked for everything up until now.
Now that you’re calculating angles
based on the ship’s location, that loca-
tion really needs to be in the center of
the ship.

 Luckily, this is a very easy fix. Sim-
ply crack open the Ship user control
and, to the Path statement, add the
following:

Margin="-14,-15"

Adding this Margin property offsets
the ship by 50% of its width (28) and
height (30), as shown in the Visual Stu-
dio designer screen shot in figure 21.8.

 With that minor change in place, all ship movement will now be relative to the cen-
ter of the ship. That’s exactly what you want.

21.3.3 The PointerInputService class

The PointerInputService class follows the same general pattern as the keyboard input
service class. It implements the same interface and also uses events to track activity.
Event wire-up happens in the Enable method and tear-down in the Disable method.

 The next listing has the full class. Create this class in the Services folder alongside
the interface and the KeyboardInputService class.

using SocketApp.Model;
using System;
using System.Threading.Tasks;

Listing 21.11 PointerInputService

Counterclockwise

Straight

Figure 21.8 Using negative margins, I offset the
ship shape to center it at the origin of the user
control. This will improve the accuracy of the
movement based on the angle calculations.

518 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
using Windows.Foundation;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Input;

namespace SocketApp.Services
{
 public class PointerInputService : IInputService
 {
 public bool IsTurningCounterClockwise { get; set; }
 public bool IsTurningClockwise { get; set; }
 public bool IsMovingForward { get; set; }

 private PlayerLocation _currentLocation;
 public void PrepareForReading(PlayerLocation currentLocation)
 {
 _currentLocation = currentLocation;
 }

 private Control _host;
 public void Enable(Control hostControl)
 {
 _host = hostControl;

 if (_host != null)
 {
 _host.PointerPressed += OnPointerPressed;
 _host.PointerReleased += OnPointerReleased;
 _host.PointerMoved += OnPointerMoved;
 }
 }

 private bool _isPointerPressed = false;

 void OnPointerPressed(object sender, PointerRoutedEventArgs e)
 {
 _isPointerPressed = true;
 UpdateState(e.GetCurrentPoint(_host).Position);
 }

 void OnPointerReleased(object sender, PointerRoutedEventArgs e)
 {
 _isPointerPressed = false;

 UpdateState(e.GetCurrentPoint(_host).Position);
 }

 void OnPointerMoved(object sender, PointerRoutedEventArgs e)
 {
 if (_isPointerPressed)
 UpdateState(e.GetCurrentPoint(_host).Position);
 }

 private const double TurnThreshold = 10;

 private void UpdateState(Point point)
 {

Wire up
events

Pointer
pressed

Get pointer
position

Pointer
released

Pointer
moved

 “Move forward”
angle zone

519Pointer input: mouse, touch, and pen
 IsTurningClockwise = false;
 IsTurningCounterClockwise = false;
 IsMovingForward = false;

 if (_isPointerPressed)
 {
 var direction = MathService.GetAngleDirection(
 _currentLocation, point, TurnThreshold);

 IsMovingForward = direction == 0;
 IsTurningClockwise = direction > 0;
 IsTurningCounterClockwise = direction < 0;
 }
 }

 public void Disable()
 {
 if (_host != null)
 {
 _host.PointerPressed -= OnPointerPressed;
 _host.PointerReleased -= OnPointerReleased;
 _host.PointerMoved -= OnPointerMoved;
 }
 }
 }
}

In addition to the wire-up and tear-down code similar to what you did with the key-
board handlers, this code has an UpdateState method. This method, which is called
by each pointer event, checks the position of the point in relation to the ship, using
the MathService method you created earlier. Using that, it sets the direction of rota-
tion, or the movement property.

21.3.4 Adding from the code-behind

Before you can create the service from the code-behind, you’ll need to provide a con-
trol against which all touch points will be compared. In this case, the ItemsControl
can’t be used because the ItemsControl’s default template doesn’t help you out by
providing any sort of hit test area. You could modify the template for this control or
do as I’ve done and create a quick new UserControl that is to serve solely as a hit test
area and source of events.

 In the Controls folder, create a user control named PlayField.xaml. The markup
for this control is shown here.

<UserControl
 x:Class="SocketApp.Controls.PlayField"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:SocketApp.Controls"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

Listing 21.12 PlayField.xaml user control

Get movement
direction

Clean-up

520 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
 mc:Ignorable="d"
 IsHitTestVisible="True">

 <Grid Background="#FF000000">

 </Grid>
</UserControl>

The user control simply provides a place for you to hang pointer events on. There are
two essential parts of this markup:

■ The control must be hit testable.
Most are by default, but it doesn’t hurt to be explicit.

■ The control must not be completely transparent.
Even if you have a tiny bit of color like #01000000 it will work, but you can’t
have #00 as the alpha component or have Opacity set to 0.0.

The next listing shows where this new control fits in on MainPage.xaml. It’s in the
Grid right before the ItemsControl.

...
<Grid Grid.Column="1"
 x:Name="PlayArea"
 Margin="10,10,10,0">
 <Viewbox>
 <Grid Width="1024" Height="658">
 <Rectangle StrokeThickness="4"
 Stroke="{StaticResource AccentBrush}" />

 <controls:PlayField HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Margin="2"
 x:Name="PlayField" />

 <ItemsControl ItemsSource="{Binding Players}"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Margin="2">
...

With the playing field control in place, you can then create an instance of the Poin-
terInputService inside the code-behind. This follows exactly the same pattern as the
KeyboardInputService but with the control instance passed in rather than null. The
following listing has the updated Loaded event handler.

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 var vm = DataContext as MainViewModel;
 vm.InputServices.Clear();

Listing 21.13 MainPage.xaml update to add the playing field control

Listing 21.14 MainPage.xaml.xs update to add the service

Make hit testable

Non-transparent
color is essential

PlayField
control

521Pointer input: mouse, touch, and pen
 var keyInput = new KeyboardInputService();
 keyInput.Enable(null);

 var pointerInput = new PointerInputService();
 pointerInput.Enable(PlayField);

 vm.InputServices.Add(keyInput);
 vm.InputServices.Add(pointerInput);
}

Now, try out the app. As long as you’re connected to a server, when you touch a point
beyond the ship or move your mouse around with the button held down, you should
see the ship start moving in that direction. If you touch the screen and hold your fin-
ger there, the ship will turn until it reaches that angle and then will start moving for-
ward. Admittedly, the movement is neither smooth nor flawless, but that’s more an
issue with my layout and algorithms than it is with the input APIs.

NOTE If you’re not connected to a server and you try to move the ship, you’ll
get an exception due to the _currentLocation being null. The disconnected
case is not in scope for this app.

If you find the ship turns a little too much like a slow ocean liner, increase the angle
change amount in MainViewModel. If you find the “move forward zone” too large or
small, feel free to change that as well.

 Touch, pen, and mouse are all together referred to as pointers in WinRT. Each of
these pointers can give you an exact coordinate on the screen for a touch (or click, or
tap). The Pointer API gives you quite a bit to work with, but the majority of developers
will simply use coordinates and touch points for most apps, as I did here. For further
investigation, check out the pointer and related events on the Control base class in
MSDN. You’ll find functions for capturing the pointer, as well as a large number of APIs
for capturing taps, double-taps, “right” taps, drag and drop, manipulation (gestures),
and much more. The MSDN page is here: http://bit.ly/Win8XamlControlClass.

CoreWindow and the pointer

The CoreWindow class that you used for keyboard input also has pointer events. It’s
not as useful for the typical app developer, however, because it captures all pointer
input—even that over the app bar and other controls in the UI. In most cases, you’ll
want to restrict input capture to a single control on the screen.

In some cases, especially full-screen games with no app bar, the CoreWindow pointer
events can be useful. They can also be useful if you need to create your own app bar–
like capabilities and deal with features like light dismiss and other out-of-bounds point-
er events.

Create
PointerInputService

Initialize
with control

Add to list

522 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
21.4 Accelerometer input
As someone interested in technology, you likely realize by now that the sensor that
supports screen rotation is not a microscopic person with a sensitive inner ear. The
sensor is called an accelerometer.

 Accelerometers in your phones and portable computers record G forces on at least
two, and more often on three, axes. Either x and y or x, y, and z. The sensor doesn’t
actually report the angle your device is leaning but rather the G forces experienced on
a specific axis. Despite the name, accelerometers don’t actually measure acceleration
but rather the force in a direction. From this, accelerometers in devices that need
actual acceleration data (vehicles, rockets, and so on) can calculate acceleration given
the force. In the case of devices, you’re typically interested in just the base force bit,
not calculating any acceleration over time.

If you have a tablet like a Surface, you’ve already seen the accelerometer in action
when you changed the orientation of the device. That’s such a common use that the
functionality for orientation change is baked right in.

 In this section, you’ll use the accelerometer as a human input device. That is,
you’ll turn the whole device into a big joystick by implementing it as another IInput-
Service. If you don’t have a tablet or other device with a built-in accelerometer, this

How do they work?

Accelerometers use a number of different technologies to calculate the force, but in
general, they come down to a tiny semiconductor mass, suspended inside a chip. That
mass moves very small distances based on the movement of the device. Those move-
ments cause a change in capacitance, which is reported back to the main processor
as a value.

These chips are incredibly small devices, so the distances moved are measured more
in microns, and the masses involved are etched directly on the die just as you’d see
for a processor.

These accelerometers are tiny (often only a couple mm square in size for the whole
package). They also measure relatively small forces, typically up to around 2 g, but
sometimes as much as 8 g.

In devices, accelerometers used to be primarily a safety feature, able to park spinning
rust hard drives when the device is dropped. These days, that’s still a concern, but
with solid state drives (SSD), this use is becoming a bit of a novelty. Instead, most
accelerometers are used as input devices, as we’re doing in this section.

My wife carries a FitBit. That includes a tiny accelerometer used to count steps walked.
My children have magic wands that include accelerometers to tell when they’re being
waved around. My video camera includes automatic image stabilization, also using
an accelerometer. Every modern phone, many notebooks, and most tablets all contain
accelerometers for various uses.

523Accelerometer input
section will be interesting but not practical for you unless you pick up a device. You
can get the STMicroelectronics test board, which is a USB HID device recognized by
Windows 8. To get it, use your favorite search engine and search for STEVAL-MKI119V1.
It’s a bit expensive, at around $125 at the time of this writing. If that’s more than you
want to spend, you could always sneak into your local Microsoft store, sit down with a
Surface or other tablet, and when no one is looking, side-load the app from this chap-
ter. That may earn you an extra special trip to mall security, though, so be warned.

21.4.1 Making sense of the input

Just as with keyboard and pointers, the introduction of a new input mechanism starts
with figuring out how it will be used. Our input standard supports turning clockwise/
counterclockwise and moving forward. You need to map accelerometer input to these
mechanisms. I decided that tilting the device left will turn counterclockwise, tilting
right will turn clockwise, and tilting forward will move forward. Figure 21.9 shows the
relationship between these movements and accelerometer data.

 The accelerometer in our case will return negative g-force values for the x-axis
when the device is tilted left, positive x when tilted right. When the device is tilted for-
ward, the accelerometer returns positive y g-force values. In typical use, the g-forces
are pretty small, with values around 0.25 or so depending on how rough you are on
the device.

Figure 21.9 The relationship between ship rotation and movement and the accelerometer.
Note the Zero zone (or dead zone) in the middle. When using the accelerometer, you’ll want
to have a certain movement threshold either from zero or from the last movement to allow for
actual human handling of the device without introducing a lot of tiny movements.

524 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads

U

21.4.2 Implementing the AccelerometerInputService

Just as with the KeyboardInputService, you need a concrete implementation of
IInputService to enable input from this device. Unlike the keyboard approach, the
AccelerometerInputService won’t use events internally. Instead, it will poll the
device inside the PrepareForReading method.

 The next listing includes the shell of the AccelerometerInputService. As before,
create this as a class in the Services folder.

using SocketApp.Model;
using System;
using Windows.Devices.Sensors;
using Windows.UI.Xaml.Controls;

namespace SocketApp.Services
{
 public class AccelerometerInputService : IInputService
 {
 public bool IsTurningCounterClockwise { get; set; }
 public bool IsTurningClockwise { get; set; }
 public bool IsMovingForward { get; set; }

 private Accelerometer _accelerometer;
 private const int ReportingIntervalMilliseconds = 0;
 public void PrepareForReading(PlayerLocation currentLocation)
 { }

 public void Enable(Control hostControl)
 {
 _accelerometer = Accelerometer.GetDefault();

 if (_accelerometer != null)
 _accelerometer.ReportInterval = ReportingIntervalMilliseconds;
 }

 public void Disable()
 {
 _accelerometer = null;
 }
 }
}

Because of the lack of events, the setup and teardown code is far simpler. It creates the
accelerometer and sets the interval it should use to check the device. In this case, the
interval is set to 0—a value that tells the API to let the driver determine the optimal
reporting interval.

 Devices like the accelerometer are why I added the PrepareForReading method to
the interface. In this case, the method does the actual device reading and updates the
properties so they have the most recent data when read by the viewmodel code. The fol-
lowing listing has the PrepareForReading method with the calls to the accelerometer.

Listing 21.15 The AccelerometerInputService

Sensor
namespace

Accelerometer

se driver
default

interval

Get accelerometer

Set
interval

525Accelerometer input

private const double ReadingThreshold = 0.1;

public void PrepareForReading(PlayerLocation currentLocation)
{
 if (_accelerometer != null)
 {
 var reading = _accelerometer.GetCurrentReading();

 IsTurningClockwise = false;
 IsTurningCounterClockwise = false;
 IsMovingForward = false;

 if (reading.AccelerationX > ReadingThreshold)
 IsTurningClockwise = true;

 else if (reading.AccelerationX < ReadingThreshold * -1)
 IsTurningCounterClockwise = true;

 if (reading.AccelerationY > ReadingThreshold)
 IsMovingForward = true;
 }
}

The PrepareForReading method handles polling the accelerometer for its current
values. The ReadingThreshold defines the dead zone in the middle of movement,
helping to prevent moving when the device is tilted very slightly.

21.4.3 Adding from the code-behind

As before, you’ll create an instance of the service in the main page code-behind. The
next listing includes the updated code.

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 var vm = DataContext as MainViewModel;
 vm.InputServices.Clear();

 var keyInput = new KeyboardInputService();
 keyInput.Enable(null);

 var accelerometerInput = new AccelerometerInputService();
 accelerometerInput.Enable(null);

 var pointerInput = new PointerInputService();
 pointerInput.Enable(PlayField);

 vm.InputServices.Add(keyInput);
 vm.InputServices.Add(accelerometerInput);
 vm.InputServices.Add(pointerInput);
}

Listing 21.16 Taking the accelerometer reading

Listing 21.17 Updated MainPage.xaml.cs code-behind

Set zero-area

Get left tilt

Get right tilt

Get forward tilt

Create
accelerometer

Add to
collection

526 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
The code to add the accelerometer looks like what you’ve done for the other services.
There’s nothing new and exciting here…until you run the app. Once you run the
app, things get really awesome. Try tilting the device left, right, or forward and see
what it does to your ship. Also marvel at how the changes are reflected on the other
device. If you’re not sitting there thinking about possible remote-control scenarios
you could create by using a tablet, the accelerometer, and streaming sockets, you likely
need a refill on your coffee.

21.4.4 Accelerometer events

The Accelerometer class also supports an event-based approach so that you can
receive events when the accelerometer data changes. I prefer the polling approach
since you’re already polling in this app—the approach supported by the majority of
input devices, especially game controllers. But for other apps, you may find the event
approach a better choice. In those cases, hook up the ReadingChanged event.

 When going with an event-based approach, you’ll want to be very smart about how
you set the ReportInterval, because events can be costly. You’ll need to balance the
responsiveness of your app with the workload of dealing with hundreds of events.

 Another really interesting event is the Shaken event. This event will tell your app
when the device has been shaken—a higher-level accelerometer reading than just
g-forces on a specific axis. This event could be used to do things like clear a drawing
board (think Etch-a-Sketch) or perform some other specific action in your app.

21.4.5 Dealing with screen autorotation

When you work with an accelerometer, the built-in screen autorotation can be a real
pain in the button. No one wants the screen to start flipping around when they’re
playing a pinball game! You could handle this by supporting only a single orientation
for your app, but that’s not friendly.

 Instead, you can lock the orientation of the app programmatically. In the next list-
ing you’ll lock it to landscape, but you could read the current orientation and lock to
that instead.

public void Enable(Control hostControl)
{
 _accelerometer = Accelerometer.GetDefault();

 if (_accelerometer != null)
 {
 _accelerometer.ReportInterval = ReportingIntervalMilliseconds;

 Windows.Graphics.Display
 .DisplayProperties
 .AutoRotationPreferences =
 Windows.Graphics.Display
 .DisplayOrientations.Landscape;
 }
}

Listing 21.18 Locking the screen orientation

Lock orientation
to landscape

527Xbox 360 gamepad input and a little C++
You need to be really smart about how you lock the orientation of the app. In fact, I’d
recommend making it a user option so they can lock and unlock at will using a button
on the app bar or a settings page. In this way, you can let them be in control of the
orientation.

 Surprisingly, the accelerometer was one of the simplest input devices to use. It’s a
testament to the API designer’s thoughtfulness that something potentially complex
was made so easy to use. I’ll pass your appreciation on to the team.

21.5 Xbox 360 gamepad input and a little C++
The standard for Windows gamepads is the gamepad introduced with the Xbox 360.
DirectX includes built-in support for the Xbox 360 controller for Windows Store apps;
see figure 21.10. Because this controller is something typically used just in hard-core
games, and those games are almost always written in DirectX; only DirectX has access
to the controller.

 So how then would one gain access to this controller from a C# and XAML app?
This is done through a wrapper class written in C++. This isn’t just any old wrapper
class, though; this is a class in a WinRT extension library.

WinRT extension libraries
can be used by any language that
can use WinRT APIs. You could
create these libraries in C#, but
it’s more efficient to create them
in C++. In our case, since C++ is
the only language with access to
XInput (the DirectX controller
API), C++ is our only choice.

 Throughout the rest of this
section you’ll build out a small
C++ WinRT extension library, ref-
erence it from the C# app, then
create an IInputService wrap-
per class that will expose the
capabilities of the controller to
the rest of the app using the
same approach as all the other
input services.

21.5.1 Creating the C++ project

You’re going to add a C++ project to the same solution. All versions of Visual Studio
2012 that support building Windows Store apps in C# also enable you to write those
apps in C++.

 Right-click the solution and select Add New Project. When prompted for a tem-
plate, select the Windows Runtime Component template, as shown in figure 21.11.

Figure 21.10 The Xbox controller for Windows sitting on
my Surface with Windows RT. Yes, the Xbox controller works
on Windows RT. You can tell I’ve had it forever because it’s
a white one. There are a number of controllers you can use,
as long as XInput recognizes them without an additional
driver install.

528 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
You must choose the template under the Visual C++ heading, because we’re not creating one in
C#. I named my project ControllerLibrary.

 Rename Class1.h to Controller.h and Class1.cpp to Controller.cpp. Then, go into
the two files and replace Class1 with Controller. The next two listings show what you
should have to start with.

#pragma once

namespace ControllerLibrary
{
 public ref class Controller sealed
 {
 public:
 Controller();
 };
}

#include "pch.h"
#include "Controller.h"

using namespace ControllerLibrary;
using namespace Platform;

Controller::Controller()
{
}

My goal here is not to teach you C++. It’s my hope that once you see how you can inte-
grate it into your apps, you’ll investigate that on your own. One difference from C#

Listing 21.19 Controller.h

Listing 21.20 Controller.cpp

Figure 21.11 Select the proper template to create a C++ Windows Runtime Component.

WinRT extensions
must be sealed

Definition of
constructor

Include
header file

Implementation
of constructor

529Xbox 360 gamepad input and a little C++
that’s important to note is the structure of the class files. C# puts both the class defini-
tion and its implementation in the same file. C++ breaks it into two files where the def-
inition is contained in the .h (header) file and the implementation is in the .cpp file
by convention. A source file can only see types that have been defined in an included
header. The pch.h file is a full set of precompiled headers for the project, saving some
compile time. This isn’t automatically maintained, so you need to maintain it yourself,
as shown in the following listing.

//
// pch.h
// Header for standard system include files.
//

#pragma once

#include <Windows.h>
#include <XInput.h>

In general, you only want to put infrequently changing header files in pch.h, because
your compile time could go through the roof if you include frequently changing files
in there.

 Next, in the main SocketApp C# project, right-click the project and select Add
Reference, and add a project reference to the ControllerLibrary project, as shown in
figure 21.12.

 Once you have the project set up and properly referenced from the SocketApp C#
app project, you can create the Controller class.

21.5.2 Implementing the Controller class

The C++ controller header file has two main parts: the GamepadState structure and
the Controller class itself. The GamepadState structure, as the name implies, contains
the state of the gamepad when polled. It’s intended as a friendlier way to get gamepad
information without bitmasks and constants as used by the native XINPUT_STATE
structure.

Listing 21.21 Updates to pch.h

Standard
Windows XInput for

controller access

Figure 21.12
Add a project reference to
the C++ ControllerLibrary
project. Many people simply
click the reference and hit
OK. Unless you actually
check the reference before
hitting OK, it won’t be
added. For some reason,
the team took this
approach to multiselection.

530 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
 In addition, the Controller class contains a single interesting method: GetState.
This method polls the gamepad for its current state and then returns it if available.

 The entire Controller.h listing is shown here.

#pragma once

namespace ControllerLibrary
{
 public value struct GamepadState
 {
 bool IsConnected;

 bool IsLeftJoystickPressed;
 short LeftJoystickXValue;
 short LeftJoystickYValue;

 bool IsRightJoystickPressed;
 short RightJoystickXValue;
 short RightJoystickYValue;

 bool IsDPadUpPressed;
 bool IsDPadDownPressed;
 bool IsDPadLeftPressed;
 bool IsDPadRightPressed;

 bool IsAPressed;
 bool IsBPressed;
 bool IsXPressed;
 bool IsYPressed;

 bool IsStartPressed;
 bool IsBackPressed;

 bool IsLeftShoulderButtonPressed;
 bool IsRightShoulderButtonPressed;

 BYTE LeftTriggerValue;
 BYTE RightTriggerValue;

 uint32 ControllerID;
 };

 public ref class Controller sealed
 {
 private:
 XINPUT_STATE _xinputState;

 public:
 Controller();
 GamepadState GetState();
 };
}

Listing 21.22 Controller.h

True if gamepad
present

Left thumb
stick

Right thumb
stick

Dpad

Letter
buttons

Middle
buttons

Shoulder
buttons

Triggers

Controller ID

Raw state data

GetState

531Xbox 360 gamepad input and a little C++
The Xbox controller has two analog thumb joysticks plus a D-pad for digital motion. It
also has four colored buttons (A, B, X, Y), a back button, a start button, two triggers,
and right above the triggers, two shoulder buttons.

 Buttons are generally Boolean values. But some buttons, such as the triggers, actu-
ally return a value that indicates just how pressed they are. In that way, they’re more
like potentiometers, like the volume knob on a classic stereo, than straight buttons.

 As I previously mentioned, C++ splits the class into two files. Controller.cpp con-
tains the implementation of the Controller class defined in the header file. The next
listing has the entirety of that implementation.

#include "pch.h"
#include "Controller.h"
#pragma comment(lib, "XInput.lib")

using namespace ControllerLibrary;
using namespace Platform;

Controller::Controller() { }

GamepadState Controller::GetState()
{
 const int controllerIndex = 0;

 GamepadState state;
 state.IsConnected = false;

 DWORD result = XInputGetState(controllerIndex, &_xinputState);

 if (result == ERROR_SUCCESS)
 {
 state.IsConnected = true;
 state.ControllerID = controllerIndex;

 auto buttons = _xinputState.Gamepad.wButtons;

 state.IsDPadUpPressed = buttons & XINPUT_GAMEPAD_DPAD_UP;
 state.IsDPadDownPressed = buttons & XINPUT_GAMEPAD_DPAD_DOWN;
 state.IsDPadLeftPressed = buttons & XINPUT_GAMEPAD_DPAD_LEFT;
 state.IsDPadRightPressed = buttons & XINPUT_GAMEPAD_DPAD_RIGHT;

 state.IsAPressed = buttons & XINPUT_GAMEPAD_A;
 state.IsBPressed = buttons & XINPUT_GAMEPAD_B;
 state.IsXPressed = buttons & XINPUT_GAMEPAD_X;
 state.IsYPressed = buttons & XINPUT_GAMEPAD_Y;

 state.IsStartPressed = buttons & XINPUT_GAMEPAD_START;
 state.IsBackPressed = buttons & XINPUT_GAMEPAD_BACK;

 state.IsLeftShoulderButtonPressed =
 buttons & XINPUT_GAMEPAD_LEFT_SHOULDER;

Listing 21.23 Controller.cpp

Hardcoded to
first gamepad

Get raw
controller
state

Interpret
data

Get button bits

532 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
 state.IsRightShoulderButtonPressed =
 buttons & XINPUT_GAMEPAD_RIGHT_SHOULDER;

 state.IsLeftJoystickPressed = buttons & XINPUT_GAMEPAD_LEFT_THUMB;
 state.LeftJoystickXValue = _xinputState.Gamepad.sThumbLX;
 state.LeftJoystickYValue = _xinputState.Gamepad.sThumbLY;

 state.IsRightJoystickPressed = buttons & XINPUT_GAMEPAD_RIGHT_THUMB;
 state.RightJoystickXValue = _xinputState.Gamepad.sThumbRX;
 state.RightJoystickYValue = _xinputState.Gamepad.sThumbRY;

 state.LeftTriggerValue = _xinputState.Gamepad.bLeftTrigger;
 state.RightTriggerValue = _xinputState.Gamepad.bRightTrigger;
 }
 return state;
}

That’s the whole class. It really just came down to a single function call and then using
built-in constants to interpret the results. The Xbox gamepad is really simple to inter-
face with at this basic level. Next, we’ll wrap the class in our usual C# IInputService
implementing class.

21.5.3 Creating the IInputService wrapper

Like every other input service, you need to create a class that implements IInput-
Service. In the Services folder, create a class file named GamepadInputService.cs and
add to it the following code.

using ControllerLibrary;
using System;
using SocketApp.Model;
using Windows.UI.Xaml.Controls;

namespace SocketApp.Services
{

GOING DEEPER WITH THE GAMEPAD CONTROLLER

For more information on XInput and the controller programming guide, see http://
bit.ly/XInputControllerGuide. I learned how to implement the controller by looking at
this guide and also by following the JavaScript Official Windows SDK sample.

There’s more to be done to make this an efficient use of the controller (such as limiting
how often you poll and dealing with cases where no controller is connected) and even
set the rumble motors. You can find out all about that in MSDN.

Listing 21.24 The GamepadInputService

The C++
library

533Xbox 360 gamepad input and a little C++
 class GamepadInputService : IInputService
 {
 private Controller _controller;

 public bool IsTurningCounterClockwise { get; set; }
 public bool IsTurningClockwise { get; set; }
 public bool IsMovingForward { get; set; }

 private PlayerLocation _currentLocation;
 public void PrepareForReading(PlayerLocation currentLocation)
 {
 _currentLocation = currentLocation;

 IsTurningClockwise = false;
 IsTurningCounterClockwise = false;
 IsMovingForward = false;

 var state = _controller.GetState();

 if (state.IsConnected)
 {
 IsTurningClockwise = state.IsDPadRightPressed;
 IsTurningCounterClockwise = state.IsDPadLeftPressed;

 IsMovingForward = state.IsAPressed ||
 state.IsRightShoulderButtonPressed ||
 state.IsLeftShoulderButtonPressed;
 }
 }

 public void Enable(Control hostControl)
 {
 _controller = new Controller();
 }

 public void Disable()
 {
 _controller = null;
 }
 }
}

I decided to use the D-pad for turning and either the A button or either shoulder but-
ton for moving forward. Having tried this, I can’t tell you how much more instant fun
you get from messing with a game controller in the app, no matter how simple the use.

 The C# wrapper class is simply an artifact of how I originally defined the input
interface. Had I defined that interface in a C++ WinRT extension library, the entire
GamepadInputService could have been written in C++.

The C++
class

GetState

Turning

Move
forward

534 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
21.5.4 Adding from the code-behind

By now you should have the code-behind input service loading code memorized. The
GamepadInputService addition follows the same pattern as all the others. The next
listing has the updated Loaded event handler.

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 var vm = DataContext as MainViewModel;
 vm.InputServices.Clear();

 var keyInput = new KeyboardInputService();
 keyInput.Enable(null);

 var accelerometerInput = new AccelerometerInputService();
 accelerometerInput.Enable(null);

 var pointerInput = new PointerInputService();
 pointerInput.Enable(PlayField);

 var gamepadInput = new GamepadInputService();
 gamepadInput.Enable(null);

 vm.InputServices.Add(keyInput);
 vm.InputServices.Add(accelerometerInput);
 vm.InputServices.Add(pointerInput);
 vm.InputServices.Add(gamepadInput);
}

21.5.5 Compiling and deploying

If you’re compiling and deploying to the same x86 architecture you’re developing on,
this is business as usual. But if you’re targeting another architecture, like ARM, you
need to take extra steps.

 Typically, C# apps are compiled to “any CPU,” which means they can run on any-
thing supported by WinRT XAML apps. The moment you include C++ code, you have
to start creating architecture-specific builds and deployment packages.

 One way to do this while debugging is to use Configuration Manager. By selecting
the correct architecture from the Active Solution Platform drop-down list on the top
right, you can deploy and debug on the remote ARM machine. Figure 21.13 shows
what this process looks like.

 It’ll take practice to get used to how to do the deployments, especially if you work
like I do. I always compile and start without debugging remotely to ARM and then start
debugging locally on x86. In that way, I can run both endpoints of the app.

 I love that I can use an Xbox controller on my Surface tablet. The USB port on the
device may seem like such a simple feature, but it opens up a whole world of devices,
storage mechanisms, and more.

Listing 21.25 Updated MainPage Loaded event handler

Create gamepad
service

Add to
collection

535Summary
Incorporating a C++ component into our app was actually quite easy. I’m not a C++
expert by any means, but I found it easy to work with and to pull into the solution.
The new WinRT extension library project type takes care of all the fun behind the
scenes that makes the types and methods visible and usable from our app. As someone
who has worked a lot with COM and Win32 DLLs in the past, I find this new approach
a breath of fresh air.

21.6 Summary
Most human input is handled by common controls like Button, TextBox, GridView,
and others. For some apps, like ours, that built-in control input isn’t sufficient, so we
need to turn to lower-level input mechanisms.

 Luckily, WinRT and C# together provide a rich set of APIs for getting user input
from all of the common devices, plus sensors. A good practice when interfacing with
something that has many possible implementations is to create a generic interface.
For this app, you created a generic IInputService interface, and each concrete input
device service class implemented that. Because of this, you can treat each input device
identically, without worrying about the internal implementation.

 The first input service you implemented using this interface is the keyboard input
service. This made it easy to use the cursor keys on the keyboard to rotate and move

Figure 21.13 Configuration Manager showing the configuration for an ARM (Surface) deployment
on the top and an x86 (desktop) configuration on the bottom. Select the proper configuration
using the Active Solution Platform drop-down list.

536 CHAPTER 21 Keyboards, mice, touch, accelerometers, and gamepads
the ship. The math to handle this was relatively simple, requiring only a couple of
calculations.

 From there, we looked at pointing devices. WinRT treats your finger, a mouse, and
a pen all the same, so it was easy to use a single API to access all three of those devices.
The API itself was quite simple to use, but the math you had to incorporate to track
position was a bit more complex.

 One nontraditional input device is the accelerometer. Most portable devices
include an accelerometer, so having access to it can really liven up your app. WinRT
XAML normally uses the accelerometer just for page orientation and rotation, but you
don’t need to stop there. In our app, you used the accelerometer to move the ship
across the game field.

 For times when the built-in input devices don’t cover everything you need, you can
turn to other means such as DirectX, if DirectX has access to the device through the
XInput library. One such example is an Xbox gamepad. You can’t use it directly from
C#, but if you create a simple C++ WinRT extension assembly, you can consume that
from C# and thereby access the device. Interestingly, you could then use that same
library from a JavaScript app as well.

 In the next chapter, we’ll wrap up this app by adding support for saving app set-
tings and for properly handling suspend and resume behaviors.

App settings and
suspend/resume
As we near the end of this book, there are a few important topics to cover that most
app developers address later in their app development cycle. The first is the persis-
tent storage of application settings. Most apps have some sort of secondary data,
typically configuration information that they need to save. Windows 8 provides not
only standardized classes for storing and retrieving this data but also a standardized
approach to the UI for entering this data.

 The second important topic is managing the app’s lifetime. Many apps get away
without ever dealing with app suspend and resume, but the experience just isn’t
that great when developers skip this. An app that suspends and then comes back
looking like a brand-new launch, all because the user flicked over to the mail app
for a second, is unlikely to be used very often.

 Together, both of these will round out the knowledge you require to wrap up the
code and UI for your app. These little details may seem unimportant compared to

This chapter covers
■ Creating an app settings UI
■ Using the ApplicationData class
■ Using app settings
■ Handling app suspend and resume
537

538 CHAPTER 22 App settings and suspend/resume
the rest of the app functionality, but given the broad (and often unforgiving) audience
made available through the Windows Store, even the smallest detail can make or break
an app.

 In this chapter you’ll learn how to create the appropriate app settings UI to manage
those settings from within the app. Then, we’ll look at how to use the ApplicationData
class to save and load app settings. After all of this is in place, we’ll look at something
commonly associated with app settings: the app suspend and resume events.

22.1 App settings UI and architecture
In chapter 15, I covered the basics of working with files. This is useful when you have
actual documents or other filesystem objects that your app creates or uses. Often,
however, app settings are best represented as containers of values, or name-value
pairs, rather than complete files. Silverlight developers may be familiar with this from
the IsolatedStorage wrapper classes, which handled app settings this way.

 When working with this type of data in Windows 8, the easiest approach is to use
the ApplicationData class.

 When working with these app settings, you’ll typically need to provide an interface
the user can use to maintain them. In desktop apps, this was typically under Tools >
Options or Edit > Preferences, but that varied from application to application. Win-
dows Store apps have a new standardized way to provide app settings using the Set-
tings charm.

 In this section, I’ll show how to create the settings UI working against a stubbed-out
settings class. Next, I’ll show you how to create a UI for those settings. Then, I’ll show
you how to save and restore those settings both on the local machine as well as
account-wide using the ApplicationData class.

22.1.1 Creating the settings infrastructure

Our network almost-game app doesn’t have many configuration options. It does have
two that are worth saving, however:

■ If a server, whether it should autostart when the app is launched
■ If a client, what IP address the app should try to connect to

I’ll bet you wish we had implemented the first setting long ago. It gets tedious pressing
the same app bar button every time the app launches during debug sessions.

 These two settings are specific to the machine. If you log in as the same user on
two machines, it probably wouldn’t make sense for both of them to be the server or
both of them to try to connect to the same IP address. For that reason, they’ll be good
for demonstrating local settings. But I also need to demonstrate roaming settings, so
I’ll add a third setting—an otherwise meaningless setting—specifically for testing and
demonstrating that functionality.

 When working with settings, the changes should be committed when the control
itself changes or when the Settings pane is dismissed. Either approach is equally valid
as long as you don’t require a separate “save” interaction like a button.

http://bit.ly/WinRTAppLifetime
http://bit.ly/WinRTAppLifetime

539App settings UI and architecture
 In this app, you’ll save all settings when the page is dismissed. This will still require
a commit function in the ServiceSettings class you’ll use. The stubbed-out code for
the SettingsService class, without any actual saving or loading from the filesystem, is
shown in the following listing. Create this new class named SettingsService in the
Services folder.

using System;
using Windows.Storage;

namespace SocketApp.Services
{
 public class SettingsService
 {
 public static event EventHandler SettingsChangedRemotely;

 public static string RemotePlayerAddress { get; set; }
 public static bool AutoStartAsServer { get; set; }

 public static string SharedTestProperty { get; set; }

 public static void Save() { }
 public static void Load() { }
 }
}

The SettingsChangedRemotely event handler will be used when you integrate with
the ApplicationSettings class and need to handle times when data is synchronized
from a remote setting. The awkward name is so that it isn’t confused with any event
that may alert you to local data changes.

 This class will provide the interface to the ApplicationSettings storage class.
Although it could be used directly, because your settings are super simple, it’s a good
idea to follow the same viewmodel pattern you’ve used throughout this app. The next
listing has the SettingsOptionsViewModel class you’ll need to create in the View-
Model folder.

using GalaSoft.MvvmLight;
using SocketApp.Services;
using System;

namespace SocketApp.ViewModel
{
 public class SettingsOptionsViewModel : ViewModelBase
 {
 public string RemotePlayerAddress
 {
 get { return SettingsService.RemotePlayerAddress; }
 set
 {

Listing 22.1 The stubbed-out SettingsService class

Listing 22.2 The Settings pane viewmodel and properties

SettingsChangedRemotely
event

Local
settings

Roaming
setting

Persistence

Bindable
properties

http://bit.ly/WinRTSettingsPane
http://bit.ly/WinRTSettingsPane
http://bit.ly/WinRTSettingsGuide
http://bit.ly/WinRTSettingsGuide

540 CHAPTER 22 App settings and suspend/resume
 SettingsService.RemotePlayerAddress = value;
 RaisePropertyChanged(() => RemotePlayerAddress);
 }
 }

 public bool AutoStartAsServer
 {
 get { return SettingsService.AutoStartAsServer; }
 set
 {
 SettingsService.AutoStartAsServer = value;
 RaisePropertyChanged(() => AutoStartAsServer);
 }
 }

 public string SharedTestProperty
 {
 get { return SettingsService.SharedTestProperty; }
 set
 {
 SettingsService.SharedTestProperty = value;
 RaisePropertyChanged(() => SharedTestProperty);
 }
 }
 }
}

The class is named SettingsOptionsViewModel because it applies just to the Options
settings page. If you were to add a second settings page, say, Connectivity, you’d add a
SettingsConnectivityViewModel to pair with it.

 The viewmodel starts like any other viewmodel. But notice how the backing prop-
erties aren’t local variables but are instead references to the static properties of the
SettingsService. This approach may seem somewhat awkward, but it’s helpful in
that you don’t need to keep track of multiple versions of the data, and it will always
expose the latest values regardless of where they were changed from.

 One hole in this approach, which isn’t an issue for this app, is that other pages that
change the settings using their own viewmodel and reference to the SettingsService
don’t trigger change notifications. You can address this by having the Settings-
Service also be an ObservableObject, but that would be overkill for this app.

 One thing you do want to track is when changes are made externally, as the result
of a roaming settings synchronization. The following listing includes the code that will
enable this in the viewmodel (remember: you haven’t yet implemented this in the
SettingsService class).

public SettingsOptionsViewModel()
{
 SettingsService.SettingsChangedRemotely +=
 OnSettingsChangedRemotely;
}

Listing 22.3 Notification methods in SettingsOptionsViewModel

Bindable
properties

Wire up change
notification

541App settings UI and architecture
~SettingsOptionsViewModel()
{
 SettingsService.SettingsChangedRemotely -=
 OnSettingsChangedRemotely;
}

private void OnSettingsChangedRemotely(object sender, EventArgs e)
{
 NotifySettingsChanged();
}

private void NotifySettingsChanged()
{
 RaisePropertyChanged(() => RemotePlayerAddress);
 RaisePropertyChanged(() => AutoStartAsServer);
 RaisePropertyChanged(() => SharedTestProperty);
}

This code wires up the settings change notification with the SettingsService class.
By doing this, you’ll be able to react to external settings changes. Note also the
NotifySettingsChanged method. This notifies the binding system of settings changes
but doesn’t discriminate between which settings have actually changed. If you have a
lot of settings, you may want to be pickier about which events you fire off. But because
settings are unlikely to change often, doing so would be more for peace of mind than
for any real performance reason.

The final update to make to the viewmodel code is to enable saving and loading of set-
tings. The next listing has the Save and Load methods to add to the Settings-
OptionsViewModel class.

Local or roaming settings

There are two types of settings: local and roaming. Local settings never leave the ma-
chine. Roaming settings are synchronized across machines that share the same Mi-
crosoft account. This is how, for example, your start screen background and lock
screen images get synchronized across multiple PCs.

When saving settings for your app, put some thought into what settings are machine-
specific and what settings can be generalized to the overall account. For example,
game-level completion and scores would be something that you may want to make
available across all machines for this user. Settings specific to a machine configura-
tion like accelerometer sensitivity or network connection information, however, should
be considered local settings.

Rather than pushing this decision on the user through a configuration dialog, make
intelligent decisions about how to store this information and where.

For more information, see http://bit.ly/WinRTRoamingData.

Unwire change
notification

http://bit.ly/WinRTRoamingData

542 CHAPTER 22 App settings and suspend/resume

public void Save()
{
 SettingsService.Save();
}

public void Load()
{
 SettingsService.Load();
 NotifySettingsChanged();
}

With the stub of the SettingsService in place and a viewmodel established so you
can talk with it from the UI, it’s time to create the settings flyout.

22.1.2 Creating a settings UI

In Windows 8, apps are expected to have all persistent settings configured through
the Settings charm. Your users will look for the settings here, so don’t provide other
mechanisms for displaying settings dialogs.

 The settings UI is really easy to create. You provide a number of settings categories,
and then when the user clicks one of them, Windows sends you a message telling you
to display the settings UI. The UI display is a flyout that appears from the right and

Listing 22.4 Persistence methods in SettingsOptionsViewModel

Save settings

Load settings

Notify binding
system

Figure 22.1 The Settings pane for our socket-based multiplayer almost-game, with the standard
page and our custom page (both visually truncated to fit the illustration). Clicking Options displays
the custom options page. Clicking the back button on the options page brings back the main
settings page. Also note how the custom options page is wider than the main settings page.

543App settings UI and architecture
supports the “light dismiss” behavior. That is, clicking anywhere outside it will auto-
matically dismiss the UI.

 Figure 22.1 shows the Settings pane for this app, as well as the custom settings page
you’ll create.

 The settings page is implemented as a regular XAML page. Create one named
SettingsOptionsPage, using the blank page template. The following is the markup for
this new page.

<Page
 x:Class="SocketApp.SettingsOptionsPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:SocketApp"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <UserControl.Resources>
 <Style TargetType="TextBlock"
 BasedOn="{StaticResource BodyTextStyle}">
 <Setter Property="Foreground" Value="Black" />
 </Style>

 <Style x:Key="SettingsBackButtonStyle"
 TargetType="Button">
 <Setter Property="MinWidth" Value="0" />
 <Setter Property="Margin" Value="20,0,0,0" />
 <Setter Property="VerticalAlignment" Value="Bottom" />
 <Setter Property="FontFamily" Value="Segoe UI Symbol" />
 <Setter Property="FontWeight" Value="Normal" />
 <Setter Property="FontSize" Value="26.66667" />
 <Setter Property="AutomationProperties.AutomationId"
 Value="BackButton" />
 <Setter Property="AutomationProperties.Name" Value="Back" />
 <Setter Property="AutomationProperties.ItemType"
 Value="Navigation Button" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid x:Name="RootGrid" Width="36" Height="36"
 Margin="-3,0,7,0">
 <Grid Margin="-1,-1,0,0">
 <TextBlock x:Name="BackgroundGlyph"
 Text=""
 Foreground="White" />
 <TextBlock x:Name="NormalGlyph"
 Text="{StaticResource BackButtonSnappedGlyph}"
 Foreground="Black" />
 </Grid>

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">

Listing 22.5 The initial Settings pane SettingsOptionsPage.xaml

Default
text style

Back button
style

544 CHAPTER 22 App settings and suspend/resume
 <VisualState x:Name="Normal" />
 <VisualState x:Name="PointerOver" />
 <VisualState x:Name="Pressed" />
 <VisualState x:Name="Disabled" />
 </VisualStateGroup>
 <VisualStateGroup x:Name="FocusStates">
 <VisualState x:Name="Focused" />
 <VisualState x:Name="Unfocused" />
 <VisualState x:Name="PointerFocused" />
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>

 </UserControl.Resources>

 <Grid Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="80" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid Grid.Row="0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Click="OnSettingsBackButtonClick"
 Grid.Column="0"
 Style="{StaticResource SettingsBackButtonStyle}"/>

 <TextBlock Margin="10,0,0,7"
 Grid.Column="1"
 VerticalAlignment="Bottom"
 Style="{StaticResource SnappedPageHeaderTextStyle}"
 Text="Options"
 Foreground="Black" />
 </Grid>

 <Grid Grid.Row="1" Margin="30"
 x:Name="ContentPanel">
 <TextBlock Text="Dummy text" />
 </Grid>

 </Grid>
</Page>

I prefer to name each settings page with the “Settings” prefix to distinguish it from
other pages in the app. Another approach would be to put them in a separate folder/
namespace named SettingsPages or similar.

 This page has no real content, just a back button and title and the styles to support
them. To create the back button style, I copied the snapped back button template

Back button

Page title

Content
will go here

http://bit.ly/WinRTPasswordVault

545App settings UI and architecture
from App.xaml and made some changes to it. For simplicity here, I removed the vari-
ous visual states. In your own app, you may wish to retain them for hover and press at
a minimum.

 The code-behind for this page needs to wire up the viewmodel (I didn’t use the loca-
tor in this case, because I’m referring to the viewmodel from code-behind anyway) and
also handle the back button Click event. The following listing has the code you need.

using SocketApp.ViewModel;
using System;
using Windows.UI.ApplicationSettings;
using Windows.UI.ViewManagement;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Navigation;

namespace SocketApp
{
 public sealed partial class SettingsOptionsPage : Page
 {
 private SettingsOptionsViewModel _vm;
 public SettingsOptionsPage()
 {
 this.InitializeComponent();

 _vm = new SettingsOptionsViewModel();
 DataContext = _vm;

 this.Unloaded += SettingsOptionsPage_Unloaded;
 }

 void SettingsOptionsPage_Unloaded(object sender, RoutedEventArgs e)
 {
 if (_vm != null)
 _vm.Save();
 }

 private void OnSettingsBackButtonClick(object sender,
 RoutedEventArgs e)
 {
 var parent = this.Parent as Popup;
 if (parent != null)
 parent.IsOpen = false;

 if (ApplicationView.Value != ApplicationViewState.Snapped)
 SettingsPane.Show();
 }
 }
}

There are two new and important pieces in this code-behind. The first is how to save
the settings when the page is unloaded. You do this here in order to handle both the
back button and light dismiss approaches to closing the page. The second is how the

Listing 22.6 The Settings pane code-behind

Create
viewmodel

Wire up
unload event

Save on
unload

Close parent
popup

Show main
Settings pane

546 CHAPTER 22 App settings and suspend/resume
back button works. The back button closes the parent popup and then, if the app isn’t
in snapped state, displays the main Settings pane.

 The SettingsPane.Show method is usable anywhere in the app. For example, if
you want to have an app bar button to display settings, its click event would simply
contain this code. Another common location to do this is in an app like a game where
you’re walking the user through a number of things and will need to programmati-
cally open the Settings pane for them.

 The code to display the Settings pane in the code-behind is simple, but that’s only
because all the details are wrapped into another service class. In the Services folder, cre-
ate a new class named SettingsPaneService using the code in the following listing.

using System;
using Windows.UI.ApplicationSettings;
using Windows.UI.Popups;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Media.Animation;

namespace SocketApp.Services
{
 public class SettingsPaneService : IDisposable
 {
 public SettingsPaneService()
 {
 SettingsPane.GetForCurrentView().CommandsRequested +=
 OnSettingsPaneCommandsRequested;
 }

 ~SettingsPaneService()
 {
 if (!_isDisposed)
 Dispose();
 }

 private bool _isDisposed = false;
 public void Dispose()
 {
 SettingsPane.GetForCurrentView().CommandsRequested -=
 OnSettingsPaneCommandsRequested;

 _isDisposed = true;
 GC.SuppressFinalize(this);
 }

 private void OnSettingsPaneCommandsRequested(SettingsPane sender,
 SettingsPaneCommandsRequestedEventArgs args)
 {
 }

 }
}

Listing 22.7 The SettingsPaneService class

CommandsRequested
event

Clean up
event handler

Command
handling
goes here

547App settings UI and architecture
This class registers for the key CommandsRequested event on startup. This event is what
Windows will use to get a list of commands from you when the user opens the Settings
pane.

 Like many of the core WinRT notification events, it’s important that you have only
a single active listener on the CommandsRequested event. To ensure this, I imple-
mented the dispose pattern and made sure the event is unwired when this class is dis-
posed or is collected.

 Listing 22.7 doesn’t have all the code. In particular, the callback for handling the
command requests is empty. The following listing has the remaining implementation
code.

private const int SettingsPage1ID = 1001;
private void OnSettingsPaneCommandsRequested(SettingsPane sender,
 SettingsPaneCommandsRequestedEventArgs args)
{
 var options = new SettingsCommand(
 SettingsPage1ID, "Options",
 OnSettingsOptionsCommand);

 args.Request.ApplicationCommands.Add(options);
}

private Popup CreateSettingsPopup(Page settingsPage)
{
 var popup = new Popup();

 var fullWidth = Window.Current.CoreWindow.Bounds.Width;
 var fullHeight = Window.Current.CoreWindow.Bounds.Height;

 var paneWidth = 646;

 popup.IsLightDismissEnabled = true;
 popup.Child = settingsPage;

 settingsPage.Height = fullHeight;
 settingsPage.Width = paneWidth;

 var transition = new PaneThemeTransition();

 if (SettingsPane.Edge == SettingsEdgeLocation.Right)
 {
 Canvas.SetLeft(popup, fullWidth - paneWidth);

 transition.Edge = EdgeTransitionLocation.Right;
 }
 else
 {
 Canvas.SetLeft(popup, 0);

 transition.Edge = EdgeTransitionLocation.Left;
 }

Listing 22.8 The main functions in the SettingsPaneService class

Create settings
command

Add settings
command

Create popup

Pane width
up to you

Enable light
dismiss

Create transition
(animation)

Set
transition
edge

548 CHAPTER 22 App settings and suspend/resume
 popup.ChildTransitions = new TransitionCollection();
 popup.ChildTransitions.Add(transition);

 return popup;
}

private void OnSettingsOptionsCommand(IUICommand command)
{
 var options = new SettingsOptionsPage();

 var popup = CreateSettingsPopup(options);
 popup.IsOpen = true;
}

The remaining code in this class handles creating the settings command (you could
have multiple, but I have only one) and the settings popup. Your Settings pane can be
any width you want from full screen (like the current version of the Windows Store
app) to almost nothing. I prefer to have a slightly wider settings page so things don’t
feel cramped. The UI guidelines suggest using either narrow (346 pixels) or wide (646
pixels), but this isn’t enforced.

 This code also uses the popup class to host the settings page you’ve created. The
popup has the “light dismiss” behavior enabled and also uses some of the built-in
entrance animations to make it slide out from the edge. Those animations, known as
transitions, are common across the OS and very highly optimized, so it’s a good idea to
use them instead of creating your own.

 There’s a little more code you need to write to create the SettingsPaneService.
In the MainPage.xaml.cs file, add the code from the next listing. You’ll likely already
have an empty OnNavigatedTo handler, so simply replace it.

private SettingsPaneService _settingsPaneService;

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 if (_settingsPaneService == null)
 _settingsPaneService = new SettingsPaneService();
}

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 if (_settingsPaneService != null)
 {
 _settingsPaneService.Dispose();
 _settingsPaneService = null;
 }
}

Notice how this code disposes of the SettingsPaneService instance when the page is
navigated away from. This will clean up that event handler in case you want to show
settings from another page.

Listing 22.9 Wiring up Settings pane handling in MainPage.xaml.cs

Add transition

Wire up
handlers

Unwire
handlers

549App settings UI and architecture
TIP For more information on the SettingsPane class, see this page on
MSDN: http://bit.ly/WinRTSettingsPane. For guidelines on settings in gen-
eral and the UX of the Settings pane, see http://bit.ly/WinRTSettingsGuide.

If you run the app right now and invoke the Settings charm, you’ll see your entry and
the page associated with it. The page doesn’t actually interact with the stored settings,
however. For that, you’ll use the markup in the following listing. Replace the
ContentPanel Grid in that markup with this listing.

<Grid Grid.Row="1" Margin="30"
 x:Name="ContentPanel">
 <StackPanel>
 <StackPanel Margin="0,0,0,10" Width="350"
 HorizontalAlignment="Left">
 <TextBlock Text="Remote Player Address"
 Style="{StaticResource CaptionTextStyle}"
 Foreground="Black"/>
 <TextBox Text="{Binding RemotePlayerAddress, Mode=TwoWay}"
 Margin="0,10,0,0"
 BorderBrush="DarkGray"/>
 </StackPanel>

 <StackPanel Margin="0,0,0,10" Width="350"
 HorizontalAlignment="Left">
 <TextBlock Text="Auto-start as Server"
 Style="{StaticResource CaptionTextStyle}"
 Foreground="Black" />
 <CheckBox IsChecked="{Binding AutoStartAsServer, Mode=TwoWay}"
 Margin="0,10,0,0"
 Foreground="Black"
 BorderBrush="#FFBFBFBF"
 BorderThickness="2"
 IsThreeState="False"
 HorizontalAlignment="Left"/>
 </StackPanel>

 <StackPanel Margin="0,0,0,10" Width="350"
 HorizontalAlignment="Left">
 <TextBlock Text="Shared Test Property"
 Style="{StaticResource CaptionTextStyle}"
 Foreground="Black" />
 <TextBox Text="{Binding SharedTestProperty, Mode=TwoWay}"
 Margin="0,10,0,0"
 BorderBrush="DarkGray" />
 </StackPanel>
 </StackPanel>
</Grid>

If you run the app now, you’ll see the settings UI controls on the settings page. Noth-
ing is persisted to the application settings storage just yet, but you can test the binding
by invoking the Settings charm, opening the page, making some changes, and closing

Listing 22.10 SettingsOptionsPage.xaml content markup

Remote player
address property

Autostart server
property

Shared test
property

550 CHAPTER 22 App settings and suspend/resume
the page. If the settings are there when you open the page again in the same app ses-
sion, you’ll know everything is working.

 A settings page is like any other page in the app, but it’s contained in a popup and
displayed only when requested from Windows. As an app developer, you tell Windows
which settings commands you offer, and Windows will let the user choose what to dis-
play. This decoupling is nice because it allows you to seamlessly plug into the standard
Settings pane while giving you, the app developer, the freedom to design your settings
UI any way you want.

 In the next section, we’ll wire up the UI and service class to the WinRT app settings
infrastructure.

22.2 Persisting and using settings
It seems obvious, but settings are only useful if they are saved, and even then, only if
they are also loaded. Right now, your app is making all of the settings changes in mem-
ory but is not persisting them to the settings stores.

 Recall that there are two different settings locations that your app will use:

■ Local
■ Roaming

All settings are per user, so local settings are per user on a single machine. Roaming
settings are per user across multiple machines. The user must be using the same
Microsoft account for the changes to roam from machine to machine.

 In this section you’ll modify the code in this app to both load and save settings
using the ApplicationData class. You’ll then take this data and modify the MainPage-
ViewModel to use it for the user’s benefit.

22.2.1 Loading and saving settings values

There are as many ways to store settings and configuration as there are programmers
building apps. I encourage you, however, to use the standard ApplicationData class
built into WinRT when building Windows 8 apps. By doing so, you can take advantage
of the support built into Windows 8 for roaming synchronization, per-user storage,
and more.

 The next listing shows the SettingsService updated to make use of the
ApplicationData class.

using System;
using Windows.Storage;

namespace SocketApp.Services
{
 public class SettingsService
 {
 public static event EventHandler SettingsChangedRemotely;

Listing 22.11 SettingsService updates to load and save settings

551Persisting and using settings
 public static string RemotePlayerAddress { get; set; }
 public static bool AutoStartAsServer { get; set; }
 public static string SharedTestProperty { get; set; }

 public SettingsService()
 {
 ApplicationData.Current.DataChanged += OnDataChanged;
 }

 ~SettingsService()
 {
 ApplicationData.Current.DataChanged -= OnDataChanged;
 }

 private static void OnDataChanged(ApplicationData sender, object args)
 {
 Load();

 RaiseDataChanged();
 }

 private static void RaiseDataChanged()
 {
 if (SettingsChangedRemotely != null)
 SettingsChangedRemotely(null, EventArgs.Empty);
 }

 private const string RemotePlayerAddressKey = "RemotePlayerAddress";
 private const string AutoStartAsServerKey = "AutoStartAsServer";
 private const string SharedTestPropertyKey = "SharedTestProperty";

 public static void Save()
 {
 var current = ApplicationData.Current;

 current.RoamingSettings.Values[SharedTestPropertyKey] =
 SharedTestProperty;

 current.LocalSettings.Values[RemotePlayerAddressKey] =
 RemotePlayerAddress;
 current.LocalSettings.Values[AutoStartAsServerKey] =
 AutoStartAsServer;
 }

 private static T GetRoamingValue<T>(string key, T defaultValue)
 {
 var current = ApplicationData.Current;

 if (current.RoamingSettings.Values.ContainsKey(key))
 return (T)(current.RoamingSettings.Values[key]);
 else
 return defaultValue;
 }

 private static T GetLocalValue<T>(string key, T defaultValue)
 {
 var current = ApplicationData.Current;

Wire up data
changed event

Unwire data
changed event

Reload data
when changed

Property
keys

Save values

Get roaming
settings value

Get local
settings
value

552 CHAPTER 22 App settings and suspend/resume
 if (current.LocalSettings.Values.ContainsKey(key))
 return (T)(current.LocalSettings.Values[key]);
 else
 return defaultValue;
 }

 public static void Load()
 {
 RemotePlayerAddress =
 GetLocalValue<string>(RemotePlayerAddressKey, string.Empty);
 AutoStartAsServer =
 GetLocalValue<bool>(AutoStartAsServerKey, false);

 SharedTestProperty =
 GetRoamingValue<string>(SharedTestPropertyKey, string.Empty);
 }
 }
}

To save a value to the settings store, it’s sufficient to update its value in the
ApplicationData class. This is done through either the LocalSettings.Values or
RoamingSettings.Values dictionary. Each entry in the settings is specified by a key of
your choice. I recommend keeping them in constants so you don’t end up with a typo
ruining your day.

 The only real complexity in this code is there to ensure that null and missing set-
tings are handled gracefully. For that reason, I added the GetRoamingValue and Get-
LocalValue functions. Those two functions first check for the existence of a value
before returning it or a specified default.

 Where will the settings first be loaded? You’ll do that in the app.xaml OnLaunched
handler. At the very first line in the OnLaunched method in App.xaml.cs, simply add in
the call to the Load method as shown here.

using SocketApp.Services;
...
protected override void OnLaunched(LaunchActivatedEventArgs args)
{
 SettingsService.Load();

 ...
}

This single line of code makes the settings available throughout the app. Make some
changes, save the settings, and then close and reopen the app to make sure they stuck.

Listing 22.12 App.xaml.cs update to load settings

Passwords

Passwords should never be stored using the normal local and roaming data stores in
the ApplicationData class. Instead, passwords should be stored using Password-
Vault and the credential locker.

Load settings
values

Load settings first

Rest of launch code

553Persisting and using settings
If you have more than one PC running with the same Microsoft account, then you can test
the roaming settings. (If you don’t have access to two machines, you’ll just need to
trust me, because roaming settings only make sense in a multiple-machine scenario.)
Deploy the app to both machines, and then debug on one of them. Set a breakpoint
in the SettingsService in the OnDataChanged method. Then, change the single
roaming setting on the second PC. Wait, and depending upon your connectivity (it
may take several minutes), you’ll see the change come through on the local PC.

 The final thing you need to do with the settings is act on them elsewhere in the
code.

22.2.2 Acting on the options

There are two options you want to use in your app. The first is the default remote
player address. The second is whether or not to autostart as a server. You have the
code to load and save the settings, but you don’t have anything to actually use them.
Let’s fix that now.

 Both of these changes can be made in the constructor of MainViewModel. Open
that file and where you see the hardcoded server address, add in a reference to the
SettingsService. Also, in the last line of the constructor, check the AutoStart-
AsServer property and call Listen as appropriate. The following listing shows the
changes in context.

public MainViewModel()
{
 ...

 //ServerAddress = "pete-surface64";
 ServerAddress = SettingsService.RemotePlayerAddress;

 ...

 if (SettingsService.AutoStartAsServer)
 Listen();
}

(continued)

The credential locker, available through the ApplicationData WinRT class, provides
a secure encryption location to store sensitive data, specifically passwords and their
related properties. Each credential, stored as a PasswordCredential instance, con-
tains the password, properties of the password, the associated resource, and the as-
sociated username. If your app connects to remote services using any sort of
credentials, it’s best to store them here.

For more information, see the PasswordVault class documentation on MSDN: http:/
/bit.ly/WinRTPasswordVault.

Listing 22.13 Updates to MainViewModel to use the stored options

Set remote
player address

Start server as last
step in constructor

http://bit.ly/WinRTPasswordVault
http://bit.ly/WinRTPasswordVault

554 CHAPTER 22 App settings and suspend/resume
With just this code in place, the app doesn’t respond to actual changes to settings dur-
ing the app’s runtime. So, setting the connection information and then trying to con-
nect won’t result in the expected outcome. To fully support this, you’ll need to add
more change notification from the SettingsService class and listen to that event
here in the MainViewModel. This change is easy enough to add following the existing
patterns. In fact, the code available online from www.manning.com/pbrown3 has this
addition implemented.

 Application settings are persisted by setting their values in a settings dictionary—
there’s no additional step. The synchronization of roaming settings is handled auto-
matically by Windows, and the storage of local settings to disk is also automatically
handled. There’s no excuse not to use these built-in classes for storing your app’s set-
tings and state.

 Now that you know how to save and maintain the app settings, let’s look at how to
respond to the app’s lifetime changes—specifically suspend and resume.

22.3 Suspend and resume
In the past, the only application lifetime events developers had to think about were
the shutdown messages sent from Windows or when the user closed the app via a
menu or button. Maybe the developer also hooked into the activation messages to
know when their app was brought to the foreground.

 In Windows 8, app lifetime is a bit more complex, because Windows manages the
life of the app based on what the user is doing and what resources are available. The
end user controls when an app is suspended, but the OS typically controls when the
app is shut down. I say “typically” because the user can use Alt-F4 or can swipe down
from the top to close an app completely. But in my unscientific observation of my two
children and my wife, no one actually does that; they simply hit the Windows key to
get back to the Start page. Granted, my sample size is small.

 When a suspended app is brought back to the foreground (either as the only app
or as a snapped or filled app), it is said to have been “resumed.” To the user, a
resumed app should look as if it were never stopped, with the exception of perhaps a
“paused” display for a game. The app should pick up where it left off.

 This suspension process allows Windows to make the most of processing time and
memory on low-power devices such as the ARM tablets targeted by Windows RT.

 In this section, we’ll look at suspend and resume in the context of the app we’ve
developed over the past several chapters. First, we’ll look at how to successfully sus-
pend the app, including any state saving or other cleanup, and then look at the code
to resume from suspension.

22.3.1 Suspending your app

Windows 8 allows up to two Windows Store apps to be visible at any one time. When
your app isn’t visible but wasn’t explicitly closed, it’s suspended. Suspended apps are
retained in memory (as long as there’s sufficient memory) but are blocked from

555Suspend and resume

 G
d

running. Nevertheless, it’s good form to stop any background threads on suspend, to
ensure a clean termination.

 Ideally, your app should save important state as it changes, on a timed schedule, or
after major events (like level completion during a game). That way it doesn’t matter
when an app shuts down, because the latest state information is always up to date. If
an app does this, saving state when suspended becomes unnecessary.

 But, at the very least, the app should save state when it becomes suspended. The
state needs to include everything the app needs to come up and look like it never
went away. That may include which page the user was on, the values typed into fields
on the form (even if they haven’t yet been validated), any downloaded information,
and more. It also needs to be sufficient to allow for cases when the app is never
resumed but is instead loaded anew in the future.

 Background and potentially longer-running asynchronous operations must be
completed using the deferral pattern. You won’t have forever, though. If the state sav-
ing takes a long time, you may be out of luck, because the app likely won’t pass certifi-
cation. For that reason, again, it’s best to save state while the app is running.

 The next listing shows the use of the deferral pattern in the OnSuspending method
in app.xaml.cs.

private void OnSuspending(object sender, SuspendingEventArgs e)
{
 var deferral = e.SuspendingOperation.GetDeferral();

 deferral.Complete();
}

The deferral pattern enables you to make asynchronous calls from within the event
handler and defer app suspension until the Complete method is called. It’s a good
idea to use this pattern by default in the OnSuspending method.

 Our app has no running state, but inside this method you’d use the Application-
Data class, or another method, to store things like the page the user is on, items that
are selected in a list, current score and level, and the like. Don’t store things that are
worthless when the app is resumed. For example, you wouldn’t want to store the loca-
tion of the other player because that would be irrelevant when the app is brought
back up.

22.3.2 Resuming activity

When the app comes back to life after a suspend operation, you’ll need to reload all
the state information previously saved. You’ll also need to restart any background
operations, start sending network messages again, and so on.

Listing 22.14 The deferral pattern and suspending

Suspending
event

et the
eferral

Do work

Complete
the deferral

556 CHAPTER 22 App settings and suspend/resume

Che
i
a
r

 This is simply done by handling the appropriate activation kinds in the OnLaunch
method in App.xaml.cs.

 But if it uses the same launch method, how do you know if the app was shut down?
This is provided in the LaunchActivedEventArgs instance passed in. Inspect the value
of PreviousExecutionState and load settings or perform other operations as appro-
priate. This enumeration has five values, as shown in table 22.1.

In this case, if the app is anything but Running, you should load state and settings.
State might include things like what page the user was on, which items in a list were
selected, and so on. Your app has no state, but it does have settings. The following list-
ing includes the updated OnLaunched method with this check in place.

protected override void OnLaunched(LaunchActivatedEventArgs args)
{
 Frame rootFrame = Window.Current.Content as Frame;

 if (args.PreviousExecutionState != ApplicationExecutionState.Running)
 {
 SettingsService.Load();
 }

 if (rootFrame == null)
 {
 rootFrame = new Frame();

 if (args.PreviousExecutionState !=
 ApplicationExecutionState.Terminated)
 {
 }

 Window.Current.Content = rootFrame;
 }

Table 22.1 The possible values of the PreviousExecutionState property of the
 LaunchActivatedEventArgs

Value Description

NotRunning The app was simply not running.

Running The app was running and not suspended.

Suspended The app was suspended and is now being activated.

Terminated The app was suspended and then the user’s session closed normally. (They logged
out of Windows, shut down the machine, and so on.)

ClosedByUser The app was closed with Alt-F4, or a swipe down from the top, or manually from the
list of running apps.

Listing 22.15 UpdatedOnLaunched method that handles settings loading

ck that
t’s not
lready

unning
Load settings

Default check for
termination

557Summary
 if (rootFrame.Content == null)
 {
 if (!rootFrame.Navigate(typeof(MainPage), args.Arguments))
 {
 throw new Exception("Failed to create initial page");
 }
 }
 Window.Current.Activate();

 DispatcherHelper.Initialize();
}

The only new code in this method is the execution state check near the top of the
method. Earlier in this chapter, the SettingsService.Load method was put here, but
without the benefit of this check.

NOTE The current default project templates include a check for
ApplicationExecutionState.Terminated, saying you need to reload state
for all but that case. For many uses, this isn’t really correct. You may want to
load state when suspended or terminated but not load it when the app is run-
ning or closed by the user. Think through your app state and pick the option
that makes sense for your use cases.

Application state can be more than just settings. It’s about making the user feel like
the app was still there, behind the current app, even though it may have been put in
suspension. To do this correctly requires tracking a lot of state for the app and persist-
ing it throughout the lifetime, but doing a final push on app suspend.

 Your app doesn’t have any state data, although it could persist store and connec-
tion information if that makes sense. Certainly a single-player local app would persist
score, ship position, and more.

 Regardless of how you treat app state or app settings, Windows notifies you of the
lifetime of the app through the OnLaunched and OnSuspending methods. Through
these two methods you can load and save whatever you need to ensure the best experi-
ence for your users. For more information on launching, suspending, and resuming
apps, see http://bit.ly/WinRTAppLifetime.

22.4 Summary
Windows 8 provides a new standardized approach for the UI for app settings. There’s
a common location for the storage and a common class to use to maintain settings
(ApplicationSettings), regardless of whether they’re local or roaming. The settings
UI is something you have control over, but the approach for displaying it is also stan-
dardized in the Settings pane.

 Application settings and application state are important pieces of data that the app
needs to maintain throughout its lifetime. Save your app state as the app is running,
however, and don’t simply wait for app suspension. This will not only save time, but it
will also enable better recovery from crashes, dead batteries (on tablets/laptops), and

558 CHAPTER 22 App settings and suspend/resume
tripped-over power cords on desktops. App settings should be saved immediately in
the Settings pane.

 With the new app lifetime model in Windows 8, it’s essential to understand how to
use the suspend and resume notifications to manage your app. Slow app suspend or a
poor transition when resuming both really stand out to app users and to the app certi-
fication reviewers.

 In the next chapter, we’ll wrap up the book with a look at that final step before
your users get the app: deployment and the Windows Store.

Deploying and
selling your app
In most development platforms we write about, the topic of deployment is more a
discussion of the mechanical process of building a setup package of some type,
checking dependencies and framework versions, putting the download on a web-
site, and then letting people have at it. For Windows Store apps, the deployment
process is both simpler and more important.

 We’re not going to talk much about coding or design (well, just a little) in this
final chapter but more about getting your app out in front of your audience
through the Windows Store. With the exception of the Windows Phone, this is new
territory for Microsoft and for Microsoft developers; we’ve never before had a
proper unified purchasing location for apps on our PCs. We’ve also never had the
kind of opportunity that the Windows Store represents; getting an app into a
retailer’s product catalog was just not possible for most individuals and small com-
panies, and one-off sales through personal websites rarely panned out.

This chapter covers
■ Testing for certification
■ Sideloading for testing
■ Listing in the Windows Store
■ Enabling trial mode
559

560 CHAPTER 23 Deploying and selling your app
 In this chapter you’ll first learn how to test the app against the Windows Store per-
formance, API, and other runtime criteria using the Windows App Certification Kit
(WACK) tool. Then, because apps should be tested, no matter how simple, we’ll look at
how to provide install packages for your test group to use to run your app, without
involving the Windows Store. Then, before we look at how to list the app in the Win-
dows Store, we’ll take a quick peek at how to increase your sales by enabling trial mode.

23.1 Testing for certification
The process of submitting your app to the Windows Store doesn’t start when the app
is complete; it starts long before that, during your own internal testing and develop-
ment cycle, when you run the WACK tool.

WACK contains a subset of the certification process used by the Windows Store. For
an app to proceed through to some of the other internal Windows Store checks, it must
first pass the WACK test. Because this is an automated test and can be run by developers,
Microsoft has provided it as a standalone tool, installed as part of the development tools
install. Figure 23.1 shows WACK installed and present on the Start page.

WACK will only test apps that have been installed on the PC. When testing your
under-development app on the development PC, ensure you’ve built and deployed it
locally first, or else you may test against an older version. This is especially true if
you’re deploying and debugging in the Simulator instead of the main PC.

 Double-click the WACK icon to launch the app. It will require administrator privi-
leges and will run as a desktop app. When it first comes up, you’ll be prompted to pick
a type of app to test, as shown in figure 23.2.

Figure 23.1 The WACK tool is installed with the Windows Store app development tools.

561Testing for certification
Once you select the first option, you’ll be prompted to pick an installed app. As long
as you have a valid developer license, you can run the WACK test against any app in the
system; it doesn’t reveal any sensitive data. Figure 23.3 shows the WACK test run
against the PhotoBrowser app created across several earlier chapters.

Figure 23.2 The first page of the WACK tool prompts you to pick the type of app to
test. WinRT XAML apps will be the first option.

Figure 23.3 The second page of the WACK tool prompts you for the specific app
to test. From there, click Next, and the test will run. This can take several minutes,
especially for a complex app; you’ll need to leave the app and PC alone during that
time, because performance and other metrics will be captured. Finally, you’ll see the
results of the test. It failed, as you can see. Explanation is in the text.

562 CHAPTER 23 Deploying and selling your app
Once the test completes, you’ll be prompted to save the XML file with the results. You
can then click the link to view them in Internet Explorer. In my case, the test failed
and for a very good reason: The app was compiled in debug configuration rather than
release. Figure 23.4 shows the results.

 WACK will rate the app as Passed, Passed with Warnings, or Failed.

■ Failures must be addressed before submitting the app to the Windows Store.
The first thing the process does is run the app through a version of this tool.

■ Warnings should be addressed, although they will most likely not cause the app
to be automatically rejected.

■ Passed means you are now ready to submit the app to the Windows Store. Note
that this does not guarantee that the app will be accepted, simply that it passed
the basic tests.

The results you get out of WACK are actionable, if not always crystal clear. WACK does
an analysis of the app binaries and runtime performance and lets you know if you
have manifest problems, performance issues, crashes, forbidden API calls, and more.
Visual Studio takes care of many of these for XAML apps by default.

Running WACK from the command line

Like most Visual Studio build-related tools, WACK can be run from the command line.
The application name is appcert.exe and on my machine is located in C:\Program Files
(x86)\Windows Kits\8.0\App Certification Kit\.

Figure 23.4 The test results from WACK. The PhotoBrowser app failed because it was compiled in
debug configuration, not release.

http://bit.ly/Win8StoreAccount
http://bit.ly/Win8StoreAccount
http://bit.ly/Win8StoreAccount
https://appdev.microsoft.com/StorePortals/
https://appdev.microsoft.com/StorePortals/
https://appdev.microsoft.com/StorePortals/

563Sideloading for testing purposes
You can also have WACK run automatically when you create an app package for distri-
bution to the store or for sideloading to test machines.

23.2 Sideloading for testing purposes
Although they tend to be smaller than full-blown desktop apps, Windows Store apps
should still follow the same development process and lifecycle. For many of us, that
includes testing by a separate team. For others, you may at least want to send the app
to a friend to try out on their machine or install the app on another of your own per-
sonal machines.

 Throughout my work leading up to the general availability of Windows 8 in Octo-
ber 2012, I received a lot of apps from partners that I tested and provided feedback
on. They didn’t supply them to me in source form—I was instead handed a package
that could be installed using Windows PowerShell.

Sideloading is the process of installing Windows Store apps without going through
the Windows Store. Some approaches, such as enterprise sideloading, are a primary
way of deploying apps. The other more typical approach, sideloading for testing (also
called developer sideloading or just sideloading), is a way to temporarily install an app
for testing purposes.

 Developer sideloading is only for testing with other trusted people and machines.
In order to run a sideloaded package, you must have a developer account and you
must accept and trust the certificate of the developer. For the average end user, this
could be a security problem (the sideloaded app could be making disallowed API calls,
but if you trust it, it will be allowed to do so). For testing inside an organization or
group, it is acceptable.

 In this section, you’ll package the app for sideloading (or other deployment),
learn how to get a developer license without using Visual Studio, and then install the
sideloaded app from the command line.

23.2.1 Packaging an app for sideloading

When you compile and deploy in Visual Studio, no app package is created. This is dif-
ferent from Silverlight and other technologies, which always created the app package

(continued)

You’ll need to run the app from an administrator command prompt. If you run appcert
/? you’ll see examples of the command-line arguments. To test a Windows Store app
such as ours, the command line would appear as follows (all on one line):

appcert test –apptype windowsstoreapp
 –packagefullname [full appx name]
 –reportoutputpath [xml file name]

For more information on running the WACK tool from the command line and interpreting
the report data, see http://bit.ly/Win8WACK.

http://bit.ly/Win8WACK

564 CHAPTER 23 Deploying and selling your app
regardless. For Windows 8, the app package is a distribution mechanism only, not the
final shape of the app deployment.

 In order to deploy the app to the Windows Store, or to a tester for sideloading, you
must explicitly package the app. From within Visual Studio, this is easily done from
the Store submenu of the Project menu, as shown in figure 23.5. Make sure you have
the project selected before doing this.

 When you click the Create App Packages menu item, you will be presented with a
wizard. By default, it will assume you’re packaging for the Windows Store. To create
the sideloading package, you need to select No on the first page of the wizard, as
shown in figure 23.6.

 Click Next on the wizard, and you’ll be presented a page that lets you pick a config-
uration to include in the package. If the app has no C++ components (like SQLite, for
example), the Neutral package is the best choice. This package will work on all CPUs.
If you do include C++ components, you must build separate packages for the different
architectures, because C++ is processor-specific. That’s both a source of pain for devel-
opers as well as a reason why it performs so well.

Figure 23.5 Menu option for creating an app package for sideloading or for submitting to the store

Figure 23.6 Select No if you want to create an app package for sideloading or Yes if
you intend to create a package for submitting to the Windows Store.

http://bit.ly/Win8ChooseAppImages
http://bit.ly/Win8ChooseAppImages

565Sideloading for testing purposes
Figure 23.7 shows the page with the Neutral package selected. Note also that I had to
change its configuration to Release or else I wouldn’t be able to create the package for
deployment.

 Click Create and the wizard
will complete, dropping a num-
ber of files into the folder speci-
fied at the top of the last wizard
page. Figure 23.8 shows the files
and their purposes.

 When you distribute the
app, zip up everything in this
folder and send it along to the
tester. They’ll run the .ps1 file,
but before they do that, they
must get a developer license.

23.2.2 Getting a developer license without Visual Studio

In order to sideload, the user who will install the app on the test machine must have a
valid and enabled developer license. They do not need a Windows Store account, just
the same type of developer account that enables one to develop in Visual Studio and
run locally.

 When a developer first creates a Windows 8 app in Visual Studio, they are
prompted to create a developer license. Of course, testers don’t need to have Visual
Studio installed. But without Visual Studio, how do they get the license?

Figure 23.7 Be sure to pick an appropriate processor architecture and configuration.
For most C# XAML apps, without C++ components, picking Neutral will be the best
choice. If everything is disabled, you’ll need to go back and select the project from the
Solution Explorer before opening this dialog.

Figure 23.8 The files created by the packaging wizard. If
you’re missing some of these files, you may have forgotten
to check the option to include public symbol files. That
option isn’t required but can be helpful. You’ll also receive an
appxupload file, which is what is used to send the app to the
Windows Store.

http://bit.ly/Win8StoreCertErrors
http://bit.ly/Win8StoreCertErrors
http://bit.ly/Win8AppSubChecklist
http://bit.ly/Win8AppSubChecklist

566 CHAPTER 23 Deploying and selling your app
The first step is to have a valid Microsoft account. For most users, this will be the
account they use to sign into the PC. If the user is using a local account, they can
switch to a Microsoft account.

 Once they have a valid Microsoft account, they can open a command prompt and
run any of the following PowerShell scripts from an administrator command prompt:

■ Show-WindowsDeveloperLicenseRegistration will invoke the Windows UI for
obtaining a license. This is what you need to choose to obtain a license.

■ Get-WindowsDeveloperLicense will tell you the expiration time and whether or
not the license is valid. This command is purely informational.

■ Unregister-WindowsDeveloperLicense will remove the developer license from
the machine. Warning: don’t use this unless you want your apps to stop working.

Figure 23.9 shows the command for obtaining a license being run from within Power-
Shell in an elevated command prompt.

 Once the user has the Microsoft account and the developer license, they are able
to install the sideload package.

TIP In this chapter I cover sideloading for testing purposes. There’s a more
involved and secure process for sideloading within the enterprise. For infor-
mation on enterprise sideloading, see this TechNet page: http://bit.ly/
Win8EnterpriseSideLoad.

23.2.3 Installing the sideload app package

Installing a sideload package is not the same as downloading and installing an app
from the store. You have to run a Windows PowerShell script, install a certificate, and
more. It’s not an end-user-friendly install by any means.

Figure 23.9
Invoking the license
acquisition UI to
obtain a developer
license

http://aka.ms/StoreSupport
http://aka.ms/StoreSupport
http://bit.ly/Win8EnterpriseSideLoad
http://bit.ly/Win8EnterpriseSideLoad

567Enabling trial mode
 Simply copy the app package files to the destination machine and double-click the
.ps1 file. You’ll be prompted to accept the certificate. If you’re not logged in with a
Microsoft account, the process is more complex, so simply keep the machine logged
in using the Microsoft account when running the PowerShell script.

NOTE In some cases, especially with apps that were written in C++ and then
distributed along with the dependency folders, the installation will fail. Delete
the dependency folders and repeat the installation.

Once the app package is installed, it will behave like any other app, but it won’t have
any links to the store for operations such as rating or checking for updates. What’s
there is sufficient for testing, which is what we’re trying to do here anyway.

 Before you consider putting the app in the store, it’s worth looking at a technique
for increasing adoption of your app: trial mode.

23.3 Enabling trial mode
Most users want to give a new app a spin before they commit to purchasing it. There’s
an interesting psychology where consumers who won’t even bat an eye over $5 for a
coffee will think long and hard about spending $1.49 for an app.

 Trial mode enables you to offer a subset of functionality or full functionality for a
limited time. Except in the case of some well-established brands, paid apps that also
have a trial mode tend to sell far more than paid apps that offer no try-before-you-buy.
Unlike other platforms, trial mode is built into the store and platform architecture;
you don’t need to create separate trial and full apps.

 The trial period (currently perpetual, 1-, 7-, 15-, and 30-day options) is set in the
Windows Store when you pick the price for your app.

 To use trial mode, you must work with licensing objects from code. In this section,
we’ll first look at how to create mock license data for offline testing. Then, we’ll look
at the functions you’ll use to check the license state. Finally, we’ll see how you can
enable a purchasing experience from directly inside the app. The listings in this sec-
tion aren’t meant to be added to any example app we’ve worked on so far but rather
are meant to give you an idea of which classes to use.

23.3.1 Creating the mock license data for testing

There are two objects that come into play when working with trial mode: CurrentApp
and CurrentAppSimulator. To simulate licensing scenarios for testing purposes, use
the CurrentAppSimulator class rather than the CurrentApp class. CurrentApp goes to
the Windows Store for license resolution but CurrentAppSimulator uses a local XML
file to simulate license data. Both classes are located in the Windows.Application-
Model.Store namespace.

 When you use the CurrentAppSimulator, you’ll need to create an XML file named
WindowsStoreProxy.xml that contains the license data. Place this in the \Micro-
soft\Windows Store\ApiData subfolder tree of your app’s installation folder (you’ll

568 CHAPTER 23 Deploying and selling your app
likely need to create the entire folder structure). The format for this file is docu-
mented at http://bit.ly/Win8CurrentAppSimulator. A simple example of the license
file is shown in listing 23.1.

<?xml version="1.0" encoding="UTF-16"?>
<CurrentApp>
 <ListingInformation>
 <App>
 <AppId>7bb30b0f-fd80-4ea2-a0e6-c619d20c83fe</AppId>
 <LinkUri>http://apps.windows.microsoft.com/app/
 ➥ 7bb30b0f-fd80-4ea2-a0e6-c619d20c83fe</LinkUri>
 <CurrentMarket>en-US</CurrentMarket>
 <AgeRating>7</AgeRating>
 <MarketData xml:lang="en-us">
 <Name>Full app license</Name>
 <Description>The full license for this app.</Description>
 <Price>1.49</Price>
 <CurrencySymbol>$</CurrencySymbol>
 </MarketData>
 </App>
 </ListingInformation>
 <LicenseInformation>
 <App>
 <IsActive>true</IsActive>
 <IsTrial>true</IsTrial>
 <ExpirationDate>2013-05-19T05:00:00.00Z</ExpirationDate>
 </App>
 </LicenseInformation>
</CurrentApp>

The URL to the app is subject to change after the official release of Windows 8. The
app’s AppId is pulled from the Package Name field in the appx manifest designer
packaging tab, as shown in figure 23.10.

 The license file can be far more complex, handling licenses for individual app fea-
tures, in-app purchases, and more. The MSDN page on the schema has information on
how to handle the licensing for these features.

 Don’t leave the CurrentAppSimulator calls in your app when you submit it to the
store or else it will fail certification. Ensure you use CurrentApp instead.

Listing 23.1 An example license file

Your URI will be
different, of course

Figure 23.10 The package name in the appx manifest designer

http://bit.ly/Win8CurrentAppSimulator

569Enabling trial mode
23.3.2 Checking the license state

During app startup, you’ll want to check the app’s license state. This is done by getting
the LicenseInformation instance via the property by the same name on the Current-
App or CurrentAppSimulator object. Once you have the license information object,
you can check to see if the app is running in trial mode or not and, if so, when the
trial mode expires. Listing 23.2 shows an example of this in action in app.xaml.cs. You
don’t need to put this code anywhere; it’s only for illustration.

private void EnableFullMode()
{
 //...
}

private void EnableTrialMode()
{
 //...
}

private LicenseInformation _licenseInformation;
private void LoadLicenseInformation()
{
 _licenseInformation = CurrentAppSimulator.LicenseInformation;

 _licenseInformation.LicenseChanged += OnLicenseChanged;
}

private void OnLicenseChanged()
{
 if (_licenseInformation.IsActive)
 {
 if (_licenseInformation.IsTrial)
 {
 EnableTrialMode();

 Debug.WriteLine("Trial mode license Expires on " +
 _licenseInformation.ExpirationDate.ToString());
 }
 else
 {
 EnableFullMode();
 }
 }
 else
 {
 // error
 }
}

This example shows how you could check at startup and also register for the
LicenseChanged event, which will tell you when the license has expired or if the user
has updated the license while the app is running.

Listing 23.2 Checking the app’s license state

License
information

Get license information
from simulator

Check for license
state change

Check if active

Check if trial

Get trial
expiration

570 CHAPTER 23 Deploying and selling your app
 If the license changes during the runtime of the app, you don’t need to handle
that. It is fine store-wise if you check the license only on startup. But if you encourage
the user to purchase licenses while running your app, you’ll want to check for the
updated license just to provide for a better user experience.

 The user may purchase the full version of your app through the store or through
an app-supplied UI. If you want to increase the chance the user purchases your app,
providing an in-app reminder to purchase may work, as long as it isn’t a constant nag.
Should you decide to go this route, you can use the CurrentApp.RequestApp-
PurchaseAsync method.

 For any license to be valid, you’ll need to first list the app in the Windows Store.

23.4 Listing your app in the Windows Store
So, here we are, the place this entire book has been building up to: the Windows
Store. Sure, some of you may use enterprise sideloading or other mechanisms to get
your apps in front of users, but if other platforms are any indicator, the vast majority of
apps will be those purchased or downloaded from the Windows Store.

 The specific steps required to register for a store account and list your app in the
store are a bit of a moving target as the store experience is streamlined and improved.
For that reason, I’ll give you the high-level outline in this chapter and provide links to
the appropriate MSDN reference pages for more detail.

 The process for listing the app starts with getting a store account. Once you have that,
you can reserve an app name, get all the listing items in order, and then list the app.

23.4.1 Getting a Windows Store account

Windows Store accounts are available for individuals and businesses. Business
accounts cost more but have additional capabilities, such as the ability to list desktop
apps, the ability to request the Documents Library capability, and the ability to have
multiple accounts associated with the store.

 By now you should have a Microsoft account. It’s not required to log into Windows,
but it is required for getting a developer account as well as for getting a Windows
Store account. I’m also going to assume you’re registering for an individual Windows
Store account as opposed to a business account. Before registering, get your credit
card handy. Every Windows Store account, regardless of type, must be registered with
a credit card.

 The steps for registering for a Windows Store account, given a variety of different
scenarios, are all covered on MSDN: http://bit.ly/Win8StoreAccount. The Windows
Store is constantly updated, so I’ll refer you to that link for the most up-to-date steps.

23.4.2 Reserving an app name

As soon as you know the name of the app you’ll be working on, you should reserve
that name in the store. Your app doesn’t need to be finished for you to reserve the
name. Reserving a name holds it for a set period (currently one year), enabling you to

571Listing your app in the Windows Store
ensure no one else picks that app name. For example, I have three app names
reserved in the store. Now I just need to get coding!

TIP Don’t reserve app names that are copyrighted or trademarked by other
companies. For example, if you name your app “Facebook,” expect to get
your app taken down in the future when Facebook files a complaint. Addi-
tionally, names that are likely to trigger a complaint are, to the best of my
knowledge, never featured or showcased in the Windows Store.

To reserve an app name, go to the Windows Store dashboard, https://appdev.microsoft
.com/StorePortals/, and select the option to submit an app. You’re not actually sub-
mitting anything at this point, just reserving the name. Figure 23.11 shows the page on
the Windows Store dashboard.

 Your name can be the same across all languages, or you can reserve names for dif-
ferent languages as well. The primary name must, however, match the name in the
appx manifest, or else the store will reject the app submission.

23.4.3 Submitting the app for review and approval

Before you can upload your app, you’ll need to provide additional selling details. This
is what you’ll need to figure out before you submit your app for sale:

■ Price tier—Apps may be free or as inexpensive as $1.49. Pricing is available in
$0.50 increments up to $4.99 and $1 increments up to $49.99. Beyond $49.99,
the scale increases quickly to a maximum price of $999.99. Although allowed,
not many $999.99 apps are going to sell in the Windows Store.

■ Trial period—For apps that aren’t free, you may pick a trial period ranging from
perpetual to 1 day, 7 days, 15 days, or 30 days in duration.

■ Markets—Be smart about where you make your app available. In some cases, an
app may not be appropriate for certain markets. But pick as many markets as
you can support.

■ Release date—You can submit your app prior to a specific release date. The
optional release date is the earliest date on which the app will be made available.

Figure 23.11 Reserving the name for an app. Make sure the app name matches the name in
the appx manifest.

https://appdev.microsoft.com/StorePortals/
https://appdev.microsoft.com/StorePortals/

572 CHAPTER 23 Deploying and selling your app
■ Category—When choosing a category, use the links available on the submission
page to help you pick the correct one. In addition, look at existing apps in the
store and see how they’ve been listed.

■ Hardware requirements—This is primarily for games. If you need a specific
DirectX feature level or minimum system RAM, you can specify that here.

■ Accessibility—If you meet accessibility guidelines, check this box so your app can
be marked as being accessible.

■ Age rating—All apps must be rated by age: 3+, 7+, 12+, or 16+. This information
will be used to filter store results and to ensure apps target appropriate audi-
ences. The ratings page has a good description for each age range including
expectations for each. Games have additional ratings requirements also speci-
fied on the same page.

■ Cryptography—If your app uses cryptography, this needs to be listed in the store.
Apps that use cryptography aren’t available in all markets.

■ Description—Each app must have a description. You want this to be informative.
This is what users will read when they want additional details about your app
prior to downloading or purchasing it. This is the one place where most ama-
teur apps fall down. When deciding whether to download your app, users typi-
cally look first at the screenshots and then at the description and reviews. You
want a good, solid description that sells the features of your app and explains,
up front, any limitations. For example, if your app is about a specific TV show,
you’ll want to mention up front that you can’t watch the show through the app.
Otherwise, you’ll get a ton of one-star reviews saying they expected to be able to
watch TV. Also keep in mind that the description factors into search, so you
want to have the correct and appropriate terms in your description.

■ Screenshots—Visual Studio will help you capture screenshots. Screenshots must
be a minimum of 1366 x 768 (portrait or landscape) and under 2 MB each. You
should show the main features of your app, with (if appropriate) meaningful
data. The screenshots are almost always the first things a user looks at in the app
listing, so make them count! Don’t make the first screenshot the Splash screen
for the app; make sure it shows your app in action. If your app is a drawing app,
take a screenshot with some art from someone with artistic talent. If it’s a music
or video app, take the screenshot from the most dynamic part of the piece.

■ Promotional images—There are also a number of promotional images you’ll want
to provide. For more information on choosing your app images and providing
assets that will maximize your exposure in the store, see MSDN: http://bit.ly/
Win8ChooseAppImages.

■ Privacy policy—This is one detail that is often forgotten. Prior to the Windows 8
launch, I saw more apps rejected for a missing privacy policy than for many
other reasons. If your app collects data that has the potential to be considered
personal information (webcam images, contacts information, documents
library access, and so on) you must provide a privacy policy explaining what you
do with this information.

http://bit.ly/Win8ChooseAppImages
http://bit.ly/Win8ChooseAppImages

573Summary
For the full app submission checklist, please see this MSDN page: http://bit.ly/
Win8AppSubChecklist.

 Once you have all of the items completed, you can upload your appx and submit
the app officially for certification. To check the status of the certification process, click
the Status link below the app summary. If your app has failed certification, please see
this MSDN link for information on resolving certification errors: http://bit.ly/
Win8StoreCertErrors.

 The Windows Store submission process has a great interface that explains each
step as you provide the required information for that step. When greater detail is
needed, the steps link to appropriate pages on MSDN. If you’ve run the local Windows
App Certification Kit tool, provided the necessary assets, and have an app that pro-
vides value to users, you should find the Windows Store experience pleasant and easy
to understand.

23.5 Summary
The ultimate goal of most Windows 8 app developers is to get their apps into the store
and either make money from ads or app purchases or gain fame and peer respect
from free downloads. Or maybe it’s to get the apps out there to benefit the rest of
mankind. Whatever your motivation, getting apps into the hands of users is the goal.

 All apps, regardless of whether they are free, ad funded, or purchasable, require
testing through the WACK tool. Before going too far down a path using a new API or

Why did my app fail on resubmission?

The Windows Store is constantly improving the listing process and the certification
requirements. Approval of an earlier submission isn’t a guarantee of approval of a
subsequent submission, even if the code and binaries are identical. You may run afoul
of updated Windows Store certification policies. As an app developer, you’re respon-
sible for always adhering to the latest version of the Windows Store certification pol-
icies in effect when you submit the app.

Another cause is that a different tester may catch a problem an earlier tester missed.
Additionally, testers are human, so gray areas may be interpreted differently between
testers. We do our best to ensure that they all make the same decisions (something
that will continue to improve as the store matures), but in the end, when asked to
judge certain criteria, people will do it differently.

If the Windows Store certification team rejects the submission because of an app
crash, be sure to have additional friends, family, and other guinea pigs test the app
for you. An app may be smaller than a traditional desktop application, but because
of the nature of user reviews and ratings, the stakes are much higher. You want a
solid app from day one.

If you feel your app was unfairly or incorrectly rejected, you can open a ticket with the
Windows Store team and have them help you work toward resolution. For more infor-
mation on support, please see http://aka.ms/StoreSupport.

http://bit.ly/Win8AppSubChecklist
http://bit.ly/Win8AppSubChecklist
http://bit.ly/Win8StoreCertErrors
http://bit.ly/Win8StoreCertErrors

574 CHAPTER 23 Deploying and selling your app
technique or pulling in some native code, be sure to run the WACK tool to verify that
you’re playing nicely within the sandbox. It will test performance, proper API usage,
and more. It won’t guarantee that your app will make it into the store, but a failure
will certainly guarantee it won’t.

 Once you’ve verified that the app passes the basic tests, you may want to send it to
a tester to run through and verify that everything is working as it should. You can do
this without involving the Windows Store by using sideloading. Sideloading is some-
thing only users who trust each other should do, because it involves accepting certifi-
cates that, in the wrong hands, could do a good job of letting malicious software onto
a device.

 Finally, after your testing team has given you the OK, you’re ready to list the app in
the Windows Store. You’ll use your reserved app name, supply the privacy policy (if
appropriate), pick the languages and correct stores, set prices, and then submit it for
approval. The Windows Store team will run a version of the WACK tool and perform a
number of tests before listing the app. Once listed, it’s available for purchase.

 One way to help adoption and purchases is to provide trial versions of the app. As
a developer, you have complete control over what constitutes a trial version: limited
time, limited functionality, or perhaps a bit of both. Regardless of which approach or
approaches you take, having a trial version in the Windows Store will definitely help
adoption of your app. Having balanced and appropriate trial limitations will entice the
user to purchase the full version, without irritating them into throwing the app away.

 With the app now in the store, listed and available for download, and the cash roll-
ing in, you can take a bit of a breather before updating the app with enhancements or
coming up with the next big idea.

 And with this, we’ll conclude the chapter—and this book. Together we’ve covered
a lot, but we’ve only scratched the surface of what’s possible in Windows. Thank you
for sticking with me for this journey. Now, go build awesome apps.

index
A

accelerometer input
AccelerometerInputService class 524–525
code-behind for 525–526
events for 526
locking screen orientation 526–527
mechanism for 523

AccelerometerInputService class 524–525
accounts, Microsoft 3
activating apps, using pinned tiles 281–284
active animations 59
ActualHeight property, UIElement class 76
ActualWidth property, UIElement class 76
Add Service Reference dialog 391, 400
AddMessage method 419, 421
AdmiralAppBar control 249
alignment, in Grid 99–101
Allow Any User to Debug option 17
AllSmallCaps 164
animations 59
app bar 31

buttons for 432–433
controls in

adding buttons 246–250
button commands 250–257
overview 246
styling buttons 246–250

in PhotoBrowser example app 243–246
in snapped view state 314–317
menus in 261–263
overview 241–243
pinning 258–259
popups for 261–263
using GridView in 259–261
visibility of 258–259

app manifest, declaring search intention 332–333
app name, reserving 570–571
app settings

acting on options 553–554
creating infrastructure for 538–542
creating UI for 542–550
loading 550–553
saving 550–553

App.xaml, modifying for Share contract 330–332
AppBar button 405
AppBarButtonStyle 248
AppContainer 39
application resources 123
ApplicationData class 360–361, 537–538, 550, 552,

555
ApplicationExecutionState.Terminated 557
ApplicationPageBackgroundThemeBrush 9
ApplicationSettings class 539
ApplicationViewStates 309
AppTextBackground 126
AppTextColor 126
architecture

for Windows 8 apps
deployment 39–40
driver access model 40–41
overview 36–38
sandbox 38

of chat app 441–442
args class 105
args property 364
arrange pass 70–73
ArrangeOverride function 71
article element 130
Asteroids-inspired game

overview 465–466
Player model class 483–485
575

INDEX576
Asteroids-inspired game (continued)
PlayerLocation class 483–484
players in

collection of 486–488
connecting to message service 490–491
displaying 488–489
testing collection of 489–490

Ship user control 517
ships in

adding label 475–476
creating ship shape in Blend 472–475
creating UserControl 471–472

TCP message service for
IMessageService interface 491–493
reading location information 495–497
sending location information 493–495

testing 480–481, 497–498
user controls for

enabling rotation 477–479
overview 476–477
setting color 479–480

user interface for
orientation 469–470
overview 466–468
play field area 468
view states 466–470

async keyword 12, 270, 373–374, 381
asynchronous operations

IAsync* interfaces
cancelling operation 380–381
getting progress updates 378–379
long-form asynchronous operations 376–378
overview 373–374
using await keyword 374–375

importance of 371–373
overview 369–371
Task Parallel Library

basic task operations 382–383
cancelling task 384
converting IAsync* to 386
converting to IAsync* 385
overview 381–382

ATAN2 function 514–515
attached properties

for custom panels 105–107
in XAML 61–62

AutoStartAsServer property 553
availableSize parameter 71
await keyword 12, 270, 372–374, 383
awaitable function 373–375
AwesomeButton control 54

B

Background property 130
BCL (Base Class Library) 37

binding
change notification 186–189
DataContext property 189–190
modes for 185
of UI elements 194–196
overview 183–184
source 184–185
target 184–185
using value converters 207–209
with PasswordBox 192–193
with TextBox 191–192

BindServiceNameAsync function 437
bitmap images 120, 137–139
Blend for Visual Studio 472–475
BooleanToVisbilityConverter class 208
BottomAppBar property 246
brushes

ImageBrush 118–120
LinearGradientBrush 116–118
overview 113
SolidColorBrush 113–116

BuildCategoryPinTile function 279
ButtonBase control 200
ButtonInTheControl 67–68
buttons

for app bar 432–433
adding 246–250
commands for 250–257
styling 246–250

in MVVM pattern
CheckBox 207
HyperlinkButton 203–204
overview 200–203
RadioButton 204–207

bytesRetrieved property 378

C

C command 136
C++ projects, for Xbox 360 gamepad input

compiling 534–535
creating 527–529
deploying 534–535

CacheMode 83
caching, subtrees for performance 83
CalculateNewLocation method 504
CalculateOrbitSpacing function 108
CameraViewModel class 178, 188, 205
CancellationToken 384
CancellationTokenSource 384
cancelling

asynchronous operations 380–381
tasks 384

CanGoBack property 234
CanPostNewMessage function 202, 434

INDEX 577
canvas
overview 87–88
positioning in 88–89
sizing child elements 91
Z ordering in 89–90

Capitals property 163
Cascading Style Sheets. See CSS
category browser page, PhotoBrowser example

app 232–235
CategoryBrowserPage function 280–281, 308, 310,

322
CategoryBrowserPage.xaml.cs file 234, 245, 324
CategoryBrowserViewModel class 232, 243, 250,

257, 279, 297, 322
CategoryPinningService class 277
certification, testing apps for 560–563
change notification, for binding 186–189
character spacing, for text 150–151
CharacterSpacing property 150
charms bar 31
chat app

architecture of 441–442
ChatMessage class 429, 442–444
connecting to server

connecting to endpoint 440
overview 439–441
sending data 440–441

IMessageService interface 444–447
listening for connections 434–439
MainViewModel class

connecting to server 455–456
event handlers 457–458
listening for connections 456
overview 426–428
sending chat messages 456

TcpStreamMessageService class
listening as server 449–450
opening and closing connection 448–449
overview 447–448
processing messages 452–453
sending messages 450–452

UdpMessageService class
connecting to another machine 461–462
listening for connections 460
overview 459–460
parsing messages 462–463
receiving messages 462–463

user interface
app bar buttons 432–433
overview 429–430
resources for 431
styles for 431
XAML for 430–431, 433–434

ChatDataService class 177
ChatMessage class 185–186, 191–192, 429, 442–444

CheckBox, in MVVM pattern 207
child elements, sizing

in canvas 91
in StackPanel 93

ClearType 143
CLI (Common Language Infrastructure) 41
CLR (Common Language Runtime) 37
CoCreateInstance 42
code-behind, for Twitter integration 11–13
CodePlex page 174
collection, players in Asteroids-inspired

game 486–488
CollectionView 307
CollectionViewSource 219, 229
Column property 98
columns, defining for Grid 95–97
ColumnSpan property 98
COM (Component Object Model) 41, 319

error reporting in 43
evolution of 42–43
overview 42
performance improvements 43–44

Command property 201
CommandParameter property 203
CommandsRequested event 546–547
Computer Graphics category 277
ConnectAsync function 461
ConnectionReceived event 437, 450
connections, listening for 434–439
ConnectionStatus property 490
ConstructCategoryBrowserViewModel

method 337
consumer apps 29–30
ContentPresenter 66
ContentTemplate property 199
ContextualAlternates property 163
ContextualLigatures property 161
ContinueWith function 378
contracts

defined 319–320
Search contract

declaring in manifest 332–333
external search requests 339–340
in-app search requests 338–339
overview 332
results page for 333–338
SearchViewModel for 333–338

Share contract
creating share target page 326–330
declaring app as share target 325–326
modifying App.xaml for 330–332
overview 320–321
sharing data using 321–325

control templates 130
Controller class, for Xbox 360 gamepad

input 529–532

INDEX578
controls
FlipView

overview 231–232
using 232–235

GridView
grouping in 226–231
multiple rows 224–225
single row 225–226

in app bar
adding buttons 246–250
button commands 250–257
overview 246
styling buttons 246–250

ListView 220–223
PhotoBrowser example app

category browser page 232–235
CategoryBrowserViewModel class 232
creating project 214–220
ImageService class 215–217
MainPage.xaml 235–236
MainViewModel class 217–218
overview 213–214
Photo model class 215
UI for 218–220

semantic zoom 236–239
ControlsLib project 103
CoreWindow class 521
CreateFile method 358
CreateHttp method 411
CreateNewMessage method 192, 441
CRM (Customer Relationship Management) 276
CSS (Cascading Style Sheets) 60
CurrentApp class 567
CurrentManagedThreadId 274
custom panels

attached property for 105–107
creating project for 102–103
dependency property for 103–105
layout functions for 107–111
OrbitPanel class 103
overview 102

Customer Relationship Management. See CRM

D

d:DesignHeight property 468
d:DesignWidth property 468
Data Format field 326
data services, in MVVM pattern 176–178
data templates, for ListView 199–200
data types, specifying for REST services 411
DataContext property 189–190
DataContractJsonSerializer 412
DataTemplate statement 222
DataTemplateSelector class 351–354

DCOM (Distributed COM) 319
DDE (Dynamic Data Exchange) 319
debugging

on remote device 14–18
on Simulator 13–14

Declarations tab 348, 366
DecodePixelHeight 222
DecodePixelWidth 222
default tiles. See static tiles
default value 59
DELETE method, for REST services 415–416
DeleteAllPhotos method 257, 297
DeleteMessage method 421
DemoApp example 343–347
Dependency Injection. See DI
dependency properties

for custom panels 103–105
in XAML 58–61

DependencyObject class 58
DependencyProperty 122, 477
deploying apps

listing in Windows Store
getting Windows Store account 570
reserving app name 570–571
submitting app 571–573

sideloading
getting developer license 565–566
installing sideload app package 566–567
overview 563
packaging app for 563–565

testing for certification 560–563
trial mode

checking license state 569–570
creating mock license data for testing 567–568
overview 567

Windows 8 apps 39–40
deserializing data, for REST services

JSON 413–414
overview 412
XML 412–413

design inspiration for Windows Modern Style
direct influences 21–22
navigation in 22–23

desktops, considerations for 33
developer license, obtaining 565–566
development environment, setting up 3
device pane 5–6
Device window 6
devices

considerations for 33
debugging on remote 14–18
desktops 33
hybrid devices 34
laptops 33
tablets 33–34

INDEX 579
DI (Dependency Injection) 176
DirectWrite 143
Disable method 517
DiscretionaryLigatures property 161
Dismissed event 273
Dispatcher property 74
DispatcherHelper class 437
displaying text 167
DisplayName property 215, 222, 224
Distributed COM. See DCOM
div element 130
DoLongRunningInitializationAsync method 273
downloading files, with HttpClient class 392–393
driver access model, for Windows 8 apps 40–41
Dynamic Data Exchange. See DDE
dynamic objects 413

E

elements
binding of 194–196
checking virtualization of 94
in XAML 52–54
positioning in Grid 97–99
sizing of, and performance 84

Ellipse 137
ellipsis, for text 147–150
embedding, fonts 167–168
Enable method 517
EndPoint property 116
endpoints, connecting to 440
Enhanced Protection Mode. See EPM
enterprise apps 30–31
EPM (Enhanced Protection Mode) 39
error reporting, in COM 43
EvenOdd 135
EventArgs class 491
events, for accelerometer input 526
evolution, of COM 42–43
explicit styles 127–128
extended splash screens 269–275
ExtendedSplash constructor 274
ExtendedSplash.xaml page 271
ExtendedSplash.xaml.cs file 272, 282
Extensible Markup Language. See XML
ExterminateAppBarButtonStyle 249
external search requests 339–340
external type libraries 44

F

file pickers
file open picker 361–363
file picker source contract 363–368

FileInformationFactory 359
FileIO class 343, 358–359
FileOpenPicker 361
FileOpenPickerPage 363
files

creating 355–359
file pickers

file open picker 361–363
file picker source contract 363–368

loading programmatically
creating files and folders 355–359
DataTemplateSelector class 351–354
DemoApp example 343–347
KnownFolders class 348–351
permissions for 347–348
StorageFiles class 348–351
using file queries 354–355

URI formats 359–360
FileSavePicker 361
FileTemplate property 352
filled view state 301–303
FilledShape class 132
FillRule property 134
finalSize parameter 71
FlipView 303

overview 231–232
using 232–235

FolderDepth property 355
FolderPicker 361
folders, creating 355–359
FolderTemplate property 352
FontFamily property 145, 163
fonts

capitals, for OpenType fonts 163–164
embedding 167–168
hierarchy, for Windows apps 26

FontSize property 145, 163
FontStyle property 145
Foreground property 60, 145, 479
fractions, displaying using OpenType fonts 164–166
FrameworkElement 71, 125
FromArgb method 115
full view state 301–303
FullScreenLandscape 309

G

GamepadInputService.cs file 532
GenerateUniqueName 357
Get-WindowsDeveloperLicense 566
GetAllMessages method 421
GetAsync method 382, 384, 392
GetCategories method 281
GetChild method 64
GetChildrenCount method 64

INDEX580
GetDataReader method 463
GetFileFromApplicationUriAsync method 324
GetHostNames function 460
GetIsVirtualizing method 94
GetItemsAsync method 349
GetLayoutException function 73–74
GetLayoutSlot function 73
GetLocalValue function 552
GetMessages method 399
GetParent method 64
GetPhotos method 217, 288–289
GetRequestStreamAsync method 373
GetRoamingValue function 552
GetSingleMessage method 421
GetState method 530
GetThumbnailAsync method 359
GetValue method 104
GoToState method 304
governing principles, for Windows Modern

Style 23–25
graphical user interface. See GUI
grid layout

alignment in 99–101
defining rows and columns 95–97
for Windows Modern Style 27–28
margins in 99–101
overview 94–95
positioning elements in 97–99

grid star sizing 97
GridView control 302

grouping in
at UI layer 228–231
in model 227–228
overview 226–227

multiple rows 224–225
single row 225–226
using in app bar 259–261

GroupStyle.HeaderTemplate property 230
GroupStyle.Panel template 230
GUI (graphical user interface) 141

H

H command 136
HandleVirtualKeyDown 511
HandleVirtualKeyUp 511
Height property, UIElement class 75–76
high-DPI displays 139
HistoricalLigatures property 161
hold animations 59
HorizontalAlignment property 74, 77–78, 91, 163
HRESULTs 43
HttpClient class, downloading files with 392–393
HttpResponseMessage class 383
HttpWebRequest class 390, 411

hybrid devices, considerations for 34
HyperlinkButton, in MVVM pattern 203–204

I

IAscyncActionWithProgress interface 373
IAsync* interfaces

cancelling operation 380–381
converting tasks to 385
converting to tasks 386
getting progress updates 378–379
long-form asynchronous operations 376–378
overview 373–374
using await keyword 374–375

IAsyncAction interface 373, 376
IAsyncActionWithProgress interface 378
IAsyncActionWithProgress<TProgress>

interface 376
IAsyncInfo interface 373, 377
IAsyncOperation interface 373
IAsyncOperation<TResult> interface 376
IAsyncOperationWithProgress interface 373,

377–378
IAsyncOperationWithProgress<TResult,TProgress>

interface 376
IDispatch interface 42
IHV (independent hardware vendor) 40
IInputService interface 502–504, 532–533
ILDASM 41, 44–45
Image property 179
ImageBrush 118–120
images, in live tiles

creating thumbnails for 288–289
generating notification 289–291

ImageService class 215–217, 257
IMessageService interface

chat app 444–448
for Asteroids-inspired game 491–493

implicit styles 130–131
in-app search requests 338–339
independent hardware vendor. See IHV
influences, of Windows Modern Style 21–22
infrastructure, for app settings 538–542
inheritance, for styles 128–130
InitializeLayout function 122
Inline 146–147
InlineUIContainer 156
INotifyPropertyChanged interface 186, 394
input

accelerometer
AccelerometerInputService class 524–525
code-behind for 525–526
events for 526
locking screen orientation 526–527
mechanism for 523

INDEX 581
input (continued)
keyboard

code-behind for 512–513
KeyboardInputService 508–510
overview 507–508
virtual keys 510–512

making generic
IInputService interface 502–504
math calculations for 504–505
overview 502
viewmodel code for 505–507

pointer
code-behind for 519–521
math calculations for 514–517
overview 513
PointerInputService class 517–519

Xbox 360 gamepad
code-behind for 534
compiling project 534–535
Controller class 529–532
creating C++ project for 527–529
deploying project 534–535
IInputService wrapper 532–533
overview 527–535

installing
MVVM toolkits 174
sideload app package 566–567

InstantMessage class 398, 400
InstantMessage.cs file 396, 398
IoC (inversion of control) 171, 176
IProgress interface 386
IsActive property 272
IsChecked property 205
IsEnabled property 179, 207, 209
IsFireButtonPressed property 504
IsMovingBackward property 504
IsOpen property 263
IsPasswordRevealButtonEnabled property 192
IsSelected property 205
IsSourceGrouped property 229
IStorageItem interface 351
ItemBackground 122
ItemClick event 307
items controls, for ListView 198–199
ItemsControl class 103, 198
ItemsPanel property 230
ItemsPanelTemplate class 489
ItemsPath property 229
ItemTemplate property 222, 224, 230
IValueConverter interface 208
IXmlNode 291

J

JSON (JavaScript Object Notation)
deserializing 413–414
overview 409

K

keyboard input
code-behind for 512–513
KeyboardInputService 508–510
overview 507–508
virtual keys 510–512

KeyboardInputService 508–510
keyed styles. See explicit styles
KnownFolders class 348–351, 359, 368

L

L command 136
language projection 36
language support, supported by WinRT 37, 47–48
laptops, considerations for 33
LaunchActivedEventArgs 556
layout

for custom panels 107–111
layout rounding 80–82
margins 79–80
multipass layout

arrange pass 71–73
LayoutInformation class 73–74
measure pass 71
overview 70–71

padding 78–79
performance considerations

caching subtrees 83
simplifying UI 82–83
sizing of elements 84
using PNG images instead of complex

XAML 83
using virtualization 83–84

UIElement class
ActualHeight property 76
ActualWidth property 76
Height property 75–76
HorizontalAlignment property 77–78
LayoutUpdated event 76
overview 74–75
VerticalAlignment property 77–78
Width property 75–76

LayoutAwarePage class 303–305, 310
LayoutInformation class 71

GetLayoutException function 73–74
GetLayoutSlot function 73

LayoutRoot 96
LayoutUpdated event, UIElement class 76
Left property 88
license state, checking for trial mode 569–570
LicenseChanged event 569
ligatures, for OpenType fonts 160–161
LikeSelectedPhoto method 252

INDEX582
Line 132–134
line spacing, for text 151–153
LinearGradientBrush 57, 113, 116–118
LineHeight property 151
LineStackingStrategy property 152
ListBox control 11
ListBoxItems 64
listening for connections

in chat app 434–439, 449–450
using UDP sockets 460

ListView control 11, 302
in MVVM pattern

data templates for 199–200
items controls for 198–199
ObservableCollection class 197–198
overview 197

overview 220–223
live tiles

images in
creating thumbnails for 288–289
generating notification 289–291

overview 284–285
queuing multiple notifications 291–294
text in 285–288

Load method 557
LoadAsync method 438, 453, 462
Loaded event 122, 317
LoadFeedAsync function 375
loading

app settings 550–553
files

creating files and folders 355–359
DataTemplateSelector class 351–354
DemoApp example 343–347
KnownFolders class 348–351
permissions for 347–348
StorageFiles class 348–351
using file queries 354–355

LoadMessages method 406
LoadPhotos method 228, 287, 291
local resources 121–123
local settings 541
local values 59
Location property 484
locationChanged flag 506
locking screen orientation 526–527
long-form asynchronous operations 376–378

M

M command 136
MainPage class 305
MainPage.xaml, PhotoBrowser example app

235–236

MainViewModel class
chat app

connecting to server 455–456
event handlers 457–458
listening for connections 456
overview 426–428
sending chat messages 456

PhotoBrowser example app 217–218
MainViewModel.cs file 402
manifest, app 332–333
Margin property 91, 517
margins

for elements 79–80
in Grid 99–101

MathService class 504, 516, 519
MatrixTransform 255
Maximum property 195
measure pass 70–71
MeasureOverride method 71, 108
menus, in app bar 261–263
merging, resource dictionaries 125–127
message framing 453
MessageBox class 358
MessageDialog class 358
MessagesController 407
metadata

in WinRT 44–46
overview 41

Metro style
design inspiration

direct influences 21–22
navigation in 22–23

governing principles for 23–25
grid layout for 27–28
supporting touch in 28
typography in 25–27
UI elements of apps 31–33

MetroTwit 321
Microsoft accounts 3
Minimum property 195
Mode property 185
Model namespace 245, 396
Model-View-ViewModel pattern. See MVVM
models

grouping in GridView 227–228
in MVVM pattern 175–176
sharing between client and server

creating Modern app-compatible class
library 397–398

creating source class library 395–397
overview 393–395

Modern app-compatible class library,
creating 397–398

modes, for binding 185
Motion design 22

INDEX 583
MoveNext method 376
ms-appx: prefix 119
multicolumn text, using RichTextBlock 157–159
multipass layout

arrange pass 71–73
LayoutInformation class

GetLayoutException function 73–74
GetLayoutSlot function 73

measure pass 71
overview 70–71

multiple rows, in GridView 224–225
MVVM (Model-View-ViewModel) pattern

binding
change notification 186–189
DataContext property 189–190
modes for 185
of UI elements 194–196
overview 183–184
source 184–185
target 184–185
using value converters 207–209
with PasswordBox 192–193
with TextBox 191–192

data services 176–178
implementing in app with networking support

creating user interface 404–406
creating viewmodel 402–403
overview 401–402

model in 175–176
MVVM toolkits

creating project using 175
installing 174
overview 174

overview 170–174
using buttons in

CheckBox 207
HyperlinkButton 203–204
overview 200–203
RadioButton 204–207

using ListView in
data templates for 199–200
items controls for 198–199
ObservableCollection class 197–198
overview 197

view in 180–183
viewmodel in 178–180

MVVM toolkits
creating project using 175
installing 174
overview 174

MvvmLight template 175
MyNestedControl 67

N

namescopes 66–68
namespaces 54–55
NavigateUri property 204
navigation, in Windows Modern Style 22–23
.NET 4.5, and WinRT 48–50
NetFX30 folder 477
networking support

MVVM implementation for
creating user interface 404–406
creating viewmodel 402–403
overview 401–402

REST services
calling functions from client 416–421
creating service 407–410
DELETE method 415–416
deserializing data 412
deserializing JSON 413–414
deserializing XML 412–413
getting data from service 410–411
overview 406–407
POST method 415–416
PUT method 415–416
specifying data type 411

sharing model between client and server
creating Modern app-compatible class

library 397–398
creating source class library 395–397
overview 393–395

SOAP services
creating service 399–400
overview 398–399
using service 400–401

Windows 8 app support for
downloading file with HttpClient class

392–393
overview 389–390
solution for testing 390–392

New Project dialog 175
NewMessage property 191
NonZero 135
notifications

for live tiles
generating 289–291
queuing multiple 291–294

toasts
enabling 298
notification service for 295–297
overview 294–295

NotifySettingsChanged method 541
NumeralAlignment property 165
NumeralStyle property 165

INDEX584
O

object trees 63–66
ObservableCollection class 12, 171, 197–198, 337,

485
ObservableObject class 186
OEM (original equipment manufacturer) 40
OnActivated method 284
OnBackButtonClick event 235
OnDataChanged method 553
OneTime value 185
OneWay value 185
OnLaunched method 234, 283, 330, 552, 556–557
OnLoadDataClick event 405
OnNavigatedTo method 12, 231, 235, 245, 305, 392
OnSearchActivated 339
OnSearchQuerySubmitted handler 339
OnServicePlayerExited 490
OnServicePlayerJoined event 490, 507
OnShareTargetActivated method 330
OnSplashScreenDismissed method 283
OnSuspending method 555, 557
OnWindowCreated event 339
OPC (Open Packing Conventions) 39
Open Sound Control. See OSC
OpenType fonts

displaying fractions 164–166
font capitals 163–164
ligatures 160–161
stylistic sets 161–163
subscript 166–167
superscript 166–167

operations, asynchronous
IAsync* interfaces

cancelling operation 380–381
getting progress updates 378–379
long-form asynchronous operations 376–378
overview 373–374
using await keyword 374–375

importance of 371–373
overview 369–371
Task Parallel Library

basic task operations 382–383
cancelling task 384
converting IAsync* to 386
converting to IAsync* 385
overview 381–382

OrbitPanel class 102–103
OrbitPanel example

attached property for 105–107
creating project for 102–103
dependency property for 103–105
layout functions for 107–111
OrbitPanel class 103
overview 102

Orbits property 104
orientation

for Asteroids-inspired game 469–470
for StackPanel 92
screen locking 526–527

Orientation property 92
original equipment manufacturer. See OEM
OSC (Open Sound Control) 40
OutputStream property 438
OverflowContentTarget property 159

P

p element 130
Package.appxmanifest file 7, 389
packaging apps, for sideloading 563–565
padding, for elements 78–79
Page element 246
page resources 121–123
pageTitle element 308
panels

canvas
overview 87–88
positioning in 88–89
sizing child elements 91
Z ordering in 89–90

custom panels
attached property for 105–107
creating project for 102–103
dependency property for 103–105
layout functions for 107–111
OrbitPanel class 103
overview 102

Grid
alignment in 99–101
defining rows and columns 95–97
margins in 99–101
overview 94–95
positioning elements in 97–99

StackPanel
orientation for 92
overview 91–92
sizing child elements 93

VirtualizingStackPanel
checking virtualization of element 94
enabling virtualization 93–94
overview 91–92

PasswordBox, binding for 192–193
PasswordChar property 193
passwords 552
PasswordVault class 553
Path 135–137
PathIO class 358
PCL (Portable Class Libraries) 397
pen input. See pointer input

INDEX 585
pen tool 474
performance

improvements to COM 43–44
layout considerations

caching subtrees 83
simplifying UI 82–83
sizing of elements 84
using PNG images instead of complex

XAML 83
using virtualization 83–84

permissions, for files 347–348
Photo class

overview 254
PhotoBrowser example app 215

PhotoBrowser example app
app bar in 243–246
category browser page 232–235
CategoryBrowserViewModel class 232
creating project 214–220
ImageService class 215–217
MainPage.xaml 235–236
MainViewModel class 217–218
overview 213–214
Photo model class 215
UI for 218–220

PhotoCategory class 227, 245
Photos Browser, Windows 8 22
PickMultipleFilesAsync method 362
PickSingleFileAsync method 362
pinned tiles

activating app using 281–284
creating 277–281
overview 276–277

pinning, app bar 258–259
pixels 32
play field area, for Asteroids-inspired game 468
Player model class, Asteroids-inspired game

483–485
Player property 488
PlayerConnection class 448
PlayerJoin type 446
PlayerLeave type 446
PlayerLocation class, Asteroids-inspired

game 483–484
PlayerName property 478–479
players, in Asteroids-inspired game

collection of 486–488
connecting to message service 490–491
displaying 488–489
testing collection of 489–490

PNG images vs. complex XAML 83
point selection tool 473–474
pointer input

code-behind for 519–521
math calculations for 514–517

overview 513
PointerInputService class 517–519

PointerInputService class 517–519
Polyline 134–135
popups, for app bar 261–263
Portable Class Libraries. See PCL
positioning, in canvas 88–89
POST method, for REST services 415–416
PostNewMessageCommand 202
<prefix>:<element or attribute> syntax 55
PrepareForReading method 524–525
presentation technologies, for WinRT 47–48
PreviousExecutionState property 556
ProcessIncomingMessages function 495
progress updates, during asynchronous

operations 378–379
ProgressRing control 271
projections 42, 46–47
projects

creating 3–5
device pane 5–6
Solution Explorer items 7–8
UI for, creating simple 8–9

properties, in XAML
attached properties 61–62
dependency properties 58–61
property paths 62
referencing 62
syntax for 56–58

property paths 62
PropertyChangedEventArgs class 187
PropertyMetadata object 104
push notifications 299
PUT method, for REST services 415–416

Q

Q command 136
queries, loading files using 354–355
QuerySubmitted event 339

R

race conditions 378
RadialGradientBrush 118
RadioButton, in MVVM pattern 204–207
RaiseCanExecuteChanged method 202
RaisePropertyChanged method 187
RandomAccessStreamReference type 323
RCWs (Runtime Callable Wrappers) 46
Reactive Extensions. See RX
ReadAsStringAsync method 383
ReadingChanged event 526
RecordSet class 416

INDEX586
Rectangle 137
Register method 106
RegisterAttached method 106
RelayCommand 201
remote debugger 15
Remote Debugging Monitor 17
remote devices, debugging on 14–18
Remote Procedure Call. See RPC
Rendering event 72
RenderingEventArgs 72
RenderTransform 255, 478
ReportDataRetrieved method 331
ReportError method 331
ReportInterval event 526
ReportStarted method 331
ReportSubmittedBackgroundTask method 331
Representational State Transfer service. See REST
RequestAppPurchaseAsync method 570
reserving app name 570–571
resource dictionaries

merging 125–127
overview 123–125

ResourceDictionary block 123, 209
resources

application resources 123
local resources 121–123
overview 120–121
page resources 121–123
resource dictionaries

merging 125–127
overview 123–125

Resources block 209
REST (Representational State Transfer) services

calling functions from client 416–421
creating service 407–410
DELETE method 415–416
deserializing data

JSON 413–414
overview 412
XML 412–413

getting data from service 410–411
overview 406–407
POST method 415–416
PUT method 415–416
specifying data type 411

results page, for Search contract 333–338
resuming app 555–557
RetrievalProgress 378
Rich Text Format. See RTF
RichEditBox 154
RichTextBlock 154–156

multicolumn text using 157–159
overview 153–157

RichTextBlockOverflow 158–159
RoActivateInstance 42

roaming settings 541
RotateTransform 255, 478
rotation, enabling for Asteroids-inspired

game 477–479
rover remote control example. See Model-View-

ViewModel pattern
Row property 98
RowDefinitions property 262
rows

defining for Grid 95–97
in GridView

multiple 224–225
single 225–226

RowSpan property 98
RPC (Remote Procedure Call) 406
RTF (Rich Text Format) 154
Run method 273
runtime broker 37
Runtime Callable Wrappers. See RCWs
RX (Reactive Extensions) 372

S

S command 136
sandbox, for Windows 8 apps 38
ScaleTransform 255
screen orientation, locking 526–527
Search contract

declaring in manifest 332–333
external search requests 339–340
in-app search requests 338–339
overview 332
results page for 333–338
SearchViewModel for 333–338

SearchResultsPage 333, 337
SearchViewModel, for Search contract 333–338
secondary tiles. See pinned tiles
SecondaryTile class 277
Segoe UI Light 268
SelectedCamera property 205
SelectedItem property 312, 418
SelectedMessage property 418
SelectionMode attribute 418
SelectTemplateCore method 352
semantic zoom 236–239
SemanticZoom control 260, 304
SendChatMessage function 460
SendLocationUpdate method 493
SendPlayerJoinMessage function 460
SendPlayerLeaveMessage function 460
SendRequest method 418–419
servers, connecting to

connecting to endpoint 440
overview 439–441
sending data 440–441

INDEX 587
services, for toast notifications 295–297
SetAttribute 291
SetDataProvider method 323
settings, app

acting on options 553–554
creating infrastructure for 538–542
creating UI for 542–550
loading 550–553
saving 550–553

SettingsChangedRemotely event 539
SettingsConnectivityViewModel 540
SettingsOptionsPage 543
SettingsOptionsViewModel class 539–541
SettingsPane class 549
SettingsPaneService class 546
SettingsService class 539–541, 554
SetUpInputHandling method 437–438, 441
SetValue method 104
Shaken event 526
Share contract

creating share target page 326–330
declaring app as share target 325–326
modifying App.xaml for 330–332
overview 320–321
sharing data using 321–325

ShareOperation property 330
ShareTargetPage 327, 330
ShareTargetViewModel class 328
Ship.xaml.cs file 471
ships, Asteroids-inspired game

adding label 475–476
creating ship shape in Blend 472–475
creating UserControl 471–472

Show Grid control 8
Show method 546
Show-WindowsDeveloperLicenseRegistration 566
sideloading

getting developer license 565–566
installing sideload app package 566–567
overview 563
packaging app for 563–565

Simple Object Access Protocol services. See SOAP
Simulator, debugging on 13–14
single row, in GridView 225–226
sizing, child elements

in canvas 91
in StackPanel 93

SkewTransform 255
SlashedZero property 165
SmallCaps 164
Snap to Grid control 8
snapped view state

app bar in 314–317
creating 305–307
detail pages in 309–314
overview 301–303

SnappedPageHeaderTextStyle 308
SnapsTo property 195
SOAP (Simple Object Access Protocol) services

creating service 399–400
overview 398–399
using service 400–401

sockets
architecture of 441–442
ChatMessage class 429, 442–444
connecting to server

connecting to endpoint 440
overview 439–441
sending data 440–441

IMessageService interface 444–447
listening for connections 434–439
MainViewModel class

connecting to server 455–456
event handlers 457–458
listening for connections 456
overview 426–428
sending chat messages 456

overview 423–425
TcpStreamMessageService class

listening as server 449–450
opening and closing connection 448–449
overview 447–448
processing messages 452–453
sending messages 450–452

UDP sockets 458–459
UdpMessageService class

connecting to another machine 461–462
listening for connections 460
overview 459–460
parsing messages 462–463
receiving messages 462–463

user interface
app bar buttons 432–433
overview 429–430
resources for 431
styles for 431
XAML for 430–431, 433–434

solid state drives. See SSD
SolidColorBrush 113–116, 484
Solution Explorer, items in 7–8
SortElements function 108–109
source class library, creating 395–397
spacing

character spacing 150–151
line spacing 151–153

spell checking, in TextBox control 193–194
splash screens

extended 269–275
overview 267
static 267–269

SplashScreen class 270, 272–273

INDEX588
SplashScreen.png 268
SQLite 368
src attribute 290
SSD (solid state drives) 522
StackOverflow 204
StackPanel 53

orientation for 92
overview 91–92
sizing child elements 93

StandardGradient 122
StandardLigatures property 161
StandardStyles.xaml file 7, 125, 246, 364
star sizing 97
StartLayoutUpdates handler 317
StartNew method 382, 438
StartPoint property 116
states, for Windows 8 apps 31–33
static splash screens 267–269
static tiles 275–276
StaticResource statement 222
StepFrequency 195
StopLayoutUpdates handler 317
StorageFile class 345, 348, 359, 361, 368
StorageFolder class 343, 349, 354–355, 359, 368
StorageItemDataTemplateSelector class 352
StoreAsync method 439, 441
Stretch property 119
StrokeDashArray property 133–134
style setters 59
Style tag 60
styles

explicit styles 127–128
implicit styles 130–131
inheritance for 128–130
overview 127

stylistic sets, for OpenType fonts 161–163
StylisticSetN property 163
subscript, for OpenType fonts 166–167
superscript, for OpenType fonts 166–167
support

MVVM implementation for
creating user interface 404–406
creating viewmodel 402–403
overview 401–402

REST services
calling functions from client 416–421
creating service 407–410
DELETE method 415–416
deserializing data 412
deserializing JSON 413–414
deserializing XML 412–413
getting data from service 410–411
overview 406–407
POST method 415–416
PUT method 415–416
specifying data type 411

sharing model between client and server
creating Modern app-compatible class

library 397–398
creating source class library 395–397
overview 393–395

SOAP services
creating service 399–400
overview 398–399
using service 400–401

Windows 8 app support for
downloading file with HttpClient class 392–393
overview 389–390
solution for testing 390–392

suspending app 554–555
Swiss Design 21
SynchronizationContext object 273
System.Diagnostics namespace 393
System.Linq.* namespace 49
System.Net.* namespace 49
System.Net.Http namespace 373, 393
System.Runtime.Serialization.Json namespace 49
System.Runtime.Serialization.Xml namespace 49
System.Runtime.WindowsRuntime namespace 49,

385
System.Runtime.WindowsRuntime.UI.Xaml

namespace 50
System.Threading.Tasks.* namespace 50, 270

T

T command 136
tablets, considerations for 33–34
target

declaring app as for sharing 325–326
for binding 184–185

TargetProperty 62
Task method 270
Task Parallel Library. See TPL
TaskFactory.StartNew method 273
TCP message service, for Asteroids-inspired game

IMessageService interface 491–493
listening as server 449–450
opening and closing connection 448–449
overview 447–448
processing messages 452–453
reading location information 495–497
sending location information 493–495
sending messages 450–452

templated properties 59
TestAddingPlayers method 490
testing

apps for certification 560–563
Asteroids-inspired game 497–498
on remote device 14–18
on Simulator 13–14
overview 13

INDEX 589
TestPositionUpdate function 497
text

character spacing 150–151
displaying 167
ellipsis for 147–150
embedding fonts 167–168
in live tiles 285–288
Inline 146–147
line spacing 151–153
OpenType fonts

displaying fractions 164–166
font capitals 163–164
ligatures 160–161
stylistic sets 161–163
subscript 166–167
superscript 166–167

overview 141–143
RichTextBlock

multicolumn text using 157–159
overview 153–157

spacing 167
TextAlignment property 147–150
TextBlock 144–146
TextWrapping property 147–150

TextAlignment property 147–150
TextBlock element 53, 144–146
TextBox control

autocorrect in 193–194
binding for 191–192
spell checking in 193–194

TextTrimming property 142, 148
TextWrapping property 147–150
ThemeResources.xaml file 124–125
Thread.Sleep function 506
thumbnails, for live tiles 288–289
ThumbnailUri property 288–289
TileNotificationService class 285, 290–292
tiles, app

live
images in 288–291
overview 284–285
queuing multiple notifications 291–294
text in 285–288

pinned
activating app using 281–284
creating 277–281
overview 276–277

static 275–276
TileSquareBlock template 285
TileWideImageCollection 289
toast notifications

enabling 298
notification service for 295–297
overview 294–295

ToastNotificationService class 295

ToggleButton 201
Top property 88
TopAppBar property 246
totalBytesToRetrieve property 378
touch input. See pointer input
touch support, in Windows Modern Style 28
TPL (Task Parallel Library) 372

basic task operations 382–383
cancelling task 384
converting IAsync* to 386
converting to IAsync* 385
overview 381–382

TransformGroup 255
TranslateTransform 255
traversing, visual trees 64–66
trial mode

checking license state 569–570
creating mock license data for testing 567–568
overview 567

TTF (True Type Font) 168
Tweet class 10
Twitter, integrating in app

code-behind for 11–13
displaying in app 10–11
overview 9–10
Tweet class 10

TwoWay value 185
TypeName.AttachedPropertyName syntax 61
typography, in Windows Modern Style 25–27

U

UDP (User Datagram Protocol) 458–459
UdpMessageService class, chat app

connecting to another machine 461–462
listening for connections 460
overview 459–460
parsing messages 462–463
receiving messages 462–463

UI (user interface)
binding of elements in 194–196
creating simple 8–9
elements in Windows 8 apps 31–33
for app settings 542–550
for Asteroids-inspired game

orientation 469–470
overview 466–468
play field area 468
view states 466–470

for chat app
app bar buttons 432–433
overview 429–430
resources for 431
styles for 431
XAML for 430–431, 433–434

INDEX590
grouping in GridView 228–231
layout rounding 80–82
margins 79–80
multipass layout

arrange pass 71–73
LayoutInformation class 73–74
measure pass 71
overview 70–71

padding 78–79
performance considerations

caching subtrees 83
simplifying UI 82–83
sizing of elements 84
using PNG images instead of complex

XAML 83
using virtualization 83–84

PhotoBrowser example app 218–220
simplifying for performance 82–83
UIElement class

ActualHeight property 76
ActualWidth property 76
Height property 75–76
HorizontalAlignment property 77–78
LayoutUpdated event 76
overview 74–75
VerticalAlignment property 77–78
Width property 75–76

UIElement class
ActualHeight property 76
ActualWidth property 76
Height property 75–76
HorizontalAlignment property 77–78
LayoutUpdated event 76
overview 74–75
VerticalAlignment property 77–78
Width property 75–76

UnconsumedBufferLength property 453
uniform resource identifier. See URI
Unloaded event 317
Unregister-WindowsDeveloperLicense 566
Update method 286
UpdateChildren method 345, 355
UpdateChildrenWithQuery 355
UpdateMessage method 421
UpdateSearchResults method 337
UpdateSelectedMessage 419
UpdateState method 519
URI (uniform resource identifier) 359–360
uriRoot variable 324
UseLayoutRounding property 81
user controls, for Asteroids-inspired game

enabling rotation 477–479
overview 476–477
setting color 479–480

User Datagram Protocol. See UDP

user interface. See UI
UserInformation class 295, 455
UserProfile namespace 297

V

V command 136
value converters, using for binding 207–209
value precedence 58–59
value syntax 57
Values dictionary 552
VariableSizedWrapGrid 93
VariableSizedWrappedGrid 225
Variants property 166
vector graphics

Ellipse 137
Line 132–134
overview 132
Path 135–137
Polyline 134–135
Rectangle 137

VerticalAlignment property, UIElement class
77–78

view controls
FlipView

overview 231–232
using 232–235

GridView
grouping in 226–231
multiple rows 224–225
single row 225–226

ListView 220–223
PhotoBrowser example app

category browser page 232–235
CategoryBrowserViewModel class 232
creating project 214–220
ImageService class 215–217
MainPage.xaml 235–236
MainViewModel class 217–218
overview 213–214
Photo model class 215
UI for 218–220

semantic zoom 236–239
view states

filled 301–303
for Asteroids-inspired game 466–470
full 301–303
LayoutAwarePage class 303–305
overview 300–301
snapped

app bar in 314–317
creating 305–307
detail pages in 309–314
overview 301–303

using visual states for 307–309

INDEX 591
view, in MVVM pattern 180–183
ViewBox element 75
ViewModel folder 328, 335
viewmodel, in MVVM pattern 178–180, 217–218
ViewModelBase class 214
virtual keys 510–512
virtualization

checking for element 94
enabling 93–94
using for performance 83–84

VirtualizingStackPanel 93–94
checking virtualization of element 94
enabling virtualization 93–94
overview 91–92

Visibility property 172, 309
visibility, of app bar 258–259
Visual State Manager. See VSM
visual states, using for view states 307–309
visual trees, traversing 64–66
VisualStateGroup 308
VisualStateManager tag 307
VisualTreeHelper class 64
VSM (Visual State Manager) 307

W

WACK (Windows App Certification Kit) tool
560–563

web host 37
WebSockets 463
Width property, UIElement class 75–76
Window.Current 273
Windows 8 apps

architecture for
deployment 39–40
driver access model 40–41
overview 36–38
sandbox 38

consumer apps 29–30
device considerations for

desktops 33
hybrid devices 34
laptops 33
overview 33
tablets 33–34

enterprise apps 30–31
networking support in

downloading file with HttpClient class
392–393

overview 389–390
solution for testing 390–392

overview 28–29
states for 31–33
UI elements in 31–33

Windows App Certification Kit tool. See WACK

Windows core 37
Windows Modern Style

design inspiration
direct influences 21–22
navigation in 22–23

governing principles for 23–25
grid layout for 27–28
supporting touch in 28
typography in 25–27
UI elements of apps 31–33

Windows Presentation Foundation. See WPF
Windows Runtime. See WinRT
Windows Store

getting Windows Store account 570
reserving app name 570–571
submitting app 571–573

Windows.ApplicationModel.Store namespace 567
Windows.Data.Json namespace 49
Windows.Data.Xml.* namespace 49
Windows.Devices.* namespace 49
Windows.Foundation namespace 49, 373
Windows.Media.* namespace 49
Windows.Networking.* namespace 49
Windows.Security.* namespace 49
Windows.Storage namespace 348, 359
Windows.Storage.* namespace 49
Windows.Storage.Pickers namespace 362
Windows.Storage.Streams namespace 323
Windows.System.UserProfile namespace 455
Windows.UI.Colors class 115
Windows.UI.StartScreen 277, 280
Windows.UI.Xaml.* namespace 49
Windows.UI.Xaml.Markup.XamlReader class 115
Windows.Web.Syndication namespace 49
Windows.winmd file 45
WindowsRuntimeSystemExtensions class 385
WinRT (Windows Runtime)

and .NET 4.5 48–50
COM

error reporting in 43
evolution of 42–43
overview 42
performance improvements 43–44

languages supported 47–48
metadata for 44–46
overview 41–42, 48–50
presentation technologies for 47–48
projections 46–47

WireMessageType enum 492
WPF (Windows Presentation Foundation) 51
WriteLine method 274
WritePascalStyleString method 495
WritePlayerLocation method 495

INDEX592
X

x:Class property 54
x:Name property 54
XAML (Extensible Application Markup Lan-

guage)
elements 52–54
namescopes 66–68
namespaces 54–55
object trees 63–66
overview 51–52
properties

attached properties 61–62
dependency properties 58–61
property paths 62
referencing 62
syntax for 56–58

XamlReader.Load API 68
Xbox 360 gamepad input

code-behind for 534
compiling project 534–535
Controller class 529–532
creating C++ project for 527–529

deploying project 534–535
IInputService wrapper 532–533
overview 527–535

XINPUT_STATE structure 529
XML (Extensible Markup Language),

deserializing 412–413
xml:space attribute 156
XmlElement 291
xmlns:x statement 54
XmlSerializer class 412–413
XPosition property 179

Y

YPosition property 179

Z

Z ordering, in canvas 89–90
ZIndex property 88, 90, 92
zoom, semantic 236–239

Pete Brown

T
he Windows Store provides an amazing array of productiv-
ity tools, games, and other apps directly to the millions of
customers already using Windows 8.x or Surface. Windows

Store apps boast new features like touch and pen input, stan-
dardized app-to-app communication, and tight integration with
the web. And, you can build Windows Store apps using the tools
you already know: C# and XAML.

Windows Store App Development introduces the Windows 8.x
app model to readers familiar with traditional desktop develop-
ment. You’ll explore dozens of carefully craft ed examples as you
master Windows features, the Windows Runtime, and the best
practices of app design. Along the way, you’ll pick up tips for
deploying apps, including selling through the Windows Store.

What’s Inside
● Designing, creating, and selling Windows Store apps
● Developing touch and sensor-centric apps
● Working C# examples, from feature-level techniques
 to complete app design
● Making apps that talk to each other
● Mixing in C++ for even more features

Th is book requires some knowledge of C#. No experience with
Windows 8 is needed.

Pete Brown is a Developer Evangelist at Microsoft and author of
Silverlight 4 in Action and Silverlight 5 in Action.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/WindowsStoreAppDevelopment

$49.99 / Can $52.99 [INCLUDING eBOOK]

Windows Store App Development

WINDOWS/.NET

M A N N I N G

“Informative, fun, and
 easy to read.”

—Todd Miranda
NxtDimension Solutions

“Broad coverage of all
 aspects of W8 XAML

 development.”—Roland Civet, iSolutions For You!

“Pete is a consistently great
 author, and once again
 he nails his subject.”—Gordon Mackie Openfeatured Ltd.

“Your roadmap to modern
 Windows design. ”—Patrick Toohey
Mettler-Toledo Hi-Speed

“Much less a book
than a must-have tool for
effi cient and quality app

development.”—Dave Campbell, WynApse

SEE INSERT

	WSAD
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Audience
	The bits: what you need
	Roadmap
	Code conventions and downloads
	Author Online

	about the author
	about the cover illustration
	1 Hello, Modern Windows
	1.1 Setting up the development environment
	1.2 Configuring the project
	1.2.1 The device pane
	1.2.2 Template solution items

	1.3 Create the first Hello World UI
	1.4 Integrating with Twitter
	1.4.1 The Tweet class
	1.4.2 Updated UI
	1.4.3 Code-behind

	1.5 Testing on different devices and resolutions
	1.5.1 Debugging on the Simulator
	1.5.2 Debugging on a remote device

	1.6 Summary

	2 The Modern UI
	2.1 Design inspiration
	2.1.1 Direct influences
	2.1.2 Finding your way

	2.2 Governing principles
	2.3 Typography
	2.4 The importance of the layout grid
	2.5 Design for touch but not only for touch
	2.6 Modern apps on Windows 8
	2.6.1 Consumer and enterprise apps
	2.6.2 Key Windows 8 UI elements and states

	2.7 Device considerations
	2.7.1 Desktop or laptop
	2.7.2 Tablet and smaller devices
	2.7.3 Hybrid devices

	2.8 Summary

	3 The Windows Runtime and .NET
	3.1 Windows Store app system architecture
	3.1.1 The sandbox
	3.1.2 Deployment and the Windows Store
	3.1.3 The driver model

	3.2 COM + .NET metadata = WinRT
	3.2.1 COM: back to the future
	3.2.2 Metadata
	3.2.3 Projections

	3.3 Client technologies and languages
	3.4 A brief tour of WinRT and .NET 4.5
	3.5 Summary

	4 XAML
	4.1 Elements and namespaces
	4.1.1 Objects as elements
	4.1.2 Namespaces

	4.2 Properties
	4.2.1 Property syntax
	4.2.2 Dependency properties
	4.2.3 Attached properties
	4.2.4 Property paths

	4.3 Object trees and namescope
	4.3.1 Object trees
	4.3.2 Namescope

	4.4 Summary

	5 Layout
	5.1 Multipass layout—measuring and arranging
	5.1.1 The measure pass
	5.1.2 The arrange pass
	5.1.3 The LayoutInformation class

	5.2 UIElement layout properties
	5.2.1 Width and Height, plus ActualWidth and ActualHeight
	5.2.2 Horizontal and vertical alignment
	5.2.3 Padding
	5.2.4 Margins

	5.3 Layout rounding
	5.4 Performance considerations
	5.4.1 Keeping the tree shallow
	5.4.2 Caching
	5.4.3 Virtualization
	5.4.4 Sizing and positioning

	5.5 Summary

	6 Panels
	6.1 Canvas
	6.1.1 Positioning in X,Y space
	6.1.2 Controlling the Z position using ZIndex
	6.1.3 Sizing child elements

	6.2 StackPanel and VirtualizingStackPanel
	6.2.1 Setting the orientation
	6.2.2 Sizing children
	6.2.3 Virtualizing for performance

	6.3 Grid
	6.3.1 Defining rows and columns
	6.3.2 Adding and positioning elements in rows and columns
	6.3.3 Using alignment and margins for sizing and positioning

	6.4 Creating a custom panel
	6.4.1 Project setup
	6.4.2 The OrbitPanel class
	6.4.3 Orbits dependency property
	6.4.4 Orbit attached property
	6.4.5 Custom layout

	6.5 Summary

	7 Brushes, graphics, styles, and resources
	7.1 Brushes
	7.1.1 Solid-color brushes
	7.1.2 Gradient brushes
	7.1.3 Image brushes

	7.2 Resources
	7.2.1 Local and page resources
	7.2.2 Application resources
	7.2.3 Resource dictionaries

	7.3 Styles
	7.3.1 Explicit or keyed styles
	7.3.2 Style inheritance
	7.3.3 Implicit styles

	7.4 Vector graphics
	7.4.1 Line
	7.4.2 Polyline
	7.4.3 Paths
	7.4.4 Rectangles and ellipses

	7.5 Bitmap images
	7.6 Summary

	8 Displaying beautiful text
	8.1 Text basics
	8.1.1 TextBlock
	8.1.2 Inlines
	8.1.3 Wrapping, ellipsis, and alignment
	8.1.4 Character spacing
	8.1.5 Line spacing

	8.2 Rich and multicolumn text
	8.2.1 Rich text
	8.2.2 Multicolumn and linked text

	8.3 OpenType text
	8.3.1 Ligatures
	8.3.2 Stylistic sets
	8.3.3 Font capitals
	8.3.4 Fractions and numbers
	8.3.5 Variants, superscript, and subscript

	8.4 Embedding fonts
	8.5 Summary

	9 Controls, binding, and MVVM
	9.1 The Model-View-ViewModel pattern
	9.1.1 Using an MVVM toolkit like MVVM Light
	9.1.2 The model
	9.1.3 The chat data service
	9.1.4 The MainViewModel and CameraViewModel classes
	9.1.5 The view

	9.2 Binding primer
	9.2.1 The source and target
	9.2.2 Binding mode
	9.2.3 Change notification
	9.2.4 DataContext

	9.3 Entering and displaying text
	9.3.1 Working with the TextBox
	9.3.2 Experimenting with the PasswordBox
	9.3.3 Spell checking and autocorrect

	9.4 UI element binding using sliders
	9.5 Working with lists
	9.5.1 Observable collections
	9.5.2 Items controls
	9.5.3 Data templates

	9.6 Making things happen with buttons and commands
	9.6.1 Button and commands
	9.6.2 HyperlinkButton
	9.6.3 RadioButton and CheckBox

	9.7 Converting data with value converters
	9.8 Summary

	10 View controls, Semantic Zoom, and navigation
	10.1 PhotoBrowser demonstration app setup
	10.1.1 Creating the project
	10.1.2 Creating the Photo model class
	10.1.3 Loading pictures using a service class
	10.1.4 Creating the MainViewModel
	10.1.5 Skeleton UI XAML and code-behind

	10.2 ListView and GridView
	10.2.1 Vertical lists
	10.2.2 Horizontal lists and grids

	10.3 Grouping with the GridView
	10.3.1 Grouping in the model and viewmodel
	10.3.2 Grouping at the UI layer

	10.4 FlipView and navigation
	10.4.1 Viewmodel
	10.4.2 Category browser page
	10.4.3 Updated MainPage

	10.5 Semantic Zoom
	10.6 Summary

	11 The app bar
	11.1 Project updates
	11.2 Controls on the bottom app bar
	11.2.1 Adding and styling buttons
	11.2.2 Wiring with commands
	11.2.3 Visibility and pinning

	11.3 Top app bar for navigation
	11.4 App bar popups and menus
	11.5 Summary

	12 The splash screen, app tile, and notifications
	12.1 Splash screens
	12.1.1 The static splash screen
	12.1.2 Extended splash screens

	12.2 Default tiles on the start page
	12.3 Secondary or pinned tiles
	12.3.1 Creating the tile
	12.3.2 Activating the app with the secondary tile

	12.4 Tile notifications or live tiles
	12.4.1 Simple text notifications
	12.4.2 Images in notifications
	12.4.3 Queuing multiple tile notifications

	12.5 Toast notifications
	12.5.1 Creating the notification service
	12.5.2 Enabling toast

	12.6 Summary

	13 View states
	13.1 Full, filled, and snapped views
	13.2 The LayoutAwarePage
	13.3 The snapped view for the main page
	13.4 Visual states for view management
	13.5 Detail pages and app bars
	13.5.1 Creating an appropriate presentation
	13.5.2 Fixing up the app bar

	13.6 Summary

	14 Contracts: playing nicely with others
	14.1 Sharing
	14.1.1 Sharing your data
	14.1.2 Letting others share with you

	14.2 Letting others search your data
	14.2.1 Declaring your intentions
	14.2.2 The results page and viewmodel
	14.2.3 Responding to in-app search requests
	14.2.4 Responding to external search requests

	14.3 Summary

	15 Working with files
	15.1 Loading files programmatically
	15.1.1 New demonstration project
	15.1.2 File access permissions
	15.1.3 Storage files and folders
	15.1.4 Using a data template selector
	15.1.5 Using file queries
	15.1.6 Creating files and folders

	15.2 URI formats
	15.3 Working with file pickers
	15.3.1 Using the file open picker
	15.3.2 Implementing the file picker source contract

	15.4 Summary

	16 Asynchronous everywhere
	16.1 Why asynchronous is important
	16.2 Working with IAsync* WinRT methods
	16.2.1 async and await: the simplest approach
	16.2.2 Long-form asynchronous operations
	16.2.3 Getting progress updates
	16.2.4 Canceling the operation

	16.3 Working with tasks
	16.3.1 Basic task operations
	16.3.2 Canceling the task
	16.3.3 Converting between WinRT IAsync* and Tasks

	16.4 Summary

	17 Networking with SOAP and RESTful services
	17.1 Networking basics
	17.1.1 Solution setup
	17.1.2 Downloading a file with HttpClient

	17.2 Sharing your model
	17.2.1 Create the source class library
	17.2.2 Create the Modern app–compatible class library

	17.3 Consuming SOAP services
	17.3.1 Creating the service
	17.3.2 Referencing and using the service

	17.4 Structuring your client code using MVVM
	17.4.1 Creating the viewmodel
	17.4.2 Creating and wiring up the user interface

	17.5 Consuming data from RESTful services
	17.5.1 Creating the RESTful service
	17.5.2 Getting data from the service using the viewmodel
	17.5.3 Specifying the acceptable data type

	17.6 Deserializing JSON and XML data
	17.6.1 XML deserialization using XmlSerializer
	17.6.2 JSON deserialization

	17.7 Updating data using PUT, POST, DELETE, and more
	17.8 Summary

	18 A chat app using sockets
	18.1 Chat app viewmodel
	18.1.1 The MainViewModel class
	18.1.2 ChatMessage model class

	18.2 The user interface
	18.2.1 XAML skeleton
	18.2.2 Styles and resources
	18.2.3 App bar buttons
	18.2.4 Chat app content

	18.3 Listening for connections
	18.4 Connecting to the server and sending data
	18.4.1 Connecting to an endpoint
	18.4.2 Sending data

	18.5 Refactoring for better structure and flexibility
	18.5.1 The updated ChatMessage class
	18.5.2 The IMessageService interface
	18.5.3 The TcpStreamMessageService class
	18.5.4 Updated MainViewModel

	18.6 Trying out UDP sockets
	18.6.1 Creating the UdpMessageService class
	18.6.2 Listening for connections
	18.6.3 Connecting to another machine
	18.6.4 Receiving and parsing messages

	18.7 Summary

	19 A little UI work: user controls and Blend
	19.1 Updated game UI
	19.1.1 Basic changes
	19.1.2 Play field area
	19.1.3 Orientation and view states

	19.2 Designing the ship UI
	19.2.1 Creating the UserControl
	19.2.2 Creating the ship shape in Blend
	19.2.3 Adding a label

	19.3 Building out the ship user control properties
	19.3.1 Enabling rotation
	19.3.2 Setting the color
	19.3.3 Temporarily testing the Ship control

	19.4 Summary

	20 Networking player location
	20.1 Updating the Player model
	20.1.1 The PlayerLocation class
	20.1.2 The updated Player class

	20.2 The collection of players
	20.2.1 Initializing the collection
	20.2.2 Displaying players with an ItemsControl
	20.2.3 Testing the collection
	20.2.4 Wiring up the collection to service events

	20.3 Updating the TCP stream message service
	20.3.1 Updated message service interface
	20.3.2 Sending location information
	20.3.3 Reading location information

	20.4 Testing everything
	20.5 Summary

	21 Keyboards, mice, touch, accelerometers, and gamepads
	21.1 Making input generic
	21.1.1 The IInputService interface
	21.1.2 A little math help
	21.1.3 Wiring up the viewmodel

	21.2 Keyboard input
	21.2.1 The KeyboardInputService
	21.2.2 Virtual keys
	21.2.3 Adding from the code-behind

	21.3 Pointer input: mouse, touch, and pen
	21.3.1 Some more math
	21.3.2 A minor modification to the ship user control
	21.3.3 The PointerInputService class
	21.3.4 Adding from the code-behind

	21.4 Accelerometer input
	21.4.1 Making sense of the input
	21.4.2 Implementing the AccelerometerInputService
	21.4.3 Adding from the code-behind
	21.4.4 Accelerometer events
	21.4.5 Dealing with screen autorotation

	21.5 Xbox 360 gamepad input and a little C++
	21.5.1 Creating the C++ project
	21.5.2 Implementing the Controller class
	21.5.3 Creating the IInputService wrapper
	21.5.4 Adding from the code-behind
	21.5.5 Compiling and deploying

	21.6 Summary

	22 App settings and suspend/resume
	22.1 App settings UI and architecture
	22.1.1 Creating the settings infrastructure
	22.1.2 Creating a settings UI

	22.2 Persisting and using settings
	22.2.1 Loading and saving settings values
	22.2.2 Acting on the options

	22.3 Suspend and resume
	22.3.1 Suspending your app
	22.3.2 Resuming activity

	22.4 Summary

	23 Deploying and selling your app
	23.1 Testing for certification
	23.2 Sideloading for testing purposes
	23.2.1 Packaging an app for sideloading
	23.2.2 Getting a developer license without Visual Studio
	23.2.3 Installing the sideload app package

	23.3 Enabling trial mode
	23.3.1 Creating the mock license data for testing
	23.3.2 Checking the license state

	23.4 Listing your app in the Windows Store
	23.4.1 Getting a Windows Store account
	23.4.2 Reserving an app name
	23.4.3 Submitting the app for review and approval

	23.5 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	WSAD-back

